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welcome 
Thank you for joining the MEAP for Getting Started with Natural Language Processing. I am very 
excited that you selected this book and I hope that you'll enjoy getting started with Natural 
Language Processing using it. 

Natural Language Processing (or NLP for short) addresses all types of tasks related to 
language and processing of information expressed in human language. The field and techniques 
have been around for some time now: in fact, you might have been using Natural Language 
Processing in your everyday life without realizing it. Therefore, the very first chapter will give 
you an overview of the wide scope of NLP applications that you might be using regularly – from 
the Internet search engines to spam filters to predictive keyboards (and many more!) 

Recently, the field has been gaining more and more interest. There are several reasons for 
that: thanks to the Internet, we now have access to increasingly larger amounts of information, 
and thanks to the recent developments in computer hardware and software we have more 
powerful technology to process this information. The recent advances in Machine Learning and 
Deep Learning have also contributed to the increasing popularity of NLP. These days, not only 
large tech companies are realizing the potential of using NLP, but also businesses in legal tech, 
finance, insurance sector, and many other spheres are investing in it. The reason for that is 
clear – language is the primary means of communication in all spheres of life, so being able to 
efficiently process the information expressed in the form of human language is always an 
advantage. This makes the book on NLP very timely. My goal with this book is to introduce you 
to all things around natural language and its processing and to show how and why these things 
matter in practical applications, be that your own small project or a company project that could 
benefit from extracting and using information from texts. 

I have been working in NLP for over a decade now, and before that I was focusing on 
linguistics and theoretical studies of language. Looking back, what motivated and excited me 
the most about switching to the more technical field of NLP was the incredible new opportunities 
opened to me by the technology, and the ease of working with the data and getting the 
information you need from texts, whether in the context of academic studies about the language 
itself or practical applications in a different domain. This book aims to achieve the same effect: 
it is highly practice-oriented and each language-related concept, each technique, and each task 
are explained with the help of real-life examples. 

I’ve written the book to be accessible to developers. It can be used both as a comprehensive 
cover-to-cover guide through a range of practical applications and as a reference book if you 
are only interested in some particular tasks. If you have done some programming in Python 
before and are familiar with high school math and algebra (for example, if matrices, vectors, 
and basic operations involving them are familiar to you), you should be good to go! Most 
importantly, the book does not assume any prior knowledge of linguistics, NLP or machine 
learning, as it will help you learn what you need along the way. 
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By the end of the book, you will come out with: 

• Knowledge about the essential NLP tasks and the ability to recognize any particular task 
when you encounter one in a real-life scenario: we will cover such popular tasks as 
sentiment analysis, text classification, information search, and many more. 

• A whole arsenal of NLP algorithms and techniques including, for example, stemming, 
lemmatization, part-of-speech tagging, and many more. You will learn how to apply a 
range of practical approaches to text: for example, vectorization, feature extraction, 
supervised and unsupervised machine learning, among others. 

• Ability to structure an NLP project and understanding which steps need to be involved in 
a practical project. 

• Comprehensive knowledge of the key NLP, as well as Machine Learning, terminology. 

• Comprehensive knowledge of the available resources and tools for NLP. 

I hope you are also excited to start your own journey in NLP by joining this MEAP, and I look 
forward to hearing from you in the liveBook Discussion Forum about what you find along your 
way! 
 
— Ekaterina Kochmar 
Assistant Professor at the Department of Computer Science of the University of Bath 
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Introduction 

This chapter covers 

• Introduction to Natural Language Processing, a history of the field, and why you should
know about it

• Classic NLP tasks and applications in practice
• Ways machines represent words and understand their meaning

Natural Language Processing (or NLP) is a field that addresses various approaches in which 
computers can deal with natural, that is human, language. Regardless of your occupation or 
background, there is a good chance you have heard about it before, especially in the recent 
years when the news about the impressive capabilities of intelligent machines that can 
understand and produce natural language have started appearing in media. This is what has 
brought NLP into the spotlight, and what might have attracted you to this book. You might 
be a programmer who would like to learn new skills, a machine learning or data science 
practitioner who realized there is a lot of potential in processing natural language, or you 
might be generally interested in how language works and how to process it automatically. 
Either way, welcome to NLP! This book aims to help you get started with it. 

Is this book for you if you don’t quite know or understand yet what NLP means and does? 
Absolutely! You might have not realized that, but you are already familiar with this 
application area and the tasks it addresses – in fact, anyone who speaks, reads or writes in a 
human language is. What is more, we use language every time we think, plan and dream. So 
just think about the following for a moment: almost any task that you perform on the daily 
basis involves some use of language. Language ability is one of the core aspects of human 
intelligence, and there is no wonder that the recent advances in Artificial Intelligence and 
excitement about the new, more capable intelligent technology involve advances in Natural 
Language Processing to a considerable degree. After all, we cannot really say that a machine 
is truly intelligent if it cannot master human language. 

1
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Ok, that sounds exciting, but how useful is it as an actual skill for your everyday work or 
your own projects? The answer is: if your work includes dealing with any type of textual 
information, and that involves any work-related documents, legal or financial documents, 
websites, emails, etc., you will with absolute certainty benefit from learning how to extract 
the key information from such documents and how to process it. Textual data is ubiquitous, 
and there is a huge potential in being able to reliably extract information from large amounts 
of text, as well as in being able to learn from it – as the saying goes, data is the new oil!1 

This book will cover the core topics in NLP, and I hope it will be of a great help in your 
everyday work as well as in your projects, whichever background you are coming from and 
whatever primary interest in this field you have. What is even more important than the 
arguments of utility and potential is that NLP is interesting, intellectually stimulating and fun! 
And remember that as a natural language speaker, you are already an expert in many of the 
tasks that NLP addresses, so it is one of those areas in which one can get started easily. This 
book is written with the lowest entry barrier to learning possible: you don’t need to have any 
prior knowledge about how language works – the book will walk you through the core 
concepts and techniques starting from the very beginning. All you need at the beginning is 
some basic programming skills in Python and basic understanding of mathematical notation, 
but what you will learn by the end of this book is a whole set of NLP skills and techniques. 
Let’s begin! 

1.1 A brief history of NLP  
This is not a history book, nor is it a purely theoretical overview of NLP. It is a practice-
oriented book which provides you with the details that you need when you need them. So, I 
will not overwhelm you with details or long history of events that led to the foundation and 
development of the field of Natural Language Processing.2 But there are a couple of key facts 
worth mentioning.  

Here is one “fun fact” for you. The beginning of the field is often attributed to the early 
1950s, in particular to the Georgetown-IBM experiment that attempted implementing an 
early fully automated machine translation system between Russian and English. The 
researchers believed they could solve this task within a couple of years. Do you think they 
succeeded in solving it? Hint: if you have ever tried translating text from one language to 
another with the use of automated tools, such as Google Translate, you know what the state-
of-the-art today is. Machine translation tools today work reasonably well, but they are still 
not perfect, and yet it took the field several decades to get here. 

The early approaches to the tasks in NLP were based on rules and templates that were 
hard-coded into the systems: for example, linguists and language experts would come up 
with patterns and rules of how a word or phrase in one language should be translated into 
another word or phrase in another language, or with templates to extract information from 
texts. Rule-based and template-based approaches have one clear advantage to them – they 
are based on reliable expert knowledge that is put into them. And, in some cases, they do 

 
1 A quote famously popularized by https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data  
2 For a more detailed overview of the history of the field, check the paper copy of Speech and Language Processing by D. Jurafsky and J. H. Martin 

(https://web.stanford.edu/~jurafsky/slp3/) 
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work well: a notable example is an early chatbot ELIZA3 that relies on the use of templates 
yet, in terms of the quality of the output and its ability to keep up with superficially sensible 
conversation, even today may outperform many of its more “sophisticated” competitors. 

However, one real problem for the rule-based and template-based approaches is the 
nature of human language itself: human language is diverse, ambiguous, and creative, and 
you will see many examples of that in this book. This presents a major challenge to any rule- 
or template-based approach: it can simply never take all the possibilities and exceptions into 
account, so it would never generalize well. This is what made it impossible in the 1950s to 
quickly solve the task of Machine Translation. A real improvement to many of the NLP tasks 
came along in the 1980s with the introduction of statistical approaches, based on the 
observations made on the language data itself and statistics derived from the data, and 
machine learning algorithms. 

The key difference between rule-based approaches and statistical approaches is that the 
rule-based approaches rely on a set of very precise but rigid and ultimately inflexible rules, 
whereas the statistical approaches don’t make assumptions – they try to learn what’s right 
and what’s wrong from the data, and they can be flexible about their predictions. This is 
another major component to (and a requirement for) the success of the NLP applications: 
rule-based systems are costly to build and rely on gathering expertise from humans, but 
statistical approaches can only work well provided they have access to large amounts of 
high-quality data. For some tasks such data is easier to come by: for example, a renewed 
interest and major breakthroughs in Machine Translation in the 1980s were due to the 
availability of the parallel data translated between pairs of languages that could be used by a 
statistical algorithm to learn from. At the same time, not all tasks were as “lucky”. 

1990s brought about one other major improvement – the World Wide Web was created 
and made available, and this made it possible to get access and, over the years, accumulate 
large amounts of data for the algorithms to learn from. The Web also introduced completely 
new tasks and domains to work on: for example, before the creation of social media, social 
media analytics as a task didn’t exist. 

Finally, as the algorithms kept developing and the amount of available data kept 
increasing, there came a need for a new paradigm of approaches that could learn from 
bigger data in a more efficient way. And in 2010s, the advances in computer hardware finally 
made it possible to adopt a new family of more powerful and more sophisticated machine 
learning approaches that became known as deep learning.  

This doesn’t mean, however, that as the field kept accommodating new approaches, it 
was dropping the previous ones. In fact, all three types of approaches are well in use, and it 
depends on the task at hand which approach should be preferred. Figure 1.1 visualizes the 
development of all the approaches on a shared timeline. 

 
3 https://en.wikipedia.org/wiki/ELIZA  
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Figure 1.1 NLP timeline visualizing three different types of approaches 

Over the course of the years, NLP got linked to a number of different fields, and 
consequently you might come across different aliases, including, apart from Natural 
Language Processing, also Statistical Natural Language Processing, Language and Speech 
Processing, Computational Linguistics, and such. The distinctions between these are very 
subtle. What matters more than namesakes is the fact that NLP adopts techniques from a 
number of related fields, including: 

• computer science, which contributes with the algorithms as well as software and
hardware;

• artificial intelligence, which sets up the environment for the intelligent machines;
• machine learning, which helps with the intelligent ways of learning from real data;
• statistics, that helps coming up with the theoretical models and probabilistic

interpretation;
• logic, that helps making sure the world described with the NLP models makes sense;
• electrical engineering, which traditionally deals with the processing of human speech;
• computational linguistics, which provides expert knowledge about how human

language works;
• and a number of other disciplines, such as (computational) psycholinguistics,

cognitive science, and neuroscience, which account for human factors as well as brain
processes in language understanding and production.

With so many “contributors” and such impressive advances of the recent years, this is 
definitely an exciting time to start working in the NLP area!  

1.2 Typical tasks 
Before you start reading the next section, here is a task for you: name 3 to 5 applications 
that you use on a daily basis and that rely on NLP techniques. 

You might be surprised but, in fact, you are already actively using NLP through everyday 
applications. Let’s look at some examples. 

4
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1.2.1 Information search 
Let’s start with a very typical scenario: you are searching for all work documents related to a 
particular event or product, for example, everything that mentions management meetings. 
Or perhaps you are searching for the information on the Web – for instance, you decided to 
get some help to solve the task above from the Internet, as Figure 1.2 shows. 

 
Figure 1.2 You may search for the answer to the task formulated earlier in this chapter on the Web 

Alternatively, you may be looking for an answer to a particular question like “What 
temperature does water boil at?” – and, in fact, Google will be able to tell you that by 
providing a precise answer, as Figure 1.3 exemplifies. 

 
Figure 1.3 If you look for factual information, search engines (Google in this case) may be able to provide you 
with precise answers 

These are all examples of what is in essence the very same task – information search, or 
technically speaking, information retrieval. You will see shortly how all the varieties of the 
task above are related. It boils down to the following steps: 

• You submit your “query”, that is, a question that you need an answer to or more 
information on.  

• The computer or the search engine (Google being an example here) returns to you 
either the answer (like 100oC), or a set of texts that are related to your query and 
provide you with the information requested.  

• If you search for the applications of NLP online, the search engine will provide you 
with an ordered list of websites that discuss such applications, and if you search for 
documents on a specific subject on your computer, it will list them in the order of 
relevance.  

5
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This last bit about relevance is essential here – the list of the websites from the search 
engine usually starts with the most relevant websites that you should visit, even if it may 
contain dozens of results pages. In practice, though, how often do you click through pages 
after the first one in the search results? The documents found on your file system typically 
would be ordered by their relevance too, so you’ll be able to find what you are looking for in 
a matter of seconds. How does the machine know in what order to present the results? 

If you think about it, information search is an amazing application: first of all, if you were 
to find the relevant information on your computer, in a shared file system at work, or on the 
Internet, and had to manually look through all available documents, this will be like looking 
for a needle in a haystack. But secondly, even if you knew which documents and webpages 
are generally relevant, finding the most relevant one(s) among them would still be a hugely 
overwhelming task. These days, luckily, we don’t have to bother ourselves with tasks like 
that and it is hard to even imagine how much time is saved by the machines performing it 
for us. 

However, have you ever wondered how the machines do that? Imagine that you had to 
do this task yourself, i.e., with no help from the machine. In other words, think about the 
following scenario: Imagine that you have to perform the search in a collection of documents 
yourself, i.e., without the help of the machine. For example, you have a thousand printed out 
notes and minutes related to the meetings at work, and you only need those that discuss the 
management meetings. How will you find all such documents? How will you identify the most 
relevant of these? 

The first question might seem easy – you need all the documents that contain words like 
“meeting” and “management”, and you are not interested in any other documents, so this is 
simple filtering as Figure 1.4 shows: 

 
Figure 1.4 Simple filtering of documents into “keep” and “discard” piles based on occurrence of words 

6
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Now, it is true that the machines are getting increasingly better at understanding and 
generating human language. However, it’s not true that they truly “understand” language, at 
least not in the same way we humans do. In particular, whereas if you were to look through 
the documents and search for occurrences of “meeting” and “management” you would 
simply read through the documents and spot these words, because you have a particular 
representation of the word in mind and you know how it is spelled and how it sounds, the 
machines don’t actually have such representations. How do they understand what the words 
are and how can they spot a word then?  

One thing that machines are good at is dealing with numbers, so the obvious candidate 
for word and language representation in the “mechanical mind” is numerical representation. 
This means that humans need to “translate” the words from the representations that are 
common for us into the numerical language of the machines in order for the machines to 
“understand” words. The particular representation that you will often come across in Natural 
Language Processing is a vector. Vector representations are ubiquitous – characters, words 
and whole documents can be represented using them, and you’ll see plenty of such examples 
in this book. 

Here, we are going to represent our query and documents as vectors. A term vector 
should be familiar to you from the high school math, and if you have been programming 
before, you can also relate vector representation to the notion of an array – the two are very 
similar, and in fact, the computer is going to use an array to store the vector representation 
of the document. Let’s build our first numerical representation of a query and a document. 

Query = “management meeting” contains only two words, and in a vector each of 
them will get its own dimension. Similarly, in an array each one will get its own cell, as 
Figure 1.5 shows. 

 
Figure 1.5 In an array, each word is represented by a separate cell. In a vector, each word gets its own 
dimension. 
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The cell of the array that is assigned to “management” will be responsible for keeping all 
the information related to “management”, and the cell that is assigned to “meeting” will 
similarly be related to “meeting”. The vector representation will do exactly the same but with 
the dimensions – there is one that is assigned to “management” and one that is for 
“meeting”. What information should these dimensions keep? 

Well, the query contains only two terms, and they both contribute to the information 
need equally. This is expressed in the number of occurrences of each word in the query. 
Therefore, we should fill in the cells of the array with these counts. As for the vector, each 
count in the corresponding dimension will be interpreted as a coordinate, so our query will be 
represented as in Figure 1.6: 

 
Figure 1.6 The array is updated with the word counts; the vector is built using these counts as coordinates 

Now, the vector is simply a graphical representation of the array – in the computer’s 
mind, the coordinates that define the vector are stored as an array.  

We use a similar idea to “translate” the word occurrences in documents into the arrays 
and vector representations: simply count the occurrences. So, for some document Doc1 
containing 5 occurrences on the word “meeting” and 3 of the word “management”, and for 
document Doc2 with 1 occurrence of “meeting” and 4 of “management” the arrays and 
vectors will be as in Figure 1.7: 

8
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Figure 1.7 Arrays and vectors representing Doc1 and Doc2 

Perhaps, now you see how to build such vectors using very simple Python code. To this 
end, let’s create a Jupyter notebook and start adding the code from Listing 1.1 to it.4 The 
code in Listing 1.1 starts with a very simple representation of a document based on the word 
occurrences in document Doc1 from Figure 1.7 and builds a vector for it. It first creates an 
array vector with 2 cells, because in this example we know how many keywords there are. 
Next, the text is read in, treating each bit of the string between the whitespaces as a word. 
As soon as the word “management” is detected in text, its count is incremented in cell 0 
(recall, that this is because Python starts all indexing from 0); and as soon as “meeting” is 
detected in text, its count is incremented in cell 1. Finally, the code prints the vector out. 
Note that you can apply the same code to any other example – e.g., similarly you can build a 
vector for Doc2 as an input using the correspondent counts for words. 

Listing 1.1 Simple code to build a vector from text 

doc1 = "meeting ... management ... meeting ... management ... meeting " 
doc1 += "... management ... meeting ... meeting"    #A 
 
vector = [0, 0]    #B 
 
for word in doc1.split(" "):    #C 
    if word=="management": 
        vector[0] = vector[0] + 1    #D 
    if word=="meeting": 
        vector[1] = vector[1] + 1    #E 
         
print (vector)    #F 

 
4 In this book, by default, we will be using Jupyter notebooks, as they provide practitioners with a flexible environment in which the code can be easily 

added, run, and updated, and the outputs can be easily observed. Alternatively, you can use any Python IDE for the code examples from this book. See 
https://jupyter.org for the installation instructions. In addition, see the Appendix for installation instructions and the book’s repository 
(https://github.com/ekochmar/Getting-Started-with-NLP) for both installation instructions and all code examples. 
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#A Representation of a document based on keywords only 
#B Initialization of array vector 
#C The text is read in, and words are detected 
#D Count for “management” is incremented in cell 0 
#E Count for “meeting” is incremented in cell 1 
#F This line should print [3, 5] for you 

The code above uses a very simple representation of a document focusing on the key words 
only: you can assume that there are more words instead of dots, and you’ll see more 
realistic examples later in this book. In addition, this code assumes that each bit of the string 
between the whitespaces is a word. In practice, properly detecting words in texts is not as 
simple as this: we’ll talk about that later in the book and we’ll be using a special tool, 
tokenizer, for this task. Yet splitting by whitespaces is a brute-force strategy good enough for 
our purposes in this example.  

Now, of course, in a real application we want a number of things to be more scalable than 
this:  

1. we want the code to accommodate for all sorts of queries and not limit it to a 
predefined set of words (like “management” or “meeting”) or a predefined size (like 
array of size 2); 

2. we want it to properly detect words in text; and 

3. we want it to automatically identify the dimensions along which the counts should be 
incremented rather than hard-coding it as we did in the code from Listing 1.1. 

And we’ll do all that (and more!) in Chapter 3. But for now, if you grasped the idea of 
representing documents as vectors, well done – you are on the right track! This is quite a 
fundamental idea that we will build upon in the course of this book, bit by bit. 

I hope now you see the key difference between what we mean by “understanding” the 
language as we humans do and “understanding” the language in a machine-like way – 
obviously, counting words doesn’t bring about proper understanding of words or the 
knowledge of what they mean. But for a number of applications, this type of representation 
is quite good for what they are. Now comes the second key bit of the application – we have 
represented the query and each document in a numerical form so that a machine can 
“understand” it, but can it tell which one is more relevant to the query? Which should we 
start with if we want to find the most relevant information about the management meetings?  

We used vector representations to visualize the query and documents in the geometrical 
space. This space is a visual representation of the space in which we encoded our 
documents. To return the document most relevant to our query, we need to find the one that 
has most similar content to the query. That is where the geometrical space representation 
comes in handy: each object in this space is defined by its coordinates, and the most similar 
objects are located close to each other. Figure 1.8 visualizes where our query and documents 
lie in the shared geometrical space. 

10
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Figure 1.8 The query (denoted with the black circle at [1, 1]) and the documents Doc1 [3, 5] and Doc2 [4, 1] 
represented in the shared space 

The circles on the graph above show where in the space documents Doc1 and Doc2 as 
well as the query are located. Can we measure the distance between each pair in precise 
terms? Well, the distance is simply the difference between the coordinates for each of the 
objects along the correspondent dimensions, i.e.: 

• 1 and 3 along the “management” dimension for the query and Doc1 
• 1 and 5 along the “meeting” dimension for the query and Doc1 
• 1 and 4 along the “management” dimension for the query and Doc2, and so on. 

The measurement of distance in geometrical space originates with the old good 
Pythagorean theorem that you should be familiar with from the high school mathematics 
course. Here’s a refresher: in a right triangle, the square of the hypotenuse (the side 
opposite to the right angle) length equals to the sum of the squares of the other two sides’ 
lengths. That is, to measure the distance between two points in the geometrical space, we 
can draw a right triangle such that the distance between the two points will equal the length 
of the hypotenuse and calculate this distance using Pythagorean theorem. Why does this 
work? Because the length of each side is simply the difference in the coordinates, and we 
know the coordinates! This is what Figure 1.9 demonstrates:  

11
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Figure 1.9 In a right triangle, the length of the hypotenuse can be estimated from the lengths of the other two 
sides 

This calculation is called Euclidean distance, and the geometrical interpretation is 
generally referred to as Euclidean space. Using this formula, we get: 

ED(query, Doc1) = square_root((3-1)2 + (5-1)2) ≈ 4.47, and  
ED(query, Doc2) = square_root((4-1)2 + (1-1)2) = 3 

Euclidean distance 
Euclidean distance between two points in space is measured as the length of the line between these points. In NLP, it 
can be used to measure the similarity between two texts, i.e., the distance between two vectors representing these 
texts. 
 

Now, in our example we work with two dimensions only as there are only two words in 
the query. Can you use the same calculations on more dimensions? Yes, you can: you simply 
need to take the square root of the sum of the squared lengths in each dimension.  

Listing 1.2 shows how you can perform the calculations that we have just discussed with 
a simple Python code. Both query and document are hard-coded in this example. Then the 
for-loop adds up squares of the difference in the coordinates in the query and the 
document along each dimension, using math functionality. Finally, the square root of the 
result is returned. 
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Listing 1.2 Simple code to calculate Euclidean distance 

import math    #A 
 
query = [1, 1]    #B 
doc1 = [3, 5]    #C 
sq_length = 0 
 
for index in range(0, len(query)):    #D 
    sq_length += math.pow((doc1[index] - query[index]), 2)    #E 
             
print (math.sqrt(sq_length))    #F 

#A Import Python’s math library5 
#B The query is hard-coded as [1, 1] 
#C The document is hard-coded as [3, 5] 
#D For-loop is used to estimate the distance 
#E math.pow is used to calculate square (degree of 2) of the input 
#F math.sqrt calculates the square root of the result, which should be ≈ 4.47 

Our Euclidean distance estimation tells us that Doc2 is closer in space to the query than 
Doc1, therefore it is more similar, right? Well, there’s one more point that we are missing at 
the moment. Note that if we typed in “management” and “meeting” multiple times in our 
query, the content and information need would not change, but the vector itself would. In 
particular, the length of the vector will be different, but the angle between the first version of 
the vector and the second one won’t change as you can see in Figure 1.10: 

 
Figure 1.10 Vector length is affected by multiple occurrences of the same words, but angle is not 

Vectors representing documents can get longer without any conceptually interesting 
reasons. For example, longer documents will have longer vectors: each word in a longer 
document has a higher chance of occurrence and will most likely have higher counts. 
Therefore, it is much more informative to measure not the absolute distance that can be 
dependent on the length of the documents, but the angle between the length-normalized 
vectors, that is, vectors made comparable in terms of their lengths. 

 
5 Check out https://docs.python.org/3/library/math.html for more information and a refresher. 
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As you can see in Figure 1.10, the angle between the vectors is a much more stable 
measure than the length – otherwise the versions of the same query with multiple repetitions 
of the same words will actually have non-zero distance between them, which does not make 
sense from the information content point of view. The measure that helps estimating the 
angle between vectors is called cosine similarity, and it has a nice property of being higher 
when the two vectors are closer to each other with a smaller angle (i.e., more similar), and 
lower when they are more distant with a larger angle (i.e., less similar). The cosine of a 00 
angle equals 1, meaning maximum closeness and similarity between the two vectors. Figure 
1.11 shows an example: 

 
Figure 1.11 The cosine of 00 angle equals 1; vectors 1 and 2 are at 900 to each other and have a cosine of 0; 
vectors 1 and 3 at 1800 have a cosine of –1 

Cosine similarity 
Cosine similarity estimates the similarity between two non-zero vectors in space (or two texts represented by such 
vectors) on the basis of the angle between these vectors: e.g., the cosine of 00 equals 1, which denotes the maximum 
similarity, and the cosine of 1800 equals -1, which is the lowest value. Unlike Euclidean distance, this measure is not 
affected by vector length. 
 

Vector1 in Figure 1.11 has an angle of 00 with itself as well as with any overlapping 
vectors, so the cosine of this angle equals 1 showing maximum similarity. For instance, the 
query from our previous examples is maximally similar to itself. Vectors 1 and 2 are at 900 to 
each other, and the cosine of the angle between them equals 0. This is a very low value 
showing that the two vectors are not similar: as you can see in Figure 1.11, it means that 
the two vectors are perpendicular to each other – they don’t share any content along the two 
dimensions. Vector1 has word occurrences along x-axis, but not along y-axis, while vector2 
has word occurrences along y-axis but not along x-axis. The two vectors represent content 
complementary to each other: to put this in context, you can imagine that vector1 
represents one query consisting of a single word “management”, and vector2 represents 
another query consisting of a single word “meeting”. 
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Vectors 1 and 3 are at 1800 to each other and have a cosine of -1. In tasks based on 
simple word counting, the cosine will never be negative because the vectors that take the 
word occurrences as their coordinates will not produce negative coordinates, so vector3 
cannot represent a query or a document. When we build vectors based on word occurrence 
counts, the cosine similarity will range between 0 for the least similar (perpendicular, or 
orthogonal) vectors, and 1 for the most similar, in extreme cases overlapping, vectors.  

The estimation of the cosine of an angle relies on another Euclidean space estimation: dot 
product between vectors. Dot product is simply the sum of the coordinate products of the 
two vectors taken along each dimension, for example:  

dot_product(query, Doc1) = 1*3 + 1*5 = 8 
dot_product(query, Doc2) = 1*4 + 1*1 = 5 
dot_product(Doc1, Doc2) = 3*4 + 5*1 = 17 

The cosine similarity is estimated as a dot product between two vectors divided by the 
product of their lengths. The length of a vector is calculated in exactly the same way as we 
did before for the distance, but instead of the difference in coordinates between two points, 
we take the difference between the vector coordinates and the origin of the coordinate 
space, which is always (0,0). So, the lengths of our vectors are: 

length(query) = square_root((1-0)2 + (1-0)2) ≈ 1.41 
length(Doc1) = square_root((3-0)2 + (5-0)2) ≈ 5.83 
length(Doc2) = square_root((4-0)2 + (1-0)2) ≈ 4.12 

And the cosine similarities are: 

cos(query,Doc1) = dot_prod(q,Doc1)/len(q)*len(Doc1) = 8/(1.41*5.83) ≈ 0.97 
cos(query,Doc2) = dot_prod(q,Doc2)/len(q)*len(Doc2) = 5/(1.41*4.12) ≈ 0.86 

To summarize, in the general form we calculate cosine similarity between vectors vec1 
and vec2 as: 

cosine(vec1,vec2) = dot_product(vec1,vec2)/(length(vec1)*length(vec2)) 

This is directly derived from the Euclidean definition of the dot product, which says that:  

dot_product(vec1,vec2) = length(vec1)*length(vec2)*cosine(vec1,vec2) 

Code Listing 1.3 shows how you can perform all these calculations using Python. The 
code starts similarly to the code from Listing 1.2. Function length applies all length 
calculations to the passed argument, whereas length itself can be calculated using Euclidean 
distance. Next, function dot_product calculates dot product between arguments vector1 
and vector2. Since you can only measure the distance between vectors of the same 
dimensionality, the function makes sure this is the case and returns an error otherwise. 
Finally, specific arguments query and doc1 are passed to the functions and the cosine 
similarity is estimated and printed out. In this code, doc1 is the same as used in other 
examples in this chapter, however, you can apply the code to any other input document.  
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Listing 1.3 Cosine similarity calculation 

import math 
 
query = [1, 1] 
doc1 = [3, 5] 
 
def length(vector):    #C 
    sq_length = 0 
    for index in range(0, len(vector)): 
        sq_length += math.pow(vector[index], 2)    #B 
    return math.sqrt(sq_length)    #A 
     
def dot_product(vector1, vector2):    #D 
    if len(vector1)==len(vector2): 
        dot_prod = 0 
        for index in range(0, len(vector1)): 
            dot_prod += vector1[index]*vector2[index] 
        return dot_prod 
    else: 
        return "Unmatching dimensionality"    #E 
 
cosine=dot_product(query, doc1)/(length(query)*length(doc1))    #F  
print (cosine)    #G 

#A The code up to here is almost exactly the same as the code in Listing 1.2 
#B Length is calculated using Euclidean distance; coordinates (0, 0) are omitted for simplicity 
#C Function length applies all length calculations to the passed argument 
#D Function dot_product calculates dot product between passed arguments 
#E An error is returned if vectors are not of the same dimensionality 
#F Specific arguments query and doc1 are passed to the functions 
#G A numerical value of ≈ 0.97 is printed 

Bits of the code above should now be familiar to you. The key difference between the code in 
Listing 1.2 and the code in Listing 1.3 is that instead of repeating the length estimation code 
for both query and document, we pack it up in a function that is introduced in the code using 
the keyword def. The function length performs all the calculations as in Listing 1.2, but it 
does not care what vector it should be applied to. The particular vector – query or document 
– is passed in later as an argument to the function. This allows us to make the code much 
more concise and avoid repeating stuff. 

So, in fact, when the length of the documents is disregarded, Doc1 is much more similar 
to the query than Doc2. Why is that? This is because rather than being closer only in 
distance, Doc1 is more similar to the query – the content in the query is equally balanced 
between the two terms, and so is the content in Doc1. In contrast, there is a higher chance 
that Doc2 is more about “management” in general than about “management meetings”, as it 
mentions meeting only once.  

Obviously, this is a very simplistic example. In reality, we might like to take into account 
more than just two terms in the query, other terms in the document and their relevance, the 
comparative importance of each term from the query and so on. We’ll be looking into these 
matters in Chapter 3, but if you’ve grasped the general idea from this simple example, you 
are on the right track! 
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Exercise 1.1 
Calculate cosine similarity between each pair of vectors: A=[4,3], B=[5,5], and C=[1,10]. Which ones are closest (most 
similar) to each other?  

First, try solving this exercise. Then you can compare your answer to the solution below. Represent the vectors 
visually in a geometrical space to check your intuition about distance. 

1.2.2 Advanced Information Search: Asking the machine precise questions 
As you’ve seen in the earlier examples, it is not just the documents that you can find by your 
query – you can also find direct answers to your questions. For example, if you type into 
your search engine “What temperature is it now?”, you may get an answer similar to that 
from Figure 1.12. 

Figure 1.12 If you type into your search engine a question asking about the temperature, you will get an 
answer to such a question straight away 

Alternatively, you can test your knowledge on any subject by asking the search engine 
precise factual questions like “When was the Eiffel Tower built?” or “What temperature does 
water boil at?” (you’ve seen this last question earlier in this chapter, e.g., in Figure 1.3): 

In fact, you’ll get back both the precise answer and the most relevant webpage that 
explains the stuff, as Figure 1.13 exemplifies: 
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Figure 1.13 The search for factual information on Google returns both the precise answer to the question and 
the accompanying explanation 

Ok, some of the “magic” behind what’s going on should be clear to you now: if the search 
engine knows that your information need concerns water boiling point, it can use information 
retrieval techniques similar to the ones we’ve just talked about to search for the most 
relevant pages. But what about the precise answer? It looks like these days you can ask a 
machine a question and get a precise answer, and this looks much more like machines 
getting real language understanding and intelligence! 

Hold on: didn’t we say before, the machines don’t really “understand” language, at least 
not in the sense we humans do? In fact, what you see here is another application of NLP 
concerned with information extraction and question answering, and it helps machines getting 
closer to understanding language. The trick is to: 

• identify in the natural language question the particular bit(s) the question is about 
(e.g., the water boiling point in the example above); 

• apply search on the Web to find the most relevant pages that answer that question; 
and 

• extract the bit(s) from these pages that answer(s) the question. 

Figure 1.14 visualizes this process. 
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Figure 1.14 Information extraction pipeline for the query “What temperature does water boil at?” 

To solve this task, the machine indeed needs to know a bit more about language than 
just the number of words, and here is where it gets really interesting. You can see from the 
example above that to answer the question the machine needs to: 

• Know which words in the question really matter: for example, words like 
“temperature”, “water” and “boil” do, but “what”, “do” and “at” don’t really matter 
that much. The group {temperature, water, boil} are called content words, and the 
group {what, do, at} are called function words or stopwords. The filtering is done by 
stopwords removal, which you’ll learn more about in Chapter 2. 

• Know about the relations between words and the roles each one plays: for example, it 
is really the temperature that this question asks about, but the temperature is related 
to water, and the water is doing the action of boiling. The particular tools that will 
help you figure all this out are called part-of-speech taggers (they identify that words 
like “water” do the action, and the other ones like “boil” denote the action itself) and 
parsers (they help identify how the words are connected to each other). You will learn 
more about this in Chapter 4. 

• Know that “boiling” means the same thing as “boil”. The tools that help you figure this 
out are called stemmers and lemmatizers, and we’ll be using them in this book quite a 
lot, starting straight away from Chapter 2. 

As you can see, the machine applies a whole bunch of NLP steps to analyze both the 
question and the answer, and identify that it is “100oC”, and not “0oC” or “191oC”, that is the 
correct answer.  

1.2.3 Conversational agents and Intelligent virtual assistants 
When reading about asking questions and getting answers from a machine, you might have 
already been thinking that it’s not as frequently done in a browser these days – perhaps a 
more usual way to get answers to questions like “Who sings this song?” or “How warm is it 
today?” now is to ask an intelligent virtual assistant. These are integrated in most 
smartphones, so depending on the one you’re using you may be communicating, for 
instance, with Siri, Google Assistant or Cortana. There are also independent devices like 
Amazon Echo that hosts Amazon Alexa virtual assistant. 
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There are a whole variety of things that you can ask your virtual assistant, as Figure 1.15 
demonstrates: 

 
Figure 1.15 A set of questions that you can ask your intelligent virtual assistant (Siri in this case; although you 
can ask similar questions of Alexa, Google Assistant or Cortana)  

Some of these queries are very similar to those questions that you can type in your 
browser to get a precise factual answer, so as in the examples before, this involves NLP 
analysis and application of information retrieval and information extraction techniques. Other 
queries, like “Show me my tweets” or “Ring my brother at work”, require information 
retrieval for matching the query to the brother’s work phone number, and some actions on 
the part of the machine, e.g., actual calling. Yet, there are two crucial bits that are involved 
in applications like intelligent virtual assistants: the input is no longer typed in, so the 
assistant needs to understand speech, and apart from particular actions like calling, the 
assistant is usually required to generate speech, which means translating the speech signal 
internally in a text form, processing the query using NLP, generating the answer in a natural 
language, and producing output speech signal. This book is on text processing and NLP, so 
we will be looking into the bits relevant to these steps; however, the speech processing part 
is outside of the scope of this book, as it usually lies in the domain of electrical engineering. 

To conclude, Figure 1.16 shows the full processing pipeline: 
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Figure 1.16 Processing pipeline of an intelligent virtual assistant 

Leaving the speech processing and generation steps aside, there is one more step related 
to NLP that we haven’t discussed yet – language generation. This may include formulaic 
phrases like “Here is what I found”, some of which might accompany actions like “Ringing 
your brother at work” and might not be very challenging to generate. However, in many 
situations and, especially if a virtual assistant engages in some natural conversation with the 
user like “How are you today, Siri?”, it needs to generate a naturally sounding response, 
preferably on the topic of the conversation. This is also what conversational agents, or 
chatbots, do. So how is this step accomplished? 

1.2.4 Text prediction and Language generation 
If you use a smartphone, you probably have used predictive keyboard at least once. This is a 
good realistic example of text prediction in action: if you use predictive keyboard, it can 
suggest the next word or a whole phrase for you, based on what you’ve typed in so far. You 
might also notice that the most appropriate word or phrase are usually placed in the middle 
for your convenience, and the application learns your individual lingo, so it tries to write as 
you personally do. In addition, modern technology (for example, such applications as 
Google’s Smart Reply) allows the machines to respond to emails for you, with usually quite 
short answers like “Either day works for me”, or “Monday works for me”. Despite the relative 
simplicity and shortness of the responses, note how very relevant they usually are! Figure 
1.17 provides some examples. 
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Figure 1.17 On the left: examples of predictive keyboards on smartphones, suggesting the most likely next 
words or phrases given the context typed in so far. On the right: Google’s Smart Reply for emails   

Before we look under the hood of this application, here’s a short quiz for you: suppose I 
provide you with the beginning of a word, for example “langu___”, and ask you “What is the 
next character?” Alternatively, suppose you can see some words beginning a phrase, for 
instance “Natural Language ___”. Can you guess the next word? 

I bet your intuition tells you that the first one is almost certainly “language”. The second 
one might be trickier: you are reading a book on Natural Language Processing, so 
“processing” might be your most reliable guess. Still, some of you might think of “Natural 
Language Understanding” or “Natural Language Generation” – all valid candidates, but 
intuitively you know which ones are more likely. How does this prediction work? 

The reason is, since you are using language all the time, you know what events (such as 
sequences of characters or words) do occur in language and which ones don’t, and how often 
relative to each other they occur. This is our human intuitive understanding of probability. In 
fact, we are so primed to see the expected sequences of characters and words, that we 
easily miss misspellings in words and get the main idea from a text even when only the first 
and the last letter of the word are correct and all other letters are shuffled – for exmaple, 
you might miss some spleling miskates in this sentence (got it?).6 

Our expectations are strong and governed by our observations of what usually happens in 
language. We make such estimations effortlessly, but machines can also learn about what’s 
most common in language if they are given such an opportunity. The estimation of what is 
common and how common it is is called probability estimation. In practice, you would 
estimate the probabilities as follows: for example, if we’ve seen 100 contexts where the 
phrase “Natural Language [third word]” was used, and 90 of those were “Natural Language 
Processing”, 6 were “Natural Language Understanding” and 4 were “Natural Language 
Generation”, you’d say that: 

 
6 Despite the fact that the letters in the words “example”, “spelling” and “mistakes” are shuffled, most probably you had no trouble understanding what 

the sentence is saying. Moreover, if you were reading this text quickly, you might have missed these misspellings altogether. See more examples and 
explanation for this phenomenon here: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/  
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Probability(“Processing” given “Natural Language” as context) = 90/100 = 90% 
Probability(“Understanding” given “Natural Language” as context) = 6/100 = 6% 
Probability(“Generation” given “Natural Language” as context) = 4/100 = 4% 

That is, based on what you’ve seen so far (and you make sure that you’ve seen enough 
and the data that you observed was not abnormal), you can expect 90% of the time to see 
“Natural Language Processing”. Note that together the estimations add up to 100%. Note 
also that we can directly compare these probabilities and say that “Processing” is more likely 
given that the beginning of the phrase is “Natural Language”. 

This idea of estimating what is most likely can be used both over characters and words. 
You might have noticed that we have been trying to predict the next word or next character 
based on some previous context. In NLP terms, such context used in prediction is referred to 
as n-grams, where n stands for the number of symbols (i.e., number of characters or words) 
that are considered as context: for example, “l”, “a”, and “n” in word “language” represent 
character unigrams, while “Natural”, “Language”, and “Processing” in “Natural Language 
Processing” are word unigrams. Then “la”, “an” and so on are character bigrams, and 
“Natural Language” and “Language Processing” are word bigrams. Trying to predict pairs of 
characters or words (i.e., bigrams) based on one previous character or word is therefore 
called bigram modeling, predicting triplets of characters or words based on two previous 
ones will make it trigram modeling, and so on. Figure 1.18 summarizes these examples. 

 
Figure 1.18 Examples of bigram and trigram character and word modeling with probabilities (P) 

N-gram  
N-gram is a continuous sequence of n symbols, for example, characters, words, etc., where n denotes the length of 
the sequence: i.e., n=1 is referred to as unigram, n=2 as bigram, and so on. N-grams are widely used in many NLP 
tasks, for example, in text prediction based on previous context. 
 

Why considering context is important and what is the best n to take into account? Let’s 
look at our quiz again: if you were given no context to predict, the task of predicting a word 
or character would be impossible – it can be anything. With one character (for example, “l”) 
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or one word (for example, “natural”), the number of possibilities is still huge, especially for 
words. The rules of language do narrow it down for characters: for example, it can be “la” as 
in “language”, “le” as in “lesson”, or “lo” as in “local”, but few would probably expect it to be 
“lm” or “lw” (unless it’s an abbreviation, of course!). With two previous characters (“la”) or 
words (“Natural Language”), the “correct” prediction becomes easier, and for some long 
contexts (like “langu”) the possibilities narrow down to one or two options. 

This means that the context helps in prediction, that is why we use it and calculate the 
estimations of probabilities based on it. How far back in context should we look for a reliable 
prediction then? It seems like the longer, the better, isn’t it? Well, there is one more 
consideration to make: language is really creative. If we take only very long expressions for 
our probability estimations, we’ll only be able to predict a few of those and will be missing on 
many more that are probable but have not occurred in exactly the same long context. This is 
because we will always see fewer examples for the longer expressions than for the shorter 
ones: if you’ve seen “lan” 10 times, that means that you’ve seen any longer sequence at 
most 10 times. In fact, you might have seen “lane” 2 times, “land” 4 times and “language” 4 
times – so, as you see, each of these counts are smaller than 10. But now any sequence 
longer than 4 characters starting with “lang” will be bound to have counts no greater than 4, 
and so on. Ultimately, your probability estimation based on a very long sequence of previous 
characters, like “langua”, will return one specific word only. It’s reliable but ultimately not 
very useful for real language generation.  

The problem is particularly obvious with words. Say, you’ve seen only one example so far 
which says “I have been reading this book on Natural Language Processing”. If you were to 
take the whole sentence as the context (“I have been reading this book on Natural _”) to 
predict the next word, you will always predict this particular sentence and nothing else. 
However, if the book the person is actually reading is on Natural Sciences, or Natural History, 
or anything else, you won’t be able to predict any of these! At the same time, if you used a 
shorter context, like “book on Natural”, your algorithm would be able to suggest more 
alternatives. To summarize, the goal is to predict what is probable without constraining it to 
only those sequences seen before, so the trade-off between more reliable prediction with 
longer contexts and more diverse one with shorter contexts suggests that something like 2 
previous words or characters is good enough. 

Figure 1.19 shows roughly how text prediction algorithm will do its job. 

 
Figure 1.19 Text prediction: a user starts typing a word and the algorithm predicts “language” in the end 
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As soon as the user starts typing a word, for example starting with a letter “l”, the 
machine offers some plausible continuations. Remember, that for convenience the most 
probable one is put in the middle: for example, a text prediction algorithm might suggest “la” 
(for a word like “last”), “lo” (as in “love”) or “le” (as in “let’s”) as some of the most probable 
options. The user then can choose the letter that they have in mind. Alternatively, the 
algorithm can suggest particular words (which most smartphones actually do) – like “last”, 
“love” or “let’s”. We know that reliable prediction with one character as context is really 
tricky, and quite probably at this point none of the suggestion are the ones that the user has 
in mind, so they will continue by typing “la”. At this point, the algorithm uses these two 
characters as context and adjusts its prediction: it offers “lan” (or maybe a word like “land”), 
“las” (or “last”) and “lat” (or “late”) as candidates. The user then chooses “lan” or keeps on 
typing “lan”. At this point, the machine can both try to predict the word based on characters, 
as well as check the fit with the previous words: if the user has been typing “I’ve been 
reading this book on Natural Lan_” both word context and character context would strongly 
suggest “Language” at this point. Figure 1.20 illustrates this process. 

 
Figure 1.20 Language modeling during the learning and prediction phases 

This type of prediction based on the sequences of words and characters in context is 
known as language modeling, and it is at the core of text prediction on your smartphone, or 
of the Smart Reply technology in your email. It is based on the idea that the sequences of 
plausible words can be learned in a statistical way – that is, calculating the probabilities on 
some real data. The data is of a paramount importance: both quality and quantity matter. 
The large quantity of data that became available to the algorithms in the recent decades is 
one of the strongest catalysts that allowed NLP to move forward and achieve such impressive 
results. Another is the quality: if you use text prediction on your phone a lot, you might 
notice that if you had a friend or a colleague called Lang and used this surname quite a lot in 
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messages, your phone will ultimately learn to offer this as the most probable suggestion 
even if it wasn’t part of the original vocabulary. That is, your phone adapts to your personal 
vocabulary and uses your own data to do that. 

Another factor that contributed to the success of conversational agents and predictive 
text technology is the development of algorithms themselves. This description would not be 
complete without mentioning that modern text prediction and chatbots increasingly use 
neural-based language modeling: the idea is the same – the algorithm still tries to predict 
the next character or word based on context, but the use of context is more flexible. For 
instance, it might be the case that the most useful information for the next word prediction is 
not 2 characters or words away, but in the beginning of the sentence or in the previous 
phrase. The n-gram models are quite limited in this respect, whereas more computationally 
expensive approaches such as neural models can deal with encoding large amounts of 
information from wider context and even identify which bits of the context matter more.  

Statistical analysis of language, probability estimations and prediction lie at the core of 
these and many other applications, including the next ones.  

1.2.5 Spam filtering 
If you use email (and I assume you do) you must be familiar with the spam problem. Spam 
relates to email that is either not relevant to you because, for example, it has been sent to 
many recipients en masse, or potentially even dangerous, like spreading malicious content, 
links to unsafe websites and computer viruses. Therefore, it is really desirable that such 
email does not make it to your inbox and gets safely put away in the spam or junk folder. 

These days, email agents have spam filters incorporated in them, and you might be lucky 
enough to not get to see any of the spam emails that are filtered out by these algorithms. 
Spam filtering is a classic example of an application at the intersection of NLP and machine 
learning. To get an idea of how it works, try coming up with a definition of what would make 
you call something a spam email. 

There are a number of red flags that you can think about here: an unknown sender, 
suspicious email address, and an unusual formatting of the message can all be indicative. 
But ultimately, a lot of what tells you it’s a spam email is down to its content. Typically, 
emails that try to sell you some products you have no interest in buying, notify you that you 
have unexpectedly won a large sum of money in a lottery you have not entered in the first 
place, or that your bank account is blocked, and in particular asking you to click on some 
links and submit your personal information are all very strong cues for the email to be spam. 

Machine learning algorithms rely on the statistical analysis and vector representations of 
text. As before with information search, we represent each email as a vector, and call it a 
feature vector. Each dimension in this vector, as before, represents a particular word or 
expression, and each such expression is called a feature. The feature occurrences then are 
counted as before. There is a whole plethora of machine learning algorithms, and we will be 
looking into some of them in this book, but all they do next is, basically, try to build a 
statistical model, a function, that helps them distinguish between those vectors that 
represent spam emails and those that represent normal emails (also known as “ham”). In 
doing so, the algorithms figure out which of the features matter more and should be trusted 

26

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

during prediction. Then, given any new email, the algorithm is able to tell whether this new 
email is likely to be spam or ham, as Figure 1.21 depicts: 

 
Figure 1.21 Learning (training) and prediction phrases of spam filtering 

Spam filtering is one example of a much wider area in NLP – text classification. Text 
classification aims to detect a class that the text belongs to based on its content. The task 
may include two classes as with spam filtering (spam vs ham) and sentiment analysis 
(positive vs negative), or more than two classes: for example, you can try to classify a news 
article using a number of topics like “politics”, “business”, “sports” and so on. Several 
applications we will look into in this book deal with text classification: user profiling 
(Chapters 5-6), sentiment analysis (Chapters 7-8) and topic classification (Chapter 9), not to 
mention that your very first practical NLP application in Chapter 2 will be spam filtering itself. 

1.2.6 Machine translation 
Another popular application of NLP is Machine Translation. Whether you tried to check some 
information from an international resource (for example, an unfamiliar term or something 
reported on the news), tried to communicate with an international colleague, have been 
learning a foreign language, or you are a non-native speaker of English, you might have 
relied on Machine Translation in practice, for example, using Google Translate.  

As you’ve learned earlier in this chapter, this classic application of NLP has originally been 
approached in a rule-based manner. That is, imagine we wanted to translate the text in 
Table 1.1 from English to French, and knew how to translate individual words, for example: 

Table 1.1 Word-for-word translation between English and French 

applications applications 

of  de 

Natural naturel 

Language langue 

Processing traitement 
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Can we just put the words together as “applications de naturel langue traitement” to 
translate a whole phrase? Well, there are several issues with such an approach. 

Firstly, when we check the French translations for “language” (as indeed for 
“applications”), we see several options, shown in Figure 1.22: 

 
Figure 1.22 Several translations for the English word “language” to French (Google Translate) 

Which one should we choose – is it “langue” or “langage”? Secondly, the translation for 
“natural” is not straightforward either – the words seem to have two forms, according to 
Figure 1.23: 

 
Figure 1.23 The translation of the English word “natural” to French has two forms – “naturel” and “naturelle” 
(Google Translate) 
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Again, which one is it? Finally, when we check the translation for the whole phrase, we 
actually get the one with a different word order, as Figure 1.24 shows! 

 
Figure 1.24 Phrase translation between English and French for “applications of natural language processing” 

We see that several of our assumptions from before were incorrect: first of all, among the 
two translations for “language” it is “langage” that should be chosen in this context. 
Secondly, French unlike English distinguishes between different genders of words, so if we 
wanted to choose a form of “natural” with “la langue” (“the language”), we’ll have to say 
“naturelle”, but with “le langage” (“the language”), as here, “naturel” is used. Thirdly, 
whereas in English adjectives (the words denoting qualities) like “natural” come before nouns 
(the words denoting objects or concepts) like “language”, in French they follow, thus 
“langage naturel” and not “naturel langage”. Finally, French doesn’t permit saying “natural 
language processing” and instead requires us to say “processing of natural language”, thus 
“traitement du langage naturel”. And, if you are wondering what “du” means, it is a merger 
of the words “of” (“de”) and “the” (“le”).  

Now, imagine having to write rules for translating each of these cases from English to 
French, and then trying to expand the system to other language pairs as well – it would 
simply not scale! That is why the early rule-based approaches to Machine Learning took a 
long time to develop and did not succeed much. 

The field, as with other applications, benefitted from two things: the spread of statistical 
approaches to the NLP tasks, and the availability of large amounts of data. Around 1990s 
Statistical Machine Translation (SMT) replaced the traditional rule-based approaches. Instead 
of trying to come up with ad hoc rules for each case, SMT algorithms try to learn from large 
amounts of parallel data in two languages – that is, the data where the phrases in one 
language (for example, “natural language” on the English side) are mapped to the translated 
phrases in another language (for example, “langage naturel” on the French side). Such 
mapped parallel data is treated as the training data for the algorithm to learn from, and after 
seeing lots of phrases of this type in English–French pairs of texts, the algorithm learns to 
put the adjective after the noun in French translations with high probability.  

Obviously, the availability of such parallel data is of the paramount importance for the 
algorithm to learn from, but since there is so much textual information available on the Web 
these days, and many websites have multiple language versions, some of it might be easier 
to get hold of than before. Finally, this description once again would not be complete without 
mentioning that neural networks advanced the field of Machine Translation even further, and 
the most successful algorithms today use Neural Machine Translation (NMT). 
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1.2.7 Spell- and grammar checking 
One final familiar application of NLP that is worth mentioning is spell- and grammar checking. 
Whether you are using a particular application, like Microsoft Word, or type in words in your 
browser, quite often the technology corrects your spelling and grammar for you (try typing 
“spleling miskates”!). Sometimes it even advises you on how to better structure your 
sentences by suggesting word order changes and finds better word replacements. 

There is a reason we look into this application the last: there is a whole bunch of different 
approaches one can address it with, using a range of techniques that we discussed in this 
section, so it is indeed a good one to conclude with.  

Here are some of such approaches: 

• Rule-based with the use of a dictionary: if any of the words are unknown to the 
algorithm because they are not contained in a large dictionary of proper English 
words, then the word is likely to be a misspelling. The algorithm may try to change 
the word minimally and keep checking the alternatives against the same dictionary, 
counting each change as contributing to the overall score or “edit distance”. For 
example, “thougt” would take one letter insertion to be converted into “thought” or 
one letter substitution to become “though”, but it will take one insertion and one 
substitution to become “through”, so in practice the algorithm will choose a cheaper 
option of correcting this misspelling to either “though” or “thought” (see Figure 1.25). 

 
Figure 1.25 Possible corrections for the misspelling “thougt” with the assigned edit distances 

• Use of machine learning: of course, whether it should be “though”, “thought” or 
“through” will depend on the context: for example, “I just thougt that even thougt it 
was a hard course, I’d still look thougt the material” will require all three corrections 
in different slots. And indeed, one can use a machine learning classifier to predict the 
subtle differences in each of the three cases. 

• Even better, one can treat it as a machine translation problem, where the machine 
has to learn to translate between “bad” English sentences like “I just thougt that even 
thougt it was a hard course, I’d still look thougt the material” and good ones like “I 
just thought that even though it was a hard course, I’d still look through the 
material”. The machine then has to establish the correct translation in each context. 
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• Finally, one can use language modeling: after all, “I just thougt”, “I just though” and 
“I just through” are all ungrammatical English and are much less probable than “I just 
thought”. All you need is a large set of grammatically correct English to let the 
language modeling algorithm learn from it. 

Now I hope you are convinced that (1) Natural Language Processing is all around you in 
many applications that you are already using on a daily basis; (2) it can really improve your 
work whichever application area you are working in – it’s all about smart information 
processing; (3) you are already an active user of the technology and, by virtue of speaking 
language, an expert; and, finally, (4) the barrier to entry is low – what might look like a 
black box becomes much clearer when you look under the hood. 

1.3 Summary  
• Natural Language Processing is a key component of many tasks. 
• It has seen huge boost of interest in the recent years thanks to the development of 

algorithms, computer software and hardware, and also thanks to the availability of 
large amounts of data. 

• Anyone working with data would benefit from knowing about NLP as a lot of 
information comes in a textual form. 

• Knowing about NLP practices will help your application whichever area you work in. 
This book will address examples from multiple domains – news, business, social 
media, but the best way to learn is to identify the project you care about and see how 
this book helps you solve your task. 

• Without you consciously thinking about it, you are already an expert in language 
domain, as anyone speaking language is: you will be able to evaluate the results of 
the NLP applications and you don’t need any further knowledge to do that. 
Furthermore, you have been actively using NLP applications on a daily basis for a long 
time now! 

• One of the key approaches widely used in NLP is “translating” words into numerical 
representations – vectors – for the machine to “understand” them. In this chapter, 
you have learned how to do that in a very straightforward way. 

• Once “translated” into a numerical form, words, sentences and even whole documents 
can be evaluated in terms of their similarity – we can use a simple cosine similarity 
measure for that. 
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1.4 Solutions to exercises 
Solution to Exercise 1.1: 

1. First, calculate length of each vector using Euclidean distance between the vector
coordinates and the origin (0,0):

length(A) = square_root((4-0)2 + (3-0)2) = 5 
length(B) = square_root((5-0)2 + (5-0)2) ≈ 7.07 
length(C) = square_root((1-0)2 + (10-0)2) ≈ 10.05 

2. Next, calculate the dot products between each pair:

dot_product(A, B) = 4*5 + 3*5 = 35 
dot_product(B, C) = 5*1 + 5*10 = 55 
dot_product(C, A) = 1*4 + 10*3 = 34 

3. Finally, for each pair of vectors take the dot product and divide by the product of their
lengths. You have all the components in place for that:

cos(A,B) = dot_prod(A,B)/len(A)*len(B) = 35/(5*7.07) ≈ 0.99 
cos(B,C) = dot_prod(B,C)/len(B)*len(C) = 55/(7.07*10.05) ≈ 0.77 
cos(C,A) = dot_prod(C,A)/len(C)*len(A) = 34/(10.05*5) ≈ 0.68 

Figure 1.26 The graph shows that vectors A and B are very close to each other, and C is more distant from 
either of them 

32

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

  
Your first NLP example 

This chapter covers 

• How to implement your first practical NLP application from scratch 
• How to structure an NLP project from beginning to end 
• A number of useful NLP concepts, including tokenization and text normalization 
• How to apply a Machine Learning algorithm to textual data 

In this chapter, you will learn how to implement your own NLP application from scratch. In 
doing so, you will also learn how to structure a typical NLP pipeline and how to apply a 
simple machine learning algorithm to solve your task. The particular application you will 
implement is spam filtering. We overviewed it in Chapter 1 as one of the classic tasks on the 
intersection of NLP and machine learning. 

2.1 Introducing NLP in practice: spam filtering 
In this book, you use spam filtering as your first practical NLP application as it is an example 
of a very widely spread family of tasks – text classification. Text classification comprises a 
number of applications that we discuss in this book, including user profiling (Chapters 5-6), 
sentiment analysis (Chapters 7-8) and topic classification (Chapter 9), so this chapter will 
give you a good start for the rest of the book. First, let’s see what exactly classification 
addresses. 

We, humans apply classification in our everyday lives pretty regularly: classifying things 
simply implies that we try to put them into clearly defined groups, classes or categories. In 
fact, we tend to classify all sorts of things all the time. Here are some examples: 

• based on our level of engagement and interest in a movie, we may classify it as 
interesting or boring; 

• based on temperature, we classify water as cold or hot; 
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• based on the amount of sunshine, humidity, wind strength, and air temperature, we 
classify the weather as good or bad; 

• based on the number of wheels, we classify vehicles into unicycles, bicycles, tricycles, 
quadricycles, cars, and so on; 

• based on the availability of the engine, we may classify two-wheeled vehicles into 
bicycles and motorcycles.  

Figure 2.1 combines the two types of classification for vehicles into one illustration: 

 
Figure 2.1 Classification of vehicles by two parameters: number of wheels and availability of an engine 

Classification is useful because it makes it easier for us to reason about things and adjust 
our behavior accordingly. For example, there might be more subtle characteristics to a movie 
than it being just interesting or just boring, but by defining our attitude towards a movie 
very concisely using these two categories we might save a friend of ours (provided we have 
similar taste in movies) a lot of time. By defining water as hot we know that we should be 
careful when we use it, without the need to think about the precise temperature value and 
whether it is tolerable. Or take the different types of vehicles as an example: once we’ve 
done the grouping of vehicles, it becomes much easier to deal with any instance of each 
class. When we see a particular bicycle, we know what typical speed it can travel with and 
what types of actions can be performed with bicycles in general. We know what to expect 
and don’t need to reconsider any of these facts for each bicycle in question because the class 
of bicycles defines the properties of each instance in particular, too. We refer to the name of 
each class as a class label.  

When classifying things, we often go for simple contrasts – good vs. bad, interesting vs. 
boring, hot vs. cold. When we are dealing with two labels only, this is called binary 
classification. For example, if we classify two-wheeled vehicles on the basis of whether they 
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have an engine or not, we perform a binary classification and end up with two groups of 
objects – unmotorized two-wheeled vehicles like bicycles and kick-scooters, and motorized 
two-wheeled vehicles like electric bicycles, motorcycles, mopeds and so on. But if we classify 
all vehicles based on the number of wheels, on size, or any other characteristics we will end 
up with multiple classes, for example, two-wheeled unmotorized vehicles, two-wheeled 
motorized vehicles, three-wheeled unmotorized vehicles, and so on, as Figure 2.2 illustrates. 
Classification that implies more than two classes is called multi-class classification. 

 
Figure 2.2 Multi-class classification of vehicles based on two parameters 

Finally, how do we actually perform classification? We rely on a number of characteristics 
of the classified concepts, which in some cases may include one type of information only: for 
example, to classify water into cold or hot, we may rely on a single value of water 
temperature, and, for example, call anything above 450C (1130F) hot and anything below this 
value cold. The selection of such characteristics will depend on the particular task: for 
example, to classify weather into good or bad we may need to rely on a number of 
characteristics including air temperature, humidity, wind strength and so on, rather than any 
single one. In machine learning terms, we call such characteristics features. 

Classification 
Classification refers to the process of identifying which category or class among the set of categories (classes) an 
observation belongs to based on its properties. In machine learning terms, such properties are called features and the 
class names are called class labels. If you classify observations into two classes, you are dealing with binary 
classification; tasks with more than two classes are examples of multi-class classification. 
 

As we are used to classifying things on a regular basis, we can usually relatively easily 
define the number of classes, the labels, and the features. This comes from our wide 
experience with classification and from our exposure to multiple examples of concepts from 
different classes. Machines can learn to classify things as well, with a little help from 
humans. Sometimes a simple rule would be sufficient: for example, you can make the 
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machine print out a warning that water is hot based on a simple threshold of 450C (1130F) as 
Listing 2.1 suggests. In this code, you define a function print_warning, that takes water 
temperature as input and prints out water status. The if-statement checks if input 
temperature is above a predefined threshold and prints out a warning message if it is: in this 
example, since the temperature is over 450C, the code prints out “Caution: Hot water!” 

 Listing 2.1 Simple code to tell whether water is cold or hot 

def print_warning(temperature):    #A 
    if temperature>=45:    #B 
        print ("Caution: Hot water!") 
    else: 
        print ("You may use water as usual") 
print_warning(46)    #C 
 

#A print_warning function takes water temperature as input and prints out water status  
#B If-statement checks if temperature is above the threshold 
#C In this example, the code will print out “Caution: Hot water!” 

However, when there are multiple factors to take into account and these multiple factors 
may interact in various ways, a better strategy is to make the machine learn such rules and 
infer their correspondences from the data rather than hard-code them – after all, what the 
machines are good at is detecting the correspondences and patterns! This is what machine 
learning is about: it states that machines can learn to solve the task if they are provided with 
a sufficient number of examples and with the general outline of the task. For example, if we 
define the classes, labels, and features for the machine, it can then learn to assign concepts 
to the predefined classes based on these features. For the cold vs. hot water example above, 
we can provide the machine with the samples of water labeled “hot” and samples of water 
labeled “cold”, tell it to use temperature as the predictive factor (feature), and this way let it 
learn independently from the provided data that the boundary between the two classes is 
around 450C, as Figure 2.3 shows. This type of machine learning approach, when we 
supervise the machine while it is learning by providing it with the labeled data, is called 
supervised machine learning.  
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Figure 2.3 Provided with enough labeled examples of hot and cold water, the machine learning algorithm can 
establish the threshold of 450C independently 

Supervised machine learning 
Supervised machine learning refers to a family of machine learning tasks in which the algorithm learns the 
correspondences between an input and an output based on the provided labeled input-output examples. 
Classification is an example of a supervised machine learning task, where the algorithm tries to learn the mapping 
between the input data and the output class label. 

Now that you are familiar with the ideas behind classification tasks, you are all set to 
implement your first NLP classification algorithm in practice. Before you move on, test your 
understanding of the task with the Exercise 2.1. 

Exercise 2.1 
Spam filtering is an example of text classification, which is usually addressed with supervised machine learning 
techniques. Take a look at the examples of two emails in Figure 2.4 and answer the following questions: 

1. What labels do we assign in the spam filtering task, e.g., in the example from Figure 2.4? 
2. How many classes are there? What type of classification is this – binary or multi-class? 
3. What features will help you distinguish between classes?

First, try solving this exercise yourself. Then compare your answers with the solution below. 
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Figure 2.4 Examples of two emails. Can you tell whether they should go to INBOX or SPAM box? 

2.2 Understanding the task 
Consider the following scenario: You have a collection of spam and normal emails from the 
past. You are tasked with building a spam filter, which for any future incoming email can 
predict whether this email is spam or not. 

• How can you use the provided data?  
• What characteristics of the emails might be particularly useful and how will you 

extract them? 
• What will be the sequence of steps in this application? 

In this section, we will discuss this scenario and look into the implementation steps. In 
total, the pipeline for this task will consist of 5 steps, visualized as a flow chart in Figure 2.5. 
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Figure 2.5 Five steps of a machine learning-based text classification project 

Now, let’s look into each of these steps in more detail. 

2.2.1 Step 1: Define the data and classes 
First, you need to ask yourself what format the email messages are delivered in for this task: 
for instance, in a real-life situation, you might need to extract the messages from the mail 
agent application. However, for simplicity, let’s assume that someone has extracted the 
emails for you and stored them in text format. The normal emails are stored in a separate 
folder – let’s call it “ham”, and spam emails are stored in a “spam” folder.1 If someone has 
already pre-defined past spam and ham emails for you, for example, by extracting these 
emails from the INBOX and SPAM box, you don’t need to bother with labeling them yourself. 
However, you still need to point the machine-learning algorithm at the two folders by clearly 
defining which one of them is ham and which one is spam. This way, you will define the class 
labels and identify the number of classes for the algorithm. This should be the first step in 
your spam detection pipeline (and in any text classification pipeline), after which you can 
preprocess the data, extract the relevant information, and then train and test your algorithm. 
You can set Step 1 of your algorithm as follows: Define which data represents “ham” class 
and which data represents “spam” class for the machine learning algorithm. 

Figure 2.6 In Step 1 (highlighted), define the classes for the machine learning algorithm 

2.2.2 Step 2: Split the text into words 
Next, you will need to define the features for the machine to know what type of information, 
or what properties of the emails to pay attention to, but before you can do that there is one 
more step to perform. As we’ve just discussed in the previous exercise, email content 
provides significant information as to whether an email is ham or spam. How can you extract 

1 If you are wondering why “normal” emails are sometimes called “ham” in the spam detection context, check out the history behind the term “spam”, 
e.g., at https://en.wikipedia.org/wiki/Email_spam
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the content? One solution would be to read in the whole email as a single textual property: 
e.g., use “Minutes of the meeting on Friday, 20 June […]”2 as a single feature for “ham”
emails, and “Low-cost prescription medications […]” as a single feature for “spam” emails.
This will definitely help the algorithm identify the emails that contain all of the included
phrases from these two emails as either “spam” or “ham”, but how often would you expect
to see precisely the same text of the email again? A change in any single character may
change the whole feature! This suggests that a better candidate for a feature in this task
would be a smaller chunk of text, for example, a word. In addition, words are likely to carry
spam-related information (e.g., “lottery” might be a good clue for a spam email), while being
repetitive enough to occur in multiple emails. Before moving further, try solving Exercise 2.2.

Exercise 2.2 
For a machine, the text comes in as a sequence of symbols, so the machine does not have an idea of what a word is. 

• How would you define what a word is from the human perspective? 
• How would you code this for a machine? 

For example, how will you split a sentence “Define which data represents each class for the machine learning 
algorithm” into words? 

Let’s discuss possible solutions. The first solution that might come to your mind might be 
“Words are sequences of characters separated by whitespaces”. This will work well for some 
examples, including: 

Define which data represents each class for the machine learning algorithm 

Let’s write simple code that uses whitespaces to split text into words (Listing 2.2): 

Listing 2.2 Simple code to split text string into words by whitespaces 

text = "Define which data represents each class for the machine learning algorithm" 
text.split(" ")    #A 

#A You can rely on Python’s functionality to split strings of text by whitespaces 

The code from this listing will print out the list of words from the input sentence, one per 
line, i.e. (“…” represents more words in this list, omitted for space reasons): 

['Define', 
 'which', 
 'data', 
 … 
 'algorithm'] 

2 Assume the whole email instead of […] here. 
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So far, so good. However, what happens to this strategy when we have punctuation 
marks? For example: 

Define which data represents “ham” class and which data represents “spam” class for the machine learning 

algorithm. 

Now you will end up with the words like […, “ham”, …, “spam”, …, algorithm.] in the list 
of words. Are [“ham”], [“spam”] and [algorithm.] any different from [ham], [spam] and 
[algorithm], i.e., same words but without the punctuation marks attached to them? The 
answer is, these words are exactly the same, but because you are only splitting by 
whitespaces at the moment, there is no way of taking the punctuation marks into account. 
However, each sentence will likely include one full stop (.), question (?) or exclamation mark 
(!) attached to the last word, and possibly more punctuation marks inside the sentence itself, 
so this is going to be a problem for extracting words from text properly. Ideally, you would 
like to be able to extract words and punctuation marks separately. 

Taking this into account, you might update your algorithm with a splitting strategy by 
punctuation marks. There are several possible ways to do that, including using Python’s 
regular expressions module re.3 However, if you have never used regular expressions 
before, you may apply a simple iterative algorithm that will consider each character in the 
text string and decide whether it should be ignored (if it is a whitespace), added to a word 
list (if it is a punctuation mark), or added to the current word (otherwise). In other words, 
the algorithm may proceed as follows: 

Algorithm 1: 

(1) Store words list and a variable that keeps track of the current word – let’s call it 
current_word for simplicity  

(2) Read text character by character, and:  

(2.1) if a character is a whitespace, add the current_word to the words list and update the 
current_word variable to be ready to start a new word; 

(2.2) else if a character is a punctuation mark, and: 

(2.2.1) if the previous character is not a whitespace, add the current_word to the words list, 
then add the punctuation mark as a separate word token, and update the current_word 
variable; 

(2.2.2) else if the previous character is a whitespace, just add the punctuation mark as a 
separate word token; 

(2.3) else if a character is a letter other than a whitespace or punctuation mark, add it to the 
current_word. 

Figure 2.7 shows how this algorithm will process the string ‘represents “ham”’: 

 
3 If you have never used re module and regular expressions before, you can find more information about it on https://docs.python.org/3/library/re.html 
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Figure 2.7 Processing of the string ‘represents “ham”’ with a tokenization algorithm 

Code Listing 2.3 shows how you can implement this algorithm in Python. You start by 
initializing a list of delimiters and populating it with some punctuation marks. 4 Note the use 
of single quotes '…' in code around the double quote " as a delimiter; an alternative to this 
would be using an escape sequence '\"'. Then, you introduce variables words to keep the 
list of processed words and current_word to keep track of the word that is currently being 
processed. Next, you iterate through text character by character and apply the algorithm just 
discussed: if the character is a whitespace and the current_word is not empty, you add it to 
the words list and re-initialize current_word to keep track of the upcoming words. If the 
character is one of the punctuation marks and there is nothing stored in the current_word 
yet, you add this punctuation mark to the words list. If the character is one of the 
punctuation marks and there is information stored in current_word, you add both the 
current_word and the punctuation mark to the words list and re-initialize current_word to 

 
4 Note that this list is kept short for the sake of simplicity of this example; you will see more comprehensive lists later in this chapter 
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keep track of the upcoming words. Finally, if the character is any other letter (not specified 
as a delimiter and not a whitespace), you add it to the current_word. 

Listing 2.3 Code to split text string into words by whitespaces and punctuation 

text = 'Define which data represents "ham" class and which data represents "spam" class for 
the machine learning algorithm.' 

delimiters = ['"', "."]    #A 
words = []    #B 
current_word = ""    #C 
 
for char in text:    #D 
    if char==" ": 
        if not current_word=="": 
            words.append(current_word) 
            current_word = ""    #E 
    elif char in delimiters: 
        if current_word=="": 
            words.append(char)    #F 
        else: 
            words.append(current_word) 
            words.append(char) 
            current_word = ""    #G 
    else: 
        current_word += char    #H 
 
print(words)  

#A Initialize a list of delimiters and populate it with some punctuation marks 
#B Variable words keeps the list of processed words 
#C Variable current_word keeps track of the word currently being processed 
#D Iterate through text character by character 
#E Check if the character is a whitespace and the current_word is not empty 
#F Check if the character is one of the punctuation marks and there is nothing stored in the current_word yet 
#G Check if the character is one of the punctuation marks and there is information stored in current_word 
#H Check if the character is any other letter, i.e., not specified as a delimiter and not a whitespace 

This code will produce the following list of words for our example, as required: ['Define', 
'which', 'data', 'represents', '"', 'ham', '"', 'class', 'and', 'which', 
'data', 'represents', '"', 'spam', '"', 'class', 'for', 'the', 'machine', 

'learning', 'algorithm', '.']. At the same time, it will also split examples like “i.e.” and 
“e.g.” into [i, ., e, .] and [e, ., g, .], and “U.S.A.” and “U.K.” into [U, ., S, ., A, .] and [U, ., K, 
.]. This is problematic, since if the algorithm splits these examples in this way, it will lose 
track of the correct interpretation of words like “i.e.” or “U.S.A.”, which should be treated as 
one word token rather than a combination of characters. How can this be achieved? 

This is where the NLP tools come in handy: the tool that helps you to split the running 
string of characters into meaningful words is called tokenizer and it takes care of the cases 
like the ones we’ve just discussed: i.e., it can recognize that “ham.” needs to be split into 
[‘ham’, ‘.’] while “U.S.A.” needs to be kept as one word [‘U.S.A.’]. Normally, tokenizers rely 
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on extensive and carefully designed lists of regular expressions,5 and some are trained using 
machine learning approaches. While the steps outlined in Algorithm 1 and attempted in Code 
Listings 2.2 and 2.3 showed to you what is under the hood of a tokenization algorithm, as 
you have seen from the examples even this first preprocessing step is not trivial. Therefore, 
to perform tokenization on text you can develop your own tokenizer by extending the regular 
expressions beyond those overviewed earlier and making sure that your algorithm handles 
the exceptions. However, in the practical examples in this book we will be relying on the 
tokenization algorithms available via NLP toolkits: such tokenizers are highly optimized for 
the task, and they not only perform splitting by whitespaces and punctuation marks, but also 
keep track of the cases that should not be split by such methods. This helps make sure that 
the tokenization step results in a list of appropriate English words. 

Tokenization 
Tokenization is the process of word token identification or extraction from the running text. It is often the first step in 
text preprocessing. Whitespaces and punctuation marks often serve as reliable word separators; however, simple 
approaches are likely to run into exceptions like “U.S.A.” and similar. Tokenizers are NLP tools highly optimized for the 
task of word tokenization, and they may rely on carefully crafted regular expressions or trained using machine 
learning algorithms. 

To check your understanding of what tokenization step achieves, try manually tokenizing 
strings of text in Exercise 2.3 before looking into the solution notes. Later, you will also be 
able to check whether your solutions coincide with those returned by a tokenizer: 

Exercise 2.3 
How will you tokenize the following strings into words? 

1. What's the best way to cook a pizza? 
2. We're going to use a baking stone. 
3. I haven't used a baking stone before. 

Let’s now define Step 2 of your algorithm as follows: Apply tokenization to split the running 
text into words, which are going to serve as features. 

5 For an example of a regular expressions-based tokenizer, you can check the NLTK’s regexp_tokenize() to get a general idea of the types of the rules that 
tokenizers take into account: see Section 3.7 on https://www.nltk.org/book/ch03.html. The lists of rules applied may differ from one tokenizer to 
another. 
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Figure 2.8 In Step 2 (highlighted), split the running text into words 

2.2.3 Step 3: Extract and normalize the features 
Next, let’s look into the extracted words closely and see whether they are all equally good to 
be used as features, i.e., whether they are equally indicative of the spam-related content. 
Suppose two emails use a different format: one says  

Collect your lottery winnings 

while another one says  

Collect Your Lottery Winnings 

The algorithm that splits these messages into words will end up with different word lists 
because, for instance, “lottery” ≠ “Lottery”, but is it different in terms of the meaning? To 
get rid of such formatting issues like upper case vs. lower case you can put all the extracted 
words into lower case using Python functionality. Therefore, Step 3 in your algorithm should 
be defined as follows: Extract and normalize the features, e.g., by putting all words to lower 
case. 

 
Figure 2.9 In Step 3 (highlighted), extract and normalize your features (e.g., words) 

2.2.4 Step 4: Train a classifier 
At this point, you will end up with two sets of data – one linked to the “spam” class and 
another one linked to the “ham” class. Each data is preprocessed in the same way in steps 2 
and 3, and the features are extracted. Next, you need to let the machine use this data to 
build the connection between the set of features (properties) that describe each type of 
email (spam or ham) and the labels attached to each type. In step 4, a machine-learning 
algorithm tries to build a statistical model, a function, that helps it distinguish between the 
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two classes. This is what happens during the learning (training) phase. Figure 2.10 is a 
refresher visualizing the training and test processes: 

 
Figure 2.10 Learning (training) and prediction phases of spam filtering 

So, Step 4 of the algorithm should be defined as follows: Define a machine learning 
model and train it on the data with the features predefined in the previous steps. 

 
Figure 2.11 In Step 4 (highlighted), define a machine learning model and train it on the data 

Your algorithm has now learned a function that can map the features from each class of 
emails to the “spam” and “ham” labels. During training, your algorithm will figure out which 
of the features matter more and should be trusted during prediction: for example, it might 
detect that the occurrence of a word “lottery” in an email should be strongly associated with 
the label “spam”, while the occurrence of the word “meeting” should strongly suggest “ham” 
label. The final step in this process is to make sure the algorithm is doing such predictions 
well. How will you do that? 

Remember that you were originally provided with a set of emails pre-labeled for you as 
“spam” and “ham”. This means you know the correct answer for these emails. Why not use 
some of them to check how well your algorithm performs? In fact, this is exactly how it is 
done in machine learning: you use some of your labeled data to test classifier’s performance 
– this bit of data is predictably called test set. There is one caveat, though: if you’ve already 
used this data to train the classifier, i.e., to let it figure out the correspondence between the 
features and the classes, it already knows the right answers. To avoid that, you need to 
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make sure that the bit of data you used in Step 4 for training is separate and non-
overlapping with the test set – this bit of data is called training set. Therefore, before training 
your classifier in Step 4 you need to split your full dataset into training and test sets. Here is 
the set of rules for that: 

• Shuffle your data to avoid any bias 
• Split it randomly into a larger proportion for the training phase and set the rest aside 

for the test phase. The typical proportions for the sets are 80% for training and 20% 
for testing. 

• Train your classifier in Step 4 using training set only. Your test set is there to provide 
you with a realistic and fair estimate of your classifier’s performance, so don’t let your 
classifier peek into it. Use it at the final step for evaluation only. 

Figure 2.12 visualizes these steps: 

 
Figure 2.12 Before training the classifier, shuffle the data and split in into training and test sets 

Data splits for supervised machine learning 
In supervised machine learning, the algorithm is trained on a subset of the labelled data called training set. It uses 
this subset to learn the function mapping the input data to the output labels. Test set is the subset of the data, 
disjoint from the training set, on which the algorithm can then be evaluated. The typical data split is 80% for training 
and 20% for test. Note that it is important that the two sets are non-overlapping: if your algorithm is trained and 
tested on the same data, you won’t be able to tell what it actually learned rather than memorized. 
 

2.2.5 Step 5: Evaluate the classifier 
Suppose you trained your classifier in Step 4, and then applied it to the test data. How will 
you measure the performance? One approach would be to check what proportion of the test 
emails the algorithm classifies correctly, i.e., assigns the “spam” label to a spam email, and 
classifies ham emails as “ham”. This proportion is called accuracy, and its calculation is 
pretty straightforward: 
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Now check your understanding with the Exercise 2.4: 

Exercise 2.4 
Suppose your algorithm predicts the following labels for some small dataset of test examples:  

Correct label Predicted label  
____________________________ 
Spam Ham 
Spam Spam 

Ham Ham 
Ham Spam 
Ham Ham 

1. What is the accuracy of your classifier on this small dataset?
2. Is this a good accuracy, i.e., does it suggest that the classifier performs well? What if you know that the ratio of

ham to spam emails in your set of emails is 50%-50%? What if it is 60% ham emails and 40% spam – does it 
change your assessment of how well the classifier performs? 

3. Does it perform better in identifying ham emails or spam emails? 

The prediction of the classifier based on the distribution of classes that you came across 
in this exercise is called baseline. In an equal class distribution case, the baseline is 50%, 
and if your classifier yields an accuracy of 60% it outperforms this baseline. In the case of 
60%:40% split, the baseline, which can also be called the majority class baseline, is 60%: 
this means that if a dummy “classifier” does no learning at all and simply predicts “ham” 
label for all emails, it will not filter out any spam emails from the inbox, but its accuracy will 
also be 60% – just like your classifier that is actually trained and performs some 
classification! This makes the classifier in the second case in this exercise much less useful 
because it does not outperform the majority class baseline. 

In summary, accuracy is a good overall measure of performance, but you need to keep in 
mind: (1) the distribution of classes to have a comparison point for the classifier’s 
performance, and (2) the performance on each class which is hidden within a single accuracy 
value but might suggest what the strengths and weaknesses of your classifier are. 

Therefore, the final step, Step 5 in your algorithm is as follows: Apply your classifier to 
the test data and evaluate its performance. 
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Figure 2.13 In Step 5, test and evaluate your classifier 

2.3  Implementing your own spam filter 
Now let’s implement each of the five steps. It’s time you open Jupyter6 and create a new 
notebook to start coding your own spam filter.  

2.3.1 Step 1: Define the data and classes 
Quite often when working on NLP and machine learning applications you might find out that 
the problem has been previously described or someone has already collected some data that 
you may use to build an initial version of your algorithm. For example, if you want to build a 
machine learning classifier for spam detection, you need to provide your algorithm with a 
sufficient number of spam and ham emails. The best way to build such a classifier would be 
to collect your own ham and spam emails and train your algorithm to detect what you 
personally would consider spam – that would make your classifier personalized and tuned 
towards your needs, as you might consider certain content spam even when other users 
might see it as a harmless although unsolicited email. However, if you don’t have enough 
examples in your own spam box (for instance, many mail agents automatically empty spam 
folders on a regular basis), there exist some datasets of spam and ham emails collected from 
other users that you can use to train your classifier.7 

One of such publicly available collections is Enron email dataset.8 This is a dataset of 
emails, including both ham (extracted from the original Enron dataset using personal 
messages of 3 Enron employees9), complemented with spam emails. To make processing 
more manageable, we are going to use a subset of this large dataset, although you can use 
the full dataset later if you wish. For your convenience, this subset of the data is available 
together with the code for the book.10 We are going to use enron1/ folder for training. All 
folders in Enron dataset contain spam and ham emails in separate subfolders, so you don’t 
need to worry about pre-defining them. Each email is stored as a text file in these 

 
6 A reminder: we are using Jupyter notebooks, as they provide practitioners with a flexible environment in which the code can be easily added, run, and 

updated and the outputs can be easily observed. Alternatively, you can use any Python IDE for the code examples from this book. See 
https://jupyter.org for the installation instructions. In addition, see the Appendix for installation instructions and the book’s repository 
(https://github.com/ekochmar/Getting-Started-with-NLP) for both installation instructions and all code examples. 

7 It should be noted, however, that in practical applications high-quality annotated data is hard to come by. Privacy is one of the issues when working with 
such sensitive data as emails. 

8 You can read more about the dataset on this webpage: https://www.cs.cmu.edu/~enron/, and download the subsets of the data here: 
http://nlp.cs.aueb.gr/software_and_datasets/Enron-Spam/index.html. The subsets and data collection process are described in more detail in V. 
Metsis, I. Androutsopoulos and G. Paliouras, "Spam Filtering with Naive Bayes - Which Naive Bayes?". Proceedings of the 3rd Conference on Email and 
Anti-Spam (CEAS 2006), Mountain View, CA, USA, 2006 (http://www2.aueb.gr/users/ion/docs/ceas2006_paper.pdf)  

9 https://en.wikipedia.org/wiki/Enron  
10 The dataset and the code are available at https://github.com/ekochmar/Getting-Started-with-NLP.  
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subfolders. Let’s read in the contents of these text files in each subfolder, store the spam 
emails contents and the ham emails contents as two separate data structures and point our 
algorithm at each, clearly defining which one is spam and which one is ham. 

To that end, let’s define a function read_in that will take a folder as an input, read the 
files in this folder and store their contents as a Python list data structure, as Listing 2.4 
shows. In this code, you rely on Python’s os module functionality to list all the files in the 
specified folder, and then you iterate through them, skipping hidden files that are sometimes 
automatically created by the operating systems. Such files can be easily identified because 
their names start with “.” Next, you read the contents of each file. The encoding and errors 
arguments of codecs.open function will help you avoid errors in reading files that are 
related to text encoding. You add the content of each file to a list data structure and in the 
end, you return the list that contains the contents of the files from the specified folder.  

Listing 2.4 Code to read in the contents of the files 

import os    #A 
import codecs    #B 
 
def read_in(folder): 
    files = os.listdir(folder)    #C 
    a_list = [] 
    for a_file in files:    #D 
        if not a_file.startswith("."):    #E 
            f = codecs.open(folder + a_file,  
                "r", encoding = "ISO-8859-1", errors="ignore")    #F 
            a_list.append(f.read())    #G 
            f.close()    #H 
    return a_list    #I 

#A Import Python’s os module that helps iterating through the folders 
#B Import Python’s codecs module that helps with different text encodings 
#C Using os functionality, list all the files in the specified folder 
#D Iterate through the files in the folder  
#E Skip hidden files 
#F Read the contents of each file 
#G Add the content of each file to the list data structure  
#H Don’t forget to close the file after you’ve read the contents  
#I Return Python list that contains the contents of the files from the specified folder   

Now you can define two such lists – spam_list and ham_list, letting the machine know 
what data to use as examples of spam emails and what data represents ham emails. Let’s 
check if the data is uploaded correctly: for example, you can print out the lengths of the lists 
or check any particular member of the list. Since you are using publicly available dataset, 
you can easily check whether what your code put into the lists is correct: the length of the 
spam_list should equal the number of spam emails in the enron1/spam/ folder, which 
should be 1500, while the length of the ham_list should equal the number of emails in the 
enron1/ham/, or 3672. If you get these numbers, your data is uploaded and read in 
correctly. Similarly, you can check the contents of the very first instance in the spam_list 
and verify that it is exactly the same as the content of the first text file in the enron1/spam/ 
folder: 
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Listing 2.5 Code to verify that the data is uploaded and read in correctly 

spam_list = read_in("enron1/spam/")  
ham_list = read_in("enron1/ham/")    #A 
print(len(spam_list))  
print(len(ham_list))    #B 
print(spam_list[0]) 
print(ham_list[0])    #C 

#A Initialize spam_list and ham_list 
#B Check the lengths of the lists: for spam it should be 1500 and for ham – 3672  
#C Print out the contents of the first entry, i.e., the first file in each correspondent subfolder 

Next, you’ll need to preprocess the data (e.g., by splitting text strings into words) and 
extract the features. Won’t it be easier if you could run all preprocessing steps over a single 
data structure rather than over two separate lists? The code in Listing 2.6 shows how you 
can merge the two lists together keeping their respective labels. This time, instead of using 
for-loop, let’s use the compact code style that is provided by Python’s list 
comprehensions:11 instead of lengthy for-loops that do updates to the lists, we are going to 
update list contents as we go. In this code, you use list comprehensions to create 
all_emails list that will keep all emails with their labels: for each member of the ham_list 
and spam_list it stores a tuple with the content and associated label. In addition, remember 
that you will need to split the data randomly into the training and test sets. To that end, let’s 
shuffle the resulting list of emails with their labels, and make sure that the shuffle is 
reproducible by fixing the way in which the data is shuffled. For the shuffle to be 
reproducible, you need to define the seed for the random operator, which makes sure that all 
future runs will shuffle the data in exactly the same way. The code shows how you can define 
such a seed, using seed 42 as an example. Finally, the code prints out the size of the dataset 
(the length of the list), which is equal to 5172 (1500 spam and 3672 ham emails). 

Listing 2.6 Code to combine the data into a single structure 

import random    #A 
 
all_emails = [(email_content, "spam") for email_content in spam_list] 
all_emails += [(email_content, "ham") for email_content in ham_list]    #B 
random.seed(42)    #C 
random.shuffle(all_emails) 
print (f"Dataset size = {str(len(all_emails))} emails")    #D 

#A Python’s random module will help you shuffle the data randomly 
#B Use list comprehensions to create all_emails list that will keep all emails with their labels 
#C Select the seed of the random operator to make sure that all future runs will shuffle the data in the same way 
#D You can check the size of the dataset (length of the list) – it should be equal to 1500 + 367212 

 
11 Refresher on Python’s list comprehensions: https://docs.python.org/3/tutorial/datastructures.html  
12 This kind of strings is called formatted string literals or f-strings, and it is a new feature introduced in Python 3.6. If you are unfamiliar with this type of 

string literals, you can check Python documentation: https://docs.python.org/3/reference/lexical_analysis.html#f-strings  
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2.3.2 Step 2: Split the text into words 
Remember, that the email contents that you’ve read in so far each come as a single string of 
symbols. The first step of text preprocessing involves splitting the running text into words. 

Several NLP toolkits will be introduced in this book. One of them, Natural Language 
Processing Toolkit, or NLTK for short, you are going to start using straight away.13 One of the 
benefits of this toolkit is that it comes with a thorough documentation and description of its 
functionality. 

You are going to use NLTK’s tokenizer.14 It takes running text as input and returns a list 
of words based on a number of customized regular expressions, which help to delimit the 
text by whitespaces and punctuation marks, keeping common words like “U.S.A.” unsplit. 
The code in Listing 2.7 shows how to import the toolkit and the tokenizer and run it over the 
examples you’ve looked into in this chapter. This code defines a function tokenize that
takes a string as input and splits in into words. The for-loop within this function appends
each identified word from the tokenized string to the output word list; alternatively, you can 
use list comprehensions for the same purpose (can you see how to present this code in a 
more compact and elegant way using list comprehensions?) Finally, given the input, the 
function prints out a list of words. You can test your intuitions about the words and check 
your answers to previous exercises by changing the input to any string of your choice. 

Listing 2.7 Code to run a tokenizer over text 

import nltk 
from nltk import word_tokenize    #A 
nltk.download('punkt')   #B 

def tokenize(input):    #C 
   word_list = [] 
   for word in word_tokenize(input): 

  word_list.append(word)    #D 
   return word_list 

input = "What's the best way to split a sentence into words?" 
print(tokenize(input))  #E 

#A Import nltk library and specifically import NLTK’s word tokenizer15

#B Install NLTK’s sentence tokenizer 
#C Define a function tokenize to split input text into words 
#D This loop appends each identified word from the tokenized string to the output word list 
#E Given the input, the function prints out a list of words 

If you run the code from Listing 2.7 on the suggested example, it will print out ['What', " 's", 
'the', 'best', 'way', 'to', 'split', 'a', 'sentence', 'into', 'words', '?'] as the output. 

13 Install the toolkit from https://www.nltk.org/install.html and the accompanying data from http://www.nltk.org/data.html  
14 Check the documentation at https://www.nltk.org/api/nltk.tokenize.html  
15 Note that, in addition to the toolkit itself, you need to install NLTK data as explained on http://www.nltk.org/data.html. Running nltk.download() will 

install all the data needed for text processing in one go; in addition, individual tools can be installed separately: e.g., nltk.download('punkt') installs 
NLTK’s sentence tokenizer. 
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2.3.3 Step 3: Extract and normalize the features 
Once the words are extracted from running text, you need to convert them into features. In 
particular, you need to put all words into lower case to make your algorithm establish the 
connection between different formats like “Lottery” and “lottery”. 

Putting all strings to lower case can be achieved with Python’s string functionality. To 
extract the features (words) from the text, you need to iterate through the recognized words 
and put all words to lower case. In fact, both tokenization and converting text to lower case 
can be achieved using a single line of code with list comprehensions. See if you can come up 
with this line of code before you look at the next code listing – Listing 2.8.  

In this code, you define a function get_features that extracts the features from the text 
of email passed in as input. Using list comprehensions, you can combine the two steps – 
tokenization and converting strings to lower case – in one line, as the code in Listing 2.8 
shows. Compare this to a much longer piece of code for tokenization in Listing 2.7. Here, you 
first normalize and then tokenize text, but the two steps are interchangeable. Next, for each 
word in the email, you switch on the ‘flag’ that the word is contained in this email by 
assigning it with a ‘True’ value. The list data structure all_features keeps tuples containing 
the dictionary of features matched with the “spam” or “ham” label for each email. In the end, 
the code shows how you can check what features are extracted from an input text and what 
all_features list data structure contains, e.g., by printing out its length and the number of 
features detected in the first or any other email in the set. 

Listing 2.8 Code to extract the features 

def get_features(text):    #A 
    features = {} 
    word_list = [word for word in word_tokenize(text.lower())]    #B 
    for word in word_list: 
        features[word] = True    #C 
    return features 
 
all_features = [(get_features(email), label)  
                 for (email, label) in all_emails]    #D 
 
print(get_features("Participate In Our New Lottery NOW!"))    #E 
print(len(all_features)) 
print(len(all_features[0][0])) 
print(len(all_features[99][0]))    #F 
 

#A Let’s define a function that will extract the features from the text input 
#B Combine tokenization and converting strings to lower case in one line using list comprehensions 
#C For each word in the email switch on the ‘flag’ that this word is contained in the email  
#D all_features will keep tuples containing the dictionary of features matched with the label for each email 
#E You can check what features are extracted from an input text 
#F You can also check what all_features list data structure contains 

With this bit of code, you iterate over the emails in your collection (all_emails) and store 
the features extracted from each email matched with the label. For example, if a spam email 
consists of a single sentence “Participate In Our New Lottery NOW!”, your algorithm will first 
extract the list of features present in this email and assign a ‘True’ value to each of them. 
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The dictionary of features will be represented using the following format: [‘participate’: True, 
‘in’: True, …, ‘now’: True, ‘!’: True]. Then, the algorithm will add this data structure to 
all_features together with the “spam” label, i.e. ([‘participate’: True, ‘in’: True, …, ‘now’:
True, ‘!’: True], “spam”). Figure 2.14 visualizes the steps performed in this code listing: 

Figure 2.14 Preprocessing and feature extraction steps 

Now check your understanding of the data processing with the Exercise 2.5: 

Exercise 2.5 
Imagine your whole dataset contained only one spam text “Participate In Our New Lottery NOW!” and one ham text 
“Participate in the Staff Survey”. What features will be extracted from this dataset with the code from Listing 2.8? 

Again, it is a good idea to make sure you know how your data is represented, so the code 
in Listing 2.8 uses print function to help you check some parameters of your data: for
example, you can check how many emails have been processed and put into the feature set 
(this number should be equal to the number of emails you have started with), as well as the 
number of features present in each email (i.e., with the ‘True’ flag assigned to them). The 
data structure that you have just created with the code from Listing 2.8, all_features, is a
list of tuples (pairs), where each tuple represents an individual email, so the total length of 
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all_features is equal to the number of emails in your dataset. As each tuple in this list 
corresponds to an individual email, you can access each one of them by the index in the list 
using all_features[index]: for example, you can access the first email in the dataset as 
all_features[0] (remember, that Python’s indexing starts with 0), and the 100th as 
all_features[99] (for the same reason). 

Let’s now clarify what each tuple structure representing an email contains. Tuples pair up 
two information fields: in this case a dictionary of features extracted from the email and its 
label, i.e., each tuple in all_features contains a pair (dict_of_features, label). So if you’d 
like to access first email in the list, you call on all_features[0], to access its features you 
use all_features[0][0], and to access its label you use all_features[0][1]. Figure 2.15 
visualizes the all_features data structure and the extraction process: 

 

 
Figure 2.15 The all_features data structure 

For example, if the very first email in your collection is a spam email with the content 
“Participate in our lottery now!”, all_features[0] will return the tuple ([‘participate’: True, 
‘in’: True, …, ‘now’: True, ‘!’: True], “spam”), all_features[0][0] will return the dictionary 
[‘participate’: True, ‘in’: True, …, ‘now’: True, ‘!’: True], and all_features[0][1] will return 
the value “spam”. 
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2.3.4 Step 4: Train the classifier 
Next, let’s apply machine learning and teach the machine to distinguish between the features 
that describe each of the two classes. There are a number of classification algorithms that 
you can use, and you will come across many of them in this book. But since you are at the 
beginning of your journey, let’s start with one of the most interpretable ones – an algorithm 
called Naïve Bayes. Don’t be misled by the word “Naïve” in its title, though: despite relative 
simplicity of the approach compared to other ones, this algorithm often works well in practice 
and sets a competitive performance baseline that is hard to beat with more sophisticated 
approaches. For the spam filtering algorithm that you are building in this chapter, you will 
rely on the Naïve Bayes implementation provided with the NLTK library, so don’t worry if 
some details of the algorithm seem challenging to you. However, if you would like to see 
what is happening “under the hood” this section will walk you through the details of the 
algorithm. 

Naïve Bayes is a probabilistic classifier, which means that it makes the class prediction 
based on the estimate of which outcome is most likely: i.e., it assesses the probability of an 
email being spam and compares it with the probability of it being ham, and then selects the 
outcome that is most probable between the two. In fact, this is quite similar to how humans 
assess whether an email is spam or ham: when you receive an email that says “Participate in 
our lottery now! Click on this link”, before clicking on the (potentially harmful) link you 
assess how likely (i.e., what is the probability) that it is a ham email and compare it to how 
likely it is that this email is spam. Based on your experience and all the previous spam and 
ham emails you have seen before, you might judge that it is much more likely (more 
probable) that it is a spam email. By the point the machine makes a prediction, it has also 
accumulated some experience in distinguishing spam from ham that is based on processing a 
dataset of labeled spam and ham emails. 

Now let’s formalize this step a bit further. In the previous step, you extracted the content 
of the email and converted it into a list of individual words (features). In this step, the 
machine will try to predict whether the email content represents spam or ham. In other 
words, it will try to predict whether the email is spam or ham given or conditioned on its 
content. This type of probability, when the outcome (class of “spam” or “ham”) depends on 
the condition (words used as features), is called conditional probability. For spam detection, 
you estimate P(spam | email content) and P(ham | email content), or generally 
P(outcome | (given) condition).16 Then you compare one estimate to another and return 
the most probable class. For example: 

If P(spam | content) = 0.58 and P(ham | content) = 0.42, predict spam 
If P(spam | content) = 0.37 and P(ham | content) = 0.63, predict ham 

In summary, this boils down to the following set of actions illustrated in Figure 2.16: 

 
16 Reminder on the notation: P is used to represent all probabilities, | is used in conditional probabilities, when you are trying to estimate the probability of 

some event (that is specified before |) given that the condition (that is specified after |) applies. 
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Figure 2.16 Prediction is based on which conditional probability is higher 

How can you estimate these probabilities in practice? Your own prediction of whether an 
email content like “Participate in our lottery now!” signifies that an email is spam or ham is 
based on how often in the past an email with the same content was spam or ham. Similarly, 
a machine can estimate the probability that an email is spam or ham conditioned on its 
content taking the number of times it has seen this content leading to a particular outcome. 
That is: 

 
In the general form, this can be expressed as: 
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You (and the machine) will need to make such estimations for all types of content in your 

collection, including for the email contents that are much longer than “Participate in our new 
lottery now!”. Do you think you will come across enough examples to reliably make such 
estimations? In other words, do you think you will see any particular combination of words 
(that you use as features), no matter how long, multiple times so that you can reliably 
estimate the probabilities from these examples? The answer is, you will probably see 
“Participate in our new lottery now!” only a few times, and you might see longer 
combinations of words only once, so such small numbers won’t tell the algorithm much and 
you won’t be able to use them in the expression above effectively. Additionally, you will 
constantly be getting new emails where the words will be used in a different order and 
different combinations, so for some of these new combinations you will not have any counts 
at all, even though you might have counts for individual words in such new emails. The 
solution to this problem is to split the estimation into smaller bits. For instance, remember 
that you used tokenization to split long texts into separate words to let the algorithm access 
the smaller bits of information – words rather than whole sequences. The idea of estimating 
probabilities based on separate features rather than based on the whole sequence of features 
(i.e., whole text) is rather similar. 

At the moment you are trying to predict a single outcome (class of spam or ham) given a 
single condition that is the whole text of the email, for example “Participate in our lottery 
now!”. In the previous step, you converted this single text into a set of features as 
[‘participate’: True, ‘in’: True, …, ‘now’: True, ‘!’: True]. Note that the conditional 
probabilities like P(spam| “Participate in our lottery now!”) and P(spam| [‘participate’: True, 
‘in’: True, …, ‘now’: True, ‘!’: True]) are the same because this set of features encodes the 
text. Therefore, if the chances of seeing “Participate in our lottery now!” are low, the chances 
of seeing the set of features [‘participate’: True, ‘in’: True, …, ‘now’: True, ‘!’: True] encoding 
this text are equally low. Is there a way to split this set to get at more fine-grained, 
individual probabilities, for example to establish a link between [‘lottery’: True] and the class 
of “spam”? 

Unfortunately, there is no way to split the conditional probability estimation like 
P(outcome | conditions) when there are multiple conditions specified, however it is 
possible to split the probability estimation like P(outcomes | condition) when there is a 
single condition and multiple outcomes. In spam detection, the class is a single value (it is 
“spam” or “ham”), while features are a set ([‘participate’: True, ‘in’: True, …, ‘now’: True, ‘!’: 
True]). If you can flip around the single value of class and the set of features in such a way 
that the class becomes the new condition and the features become the new outcomes, you 
can split the probability into smaller components and establish the link between individual 
features like [‘lottery’: True] and class values like “spam”. Figure 2.17 uses this idea to 
demonstrate how the prediction can be made in such case. 
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Figure 2.17 Since the conditional probability of class given a whole set of features is hard to estimate directly, 
flip the condition and outcome around and estimate the probabilities separately 

Luckily, there is a way to flip the outcomes (class) and conditions (features extracted 
from the content) around! Let’s look into the estimation of conditional probabilities again: 
you estimate the probability that the email is spam given that its content is “Participate in 
our new lottery now!” based on how often in the past an email with such content was spam. 
For that, you take the proportion of the times you have seen “Participate in our new lottery 
now!” in a spam email among the emails with this content. You can express it as:  

 
Let’s call this Formula 1. What is the conditional probability of the content “Participate in 

our new lottery now!” given class spam then? Similarly to how you estimated the 
probabilities above, you need the proportion of times you have seen “Participate in our new 
lottery now!” in a spam email among all spam emails. You can express it as: 

 
Let’s call this Formula 2. That is, every time you use conditional probabilities, you need to 

divide how likely it is that you see the condition and outcome together by how likely it is that 
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you see the condition on its own – this is the bit after |. Now you can see that both Formulas 
1 and 2 rely on how often you see particular content in an email from a particular class. They 
share this bit, so you can use it to connect the two formulas. For instance, from Formula 2 
you know that: 

 
Now you can fit this into Formula 1: 

 
Figure 2.18 further illustrates this process: 

 
Figure 2.18 The conditional probability for P(class | content) can be expressed via the conditional probability 
for P(content | class) 
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In the general form: 

 
In other words, you can express the probability of a class given email content via the 

probability of the content given the class. Let’s look into these two new probabilities, 
P(content | class) and P(class), more closely as they have interesting properties: 

• P(class) expresses the probability of each class. This is simply the distribution of the 
classes in your data. Imagine opening your inbox and seeing a new incoming email. 
What do you expect this email to be – spam or ham? If you mostly get normal emails 
and your spam filter is working well, you will most probably expect a new email to 
also be ham rather than spam. For example, in enron1/ ham folder contains 3672 
emails, and spam folder contains 1500 email, making the distribution approximately 
71%:29%, or P(“ham”)=0.71 and P(“spam”)=0.29. This is often referred to as prior 
probability, as it reflects the beliefs of the classifier about where the data comes from 
prior to any particular evidence: for example, here the classifier will expect that it is 
much more likely (chances are 71 to 29) that a random incoming email is ham. 

• P(content | class) is the evidence, as it expresses how likely it is that you (or the 
algorithm) will see this particular content given that the email is spam or ham. For 
example, imagine you have opened this new email and now you can assess how likely 
it is that these words are used in a spam email versus how likely they are to be used 
in a ham email. The combination of these factors may in the end change your, or 
classifier’s, original belief about the most likely class that you had before seeing the 
content (evidence). 

Now you can replace the conditional probability of P(class | content) with P(content  
| class), e.g. whereas before you had to calculate P(“spam” | “Participate in our new 
lottery now!”) or equally P(“spam” | [‘participate’: True, ‘in’: True, …, ‘now’: True, ‘!’: 
True]), which is hard to do because you will often end up with too few examples of exactly 
the same email content or exactly the same combination of features, now you can estimate 
P([‘participate’: True, ‘in’: True, …, ‘now’: True, ‘!’: True] | “spam”) instead. But how does 
this solve the problem? Aren’t you still dealing with a long sequence of features?  

Here is where the “naïve” assumption in Naïve Bayes helps: it assumes that the features 
are independent of each other, or that your chances of seeing a word “lottery” in an email 
are independent of seeing a word “new” or any other word in this email before. Therefore, 
you can estimate the probability of the whole sequence of features given a class as a product 
of probabilities of each feature given this class. That is: 
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If you express [‘participate’: True] as the first feature in the feature list, or f1, [‘in’: True] 

as f2, and so on, until fn = [‘!’: True], you can use the general formula: 

 
Figure 2.19 illustrates this classification process: 

 
Figure 2.19 Classification process: the conditional probabilities for each feature (word), with some omitted 
using “…” notation for brevity, are multiplied with each other and with the class probabilities 
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Now that you have broken down the probability of the whole feature set given class into 
the probabilities for each word given that class, how do you actually estimate them? Since 
for each email you note which words occur in it, the total number of times you can switch on 
the flag [‘feature’: True] equals the total number of emails in that class, while the actual 
number of times you switch on this flag is the number of emails where this feature is actually 
present. The conditional probability P(feature | class) is simply the proportion:

These numbers are easy to estimate from the training data – let’s try to do that with an 
example in Exercise 2.6. 

Exercise 2.6 
Suppose you have 5 spam emails and 10 ham emails. What are the conditional probabilities for P(‘prescription’:True 
| spam), P(‘meeting’:True | ham), P(‘stock’:True | spam) and P(‘stock’:True | ham), if: 

o 2 spam emails contain word prescription
o 1 spam email contains word stock 
o 3 ham emails contain word stock 
o 5 ham emails contain word meeting 

Now you have all the components in place. Let’s iterate through the classification steps 
again: during the training phase, the algorithm learns prior class probabilities (this is simply 
class distribution, e.g. P(ham)=0.71 and P(spam)=0.29) and probabilities for each feature 
given each of the classes (this is simply the proportion of emails with each feature in each 
class, e.g. P(‘meeting’:True | ham) = 0.50). During test phase, or when the algorithm is 
applied to a new email and is asked to predict its class, the following comparison from the 
beginning of this section is applied: 

This is what we started with originally, but we said that the conditions are flipped, so it 
becomes: 
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Note that we end up with P(content) in denominator on both sides of the expression, so 
the absolute value of this probability doesn’t matter, and it can be removed from the 
expression altogether.17 So we can simplify the expression as: 

 
P(spam) and P(ham) are class probabilities estimated during training, and P(content | 

class), using naïve independence assumption, are products of probabilities, so: 

 
is split into the individual feature probabilities as:   

 
This is the final expression the classifier relies on, and the code from Listing 2.9 applies 

this idea to practice. This section has discussed step-by-step what goes on “behind the 
scenes” of the Naïve Bayes classifier. Although you can translate the formulas from this 
section into code, you do not necessarily have to do this in practice. Many toolkits come with 
optimized implementations of a range of widely used machine learning algorithms, and since 
Naïve Bayes is frequently used for NLP tasks, NLTK comes with its own implementation, too.  
Here you are going to use it. The code in this listing shows how you can split the data into 
training and test sets using a predefined proportion n% (e.g., 80%) of emails with their 
features for training and setting the rest aside for testing. It then applies the train function 
using the training set and relying on the all_features structure created by the code from 
Listing 2.8. 
  

 
17 Since the probability always has a positive value, it won’t change the comparative values on the two sides: e.g. if you were comparing 10 to 4 you would 

get 10>4 whether you divide the two sides by the same positive number like (10/2)>(4/2) or not. 
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Listing 2.9 Code to train a Naïve Bayes classifier  

from nltk import NaiveBayesClassifier, classify    #A 
 
def train(features, proportion): 
    train_size = int(len(features) * proportion)    #B 
    train_set, test_set = features[:train_size], features[train_size:]    #C 
    print (f"Training set size = {str(len(train_set))} emails") 
    print (f"Test set size = {str(len(test_set))} emails")    #D 
    classifier = NaiveBayesClassifier.train(train_set)    #E 
    return train_set, test_set, classifier 
 
train_set, test_set, classifier = train(all_features, 0.8)    #F 

#A Import the classifier implementation from NLTK 
#B Remember that you need to set aside part of the data for testing 
#C Use the first n% of emails with their features for training and the rest for testing 
#D Print out simple statistics to make sure the data is split correctly 
#E Initialize the classifier 
#F Apply the train function using 80% (or a similar proportion) of emails for training 

2.3.5 Step 5: Evaluate your classifier  
Finally, let’s evaluate how well the classifier performs in detecting whether an email is spam 
or ham. For that, let’s use the accuracy score returned by the NLTK’s classifier. To that end, 
code in Listing 2.10 implements evaluate function. In addition, the NLTK’s classifier allows 
you to inspect the most informative features (words). For that, you need to specify the 
number of the top most informative features to look into (e.g., 50 here). 

Listing 2.10 Code to evaluate classifier’s performance  

def evaluate(train_set, test_set, classifier):    #A 
    print (f"Accuracy on the training set = {str(classify.accuracy(classifier, 

train_set))}") 
    print (f"Accuracy of the test set = {str(classify.accuracy(classifier, test_set))}") 
    classifier.show_most_informative_features(50)    #B 
 
evaluate(train_set, test_set, classifier) 

#A Define a function to estimate the accuracy of the classifier on each set 
#B Inspect the most informative features (words); here, top 50 are print out 

Figure 2.20 presents an example of an output returned by the code above: 
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Figure 2.15 Output of the code from Listing 2.10. Features indicative of spam are highlighted in red and 
features indicative of ham are highlighted in blue. 

One piece of information that this code provides you with is the most informative 
features, that is, the list of words that are most strongly associated with a particular class. 
This is functionality of the classifier that is implemented in NLTK, so all you need to do is call 
on this function as classifier.show_most_informative_features and specify the number
of words n that you want to see as an argument. This function then returns the top n words 
ordered by their “informativeness” or predictive power. Behind the scenes, the function 
measures “informativeness” as the highest value of the difference in probabilities between 
P(feature | spam) and P(feature | ham), i.e. max[P(word: True | ham) / P(word: 
True | spam)] for most predictive ham features, and max[P(word: True | spam) / 
P(word: True | ham)] for most predictive spam features.18 The output shows that such
words (features) as “prescription”, “pain”, “health” and so on are much more strongly 
associated with spam emails – the ratios on the right show the comparative probabilities for 
the two classes: for instance, P(“prescription” | spam) is 122.9 times higher than 
P(“prescription” | ham). On the other hand, “nomination” is more strongly associated with 
ham emails. As you can see, many spam emails in this dataset are related to medications, 
which shows a particular bias – the most typical spam that you personally get might be on a 
different topic altogether. What effect might this mismatch between the training data from 
the publicly available dataset like Enron and your personal data have? You will look into an 
example of this in Exercise 2.7. 

One other piece of information presented in this output is accuracy. Test accuracy shows 
the proportion of test emails that are correctly classified by Naïve Bayes among all test 
emails. The code above measures the accuracy on both the training data and test data. Note, 
that since the classifier is trained on the training data, it actually gets to “see” all the correct 
labels for the training examples. Shouldn’t it then know the correct answers and perform at 
100% accuracy on the training data? Well, the point here is that the classifier doesn’t just 

18 Check out NLTK’s documentation for more information: 
https://www.nltk.org/api/nltk.classify.html#nltk.classify.naivebayes.NaiveBayesClassifier.most_informative_features  
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retrieve the correct answers: during training it has built some probabilistic model (i.e., 
learned about the distribution of classes and the probability of different features), and then it 
applies this model to the data. So, it is actually very likely that the probabilistic model 
doesn’t capture all the things in the data 100% correctly. For example, there might be noise 
and inconsistencies in the real emails: note that “2004” gets strongly associated with the 
spam emails and “2001” with the ham emails, although it does not mean that there is 
anything peculiar about the spam originating from 2004. This might simply show a bias in 
the particular dataset, and such phenomena are hard to filter out in any real data, especially 
when you rely on the data collected by other researchers.19 This means that if some ham 
email in training data contains a word “2004” as well as a variety of other words that are 
otherwise related to spam, this email might get misclassified as spam by the algorithm. 
Similarly, as many medication-related words are strongly associated with spam, a rare ham 
email that is actually talking about some medication the user ordered might get misclassified 
as spam.  

Therefore, when you run the code above, you will get an accuracy on the training data of 
96.13%. This is not perfect (i.e., not 100%) but it is very close to perfect, nevertheless. This 
shows that despite certain artefacts in the data (like the association of years to class labels), 
in general, the classifier gets it right most of the time. When you apply the same classifier to 
new data – the test set that the classifier hasn’t seen during training – the accuracy reflects 
its generalizing ability. That is, it shows whether the probabilistic assumptions it made based 
on the training data can be successfully applied to any other data. The accuracy on the test 
set in this example is 94.20%, which is slightly lower than that on the training set but is also 
very high. 

Finally, if you’d like to gain any further insight into how the words are used in the emails 
from different classes, you can also check the occurrences of any particular word in all 
available contexts. For example, word “stocks” features as a very strong predictor of spam 
messages. Why is that? You might be thinking, “OK, some emails containing “stocks” will be 
spam, but surely there must be contexts where “stocks” is used in a completely legitimate 
way?” Let’s check this using the following code from Listing 2.11. This code shows how you 
can use NLTK’s “concordancer”, a tool that checks for the occurrences of the specified word 
and prints out this word in its contexts. By default, NLTK’s concordancer prints out the 
search_word surrounded by the previous 36 and the following 36 characters, so note, that it 
doesn’t always result in full words. Once the use of concordancer is defined in the function 
concordance, you can apply it to both ham_list and spam_list to find out about the 
different contexts of use for the word “stocks”. 
  

 
19 In this particular case it is related to the fact that emails from Enron employees were collected from earlier years, than spam emails (see the dataset 

description in http://www2.aueb.gr/users/ion/docs/ceas2006_paper.pdf). This might be related to the difficulty of collecting realistic and 
representative personal ham emails, but despite this difference in the ham vs spam data, the dataset overall is still widely used for training spam 
filtering algorithms. This observation, though, should be taken as a word of caution – datasets often contain certain artefacts, many of which might be 
difficult to spot or eliminate, so it is often a good idea to get as much diverse data as possible to avoid biases in the data.  
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Listing 2.11 Code to check the contexts of specific words 

from nltk.text import Text    #A 
 
def concordance(data_list, search_word): 
    for email in data_list: 
        word_list = [word for word in word_tokenize(email.lower())] 
        text_list = Text(word_list) 
        if search_word in word_list: 
            text_list.concordance(search_word)    #B 
 
 
print ("STOCKS in HAM:") 
concordance(ham_list, "stocks") 
print ("\n\nSTOCKS in SPAM:") 
concordance(spam_list, "stocks")    #C 

#A Import NLTK’s Text data structure 
#B Use NLTK’s concordancer to print out the search_word in context 
#C Apply this function to ham_list and spam_list to search for contexts of “stocks” 

If you run this code and print out the contexts for “stocks”, you will find out that “stocks” 
feature in only 4 ham contexts (e.g., an email reminder “Follow your stocks and news 
headlines”) as compared to hundreds of spam contexts including “Stocks to play”, “Big 
money was made in these stocks”, “Select gold mining stocks”, “Little stocks can mean big 
gains for you”, and so on. 

Congratulations – you have built your own spam-filtering algorithm and learned how to 
evaluate it and explore the results! 

2.4 Deploying your spam filter in practice 
Why are the evaluation steps important? We’ve said before that the machine learns from 
experience – data that it is provided with – so obviously, the more data the better. You 
started with about five thousand emails, but you had to set 20% aside for testing, and you 
were not allowed to use them while training. Doesn’t it mean practically “losing” valuable 
data that the classifier could have used more effectively? 

Well, if you build an application that you plan to use in real life, you want it to perform its 
task well. However, you cannot predict in advance what data the classifier will be exposed to 
in the future, so the best way to predict how well it will perform is to test it on the available 
labeled data. This is the main purpose of setting aside 20% or so of the original labeled data 
and of running evaluation on this test set. Once you are happy with the results of your 
evaluation, you can deploy your classifier in practice. 

For instance, the classifier that you’ve built in this chapter performs at 94% accuracy, so 
you can expect it to classify real emails into spam and ham quite accurately. It’s time to 
deploy it in practice then. When you run it on some new emails (perhaps, some from your 
own inbox) you need to perform the same steps on these emails as before, that is: 

• you need to read them in; then 
• you need to extract the features from these emails; and finally 
• you need to apply the classifier that you trained before on these emails. 
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The code from Listing 2.12 shows how you can do that. Feel free to type in your own 
emails as input. 

Listing 2.12 Code to apply spam filtering to new emails 

test_spam_list = ["Participate in our new lottery!", "Try out this new medicine"] 
test_ham_list = ["See the minutes from the last meeting attached",  
                 "Investors are coming to our office on Monday"]    #A 
 
test_emails = [(email_content, "spam") for email_content in test_spam_list] 
test_emails += [(email_content, "ham") for email_content in test_ham_list]    #B 
 
new_test_set = [(get_features(email), label) for (email, label) in test_emails]    #C 
 
evaluate(train_set, new_test_set, classifier)    #D 

#A Feel free to provide your own examples 
#B Read the emails extracting their textual content and keeping the labels for further evaluation 
#C Extract the features 
#D Apply the trained classifier and evaluate its performance 

The classifier that you’ve trained in this chapter performs with 100% accuracy on these 
examples. Good! How can you print out the predicted label for each particular email though? 
For that, you simply extract the features from the email content and print out the label, i.e., 
you don’t need to run the full evaluation with the accuracy calculation. The code from Listing 
2.13 suggests how you can do that. 

Listing 2.13 Code to print out the predicted label 

for email in test_spam_list: 
    print (email) 
    print (classifier.classify(get_features(email))) 
for email in test_ham_list: 
    print (email) 
    print (classifier.classify(get_features(email)))    #A 

#A For each email in each list this code prints out the content of the email and the predicted label 

Finally, let’s make the code more interactive and see if the classifier can predict the class 
label on any input text in real time. For example, how about reading the emails of your 
choice straight from the keyboard and predicting their label on the spot? This is not very 
different from what you’ve just done above: the only difference is that instead of reading the 
emails from the predefined list, you should allow your code to read them from the keyboard 
input. Python’s input functionality allows you to do that. Let’s read the emails typed in from 
the keyboard and stop when no email is typed in. For that, use the while-break loop as the 
code below shows. The code will keep asking for the next email until the user presses ‘Enter’. 
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Listing 2.14 Code to classify the emails read in from the keyboard 

while True: 
   email = input("Type in your email here (or press 'Enter'): ")    #A 
   if len(email)==0: 

  break    #B 
   else: 

  prediction = classifier.classify(get_features(email)) 
  print (f"This email is likely {prediction}\n")    #C 

#A Ask the user to type in the text of the email 
#B Stop when the user provides no text and presses ‘Enter’ instead 
#C Print out the predicted label for the email 

Finally, you should try to apply what you have learned in this chapter and test your new 
skills by attempting the following practical exercise (Exercise 2.7). You can check your 
solutions against the notebook, but first try to write the code yourself. 

Exercise 2.7 
Apply the trained classifier to a different dataset, for example to enron2/ spam and ham emails that originate with a 
different owner (check Summary.txt for more information). For that you need to: 

o read the data from the spam/ and ham/ subfolders in enron2/ 
o extract the textual content and convert it into features 
o evaluate the classifier 

What do the results suggest? Hint: one man’s spam may be another man’s ham. If you are not satisfied with the 
results, try combining the data from the two owners in one dataset. 
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2.5 Summary 
• Classification is concerned with assigning objects to a predefined set of categories, 

groups or classes based on their characteristic properties. There is a whole family of 
NLP and machine learning tasks that deal with classification.  

• Humans perform classification on a regular basis, and machine learning algorithms 
can be taught to do that provided with a sufficient number of examples and some 
guidance from humans. When the labeled examples and the general outline of the 
task are provided for the machine, this is called supervised learning 

• Spam filtering is an example of a binary classification task: the machine has to learn 
to distinguish between exactly two classes – spam and normal email (often called 
ham) 

• Classification relies on specific properties of the classified objects. In machine learning 
terms, such properties are called features. For spam filtering, some of the most 
informative features are words used in the emails 

• To build a spam-filtering algorithm, you can use one of the publicly available spam 
datasets. One of such datasets is the Enron spam dataset 

• A classifier can be built in five steps, starting with (1) reading emails and defining 
classes, following with (2) extraction of content, (3) conversion of the content into 
features, (4) training of an algorithm on the training set, and finishing with (5) 
evaluation on the test set. 

• The data comes in as a single string of symbols. To extract the words from it, you 
may rely on the NLP tools called tokenizers (or use regular expressions to implement 
one yourself) 

• NLP libraries, such as Natural Language Processing Toolkit (NLTK), come with such 
tools, as well as implementations of a range of frequently used classifiers  

• There are a number of machine learning classifiers, and one of the most interpretable 
among them is Naïve Bayes. Naïve Bayes is a probabilistic classifier: it assumes that 
the data in two classes is generated by different probability distributions, which are 
learned from the training data. Despite its simplicity and “naïve” feature 
independence assumption, Naïve Bayes often performs well in practice, and sets 
competitive baseline for other more sophisticated algorithms 

• It is important that you split your data into training (e.g., 80% of the original dataset) 
and test (the rest of the data) sets, and train the classifier on the training data only, 
so that you can assess it on the test set in a fair way. The test set serves as new 
unseen data for the algorithm, so you can come to a realistic conclusion about how 
your classifier may perform in practice 

• Once satisfied with the performance of your classifier on the test data, you can deploy 
it in practice 
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2.6 Solutions to exercises 
Solution to Exercise 2.1: 

1. We distinguish between spam and normal emails. Spam emails should end up in the 
spam box and normal emails should be kept in the inbox. 

2. This is an example of binary classification because we distinguish between two classes 
only. 

3. We, humans can relatively easily tell a spam email from a normal one, although some 
spammers use sophisticated techniques to disguise their intentions, and in some 
cases, it might be tricky to tell the difference. The format of the email (use of unusual 
fonts and colors), the information about the sender (unusual or unknown email 
address) and the list of addressees (spam emails are often mass emails), as well as 
attachments and links are all very indicative. However, some of the strongest clues 
are provided by the content of the email itself and the language used: for example, 
you should be wary of emails that tell you that your account is unexpectedly blocked, 
that you need to provide sensitive personal information for suspicious reasons, or that 
you have won in a lottery (especially if you haven’t participated in one!). 

Solution to Exercise 2.3: 

1. You already know that the punctuation marks should be treated as a separate word, 
so the last bit of text in the sentence “What's the best way to cook a pizza?” should be 
split into “pizza” and “?”. The first bit “What's” should also be split into two words: this 
is a contraction for “what” and “is”, and it is important that the classifier knows that 
these two are separate words. Therefore, the word list for this sentence will include 
[What, 's, the, best, way, to, cook, a, pizza, ?]. 

2. The second sentence “We're going to use a baking stone.” similarly contains a full stop 
at the end that should be separated from the previous word, and “we're” should be 
split into “we” and “'re” (= “are”). Therefore, the full word list will be [We, 're, going, 
to, use, a, baking, stone, .]. 

3. Follow the same strategy as before: the third sentence “I haven't used a baking stone 
before.” will produce [I, have, n't, used, a, baking, stone, before, .]. Note that the 
contraction of “have” and “not” here results in an apostrophe inside the word “not”, 
however you should still be able to recognize that the proper English words in this 
sequence are “have” and “n't” (= “not”) rather than “haven” and “'t”. This is what the 
tokenizer will automatically do for you.20 

Solution to Exercise 2.4: 

1. Using the formula above, we can estimate that the accuracy of this algorithm is 3/5, 
or 60%: it got 3 out of 5 examples correctly (spam-spam, ham-ham, and ham-ham), 
and it made 2 mistakes mislabeling one spam email as “ham”, and one ham email as 
“spam”. 

 
20 Note that the tokenizers do not automatically map contracted forms like “n't” and “'re” to full form like “not” and “are” – although such mapping would 

be useful in some cases, this is beyond the functionality of tokenizers. 
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2. An accuracy of 60% seems to not be very high, but how exactly can you interpret it? 
Note that the distribution of classes helps you to put the performance of your classifier 
in context because it tells you how challenging the problem itself is. For example, with 
the 50%-50% split, there is no majority class in the data and the classifier’s random 
guess will be at 50%, so the classifier’s accuracy is higher than this random guess. In 
the second case, however, the classifier performs on a par with the majority class 
guesser: the 60% to 40% distribution of classes suggests that if some dummy 
“classifier” always selected the majority class, it would get 60% of the cases correctly 
– just like the classifier you trained. 

3. The single accuracy value of 60% does not tell you anything about the performance of 
the classifier on each class, so it is a bit hard to interpret. However, if you look into 
each class separately, you can tell that the classifier is better at classifying ham emails 
(it got 2/3 of those right) than at classifying spam emails (only 1/2 are correct). 

Solution to Exercise 2.5: 
You will end up with the following feature set: 

 
Solution to Exercise 2.6: 
The probabilities are simply: 

• P(‘prescription’:True | spam) = number(spam emails with 
‘prescription’)/number(spam emails) = 2/5 = 0.40 

• P(‘meeting’:True | ham) = 5/10 = 0.50 
• P(‘stock’:True | spam) = 1/5 = 0.20 
• P(‘stock’:True | ham) = 3/10 = 0.30 
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Introduction to Information Search 

This chapter covers 

• Implementation of your own information retrieval algorithm 
• A number of useful NLP techniques, including stemming and stopwords removal 
• Assessing importance of different bits of information in search  
• Evaluating the relevance of the documents to the information need 

This chapter will focus on algorithms for information search, which also has a more technical 
name – information retrieval. It will explain the steps in the search algorithm from beginning 
to end, and by the end of this chapter you will be able to implement your own search 
algorithm. 

You might have come across the term Information Retrieval in the context of search 
engines: for example, Google famously started its business by providing a powerful search 
algorithm that kept improving over time. The search for information, however, is a basic 
need that you may face not only in the context of searching online: for instance, every time 
you search for the files on your computer, you also perform sort of information retrieval. In 
fact, the task predates digital era: before computers and the Internet became a commodity, 
one had to manually wade through paper copies of encyclopedias, books, documents, files 
and so on. Thanks to the technology, the algorithms these days help you do many of these 
tasks automatically. 

The field of information retrieval has a long history and has seen a lot of development 
over the past decades. As you can imagine, Google and other search engines are dealing 
with large amounts of data, which makes their task exceptionally challenging – they have to 
process billions of pages in a matter of seconds and be able to return most relevant of those 
to satisfy the information needs of their users. Truly amazing, if you think about the 
complexity of the task!  
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In this chapter, we will break this process into steps: we will look into how the 
information need is expressed as a query and processed for the computer to understand it, 
how the documents should be processed and matched to the queries, and how the relevance 
of the documents to the queries can be assessed. Search engines, fundamentally, go through 
all the same steps, albeit they do it on a much larger scale, and employ a number of 
additional techniques, for example learning from user clicks, linking web content via 
hyperlinks, using optimization to speed the processing up, storing intermediate results, and 
so on – many of these steps are simply outside the scope of this book. Therefore, this 
chapter, perhaps, should start with a disclaimer: we are not going to build a new Google 
competitor algorithm here (although you might consider building one in the future), but we 
will build a core information search application that you can use in your real-life projects. 

3.1 Understanding the task  
Let’s look into the following scenario, which you might recall from Chapter 1: imagine that 
you have to perform the search in a collection of documents yourself, i.e., without the help of 
the machine. For example, you have a thousand printed out notes and minutes related to the 
meetings at work, and you only need those that discuss the management meetings. How will 
you find all such documents? How will you identify the most relevant among them? 

We said then that if you were tasked with this in actual life, you would go through the 
documents one by one, identifying those that contain the key words (like “management” and 
“meetings”) and split all the documents into two piles: e.g. those documents that you should 
keep and look into further and those that you can discard because they do not answer your 
information need in learning more about the management meetings. This task is akin to 
filtering, as Figure 3.1 shows (again, you might recall it from Chapter 1): 

 
Figure 3.1 Simple filtering of documents into “keep” and “discard” piles based on the occurrence of words 
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Now, there are a couple of points that we did not get to discuss before: imagine there are 
a hundred of documents in total and you can quickly skim through them to filter out the 
most irrelevant ones – those that do not even mention either “meetings” or “management”. 
But what if a high number of documents actually do contain one or the other or even both 
words? Say, after this initial filtering, you end up with 70 such documents. This is not the 
original hundred, but still too much to read through carefully. At the very least, you’d like to 
be able to sort them in the order of relevance, so that you can start by reading the most 
relevant ones and then stop as soon as you found the information you were looking for. How 
can you judge whether one of the documents is more relevant than the others, and how can 
you sort all of them in the order of decreasing relevance? 

Luckily, these days we have computers, and most documents are stored electronically. 
Computers can really help us speed the things up here: if we can formulate our information 
needs for them more or less precisely, they can be much quicker in spotting the key words, 
estimating the relevance and sorting the documents for us – in fact, in a matter of seconds 
(think Google). To this end, let’s formulate a more technical scenario for this chapter: 
imagine that you have to perform the search in a collection of documents, this time with the 
help of a computer. For example, you have a thousand notes and minutes related to the 
meetings at work stored in an electronic format, and you only need those that discuss the 
management meetings. 

• First, how will you find all such documents? In other words, how can you code the 
search algorithm and what characteristics of the documents should the search be 
based on? 

• Second, how will you identify the most relevant of these documents? In other words, 
how can you implement a sorting algorithm to sort the documents in order of 
decreasing relevance? 

This scenario is only different from the previous one in that it allows you to leverage the 
computational power of the machine, but the drill is the same as before: get the machine to 
identify the texts that have the keywords in them, and then sort the “keep” pile according to 
the relevance of the texts, starting with the most relevant for the user or yourself to look at. 

Despite us saying just now that the procedure is similar to how the humans perform the 
task (as in the first scenario), there are actually some steps involved in getting the machine 
identify the documents with the keywords in them and sorting by relevance that we are not 
explicitly mentioning here. For instance, we humans have the following abilities that we 
naturally possess but machines naturally lack: 

• We know what represents a word, while a machine gets in a sequence of symbols and 
does not, by itself, have a notion of what a “word” is. 

• We know which words are keywords: e.g., if we are interested in finding the 
documents on management meetings, we will consider those containing “meeting” 
and “management”, but also those containing “meetings” and potentially even 
“manager” and “managerial”. The machine, on the other hand, does not know that 
these words are related, similar, or basically different forms of the same word. 

• We have an ability to focus on what matters: in fact, when reading texts, we usually 
skim over certain words rather than pay equal attention to each word. For instance, 

76

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

when reading a sentence “Last Friday the management committee had a meeting”, 
which words do you pay more attention to? Which ones express the key idea of this 
message? Think about it – and we will return to this question later. The machines, on 
the other hand, should be specifically “told” which words matter more. 

• Finally, we also intuitively know how to judge what is more relevant. The machines 
can make relevance judgments, too, but unlike us humans they need to be “told” how 
to measure relevance in precise numbers. 

That, in a nutshell, represents the basic steps in the search algorithm. Let’s visualize 
these steps as in Figure 3.2: 

 
Figure 3.2 Information search algorithm in a nutshell 

If you built a spam filtering application in Chapter 2, the first step in this algorithm would 
be familiar to you: while implementing this algorithm, you learned how to use a tokenizer to 
extract words from raw text. If you’ve skipped Chapter 2, this chapter will briefly explain how 
this step works, and you can also get more details on the process from Chapter 2. In this 
chapter, you will look in more detail into other NLP techniques to preselect words, map the 
different forms of the same word to each other and weigh the words according to how much 
information they contribute to the task. Then you will build an information search algorithm 
that for any query (for example, “management meetings”) will find the most relevant 
documents in the collection of documents (for example, all minutes of the past managerial 
meetings sorted by their relevance). 
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Suppose you have built such an application following all the steps. You type in a query 
and the algorithm returns a document or several documents that are supposedly relevant to 
this query. How can you tell whether the algorithm has picked out the right documents? 
When you were building the spam filtering classifier, you faced the same problem, and we 
said that before you deploy your spam filter in practice it is a good idea to get an initial 
estimate of how well the classifier performs. You can do that if for some data you know the 
true labels – which emails are spam and which ones are ham. These true labels are 
commonly referred to as ground truth or gold standard, and to make sure your algorithm 
performs well you first evaluate it against gold standard labels. For that, in the spam filtering 
example you used a spam dataset where such gold standard labels were provided, and you 
are going to do the same in this application. Let’s use a dataset of documents and queries, 
where the documents are labeled with respect to their relevance to the queries. You will use 
this dataset as your gold standard, and before using the information search algorithm in 
practice, evaluate its performance against the ground truth labels in the labeled dataset. 

Gold standard / Ground truth  
Gold standard (or ground truth) refers to the labels that are provided in the annotated data. The goal of the algorithm 
you are building is to predict such labels: e.g., in a supervised machine learning setting, you train your algorithm using 
such labels in the training data and evaluate the predictions of your algorithm against gold standard labels in the test 
data. 
 

3.1.1 Data and data structures 
As in Chapter 2, you are going to use a publicly available dataset labeled for the task. This 
means, a dataset with a number of documents and various queries, and a labeled list 
specifying which queries correspond to which documents. Once you implement and evaluate 
a search algorithm on such data labeled with ground truth, you can apply it to your own 
documents in your own projects. 

There are a number of datasets that can be used for this purpose.1 In this chapter, you 
will use the dataset collected by the Centre for Inventions and Scientific Information (CISI),2 
which contains abstracts and some additional metadata from the journal articles on 
information systems and information retrieval. Despite the availability of other datasets, 
there are several reasons to choose the CISI dataset for this chapter, the main of which are: 

• It is a relatively small dataset of 1460 documents and 112 queries, which is easy to 
process and work with. In addition, each document is relatively short, consisting of an 
article abstract and some additional information, which helps faster processing 
further. 

• It contains gold standard annotations for the relevance of the documents to 76 
queries. 

  

 
1 See a list of publicly available datasets here: http://ir.dcs.gla.ac.uk/resources/test_collections/ 
2 You can download the dataset from http://ir.dcs.gla.ac.uk/resources/test_collections/cisi/  
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• The results are easy to interpret, as the dataset does not include highly technical 
terms. In contrast, some other widely used benchmark datasets include medical 
articles or articles on technical subjects such as aerodynamics, which are harder to 
interpret for non-experts.  

Let’s first read in the data and initialize the data structures to keep the content. Note, 
that this dataset contains many documents and various queries: for instance, one query in 
this dataset asks what information science is, while another asks about the methods of 
information retrieval, and so on – there is a diverse set of 76 questions. Although you might 
just extract one particular query and focus on, say, searching for the documents in this 
dataset answering “What is information science?”, since you have access to so many diverse 
queries why not reading all of them and storing them in some data structure? This way, you 
will be able to search for the matching documents for any of the queries rather than for only 
one specific query and check how your algorithm deals with a variety of information needs. 
For that, it would be good to keep track of different queries: for example, if you assign a 
unique identifier to each query (e.g., id1 = “What is information science?”, id2 = “What 
methods do information retrieval systems use?”, and so on), you can then easily select any 
of the queries by their ids. You can apply the same approach to storing the documents, too: 
if each document is assigned a unique id, it will be easy to identify a particular document by 
its id. Finally, the matching between a particular query and documents answering the 
information need in this query can be encoded as the correspondence between the query id 
and documents ids. 

This suggests that you can use three data structures for this application: 

1. a data structure for the documents that will keep document ids and contents, 
2. a data structure for the queries that will keep query ids and contents, and  
3. a data structure matching the queries to the documents. 

Exercise 3.1 
What would be the best format(s) for representing these three data structures? What type of information do you need 
to keep in each case? 
 

Let’s look into the solution to this exercise together. Information search is based on the 
idea that the content of a document or set of documents is relevant given the content of a 
particular query, so documents data structure should keep the contents of all available 
documents for the algorithm to select from. 

If you have only one query to search for, you can store it as a string of text. However, if 
you want to use your algorithm to search for multiple queries, you may use a similar queries 
data structure to keep contents of all queries available in the dataset. 

What would be the best way to keep track of which content represents which document? 
The most informative and useful way would be to assign a unique identifier – an index – to 
each document and each query. You can imagine, for example, storing content of the 
documents and queries in two separate tables, with each row representing a single document 
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or query, and row numbers corresponding to the documents and queries ids. In Python, 
tables can be represented with dictionaries.3 

Now, if you keep two Python dictionaries (tables) matching each unique document 
identifier (called key) to the document’s content (called value) in documents dictionary and 
matching each unique query identifier to the query’s content in queries dictionary, how 
should you represent the relevance mappings? You can use a dictionary structure again: this 
time, the keys will contain the queries ids, while the values should keep the matching 
documents ids. Since each query may correspond to multiple documents, it would be best to 
keep the ids of the matching documents as lists. 

Figure 3.3 visualizes these data structures:  

  
Figure 3.3 Three data structures keeping the documents, queries, and their relevance mappings 

 
3 https://docs.python.org/3/tutorial/datastructures.html  
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As this figure shows, query with id 1 matches documents with ids 1 and 1460, therefore 
the mappings data structure keeps a list of [1, 1460] for query 1; similarly, it keeps [3] for 
query 2, [2] for query 112, and an empty list for query 3, because in this example there are 
no documents relevant for this query. 

Now let’s look into the CISI dataset and code the data reading and initialization step. All 
documents are stored in a single text file CISI.ALL. It has a peculiar format: it keeps the 
abstract of each article4 and some additional information, such as the index in the set, the 
title, authors’ list and cross-references – a list of indexes for the articles that cite each other. 
Table 3.1 explains the notation: 

Table 3.1 Notation used in the CISI dataset for the articles 

Notation 

.I 

Meaning 

Document index in the set 

.T Article’s title 

.A Authors’ list 

.W Text of the abstract 

.X Cross-references list 

For the information search application, arguably the most useful information is the content of 
the abstract: abstracts in the articles typically serve as a concise summary of what the article 
presents, something akin to a snippet. Are the other types of information included in the 
dataset useful? Well, you might be interested in the articles published by particular authors, 
so in some situations you might be interested in searching on the .A field specifically; 
similarly, if you are interested in articles with particular titles, you might benefit from using 
the .T field only. For the sake of simplicity, in the application that you will develop in this 
chapter we won’t distinguish between the .T, .A and .W list and we’ll merge them into one 
“content of the article” field, assuming that the information from each of them is equally 
valuable. The .X field shows how many other articles refer to the particular article, so it may 
be used as a credibility rating of an article. This may be quite useful in practice, if you want 
to rate the articles by how reliable or respected they are (this is what the cross-references 
show), however in this application we won’t focus on that and will remove the .X field. 

Table 3.2 shows the format of information presentation in the CISI.ALL file using an 
example of the very first article in the set: 
  

 
4 Note that the full texts of the articles are not included in this dataset. However, this is not a problem for your search algorithm application: first of all, 

abstracts typically summarize the main content of the article in a concise manner, so the abstract content is a more condensed version of the article 
content. Secondly, the mappings are established between the queries and the documents containing the information summarized in Table 3.1.  

81

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

Table 3.2 Format used for the articles’ representation in the CISI dataset 

.I 1 

.T 
18 Editions of the Dewey Decimal Classifications 
.A 
Comaromi, J.P. 
.W 
   The present study is a history of the DEWEY Decimal 
Classification.  The first edition of the DDC was published 
in 1876, the eighteenth edition in 1971, and future editions 
will continue to appear as needed.  In spite of the DDC's 
long and healthy life, however, its full story has never 
been told.  There have been biographies of Dewey 
that briefly describe his system, but this is the first 
attempt to provide a detailed history of the work that 
more than any other has spurred the growth of 
librarianship in this country and abroad. 
.X 
… 
 

As you can see, the field identifiers such as .A or .W are separated from the actual text by a 
new line. In addition, the text within each field, for example, the abstract may be spread 
across multiple lines. Ideally, we would like to convert this format into something like the 
text in Table 3.3. Note that for the text that falls within the same field, e.g., .W, the line 
breaks (“\n”) are replaced with whitespaces, so each line now starts with a field identifier 
followed by the field content: 

Table 3.3 Modified format for the articles’ representation in the dataset 

.I 1 

.T 18 Editions of the Dewey Decimal Classifications 

.A Comaromi, J.P. 

.W The present study is a history of the DEWEY Decimal Classification.  The first edition of the DDC was 
published in 1876, the eighteenth edition in 1971, and future editions will continue to appear as needed.  In 
spite of the DDC's long and healthy life, however, its full story has never been told.  There have been 
biographies of Dewey that briefly describe his system, but this is the first attempt to provide a detailed history 
of the work that more than any other has spurred the growth of librarianship in this country and abroad. 
 

The format in Table 3.3 is much easier to work with: you can now read the text line by line, 
extract the unique identifier for the article from the field .I, merge the content of the fields 
.T, .A and .W, and store the result in the documents dictionary as {1: “18 Editions of the … 
this country and abroad.”}. Code in Listing 3.1 implements all these steps in a function 
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read_documents. In this code, you first define a string variable merged, which keeps the 
result of merging the field identifier (e.g., .W) with its content. Unless a text string starts 
with a new field identifier, you add its content to the current field separating the content 
from the previous line with a whitespace; otherwise, you start a new line with the next 
identifier and field. Next, you define a documents dictionary and populate it with entries. 
Each entry in this dictionary contains key=doc_id, which specifies the document’s unique 
identifier, and value=content, which specifies the content of the article. The key, doc_id, 
can be extracted from the line with the .I field identifier. As .X field is always the last in each 
article, the start of the .X field signifies that you are done reading in the content of the 
article, so you can put the entry doc_id:content into the documents dictionary. Until you 
reach .X field, however, you keep extracting the content from other fields (.T, .A and .W) 
removing the field identifiers themselves. Finally, as a sanity check, you should print out the 
size of the dictionary (make sure it contains all 1460 articles) and print out the content of the 
very first article – it should correspond to the text in Table 3.3. 

Listing 3.1 Code to populate the documents dictionary  

def read_documents(): 
    f = open("cisi/CISI.ALL") 
    merged = ""    #A 
     
    for a_line in f.readlines(): 
        if a_line.startswith("."): 
            merged += "\n" + a_line.strip() 
        else: 
            merged += " " + a_line.strip()    #B 
     
    documents = {}    #C 
 
    content = "" 
    doc_id = ""    #D 
 
    for a_line in merged.split("\n"): 
        if a_line.startswith(".I"): 
            doc_id = a_line.split(" ")[1].strip()    #E 
        elif a_line.startswith(".X"): 
            documents[doc_id] = content 
            content = "" 
            doc_id = ""    #F 
        else: 
            content += a_line.strip()[3:] + " "    #G 
    f.close() 
    return documents 
 
documents = read_documents() 
print(len(documents)) 
print(documents.get("1"))    #H 

#A String variable merged keeps the result of merging the field identifier with its content 
#B Update the merged variable using a for-loop 
#C Initialize documents dictionary 
#D Each entry in the dictionary contains key=doc_id and value=content 
#E doc_id can be extracted from the line with the .I field identifier 
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#F Put the entry doc_id:content into the documents dictionary 
#G Extract the content from fields .T, .A and .W removing the field identifiers themselves 
#H As a sanity check, print out the size of the dictionary and the content of the very first article 

The queries are stored in CISI.QRY file and follow a very similar format: half the time, you 
see only two fields – .I for the unique identifier and .W for the content of the query. Other 
queries though are formulated not as questions but rather as abstracts from other articles. In 
such cases, the query also has an .A field for the authors’ list, .T for the title and .B field, 
which keeps the reference to the original journal in which the abstract was published. Table 
3.4 presents an example of one of such original queries: 

Table 3.4 Format used for the queries representation in the CISI dataset 

.I 88 

.T 
Natural Language Access to Information Systems.  An Evaluation Study 
of Its Acceptance by End Users 
.A 
Krause, J. 
.W 
    The question is asked whether it is feasible to use subsets of 
natural languages as query languages for data bases in actual applications 
using the question answering system "USER SPECIALTY LANGUAGES" (USL). 
Methods of evaluating a natural language based information system will 
be discussed.  The results (error and language structure evaluation) 
suggest how to form the general architecture of application systems which 
use a subset of German as query language. 
.B 
(Inform. Systems, Vol. 5, No. 4, May 1980, pp. 297-318) 

We are going to only focus on the unique identifiers and the content of the query itself (fields 
.W and .T, where available), so the code in Listing 3.2 is quite similar to the Listing 3.1 as it 
allows you to populate the queries dictionary with data. As before, you first merge the 
content of each field with its identifier and separate different fields with line breaks “\n”. 
Next, you define a queries dictionary and store key=qry_id and value=content for each 
query in the dataset as a separate entry in the dictionary. The start of a new entry is 
signified with the next .I field. Once you encounter an .I field identifier in text, you add an 
entry to the dictionary. Until you encounter an .I field identifier, however, you should keep 
adding content to the current content variable. Note that the very last query is not followed 
by any next .I field, so the strategy from Listing 3.1 won’t work – you need to add the entry 
for the last query to the dictionary using an extra step shown in Listing 3.2. Finally, you print 
out the length of the dictionary (it should contain 112 entries), and the content of the very 
first query (this you can check against the text of the first query in CISI.QRY). 
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Listing 3.2 Code to populate the queries dictionary  

def read_queries(): 
    f = open("cisi/CISI.QRY") 
    merged = "" 
     
    for a_line in f.readlines(): 
        if a_line.startswith("."): 
            merged += "\n" + a_line.strip() 
        else: 
            merged += " " + a_line.strip()    #A 
     
    queries = {} 
 
    content = "" 
    qry_id = ""    #B 
 
    for a_line in merged.split("\n"): 
        if a_line.startswith(".I"): 
            if not content=="": 
                queries[qry_id] = content 
                content = "" 
                qry_id = ""    #C 
            qry_id = a_line.split(" ")[1].strip() 
        elif a_line.startswith(".W") or a_line.startswith(".T"): 
            content += a_line.strip()[3:] + " "    #D 
    queries[qry_id] = content    #E 
    f.close() 
    return queries 
 
queries = read_queries() 
print(len(queries)) 
print(queries.get("1"))    #F 

#A Merge the content of each field with its identifier and separate different fields with line breaks 
#B Initialize queries dictionary with key=qry_id and value=content for each query in the dataset 
#C Add an entry to the dictionary when you encounter an .I identifier  
#D Otherwise, keep adding content to the content variable 
#E An extra step to add the entry for the last query to the dictionary 
#F Print out the length of the dictionary and the content of the very first query 

For the query example in Table 3.4, this code will put the unique identifier linked to the 
query content from the fields .T and .W into the data structure: the particular entry will be 
represented as {88: “Natural Language Access to Information Systems … use a subset of 
German as query language.”}. 

Finally, you need to know which queries correspond to which documents. This information 
is contained in CISI.REL file. This file uses a simple column-based format, where the first 
column keeps the reference to the query id, and the second column contains an id of one of 
the articles (documents) that matches this query. All you need to do then is read this file, 
split it into columns, and associate to the query id the list of ids for the documents that 
match this query. Listing 3.3 shows how to do this in Python. In this code, you first split each 
line into columns. Python’s split() performs splitting by whitespaces, while strip() helps 
removing any trailing whitespaces. As the key (query id) is stored in the first column and the 
document id is stored in the second column, you extract this information from the 
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correspondent columns. Next, you check if the mappings dictionary already contains some 
document ids for the documents matching the given query. If it does, you need to update the 
existing list with the current value; otherwise, you just add current value to the new list. 
Finally, as a sanity check, you can print out some information about the mappings data 
structure: e.g., its length (it should tell you that 76 queries have documents associated with 
them), list of keys (so you can check which queries don’t have any matching documents), 
and the list of ids for the documents matching the very first query (this should print out a list 
of 46 document ids, which you can check against CISI.REL). 

Listing 3.3 Code to populate the mappings dictionary  

def read_mappings(): 
    f = open("cisi/CISI.REL") 
     
    mappings = {} 
 
    for a_line in f.readlines(): 
        voc = a_line.strip().split()    #A 
        key = voc[0].strip() 
        current_value = voc[1].strip()    #B 
        value = [] 
        if key in mappings.keys(): 
            value = mappings.get(key)    #C 
        value.append(current_value) 
        mappings[key] = value 
 
    f.close() 
    return mappings 
 
mappings = read_mappings() 
print(len(mappings)) 
print(mappings.keys()) 
print(mappings.get("1"))    #D 

#A Split each line into columns 
#B Extract the key (query id) from the first column and the document id from the second column  
#C Update the entry in the mappings dictionary with the current value 
#D Print out some information about the mappings data structure 

For example, for the very first query, the mappings data structure should keep the following 
list: {1: [28, 35, 38, …, 1196, 1281]}.  

That’s it – you have successfully initialized one dictionary for documents with the ids 
linked to the articles content, another dictionary for queries linking queries ids to their 
correspondent texts, and the mappings dictionary, which matches the queries ids to the lists 
of relevant document ids. 

Now, you are all set to start implementing the search algorithm for this data. 

3.1.2 Boolean search algorithm 
Let’s start with the simplest approach: the information need is formulated as a query. If you 
extract the words from the query, you can then search for the documents that contain these 
words and return these documents, as they should be relevant to the query.  
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Here is the algorithm in a nutshell: 

• Extract the words from the query 
• For each document, compare the words in the document to the words in the query  
• Return the document as relevant if any of the query words occurs in the document 

Figure 3.4 visualizes this algorithm: 

 
Figure 3.4 Simple search algorithm selects all documents that contain any of the words from the query 

The very first step in this algorithm is extraction of the words from both queries and 
documents. Note that text comes in as a sequence of symbols or characters (you may also 
recall this from Chapter 2), and the machine needs to be told what a word is – you can use a 
special NLP tool called tokenizer to extract words. Let’s apply this text-preprocessing step, as 
Listing 3.4 shows.5 This code uses NLTK’s word_tokenize (you can find more details on this 
in Chapter 2), converts text to lower case, splits it into words using the tokenizer, and then 
represents entries in both documents and queries as word lists. Finally, it prints out the 
length of the dictionaries (these should be the same as before – 1460 and 112), and checks 
what words are extracted from the first document and the first query. 
  

 
5 Note that, in addition to the toolkit itself, you need to install NLTK data as explained on http://www.nltk.org/data.html. Running nltk.download() will 

install all the data needed for text processing in one go; in addition, individual tools can be installed separately: e.g., nltk.download('punkt') installs 
NLTK’s sentence tokenizer, and nltk.download(‘stopwords’) downloads the stopwords list. 
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Listing 3.4 Preprocess the data in documents and queries 

import nltk 
from nltk import word_tokenize    #A 
nltk.download('punkt')    #B 
 
def get_words(text):  
    word_list = [word for word in word_tokenize(text.lower())]    #C 
    return word_list 
 
doc_words = {} 
qry_words = {} 
for doc_id in documents.keys(): 
    doc_words[doc_id] = get_words(documents.get(doc_id)) 
for qry_id in queries.keys(): 
    qry_words[qry_id] = get_words(queries.get(qry_id))    #D 
 
print(len(doc_words)) 
print(doc_words.get("1")) 
print(len(doc_words.get("1"))) 
print(len(qry_words)) 
print(qry_words.get("1")) 
print(len(qry_words.get("1")))    #E 

#A Use NLTK’s word_tokenize 
#B Install NLTK’s sentence tokenizer if you haven’t used it before 
#C Text is converted to lower case and split into words 
#D Entries in both documents and queries are represented as word lists 
#E Print out the length of the dictionaries and check the first document and the first query 

Now let’s code the simple search algorithm described above. We will refer to it as the 
Boolean search algorithm since it relies on the presence (1) or absence (0) of the query 
words in the documents (see Code Listing 3.5). Specifically, this code iterates through the 
documents and turns on the found flag as soon as any of the query words are found in the 
document. You keep iterating through the words in the query word list until either of the two 
conditions is satisfied: either you have reached the end of the word list, or one of the words 
from the query word list is found in the document (found flag is on). The found flag is turned 
on as soon as you find any query word in the document. This helps you optimize the search, 
since as soon as you find one word, you don’t need to look any further in this document. 
Finally, the code helps you check the results: you can select a query by its id (e.g., query 
with id 3 here), print out the ids of the documents that the algorithm found (e.g., the first 
100, as there may be many), and check how many there are in total. 
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Listing 3.5 Simple Boolean search algorithm 

def retrieve_documents(doc_words, query): 
    docs = [] 
    for doc_id in doc_words.keys():    #A 
        found = False    #B 
        i = 0    #C 
        while i<len(query) and not found:    #D 
            word = query[i] 
            if word in doc_words.get(doc_id): 
                docs.append(doc_id) 
                found=True    #E 
            else: 
                i+=1 
    return docs 
 
docs = retrieve_documents(doc_words, qry_words.get("3")) 
print(docs[:100]) 
print(len(docs))    #F 

#A Iterate through the documents 
#B found flag will be turned on as soon as you find any of the query words in the document 
#C i is the index of the query word in the query word list 
#D Keep iterating through the words in the query word list until one of the two conditions is satisfied 
#E Turn the found flag on as soon as you find a query word in the document 
#F Check the results 

If you run this code with a query with id 3 from the queries data structure (the text of this 
query is “What is information science? Give definitions where possible.”), you will get around 
1400 documents returned as relevant – this means that almost each document in the 
collection of 1460 documents is considered “relevant” by this algorithm! There is nothing 
special about query with id 3; in fact, almost any query will return comparably huge number 
of “relevant” documents with this approach. This probably means that no truly relevant 
document escapes such thorough search, but in practice it is not helpful – in addition to 
returning a huge number of documents, the algorithm does not provide any relevance 
sorting for them, and without such sorting looking through 1400 is not significantly better 
than looking through 1460. What exactly went wrong here?  

Let’s, for example, look into how the algorithm decided on the documents relevant for 
query with id 6 (“What possibilities are there for verbal communication between computers 
and humans, that is, communication via the spoken word?”). According to the gold standard 
in mappings data structure, only one document matches this query, but the simple algorithm 
you applied above returns all 1460 documents as relevant. Figure 3.5 highlights the words 
by which the match was identified between query 6 and document 1. As it shows, the query 
is matched to the document based on the occurrence of such words as “there”, “this”, “the”, 
“and”, “is” and even a comma since punctuation marks are part of the word list returned by 
the tokenizer: 
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Figure 3.5 The match between the query and the documents is established based on highlighted words 

On the face of it, there is a considerable word overlap between the query and the 
document, yet if you read the text of the query and the text of the document, they don’t 
seem to have any ideas in common, so in fact this document is not relevant for the given 
query at all! It seems like the words on the basis of which the query and the document are 
matched here are simply the wrong ones – they are somewhat irrelevant to the actual 
information need expressed in the query. How can you make sure that the query and the 
documents are matched on the basis of more meaningful words? 

Exercise 3.2 
Another way to match the documents to the queries would be to make it a requirement that the document should 
contain all the words from the query rather than any. 

 
Is this a better approach? Modify the code of the simple Boolean search algorithm to match documents to the 

queries on the basis of all words and compare the results. 
 

If you consider an example of any of the queries, you may notice that it is rarely the case 
that a document, even if it is generally relevant, contains all words from the query (at the 
very least, it does not have to contain question words like “what” and “which” from the query 
to be relevant). Therefore, if you run the code from this exercise, which applies the more 
conservative approach of returning only the documents with all query words in them, it will 
work even worse at this stage – it simply will not find any relevant documents for any of the 
queries. 

Before we move on, let’s summarize which steps of the algorithm you have implemented 
so far: you have read the data, initialized the data structures, and tokenized the texts. 
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Figure 3.6 At this point, you have read in the data, initialized the data structures, and tokenized the texts 

3.2 Processing the data further 
In the previous section, we have identified several weaknesses of the current algorithm. Let’s 
look into further preprocessing steps that will help you represent the content of both the 
documents and the queries in a more informative way. 

3.2.1 Preselecting the words that matter: stopwords removal 
The main problem with the search algorithm identified so far is that it considers all words in 
the queries and documents as equally important. This leads to poor search results, but on 
top of that it is also intuitively incorrect. Let’s consider an example of query 6, “What 
possibilities are there for verbal communication between computers and humans, that is, 
communication via the spoken word?”, and identify the words that matter. 

Exercise 3.3 
Look at the following three queries. Which of the words express the information need most precisely? 

 
1. What possibilities are there for verbal communication between computers and humans? 
2. How much do information retrieval and dissemination systems cost? 
3. Testing automated information systems. 
 

While thinking about this exercise, you may notice that not all words are equally 
meaningful in the sentences above. A good test for that would be to ask yourself whether 
you can define in one phrase what a particular word means: for example, what does “the” 
mean? You can say that “the” does not have a precise meaning of its own, rather it serves a 
particular function – it signifies that the word following it is defined in the specific context: 
for example, when you see “the” in “Look at the following queries”, you know precisely which 
queries I am talking about.  

You may find out that many of the frequent and short words like “for”, “at”, “a”, “the” 
and a number of others are less charged with meaning than rarer and longer words like 
“communication” or “retrieval”. Such short words are very frequent in language – almost any 
text you look at would contain multiple “the”s, “a”s and so on. You have seen an example of 
that when you ran the simple search algorithm, and it was misled by the presence of such 
words in all texts. Most of such words don’t have a particular meaning of their own, rather 
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they express a function: similarly to “the” denoting that the next word or phrase is 
identifiable in the context, “at” and “in” help specifying location or time, and “which” or 
“what” in the beginning of a sentence suggest that the sentence may be a question. In 
linguistic terms, such words are called function words. You might even notice that when you 
read a text, for example an article or an email, you tend to skim over such words without 
paying much attention to them.  

What happens to the search algorithm when these words are present? You have seen in 
the example before that they don’t help identify the relevant texts, so in fact the algorithm’s 
effort is wasted on them. What would happen if the less meaningful words were not taken 
into consideration? Figure 3.7 shows an example with the more meaningful words highlighted 
and the less meaningful ones grayed out: 

 
Figure 3.7 The more meaningful words in the query and document are highlighted 

You can see that, were the less meaningful words removed before matching documents 
to queries, document 1 would not stand a chance – there is simply not a single word 
overlapping between the query and this document. You can also see that the words that are 
not grayed out concisely summarize the main idea of the text. 

This suggests the first improvement to the developed algorithm: let’s remove the less 
meaningful words. In NLP applications, the less meaningful words are called stopwords, and 
luckily you don’t have to bother with enumerating them – since stopwords are highly 
repetitive in English, most NLP toolkits have a specially defined stopwords list, so you can 
rely on this list when processing the data, unless you want to customize it. For example, if 
you believe that it should be extended with more words or that some words that are included 
in the standard stopwords list should not be there, you could use your own list of stopwords. 
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Stopwords 
Sotpwords are the words that are very frequently used in language and are mostly devoid of any particular meaning. 
These include function words – words that mainly express specific grammatical functions rather than certain 
meanings (e.g., articles like “a” and “the”, prepositions like “in” and “at”, conjunctions like “thus” and “so”, and so on). 
There is a more or less standardized stopwords list shared by most machine learning and NLP toolkits. 
 

In addition to removing stopwords, note that Figure 3.7 doesn’t have punctuation marks, 
e.g., full stops, commas, and question marks, highlighted. Punctuation marks may prove 
useful in some applications but will unlikely help here: many queries will contain question 
marks and documents won’t necessarily have any, while all documents will have commas 
and full stops, so punctuation marks are not going to be informative in the matching process. 
Let’s filter them out, too. Code in Listing 3.6 shows how to do that. This code relies on the 
use of Python’s string module, which helps remove punctuation marks, as well as on NLTK’s 
tokenizer and stopwords list. NLTK includes stopwords for multiple languages, so you need to 
specify that you want to use the one for English. You can check which words are included in 
the stopwords list using print(stoplist). The code shows how you can tokenize text, 
convert it to lower case, and only add the words if they are not included in the stoplist and 
are not punctuation marks. Finally, it also shows how to check the results of these 
preprocessing steps on some documents or queries, e.g., on document 1. 

Listing 3.6 Preprocessing: Stopwords and punctuation marks removal 

import nltk 
import string    #A 
nltk.download('stopwords')    #B 
from nltk import word_tokenize 
from nltk.corpus import stopwords    #C 
 
def process(text):  
    stoplist = set(stopwords.words('english'))    #D 
    word_list = [word for word in word_tokenize(text.lower()) 
                 if not word in stoplist and not word in string.punctuation]    #E 
    return word_list 
 
word_list = process(documents.get("1")) 
print(word_list)    #F 

#A Import Python’s string module that will help remove punctuation marks 
#B Install NLTK’s stopwords list if you haven’t used it before6 
#C Import the stopwords list 
#D Specify that you want to use the stopwords list for English 
#E Only add the words if they are not included in the stoplist and are not punctuation marks 
#F Check the results of these preprocessing steps on some documents or queries 

If you run the code from Listing 3.6 to preprocess document 1, it will return the list of words 
including ['18', 'editions', 'dewey', 'decimal', 'classifications', …] for the original text of 

 
6 As before, make sure to install NLTK data as explained on http://www.nltk.org/data.html. Running nltk.download() will install all the data needed for 

text processing in one go; in addition, individual tools can be installed separately: e.g., nltk.download(‘stopwords’) downloads the stopwords list. 
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document 1 from Table 3.3 that goes as “18 Editions of the Dewey Decimal Classifications …” 
That is, the preprocessing step helps removing the stopwords like “of” and “the” from the 
word list. 

3.2.2 Matching forms of the same word: morphological processing 
One effect that stopwords and punctuation marks removal has is optimization of search 
algorithm is that the words that do not matter much are removed, so the computational 
resources are not wasted on them. In general, the more concise and the more informative 
the data representation is, the better. 

This brings us to the next issue. Take a look at Figure 3.8 illustrating the query with id 15 
and document with id 27, which are a match according to the ground truth mappings: 

 
Figure 3.8 The words highlighted in blue will be matched between the query and the document; the ones in red 
will be missed 

As Figure 3.8 shows, after removing the stopwords and punctuation marks, the algorithm 
will be able to match the query to the document on some words, but will miss others: for 
instance, it won’t be able to tell that “system” and “systems” as well as “cost” and “costs” 
essentially represent the same words in different forms. In this particular case, the query 
and the document will still be matched on such words as “information” or “well”, but the 
degree to which their contents overlap will be lower. As you will see shortly, such degree 
matters, as it allows you to reason about the relevance ranking of the document. In addition, 
in other cases the query-document correspondence might not be established at all, if the 
only relevant words are used in different forms in the query and the document. 

The reason for this mismatch is that words may take different forms in different contexts: 
some contexts may require a mention of a single object or concept like “system”, while 
others may need multiple “systems” to be mentioned. Such different forms of a word that 
depend on the context and express different aspects of meaning, for instance multiplicity of 
“systems”, are technically called morphological forms, and when you see a word like 
“systems” and try to match it to its other variant “system” you are dealing with morphology. 
English is a relatively “lucky” case – it is not very rich in morphology, that is, it has a limited 
variety of word forms. Other languages distinguish between many more morphological 
forms, whereas English forms may be concisely described as in Table 3.5: 
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Table 3.5 Concise description of English morphological system 

Type of word  

Nouns (words that denote 
objects, people, animals, 
concepts) 

Example 

system, man, mouse, phenomenon 

Type of form 

Base form: singular form 

systems, men, mice, phenomena Plural form 

Verbs (words that denote 
actions, states) 

be, have, retrieve, sing Base form: infinitive 

is, has, retrieves, sings 3rd person form (used with 
“he/she”) 

was / were, had, retrieved, sang Past tense form 

been, had, retrieved, sung Past participle form (used in 
phrases like “have been”) 

being, having, retrieving, singing Progressive form (as in “I am 
having a nice time” 

Adjectives (words that 
denote qualities) 

good, bright Base form 

better, brighter Comparative form 

best, brightest Superlative form 

Morphology 
Morphology is a subfield of linguistics that deals with the way words are formed and related to each other in terms of 
their structure. For example, the word “systems” is said to have a stem “system” and a suffix “s”, denoting multiplicity. 
English has a relatively simple morphological system. 
 

The base form in Table 3.5 is always the most basic form of the word – it is the starting 
point for any further changes and aspects of meaning, and it is also the word form that you 
would find in a dictionary if you were looking a word up. The process of mapping different 
forms of the word to its most basic one is similar to that of looking words up in a dictionary: 
imagine, you wanted to know what “sung” meant. Your best strategy would be to look “sing” 
up straight away. Similarly, the search algorithm would benefit from mapping “sing”, “sang” 
and “sung” to the same word form, by default the most basic one – “sing”. Now, check your 
understanding of this processing step with the following exercise: 
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Exercise 3.4 
What base word forms will you end up with after processing this text: 

 
“A computer program has been written and used which simulates the several-year operation of an information 

system and computes estimates of the costs as well as the amount of equipment and personnel required during that 
time period.” 
 

Such preprocessing step is quite useful – it results in a more compact search space than 
the original, with different forms of the same word being mapped together to a single 
dictionary form. How can a machine perform such a conversion? The solution would be to 
keep a large dictionary of all known words in a language and try to map the different forms 
to the known base forms in this dictionary. You might see straight away that there are 
potential problems with such an approach. To begin with, it is resource-intensive, as it has to 
keep a dictionary for the look-up. Moreover, it would not scale, as it is hard to make sure 
that a dictionary indeed contains all the words in a language: human languages are creative 
and new words tend to crop up on a regular basis, so no dictionary can cover all words in a 
language, past, present and future. Can you do better than relying on a dictionary then? 

In fact, there is another option for word form preprocessing that is called stemming. 
Stemming takes word matching one step further and tries to map related words across the 
board, and this means not just the forms of the very same word. For that, stemmers rely on 
a set of rules that try to reduce the related words to the same basic core. Such rules rely on 
the idea that even though languages may add new words and borrow words from other 
languages, they will still apply the very same set of rules to build morphological forms for 
such new additions: for example, a word “selfie” has been relatively recently invented in 
English, but if you take multiple photos you will still use the same rules of language and say 
that you took multiple “selfies”. Similarly, if you use Twitter, you might “tweet” once in a 
while, or you might be “tweeting” pretty regularly, just like you might write an odd blog post 
once a year or you might be an active blogger, who is constantly writing new blog posts.  

Stemming 
Stemming refers to the process of mapping multiple forms of related words to the same common core (called stem). 
This is done using a set of rules that rely on productive word formation patterns in language: stemmers use these 
patterns to reverse-engineer what common core multiple related words are derived from. 
 

How does stemming work then and what resulting forms does it produce? Take the verb 
retrieve as an example: you can make a whole range of forms out of it, including retrieving, 
retrieves and retrieved, just as Table 3.5 shows. However, if you want to describe the 
process of retrieving something, you use the word retrieval. Retrieval is derived from 
retrieve, and the stemmer helps identifying this connection by reducing all related words to 
their common core that is called stem, thus the name for the tool. The rule in this particular 
case will define that the words ending in –al can be mapped to the words without –al: in fact, 
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forming new words with an addition of –al is a productive pattern in English (remove + -al = 
removal, approve + -al = approval, deny + -al = denial, and so on). The stem in {retrieve, 
retrieves, retrieved, retrieving, retrieval} is retriev. This shows that stemming might result in 
non-words, as for example, you won’t find a word like retriev in a dictionary. To provide you 
with a couple of other examples, the stem for {expect, expects, expected, expecting, 
expectation, expectations} is expect and the stem for {continue, continuation, continuing} is 
continu – see Figure 3.9: 

 
Figure 3.9 Stemming applied to different groups of related words 

Note that the stemmer tries to identify which part of the word is shared between the 
different forms and related words and returns this part as a stem by cutting off the differing 
word endings. 

Now let’s implement the stemming preprocessing step using NLTK’s stemming 
functionality. NLTK provides a suite of different stemming tools,7 and in this chapter you will 
use one of the most accurate of them – the Lancaster Stemmer.8 At the end, the code shows 
how you can check the results on some document or query; you can also pass in a list of 
words directly. Do the results correspond to your expectations? 
  

 
7 Check the documentation here: https://www.nltk.org/api/nltk.stem.html   
8 The source code and the set of rules used by the stemmer can be found here: https://www.nltk.org/_modules/nltk/stem/lancaster.html. As you might 

guess from the description of the stemming algorithms, they rely on the sets of rules defined by their developers, thus different stemmers can produce 
different results. Lancaster Stemmer is just one of the algorithms available via NLTK, and we use it here since it shows good results in practice. Note 
that other stemmers, including ones for other languages, are available at https://www.nltk.org/api/nltk.stem.html. 
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Listing 3.8 Preprocessing: Stemming 

import nltk 
import string 
from nltk import word_tokenize 
from nltk.corpus import stopwords 
from nltk.stem.lancaster import LancasterStemmer    #A 
 
def process(text):  
    stoplist = set(stopwords.words('english')) 
    st = LancasterStemmer()    #B 
    word_list = [st.stem(word) for word in word_tokenize(text.lower()) 
                 if not word in stoplist and not word in string.punctuation]    #C 
    return word_list 
   
word_list = process(documents.get("27")) 
print(word_list) 
word_list = process("organize, organizing, organizational, organ, organic, organizer") 
print(word_list)    #D 

#A Import the tools, including the stemmer 
#B Initialize the LancasterStemmer 
#C Apply stemming to the preprocessed text 
#D Check the results on some document, query, or on a list of words 

When you run the code above on a particular document, for example document 27, the 
function process receives the following text as input: 

Input = “Cost Analysis and Simulation Procedures for the Evaluation of Large Information 
Systems …”  #A 

#A As before, we use “…” to indicate that there are more words in the input and more stems returned in the output 

As an output, it returns the following list of stems: 

Output = ['cost', 'analys', 'sim', 'proc', 'evalu', 'larg', 'inform', 'system', …] 

Stem ‘analys’ for “analysis” will help the algorithm to map “analysis” to such words as 
“analyse” (in British spelling), “analysing”, “analyst” and so on; stem ‘proc’ will help the 
algorithm group words like “procedure”, “process” and “processing” and so on. Therefore, 
this step results in an even more compact search space and helps establish useful 
correspondences between similar words that should help the search algorithm find content 
related to the information need more effectively. 

Now, what happens when you run this function on the input=[‘organize’, ‘organizing’, 
‘organizational’, ‘organ’, ‘organic’, ‘organizer’]? Intuitively, the words {organize, organizing, 
organizational, organizer} belong to one group and you might expect them to be processed 
as organiz, while {organ, organic} belong to another group which should result in something 
like organ. However, the actual output returned by the function process is a list of identical 
stems for all the words in the input list: ['org', 'org', 'org', 'org', 'org', 'org']. This example is 
used here rather as a warning about the way stemmers work: while they are useful in 
mapping related words to each other, sometimes they might produce an unexpected output 
and map unrelated words together. This happens because stemmers sometimes go too far in 
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their attempt to establish correspondences. As the stemmer blindly applies a rather general 
set of rules to all examples, some of these rules overgeneralize. 

The following list explains how the output for this list of words is produced, step-by-step:9 

• {organize, organizing, organizational, organizer} may all be reduced to organiz by 
application of the following rules: -ing (as in make → making), -ational (operate → 
operational), and -er (produce → producer). 

• The mapping between organ and organic is explained by the addition of –ic as in acid 
→ acidic. 

• The less straightforward mapping between organ and organize is established through 
the application of ending –ize, as in modern → modernize. 

• Finally, organ gets mapped to org by the application of –an: it is, in fact, applicable in 
cases like Italy → Italian and history → historian, i.e., to form words describing 
properties and qualities (such words are called adjectives) from words (nouns) that 
describe people in cases when these words are related in meaning.  

So, technically, the last two rules should not be applied to map cases like organ –> 
organize, because the two words do not mean similar things, and it would be better for the 
applications like search algorithm to make the distinction between the two groups of words 
{organize, organizing, organizational, organizer} and {organ, organic}. However, 
unfortunately, the stemmer algorithm does not take into account what words mean, so once 
in a while it may make mistakes and connect unrelated words. Figure 3.10 visualizes all the 
rules that are applied to this set of words, showing the resulting stems and the endings of 
the words that are cut off by the application of different rules: 

 
Figure 3.10 The full analysis of rules applied to the example including organ and organize 

 
9 Note, that this list of rules explaining how the output is arrived at is advanced content. You can consult with this list in case you are interested in what 

happens “behind the scenes” when you apply the stemming algorithm. However, understanding or knowing these rules is not critical for the application 
of the stemming algorithm itself. 
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Now, why should you be aware of this peculiarity of the stemmer algorithms? Since in 
some cases the stemmer would map together words that are not closely related to each 
other, your search algorithm might consider documents talking about organic products 
somewhat relevant for the query that asks about organizational skills. This is something to 
keep in mind; in general, since the queries are mapped to the relevant documents on the 
basis of more than one word from the query such incorrect mappings are usually outweighed 
by the relevance of other words. 

Before we move on, let’s summarize which steps of the algorithm you have implemented 
so far: you have read the data, initialized the data structures, tokenized the texts, removed 
stopwords, and applied the stemming preprocessing. 

 
Figure 3.11 At this point, you have read in the data, initialized the data structures, tokenized and preprocessed 
the texts 

3.3 Information weighing  
Another problem with the simple Boolean search algorithm implemented earlier in this 
chapter is that it can only return a list of documents that contain some or all of the words 
from the query, but it cannot tell which of the documents are more relevant. You’ve seen 
before that when you run the algorithm from Listing 3.5, for most queries it returns a huge 
number of documents. Stopwords removal helps filter out the less relevant words, while 
stemming helps find the correspondences between the related words, which alleviates some 
of these issues. However, your algorithm still returns the relevant documents as an unsorted 
list. Without some measure of relevance and relevance ordering it would still be time-
consuming to look through all the documents returned by the algorithm. What could serve as 
such a measure of relevance? Let’s look into an example in Figure 3.12: 
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Figure 3.12 An example of the different distribution of query keywords in documents 

Suppose you try to find documents most relevant to the given query. After stopwords and 
punctuation marks removal you end up with the query words – let’s call them keywords – 
consisting of {much, information, retrieval, dissemination, systems, cost}. Which of the two 
documents appears to be more relevant? Document doc_x does not only contain more 
keywords than doc_y, but each keyword also occurs more times, so it would be reasonable 
to assume that doc_x is more relevant – given a choice between these two documents, you 
should start with doc_x if you want to find the answer to the query. How can we take the 
factors like more keywords and higher number of occurrences into account? 

3.3.1 Weighing words with term frequency 
The first requirement, that you should take into account all keywords, suggests that you 
need to keep track of the words used in the queries and documents. The second requirement 
that the number of occurrences of each of the keywords matters, suggests that you need to 
count the number of occurrences rather than simply register presence or absence of a 
keyword. You can achieve this by keeping the number of occurrences for the keywords in a 
table or, translating this into a Python data structure, you can use a dictionary that will allow 
you to keep track of which counts correspond to which keywords. For instance, the example 
from Figure 3.12 will result in Table 3.6: 

Table 3.6 The keyword occurrences merged into a shared representation 

 much 

1 

information 

1 

retrieval 

1 

dissemination 

1 

system(s) 

1 

cost 

1 query 

doc_x 0 2 1 2 3 1 

doc_y 0 1 1 1 2 0 
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The correspondent Python dictionaries will be as follows: 

Query={much:1, information:1, retrieval:1, dissemination:1, systems:1, cost:1} 
Doc_x={much:0, information:2, retrieval:1, dissemination:2, systems:3, cost:1} 
Doc_y={much:0, information:1, retrieval:1, dissemination:1, systems:2, cost:0} 

This approach, based on calculating the frequency of occurrence, corresponds to the well-
known technique in Information Retrieval called term frequency (tf). It relies on the idea that 
the more frequently the word (term) is used in a document, the more relevant this document 
becomes to the query. We will use the word term instead of “word” from now on following 
this widely accepted convention: after all, since you apply stemming, not all keywords keep 
being proper “words” anymore (think of the case of retriev). Code Listing 3.9 shows how to 
implement this step. Function get_terms helps you preprocess the input text and estimate 
the counts for each term to populate the dictionary. Using this function, you populate the 
term frequency dictionaries for all documents and all queries. To check the results, you can 
print out the length of the resulting data structures (this shouldn’t change from before – 
1460 for the documents, 112 for the queries), the term frequency dictionaries for a specific 
document or query (e.g., the first ones in the set), and the length of these dictionaries (it 
should be 43 terms for the document 1 and 14 terms for the query 1). 

Listing 3.9 Code to estimate term frequency in documents and queries 

def get_terms(text):  
    stoplist = set(stopwords.words('english')) 
    terms = {} 
    st = LancasterStemmer() 
    word_list = [st.stem(word) for word in word_tokenize(text.lower()) 
                 if not word in stoplist and not word in string.punctuation]    #A 
    for word in word_list: 
        terms[word] = terms.get(word, 0) + 1    #B 
    return terms 
 
doc_terms = {} 
qry_terms = {} 
for doc_id in documents.keys(): 
    doc_terms[doc_id] = get_terms(documents.get(doc_id)) 
for qry_id in queries.keys(): 
    qry_terms[qry_id] = get_terms(queries.get(qry_id))    #C 
 
print(len(doc_terms)) 
print(doc_terms.get("1")) 
print(len(doc_terms.get("1"))) 
print(len(qry_terms)) 
print(qry_terms.get("1")) 
print(len(qry_terms.get("1")))    #D 

#A Apply all the preprocessing steps as before 
#B Estimate the counts for each term and populate the dictionary  
#C Populate the term frequency dictionaries for all documents and all queries 
#D Check the results 

Now, let’s represent all queries and all documents in the same shared space: for example, 
Table 3.6 represents one query and two documents in a space where the columns of the 
table are shared among all three. In the Python data structure, each of these columns 
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represents a separate dimension. For instance, column 1 keeps the counts of the term 
“much” across the query and both documents, column 2 keeps the counts for “information”, 
and so on; similarly, the Python data structures keep these counts in the first two 
dimensions as: 

Query={much:1, information:1, …} 
Doc_x={much:0, information:2, …} 
Doc_y={much:0, information:1, …} 

Now let’s add all terms from the data set as columns and keep the counts for each of 
them in each query and each document as rows. In terms of Python data structures, this 
means that each document and each query will keep the whole dictionary of terms in the 
collection with the associated term frequencies. Code Listing 3.10 presents this step. In this 
code, you first collect the shared vocabulary of terms used in documents and queries and 
return it as a sorted list for convenience. You can print out the length of the shared 
vocabulary (you should end up with 7775 terms10 in total) and check the first several terms 
in the vocabulary. Now each query and each document can be represented with a dictionary 
with the same set of keys – the terms from the shared vocabulary. The values will either be 
equal to the term frequency in the particular query and document or will be 0 if the term is 
not in the query or document. This functionality is captured by the function vectorize: using 
this function, you can represent all queries and documents in a shared space. Finally, you 
can print out some statistics on these data structures: you should still have 1460 
doc_vectors and 112 qry_vectors, with 7775 terms each. 
  

 
10 If you use the same versions of the tools as suggested in the installation instructions; you might end up with different results (e.g., 8881 terms) if you 

are using different versions of the tools. 
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Listing 3.10 Code to represent the data in a shared space 

def collect_vocabulary():    #A 
    all_terms = [] 
    for doc_id in doc_terms.keys(): 
        for term in doc_terms.get(doc_id).keys():             
            all_terms.append(term) 
    for qry_id in qry_terms.keys(): 
        for term in qry_terms.get(qry_id).keys(): 
            all_terms.append(term) 
    return sorted(set(all_terms)) 
 
all_terms = collect_vocabulary() 
print(len(all_terms)) 
print(all_terms[:10])    #B 
 
def vectorize(input_features, vocabulary): 
    output = {} 
    for item_id in input_features.keys(): 
        features = input_features.get(item_id) 
        output_vector = [] 
        for word in vocabulary:    #C 
            if word in features.keys(): 
                output_vector.append(int(features.get(word))) 
            else: 
                output_vector.append(0) 
        output[item_id] = output_vector     
    return output 
 
doc_vectors = vectorize(doc_terms, all_terms) 
qry_vectors = vectorize(qry_terms, all_terms)    #D 
 
print(len(doc_vectors)) 
print(len(doc_vectors.get("1460"))) 
print(len(qry_vectors)) 
print(len(qry_vectors.get("112")))    #E 

#A Collect the shared vocabulary of terms from documents and queries and return it as a sorted list 
#B Print out the length of the shared vocabulary and check the first several terms in the vocabulary 
#C Represented each query and each document with a dictionary with the same set of keys 
#D Using the vectorize method you can represent all queries and documents in this shared space 
#E Print out some statistics on these data structures 

Now, another way to think about each of these term dictionaries associated with each 
document and each query is as vectors: that is, each document and each query is 
represented as a vector in a shared space, with the number of dimensions equal to the 
length of the shared vocabulary (7775) and the term frequencies in each dimension 
representing the coordinates. This may remind you of the discussion on vectors before (e.g., 
you may recall the discussion from Chapter 1), and Figure 3.13 reinterprets the query and 
two documents from Table 3.6 as vectors in two dimensions associated with terms “system” 
and “cost” (but you can imagine how these vectors are extended to other dimensions, too):11 

 
11 You may recall that Figure 1.7 uses a similar representation for a different example. 
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Figure 3.13 Vector representation of the query and two documents along two dimensions 

Now you can estimate the relevance, or similarity, of the query and documents using the 
distance between them in the vector space. But before you do that, there is one more 
observation due. 

3.3.2 Weighing words with inverse document frequency 
In a collection of documents you are working with, some terms are much more frequently 
used across all documents than others. For instance, since this is a collection of articles on 
information science and information retrieval systems, such terms as “information” or 
“system” may occur in many documents while other terms like “cost” may occur in fewer 
documents. Which ones are more helpful in search then? Imagine that you were to find the 
relevant documents for the query 15, “How much do information retrieval and dissemination 
systems cost?” If “information” and “system” occur in lots of documents, then you better 
focus your attention on those documents that contain other terms from the query, e.g., 
“dissemination” and “cost”, because it is those documents that contain these words that are 
more relevant. In other words, you would like to give these rarer terms like “dissemination” 
and “cost” higher weight so that the search algorithm knows it should trust their vote for 
relevance more. The most straightforward way to assign such weights to the terms is to 
make it proportionate to the number of documents where the term occurs: the higher the 
number of documents that contain the term, the lower its discriminative power, and 
therefore the lower the weight that the term should get. 

Take the term “inform” as an example (this is a stem for such words as “inform” and 
“information”). It occurs in 651 out of 1460, so its document frequency (df) equals 651/1460 
≈ 0.45. On the other hand, the term “dissemin” (stem of “dissemination”) only occurs in 68 
documents, so its df = 68/1460 ≈ 0.05. “Dissemin” is a more valuable term for the search 
algorithm because it is rare: if a query contains it, the documents that also contain it should 
be given preference. To assign a higher weight to “dissemin” than to “inform”, let’s take the 
inverse document frequency (idf): idf(“inform”) = 1/0.45 ≈ 2.22, idf(“dissemin”) = 
1/0.05 ≈ 20. These weights show that the rare term “dissemin” is almost 10 times more 
important than the much more frequent term “inform”. There are two more things to take 
into account here: 
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• First, some terms from the shared vocabulary may not occur in any of the documents,
so their df will be 0. To avoid division by 0, it is common to smooth the counts: to
calculate the idf, take (df+1) rather than df, i.e., idf = 1/(df+1), so you will never
have to divide by zero, and the absolute values of idf won’t change much.

• Second, it is common to “tone down” the differences in absolute counts, as the
difference between very rare and very frequent terms might be huge, especially in
large collections. It is assumed that the weight given to the terms should increase not
linearly (i.e., by one with each document) but rather sub-linearly (i.e., more slowly).
Logarithmic function12 achieves this effect: the relative order of the term’s importance
doesn’t change, while the absolute number does.

To put all the components together, here are the idf values for the terms “inform” and 
“dissemin” in this collection: 

idf(“inform”) = log10(1460/(651+1)) ≈ 0.35 
idf(“dissemin”) = log10(1460/68+1)) ≈ 1.33 

As you can see, the difference is still significant, but the counts are more comparable. 
The general formula then is: 

where N is the total number of documents in the collection. 

Information weighing 
Term frequency (tf) takes into account the frequency of occurrence of the term in a document: the more frequently 
the word (term) is used in a document, the more relevant this document becomes to the query. Inverse document 
frequency (idf) takes into account the frequency of occurrence of the term across all documents in the collection: the 
higher the number of documents that contain the term, the lower its discriminative power. 

Exercise 3.5 
What are the inverse document frequency (idf) values for the following terms based on the number of documents (df 
for document frequency) they occur in: 

df(“system”) = 531; df(“us” = stem of “use”) = 800; df(“retriev”) = 287; df(“cost”) = 137 

12 See https://en.wikipedia.org/wiki/Logarithm 
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Now, suppose idf(“cost”)=1.02 and idf(“system”)=0.44. If a particular document contains 
2 occurrences of the term “cost”, its idf-weighed value will be 2*1.02=2.04, while if it 
contains 2 occurrences of the term “system”, its idf-weighed value will be 2*0.44=0.88, so 
despite the same term frequencies the more informative term “cost” will get higher overall 
weight. For instance, here is how idf weighing will change the weights of the terms in the 
documents from Table 3.6: 

Table 3.7 Idf weighing applied to the term frequencies in the two documents 

 system(s) 

1 

cost 

1 query 

doc_x 3*0.44=1.32 1*1.02=1.02 

doc_y 2*0.44=0.88 0 

Code Listing 3.11 shows how to implement this in Python. In this code, with calculate_idfs 
you estimate idf values for each term in the vocabulary by counting how many documents 
contain it and applying the formula from above. You can check the results by printing out idf 
values for selected terms – for example, idf values for the terms from Exercise 3.5 should 
coincide with your own estimates. Next, you define a function vectorize_idf to apply idf 
weighing to the input_terms (in particular, to doc_terms) data structure. Specifically, within 
this function you multiply the term frequencies with the idf weights if the term is present in 
the document; otherwise, its term frequency stays 0. Finally, you apply idf weighing to 
doc_terms and print out some statistics: the dimensionality of the data structure should still 
be 1460 documents by 7775 terms. 
  

107

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

Listing 3.11 Code to calculate and apply inverse document frequency weighting 

import math 
 
def calculate_idfs(vocabulary, doc_features):    #A 
    doc_idfs = {} 
    for term in vocabulary: 
        doc_count = 0 
        for doc_id in doc_features.keys(): 
            terms = doc_features.get(doc_id) 
            if term in terms.keys(): 
                doc_count += 1 
        doc_idfs[term] = math.log(float(len(doc_features.keys()))/float(1 + doc_count), 10)    

#B 
    return doc_idfs 
 
doc_idfs = calculate_idfs(all_terms, doc_terms) 
print(len(doc_idfs)) 
print(doc_idfs.get("system"))    #C 
 
def vectorize_idf(input_terms, input_idfs, vocabulary):    #D 
    output = {} 
    for item_id in input_terms.keys(): 
        terms = input_terms.get(item_id) 
        output_vector = [] 
        for term in vocabulary: 
            if term in terms.keys(): 
              output_vector.append(input_idfs.get(term)*float(terms.get(term))) 
            else: 
                output_vector.append(float(0))    #E 
        output[item_id] = output_vector 
    return output 
 
doc_vectors = vectorize_idf(doc_terms, doc_idfs, all_terms)    #F 
 
print(len(doc_vectors)) 
print(len(doc_vectors.get("1460")))    #G 

#A Estimate idf values for each term in the vocabulary by counting how many documents contain it 
#B Apply the idf formula from above 
#C Check the results: you should have idf values for all terms from the vocabulary 
#D Define a function to apply idf weighing to the input_terms data structure 
#E Multiply the term frequencies with the idf weights if the term is present in the document 
#F Apply idf weighing to doc_terms 
#G Print out some statistics, e.g., number of documents and terms 

Let’s now summarize what you have implemented so far: 
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Figure 3.14 At this point, you have read in the data, initialized the data structures, tokenized and preprocessed 
the texts, and applied information weighing techniques 

3.4 Practical use of the search algorithm 
Now that the documents and queries are represented in the shared search space, it’s time to 
run the search algorithm, find the most relevant documents for each query and evaluate the 
results. 

3.4.1 Retrieval of the most similar documents 
How can you estimate query to document similarity based on the vector representations? We 
discussed (e.g., in Chapter 1) that the similarity can be interpreted as distance in space 
defined by the query and document vectors. Here is a refresher: 

• Each document and each query are represented as vectors in a shared space, with the 
dimensions representing terms and coordinates representing weighted term counts 

• Similarity is estimated using distances in this shared space. To eliminate the effect of 
different lengths (as queries are traditionally much shorter than documents), it is 
more reliable to use the cosine of the angle between the vectors, as it normalizes the 
distance with respect to the different lengths of the vectors. Because of this 
normalization step, estimating the angle between the vectors of different lengths is 
equivalent to estimating the distance between the vectors of same length.13 

 
13 Check Figure 1.8 in Chapter 1: it visualizes this idea. 
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• The higher the cosine, the more similar the query and the document are 
• The cosine can be estimated using the formula: 

cosine(vec1,vec2) = dot_product(vec1,vec2)/(length(vec1)*length(vec2)) 

Let’s calculate the cosine between the query and documents doc_x and doc_y from Table 
3.6 (using only tf and ignoring the idf weighing for the sake of simplicity here): 

cosine(query,doc_x) = (0+2+1+2+3+1)/(sqrt(6)*sqrt(19)) ≈ 0.84 
cosine(query,doc_y) = (0+1+1+1+2+0)/(sqrt(6)*sqrt(7)) ≈ 0.77 

Based on these results, doc_x is more similar to the query than doc_y, so if you apply the 
cosine similarity estimation for the given query to the set of two documents, you should 
return them ordered as (doc_x, doc_y). As it is doc_x that is more similar and thus more 
relevant to the query, if you want more relevant information you should start with doc_x.  

Let’s apply cosine similarity to the input queries and documents in the dataset and return 
the resulting lists of relevant documents ordered by their relevance scores, i.e., cosine 
similarity values. Code in Listing 3.12 uses operator’s itemgetter functionality, which helps 
to sort Python dictionaries by keys or values. The code implements three helper functions 
that allow you to calculate the length of the input vector, the dot product of two vectors, and 
cosine similarity between input vectors representing, e.g., a query and a document. You 
initialize the query by extracting a query with a particular qry_id, e.g., query 3. Then, for 
each document in the set of documents, you calculate cosine similarity between the input 
query and the document and store the document id as the key and cosine as the value in the 
results dictionary. Finally, you sort the results dictionary by cosine values 
(key=itemgetter(1)) in descending order (reverse=True) and return the top n results. This 
code returns 44 relevant documents for query 3 according to the gold standard, where 
items[0] returns the document ids from tuples (document_id, similarity score). 
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Listing 3.12 Code to run search algorithm for a given query on the set of documents 

from operator import itemgetter    #A 
 
def length(vector):    #B 
    sq_length = 0 
    for index in range(0, len(vector)): 
        sq_length += math.pow(vector[index], 2) 
    return math.sqrt(sq_length) 
     
def dot_product(vector1, vector2):    #C 
    if len(vector1)==len(vector2): 
        dot_prod = 0 
        for index in range(0, len(vector1)): 
            if not vector1[index]==0 and not vector2[index]==0: 
                dot_prod += vector1[index]*vector2[index] 
        return dot_prod 
    else: 
        return "Unmatching dimensionality" 
 
def calculate_cosine(query, document):    #D 
    cosine =  dot_product(query, document) / (length(query) * length(document))  
    return cosine 
 
query = qry_vectors.get("3")    #E 
results = {} 
 
for doc_id in doc_vectors.keys(): 
    document = doc_vectors.get(doc_id) 
    cosine = calculate_cosine(query, document)     
    results[doc_id] = cosine    #F 
 
for items in sorted(results.items(), key=itemgetter(1), reverse=True)[:44]: 
    print(items[0])    #G 

#A operator’s itemgetter functionality helps sort Python dictionaries by keys or values 
#B Calculate the length of the input vector 
#C Calculate the dot product of two vectors 
#D Calculate cosine similarity between input vectors representing, e.g., a query and a document 
#E Initialize the query by selecting an example with a particular qry_id, e.g., query 3  
#F For each document, calculate cosine similarity with the query and store the result in the results dictionary 
#G Sort the results dictionary by cosine values in descending order and return the top n results 

This piece of code returns a list of 44 documents identified by the search algorithm as 
relevant to query 3, ordered by cosine similarity starting with the most relevant one. A quick 
glance over the first 10 returned documents (that is how many you would see on the first 
page in the Internet browser) shows that 8 out of 10 documents are also included in the gold 
standard. Perhaps even more importantly the top 2 documents in the returned list are 
relevant according to the gold standard – and you might not even need to look any further 
than the first couple of documents! This looks like a good result, but how can you get a more 
comprehensive overview of the results across the board, i.e., over multiple queries? 
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3.4.2 Evaluation of the results 
If you are building a search algorithm as part of some application for the users, it is key to 
the success of your application that the users are satisfied with the results. If you are 
building an application for your own needs, it is important to be able to measure whether it is 
doing a good job. How can you measure if the users or you are satisfied with the results? 

In the previous step, you added similarity estimation to your search algorithm that allows 
it to return the results as an ordered list. Suppose you are looking for the documents related 
to query 3, “What is information science? Give definitions where possible.” According to the 
gold standard, there are 44 documents in this set that match this query. In some situations, 
you might be interested in an exhaustive search, that is, you will measure the success of 
your algorithm by its ability to find all 44 documents. However, in most situations what you 
would like is for the algorithm to return the relevant documents at the top of the list: it is 
more important that the first document returned by the algorithm is relevant than whether 
the 44th document is relevant. Often, if the very first document is relevant to your query, you 
will read no further – for example, how often do you check the second page of results on 
Google? 

Since the number of relevant documents in the gold standard varies for different queries 
– for example, it is 44 for query 3 but there is only 1 relevant document for query 6 – you 
may prefer to set the number of top documents to be returned by your algorithm in advance. 
In addition, it is rarely the case that users are interested in documents after the first several 
relevant ones, so returning something between top 3 to top 10 documents would be 
reasonable. The number of documents that are returned by the algorithm among those top-3 
(top-10) that are also included as relevant in the gold standard is called true positives – they 
are truly relevant documents actually identified by your algorithm. The proportion of true 
positives to the total number of documents returned by the algorithm is called precision, and 
if you predefine the number of returned documents to be k this measure is called 
precision@k (e.g., precision@3 or precision@10). For example, the code in Listing 3.12 
returns 8 relevant documents in the top 10 ones – its precision@10 equals 0.8. That is, 
precision@10 is defined as: 

precision@10 = (true positives among the top 10 documents) / 10 =  
(number of documents that are actually relevant among the top 10) / 10 

And in the general case, precision@k is: 

precision@k = (true positives among the top k documents) / k =  
(number of documents that are actually relevant among the top k) / k 

The higher the precision, the better the algorithm you have built, however the results 
may also depend on the quality of the dataset and the queries themselves: for example, 
since there are 44 matching documents for query 3 in the dataset and only 1 matching 
document for query 6 it would be much easier for the algorithm to find relevant documents 
for query 3. If you want the results to be more objective, it is useful to evaluate precision 
across all queries. This is called mean precision because it takes the mean across all queries. 
For example, if the top-3 results for the first query are all relevant, precision@3=1; if only 2 
are relevant, precision@3=0.66; for only one relevant result, precision@3=0.33. If you 
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estimate the mean precision across 3 queries with such results, it would be equal to 0.66, as 
Figure 3.15 shows: 

 
Figure 3.15 Mean precision@3 per 3 queries 

Thus, the mean precision@k can be estimated as: 

 
You might also be interested in knowing how often the top results contain at least one 

relevant document: in the case exemplified in Figure 3.15 the user will be able to find at 
least one relevant document in the top-3 results, which is quite useful, therefore this ratio 
will be equal to 1. Code Listing 3.13 shows how these measures can be implemented in 
Python. In this code, you define a function to estimate precision, calculating the proportion of 
relevant documents from the gold standard among the top-k results returned by the 
algorithm. Gold standard is the list of relevant document ids that can be extracted from the 
mappings data structure. An alternative evaluation gives the algorithm some credit if at least 
one document in the top k is relevant. Your overall goal is to calculate mean values across all 
queries. For each document, you estimate its relevance to the query with cosine similarity as 
before, then you sort the results and only consider top-k (e.g., top-3) most relevant 
documents. In the end, you accumulate evaluation values across all queries and estimate the 
mean values. 
  

113

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

Listing 3.13 Code to estimate precision@k and ratio of cases with at least one relevant 
document  

def calculate_precision(model_output, gold_standard):    #A 
    true_pos = 0 
    for item in model_output: 
        if item in gold_standard: 
            true_pos += 1 
    return float(true_pos)/float(len(model_output))    #B 
 
def calculate_found(model_output, gold_standard): 
    found = 0 
    for item in model_output: 
        if item in gold_standard: 
            found = 1 
    return float(found)    #C 
 
precision_all = 0.0 
found_all = 0.0 
for query_id in mappings.keys():    #D 
    gold_standard = mappings.get(str(query_id))    #E 
    query = qry_vectors.get(str(query_id)) 
    results = {} 
    model_output = [] 
    for doc_id in doc_vectors.keys(): 
        document = doc_vectors.get(doc_id) 
        cosine = calculate_cosine(query, document)     
        results[doc_id] = cosine    #F 
    for items in sorted(results.items(), key=itemgetter(1), reverse=True)[:3]:    #G 
        model_output.append(items[0]) 
    precision = calculate_precision(model_output, gold_standard) 
    found = calculate_found(model_output, gold_standard) 
    print(f"{str(query_id)}: {str(precision)}") 
    precision_all += precision 
    found_all += found    #H 
 
print(precision_all/float(len(mappings.keys()))) 
print(found_all/float(len(mappings.keys())))    #I 

#A Define a function to estimate precision 
#B Calculate the proportion of relevant documents from the gold standard in the top-k returned results 
#C Alternatively, give the algorithm some credit if at least one document in the top k is relevant 
#D Calculate mean values across all queries 
#E Gold standard is the list of relevant document ids that can be extracted from the mappings data structure 
#F For each document, estimate its relevance to the query with cosine similarity as before 
#G Sort the results and only consider top-k (e.g., top-3) most relevant documents 
#H Accumulate evaluation values across all queries; track the results by a printout message 
#I In the end, estimate the mean values for all queries 

According to the results, on some queries the algorithm performs very well: e.g., a printout 
message “1: 1.0” shows that all top 3 documents returned for query 1 are relevant, making 
precision@3 for this query equal to 1. However, on other queries the algorithm does not 
perform that well: e.g., “6: 0.0” – as there is only one document relevant for query 6 
according to the gold standard, the algorithm fails to put it within the first 3 and gets a score 
of 0 for this query. The mean value of precision@3 for this algorithm is around 0.40, and in 
about 66% of the cases the algorithm finds at least one relevant document among the top 3. 
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If you are only interested in the proportion of cases when the top most relevant 
document identified by the algorithm is actually relevant you can calculate that modifying the 
code in Listing 3.13 only slightly: instead of sorting all the results and then taking the top-3 
it simply needs to identify and store a single best result: see Exercise 3.6. 

Exercise 3.6 
Modify the code from Listing 3.13 to calculate precision@1 – i.e., the mean value across the queries when the top-1 
document returned by the algorithm is indeed relevant. 
 

Finally, you may wish to know how highly, on the average, the algorithm places the 
relevant document in its ranking. This shows how far into the list of the returned results you 
should typically look to find the first relevant document. The measure that allows you to 
evaluate this relies on the use of the highest ranking of a relevant document identified by the 
algorithm. Since you already sort the returned documents by their relevance scores starting 
with the most relevant one, position one in this list is called first rank, position two – second 
rank, and so on. Take a look at the search results from Figure 3.15 again: 

 
Figure 3.16 Ranks for the first relevant document for each of the three queries and mean reciprocal rank 
(MRR) across all three results 

• The first relevant documents for both query 1 and query 2 in this example are at 
position 1 in the ordered lists of returned documents, so their ranks are 1; for query 
3, the first relevant document is found in the second position, which gives this result 
rank 2.  
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• However, returning the first relevant document at rank 1 is better than returning the 
first relevant document at any further position, so your measure should reflect this by 
assigning a higher score to the results with the rank 1. Just like with the inverse 
document frequency, if you take the inverse of the ranks, you will end up with exactly 
such measure: for both queries 1 and 2 the algorithm returns the best possible results 
by placing the first relevant document at position 1, so it gets a score of 1/1=1 for 
that; for query 3 it returns an irrelevant document in position 1 and the first relevant 
document in position 2 – for that it gets only half the full score, 1/2. To summarize, to 
assign a score for the results for each query take the inverse of the rank of the first 
relevant document in the ordered list of results – this is called reciprocal rank: 

reciprocal rank = 1 / rank of the first relevant document in the ordered list of results 

• Finally, as before, you want to have a comprehensive overview of the results across 
all queries, so you need to take a mean reciprocal rank (MRR) for the reciprocal ranks 
across all queries. For the example from Figure 3.16, this will equal to (1 + 1 + 1/2) / 
3 = 0.83.  

MRR = sum_of_reciprocal_ranks_across_queries / number_of_queries 

The best-case scenario is when the algorithm always puts a relevant document at the top 
of the list, so it assigns rank 1 in all cases. If the first relevant document is always found at 
rank 2, the mean will equal to 1/2; for the results at rank 3, the mean will be 1/3, and so on. 
The result that you get for the example from Figure 3.16, MRR = (1+1+1/2)/3 = 0.83, lies 
between 1/2 and 1 and is closer to 1. This value shows that, on the average, the ranking of 
the first relevant document returned by the algorithm is between 1st and 2nd rank and is in 
fact more often 1st than 2nd.  

Listing 3.14 shows how to implement this measure in Python. First, as before, you extract 
the list of gold standard mappings for each query. Next, you sort the documents returned by 
the algorithm in descending order starting with the most similar one. The position of each 
document in this sorted list is called rank, and you increment the rank with each document in 
the results list. You only need to find the first relevant document in this list, so you initially 
set the flag found to False and switch it to True as soon as you encounter the first relevant 
document or reach the end of the list. In the end, you estimate the inverse of the rank for 
each query and calculate the mean value across all queries. 
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Listing 3.14 Code to estimate mean reciprocal rank 

rank_all = 0.0 
for query_id in mappings.keys(): 
    gold_standard = mappings.get(str(query_id))    #A 
    query = qry_vectors.get(str(query_id)) 
    results = {} 
    for doc_id in doc_vectors.keys(): 
        document = doc_vectors.get(doc_id) 
        cosine = calculate_cosine(query, document)     
        results[doc_id] = cosine 
    sorted_results = sorted(results.items(), key=itemgetter(1), reverse=True)    #B 
    index = 0 
    found = False 
    while found==False:    #C 
        item = sorted_results[index] 
        index += 1    #D 
        if index==len(sorted_results): 
            found = True 
        if item[0] in gold_standard:    #E 
            found = True 
            print(f"{str(query_id)}: {str(float(1) / float(index))}") 
            rank_all += float(1) / float(index)    #F 
             
             
print(rank_all/float(len(mappings.keys())))    #G 

#A As before, extract the list of gold standard mappings for each query 
#B Sort the documents returned by the algorithm in descending order starting with the most similar one 
#C Set the flag found to False and switch it to True when you find the first relevant document 
#D Increment index (rank) with each document in the results 
#E As before, the document id is the first element in the sorted tuples of (document_id, similarity score) 
#F Estimate inverse of the rank 
#G Calculate and print out the mean value across all queries  

The result – mean reciprocal rank of around 0.58 – printed by this piece of code suggests 
that, on the average, the highest rank of a relevant document identified by this search 
algorithm is between 1st and 2nd, i.e., you will often find the relevant results within the first 
pair of returned documents. 

This concludes the implementation of the search algorithm, so let’s summarize what 
steps you have implemented: 
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Figure 3.17 The summary of all steps of the search algorithm implemented 

3.4.3 Deploying search algorithm in practice 
Finally, once you have implemented the algorithm and decided on its components – e.g., the 
use of stemming, the type of term weighing, and so on – you can deploy it in practice. For 
instance, you may have your own data within your own project, where searching for relevant 
information is useful. If you don’t have such a project in mind, try applying the algorithm to 
another dataset anyway to practice the new skills: you can download one of the datasets 
from http://ir.dcs.gla.ac.uk/resources/test_collections/. 

Exercise 3.7 
Apply the search algorithm to your own data. For that, you wil need to read in the files one by one as you did for spam 
filtering application in Chapter 2.  

 
Alternatively, apply the search algorithm to a different dataset from 

http://ir.dcs.gla.ac.uk/resources/test_collections/. Among these, the Cranfield dataset uses a similar data format to 
the CISI dataset and is also relatively small and easy to work with.  
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3.5 Summary 
• Search, or information retrieval, algorithms are widely used in many applications, 

from search in an Internet browser to search for the relevant files on your personal 
computer. In addition, any application where there is a need to efficiently find 
relevant information in an arbitrarily large collection of documents would benefit from 
information retrieval algorithms. The valuable property of these algorithms is that 
they can sort the results in order of their relevance and ability to answer the 
information need (typically formulated as a query). 

• Before you deploy the search algorithm in practice, it is a good idea to evaluate its 
performance on some annotated dataset. Such annotation is called ground truth or 
gold standard, and there are a number of publicly available datasets that you can use.  

• A simple Boolean search algorithm relies on the idea that any document that contains 
at least one word from the query is relevant for this query. However, it is unable to 
assess relative relevance of the documents and the results cannot be sorted. 

• There is a particular set of words, including “a”, “the”, “in”, “at” and the like, that are 
highly frequent in English – they occur in all or virtually all documents, so they are not 
informative for the search algorithms. In addition, they don’t capture the meaning, as 
they mainly link other words together and fulfill particular functions. Such words are 
commonly called stopwords, and they should be removed so that they do not mislead 
the algorithm. Many toolkits, including NLTK, contain standard stopwords list that you 
can use. 

• Words in language may occur in several different forms. In English, this is relevant for 
nouns (words denoting objects, people, animals, and abstract concepts), verbs (words 
denoting actions and states), and adjectives (words denoting qualities). Mapping the 
different forms of a word to its base (dictionary) form allows the algorithm to 
establish useful correspondences and optimize the search space; one step further is to 
apply a set of rules to identify the correspondences across all related words. To link 
the related words to each other, use an NLP tool called stemmer that relies on a set of 
predefined rules. 

• Documents that contain more occurrences of the query terms should be given 
preference as compared to the documents with lower number of occurrences. The 
number of occurrences represents term frequencies (tf). 

• Not all terms are equally important. Even after the stopwords are removed, there are 
still terms that are frequently used across all documents. Such terms are less 
discriminative, and their relative weights should reflect this. Inverse document 
frequency (idf) is used to weigh the terms according to their distribution across the 
documents. 

• To estimate the relevance of the documents to the queries in the collection, one needs 
to represent them in a shared search space, where each term stands for an individual 
dimension and term frequencies or tf-idf weighted counts are used as the coordinates. 

• The relevance in the shared space can be estimated using cosine similarity. 
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• The search algorithm can be evaluated with the use of one or more popular measures. 
For example, you can estimate the proportion of the relevant documents returned in 
the top-k results – this measure is called precision@k. Alternatively, you can measure 
the average highest rank for the relevant documents returned by the algorithm – this 
measure is called mean reciprocal rank. 

3.6 Solutions to exercises 
Solution to Exercise 3.2: 
First try to solve this task yourself, and then check your solution against the sample 

solution in the Jupyter notebook.14 
Solution to Exercise 3.4: 
Conversion of this piece of text to the base forms should result in “A computer program 

have be write and use which simulate the several-year operation of an information system 
and compute estimate of the cost as well as the amount of equipment and personnel require 
during that time period.” (Base forms of the words from the original sentence underlined).  

Solution to Exercise 3.5: 

idf(“system”) = log10(1460/(531+1)) ≈ 0.44 
idf(“us”) = log10(1460/(800+1)) ≈ 0.26 
idf(“retriev”) = log10(1460/(287+1)) ≈ 0.71 
idf(“cost”) = log10(1460/(137+1)) ≈ 1.02 

Solution to Exercise 3.6: 
First try to code this yourself, and then check the solution in the notebook provided with 

the book. 

 
14 All the code for this book is available at: https://github.com/ekochmar/Getting-Started-with-NLP/  

120

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion
https://github.com/ekochmar/Getting-Started-with-NLP/


©Manning Publications Co.  To comment go to  liveBook 

  
Information Extraction 

This chapter covers 

• How to extract information from raw text 
• A number of useful NLP techniques, including part-of-speech tagging, lemmatization, and 

dependency parsing 
• How to build a language processing pipeline with spaCy, an industrial-strength Natural 

Language Processing library 

In the previous chapter you looked into ways of finding texts that talk about particular 
concepts or facts. You’ve built an information retrieval system that can search for texts 
answering particular questions. For example, if you were wondering what information science 
is or what methods information retrieval systems use, you needed to provide your 
information retrieval system with the queries like “What is information science?” or “What 
methods do information retrieval systems use?”, and the system found for you relevant texts 
that talk about these things. 

We said then that this system saves you a lot of time: you don’t need to manually search 
for texts that contain any relevant information about your question. Moreover, you don’t 
need to assess how relevant these texts are as the system can also rank them by relevance. 
However, this information retrieval system still has some limitations: if you had a particular 
question in mind like “What is information science?” and just wanted to know the answer 
(say, “it is a field primarily concerned with the analysis, collection, classification, 
manipulation, storage, retrieval, movement, dissemination, and protection of information”1) 
you probably would not be interested in reading through the whole list of documents in order 
to find this answer, even if all of them were relevant. In some cases, looking for the exact 
answer in a collection of documents would be highly impractical: for example, imagine you 

 
1 According to Wikipedia: https://en.wikipedia.org/wiki/Information_science 
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had access to the whole web, but all you wanted to know is what information science actually 
is – just that, the definition. If you searched for the answer on Google, you would get over 
4*109 relevant pages for this question. Obviously, looking even through a small portion of 
those in search for the exact answer would be time-consuming, given that this answer can 
be summarized in just one sentence. Luckily, Google also provides you with a snapshot of 
the relevant bit of the webpage or even the definition when possible:  

 
Figure 4.1 In addition to finding the relevant pages, Google returns the exact answer to the question 

The application that is used here is called information extraction,2 because it allows you 
to extract only particular facts or only the relevant information from an otherwise 
unstructured free-formatted text.  

In this chapter you will build your own system that can extract particular facts of interest 
from raw text. But first, let’s look into some examples of when this is useful. 

4.1 Use cases 
Here are some types of real-life applications that can benefit from information extraction. 

 
2 It also sometimes goes under the names of text analytics or text mining. 
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• Case 1: You have a collection of generally relevant documents but all you need is a 
precise answer to a particular question. There are many situations where this might 
occur: for instance, you may be searching for an answer out of curiosity (for example, 
“What is the meaning of life?”), for educational purposes (“What temperature does 
water boil at?”) or, perhaps, you are collecting some specific information like a list of 
people present at the last meetings and want to automatically extract the names of all 
participants from the past meetings minutes. In the general case, your NLP engine 
might need to first find all relevant documents that talk about the subject of interest, 
e.g., water and boiling temperature, just like you did in Chapter 3, and then analyze 
those texts to identify the relation between the two concepts. Figure 4.2 should 
remind you of this process discussed in Chapter 1: 

 
Figure 4.2 A reminder from Chapter 1: to get the answer to the question you might need to first retrieve all 
relevant documents and then analyze them 

You are already familiar with the retrieval step, and this chapter will show you how to 
run the analysis of texts to extract the relevant facts. 

This case is an example of a popular NLP application, question answering. Question 
answering deals with a range of queries that might be formulated in a straightforward 
way as in the example from Figure 4.2, as well as in more convoluted ways. Just to 
give you a flavor of the task, the exact answer might not always be readily available in 
text: the question might be formulated as “Where was Albert Einstein born?” while the 
answer might use the wording like “Albert Einstein’s birthplace is Ulm, Germany”. 
Despite the words “born” and “birthplace” being related to each other, the exact word 
matching won’t help you find the relevant answer here, and you will need to use 
further NLP techniques. There are many more examples where finding the correct 
answer is not trivial.3 In this book, we will look into the extraction of relevant 
information from explicitly formulated answers, but the overall scope of the task is 
much wider. 

 
3 See the examples from the SQuAD, a question-answering dataset and real-time competition: https://rajpurkar.github.io/SQuAD-

explorer/explore/1.1/dev/  
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• Case 2: You have a collection of relevant documents, and you need to extract 
particular types of information to fill in a database. For instance, imagine you work in 
an insurance company, and you have a collection of various companies’ profiles. 
These profiles contain all the essential information about each company: e.g., the size 
of the company, the type of business it is involved in, its revenue and so on. Many of 
these factors are critical for determining a suitable insurance policy, so rather than 
considering the companies one by one you might want to extract these facts from the 
profiles and put them in a single database. Alternatively, imagine you work in a 
human resources division of a company that receives dozens of applications from 
potential candidates on a daily basis. Again, the types of information that your 
company would be interested in are easy to define in advance: you need to know 
about candidate’s education, previous work experience and core skills. Wouldn’t it be 
helpful if you could extract these bits of information automatically and put them in a 
single database? Information extraction in this case would help you save time on 
manually looking through various candidates’ CVs. 

Information extraction 
Information extraction is often defined as a means of imposing structure on otherwise unstructured or only partially 
structured text.  
 

Databases are one way to structure information: in the candidates’ CVs case you need 
to fill in specific information fields like “education”, “work experience” or “skills” with 
the details extracted from CVs. One aspect of such documents as CVs and companies’ 
portfolios that may help you in this task is that they typically follow a particular 
format: a typical CV would contain a section explicitly called “Education”. In the 
simplest case, it should be possible to automatically identify relevant sections like 
“Education” and extract the information from such sections in a CV – for instance, 
everything related to one’s studies. Figure 4.3 visualizes this idea: 

 
Figure 4.3 CVs are an example of semi-structured documents: you may be able to identify where relevant 
information is located using keywords  
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The problem is, it is not always the case that all documents of the same type are 
structured in exactly the same way or even contain the same amount of information. 
To give you one example, imagine you undertook a project dealing with extraction of 
information about all famous personalities who have a Wikipedia page. A nice fact 
about Wikipedia is that it contains “infoboxes”: an “infobox” is a fixed-format table 
that you could see in the upper right corner of a Wikipedia page that summarizes main 
facts about the subject of this page. This is a good start for your project: infoboxes for 
personalities typically contain their names, birth places, dates of birth, reasons they 
are famous for, and so on. This is an example of semi-structured information: 
infoboxes specify the names of the information fields, e.g., “Born” or “Citizenship”. 
However, here is the tricky bit: even though the information is structured it is not 
always structured in the same way. Moreover, even the field with the same name 
might provide you with a different range of information. Figure 4.4 shows an example 
comparing bits of just two infoboxes – those for Albert Einstein4 and Barack Obama:5 

 
4 https://en.wikipedia.org/wiki/Albert_Einstein  
5 https://en.wikipedia.org/wiki/Barack_Obama  
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Figure 4.4 Information Extraction from Wikipedia infoboxes on two personalities 

For space reasons, these are not complete infoboxes: Albert Einstein’s infobox 
contains additional information about his academic work, and Barack Obama’s 
provides more details about his political career. We may expect to see such 
differences: after all, Albert Einstein was not involved in politics, while Barack Obama 
is not an academic. However, comparing even the basic information fields, we can see 
that the format used for the two personalities differs: “Born” field contains the name 
given at birth to Barack Obama, but for Albert Einstein this information is missing; 
Albert Einstein’s entry lists the details of his citizenship, but Barack Obama’s doesn’t, 
and so on. This shows that if you were to extract this information automatically, some 
fields in your database would end up being empty. In addition, even the fields that 
provide the same type of information sometimes use different formats for the same 
thing: note the different date format used in “Date of birth” and the differences in 
“Residence” format – list of countries for Albert Einstein vs. “Town (State)” for Barack 
Obama. All these differences are hard to resolve without applying further NLP 
techniques and allowing more flexibility in the extraction process. 
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• Case 3: You are working on a task not related to information extraction itself, but you 
expect that adding relevant information or insights would be crucial for the success of 
this task. Let’s take the example with the human resources task of analyzing lots of 
CVs one step further: imagine, this is an HR department in a large company with 
multiple open positions. Each position has a job specification: it lists the 
requirements, job responsibilities, salary level, and so on. In effect, such job specs 
are themselves examples of semi-structured information, so using a very similar 
approach one can fill in another database, this time for open job positions. Now, 
rather than trying to manually match job specifications to the candidates’ applications, 
why not automate this process and try to match relevant information fields between 
the two databases? 

Here is another example: imagine you are a financial analyst in an investment 
company. It has been shown that certain types of political, financial or business-
related events reported on the news influence trends on stock markets. For example, 
a report on a company CEO’s death or patent disputes might affect the company’s 
stock prices negatively, while news about a major acquisition or merger might result 
in a positive trend on the market. As an analyst, you might have to spend your time 
looking for such signals in the news and trying to connect them with the stock market 
movements, or you might use the power of data analysis and machine learning. In the 
recent years, there has been a lot of research on the intersection of NLP and financial 
domains aimed at automatically predicting future stock market movements based on 
reported news.6 The key task here is to be able to extract the structured information 
(i.e., specific facts of interest) from free-formatted text (such as news articles).  

Apart from these examples you might use information extraction to: 

• Learn which types of businesses are riskier and require higher insurance rates by 
extracting relevant facts from companies’ portfolios (for example, there is a higher 
fire risk in a restaurant than in a convenience store, but a convenience store located 
in an unsafe neighborhood might be under a higher risk of burglary) 

• Learn which aspects of your product or service your customers are most happy and 
most unhappy about by extracting their opinions from customer feedback forms and 
discussion forums (for example, customers might find the location of a hotel very 
pleasant while being unhappy about the cleaning services7) 

• Learn which factors contribute to higher sales of a particular product by extracting 
features from the product descriptions (for instance, detached houses with gardens 
might sell better than semi-detached ones, while red cars might be more popular than 
yellow ones, and so on) 

Cases above cover diverse areas and scenarios, and in particular examples described 
under case 3 require you to connect multiple pieces of information across domains: for 
example, from text-based descriptions to financial data. In addition, in many of these cases 

 
6 For example, check Ding et al. (2014), Using Structured Events to Predict Stock Price Movement: An Empirical Investigation 

(https://www.emnlp2014.org/papers/pdf/EMNLP2014148.pdf) 
7 For example, see Hu and Liu (2004), Mining Opinion Features in Customer Reviews (https://www.cs.uic.edu/~liub/publications/aaai04-

featureExtract.pdf)  
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the power of NLP techniques combined with machine learning may help you discover new 
facts about your data and your task: for instance, you don’t need to know in advance which 
aspects of your product or service may be successful or unsuccessful, as this is what NLP 
techniques help you find in the raw text data. What brings all these case studies together is 
the need to extract relevant bits of information from fully unstructured (such as free-
formatted text) or partially structured (such as Wikipedia infoboxes) information. NLP 
techniques that will help you in this task are the subject of this chapter. 

4.2 Understanding the task 
Now that you’ve looked into some real-life applications of information extraction, it’s time to 
start working on your own information extractor. Let’s start with a scenario inspired by one 
of the use cases above: imagine that you work as data analyst. You are planning to 
investigate how different types of events affect stock market movements. For instance, you 
have a hunch that the meetings between politicians and other personalities might be 
important signals for the market. You have a collection of recent news articles. Using 
information extraction techniques, extract the facts about all the meetings between 
politicians and other personalities from this data. 

How should you approach this task? Let’s first define what represents the core 
information about the event here. In the meeting events there are three indispensable bits of 
information: the action of meeting itself and two participants, each of which can be a single 
person or a group of people. For example, a meeting might take place between two 
companies, or a president and their administration, and so on. We say that these bits are the 
core information because one cannot eliminate any of the three: if “X meets Y” saying “X 
meets”, “X Y” or “meets Y” will be nonsensical as it will raise questions like “Whom X 
meets?”, “What do X and Y do?” and “Who meets Y?”. In other words, only the phrase like “X 
meets Y” contains all the necessary information about who does what and who else is 
involved. Therefore, at the very least, you’d want to extract these three bits. Once this is 
done, you may explore the available information further and, if the text mentions it, find out 
about the time of the meeting (“X meets Y at noon”, or “X meets Y on Friday”), the purpose 
(“X meets Y for coffee”) and so on. Now let’s see how you can use Python to do this. 

Suppose all the relevant phrases in text were of the form “X meets Y” or “X met Y”8 as in 
the title of the movie “When Harry met Sally…” In these cases, it is very clear, who the two 
participants are and what happened, as Figure 4.5 shows: the participants can be identified 
by the questions “Who met Sally?” and “Whom Harry met?”, and the action can be identified 
by the questions like “What did Harry do?” or more generally “What happened with Harry 
and Sally?”. 

 
8 Let’s for now ignore the difference between the two different forms of the verb here, “meets” and “met”. 
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Figure 4.5 Analysis of the phrase “When Harry met Sally…” 

Such cases are relatively easy to deal with: for instance, you can read the text word by 
word and once you see a word “met” that is of interest to you in this application, you extract 
the previous word as participant1 and the next word as participant2. Code Listing 4.1 
shows how to implement this in Python. In this code, you first provide the string 
information that contains “met” surrounded by the two participants. To extract the names 
of the participants from it, you split this string by whitespaces and store the result in a list 
words. Participant1 can be identified by its position immediately before the word “met” and 
participant2 by its position immediately after it. Printing the result should return 
“Participant1 = Harry”, “Action = met”, and “Participant2 = Sally”. 

Listing 4.1 Code to extract names of the participants of a meeting  

information = "When Harry met Sally"    #A 
words = information.split()    #B 
print (f"Participant1 = {words[words.index('met')-1]}") 
print (f"Action = met") 
print (f"Participant2 = {words[words.index('met')+1]}")    #C 
 

#A Provide the string information that contains “met” surrounded by the two participants  
#B Split this text by whitespaces and store the result in a list words 
#C Participant1 is the word preceding “met”, and participant2 is the one following it 

This approach works well in this particular case, however you’re not done with the whole task 
yet, as the examples that you see in actual data will rarely be as straightforward as that. To 
begin with, the expressions for participants may span more than one word: for instance, the 
algorithm from Code Listing 4.1 will fail on “Harry Jones met Sally” as well as on “Harry met 
Sally Smith” and “Harry Jones met Sally Smith”, as it will only return partial names for the 
participants. Secondly, there are variations in the wording of the action itself: for official 
meetings between politicians or personalities, it is more common to say “X met with Y”, so 
once again the algorithm from Code Listing 4.1 is not flexible enough to return the correct 
names for the participants. Finally, the particular way in which the participants are 
mentioned in text may differ from the “X met Y” version: the order may be different and the 
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distance between the participants in terms of intervening words may be larger. For instance, 
in “Sally, with whom Harry met on Friday” the participants’ names are still the same, but the 
order in which they are mentioned as well as the distance separating them are different. 
Figure 4.6 visualizes this idea: 

 
Figure 4.6 A different word order expressing the same idea as in Figure 4.5 

Once again, the algorithm from Code Listing 4.1 will not be able to deal with such cases. 
The problem with this simple code is that it relies too much on the particular template – 
order and format – which would work in some cases only. After all, we said that sometimes 
information comes in a semi-structured format, so templates are useful in such cases. But in 
the general case, because language is very creative, there will be multiple ways to express 
the same idea using different formats, word order and distance between the meaningful 
words, so what you actually need is an algorithm that can capture: 

• which pieces of information are related to each other; 
• what role each of them plays; and  
• how they are related. 

Figure 4.7 illustrates the requirements for such an algorithm: 

 
Figure 4.7 An information extraction algorithm in a nutshell 
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Ideally, your algorithm will take raw text as input and will return tuples consisting of two 
participants and the action of meeting as a representation of the core information: in the 
example above, (‘Harry’, ‘met’, ‘Sally’) will be such a tuple. For example, suppose your 
algorithm can extract the essential information from sentences like “Donald Trump meets 
with the Queen at D-Day event”, “The Queen meets with the Prime Minister every week” and 
so on and convert it into a list of tuples of the form (participant1, action, 

participant2), i.e., [(`Donald Trump’, `meets with’, `the Queen’), (`the Queen’, `meets 
with’, `the Prime Minister’)]. Now you can use these tuples in all sorts of applications, for 
example you can find answers to questions like “Who does Donald Trump meet with?”. Just 
consider that you can always convert this question to the same tuple representation (‘Donald 
Trump’, `meets with’, ?). Then this question becomes identical to asking “What are 
participant2 entries in tuples where action=`meet with’ and participant1=`Donald 
Trump’?”. Figure 4.8 visualizes this process: 

 
Figure 4.8 Both input text and question can be represented as tuples where each bit has a specific role 

Code in Listing 4.2 shows how the search for the exact answer, when both questions and 
potential answers are represented as lists of tuples, becomes just a search on Python lists: 
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Listing 4.2 Code to search for the exact answer in Python list of tuples  

meetings = [('Boris Johnson', 'meets with', 'the Queen'), 
            ('Donald Trump', 'meets with', 'his cabinet'), 
            ('administration', 'meets with', 'tech giants'), 
            ('the Queen', 'meets with', 'the Prime Minister'), 
            ('Donald Trump', 'meets with', 'Finnish President')]    #A 
 
query = [p2 for (p1, act, p2) in meetings if p1=='Donald Trump']    #B 
print(query)    #C 

#A A list of tuples (p1, act, p2) for participant1, action and participant2 extracted from raw text 
#B Query looks for all p2 in tuples (p1, act, p2) where p1=`Donald Trump’. 
#C The resulting list should contain two entries: [`his cabinet`, `Finnish President`] 

Obviously, meetings are mutual actions, so if participant1 meets with participant2, then 
participant2 also meets with participant1. On the news, the order will not always be exactly 
the same, so let’s make a minor modification to the code above and extract the relevant 
other participant whenever either participant1 or participant2 is the personality of interest – 
see Code Listing 4.3. As with code in Listing 4.2, first a list of tuples (p1, act, p2) for 
participant1, action and participant2 is extracted from raw text. However, this time the query 
looks for all p2 in tuples (p1, act, p2) where p1=`the Queen’ as well as for all p1 in tuples 
(p1, act, p2) where p2=`the Queen’. As a result, you should get a list with two entries: 
[‘the Prime Minister’, ‘Boris Johnson’]. 

Listing 4.3 Code to extract information about the other participant of a meeting  

meetings = [('Boris Johnson', 'meets with', 'the Queen'), 
            ('Donald Trump', 'meets with', 'his cabinet'), 
            ('administration', 'meets with', 'tech giants'), 
            ('the Queen', 'meets with', 'the Prime Minister'), 
            ('Donald Trump', 'meets with', 'Finnish President')]    #A 
 
query = [p2 for (p1, act, p2) in meetings if p1=='the Queen'] 
query += [p1 for (p1, act, p2) in meetings if p2=='the Queen']    #B 
print(query)    #C 

#A A list of tuples (p1, act, p2) for participant1, action and participant2 extracted from raw text 
#B Expand the query on tuples (p1, act, p2) so that one of the participants is `the Queen’ 
#C The resulting list should contain two entries: [‘the Prime Minister’, ‘Boris Johnson’] 

Now let’s see how you can extract such tuple representations from raw text. 

4.3 Detecting word types with part-of-speech tagging 
This section will show you how to extract the meaningful bits of information from raw text 
and how to identify their roles. Let’s first look into why identifying roles is important. 

4.3.1 Understanding word types 
The very first fact to notice about the cases above is that there is a conceptual difference 
between the bits of the expression like “[Harry] [met] [Sally]”: “Harry” and “Sally” both refer 
to people participating in the event, while “met” represents an action. When we humans read 
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a text like this, we subconsciously determine the roles each word or expression plays along 
those lines: to us, words like “Harry” and “Sally” can only represent participants of an action 
but cannot denote an action itself, while words like “met” can only denote an action. This 
helps us get at the essence of the message quickly: we read “Harry met Sally” and we 
understand [HarryWHO] [metDID_WHAT] [SallyWHOM]. 

This recognition of word types has two major effects: the first effect is that the 
straightforward unambiguous use of words in their traditional functions helps us interpret the 
message. Funnily enough, this applies even when we don’t really know the meaning of the 
words. Our expectations about how words are usually combined in sentences and what roles 
they usually play are so strong, that when we don’t know what a word means such 
expectations readily suggest what it might mean: e.g., we might not be able to exactly pin it 
down, but we still would be able to say if an unknown word means some sort of an object or 
some sort of an action. This “guessing game” would be familiar to anyone who has ever tried 
learning a foreign language and had to interpret a few unknown words based on other, 
familiar words in the context. Even if you are a native speaker of English and never tried 
learning a different language, you can still try playing a guessing game, for example, with 
nonsensical poetry. Here is an excerpt from “Jabberwocky”, a famous nonsensical poem by 
Lewis Carroll:9 

 
Figure 4.9 An example of text where the meaning of some words can only be guessed 

Some of the words here would be familiar to anyone, however what do “Jabberwock”, 
“Bandersnatch” and “frumious” mean? It would be impossible to give a precise definition for 
any of them simply because these words don’t exist in English or any other language, so 
their meaning is anybody’s guess. However, one can say with high certainty that 
“Jabberwock” and “Bandersnatch” are some sort of creatures, while “frumious” is some sort 
of quality.10 How do we make such guesses? You might notice that the context for these 
words gives us some clues: for example, we know what “beware” means. It’s an action, and 
as an action it requires some participants: one doesn’t normally just “beware”, one needs to 
beware of someone or something. Therefore, we expect to see this someone or something, 

 
9 https://en.wikipedia.org/wiki/Jabberwocky  
10 A blend of “fuming” and “furious”, according to Lewis Carroll himself. 
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and here comes “Jabberwock”. Another clue is given away by the word “the” which normally 
attaches itself to objects (like “the car”) or creatures (like “the dog”), so we arrive at an 
interpretation of “Jabberwock” and “Bandersnatch” being creatures. Finally, in “the frumious 
Bandersnatch” the only possible role for “frumious” is some quality because this is how it 
typically works in language: e.g., “the red car” or “the big dog”. 

The second effect that the expectations about the roles that words play have on our 
interpretation is that we tend to notice when these roles are ambiguous or somehow 
violated, because such violations create a discordance. That’s why ambiguity in language is a 
rich source of jokes and puns, intentional or not. Here is one expressed in a news headline: 

 
Figure 4.10 An example of ambiguity in action 

What is the first reading that you get? You wouldn’t be the only one if you read this as if 
“Police help a dog to bite a victim”, however common sense suggests that the intended 
meaning is probably “Police help a victim with a dog bite (that is, someone who was bitten 
by a dog)”. News headlines are rich in ambiguities like this because they use a specific 
format aimed at packing the maximum amount of information in a shortest possible 
expression. This sometimes comes at a price as both “Police help a dog to bite a victim” and 
“Police help a victim with a dog bite (that was bitten by a dog)” are clearer but longer than 
“Police help dog bite victim” that a newspaper might prefer to use. This ambiguity is not 
necessarily intentional, but it’s easy to see how this can be used to make endless jokes. 

What exactly causes confusion here? It is clear that “police” denotes a participant in an 
event, and “help” denotes the action. “Dog” and “victim” also seem to unambiguously be 
participants of an action, but things are less clear with “bite”. “Bite” can denote an action as 
in “Dog bites a victim” or a result of an action as in “He has mosquito bites”. In both cases, 
what we read is a word “bites”, and it doesn’t give away any further clues as to what it 
means. However, in “Dog bites a victim” it answers the question “What does the dog do?” 
and in “He has mosquito bites” it answers the question “What does he have?”. Now, when 
you see a headline like “Police help dog bite victim”, your brain doesn’t know straight away 
which path to follow: 

• Path 1: “bite” is an action answering the question “what does one do?” → “Police help 
dog [biteDO_WHAT] victim” 

• Path 2: “bite” is the result of an action answering the question “what happened?” → 
“Police help dog [biteWHAT] victim”. 

Apart from the humorous effect of such confusions, ambiguity may also slow the 
information processing down and lead to misinterpretations. Try solving Exercise 4.1 to see 
how the same expression may lead to completely different readings. 
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Exercise 4.1 
What interpretations do the following sentences have? 

 
1. I can fish 
2. I saw her duck 
 

So far, we’ve been using the terminology quite frivolously: we’ve been defining words as 
denoting actions or people or qualities, but in fact there are more standard terms for that. 
The types of words defined by the different functions the words might fulfill are called parts-
of-speech, and we distinguish between a number of such types:  

• words that denote objects, animals, people, places and concepts are called nouns; 
• words that denote states, actions and occurrences are called verbs; 
• words that denote qualities of objects, animals, people, places and concepts are called 

adjectives; 
• those for qualities of actions, states and occurrences are called adverbs, and so on.  

Table 4.1 provides some examples and descriptions of different parts-of-speech: 

Table 4.1 Examples of words of different parts-of-speech 

Part-of-speech 

Nouns 

What it denotes 

Objects, people, animals, places, 
concepts, time references 

Examples 

car, Einstein, dog, Paris, calculation, Friday 

Verbs Actions, states, occurrences meet, stay, become, happen 

Adjectives Qualities of objects, people, animals, 
places, concepts 

red car, clever man, big dog, beautiful city, 
fast calculation 

Adverbs Qualities of actions, states, occurrences meet recently, stay longer, just become, 
happen suddenly 

Articles Don’t have a precise meaning of their 
own, but show whether the noun they are 
attached to is identifiable in context (it is 
clear what / who the noun is referring to) 
or not (the noun hasn’t been mentioned 
before)  

I saw a man = This man is mentioned for 
the first time (“a” is an indefinite article) 
The man is clever = This suggests that it 
should be clear from the context which 
particular man we are talking about (“the” 
is a definite article)  

Prepositions Don’t have a precise meaning of their 
own, but serve as a link between two 
words or groups of words: for example, 
linking a verb denoting action with nouns 
denoting participants, or a noun to its 
attributes 

meet on Friday – links action to time 
meet with administration – links action to 
participants 
meet at house – links action to location 
a man with a hat – links a noun to its 
attribute 
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This is not a comprehensive account of all parts-of-speech in English, however with this brief 
guide you should be able to recognize the roles of the most frequent words in text and this 
suite of word types should provide you with the necessary basis for the implementation of 
your own information extractor. 

Why do we care about the identification of word types in the context of information 
extraction and other tasks? You’ve seen above that correct and straightforward identification 
of types helps information processing, while ambiguities lead to misunderstandings. This is 
precisely what happens with the automated language processing: machines, like humans, 
can extract information from text better and more efficiently if they can recognize the roles 
played by different words, while misidentification of these roles may lead to mistakes of 
various kinds. For instance, having identified that “Jabberwock” is a noun and some sort of a 
creature, a machine might be able to answer a question like “Who is Jabberwock?” (e.g., 
“Someone / Something with jaws that bite and claws that catch”), while if a machine 
processed “I can fish” as “I know how to fish” it would not be able to answer the question 
“What did you put in cans?”. 

Luckily, there are NLP algorithms that can detect word types in text, and such algorithms 
are called part-of-speech taggers (or POS taggers). Figure 4.11 presents a mental model to 
help you put POS taggers into the context of other NLP techniques: 

 
Figure 4.11 Mental Model that visualizes the flow of information between different NLP components 

As POS tagging is an essential part of many tasks in language processing, all NLP toolkits 
contain a tagger and often you will need to include it in your processing pipeline to get at the 
essence of the message. Let’s now look into how this works in practice. 

4.3.2 Part-of-speech tagging with spaCy 
In the previous chapters, you used NLTK to process text data. This chapter will introduce 
spaCy11 – another very useful NLP library that you can put under your belt. There are a 
number of reasons to look into spaCy in this book: 

• By the end of this book, you will have worked with a number of useful toolkits and 
libraries, including NLTK and spaCy. The two have their complementary strengths, so 
it’s good to know how to use both. 

 
11 To get more information on the library, check https://spacy.io. Installation instructions walk you through the installation process depending on the 

operating system you are using: https://spacy.io/usage#quickstart. Note that for this toolkit to work properly, you will also need to install models 
(e.g., en_core_web_sm, en_core_web_md, and en_core_web_lg) as explained on the webpage. 
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• spaCy is an actively supported and fast-developing library that keeps up to date with 
the advances in NLP algorithms and models. 

• There is a large community of people working with this library, so you can find code 
examples for various applications implemented with or for spaCy on their webpage,12 
as well as find answers to your questions on their GitHub page. 

• spaCy is actively used in industry. 
• It includes a powerful set of tools particularly applicable to large-scale information 

extraction. 

Unlike NLTK that treats different components of language analysis as separate steps, 
spaCy builds an analysis pipeline from the very beginning and applies this pipeline to text. 
Under the hood, the pipeline already includes a number of useful NLP tools that are run on 
input text without you needing to call on them separately. These tools include, among 
others, a tokenizer and a POS tagger. You simply apply the whole lot of tools with a single 
line of code calling on the spaCy processing pipeline, and then your program stores the result 
in a convenient format until you need it. This also ensures that the information is passed 
between the tools without you taking care of the input-output formats. Figure 4.12 visualizes 
spaCy’s NLP pipeline, that we are going to discuss in more detail next: 

 
Figure 4.12 spaCy’s processing pipeline with some intermediate results13 

In the previous chapters we’ve discussed that machines, unlike humans, do not treat 
input text as a sequence of sentences or words – for machines, text is simply a sequence of 
symbols. Therefore, the first step that we applied before was splitting text into words – this 
step is performed by a tool called tokenizer. Tokenizer uses raw text as an input and returns 
a list of words as an output. For example, if you passed it a sequence of symbols like “Harry, 
who Sally met”, it would return a list of tokens [“Harry”, “,”, “who”, …] Next, we applied a 
stemmer that converted each word to some general form: this tool takes a word as an input 
and returns its stem as an output. For instance, a stemmer would return a generic, base 
form “meet” for both “meeting” and “meets”. A stemmer can be run on a list of words, where 

 
12 See various projects implemented using spaCy or developed for spaCy here: https://spacy.io/universe  
13 The diagram follows closely the one in the spaCy’s documentation: https://spacy.io/usage/processing-pipelines  
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it would treat each word separately and return a list of correspondent stems. Other tools, 
however, will require an ordered sequence of words from the original text: for example, 
we’ve seen that it’s easier to figure out that Jabberwock is a noun if we know that it follows a 
word like “the”, so order matters for POS tagging. That means that each of the three tools – 
tokenizer, stemmer, POS tagger – requires a different type of input and produces a different 
type of output, so in order to apply them in sequence we need to know how to represent 
information for each of them. That is what spaCy’s processing pipeline does for you: it runs a 
sequence of tools and connects their outputs together.  

In Chapter 3 we mentioned two approaches to getting at the base form of a word. For 
information retrieval we opted for stemming that converts different forms of a word to a 
common core. We said that it is useful because it helps connect words together on a larger 
scale, but it also produces non-words: you won’t always be able to find stems of the words 
(e.g., something like retriev) in a dictionary. An alternative to this tool is lemmatizer, which 
aims at converting different forms of a word to its base form that can actually be found in a 
dictionary: for instance, it will return a lemma retrieval that can indeed be found in a 
dictionary. Such base form is called lemma. In its processing pipeline, spaCy uses a 
lemmatizer.14 Lemmatizers can be implemented in various ways: from look-up approaches, 
when the algorithm tries to match the word forms to the base dictionary forms, to rule-based 
approaches, when the algorithm applies a series of rules to process word forms, to machine 
learning, when the algorithm learns the correspondences from the language data, to a 
combination of all of the above. Although you can build your own lemmatizer, the benefit of 
relying on an out-of-the-box lemmatizer, e.g., from spaCy, is that such preprocessing tools 
are normally highly optimized in terms of speed and performance. 

Lemmatization 
Lemmatization refers to a preprocessing step, in which word forms are converted into their lemmas – the base forms 
that you would normally find in a dictionary.  
 

The starting point for spaCy’s processing pipeline is, as before, raw text: for example, 
“On Friday board members meet with senior managers to discuss future development of the 
company.” The processing pipeline applies tokenization to this text to extract individual 
words: [“On”, “Friday”, “board”, …]. The words are then passed to a POS tagger that assigns 
parts-of-speech (or POS) tags like [“ADP”, “PROPN”,15 “NOUN”, …], to a lemmatizer that 
produces output like [“On”, “Friday”, …, “member”, …, “manager”, …], and to a bunch of 
other tools, many of which we will discuss in this book. 

You may notice that the processing tools in Figure 4.12 are comprised within a pipeline 
called nlp. As you will shortly see in the code, calling on nlp pipeline makes the program 
first invoke all the pre-trained tools and then applies them to the input text in relevant order. 
The output of all the steps gets stored in a “container” called Doc – it contains a sequence of 

 
14 More information about spaCy’s lemmatizer can be found on the API page: https://spacy.io/api/lemmatizer  
15 In the scheme used by spaCy, prepositions are referred to as “adposition” and use a tag ADP. Words like “Friday” or “Obama” are tagged with PROPN, 

which stands for “proper nouns” reserved for names of known individuals, places, time references, organizations, events, and such. For more 
information on the tags, see documentation here: https://spacy.io/api/annotation. 
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tokens extracted from input text and processed with the tools. Here is where spaCy 
implementation comes close to object-oriented programming: the tokens are represented as 
Token objects with a specific set of attributes. If you have done object-oriented programming 
before, you will hopefully see the connection soon. If not, here is a brief explanation: 
imagine you want to describe a set of cars. All cars share the list of attributes they have: 
with respect to cars, you may want to talk about the car model, size, color, year of 
production, body style (e.g., saloon, convertible), type of engine, and so on. At the same 
time, such attributes as wingspan or wing area won’t be applicable to cars – they rather 
relate to planes. So you can define a class of objects called Car and require that each object 
car of this class should have the same information fields, for instance calling on car.model 
should return the name of the model of the car, for example car.model=“Volkswagen 
Beetle”, and car.production_year should return the year the car was made, for example 
car.production_year=“2003”, and so on. 

This is the approach taken by spaCy to represent tokens in text: after tokenization, each 
token (word) is packed up in an object Token that has a number of attributes. For instance: 

• token.text contains the original word itself; 
• token.lemma_ stores the lemma (base form) of the word;16 
• token.pos_ – its part-of-speech tag; 
• token.i – the index position of the word in text; 
• token.lower_ – lowercase form of the word, and so on.  

The nlp pipeline aims to fill in the information fields like lemma, pos and others with the 
values specific for each particular token. Since different tools within the pipeline provide 
different bits of information, the values for the attributes are added on the go. Figure 4.13 
visualizes this process for the words “on” and “members” in the text “On Friday board 
members meet with senior managers to discuss future development of the company”: 

 
16 You may notice that some attributes are called on using an underscore, like token.lemma_. This is applicable when spaCy has two versions for the 

same attribute: for example, token.lemma returns an integer version of the lemma, which represents a unique identifier of the lemma in the 
vocabulary of all lemmas existing in English, while token.lemma_ returns a Unicode (plain text) version of the same thing – see the description of 
the attributes on https://spacy.io/api/token.  
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Figure 4.13 Processing of words “On” and “members” within the nlp pipeline 

Now, let’s see how this is implemented in Python code. Listing 4.4 provides you with an 
example. In this code, you rely on spaCy’s functionality: spacy.load command initializes the 
nlp pipeline. The input to the command is a particular type of data (model) that the 
language tools were trained on. All models use the same naming conventions 
(en_core_web_), which means that it is a set of tools trained on English Web data; the last 
bit denotes the size of data the model was trained on, where sm stands for ‘small’.17 Once the 
nlp pipeline is initialized, you provide it with input text. The goal of this code is to print out 
individual words from the input together with all their linguistic attributes assigned by the 
nlp pipeline, so the code shows how you can print the output in a tabular format, add a 
header to the printout, add the attributes of each token in the processed text to the output, 
and reformat row-wise representation to column-wise representation using Python’s zip 
function.18 As each column may contain strings of variable lengths, the code shows how you 
can calculate the maximum length of strings in each column to allow enough space in the 
printout. Finally, it shows how to print out the results using format functionality to adjust the 
width of each column in each row.19 

 
17 Check out the different language models available for use with spaCy: https://spacy.io/models/en. Small model (en_core_web_sm) is suitable 

for most purposes and is more efficient to upload and use. However, larger models like en_core_web_md (medium) and en_core_web_lg 
(large) are more powerful and some NLP tasks will require the use of such larger models. The models should be installed prior to running the code 
examples with spaCy. You can also install the models from within the Jupyter notebook using the command, e.g., !python -m spacy 
download en_core_web_sm 

18 Check out documentation on Python’s functions here: https://docs.python.org/3/library/functions.html  
19 Check out string formatting techniques in Python 3: https://docs.python.org/3/library/string.html  
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Listing 4.4 Code exemplifying how to run spaCy’s processing pipeline  

import spacy    #A 
 
nlp = spacy.load("en_core_web_sm")    #B 
doc = nlp("On Friday board members meet with senior managers " + 
          "to discuss future development of the company.")    #C 
 
rows = [] 
rows.append(["Word", "Position", "Lowercase", "Lemma", "POS", "Alphanumeric", "Stopword"])    

#D 
for token in doc: 
    rows.append([token.text, str(token.i), token.lower_, token.lemma_,  
                 token.pos_, str(token.is_alpha), str(token.is_stop)])    #E  
 
columns = zip(*rows)    #F 
column_widths = [max(len(item) for item in col) for col in columns]    #G 
for row in rows: 
    print(''.join(' {:{width}} '.format(row[i], width=column_widths[i])  
                                 for i in range(0, len(row))))    #H 
 

#A Start by importing spaCy library 
#B spacy.load command initializes the nlp pipeline 
#C Provide the nlp pipeline with input text 
#D Print the output in a tabular format and add a header to the printout for clarity 
#E Add the attributes of each token in the processed text to the output for printing 
#F Python’s zip function allows you to reformat input from row-wise representation to column-wise 
#G Calculate the maximum length of strings in each column to allow enough space in the printout  
#H Use format functionality to adjust the width of each column in each row while printing out the results 

Here is the output that this code will return for some selected words from the input text: 

Table 4.2 Output from Code Listing 4.4 presented in a table format. “…” is used to show that 
there is more output omitted for space reasons. 

Word      Position     Lowercase     Lemma     POS     Alphanumeric     Stopword 

On        0 on            on        ADP     True             True             

Friday    1 friday        Friday    PROPN   True             False 

... ... ... ... ... ... ... 

members   3 members       member    NOUN    True             False 

... ... ... ... ... ... ... 

to        8 to            to        PART    True             True 

discuss   9 discuss       discuss   VERB    True             False 

... ... ... ... ... ... ... 

. 15           . . PUNCT   False            False 

This output tells you: 
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• The 1st item in each line is the original word from text – it is returned by token.text. 
• The 2nd is the position in text, which starts as all other indexing in Python from 0 – 

this is identified by token.i. 
• The 3rd item is the lowercase version of the original word. You may notice that it 

changes the forms of “On” and “Friday”. This is returned by token.lower_. 
• The 4th item is the lemma of the word, which returns “member” for “members” and 

“manager” for “managers”. Lemma is identified by token.lemma_. 
• The 5th item is the part-of-speech tag. Most of the tags should be familiar to you by 

now. The new tags in this piece of text are PART, which stands for “particle” and is 
assigned to particle “to” in “to discuss”, and PUNCT for punctuation marks. POS tags 
are returned by token.pos_. 

• The 6th item is a True/False value returned by token.is_alpha, which checks whether 
a word contains alphabetic characters only. This attribute is False for punctuation 
marks and some other sequences that don’t consist of letters only, so it is useful for 
identifying and filtering out punctuation marks and other non-words. 

• Finally, the last, 7th item in the output is a True/False value returned by 
token.is_stop, which checks whether a word is in a stopwords list – a list of highly 
frequent words in language that you might want to filter out in many NLP applications, 
as they are likely to not be very informative. For example, articles, prepositions (like 
“on” in this example) and particles (e.g., “to”) will have their is_stop values set to 
True as you can see in the output above. 

Exercise 4.2 
Now run the code on other input texts. For example, use the “Jabberwocky” poem as an input. Does the code 
recognize the roles words play (i.e., their parts-of-speech) correctly? 
 

If you run the code from Listing 4.4 on a text like “Jabberwocky”, you will see that 
despite the fact that it contains non-English words, or possibly non-words at all, this code is 
able to tell that “Jabberwock” and “Bandersnatch” are some creatures that have specific 
names (it assigns a tag PROPN, proper noun to both of them), and that “frumious” is an 
adjective. How does it do that? Here is a glimpse under the hood of a typical POS tagging 
algorithm (see Figure 4.14): 
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Figure 4.14 A glimpse under the hood of a typical POS tagging algorithm 

We’ve said earlier that when we try to figure out what type of a word something like 
“Jabberwock” is we rely on the context. In particular, the previous words are important to 
take into account: if we see “the”, chances that the next word is a noun or an adjective are 
very high, but a chance that we see a verb next is minimal – verbs shouldn’t follow articles in 
grammatically correct English. Technically, we rely on two types of intuitions: we use our 
expectations about what types of words typically follow other types of words, and we also 
rely on our knowledge that words like “fish” can be nouns or verbs but hardly anything else. 
We perform the task of word type identification in sequence. For instance, in the example 
from Figure 4.14, when the sentence begins, we already have certain expectations about 
what type of a word we may see first – quite often, it will be a noun or a pronoun (like “I”). 
Once we’ve established that it is very likely for a pronoun to start a sentence, we also rely on 
our intuitions about how likely it is that such a pronoun will be exactly “I”. Then we move on 
and expect to see a particular range of word types after a pronoun – almost certainly it 
should be a normal verb or a modal verb (as verbs denoting obligations like “should” and 
“must” or abilities like “can” and “may” are technically called). More rarely, it may be a noun 
(like “I, Jabberwock”), an adjective (“I, frumious Bandersnatch”), or some other part of 
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speech. Once we’ve decided that it is a verb, we assess how likely it is that this verb is 
“can”; if we’ve decided that it is a modal verb, we assess how likely it is that this modal verb 
is “can”, and so on. We proceed like that until we reach the end of the sentence, and this is 
where we assess which interpretation we find overall more likely. This is one possible 
stepwise explanation of how our brain processes information, on which part-of-speech 
tagging is based. 

The POS tagging algorithm, similarly, takes into account two types of expectations: an 
expectation that a certain type of a word (like modal verb) may follow a certain other type of 
a word (like pronoun), and an expectation that if it is a modal verb such a verb may be 
“can”. These “expectations” are calculated using the data: for example, to find out how likely 
it is that a modal verb follows a pronoun, we calculate the proportion of times we see a 
modal verb following a pronoun in data among all the cases where we saw a pronoun. For 
instance, if we saw 10 pronouns like “I” and “we” in data before, and 5 times out of those 10 
these pronouns were followed by a modal verb like “can” or “may” (as in “I can” and “we 
may”), what would the likelihood, or probability, or seeing a modal verb following a pronoun 
be? Figure 4.15 gives a hint on how probability can be estimated: 

 
Figure 4.15 If modal verb follows pronoun 5 out of 10 times, the probability is 5/10 

We can calculate it as: 

Probability(modal verb follows pronoun) = 5 / 10 

or in the general case:20 

 
Similarly, to estimate how likely (or how probable) it is that the pronoun is “I”, we need 

to take the number of times we’ve seen a pronoun “I” and divide it by the number of times 
we’ve seen any pronouns in the data. So, if among those 10 pronouns that we’ve seen in the 
data before 7 were “I” and 3 were “we”, the probability of seeing a pronoun “I” would be 
estimated as Figure 4.16 illustrates: 

 
20 Recall, P is the notation for probability 
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Figure 4.16 If 7 times out of 10 the pronoun is “I”, the probability of a word being “I’ given that we know the 
POS of such a word is pronoun is 7/10 

Probability(pronoun being “I”) = 7 / 10 

or in the general case: 

 
This description of probability estimation may remind you of the discussion from Chapter 

2 – there, we used a similar approach to estimate probabilities. 
In the end, the algorithm goes through the sequence of tags and words one by one and 

takes all the probabilities into account. Since the probability of each decision, i.e., of each 
tag and each word, is a separate component in the process, these individual probabilities are 
multiplied. So, to find out how probable it is that “I can fish” means “I am able / know how 
to fish”, the algorithm calculates: 

 
This probability gets compared with the probabilities of all the alternative interpretations, 

like “I can fish” = “I put fish in cans”: 
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In the end, the algorithm compares the calculated probabilities for the possible 

interpretations and chooses the one that is more likely, i.e., has higher probability. 

4.4 Understanding sentence structure with syntactic parsing 
In this section you will learn how to automatically establish the types of relations that link 
meaningful words together. 

4.4.1 Why sentence structure is important 
Now you know how to detect which types the words belong to. Your algorithm from Code 
Listing 4.4 is able to tell that in the sentence "On Friday, board members meet with senior 
managers to discuss future development of the company.”, words like “Friday”, “board”, 
“members” and “managers” are more likely to be participants of some actions as they are 
nouns, while words like “meet” and “discuss” denote actions themselves as they are verbs. 
This brings your one step closer to solving the task, however, one bit is still missing – how 
are these words related to each other, and which of the potential participants are the actual 
participants of the action in question? I.e., who met with whom? 

We said before that in the simplest case, returning the words immediately before and 
immediately after the word that denotes the action works in some cases. However, in the 
sentence at hand this doesn’t work: part-of-speech tagging helps you identify that “meet 
(with)” is an action, however, you would need to return “board members” and “senior 
managers” as the two participants. So far, the algorithm is only able to detect that “board”, 
“members” and “managers” are nouns, while “senior” is an adjective, but it hasn’t linked the 
words together yet. The next step is to identify that “board” and “members” together form 
one group of words and “senior” and “managers” another group, and these two groups 
represent the participants in the action as they are both directly related to the verb “meet 
(with)”. These are not the only words that are related to the action of meeting: in fact, the 
group of words “On Friday” tells us about the time of the meeting, and “to discuss future 
development of the company” tells us about the purpose. Ideally, we would like to be able to 
get all these bits of information. Figure 4.17 visualizes this idea: 
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Figure 4.17 All bits of information related to the action of meeting as we expect them to be identified by a 
parser 

In this representation, we put the action “meet (with)” at the center or root of the whole 
account of events because it makes it easier to detect other participants that are involved in 
this action and other bits of information related to it starting from the verb itself. 

Word types that we’ve defined in the previous step help us identify the groups of words 
and their relations to the main action here: it is common for the participants to be expressed 
with groups of words involving nouns, for locations and time references – to be attached to 
the verb with a preposition (like “on Friday” or “at the office”), and the purpose of the 
meeting would often be introduced using “to” and a further expression involving a verb (like 
“discuss” in this example). We rely on such intuitions when we detect which words are 
related to each other, and machines use a similar approach as well.  

Parser 
The tool that helps identify which words are related to each other is called parser.  
 

To give you the flavor of the task before we move on to using this tool in practice, here is 
an example illustrating why parsing and identification of relations between words is not a 
trivial task and may lead to misunderstandings, just like POS tagging before. This example 
comes from the joke by Groucho Marx, which went like this: “One morning I shot an 
elephant in my pajamas. How he got into my pajamas I’ll never know”. What exactly 
produces the humorous effect here? It is precisely the identification of relation links between 
the groups of words! Under one interpretation, “in my pajamas” is attached to “an elephant”, 
and, in fact, because the two groups of words are next to each other in the sentence, this is 
a much easier interpretation to process, so our brain readily suggests it. However, common 
sense tells us that “in my pajamas” should be attached to “shot” and that it was “I” who was 
wearing the pajamas, not an elephant. The problem is that these components are separated 
from each other by other words, so based on the structure of the sentence, this is not the 
first interpretation that comes to mind. What adds to ambiguity here is the fact that 
prepositional phrases (the ones that start with prepositions like “in” or “with”) are frequently 
attached to nouns (“to a manNOUN with a hammer, everything looks like a nail”) as well as to 
verbs (“driveVERB nails with a hammer”). Parsers, like humans, rely on the patterns of use in 
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language and use the information about the types of words to identify how words are related 
to each other, however it is by no means a straightforward task.  

4.4.2 Dependency parsing with spaCy 
We said before that as we are interested in the action expressed by a verb (like “meet 
(with)”) and its participants, it is the action that we put at the center or at the root of the 
whole expression. Having done that, we start working from the verb at the root trying to 
identify which words or groups of words are related to this action verb. We also say that 
when the words are related to this verb, they depend on it. In other words, if the action is 
denoted by the verb “meet”, starting from this verb we try to find words that answer 
relevant questions: e.g., “who meet(s)?” → “board members”, “meet with whom?” → “senior 
managers”, “meet when?” → “on Friday”, and so on. It’s as if we are saying that “meet” is 
the most important, most indispensable, core bit of information here, and the other bits are 
dependent on it. After all, if it wasn’t for the verb “meet”, the meeting wouldn’t have taken 
place and there would be no need in extracting any further information! Similarly, in the 
expression “board members” the core bit is “members” as “board” only provides further 
clarifications (“what type of members?” → “board”) but without “members” there would be 
no need in providing this clarifying information. Figure 4.18 visualizes dependencies between 
words in this sentence, where the arrows explicitly show the direction of relation – they go 
from the head to the dependent in each pair: 

 
Figure 4.18 Flow of dependencies in “On Friday board members meet with senior managers”. Arrows show the 
direction of the dependency, from the head to the dependent 

Putting verbs at the root of the whole expression as well as dividing words into groups of 
more important ones (such words are technically called heads) and the ones that provide 
additional information depending on the heads (such words are called dependents) is a 
convention adopted in NLP. The approach to parsing that relies on this idea is therefore 
called dependency parsing. 
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Exercise 4.3 
To summarize, heads are words that express the core bit of information in a group of words; they are the 
indispensable ones. Dependents are the ones that attach themselves to heads providing additional clarifications or 
complementing the heads. Try to identify heads and dependents in the following expressions:  

 
1. senior managers  
2. recently met  
3. the government  
4. talk to the government 
 

Figure 4.12 visualized the language-processing pipeline with a number of tools spaCy 
packs under the hood of nlp. Now it’s time to add one more tool, parser, to the suite: 

 
Figure 4.19 A larger suite of spaCy tools 

Let’s see how spaCy performs parsing on the sentence “On Friday, board members meet 
with senior managers to discuss future development of the company”. First of all, let’s 
identify all groups of words that may be participants in the meeting event: that is, let’s 
identify all nouns and words attached to these nouns in this sentence. Such groups of words 
are called noun phrases because they have nouns as their heads. As before, you start by 
importing spaCy library and initializing the pipeline. Note, however, that if you are working in 
the same notebook, you don’t need to do that more than once. Next, you provide the nlp 
pipeline with input text. You can access groups of words involving nouns with all related 
words (aka noun phrases) by doc.noun_chunks. Finally, the code shows how to print out the 
noun phrase itself (e.g., senior managers), followed by the head of the noun phrase (i.e., the 
head noun, which in this case is managers), the type of relation that links the head noun to 
the next most important word in the sentence (e.g., pobj relation links managers to meet 
with), and the next most important word itself (e.g., with). The code uses tabulation in this 
output. 
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Listing 4.5 Code to identify all groups of nouns and the way they are related to each other 

import spacy 
 
nlp = spacy.load("en_core_web_sm")    #A 
doc = nlp("On Friday, board members meet with senior managers " + 
          "to discuss future development of the company.")    #B 
 
for chunk in doc.noun_chunks:    #C 
    print('\t'.join([chunk.text, chunk.root.text, chunk.root.dep_, 
                     chunk.root.head.text]))    #D 

#A Start by importing spaCy library and initializing the pipeline 
#B Provide the nlp pipeline with input text 
#C You can access noun phrases by doc.noun_chunks 
#D Print out the phrase, its head, the type of relation to the next most important word and the word itself 

Let’s discuss these functions one by one: 

• doc.noun_chunks returns the noun phrases – the groups of words that have a noun 
at their core and all the related words. For instance, “senior managers” is one such 
group here; 

• chunk.text prints the original text representation of the noun phrase, for instance 
“senior managers”; 

• chunk.root.text identifies the head noun and prints it out. In “senior managers” it’s 
“managers” that is the main word – it’s the root of the whole expression; 

• chunk.root.dep_ shows what relates the head noun to the rest of the sentence. 
Which word is “managers” from “senior managers” directly related to? It is the 
preposition “with” (in “with senior managers”). Within this longer expression, “senior 
managers” is the object of the preposition, or prepositional object – pobj; 

• Finally, chunk.root.head.text prints out the word the head noun is attached to – in 
this case, “with” itself. 

To test your understanding, try to predict what this code will produce before running it or 
looking at the output below. 

The code above will identify the following noun phrases in this sentence: 

Friday    Friday  pobj On 
board members  members  nsubj meet 
senior managers  managers  pobj with 
future development development dobj discuss 
the company  company  pobj of 

There are exactly five noun phrases in this sentence: “Friday”, “board members”, “senior 
managers”, “future development”, and “the company”. Let’s look at the visualization of the 
chain of dependencies in this sentence, this time with the relation types assigned to the 
connecting arrows:21 

 
21 See the description of different relation types on https://spacy.io/api/annotation#dependency-parsing.  
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Figure 4.20 Chain of dependencies in “board members meet with senior managers to discuss future 
development of the company.” 

In this sentence, “Friday” directly relates to “on” – it’s the prepositional object (pobj) of 
“on”. “Board members”, as Figure 4.20 visualizes, has “members” as its head, and is directly 
attached to “meet” – it’s the subject, i.e. the main participant of the action (denoted nsubj). 
“Senior members” has “members” as its head, and it’s attached to “with” as pobj. “Future 
development” is a direct object (dobj) of the verb “discuss”, because it answers the question 
“discuss what?”. The head of this noun phrase is “development”. Finally, “the company” has 
“company” as its head, and it depends on preposition “of”, thus the relation that links it to 
“of” is pobj. 

spaCy allows you to visualize the dependency information and actually print the graphs 
like the ones in Figure 4.20. The code from Listing 4.6 will allow you to print out the 
visualization of the dependencies in input text and store it to a file. If you run it on the 
sentence “Board members meet with senior managers to discuss future development of the 
company”, this file will contain exactly the graph from Figure 4.20. In this code, you rely on 
the functionality of the spaCy’s visualization tool displacy to visualize dependencies over 
the input text, where setting the argument jupyter=False tells the program to store the 
output to an external file, and jupyter=True to display it within the notebook. If you select 
to store the output to an external file, you’ll need to import Path, which will help you define 
the location for the file to store the visualization. As the code in Listing 4.6 shows, the file 
the output is stored to simply uses the words from the sentence in its name, e.g. “On-Friday-
board-…svg”, however, you can change the file naming in the code. Alternatively, if you want 
to display the output directly in the Jupyter notebook, you set jupyter=True and you don’t 
need the last three lines of code. 
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Listing 4.6 Code to visualize the dependency information 

from spacy import displacy    #A 
from pathlib import Path    #B 
 
svg = displacy.render(doc, style='dep', jupyter=False)    #C 
file_name = '-'.join([w.text for w in doc if not w.is_punct]) + ".svg" 
output_path = Path(file_name)    #D 
output_path.open("w", encoding="utf-8").write(svg)    #E 

#A Import spaCy’s visualization tool displacy22 
#B Path helps you define the location for the file to store the visualization 
#C Use displacy to visualize dependencies over the input text with appropriate arguments 
#D The file the output is stored to simply uses the words from the sentence in its name 
#E This line writes the output to the specified file 

Why is it useful to know about the noun phrases and the way they are related to the rest of 
the sentence? It is because this way your algorithm learns about the groups of words 
including nouns and attached attributes (i.e., noun phrases) that are potential participants in 
the action, and it also learns what these noun phrases are themselves attached to: for 
instance, note that “board members” is linked to “meet” directly – it is the main participant 
of the action, the subject. “Senior managers” is connected to the preposition “with”, which 
itself is directly linked to the action verb “meet”, so it would be possible to detect that “senior 
managers” is the second participant in the action within one small step. 

Before we put these components together and identify the participants of the meeting 
action, let’s iterate through the sentence and print out the relevant information about each 
word in this sentence: let’s print the word itself using token.text, the relation that links this 
word to its head using token.dep_, the head the word depends on using token.head.text 
and its head’s part-of-speech with token.head.pos_, and finally all the dependents of the 
word iterating through the list of dependents extracted using token.children: 

Listing 4.7 Code to print out the information about head and dependents for each word 

for token in doc: 
    print(token.text, token.dep_, token.head.text, token.head.pos_, 
                                [child for child in token.children])    #A 

#A This code assumes that spaCy is imported and input text is already fed into the pipeline 

This code will produce the following output for the sentence “On Friday board members meet 
with senior managers to discuss future development of the company.”: 

   On     prep   meet  VERB  [Friday] 
   Friday  pobj   On  ADP  [] 
   ,     punct   meet  VERB  [] 
   board  compound  members  NOUN  [] 
   members  nsubj   meet  VERB  [board] 
   meet    ROOT   meet  VERB  [On, ,, members, with, discuss, .] 
   ... 

 
22 To find out more about the tool, check https://spacy.io/usage/visualizers.  

152

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion
https://spacy.io/usage/visualizers


©Manning Publications Co.  To comment go to  liveBook 

This output shows that “Friday” is the prepositional object of “On”, which itself has an 
adposition (ADP) POS tag. “Friday” doesn’t have any dependents, so an empty list [] is 
returned. “Board” is dependent on noun “members”, but it also has no further dependencies 
itself. “Members” is a subject of the verb “meet” and has “board” as a single dependent. 
“Meet”, in its turn, doesn’t depend on any other word – it’s the ROOT of the whole sentence, 
and it has a number of dependents, including “On” (time reference, “On Friday”), “members” 
(subject, the main participant of the action, “board members”), “with” (introducing second 
participant “with senior members”), and “discuss” (indicating the purpose of the meeting, “to 
discuss the future developments …”). 

4.5 Building your own Information Extraction algorithm 
Now let’s put all these components together and run your information extractor on a list of 
sentences to only extract the information about who met with whom. Based on what you’ve 
done so far, you need to implement the steps outlined in Figure 4.21: 

 
Figure 4.21 Extraction of participant1 and participant2 if the action verb is “meet” 

To summarize, this means that you need to: 

1. Identify sentences where “meet” is the main verb, i.e., the ROOT of the sentence. 
2. Extract dependents of this verb using token.children. 
3. Identify participant1 of the action – it will be a noun linked to the verb with nsubj 

relation. 
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4. Add all the attributes this noun has (e.g., “board” for “members”) to build a noun 
phrase (NP). This is participant1. 

5. If the verb has a dependent preposition “with” (e.g., “meet with managers”), extract 
the noun dependent on “with” together with all its attributes – these will constitute 
participant2. 

6. Otherwise, if the verb doesn’t have a preposition “with” attached to it but has a 
directly related noun (as in “meet managers”), extract this noun and its attributes as 
participant2. The directly related noun will be attached to the verb with dobj 
relation.  

Now, let’s implement this in Python and apply the code to the sentence “On Friday, board 
members meet with senior managers to discuss future development of the company.” Note 
that if you are working in the same notebook and used this sentence as input before, all the 
processing outputs are stored in container Doc, and you don’t need to redefine it. Since this 
sentence contains preposition “with”, let’s start with implementing the approach that extracts 
the noun dependent on “with” together with its attributes and identifies this noun phrase as 
participant2. Code Listing 4.8 shows this implementation. The code shown here assumes that 
spaCy is imported and input text is already fed into the pipeline. First, you check that the 
ROOT of the sentence is a verb with the base form (lemma) “meet” – this verb expresses the 
action itself. Next, you extract the list of all dependents of this verb using token.children. 
To identify participant1 of the action, you look for a noun that is the subject of the action 
verb linked to it with nsubj relation. This noun, together with its attributes (children), 
expresses participant1. After that, you check if the verb has preposition “with” as one of its 
dependents and extract the noun that is dependent on this preposition together with its 
attributes – this is participant2 of the action. Finally, you print out the results. 

Listing 4.8 Code to extract participants of the action 

for token in doc:    #A 
    if token.lemma_=="meet" and token.pos_=="VERB" and token.dep_=="ROOT":    #B 
        action = token.text    #C 
        children = [child for child in token.children]    #D 
        participant1 = "" 
        participant2 = "" 
        for child1 in children: 
            if child1.dep_=="nsubj": 
                participant1 = " ".join([attr.text for  
                                         attr in child1.children]) + " " + child1.text    

#E 
            elif child1.text=="with":    #F 
                action += " " + child1.text 
                child1_children = [child for child in child1.children] 
                for child2 in child1_children: 
                    if child2.pos_ == "NOUN": 
                        participant2 = " ".join([attr.text for  
                                             attr in child2.children]) + " " + child2.text    

#G 
print (f"Participant1 = {participant1}") 
print (f"Action = {action}") 
print (f"Participant2 = {participant2}")    #H 
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#A This code assumes that spaCy is imported and input text is already fed into the pipeline 
#B Check that the ROOT of the sentence is a verb with the base form (lemma) “meet” 
#C This verb expresses the action itself 
#D Extract the list of all dependents of this verb using token.children 
#E Find noun that is the subject of the action verb using nsubj relation 
#F Check if the verb has preposition “with” as one of its dependents 
#G Extract the noun that is dependent on this preposition together with its attributes 
#H Print out the results 

For the input text “On Friday, board members meet with senior managers to discuss future 
development of the company.” this code will correctly return the following output: 

Participant1 = board members 
Action = meet with 
Participant2 = senior managers 

However, what if we provide it with more diverse sentences? For example: 

• “Boris Johnson met with the Queen last week.” – “Queen” is a proper noun, so its tag 
is PROPN rather than NOUN. Let’s make sure that proper nouns are also covered by 
the code. Note that “met” is the past form of “meet”, and since your algorithm uses 
lemma (base form) of the word, it will be correctly identified here. 

• “Donald Trump meets the Queen at Buckingham Palace.” – “the Queen” is attached to 
the verb “meet” as dobj. Let’s make sure your code covers this case, too. 

Code Listing 4.9 shows how to add these two modifications to the algorithm. First, you 
provide your code with a diverse set of sentences. Note that all but last sentence contain 
verb “meet” and are relevant for your information extraction algorithm. Then, you define a 
function extract_information to apply all the steps in the information extraction algorithm. 
Note that the code within this function is very similar to Listing 4.8. One of the differences is 
that it applies to participants expressed with proper nouns (PROPN) as well as common 
nouns (NOUN). Another modification is that it adds the elif branch that covers the direct 
object (dobj) case. In the end, you apply extract_information function to each sentence 
and print out the actions and their participants. 
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Listing 4.9 Code for Information Extractor 

sentences = ["On Friday, board members meet with senior managers " + 
             "to discuss future development of the company.",  
             "Boris Johnson met with the Queen last week.", 
             "Donald Trump meets the Queen at Buckingham Palace.", 
             "The two leaders also posed for photographs and " + 
             "the President talked to reporters."]    #A 
 
 
def extract_information(doc):    #B 
    action="" 
    participant1 = "" 
    participant2 = "" 
    for token in doc: 
        if token.lemma_=="meet" and token.pos_=="VERB" and token.dep_=="ROOT": 
            action = token.text 
            children = [child for child in token.children]    
            for child1 in children: 
                if child1.dep_=="nsubj": 
                    participant1 = " ".join([attr.text for  
                                             attr in child1.children]) + " " + child1.text 
                elif child1.text=="with": 
                    action += " " + child1.text 
                    child1_children = [child for child in child1.children] 
                    for child2 in child1_children: 
                        if child2.pos_ == "NOUN" or child2.pos_ == "PROPN":    #C 
                            participant2 = " ".join([attr.text for  
                                                 attr in child2.children]) + " " + 

child2.text 
                elif child1.dep_=="dobj" and (child1.pos_ == "NOUN" 
                                              or child1.pos_ == "PROPN"):    #D 
                    participant2 = " ".join([attr.text for  
                                             attr in child1.children]) + " " + child1.text 
    print (f"Participant1 = {participant1}") 
    print (f"Action = {action}") 
    print (f"Participant2 = {participant2}") 
 
for sent in sentences: 
    print(f"\nSentence = {sent}") 
    doc = nlp(sent) 
    extract_information(doc)    #E 
 

#A Provide your code with a diverse set of sentences 
#B Define a function to apply all the steps in the information extraction algorithm 
#C Extract participants expressed with proper nouns (PROPN) as well as common nouns (NOUN) 
#D Add the elif branch that covers the direct object (dobj) case 
#E Apply extract_information function to each sentence and print out the actions and participants 

The code above will identify the following actions and participants in each sentence from the 
set: 
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Sentence = On Friday, board members [...]  
Participant1 = board members 
Action = meet with 
Participant2 = senior managers 
 
Sentence = Boris Johnson met with [...] 
Participant1 = Boris Johnson 
Action = met with 
Participant2 = the Queen 
 
Sentence = Donald Trump meets [...] 
Participant1 = Donald Trump 
Action = meets 
Participant2 = the Queen 
 
Sentence = The two leaders also [...] 
Participant1 =  
Action =  
Participant2 =  
 

Note that the code correctly identifies the participants of the meeting event in each case 
and returns nothing for the last sentence that doesn’t describe a meeting event. 

Congratulations! You have built your first information extraction algorithm. Now try to 
use it in practice. 

Exercise 4.4 
Apply the information extraction algorithm to your own data to extract the information about all meetings that took 
place between different participants. Alternatively, apply it to a different type of events expressed with verbs other 
than “meet”.  
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4.6 Summary  
• Information Extraction is a useful NLP task that helps you impose structure on fully 

unstructured information (such as text in free format) or partially structured 
information (such as, for example, Wikipedia infoboxes). There are a number of 
scenarios where this is useful: for instance, you might be interested in an answer to 
one particular question based on the information provided in the text, or you might 
want to fill in a database with the relevant details extracted from text, or you might 
want to be able to use structured data in some unrelated task such as stock price 
prediction. 

• To extract the information from raw text, you need to know which bits are relevant to 
your information need and how they are related to each other. Bits that are relevant 
for the description of an event consist of the words defining the action and the words 
defining its participants. 

• Actions, occurrences and states are typically defined by verbs (like “meet”, “stay”, 
“become”), and participants are typically defined by nouns (like “car”, “Einstein”, 
“dog”). The types of words defined by their typical roles are called parts-of-speech, 
and the task addressing identification of word types is called part-of-speech tagging 
(or POS tagging). 

• Since POS tagging is an essential component of many NLP tasks, NLP libraries and 
toolkits usually include a POS tagger. An industrial-strength NLP library spaCy 
performs a bunch of processing operations at once and packs all the tools under a 
single NLP pipeline. 

• Nouns tend to attach further attributes, for example “fast car”, “a very big dog” – 
such groups of nouns with all related attributes are called noun phrases. In addition, 
nouns that name personalities, e.g., “Donald Trump”, are called proper nouns and 
they often come as a sequence of nouns rather than a single one. Such sequences are 
also called noun phrases. When you are trying to identify participants of events, it is 
noun phrases rather than single nouns that you are looking for.  

• Parser helps you identify relations between all words in a sentence. It is an NLP 
tradition to consider that the core – the root – of the sentence is the verb that 
denotes the main action the sentence is talking about. Other components of the 
sentence depend on the verb. This approach is, therefore, called dependency parsing. 

• Within dependency parsing, we are talking about the main words – heads of the 
expression, and their dependents. 
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4.7 Solutions to exercises 
Solution to Exercise 4.1: 
These are quite well-known examples that are widely used in NLP courses to exemplify 

ambiguity in language and its effect on interpretation. 
In (1), “I” certainly denotes a person, and “can” certainly denotes an action. However, 

“can” as an action has two potential meanings: it can denote ability “I can” = “I am able to” 
or the action of putting something in cans.23 “Fish” can denote an animal as in “freshwater 
fish” (or a product as in “fish and chips”), or it can denote an action as in “learn to fish”. In 
combination with the two meanings of “can” these can produce two completely different 
readings of the same sentence: either “I can fish” means “I am able / I know how to fish” or 
“I put fish in cans”. 

In (2), “I” is a person and “saw” is an action, however “duck” may mean an animal or an 
action of ducking. In the first case, the sentence means that I saw a duck that belongs to 
her, while in the second it means that I witnessed how she ducked – once again, completely 
different meanings of what seems to be the same sentence! 

 
Figure 4.22 Ambiguity might result in some serious misunderstanding24 

Solution to Exercise 4.3:  
(1) In “senior managers”, “managers” is the main bit and “senior” provides further 

clarification. We ask “what type of managers?” → “senior”, so “managers” is the head and 
“senior” is the dependent. 

(2) In “recently met”, “met” is the main bit and “recently” provides further information 
about the action. We can ask “met when?” → “recently”, so “met” is the head and “recently” 
is the dependent. 

 
23 Formally, when a word has several meanings, this is called lexical ambiguity. 
24 Image credit: https://www.thoughtco.com/ambiguity-language-1692388  
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(3) In “the government”, “government” is the main bit and “the” tells us that it is some 
particular government identifiable from the context. “Government” is the head and “the” is 
the dependent. 

(4) In “talk to the government”, the overall head is “talk” – this is the action that we start 
with. “Talk” directly attaches “to”, so “to” is dependent on the head “talk”. “To” in its turn 
attaches “government”, so “to” is the head and “government” is the dependent in this pair. 
Finally, as before, “the” is the dependent of the head “government” within the pair of words 
“the government”. Figure 4.23 visualizes this chain of heads and dependents where the 
arrows explicitly show the direction of relation as before: 

 
Figure 4.23 The full chain of dependencies in “talk to the government”. Arrows show the direction of the 
dependency, from the head to the dependent 
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Author Profiling as a Machine 

Learning Task 

This chapter covers 

• Implementation of your own author (user) profiling algorithm 
• Further useful NLP techniques with NLTK and spaCy  
• Introduction into sklearn 
• Application of a new machine learning classifier, Decision Trees 

In this and the next chapter you will build your own algorithm that can identify the profile or 
even the precise identify of an anonymous author of a text based solely on their writing. As 
you will find out in the course of these two chapters, this task brings together a number of 
useful NLP concepts and techniques that were introduced in the previous chapters. You’ve 
learned that: 

• tokenizers can be applied to split text into individual words;  
• words may be meaningful, or they may simply express some function, e.g., linking 

other, meaningful words together – in this case, they are called stopwords, and for 
certain NLP applications you will need to remove them; 

• depending on their function, words are further classified into nouns, verbs, adjectives 
and so on; each of such classes is assigned a part-of-speech tag, which can be 
identified automatically with a part-of-speech tagger; 

• words of different functions play different roles in a sentence, and these roles and 
relations between words with different functions can be identified with a dependency 
parser; 

• words are formed of lemmas and stems, and you can use lemmatizers and stemmers 
to detect those. 
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You have learned how to use two NLP toolkits to perform some or all of the above 
processing steps – NLTK was first introduced in Chapter 2 and spaCy in Chapter 4. This 
chapter will further exemplify the routines with each of these toolkits and will also show how 
to combine the two together. 

Chapter 2 also presented you with an example of an NLP task, spam filtering, that is 
traditionally addressed using machine learning approaches. Here is a brief reminder, with 
Figure 5.1 visualizing the machine learning process from Chapter 2: 

 
Figure 5.1 A reminder from Chapter 2 – spam filtering using a machine learning approach 

In spam detection, texts are coming from two different sources called classes – spam and 
ham (non-spam). Each of these classes can be characterized with a distinctive use of words 
that helps users tell whether an incoming email is spam or ham, should they happen to read 
it. In a similar fashion, machines can be taught to distinguish between the two classes based 
on the words used in spam messages and filter out “bad” emails before they reach the user, 
thus saving the user precious time and effort. Machine learning provides you with a whole 
set of powerful algorithms that can learn from data how to distinguish between classes or 
how to make predictions, therefore such algorithms are widely used in NLP. That is, as soon 
as the task at hand can be presented as a clear set of classes, which can each be 
characterized with a set of distinguishable properties, you can apply a machine learning 
classifier to automatically assign instances to the relevant classes. The set of distinguishable 
characteristics that uniquely describe each of the classes are called features in the machine 
learning context, and the process of selecting which type of information represents such 
useful distinguishable characteristics is called feature engineering. 

This chapter will show you how to perform feature engineering for an NLP task. What is 
more, it will specifically focus on building a machine learning (ML) pipeline, following all the 
steps from data preparation to results evaluation. Chapter 2 relied on the use of a specific ML 
classifier, Naïve Bayes. Since Naïve Bayes is widely used in practice, many toolkits, including 
NLTK, have an implementation of this algorithm ready for your use. However, even though 
NLTK provides you with implementation of some machine learning algorithms, it is primarily 
an NLP toolkit. Therefore, in this and the next chapters you will learn how to use an ML 
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toolkit, sklearn, which will provide you with a useful set of resources and techniques to 
apply in an ML project. 

As we said, many NLP tasks can be represented as ML tasks. You need three components 
in place: 

• you should be able to define the task in terms of distinguishable classes: for example, 
spam vs. ham; 

• you should be able to tell the machine which types of information are good to use as 
features: for example, words in an email are often predictive of its class; 

• finally, you should have some labeled data at hand: for example, you may have some 
previously received normal as well as spam emails, or there may exist some open-
source dataset like Enron that we used in Chapter 2. 

This setup works well for supervised machine learning algorithms, where we know what 
the classes are and can provide the machine with the data to learn about these classes. In 
this chapter we will address a task that is well suited for both practicing your NLP skills and 
learning how to build an ML project: we will look into user or author profiling. This task helps 
you identify the profile of an author of a text based solely on their writing. Such profile may 
cover any range of characteristics including age, level of education, gender, and in some 
cases may even help you detect the precise identity of an anonymous writer. 

5.1 Understanding the task  
Let’s start with a scenario: imagine that you have received an anonymous message, and you 
are certain that the anonymous sender is actually someone you know, e.g., it is someone 
from your contacts list, with whom you have previously exchanged correspondence. Using 
NLP and ML techniques and NLTK and spaCy libraries that you’ve learned about in the 
previous chapters, build an algorithm that will help you identify who from your contacts list is 
the anonymous author, based solely on this piece of writing. To help you with this task, you 
can use all the previous messages you ever received from any of your contacts. If this 
algorithm cannot identify the author uniquely, can it at least help you narrow down the set of 
“suspects”? 

It turns out that, if you have a set of texts written previously by each of your contacts, 
you can train a machine learning algorithm to detect which of the potential authors the 
particular piece of writing belongs to. Impressive as it may seem, it relies on the idea that 
each of us has a distinctive writing style. For example, have you ever noticed that you tend 
to use “however” rather than “but” (like I do)? Or perhaps you use expressions like “well”, 
“sort of” or “you know” a lot? Have you, perhaps, noticed that you normally use longer and 
more elaborate sentences than most of your friends? All of these are peculiar characteristics 
that can tell a lot about the author and may even give away the author’s identity precisely. 
Such writing habits are also behind personalization strategies: for instance, you might notice 
that a predictive keyboard on your smartphone adapts to your personal choice of words and 
increasingly suggests words and phrases that you would prefer to use yourself anyway.  

Now, let’s look more closely into two use cases for the task of user / author profiling. 
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• Case 1: Authorship attribution. Perhaps, one of the most famous cases for authorship 
attribution is that of The Federalist Papers, which are a collection of 85 articles and 
essays written by Alexander Hamilton, James Madison, and John Jay in 1787-1788 
under the pseudonym “Publius” to promote the ratification of the United States 
Constitution.1 It is hard to underestimate the importance of these articles for the 
American history, yet at the time of publication, the authors of these articles preferred 
to hide their identities. The work of the American historian Douglass Adair in 1944 
provided some of the most widely accepted assignments of authorship in this 
collection, and it has been corroborated in 1964 by computational analysis of word 
choice and writing style. However, authorship of as many as 12 out of 85 essays in 
this collection is still disputed by some scholars, which shows that this is by no means 
an easy task! 

Another famous example of authorship attribution studies is the contested authorship 
of the works by William Shakespeare.2 For some time, a theory has been circulating 
that states that the works authored under the name of Shakespeare cover topics and 
use a writing style, which are incompatible with the social status and the level of 
education that the claimed author, William Shakespeare from Stratford-upon-Avon, 
possessed. The alternative authorship suggestions included “Shakespeare” being a 
pseudonym used by some other poet or even a whole group of authors at the time, 
with William Shakespeare himself simply acting as the cover for this true author or 
authors. Here, again, computational analysis has been used to prove that the writing 
style and the word choice in the works authored by William Shakespeare are actually 
consistent with his identity. 

These examples provide you with the historical perspective for the task, however they 
don’t tell you much about the modern application of this task. How is authorship 
attribution used these days? For a start, it has applications in security and forensics, 
where there is often a need to detect whether a particular individual is the author of a 
particular piece of writing, or whether a particular individual is who they claim they 
are, based on their writing. Another area in which authorship attribution is of help is 
fake news – a problem that has recently attracted much attention and which is 
concerned with an attempt of some individuals to spread misinformation, often in 
order to sway public opinion. As you may expect, authorship attribution is particularly 
challenging on the Web where the identity of the users can be easily hidden, so this is 
where computational methods of detecting the potential authors or detecting whether 
a set of posts are produced by the same author are of most help. 

  

 
1 https://en.wikipedia.org/wiki/The_Federalist_Papers   
2 https://en.wikipedia.org/wiki/Shakespeare_authorship_question  
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• Case 2: User profiling. We all have our particular writing styles and our preferred 
words that we tend to use more often than other people around us. What explains 
such phenomena? A lot of it comes from our background: our upbringing, education, 
profession, and environment have a significant effect on how we speak and write. In 
addition, words come in and out of fashion, so our word choice can also give away our 
age. Figure 5.2 shows how the usage of the words “awesome”, “cool” and 
“tremendous” changed over time across a range of books available through Google 
Books: note how around 1940 both “tremendous” and “cool” were used with 
approximately equal frequency, but after then the use of “tremendous” has been 
declining, while that of “cool” has been on the rise since 1970s, which can be partially 
explained by it acquiring a new meaning similar to “tremendous” and “awesome” 
themselves.3  

 
Figure 5.2 Change in word frequencies between years 1800 and 2000 according to Google Books 

Recent research shows that a number of characteristics, including age, gender, 
profession, social status, and similar traits can be predicted from the way one tweets.4 
How can this be of further use? Apart from the word choice, people of different social 
groups have different preferences along various dimensions. Suppose you are 
providing a particular service or product to a wide and diverse set of users. You don’t 
collect any personal information about them, but you have access to some of their 
writing, for instance a set of reviews about your product or a forum where they 
discuss their experience. Naturally, they may have different opinions about the 
product or service based on their personal characteristics. But, equipped with an 
algorithm that can distinguish between groups of users of different age, gender, social 

 
3 You can explore changes in the word usage with the interactive Google Books Ngram Viewer interface: https://books.google.com/ngrams/. For more 

information on how to use the interface, check https://books.google.com/ngrams/info.  
4 There are multiple publications around these topics. Examples include Preotiuc-Pietro et al. (2015) Studying User Income Through Language, Behaviour, 

and Affect in Social Media (https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138717), Preotiuc-Pietro et al. (2015) An 
analysis of the user occupational class through Twitter content  (https://www.aclweb.org/anthology/P15-1169.pdf), and Flekova et al. (2016) 
Exploring Stylistic Variation with Age and Income on Twitter (https://www.aclweb.org/anthology/P16-2051.pdf), among others. 
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status, etc. based on their writing, you can further adapt the product or service you 
provide to the needs of each of these groups. 

Now, how should you approach this task computationally? We have said in the beginning 
of this chapter that user profiling is a good example of an ML task, so let’s define the 
components: the classes, the features, and the data. 

Exercise 5.1 
• What classes are there in the authorship attribution case? 
• What classes should you distinguish between in the user profiling case? 
 

In the case of user profiling, each class can be defined based on the particular groups of 
authors considered. For example, you can represent this as a binary problem for “male” vs. 
“female” writers, or split the users into age groups, for instance 10-20, 20-30, 30-40 years 
old and so on.  

Figure 5.3 illustrates the two cases – of authorship attribution and user profiling. 

 
Figure 5.3 In the authorship attribution case, each author represents a separate class; in the user profiling 
case, each group of users (e.g., female authors and male authors) forms a separate class 

Exercise 5.2 
Next comes the question of features – what makes one’s writing style so distinctive? 
 

Finally, you need data – in this case, a collection of texts that are appropriately labeled 
with the names of the authors who produced them for authorship attribution, or with the 
groups of users for user profiling. Then you can apply an ML classifier of your choice and 
make it learn to distinguish between different authors or groups of authors based on their 
writing and types of characteristics that you identified for the algorithm as features. 
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It’s time now to define a mental model for the ML pipeline that you are going to build in 
this chapter. Figure 5.4 presents the Mental Model: 

 
Figure 5.4 Mental model for a supervised machine learning classification task 

We have discussed the first three steps of the pipeline so far: you know how to define the 
classes, the features and what the data should contain. This chapter will focus on more 
informed feature engineering for the task of authorship attribution. In addition, the last two 
steps in Figure 5.4 suggest that once you have extracted features and applied an ML 
algorithm, you may get back to the feature extraction step and expand the feature set with 
new types of features. You can also do so and redefine the feature set as well as the ML 
classifier once you have evaluated the results. 

So far, you have looked into one particular example of an ML algorithm applied to an NLP 
task – Naïve Bayes using NLTK implementation. In this chapter, we will explore in more detail 
what other classifiers are available for your use, how to apply them to language-related data, 
and crucially, how to evaluate whether a classifier of your choice with a specific set of 
features is doing a good job. 

5.2 Machine Learning pipeline at a first glance 
Let’s now go through the steps in this pipeline one by one: we will start with the question of 
what represents a good dataset for this task, and then we will proceed with building a 
benchmark machine learning model – something that is relatively straightforward and easy 
to put together. This benchmark model will set up an important point of comparison for you 
– any further model with a different set of features or a different algorithm will have to beat 
the results of the benchmark model, otherwise you will know that the task can be easily 
solved with the algorithm that you’ve tried first. Finally, we will explore the results and see 
how the pipeline can be improved to achieve increasingly better results. 

5.2.1 Original data 
In any machine learning task, data plays a crucial part: whatever algorithm you are using, 
the quality of the data decides whether the algorithm will be able to learn how to solve the 
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task. That is, if the data is of poor quality or does not fairly represent the task at hand, it is 
hard to expect any machine learning algorithm of any level of sophistication to be able to 
learn reliably from such data. This is not surprising, if you consider the following: the best 
learning algorithm known is human brain, yet even human brain can get confused if it is 
provided with conflicting and contradicting evidence. So, for both human learning and 
machine learning it is important to define the task from the start and to provide some 
illustrative examples for the instances of different classes. 

Whether you are working on the authorship attribution or on the user profiling variety of 
the task, good data is not easy to come by. Ideally, you want a set of texts written by 
different authors or separate sets of authors reliably identified as such. Let’s start with a 
simpler case: let’s use a collection of literary works produced by well-known authors to 
address authorship attribution task. There are two clear benefits to that: firstly, such an 
experiment does not violate any privacy rights of any users, as famous writers have clearly 
claimed their authorship on these pieces of writing. Secondly, texts by famous authors are 
abundant in quantity, so we can reliably find enough data representing each author (i.e., 
each class). Exercise 5.3 provides you with an example of the task we will try to solve in this 
chapter. 

Exercise 5.3 
Look at the excerpts in Figure 5.5 and try to guess, who the author of each one of these excerpts is. 
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Figure 5.5 Exercise 5.3: Who wrote these lines? 

The point of this exercise is not to test your knowledge of literary works. It is rather to 
illustrate a number of points about the task of authorship attribution. First, the word choice 
and spelling can help you a lot: in this example, Early Modern English spelling suggests that 
a piece comes from a play by Shakespeare; if there happened to be an excerpt with words 
spelled in an American spelling tradition (e.g., favorite vs. favourite, publicize vs. publicise, 
etc.), you could have attributed such an excerpt to Ernest Hemingway as the only American 
writer on the list. Secondly, you may have noticed that apart from spelling, there are no 
other obvious clues that could suggest that pieces one and three come from the same 
author, as do pieces two and four. This is what makes this task challenging, and in what 
follows you will find out whether words are the only reliable characteristic features that can 
identify the author. 

In this chapter, we will start with a simpler case of two authors, making it a binary 
classification task. First of all, we will look into how to get the data and extract the relevant 
information from it. For that, we will once again turn to NLTK: one of the useful features of 
this toolkit is that it provides you with access to a wide range of language resources and 
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datasets.5 For instance, it contains a number of literary works that are available in the 
Gutenberg project collection.6 Code Listing 5.1 shows how you can access these texts. 

Listing 5.1 Code to extract literary works from the Gutenberg project via NLTK 

import nltk 
nltk.download('gutenberg')    #A 
from nltk.corpus import gutenberg    #B 
 
gutenberg.fileids()    #C 

#A Download NLTK’s Gutenberg collection 
#B Import data from the Gutenberg collection 
#C Print out the names of the files 

The code above will print out a list of 18 files that contain literary works by 12 authors. In 
particular, the list contains the following pieces: 

['austen-emma.txt', 
'austen-persuasion.txt', 
'austen-sense.txt', 
'bible-kjv.txt',  
… 
'shakespeare-caesar.txt', 
'shakespeare-hamlet.txt', 
'shakespeare-macbeth.txt', 
'whitman-leaves.txt'] 

For instance, the first three entries correspond to Jane Austen’s Emma, Persuasion, and 
Sense and Sensibility. Despite the fact that NLTK’s interface to the Gutenberg project gives 
you access to only a handful of texts, this is enough for our purposes in this chapter. Let’s 
select two authors that we will use for classification. Jane Austen and William Shakespeare 
are a natural choice, since three pieces of writing are included in this collection for each of 
them, which means that we’ll have enough data to work with. That is, our task will be akin to 
that in Exercise 5.3: we will task ourselves with building an algorithm that can attribute a 
given sentence to Author1=“Jane Austen” or Author2=“William Shakespeare”. As you 
have learned from Exercise 5.3, there might be some helpful clues in writing such as 
particular words or characteristic spelling, yet the task is not always straightforward, so let’s 
see how successfully an ML algorithm can deal with it. In general, the main reason we are 
working with these two authors in this chapter is the availability of the data and, perhaps, in 
real life we won’t be trying to distinguish between these particular pair of authors. However, 
the techniques overviewed in this and the next chapter are applicable to the task of 
authorship identification in general and you can easily transfer them to any of your own real-
life projects. 

Although NLTK’s interface gives you access to the full texts of Emma, Macbeth, etc., it is 
sentences that we will try to attribute to authors in this chapter. Why is this more useful in 
practice? The length of the full text varies a lot across literary works, but it will most typically 

 
5 Note that, in addition to the NLTK toolkit itself, you need to install NLTK data as explained on http://www.nltk.org/data.html. Running nltk.download() 

will install all the data needed for text processing in one go; in addition, individual tools can be installed separately: e.g., nltk.download('gutenberg') 
installs the texts from the Gutenberg project available via NLTK. 

6 https://www.gutenberg.org  

170

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion
http://www.nltk.org/data.html
https://www.gutenberg.org/


©Manning Publications Co.  To comment go to  liveBook 

be a matter of hundreds of thousands or even millions of words and thousands of sentences. 
I.e., it is much longer than what you might want to classify in practice: a typical message 
that you might try to classify will not run to the length of any of the literary works, so it is 
more useful to explore which approaches will work at a sentence level. This also makes your 
task more challenging: a sentence outside of its context might be harder to attribute than a 
whole body of Macbeth. Conveniently, NLTK actually allows you to directly access the set of 
sentences from each of these works, so you don’t need to split them into sentences yourself: 
for that, just use gutenberg.sents(name_of_file). 

Now comes the point at which you need to let the algorithm know which data it may use 
to learn from. You may recall from Chapter 2 that the bit of data that is used by the 
algorithm to learn from is called training set, and the bit that is used to evaluate the results, 
i.e., test how well the algorithm can do the task, is called test set. Typically, you would want 
to provide the algorithm with more data for training, so let’s use two out of three works by 
each of the authors to train the classifier, and the third work to test it. Code Listing 5.2 
shows how to define the training and test sets for the two authors. In this code, you define 
training sets for the two authors by combining the sentences from two out of three works 
available for each of them. The test sets then contain the sentences from the third work by 
each author. You can inspect the data in both sets by printing out some of the uploaded 
sentences and the length of the sentence lists in the sets. 

Listing 5.2 Code to define training and test sets  

nltk.download('punkt')    #A 
 
author1_train = gutenberg.sents('austen-emma.txt') + gutenberg.sents('austen-

persuasion.txt')    #B 
print (author1_train)    #C 
print (len(author1_train))    #D 
 
author1_test = gutenberg.sents('austen-sense.txt') 
print (author1_test) 
print (len(author1_test))    #E 
 
author2_train = gutenberg.sents('shakespeare-caesar.txt') + gutenberg.sents( 
    'shakespeare-hamlet.txt') 
print (author2_train) 
print (len(author2_train)) 
 
author2_test = gutenberg.sents('shakespeare-macbeth.txt') 
print (author2_test) 
print (len(author2_test)) 

#A Install NLTK’s sentence tokenizer  
#B Define training sets for the two authors  
#C Inspect the data by printing out some of the uploaded sentences 
#D Print out the length of the sentence lists in the training set 
#E Initialize the test set with the sentences from the third work by the author 

The code above helps you to initialize the training set for Author1=“Jane Austen” with 
Emma and Persuasion, and the test set with Sense and Sensibility. For Author2=“William 
Shakespeare”, it uses Caesar and Hamlet for training, and Macbeth for testing. When you 
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print out sentences in each of the sets, you will get an output like the following, e.g. for the 
training set for Author1=“Jane Austen”: 

[['[', 'Emma', 'by', 'Jane', 'Austen', '1816', ']'], ['VOLUME', 'I'], ...] 

You can see that the training set is essentially a Python list. However, since 
gutenberg.sents provides you with a list of words in each sentence, the training set is in 
fact a list of lists. The very first sentence in this training set is “[Emma by Jane Austen 
1816]”, which, when split into words, becomes a Python list ['[', 'Emma', 'by', 'Jane', 
'Austen', '1816', ']']. Since the original sentence itself contains opening and closing 
brackets, similar to the Python’s convention for lists, it might look confusing at first. 

When you print out the length of the training and test sets for the two authors, you will 
find out that the statistics is as follows: 

Training set for Author1:  11499 sentences 
Test set for Author1:      4999 sentences 
Training set for Author2:  5269 sentences 
Test set for Author2:      1907 sentences 

In other words, despite the fact that we are using the same number of literary works per 
author for training and testing (two for training, one for testing), the length in terms of the 
number of sentences is not the same: Jane Austen tends to use higher number of sentences 
in her writing than William Shakespeare, which results in more than a double amount of 
training sentences available for her than for William Shakespeare (11499 vs. 5269); and the 
ratio in the test data is closer to 2.6 (4999 vs. 1907). This imbalance may seem unfortunate, 
however in a real-life ML project you are much more likely to face challenges of imbalanced 
datasets than you are to come across a perfectly balanced one, so we’ll keep things as they 
are and see what effect this uneven distribution of data has on our task in the due course. 

Before moving on, let’s run a simple statistical check to see if the two authors indeed 
have markedly different writing styles: for each literary work by each writer, let’s calculate 
the average length of words in terms of the number of characters, as well as the average 
length of sentences in terms of the number of words. Finally, let’s also calculate the average 
number of times each word is used in a text by an author. You can estimate this number as 
the ratio of the length of the list of all words used in text to the length of the set of words, as 
a Python set will contain only unique entries. For example, a list of words for a sentence like 
“On the one hand, it is challenging; on the other hand, it is interesting” contains 17 entries 
including punctuation marks, but a set contains 11 unique word entries,7 therefore the 
proportion for this sentence equals to 17/12=1.42. This proportion shows how diverse one’s 
vocabulary is: the higher the proportion, the more often the same words are repeated again 
and again in text. For comparison, in a sentence like “It is an interesting if a challenging 
task” each word is only used once, so the same proportion is equal to 1. Code Listing 5.3 
presents the code that will allow you to apply these metrics to any texts of your choice. In 
this code, you use NLTK’s functionality with gutenberg.raw(work) for all characters in a 
literary work, gutenberg.words(work) for all words in a work, and gutenberg.sents(work) 

 
7 The list includes all words from the sentence: [“On”, “the”, “one”, “hand”, “,”, “it”, “is”, “challenging”, “;”, “on”, “the”, “other”, “hand”, “,”, “it”, “is”, 

“interesting”], while the set includes only non-repeating ones: [“on”, “the”, “one”, “hand”, “,” , “it”, “is”, “challenging”, “;”, “other”, “interesting”]. 
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for all sentences. You estimate the number of unique words as the length of Python set on 
the list of all words in a work, calculate the average length of words in terms of the number 
of characters and the average length of sentences in terms of the number of words, and, 
finally, estimate the uniqueness of one’s vocabulary as the proportion of the number of all 
words to the number of unique words. 

Listing 5.3 Code to calculate simple statistics on texts  

def statistics(gutenberg_data): 
    for work in gutenberg_data: 
        num_chars = len(gutenberg.raw(work)) 
        num_words = len(gutenberg.words(work)) 
        num_sents = len(gutenberg.sents(work))    #A 
        num_vocab = len(set(w.lower() for w in gutenberg.words(work)))    #B 
        print(round(num_chars/num_words),    #C 
              round(num_words/num_sents),   #D 
              round(num_words/num_vocab),   #E 
              work) 
         
gutenberg_data = ['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', 
                 'shakespeare-caesar.txt', 'shakespeare-hamlet.txt', 'shakespeare-

macbeth.txt'] 
statistics(gutenberg_data)    #F 

#A Use NLTK’s functionality to calculate statistics over characters, words, and sentences 
#B Estimate the number of unique words as the length of Python set on the list of all words in a work 
#C Calculate the average length of words in terms of the number of characters 
#D Calculate the average length of sentences in terms of the number of words 
#E Calculate the uniqueness of one’s vocabulary 
#F Apply this set of measures to any texts of your choice 

This code will return the following statistics for our selected authors and the set of their 
literary works: 

5 25 26 austen-emma.txt 
5 26 17 austen-persuasion.txt 
5 28 22 austen-sense.txt 
4 12 9 shakespeare-caesar.txt 
4 12 8 shakespeare-hamlet.txt 
4 12 7 shakespeare-macbeth.txt 

As you can see, there is some remarkable consistency in the way the two authors write: 
William Shakespeare tends to use, on average, shorter words than Jane Austen (4 characters 
in length against 5 characters), while he is also consistent with the length of his sentences 
(12 words long, on the average), and each word is used 7 to 9 times in each of his works. 
Jane Austen prefers longer sentences of 25 to 28 words on the average and allows herself 
more repetition. There is actually a considerable diversity in numbers here: in Persuasion, a 
word is, on the average, used 17 times across the whole text of the work, while in Emma the 
average of a single word usage reaches 26 times. Note that such quantitative differences in 
writing styles can be used by your algorithm when detecting an anonymous author. 
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5.2.2 Testing generalization behavior 
One of the values of machine learning is its ability to generalize from the examples the 
algorithm sees during training to the new examples it may see in practice. This distinguishes 
learning from memorizing the data: for instance, simply memorizing that “Not so happy, yet 
much happyer” is a sentence written by Shakespeare won’t help one recognize any other 
sentences by Shakespeare but learning a particular writing pattern (“y” in words like 
“happyer”) might help recognizing other examples. Therefore, the real test of whether a 
machine learning algorithm learns informative patterns rather than memorizes data should 
look into its generalization behavior. That is also why it is important to separate training and 
test data and make sure there is no overlap between the two.  

So far, you have set aside training data consisting of two out of three works by each 
author, and you put the third work by each of the authors into the test set. Since the training 
and test sets contain sentences from different literary works (e.g., Caesar and Hamlet vs. 
Macbeth), the only property that relates them to each other is the same authorship. 
Therefore, they should be well suited for testing authorship identification algorithms: if any 
set of features is able to distinguish between authors in the test set using an algorithm that 
is trained on the training set, this set of features must capture something related to the 
authors themselves as there is otherwise nothing else in common between the two sets of 
data. 

Now, how do you know that the set of features are indeed capturing the properties that 
pertain to the authors’ writing styles? One way to tell whether the classifier is capturing 
useful information is to measure its performance under different settings. In Chapter 2 we 
talked about the ways of evaluating the performance of a machine learning classifier on a 
binary task of spam detection, and the measure we used was accuracy, which reflects the 
proportion of correctly classified examples. In the authorship identification case, accuracy 
would show the following: 

Accuracy = (number of sentences by Jane Austen that are classified as such + 
            number of sentences by William Shakespeare that are classified as such) /  
            total number of test sentences 

We are going to use accuracy for our task in this chapter as well, however we will look in 
more detail into the advantages and disadvantages of using this measure. Let’s start with the 
following question:  

Question 1 
You have trained the classifier on the training data with some specific set of features, then you tested it on the test 
data, and you got 80% accuracy. This means that 80% of the sentences in the test set are correctly identified with the 
author that wrote them. Does that mean that you have come up with a powerful set of features that can distinguish 
reliably between one author and another?  
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On the face of it, 80% accuracy seems to be a good performance value, however it 
doesn’t really reflect whether the set of features you applied are really doing the job of 
distinguishing between the two authors well – for that, you need some point of comparison. 

One such point of comparison is looking into how the same algorithm with the same 
features performs on a portion of the data that has more obvious similarities with the data 
the algorithm is trained on. For instance, recall how you split the data into training and test 
sets in Chapter 2 – see a refresher in Figure 5.6:  

 
Figure 5.6 Reminder of the data splitting routine into training and test sets 

In this case, both training and test sets come from the same data source. In the spam 
detection example in Chapter 2, you shuffled the data and split it in training and test sets 
using one particular folder – enron1/. Note that the training and test sets are still separate 
and non-overlapping, however the data itself might have additional properties that would 
make the two sets similar in some other ways. For example, if you attempted Exercise 2.7 
from Chapter 2 and applied the spam filtering algorithm trained on enron1/ to emails from 
the folder enron2/, you might have noticed a drop in performance which we described as 
“One man’s spam may be another man’s ham”. In other words, the data in the two folders 
originated with different users, and what was marked as ham by one of them might have 
been considerably different from what another one marked as ham. 

By analogy, we are going to use a similar setup with the authorship identification data: 
we are going to first train and test our algorithm on different subsets of the data originating 
from the same literary works, and then run a final test on completely different data. To 
achieve that, let’s apply shuffling to the set of texts that are currently labeled as training and 
split it into “training” and “test” bits. Figure 5.7 visualizes this data flow: 
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Figure 5.7 By testing classifier’s performance on the data from the same source (pre-test) and from a different 
source (test) you can tell whether the classifier generalizes well to new test data 

Here is what we are going to do with the authorship data: 

• First, we will shuffle sentences in the original training set consisting of Emma and 
Persuasion by Jane Austen, and Caesar and Hamlet by William Shakespeare. 

• Next, we will set aside 80% of the sentences shuffled this way for the actual training 
set that you are going to use in the rest of this chapter to train the classifiers. 

• Finally, we will use the other 20% to pre-test the classifier – for this reason, let’s call 
this set a pretest set (this naming convention will also allow us to avoid confusing the 
final test set with the intermediate pretest set). 

Note that the training and pretest sets contain non-overlapping sentences, so it would be 
legitimate to train on the training set and evaluate the performance of the classifier on the 
pretest set. The data, however, even more obviously comes from the same sources: for 
instance, the sentences in the training and pretest sets will likely contain mentions of the 
same characters and will follow the same topics. This is the main point of setting such a 
pretest dataset: by testing on the set that comes from the same source as the training data 
and comparing the performance to that achieved on the data from a different test set you 
should be able to tell whether the algorithm generalizes well. 
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How to tell whether your algorithm generalizes well: 
If the results on both pretest and test sets are similarly good, and you don’t observe a major drop in performance 
from pretest to test set, this means that the classifier captures the information pertaining to the authors and their 
writing styles.  

 
If the results on the pretest set are much better than those on the test set, you should conclude that the classifier 

learns something about the data itself rather than about the authors.  
 

Now, there is one more aspect to take into account: as we said before, the data in the 
two classes is not equally distributed, with Author1=“Jane Austen” having twice as many 
sentences in the original training set than Author2=“William Shakespeare”. When you split 
this data into actual training and pretest sets, you should take care of preserving these 
proportions as close to the original distribution as possible, since if you split the data 
randomly, you might end up with even less equally distributed classes and your test results 
will be less informative. In machine learning terms, a data split which preserves the original 
class distribution in the data is called stratified, and the approach, which allows you to 
shuffle and then split the data in such way is called stratified shuffling split. It is advisable to 
apply stratified shuffling split whenever the classes in your data are distributed unequally, so 
you should apply this technique here. 

It’s time now to introduce sklearn – a very useful machine-learning toolkit that provides 
you with the implementation of a variety of machine learning algorithms, as well as a variety 
of data processing techniques.8 The first application we will use this toolkit for is to perform 
stratified shuffling on the data. Code Listing 5.4 shows to you how to do that. You start by 
importing random, sklearn, and sklearn’s function StratifiedShuffleSplit. Then, you 
combine all sentences into a single list all_sents, keeping the author label. The total length 
of this list should equal 16,768 (11,499 sentences for Jane Austen + 5,269 for William 
Shakespeare). You keep the set of labels (authors) as values – it is the distribution in these 
values that you should be careful about. Next, you initialize the split as a single stratified 
shuffle split (thus, n_splits=1), setting 20% of the data to the pretest set (thus, 
test_size=0.2). To make sure the random splits you are getting from one run of the 
notebook to another are the same, you need to set the random state (i.e., random seed) to 
some value (e.g., random_state=42). The split defined in this code runs on the all_sents 
data, taking care of the distribution in the values, and you keep the indexes of the entries 
that end up in the training set (train_index) and pretest set (pretest_index) as the result 
of this split. Finally, you store the sentences with the correspondent indexes in 
strat_train_set list (for “stratified training set”) and strat_pretest_set (for “stratified 
pretest set”). 
  

 
8 https://scikit-learn.org/stable/  
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Listing 5.4 Run StratifiedShufflingSplit on the data 

import random 
import sklearn 
from sklearn.model_selection import StratifiedShuffleSplit   #A 
 
all_sents = [(sent, "austen") for sent in author1_train] 
all_sents += [(sent, "shakespeare") for sent in author2_train] 
print (f"Dataset size = {str(len(all_sents))} sentences")    #B 
 
values = [author for (sent, author) in all_sents]    #C 
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)    #D 
strat_train_set = [] 
strat_pretest_set = [] 
for train_index, pretest_index in split.split(all_sents, values):    #E 
    strat_train_set = [all_sents[index] for index in train_index] 
    strat_pretest_set = [all_sents[index] for index in pretest_index]    #F 

#A Add imports 
#B Combine all sentences into a single list all_sents, keeping the author label 
#C Keep the set of labels (authors) as values 
#D Initialize the split as a single stratified shuffle split with 20% of the data in the pretest set 
#E The split runs on the all_sents data, taking care of the distribution in the values 
#F Store the sentences with the correspondent indexes in strat_train_set and strat_pretest_set 

Let’s now check that, as a result of the stratified shuffling split, you get the data that is split 
into two subsets following the distribution in the original dataset. That is, if in the original 
data Jane Austen is the author of around 2/3 of all sentences, after shuffling the data and 
splitting it into training and pretest sets, both should still have around 2/3 of the sentences 
in them written by Jane Austen. Code Listing 5.5 shows how to check if the proportions in 
the data are preserved after shuffling and splitting. You start by defining a function 
cat_proportions to calculate the proportion of the entries in each class (category) in the 
given dataset data. Then, you apply this function to the three datasets: the original 
“training” data (marked here as “overall”), the training subset that you set aside for actual 
training (stratified train), and the pretest subset (stratified pretest), that were both created 
using the code from the Code Listing 5.4. Finally, you use Python’s print out routines to 
produce the output in a formatted way – this code is similar to what you used to print 
outputs in a tabulated way in Chapter 4. 
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Listing 5.5 Check the proportions of the data in the two classes 

def cat_proportions(data, cat):    #A 
    count = 0 
    for item in data: 
        if item[1]==cat: 
            count += 1 
    return float(count) / float(len(data)) 
 
categories = ["austen", "shakespeare"] 
rows = [] 
rows.append(["Category", "Overall", "Stratified train", "Stratified pretest"])    #B 
for cat in categories: 
    rows.append([cat, f"{cat_proportions(all_sents, cat):.6f}",  
                f"{cat_proportions(strat_train_set, cat):.6f}", 
                f"{cat_proportions(strat_pretest_set, cat):.6f}"]) 
 
columns = zip(*rows) 
column_widths = [max(len(item) for item in col) for col in columns] 
for row in rows: 
    print(''.join(' {:{width}} '.format(row[i], width=column_widths[i])  
                  for i in range(0, len(row))))    #C 

#A Calculate the proportion of the entries in each class (category) in the given dataset data 
#B Apply this function to the three datasets 
#C Use Python’s print out routines to produce the output in a formatted way 

The code above produces the following output, printed in a tabulated format: 

Category     Overall   Stratified train  Stratified pretest 
austen       0.685771  0.685776          0.685748 
shakespeare  0.314229  0.314224          0.314252  

In other words, this confirms that the class proportions are kept approximately equal to 
the original distribution: in the original data, around 68.6% of the sentences come from Jane 
Austen’s literary works, and 31.4% from William Shakespeare’s plays. Quite similarly to that, 
with minor differences in the 5th and 6th decimal values, the class distributions in the 
stratified training and pretest sets are kept at 68.6%–31.4% level. 

With the code from Code Listing 5.4, you coupled sentences with the names of the 
authors that produced them and stored them in the all_sents structure that you later used 
to create your stratified training and pretest sets. Let’s use a similar approach and create the 
test_set structure as a list of tuples, where each tuple maps a sentence to its author. Note 
that the code in Code Listing 5.6 is very similar to that in Code Listing 5.4: 

Listing 5.6 Code to create the test_set data structure 

test_set = [(sent, "austen") for sent in author1_test] 
test_set += [(sent, "shakespeare") for sent in author2_test]    #A 

#A Create a list test_set and store tuples mapping sentences to the author names in it 

It would be good now to check the class distribution in the test set as well. 
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Exercise 5.4 
Check class distributions in the test set modifying the code from Code Listing 5.5 appropriately. 
 

5.2.3 Setting up the benchmark 
Now that the data is prepared, let’s run a classifier to set up a benchmark result on this task. 
Which classifier and which set of features should you choose for such a benchmark? The rule 
of thumb is: select a simple and straightforward approach that you would find easy to 
implement and apply to the task. In Chapter 2, when you implemented your first NLP / ML 
approach for spam filtering, you didn’t apply any feature engineering – you simply used all 
words in the emails as features that can potentially distinguish between the classes, and 
you’ve got some reasonably good results with those. Let’s use all words from the training set 
texts by the two authors for the benchmark authorship attribution model: after all, we said 
that we all have our favorite words that we tend to use more frequently than others around 
us, so there is a lot to be learned from the word choice that each writer makes. As for the 
classifier, the only ML algorithm that you’ve used so far is Naïve Bayes, which is a reasonable 
choice here, too: it is easy to apply, it is highly interpretable, and, despite its name, it often 
performs well in practice. 

Let’s briefly remind ourselves how feature extraction from Chapter 2 works. You start 
with data structures strat_train_set, strat_pretest_set, and test_set – e.g., Figure 5.8 
visualizes such a data structure, using strat_train_set as an example. Each of these 
structures is stored as a Python list of tuples that you created in Code Listings 5.4 and 5.6. 

 
Figure 5.8 Visualization of the data structures with sentences and features mapped to labels 
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The first element in each tuple corresponds to a sentence from a data set: e.g., you can 
access it as strat_train_set[i][0], where i is the index of any of the sentences from the 
stratified training set, that is a number between 0 and the size of the data set. In the toy 
example in Figure 5.8,9 strat_train_set[0][0] corresponds to “It is yet too early in life …”, 
and strat_train_set[2][0] to “Not so happy, yet …”. 

The second element corresponds to the label assigned to the sentence in the data set: 
e.g., you can access it as strat_train_set[i][1], where i is the same index pointing to the 
instance. In the toy example in Figure 5.8, strat_train_set[0][1] corresponds to “austen” 
and strat_train_set[2][1] to “shakespeare”. 

To extract features from each instance in these data structures, you need to convert 
sentences into Python dictionaries that map each word present in a sentence to a True flag 
signifying its presence. This is the way NLTK’s Naïve Bayes implementation defines feature 
representation: all words that are actually present in a sentence will receive a True flag, and 
all words not present in the sentence (but present in other sentences in the training data) 
will implicitly receive a False flag. For example, in train_features[0][0] words “It”, “is” 
and “yet” will all be flagged as True, because they occur in this sentence, while words like 
“Not”, “so”, “happy” and others, not present in this sentence, will all be implicitly flagged as 
False. 

The new data structures train_features, pretest_features, and test_features will 
still be Python lists of tuples, but this time each tuple will map a dictionary of features to the 
author label. For instance, in the toy example from Figure 5.8 train_features[0][0] will 
return {It:True, is:True, yet:True, too:True, early:True, in:True, life:True, …}, and 
train_features[2][0] – {Not:True, so:True, happy:True, ,:True, yet:True, …”}, while 
train_features[0][1] will return “austen”, and train_features[2][1] – “shakespeare”. 

Code Listing 5.7 provides a reminder about how you can extract words as features from 
the data sets. In this code, you set presence flag to ‘True’ for each word in text. As a result, 
the code returns a Python dictionary that maps all words present in a particular text to ‘True’ 
flags. Next, you extract features from training and pretest sets. Now train_features and 
pretest_features structures store lists of tuples, where word features rather than whole 
sentences are mapped to the authors’ names. Finally, it’s good to run some checks to see 
what the data contains: for instance, you can print out the length of the training features list, 
the features for the first entry in the training set (indexed with 0), as well as any other entry 
of your choice (for example, the 101st entry in the code). 
  

 
9 It is a “toy” example, since the sentences from Figure 5.8 do not necessarily correspond to the order in which they are stored in the actual datasets, so 

don’t get alarmed if you get different sentences returned by the code. 
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Listing 5.7 Code to extract words as features 

def get_features(text):  
    features = {} 
    word_list = [word for word in text] 
    for word in word_list: 
        features[word] = True 
    return features    #A 
 
train_features = [(get_features(sents), label) for (sents, label) in strat_train_set] 
pretest_features = [(get_features(sents), label) for (sents, label) in strat_pretest_set]    

#B 
 
print(len(train_features)) 
print(train_features[0][0]) 
print(train_features[100][0])    #C 

#A For each word in text, set presence flag to ‘True’ and, in the end, return a Python dictionary 
#B Extract features from training and pretest sets 
#C Run some checks to see what the data contains 

This code should tell you that the length of the train_features list is 13,414 – this is 
exactly how many sentences were stored in the training set after stratified shuffled split. 
Now each of these sentences is converted to a dictionary of features and mapped to the 
author label, but the total number of these entries stays the same. The code will also print 
out the dictionary of features for the first entry in the training set (thus indexed with 0): 

{'Pol': True, '.': True} 

This sentence comes from William Shakespeare, so printing out train_features[0][1] 
should return “shakespeare” as the label. Running print(train_features[100][0]) will 
return: 

{'And': True, 'as': True, 'to': True, 'my': True, 'father': True, ',': True, … 'need': 
True, 'be': True, 'suspected': True, 'now': True, '.': True} 

This is the 101st entry in the training set that corresponds to a sentence from Jane 
Austen, so printing train_features[100][1] should return “austen”. 

Let’s now use the Naïve Bayes classifier from the NLTK suite, train it on the training set 
and test it on the pretest set. The code in Code Listing 5.8 should remind you of the code 
you ran in Chapter 2 – this is essentially the same routine. 

Listing 5.8 Code to train the Naïve Bayes classifier on train and test on pretest set 

from nltk import NaiveBayesClassifier, classify    #A 
 
print (f"Training set size = {str(len(train_features))} sentences") 
print (f"Pretest set size = {str(len(pretest_features))} sentences") 
classifier = NaiveBayesClassifier.train(train_features)    #B 
 
print (f"Accuracy on the training set = {str(classify.accuracy(classifier, 

train_features))}") 
print (f"Accuracy on the pretest set = {str(classify.accuracy(classifier, 

pretest_features))}")    #C 
classifier.show_most_informative_features(50)    #D 
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#A Import the classifier of your choice – NaiveBayesClassifier in this case 
#B Train the classifier on the training set 
#C Evaluate the performance on both training and pretest sets and print out the results 
#D Print out the most informative features 

The output that this code produces will look like the following: 

Training set size = 13414 sentences 
Pretest set size = 3354 sentences 
Accuracy on the training set = 0.9786789920978083 
Accuracy on the pretest set = 0.9636255217650567 
Most Informative Features 
been = True           austen : shakes =    257.7 : 1.0  
King = True           shakes : austen =    197.1 : 1.0 
thou = True           shakes : austen =    191.3 : 1.0 
… 

This tells you that there are 13,414 sentences in the training set and 3,354 in the pretest 
set. The accuracy on both sets is pretty similar: approximately 0.98 on the training data and 
0.96 on the pretest. That is, the classifier trained on the sentences in the training portion of 
the data learns how to distinguish between the two authors in the pretest portion of the 
data, too. The author-specific characteristics that the classifier learns can be seen in the list 
of the most informative features it relies upon: for Shakespeare, these include words like 
“King”, “Lord”, “Tis”, “ere”, “Mark”, while for Austen, they include “she”, “father”, “mother”, 
“brother” and “husband”, among others. Note that the printout above only includes the first 
3 lines of the output, but you can see the full list of the top 50 most informative features 
printed out in the Jupyter notebook.  

So far, so good – looks like the classifier learned to distinguish between the two authors 
with very high, almost perfect accuracy! The small drop in performance between the training 
and pretest sets suggests that features are mostly portable between the two sets. However, 
remember that both training and pretest sets cover sentences that come from the same 
sources – the same set of literary works for the two authors. The real test of generalization 
behavior is to run the classifier on the test set. Code in Listing 5.9 does exactly that. 

Listing 5.9 Code to test the classifier on the test set 

test_features = [(get_features(sents), label) for (sents, label) in test_set] 
print (f"Test set size = {str(len(test_features))} sentences") 
print (f"Accuracy on the test set = {str(classify.accuracy(classifier, test_features))}")   

#A 

#A Test the classifier on the test set and print out the results 

The code above returns the following results: 

Test set size = 6906 sentences 
Accuracy on the test set = 0.895742832319722 

This is still quite good performance, however, note that the drop in accuracy is 
considerable: the accuracy drops from over 0.96 to below 0.90. To help you appreciate the 
difference in performance on these data sets, Figure 5.9 visualizes this drop in accuracy. To 
make the results more salient, it puts them on the scale from 68% (remember that the data 
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is distributed across the two classes as 68.6%–31.4%, with over 68% of the sentences 
originating with Author1=“Jane Austen”, so 68.6% defines the lower bound on your 
classifier’s performance) to 100% – an accuracy, which would be returned should you 
succeed in building a perfect classifier for this task (thus, 100% is the upper bound on 
performance). 

 
Figure 5.9 Drop in accuracy between training and pretest sets on the one side and test set on the other 

Before you read on, try answering Question 2: 

Question 2 
You have trained the classifier on the training data using words as features, and then you tested it on the pretest data 
that comes from the same source and on the test data that comes from a different source. Accuracy on training and 
pretest sets is quite similar, however you notice a considerable drop in performance on the test data. What does it 
suggest about the algorithm and / or your selection of features?  
 

We said before that comparative drop in performance for the classifier tested on a data 
coming from a different source suggests that it might not generalize well to the new data. In 
practice this means that it might have learned, or memorized something about the training 
data itself, rather than learned something useful about the task at hand. Words are strong 
features in many NLP tasks, however unfortunately they often tend to capture one particular 
property of the language data – the selection of topics. For instance, Code Listing 5.8 shows 
some of the most informative features for the training data. They include not only the 
specific words that are used by the authors due to their personal choice (e.g., “Tis” for 
William Shakespeare that you will not see in the works of Jane Austen), but also topics of the 

184

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

literary works: the abundance of family terms like “father”, “mother” and “husband” as well 
the presence of “she” as one of the most informative features in the works of Jane Austen 
clearly shows that she wrote about family affairs and marriage prospects. At the same time, 
“Mark” as one of the most informative features for William Shakespeare simply points to one 
of the characters. 

The difference between the training and pretest data on the one hand and the test data 
on the other hand is that these sets contain references to different characters and might also 
discuss, even if slightly, different topics. It might be true that certain authors stick to the 
same selection of subjects throughout their lives, but in reality, one cannot guarantee that a 
selection of words that describe, for example, only family affairs and marriage prospects 
would be a reliable set of features to identify the same author in a different testing scenario. 
That is, the drop in performance in our example already suggests that words do not provide 
you with a reliable and fully generalizable set of features. If you test your classifier on a 
different literary work, the performance may drop even further. Can you do better than that 
and find features that identify the author beyond specific topics and characters names, i.e., 
based on their writing style specifically? To find out if it’s possible to do that, let’s step away 
from the benchmark model and try to solve the task using a different set of features.  

Before we embark on the quest for finding such generalizable features, here is one more 
disadvantage of relying on words too much: there are as many as 13,553 various words10 in 
the training set covering these two authors. This is a large feature space; however, each 
particular sentence will only use a handful of these features – recall that an average 
sentence length for Jane Austen is 28 words at most, and for William Shakespeare it is 12 
words only. This means that the feature set is very sparse: the algorithm relies on 
comparison of words occurring across the sentences, but despite the fact that there are 
many words in total, only a few of them occur repeatedly in the sentences to help the 
algorithm decide on the class. This means that a lot of information is stored unnecessarily. 
This is not a big problem for Naïve Bayes that can deal with such sparse features, but it will 
prevent you from efficiently applying some other algorithms. Application of a broader set of 
algorithms is a topic covered by the next section. 

5.3 A closer look at the machine learning pipeline 
Let’s revise what you have done so far: you’ve set a benchmark applying a particular set of 
features (words) and a particular classifier (Naïve Bayes in the NLTK implementation) to the 
binary task of authorship attribution. Figure 5.10 summarizes these steps by filling in the 
details into the mental model for this chapter that we formulated earlier in Figure 5.4: 

 
10 Since words haven’t been converted to lowercase yet, this number includes different versions of same words, e.g., “King” as well as “king”. 
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Figure 5.10 Steps of the Machine Learning pipeline implemented so far 

Now it’s time to step back, revise your approach to the features, try to tackle this task 
with a different classification algorithm, and compare the results to the benchmark model. 
Let’s start with a new classification algorithm. 

5.3.1 Decision Trees classifier basics 
When spaCy was introduced in the previous chapter, we said that it is beneficial to put 
several toolkits under your belt, as it broadens your perspective and provides you with a 
wider choice of useful techniques. The same goes for the selection of machine learning 
approaches – in this section you will learn how your second classification algorithm, 
Decision Trees classifier, works. It takes a different approach to the learning process: 
whereas Naïve Bayes models the task in terms of how probable certain facts are based on 
the previous observations in the training data, Decision Trees classifier tries to come up 
with a set of rules that can separate instances of different classes from each other as clearly 
as possible. Such rules are learned on the training data, and then applied to the new, test 
instances. Like Naïve Bayes, Decision Trees classifier is highly interpretable. At the same 
time, conceptually it is quite different from Naïve Bayes. For these reasons, we are looking 
into this classifier in this chapter. 

Let’s start with a practical example: in Chapter 2, we talked about classification of 
vehicles into different types based on a small number of features, for instance, availability of 
an engine and the number of wheels. Suppose that your dataset contains just four classes – 
2-wheeled bicycles, 2-wheeled motorcycles, 4-wheeled cars, and 6-wheeled trucks. See 
Figure 5.11 for visualization: 
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Figure 5.11 Vehicle classification task with 4 classes 

One way, in which you can learn to separate four classes in this data, is to first split it by 
the availability of an engine, i.e., by asking “Is it a motorized vehicle?”. We will call such a 
question a decision rule. This will help you to set bicycles vs. all motorized vehicles apart. 
Next, you can apply a set of decision rules based on the number of wheels, e.g., by asking 
“Are there 2 wheels?”, “Are there 4 wheels?”, “Are there 6 wheels?”, and so on, and 
gradually separating each of the motorized vehicles from the rest.11 Figure 5.12 visualizes a 
decision tree that includes a sequence of such decision rules: 

 
11 These rules don’t have to include exact numbers and may instead cover bands of values: depending on the task, it is possible to formulate the rules as 

“Are there 2 or less wheels?”, “Are there 6 or more wheels?”, and so on.  
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Figure 5.12 A decision tree that applies a sequence of 3 rules to separate instances of 4 classes 

Is this the only possible sequence of rules that you can apply to separate instances of the 
four classes in this data? Take a look at Exercise 5.5. 

Exercise 5.5 
Are there other sequences of rules that you can apply to separate the instances in these four classes? Hint: You can 
come up with a different set of rules altogether, or you may try applying the same rules in a different order. 
 

Let’s discuss the solution together. In fact, there are multiple rules you can formulate, 
and there are, consequently, multiple orders in which you can apply them to the data. For 
instance, Figure 5.13 demonstrates a tree built using a different sequence in the same set of 
questions: 
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Figure 5.13 An alternative decision tree using the same set of 3 questions in a different order 

Are the trees in Figures 5.12 and 5.13 equally good or is one better than another? The 
tree in Figure 5.12 is “taller” – there are 3 levels at which the rules have to be applied; at 
the same time, the question on the first level successfully separates one of the classes 
(bicycles) from the rest of the data. The tree in Figure 5.13 is a bit “flatter” – it only has 2 
levels. Each level is binary-branching, and one needs to apply further rules to separate the 
classes under each branch. However, both trees eventually arrive at the correct solution, as 
the four classes are clearly separated from each other: the terminal (lower) leaves of the 
tree each contain instances of one class only. 

Let’s now discuss how the Decision Trees classifier decides which tree to build. 

5.3.2 Evaluating which tree is better using node impurity 
Generally, Decision Trees classifier uses training data to do two things: 

• come up with a set of rules, and 
• figure out in which order it is best to apply them. 

The notion of “best” here means the following: among all available rules at each step, the 
classifier aims to select the one that will produce the cleanest, purest separation of the 
classes at the following nodes. The degree of purity (or impurity) of the data separation in 
the node can be measured quantitatively, and there are a number of measures that are used 
in practice. For instance, suppose you have applied a rule and ended up with a leaf that 
contains instances of one class only – this is a perfect case, in which a node with the purest 
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data is produced. If you introduce some measure of purity, in this case you can assign such a 
leaf the maximum value, for example a value of 1. At the same time, if you applied a rule 
and ended up with a node that covers examples from several classes, its purity value should 
be lower than 1. Now a bit of heads up: in practice, algorithms often aim to minimize the 
impurity of the nodes rather than to maximize the purity (this is just a convention, as the 
two measures are really two sides of the same coin). To convert a purity measure into an 
impurity measure, just subtract the purity value from its maximum possible value: if a 
node’s purity value is 1, its impurity value is 0; and if a node’s purity value is less than 1 
then its impurity value is larger than 0. The goal of the classifier is then to select a rule that 
produces nodes with lowest impurity – e.g., with an impurity of 0 in the ideal scenario.  

Let’s look at our examples from Figure 5.12 again. Suppose you had a set of 100 
motorbikes, 100 bicycles, 100 cars and 50 trucks. To help you visualize this situation, let’s 
say that each vehicle in this set is represented with its toy model, so you have 100 toy 
bicycles, 100 toy motorbikes, 100 toy cars, and 50 toy trucks. Let’s now imagine that when 
you apply a decision rule and it separates the vehicles into nodes, you put the correspondent 
toy models of the vehicles into separate boxes. For instance, you apply a rule “Is it a 
motorized vehicle?” to this set and it puts 100 bicycles (and none of the other vehicles) 
under the node on the left, as Figure 5.12 shows. Therefore, you put all of the 100 toy 
bicycles in a single box. This rule also puts 250 of the other vehicles under the node on the 
right in Figure 5.12, so you, too, put all the other toy models in the second box. This is what 
your first box with the contents of the leftmost node from Figure 5.12 contains, if you used 
array notation to represent it: 

    num(motorbikes)    num(bicycles)    num(cars)    num(trucks) 
   [          0              100              0            0        ] 

Now suppose you blindly selected one instance of a vehicle from this node – that is, you 
blindly pick a toy model of a vehicle from the first box. What type would that vehicle be? 
Since you know that all 100 examples under this node (and in this box) are bicycles, with a 
100% certainty you will end up selecting a bicycle every time you blindly pick a vehicle from 
this node and this box. At the same time, your chances of picking a vehicle of any other type 
from this node are equal to 0. That is, with a 100% certainty, or probability, you would 
expect to select a bicycle from this node, and with a 0% probability you would expect to get 
anything else. 

We discussed a notion of probabilities before, for example, in Chapter 2. This chance of 
selecting a vehicle of a particular type when you blindly (or randomly) pick an instance from 
a node is exactly what we call a probability of selecting a vehicle of a particular type. It is 
estimated as the proportion of instances of a particular class among all vehicles under a 
particular node. For brevity, let’s call this probability p, and denote the node that we are 
talking about left. Table 5.1 shows how you can estimate class probabilities for this node, 
using class to denote a type of vehicle in the set of {motorbikes, bicycles, cars, trucks}: 
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Table 5.1 Probability estimation for the four classes in the left node (first box) 

 num(class) total(left) pclass,left 

motorbikes 0 100 0/100 = 0 

bicycles 100 100 100/100 = 1 

cars 0 100 0/100 = 0 

trucks 0 100 0/100 = 0 

Now, to estimate how impure this node is, you need one more component: the measure of 
impurity tries to strike the balance between the chances of picking an instance of a particular 
class and the chances that this node contains instances of class(es) other than this particular 
one. Let’s turn to our boxes and toy models metaphor again: as we said, if you selected a 
vehicle from the first box (or left node) blindly, this vehicle will always be a bicycle. Suppose 
you blindly picked a vehicle out of the first box, and naturally expected to see a bicycle. 
What are the chances that when you check what toy model you got it turns out to actually be 
something other than a toy bicycle? 

This might sound trivial – haven’t we said earlier that the chances of picking anything 
else from this box are 0, since there is nothing other than bicycles in this box? That’s exactly 
right, and this argument might seem repetitive to you precisely because the left node is an 
example of a pure node. If you were to discuss the contents of this node (or the first box, for 
that matter) with someone else, it might look like what Figure 5.14 shows: 

 
Figure 5.14 Left node is an example of a pure node, so there are no chances of selecting anything else 

To summarize, whenever you select anything from this node, it is a bicycle; and 
whenever you select a bicycle from this node, you can be sure about this instance’s class. 
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This is because the classifier put nothing else under this node. You might then not find it 
surprising that the probability that the node contains instances of class(es) other than the 
class in question equals (1 – pclass,node). Table 5.2 lists the probabilities for all the classes in 
the left node: 

Table 5.2 Summary of all class probabilities in the left node (first box) 

 pclass,left 1 – pclass,left 

motorbikes 0 1 

bicycles 1 0 

cars 0 1 

trucks 0 1 

Finally, let’s put these two components together. For each node, an impurity measure 
iterates over all classes in the dataset and considers how probable it is to randomly select an 
instance of a particular class from this node and, at the same time, how probable it is in this 
case that the instance is actually of any other class than the expected one. Put another way, 
we are estimating how probable it is that the classifier made a mistake by putting instances 
of other classes under the same node. Whenever we are talking about a probability of two 
things happening at the same time, in mathematical terms we mean multiplication. So, to 
derive the final measure of impurity for the left node, let’s apply the following equation: 

Impurity_of_node =  
sum_over_all_classes(probability_of_class_under_node *  
     probability_of_other_classes_under_same_node) 

Let’s apply this formula to the left node: 

Impurityleft = pmotorbikes,left*(1-pmotorbikes,left)  
    + pbicycles,left*(1-pbicycles,left)  
    + pcars,left*(1-pcars,left)  
    + ptrucks,left*(1-ptrucks,left) =  
    = 0*1 + 1*0 + 0*1 + 0*1 = 0 

We started off saying that the leftmost node presents a case of a clear data separation, 
so its impurity should be the lowest (i.e., 0). Here we’ve got a mathematical proof that this is 
indeed the case, as the calculation above tells us that this node’s impurity indeed equals 0.  

Let’s now look into the right node at the first level of the tree in Figure 5.12: going back 
to our boxes and toy models metaphor, let’s now inspect the contents of the second box. 
After you applied a rule “Is it a motorized vehicle?” to the full set, it put 250 of the vehicles 
other than bicycles in the second box (and under the node on the right). This is a more 
challenging case, as this box contains a combination of 100 motorbikes, 100 cars and 50 
trucks, so we know from the start that it is not pure, and its impurity score should be greater 
than 0. Let’s derive this score step by step. First of all, let’s estimate the probability of 
randomly selecting instances of each class from this node – in other words, randomly picking 
models of a particular type out of the second box. Table 5.3 presents these probabilities: 
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Table 5.3 Probability estimation for the four classes in the right node (second box) 

 num(class) total(right) pclass,right 

motorbikes 100 250 100/250 = 0.40 

bicycles 0 250 0/250 = 0.00 

cars 100 250 100/250 = 0.40 

trucks 50 250 50/250 = 0.20 

That is, if you were to blindly pick a vehicle from the second box (or from under the right 
node), you would expect to end up selecting a motorbike 40% of the time (i.e., with a 0.40 
probability), another 40% of the time you will expect to get a car, and finally in 20% of the 
cases it will be a truck. Now, say, you have blindly picked a toy model out of the box and 
expected to see a motorbike. According to the distribution of instances in this box, how often 
will it turn out to not be a motorbike? Figure 5.15 visualizes this situation: 

 
Figure 5.15 Right node is an example of a less pure node: whenever you expect to get instances of a certain 
class, there are chances that you get instances of other classes instead 

As before, this equals to the probability of any class other than motorbike under this 
node, or (1 – pmotorbikes,right) = (1 – 0.4) = 0.60. Let’s summarize this for all classes in Table 
5.4: 
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Table 5.4 Summary of all class probabilities in the right node (second box) 

 pclass,right 1 – pclass,right 

motorbikes 0.40 0.60 

bicycles 0.00 1.00 

cars 0.40 0.60 

trucks 0.20 0.80 

Finally, let’s calculate impurity of this node as before: 

Impurityright = pmotorbikes,right*(1-pmotorbikes,right)  
     + pbicycles,right*(1-pbicycles,right)  
     + pcars,right*(1-pcars,right)  
     + ptrucks,right*(1-ptrucks,right) =  
     = 0.4*0.6 + 0*1 + 0.4*0.6 + 0.2*0.8  
     = 0.64 

If you continue estimating impurity of each of the nodes in the tree from Figure 5.12 in 
the same way, you will end up with the impurity values as Figure 5.16 shows. It uses a more 
technical term for the node impurity estimations that we’ve just run – Gini impurity. Gini 
impurity is widely used in practice, and it is the value that is applied by the sklearn 
implementation of the Decision Trees algorithm that you will use for this task. The general 
formula for Gini impurity (GI) for a particular node i (e.g., left or right at a particular level) in 
a case that contains data from k classes (e.g., {motorbikes, bicycles, cars, trucks}) looks 
like that: 

GIi = Σk,i probability_of_k_in_node_i * (1 - probability_of_k_in_node_i) 

Note that this is exactly the set of estimations that we have used above. 
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Figure 5.16 Impurity values (Gini impurity) for each of the nodes in the tree from Figure 5.12 

Before we move on, here is a trick that will make estimations somewhat simpler and 
faster. Let’s denote probability_of_k_in_node_i as pk,i for brevity. When you calculate 
Gini score over all classes in a node, you end up with the following components: 

GIi = Σk,i (pk,i * (1 - pk,i)) = Σk,i pk,i - Σk,i (pk,i)2 

Each node contains instances of some classes of vehicles: for instance, left node contains 
100 bicycles out of the 100 instances it has, and right node has 100 motorbikes and 100 cars 
out of 250 instances of vehicles it has, and then it also contains 50 trucks. So, whenever you 
look at the sum of the vehicles of all the classes under the same node (i.e. at Σk,i pk,i), they 
necessarily cover the total of all the vehicles in this node – there is simply no other way. This 
means that Σk,left pk,left = 0 + 1 + 0 + 0 = 1, and Σk,right pk,right = 0.4 + 0.0 + 0.4 + 0.2 = 

1, i.e. you always end up with 1. So, you can rewrite the formula from above as: 

GIi = Σk,i (pk,i * (1 - pk,i)) = Σk,i pk,i - Σk,i (pk,i)2 = 1 - Σk,i (pk,i)2   

Now it’s time to practice the skills you just acquired and calculate a GI score yourself. 
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Exercise 5.6 
What is the Gini impurity of the nodes in the tree presented in Figure 5.13?  

 
First try to calculate the Gini impurity of the nodes yourself. Then you can compare your results to those in Figure 

5.17. 
 

 
Figure 5.17 Impurity values (Gini impurity) for each of the nodes in the tree from Figure 5.13 

5.3.3 Selection of the best split in Decision Trees 
Now that you have estimated the impurity of each node in each of the trees, how can you 
compare whole trees, and which one should the algorithm select? The answer is, at each 
splitting point the Decision Trees algorithm tries to select the rule that will maximally 
decrease the impurity of the current node. In both cases, you start with the original dataset 
of 100 examples for 3 classes plus 50 examples for the 4th class. What is the original 
impurity of the topmost node then? 

GI(topmost node) = 1 – (3*(100/350)2 + (50/350)2) ≈ 1 – 0.265 = 0.735 

The tree from Figure 5.12 produces two nodes at the first step: the left node of 100 out 
of 350 (2/7 of the dataset) instances with the GI of 0 and the right node of 250 out of 350 
instances (5/7 of the dataset) with GI of 0.64. The total impurity for this split (let’s call it 
split1) can be estimated as a weighted average where the weight is equal to the proportion 
of instances covered by each node, i.e.: 
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GI(split1) = (2/7)*0 + (5/7)*0.64 ≈ 0.46 

Similarly, the tree in Figure 5.13 produces two nodes at the first step: the left node of 
200 out of 350 (4/7 of the dataset) instances with the GI of 0.5 and the right node of 150 
out of 350 instances (3/7 of the dataset) with GI of 0.45. The total impurity for this split 
(let’s call it split2) is then: 

GI(split2) = (4/7)*0.5 + (3/7)*0.45 ≈ 0.48 

Here is what happens when you apply the rule for split1: the impurity of the original set 
of instances drops from 0.735 down to 0.46; in the case of split2, the impurity drops from 
0.735 to 0.48. See Figure 5.18 for visualization: 

 
Figure 5.18 Split1 contributes to a comparatively larger gain in GI (0.275) than split2 (0.255) 

Comparatively, split1 contributes to a larger gain: the difference between the original 
node impurity and the impurity of the produced nodes after split1 is 0.275 (i.e., 0.735 – 
0.46), which is larger than a similar difference of 0.255 (i.e., 0.735 – 0.48) for split2. Even 
though the difference in this small example is not strikingly large, the classifier will prefer 
split1 – the sequence of rules from Figure 5.12 because they contribute to larger purity of 
the subsequent nodes: after all, the first rule applied in the tree in Figure 5.12 successfully 
separates one of the classes (bicycles) from the rest of the data. 

There are further parameters of the Decision Trees algorithm that you can control for: for 
instance, the tree in Figure 5.13 is flatter than the one in Figure 5.12 that will be selected 
based solely on the Gini impurity score. You can constrain the algorithm to build a tree of a 
particular depth as well as containing up to a maximum number of nodes / leaves, which will 
also impact the order in which the rules are applied. 
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5.3.4 Decision Trees on language data 
Now, let’s apply a Decision Tree algorithm to language data. See Exercise 5.7 for another toy 
example based on authorship identification task. As before, try solving this exercise yourself 
before checking the solution. 

Exercise 5.7 
What is the Gini impurity of the nodes in the part of a Decision Tree presented in Figure 5.19? 
 

 
Figure 5.19 An example of a Decision Tree built for a hypothetical set of 200 sentences from Jane Austen and 
100 sentences from William Shakespeare. Only two rules are shown in this bit 

Let’s discuss the solution to this exercise. In this example, you start with a set of some 
200 sentences from Jane Austen and 100 sentences from William Shakespeare. Application 
of the first rule, “Is there a word ‘happyer’?” allows you to set aside 50 sentences by William 
Shakespeare. But, as the word is spelled in the Early Modern English tradition, it doesn’t 
occur in any of the sentences by Jane Austen, so all 200 of them are shuffled to the right 
node at the first level of the tree. The second rule, “Is there a word `happiness’?” helps you 
identify 75 sentences from Jane Austen, however none written by William Shakespeare 
contain a word with such a spelling. For brevity, only part of the whole tree is presented in 
this figure, so you can assume that there are many more rules applied at the later steps to 
the remaining set of 125 sentences by Jane Austen and 50 sentences by William 
Shakespeare. What are the Gini impurity scores for the nodes that are presented here? 
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As before, you need to apply the Gini impurity calculation to each node using the 
formula: 

GIi = Σk,i (pk,i * (1 - pk,i)) = Σk,i pk,i - Σk,i (pk,i)2 = 1 - Σk,i (pk,i)2   

This should give you the scores as presented in Figure 5.20: 

 
Figure 5.20 Gini impurity scores calculated for the tree from Figure 5.19 

This exercise may give you an idea why applying a Decision Tree classifier with all words 
as features and using thousands of rules in the form of “Is there a word X in this sentence?” 
would not be very efficient – with over 13,000 words in the vocabulary between the two 
authors, trees built that way would grow prohibitively large. From the algorithm’s efficiency 
point of view, there are two particular problems for Decision Trees: the prohibitively high 
number of features, and the fact that many words among this large number of features are 
very rare and will only occur in a few texts. This problem is called feature sparsity, and it 
means that the classifier will waste a lot of resource on features that are not very useful 
because they occur too rarely. This does not mean that Decision Trees classifier is not 
applicable to this task – it only means that one needs to select appropriate features. 

To wrap this chapter up, let’s apply Decision Trees classifier to our task and compare the 
results to the benchmark model. NLTK has its own implementation of the Decision Trees 
algorithm, which you are going to use here. Since using all 13,553 words as features will 
slow the classifier down a lot, let’s select a smaller range of words that would make for 
promising features – this will be your first attempt at feature selection. A simple heuristics 
that works with selecting words as features is that those words that occur across most texts 
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are not very informative, as they do not help distinguish between classes; at the same time, 
words that only occur in a few texts are not helpful either – even if they identify the author 
uniquely, since they don’t occur frequently enough you might never see them again in any 
other text, so they won’t help in practice.12 The best approach is therefore to consider the 
middle range of word frequencies to generate the features. 

Let’s start by estimating how often each word from the training set occurs across texts in 
this set – that is, let’s estimate document frequencies for all 13,553 words. Code Listing 5.10 
shows how to do that. You start by importing Python’s Counter,13 which provides helpful 
frequency estimation functionality. Then, you extract sets of words from each document. You 
need to use sets, since all you care about is whether a word occurs in a document and not 
how many times it occurs in a particular document. The “documents” in this task are, in fact, 
the sentences written by the authors. Therefore, you extract words from all sentences in the 
strat_train_set and apply Counter to calculate document frequency for each word in the 
training set. Finally, you print out the results. 

Listing 5.10 Code to estimate document frequencies for all words in the training set 

from collections import Counter    #A 
 
words = [] 
 
def extract_words(text, words): 
    words += set([word for word in text])    #B 
    return words 
 
for (sents, label) in strat_train_set: 
    words = extract_words(sents, words)    #C 
 
counts = Counter(words)    #D 
print(counts)    #E 

#A Import Python’s Counter 
#B Extract sets of words from each document 
#C Extract words from all sentences in the strat_train_set 
#D Apply Counter to calculate document frequency for each word in the training set 
#E Print out the output  

If you print out the results returned by this code, you will get a Python dictionary, where 
each word is assigned with its document frequency, i.e., the number of sentences in the 
training set, where it occurs. Here are the first few entries from this dictionary: 

Counter({'.': 9108, ',': 7126, 'to': 4382, 'the': 4119, 'and': 3996,... 

As you can see, the most frequent word (full stop) occurs in 9,108 sentences in the 
training data, the next most frequent one (comma) in 7,126 sentences, and then the number 
of occurrences starts dropping quite quickly. In fact, if we visualize the number of document 
occurrences for all words, starting with the most frequent one (such word is technically said 
to be at rank 1 in the frequency table) and following with the descending order of frequencies 

 
12 This may remind you of the discussion on word importance based on word frequency from Chapter 3 – differences in word distributions are the 

motivation for term frequency and inverse document frequency measures. 
13 https://docs.python.org/3/library/collections.html  
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(higher ranks), we will see a sharp drop, as the left plot in Figure 5.21 exemplifies. In 
practice, logarithmic function is often applied to raw frequencies to make the curve smoother 
and the changes in frequencies clearer – the right plot in Figure 5.21 shows the same trend, 
but with the logarithm with base 10 applied to the absolute numbers. 

 
Figure 5.21 Document frequencies for all words from the training set plotted against their ranks. The results 
for the word “happy” are marked with a red cross on each graph 

To give you a more precise example, Figure 5.21 also shows the position at which word 
“happy” can be found: it is the 217th most frequent word (thus, it has a rank of 217) and it 
occurs in 154 sentences in the training set. Document distribution of words in the training set 
is quite sparse: as many as 13,355 words occur in less than 0.0125% of the sentences (i.e., 
in less than 168 sentences each). 

This skew in the distribution is not something specific to this particular task or dataset. It 
is an example of a common phenomenon in language data known as Zipf’s law.14 It was 
formulated by George Kingsley Zipf (thus, the name) and it states that the frequency of any 
word is inversely proportional to its rank in the frequency table. Originally, it states that the 
most frequent word will occur approximately twice as often as the second most frequent 
word, three times as often as the third most frequent word, and so on. The particular 
proportion is a rough estimate and depends on the data (for instance, in this case, you are 
looking into document rather than total word frequencies, so the ratio between the first and 
the second ranks is not exactly 1/2), but what matters is that the rank-frequency distribution 
is an inverse relation. In plain terms, this means that a small amount of very frequent words 
will occur in most documents, and a much larger number of words (so-called long tail of the 
word distribution) will be seen very rarely. This is exactly why you should apply frequency-
based feature selection if you don’t want to overload your classifier with many relatively rare 
features. 

The code in Listing 5.11 selects words as features based on their distribution: it applies a 
threshold for the minimum and the maximum number of occurrences. For the minimum 

 
14 https://en.wikipedia.org/wiki/Zipf%27s_law  
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number of occurrences, a threshold of 200 sentences is used – i.e., a word is required to 
occur in at least 200 sentences to become a feature. The maximum threshold of 20% of the 
sentences is used in this code – that is, a word is required to occur in 20% (5,366) of all the 
sentences to be used as a feature. You may consider changing these thresholds, as they are 
used for the sake of the example only. Note that the maximum number of sentences in which 
a word may occur is 13,414, since this is the size of the training set. You store the words, 
whose distribution falls within the predefined range, in the selected_words list, and then 
you extract features from the sentences by only including the words that are contained in the 
selected_words list. This procedure is applied to all three datasets. Finally, you train the 
classifier and report the accuracy scores on each of the datasets. 

Listing 5.11 Code to run DecisionTreeClassifier with the selected features 

from nltk import DecisionTreeClassifier    #A 
 
maximum = float(13414)    #B 
 
selected_words = [] 
for item in counts.items(): 
    count = float(item[1]) 
    if count > 200 and count/maximum < 0.2:    #C 
        selected_words.append(item[0]) 
print(len(selected_words)) 
 
def get_features(text, selected_words):    #D 
    features = {} 
    word_list = [word for word in text] 
    for word in word_list: 
        if word in selected_words: 
            features[word] = True 
    return features 
 
train_features = [(get_features(sents, selected_words), label) for (sents, label)  
                  in strat_train_set] 
pretest_features = [(get_features(sents, selected_words), label) for (sents, label)  
                    in strat_pretest_set] 
test_features = [(get_features(sents, selected_words), label) for (sents, label)  
                 in test_set]    #E 
 
 
classifier = DecisionTreeClassifier.train(train_features)    #F 
 
print (f"Accuracy on the training set = {str(classify.accuracy(classifier, 

train_features))}") 
print (f"Accuracy on the pretest set = {str(classify.accuracy(classifier, 

pretest_features))}")     
print (f"Accuracy on the test set = {str(classify.accuracy(classifier, test_features))}")    

#G 

#A Import NLTK’s DecisionTreeClassifier 
#B The maximum number of sentences in which a word may occur is 13,414 
#C Select words based on the minimum and the maximum occurrence thresholds  
#D Extract features from the sentences by only including the words from the selected_words list 
#E Extract features from all three datasets 
#F Train the classifier 
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#G Report the accuracy scores on each of the datasets 

This code returns an accuracy of around 81.00 on the training set, around 79.60 on the 
pretest, and around 80.70 on the test set. Figure 5.22 visualizes these results: 

 
Figure 5.22 Accuracy scores on the training, pretest and test sets with the Decision Trees classifier 

Even though these results are lower than those obtained with the benchmark model, the 
model is remarkably consistent across all three datasets. This shows that the Decision Trees 
classifier generalizes well across the three datasets. In addition, it achieves relatively good 
results with a small subset of features – in fact, there are only 166 words that are selected 
as features by the code in Listing 5.11, which is a much more compact feature space than 
the one that contains all of the 13,553 words as features. Chapter 6 will focus on the 
question of how you can find more informative as well as compact sets of features for 
language tasks. 

5.4 Summary 
• Authorship attribution is concerned with identification of the precise identity of an 

anonymous author, while user profiling – with profiling a broader set of users from 
various groups (e.g., age, gender, occupation, and so on), based on their writing. 
These two applications represent varieties of essentially the same task: our writing 
styles and word choices are typically very consistent, making it possible for 
automated algorithms to solve these tasks based on the characteristic features in 
writing. 

• Authorship attribution and user profiling are examples of tasks typically addressed 
with machine learning (ML) classifiers. Many NLP applications can be represented as 
supervised ML classification tasks, provided that you can define classes, features and 
provide high-quality data for the algorithms to learn from. 
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• High-quality data is the key ingredient of a successful ML application. In case of 
authorship attribution and user profiling, we need texts annotated with the particular 
authors (or groups of authors). While such data may be hard to come by, literary 
works by famous writers are readily available: for instance, they can be accessed via 
the NLTK interface to the Gutenberg project. 

• The first steps in a machine learning pipeline include initialization of the data, 
extraction of the initial set of features, and setting up of the benchmark model. Naïve 
Bayes with words as features can be used as one of such benchmark models. 

• The true goal of machine learning is for the classifier to identify a set of characteristics 
pertaining to the task rather than the data. This helps ensure that the classifier learns 
about the task rather than memorizes the facts from the data, so it can generalize its 
knowledge well to any new test data. One way to check generalization behavior is to 
test your classifier on the data coming from the same source as the training data and 
compare its performance to that on the completely new data. 

• An ML toolkit, sklearn, provides you with implementations of a wide variety of 
classifiers and data processing techniques. In particular, it can be used to split the 
data into subsets representing a fair distribution of classes. If classes in your data are 
not represented in equal proportions, you need to apply stratified shuffle split 
technique to learn about the actual, unbiased performance of your algorithm. 

• Unlike Naïve Bayes, Decision Trees classifier tries to learn a sequence of rules that 
can split the data into pure sets of classes. Purity (or impurity) of the split can be 
measured quantitatively, for example using Gini impurity score. In addition, purity 
scores are used across the board in machine learning, for instance, to select 
informative features for machine learning classification other than Decision Trees. 

• One of the approaches to feature selection relies on the idea that the most 
informative words are neither very frequent (as in this case they won’t be 
discriminative enough), nor very rare (as in this case they won’t be useful as 
features). The results with the Decision Trees classifier show that it generalizes well, 
but there is still some room for improvement in terms of its performance. 
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5.5 Solutions to exercises 
Solution to Exercise 5.1: 
Suppose you had only two people on your contacts list. This means you have two 

“suspects” as the authors of the anonymous message you received. Each of them represents 
a particular class: “Author1” or “Author2”, each with their own writing style. This makes it a 
binary task: the message is either produced by Author1 or Author2. This case can further be 
extended to as many authors (classes) as you have entries on your contacts list. 

Solution to Exercise 5.2: 
Chapter 2 that presented an earlier example of an NLP task addressed with an ML 

approach relied on word choice as features. Words are a good start: in the case of spam 
filtering, certain words like lottery signaled that the topic of the email is likely to be 
inappropriate for a work-related email. Words are useful as features in authorship attribution 
and user profiling, too – as we all have our favorites that we use all the time, they can signal 
who the author is. We will start with words as features in this task, and then we will explore 
the potential of other linguistic features. 

Solution to Exercise 5.3:  
You might notice that the first excerpt contains a word “receyue” that looks like a 

misspelled English word. This is actually how the word “receive” was spelled in the Early 
Modern English15 variety of language, which might help you attribute the first piece of writing 
to William Shakespeare as the only author from this period of time. This sentence comes 
from his play Macbeth. 

The second excerpt contains modern spelling of the word “receive”, so it is unlikely to 
originate with Shakespeare. However, unless you know about the favorite topics of the other 
writers or the names of the characters in their works, you might find this question 
challenging, so don’t worry if you didn’t get it right. This piece comes from Jane Austen’s 
Sense and Sensibility. 

Now, what about the other two pieces? Do they come from any of the same authors, or is 
any of these pieces written by the other two writers? Can you see any similarities between 
the third and the fourth sentences and the first two? 

In fact, the third piece also comes from Macbeth and the fourth from Sense and 
Sensibility, but don’t worry if you were not able to tell that. You may have spotted, however, 
an unusual spelling of “happyer” with “y” instead of “i”, which is another trait of Early Modern 
English – note how in the fourth piece “happiness” is spelled in a more usual way. 

Solution to Exercise 5.4: 
Before you check the solution in the notebook, try coding it yourself. You need to apply 

the method cat_proportions to the test_set and add one more column to the results 
table. You might find out, as a result, that the class proportions are not exactly the same in 
the test set as they are in the training and pretest sets, however they are relatively similar 
and follow the same distribution trend. In real-life applications, you need to make sure that 
the training and test data have similar distributions, but it is hard to guarantee exactly the 
same class proportions. 

 
15 https://en.wikipedia.org/wiki/Early_Modern_English  
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Linguistic Feature Engineering for 

Author Profiling 

This chapter covers 

• An improved implementation of your own author (user) profiling algorithm 
• Strategies for linguistic feature engineering – an important step in an NLP project 
• Further useful NLP techniques with NLTK and spaCy 
• Application of a Decision Tree classifier with sklearn 

• Evaluation of a machine learning classifier in application to an NLP task  

Last chapter introduced the task of author (user) profiling and focused on authorship 
identification. We said that it is a good example of how machine learning can be applied to 
build an NLP application. This works because: 

• We can clearly define classes for this task. In particular, you were detecting which of 
the two authors, Jane Austen (class1) or William Shakespeare (class2), produced a 
piece of writing. This is a binary task as there are two classes to distinguish between. 

• We can get good quality data to work with. Chapter 5 showed how you could access 
literary texts using NLTK’s interface to the Gutenberg project. Literary works by 
famous writers are widely and often freely available, and we can rely on the author 
assignment in this data – there is no doubt as to who the author of Macbeth or Sense 
and Sensibility is. 

• We can define features: for instance, one of the strongest characteristics of individual 
writing style is the selection of words, as we all have our own favorite words that we 
tend to use more frequently than other people around us. 

You built your benchmark model for this task using words as features and NLTK’s 
implementation of Naïve Bayes classifier, and you found out that, in addition to capturing 
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one’s writing style, words also encode topics of the literary works, so the performance of 
your algorithm drops when it is applied to the new set of texts. This means that the classifier 
does not generalize well, and one of the challenges that lay ahead in this task is to identify 
the set of features that can capture one’s writing style in a more focused way. Another 
problem with the use of words as features is their number: there are over 13,000 words in 
the combined works of Jane Austen and William Shakespeare in your training set, and many 
of them will occur very rarely and will not be informative. What is more, some classifiers will 
find it difficult to deal with such a large number of features. For instance, Chapter 5 
introduced another interpretable and easy-to-use classifier, Decision Trees, which would 
benefit from having a more compact set of features to build decision rules from. 

The process of identifying such a smaller and more informative set of features is called 
feature engineering. It is an important step in an NLP project, since for many tasks, it is not 
known in advance which features are most informative, while feature engineering involves 
comparative experiments that allow you to find this out. This process is the main focus of 
this chapter. Figure 6.1 is a reminder of our Mental Model for this task: 

 
Figure 6.1 Reminder: Mental Model for a supervised machine learning classification task 

In particular, you are going to focus on and iterate over the last three steps of the 
pipeline: you will investigate which features should be extracted, how ML algorithm uses 
them and what results this produces. As you continue working with the same task, you will 
rely on the preprocessing done in Chapter 5, so open the Jupyter notebook that you worked 
on for the previous chapter and let’s get started! 

6.1 Another close look at the machine learning pipeline 
Before you start experimenting with the new classifier (Decision Trees) and various 
features in search of a more compact, informative and generalizable set of those, there is 
one more aspect of the machine learning pipeline implementation that we need to look into 
in more detail – evaluation of your algorithm’s performance. 

6.1.1 Evaluating the performance of your classifier 
So far, you have evaluated the performance of your algorithm using one specific metric – 
accuracy. It’s time now to further discuss its informativeness. 
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Question 1 
You have trained a classifier using some set of features, and then you tested it on the test data. Accuracy on the test 
set is 0.60. Would you call this accuracy high? How can you interpret this number? 
 

This question may remind you of a similar discussion in Chapter 2: we said then that in 
order to interpret whether accuracy is high or low you need to know what the distribution of 
classes is. In isolation, 0.60 does not seem like a high number. If this accuracy is achieved 
by an algorithm on a set with a 50-50% distribution between 2 classes, an accuracy of 0.60 
does not seem to be very impressive. Worse still, if the distribution of the two classes is 
closer to 60-40%, such an algorithm performs hardly better than a majority baseline 
algorithm that always selects the majority class without doing any learning. However, on a 
10-class problem with an equal distribution of data between the classes (i.e., 10% each), an 
accuracy of 0.60 would not seem to be as low. 

Let’s look further into the accuracy measure for the binary case. Suppose you have two 
classes labeled as class1=“Jane Austen” and class2=“William Shakespeare”, with the actual 
distribution between these classes being 60-40: there are 60 sentences written by Jane 
Austen and 40 sentences by William Shakespeare. Figure 6.2 presents you with three 
scenarios of how you can get an accuracy of 0.60 on this data. In this figure, “act” stands for 
the actual number of sentences, and the actual numbers are provided for both authors in the 
rows of the tables. At the same time, “pred” stands for the number of sentences predicted to 
be in each of the two classes by the classification algorithm – you can find the number of the 
sentences predicted to be written by each of the authors in the columns. For brevity, 
class1=“Jane Austen” is denoted as “J.A.” and class2=“William Shakespeare” as “W.S.”. The 
rightmost columns and bottom rows present the total counts in rows and columns: for 
instance, the rightmost columns tell you that 60 sentences are actually written by Jane 
Austen and 40 are written by William Shakespeare. 

 
Figure 6.2 Three possible scenarios, in which algorithm’s predictions achieve an accuracy of 0.60 

Tables presented in Figure 6.2 are called confusion matrices – they show confusions 
between the actual labels and the labels predicted by the classifier. Under the first scenario, 
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the algorithm fails to identify any sentences written by William Shakespeare and achieves an 
accuracy of 0.60 by simply predicting that all sentences belong to Jane Austen. Since 
class1=“Jane Austen” is the majority class, this works correctly 60% of the time. In the case 
presented in scenario 2 in Figure 6.2, same accuracy value of 0.60 is achieved by correctly 
classifying 40 out of 60 sentences from Jane Austen and half of the sentences by William 
Shakespeare. Finally, in scenario 3, the same accuracy is achieved by correctly classifying all 
of the sentences by William Shakespeare and some (20 out of 60) sentences by Jane Austen. 
Now, here is the problem with results evaluation according to the accuracy measure only: 
accuracy score hides all these details under the hood of a single number. This means that 
you have no way of telling what your algorithm does correctly and how it can be further 
improved. This, in its turn, calls for an application of a different measure or a set of 
measures. 

6.1.2 Further evaluation measures 
Here is one more example for you. Suppose your algorithm was tasked with classifying balls 
of two colors. In the test set, you have 10 balls, 6 of which belong to class1=“light blue” 
and 4 to class2=“dark red” (thus, the class distribution, like in the examples above, is 
0.60-0.40). Suppose you trained your algorithm on some training data and applied it to this 
test set of 10 balls. The algorithm comes back predicting that 4 actually light blue balls and 1 
actually dark red ball belong to class1 (“light blue”), and 3 actually dark red balls and 2 
actually light blue balls belong to class2 (“dark red”). Figure 6.3 visualizes this situation: 

 
Figure 6.3 A classification example with some actual distribution of classes and predicted results: according to 
the actual distribution of the two classes (top row) there are 6 balls in class 1 (light blue) and 4 balls in class 2 
(dark red); the predictions (bottom row), however, misclassify some of the balls 
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What can you say about the predictions this algorithm makes? First of all, you can 
estimate its accuracy as 4 correctly predicted instances of class1=“light blue” and 3 
correctly predicted instances of class2=“dark red”, i.e. 0.70 accuracy. However, this 
doesn’t tell you how the classifier performs on each class. In the future, should you try to 
improve performance of this classifier on the light blue class or on the dark red class? 

One way to approach class-based evaluation is to look into how many instances of each 
class were correctly identified. There are 6 balls of class1 that the classifier should have 
correctly identified (of which it only identified 4), and 4 balls of class2 (of which it only 
identified 3). The measure that tells you about the proportion of instances of each class 
correctly found by the classifier is called recall. This measure expresses the coverage of the 
algorithm.  

Recall 
Recall is the proportion of instances of each class that are correctly identified as belonging to the correspondent 
class. This shows the coverage of your algorithm. 
 

In other words, recall on class c is estimated as follows: 

Recall(class c) = number of instances of class c correctly identified as class c /  
                  total number of actual instances of class c in the set 

Here are recall values for our example from Figure 6.3: 

Table 6.1 Recall values for the example from Figure 6.3 

 Class1 Class2 

Recall 4/6=0.67 3/4=0.75 

From the recall point of view, the classifier performs better on class2 – it achieves higher 
recall, therefore if you wanted to improve the classifier’s performance in terms of recall, it is 
class1 that you should take more care of. However, there is a flip side to this measure: the 
instances that are responsible for lower recall in class1 are the ones that are incorrectly put 
by the classifier in the bucket for class2, thus making it less homogeneous. Therefore, there 
is another measure, called precision, that shows the proportion of instances that are 
predicted by the classifier to belong to a particular class that are actually instances of this 
class. This shows reliability of your classifier: if it says something is a dark red ball, how 
often would this actually be a dark red ball? 

Precision 
Precision is the proportion of instances predicted by the algorithm to belong to a particular class that are actually 
from this class. This shows reliability of your algorithm. 
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In other words, precision on class c is estimated as follows: 

Precision(class c) = number of instances of class c correctly identified as class c / 
                     total number of instances the classifier identifies as class c 

In case of class1, 4 out of 5 balls that are predicted by the algorithm to be light blue are 
actually light blue, and in case of class2, 3 out of 5 balls predicted to be dark red are actually 
dark red. This means that the classifier’s precision on the two classes is: 

Table 6.2 Precision values for the example from Figure 6.3 

 Class1 Class2 

Precision 4/5=0.80 3/5=0.60 

It turns out, in terms of precision, the classifier performs better on class1. This is not 
surprising: in fact, the two measures are complementary. For instance, the simplest way for 
an algorithm to perform with a 100% recall on class1 is to put all 10 balls in the bucket for 
class1, which would lower precision on this class to 0.60 (as 4 out of 10 balls will actually be 
dark red). The third measure that combines precision and recall together is called F1 
measure or F1 score, and it is a harmonic mean between the other two measures, thus 
showing how the two perform in combination. The reason a harmonic mean is used instead 
of an arithmetic mean to estimate F1 is that this measure tries to strike the balance between 
two measures (precision and recall) which express proportions estimated at different scales: 
precision is the proportion of the correctly identified instances of a class among those that 
the classifier believes belong to this class, while recall is the proportion of correctly identified 
instances of a class among those that actually belong to this class. In cases when proportions 
originating from different scales need to be combined, harmonic mean is more appropriate 
than a simple arithmetic mean.  

F1 measure (F1 score) 
F1 is a harmonic mean between precision and recall, thus showing how the algorithm performs in terms of both. 
 

Specifically, F1 is estimated as follows: 

F1 = 2*precision*recall / (precision + recall) 

Here is a table summarizing all these measures on our toy example with the balls: 

Table 6.3 Recall, precision, and F1 values for the example from Figure 6.3 

 Class1 Class2 

Recall 0.67 0.75 

Precision 0.80 0.60 

F1 0.73 0.67 
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This shows that, on balance, performance of the classifier is better on class1, and if you 
wanted to increase overall performance, you should look into the examples that are 
misclassified as class2 while being of class1, thus significantly lowering precision on class2. 

Now that you are equipped with further knowledge about machine learning algorithms 
and ways to evaluate the results, let’s get back to the task of authorship attribution and see 
how we can improve previous results. 

6.2 Feature engineering for authorship attribution  
You have so far implemented a benchmark algorithm (Naïve Bayes with words as the only 
types of features), and we said that there were some problems with this approach. Let’s 
summarize them once again: 

• The Naïve Bayes algorithm that uses all words as features shows similar results on the 
data sets that come from the same source (training and pretest sets), but there is a 
considerable drop in performance on the data coming from a different source (test 
data). We are looking for a better generalization performance. Preliminary 
experiments with the Decision Trees classifier in the end of Chapter 5 showed much 
better generalization behavior, but this classifier works more efficiently if the feature 
set is compact and informative. 

• Accuracy measure doesn’t tell us much about the algorithm’s performance on each of 
the classes. At the same time, it is important that the algorithm performs well on both 
majority (Jane Austen) as well as minority (William Shakespeare) classes. We are 
looking for an ML model that can deal with both classes equally well. 

In this section, we are going to look into feature engineering – that is, we are going to try 
out different types of features that can be applied to this task. Then we are going to train the 
classifier using these features, test it on the pretest and test sets, and evaluate the results. 
If we still find the results unsatisfactory (for example, classifier’s performance on the two 
sets suggests that it is not generalizing well, or its performance on the minority class is poor 
as compared to that on the majority class), we are going to add more features to our feature 
set and run the whole process again. Figure 6.4 summarizes this process, using term input to 
denote training, pretest and test datasets with the sentences mapped to their author labels, 
as produced by the code you’ve been working with so far: 

 
Figure 6.4 The ML routine we are going to run through in this section 

212

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

Let’s start looking into other, potentially informative types of features and identify an 
optimal set of such features. 

6.2.1 Word and sentence length statistics as features 
In Code Listing 5.3 in Chapter 5 you estimated the average length of words in terms of the 
number of characters, and the average length of sentences in terms of the number of words. 
Here is a reminder: it turns out that William Shakespeare consistently uses shorter words 
than Jane Austen (4 characters in length against 5 characters), as well as shorter sentences 
(12 words long as opposed to 25–28 words, on the average, for Jane Austen). These figures 
seem to reflect authors’ distinctive style well, so why not use them as features. 

Let’s start by defining a function avg_number_chars to extract the relevant statistics 
regarding the average word length in a sentence and number_words to calculate sentence 
length in terms of the number of words, as Code Listing 6.1 shows. If you apply these 
functions to the example sentence used in this listing, you should get 3.5714 as the average 
number of characters per word and 7.0 as the length of the sentence in terms of the number 
of words. 

Listing 6.1 Code to extract word and sentence length statistics 

def avg_number_chars(text): 
    total_chars = 0.0 
    for word in text: 
        total_chars += len(word) 
    return float(total_chars)/float(len(text))    #A 
 
def number_words(text): 
    return float(len(text))    #B 
 
print(avg_number_chars(["Not", "so", "happy", ",", "yet", "much", "happyer"])) 
print(number_words(["Not", "so", "happy", ",", "yet", "much", "happyer"]))    #C 

#A Estimate average length of words in the sentence in terms of the number of characters 
#B Calculate sentence length in terms of the number of words  
#C Try it out on some sentences of your choice 

Next, you need to apply these functions to convert your datasets into sets of features. At the 
moment, your datasets are represented as sets of tuples where each sentence is mapped to 
its author label. What you would like instead is a feature vector – an array containing the 
average number of characters per word and the total number of words in a sentence for each 
sentence in each set mapped to the author label. Figure 6.5 visualizes this idea: 
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Figure 6.5 In order to build a Decision Tree, convert data into feature vectors mapped with labels 

Code Listing 6.2 shows how to do that. We are going to call feature vectors 
feature_list to keep with the idea that it is essentially a Python list filled with relevant 
numbers, and we will map these lists with targets – author labels, which we will represent 
numerically. There is a simple reason for representing labels numerically – from now on, we 
will be using sklearn for all machine learning routines, and sklearn algorithms expect 
numerical values. To keep with Python traditions, let’s start indexing from 0, and use 0 if the 
author is Jane Austen, and 1 if the author is William Shakespeare. 

In this code, you first define a function initialize_dataset with a single argument 
source, which denotes the dataset you are applying feature extraction to: for example, 
strat_train_set, strat_pretest_set, or test_set. Within this function, you iterate 
through all (sent, label) pairs in the given dataset and fill in feature vector feature_list 
with the features for the given sentence, also adding these features to the overall structure 
all_features that keeps track of all feature vectors in the dataset. Finally, you append the 
relevant author label (0 or 1) to the list of targets. Then, you apply this function to all 
datasets to initialize training, pretest and test feature structures mapped with their labels 
(targets). In the end, you print out the length of the structures: in this case, you should end 
up with a list of 13,414 feature vectors mapped with a list of 13,414 targets for the training 
set, 3,354 feature vectors and targets for the pretest, and 6,906 feature vectors and targets 
for the test set. 
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Listing 6.2 Code to extract features and map them to the labels 

def initialize_dataset(source):    #A 
    all_features = [] 
    targets = [] 
    for (sent, label) in source:    #B 
        feature_list=[] 
        feature_list.append(avg_number_chars(sent)) 
        feature_list.append(number_words(sent)) 
        all_features.append(feature_list)    #C 
        if label=="austen": targets.append(0) 
        else: targets.append(1)    #D 
    return all_features, targets 
 
train_data, train_targets = initialize_dataset(strat_train_set) 
pretest_data, pretest_targets = initialize_dataset(strat_pretest_set) 
test_data, test_targets = initialize_dataset(test_set)    #E 
 
print (len(train_data), len(train_targets)) 
print (len(pretest_data), len(pretest_targets)) 
print (len(test_data), len(test_targets))    #F 

#A Argument source denotes the dataset you are applying feature extraction to 
#B Iterate through all (sent, label) pairs in the given dataset 
#C Fill in feature vector feature_list with the features and add them to all_features 
#D Append the relevant author label (0 or 1) to the list of targets 
#E Apply this function to all datasets to initialize feature structures mapped with their labels (targets) 
#F Print out the length of the structures 

Figure 6.6 visualizes how this step converts two sentences from a dataset into feature 
vectors mapped with the correspondent targets: 

 
Figure 6.6 An example of feature vectors and target labels for two sentences in the dataset 

Now that the data is converted into sets of features mapped to the target labels, let’s 
train a Decision Trees classifier with sklearn, and apply it to our task. A nice feature of this 
toolkit is that the machine learning routine is easy and consistent across all types of 
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classifiers. In particular, with sklearn, there are three steps that you need to apply, as 
Figure 6.7 shows: 

 
Figure 6.7 Machine Learning routine with sklearn 

In particular, you need to: 

• initialize the classifier and store it in a variable, e.g. text_clf; 
• train it on the training data using a method called fit; 
• test it on the test (or pretest) data using a method called predict. 

Code Listing 6.3 shows how to apply all these steps to our data. You start by uploading 
the classifier from the sklearn’s suite of classifiers. Then, you initialize it and set the random 
state to a particular value – this helps ensure that you get the same classifier setup every 
time you run your code. Finally, you train the classifier using the fit method and test it 
using the predict method. 

Listing 6.3 Code to train and test a classifier with sklearn 

from sklearn.tree import DecisionTreeClassifier    #A 
 
text_clf = DecisionTreeClassifier(random_state=42)    #B 
text_clf.fit(train_data, train_targets)    #C 
predicted = text_clf.predict(pretest_data)    #D 

#A Upload the classifier from the sklearn’s suite of classifiers 
#B Initialize the classifier and set the random state 
#C Train the classifier using the fit method 
#D Test the classifier using the predict method 

You may notice that we fix the random_state above to a particular value. When training, 
sklearn’s Decision Trees classifier runs over all features and tries out various values that can 
split the current node into the purest possible nodes underneath. Depending on the number 
of features and the range of values each one takes, the range of possibilities may be 
prohibitively large. Therefore, in the sklearn’s implementation the classifier doesn’t try out 
all possible orders of the features: it randomly selects one, tries to come up with a set of the 
best possible splitting rules (according to the Gini impurity) based on this randomly selected 
feature, then randomly selects the next one, and so on. To get the classifier select the 
features and create the rules in the same order each time you run your code, you need to set 
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the random_state parameter. This helps you get comparable results every time you run your 
code. 

Finally, let’s evaluate classifier’s performance. To do that, let’s report accuracy, precision, 
recall, and F1 measures, and print out the confusion matrix. Code Listing 6.4 shows how to 
do that. It relies on numpy and sklearn’s metrics functionality: for instance, it shows how to 
use numpy.mean to estimate how often the predicted class coincides with the original target, 
i.e., how to calculate the accuracy of the classifier. In addition, it shows how to use 
metrics.confusion_matrix to print out the confusion matrix for the class predictions and 
metrics.classification_report to report precision, recall, and F1 values for each class as 
well as for the whole dataset. The same routine can be applied to all datasets. 

Listing 6.4 Code to evaluate the classifier 

import numpy as np 
from sklearn import metrics    #A 
 
def evaluate(predicted, targets): 
    print(np.mean(predicted == targets))    #B 
    print(metrics.confusion_matrix(targets, predicted))    #C 
    print(metrics.classification_report(targets, predicted))    #D 
     
evaluate(predicted, pretest_targets) 
 
predicted = text_clf.predict(test_data) 
evaluate(predicted, test_targets)    #E 

#A Import numpy and sklearn’s metrics functionality 
#B You can use numpy.mean to estimate the accuracy of the classifier 
#C Use metrics.confusion_matrix to print out the confusion matrix for the class predictions 
#D metrics.classification_report returns precision, recall and F1 values 
#E Apply the same routine to the test set 

The code above will print out the results as shown and explained in Figure 6.8: 
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Figure 6.8 Summary of the results achieved on the pretest set with a feature set of two features 

These results show that, overall, the classifier performs with an accuracy of about 0.7976 
– this is the proportion of sentences in the pretest set that are correctly classified by this 
algorithm. Class 0 represents Jane Austen, with 2300 sentences in total, as support values 
show. Per confusion matrix, 2133 of those sentences are correctly classified as class 0, and 
167 are incorrectly classified as belonging to class 1 (or, William Shakespeare). This results 
in a precision value of 0.81 (2133 sentences out of the 2133+512=2645 sentences identified 
as written by Jane Austen are indeed written by Jane Austen), recall of 0.93 (2133 sentences 
out of the total of 2133+167=2300 by Jane Austen found), and f1-score of 0.86 on class 0. 
At the same time, the pretest set contains 1054 sentences from class 1, and it correctly 
identifies 542 of those, while misclassifying 512 as class 0. This results in a precision value of 
0.76 (542 sentences out of the 542+167=709 sentences identified as written by William 
Shakespeare are indeed written by William Shakespeare), recall of 0.51 (542 sentences out 
of the total of 542+512=1054 by William Shakespeare found), and f1-score of 0.61. On the 
average, between the two classes, the pretest set contains 3354 sentences, and the classifier 
achieves precision of 0.79, recall of 0.80, and f1-score of 0.78 on this set. 

Figure 6.9 highlights the relevant values in the confusion matrices and connects them to 
the estimation of precision and recall values. It may remind you of the discussion on Figure 
6.2. Class 0 corresponds to Jane Austen (“J.A.” in Figure 6.9) and class 1 to William 
Shakespeare (“W.S.” in Figure 6.9). 
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Figure 6.9 Interpretation of the confusion matrices and precision and recall values for two classes 

What about the test set? On the test set, the classifier shows the following results: 

0.8049522154648132 
[[4605  394] 
 [ 953  954]] 
   precision    recall  f1-score   support 
0       0.83      0.92      0.87      4999  
1       0.71      0.50      0.59      1907 
 
 avg / total       0.80      0.80      0.79      6906 

Let’s visualize the accuracy scores as before using bar charts. In particular, let’s compare 
the performance of the benchmark model from Chapter 5 on the pretest and test sets to 
your new model that uses two new types of features: average word length (let’s denote this 
feature type as F1 on the graph) and sentence length (F2). Figure 6.10 visualizes the results: 
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Figure 6.10 Accuracy scores of a new model relying on average word length (F1) and sentence length (F2) 
compared to the benchmark model’s performance from Chapter 5 

Several observations are due: 

• With the benchmark model, we were achieving quite different accuracy scores on the 
pretest and test sets. With features and the classifier we are using here, all measures, 
including accuracy, precision, recall, and F1 on both classes and overall are quite 
similar on both sets. This means that the classifier generalizes much better with this 
set of features, and therefore characteristics related to the length of words and 
sentences are more reliable as author-specific characteristics. 

• The overall performance is quite a bit lower than that achieved with the benchmark 
model: classifying with words achieved an accuracy of 0.96 on the pretest set (as 
opposed to 0.80 here) and about 0.90 on the test set (as opposed to 0.80 here). 
However, note that here our classification algorithm relies on a very small feature set 
of just 2 features. Here is a reminder: the benchmark model based on the Naïve 
Bayes classifier and all words as features used over 13,000 features! The Decision 
Trees classifier from Chapter 5, which showed quite similar performance to the one 
we observe here, used a smaller set of features selected according to their frequency, 
but was still relying on as many as 166 features. 

• Performance on the minority class (class 1, William Shakespeare) is much lower than 
that on the majority class (class 0, Jane Austen). On both pretest and test sets, only 
about half of the instances belonging to class 1 are correctly identified, resulting in 
recall values around 0.50-0.51. 
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Therefore, we are not done yet, and we should continue looking into other features. 

6.2.2 Counts of stopwords and proportion of stopwords as features 
You came across the notion of stopwords several times in this book: stopwords are words 
that are used frequently in language, and most of the time, they don’t have a meaning of 
their own. Usually, they connect other meaningful words to each other or express some 
other function rather than meaning: for instance, articles like a and the are stopwords – they 
are very frequent, and their main goal in language is to express whether you came across a 
mention of a particular object before (definite article the) or not (indefinite article a). 
Prepositions like at, on, about and others usually connect meaningful words to the notions of 
location (stay at home), time (meet on Friday), topic (talk about politics), and so on. In many 
applications they can be disposed of, as they don’t contribute much to the task itself – you’ve 
seen examples of such applications in Chapters 3 and 4. 

However, one’s particular writing style is a whole different matter. As it turns out, 
different authors use function words of different types with different frequencies. For 
instance, if you prefer using word “but” whenever I use “however”, our writing styles will 
differ with respect to the use of these stopwords even if we otherwise use absolutely the 
same set of words. If you notice that you tend to use expressions like “well”, “sort of” or 
“you know”, these are also mostly composed of stopwords. 

To this end, let’s introduce a new feature type that will estimate the number of times 
each stopword is used in a sentence, and a feature estimating the proportion of stopwords in 
a sentence. As opposed to calculating the number of times various words are used in texts, 
in the case of stopwords we are talking about a much more compact set of words (e.g., the 
spaCy’s list of stopwords contains 305 words only) that frequently occur across sentences. 
Code Listing 6.5 shows how to implement a function word_counts, that counts the number of 
times each word occurs in text, and a function proportion_words, which increments the 
count of a word from a particular wordlist each time you see it in text and estimates the 
proportion of the words from the wordlist against all other words in the end. 

Listing 6.5 Code to calculate the number and proportion of times certain words occur 

def word_counts(text): 
    counts = {} 
    for word in text: 
        counts[word.lower()] = counts.get(word.lower(), 0) + 1    #A 
    return counts 
 
def proportion_words(text, wordlist): 
    count = 0 
    for word in text: 
        if word.lower() in wordlist: 
            count += 1 
    return float(count)/float(len(text))   #B 

#A Each time you see a particular word in text, simply increment the counter 
#B Estimate the proportion of the words from the wordlist against all other words 
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Now let’s calculate the number of times we see each of the stopwords in sentences written 
by each of the authors, as well as the proportion of stopwords in their sentences using these 
functions. We are going to use the stopwords list from spaCy, and for each of the 305 words 
we are going to add one feature to the feature set representing the number of times this 
particular stopword occurs in a particular sentence, and then add one extra feature 
representing the proportion of all stopwords as opposed to all words used in each sentence 
by each writer. This means that our feature set at this point will contain 308 features. For 
instance, one of the new features in this new feature set corresponds to the count of the 
stopword ‘a’: for the sentence “It is yet too early in life to despair of such a happiness” this 
count equals 1.0, while for the sentence “Not so happy, yet much happier” it is 0.0. At the 
same time, for the feature representing the count for the stopword ‘not’ the feature values 
are exactly the opposite: 0.0 and 1.0. 9 out of the total of 13 words in the sentence “It is yet 
too early in life to despair of such a happiness” are stopwords (all underlined), therefore the 
stopwords proportion for this sentence equals to 0.69. There are 7 words in the sentence 
“Not so happy, yet much happyer” in total, and 4 of them (underlined) are stopwords, 
making the proportion for this sentence equal to 0.57, as Figure 6.11 illustrates: 

 
Figure 6.11 An updated all_features list (compared to the previous version of the all_features list in 
Figure 6.6), now containing 308 features, including average length of words, word count, counts of all 
stopwords, and overall stopwords proportion 

Code Listing 6.6 shows how to add the new 306 features to the feature set. You start by 
adding spaCy’s functionality to the code and upload the stopwords list.1 Then, you add the 
previous features to the set, and for each stopword from the stopwords list, you either add 
the count to the feature list or add 0 if the stopword doesn’t occur in the sentence. You 

 
1 Check out the different language models available for use with spaCy: https://spacy.io/models/en. Small model (en_core_web_sm) is suitable for 

most purposes and is more efficient to upload and use. However, larger models like en_core_web_md (medium) and en_core_web_lg (large) 
are more powerful and some NLP tasks will require the use of such larger models. The models should be installed prior to running the code examples 
with spacy. You can also install the models from within the Jupyter notebook using the command, e.g., !python -m spacy download 
en_core_web_md 
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calculate the proportion of all stopwords combined as opposed to all words used in a 
sentence and add this as another feature, and, as before, you append the target labels. 
Finally, you extract the features from the datasets and print out the length of the feature 
lists and targets lists, which, as before, should equal to 13,414, 3,354 and 6,906 for the 
training, pretest and test sets, respectively. 

Listing 6.6 Code to add stopwords counts and proportion as features 

import spacy 
from spacy.lang.en.stop_words import STOP_WORDS 
 
nlp = spacy.load('en_core_web_md')    #A 
 
def initialize_dataset(source): 
    all_features = [] 
    targets = [] 
    for (sent, label) in source: 
        feature_list=[] 
        feature_list.append(avg_number_chars(sent)) 
        feature_list.append(number_words(sent))    #B 
        counts = word_counts(sent) 
        for word in STOP_WORDS: 
            if word in counts.keys(): 
                feature_list.append(counts.get(word)) 
            else: 
                feature_list.append(0)    #C  
        feature_list.append(proportion_words(sent, STOP_WORDS))    #D 
        all_features.append(feature_list) 
        if label=="austen": targets.append(0) 
        else: targets.append(1)    #E 
    return all_features, targets 
 
train_data, train_targets = initialize_dataset(strat_train_set) 
pretest_data, pretest_targets = initialize_dataset(strat_pretest_set) 
test_data, test_targets = initialize_dataset(test_set)    #F 
 
print (len(train_data), len(train_targets)) 
print (len(pretest_data), len(pretest_targets)) 
print (len(test_data), len(test_targets))    #G 

#A Add spaCy’s functionality to the code and upload the stopwords list 
#B Add the previous features to the set 
#C For each stopword, either add the count to the feature list or add 0 if the stopword doesn’t occur in the sentence 
#D Calculate the proportion of all stopwords combined as opposed to all words used in a sentence 
#E As before, append the target labels 
#F Initialize datasets with the new features 
#G Print out the length of the feature lists and targets lists 

Finally, let’s evaluate the results using the code from Code Listing 6.7 (which, you may 
notice, is very similar to the Code Listing 6.4): 
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Listing 6.7 Code to evaluate the results 

text_clf = DecisionTreeClassifier(random_state=42) 
text_clf.fit(train_data, train_targets)    #A 
predicted = text_clf.predict(pretest_data)    #B 
evaluate(predicted, pretest_targets)    #C 
 
predicted = text_clf.predict(test_data) 
evaluate(predicted, test_targets)    #D 

#A Train the classifier on the training data 
#B Test on the pretest set 
#C Print out accuracy, precision, recall, F1 scores, as well as the confusion matrix 
#D Apply the same routine to the test set 

With this new set of features, the classifier achieves a slightly better accuracy of up to and 
above 0.81 on both pretest and test sets – i.e., the classifier performs almost equally well on 
the two various datasets. These results are still long way away from the result we got using 
all 13K words as features, as Figure 6.12 demonstrates: 

 
Figure 6.12 Accuracy scores after adding new types of features – counts of stopwords (F3) and their 
proportion in a sentence (F4) – compared to the previous models 

However, the main contribution of these types of features is that they actually improve 
performance of the classifier on the minority class quite a lot: they help identify over 700 out 
of 1054 sentences by Shakespeare in the pretest set (resulting in a recall and f1-score values 
of 0.70 and above – this is a 20- and an almost 10-point improvement above the recall and 
f1-score values with just 2 features), and over 1300 out of 1907 sentences by Shakespeare 
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in the test set (resulting in a recall value above 0.70 and f1-score above 0.67 – an 
improvement similar to the pretest set results). Figure 6.13 shows confusion matrices for the 
pretest and test sets, with the sample results on the minority class highlighted. 

 
Figure 6.13 Confusion matrices with the sample performance on the minority class highlighted 

6.2.3 Distributions of parts-of-speech as features 
So far, you have applied quite “shallow” (i.e., superficial) features to address this task. It is 
time now to apply deeper linguistic analysis to better model each writer’s style. Previous 
chapter introduced spaCy, a toolkit that provides you with rich linguistic representations of 
words. Let’s use some of these representations here. 

For instance, one topic that we discussed was types of words, or parts of speech. We said 
that words denoting objects, people or facts are called nouns; words denoting actions and 
states are called verbs; words denoting qualities of objects, people and facts are called 
adjectives; and so on. People are remarkably different in their choice of words even when 
they talk about relatively similar things: action-oriented accounts would contain more verbs 
(e.g., one may say “I booked the hotel”); stories with more facts would contain more nouns 
(alternatively, one could say “I made the booking” to express the same idea); and if one 
wants to provide more details, adjectives and adverbs would be added in (as in “It was easy 
to make this booking”). The way different parts of speech are distributed in one’s writing 
would make for a promising type of features. 

To get part-of-speech tags of the words, let’s use a tagger from the spaCy’s suite. spaCy 
provides each word token with an extended set of linguistic information: word tokens are 
analyzed and assigned with word forms (original words), lemmas (dictionary forms), part-of-
speech tags, and grammatical relations, among other things.2 It would be impractical to run 
spaCy pipeline on the same sentences multiple times if you decided to use any of the other 
attributes as features at a later point, so let’s apply spaCy pipeline once and store the results 
in some external data structure. For instance, let’s create a Python dictionary source_docs 
and map each sentence to a spaCy’s token “container”, which will contain all linguistic 
information pertaining to the tokens in this sentence. This way, you can extract any linguistic 
information you need at any later point. Figure 6.14 visualizes this idea: 

 
2 For the full description of all attributes, see https://spacy.io/api/token. 
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Figure 6.14 Within source_docs, original sentences are mapped to “containers” with linguistic information 

Let’s implement a function preprocess that will create such a mapping.3 As the code in 
Listing 6.8 shows, you will need to provide the preprocess function with the original 
sentences from the datasets. Since spaCy needs a full grammatical sentence to apply the 
preprocessing steps, and in our data, sentences are already split into individual words, you’ll 
need to merge them back together using whitespaces as word separators. As a result, the 
code adds the processed linguistic information to the source_docs dictionary. Since there 
are many sentences in the datasets, processing will take a bit of time. To keep track, you 
can add a printout message that notifies you every time another 2000 sentences have been 
processed. Finally, you apply the preprocess function to the three original datasets – 
strat_train_set, strat_pretest_set and test_set, and store the results in the 
correspondent data structures. 

Listing 6.8 Code to apply spaCy preprocessing 

def preprocess(source):    #A 
    source_docs = {} 
    index = 0 
    for (sent, label) in source: 
        text = " ".join(sent)    #B 
        source_docs[text] = nlp(text)    #C 
        if index>0 and (index%2000)==0: 
            print(str(index) + " texts processed") 
        index += 1 
    print("Dataset processed")    #D 
    return source_docs 
 
train_docs = preprocess(strat_train_set) 
pretest_docs = preprocess(strat_pretest_set) 
test_docs = preprocess(test_set)    #E 

 
3 Since in this step spaCy performs all preprocessing operations and applies them to the full dataset, this step may take a bit of time. However, you will 

only need to run this code once, and in the rest of the chapter rely on the features extracted and stored in this step. 
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#A Provide the preprocess function with the original sentences from the datasets 
#B Merge the sentences back together using whitespaces 
#C Add the processed linguistic information to the source_docs dictionary 
#D Let’s add a printout message that notifies you every time another 2000 sentences have been processed 
#E Apply the preprocess function to the three original datasets 

Next, let’s implement a function that will count words of specific parts of speech in each 
sentence. spaCy uses a variety of tags to distinguish between different forms of verbs (e.g. 
“done” and “doing” will receive different tags to express the idea that one denotes a finished 
action and another a continuous one), nouns (proper nouns like “Google” will receive a tag 
different from common nouns like “company”), and so on.4 This will add a great variety of 
features, but if all we want to know is the distribution of nouns, verbs, and so on in general 
(i.e. without the finer distinctions between the types of nouns, verbs, etc.), using the first 
letter of the tag will typically be enough. Under the annotation scheme used by spaCy, all 
types of nouns are annotated with tags starting with N, all verbs – with V, and so on. We will 
take into account 14 such coarse-grained part-of-speech tags. Table 6.4 provides more 
information about the correspondence of this coarse-grained notation to the actual parts of 
speech: 

Table 6.4 Correspondence of the coarse-grained notation to the parts of speech 

Notation 

C 

Part of speech 

Conjunctions 

Example 

and, but, or 

D Determiners the, a, an 

E Existential “there” there (in “there is”) 

F Foreign words inter alia 

I Prepositions in, at, during 

J Adjectives big, bigger, biggest 

M Modal verbs could, should, ought 

N Nouns car, Google, Smiths, cars  

P Pronouns I, his, somebody 

R Adverbs fast, faster, very 

T Particle “to” to (in “to do”) 

U Interjections hello, bravo, ouch 

V Verbs do, did, done, doing 

W Wh-determiners and pronouns what, who, when 
This will add 14 new features to our feature set, making it a total of 322. Figure 6.13 

shows how the feature vectors for the two example sentences from Jane Austen and William 
Shakespeare should be changed with the addition of these features. There is one adjective 
(“early”) in the sentence “It is yet too early in life to despair of such a happiness”, and two 

 
4 You can see the full list of tags and their descriptions on https://spacy.io/api/annotation. 
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nouns (“life” and “happiness”), so given that this sentence contains 13 words in total, the 
proportion of adjectives (tag J) would be 1/13=0.07 and the proportion of nouns (tag N) 
would be 2/13=0.15. There are two adjectives (“happy” and “happyer”) and no nouns in the 
sentence “Not so happy, yet much happyer”, which consists of 7 words in total, so the 
proportions would be 2/7=0.29 and 0/7=0, as shown in the Figure 6.15: 

 
Figure 6.15 Addition of part of speech distribution features further expands the feature set 

In practice, though, NLP tools, including those that are part of spaCy toolkit, are built 
with the standard modern language in mind. This means that occasionally they will make 
mistakes on texts written in a less usual style (e.g., poems, plays and other types of literary 
works) and older versions of English language itself (like Early Modern English). Such 
occasional mistakes are to be expected: many of these tools, including part-of-speech 
taggers, are built using machine learning, and you’ve seen in this and the previous chapters 
that machine learning algorithms trained on one type of data cannot always be expected to 
do well on another type of data. For instance, a part-of-speech tagger trained on modern 
English does not learn how to process a word like “happyer” and therefore may assign it a 
different part-of-speech tag. In particular, here is how spaCy’s tagger analyses the sentence 
containing “happyer”: “NotRB soRB happyJJ , yetCC muchJJ happyerNN", or “Notadverb soadverb 
happyadjective , yetconjunction muchadjective happyernoun". From the linguistic point of view, there are 
two errors here: “happyer” should be annotated as adjective, not noun, and “much” is an 
adverb rather than adjective. Why does the tool make these errors here?  

Mistagging of “happyer” occurs precisely because the part-of-speech tagger has been 
built on modern English texts, where it has never seen, and never learned how to process, 
the word “happyer”, so in this sentence it makes an assumption that such an unfamiliar word 
is most likely to be a noun. As a matter of fact, the sentence “Not so happy, yet much 
happyer” doesn’t contain any nouns, which is very unusual for a normal English sentence, so 
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the tagging algorithm’s assumption is not unreasonable: typically, an English sentence would 
have a noun, and if there is any candidate in this sentence for the role of a noun, it is the 
unfamiliar word “happyer”. What about the mistagging of “much” then? This is where one 
error leads to another one: having identified “happyer” as a noun, the algorithm now needs 
to decide how to tag the previous word “much”. This is because part-of-speech tagger tries 
to make sense of the sentence as a whole and is trained to assign a plausible combination of 
tags in sequence, rather than analyzing each word in isolation (which would lead to many 
more errors!). Which tag is likely to precede a noun “happyer”? Adverbs (tag RB) do not 
typically come in combination with nouns, however adjectives (tag JJ) do so all the time, so 
that is how the algorithm ends up assigning a tag JJ to the word “much”, and that is how 
“much” ends up being an adjective rather than an adverb in this sentence. 

What can one do with such errors, and will they impact performance of our authorship 
identification algorithm? If one’s goal is to get accurate and high-quality part-of-speech tags 
assignment on a specific type of text (e.g., plays written in Early Modern English), the best 
solution would be to adapt the part-of-speech tagging algorithm to the specific type of data, 
for example by retraining it on this specific type of data. However, this is not the focus of our 
application here. In the context of authorship identification, even an imperfect part-of-speech 
tagging is still helpful: first of all, despite making occasional mistakes, the algorithm mostly 
analyzes texts correctly; secondly, we can expect such tagger errors to be consistent with 
the texts written by a particular author, and it is the patterns of the tag distributions that are 
informative for the authorship identification, not the particular tags themselves. 

Code in Listing 6.9 shows how to add the 14 part-of-speech features to the feature set. 
As before, you rely on the Python’s Counter functionality to simplify counting procedures. As 
this code suggests, you first need to provide a coarse-grained list of part-of-speech tags that 
you’d like to extract (note that you can modify this list at any point). Then, you define a 
function pos_counts and apply it to the input sentences (argument text) by extracting their 
part-of-speech tags from the linguistic containers in source_docs and comparing them 
against the set of tags given in the pos_list. Next, you populate pos_counts dictionary 
using the actual counts of the part-of-speech tags if they occur in the given sentence or 0 if a 
part-of-speech tag does not occur. Finally, you extract the previous 308 features as before 
and add the new 14 features by calculating the proportion of words with each of the 14 part-
of-speech tags in the sentence, i.e., by dividing the part-of-speech counts by the total 
number of words in the sentence. 
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Listing 6.9 Code to add distribution of part-of-speech tags as features 

from collections import Counter    #A 
pos_list = ["C", "D", "E", "F", "I", "J", "M", "N", "P", "R", "T", "U", "V", "W"]    #B 
 
def pos_counts(text, source_docs, pos_list):    #C 
    pos_counts = {} 
    doc = source_docs.get(" ".join(text)) 
    tags = [] 
    for word in doc: 
        tags.append(str(word.tag_)[0])    #D 
    counts = Counter(tags) 
    for pos in pos_list: 
        if pos in counts.keys(): 
            pos_counts[pos] = counts.get(pos) 
        else: pos_counts[pos] = 0    #E 
    return pos_counts 
 
def initialize_dataset(source, source_docs): 
    all_features = [] 
    targets = [] 
    for (sent, label) in source: 
        feature_list=[] 
        feature_list.append(avg_number_chars(sent)) 
        feature_list.append(number_words(sent)) 
        counts = word_counts(sent) 
        for word in STOP_WORDS: 
            if word in counts.keys(): 
                feature_list.append(counts.get(word)) 
            else: 
                feature_list.append(0)         
        feature_list.append(proportion_words(sent, STOP_WORDS))    #F 
        p_counts = pos_counts(sent, source_docs, pos_list) 
        for pos in p_counts.keys(): 
            feature_list.append(float(p_counts.get(pos))/float(len(sent)))    #G 
        all_features.append(feature_list) 
        if label=="austen": targets.append(0) 
        else: targets.append(1) 
    return all_features, targets 

#A Import Python’s Counter functionality to simplify counting procedures 
#B Provide a coarse-grained list of part-of-speech tags that you’d like to extract 
#C Extract part-of-speech tags from the linguistic containers and compare them to predefined tags  
#D You only need the first letter from the actual part-of-speech tag 
#E Populate pos_counts dictionary using the counts of the part-of-speech tags or inserting 0  
#F Extract the previous 308 features as before 
#G Add the new 14 features by calculating the proportion of words with each of the 14 part-of-speech tags 

Finally, let’s train, test and evaluate the classifier based on these new features, as we did 
before. Here is one modification that we will make to the code – from now on, the code that 
trains and tests the algorithm and evaluates the results is not going to change, so we can 
simply pack it up under a method called run() and apply this method every time we need 
the train-test-evaluate routine. Code Listing 6.10 does exactly that. 
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Listing 6.10 Code to run the train-test-evaluate routine 

def run(): 
    train_data, train_targets = initialize_dataset(strat_train_set, train_docs) 
    pretest_data, pretest_targets = initialize_dataset(strat_pretest_set, pretest_docs) 
    test_data, test_targets = initialize_dataset(test_set, test_docs)    #A 
 
    print (len(train_data), len(train_targets)) 
    print (len(pretest_data), len(pretest_targets)) 
    print (len(test_data), len(test_targets))    #B 
    print () 
     
    text_clf = DecisionTreeClassifier(random_state=42) 
    text_clf.fit(train_data, train_targets)    #C 
    predicted = text_clf.predict(pretest_data) 
    evaluate(predicted, pretest_targets)    #D 
 
    predicted = text_clf.predict(test_data) 
    evaluate(predicted, test_targets)    #E 
     
run() 

#A Initialize the datasets 
#B As a sanity check, print out the sizes of the data sets 
#C Train on the training set 
#D Test and evaluate on the pretest set 
#E Test and evaluate of the test set 

The results printed out by this code show that the addition of these 14 features improves the 
performance even further – now the classifier performs with 0.82-0.83 accuracy on both 
pretest and test sets, showing good generalization behavior. For example, you may get the 
results similar to the ones presented in Figure 6.16. 

 
Figure 6.16 Sample results on the pretest and test sets with the addition of the part-of-speech features5 

Moreover, precision, recall and F1 scores improve on both minority and majority classes: 
now the classifier reaches very balanced precision, recall and F1 at and above 0.87 on class 
0 (Jane Austen) on the pretest set, and similar values on the test set. Performance on the 
minority class – class 1 (William Shakespeare) is also consistent: precision, recall and F1 are 

 
5 Don’t get alarmed if you get slightly different results from one run to another – minor deviations are possible, since spaCy introduces its own random 

seed. 
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all around 0.70 and above, bringing the average performance across classes to 0.82-0.83 
across the runs of the classifier. This is great news: the results keep improving and they are 
very stable across the pretest and test sets, showing that the set of features we are applying 
represents the task well, as it generalizes between the data sets. However, there is still a 
considerable gap in performance between the majority and minority classes, and in terms of 
absolute numbers, the results are not yet at the level we got with the benchmark model, as 
Figure 6.17 shows. 

 
Figure 6.17 Accuracy scores after adding a new type of features – distribution of parts-of-speech (F5) 
compared to the previous models 

Let’s add some further features. 

6.2.4 Distribution of word suffixes as features  
Words are excellent source of features: they tell us about author’s individual preferences, 
choices and topics covered in one’s writing. The caveat with the words used as features is 
that they tend to represent the training dataset a bit too precisely, so such things as topics 
and characters from the training set might get memorized rather than used to learn 
informative patterns, and as the same character names and topics do not necessarily occur 
in the test set, the classifier performs less well on the test data if it uses words only. The 
problem is, the classifier has no way to distinguish between the words that relate to topics 
and particular literary works, and those that reflect author’s distinctive writing style. 

A solution to this problem is to use parts of words rather than full words. Why is this 
useful? In fact, bits of words encode the full set of words much more compactly, which helps 
classifier’s performance as it creates a much smaller feature space. At the same time, they 
capture spelling conventions that pertain to one’s writing across the words: for instance, if I 
used British spelling, many of the words would end with –ise as in initialise, rather than with 
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–ize as in initialize. Finally, bits of words would, once again, reflect what types of words an 
author prefers using: e.g., are those adjectives ending with –able, as in remarkable, 
unmistakable, and so on? Or are those nouns ending with –tion, as in reflection, composition, 
and so on? 

With spaCy, you can extract final three letters of a word, called suffixes in spaCy – this is 
one of the linguistic features of a token that we stored at the previous step. Let’s use suffixes 
as features. To make our feature space more compact, let’s focus on the distribution of the 
most frequent n% of the suffixes in our data. You can select your own cutoff point, as the 
code in Listing 6.11 suggests. Here, we are using 40% most frequent suffixes from the data. 

In this code, you rely on Python’s operator functionality, which is useful when sorting 
dictionaries. You implement a function select_suffixes to select a certain proportion 
(defined by cutoff) of the most frequent suffixes in the data. For that, you iterate through 
the list of values in the train_docs.values() – these are linguistic containers for all the 
sentences from the training set. From these containers, you extract suffixes, which can be 
directly accessed for each word in each sentence using word.suffix_. You store the 
frequency of all the suffixes in the counts dictionary and then sort this dictionary according 
to the number of times each suffix occurs in the training data (thus, 
key=operator.itemgetter(1)) in descending order, i.e., starting with the most frequent 
suffixes (thus, reverse=True). To make the feature space more compact, the code shows 
how you can use only some of the most frequent suffixes: you can control the proportion of 
the most frequent suffixes with the cutoff argument. For the sorted_counts entries within 
this range, you only need the suffix itself, which can be accessed with 
sorted_counts[i][0]. Finally, you apply this function to extract and print out the most 
frequent 40% of the suffixes. 

Listing 6.11 Code to collect the most frequent suffixes from the data 

import operator    #A 
 
def select_suffixes(cutoff):    #B 
    all_suffixes = [] 
    for doc in train_docs.values():    #C 
        for word in doc: 
            all_suffixes.append(str(word.suffix_).lower())    #D 
    counts = Counter(all_suffixes) 
    sorted_counts = sorted(counts.items(), key=operator.itemgetter(1), reverse=True)    #E 
    selected_suffixes = [] 
    for i in range(0, round(len(counts)*cutoff)): 
        selected_suffixes.append(sorted_counts[i][0])    #F 
    return selected_suffixes 
     
selected_suffixes = select_suffixes(0.4) 
print(len(selected_suffixes)) 
print(selected_suffixes)    #G 
 

#A Import Python’s operator functionality, which is useful when sorting dictionaries 
#B Implement a function to select a certain proportion of the most frequent suffixes in the data 
#C Iterate through the list of values in the train_docs.values() 
#D Suffixes can be directly accessed for each word in each sentence using word.suffix__ 
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#E First, store the frequency of all the suffixes in the counts dictionary, and then sort it in descending order 
#F Use some of the most frequent suffixes only; the suffixes can be accessed with sorted_counts[i][0] 
#G Apply this function to extract and print out the most frequent 40% of the suffixes 

The code above will print out a list of 577 suffixes. As we don’t restrict the length of the 
words, whenever the word itself is shorter than 3 characters in length, the full word is 
returned by this method by default, so you might see some words like “was”, “as”, or even 
punctuation marks like “?” in this list. At the same time, word fragments such as “ing” (as in 
interesting and moving), “ion” (as in celebration and union), “uld” (as in should and would), 
“ess” (as in selfless and darkness), and many others feature on this list. 

Let’s now use these suffixes as features, which will increase the size of our feature set 
from 322 up to 899 features. As before, we will extract features from each of the sentences 
by using the counts for each of the suffixes in a particular sentence and using a count of 0 
whenever a suffix does not occur in any of the words in a sentence. We will then add these 
features to our feature set, and we will train, test and evaluate the classifier.  

Code Listing 6.12 runs through all of these steps. First, the suffix_counts function 
returns the counts of suffixes from the suffix_list in the given sentence (text). You need 
to add source_docs as an argument because source_docs store the linguistic containers 
with the suffixes for all the words in the sentence. For each suffix from the suffix_list, you 
use its count in the sentence as the feature value if it occurs, and you use 0 otherwise. Next, 
you extract the previous 322 features as before and add the new 577 suffix distribution 
features by calculating the proportion of words containing each of the suffixes in the 
sentence, i.e., by dividing the suffix counts by the total number of words in the sentence. 
Finally, you apply the train-test-evaluate routine as before. 
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Listing 6.12 Code to add new, suffix-based features, then train and test the classifier 

def suffix_counts(text, source_docs, suffix_list):    #A 
    suffix_counts = {} 
    doc = source_docs.get(" ".join(text)) 
    suffixes = [] 
    for word in doc: 
        suffixes.append(str(word.suffix_)) 
    counts = Counter(suffixes) 
    for suffix in suffix_list: 
        if suffix in counts.keys(): 
            suffix_counts[suffix] = counts.get(suffix) 
        else: suffix_counts[suffix] = 0 
    return suffix_counts    #B 
 
def initialize_dataset(source, source_docs): 
    all_features = [] 
    targets = [] 
    for (sent, label) in source: 
        feature_list=[] 
        feature_list.append(avg_number_chars(sent)) 
        feature_list.append(number_words(sent)) 
        counts = word_counts(sent) 
        for word in STOP_WORDS: 
            if word in counts.keys(): 
                feature_list.append(counts.get(word)) 
            else: 
                feature_list.append(0)         
        feature_list.append(proportion_words(sent, STOP_WORDS)) 
        p_counts = pos_counts(sent, source_docs, pos_list) 
        for pos in p_counts.keys(): 
            feature_list.append(float(p_counts.get(pos))/float(len(sent)))    #C 
        s_counts = suffix_counts(sent, source_docs, selected_suffixes) 
        for suffix in s_counts.keys(): 
            feature_list.append(float(s_counts.get(suffix))/float(len(sent)))    #D 
        all_features.append(feature_list) 
        if label=="austen": targets.append(0) 
        else: targets.append(1) 
    return all_features, targets 
 
run()    #E 

#A suffix_counts function returns the counts of suffixes from the suffix_list in the given sentence (text) 
#B For each suffix from the suffix_list, use its count in the sentence if it occurs or 0 otherwise 
#C Add the previous 322 features as before 
#D Add the new 577 suffix distribution features by calculating the proportion of words containing the suffixes 
#E Apply the train-test-evaluate routine as before 

This code will print out accuracy values over 0.95 for both pretest and test sets! That is, 
you’ve reached performance comparable to that of the benchmark model on the pretest set, 
and you’ve also significantly improved performance of the classifier on the test set, as Figure 
6.18 shows. Now the performance on both sets is almost equally good, proving that the set 
of features is generalizable and captures the author’s style rather than topics or any other 
phenomena in the data. Moreover, the classifier uses a much smaller feature set of under 
1,000 features as opposed to over 13,000-word features with the benchmark model. 
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Figure 6.18 Accuracy scores after adding suffixes distribution (F6) compared to the previous models 

What about performance on each of the classes? All class-related measures (precision, 
recall and F1 score) reach around 0.96-0.97 on both pretest and test sets for class 0 (Jane 
Austen), as Figure 6.19 shows. This is by itself an improvement of almost 10 points over the 
previous results. What is more, on the minority class, class 1 (William Shakespeare) the 
classifier reaches precision, recall and F1 score in the range of 0.90-0.93 on both pretest and 
test sets. This is not only a significant improvement of 20 points over the previous results – 
it also makes performance on both majority and minority classes sufficiently similar. 

 
Figure 6.19 Sample results with the addition of suffix-based features 

6.2.5 Unique words as features  
Finally, to round off the discussion, let’s revisit the notion of words as features once again. 
We said that words create a very sparse feature set without providing for the good 
generalizability of the classifier. Is there any more compact and useful subset of words to use 
as features? 
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If each author has their favorite words to use, can we simply use the unique vocabularies 
each author has for classification? That is, if William Shakespeare repeatedly uses words like 
“nephewes”, “suppresse”, “poysoner”, “wildenesse”, and “eternall” (all Early Modern English 
spellings of otherwise familiar words) that do not occur in Jane Austen’s literary works, while 
Jane Austen repeatedly uses words like “mr”, “mrs”, “family”, “business”, and “handsome”, 
which William Shakespeare does not use, then can’t these words represent some useful 
features in our task? Let’s try adding them to our feature set. As with suffixes, let’s start by 
collecting the set of words to work with. This time we want to extract all words that occur in 
Jane Austen but not in William Shakespeare, and vice versa. Next, to make sure we don’t 
end up with very rare words than only occur once or twice in the training set, let’s apply a 
cutoff again and consider, say, the top 50% of the unique vocabularies from each author. 
Code Listing 6.13 collects unique words in that way. 

In this code, you implement a function unique_vocabulary that selects a certain 
proportion (defined by cutoff) of the most frequent unique words for author1 (label1) and 
author2 (label2). Within this function, you first collect full vocabularies, i.e., all words used, 
for each author. Then, you count the number of times each word occurs with each author 
and sort them in descending order. The unique_voc list only stores the most frequent words 
(defined by cutoff) for each author if they never occur in the other author’s vocabulary. You 
can access the words themselves using sorted_counts[i][0]. In the end, you can print out 
the unique_voc list using 50% as the cutoff. 

Listing 6.13 Code to collect 50% most frequent unique words per author 

def unique_vocabulary(label1, label2, cutoff):    #A 
    voc1 = [] 
    voc2 = [] 
    for (sent, label) in strat_train_set: 
        if label==label1: 
            for word in sent: 
                voc1.append(word.lower()) 
        elif label==label2: 
            for word in sent: 
                voc2.append(word.lower())    #B 
    counts1 = Counter(voc1) 
    sorted_counts1 = sorted(counts1.items(), key=operator.itemgetter(1), reverse=True) 
    counts2 = Counter(voc2) 
    sorted_counts2 = sorted(counts2.items(), key=operator.itemgetter(1), reverse=True)    

#C 
    unique_voc = [] 
    for i in range(0, round(len(sorted_counts1)*cutoff)): 
        if not sorted_counts1[i][0] in counts2.keys(): 
            unique_voc.append(sorted_counts1[i][0]) 
    for i in range(0, round(len(sorted_counts2)*cutoff)): 
        if not sorted_counts2[i][0] in counts1.keys(): 
            unique_voc.append(sorted_counts2[i][0])    #D 
    return unique_voc 
     
unique_voc = unique_vocabulary("austen", "shakespeare", 0.5) 
print(len(unique_voc)) 
print(unique_voc)    #E 
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#A Implement a function that selects a certain proportion of the most frequent unique words for each author 
#B First, collect full vocabularies – all words used – per each author 
#C Next, count the number of times each word occurs with each author and sort them in descending order 
#D The unique_voc list stores the most frequent words for each author if they are never used by the other author 
#E Print out the unique_voc list using 50% as the cutoff 

The code above will print out a list of 4,435 – this constitutes about 1/3 of the total set of 
over 13,000 words occurring in the training set. Given that we are only using 50% of the 
unique words, we can tell that about 2/3 of the total number of words used in the training 
set are unique – they occur in the works by one author, but not the other. This partially 
explains high accuracy values achieved with the benchmark model: given that the 
vocabularies of the two authors are so diverse and there is, relatively speaking, not much 
overlap, it is easier for the classifier to separate the sentences produced by these two 
authors. However, the main problem with the words as features only is that they don’t 
produce reliably good results. Is this selected set of words better? 

Inspecting the unique_voc list printed out by the code from Listing 6.13, you may notice 
a number of character names on this list, like “emma”, “harriet”, “hamlet”, and “polonius” – 
as you know by now, such features won’t help much in classification of any new test data. At 
the same time, the unique_voc list also contains words that use Early Modern English 
spelling and should help identifying William Shakespeare, as well as words like “agreeable”, 
“amiable”, and “desirable” from the works by Jane Austen, that confirm our earlier 
hypotheses that the use of adjectives, or the use of words ending in “ble” can be 
characteristic of a particular author. 

Let’s add the count of unique words as another type of features. This time, we will be 
adding extra 4,435 features, making our whole feature set as large as 5,334 features.6 Code 
Listing 6.14 shows how to add these new features and run the train-test-evaluate routine. In 
this code, the unique_counts function returns the counts of unique words from the 
unique_voc list in the given sentence (text). For each word from the unique_voc, it uses its 
count in the sentence as the feature value if it occurs and 0 otherwise. The previous 899 
features are extracted as before and complemented with the new 4,435 unique word counts 
features. Finally, the train-test-evaluate routine is applied as before. 
  

 
6 Note that this final set of features is still considerably smaller than the one that you used with the benchmark model in Chapter 5. It is also less sparse 

than the set of all words in the data, which helps the Decision Trees classifier deal with this task efficiently. Finally, sklearn’s implementation of 
the algorithm ensures optimal performance of the classifier.  
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Listing 6.14 Code to add new word-based features, then train and test the classifier 

def unique_counts(text, unique_voc):    #A 
    unique_counts = {} 
    words = [] 
    for word in text: 
        words.append(word.lower()) 
    counts = Counter(words) 
    for word in unique_voc: 
        if word in counts.keys(): 
            unique_counts[word] = counts.get(word) 
        else: unique_counts[word] = 0    #B 
    return unique_counts 
 
def initialize_dataset(source, source_docs): 
    all_features = [] 
    targets = [] 
    for (sent, label) in source: 
        feature_list=[] 
        feature_list.append(avg_number_chars(sent)) 
        feature_list.append(number_words(sent)) 
        counts = word_counts(sent) 
        for word in STOP_WORDS: 
            if word in counts.keys(): 
                feature_list.append(counts.get(word)) 
            else: 
                feature_list.append(0)         
        feature_list.append(proportion_words(sent, STOP_WORDS)) 
        p_counts = pos_counts(sent, source_docs, pos_list) 
        for pos in p_counts.keys(): 
            feature_list.append(float(p_counts.get(pos))/float(len(sent))) 
        s_counts = suffix_counts(sent, source_docs, selected_suffixes) 
        for suffix in s_counts.keys(): 
            feature_list.append(float(s_counts.get(suffix))/float(len(sent)))    #C 
        u_counts = unique_counts(sent, unique_voc) 
        for word in u_counts.keys(): 
            feature_list.append(u_counts.get(word))    #D 
        all_features.append(feature_list) 
        if label=="austen": targets.append(0) 
        else: targets.append(1) 
    return all_features, targets 
 
run()    #E 
 

#A unique_counts function returns the counts of unique words from the unique_voc list in the given sentence 
#B For each word from the unique_voc, use its count in the sentence if it occurs or 0 otherwise 
#C Add the previous 899 features as before 
#D Add the new 4,435 unique word counts features 
#E Apply the train-test-evaluate routine as before 

The results returned by this code show that a further small improvement is achieved with 
these new features: now accuracy on both pretest and test sets is around 0.96; precision, 
recall and F1 score on the majority class (class 0, Jane Austen) is reliably at 0.97 on both 
sets, while performance on the minority class (class 1, William Shakespeare) is further 
improved by 1 percentage point, reaching around 0.91 to 0.94 in terms of precision, recall 
and F1 score on both datasets. Average precision, recall and F1 scores per two classes on 
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both pretest and test sets reach 0.96, which is a remarkably consistent behavior. Figure 6.20 
summarizes the results you’ve got with various models in one graph, with F7 representing 
the final group of features you’ve added, counts of unique words per author: 

 
Figure 6.20 Final summary of accuracy scores across all models 

6.3 Practical use of authorship attribution and user profiling 
Congratulations – you have now implemented your second machine learning & natural 
language processing application! What is more, you have learned about linguistic feature 
engineering, and the machine learning pipeline you’ve built over the course of the past two 
chapters can be applied to any language-related task as soon as you can represent it as a 
classification problem with a clear set of classes. 

Now that you have acquired new skills – you know how to use two NLP toolkits, how to 
apply two ML classification algorithms, and how to properly evaluate the results – it’s time to 
put your skills to practice.  
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Exercise 6.1 
Jane Austen and William Shakespeare have quite different writing styles, which might have considerably helped the 
classification algorithm to distinguish between the two. The reason we selected those two authors was the availability 
of the data through the NLTK interface. At the same time, the Gutenberg project contains a much larger number of 
literary works for a wide variety of authors. Use texts from the Gutenberg project to create training and test sets for 
the authors of your choice, then apply the machine learning pipeline to get new results. 

 
Hint: You can access texts using the following code:  
 

from urllib.request import urlopen 

in_text = "" 
with urlopen('https://www.gutenberg.org/files/521/521-0.txt') as response:  
        for line in response: 
        line = line.decode('utf-8') 
                         in_text += line 
 

Check out the id’s of the literary works of your favorite authors: “521” in the code above stands for The Life and 
Adventures of Robinson Crusoe. Note that the texts come in untokenized, so you will need to first split them into 
sentences and words. 
 

Exercise 6.2 
If you have your own set of texts (e.g., blogposts, forum posts, etc.) produced by users with different characteristics, 
for instance, of different age, occupation, status or gender, adapt the authorship attribution algorithm that we built in 
this chapter to classify users according to these characteristics instead of authorship. 
 

Exercise 6.3 (Advanced) 
If you would like more practice with real-life NLP and ML tasks, it is a good idea to check datasets and projects 
available on the Kaggle platform (https://www.kaggle.com) and in the UCI Machine Learning Repository 
(https://archive.ics.uci.edu/ml/index.php).  

 
Explore user and author profiling datasets available on these platforms, for example: 
 

• Detect an author of a tweet based on the text of a tweet in “Hillary Clinton and Donald Trump Tweets” 
(https://www.kaggle.com/benhamner/clinton-trump-tweets) dataset. Possible extension: the dataset contains 
other characteristics about author behavior and statistics on Twitter, which can be added to the feature set and 
combined with linguistic features. 

• Detect an author of an article from the Reuters dataset (https://archive.ics.uci.edu/ml/datasets/Reuter_50_50). 
Note: this dataset contains articles from as many as 50 different authors. You can either select two authors to 
keep with the binary classification task, or extend the machine learning pipeline to 50 classes. 
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6.4 Summary 
• An advanced author profiling algorithm uses a more compact and informative set of 

linguistic features with a new classifier, Decision Trees. 
• Accuracy is one of the most widely used measures for performance evaluation, 

however, as a single score it hides away how the classifier performs on each of the 
classes. If you want to know how to improve the results of your algorithm further, you 
should look into class-wise performance and use precision (proportion of times an 
instance actually comes from the class that your classifier claims it comes from), 
recall (proportion of class instances correctly identified by the classifier), and F1 
measure / score that shows the balanced performance between these two measures. 
In addition, it is always helpful to print out the confusion matrix, which shows the 
distribution of predicted class instances against the actual class instances. 

• Linguistic feature engineering is a process, in which you identify which types of 
information represent informative characteristics of the classes and can be used as 
features. This process is an important part of an NLP project: often, it is not known in 
advance which features should be used, and you need to run comparative 
experiments to find this out. For the author profiling task, words do not provide for 
good generalization behavior, therefore, other features ranging from “shallow” (such 
as word and sentence length) to “deep” linguistic features (such as bits of words, 
called suffixes, or part-of-speech distributions in texts) may be more informative. 
Such linguistic features can be extracted using spaCy. The feature engineering 
experiments presented in this chapter can be extended and the effect that some other 
features (e.g., phrases or word order in the author’s writing) may have on the results 
can be further investigated. 

• Decision Trees is one of the many classifiers available via sklearn. The toolkit makes it 
easy to experiment with other classifiers further. 

• As a result of all the above-mentioned steps, the authorship attribution application 
achieves equally good results on various sets of data and on both majority and 
minority classes and beats the results of the benchmark model. This application can 
be adapted to identify authors as well as groups of users in other datasets. Moreover, 
the machine learning pipeline from this section can be applied to any NLP application 
that can be represented as a supervised machine learning task. 
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Your First Sentiment Analyzer using 

Sentiment Lexicons 

This chapter covers 

• An in-depth discussion on the intricacies of one of the most popular NLP tasks – sentiment 
analysis 

• Implementation of a sentiment analyzer using a lexicon-based approach 
• Further application of linguistic pipeline and linguistic concepts with spaCy 

Last two chapters discussed implementation of an authorship attribution algorithm using NLP 
approaches and machine learning techniques. As a result, now you can apply your authorship 
attribution application whenever you want to identify the actual author of a particular piece 
of writing, and… not only that! In fact, the previous chapters introduced a number of new 
ideas. Let’s summarize them here before we attempt a new NLP application: 

• You’ve learned that machine learning is used quite a lot across NLP tasks. So far, you 
have applied it to authorship attribution in Chapters 5 and 6 and to spam filtering in 
Chapter 2. In particular, whenever you can enumerate the desired outcomes, you can 
present the task as that of classification: in spam filtering, you classified an email as 
class1=“spam” or class2=“ham”, and in authorship attribution your goal was to 
assign sentences to class1=“Jane Austen” or class2=“William Shakespeare”. In 
addition, whenever you have access to data where classes were reliably identified in 
the past, you can use this class-annotated past data to teach a machine learning 
algorithm to identify more instances of the same classes in the future. Such approach 
is called supervised learning. So far, you have worked with binary classification since 
both authorship attribution and spam filtering included two classes only, but the tasks 
can easily be extended to multi-class settings: for example, if you attempted Exercise 
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3 from Chapter 6, you might have already worked with multiple authors as classes. 
Similarly, in your email inbox you might want to distinguish between “spam”, “urgent” 
and “normal” emails, making email filtering a 3-class rather than a 2-class task. 

• Previous chapters taught you how to use two popular classification algorithms – Naïve 
Bayes and Decision Trees. You have used them via different toolkits, sklearn and 
NLTK. We said that since sklearn is specifically built for the use in machine learning 
applications, from now on we will rely on its functionality and learn how to use it 
across multiple scenarios. 

• You have also learned how to use two NLP toolkits – NLTK and spaCy, and above all, 
how functionalities of the two can be combined. Both are built with NLP practitioners 
in mind, and previous chapters taught you how to leverage their capabilities to access 
linguistic resources, tools and, in particular, how to extract relevant linguistic 
information that can be used by a machine learning classifier as features. You have 
learned that various types of such linguistic information may be relevant for the task 
at hand: for instance, in Chapter 2 you built a spam filter that relied on word content 
of emails only, but as Chapter 5 showed, words on their own are not enough to 
distinguish between various authors’ writing styles. For that, you also needed to take 
the distribution of specific types of words (e.g., function words like articles or 
prepositions) or parts of words (e.g., suffixes) into account. You have learned that 
feature selection depends on the task. 

• Finally, now you know how to build a machine learning pipeline, from beginning to 
end. Typically, that’s what you will need to do: 

1. You start by selecting relevant data, where classes can be reliably identified 
2. You proceed by preprocessing it 
3. Next, you split it into training and test sets 
4. You extract the selected set of features 
5. Next, you train the classifier of your choice on the training set 
6. You apply the trained model to the test set and evaluate the results 
7. Finally, depending on the results, you may wish to change the set of features or the 

algorithm itself, and iterate over the previous steps 

Figure 7.1 visualizes the machine learning pipeline you built and used in the previous 
chapters. 
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Figure 7.1 Reminder: Machine learning pipeline for a supervised classification task. The figure visualizes all 
steps in the pipeline: you start by selecting relevant data, then you preprocess it and split into training and test 
subsets. After that, you extract features, train your classifier on the training set, and test it on the test set. You 
can iterate through the last steps if necessary. 

It’s time to practice your new skills and improve them further! In this chapter, you will be 
working on another very popular NLP task, sentiment analysis. Sentiment analysis is 
concerned with automatic detection of whether a particular text, for example, a review of a 
new phone, an app that you are about to install, a restaurant that you are planning to go to 
this evening, a movie that you are about to watch in a cinema and so on, is positive or 
negative. 

7.1 Use cases 
Having an opinion about various events and products is natural for humans. Typically, once 
we try something new, be that reading a new book, watching a new TV show, or going to a 
new restaurant, we form an opinion about that, which most of the time falls within one of the 
two categories: if we like the new book/show/restaurant, we feel and talk positively about it 
and we might recommend it to our friends. In contrast, if the experience of reading the book 
/ watching the show / eating out in the new restaurant was not satisfactory, we feel the urge 
to share this with the others and warn them so that they don’t repeat our mistakes and don’t 
waste their time and money. One can be sure that people felt the need to share their positive 
and negative emotions about various types of experience with their family and friends from 
the very onset of social interaction, however the development of the Internet and technology 
over the past decades enabled us to share our opinions with anyone in the world. For 
instance, how often do you read reviews about a newly released movie on the Internet Movie 
Database (IMDb)1 before buying your cinema ticket? Or how often do you check reviews of a 
new restaurant on Tripadvisor2 before making a reservation? Our reliance on ratings and 

 
1 https://www.imdb.com  
2 https://www.tripadvisor.co.uk  

245

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion
https://www.imdb.com/
https://www.tripadvisor.co.uk/


©Manning Publications Co.  To comment go to  liveBook 

reviews provided by a large number of absolute strangers is so ingrained in us these days 
that many would check the opinions of others even before taking a new job!3 

This particular situation is created and supported by the technology. What makes us trust 
the opinion of the (often anonymous) others? At the core of this process lies the idea of 
collective intelligence,4 which suggests that a large group of people is able to make more 
accurate predictions and better decisions than a few individuals, often even when those few 
are experts in their field. It is this idea that is behind our trust in the information presented 
by Wikipedia articles and answers given on StackOverflow; it is also behind such self-
regulating platforms as Uber and Airbnb, that rely solely on the opinion of their users; and it 
is also widely used by crowdsourcing and crowdfunding platforms. What matters for us in this 
and the next chapters, is that it is also at the core of sentiment analysis: when a number of 
people express their opinion in writing, we can extract this opinion and analyze the 
sentiment with the help of NLP and ML techniques. Let’s look into some specific examples: 

• There are multiple scenarios where you, as an individual user, would like to rely on 
collective intelligence to help you make your own decisions. As we just discussed, it 
has become a common practice to check movie reviews before buying tickets to the 
cinema, read what people say about a restaurant before planning your evening or 
what they say about a resort before planning your whole holiday, read other users’ 
reviews before buying a new phone or installing a new app, and so on. Typically, you 
would want to know what other people thought in general: for instance, if you are 
selecting between two different phones, you might be interested in comparing their 
overall quality to each other. At the same time, you might also want to know about 
particular strengths and weaknesses of a product that other users already spotted: for 
instance, you personally might be inclined to buy a phone with a longer lasting 
battery and not the one with a better camera, even if overall it has less positive 
reviews (for instance, because other users were primarily looking for one with a better 
camera). 

• Oftentimes, you can rely on star rating: for instance, IMDb aggregates reviews and 
provides a single star rating averaged across all users who left a review. So, if you are 
making plans for tonight and choosing between two movies, you might just compare 
this aggregated star rating. However, this is not always possible (for example, some 
websites might not use star rating at all) or reliable. To see why star rating might not 
always be reliable, just ask yourself what a 7-star rating (on a scale of 1-10) for a 
movie means for you. How good or how bad should a movie be to get such a rating? 
Once you’ve formulated the requirements for yourself, go and ask a friend of yours 
the same question. Now, do you think the two of you will always give 7 stars to 
exactly the same movies? The point is, numerical scales are subjective, while what 
people write about their experience or opinion is more reliable for the general (i.e., 
positive vs negative) sentiment detection. However, wading through lots of reviews in 
order to extract relevant opinion-bearing information is a laborious task! Sentiment 
analysis uses NLP techniques to distill text down to such valuable opinion-bearing 
information. Figure 7.2 shows how sentiment is expressed in a review on a hotel with 

 
3 See the popular Glassdoor platform that allows former and current employees to anonymously review companies: https://www.glassdoor.com  
4 https://en.wikipedia.org/wiki/Collective_intelligence  
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positive sentiment words and expressions (marked with a plus sign), negative 
comments (marked with a minus) and expressions that can go either way depending 
on context, but are actually used with a positive sentiment in this particular review 
(marked with a question mark): 

 
Figure 7.2 A positive review on a hotel with positive (marked with ‘+’), negative (marked with ‘–’) and other 
sentiment-bearing expressions (marked with ‘?’) highlighted 

• If you’ve developed your own product, or you work for a company that has a specific 
product or provides a service, you might also benefit from knowing what your users or 
customers think. In fact, companies often use sentiment analysis in their market 
analysis strategies. For instance, a company may run sentiment analysis on the posts 
from social media and forums to find out what users like or dislike about their product 
/ service and how it compares to their competitors’ products / services. 

• Moreover, sentiment analysis can help optimize other aspects of business: for 
instance, in 2016 a British online grocery company Ocado started using a sentiment 
analysis algorithm to automatically analyze and interpret customers’ complaints, 
praise and requests for assistance. The company noticed that on a normal day they 
would receive about 2,000 emails from their customers, but on days when, for 
example, bad weather or traffic accidents lead to delivery delays, the number of 
emails could rise up to 6,000 – an enormous amount for a human to analyze! Among 
those emails, there would be positive ones that simply say “My order was perfect. 
Thank you for your service!”, but there might also be ones with complaints, saying 
things like “The delivery was one hour late, and it’s my son’s birthday party this 
afternoon…”. Finally, another category of emails would ask for assistance and practical 
advice, for example, on how to complete an online order. While the positive emails do 
not always require immediate response – an automated acknowledgement from the 
company may be enough, it is the negative ones and the ones asking for assistance 
that might need urgent attention and action on the part of the company. So, the 
company’s solution was to train a sentiment analysis classifier on around 3 million 
emails that they received over the previous three years and that were analyzed by 
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their customer service in the past, and then to automate the analysis and response 
action chain. Figure 7.3 visualizes such an analysis and response chain: 

 
Figure 7.3 An automated analysis and response chain for customer service 

Now that you’ve got the general perspective of the task and the benefits of running an 
automated sentiment analyzer, let’s look into how you can implement one yourself. 

7.2 Understanding your task 
Let’s start with a scenario: suppose, you are planning an evening out with some friends, and 
you’d like to go to a cinema to watch one of the recently released movies. Your friends’ 
preferences seem to have divided between a superhero movie and an action movie. Both 
start around the same time, and you like both genres. To choose which group of friends to 
join at the cinema, you decide to check what those who have already seen these movies 
think about them. You visit a movie review website and find out that there are hundreds of 
reviews about both movies. Reading through all these reviews would not be feasible, so you 
decide to apply a sentiment analyzer to see how many positive and negative opinions there 
are about each of these movies and then make up your mind. How can you implement such 
a sentiment analyzer? 

Before you start implementing an algorithm to solve the task, it is always a good idea to 
analyze how we humans solve it. For instance, what makes a review positive?  

Exercise 7.1 
Take a look at the two short reviews in Figure 7.4. One is positive and one is negative – which one is which? Can you 
name some distinguishing characteristics of the positive and the negative review? 
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Figure 7.4 Examples of a positive review and a negative one 

7.2.1 Aggregating sentiment score with the help of a lexicon 
Let’s now formulate the first approach you can apply to detect sentiment in text 
automatically: 

Approach 1 
If a review contains positive words, it should be classified as a positive review; if it contains negative words, it should 
be classified as negative. 
 

How do you know if words themselves are positive or negative? Imagine, someone 
actually compiled a comprehensive list of positive and negative words for you so you can 
simply rely on that list. In fact, this is exactly the case, and there exist lists of words that 
typically express positive or negative sentiment – they are called sentiment lexicons, and 
Approach 1 summarized above is indeed one of the most basic and straightforward 
approaches to sentiment analysis that you can apply. We’ll refer to it as the sentiment 
lexicon-based approach and we will use it as our baseline model. This approach is similar to 
saying that an email should be flagged as spam as soon as a spam filter detects that a word 
“lottery” occurs in it, while the word “meeting” should signal that it is a normal email. 

So far so good. Let’s assume that our lexicon contains all English words that can ever 
express any sentiment, and we detect the sentiment in text based on presence of words in 
the positive and negative lists within such a comprehensive lexicon. Figure 7.5 shows an 
example of a review with positive and negative words highlighted in bold. This is not the full 
review, and “…” show that there are some sentences in between. However, based on this 
excerpt, can you tell whether it is a positive or a negative review? 
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Figure 7.5 An example of a review with positive (+) and negative (–) words highlighted 

As you can see, the review contains both positive (“liked”, “wonderfully”, “pleasant”) and 
negative (“shocked”, “hideous”, “grotesque”) words. Yet, overall, it is actually a positive one: 
even based on these separate sentences, some of which point out the weaknesses of the 
movie, you can tell that it is a positive review – after all, the reviewer says that she “actually 
liked” the movie! So, let’s refine our original approach: it’s not always true that an overall 
positive review will contains only positive words. A review may contain a combination of 
words with different sentiments, but among those some might have more weight than 
others: for instance, “hideous” and “grotesque” may point out minor weaknesses of the 
movie, but if a reviewer says that they “actually liked” the movie, this should outweigh the 
rest of it. 

Approach 1 (refined) 
If a review contains positive words, that together outweigh all negative words, it should be classified as a positive 
review. If, on the other hand, the negative words outweigh the positive ones, the review should be classified as 
negative. 
 

Let’s assume that our comprehensive sentiment words lexicon doesn’t just list the words 
as positive or negative, it also has some weights assigned to them. Then a simple algorithm 
can estimate the overall sentiment of a review as a sum of the individual words’ sentiment 
weights. For instance, let’s assume that some sentiment lexicon assigns sentiment weights to 
the 6 words from our review above as shown in Table 7.1. Then at each step the algorithm 
updates the total sentiment score with each word’s sentiment weight, as the rightmost 
column of the table shows. In the end, the algorithm will accumulate 0.96 as the final score, 
which, being a positive number, suggests an overall positive sentiment for the given review. 
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Table 7.1 Aggregation of the total sentiment score from individual words’ sentiment weights 

Word 

shocked 

Sentiment weight 

-1.47 

Total 

0-1.47=-1.47 

liked +2.18 -1.47+2.18=0.71 

hideous -3.33 0.71-3.33=-2.62 

grotesque -2.16 -2.62-2.16=-4.78 

wonderfully +3.61 -4.78+3.61=-1.17 

pleasant +2.13 -1.17+2.13=0.96 

 
Figure 7.6 Imagine that the total sentiment is expressed by the temperature of the contents. Each positive 
word warms the content up, while each negative word cools it down according to sentiment weights 

Figure 7.6 visualizes another way of thinking about this aggregation process using the 
following metaphor: imagine a review being some sort of a container, originally of a neutral 
temperature, e.g. 0. Every positive word makes the temperature of the container’s contents 
warmer by the degree equal to the word’s sentiment weight (for example, “liked” adds 2.18), 
while each negative word makes the contents cooler by the degree equal to its sentiment 
weight (for instance, “shocked” cools it down by 1.47 and “hideous” by 3.33). 

7.2.2 Learning to detect sentiment in a data-driven way 
Great! Now you have an algorithm that measures the “positiveness” of a review in a 
somewhat similar way to how a thermometer measures the temperature: each positive word 
adds some degree(s) to the overall temperature, while each negative one takes some away. 
This approach would have worked perfectly, if two conditions were satisfied: 

• A comprehensive sentiment lexicon containing all the words of English, past, present 
and any future ones, could be created; and 

• Language was less creative, i.e., each word meant the same thing in all of its possible 
contexts. 

Let’s look into the first problem – coverage of the lexicon. Imagine, someone was actually 
determined enough to collect absolutely all words of English that can ever possibly express 
any sentiment and assigned a sentiment (as well as the sentiment weight) to all of them. 
Immediately, several questions would arise that should be answered: who is this someone 
assigning sentiments and weights to words, and how subjective such judgement would be? Is 
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it possible to cover absolutely all words in any particular language? Words are added to 
language all the time, and they also change meaning quite regularly: for instance, words like 
“cool” (“This is a cool movie!”), “terrific” (“Terrific experience!”), as well as the more recent 
additions like “sick” and “wicked” all used to mean negative things, but are regularly used 
with a positive sentiment these days. So, how can this be taken into account in a lexicon? 

To make things worse, it is not always possible to predict what a word would mean in 
context. Here are some of the most typical problems: 

• Each word in isolation might be neutral, but together they might express some 
sentiment, like in the positive review that says “Just go see the movie”, or the 
negative review that says “How could anyone sit through this movie?” Note, that the 
first statement doesn’t contain any overtly positive words, while the second one 
doesn’t contain a single negative one. 

• Words might change their sentiment polarity in wider context, as the negative words 
(underlined) do in the following positive review: “It makes me wonder what, exactly, 
Tony Kaye disliked about the final version of his film. Perhaps this last scene was the 
problem. It's hard to imagine any director not being at least partially pleased with a 
film this good”; or as positive words (underlined) do in the following negative review: 
“If you're in the mood for a good suspense film, though, stake out something else.” 

• Negative words like “no”, “not”, “neither”, “nothing” and so on are a real problem for 
a word-based analysis, as they flip the sentiment of the whole expression – consider 
the negative reviews where the sentiment of positive words is negated as in “Nine 
Months is a predictable cookie-cutter movie with no originality in humor or plot”, 
“There weren't even nine laughs in Nine Months”, “Neither super nor standard, "8mm" 
is shocking only in its banality”, “The characters and acting is nothing spectacular”, 
and so on. 

• Finally, irony, sarcasm and metaphorical use of words present another big problem for 
lexicon-based approaches. For instance, “Otherwise, it's pretty much a sunken ship of 
a movie” expresses a really negative sentiment, but how would one break it down to 
individual words? 

To summarize, it is really hard to rely on individual words when it comes to predicting 
sentiment. Instead of using any resources like lexicons, it might be more effective to learn 
sentiment in a data-driven way: after all, when you implemented a spam filter you didn’t just 
rely on occurrence of words like “lottery” and “click” to detect spam – you learned to 
distinguish spam from ham based on some emails that were previously detected as being 
spam or ham. Let’s formulate our second approach as a data-driven one and learn the 
intricacies of sentiment from actual positive and negative reviews: 

Approach 2 
Take a collection of positive and negative reviews. Set up a machine learning pipeline, as you did for the applications 
in the previous chapters. This pipeline should rely on the dataset of reviews previously determined to be positive and 
negative. You should split this set into training and test data, define the set of features to learn the sentiment from, 
train a classifier of your choice on the training data with the selected set of features, and evaluate it on the test set. 
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Figure 7.7 illustrates the machine learning pipeline as applied to the sentiment data: 

 
Figure 7.7 Machine Learning pipeline applied to the sentiment data 

Does this approach sound familiar? In essence, it relies on the very same routine you 
used in the previous chapters. Let’s formulate a Mental Model for this task: as Figure 7.8 
visualizes, in these two chapters you will implement and compare two approaches to 
sentiment analysis. 

 
Figure 7.8 Mental Model for this task: two ways of implementing a sentiment analyzer 

Let’s now open your Jupyter notebooks and start implementing your first sentiment 
analyzer! 

7.3 Setting up the pipeline: data loading and analysis 
Your present task at hand – detection of positive and negative sentiment in movie reviews – 
may remind you of the other two applications you’ve attempted before: spam filtering from 
Chapter 2 and authorship attribution from Chapters 5 and 6, and you’d be right in spotting 
the commonality. There are certain conceptual similarities between all three: in spam 
filtering your goal was to detect emails that should be flagged as “spam” and those that 

253

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

should be flagged as “ham”, in authorship attribution you tried to assign a text to one of the 
two authors, and in sentiment analysis you are trying to label reviews as “positive” or 
“negative”. This suggests, that you can reuse some of the methods you applied before: in 
particular, you can treat sentiment analysis as a binary classification problem and apply 
similar machine learning routines to the ones you used before. 

One of the most important components in a supervised machine learning application is 
data labelled with the classes that you will be predicting. For spam filtering, you used an 
open access Enron dataset, and for authorship attribution you relied on the literary works 
written by specific authors. What data can you use for sentiment analysis? 

7.3.1 Data loading and preprocessing 
One of the early attempts at sentiment analysis, that at the same time introduced and 
popularized it as an NLP task, is presented in the paper from 2002 called Thumbs up? 
Sentiment Classification using Machine Learning Techniques, by Bo Pang, Lilian Lee, and 
Shivakumar Vaithyanathan.5 This paper presented for the first time a machine learning 
approach to sentiment analysis, practically defining and framing the task of sentiment 
analysis as that on the intersection of natural language processing and machine learning. The 
paper was published together with the dataset consisting of 700 positive and 700 negative 
reviews that the authors collected from the IMDb and annotated with the sentiment polarity 
labels using the star rating assigned to reviews. Shortly after that the dataset was expanded, 
and it is the version 2.0 of this polarity dataset, containing 1000 positive and 1000 
negative reviews, that you will be using in this chapter.6 

When you download the dataset, a quick look into the folder (as well as the included 
README file) will tell you that the positive and negative reviews have been extracted from 
their html sources and stored as plain text files in two subfolders, helpfully called pos/ and 
neg/ for the two types of sentiment expressed in them. This means that it will be easy to 
extract the sentiment polarity labels from this annotated data. 

Let’s start by reading in the data, as Code Listing 7.1 suggests. This code relies on 
Python’s os functionality, that helps you list all the files in a given folder. You iterate through 
the files in each folder and, unless the file name starts with “.” (which is used by some 
operating systems for hidden files, so none of those will be a review of interest to us here), 
you read the contents of the file. Since each file name is of the format “unique_id.txt”, you 
extract the unique_id bit and use it as the unique identifier for the contents of the review. 
Finally, you return a Python dictionary a_dict, where the review’s unique identifier is 
mapped to the review’s content. 
  

 
5 http://www.cs.cornell.edu/home/llee/papers/sentiment.pdf  
6 The polarity dataset v2.0 can be downloaded from http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz  
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Listing 7.1 Code to read in the positive and negative movie reviews 

import os, codecs 
 
def read_in(folder): 
    files = os.listdir(folder)    #A 
    a_dict = {} 
    for a_file in sorted(files): 
        if not a_file.startswith("."): 
            with codecs.open(folder + a_file, encoding='ISO-8859-1', errors ='ignore') as 

f:    #B 
                file_id = a_file.split(".")[0].strip()    #C 
                a_dict[file_id] = f.read() 
            f.close() 
    return a_dict    #D 

#A List all the files in a given folder using Python’s os functionality 
#B Unless a file name starts with “.”, read the contents of the file   
#C Extract the unique_id bit and use it as the unique identifier for the contents of the review 
#D Return a Python dictionary a_dict, where the review’s unique identifier is mapped to the review’s content 

We are going to apply the code above to the two subfolders that contain positive and 
negative reviews, thus creating two Python dictionaries – pos_dict for all positive reviews 
and neg_dict for all negative ones. Code Listing 7.2 shows you how to do that. Note that 
unless you’ve renamed the folder after downloading the data, all the reviews will be stored in 
review_polarity/txt_sentoken/. Once you’ve applied the read_in function to the two 
subfolders, you can print out the length of the dictionary with positive reviews, pos_dict, as 
well as the very first positive review, that can be identified using Python iterator on the 
dictionary and extracting the first entry with next(iter(dictionary)). Then, you can print 
out similar information on the neg_dict. 

Listing 7.2 Code to initialize two Python dictionaries for the reviews of different polarity 

folder = "review_polarity/txt_sentoken/"    #A 
pos_dict = read_in(folder + "pos/") 
print(len(pos_dict)) 
print(pos_dict.get(next(iter(pos_dict))))    #B 
neg_dict = read_in(folder + "neg/") 
print(len(neg_dict)) 
print(neg_dict.get(next(iter(neg_dict)))))    #C 

#A All the reviews are stored in review_polarity/txt_sentoken/ 
#B Print out the length of the pos_dict and the very first positive review 
#C Similarly, print out the length of the neg_dict and the very first review in it 

The code above will print the following output (with […] used to save space as you will see 
much longer texts printed out when you run this code in the notebook): 

1000 
films adapted from comic books have had plenty of success , whether they're about 

superheroes ( batman , superman , spawn ) , […] 
 
1000 
plot : two teen couples go to a church party , drink and then drive .  
they get into an accident . […] 
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This output shows that the length of each of the two dictionaries equals 1000 because 
there are exactly 1000 positive and 1000 negative reviews in this dataset. How is the data 
stored in the two Python dictionaries? 

The first entry in the positive dictionary, pos_dict, has a unique identifier (key in the 
Python dictionary) “cv000_29590” as the text comes from the file cv000_29590.txt in the 
review_polarity/txt_sentoken/pos/ subfolder.7 The following content (value in the Python 
dictionary) is associated with this key: 

films adapted from comic books have had plenty of success , whether they're about 
superheroes ( batman , superman , spawn ) , or geared toward kids ( casper ) or the 
arthouse crowd ( ghost world ) , but there's never really been a comic book like 
from hell before .  

Figure 7.9 visualizes how the read_in function extracts the data from the original files 
and stores it in two Python dictionary structures: 

 
Figure 7.9 The read_in function extracts reviews from original files and stores them in Python dictionaries 

Now, if you open cv000_29590.txt in review_polarity/txt_sentoken/pos/ subfolder, which 
is exactly the first file there, you should see the same content in the file. The first negative 
entry in the negative dictionary, neg_dict, corresponds to the contents of the file 
review_polarity/txt_sentoken/neg/cv000_29416.txt, as both the code output and Figure 7.9 
show: 
  

 
7 Note that we are keeping the file names as unique identifiers for the sole reason of being able to track them back to the dataset if needed. You shouldn’t 

worry about the file naming conventions in this dataset, but if you’re interested to know how the files were named, the bit before “_” is the unique id 
within the folder (pos/ or neg/), while the bit after refers to the name of the original html file, from which the content was extracted. 
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plot : two teen couples go to a church party , drink and then drive .  
they get into an accident .  
one of the guys dies , but his girlfriend continues to see him in her life , and has 

nightmares .  

The checks that you’ve just run are essentially “sanity checks” – they help you make sure 
that all data is uploaded correctly and that you understand how it is represented. Take a look 
at Exercise 7.2 and try to analyze what you have learned about the data and the task so far. 

Exercise 7.2 
What can you say about the data at this point? In particular:  

 
• How are the classes in this data distributed?  
• How much processing will you need to apply to this data?  
• Are there any obvious differences between this pair of positive and negative reviews? In other words, if you didn’t 

know whether a review came from the pos/ or the neg/ subfolder, will you be able to easily detect its polarity, 
and what clues would help you then? 

 

Before you move on to the sentiment detection step itself, let’s take a closer look into the 
data and analyze it a bit further. 

7.3.2 A closer look into the data 
Let’s run a set of standard quantitative checks on the two sets of reviews. For instance, in 
Chapter 5, you checked for the length of sentences, length of words, and lexical diversity of 
language used by the two authors and found out that Jane Austen tended to have longer 
sentences as well as longer words. Some of these characteristics could serve as 
distinguishable features and help you understand the task at hand better. 

This time, let’s measure for each of the polarity review collections: 

• Average length of a review in terms of words 
• Average sentence length 
• Vocabulary size, i.e., the number of distinct words (often called word types in NLP 

lingo) 
• Lexical diversity (also called type-token ratio), which is the ratio of the overall number 

of words used (this is often referred to as tokens) to the number of distinct words 
(types as above) to. You used lexical diversity in Chapter 5 to measure the difference 
between the two authors’ writing styles. Lexical diversity shows how often, on 
average, each word occurs in a collection of texts. If each word was used only once 
(i.e., each word was unique), this measure would equal to 1. 

Code Listing 7.3 calculates all these statistics on the data. Note that, since the texts are 
already tokenized, all you need to do to extract words is to split texts by whitespaces. In this 
code, you initialize the following variables: length to store the overall length of the reviews, 
sent_length for the length of the sentences, num_sents for the number of sentences, and 
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vocab for the list of distinct words. Then, you calculate the average length of a review 
(avg_length) by dividing the overall length in a collection of reviews by its size and average 
sentence length (avg_sent_length) by dividing the length of all sentences combined by their 
number. Next, you estimate vocabulary size as the length of the set of distinct words and 
diversity as the average number of times each word occurs in texts of a particular sentiment. 
Finally, you use the printing routine from earlier chapters and print out the statistics for the 
positive and negative reviews. 

Listing 7.3 Code to calculate statistics on the review dataset 

def tokenize(text): 
    text.replace("\n", " ") 
    return text.split()    #A 
 
def statistics(a_dict): 
    length = 0 
    sent_length = 0 
    num_sents = 0 
    vocab = []    #B 
    for review in a_dict.values(): 
        length += len(tokenize(review)) 
        sents = review.split("\n") 
        num_sents += len(sents) 
        for sent in sents: 
            sent_length += len(tokenize(sent)) 
        vocab += tokenize(review) 
    avg_length = float(length)/len(a_dict) 
    avg_sent_length = float(sent_length)/num_sents 
    vocab_size = len(set(vocab)) 
    diversity = float(length)/float(vocab_size) 
    return avg_length, avg_sent_length, vocab_size, diversity    #C 
         
categories = ["Positive", "Negative"] 
rows = [] 
rows.append(["Category", "Avg_Len(Review)", "Avg_Len(Sent)", "Vocabulary Size", 

"Diversity"]) 
stats = {} 
stats["Positive"] = statistics(pos_dict) 
stats["Negative"] = statistics(neg_dict) 
for cat in categories: 
    rows.append([cat, f"{stats.get(cat)[0]:.6f}",  
                f"{stats.get(cat)[1]:.6f}", 
                f"{stats.get(cat)[2]:.6f}", 
                f"{stats.get(cat)[3]:.6f}"]) 
 
columns = zip(*rows) 
column_widths = [max(len(item) for item in col) for col in columns] 
for row in rows: 
    print(''.join(' {:{width}} '.format(row[i], width=column_widths[i])  
                  for i in range(0, len(row))))    #D 

#A To tokenize texts, simply split them by whitespaces 
#B Initialize length, sent_length, num_sents, and vocab variables 
#C Calculate avg_length and avg_sent_length and estimate vocabulary size and diversity  
#D Use the printing routine from before and print out the statistics for the positive and negative reviews 
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The code above will print out the following results: 

Table 7.1 Results from Listing 7.3 

Category   Avg_Len(Review)   Avg_Len(Sent)   Vocabulary Size   Diversity 

Positive   787.051000        23.191531       36805.000000      21.384350 

Negative   705.630000        21.524266       34542.000000      20.428174 

These figures suggest that, on the average, positive reviews in this dataset tend to be 
longer (around 787 words as opposed to around 706 words in negative reviews), with slightly 
longer sentences (around 23 words as opposed to around 22 for negative reviews) and a 
considerably larger vocabulary (36,805 distinct words used as opposed to 34,542 on the 
negative side). As a result, each word gets to be used a bit more frequently in the collection 
of positive reviews (on the average, around 21 times) than in negative ones (around 20 
times). To summarize, it appears that in this dataset, positive reviews are overall “wordier”, 
while larger vocabulary size suggests that some words only occur in the positive subset of 
reviews.  

What effect does this have on the word choice in each part? In other words, do positive 
reviews use the same set of 34,542 words as negative ones plus an additional set of 2,263 
words, or are there more differences between the two sets? Let’s find out! 

Code Listing 7.4 demonstrates how to measure the difference between two sets of words 
used in the reviews of different polarity. As a result, you can print out the number of words 
that occur in positive reviews but not in negative ones, and vice versa; you can also print out 
the full list of such non-overlapping words or some selected bits of it. Specifically, in this 
code, you first collect vocabularies from each type of reviews by “tokenizing” the reviews 
content (splitting text by whitespaces as before), and then you return the list of elements 
that are in one vocabulary but not in another. Note that contents of the reviews can be 
extracted from sentiment dictionaries by accessing values(). As a result of this, you can 
print out full lists of non-overlapping words (caution: this will result in quite long lists!) or 
some selected parts: here, I’ve chosen to print out 100 words from each list, from 1500th to 
1600th – a randomly selected span, really, so feel free to use your own range. Finally, you 
can also print out the length of each list of non-overlapping words. 
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Listing 7.4 Code to measure the difference between two lists of words 

def vocab_difference(list1, list2): 
    vocab1 = [] 
    vocab2 = [] 
    for rev in list1: 
        vocab1 += tokenize(rev) 
    for rev in list2: 
        vocab2 += tokenize(rev)    #A 
    return sorted(list(set(vocab1) - set(vocab2))) 
 
pos_wordlist = pos_dict.values() 
neg_wordlist = neg_dict.values()    #B 
 
print(vocab_difference(pos_wordlist, neg_wordlist)[1500:1600]) 
print(vocab_difference(neg_wordlist, pos_wordlist)[1500:1600])    #C 
print() 
print(str(len(vocab_difference(pos_wordlist, neg_wordlist))) + " unique words in positive 

reviews only") 
print(str(len(vocab_difference(neg_wordlist, pos_wordlist))) + " unique words in negative 

reviews only")    #D 

#A Collect vocabularies from reviews and return the list of words that are in one vocabulary but not in another 
#B Contents of the reviews can be extracted from sentiment dictionaries by accessing values() 
#C Print out full lists of non-overlapping words or some selected parts 
#D Finally, print out the length of each list of non-overlapping words 

The code above will print out the following results for the lengths of the two non-overlapping 
wordlists: 

16378 unique words in positive reviews only 
14115 unique words in negative reviews only 

In other words, there are 16,378 words that occur in positive reviews but not in negative 
ones, and 14,115 that occur only in negative but never in positive reviews (in this dataset). 
Both are impressively high numbers. If you also printed out some of these words, you will 
see words like “atmospheric” and “attention-grabbing” on the positive side and “baffling” and 
“bamboozled” on the negative side. However, you will also see many neutral words or names 
on both sides (e.g., “attendees” and “Aurelien” on the positive side, and “barbeque” and 
“Barrie” on the negative side). This is because not all words used on the positive side 
necessarily contribute to the positive sentiment, just as not all words on the negative side 
contribute to the negative sentiment. This nature of different words used in reviews with 
certain polarity is something to keep in mind when you get to select the features for your 
sentiment analyzer. 

Figure 7.10 visualizes the findings from the previous two code listings. If you consider 
that the full vocabulary of positive words contains 36,805 words and 16,378 of them do not 
occur in the negative words vocabulary, this leaves you with a shared vocabulary of 20,427 
(you can arrive at the same number considering that the negative vocabulary contains 
34,542 words in total, 14,115 of which only occur on the negative side). 
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Figure 7.10 The two sentiment vocabularies share many words, but the lists of non-overlapping words are also 
quite large 

Exercise 7.3 
What else makes the size of the vocabularies, both in the full wordlists (36,805 and 34,542 words, as returned by the 
code in Listing 7.3) and in non-overlapping parts (16,378 and 14,115 here), so large? Do you need to take all these 
words into consideration when detecting sentiment, or are there ways to make the vocabularies more compact and 
possibly more informative? 
 

To this end, let’s extract such information as lemmas and part-of-speech tags from 
reviews. Luckily, you can use spaCy’s linguistic pipeline to do all linguistic processing in one 
go. You are going to process each review from a specific input dictionary of reviews and store 
the related linguistic analysis in a special spaCy container – you may recall now that you 
applied a similar step in Chapter 6 to the literary works for the two authors. The benefit of 
running the linguistic pipeline here is that all the information within it will from now on be 
available to your sentiment analyzer on demand. Code Listing 7.5 shows how to run spaCy’s 
pipeline. First of all, you need to import spacy and initialize the pipeline with the particular 
set of tools available in spaCy’s model called “en_core_web_md”.8 The “container” with the 
linguistic information will be represented with a Python dictionary, source_docs, where each 
review’s unique identifier will be mapped to its linguistic information. Such linguistic 
information includes lemmas, part-of-speech tags, grammatical relations, and so on. To 
facilitate processing, you can merge all sentences in the review in one line of text, since in 
the original reviews sentences are separated by line breaks. To further speed processing up, 
you can disable “ner” – Named Entity Recognition module of spaCy. As linguistic processing 
of thousands of reviews takes a bit of time, it is helpful to print out some tracking messages 
after a batch of each 200 reviews is processed. In the end, the code returns the linguistic 
containers for the two types of reviews. 

 
8 Check the different models available with spaCy: https://spacy.io/usage/models  
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Listing 7.5 Code run spaCy’s linguistic pipeline and store the results  

import spacy 
nlp = spacy.load("en_core_web_md")    #A 
 
def spacy_preprocess_reviews(source): 
    source_docs = {}    #B 
    index = 0 
    for review_id in source.keys(): 
        source_docs[review_id] = nlp(source.get(review_id).replace("\n", ""), 

disable=["ner"])    #C 
        if index>0 and (index%200)==0: 
            print(str(index) + " reviews processed")    #D 
        index += 1 
    print("Dataset processed") 
    return source_docs 
 
pos_docs = spacy_preprocess_reviews(pos_dict) 
neg_docs = spacy_preprocess_reviews(neg_dict)    #E 

#A Import spacy and initialize the pipeline with the particular set of tools  
#B The “container” source_docs maps each review’s unique identifier to its linguistic information 
#C To facilitate processing, merge all sentences in the review in one line of text and disable “ner” 
#D Print out some tracking messages after a batch of each 200 reviews is processed 
#E Return the linguistic containers for the two types of reviews 

This code will put information in the specific spaCy containers as Figure 7.11 shows: 

 
Figure 7.11 Run spaCy’s pipeline and store the results in source_docs Python dictionaries 

Now with very minor modifications to the code in Listings 7.3 and 7.4 you can extract 
similar statistics using lemmas rather than word forms and predefined sets of words (such as 
adjectives and adverbs only) rather than all words. For example, the code in Listing 7.6 
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shows how to calculate similar statistics taking word lemmas rather than original words into 
account, with the key differences between Listings 7.6 and 7.3 highlighted. 

Listing 7.6 Code to calculate statistics on word lemmas 

def statistics_lem(source_docs):   #A 
    length = 0 
    vocab = [] 
    for review_id in source_docs.keys(): 
        review_doc = source_docs.get(review_id) 
        lemmas = [] 
        for token in review_doc: 
            lemmas.append(token.lemma_)    #B 
        length += len(lemmas) 
        vocab += lemmas 
    avg_length = float(length)/len(source_docs) 
    vocab_size = len(set(vocab)) 
    diversity = float(length)/float(vocab_size) 
    return avg_length, vocab_size, diversity 
         
categories = ["Positive", "Negative"] 
rows = [] 
rows.append(["Category", "Avg_Len(Review)", "Vocabulary Size", "Diversity"]) 
stats = {} 
stats["Positive"] = statistics_lem(pos_docs) 
stats["Negative"] = statistics_lem(neg_docs) 
for cat in categories: 
    rows.append([cat, f"{stats.get(cat)[0]:.6f}",  
                f"{stats.get(cat)[1]:.6f}", 
                f"{stats.get(cat)[2]:.6f}"]) 
 
columns = zip(*rows) 
column_widths = [max(len(item) for item in col) for col in columns] 
for row in rows: 
    print(''.join(' {:{width}} '.format(row[i], width=column_widths[i])  
                  for i in range(0, len(row))))    #C 

#A Input linguistic containers, source_docs, instead of original review dictionaries 
#B Lemmas can be accessed using lemma_ field 
#C The rest of the code is very similar to what you did in Listing 7.3 

This code will produce the following output: 

Table 7.2 Results from Listing 7.6 

Category   Avg_Len(Review)   Vocabulary Size   Diversity 

Positive   818.960000        24424.000000      33.530953 

Negative   737.666000        22811.000000      32.338170 

Note that the average lengths of the reviews on both sides increased: positive reviews, still 
being longer than negative ones, have around 818-819 lemmas against around 737-738 
lemmas in negative reviews (as opposed to the average of 787 and 705-706 word forms in 
the two types of reviews). What is responsible for this increase in the average review length? 
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If you’ve taken a closer look into the original reviews provided as preprocessed (e.g., 
already tokenized) text, you might have spotted such word forms as “they’ve”, “there’s” and 
similar. In other words, the tokenization wasn’t very consistent, as such forms should be split 
into “they” and “’ve”, “there” and “’s”, and so on. Since now you have preprocessed data 
with spaCy, such cases are dealt with properly, and thus you get slightly higher numbers for 
the average length. 

At the same time, vocabulary size figures clearly show how much more compact the 
lemma space is compared to the full word forms space, while still preserving same trends as 
the original space: positive reviews have 24,424 lemmas (as compared to 36,805 distinct 
word forms), which is about 1,600 lemmas more than the vocabulary for the negative 
reviews contains (22,811), which in its turn is a much smaller number than the full list of 
word forms used in negative reviews (34,542). Since multiple word forms result in the same 
lemma, each lemma gets to be used more frequently: over 33 times, on the average, for 
positive reviews (as opposed to 21 times for each word form) and just over 32 times for 
negative reviews (as opposed to 20 times for each word form).  

What about the non-overlapping lemmas then? Code Listing 7.7 is a modification of the 
code from Listing 7.4, but instead of using word forms, it takes lemmas into account. 

Listing 7.7 Code to detect the non-overlapping lemmas between two types of reviews 

def vocab_lem_difference(source_docs1, source_docs2): 
    vocab1 = [] 
    vocab2 = [] 
    for rev_id in source_docs1.keys(): 
        rev = source_docs1.get(rev_id) 
        for token in rev: 
            vocab1.append(token.lemma_)    #A 
    for rev_id in source_docs2.keys(): 
        rev = source_docs2.get(rev_id) 
        for token in rev: 
            vocab2.append(token.lemma_) 
    return sorted(list(set(vocab1) - set(vocab2))) 
 
print(str(len(vocab_lem_difference(pos_docs, neg_docs))) + " unique lemmas in positive 

reviews only") 
print(str(len(vocab_lem_difference(neg_docs, pos_docs))) + " unique lemmas in negative 

reviews only") 

#A Most of this code is similar to the code from Listing 7.4. The difference is that you need to use lemma_ 

Here are the results that you will get with this code: 

9213 unique lemmas in positive reviews only 
7600 unique lemmas in negative reviews only 

As you can see, this is indeed a much more compact space: under 10,000 non-
overlapping lemmas on each side as opposed to over 16,000 and over 14,000 for word 
forms. 

To finish this set of experiments, try to solve Exercise 7.4 before checking the solutions in 
the Jupyter notebook. 
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Exercise 7.4 
Calculate the statistics (similar to Code Listings 7.3 and 7.6) and estimate the number of non-overlapping adjectives 
and adverbs between the two types of reviews (similar to Code Listings 7.4 and 7.7).  
 

Hint: You can access part-of-speech information using token.pos_==pos, where pos is 
the part-of-speech code (tag), e.g., “ADJ” for adjectives or “ADV” for adverbs.9 

Before you move on to building a sentiment analyzer, let’s summarize what we have learned 
about the data and the task so far: 

• The vocabularies used in the positive and negative reviews are large, with the positive 
reviews having more unique words used in them, as well as being longer overall. That 
means that even though you are working with a balanced dataset of 1000 reviews in 
each class, positive reviews provide more information than negative ones. 

• If you want to make the word (feature) space more compact, you may prefer to use 
lemmas or words of selected parts-of-speech only: for instance, adjectives and 
adverbs are good candidates for sentiment-bearing words. Their distribution follows 
the same trends as you observe with all word forms and lemmas, with the positive 
reviews having more unique items (over 2,000 unique adjectives and over 500 unique 
adverbs on the positive side as opposed to under 2,000 unique adjectives and under 
500 unique adverbs on the negative side). This might provide you with a stronger 
sentiment-related signal, however, note that the number of items is quite small which 
might make the resulting adjective-and-adverb-based feature space too sparse. We 
will investigate these questions in the course of these two chapters. 

• Finally, we’ve found out that there is a considerable overlap between the vocabularies 
used in the positive and negative reviews. Presence of such words on both sides 
might make them less effective as features. In addition, both positive and negative 
vocabularies seem to include neutral words, so one should apply feature selection to 
make sure the most informative words are used. 

7.4 Aggregating sentiment scores with a sentiment lexicon 
Now that you are familiar with the task and the dataset, let’s turn to sentiment analysis itself 
and build the baseline analyzer. Earlier, we said that the most straightforward way to detect 
the overall sentiment of a review is to aggregate its sentiment score through the words in 
the review. Figure 7.12 shows how far you’ve got with the Mental Model for this task: 

 
9 Reminder: you can check the part-of-speech tags on https://spacy.io/api/annotation under “Universal Part-of-speech Tags”. 
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Figure 7.12 You’ve got the data and analyzed it. Now is the time to implement the baseline approach 

We’ve discussed two variants of such an approach. Here is a reminder: you can either 
count which side the majority of words is on – positive or negative – as in Approach 1: 

Approach 1 
If a review contains positive words, it should be classified as a positive review; if it contains negative words, it 

should be classified as negative. 
 

Alternatively, you can use the sentiment “weight” of each word and aggregate the score 
this way. The modified Approach 1 suggested the following: 

Approach 1 (refined) 
If a review contains positive words, that together outweigh all negative words, it should be classified as a positive 
review. If, on the other hand, the negative words outweigh the positive ones, the review should be classified as 
negative. 
 

We said that both variants of this approach rely on the idea that there is some ground 
truth about words’ sentiments: i.e., out there, there is some comprehensive list of words, 
that someone has reliably annotated for sentiment polarity (i.e., at the very minimum, 
identified whether each word on the list is generally positive or negative) or even assigned 
relative sentiment strength (weight) to each such word. Such resources, called sentiment 
lexicons, help build competitive baselines for machine learning approaches. Are the lexicon-
based and the machine learning-based approaches completely separate? Figure 7.13 
highlights the differences: 
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Figure 7.13 Lexicon-based approach mapped onto the machine learning pipeline 

In essence, the two approaches are similar to a point, with the following core difference: 
with the lexicon-based approach your features have already been selected and weighed for 
you. One could have done that manually or applying a machine learning algorithm trained on 
some other data. That means that you don’t have to train the classifier yourself, which in 
turn means that you don’t need to separate the data into different subsets. You can use the 
whole dataset, treat the words from the sentiment lexicon as your features, and apply a 
simple heuristic algorithm that outputs sentiment label based on the aggregated score from 
all such “features”. This provides for a competitive baseline, which is why we are applying 
this approach first. Let’s find out how competitive the results are. 

7.4.1 Collecting sentiment scores from a lexicon 
Earlier in this chapter we’ve discussed that there are a number of possible issues with a 
lexicon-based approach. They can be summarized by the statement: “A single lexicon is too 
static in its nature to be able to capture the intricacies and changes of the word use”. In 
particular: 

• Words’ sentiments change over time, so it would never be possible to register any 
word’s sentiment once and forever. For instance, words like “wicked” and “sick” are 
quite often used these days to express the sentiment similar to (and of a more 
extreme degree than) that of the word “cool” as used in “This movie is so cool!” 

• Words’ sentiments depend a lot on the context, so it would never be feasible for a 
single lexicon to cover all possible uses of a word in all domains. For example, using 
“cool” in combination with “temperature” or “wind” would mean that the weather, for 
example at a resort where someone spent their vacation, was not as nice as expected 
(i.e., expressing a negative sentiment), while saying that a movie is “cool” would 
mean that a movie is rather good. 

Thus, a sentiment lexicon should somehow take at least these two aspects – the one of 
time and the one of the subject domain – into account. Luckily, there is a sentiment lexicon 
that answers these two criteria. 

A group of researchers from Stanford University developed an algorithm that can collect 
in an automated way sentiment-bearing words and assign weights to them. Most 
importantly, they released the lexicons they collected on the SocialSent project webpage 
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for anyone to make use of them.10 What is of particular interest to us in this respect is that 
the data released contains historical lexicons covering 150 years of English (1850 to 2000), 
which reflect how words changed their sentiment from one decade to another (for instance, 
the researchers note that more than 5% of sentiment-bearing words switched their polarity 
from 1850 to 2000!), as well as community-specific sentiment lexicons for 250 “subreddit” 
communities from reddit.com (here, the researchers note that the sentiment of certain 
words changes drastically from one community to another).  

The historical sentiment lexicons contain mean sentiment scores for the top-5,000 non-
stop words in each decade from 1850-2000, as well as sentiment scores for the adjectives 
that occurred more than 100 times in the data. The community- (i.e., domain-) specific 
lexicons contain sentiment values for up to 5,000 most frequent non-stop words that occur in 
each “subreddit” community posts, using public comment data from the year 2014. We are 
going to use the following sentiment lexicons in our experiments in this chapter: 

• Since adjectives bear a lot of sentiment information, we will use adjectives lexicons. 
The review data was extracted from the IMDb in the beginning of 2000s. It is possible 
that the expressions used reflect sentiments typical of either 1990s or 2000s. To this 
end, let’s experiment with the adjectives and their sentiment values from both these 
decades. 

• Since some words of other parts-of-speech may also express sentiment of a particular 
polarity, let’s use the frequent words lexicons from two decades – 1990s and 2000s – 
as well. 

• Finally, let’s use a domain-specific lexicon from the movies subreddit community. 

Each lexicon is stored in a distinct tab-separated file with one word per line mapped to its 
mean sentiment score and standard deviation for that score. Let’s read in the data from 
these files and store the scores in sentiment lexicon dictionaries, as the code in Listing 7.8 
shows. In this code, you read the tab-separated file line by line and split each line by tabs, 
accessing the word as the first element and its mean sentiment score as the second element 
in the resulting list. You can read in the data from the sentiment lexicons of your choice, 
using the paths to the files where the lexicons are stored: in my case, the files are located in 
“sentiment_words/folder_name/file_name.tsv”. These files can be found in the book’s code 
repository together with the notebook. As usual, it’s a good idea to run some checks: e.g., 
print out the scores for some selected words, as well as the total length of a particular 
lexicon. 
  

 
10 The lexicons can be downloaded from the project webpage: https://nlp.stanford.edu/projects/socialsent/. Also check the accompanying paper, 

Inducing Domain-Specific Sentiment Lexicons from Unlabeled Corpora by William L. Hamilton, Kevin Clark, Jure Leskovec, Dan Jurafsky (2016), if you 
want to learn more about this research: https://arxiv.org/pdf/1606.02820.pdf  
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Listing 7.8 Code to populate sentiment word dictionaries with sentiment values 

def collect_wordlist(input_file): 
    word_dict = {} 
    with codecs.open(input_file, encoding='ISO-8859-1', errors ='ignore') as f: 
        for a_line in f.readlines(): 
            cols = a_line.split("\t")    #A 
            if len(cols)>2: 
                word = cols[0].strip() 
                score = float(cols[1].strip()) 
                word_dict[word] = score    #B 
    f.close() 
    return word_dict 
 
adj_90 = collect_wordlist("sentiment_words/adjectives/1990.tsv") 
print(adj_90.get("cool")) 
print(len(adj_90))    #C 
adj_00 = collect_wordlist("sentiment_words/adjectives/2000.tsv") 
print(adj_00.get("cool")) 
print(len(adj_00)) 
all_90 = collect_wordlist("sentiment_words/frequent_words/1990.tsv") 
print(len(all_90)) 
all_00 = collect_wordlist("sentiment_words/frequent_words/2000.tsv") 
print(len(all_00)) 
movie_words = collect_wordlist("sentiment_words/subreddits/movies.tsv") 
print(len(movie_words))    #D 

#A Read the tab-separated file line by line and split each line by tabs 
#B The first element corresponds to a word and the second to its mean sentiment score 
#C Read in the data from the sentiment lexicons of your choice and run some checks 
#D Feel free to explore your own selection of words or even use different lexicons from the original source! 

If you run the code from this listing unmodified, here is what you will learn: “cool” hasn’t 
changed its polarity between the 1990s and the 2000s – it has stayed quite a positive word 
throughout. Its sentiment strength, though, did drop slightly, from 1.28 in the 1990s to 1.19 
in the 2000s. There are 1,968 adjectives in the 1990s adjectives lexicon and 2,041 in the 
2000s one. As for the all frequent words data, both 1990s and 2000s lexicons contain 4,924 
words – that is how many words are left of the most frequent 5,000 ones once the stopwords 
are filtered out (the selection of 4,924 and the sentiment weights are quite different 
though!). Finally, the movies lexicon contains 4,981 words in total – again, the result of 
filtering out stopwords among the most frequent 5,000 words used in the movies 
community. Recall from the data exploration section 7.3 that the total size of positive and 
negative vocabulary is within the range of 34,000-37,000 of words, i.e., much larger than 
these lexicons contain. At the same time, the sizes of the adjective vocabularies are 
comparable to the sizes of the adjective lexicons. The idea behind using lexicons is that they 
contain smaller but more informative sets of words. Let’s see if this helps detecting review 
polarity. 

7.4.2 Applying sentiment scores to detect review polarity 
We’ve discussed two types of a lexicon-based approach, which are illustrated in Figure 7.14: 
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Figure 7.14 The difference between taking the absolute polarity and sentiment weight approaches is in the 
degree to which the overall sentiment of the review changes when the word is considered 

• Let’s imagine that sentiment is a quality of a review akin to temperature: the more 
positive a review is, the “warmer” the feelings of a user are towards a particular 
movie. Then, your sentiment analyzer is some sort of a thermometer: it measures the 
degree of a review on the negative to positive temperature scale. Under the most 
straightforward approach, each positive word may add exactly one degree to the 
overall temperature, and each negative word may take exactly one away. 

• Since sentiment lexicons provide you not only with the absolute sentiment polarity of 
the words (e.g., positive vs negative) but also with relative values (i.e., how strongly 
positive or negative a word is) you can also say that each positive word may add 
more than one degree (or less than one degree) to the overall “temperature” of the 
review, just as each negative word may take away more than one degree or less than 
one degree. 

Let’s now implement the two variations of this approach. First, let’s implement a method 
bin_decisions for binary decisions (that is, taking absolute polarity into account): under 
this variation of the approach, every positive word will contribute exactly +1 point and each 
negative word will contribute exactly -1 point. In the end, let’s measure the aggregated 
score on the whole review and predict a positive sentiment if this aggregated score is 
positive (i.e., simply above 0), and a negative sentiment if it is negative (i.e., strictly below 
0). The second variant of the approach, weighted decisions, will take into account the 
relative positivity and negativity of each word. 

Finally, let’s measure how often such prediction, based on the aggregated scores from 
the words in a review, leads to correct labelling. Recall, that a measure that evaluates how 
often an algorithm’s prediction coincides with the correct prediction is called accuracy, and 
you’ve used it in the course of this book before. Here is the formula: 

Acc = correct_predictions / all_predictions 

You can estimate the number of correct predictions as the sum of all those cases where 
the lexicon-based approach predicts a positive sentiment for actually positive reviews and all 
those cases where the lexicon-based approach predicts a negative sentiment for actually 
negative reviews. Figure 7.15 illustrates this idea: 
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Figure 7.15 Accuracy score is composed of the proportion of correctly classified positive and correctly 
classified negative reviews 

Finally, code in Listing 7.9 walks you through the steps discussed above. In this code, 
you first implement the bin_decisions function, which aggregates the score for each review 
in the binary way: each positive word contributes +1, and each negative one contributes -1. 
You take word forms into account as the lexicons distinguish between different word forms 
with the same lemma (e.g., “dislike” and “disliked” have different entries with different 
scores). In the end, you convert all aggregated positive scores to 1 and all aggregated 
negative scores to -1, and you populate the decisions list with tuples where each 
aggregated score is mapped to the actual sentiment label. With the second function, 
weighted_decisions, each positive and each negative word from the lexicon that occurs in a 
review contributes some sentiment score according to its weight in this lexicon. As before, 
you populate the decisions list with tuples where the predicted scores are mapped with the 
actual sentiment labels. Next, you calculate accuracy for both bin_decisions and 
weighted_decisions functions: you estimate the proportion of reviews with the correctly 
identified sentiment in the positive and negative subsets of reviews, as well as in the whole 
collection, and based on this, you can estimate accuracies for each of the word lexicons of 
interest. Finally, you use printing routine from the previous code listings to print out the 
results in one nice table. 

Listing 7.9 Code to apply and evaluate the sentiment lexicon-based approach 

def bin_decisions(a_dict, label, sent_dict): 
    decisions = [] 
    for rev_id in a_dict.keys(): 
        score = 0 
        for token in a_dict.get(rev_id): 
            if token.text in sent_dict.keys(): 
                if sent_dict.get(token.text)<0: 
                    score -= 1 
                else: 
                    score += 1    #A 
        if score < 0: 
            decisions.append((-1, label)) 
        else: 
            decisions.append((1, label))    #B 
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    return decisions 
 
def weighted_decisions(a_dict, label, sent_dict): 
    decisions = [] 
    for rev_id in a_dict.keys(): 
        score = 0 
        for token in a_dict.get(rev_id): 
            if token.text in sent_dict.keys(): 
                score += sent_dict.get(token.text)    #C 
        if score < 0: 
            decisions.append((-1, label)) 
        else: 
            decisions.append((1, label))    #D 
    return decisions 
 
def get_accuracy(pos_docs, neg_docs, sent_dict): 
    decisions_pos = weighted_decisions(pos_docs, 1, sent_dict) 
    decisions_neg = weighted_decisions(neg_docs, -1, sent_dict)    #E 
    decisions_all = decisions_pos + decisions_neg 
    lists = [decisions_pos, decisions_neg, decisions_all] 
    accuracies = [] 
    for i in range(0, len(lists)): 
        match = 0 
        for item in lists[i]: 
            if item[0]==item[1]: 
                match += 1 
        accuracies.append(float(match)/float(len(lists[i])))    #F 
    return accuracies 
 
categories = ["Adj_90", "Adj_00", "All_90", "All_00", "Movies"] 
rows = [] 
rows.append(["List", "Acc(positive)", "Acc(negative)", "Acc(all)"]) 
accs = {} 
accs["Adj_90"] = get_accuracy(pos_docs, neg_docs, adj_90)  
accs["Adj_00"] = get_accuracy(pos_docs, neg_docs, adj_00)  
accs["All_90"] = get_accuracy(pos_docs, neg_docs, all_90)  
accs["All_00"] = get_accuracy(pos_docs, neg_docs, all_00)  
accs["Movies"] = get_accuracy(pos_docs, neg_docs, movie_words)    #G 
for cat in categories: 
    rows.append([cat, f"{accs.get(cat)[0]:.6f}",  
                f"{accs.get(cat)[1]:.6f}", 
                f"{accs.get(cat)[2]:.6f}"]) 
 
columns = zip(*rows) 
column_widths = [max(len(item) for item in col) for col in columns] 
for row in rows: 
    print(''.join(' {:{width}} '.format(row[i], width=column_widths[i])  
                  for i in range(0, len(row))))    #H 

#A With the bin_decisions function, for each review you aggregate the score in the binary way 
#B Convert all aggregated scores and store them in the decisions list 
#C With weighted_decisions function, each word from the lexicon contributes a sentiment score  
#D Populate the decisions list with tuples of the predicted scores and the actual sentiment labels 
#E Calculate accuracy for both bin_decisions and weighted_decisions function 
#F Calculate the proportion of reviews with the correctly identified sentiment 
#G Estimate accuracies for each of the word lexicons of interest 
#H Use printing routine to print out the results in one nice table 

The code from this Listing will return the following results for the binary method: 
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Table 7.3 Results for the binary method from Listing 7.9 

List     Acc(positive) Acc(negative)   Acc(all) 

Adj_90 0.889000        0.267000        0.578000 

Adj_00     0.825000        0.354000        0.589500 

All_90   1.000000        0.000000        0.500000 

All_00   0.965000        0.086000        0.511000 

Movies   0.014000        0.995000        0.504500 

And here are the results for the weighted method: 

Table 7.4 Results for the weighted method from Listing 7.9 

List     Acc(positive) Acc(negative)   Acc(all) 

Adj_90 0.788000        0.507000        0.647500 

Adj_00     0.818000        0.424000        0.621000 

All_90   0.984000        0.017000        0.500500 

All_00   0.805000        0.373000        0.589000 

Movies   0.008000        0.997000        0.502500 

Exercise 7.5 
What can you say about the performance of this approach? In particular: 

 
• Are these accuracy figures high? 
• Which list is most suitable for the task? 
• Which approach – binary or weighted – works better?  
 

Congratulations – you have successfully built the first version of a sentiment analyzer 
that achieves competitive results even before you apply machine learning and train your 
algorithm. The next chapter will look into how to improve these results with a data-driven 
approach. 
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7.5 Summary 
• As with some previous tasks in this book, sentiment analysis on the publicly available 

dataset of movie reviews annotated with positive and negative sentiment can be 
framed as a binary classification task. 

• This is a challenging task. It seems like some words, including, to a large extent, 
adjectives and adverbs, carry a lot of sentiment-related information. At the same 
time, other types of words may still be useful. However, words may change sentiment 
over time, may have different meanings and, therefore, different sentiment polarity 
and sentiment weight in different domains; in addition, context matters a lot. 

• Positive reviews in the inspected dataset are overall longer, contain more unique 
words, as well as more unique adjectives. Vocabularies for both positive and negative 
reviews are quite large, with many words being used on both sides. This may have 
implications for sentiment detection with the use of these words. At the same time, if 
you want to make the word (feature) space more compact, you can consider only 
certain types of words, e.g., adjectives and adverbs, which typically carry more 
sentiment-related information, or lemmatize texts. 

• A sentiment analysis algorithm may rely on the use of sentiment lexicons – 
comprehensive word lists covering a wide range of sentiment-bearing words with 
sentiment weights assigned manually or through application of some algorithm. With 
such lexicons, one can aggregate the overall sentiment in a review either in a binary 
way, taking only the absolute polarity of words into account, or in a weighted 
sentiment way, taking relative weights into account as well. With this type of 
approach, competitive results, considerably above the majority class baseline, can be 
achieved without any actual training, which means that the whole dataset can be used 
without the need of splitting it into training and test sets, and the algorithm can be 
applied instantaneously. The best results obtained with this method put accuracy 
values in the range of 0.62-0.65 on the given dataset. This is informative, as your 
goal with the more sophisticated data-driven approaches in the next chapter will be to 
outperform this baseline approach. 
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7.6 Solutions to exercises 
Solution to Exercise 7.1: 
The review on the left is positive, while the one on the right is negative. What exactly 

helps you identify the review on the left as positive and the one on the right as negative? 
The first thing that you might notice is that the positive review contains words like “good” 
and “powerful”, which by themselves can be considered positive. Moreover, the positive 
sentiment is intensified further by addition of such words as “extremely (good)” and “very 
(powerful)”. Here’s a reminder: words that denote qualities are called adjectives (“good” and 
“powerful” here are adjectives), while qualities of qualities are expressed by adverbs (such 
are “extremely” and “very” here). So, you may start with an assumption that adjectives and 
adverbs are reliable clues (features) that help you identify sentiment of the text. Indeed, the 
negative review on the right contains a negative adjective, too – it is hard to imagine anyone 
using “terrible” to denote a positive thing. However, in addition to a negative adjective 
“terrible”, the review on the right contains quite a negative noun “mess”. So, it is generally 
true that, since adjectives and adverbs typically denote qualities, they are your first reliable 
source of information when it comes to sentiment; however, other words, including nouns 
(like “mess”) and verbs (for example, “avoid” in “Avoid this film at all costs”) might be very 
informative, too. Figure 7.16 highlights words that help sentiment detection in Exercise 7.1. 

 
Figure 7.16 Examples from Exercise 7.1 with the positive (+) and negative (–) words highlighted 

To summarize, the sentiment in the two reviews above can be identified by the presence 
of specific sentiment-bearing words: note that the positive review contains only positive 
words, while the negative review only negative ones.  

Solution to Exercise 7.2:  

• It is important to note the distribution of classes in the data because this gives you a 
rough idea of the difficulty of the task: if the algorithm blindly predicted polarity of a 
new review relying on how often a review is positive or negative, based on the 
observations made on this data, what would such a blind prediction be? Since in this 
data you are working with 1000 positive and 1000 negative reviews, this prediction 
will be completely unbiased – 50%:50% for two classes. This may remind you of the 
majority class baselines in the previous tasks where the data was less fairly 
distributed between the classes (e.g., Jane Austen had more sentences than William 
Shakespeare in the data you used in Chapters 5 and 6). 
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• A quick glance over the texts in this dataset reveals that the data has been 
preprocessed: in particular, all words were converted to lower case and texts were 
tokenized, i.e., each word is separated from its neighbors by whitespaces. This should 
make some further processing of the data easier.11 

• The last question is quite open-ended, and it’s up to your judgement and 
interpretation whether you can detect the sentiment of a review by reading through it. 
Both positive and negative reviews provide a brief summary of the plot as well as 
opinionated analysis; both contain positive as well as negative words, which 
complicates sentiment detection further. It is no wonder then that the authors of the 
paper, who put the original dataset together, noted that sentiment analysis is far from 
being a trivial task!12 

Solution to Exercise 7.3: 
There are two observations to be made at this point: 

• First, you may have noticed, when you were inspecting the wordlists, that they 
include words like “attendees” as well as “attendee”. They also include both “film” and 
“films”, “see” and “saw”, and so on. That is, every word form is counted as a separate 
word token, thus the number of distinct words is quite high. From Chapter 3 on, 
you’ve been working with more compact representations of a word – word stems and 
lemmas, that bring such different forms of a word to the same common 
representation. For instance, both “attendees” and “attendee” have a lemma 
attendee, while “see”, “saw” and “seen” can all be converted to see by lemmatization. 
The number of lemmas in positive and negative reviews, as opposed to the total 
number of words, may tell you how many various concepts are discussed in these 
reviews. 

• Secondly, as we noted earlier in this chapter, some words are more expressive in 
terms of sentiment or opinion – words like “good” and “awful”, “audience-friendly” 
and “baldly” are more expressive than words like “film” and “saw”. The difference 
between the two groups of words lies in their parts-of-speech: adjectives (“good”, 
“awful”) and adverbs (“audience-friendly”, “baldly”) typically express qualities and 
therefore may bear more sentiment-related information than nouns (“film”) or verbs 
(“see”). 

Solution to Exercise 7.4: 
Your code should produce an output similar to the results in Table 7.5 (note that you may 

get slightly different results with different versions of spaCy): 
  

 
11 A closer look into the data may also reveal that not all words are properly tokenized: for instance, “they’re”, “there’s” and similar are kept as single 

tokens. We’ll deal with such inconsistencies later by applying our own tokenizer through spaCy’s pipeline. 
12 In particular, they note that “Document polarity classification poses a significant challenge to data-driven methods, resisting traditional text-

categorization techniques” (http://www.cs.cornell.edu/home/llee/papers/cutsent.pdf) 
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Table 7.5 Results from Listing 7.7 

Category   Unique adj's   Unique adv's 

Positive   2051  535 

Negative   1620 456 

Solution to Exercise 7.5: 
Recall from previous chapters that one way to tell whether an accuracy score that you are 

getting on the task with your algorithm is “good” or not is to compare it to the majority class 
distribution: i.e., if the classifier had to predict labels simply based on how data is 
distributed, what would the result be? 

• In this dataset, the two classes are equally distributed, so the majority baseline is, in 
fact, 0.50. Many of the accuracy figures, especially with the binary approach, hardly 
outperform this baseline. Accuracies in the range of 0.62-0.65 are the highest values 
obtained with the lexicon-based methods. This level of performance is not surprising, 
if you think about the following: the algorithm is not learning anything about your 
specific task or data at hand; instead, it relies on a static resource, and the sentiment 
scores in your data might actually differ from those provided in the lexicon. On the 
plus side, accuracies in the range of 0.62-0.65 are considerably above the majority 
baseline, and it’s important to note that this simple baseline algorithm is able to 
achieve these results on the basis of a small set of words (much smaller, as we noted, 
than the full vocabularies) and without any training. 

• The results confirm that adjectives are the most informative words for this task – the 
results with both binary and weighted methods are higher when you use adjective 
sentiment values than when you use any other lists. It seems like both 1990s and 
2000s lists of adjective sentiment scores are useful. Among the two all frequent words 
lists, the 2000s one shows better results with both types of methods. Finally, 
surprisingly, the movies words list extracted from the subreddit community proves to 
not be very helpful, as it hardly gets you over the 0.50 accuracy threshold. One 
possible explanation for this result is that a word list from the movie domain collected 
in 2014 (as this particular movies sentiment lexicon was) is not exactly suitable for 
classifying sentiment in the movie reviews from as back as early 2000s. 

• Finally, among the two methods – binary and weighted – the weighted one performs 
better for the majority of the word lists. It’s also worth noting that the proportions of 
reviews with the correctly identified sentiment in the positive and negative parts of 
the dataset are radically different with the binary approach – it looks like certain lists 
cover specific sentiment better than others. For instance, adjectives and all frequent 
words lists do much better on the positive sentiment side, while the movies word list 
achieves almost perfect accuracy on the negative reviews. Sadly, this doesn’t 
translate in the overall good performance. The weighted method, on the other hand, 
strikes a much better balance, at least with the adjectives list. 
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Sentiment Analysis with a Data-

Driven Approach 

This chapter covers 

• Implementation of improved algorithms for sentiment analysis, including data-driven 
approaches 

• Introduction of several machine learning practices and techniques with sklearn 
• Further application of linguistic pipeline and linguistic concepts with spaCy, as well as 

combined use of spaCy and NLTK resources 

In the previous chapter you started looking into sentiment analysis and implemented your 
first sentiment analyzer using a lexicon-based approach. Recall that sentiment analysis is 
concerned with the automated detection of sentiment (usually along two dimensions of 
positive and negative sentiments) for a piece of text. It is a popular task to apply to such 
opinionated texts as, for example, reviews on movies, restaurants, products and services. A 
good sentiment analyzer may help save the user a lot of time! 

Let’s remind ourselves of the scenario addressed with this application: suppose, you are 
planning an evening out with some friends, and you’d like to go to a cinema to watch one of 
the recently released movies. Your friends’ preferences seem to have divided between a 
superhero movie and an action movie. Both start around the same time, and you like both 
genres. To choose which group of friends to join at the cinema, you decide to check what 
those who have already seen these movies think about them. You visit a movie review 
website and find out that there are hundreds of reviews about both movies. Reading through 
all these reviews would not be feasible, so you decide to apply a sentiment analyzer to see 
how many positive and negative opinions there are about each of these movies and then 
make up your mind. How can you implement such a sentiment analyzer? 

And here is a brief summary of what you’ve done to solve this task so far: 
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• To implement a sentiment analyzer, you first looked into how humans understand 
what the overall sentiment of a piece of text is (often after one quick glance at a 
text!). The minimal unit bearing sentiment information is a word. While a text may 
contain a combination of positive and negative opinions (e.g., a review on a new 
phone may highlight that it has a good camera but battery life is poor), in the 
simplest case you can detect the overall sentiment as the balance between the 
number of positive and negative words: if the review contains more positive than 
negative words, it is considered overall positive; and it should be considered negative 
otherwise. 

• If you’d like to be more precise about the sentiment, you can take the strength of the 
sentiment in words into account. For instance, both good and amazing are positive 
words, but the latter suggests that the user feels more strongly about their positive 
experience. 

• The most straightforward way in which you can identify that individual words are 
positive or negative is to rely on some comprehensive database of sentiment-bearing 
words. Such databases exist and are called sentiment lexicons. In the previous 
chapter, you built your first baseline approach using sentiment lexicons and 
aggregating the overall sentiment scores for reviews using either absolute polarity or 
weights. 

The results showed that you can achieve better performance when you use sentiment 
lexicons that cover adjectives (words like amazing, awful, etc.), as such words typically 
describe qualities. Weighted approach, in which you take into account the strength of the 
sentiment expressed by a word, worked better than absolute polarity scores. The results for 
the weighed approach with adjective lexicons ranged between 62-65% on the combined set 
of positive and negative reviews, and, remarkably, this approach worked better on the 
positive reviews (79-82% identified) than on negative ones (42-51% identified), proving 
detection of negative sentiment more challenging. 

This approach is not only the most straightforward, it is also easy to implement and fast 
to run; it doesn’t require any machine training or expensive calculations. Being the baseline 
approach, it sets up the benchmark on the task – with any further, more sophisticated or 
more expensive approaches that you apply, you’ll need to make sure your baseline is 
outperformed (i.e., the new approach is worth the effort). The current baseline set up by the 
sentiment lexicon-based approach is at 65%, suggesting you can do significantly better. 

Let’s summarize what might have gone wrong with the simple lexicon-based approach 
and what can be improved. Figure 8.1 visualizes the Mental Model for this chapter: 

 
Figure 8.1 Mental Model for the improved sentiment analysis implementation  
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• First or all, words may change their polarity and strength of sentiment across domains 
as well as over time. For instance, soft is not a very positive quality to have in sports 
(e.g., soft player) but it would sound positive in many other domains (e.g., when 
talking about clothes as in soft pajamas). The SocialSent lexicons1 that you used in 
the previous chapter solve these issues to a certain extent, as there is a range of 
lexicons built per domain and decade. However, one remaining problem is that the 
same word can have several meanings, which may in turn be associated with different 
sentiments. For instance, terrific has gradually changed its meaning and sentiment 
from negative (something scary and terrifying) to pretty positive (something 
impressive and on a grand scale) sometime between 1800 and 2000’s, so the more 
up-to-date versions of the lexicons contain a positive score for it. At the same time, 
the lexicons contain a single score for each word only, but a resource that can help 
you distinguish between more subtle differences in meaning and associated sentiment 
scores might provide you with better results – after all, there is always a chance that 
someone would still use terrific in this very old negative sense. We will refer to this 
case as multiple senses of the word issue and will look into how to improve this aspect 
of the system. 

• Secondly, a lot depends on the surrounding context of the word. We’ve talked about 
examples of contexts that are overall positive (e.g., “Just go see this movie”) or 
negative (e.g., “How could anyone sit through this movie?”) without containing a 
single strong polarity word. It’s the combination of words, then, that makes the whole 
phrase or sentence sentiment-bearing. We will refer to this case as dependence on 
context issue. A static resource like a sentiment lexicon cannot make subtle context-
specific distinctions, and here is where a data-driven approach, with the classifier 
learning directly from the data, is more promising. In this chapter, you will put this 
hypothesis to test. 

• Thirdly, sometimes looking at the words on their own is not enough. For instance, a 
cheap rate may express a positive sentiment, while a cheap trick denotes something 
quite negative. Related to this is the observation that it would be hard to spot irony, 
sarcasm, and metaphorical use of a word (as in “Otherwise, it's pretty much a sunken 
ship of a movie”) if you always looked at a single word at a time. We will refer to this 
as the length of the sentiment-bearing unit issue and will look into how to handle this 
in a machine learning classifier.  

• The final issue, which is in a way related to the previous one, is the case of negation. 
In the previous chapter, we identified a group of words that have a special effect on 
the surrounding context – specifically, they have the ability to change the sentiment 
of what follows. For instance, “neither super nor standard” or “nothing spectacular” 
convert positive phrases into negative ones, while “not bad” puts the description on 
the positive scale.  

Using the results of the sentiment lexicon-based system built in Chapter 7 as the 
benchmark and involving machine learning techniques and data-driven approaches, in this 
chapter you will try to improve your sentiment analyzer step-by-step.  

 
1 https://nlp.stanford.edu/projects/socialsent/  
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8.1 Addressing multiple senses of a word with SentiWordNet 
Our discussion about the sentiment detection based on a sentiment resource wouldn’t be 
complete without talking about SentiWordNet – a lexical database where different senses of 
a word are assigned with different sentiment scores. Since language is diverse and creative, 
using a resource that accounts for the sentiment difference of various instances of the word 
use is preferable to relying on a single score resource. In what cases should you care about 
that? 

In previous chapters, we talked about parts of speech and how identification of the part 
of speech helps making (the right) sense of expressions like “I saw her duck” (see Figure 8.2 
for a reminder): 

 
Figure 8.2 The two senses of the word “duck” – as a verb (to move downwards) and as a noun (bird) 

In this case, applying part-of-speech tagging, as you did in various previous applications, 
would help distinguish between the two options. In other situations, things get a step 
further: a classic, widely used example in NLP domain is the case of bank. How many 
possible readings of the word bank can you think of? Here are the two most common 
contexts of use: 

• I need to go to the bank today to get some money 
• The water erodes the banks as it flows along 

In the first case, one is talking about bank as a financial institution, while in the second it 
is the riverbank that one has in mind. Both cases of bank belong to the same part of speech 
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(they are nouns), and the best clues as to what is meant in each sentence are the words 
surrounding bank: such are the references to money in the first sentence, and the references 
to water in the second. So far so good, but what about such sentences as I went to the bank 
– in which sense is bank used here? Our intuition tells us that, most probably, in everyday 
life we’d hear this statement from someone who is going to a bank to get some money. 
However, in general, this sentence is naturally ambiguous and may well mean that someone 
went fishing on a riverbank. Language is full of such ambiguities. 

Why is this relevant to our task at hand? If a word may mean different things, each of 
these things may be positive or negative to a different extent independently of other senses 
of the same word. A resource that can tell you about such differences in meaning and 
sentiment is of a great value. Luckily, such a resource exists, and it is called SentiWordNet2 
by analogy with WordNet3 to which it is closely related.  

WordNet is a lexical database created in Princeton University, and it is an invaluable 
resource to use with any application that recognizes that words can be ambiguous between 
various senses. Essentially, WordNet is a huge network containing various nouns, verbs, 
adjectives and adverbs grouped into sets of cognitive synonyms (i.e., words that mean 
similar things in the same context as in interesting film = interesting movie or fast car = fast 
automobile). Such groups of cognitive synonyms in WordNet are called synsets. For instance, 
one such synset in WordNet would contain both words {film, movie} (and another one both 
words {car, automobile}) and that suggests that the words within each of these groups can 
be used interchangeably in various contexts. In total, there are 117,000 such groups of 
interchangeable words – i.e., 117,000 synsets, and they also hold certain further relations 
among themselves. For instance, WordNet imposes a hierarchy on concepts, so you can also 
link them via the IS-A relation: e.g., {car, automobile} is a type of vehicle, and {film, 
movie} is a type of show which is, in its turn, a type of event, and so on. We are not going to 
discuss such other relations in detail in this chapter, since it is the synonymy relation, the 
one that holds the words within each synset together, that is most relevant for sentiment 
analysis. 

To use a concrete example, let’s look into how terrific is represented in WordNet. 
WordNet distinguishes between three senses of the word: 

• very great or intense as in “a terrific noise”; 
• extraordinarily good or great as in “the film was terrific!”; and 
• causing extreme terror as in “a terrific wail”. 

Figure 8.3 visualizes the three synsets and includes definitions, further words belonging 
to each of these synsets, and examples of use:4 

 
2 http://sentiwordnet.isti.cnr.it 
3 https://wordnet.princeton.edu  
4 The online WordNet interface, where you can search for words and their synsets, is available here: 

http://wordnetweb.princeton.edu/perl/webwn?s=terrific&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=10
00110110110010000  
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Figure 8.3 Three synsets for terrific, with definitions, other words from the same synset, and examples 

One would expect the first two synsets (that is, each of the words covered by these 
synsets) to carry a positive sentiment, and the third one to be negative. This is, in essence, 
the motivation behind SentiWordNet5 – a sentiment-oriented extension to WordNet, 
developed by the researchers from the Text Learning Group at the University of Pisa. 

SentiWordNet closely follows the structure of WordNet itself. That is, the same synsets 
are included in SentiWordNet, and each one is assigned with three scores – positive score, 
negative score, and objective (neutral) score. The scores are assigned by a “committee” of 
classifiers – a combination of 8 different machine learning classifiers, where each one votes 
for one of the three polarity dimensions.6 In the end, the votes for each dimension (positive, 
negative, and objective) are aggregated across the classifiers and the scores represent the 
proportion of the classifiers among the 8 that vote for the score of a particular polarity. 

A nice fact about these two resources is that they are easily accessible through an NLTK 
interface. You used NLTK resources earlier in this book, for example, when you accessed the 
texts from the Gutenberg project in Chapters 5 and 6. You are going to use a similar 
approach here. It is time now to open your Jupyter notebook that you worked on in Chapter 
7 – you are going to add to that throughout this chapter. 

Code Listing 8.1 shows how to access SentiWordNet via NLTK and check how two words – 
joy and trouble – are represented in WordNet. First, you import sentiwordnet from NLTK 
and give it a shortcut for brevity.7 Next, you check which synsets words of your choice 
belong to. In this example, I check joy and trouble. 

 
5 https://github.com/aesuli/SentiWordNet 
6 You can find more details on implementation in the accompanying paper: https://github.com/aesuli/SentiWordNet/blob/master/papers/LREC10.pdf  
7 Note that, in addition to the toolkit itself, you need to install NLTK data as explained on http://www.nltk.org/data.html. Running nltk.download() will 

install all the data needed for text processing in one go; in addition, individual tools can be installed separately: e.g., nltk.download(‘sentiwordnet’) 
installs SentiWordNet. 
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Listing 8.1 Code to access SentiWordNet and check individual words 

import nltk 
nltk.download('wordnet') 
nltk.download('sentiwordnet')    #A 
from nltk.corpus import sentiwordnet as swn    #B 
 
print(list(swn.senti_synsets('joy'))) 
print(list(swn.senti_synsets('trouble')))    #C 

#A Install NLTK’s interfaces to WordNet and SentiWordNet 
#B Import sentiwordnet from NLTK and give it a shortcut for brevity  
#C Check which synsets words of your choice belong to 

The code above produces the following output: 

[SentiSynset('joy.n.01'), SentiSynset('joy.n.02'), SentiSynset('rejoice.v.01'), 
SentiSynset('gladden.v.01')] 

[SentiSynset('trouble.n.01'), SentiSynset('fuss.n.02'), SentiSynset('trouble.n.03'), 
SentiSynset('trouble.n.04'), SentiSynset('worry.n.02'), SentiSynset('trouble.n.06'), 
SentiSynset('disturb.v.01'), SentiSynset('trouble.v.02'), 
SentiSynset('perturb.v.01'), SentiSynset('trouble_oneself.v.01'), 
SentiSynset('trouble.v.05')] 

This shows that joy may be either a noun (the synset ‘joy.n.01’, meaning the "emotion 
of great happiness", or the synset ‘joy.n.02’ meaning "something / someone providing a 
source of happiness as in a joy to behold). Alternatively, joy may be a verb, and as a verb, it 
can mean "rejoice" i.e., "feel happiness or joy" (synset ‘rejoice.v.01’) or "gladden", i.e., 
"make glad or happy" (synset ‘gladden.v.01’). You can tell which part of speech is involved 
by the abbreviations: e.g., ‘n’ for noun and ‘v’ for verb.  

Trouble is a more complex case, with as many as 6 different meanings as a noun (for 
instance, it can mean a particular event causing pain as in heart trouble, or a difficulty as in 
he went to a lot of trouble), and as many as 5 senses for the verb. The differences may be 
quite subtle, yet leading to different interpretations, potentially with sentiments of different 
strength. 

Let's check this out: with the code from Listing 8.2, you can check the positive and 
negative scores assigned in SentiWordNet to various senses of the words of your choice. The 
code below accesses two synsets for joy and two synsets for trouble. With this code, you can 
access specific synsets (senses) for each of the input words (feel free to use different words) 
and use the printout routine from the previous chapters to print the results as a table. Each 
synset has a positive and a negative score assigned to it – you can access them with 
pos_score() and neg_score(). 
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Listing 8.2 Code to explore the differences in the sentiment scores for word senses 

joy1 = swn.senti_synset('joy.n.01') 
joy2 = swn.senti_synset('joy.n.02') 
 
trouble1 = swn.senti_synset('trouble.n.03') 
trouble2 = swn.senti_synset('trouble.n.04')    #A 
 
 
categories = ["Joy1", "Joy2", "Trouble1", "Trouble2"] 
rows = [] 
rows.append(["List", "Positive score", "Negative Score"])    #B 
accs = {} 
accs["Joy1"] = [joy1.pos_score(), joy1.neg_score()] 
accs["Joy2"] = [joy2.pos_score(), joy2.neg_score()] 
accs["Trouble1"] = [trouble1.pos_score(), trouble1.neg_score()] 
accs["Trouble2"] = [trouble2.pos_score(), trouble2.neg_score()]    #C 
for cat in categories: 
    rows.append([cat, f"{accs.get(cat)[0]:.3f}",  
                f"{accs.get(cat)[1]:.3f}"]) 
 
columns = zip(*rows) 
column_widths = [max(len(item) for item in col) for col in columns] 
for row in rows: 
    print(''.join(' {:{width}} '.format(row[i], width=column_widths[i])  
                  for i in range(0, len(row))))    #D 

#A Access specific synsets (senses) for each of the input words 
#B Use the printout routine from the previous chapters to print the results as a table 
#C Each synset has a positive pos_score() and a negative neg_score()assigned to it  
#D Print positive and negative scores for each synset 

Here are the results: 

Table 8.1 Results printed out by the code from Listing 8.2 

List       Positive score   Negative Score 

Joy1       0.500            0.250           

Joy2       0.375            0.000           

Trouble1   0.000            0.625           

Trouble2   0.000            0.500   

In other words, despite both senses of joy (as an emotion and as a source of happiness) 
being overall positive, the first one, the emotion, is more ambiguous between the positive 
and negative uses, as 50% of the classifiers (i.e., 4 out of 8) voted for the positive 
sentiment, and 25% (2 out of 8) voted for the negative sentiment, with the rest voting for 
the neutral sentiment for this sense of the word. The second sense of joy is more markedly 
positive, with 37.5% (3 out of 8 of the classifiers) voting for the positive sentiment, and the 
rest for the neutral one. Note that the two senses of trouble (as an event causing pain or as 
a difficulty) are decidedly negative, but even here the degree of negativity is different. 

As you can see, different senses of the same word are indeed marked with sentiments of 
different strength, if not of different polarity. Ideally, when encountering a word in text, you 
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would like to first detect which sense it is used in and then access the sentiment scores for 
this particular sense. In practice, this first step, called Word Sense Disambiguation,8 is a 
challenging NLP task in its own right. Short of attempting full-scale word sense 
disambiguation, in this chapter we are going to detect the part of speech for the word (e.g., 
trouble as a noun) and extract the sentiment scores pertaining to the senses of this word 
when it is used as this part of speech (i.e., only noun-related sentiment scores for trouble 
will be taken into account). This will help you eliminate at least one level of word ambiguity. 

Code Listing 8.3 shows how to access synsets related to the specific part of speech for a 
given input word.9 As this code shows, you can access synsets for a given word (e.g., 
‘terrific’) of a specific part of speech (e.g., adjective) using an additional argument with the 
senti_synsets function. In the end, you print out positive and negative scores for each 
synset, using “+” and “–” in front of the scores for clarity, as by default all scores are 
returned as absolute values without indication of their polarity. 

Listing 8.3 Code to access synsets of a specific part of speech 

synsets = swn.senti_synsets('terrific', 'a')    #A 
for synset in synsets: 
    print("pos: +" + str(synset.pos_score()) + " neg: -" + str(synset.neg_score()))    #B 

#A Access synsets for a given word of a specific part of speech using an additional argument in senti_synsets 
#B Print out positive and negative scores for each synset 

This code produces the following output: 

pos: +0.25 neg: -0.25 
pos: +0.75 neg: -0.0 
pos: +0.0 neg: -0.625 

That is, out of the three senses of terrific, the one associated with “extraordinarily good 
or great” is strongly positive (+0.75 for positive), the one associated with “causing extreme 
terror” is strongly negative (-0.625 for negative), and the one associated with “very great or 
intense” is ambiguous between the two polarities – it can be treated both as positive (+0.25) 
and negative (-0.25). It looks like intensity may not always be welcome – after all, 
something like “a terrific noise” may elicit negative as well as positive emotions, and 
SentiWordNet captures this idea. Figure 8.4 visualises this further: 

 
8 https://en.wikipedia.org/wiki/Word-sense_disambiguation  
9 Nouns can be accessed with tag ‘n’ or wn.NOUN, verbs with ‘v’ or wn.VERB, adjectives with ‘a’ or wn.ADJ, and adverbs with ‘r’ or wn.ADV. 
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Figure 8.4 Three synsets of terrific with different sentiment scores assigned to them 

Now let’s see how you can incorporate the SentiWordNet information with your sentiment 
analyzer. As in the Code Listing 8.3, let’s make sure that you are accessing the right type of 
synsets – that is, let’s extract the synsets for the specific part of speech. Remember that you 
have previously (i.e., while building your baseline classifier in Chapter 7) processed the 
reviews with spaCy and saved the results in the linguistic containers pos_docs and neg_docs. 
These containers, among other information, contain part-of-speech tags for all words in the 
reviews. That is, you don’t need to run any further analysis to detect parts of speech, but the 
particular tags used to denote each part of speech differ between spaCy and NLTK’s interface 
to SentiWordNet. Here is the summary of the differences: 

• nouns have tags starting with “NN” in spaCy’s notation10 and are denoted as wn.NOUN 
in NLTK’s interfaces to WordNet and SentiWordNet; 

• verbs have tags starting with “VB” or “MD” is spaCy and are denoted as wn.VERB in 
NLTK; 

• adjectives have tags starting with “JJ” in spaCy and are denoted as wn.ADJ in NLTK; 
and finally 

• adverbs have tags starting with “RB” in spaCy and are denoted as wn.ADV in NLTK. 

Note that only these four parts of speech are covered by WordNet and SentiWordNet, so 
it would suffice to take only words of these four types into account. Code in Listing 8.4 first 
implements convert_tags function that translates part-of-speech tags between two toolkits, 
and then returns a predicted label for a review based on the aggregation of positive and 
negative scores assigned to each synset to which the word may belong. Specifically, in this 
code, for each word token in the review, you check whether it is adjective, adverb, noun or 
verb based on its part-of-speech tag. Then, you retrieve the SentiWordNet synsets based on 
the lemma of the word and its part-of-speech tag. The score is aggregated as the balance 
between the positive and negative scores assigned to each synset for the word token. 

 
10 For the full tag description, check the “English” tab under the “Part-of-speech tagging” on https://spacy.io/api/annotation  
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Finally, you return the list of decisions, where each item maps the predicted score to the 
actual one. 

Listing 8.4 Code to aggregate sentiment scores based on SentiWordNet 

from nltk.corpus import wordnet as wn    #A 
 
def convert_tags(pos_tag): 
    if pos_tag.startswith("JJ"): 
         return wn.ADJ 
    elif pos_tag.startswith("NN"): 
         return wn.NOUN 
    elif pos_tag.startswith("RB"): 
         return wn.ADV 
    elif pos_tag.startswith("VB") or pos_tag.startswith("MD"): 
         return wn.VERB 
    return None    #B 
  
def swn_decisions(a_dict, label):    
    decisions = [] 
    for rev_id in a_dict.keys(): 
        score = 0 
        neg_count = 0 
        pos_count = 0 
        for token in a_dict.get(rev_id): 
            wn_tag = convert_tags(token.tag_) 
            if wn_tag in (wn.ADJ, wn.ADV, wn.NOUN, wn.VERB):    #C 
                synsets = list(swn.senti_synsets(token.lemma_, pos=wn_tag))    #D 
                if len(synsets)>0: 
                    temp_score = 0.0 
                    for synset in synsets: 
                        temp_score += synset.pos_score() - synset.neg_score()    #E 
                    score += temp_score/len(synsets) 
        if score < 0: 
            decisions.append((-1, label))   
        else: 
            decisions.append((1, label)) 
    return decisions   #F 

#A Import WordNet interface from NLTK for part-of-speech tag conversion 
#B Function convert_tags translates between the tags used in the two toolkits 
#C For each word token in the review, check its part-of-speech tag 
#D Retrieve the SentiWordNet synsets based on the lemma of the word and its part-of-speech tag 
#E Aggregate the score as the balance between the positive and negative scores of the word synsets  
#F As before, return the list of decisions, where each item maps the predicted score to the actual one 

Figure 8.5 visualizes the process of aggregating scores derived from SentiWordNet with a 
short example of a review consisting of a single phrase “The movie was terrific!”: 
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Figure 8.5 An example of how the scores are aggregated using the code from Listing 8.4 

First, part-of-speech tags for all words in the review are extracted from the linguistic 
containers. In this example, “The” is the determiner (tag DT), and “!” is a punctuation mark 
(tag “.”) – they are not further considered by the pipeline and their tags are not converted to 
the WordNet ones, because WordNet doesn’t cover these parts of speech. Other words – 
“movie” (tag NN), “was” (tag VBD), and “terrific” (tag JJ) – are considered further, and their 
tags are converted into wn.NOUN, wn.VERB, and wn.ADJ by convert_tags function. Next, 
synsets are extracted from SentiWordNet applying swn.senti_synsets to (‘movie’, 
wn.NOUN), (‘be’, wn.VERB), and ('terrific’, wn.ADJ). This function returns: 

• 1 synset for “movie” with scores (+0.0, -0.0), i.e., it is a very unambiguous and a 
totally neutral word;  

• as many as 13 synsets for “be”, 11 of which are neural with scores (+0.0, -0.0), one 
mostly positive with scores (+0.25, -0.125), and one neutral on balance with scores 
(+0.125, -0.125); and 

• 3 synsets for “terrific” that we’ve just looked into, e.g., in Figure 8.4. 

Without prior word sense detection it is impossible to say in which sense each of the 
words is used, but you can take into account the distribution of all possible sentiments across 
senses and rely on the idea that, overall, the accumulated score will reflect possible 
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deviations in sentiment: for instance, an overwhelmingly positive word that is positive in all 
its senses will get a higher score than a word that may be used in a negative sense once in a 
while. So, for example, if you sum up all sentiment scores across all synsets for “terrific”, 
you’ll get (0.25 – 0.25 + 0.75 – 0.0 + 0.0 – 0.625) = 0.125. The final score is still positive, 
but it is lower than the positive scores in some of its synsets (0.25 and 0.75) because it may 
also have a negativity component to it (-0.25 or even -0.625). 

Once you’ve accumulated scores across all synsets of a word for each of the words in the 
review, the final score, as before, is an aggregation of the individual word scores. For this 
short review, it is 0.25, meaning that the review is quite positive. For convenience, the code 
in Code Listing 8.4 converts all positive predictions into label “1” and all negative ones into “-
1”. 

Finally, let’s evaluate the results produced by this approach to the actual sentiment 
labels. As before, let’s calculate the accuracy of prediction by comparing the predicted scores 
(1 and -1) to the actual scores (1 and -1) and estimating the proportion of times your 
predictions are correct. Code 8.5 implements this evaluation step in a similar manner to the 
evaluation in the previous chapter. In this code, you first extract and save the label 
predictions for the pos_docs (positive reviews with the actual label 1) and for neg_docs 
(negative reviews with the actual label -1) in two data structures. Next, you detect a match 
when the predicted score equals the actual score and calculate the accuracy as the 
proportion of cases where the predicted score matches the actual one. Finally, you print out 
the results as a table using printing routine from before. 

Listing 8.5 Code to evaluate the results for this approach 

def get_swn_accuracy(pos_docs, neg_docs): 
    decisions_pos = swn_decisions(pos_docs, 1)     
    decisions_neg = swn_decisions(neg_docs, -1)    #A 
    decisions_all = decisions_pos + decisions_neg 
    lists = [decisions_pos, decisions_neg, decisions_all] 
    accuracies = [] 
    for i in range(0, len(lists)): 
        match = 0 
        for item in lists[i]: 
            if item[0]==item[1]:    #B 
                match += 1 
        accuracies.append(float(match)/float(len(lists[i])))    #C 
    return accuracies 
 
 
accuracies = get_swn_accuracy(pos_docs, neg_docs)   
 
rows = [] 
rows.append(["List", "Acc(positive)", "Acc(negative)", "Acc(all)"]) 
rows.append(["SentiWordNet", f"{accuracies[0]:.6f}",  
                f"{accuracies[1]:.6f}", 
                f"{accuracies[2]:.6f}"]) 
 
columns = zip(*rows) 
column_widths = [max(len(item) for item in col) for col in columns] 
for row in rows: 
    print(''.join(' {:{width}} '.format(row[i], width=column_widths[i])  
                  for i in range(0, len(row))))    #D 
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#A Save the label predictions for the pos_docs and neg_docs 
#B When the predicted score equals the actual score, consider it a match 
#C Accuracy reflects the proportion of cases where the predicted score matches the actual one 
#D As before, print out the results as a table using printing routine 

This code returns the following results: 

Table 8.2 Results returned by the code from Listing 8.5 

List       Acc(positive) Acc(negative)   Acc(all) 

SentiWordNet   0.686000        0.690000        0.688000 

In other words, this method achieves an overall accuracy of 68.80%, and moreover performs 
almost equally well on both positive and negative reviews. This is a clear improvement over 
the results obtained with your first, baseline classifier. To conclude this part of the chapter, 
let’s visualize the results – Figure 8.6 presents the best accuracy of your baseline lexicon-
based model (64.75%) in comparison with the current results (68.80%), with the majority 
class baseline for this dataset being 50%. 

 
Figure 8.5 Accuracies achieved by two methods applied so far – lexicon-based and SentiWordNet-based 

Exercise 8.1 
The code in Listing 8.4 and 8.5 takes all four parts of speech covered by WordNet into account. Before you move on to 
the next steps, check if the performance of the algorithm changes (e.g., improves) if you consider only some parts of 
speech (e.g., only adjective) or some combinations (e.g., only nouns and adjectives). 
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8.2 Addressing dependence on context with machine learning 
The results that you’ve obtained before with the simple sentiment lexicon-based approach 
and the advanced approach based on SentiWordNet, that allows you to adjust the sentiment 
score of a word based on the distribution of sentiment across its senses, still leave room for 
improvement: given that a random choice of a sentiment label would be correct half of the 
time (since the distribution of labels is 50/50), the best accuracy you can get with a lexicon-
based approach, using adjectives only, is about 0.65, and you reach around 0.69 with the 
SentiWordNet approach. Admittedly, the authors of the original paper cite similar accuracy11 
figures for a simple lexicon-based approach that they applied. Still, their best results that 
they report on this task are quite a bit higher: their machine learning models use a range of 
features and achieve accuracy values from around 78% up to about 83%. Even though the 
dataset you are working with is a slightly different version of the data (this paper used a 
smaller subset of 700 positive and 700 negative reviews from the same data) and it would, 
strictly speaking, be unfair to compare the performance on different datasets, the results in 
the region of 78-83% should provide you with a general idea of what is possible to achieve 
on this task. So how can you do better? 

One aspect that your algorithm is currently not taking into account is the exact data you 
are working with. Even though you haven’t yet been using a data-driven approach or 
machine learning methods on this task yourself, you have already been using the product of 
such methods applied to this task, as both sentiment lexicons and SentiWordNet were, in 
fact, created using machine learning and data-driven approaches. That means that they have 
potentially captured a lot of useful information about many words in language, however 
there might still be a mismatch between how those words were used in their data and what 
you have in your reviews dataset. You are now going to look into the next challenge in 
sentiment analysis – dependence of word sentiment on the surrounding context – and you 
are going to learn the word sentiment dynamically based on the data at hand. 

It’s time now to revisit our Approach 2 that we formulated in Chapter 7: 

Data-driven approach 
Take a collection of positive and negative reviews. Set up a machine learning pipeline, as you did for the applications 
in the previous chapters. This pipeline should rely on the dataset of reviews previously determined to be positive and 
negative. You should split this set into training and test data, define the set of features to learn the sentiment from, 
train a classifier of your choice on the training data with the selected set of features, and evaluate it on the test set. 
 

Figure 8.6 is a reminder on the machine learning pipeline as applied to the sentiment 
data: 

 
11 http://www.cs.cornell.edu/home/llee/papers/sentiment.pdf 
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Figure 8.6 Machine Learning pipeline applied to the sentiment data 

8.2.1 Data preparation 
We are going to turn to sklearn now and use its functionality to prepare the data, extract 
features, and apply machine learning algorithms. The very first step in the process, as Figure 
8.6 visualizes, is preparing the texts from the dataset for classification. So far you have been 
working with two dictionaries – pos_docs store all positive reviews’ ids mapped to the 
content extracted from the correspondent files and processed with spaCy; similarly, 
neg_docs store all negative reviews’ ids mapped to the linguistically processed content. The 
spaCy’s linguistic pipeline adds all sorts of information to the original word tokens (e.g., 
earlier in this chapter you’ve used lemmas and part-of-speech tags retrieved from pos_docs 
and neg_docs). It’s time now to decide which of these bits of information to use in your 
machine learning application as features. In particular, you need to consider the following 
questions: 

• Question 1: Are all words equally important for this task? For some other applications 
in the previous chapters, you removed certain types of words (e.g., stopwords). In 
addition, in Chapter 7 you saw that words of certain parts of speech (e.g., adjectives 
or adverbs) might be more useful than others. Should you take all words into account, 
or should you do some pre-filtering of the content? 

• Question 2: What should be used as features for the classification? Is it word forms, 
so that “film” and “films” would give rise to two different features in the feature 
vector, or is it lemmas so that both would result in a single feature “film”? Should you 
consider single words like “very” and “interesting”, or should you take phrases like 
“very interesting” into account, too? 

These are a reasonable set of questions to ask yourself whenever you are working on an 
NLP classification task. Regarding Question 1, you might have noticed that none of the 
sentiment lexicons contained words like “a” or “the” (called articles), “of” or “in” (called 
prepositions), and other similar frequent words that are commonly called stopwords. In fact, 
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the researchers who compiled these lists specified that stopwords were filtered out. 
SentiWordNet doesn’t cover such words either. On the one hand, since stopwords mainly 
help linking other words together (as prepositions do) or add some aspects to the meaning 
(as the indefinite article “a” or definite article “the” do), many of them don’t express any 
sentiment value in addition to this main function of linking other words to each other, so you 
might consider filtering them out. On the other hand, care should be taken as to what words 
are included in the list of stopwords: for instance, traditionally negative words like “not” and 
similar are also considered stopwords, but as you’ve seen before they are useful for 
sentiment detection. You might have also noticed that lexicons and SentiWordNet do not 
contain any punctuation marks. Whether to include punctuation marks in the set of features 
is another choice you’ll have to make: on the one hand, emotional statements often contain 
special punctuation such as exclamation marks; on the other hand, both positive (“This 
movie is a must see!”) and negative (“Don’t waste your time on this movie!”) reviews may 
contain them. To this end, let’s implement a flexible filtering method, text_filter, that will 
allow you to customize the list of words that you’d like to ignore in processing. After filtering 
is done, let’s consider all other words as potential features. Once you get the results with the 
full vocabulary, you will be able to compare the performance to the more limited sets of 
features (e.g., adjectives only). To see how the original content of a review may get 
dramatically distilled by the text_filter method down to content words, take a look at 
Figure 8.7: 

 
Figure 8.7 The content of the original review filtered down by a text_filter method 

Question 2 asks you which linguistic unit should be used as the basis for the features. 
Recall that one of the challenges in sentiment analysis identified in the beginning of this 
chapter is the size of the feature unit. This is not a completely novel question for you: recall, 
that in Chapters 5 and 6 you used units smaller than a word (suffixes of up to 3 characters in 
length) to classify texts as belonging to one of the authors. Although you can consider units 
shorter than a word as features for sentiment analysis, too, traditionally words are 
considered more suitable as features for this application. Use of lemmas instead of word 
forms will make your feature space more compact as you’ve seen during the data exploration 
phase, however, you might lose some sentiment-related information through this space 
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reduction step (for instance, word form “worst” might bear a stronger sentiment clue than its 
lemma “bad”). You might have also noticed that the sentiment lexicons used in the previous 
chapter contain word forms rather than lemmas. Again, let’s make sure that the filtering 
method, text_filter, is flexible enough to allow you to change the level of granularity for 
your features if needed. 

Finally, if you look into previous research on sentiment analysis, for instance into the 
seminal paper Thumbs Up? Sentiment Classification using Machine Learning Techniques, that 
accompanied the reviews dataset, sentiment analysis algorithms often consider units longer 
than single words as features. In particular, the paper mentions using word bigrams as well 
unigrams as features. What does this mean? 

If you continue working in NLP, you will come across such terms as unigrams, bigrams, 
trigrams (and ngrams in general) very often. These terms define the length of a particular 
linguistic unit, typically in terms of characters or words. For example, character ngrams 
specify the length of a sequence of characters, with n- in ngram standing for the length 
itself. Figure 8.8 illustrates how to identify n-grams of a specific length in terms of characters 
and words: 

 
Figure 8.8 Identification of n-grams of various length n in terms of characters and words 

In fact, one of the feature types used for author identification in Chapters 5 and 6 – 
suffixes – can be considered an example of character trigrams. Let’s give it a proper 
definition. 

Ngrams 
Ngrams stand for sequences of linguistic units (e.g., characters or words) of a specific length denoted by n-: for 
instance, character unigrams are sequences of one character, bigrams – of two characters, trigrams – of three 
characters, and so on. 
 

When thinking of using word ngrams as features for sentiment analysis, you should ask 
yourself whether word unigrams, e.g., “very”, “good” and “movie” extracted from “Very good 
movie”, are sufficiently informative, or whether addition of the word bigrams “very good” and 
“good movie” to the feature space will help the classifier learn the sentiment better. There is 
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a certain trade-off between the two options here: while bigrams might add some useful 
signal to the feature space, there are advantages to sticking to unigrams only. In particular: 

• A word unigrams-based feature space is always more compact: e.g., if you have 100 
word unigrams, theoretically there may be up to 100*100=10,000 bigrams – a very 
significant increase in the feature space size and a toll on the algorithm’s efficiency. 

• A word unigrams-based feature space is always less sparse: imagine that you’ve seen 
“very” 50 times and “good” 100 times, and you are quite certain that “very” doesn’t 
always occur in combination with “good” only. How often then will you see “very 
good” in this data? You can be sure, this will be less than 50 times (i.e., the lower 
frequency of the words within an ngram always sets up the upper bound on the 
frequency of the word combination as a whole), and the longer the ngram becomes, 
the less often you will see it in the data. This might eventually mean that the ngram 
becomes too rare to be useful in classification. 

We will get to the question of using longer word ngrams, as well as a combination of uni- 
and longer ngrams a little later in this chapter once you get more familiar with the sklearn’s 
functionality. Right now, let’s get straight to coding and implement two functions that will 
allow you to apply filtering of your choice to the content of the reviews and will help you 
prepare the data for further feature extraction. Code Listing 8.6 does exactly that, filtering 
out punctuation marks and keeping word forms. Feel free to experiment with other types of 
filtering.  

In this code, you start by adding some useful imports: random for data shuffling, string 
to access the list of punctuation marks, and finally, spaCy’s stopwords list. We’ll use the 
standard list of punctuation marks: note that string.punctuation is a string of punctuation 
marks, so let’s convert it to a list for convenience. Alternatively, you can define your own 
customized list instead. Next, you pass in a reviews dictionary a_dict, where each review’s 
id is mapped to its content, a label (1 for positive and -1 for negative reviews) and 
exclude_lists for the lists of words to be filtered out as arguments to the function 
text_filter. For the word forms that are not in the exclude_lists, you add the word 
forms to the output. Alternatively, you can use token.lemma_ instead of token.text in this 
code to take lemmas instead of word forms. You return data – a data structure with tuples, 
where the first element in each tuple is a filtered down version of a review and the second is 
its label. After that, you apply the text_filter function to both types of reviews and put the 
tuples of filtered reviews with their labels together in one data structure. Within the 
prepare_data function, you shuffle the data entries randomly, and to ensure that this 
random shuffle results in the same order of reviews from one run of your system to another, 
you set a random seed (for example, 42 here). Then, you split the randomly shuffled tuples 
into two lists: texts for the filtered content of the reviews and labels for their labels. This 
code shows how to filter out punctuation marks using the prepare_data function; for both 
punctuation and stopwords filtering, you’ll need to use list(stopwords_list) + 

punctuation_list. In the end, you apply prepare_data function to the dataset and print 
out the length of the data structures (this should equal the original number, i.e. 2000 
reviews) as well as some selected text, for instance the very first one texts[0]. 
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Listing 8.6 Code to filter the content of the reviews and prepare it for feature extraction 

import random 
import string 
from spacy.lang.en.stop_words import STOP_WORDS as stopwords_list    #A 
punctuation_list = [punct for punct in string.punctuation]    #B 
 
def text_filter(a_dict, label, exclude_lists):    #C 
    data = [] 
    for rev_id in a_dict.keys(): 
        tokens = [] 
        for token in a_dict.get(rev_id): 
            if not token.text in exclude_lists: 
                tokens.append(token.text)    #D 
        data.append((' '.join(tokens), label)) 
    return data    #E 
 
def prepare_data(pos_docs, neg_docs, exclude_lists): 
    data = text_filter(pos_docs, 1, exclude_lists) 
    data += text_filter(neg_docs, -1, exclude_lists)    #F 
    random.seed(42) 
    random.shuffle(data)    #G 
    texts = [] 
    labels = [] 
    for item in data: 
        texts.append(item[0]) 
        labels.append(item[1]) 
    return texts, labels    #H 
 
texts, labels = prepare_data(pos_docs, neg_docs, punctuation_list)    #I 
 
print(len(texts), len(labels)) 
print(texts[0])    #J 

#A Add some useful imports 
#B string.punctuation is a string of punctuation marks, so let’s convert it to a list for convenience 
#C Pass in a_dict, a label, and exclude_lists as arguments 
#D For the word forms that are not in the exclude_lists, add the word forms to the output  
#E Return data, with the first element being a filtered down version of a review and the second – its label 
#F Apply the text_filter function to both types of reviews and store the results in one data structure 
#G Shuffle the data entries randomly 
#H Split the randomly shuffled tuples into two lists: – texts and labels 
#I Filter out punctuation marks 
#J Apply prepare_data function to the dataset and print out some results 

The code above will print out 2,000 for the length of the texts list (i.e., the list of texts that 
represent filtered down content of each of the original reviews) and the length of the labels 
list (i.e., the list of labels including 1 for a positive sentiment and -1 for a negative 
sentiment). These structures hold the processed data from the original 2,000 reviews. 

To check how the data is now represented in the texts list, you use print(texts[0]) to 
peek into the very first review in this structure. It corresponds to the positive review stored 
in the file cv795_10122.txt, the one used in the example in Figure 8.7. Here is how the 
content looks now, with only the punctuation marks filtered out: 
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the central focus of michael winterbottom 's welcome to sarajevo is sarajevo itself the 
city under siege and its different effect on the characters unfortunate enough to be 
stuck there it proves the backdrop for a stunningly realized story which 
refreshingly strays from mythic portents […] 

Now, let’s split this data into the usual subsets – the training set that you will use to 
make the classifier learn how to perform the task and the test set that you will use to 
evaluate the performance of the classifier, i.e., estimate how well it learned to perform the 
task at hand. Figure 8.9 highlights where you currently are in the machine learning pipeline: 

 
Figure 8.9 Next step in the Machine Learning pipeline – split the data into the training and test sets 

Let’s use a simple strategy: since you’ve already shuffled the data, the instances with 
different labels should be randomly ordered in texts and labels data structures, so you can 
allocate the first 80% of these instances to the training set and the other 20% to the test 
set. We are going to improve on this splitting strategy in a bit, so let’s not worry about 
further details of this random split for the moment. Code in Listing 8.7 shows how to split the 
data into the texts for the training and test sets (called train_data and test_data) and 
labels for the training and test sets (train_targets and test_targets). Additionally, you 
can check that the data is randomly shuffled by printing out the first 10 labels from each of 
the subsets. Specifically, you implement a function split that should split input lists of 
texts and labels into training and test set texts and labels using the predefined 
proportion. As the code suggests, you use 0.8 to allocate the first 80% of the input texts to 
the train_data and the first 80% of the input labels to the train_targets, while putting 
the other 20% of the input texts into the test_data and the other 20% of the input labels 
into the test_targets. Finally, you print out the length of each list as well as the labels for 
the first 10 items in the target lists. 
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Listing 8.7 Code to split the data into the training and test sets 

def split(texts, labels, proportion): 
    train_data = [] 
    train_targets = [] 
    test_data = [] 
    test_targets = [] 
    for i in range(0, len(texts)): 
        if i < proportion*len(texts): 
            train_data.append(texts[i]) 
            train_targets.append(labels[i]) 
        else: 
            test_data.append(texts[i]) 
            test_targets.append(labels[i]) 
    return train_data, train_targets, test_data, test_targets    #A 
 
train_data, train_targets, test_data, test_targets = split(texts, labels, 0.8)    #B 
         
print(len(train_data)) 
print(len(train_targets)) 
print(len(test_data)) 
print(len(test_targets)) 
print(train_targets[:10])  
print(test_targets[:10])    #C 

#A Function split splits input lists of texts and labels into training and test sets using predefined proportion 
#B Use the proportion 0.8 to allocate 80% of the data to the training set and 20% to the test set 
#C Print out the length of each list as well as the labels for the first 10 items in the target lists 

If you run this code as is and use 80% of the texts and labels to train the classifier, you 
should get 1,600 for the length of the train_data and train_targets, and 400 for the 
length of the test_data and test_targets. Here’s the list of the first 10 labels from the 
training and the test data: 

[1, -1, 1, 1, -1, -1, -1, -1, 1, -1] 
[-1, 1, 1, -1, -1, 1, -1, 1, 1, 1] 

This shows that positive reviews (label 1) are mixed with negative reviews (label -1) in a 
random order. 

Now, you’ve done several preparation steps: you’ve prefiltered the content of the reviews 
to distill it down to what can be considered to constitute important features, you’ve 
separated texts from labels, and you’ve split the data into the training and the test sets. It’s 
time now to extract features and apply the full machine learning pipeline, as Figure 8.10 
shows: 
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Figure 8.10 Next step in the Machine Learning pipeline – extract features 

8.2.2 Extracting features from text 
One of the benefits of sklearn and, indeed, one of the reasons to use it in this book is that 
many steps in the machine learning pipeline are made easy with this toolkit. Such is, for 
example, feature extraction for NLP tasks. One of the most widely used approaches to using 
words as features, in fact the one that you’ve already used for some of the previous 
applications, is based on the idea that distribution of words contributes to the class 
prediction: for instance, if you see a word “good” used multiple times in a review you would 
expect this review to express a positive sentiment overall; similarly, if some negative words 
like “bad” or “awful” are simultaneously used in a review, it’s a strong signal that the review 
is overall negative. Therefore, if you have a list of words to estimate the distribution of in the 
data, your classifier can learn how frequently they occur in the positive and in the negative 
reviews. In fact, sklearn covers these two steps – collection of the vocabulary of words to 
estimate distribution for and calculation of frequency of words from this vocabulary in each 
review – with a single tool called CountVectorizer. 

Recall why you need to split the data into the training and test sets: when the algorithm 
learns how to solve the task, it only sees the data and labels from the training set. Based on 
that, it learns how to connect the data (features) from the training set to the labels, 
assuming that the training set represents the task at hand perfectly: i.e., whatever the 
distribution of the features and their correspondence to the labels in the training data is, it 
will be exactly the same or very closely replicated in any future data you apply the trained 
algorithm to. When you apply it to the test data that the algorithm has not seen during its 
training, you can get a rough estimate of how the algorithm will perform on new unseen 
data. Therefore, it is important that whatever the algorithm learns, it does so on the basis of 
the training data only, without peeking into the test set. To this end, the CountVectorizer 
does two things: first, it builds the vocabulary of words based on the training data only 
(which means that if some words occur in the test set only, they will be ignored during 
classification), and second, it estimates the correspondence between the feature distribution 
and the class label based on the training data only. The particular method that allows the 
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CountVectorizer to do that is called fit_transform. Code Listing 8.8 shows how 
CountVectorizer can be applied to the training data. Behind the scenes, the fit_transform 
method from sklearn’s CountVectorizer extracts the shared vocabulary from all training 
set reviews and estimates frequency of each word from the vocabulary in each review. Once 
you’ve applied it to your data, you can print out the size of the train_counts data structure. 

Listing 8.8 Code to apply CountVectorizer to learn the features on the training set 

from sklearn.feature_extraction.text import CountVectorizer 
 
count_vect = CountVectorizer() 
train_counts = count_vect.fit_transform(train_data)    #A 
print(train_counts.shape)    #B 

#A The fit_transform method extracts the shared vocabulary from the training set and estimates word frequency 
#B Let’s print out the size of the train_counts data structure 

The code above produces the following output: (1600, 36094). What does this mean? 
The first element of the tuple tells you that the number of data entries in the training set 

equals 1,600 – this is exactly the number of training set reviews. The second element is, in 
fact, the length of the collected vocabulary: this means that there are 36,094 distinct words 
in the vocabulary collected by the algorithm from all training set reviews. This vocabulary is 
then applied to each review to produce a feature vector, and the frequency of each word 
from this vocabulary is estimated for each review to fill in the values in this vector. You know 
from our statistical checks in the previous chapter that the average length of a review is 
about 800 words, and that is before punctuation marks or stopwords are filtered out. 
Obviously, no review will contain anything close to 36,094 distinct words in it. This means 
that the feature vectors will be extremely sparse, i.e., only a small portion of a vector will be 
filled with counts from the words that actually occur in the review, while the rest will be filled 
with 0’s.  

Let’s check this out. For instance, if you want to look “under the hood” of the algorithm 
and see what the CountVectorizer collected, you can use the following command: 

print(train_counts[:11])  

This will print out the counts collected for the first 10 reviews in the training set. In 
particular, it will print out the following: 

(0, 32056)   41 
(0, 5161)    1 
(0, 12240)   1 
(0, 22070)   18 
… 

The first element here tells you which review you are looking at: index 0 means the very 
first review from the training set, i.e., the one that starts with “the central focus of …” as 
printed out above and used in Figure 8.7. The second element in each tuple tells you which 
word is used in a review by referring to its index from the alphabetically ordered vocabulary: 
for instance, the index 32056 corresponds to the word “the”, 5161 to the word “central”, 
12240 to the word “focus”, and 22070 to the word “of”. You can always retrieve the word 
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from the vocabulary by its index using count_vect.get_feature_names()[index]. For 
instance, count_vect.get_feature_names()[35056] will return “the”. Finally, the printed-
out numbers correspond to the number of occurrences of each word in the review: for 
instance, in this review the word “the” occurs 41 times, “of” 18 times, and the other two 
words discussed above occur only once. 

 Now, if you want to have a further look into the collected vocabulary, you can print it out 
using print(count_vect.inverse_transform(train_data)). This will print out the first 
several entries from the vocabulary: 

[array(['00', '000', '0009f', ..., 'anticipating', 'anticipation', 
       'anticlimactic'], dtype='<U32')] 

Table 8.3 provides a glimpse into the vocabulary and feature vectors: the header 
presents the indexes from the vocabulary mapped to the words, while the figures show the 
frequency of each feature in the first review from the training set. Features that don’t occur 
in the review get a count of 0. The bottom row, therefore, shows you a small bit of the 
feature vector for the very first review: 

Table 8.3 A glimpse into the vocabulary and feature vectors 

Index 

Word 

0 

00 

1 

000 

… 

… 

5161 

central 

… 

… 

32056 

the 

… 

… 

Count(first 
review) 

0 0 … 1 … 41 … 

Now, let’s extract the very same features from the test data and apply the classifier. In the 
previous chapters you’ve learned that Naïve Bayes, unlike some other classifiers, can deal 
reasonably well with sparse features – such as distributions of words from a large 
vocabulary, where for each particular review only a few are present. To this end, let’s apply 
this classifier to your task. Figure 8.11 provides a reminder of the sklearn’s train-test 
routine and syntax: 

 
Figure 8.11 A reminder of the sklearn’s train-test routine and syntax 
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Before you can apply a trained model to the test set, you need to extract the features 
from the test set, which is achieved in a very similar manner by application of the sklearn’s 
CountVectorizer. To make sure that the algorithm counts the occurrences of the words 
from the vocabulary that it collected from the training data only (rather than collecting a new 
vocabulary and counting word occurrences based on it), omit the call to the fit method of 
the vectorizer and use only the transform bit – that is, you are transforming the raw 
contents of the test set reviews to the feature vectors, without fitting them into a new 
vocabulary. Code in Listing 8.9 walks you through these steps. 

Listing 8.9 Code to apply CountVectorizer to test set and run classification 

from sklearn.naive_bayes import MultinomialNB 
 
clf = MultinomialNB().fit(train_counts, train_targets)    #A 
 
test_counts = count_vect.transform(test_data)    #B 
predicted = clf.predict(test_counts)    #C 
 
for text, label in list(zip(test_data, predicted))[:10]: 
    if label==1: 
        print('%r => %s' % (text[:100], "pos")) 
    else: 
        print('%r => %s' % (text[:100], "neg"))    #D 

#A Initialize the classifier and train the model on the training data using fit method 
#B Extract features from the test data by applying the transform method of the CountVectorizer 
#C Apply the classifier to make predictions on the test set 
#D Print out some results, for example the predicted labels for the first 10 reviews from the test set 

The code above will print out the first 100 characters from the first 10 reviews mapped with 
their predicted sentiment. Among them, you’ll see the following examples: 

"susan granger 's review of america 's sweethearts columbia sony what a waste of a talented 
cast bill" => neg 

'  the fugitive is probably one of the greatest thrillers ever made it takes realistic 
believable cha' => pos 

This looks like a very sensible prediction: for instance, a word “waste” (as well as the 
whole phrase “a waste of a talented cast”) strongly suggests that it is a negative review, and 
the classifier picked that information up. The second review contains quite positive 
expressions, including “one of the greatest thrillers ever made” and “realistic believable 
cha[racters]”, thus the prediction made for this review is that it is positive. 

Congratulations – you’ve just built a data-driven sentiment analyzer that is tuned to 
detecting sentiment based on your specific data! Now, let’s look into how these multiple 
steps, including feature extraction and machine learning classification, can be put together in 
a single flexible pipeline, and then let’s run a full-scale evaluation of the results. 

8.2.3 Sklearn’s machine learning Pipeline 
You’ve come across processing pipelines before – for instance, you’ve used the spaCy’s 
pipeline earlier in this and in the previous chapters to apply all linguistic tools at once. 
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Sklearn allows you to define your own pipeline of processing, feature extraction, and 
machine learning tools as well. What’s the benefit of using such a pipeline? Here are main 
advantages: 

• Once defined, you don’t need to worry about the sequence of tool application and 
consistency of the tools applied to training and test data: define your pipeline once 
and then simply run it on any dataset. 

• Sklearn’s pipeline is highly customizable, and it allows you to bolt together various 
tools and subsequently run them with a single line of code (i.e., invoking the pipeline 
when needed). It makes it easy to experiment with different settings of the tools and 
find out what works best. 

So, let’s find out how the pipeline works. Code Listing 8.10 shows how to define a 
pipeline. You start by importing Pipeline functionality and the Binarizer tool, which helps 
record absence or presence of features. You can add any tools of your choice to the pipeline 
and print out the full list of tools included in it with the activated options. Once defined, the 
pipeline can be run using the usual fit-predict routine. 

Listing 8.10 Code to define Pipeline 

from sklearn.pipeline import Pipeline    #A 
from sklearn.preprocessing import Binarizer    #B 
 
text_clf = Pipeline([('vect', CountVectorizer(min_df=10, max_df=0.5)),  
                     ('binarizer', Binarizer()), 
                     ('clf', MultinomialNB()), 
                    ])    #C 
 
text_clf.fit(train_data, train_targets)   
print(text_clf)    #D 
predicted = text_clf.predict(test_data)    #E 

#A Import Pipeline functionality 
#B Import the Binarizer tool to record absence or presence of features 
#C Add any tools of your choice to the pipeline 
#D You can print out the full list of tools included in the pipeline with the activated options  
#E Apply the usual fit-predict routine 

Note that instead of defining the tools one by one and passing the output of one tool as the 
input to the next tool, you simply pack them up under the Pipeline and after that you don’t 
need to worry anymore about the flow of the information between the bits of the pipeline. In 
other words, you can train the whole model applying fit method as before (which will use 
the whole set of tools this time) and then test it on the test set using predict method. 
Figure 8.12 is thus an update on Figure 8.11: 
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Figure 8.12 Machine learning routine using Pipeline functionality 

Now, let’s look more closely into the tools: 

• Previous applications of the CountVectorizer left the brackets empty, and this time 
we use some options: min_df=10 and max_df=0.5. What does this mean?12 Recall 
from your earlier data explorations in this chapter that both positive and negative 
review collections have large number of words in their vocabularies. The full 
vocabulary collected on the training set contains over 36,000 words, yet, as we’ve 
discussed, for any particular review the actual number of words occurring in it will be 
relatively small. The feature vectors of ~36,000 dimensionality are very expensive to 
create and process, especially given that they are very sparse (i.e., mostly filled with 
zeros for any given review). CountVectorizer allows you to mitigate this issue to 
some extent by setting cut-offs on the minimum and maximum document frequency 
(min_df and max_df options here). An integer value is treated as the absolute 
frequency, while a floating-point number denotes proportion of documents. By setting 
min_df to 10 and max_df to 0.5 you are asking the algorithm to only populate the 
vocabulary and count the frequency for the words that occur in more than 10 reviews 
in the training data and in no more than 800 of them (i.e., 0.5 of the 1,600 training 
reviews), thus eliminating some relatively rare words that might be not frequent 
enough to be useful, as well as some very frequent words that might be too widely 
spread to carry any useful information. This makes the feature space much more 
compact and often not only speeds the processing up but also improves the results 
(as in this case). 

• We are using a new tool, Binarizer, as part of this pipeline.13 What does it do? Recall 
that with the lexicon-based approach before you tried out two variations: taking 
absolute value of the sentiment (+1 for positive and -1 for negative words) or the 
relative sentiment weight. Binarizer allows you to do something a bit similar: it 
helps you to model presence / absence of a word in a review as opposed to its 

 
12 Check out the full list of available options on https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html  
13 Check out the documentation on https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html  
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frequency, in other words, it assigns a value of 1 (instead of a count) to each 
vocabulary word present in a review and a value of 0 to each vocabulary word absent 
from a review. The pipeline is very flexible in this respect: add this tool to your 
pipeline and your classifier will rely on presence / absence of features; remove it – 
and your classifier will rely on frequencies. The authors of the Thumbs Up? paper 
report that presence / absence works better for sentiment analysis than frequency. 
Experiments on this version of the dataset show that the difference is very small, with 
presence / absence yielding slightly better results, so make sure you experiment with 
the different settings in the code. 

Now, what are the results exactly? Let’s find out! Code Listing 8.11 reminds you how to 
evaluate the performance of your classifier (here, the whole pipeline) and print out a 
confusion matrix where the actual labels are printed against system’s predictions. Figure 
8.13 shows a reminder of what information a confusion matrix contains: 

 
Figure 8.13 A reminder of what information is contained in the confusion matrix 

A confusion matrix provides a concise summary of classifier performance (including both 
correctly classifier instances and mistakes) and is particularly suitable for the analysis in 
binary classification cases. For instance, in this task you are classifying reviews into positive 
and negative ones. An example in Figure 8.13 shows that in a set of 400 reviews (consisting 
of 202 actually negative reviews and 198 actually positive ones – you can estimate the totals 
following the numbers in each row) the classifier correctly identifies 173 negative and 157 
positive ones – these numbers can be found on the diagonal of the confusion matrix. At the 
same time, the classifier incorrectly detects 29 negative reviews as positive, and 41 positive 
reviews as negative. The code in Listing 8.11 reminds you how to print out the confusion 
matrix as well as the whole classification_report, which includes accuracy, precision, 
recall, and F-score for each class. 
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Listing 8.11 Code to evaluate performance of your Pipeline 

from sklearn import metrics    #A 
 
print("\nConfusion matrix:") 
print(metrics.confusion_matrix(test_targets, predicted)) 
print(metrics.classification_report(test_targets, predicted))    #B 

#A Import the collection of metrics 
#B Print out the confusion matrix and the whole classification_report 

Here are the results: 

Confusion matrix: 
[[173  29] 
 [ 41 157]] 
              precision    recall  f1-score   support 
 
          -1       0.81      0.86      0.83       202 
           1       0.84      0.79      0.82       198 
 
    accuracy                           0.82       400 
   macro avg       0.83      0.82      0.82       400 
weighted avg       0.83      0.82      0.82       400 
 

This particular pipeline run on this particular train-test split (with 202 negative and 198 
positive reviews in the test set, as the support values show) achieves an accuracy of 82%, 
with a quite balanced performance on the two classes. In particular, it correctly classifies 173 
negative reviews as negative and 157 positive reviews as positive; it incorrectly assigns a 
negative label to 41 actually positive reviews and a positive label to 29 actually negative 
ones. The last two lines of the report present macro average and weighted average for all 
metrics. You don’t need to worry about the difference between them, as for a balanced 
dataset (as the one you are using in this chapter) there is no difference between the two – 
they simply represent averages for the values in each column. The difference will show itself 
when the classes have unequal distribution: weighted average will take the proportion of 
instances in each class into account, while macro average will average across all classes 
regardless.  

Now that you know how to run a whole pipeline of tools in one go, attempt Exercise 8.2. 
Try solving these tasks before checking the solutions in the Jupyter notebook: 

Exercise 8.2 
Experiment with different parameters and options for the selected tools. E.g.: 

 
• Check out the documentation for available options 
• Evaluate the results with the frequency-based approach instead of the presence / absence one 
• Compare the results to the classifier that uses lemmas instead of word forms 
• Compare the results to the classifier that filters out stopwords as well as punctuation 
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8.2.4 Full scale evaluation with cross-validation 
Now you’ve obtained some results on this dataset and they seem to be quite promising: the 
performance is rather balanced on the two classes, the accuracy of 0.81 is similar to that 
reported in the Thumbs Up? paper (recall, that we’ve discussed earlier in this chapter that 
the authors report accuracy values in the region of 78-83% for this task on a subset of this 
dataset). Well done! There is just one caveat to consider before you declare success on this 
task: remember that your train-test split comes from one specific way of shuffling the 
dataset (using a selected random seed, 42 in the code from Listing 8.6) and training on the 
first 80% and testing on the other 20% of it. What happens if you shuffle the data 
differently, for example, using a different seed? 

You might guess that the results will change – they will indeed, and if you are interested 
further in this question, you can try this out as an experiment. The results might change ever 
so slightly, but still, they would be different… What’s more, you might also get “unlucky” with 
the new selection of the test set and get much lower results! Which results should you trust 
in the end? One way to make sure you get some fair range of results on different bits of the 
dataset, rather than on some random, perhaps some “lucky” test set (which might yield 
overly optimistic results), or perhaps some “unlucky” test set (that will make you believe the 
performance is lower than it actually is on another bit), is to run your classifier multiple times 
on different subsets of the data, for instance changing the random seed, and taking the 
mean of the results from multiple runs. How many times should you run your algorithm 
then? 

In fact, there exists a widely used machine learning technique, called k-fold cross-
validation, that defines how such multiple runs of the algorithm over the data should be 
performed. K in the title of the technique stands for the number of splits in your data (and 
consequently also for the number of runs). Here is how you can apply k-fold cross-validation: 

• Split your full dataset into k random subsets (folds) of equal size. Traditionally, you 
would go for k=5 or k=10. Let’s assume that you decided to run a 10-fold cross-
validation, i.e., k=10. 

• Take the subsets 1 to 9 as your training set, train your algorithm on this combined 
data, and use the 10th fold as your test set. Evaluate the performance on this fold. 

• Repeat this procedure 9 more times, each time allocating a different fold to the test 
set and training your algorithm on the rest of the data: for example, in the second 
run, use 9th fold as your test set and train on folds 1 to 8 plus fold 10. Evaluate the 
performance on each fold. 

• In the end, use the mean values for all performance metrics across all 10 folds. 

Note, that by the end of this procedure you would have run your classifier on every 
datapoint (every review) from your full dataset, because it would have ended up in some test 
fold in one of the runs. At the same time, you would never violate the golden rule of machine 
learning: since in each run the test set is separate from the training set, you never actually 
peek into the test set, yet you are able to fully exploit your dataset both for training and for 
testing purposes! Figure 8.14 visualizes the cross-validation procedure: 
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Figure 8.14 In each run in this 10-fold cross-validation scenario the light-shaded fold is used for testing and all 
dark-shaded folds are used for training. In the end, the performance across all 10 runs is averaged 

Like all other machine learning techniques, cross-validation implementation is covered by 
sklearn, so you don’t actually need to perform the splitting into folds yourself. Code Listing 
8.12 shows how to invoke cross-validation for the pipeline you’ve built in the previous 
section. Specifically, in this code you rely on cross_val_score and cross_val_predict 
functionality. You specify the number of folds with the cv option, return the accuracy scores 
on each run, and calculate the average accuracy across all k folds. In the end, you return 
predicted values from each fold and print out the evaluation report as you did before. 

Listing 8.12 Code to run k-fold cross-validation 

from sklearn.model_selection import cross_val_score, cross_val_predict    #A 
 
scores = cross_val_score(text_clf, texts, labels, cv=10)    #B 
print(scores) 
print("Accuracy: " + str(sum(scores)/10))    #C 
predicted = cross_val_predict(text_clf, texts, labels, cv=10)    #D 
print("\nConfusion matrix:") 
print(metrics.confusion_matrix(labels, predicted)) 
print(metrics.classification_report(labels, predicted))    #E 
     

#A Import cross_val_score and cross_val_predict functionality 
#B Specify the number of folds with the cv option and return the accuracy scores on each run 
#C Calculate the average accuracy across k folds 
#D Return predicted values from each fold 
#E Print out the evaluation report as you did before 

Here are the results: 
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[0.87  0.805 0.87  0.785 0.86  0.82  0.845 0.85  0.81  0.845] 
Accuracy: 0.836 
 
Confusion matrix: 
[[843 157] 
 [193 807]] 
              precision    recall  f1-score   support 
 
          -1       0.82      0.86      0.84      1000 
           1       0.85      0.81      0.83      1000 
 
    accuracy                           0.84      2000 
   macro avg       0.84      0.84      0.84      2000 
weighted avg       0.84      0.84      0.84      2000 

The list of scores shows that, most of the time, the algorithm performs with an accuracy 
over 0.80, sometimes reaching an accuracy score as high as 0.87 (on fold 3). That is, if you 
randomly split your data into training and test sets and happened to have fold 3 for your test 
set, you’ll be very pleased with your results. Not so much, though, if you happened to have 
fold 4 for your test set, as the accuracy there is 9% lower – at 0.785. In summary, the 
classifier performs with an average accuracy of around 0.84, which is also very close to the 
results you obtained before. On the full dataset of 1000 positive and 1000 negative reviews, 
the classifier is more precise at identifying positive reviews (precision on class=“1” is 0.85) 
while reaching a higher recall on the negative reviews (recall on class=“-1” is 0.86): this 
means that the classifier has a slight bias towards predicting negative reviews, so it has good 
coverage (recall) for them, but occasionally it makes mistakes (i.e., incorrectly predicts that 
a positive review is negative). Figure 8.15 visualizes the new best accuracy in comparison to 
previous results: 

 
Figure 8.15 Accuracy achieved with a machine learning (ML) approach using word unigrams 
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8.3 Varying the length of the sentiment-bearing features 
The next challenge in sentiment analysis, identified in the beginning of this chapter, is the 
length of the sentiment-bearing unit. Are single word unigrams (like “very”, “good”, and 
“movie”) enough, or should you consider higher order n-grams (e.g., bigrams like “very 
good” and “good movie”, or even trigrams like “very good movie”)? Let’s find out which unit 
works best as the basis for features.  

With sklearn’s help, nothing can be easier! All you need to do to change the granularity 
of features, for example, replacing word unigrams with longer n-grams or combining the 
different types of n-grams, is to set the ngram_range option of the CountVectorizer. For 
instance, ngram_range=(2, 2) will allow you to use bigrams only and ngram_range=(1, 2) 
to combine unigrams and bigrams in the feature set. That is, you need to update your code 
from the Listing 8.10 and evaluate the results again using the code from the Listing 8.12. 
Figure 8.16 highlights the bit of the pipeline that is involved in this process: 

 
Figure 8.16 You can iterate on the final steps in the pipeline updating your algorithm with new features 

Code in Listing 8.13 shows how to update the sklearn’s pipeline. The only option you 
need to update is the ngram_range of the CountVectorizer. Note that since most bigrams 
will be relatively rare in comparison to unigrams, you don’t need to specify document 
frequency thresholds. 
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Listing 8.13 Code to update the Pipeline with ngram features 

   text_clf = Pipeline([('vect', CountVectorizer(ngram_range=(1, 2))),    #A 
                     ('binarizer', Binarizer()), 
                     ('clf', MultinomialNB()) 
                    ]) 
 
scores = cross_val_score(text_clf, texts, labels, cv=10) 
print(scores) 
print("Accuracy: " + str(sum(scores)/10)) 
predicted = cross_val_predict(text_clf, texts, labels, cv=10) 
print("\nConfusion matrix:") 
print(metrics.confusion_matrix(labels, predicted)) 
print(metrics.classification_report(labels, predicted))    #B 

#A The only option you need to update is the ngram_range of the CountVectorizer 
#B The rest of the code is the same as before 

The code above produces the following results, showing that the performance of the 
sentiment analyzer improves overall and in particular on the positive class: 

[0.865 0.845 0.875 0.795 0.89  0.82  0.865 0.88  0.795 0.875] 
Accuracy: 0.8504999999999999 
 
Confusion matrix: 
[[819 181] 
 [118 882]] 
              precision    recall  f1-score   support 
 
          -1       0.87      0.82      0.85      1000 
           1       0.83      0.88      0.86      1000 
 
    accuracy                           0.85      2000 
   macro avg       0.85      0.85      0.85      2000 
weighted avg       0.85      0.85      0.85      2000 

Before you move on to addressing the final challenge, try to solve Exercise 8.3: 

Exercise 8.3 
Explore how the length of the n-gram features impacts the results. For that, consider various settings for the 
ngram_range option: for instance, (2, 2) for bigrams only, (1, 3) for uni-, bi-, and trigrams combined, etc. How 
does the performance change? 
 

If you attempt this exercise with the combination of uni-, bi-, and trigrams as features 
modifying the code from Listing 8.13 accordingly, you will get the following results: 
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[0.89  0.86  0.87  0.835 0.895 0.82  0.86  0.855 0.825 0.88 ] 
Accuracy: 0.859 
 
Confusion matrix: 
[[810 190] 
 [ 92 908]] 
              precision    recall  f1-score   support 
 
          -1       0.90      0.81      0.85      1000 
           1       0.83      0.91      0.87      1000 
 
    accuracy                           0.86      2000 
   macro avg       0.86      0.86      0.86      2000 
weighted avg       0.86      0.86      0.86      2000 

To summarize, with the combination of n-grams of higher order, the overall accuracy of 
classification appears to increase, as do precision on the negative class and recall on the 
positive class. This means that the mistakes that the classifier makes are now mostly 
concerned with incorrect identification of some negative reviews as positive ones. Figure 8.17 
plots the accuracies of the classifier with the new features against the previous results: 

 
Figure 8.17 Summary of the results with various algorithms attempted so far 

8.4 Negation handling for sentiment analysis 
The final challenge for a sentiment analysis algorithm that we’ve identified in the beginning 
of this chapter is negation. On the one hand, your sentiment analyzer must already be able 
to deal with negation to a certain extent: note that by not filtering out stopwords (that 
contain, among other words, “not” and similar negative markers) and taking into account 
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longer phrases (bigrams and trigrams) you include phrases like “not good”, “did not like” and 
similar in the feature set. The problem with this approach is two-fold: 

• First, since you are using both word unigrams and longer n-grams, even if you include 
phrases like “not good” or “did not like” in your feature set as bigrams and trigrams, 
you also include unigrams contained in them, namely “good” and “like”, which are 
normally associated with a positive sentiment and will confuse the classifier. 

• Secondly, current approach is not able to handle any longer phrases, i.e., you are 
always limited by what you considered to be the optimal length of the ngram. In 
practice, negation might apply to the whole phrase following it or to a word that 
doesn’t follow the negative marker immediately. For example, such is the case in 
“This book didn’t make for a good read and a good discussion”, where “not” negates 
“good” (which wouldn’t be captured even in the same trigram) if not the whole 
following phrase. 

How should you deal with this issue then? The authors of the Thumbs Up? Sentiment 
Classification using Machine Learning Techniques paper suggest a solution: they mention 
that they use a method that adds a “NEG” marker to every word within the phrase that 
follows the negating word. Figure 8.18 illustrates what this “trick” does to the sentence that 
contains a negative word: 

 
Figure 8.18 Negation can be handled by adding a prefix “NEG” to the words following the negation marker 

With sentiment analysis being a popular task, this “trick” has actually been already 
implemented in NLTK. This is yet another case where the combination of different tools 
proves to be useful. Code Listing 8.14 shows how to add this to your preprocessing. 
Specifically, NLTK’s negation handling functionality can be accessed via mark_negation. In 
this code, you implement a text_filter_neg function, that is very similar to the 
text_filter function from Code Listing 8.6, with the only difference that you apply 
mark_negation to the review content. Then, you prepare the data for machine learning 
classification as you did before and store the processed texts and labels in two data 
structures. To check how the data is represented in the end, you can print out the length of 
each of these data structures (this should equal to 2000 as before) and the processed 
content of the first review. 
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 Listing 8.14 Code to add negation handling to your text preprocessing 

from nltk.sentiment.util import mark_negation    #A 
 
def text_filter_neg(a_dict, label, exclude_lists): 
    data = [] 
    for rev_id in a_dict.keys(): 
        tokens = [] 
        for sent in a_dict.get(rev_id).sents: 
            neg_tokens = mark_negation(sent.text.split())    #B 
            for token in neg_tokens: 
                if not token in exclude_lists: 
                    tokens.append(token) 
        data.append((' '.join(tokens), label)) 
    return data 
 
def prepare_data_neg(pos_docs, neg_docs, exclude_lists):    #C 
    data = text_filter_neg(pos_docs, 1, exclude_lists) 
    data += text_filter_neg(neg_docs, -1, exclude_lists) 
    random.seed(42) 
    random.shuffle(data) 
    texts = [] 
    labels = [] 
    for item in data: 
        texts.append(item[0]) 
        labels.append(item[1]) 
    return texts, labels 
 
 
texts_neg, labels_neg = prepare_data_neg(pos_docs, neg_docs, punctuation_list)    #D 
print(len(texts_neg), len(labels_neg)) 
print(texts_neg[0])    #E 

#A Add NLTK’s negation handling functionality via mark_negation 
#B Implement a text_filter_neg function that applies mark_negation to the review content 
#C Prepare the data for machine learning classification as you did before 
#D As before (in Code Listing 8.6), store the processed texts and labels in two data structures 
#E Print out the length of each of these data structures and the processed content of the first review 

Here is what you will get if you run this code: the length of both texts_neg (texts from the 
movie reviews, with punctuation marks removed and negation marked via mark_negation) 
and labels keeping the actual labels of all reviews is still 2,000 as expected. The content of 
the first review, which as before starts with “the central focus of …” will only be affected 
where the review contains negative words, for instance: 

he doesn't toy_NEG with_NEG our_NEG emotions_NEG 
in war no one_NEG is_NEG victorious_NEG 
not one_NEG moment_NEG with_NEG them_NEG involved_NEG rings_NEG false_NEG 

Now all you need to do is run your algorithm on these newly processed texts and 
evaluate the results against labels using cross-validation, as Code Listing 8.15 (identical to 
8.13) suggests: 
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Listing 8.15 Code to update the Pipeline and run the classifier 

   text_clf = Pipeline([('vect', CountVectorizer(ngram_range=(1, 2))), 
                     ('binarizer', Binarizer()), 
                     ('clf', MultinomialNB()) 
                    ]) 
 
scores = cross_val_score(text_clf, texts, labels, cv=10) 
print(scores) 
print("Accuracy: " + str(sum(scores)/10)) 
predicted = cross_val_predict(text_clf, texts, labels, cv=10) 
print("\nConfusion matrix:") 
print(metrics.confusion_matrix(labels, predicted)) 
print(metrics.classification_report(labels, predicted)) 

Here are the results on this pipeline: 

[0.89  0.865 0.875 0.82  0.895 0.8   0.855 0.885 0.82  0.88 ] 
Accuracy: 0.8585 
 
Confusion matrix: 
[[828 172] 
 [111 889]] 
              precision    recall  f1-score   support 
 
          -1       0.88      0.83      0.85      1000 
           1       0.84      0.89      0.86      1000 
 
    accuracy                           0.86      2000 
   macro avg       0.86      0.86      0.86      2000 
weighted avg       0.86      0.86      0.86      2000 
 

In terms of the overall accuracy, these results are very close to the earlier model that 
uses uni-, bi- and trigrams as feature, suggesting that such a model already handles 
negation to a considerable extent. However, negation “trick” also appears to help rebalance 
the performance between the two classes a bit, bringing the performance on the two closer 
together in terms of their precision and recall values. Figure 8.19 concludes this section with 
a summary of the accuracies you obtained with different algorithms: 

316

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

 
Figure 8.19 Summary of all the results 

8.5 Further practice 
Congratulations! Now you have not only built a fully functional sentiment analyzer, but you 
also learned how to add as many preprocessing and feature extraction tools as you need in a 
single ML pipeline, and you’ve also learned how to evaluate the results fairly. Exercises 8.4 
and 8.5 suggest more ideas for further practice with the sentiment analysis task:  

Exercise 8.4: Explore contribution of adjectives and adverbs 
The data-driven analyzer you’ve built in this chapter uses the full set of words as features. Yet, as we’ve discovered 
earlier, such words as adjectives and adverbs may bear more pronounced sentiment signal. Modify the code from this 
chapter to only take into account adjectives and adverbs. As a variation of the task, combine the data-driven 
approach with the sentiment lexicons, for example, only considering the words from the adjectives lexicons. 

 
Hint: Instead of using the text_filter method to exclude words from certain lists or resources, you can 

implement a method that only considers words from certain lists or resources (e.g. text_filter(a_dict, 
label, include_lists)) 

 
Try solving this exercise before checking the solutions in the Jupyter notebook. 
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Exercise 8.5: Classify sentiment in other data 
There are a number of other datasets that you can use to apply your sentiment analyzer, including:  

 
• The sentence polarity dataset 1.0, available at http://www.cs.cornell.edu/people/pabo/movie-review-

data/rt-polaritydata.tar.gz, which contains 5,331 positive and 5,331 negative sentences from movie reviews  
• The Large Movie Review Dataset, available at https://ai.stanford.edu/~amaas/data/sentiment/, with 

as many as 25,000 highly polar movie reviews for training and another 25,000 reviews for testing  
• Any other review dataset, including the ones you may have collected yourself or come across in practice. 
 

8.6 Summary 
• This chapter looked into further, more in-depth analysis of the challenges in the 

sentiment classification task. Such challenges could not be handled with the baseline 
algorithm that you developed in the previous chapter, so this helped you define the 
steps to take in order to improve your classifier. In particular: (1) words are often 
ambiguous and may have different sentiments of different strengths associated with 
their multiple meanings; (2) surrounding context may change the sentiment of a 
word; (3) considering phrases longer than one word may be beneficial for this task, as 
individual words may not be able to capture intricacies of sentiment; and finally (4) 
negative words change polarity of whole phrases following them. 

• The multiple senses challenge can be addressed with the use of SentiWordNet, which 
is a lexical database where words are assigned with three sentiment scores (positive, 
negative, and objective) according to their senses. SentiWordNet is closely related to 
WordNet – a very useful lexical resource for any application that takes multiple senses 
of a word into account. Both lexical databases are available via the NLTK interface, 
which allows you to access synsets – groups of related words that can be used 
interchangeably. A sentiment analyzer based on SentiWordNet shows a 4% 
improvement in the results – up to 69% accuracy on the task. 

• The spaCy NLP toolkit and its functionality can be combined with further linguistic 
resources available through NLTK, with SentiWordNet being one of such useful 
resources. 

• The second challenge – the dynamic nature of word sentiment that may change 
depending on the context – can be addressed by learning the sentiment from reviews 
in a data-driven way through the application of machine learning. 

• When building a machine learning-based sentiment analyzer, sklearn machine 
learning toolkit proves to be useful. In particular, it allows you to combine multiple 
tools into a single pipeline. 

• A fair evaluation of your classifier’s performance on the full dataset can be obtained 
using k-fold cross-validation technique. 

• Sequences of words are often referred to as ngrams in NLP applications: for instance, 
bigrams refer to sequences of words or characters of length 2, trigrams are sequences 
of length 3, and so on. This helps address the next challenge and incorporate features 
based on sequences longer than one word. 
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• Finally, the negation challenge can be addressed using NLTK functionality and 
marking the phrases following negative words with a special marker. 

• A fully functional sentiment analyzer developed in this chapter achieves 86% accuracy 
on this task, which is substantially higher than the lexicon-based approach developed 
in the previous chapter. 
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Topic Analysis 

This chapter covers 

• Implementing a supervised approach to topic classification with sklearn 

• Using multi-class classification for NLP tasks 
• Discovering topics in an unsupervised way  
• Implementing an unsupervised approach – clustering with sklearn 

In this chapter, you will learn how to automatically detect topics in text, either selecting from 
the set of known topics or discovering new, previously unseen ones. This is a challenging and 
a practically useful task, that can be approached from different perspectives using a variety 
of methods. This chapter will introduce new techniques, some of which are closely related to 
the ones that you’ve been using before. Let’s put this task in a broader context before diving 
deep into the implementation issues. 

Previous chapters presented a number of NLP applications that required you to build a 
machine learning model that can classify text. Let’s summarize them here: 

• In chapter 2, you looked into how to build your own spam filter that can classify 
incoming email into spam or ham. 

• In chapters 5 and 6, you developed an author identification tool that can detect 
whether a text is written by one of the known authors (for example, Jane Austen or 
William Shakespeare, or one of your contacts should you wish to apply this tool to 
your own data). 

• In chapters 7 and 8, you learned how to build a sentiment analyzer that can classify a 
text, e.g., a review, as the one expressing a positive or a negative opinion. 

All these applications, despite their obvious differences (e.g., detecting that an email is 
spam or ham is not the same as identifying who it was written by or whether it contains a 
positive or a negative message), bear a great deal of similarities. These similarities are 
related to the framework that you use to solve the task – in all these cases, you: 
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• rely on some data labeled with the classes of interest and build a machine learning 
classifier using the classes from the annotated data – recall that this is called 
supervised machine learning; 

• aim to distinguish between precisely two types of input (two discrete non-overlapping 
classes) – recall that this is called binary classification. 

We said before that as soon as you can define separate classes in your data and have 
data labeled with such classes, you can apply supervised binary classification algorithms. The 
differences in each particular case will concern the type of features that you would select and 
the algorithm that you would apply. Figure 9.1 presents the now familiar machine learning 
pipeline for binary classification tasks and highlights the steps that are task-specific: 

 
Figure 9.1 Overview of the supervised machine learning pipeline. The selection of relevant data, feature types, 
and the algorithm depend on the task, as this diagram highlights.  

This powerful approach is applied across the board to a wide range of text classification 
tasks, of which sentiment analysis, spam detection, and authorship identification are 
examples familiar to you by now. In this chapter, you will work with one more application of 
this powerful framework – topic classification. Let’s start with a scenario: suppose you work 
as a content manager for a large news platform. Your platform hosts texts from a wide 
variety of authors and mainly specializes in the following set of well-established topics: 
“Politics”, “Finance”, “Science”, “Sports”, and “Arts”. Your task is to decide, for every 
incoming article, which topic it belongs to and post it under the relevant tab on the platform. 
Here are some questions for you to consider: 

1. Can you use your knowledge of NLP and machine learning algorithms to help you 
automate this process? 
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2. What if you suspect that a new set of yet uncovered topics, besides the 5 above-
mentioned ones, started emerging among the texts that authors send you (for 
instance, you get some articles on the technological advances)? How can you discover 
such new topics and include them in your analysis? 

3. What if you think that some articles lend themselves to multiple topics, which are 
covered by these articles to a various extent? For instance, some articles may talk 
about a sports event that is of a certain political importance (e.g., Olympic Games) or 
about a new technological invention that results in the tech company having high 
valuation. 

This scenario relates to the task that we can broadly define as topic analysis. Question 
(1) provides you with a hint – it suggests that you already have all the necessary skills and 
knowledge to use NLP and machine learning algorithms to classify texts into topics. Indeed, 
this task is nothing else but an extension of the old familiar scenarios where you classified 
texts into spam vs ham, or positive vs negative, only this time you will need to extend this 
framework to more than 2 classes. If you worked as a content manager for this platform 
before, one can assume that you assigned some articles to each of the categories (topics) in 
the past. This means that you can easily collect labeled data – just scrape some articles from 
each of the categories on your platform. Once your labeled data is ready, you can apply a 
supervised machine learning algorithm to classify any new article into one of the familiar 
topics. Since by now you have a vast experience of working on binary classification 
applications to various tasks, this is just a small extension step for multiple classes. We will 
look into this step first, and we’ll call this variety of the task topic classification.  

Questions (2) and (3) related to this scenario, however, are more challenging. Imagine 
that the content on your platform doesn’t stay the same all the time – new topics may 
emerge in the data. Unfortunately, if you wanted to train a classification model to cover 
these topics in a supervised manner, you will need labeled articles for these new topics as 
well. Data availability is the major bottleneck for supervised machine learning. Therefore, in 
this and the next chapters you will learn about alternative ways of topic discovery and will 
apply two unsupervised machine learning algorithms – clustering, which will be covered in 
this chapter, and topic modelling with Latent Dirichlet Allocation, which will be the topic of 
the next chapter. The diagram in Figure 9.2 summarizes the set of approaches that you will 
apply to the task of topic analysis. 
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Figure 9.2 Topic Analysis using three different approaches. Depending on whether you have labeled data or 
not, you can apply a supervised or an unsupervised approach, e.g., using clustering (this chapter). If you want 
to discover new topics and learn about text’s topic composition, apply Topic Modelling (next chapter). 

Topic analysis and, in particular, the set of unsupervised approaches to topic discovery 
provide you with powerful functionality: you can apply these algorithms to any scenario in 
which you would like to organize a large collection of documents without spending too much 
time reading them in detail, be that scientific articles, legal documents, financial documents, 
patent applications, or emails.  

9.1 Topic classification as a supervised machine learning task 
First, let’s approach topic classification using supervised machine learning (ML). By now, you 
have a lot of experience with supervised ML tasks, only this time you will deal with a problem 
that has more than two classes. This may sound challenging, however in the course of this 
section you will see that this is but a small extension step. As is usual with supervised ML 
tasks, there are several key components to think about: data labeled with the classes of 
interest, algorithm to apply to this multi-class classification task, and evaluation strategy that 
will help you check that your approach works well. The Mental Model in Figure 9.3 
summarizes these steps. You might recall using this Mental Model in the previous chapters – 
this is simply how the supervised machine learning pipeline looks like: 
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Figure 9.3 Mental Model for the supervised machine learning pipeline 

Now let’s look into each of these steps in turn. 

9.1.1 Data 
The previous chapter introduced a powerful machine learning toolkit, sklearn, that allows 
you to quickly implement machine learning applications and use a wide range of out-of-the-
box techniques. In this section, you will learn about another useful functionality of this toolkit 
– availability of a number of datasets for your use. 

We’ve discussed before that for supervised ML scenarios high quality data that are 
labeled with the classes of interest are of utmost importance. If you are building your own 
application (say, you want to classify your own incoming emails into spam and ham, or you 
want to analyze your company’s customers reviews) you will have to perform your own data 
collection and annotation. However, if your main goal is to gain more practice with the use of 
machine learning and NLP techniques, availability of datasets that are already collected and 
labeled for you is an important asset. In this chapter we are going to use the famous 20 
Newsgroups dataset, that is well-suited for the topic classification task and is easily 
accessible via sklearn.1 

The 20 Newsgroups dataset is a collection of around 18,000 newsgroups posts on 20 
topics.2 This dataset has been widely used in the NLP community for various tasks around 
text classification and, in particular, for topic classification. For the ease of comparison, the 
dataset is already split into training and test subsets. Table 9.1 summarizes the number of 
posts in each topic and each subset: 
  

 
1 Check sklearn’s datasets webpage for more information on the various available data: https://scikit-

learn.org/stable/datasets/real_world.html#the-20-newsgroups-text-dataset  
2 You can read about this dataset here: http://qwone.com/~jason/20Newsgroups/  
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Table 9.1 Full description of the 20 Newsgroups dataset 

Topic Training 
size 

Test 
size 

Topic Training 
size 

Test 
size 

alt.atheism 480 319 rec.sport.hockey 600 399 

comp.graphics 584 389 sci.crypt 595 396 

comp.os.ms-windows.misc 591 394 sci.electronics 591 393 

comp.sys.ibm.pc.hardware 590 392 sci.med 594 396 

comp.sys.mac.hardware 578 385 sci.space 593 394 

comp.windows.x 593 395 soc.religion.christian 599 398 

misc.forsale 585 390 talk.politics.guns 546 364 

rec.autos 594 396 talk.politics.mideast 564 376 

rec.motorcycles 598 398 talk.politics.misc 465 310 

rec.sport.baseball 597 397 talk.religion.misc 377 251 

As you can see, not all newsgroups have a comparable amount of training and test data. 
Some, like talk.religion.misc and talk.politics.misc, are relatively small. Besides, as 
you will see later when it comes to visualization of results and evaluation, it might be hard to 
grasp the results for as many as 20 categories. To this end, let’s select a subset of topics and 
apply classification to this subset. Luckily, sklearn allows you to easily change the set of 
categories or even include the whole lot of them, so feel free to experiment with your own 
selection. 

Code Listing 9.1 shows how to initialize the training and test datasets. You start by 
importing libraries and functions that you will use in this module: specifically, 
fetch_20newsgroups will help you access the dataset via sklearn.3 Next, you define a 
function load_dataset that will initialize a subset of the data as the ‘train’ or ‘test’ chunk of 
the 20 Newsgroups dataset and will also allow you to select particular categories listed in 
cats. You need to shuffle the dataset and remove all extraneous information such as footers, 
headers, and quotes. The code allows you to specify a list of categories of interest: the list of 
10 topics here is used as an example – feel free to select your own ones. Finally, you 
initialize newsgroups_train and newsgroups_test subsets. If you use ‘all’ instead of ‘train’ 
or ‘test’, you will get access to the full 20 Newsgroups dataset, and None instead of 
categories will help you access all topics. 
  

 
3 See more information on this functionality here: https://scikit-

learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html#sklearn.datasets.fetch_20newsgroups 
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Listing 9.1 Code to initialize the newsgroups training and test subsets 

from sklearn.datasets import fetch_20newsgroups    #A 
import numpy as np     
 
def load_dataset(a_set, cats):    #B 
    dataset = fetch_20newsgroups(subset=a_set, categories=cats, 
                                remove=('headers', 'footers', 'quotes'), 
                                shuffle=True) 
    return dataset 
 
categories = ["comp.windows.x", "misc.forsale", "rec.autos", "rec.motorcycles", 

"rec.sport.baseball"] 
categories += ["rec.sport.hockey", "sci.crypt", "sci.med", "sci.space", 

"talk.politics.mideast"]    #C 
 
newsgroups_train = load_dataset('train', categories) 
newsgroups_test = load_dataset('test', categories)    #D 

#A Import libraries and functions that you will use in this module   
#B Function load_dataset will access ‘train’ and ‘test’ subsets for particular categories cats 
#C Define a list of categories of interest 
#D Initialize newsgroups_train and newsgroups_test subsets 

The code above accesses posts from the predefined set of topics only. This can be changed 
to your own list of topics or, if you want to access all 20 of them, it can be changed to the 
full list – just use None as the second argument to the function load_dataset. The list of 
topics that we are going to use in this example is mainly selected based on two factors: 
diversity of topics and availability of a comparatively large and balanced set of posts across 
the training and test subsets. Table 9.2 summarizes the data you’ll be working with in this 
chapter. 

Table 9.2 Description of the data from the 20 Newsgroups dataset used in this chapter 

Topic Training 
size 

Test 
size 

Topic Training 
size 

Test 
size 

comp.windows.x 593 395 rec.sport.hockey 600 399 

misc.forsale 585 390 sci.crypt 595 396 

rec.autos 594 396 sci.med 594 396 

rec.motorcycles 598 398 sci.space 593 394 

rec.sport.baseball 597 397 talk.politics.mideast 564 376 

In total, you should get a subset of 5,913 training posts and 3,937 test posts. Code Listing 
9.2 shows how to check what data got uploaded and how many posts are included in each 
subset. In this code, you first check what categories are uploaded using target_names field – 
this list should coincide with the one that you defined in categories earlier. Then, you check 
the number of posts (filenames field) and the number of labels assigned to them (target 
field) and confirm that the two numbers are the same. The filenames field stores file 
locations for the posts on your computer: for example, you can access the very first one via 
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filenames[0]. The data field stores file contents for the posts in the dataset: for example, 
you can access the very first one via data[0]. As a final sanity check, you can also print out 
category labels for the first 10 posts from the dataset using target[:10]. 

Listing 9.2 Code to run some general checks on the uploaded data 

def check_data(dataset): 
    print(list(dataset.target_names))    #A 
    print(dataset.filenames.shape) 
    print(dataset.target.shape)    #B 
    if dataset.filenames.shape[0]==dataset.target.shape[0]: 
        print("Equal sizes for data and targets")    #C 
    print(dataset.filenames[0])    #D 
    print(dataset.data[0])    #E 
    print(dataset.target[:10])    #F 
 
check_data(newsgroups_train) 
print("\n***\n") 
check_data(newsgroups_test)    #G 

#A Let’s check what categories are uploaded using target_names field 
#B Let’s check the number of posts (filenames) and the number of labels assigned to them (target) 
#C Let’s confirm that the two numbers above are the same 
#D The filenames field stores file locations for the posts on your computer 
#E The data field stores file contents for the posts in the dataset 
#F Let’s print out category labels for the first 10 posts from the dataset using target[:10] 
#G Apply this function to newsgroups_train and newsgroups_test 

The code above produces the following output: 

['comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 
'rec.sport.hockey', 'sci.crypt', 'sci.med', 'sci.space', 'talk.politics.mideast'] 

(5913,) 
(5913,) 
Equal sizes for data and targets 
/[Your_home_directory]/scikit_learn_data/20news_home/20news-bydate-

train/rec.sport.baseball/102665 
I have posted the logos of the NL East teams to alt.binaries.pictures.misc  
 […] 
 
[4 3 9 7 4 3 0 5 7 8] 
 
*** 
 
['comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 

'rec.sport.hockey', 'sci.crypt', 'sci.med', 'sci.space', 'talk.politics.mideast'] 
(3937,) 
(3937,) 
Equal sizes for data and targets 
/[Your home directory]/scikit_learn_data/20news_home/20news-bydate-test/misc.forsale/76785 
As the title says. I would like to sell my Star LV2010 9 pin printer. 
[…] 
 
[1 7 2 5 3 5 7 3 0 2] 
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The first half of this printed output is related to the training data, and the second one to 
the test data. To help you understand this output better, Figure 9.4 fist visualizes how the 
data is stored and how it can be accessed, and the description following it provides you with 
more detail. 

 
Figure 9.4 Data representation in the sklearn’s 20 Newsgroups dataset. The dataset is stored as a 
dataset object, with various methods available to access different types of information: e.g., 
target_names returns the topic labels, while target presents them in a numerical format; filenames 
tells you where on your computer the files are stored, while data shows the content of the posts. This way, 
you can extract any information you need from the dataset object. 

In the very first line of the output, you see that the categories have been loaded 
correctly. The number of posts in the training data is equal to 5913, and in the test data to 
3937, as expected. Since dataset.filenames returns a list and dataset.target an array, 
when you check their shape you see e.g. (5913, ). This notation means that the particular 
data structure has a single dimension to the length of 5913 (e.g., it is a list or an array of 
5913 elements).4  

 Note that sklearn allows you to not only access the dataset, it also represents it as an 
object with relevant attributes that can be directly accessed via dataset.attribute, for 
example: 

• target_names returns the list of the names for the target classes (categories); 
• filenames is the list of paths where the files are stored on your computer; 
• target returns an array with the target labels (note that the category names are cast 

to the numerical format); 
• data returns the list of the contents of the posts.5 

The list of targets represents categories numerically. This is because machine learning 
classifiers implemented in sklearn prefer to work with numerical format for the labels. 
Numbers are assigned to categories in alphabetical order: for instance, 'comp.windows.x' 
corresponds to the numerical label 0, 'misc.forsale' to 1, and so on. An output like [4 3 9 
7 4 3 0 5 7 8] tells you that the posts on different topics are shuffled: the first one is on 

 
4 As a side note, if shape output is of the form (m, n), it means that you are working with a 2-dimensional data structure, e.g., a matrix of m rows and n 

columns. 
5 See https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html#sklearn.datasets.fetch_20newsgroups 
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rec.sport.baseball, the second one is on rec.motorcycles, and so on (you can check the order 
of the categories in Table 9.2). 

9.1.2 Topic classification with Naïve Bayes 
Now that the data is uploaded, let’s turn to machine learning techniques with sklearn, train 
a classifier on the training data, and try to predict the topic labels on the test data. As 
before, the next step in an ML project is to select features to be used with your classifier.  

Exercise 9.1 
Feature selection is an important step in a machine learning project. By selecting the features, you are pointing the 
algorithm at the important pieces of information that will help it learn from the data. 

 
a. What types of features have you used before?  
b. What types of features should you use in the topic classification task? 
 

These considerations should help you decide upon the type of features – you should start 
by using words. The next point to consider is word selection – are all words equally helpful in 
topic classification? For instance, you’ve seen before that stopwords are useful in the writing 
style (or authorship) detection, as people use them differently and in different proportions, 
but given that all Newsgroups texts are posts of a relatively similar style, it is safe to assume 
that stopwords are not helpful and can be removed. 

Finally, how should features be represented? For instance, should you assume that all 
words are equally important and therefore should just be simply counted? Topic classification 
task on the basis of word occurrences boils down to recognizing which topic a text may 
belong to based on which words are used in this text. Try solving the word puzzles in 
Exercise 9.2 to see how an ML classifier may detect a topic: 

Exercise 9.2 
Can you guess the topic of the texts by the following lists of words occurring in them? 

 
a. [car, engine, speed, …]  
b. [lunar, shuttle, launch, …] 
 

So far so good, however note that, compared to the previous applications, we’ve made 
the detection task more complex. We are considering 10 topics and a vast range of words 
(all but stopwords) occurring in newsgroups posts. Many of these words will occur not in a 
single topic but rather across lots of posts on various topics. Consider a word “post” as one 
example of such frequent and widely spread word: it might mean a new post that someone 
has got and, as such, might be more relevant to the texts in the talk.politics.mideast topic; 
at the same time, you will also see it frequently used in contexts like “I have posted the 
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logos of the NL East teams to …”. That is, despite the word “post” not being a stopword, it is 
quite similar to stopwords in nature – it might be used frequently across many texts on 
multiple topics, and thus lose its value for the task. How can you make sure that words that 
occur frequently in the data are given less weight than more meaningful words that occur 
frequently in a restricted set of texts (e.g., restricted by a topic)? 

Figure 9.5 visualizes this idea, representing stopwords (e.g., this or of) in grey, and 
highlighting the words that are specific to a particular topic (e.g., car for rec.autos or launch 
for sci.space) in red and those that are distributed widely across all topics (e.g., post or 
attend) in blue: 

 
Figure 9.5 Examples of two posts, with stopwords in grey, words that are distributed widely across multiple 
topics in blue, and words that are most indicative of a specific topic – in red 

In fact, you have already come across a technique that allows you to downweigh terms 
that occur frequently across many documents and upvalue terms that occur frequently only 
in some documents but not across the whole collection. This technique is called TF-IDF for 
Term Frequency – Inverse Document Frequency, and it was discussed in detail in chapter 3. 
Here is a reminder:  

• You would like to ensure that each word’s contribution is not affected by the 
document length – for instance, a post with 100 words may use a word “car” 2 times, 
while another post of 200 words may use “car” 4 times. It might seem as if the post 
with 4 occurrences of “car” is more focused on cars, but once you take into account 
the overall length of text, you notice that the actual contribution of “car” in both cases 
is tf(“car”)=4/200=2/100=0.02. This is what term frequency allows you to deduce. 

• You would also like to ensure that word contribution is measured against its 
specificity. As the example above shows, if you see a word “post” in virtually every 
text, its contribution should be lower than a contribution of some more topical words 
like “car”. This is what inverse document frequency allows you to take into account: if 
a word “post” is used in 80 posts out of 100, and “car” in 25 posts out of 100, then 
idf(“post”)=100/80=1.25 < idf(“car”)=100/25=4, i.e. “car” has much more weight by 
way of being less widely spread across the collection of texts. 

• Finally, putting the two bits together, TF-IDF=tf*idf gives higher weights to words 
that are used frequently within some documents but not across a wide variety of 
documents. This technique, therefore, is very useful for our task at hand.  
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Application of TF-IDF technique to raw word counts is quite straightforward in sklearn. 
You’ve already used some vectorizers – functions that are capable of counting word 
occurrences in texts and then presenting each text as a vector of such word counts: for 
instance, CountVectorizer6 that you used in chapter 8 did exactly that. Here you are going 
to learn how to use another type of vectorizer – TfidfVectorizer7 that, as its name 
suggests, performs word counting and TF-IDF weighing in one go. Code Listing 9.3 shows 
how to use it. First, you initialize the vectorizer to apply to all words but stopwords. The 
vectorizer estimates word counts and learns the tf-idf weights on the training data (thus 
method .fit_transform is applied to the train_set) and then applies the weights to the 
words in the test data (this is done using method .transform applied to the test_set). 
Using the vectorizer, you convert training and test texts into vectors and store the resulting 
vectors as  vectors_train and vectors_test. In the end, you can run some checks on the 
vectors: e.g., check the dimensionality of the vector structures using .shape, see how the 
first training text is represented, and check which word corresponds to a particular id (for 
instance, 33404 in this code). 

Listing 9.3 Code to apply TfidfVectorizer and convert texts into vectors 

from sklearn.feature_extraction.text import TfidfVectorizer    #A 
 
vectorizer = TfidfVectorizer(stop_words = 'english')    #B 
 
def text2vec(vectorizer, train_set, test_set): 
    vectors_train = vectorizer.fit_transform(train_set.data) 
    vectors_test = vectorizer.transform(test_set.data)    #C 
    return vectors_train, vectors_test 
 
vectors_train, vectors_test = text2vec(vectorizer, newsgroups_train, newsgroups_test)    #D 
 
print(vectors_train.shape) 
print(vectors_test.shape) 
print(vectors_train[0]) 
print(vectorizer.get_feature_names()[33404])    #E 

#A Import TfidfVectorizer  
#B Initialize the vectorizer to apply to all words but stopwords 
#C The vectorizer estimates tf-idf weights on the training data and then applies them to the test data  
#D Convert training and test texts into vectors and store the results 
#E Run some checks on the vectors 

The code above returns the following output ([…] shows that there are more words included 
in the first text, but we omit them here for space reasons): 
  

 
6 See more information on the CountVectorizer here: https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html 
7 Here is the documentation on the TfidfVectorizer: https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html 

331

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html


©Manning Publications Co.  To comment go to  liveBook 

(5913, 52746) 
(3937, 52746) 
  (0, 15218) 0.31618146678372416 
  (0, 50534) 0.20153071455804605 
  (0, 50435) 0.1817612919269656 
  […] 
nl 

The first two lines tell you that vectors_train is a matrix of 5,913 rows and 52,746 
columns, while vectors_test is a matrix of 3,937 rows and 52,746 columns: you can 
imagine two large tables here, with each of the rows representing a text (remember, there 
are 5,913 training posts and 3,937 test posts) and each column representing a word. It is no 
coincidence that both matrices contain the same number of columns: the TfidfTransformer 
identified 52,746 non-stopwords in the training data, and it is this set of words that are used 
to classify texts into topics here. The method fit_transform then calculates tf-idf scores 
based on the training texts (with the fit part of the method) and transforms the raw counts 
in the training data to these scores. Finally, it applies the same transformations to the 
occurrences of the same 52,746 words in the test data (with the transform method). It is 
important that the tf-idf scores are learned on the training set only: this is why we only use 
transform method on the test data and do not apply fit_transform as this will rewrite our 
tf-idf scores based on the test data and we will end up with two separate sets of tf-idf scores 
– one fit to the training data and another to the test data. Remember that in a real-life 
application you would only have access to the training data and your test set might come, for 
example, from the future posts on your news platform. 

A glimpse into the first text from the training set shows a list of references and scores: 
for example (0, 15218) with a rounded-up score of 0.32. What does this representation 
mean? (0, 15218) refers to the 1st text (thus, the index of 0) and 15218 is the index of the 
15,219th word in the total set of 52,746 words used for classification. Which word does it 
correspond to? You can always check this by applying 
vectorizer.get_feature_names()[index] as you do in the code above for the 33,405th 
word (which turns out to be lowercased “NL” used in “NL East teams” that you can see in the 
output for the Code Listing 9.2). That is, the vectorizer collects 52,746 words, orders them 
alphabetically, assigns a unique identifier to each word, and finally estimates the tf-idf score 
(for the 15,219th word it is roughly 0.32). Figure 9.6 visualizes how the first training text is 
represented in the vectors_train structure: 

 
Figure 9.6 A glimpse into the text vector for the first post in the training data. You can see what word each id 
corresponds to and how highly it is weighted by TF-IDF. 
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Now that the data is prepared and converted to the same format with the tf-idf weights 
applied to the same vocabulary of words in the training and test posts, let’s train the Naïve 
Bayes classifier as you did in the previous applications and classify the posts from the test 
set into topics. Code Listing 9.4 shows you how to do that: 

Listing 9.4 Code to perform topic classification with the Naïve Bayes classifier  

from sklearn.naive_bayes import MultinomialNB    #A 
 
clf = MultinomialNB(alpha=0.1)    #B 
clf.fit(vectors_train, newsgroups_train.target) 
predictions = clf.predict(vectors_test)    #C 

#A Import MultinomialNB  
#B Initialize the algorithm. Alpha parameter controls smoothing 
#C Train the algorithm on the training data and return the predictions on the test data 

This training and testing routine should look pretty familiar to you by now. There is only one 
new parameter, alpha, that this code specifies for the Naïve Bayes algorithm, which we 
haven’t discussed before. Let’s see what this parameter does. 

Imagine the following situation (where we will be using a very small number of word 
occurrences to make the example simple, but you can scale this example up to larger 
numbers): the set of words that you use for classification contains [“car”, “dealer”, “engine”, 
“post”, “speed”, …], among others. Imagine that you are working with a small training set, 
and the whole training set on the automotive topic contains the occurrences for the words as 
shown in Table 9.3: 

Table 9.3 An example of word counts in the automotive topic 

Word Count Probability 

car 10 10/20 = 0.50 

dealer 2 2/20 = 0.10 

engine 5 5/20 = 0.25 

post 0 0/20 = 0.00 

speed 3 3/20 = 0.15 

Total 20 1.00 

Recall that the probability that a particular word occurs in a text on a particular topic is 
estimated on the training data using the number of times a word occurs divided by the total 
number of all word occurrences in this topic. E.g., as Table 9.3 shows, if you see “car” in the 
automotive texts 10 times while the sum of all word occurrences in these texts equals 20, we 
say that with the probability 10/20=0.50, i.e., 50%, a text on the automotive topic will 
include the word “car”. At the same time, in your small training data you have never seen a 
word “post” used in a text on the automotive topic, so its probability is 0. That may be fair 
enough – perhaps, posts are never discussed in texts that talk mainly about cars. 

However, earlier we said that actually a word like “post” may well occur across various 
topics. Now imagine your test set contains a text with the following sentence: “This is a post 
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about my car”. Most words here are stopwords, but two words – “post” and “car” – are part 
of the training set vocabulary. Let’s estimate the probability that this text belongs to the 
automotive topic. For that, we take the probabilities that the words originate with this topic 
(the ones that you’ve estimated in Table 9.3) and multiply them: P(this text is about 
cars) = P(texts on cars) * P(“car” occurs in a text on cars) * P(“post” occurs 

in a text on cars). This formula follows the Naïve Bayes estimation that we discussed 
earlier in this book (e.g., in chapter 2). Recall, that the first probability is our expectation to 
see a text on the automotive topic in general: for example, if our training data contains 100 
texts, with 10 texts on each of the 10 topics, P(texts on cars) = 10/100 = 0.1, or 10%. 
Let’s multiply our probabilities now: 

P(this text is about cars) =  
P(texts on cars) * P(“car” occurs in a text on cars) * P(“post” occurs in a text on cars) = 
0.1 * 0.5 * 0.0 = 0.0 

In other words, despite the fact that this text contains a highly probable word from the 
automotive topic (“car”), it now has zero chances of being classified with the automotive 
topic because it also contains the word “post” that has zero probability of occurring in texts 
on cars simply because you’ve never seen it occurring in automotive texts in the training 
data! Here is the problem with this data-driven approach to the probability estimation: if you 
haven’t seen a word (e.g., “post”) in texts on a specific topic (e.g., texts on cars) in the 
training data, you might assume it is impossible to ever see this word in texts on this topic; 
however, it is actually much more likely that you haven’t seen this word simply because you 
have too small or not diverse enough training data. In practice, it is very hard to make sure 
that you’ve seen all the possible texts on a specific topic (or all possible events in any 
supervised ML task) – however large and diverse your training set is, there is always a 
chance that you haven’t (yet) seen some examples. What can you do to fix this? Figure 9.7 
proposes a solution, which is then elaborated in more detail. 

 
Figure 9.7 To avoid zero probabilities for some words, which is often caused by not having diverse or large 
enough training data, we can “pretend” that we have seen each word a bit more frequently than we did, for 
example adjusting all word counts by 1  

A technique that is often used in practice is called smoothing and it helps making sure 
that you don’t end up with zero probability estimates as above because of the data effects. 
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The most straightforward approach is called additive or Laplace smoothing,8 and here is how 
it works: instead of working with the actual counts, some of which might be 0s, let’s pretend 
that we’ve seen every word a bit more frequently than we actually did. That is, if you’ve 
never encountered the word “post” in the texts on cars, you should “pretend” that you’ve 
seen it, for instance, once. Such an adjustment is called add-one smoothing, and it is a type 
of Laplace smoothing. Figure 9.7 visualizes this process: note that the table on the left 
contains actual word counts from the data and has 0 for “post” (in fact, it is a copy of Table 
9.3), while the table on the right contains adjusted word count and, thus, 1 for “post”. 
However, it would be unfair to only increment the counts for previously unseen words: the 
new count for “post” will now be 1, but what about the words that you’ve actually seen once 
in the data? To make it a fair play for all words, you need to increment the counts for each 
word in a similar way: all words that you’ve seen once will get a new count of 2, twice – 3, 
and so on. Let’s update the counts from Table 9.3 with this add-one technique. Note that the 
table on the left in Figure 9.7 corresponds to Table 9.3 and the table on the right in Figure 
9.7 corresponds to Table 9.4. 

Table 9.4 Word counts and probabilities updated with add-one smoothing 

Word Count Probability 

car 11 11/25 = 0.44 

dealer 3 3/25 = 0.12 

engine 6 6/25 = 0.24 

post 1 1/25 = 0.04 

speed 4 4/25 = 0.16 

Total 25 1.00 

Two observations are due: first of all, note that all probability values from Table 9.3 sum up 
to 1 (0.50 + 0.10 + 0.25 + 0.00 + 0.15 = 1.00) and so do the probability values in Table 9.4 
(0.44 + 0.12 + 0.24 + 0.04 + 0.16 = 1.00). This is important because it still allows you to 
say things like “If a text is on the automotive topic, the most probable word you will see is 
car”, and it also allows you to reason about the word occurrence with a proper probability 
distribution. Note that you achieve this by adjusting the total number of all word occurrences 
from 20 (actual counts) to 25 (counts that take all add-ones into account). The second 
observation is that, even though the adjusted probabilities are different from the original 
ones, the total order doesn’t change: P(car)>P(engine)>P(speed)>P(dealer)>P(post) in both 
cases. It might seem like the changes to some probabilities (e.g., for the most frequent word 
car – -0.06 from 0.50 to 0.44, and the unseen one post – +0.04 from 0.00 to 0.04) are more 
radical than to others (e.g., for the words in the middle range like speed – +0.01 from 0.15 
to 0.16). This is because the method redistributes the probabilities between all the words, 
“borrowing” the probability mass from the more frequent words and “donating” it to the less 
frequent ones, thus smoothing the probability across the whole range. In this toy example, 
we see quite radical changes of -0.06 or +0.04 because we are looking into a small word set 

 
8 https://en.wikipedia.org/wiki/Additive_smoothing 
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with very few words and small counts – in real examples the changes won’t be that radical. 
The precise amount of probability to redistribute is controlled by the parameter alpha in the 
code in Listing 9.4, and as the code shows, it can take values different from 1. 

Finally, if you now want to estimate the probability of the text that says “This is a post 
about my car” belonging to the automotive topic, you will get the following: 

P(this text is about cars) =  
P(texts on cars) * P(“car” occurs in a text on cars) * P(“post” occurs in a text on cars) = 
0.1 * 0.44 * 0.04 = 0.00176 

This is what the alpha parameter allows you to do without explicitly adding anything to 
the counts yourself. Note that unlike in our toy example, in the actual task you are working 
with as many as 52,746 words (features), and the algorithm relies not on the raw word 
occurrences but on the tf-idf scores. Unlike in our toy example, alpha does not have to be an 
integer number and does not have to be precisely 1: for instance, it is set to 0.1 in the code. 
You might be wondering what happens if you don’t specify this parameter – in fact, sklearn 
takes care of that and assumes alpha=1.0 by default. Finally, you might be wondering what 
the best setting for alpha is then. In practice, you would experiment with various settings for 
this parameter to select the one that works best for your task, but this type of 
experimentation is outside the scope of this chapter.9 

9.1.3 Evaluation of the results 
Finally, it is time to evaluate the results obtained when you apply your model to the test set.  

Exercise 9.3 
What evaluation metrics do you know? How will you apply them to your task here? 
 

You may recall from the previous chapters that accuracy is a widely used metric that 
helps you evaluate the performance of your algorithm at a glance, however, it doesn’t tell 
you how well your algorithm performs on each class in particular. In contrast, precision, 
recall, and f-score are metrics applicable to each class and providing you with a more fine-
grained insight into the performance. Let’s apply these metrics to your algorithm’s output 
and, in addition, let’s also investigate which words are the most informative when detecting 
each topic. Code in Listing 9.5 explains how to do that. In this code, you rely on sklearn’s 
metrics functionality that allows you to quickly evaluate your output. To identify the most 
informative features in each category, you first iterate through the categories using 
enumerate(categories) – this allows you to iterate through the tuples of (category id, 
category name). Within this loop, classifier.coef_[i] returns a list of probabilities for the 
features in the i-th category, and np.argsort sorts this list in the increasing order (from the 

 
9 Technically, alpha here is called a hyperparameter – it is a setting of the algorithm that is decided upon prior to training the algorithm and building the 

ML model. That’s why if you would like to find the optimal setting for alpha depending on your task and data you would do that in a separate set of 
experiments prior to training Naïve Bayes. 
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smallest to the largest) and returns the list of identifiers for the features.10 As a result, you 
can extract n most informative features using [-n:].11 You can access the word features via 
their unique identifiers using vectorizer.get_feature_names() and print out the name of 
the category and the corresponding most informative words. In the end, you print out the 
full classification_report as well as the top 10 informative features per category. 

Listing 9.5 Code to evaluate the results for this approach 

from sklearn import metrics    #A 
 
def show_top(classifier, categories, vectorizer, n): 
    feature_names = np.asarray(vectorizer.get_feature_names()) 
    for i, category in enumerate(categories):    #B 
        cat_features = classifier.coef_[i]    #C 
        top = np.argsort(cat_features)[-n:]    #D 
        print(f'{category}: {" ".join(feature_names[top])}')    #E 
         
full_report = metrics.classification_report(newsgroups_test.target,  
                                predictions, 
                                target_names=newsgroups_test.target_names) 
print(full_report) 
show_top(clf, categories, vectorizer, 10)    #F 

#A Import sklearn’s metrics functionality that will allow you to quickly evaluate your output  
#B Iterate through the categories using enumerate(categories) 
#C classifier.coef_[i] returns a list of probabilities for the features in the i-th category 
#D np.argsort sorts this list in the increasing order and returns the list of identifiers for the features 
#E Access the word features via their unique identifiers and print out the category and the most informative words 
#F Print out the full classification_report as well as the top 10 informative features per category 

This code returns the results as shown below. The first part of the output is presented as a 
table for better readability. Also note that some results are removed from the printout for 
space reasons since the performance across categories is quite similar: 

 precision recall   f1-score    support 

comp.windows.x        0.92       0.90       0.91        395 

misc.forsale        0.88       0.87       0.87        390 

rec.autos        0.83       0.78       0.80        396 

[…] 

accuracy   0.85       3937 

macro avg        0.86       0.85       0.85       3937 

weighted avg        0.86       0.85       0.85       3937 

 

  

 
10 See numpy’s documentation here: https://numpy.org/doc/stable/reference/generated/numpy.argsort.html  
11 See further code examples here: https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html  
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comp.windows.x: program using application windows widget use thanks motif server window 
misc.forsale: asking email sell price condition new shipping offer 00 sale 
rec.autos: know don new good dealer engine just like cars car 
rec.motorcycles: don helmet riding just like motorcycle ride bikes dod bike 
rec.sport.baseball: braves pitching hit think runs games game baseball team year 
rec.sport.hockey: think year nhl season games players play hockey team game 
sci.crypt: escrow people use nsa keys government clipper chip encryption key 
sci.med: cadre dsl chastity n3jxp skepticism banks pitt geb gordon msg 
sci.space: lunar just shuttle earth like moon orbit launch nasa space 
talk.politics.mideast: just said arab turkish armenians people armenian jews israeli israel 

The top of this printout should look familiar by now: each row corresponds to a different 
category, and each column reports a different metric. Precision values range between the 
minimum of 0.71 for rec.sport.hockey to 0.92 for comp.windows.x, rec.sport.baseball, and 
sci.med. Recall values are also pretty high: from 0.78 for rec.autos to 0.94 for 
rec.sport.hockey. As f1-score reports a balanced value combining both precision and recall, 
unless you have a reason to believe one of the two is more important as a metric for your 
application, it is the f1-score that you should look into. The numbers here are also quite 
good: the lowest f1-score of 0.80 is observed on rec.autos, and this is due to the somewhat 
lower recall of 0.78. Lower recall means that not all posts on rec.autos have been detected 
by your algorithm: 0.22 of the total amount of these posts were erroneously classified as 
some other topic(s). The highest f1-score is observed on comp.windows.x, and this is 
because both precision (0.92) and recall (0.90) are high – this topic seems to be the most 
easily identifiable one. Support column provides you with the absolute number of posts in 
each category. Finally, at the bottom of this bit of the printout you see the accuracy value of 
0.85, and the two types of averaged values for all other metrics. Macro average calculates 
the values summing over the scores for all categories and dividing the sum by 10 (the 
number of categories), while weighted average also takes into account the number of 
instances in each category, thus making sure that the contribution of each category to the 
average is proportionate to the category size. In this case, both sets of values are identical – 
this is because our categories are quite balanced in terms of their sizes, ranging from 376 
posts in the talk.politics.mideast category to 399 in rec.sport.hockey, i.e., the difference is 
relatively small. 

At the very bottom of this printout, you see lists of 10 most informative words from each 
category. These are the words that have the highest probabilistic weights in each category, 
so the classifier “trusts” them a lot when the decision about the category of a post is made. 
Do these word lists align with your expectations about what each topic describes? In other 
words, going back to the Exercise 9.2, if you saw a list containing words like [escrow, people, 
use, nsa, keys, government, clipper, chip, encryption, key], would you guess “cryptography” 
as the topic? 

To finish with the analysis of the results, let’s analyze classifier’s errors. Start with the 
following exercise: 
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Exercise 9.4 
We noted above that rec.autos has a comparatively low recall of 0.78 and rec.sport.hockey has a comparatively low 
precision of 0.71. Based on your experience with these metrics from the previous chapters, what do these figures 
suggest about the classifier’s performance on these topics? 
 

The code in Listing 9.6 shows how to explore the confusions that the classifier makes. In 
this code, you rely on sklearn’s plot_confusion_matrix functionality and matplotlib’s 
plotting functionality. The plot_confusion_matrix’s functionality allows you to plot the 
predictions that the classifier makes on vectors_test against the actual labels from 
newsgroups_test.target using a heatmap. Additionally, you can set some further 
parameters: for instance, represent the number of correct and incorrect predictions using 
integer values format (i.e., values_format=”0.0f”) and highlight the decisions on the 
heatmap with a particular color scheme. In this code, you use blue color scheme, with the 
darker color representing higher numbers. Finally, you print out the confusion matrix and 
visualize correct predictions and confusions with a heatmap. For reference, you can also print 
out the categories’ ids corresponding to the categories’ names. 

Listing 9.6 Code to explore the classifier’s errors and confusions 

from sklearn.metrics import plot_confusion_matrix 
import matplotlib.pyplot as plt   #A 
 
classifier = clf.fit(vectors_train, newsgroups_train.target) 
 
disp = plot_confusion_matrix(classifier, vectors_test,  
                            newsgroups_test.target,    #B 
                            values_format="0.0f",    #C 
                            cmap=plt.cm.Blues)    #D 
     
print(disp.confusion_matrix)    #E 
 
plt.show()    #F 
for i, category in enumerate(newsgroups_train.target_names): 
    print(i, category)    #G 

#A Import sklearn’s plot_confusion_matrix functionality and matplotlib’s plotting functionality 
#B Plot the predictions that the classifier makes on vectors_test against the actual labels 
#C Represent the number of correct and incorrect predictions using integer values format  
#D Highlight the decisions with a particular color scheme with darker colors for higher numbers 
#E Print out the confusion matrix 
#F Visualize correct predictions and confusions 
#G For reference, print out the categories’ ids corresponding to the categories’ names 

This code produces the following output: 
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As you can see from the confusion matrix, category 2 (rec.autos) indeed has the lowest 

number of posts (308) that are correctly assigned to this topic. In fact, some of the posts 
from this category end up being classified into all of the other topics: most notably, 25 posts 
end up in category 3 (rec.motorcycles) – which may not be very surprising giving the 
similarity of the two categories, 27 posts in category 5 (rec.sport.hockey) – which is more 
surprising, and a smaller number of posts being erroneously assigned to other categories. It 
is also clear from this confusion matrix why precision on category 5 (rec.sport.hockey) is 
relatively low: follow the numbers in the 6th column, and you will see that some texts from 
all other topics end up in this category, including 27 posts from rec.autos, 33 from 
rec.sport.baseball, 18 from sci.crypt, 17 from sci.med, 18 from sci.space, and so on.  

Despite these classification errors, note that the overall performance of this relatively 
simple algorithm is quite high: 0.85 for both the accuracy and average f1-score on a 10-class 
prediction task. Congratulations, you have successfully built a supervised machine learning 
topic classifier! This is a good starting point for an application for which you have a sufficient 
number of texts already labeled with their topics. What should you do if that’s not the case? 

9.2 Topic discovery as an unsupervised machine learning task 
It’s time now to turn to the second paradigm of machine learning approaches – unsupervised 
machine learning. This family of approaches is suitable for the situations when you don’t 
have labeled data and need to learn about the patterns from the data itself. So far, for a 
number of NLP applications we’ve looked into, we’ve been working under the assumption 
that labeled training data is easy to come by. In many real-life applications this is not the 
case, so let’s now consider what happens if you keep receiving new texts for your news 
platform, but you believe that either the set of topics is not exactly the same as it used to 
be, or maybe new topics that you don’t have the labeled data for yet keep cropping up. Why 
not try to learn about these topics from the texts themselves? 

Figure 9.8 presents the Mental Model for the application of unsupervised approaches. In 
this section, we will look into each step of this process, starting with the selection of an 
appropriate algorithm: 
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Figure 9.8 Mental Model for the application of unsupervised approaches to NLP tasks. As before, you start with 
the selection of the input data and extract informative features. High dimensionality of the input data may be 
a problem for unsupervised ML algorithms, so once the dimensionality is reduced you can apply a suitable 
algorithm. Finally, you should evaluate the results with an appropriate set of metrics. 

9.2.1 Unsupervised ML approaches 
Let’s first discuss how unsupervised approaches work in general and then see how we can 
apply them to language tasks. Imagine the following scenario: suppose you are given a fruit 
basket and are asked to build an algorithm that can automatically sort fruits in the basket by 
type, so that, for example, apples will end up in one pile, oranges in another, and so on. All 
you know about the basket contents is that it contains fruits, however, you don’t know which 
particular types of fruits there are in there this time and, after all, you’d like to build a 
general enough algorithm that can distinguish between any types of fruit based on their 
characteristics. 

This is a perfect scenario for an unsupervised ML algorithm – note, that if you want to be 
able to distinguish between any types of fruit, you essentially assume you are not working 
with any specific labeled data. How can you approach this task? 

 First, note that you want to be able to distinguish between fruits based on their 
characteristics. You might come up with the following set of characteristics: [color, size, 
weight, shape, taste], and perhaps some others. You can see that there comes some 
similarity between this approach and supervised approaches – in supervised ML, you would 
have used similar characteristics as features. The difference is that without labeled data the 
algorithm would not be able to link these characteristics to specific named objects, but it 
would still be able to use them to group similar objects and distinguish between dissimilar 
ones. Now you decided to inspect the fruits in your basket and describe them in terms of 
their characteristics. You discover that all fruits can be divided into two groups. Perhaps, the 
first thing that you notice is that one type of fruit is green, and another is red. In addition, 
you discover that one group can be described as [color=green, size=avg 2.75 in, 
weight=avg. 0.33 pounds, shape=round, taste=sweet & sour], while the other group can be 
described as [color=red, size=avg 1 in, weight=avg. 0.02 pounds, shape=round, 
taste=sweet]. Note that we are using average values here: in a collection of multiple fruits, 
individual ones may deviate from these numbers, however you see that there is a general 
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trend in the characteristics of the two types of fruit that helps you distinguish between them 
here. 

In fact, the strategy that you applied above to divide the whole lot of fruits into two types 
can be adopted by your algorithm, too. Each characteristic feature listed above needs to be 
considered in its own right, and this means that your algorithm will have to represent each 
fruit object as a collection of 5 values. You may recall here that we said before that machines 
deal best with numerical representations (that is, you will need to represent such properties 
as color with some numbers), and that if you want to combine multiple pieces of information, 
vectors and arrays are well-suited data structures. That’s it: now all you need to do is 
transform all non-numerical values into numbers (for instance, you may decide to use 1 for 
“green” and 2 for “red”;12 1 for “round”; 1 for “sweet”, 2 for “sour”, and 1.5 for “sweet & 
sour”; and so on). For instance, a particular fruit from your first group may now be 
represented as [1, 2.53, 0.35, 1, 1.5] and a fruit from the second group as [2, 0.9, 0.02, 1, 
2] (for [color, size, weight, shape, taste]). Figure 9.9 visualizes your set of fruits: as we can’t 
visualize all 5 dimensions here, let’s stick to the ones illustrating weight and size. 

 
Figure 9.9 Two types of fruit to identify with an unsupervised ML algorithm. The fruits are plotted here 
according to their weight and size (i.e., in 2 dimensions). This plot visualizes two quite clearly separable groups 
of fruits. 

 
12 Another alternative is to use RGB codes for colors. For instance, green is commonly encoded as (0, 128, 0) and red as (255, 0, 0) – see 

https://htmlcolorcodes.com for more examples. Note, that if you select this representation, you need to reserve three dimensions in your vectors – one 
for each RGB channel. 
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Great – now you can clearly see that the two types of fruit are separable and quite 
distinct. However, your algorithm can’t just “see” that, it needs to be able to learn it. How 
can it figure out that the two groups are distinct and which group each particular fruit 
belongs to? Remember that earlier you “spotted” that the two groups of fruits are clustered 
around some average values for each type of fruit, e.g. [color=green, size=avg 2.75 in, 
weight=avg. 0.33 pounds, shape=round, taste=sweet & sour]? In fact, this is exactly what 
the unsupervised algorithm will try to do in this situation: it will try to identify such 
representative object with the averaged values for the features across the group, and cluster 
other objects from the same group around this central point. Such representative object is 
technically called centroid, and this particular unsupervised approach is called clustering. 

If you know about each of the clusters in advance (e.g., it is easy to visually spot them as 
in Figure 9.9), identifying the central point, the centroid is trivial – just take the values for all 
objects from the cluster and find their average. However, identification of the clusters is 
exactly the task your clustering algorithm is supposed to solve! In other words, you need the 
centroids to help you identify the clusters, but you can’t identify the centroids before you 
know what the clusters are – this looks like a chicken-and-egg problem. Whenever you 
encounter a chicken-and-egg problem, the right approach is an iterative one that would allow 
you to make assumptions about the data and iteratively improve them based on the 
evidence. Here is the strategy to follow: 

• Step 1: Choose a centroid for each cluster randomly. That’s right – in this first step 
you don’t need to worry about whether your centroid is indeed the best representative 
point for each cluster. Over the course of the algorithm application, you will try to 
improve this prediction anyway. For the task from Figure 9.9 you will randomly select 
centroid1 and centroid2. 

• Step 2: For each object in the collection, estimate how far it is located from each of 
the centroids. Since each of the points is represented with a set of 5 numbers, you 
can interpret them directly as coordinates in a multi-dimensional space – this is what 
allows you to visualize them as in Figure 9.9. Having done that, you can estimate the 
distance between points using these coordinates and calculating Euclidean distance. 
Do that for each object and assign it to cluster1 or cluster2 based on whether the point 

in question is closer to centroid1 or centroid2. 
• Step 3: Now that you have cluster allocations, re-estimate where centroids for each 

cluster lie based on the average values from the objects assigned to the relevant 
cluster. As a result of this step, your centroids may indeed change. 

• Step 4: Re-allocate the points to clusters measuring the distances to the new 
centroids (basically, repeating step 2). As a result of this step, your clusters may 
change, too. If cluster allocation doesn’t change, you can stop the algorithm at this 
point. 

• Steps 5 to n: Repeat steps 3 and 4, re-estimating centroids based on the new cluster 
allocations and then clusters based on the new centroids either for a specific number 
of steps n or until allocation of points to clusters doesn’t change anymore. 

Figure 9.10 visualizes these steps: 
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Figure 9.10 Steps of the clustering algorithm: (A) select centroids → (B) measure distances from each point to 
each centroid (only some points are visualized here to help readability) →  (C) assign points to clusters → (D) 
re-estimate centroids. Repeat steps B-D in sequence until the point allocation does not change anymore. 

How do you actually calculate the distance between the points? We have discussed 
Euclidean distance in chapter 1: you first calculate the sum of squared differences between 
the relevant coordinates of the points, and then take the square root of this sum. Let’s 
refresh our memory about how it works by trying to solve Exercise 9.5 for two dimensions. 
Note that you can extend this calculation with as many dimensions as you have in your data: 

Exercise 9.5 
You have two centroids defined as centroid1=[0.33, 2.75] and centroid2=[0.02, 1.00]. Allocate the following two 
points to two clusters based on which centroid is closest: 

 
point1=[0.25, 2.31]  point2=[0.05, 1.18] 
 

That’s it! If you are lucky with your original guess of the centroids, your algorithm may 
find a stable solution (when no point changes its cluster allocation and eventually no centroid 
moves) quite quickly – this point in the algorithm, when the solution doesn’t change 
anymore, is called convergence. If there are some tricky cases in your data, whose allocation 
is hard to establish (perhaps, they bear similarities to both groups and therefore fall 
somewhere between the clusters), they may flip their membership from one cluster to 
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another over the iterations, thus stopping the algorithm from converging – for such unlucky 
situations, you need to specify a stopping criterion, e.g., requiring the algorithm to stop after 
several hundreds of iterations.  

Finally, remember that your algorithm is meant to be quite general: i.e., you can apply 
this approach to any fruit basket, and you don’t have to specify which types of fruits are 
contained in it. That is, your algorithm is agnostic to the particular clusters it is trying to 
identify. However, once these clusters are established by the algorithm, you can inspect the 
characteristics of the centroids and identify what types of fruits are captured by each cluster. 
For instance, even if we hadn’t visualized the fruits in Figures 9.9 and 9.10, you might still be 
able to tell that a centroid like [color=green, size=avg 2.75 in, weight=avg. 0.33 pounds, 
shape=round, taste=sweet & sour] is likely to describe an apple or a similar fruit with such 
characteristics, and [color=red, size=avg 1 in, weight=avg. 0.02 pounds, shape=round, 
taste=sweet] is likely to describe a cherry (or something similar).13 

9.2.2 Clustering for topic discovery 
Now that we’ve looked into a toy example of how clustering can be applied to a set of fruits, 
let’s go back to our Newsgroups posts and see how the same methodology can be applied to 
a language task. Try answering the questions in Exercise 9.6 before moving on: 

Exercise 9.6 
How can you apply clustering to the posts from the 20 Newsgroups dataset? What will the clusters represent? What 
are the points? What can you use as coordinates to locate each point in space?  
 

Let’s apply the unsupervised approach to our data from the 20 Newsgroups dataset. In 
the previous section, you have already defined a set of posts on the selected 10 categories to 
work with. You are going to use the same set, only this time you will approach it as if you 
don’t know what the actual topic labels are. Why is this a good idea? First of all, since you 
know what the labels in this data actually are, you can evaluate your algorithm at the end. 
Secondly, you will be able to see what the algorithm identifies in the data by itself, i.e., 
regardless of any assigned labels. After all, it is always possible that someone who posted to 
one topic actually talked more about another topic. This is exactly what you are going to find 
out. 

First, let’s prepare the data for clustering. Recall that you have already extracted the data 
from the 20 Newsgroups dataset: there are 5,913 posts in the newsgroups_train and 3,937 
in the newsgroups_test. Since clustering is an unsupervised technique, you don’t have to 
separate the data into two sets, so let’s combine them together in one set, all_news_data, 
which should then contain 5,913+3,937=9,850 posts all together. You are going to cluster 
posts based on their content (which you can extract using the dataset.data field); finally, 

 
13 This unsupervised algorithm is not only agnostic to the type of clusters it discovers but also to the number of these clusters. The number of clusters that 

you are looking for in the data is one of the assumptions that you will need to make, e.g., based on some insights, heuristics, or data exploration. For 
instance, with the number of clusters set to 3, the algorithm might discover [green apples, red apples, cherries] or [apples, large cherries, small 
cherries], depending on the data at hand. 
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let’s extract the correct labels from the data (recall from the earlier code that they are stored 
in the dataset.target field) and set them aside – you can use them later to check how the 
topics discovered in this unsupervised way correspond to the labels originally assigned to the 
posts. Code in Listing 9.7 walks you through these steps. First of all, recall that it is a good 
idea to shuffle the data randomly, so let’s import random functionality and set the seed to a 
particular value (e.g., 42) to make sure future runs of your code return same results. Next, 
the code shows how you can combine the data from newsgroups_train and 
newsgroups_test into a single list, all_news, mapping the content of each post (accessible 
via .data) to its label (.target) and using zip function. After that, you shuffle the tuples 
and store the contents and labels separately: you will use the contents of the posts in 
all_news_data for clustering and the actual labels from all_news_labels to evaluate the 
results. Finally, you should check how many posts you have (length of all_news_data 
should equal 9,850) and how many unique labels you have using np.unique (the answer 
should be 10), and take a look into the labels to make sure you have a random shuffle of 
posts on different topics. 

Listing 9.7 Code to prepare the data for clustering 

import random 
random.seed(42)    #A 
 
all_news = list(zip(newsgroups_train.data, newsgroups_train.target)) 
all_news += list(zip(newsgroups_test.data, newsgroups_test.target))    #B 
random.shuffle(all_news)    #C 
 
all_news_data = [text for (text, label) in all_news] 
all_news_labels = [label for (text, label) in all_news]    #D 
 
print("Data:") 
print(str(len(all_news_data)) + " posts in " 
     + str(np.unique(all_news_labels).shape[0]) + " categories\n")    #E 
 
print("Labels: ") 
print(all_news_labels[:10]) 
num_clusters = np.unique(all_news_labels).shape[0] 
print("Actual number of clusters: " + str(num_clusters))    #F 

#A To shuffle the data randomly, import random functionality and set the random seed 
#B Combine the data from newsgroups_train and newsgroups_test into a single list all_news 
#C Shuffle the tuples 
#D Store the contents and labels separately 
#E Check how many posts and unique labels you have 
#F Check the labels to make sure you have a random shuffle of posts on different topics 

The code above produces the following output:  

Data: 
9850 posts in 10 categories 
 
Labels:  
[2, 6, 1, 9, 0, 5, 1, 2, 9, 0] 
Assumed number of clusters: 10 
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That is, you indeed have 9,850 posts in your data, which cover 10 categories considered 
before. The printout on labels shows that the posts on different topics are randomly shuffled, 
and that the assumed number of clusters is 10. This is simply what you can assume about 
this data based on the input (or based on some other insight into the data), however note 
that from now on you will approach the task in an unsupervised manner: your algorithm will 
be working with the 9,850 posts in all_news_data, and it will not get access to the labels 
contained in all_news_labels, although you can use them at the very last, evaluation, step. 

Now the data is initialized, let’s extract the features. As before, you will use words as 
features and represent each post as an array, or vector, where each dimension will keep the 
count or tf-idf score assigned to the corresponding word: i.e., for a particular post such an 
array may look like [word0=0, word1=5, word2=0, …, word52745=3]. To begin with, this looks 
exactly like the preprocessing and feature extraction steps that you did earlier for the 
supervised approach. However, this time there are two issues that need to be addressed: 

• Remember that to assign data points to clusters you will need to calculate distances 
from each data point to each cluster’s centroid. This means calculating differences 
between the coordinates for 9,850 data points and 10 centroids in 52,746 dimensions, 
and then comparing the results to detect the closest centroid. Moreover, remember 
that clustering uses an iterative algorithm, and you will have to perform these 
calculations repeatedly for, e.g., 100 iterations. This amounts to a lot of calculations, 
which will likely make your algorithm very slow. 

• In addition, a typical post in this data is relatively short – it might contain a couple of 
hundreds of words, and assuming that not all of these words are unique (some may 
be stopwords and some may be repeated several times), the actual word observations 
for each post will fill in a very small fraction of 52,746 dimensions, filling most of 
them with zeros. That is, it would be impossible to see any post that will contain a 
substantial amount of the vocabulary in it and, realistically, every post will have a 
very small number of dimensions filled with actual occurrence numbers, while the rest 
will contain zeros. What a waste – not only will you end up with a huge data structure 
of 9,850 posts by 52,746 word dimensions that will slow your algorithm down, but 
you will also be using most of this structure for storing zeros. This will make the 
algorithm very inefficient. 

What can be done to address these problems? You’ve come across some solutions to 
these problems before, while some others will be new for you here: 

• First of all, you can ignore stopwords. 
• Next, you can take into account only the words that are contained in a certain number 

of documents: it would make sense to ignore rare words that occur in less than some 
minimal number of documents (e.g., 2) or that occur across too many documents 
(e.g., above 50% of the dataset). You can perform all word filtering steps in one go 
using TfidfVectorizer. 

• Finally, you can further compress the input data using dimensionality reduction 
techniques. One of such widely used techniques is Singular Value Decomposition 
(SVD), which tries to capture the information from the original data matrix with a 
more compact matrix. This is the technique that we will apply here. 
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First, let’s look at the code in Listing 9.8. In this code, you use TfidfVectorizer14 to 
convert text content to vectors ignoring all words that occur in less that 2 documents (with 
min_df=2) or in more than 50% of the documents (with max_df=0.5). In addition, you 
remove stopwords and apply inverse document frequency weights (use_idf=True). Within 
the transform function, you first transform the original data using a vectorizer and print 
out the dimensionality of this transformed data. Next, you reduce the number of original 
dimensions to a much smaller number using TruncatedSVD.15 TruncatedSVD is particularly 
suitable for sparse data like the one you are working with here.16 Then, you add 
TruncatedSVD to a pipeline (make_pipeline from sklearn17) together with a Normalizer,18 
which helps adjust different ranges of values to the same range, thus helping clustering 
algorithm’s efficiency. As the output of the transform function, you return both the data with 
the reduced dimensionality and the svd mapping between the original and the reduced data. 
Finally, you apply the transformations to all_news_data to compress the original data 
matrix to a smaller number of features (e.g., 300) and print out the dimensionality of the 
new data structure. 

Listing 9.8 Code to preprocess the data with TfidfVectorizer and SVD 

from sklearn.decomposition import TruncatedSVD 
from sklearn.pipeline import make_pipeline 
from sklearn.preprocessing import Normalizer    #A 
 
vectorizer = TfidfVectorizer(min_df=2, max_df=0.5,    #B 
                            stop_words='english', 
                            use_idf=True)    #C 
 
def transform(data, vectorizer, dimensions): 
    trans_data = vectorizer.fit_transform(data) 
    print("Transformed data contains: " + str(trans_data.shape[0]) + 
          " with " + str(trans_data.shape[1]) + " features =>")    #D 
 
    svd = TruncatedSVD(dimensions)    #E 
    pipe = make_pipeline(svd, Normalizer(copy=False)) 
    reduced_data = pipe.fit_transform(trans_data)    #F 
 
    return reduced_data, svd    #G 
 
reduced_data, svd = transform(all_news_data, vectorizer, 300) 
print("Reduced data contains: " + str(reduced_data.shape[0]) + 
     " with " + str(reduced_data.shape[1]) + " features")   #H 

#A Import all functionality that you are going to use for preprocessing 
#B Use TfidfVectorizer to convert text content to vectors ignoring words of certain frequency 

 
14 See the documentation on TfidfVectorizer here: https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html  
15 See the documentation on TruncatedSVD here: https://scikit-

learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html#sklearn.decomposition.TruncatedSVD  
16 For more examples on how this is applied to text data see: https://scikit-

learn.org/stable/auto_examples/text/plot_document_clustering.html#sphx-glr-auto-examples-text-plot-document-clustering-py  
17 You’ve used sklearn’s pipelines before to stack multiple operations together. Here is a reminder on how this works: https://scikit-

learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html  
18 See the documentation on Normalizer here: https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html#sklearn.preprocessing.Normalizer  
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#C In addition, remove stopwords and apply inverse document frequency weights 
#D First, transform the original data using a vectorizer and print out data dimensionality 
#E Next, reduce the number of original dimensions to a much smaller number using TruncatedSVD  
#F Apply a pipeline with a Normalizer 
#G Return both the data with the reduced dimensionality and the svd mapping  
#H Apply the transformations to all_news_data to compress the original data matrix 

Here is the output from the code above: 

Transformed data contains: 9850 with 33976 features => 
Reduced data contains: 9850 with 300 features 

Let’s now look more closely into this output and make sure all steps make sense. You’ve 
started out with a huge matrix of 9,850 rows (one per post) and over 50,000 columns (as 
you know from the supervised ML part, this is how many non-stopwords there are in the 
training data). This is a lot, and it will make calculations for the clustering algorithm 
extremely slow. Therefore, you’ve applied two steps in which you successfully reduced the 
number of columns, as Figure 9.11 shows (note that to make the illustration readable the 
dimensions are not visualized according to their actual proportions): 

 
Figure 9.11 Original data dimensionality is reduced using TfidfVectorizer and TruncatedSVD. Greyed 
areas highlight the bits that are subsequently not considered by the algorithm. First, TfidfVectorizer only 
takes into account words that occur more frequently than the minimum frequency threshold and less 
frequently than the maximum frequency threshold. Next, TruncatedSVD identifies the most informative 
dimensions in the data by compressing the input dimensions to a much more compact representation. 

First, you remove all very rare and very frequent words, reducing the number of columns 
to 33,976 as Figure 9.11 shows. Next, the number of considered word columns is severely 
reduced – from 33,976 to only 300 dimensions, essentially keeping less than 1% of the 
original dimensions. Let’s look into what is going on under the hood and why such reduction 
is a justified thing to do to the data. 

The goal of the SVD algorithm is to significantly reduce data dimensionality to help 
expensive algorithms like clustering deal with it more efficiently, while keeping as much of 
the valuable information in the reduced data as possible. That is, when SVD reduces the data 
from over 30,000 columns to 300 (thus keeping essentially about 1%), it doesn’t just throw 
away the other 99% of the data. Instead, it tries to “distil” and “summarize” the information 
contained in the original huge matrix down to a much smaller number of dimensions. How 
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does it achieve that? It relies on the matrix operations from linear algebra.19 Don’t worry, 
you don’t need to have deep understanding of the linear algebra operations to use this 
method, instead let’s get the general overview. 

In general, SVD tries to simplify a big matrix representation by decomposing it into 3 
smaller ones in such a way that when you multiply these 3 smaller matrices you get back the 
original one. You can think of this as somewhat similar to “decomposing” a number like 24 
into 4, 3, and 2, as when you multiply these numbers you get the original number back: i.e., 
4*3*2 = 24. Something similar happens to the big matrix when it gets represented as a 
product of 3 smaller ones. Figure 9.12 illustrates this idea: 

 
Figure 9.12 A high-level overview of the Truncated Singular Value Decomposition. The original matrix of m 
rows (texts) and n columns (word features) gets decomposed into 3 simpler matrices: the first one encodes m 
texts in terms of a smaller number of k features (concepts, or latent factors), the second one describes the 
relations of these k concepts to each other, and the third one encodes the relations between the k concepts 
and the original n word features. 

You start with a matrix of 9,850 rows (representing posts) and 33,976 columns 
(representing words occurring in these posts, that you would like to use as features) – that is 
what the original matrix on the left contains in its m-by-n dimensions (in this case, 9,850-by-
33,976). Although you suppose all of these words are useful as at this point you’ve already 
filtered out stopwords, very rare and very frequent words, this is still too many dimensions 
to consider, and you might suspect there are ways to extract more useful information from 
these words and their counts. For instance, consider a set of words like [“car”, “cars”, 
“automobile”, “automotive”] and so on – these are different words, each with its own 
dimension (represented with separate columns in the original matrix) and their own counts, 
yet you might say they are expressing the same concept and, perhaps, there is no point in 
allocating each of these words separate dimensions. If you had a way to merge the 
dimensions for all such concept-related words, and instead of working with [word0, word1, 
word2, …, word33975], worked with [concept0, concept1, concept2, …, concept299] this would 
have simplified your task quite a lot, while keeping all the useful information. This is exactly 
what SVD is trying to achieve: the matrix of m rows by k columns from Figure 9.12 (where 
the notation k<<n means that k is considerably smaller than the original n, as for instance 
300<<33,976) represents the original m (9,850) posts using k (300) concepts, which are 

 
19 For example, you can read more on Singular Value Decomposition here: https://en.wikipedia.org/wiki/Singular_value_decomposition 
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also often called latent factors – in other words, factors that are hidden from the naked eye. 
Let’s visualize this as Figure 9.13 does: 

 
Figure 9.13 Application of the Truncated SVD algorithm to our data. The original matrix describes the 
distribution of the original 33,976 words in 9,850 posts. Truncated SVD helps you “distil” these word features 
down to 300 most important latent factors. The smaller matrices are more efficient to work with, yet they 
capture the most important content from the original matrix, and you can always get the original matrix back 
if you multiply the three component matrices. 

The second matrix, k-by-k (300-by-300), encodes how such latent factors correspond to 
each other; finally, the third one, k-by-n (300-by-33,976), tells you how to interpret the 
relations between the latent factors (or concepts) and the original n words. The beauty of the 
algorithm is that you can always get back the original m-by-n matrix by multiplying the 3 
smaller matrices, and you don’t need to estimate these constituent matrices yourself – the 
algorithm does it for you. 

What are these k latent factors then and how to select them? These factors are the most 
prominent (i.e., salient) concepts that the algorithm finds in the data, ordered by their 
importance starting with the most prominent one. That is, if you select the first k=100 
factors you will end up with the most important 100 ones, while k=300 will add another 200 
concepts decreasingly less salient than the first 100 ones. You can continue like that as long 
as k<n: it is important that the selected number of factors is smaller than the original 
number of dimensions. There is no ready-made recipe though as to how many of such latent 
factors to consider – this is one of the hyperparameters of the algorithm that you can 
experiment with. Unfortunately, dimensionality reduction is also one of those useful 
algorithms that we have to treat as a “black box”: while we can interpret the original 33,976 
dimensions and match them to the specific words, all we can say about the reduced space is 
that dimension0 corresponds to the most salient concept in the data, dimension1 to the 
second most salient one, and so on, but these concepts are no longer represented with 
specific words. Above, we tried to impose some interpretation on the factors: for instance, 
we may assume that one of the factors would encode all car-related things. This is a totally 
reasonable interpretation, however, note that the way the algorithm comes up with its 
“concepts” is based on the word occurrence numbers in the matrix and what gets combined 
in the same “concept” is primarily based on the distribution. Despite this lack of 

351

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

interpretability, SVD is a very useful and powerful algorithm, which is why we are using it 
here. 

Now that the data is ready, let’s apply clustering algorithm. Code Listing 9.9 shows how 
to do that. Specifically, in this code you use KMeans clustering algorithm from sklearn.20 You 
apply the algorithm with n_clusters defining the number of clusters to form and centroids 
to estimate (e.g., you can use 10 here), while k-means++ defines an efficient way to initialize 
the centroids. Parameter max_iter defines the number of times you iterate through the 
dataset, and random_state set to a particular value ensures that you get same results every 
time you run the algorithm. Finally, you run the algorithm on the reduced_data with the 
number of clusters equal to 10 (recall that this is the value stored in num_clusters, and it’s 
based on the number of categories in the input data). 

Listing 9.9 Code to run the KMeans clustering algorithm 

from sklearn.cluster import KMeans    #A 
 
def cluster(data, num_clusters): 
    km = KMeans(n_clusters=num_clusters, init='k-means++',    #B 
                max_iter=100, random_state=0)    #C 
    km.fit(data) 
    return km 
 
km = cluster(reduced_data, num_clusters)    #D 

#A Import KMeans clustering algorithm from sklearn 
#B Apply the algorithm with n_clusters defining the number of clusters to form and centroids to estimate  
#C max_iter defines the number of times you iterate through the dataset 
#D Run the algorithm on the reduced_data with the number of clusters equal to 10 

The code in this Listing performs clustering as discussed earlier in this section. By default, 
the algorithm runs for up to 100 iterations (or until it converges to a stable solution) with the 
centroids selected randomly 10 times. Random seed makes sure such random initializations 
of the centroids can be replicated over multiple runs of your code. Note that here you use an 
insight about the number of clusters you are looking for: you try to cluster the posts into 10 
clusters because you assume, based on the input data, that there are roughly 10 topics here. 
However, the data may tell you otherwise and it might turn out that when people post to 10 
specific topics they actually talk about more (or less) than 10 distinct subjects. Therefore, 
you can change the number of clusters and experiment with other settings. 

9.2.3 Evaluation of the topic clustering algorithm  
The final step in any algorithm application is evaluation of the results. Let’s see what results 
you get for the clustering algorithm. Code Listing 9.10 shows how to evaluate your clustering 
algorithm’s performance and extract the most informative features. To identify the most 
informative features, you use the clustering algorithm km and the SVD mapping svd to get 
back the centroids using svd.inverse_transform on km.cluster_centers_. Then, you sort 
them with argsort, and return the matrix with 10 rows (one per cluster) containing the list 

 
20 See documentation here: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html  
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of most informative dimensions for the cluster centroids, sorted in a decreasing order using 
[:,::-1]. Since the resulting matrix order_centroids contains 10 rows with indices of the 
most significant words for cluster centroids, you can map them back to words using 
vectorizer.get_feature_names() and return, e.g., 50 per cluster. In the end, you print out 
the results, as well as the list of categories names from the original dataset for reference. 

Listing 9.10 Code to evaluate the results obtained with the clustering algorithm 

def evaluate(km, labels, svd): 
    print("Clustering report:\n") 
    print(f"* Homogeneity: {str(metrics.homogeneity_score(labels, km.labels_))}") 
    print(f"* Completeness: {str(metrics.completeness_score(labels, km.labels_))}") 
    print(f"* V-measure: {str(metrics.v_measure_score(labels, km.labels_))}")    #A 
 
    print("\nMost discriminative words per cluster:") 
    original_space_centroids = svd.inverse_transform(km.cluster_centers_)    #B 
    order_centroids = original_space_centroids.argsort()[:, ::-1]    #C 
 
    terms = vectorizer.get_feature_names() 
    for i in range(num_clusters): 
        print("Cluster " + str(i) + ": ") 
        cl_terms = "" 
        for ind in order_centroids[i, :50]: 
            cl_terms += terms[ind] + " " 
        print(cl_terms + "\n")    #D 
 
evaluate(km, all_news_labels, svd) 
 
print("\nCategories:") 
for i, category in enumerate(newsgroups_train.target_names): 
    print("*", category)    #E 

#A Report the clustering evaluation metrics 
#B Get back the centroids using svd.inverse_transform on km.cluster_centers_. 
#C Sort them and return the matrix containing the list of most informative dimensions for the cluster centroids 
#D Map them back to words using vectorizer.get_feature_names() and return 50 per cluster 
#E Print the list of categories names from the original dataset for reference 

This code returns the following output ([…] is used to truncate the output for space reasons): 
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Clustering report: 
 
* Homogeneity: 0.4905834160659784 
* Completeness: 0.5545553250427578 
* V-measure: 0.5206115419058042 
 
Most discriminative words per cluster: 
Cluster 0:  
key chip encryption government keys nsa algorithm secure security encrypted […] 
 
Cluster 1:  
doctor disease medical patients pain cause cancer treatment drug body […] 
 
Cluster 2:  
game team hockey players season play win baseball league nhl […] 
 
Cluster 3:  
just don like think know people does good right say […] 
 
Cluster 4:  
window server widget display application file windows program running code […] 
 
Cluster 5:  
sale offer shipping condition asking new drive sell interested price […] 
 
Cluster 6:  
car bike engine cars miles ride rear speed oil road […] 
 
Cluster 7:  
thanks mail advance know address send list email edu information […]  
 
Cluster 8:  
space orbit launch nasa shuttle moon earth mission lunar solar […]  
 
Cluster 9:  
israel jews israeli armenian arab people jewish armenians turkish war […] 
 
 
Categories: 
* comp.windows.x 
[…] 

The metrics used here try to mirror the metrics you used for supervised ML: 

• Homogeneity measures to what extent each cluster contains only members of a single 
class (to a certain extent, this metric is similar to precision): for example, does 
cluster0 contain only posts on cryptography, and cluster1 only posts on medicine, and 
so on? 

• Completeness measures whether members of a single category end up in the same 
cluster: for instance, have all cryptography posts ended up in cluster0, and all 
medicine-related posts ended up in cluster1, etc.? This is, to some extent, similar to 
recall. 

• Finally, V-measure is equivalent to F-measure in the unsupervised context as it also 
represents a harmonic mean between the other two metrics. 
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The precise calculations for these metrics are different from those for precision, recall and 
F-measure in a supervised ML setting, and the two sets of values are not directly 
comparable.21 The metrics here should be interpreted in the following way: each score lies in 
the range of [0, 1], with perfect assignment of posts to clusters getting scores of 1 (as in this 
case each topic is represented with a single cluster, and each cluster contains posts only 
from a single topic), and the mixed up clusters resulting in scores of 0. Thus, the closer the 
scores are to 1, the better the clusters identified by the algorithm. The scores that you are 
getting here (homogeneity of 0.49 and completeness of 0.55) show that the clusters are not 
perfect and there is a fair number of posts from different topics being grouped in a single 
cluster as well as posts from the same topic being split across several clusters. 

To find out more about the precise assignment of posts to clusters, let’s try to further 
interpret the results looking at each cluster, as Exercise 9.7 suggests: 

Exercise 9.7 
You have originally used the data on the following categories: [comp.windows.x, misc.forsale, rec.autos, 
rec.motorcycles, rec.sport.baseball, rec.sport.hockey, sci.crypt, sci.med, sci.space, talk.politics.mideast]. Based on the 
most informative words in each cluster, can you assign each cluster with a topic from this original list? 
 

Let’s look into the solution together. Table 9.5 presents possible interpretations. 

Table 9.5 Possible topic allocations for the identified clusters 

Cluster id Topic Cluster id Topic 

0 sci.crypt 5 misc.forsale 

1 sci.med 6 rec.autos & rec.motorcycles 

2 rec.sport.baseball & 
rec.sport.hockey 

7 misc.forsale 

3 misc.forsale (?) talk.politics.mideast 
(?) 

8 sci.space 

4 comp.windows.x 9 talk.politics.mideast 

As you can see, the unsupervised method uncovered some new insights into the data: you’ve 
started with the assumption that the 10 topics will clearly express themselves in the word 
choice, thus setting the number of clusters to 10. As a result, you’ve identified 10 clusters, 
some of which (like clusters 2 and 6) may combine posts on closely related topics (e.g., 
baseball & hockey, or autos & motorcycles), whereas other topics may end up being 
spread across multiple clusters (e.g., forsale seems to be a very heterogeneous topic – put 
under misc, or miscellaneous – and it’s probably no wonder that it gets allocated 2 or 
potentially 3 different clusters). 

 
21 Unsupervised measures rely on the estimation of entropy rather than simple proportions. For more details, check the original paper: 

https://www.aclweb.org/anthology/D07-1043.pdf, and for examples, take a look at the sklearn’s documentation, e.g.: https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.homogeneity_score.html 
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This difference in the labels from our dataset and the groups identified by the clustering 
algorithm on the basis of the data itself is the main reason for homogeneity and 
completeness scores not being equal to 1.0. Since the main goal of unsupervised approaches 
is to get new insights into the data, this is not necessarily a bad result: it suggests that the 
posts on some topics may be merged under one heading (e.g., on your news platform, you 
may consider putting all posts on baseball & hockey on the same page called “Sports”), 
while posts from some other topics that you may have assumed to be homogeneous should 
actually be split into several sub-groups (e.g., you may consider creating multiple sub-topics 
for selling different items). 

As a final remark, we said before that the clustering algorithm is agnostic to the set of 
topics that it is trying to discover: it can group posts on the same topic into a single cluster 
and provide you with the informative words, but it won’t be able to automatically assign the 
label for the identified topic (i.e., without further help, it won’t be able to solve Exercise 9.7 
as you just did). Is there a way to automatically assign topic labels to the identified clusters 
then? The solution is to combine supervised and unsupervised approaches: a widely used 
scenario for clustering is when you have a small amount of labeled data and a large amount 
of unlabeled data, in which case you can use clustering to identify similar posts (both among 
labeled and unlabeled ones) and assign the label based on the allocation of the labeled posts 
from the correspondent clusters. Alternatively, you can try to automatically generate topic 
labels based on the set of informative words returned by the clustering algorithm. 

9.3 Summary 
• There are two different paradigms within which you can analyze topics – supervised 

and unsupervised.  
• If you have texts labeled with topics, you can apply a supervised machine learning 

algorithm. By now, you are quite familiar with this family of algorithms, but the 
novelty in topic classification is that you need to extend the task to a multi-class 
setting. 

• A machine learning pipeline can be applied to this task, making use of the 20 
Newsgroups dataset available via sklearn, selecting words as features, applying tf-idf 
transformations to the raw word counts, and using Multinomial Naïve Bayes algorithm 
from the sklearn suite. 

• Additive smoothing is a technique that is widely used in classification with probabilistic 
algorithms and that helps address data effects. Note that if you haven’t seen a 
particular word in texts on a particular topic, you should assume that you don’t have 
enough training data (which is always the most realistic assumption) rather than that 
this word is absolutely impossible to use with the specific topic. Smoothing helps 
adjust the probabilities, giving previously unseen words a small chance of occurrence 
in the future. 

• When you don’t have labeled data or you want to discover the topics from the data 
itself, you can use an unsupervised ML approach. 

• K-means clustering algorithm can be applied to learn how the topics are represented 
in the data. This approach clusters similar texts based on word occurrences. In doing 
so, it identifies the representative central points for each cluster, called centroids. K in 
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this algorithm represents the number of clusters (and centroids), e.g., k=10. K-means 
is an iterative algorithm that runs either for a predefined number of steps, or until 
convergence, i.e., until a stable solution is found, and the data points don’t change 
their cluster membership anymore.  

• To estimate the centroids and find clusters, the algorithm needs to calculate distances 
in a multi-dimensional space, for example, using Euclidean distance. The number of 
dimensions is defined by the number of considered features: in this task, it is the 
words. To reduce the dimensionality of the word space, a number of familiar 
techniques can be used, including stopwords removal and removal of very rare and 
very frequent words with TfidfVectorizer. 

• Truncated Singular Value Decomposition is a useful technique that allows you to 
“distil” the information contained in the original vector dimensions down to a much 
smaller number of informative dimensions, thus making calculations much more 
efficient. This technique essentially allows you to convert original words into concepts 
(also called latent factors). 

• Clustering algorithms can be evaluated using homogeneity (an alternative for 
precision in the unsupervised ML setting), completeness (alternative to recall), and v-
measure (alternative to F-score). In addition, the informative words that helped the 
clustering algorithm identify each cluster’s centroid can be extracted and analyzed. 
Based on these words, you can interpret the results: for instance, reason about the 
clusters identified in the data and how they correspond to the labeled topics. 

• When you want to not only identify topics present in the data but also investigate how 
they are distributed across the documents, which words represent each topic and to 
what extent, you can use another unsupervised approach – Topic Modelling. This will 
be the subject of the next chapter. 

  

357

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

9.4 Solutions to exercises 
Solution to Exercise 9.1: 
(a) Previous tasks explored various types of features: recall that in chapter 6 you did 

quite an extensive feature exploration for authorship identification and used features as 
diverse as word and sentence lengths, count and proportion of stopwords, distributions of 
parts of speech and word suffixes, as well as presence of unique words. For sentiment 
analysis in chapters 7 and 8 you mostly relied on words, however, recall that this also 
required some selection of features: for instance, you filtered out words using sentiment 
lexicons, considered the effect that negative words have on the rest of the text, and used n-
grams which cover sequences of n words. 

(b) Feature selection heavily depends on the task at hand. For instance, the distribution 
of stopwords and word suffixes, presence of some unique words, or sentence length may be 
very characteristic of a particular author writing style. Note that the 20 Newsgroups dataset 
(like many other collections of texts) are written by a wide variety of authors, and even if 
some authors prefer to write on specific topics, identification of writing styles is peripheral to 
the task of topic detection. This means, that such fine-grained features as unique words or 
distribution of suffixes and stopwords are unlikely to be helpful. It is also unlikely that 
different topics would vary significantly in terms of the sentence and word lengths: although 
such features may help distinguish between texts of different genres (e.g., social media 
posts are typically shorter than scientific articles) within the Newsgroups posts these features 
would probably not be very helpful. Among all the tasks addressed so far in this book, topic 
classification is most similar to spam detection: e.g., although it is possible that ham emails 
talk about “lotteries” and “medication” too, one would expect to see such words in spam 
emails more frequently. Words and their distributions are the most reliable feature type for 
topic classification, too: for example, one would expect to see a word like “car” much more 
frequently in rec.autos posts on automobiles than in sci.med posts on medicine, and a word 
like “virus” in sci.med, comp.windows.x and, perhaps, in sci.crypt (cryptography) posts but 
not so much in misc.forsale (sale announcements). 

Solution to Exercise 9.2: 
A collection of words in (a) would strongly suggest rec.autos topic (automobiles), while 

the set in (b) most likely refers to sci.space.  
Solution to Exercise 9.3: 
In this book, you have come across a number of evaluation metrics in the previous tasks 

you worked on. Among them are: 

• accuracy – the proportion of correctly classified examples among those that you tried 
to classify; 

• precision – the proportion of texts that actually belong to the topic among those that 
your algorithm identifies as belonging to the topic; 

• recall – the proportion of texts that are correctly identified as belonging to the topic 
among those that actually belong to this topic; 

• f-score – the harmonic mean between the precision and recall scores. 
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Solution to Exercise 9.4: 
The comparatively low recall of 0.78 on rec.autos posts means that some posts from this 

topic are misclassified as other categories. This follows directly from the recall definition: 

Recall = number of texts from rec.auto classified as rec.auto /  
         number of texts that are actually in rec.auto 

This means that the proportion of texts from rec.auto identified by the classifier is 0.78, 
suggesting that the other texts are incorrectly assigned with other categories by the 
classifier. The relatively low precision of 0.71 on rec.sport.hockey suggests that some of the 
texts that the classifier believes are related to hockey are actually from other categories. This 
follows from the precision definition: 

Precision = number of texts from rec.sport.hockey classified as rec.sport.hockey /  
            number of texts classified as rec.sport.hockey 

This suggests that the proportion of texts that are classified as rec.sport.hockey and that 
are actually from this category equals 0.71, with the rest of the texts classified with this 
category actually belonging to some other categories. Perhaps, even to rec.auto – Code 
Listing 9.6 helps you find this out.  

Solution to Exercise 9.5: 
Let’s estimate the distances first (note, sqrt is used for square root):  

dist(point1, centroid1) = sqrt ((0.25-0.33)2 + (2.31-2.75)2)= sqrt (0.2000)=0.45 
dist(point1, centroid2) = sqrt ((0.25-0.02)2 + (2.31-1.00)2)= sqrt (1.7690)=1.33 
dist(point2, centroid1) = sqrt ((0.05-0.33)2 + (1.18-2.75)2)= sqrt (2.5433)=1.60 
dist(point2, centroid2) = sqrt ((0.05-0.02)2 + (1.18-1.00)2)= sqrt (0.0333)=0.18 

These estimations show that point1 is closer to centroid1 (0.45 vs 1.33), so it belongs in 
cluster1; point2 is closer to centroid2 (0.18 vs 1.60), so it belongs in cluster2. Figure 9.14 
visualizes these calculations and provides you with the general formula for Euclidean 
distance: 

 
Figure 9.14 A reminder of how Euclidean distance is calculated. This graph shows two selected points and two 
centroids, and explains how the distance is calculated, zooming in on centroid1 and point1, and showing the 
calculation steps. 
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Solution to Exercise 9.6: 
Your “fruit basket” this time is the collection of posts from the 20 Newsgroups dataset. 

The goal of unsupervised approaches is to discover groups of similar objects (in this case, 
posts) in the data based on some characteristics that can help the algorithm tell different 
objects apart and combine similar objects in relatively homogeneous clusters. Here, you are 
trying to discover topics based on the content of the posts. Therefore, your clusters will 
represent topics, each point will represent a separate post, and you can use the vocabulary 
of the words identified by the algorithm in the training data (the set of 52,746 words as 
before) as coordinates in space. That is, instead of [color=green, size=avg 2.75 in, 
weight=avg. 0.33 pounds, shape=round, taste=sweet & sour] you will be using something 
like [word0=0, word1=5, word2=0, …, word52745=3] where values represent either the 
absolute number of occurrences of a particular word in text or their tf-idf scores. Note that 
this means that, unlike in our toy example, where you represented each point in a 5-
dimensional space, in a language task you may be dealing with thousands of dimensions. 
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Topic Modeling 

This chapter covers 

• Introduction to topic modelling with Latent Dirichlet Allocation (LDA) 
• Overview of gensim, an NLP toolkit for topic modelling  
• Implementation of an unsupervised topic modelling approach using gensim 

• Introduction of several visualization techniques for topic exploration in data 

The previous chapter introduced various NLP and machine learning techniques for topic 
classification and topic analysis. Here is a reminder of the scenario that you’ve worked on: 
suppose you work as a content manager for a large news platform. Your platform hosts texts 
from a wide variety of authors and mainly specializes in the following set of well-established 
topics: “Politics”, “Finance”, “Science”, “Sports”, and “Arts”. Your task is to decide, for every 
incoming article, which topic it belongs to and post it under the relevant tab on the platform. 
Here are some questions for you to consider: 

1. Can you use your knowledge of NLP and machine learning algorithms to help you 
automate this process? 

2. What if you suspect that a new set of yet uncovered topics, besides the 5 above-
mentioned ones, started emerging among the texts that authors send you (for 
instance, you get some articles on the technological advances)? How can you discover 
such new topics and include them in your analysis? 

3. What if you think that some articles lend themselves to multiple topics, which are 
covered by these articles to a various extent? For instance, some articles may talk 
about a sports event that is of a certain political importance (e.g., Olympic Games) or 
about a new technological invention that results in the tech company having high 
valuation. 

Let’s summarize what you have done to address the tasks in this scenario so far: 
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• First of all, as question (1) suggests, you can apply your NLP and ML skills and treat 
this task as another text classification problem. You’ve worked on various text 
classification problems (spam detection, authorship profiling, sentiment analysis) 
before, so you have quite a lot of experience with this framework: the very first 
approach that you can apply to the task at hand is to use an ML classifier trained on 
the articles that were assigned with topics in the past, using words occurring in these 
articles as features. As we said in the previous chapter, this is simply an extension of 
the binary classification scenario to a multi-class classification one. In the previous 
chapter, you worked with the famous 20 Newsgroups dataset,1 and since you focused 
on 10 specific topics in this data, the very first approach that you applied was indeed 
a supervised 10-class topic classification approach. 

• The results looked good, but there are several drawbacks to treating this task as a 
supervised classification problem: first of all, it relies on the idea that high quality 
data labelled with topics of interest can be easily obtained, which is not always the 
case in real-life scenarios. Secondly, this approach will not help you if the data on the 
news platform changes and new topics keep cropping up, as question (2) outlines. 
Thirdly, it is possible that some texts on your platform belong to more than one topic, 
as question (3) suggests. In summary, all these drawbacks can be said to be related 
to data and appropriate labels availability. What can you do if you don’t have enough 
annotated data, or you cannot keep collecting and annotating data constantly, or you 
don’t have access to multiple topic labels for your articles? The answer is: you can use 
an unsupervised machine learning approach. The goal of such approaches is to 
discover groups of similar posts in data without the use of predefined labels. If you 
have some labelled data, you can compare the groups discovered with an 
unsupervised approach to the labelled groups, but you can also use the unsupervised 
approach to get new insights. 

• The unsupervised approach that you looked into in the previous chapter is clustering. 
With clustering you rely on the inherent similarities between documents and let the 
algorithm figure out how the documents should be grouped together based on these 
similarities. For instance, in the previous chapter you used K-means clustering (with 
k=10 for 10 topics in your data) and the algorithm used word occurrences in the 
newsgroups posts as the basis for their content similarity. Since this approach is 
agnostic to the particular classes that it tries to identify, it helped you to uncover 
some new insights into the data: for instance, certain posts from originally different 
topics (e.g., on baseball & hockey, or on autos & motorcycles) were grouped 
together, while certain posts originally from the same topic were split into several 
clusters (e.g., forsale turned out to be one of such heterogeneous topics with posts 
that can be thought of as representing different sub-topics depending on what is 
being sold).  

Unsupervised approaches such as clustering are good for data exploration and uncovering 
of new insights. One aspect not addressed by this clustering algorithm is the possibility that 
some posts may naturally cover more than one topic: for example, a post where a user is 

 
1 The dataset was accessed via sklearn: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html  
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selling their old car falls into two categories at once – forsale and autos. In this chapter 
you will learn how to build a topic modeling algorithm capable of detecting multiple topics in 
a given document using Latent Dirichlet Allocation (LDA). 

 The diagram in Figure 10.1 is a reminder of the full set of approaches that you can apply 
to analyze topics in your data. The two approaches on the left and in the center of this 
diagram were covered in the previous chapter, and Topic Modeling is the focus of this 
chapter: 

 
Figure 10.1 Reminder: depending on whether you have labeled data or not, you can apply a supervised 
(classification from the previous chapter) or an unsupervised approach: e.g., you can use clustering, as 
discussed in the previous chapter. If you want to discover new topics and learn about text’s topic composition, 
apply Topic Modelling from this chapter. 

10.1 Topic Modelling with Latent Dirichlet Allocation 
The results that you achieved using an unsupervised approach in the previous chapter 
revealed at least one mixed topic – misc.forsale. This shouldn’t come as a surprise: despite 
the fact that all posts where users were selling something ended up in one category within 
the newsgroups (and similarly might also be posted on the same webpage on your online 
platform), users may be selling all sorts of things, from sports equipment to electronic 
devices to cars. Therefore, depending on the subject of the sale, a particular post may mix 
such topics as forsale & baseball, or forsale & electronics, or forsale & autos. 

Let’s use some concrete examples. Imagine you have the set of short posts from Figure 
10.2 in your collection: 
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Figure 10.2 Examples of short posts on various topics 

Exercise 10.1 
Suppose you know or have reasons to believe that the set of short posts from Figure 10.2 covers exactly two topics. In 
the previous topic analysis examples, we always assumed that each post may only belong to one specific topic – let’s 
lift this restriction here and allow each post to belong to either one or both topics.  

 
What are your guesses on the two topics in these examples? How did you arrive at these conclusions (e.g., which 

words suggest these topics)? 
 
Can you think of an algorithm that would detect which topics or combinations of topics each post belongs to and 

to what extent, as well as which words express each of these topics and to what extent? 
 

Let’s discuss the solution to this exercise together. 
(a) When solving this task, you may follow a procedure like this, which wouldn’t even 

require you to analyze the meaning of the words, only their occurrence: you start with post 
1, which contains such words as car, accelerate, and seconds, among others. You assign 
Topic 1 to this post, with the set of words from post 1 associated with this topic. 

Next, you move to post 2 – can it also be on Topic 1? Nothing suggests that, as the set of 
words from this post (hurry, low, price, deal, etc.) don’t overlap with the set that you’ve 
associated with Topic 1, so you conclude that at this point it would be safest to assign Topic 
2 to this post, with the set of words from post 2 associated with Topic 2. 

You move to post 3 and spot that there is some word overlap with post 1 and Topic 1 – 
specifically, both posts talk about cars. You decide that post 3 also belongs to Topic 1. 
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Similarly, post 4 has some word overlap (specifically, the word price) with post 2 and Topic 
2, so you decide that post 4 belongs to Topic 2. 

Finally, you move to post 5. Is it on Topic 1 or on Topic 2? On the one hand, it is similar 
to the posts on Topic 1 as it contains such words as 6-cylinder and engine. On the other 
hand, it is also similar to the posts on Topic 2, as it contains the word sell(ing). However, the 
task description says that posts may actually belong to both topics at once. It looks like your 
original assignment works quite well for this set of posts, as there are no doubts about how 
the words are distributed among the two topics, and how topics are assigned to posts. This 
means that at this point you can declare that the topic distribution in these posts is as 
follows: 

• Post 1 and Post 3 are on Topic 1 exclusively. 
• Post 2 and Post 4 are on Topic 2 exclusively. 
• Post 5 mixes Topic 1 and Topic 2 in some proportion. 

Figure 10.3 visualizes this idea: 

 
Figure 10.3 Based on the word composition of each post, posts 1 and 3 are on Topic 1 exclusively, posts 2 and 
4 on Topic 2 exclusively, while post 5 combines two topics in some proportion 

Now you can also list the words that characterize each of these topics: 

• Topic 1 can be characterized by car, accelerate, 6-cylinder, engine, model, etc. 
• Topic 2 can be characterized by deal, sell, $, price, etc. 

Can you tell what these topics actually are? Based on the sets of words, you can interpret 
Topic 1 as autos, and Topic 2 as sales. 

(b) The algorithm for topic modelling that you will develop in this chapter will follow a 
procedure similar to the one described above: it will start with some topic assignment for the 
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texts, learn about word composition of each topic, and then it will re-iterate and update its 
topic-to-text and word-to-topic assignments to refine its predictions until it reaches the most 
stable allocation. We will delve into the details of this algorithm in the next section, and now 
let’s just summarize that the goal of the approach that you will develop in this chapter – the 
approach that will help you to automatically solve the puzzle above – would be to provide 
you with an answer along the lines of: 

• Post 1 and Post 3 are 100% on Topic 1. 
• Post 2 and Post 4 are 100% on Topic 2. 
• Post 5 is on a mix of topics: e.g., 70% on Topic 1 and 30% on Topic 2. 

When it comes to the word content, it is also desirable that such an algorithm tells you 
something like this: 

• The composition of Topic 1 is 20% car, 15% engine, 10% speed, 5% accelerate, etc. 
• The composition of Topic 2 is 40% sell, 10% deal, 5% price, 5% cheap, etc. 

To visualize this idea, Figure 10.4 illustrates some words that may contribute to each 
topic using word clouds, where the font size represents the relative weight (i.e., the 
percentage contribution) of each word within each topic: 

 
Figure 10.4 Sample word clouds representing each of the two topics: the font size represents the relative 
weight or contribution of each word to each topic 

The exact contribution of the words to the topics will be detected by the algorithm based 
on the texts. Hopefully this small example helps you appreciate the potential of the 
unsupervised topic modelling algorithm that you will develop and apply in this chapter: 
Latent Dirichlet Allocation, or LDA for short, allows you to interpret texts as combinations of 
topics which have produced the words that you see in your texts. Specifically, it allows you to 
quantitatively measure the allocation of topics and the contribution of each word to a 
particular topic used in your texts. Now it’s time to look more closely into the inner 
mechanisms of this approach that allow it to come up with such estimations. 
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10.1.1 Estimating Parameters for the LDA 
The LDA algorithm treats each document2 (text, post, etc.) as a mixture of topics: for 
example, in Exercise 10.1 such mixtures contain 100% of Topic 1 in one case, 100% of Topic 
2 in another, and 70% of Topic 1 and 30% of Topic 2 in the third case. Each topic, in its turn, 
is composed of certain words, so once the topic or topics for the document are determined, 
these topics become the driving forces that are assumed to have produced the words in the 
document based on the word sets these topics comprise (e.g., {car, engine, speed, …} or 
{deal, sale, price, …}). This is the theoretical assumption behind LDA: the words that you 
observe in documents are not put together in these documents in a random manner. Rather 
it is believed that these words are thematically related – as in Exercise 10.1, some are 
related, e.g., to autos and others to sales. All you can observe in practice is the words 
themselves, but the algorithm assumes that, behind the scenes, these words are generated 
and put together in the documents by such abstract topics. Since the topics are hidden from 
the eye of the observer or, to use a technical term, they are latent, this gives the algorithm 
its name. The goal of the algorithm then is to reverse-engineer this document generation 
process to detect which topics are responsible for the observed words. 

The algorithm focuses on estimating two sets of parameters – topic distribution in the 
collection of documents and word distribution for each topic on the basis of the documents in 
the collection. These two sets of parameters, as you will see in the course of this chapter, are 
very closely related to each other: just like in the Exercise 10.1, if the algorithm decides 
upon the topics (e.g., that post 1 is entirely on Topic 1), the words from the document are 
assigned to this topic, which means that the next time the algorithm encounters any of these 
words in another document they will suggest that the other document is on the same topic. 
Exercise 10.1 explained this process using a small example: it worked well because the set of 
posts was small, with some word overlap to make things easier, with clear allocation of posts 
to topics, and only a single post where both topics were present. In a real document 
collection, there may be thousands of documents with millions of words and many more 
complex topic combinations. How does the algorithm deal with this level of complexity? 

The answer is the algorithm starts with the best possible strategy for the cases where the 
correct answer is not readily available – namely, it starts by making random allocation. 
Specifically, it goes through each document in the collection and randomly assigns each word 
in this document to one of the topics (e.g., Topic 1 or Topic 2). Note, that random allocation 
of words to topics within each document allows the algorithm to account for the possible 
presence of multiple topics in the same document. Random allocation is widely used as the 
first step by unsupervised algorithms – you may recall that you also had to randomly allocate 
documents to clusters in the first iteration of clustering in the previous chapter. Of course, it 
is unlikely that the algorithm would manage to guess the “right” topics randomly, but the 
good news is that after this first pass, you have an initial allocation and therefore you can 
already estimate both the topic distribution in the collection of posts and the word 
distribution in each topic based on this random guess. Since this guess, being random in 

 
2 In the context of topic modeling, the term document is widely used to denote any type of text (an article, a novel, an email, a post, etc.). We’ll be using 

this term in its general meaning here, too. 
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nature, will likely not fit the real state of affairs (i.e., the actual underlying distribution) well, 
how can you do better? 

The answer is – you apply an iterative algorithm, adjusting the estimation in the “right” 
direction until your estimation is as good and as stable as possible. At this point, you may 
recall that the unsupervised clustering algorithm used a very similar procedure: you started 
with a random cluster allocation, and you kept improving the clusters iteratively until you 
either have run through the data a sufficient number of times (i.e., you’ve reached the 
maximum number of iterations) or your cluster allocations didn’t change anymore (i.e., 
you’ve reached convergence on your solution). The algorithm that you apply here is 
inherently quite similar in this regard. The key difference is that, instead of one set of 
parameters, in this case you need to estimate two, taking into account that the topic 
structure (i.e., the topics themselves, their distributions in documents, and word-to-topic 
assignments) is a hidden structure, and this structure will need to be estimated and adjusted 
on the basis of the only observed parameter – i.e., words in documents. Recall, that as you 
are using an unsupervised procedure, the algorithm doesn’t have access to any pre-defined 
topic labels and doesn’t know what the “correct” allocation of topics and words is. Let’s 
summarize the steps in the algorithm – Figure 10.5 provides the Mental Model for the LDA. 

 
Figure 10.5 Mental Model for the LDA algorithm: as in any iterative process, you start with some initial 
allocation and iterate on your estimates until you do not observe any significant change to the parameters 
anymore (i.e., until convergence) or until you reach the maximum number of iterations 

Here is a short description of all the steps in the algorithm: 

• Step 1, Random allocation: randomly assign words in documents to topics. 
• Step 2, Initial estimation: estimate topic and word distributions for your data based 

on the random allocation from Step 1. 
• Step 3, Re-allocation: evaluate your algorithm on the data, using the distributions 

estimated in Step 2, and re-allocate the words to the respective topics accordingly. 
• Step 4, Re-estimation: using the allocation from Step 3, re-estimate distributions. 
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• Iteration: if the new estimates are not considerably different from the previous 
estimates, stop. Otherwise, repeat Steps 3 and 4, until the difference is negligible, 
i.e., the algorithm converges to a stable solution. 

• Stopping criteria: you stop either when estimates stabilize or when the maximum 
number of iterations has been reached. 

How does this process apply to the documents, topics, and words in the topic labeling 
application? Suppose on your first pass through the data you have randomly ascribed words 
to topics: for example, you have 100 words in the post d1, and for each word in this post you 
randomly assigned it either to Topic1 (for better readability, you can think of Topic 1 as 
some specific one, e.g., autos, but keep in mind that the algorithm itself doesn’t “know” 
what the topic label is) or to Topic2 (again, you can think of this topic as some specific one, 
e.g., sales). Now, let’s pass through the data again (Step 2) and estimate topic and word 
probability distributions. In each case, we will first look into the formal definition, then into 
the calculation, and finally, we’ll consider a toy example. 

• Topic probability distribution: The probability of a specific topic t for a specific post 
d is estimated as the number of words in the post d that have been allocated to the 
topic t in the previous round of the algorithm application divided by the total number 
of words in d. In other words, it is: 

P(topic t | post d) = number of words in post d allocated to topic t / total number of 
words in post d  

For example, if in the first random pass you randomly assigned 52 words in post d1 to 
Topic1, at this point you would estimate that P(Topic2 | d1) = 0.48 and P(Topic1 | d1) 
= 0.52.  

• Word probability distribution: The probability of a particular word w, given that a 
specific topic t produced it, equals the number of times the word w was assigned with 
the topic t in the previous round in all posts in the collection divided by the total 
number of times this word has been used in the collection. In other words, it is: 

P(word w | topic t) = number of times word w is assigned to topic t in all posts in the 
collection / total number of occurrences of word w  

For example, suppose you’ve encountered the word price 50 times in your collection of 
posts, 35 of which you have randomly assigned to the Topic2 in the first round and 15 
of which you’ve assigned to the Topic1. This means that P(price | Topic2) = 0.70 and 
P(price | Topic1) = 0.30.  

• In the next pass over the data, you start with d1 again and it’s time to reconsider your 
allocation with topics in this post. Suppose in the previous round you have randomly 
assigned price to the Topic1. Should you change your allocation in view of the new 
estimates? Here is how you decide – you multiply the following probabilities:  
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Pupdate(price is from Topic2) = Pprevious(Topic2 | d1) * Pprevious(price | Topic2) = 0.48 * 0.70 = 
0.336, and  

Pupdate(price is from Topic1) = Pprevious(Topic1 | d1) * Pprevious(price | Topic1) = 0.52 * 0.30 = 
0.156  

Based on these estimates, since the probability of price being generated by Topic2 in 
d1 is higher than the probability of price being generated by Topic1 (0.336>0.156), 
you should change the allocation of price in d1 to Topic2. Note that despite the fact 
that post d1 is currently more likely to be on Topic1 overall (since P(Topic2 | d1) = 
0.48 and P(Topic1 | d1) = 0.52)), you are still able to re-assign price to Topic2. This 
is because the distribution of the word price with respect to its topic allocation across 
all posts matters, too. Moreover, when re-estimating probability for a specific word, 
e.g., price, you keep other word probabilities as they are, i.e., probabilities for each 
word are re-estimated separately. This is done so that you don’t need to change too 
many parameters at the same time, which would make estimation very complex.3 

• Now that the allocation of some words has changed, you need to pass over your data 
again, this time re-estimating topic probabilities. 

• After multiple passes over the whole collection and re-estimation of topic assignment 
for all words and then distribution of topics, you will eventually reach a stable 
distribution where your topic assignments won’t change anymore. At that point, you 
will be able to use these assignments to detect topic mixtures for each post in the 
collection by counting the proportion of words in this post belonging to each topic, 
just like you did above. Moreover, given any new post you will be able to estimate its 
topic composition using the very same parameters. 

Essentially, you start with a random guess and a random allocation, and you continue 
adjusting the estimates until the whole interaction between the components – word 
distribution and topic distribution – comes into a balance when nothing changes (much) 
anymore. Here is a real-life analogy for this process: imagine you’ve just started in a new 
company, and you’ve been invited to the first social event – a party at one of your new 
colleagues’ house. You would like to know more about your colleagues’ hobbies and, being a 
keen skier, perhaps even find fellow ski fans among your colleagues. You arrive at a party 
and find that people are already spread around the house in small groups chatting to each 
other. Can you find out what their hobbies are and, in particular, find out if there are any 
other ski fans among your colleagues? You can start going round the house asking everyone 
about their hobbies directly, or you can choose a more discreet approach instead. 

It is reasonable to assume that people at parties talk about their hobbies rather than 
work matters, and you can also expect that people talking to each other in groups share 
interests at least to some extent. You join the first group randomly and find out that people 
are talking about some recent political issues. You come to a conclusion that the interest of 
the majority of the people in this group is politics, and as this is far from your own interests, 
you move on to the next group(s) until you join the one discussing travelling.  

 
3 A popular algorithm used to make sure the computation is done in a feasible way is based on sampling and is widely used in LDA: 

https://en.wikipedia.org/wiki/Gibbs_sampling  
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A couple of people from this group, Alice and Bob, mention some popular ski resorts. You 
assume therefore that this group represents a mixture of interests: for instance, those in this 
group who talk about exotic destinations may be more into travelling itself, others who 
mention mountains may be into hiking, but Alice and Bob may be into skiing. At this point, it 
is just your guess and you allocated hobbies to people somewhat randomly. To be sure that 
Alice and Bob indeed share your interest in skiing, you need to have more evidence. In a bit 
Alice joins another group of people, where everyone is talking about active sports. Alice 
brings up the subject of skiing and another colleague, Cynthia, joins her in this discussion. 
Now you are more convinced that Alice has the same hobby as you; moreover, you conclude 
that Cynthia may be another fellow skier. Similarly, later you join another group of 
colleagues with Bob, and in this group, people are talking about the cost of equipment for 
their hobbies. Bob mentions that his recent pair of skis were quite expensive, at which point 
Denise asks him which brand he uses and tells him about her preferred brand of relatively 
inexpensive skis. 

In this scenario, hobbies are similar to topics, groups of people are similar to documents, 
as they may combine mixtures of topics (or, in this analogy, people with various hobbies), 
and each person may be considered an analogy of a word representing a specific hobby 
(topic). As a result of your quest for colleagues with similar interests, where you’ve used an 
approach similar to the one used by LDA, you identify that Alice, Bob, Cynthia and Denise 
are into skiing as much as you are, and you arrange a ski trip with your colleagues. 

10.1.2 LDA as a Generative Model 
We said earlier that LDA assumes that there is some abstract generation process going on 
behind the scenes, in which hidden (latent) topics generate words that make up the 
documents in the collection that you observe. The algorithm’s main goal is then to reverse-
engineer this generation process and to identify the components of this hidden structure – 
the topics, their distribution, and the distribution of words in each topic. Because of this 
background assumption that the data is generated by certain parameters, LDA is called a 
generative model. LDA is not the only algorithm that assumes that a generative process is 
behind the data observed and that tries to estimate the parameters responsible for such 
generation – in fact, there is a whole family of machine learning algorithms called generative 
models.4 

To give you a bit more insight into why it is reasonable to assume that such a generative 
process may be responsible for the observed data, let’s try to replicate a generative process 
behind topic modelling using a small example. Suppose this process generates documents on 
two topics, i.e., K=2. As discussed in the previous section, the algorithm doesn’t know 
anything about topic identities and just treats them as Topic1 and Topic2, but for clarity let’s 
assume that Topic1=sales and Topic2=electronics. The generation is driven by the two 
sets of parameters as before – topic distribution and word distribution. In this case, they are 
the true, underlying parameters of the generative process that the algorithm is trying to 
identify as you’ve seen in the previous section. 

 
4 https://en.wikipedia.org/wiki/Generative_model  
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To generate a document using this process, you first decide upon the length of the text to 
produce. For the sake of this example, let’s select some small number of words: e.g., N=10. 
The next step is to decide upon the topic mixture for your document – this decision is based 
on the selection of topics from the actual topic distribution. In this example the process 
selects among two topics, e.g., K={Topic1, Topic2}, with Topic1=sales and
Topic2=electronics, and depending on this step, the words of the document will represent
each topic in a certain proportion. You can think of this generation step as Figure 10.6 
illustrates: imagine you have a wheel with sectors marked with the available topics – 1 
(sales) and 2 (electronics). You spin the wheel 10 times and record the output. For
instance, imagine the output returned over these 10 spins is [1, 1, 2, 2, 2, 1, 1, 2, 1, 1]. 
This means that out of the 10 words that you will generate for your document, 6 (or 60%) 
will be on Topic 1 (sales) and the other 4 (40%) on Topic 2 (electronics).

Figure 10.6 Generation of topics: you spin the wheel and output one of the available topics. In this example, 
60% of the output represents Topic 1 and 40% Topic 2.  

Now comes the second part of the generation procedure: for each of the selected topics, 
you need to generate a word according to the actual word distribution. This step is very 
similar to the previous one, except that this time you have two wheels to spin – one for each 
topic – and the sectors are filled with words. You’ve seen an example of some possible word 
distributions in Exercise 10.1: for instance, sales topic was represented there as [40% sell,
10% deal, 5% price, 5% cheap, etc.]. What do these percentages actually mean? When the 
algorithm establishes that 40% of the sales topic is represented by the word sell, this
means that if you see 100 words on the sales topic in your collection of documents, 40 of
them should be sell. Similarly, if the words from the sales topic are put on the wheel and
the wheel has 100 sectors on it, 40 of them should be marked with the word sell. This means 
that when you spin the wheel, on the average5 40% of the time you will get the word sell as 
a result, 5% of the time you will get the word price, and so on. 

5 We say “on the average” here because if you marked 40% of the sectors on the wheel with the word sell and you actually ended up outputting every single 
word from this wheel over the spins, you would end up returning sell precisely 40% of the time. In reality, every round of spins is different from any 
other one – you may get different results from one round to another. This means that over a series of rounds you may get sell, e.g., 38%, 39%, or 43% of 
the time in each particular series (i.e., for different documents), yet over a long range of such wheel spinning activities, the 
average number of sell returns will approximate its true distribution: i.e., 40%. This is what happens when you run experiments 
over multiple trials. 
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Now let’s combine these two steps together: you use the topic distribution returned by 
the topic distribution wheel, and for each topic you spin the appropriate word distribution 
wheel. For the sequence of topics returned by the topic distribution wheel before, i.e., [1, 1, 
2, 2, 2, 1, 1, 2, 1, 1], you will spin the Topic1 word distribution wheel to generate the 1st and 
the 2nd words, then you will spin the Topic2 word distribution wheel three times to output the 
3rd, the 4th and the 5th words, then you will spin the Topic1 word distribution wheel twice (for 
words 6 and 7), then the Topic2 word distribution wheel once (for word 8), and you will 
finish the sequence by spinning the Topic1 word distribution wheel to output the 9th and the 
10th words. Figure 10.7 illustrates this process, although note that for simplicity only some 
words are visualized on the wheels: 

Figure 10.7 Once the topics are generated, the words in each topic are selected in a similar fashion: a special 
“wheel”, on which the words are marked according to the word distribution within this particular topic, is spun 
and the output word is written down 

To summarize, the following generative process is taking place here: 

• Select Topic 1 (sale) → generate sell
• Select Topic 1 (sale) → generate old
• Select Topic 2 (electronics) → generate phone
• Select Topic 2 (electronics) → generate camera
• Select Topic 2 (electronics) → generate battery
• Select Topic 1 (sale) → generate good
• Select Topic 1 (sale) → generate condition
• Select Topic 2 (electronics) → generate screen
• Select Topic 1 (sale) → generate bargain
• Select Topic 1 (sale) → generate price

This results in the following “document” consisting of 10 words on 2 topics generated by
the algorithm as described above: “sell old phone camera battery good condition screen 
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bargain price”. This document doesn’t exactly look like a post you may see in reality, 
although you probably can still get at the core meaning of the message. This generated 
sequence of words should rather be treated as a skeleton, which can be realized into a real-
world advertisement like the following (with the generated words highlighted in italics): 
“Hello everyone! I’m selling my old phone X. Excellent camera, battery in good condition, 
small scratch on the screen. It’s a bargain – I’m giving it away for just $Y (price negotiable)”. 
Figure 10.8 visualizes the result, with the topics highlighted in text similar to the process 
visualized in Figure 10.1: 

Figure 10.8 The generative process first selects topic distribution (on the right, with Topic1 marked in dark 
blue and Topic2 in light grey), then each topic generates some words, which are then used in the produced 
post (on the left). 

A couple of observations are due at this point: first of all, note that the actual post may 
contain words other than the ones generated by the topics. After all, such words as everyone 
or in may occur across multiple posts and they don’t bear any topic-specific meaning. 
Secondly, in our example above word lemmas rather than full forms are generated first (note 
that sell is generated for the skeleton document, and it is then converted into selling in the 
actual post). In fact, the algorithm may be applied to any word representation: you may 
consider word stems, lemmas, or full forms. We will discuss the appropriate representation 
levels later in this chapter. One final observation to make is that this process uses a bag-of-
words model, which means that its goal is to generate topic-relevant words and it is agnostic 
to their actual order. What matters most is whether the words are generated according to 
the actual underlying distribution. For the sake of this toy example, generated words are put 
in the post in the order that makes it easier for us as readers, but in practice the wheel 
spinning in Figure 10.7 may have output these words in a different order. Still, whichever 
order the words are presented in, you would be able to understand what topics are behind 
them. 
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Figure 10.9 A summary of the text generation process with LDA: for each of the N words, first a topic is 
selected according to the topic distribution, and then a word is selected according to the word distribution 
within this topic 

Now, let’s step back from this small-scale example and describe the overall generative 
procedure. The LDA algorithm represents all documents as mixtures of topics, and it 
assumes that the documents are originally generated based on two types of probability 
estimations – one describing topic distribution and another one describing word distribution 
within each topic. Once the number N of words to be generated for a particular document is 
selected, the generative process draws topics from the topic distribution, and once the topics 
are determined it then produces the words drawn from these topics according to the 
probabilities assigned to these words within the respective topics. Hopefully, the notion of 
probabilities and distributions does not sound unfamiliar to you anymore – you have worked 
with probabilities before in this book, when you used Naïve Bayes, for example, for spam 
filtering, or when you looked into Decision Trees for authorship identification. Yet, it is always 
a good idea to solidify one’s understanding – in fact, the topics and words output in our 
wheel spinning activities described in Figures 10.6 and 10.7 are defined by the probability 
estimations. The algorithm repeats the two consecutive generation steps for each of the N 
words in the document as Figure 10.9 summarizes. 

Since the LDA algorithm does not have access to the parameters that the generative 
process uses, it tries to “decode” or reverse engineer this process by learning these 
parameters based on the data at hand. When a new document comes along, it assumes that 
the document is generated by the same process with the same parameters, so it applies the 
parameters learned on the data, trying to answer the following question: “Given what we 
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know about the topic and word distributions, which of the topics could have generated the 
given document?”. It then returns the topic(s) that answer this question best. 

10.2 Implementation of the Topic Modelling Algorithm 
Now that we’ve discussed the inner workings of the LDA algorithm, it’s time to apply it in 
practice. Figure 10.10 summarizes the processing pipeline for the algorithm: 

Figure 10.10 Processing pipeline for the LDA algorithm 

In this chapter, like you did in the previous one, you are going to work with the posts 
from the 20 Newsgroups dataset on the selected data subset. This will allow you to compare 
the discoveries made by your second unsupervised algorithm, LDA, in this data and see 
whether the assumption that the data represents the topics (i.e., labels) assigned in the 
original 20 Newsgroups dataset holds. Let’s remind ourselves what data we are working with 
and load the input data as the first step in our pipeline requires. 

10.2.1 Loading the data 
In the previous chapter, you learned that the popular machine learning toolkit, sklearn,
provides you not only with implementation of a variety of widely used machine learning 
algorithms, but also with easy access to a number of datasets to train your skills on. The 
specific dataset of interest here is the famous 20 Newsgroups dataset, which is well-suited 
for all topic analysis-related tasks and is easily accessible via sklearn.6

As a reminder, the 20 Newsgroups dataset is a collection of around 18,000 newsgroups 
posts on 20 “topics”, however, not all of them have a comparable amount of data. Besides, 
as we’ve discussed before, exploring the results for as many as 20 “topics” may be quite 
overwhelming. To this end, in the previous chapter we restricted ourselves to a specific set of 
10 “topics” of interest based on their diversity and the amount of data available. Table 10.1 
is a reminder on the selected newsgroups labels and the amount of data you are working 
with. 

6 Check sklearn’s datasets webpage for more information on the various available data: https://scikit-
learn.org/stable/datasets/real_world.html#the-20-newsgroups-text-dataset  
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Table 10.1 A reminder on the data from the 20 Newsgroups dataset used for topic analysis 

Topic Training 
size 

Test 
size 

Topic Training 
size 

Test 
size 

comp.windows.x 593 395 rec.sport.hockey 600 399 

misc.forsale 585 390 sci.crypt 595 396 

rec.autos 594 396 sci.med 594 396 

rec.motorcycles 598 398 sci.space 593 394 

rec.sport.baseball 597 397 talk.politics.mideast 564 376 

Recall, that sklearn’s interface to the dataset allows you to easily choose which topic labels 
you want to work with and which subsets of data to consider. In particular, the dataset is 
already split into training and test sets. Recall that when you are working with a supervised 
learning algorithm (e.g., the one that you used for topic classification in the previous 
chapter), it is important that you train the algorithm on the training data and evaluate it on 
the test data. Since sklearn already provides you with pre-defined subsets it is easy to 
compare your results across multiple implementations, your own ones as well as those from 
the others. At the same time, such unsupervised approaches as clustering applied in the 
previous chapter and LDA that you are going to implement in this chapter do not make any 
special use of the training vs test data – in fact, they are agnostic to the particular labels that 
may already exist in the data and aim to identify useful groups in the data by themselves. 
This means that you can use the whole dataset, training and test sets combined, to build an 
unsupervised model.  

Code Listing 10.1 shows to you how to access the data via sklearn, restricting yourself 
to specific topic labels from the 20 Newsgroups dataset but not to specific subsets. To start 
with, you import sklearn’s functionality that allows you to access the 20 Newsgroups 
dataset and define load_dataset function, that takes the subset and categories list as 
arguments and returns the data extracted according to these restrictions. In addition, it 
allows you to remove extra information, e.g., headers, footers, etc. Then, you define the list 
of categories to extract from the data – this list contains the same categories as you’ve 
worked with before but note that you can always change the selection of labels to your own 
preferred list. When you run the load_dataset, use “all” as the first argument to access 
both training and test sets. Finally, you can access the uploaded posts applying .data 
method to newsgroups_all, and, as a sanity check, print out the number of posts using len. 
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Listing 10.1 Code to access the Newsgroups data on specific topics 

from sklearn.datasets import fetch_20newsgroups    #A 
 
def load_dataset(sset, cats):    #B 
    if cats==[]: 
        newsgroups_dset = fetch_20newsgroups(subset=sset, 
                          remove=('headers', 'footers', 'quotes'), 
                          shuffle=True) 
    else: 
        newsgroups_dset = fetch_20newsgroups(subset=sset, categories=cats, 
                          remove=('headers', 'footers', 'quotes'), 
                          shuffle=True) 
    return newsgroups_dset 
 
categories = ["comp.windows.x", "misc.forsale", "rec.autos"] 
categories += ["rec.motorcycles", "rec.sport.baseball", rec.sport.hockey"] 
categories += ["sci.crypt", "sci.med", "sci.space"] 
categories += ["talk.politics.mideast"]    #C 
 
newsgroups_all = load_dataset('all', categories)    #D 
print(len(newsgroups_all.data))    #E 

#A Import sklearn’s functionality that allows you to access the 20 Newsgroups dataset   
#B Define load_dataset function to return the data extracted according to predefined restrictions 
#C Define the list of categories to extract from the data 
#D To access both training and test sets, use “all” as the first argument 
#E Access the uploaded posts applying .data method to newsgroups_all; check the number of posts using len 

The code above should extract all posts on the predefined list of categories (labels), both 
from the training and test subsets, and as a result you should get 9,850 posts in 
newsgroups_all. This is what should be printed out by the code above. As a reminder, there 
are 5,913 posts in these categories in the training set and 3,937 in the test set – you can 
also check these numbers against Table 10.1. 

10.2.2 Preprocessing the data 
The data loaded so far contains whole posts and your task is to identify topics in these posts. 
Since LDA works with words or tokens of similar granularity, your first task is to tokenize the 
posts, i.e., extract word tokens from them. Once the text is split into words, you need to 
consider the questions from Exercise 10.2: 
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Exercise 10.2 
Like any unsupervised NLP algorithm, LDA relies on the information it can learn observing the occurrences and 
patterns in the use of words or tokens of similar granularity in the documents. This means that the complexity and 
computation time of the algorithm increase with the number of words or tokens considered. At the same time, not all 
tokens are equally useful and filtering them out may improve the algorithm’s efficiency without doing harm to its 
performance.  

 
Try answering the following questions about the selection of data and features:  
 

a. Should your features include words, word lemmas or word stems? 
b. How can you reduce the dimensionality of the considered feature space further, i.e., can some words or tokens be 

filtered out? 
 

Code Listing 10.2 shows how to preprocess texts for your topic modeling application. In 
particular, it uses a stemming algorithm called SnowballStemmer, which provides you with a 
good intermediate level of granularity: it helps the algorithm efficiency by reducing the word 
space to a higher extent than lemmatization, and at the same time it is less “aggressive” in 
merging words together than some other stemming algorithms.7 This stemmer 
implementation is available via NLTK toolkit, which you have extensively used before for 
other tasks. At the same time, Code in Listing 10.2 calls on a new toolkit, gensim, that you 
haven’t used before. 

So far, you have gained experience using two NLP toolkits, namely nltk and spaCy. 
We’ve noted before that it is good to know of the wide range of opportunities in the field, and 
often, when you want to develop some new application of your own, you would find that the 
building blocks for this application – e.g., certain preprocessing tools – are readily available. 
You might have also noticed that, in some respects, these toolkits have comparable 
functionality (e.g., both can be used to do tokenization), while in other respects they may 
have complementary strengths (for instance, nltk, unlike spaCy, has access to a number of 
various stemmers). It is time, therefore, to add another NLP toolkit – gensim – under your 
belt.8 

Gensim  
Gensim is an NLP toolkit particularly suitable for various tasks related to topic modeling and the analysis of word 
meaning. In this chapter, you will learn how to use LDA functionality available via this toolkit. 
 

Just like the other toolkits, gensim includes a number of useful preprocessing functions, 
some of which are put to use in the Code Listing 10.2. Specifically, you need to import 
SnowballStemmer from nltk, and simple_preprocess functionality and stopwords list from 

 
7 For comparison, you can look at the outputs of different stemmers – see https://www.nltk.org/howto/stem.html for some examples. 
8 For installation instructions, see https://radimrehurek.com/gensim/  
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gensim. SnowballStemmer supports a number of different languages, so you need to invoke 
the English version of the stemmer (other functions from NLTK and gensim are applicable to 
English by default). Next, you define a function stem that takes a word as an input and 
returns its stem as an output. Simple_preprocess functionality9 allows you to do several 
useful things at once: it converts input text to lowercase, splits it into tokens, and returns 
only the tokens that are longer than min_len characters, which is set to 4 characters 
(inclusive) here.10 Finally, you iterate through the tokens, and if a token is not in the 
stopwords list, you apply the stemming algorithm to it and add the resulting stem to the 
output stored in result. 

Listing 10.2 Code to preprocess the data using nltk and gensim 

import nltk 
import gensim 
from nltk.stem import SnowballStemmer    #A 
from gensim.utils import simple_preprocess    #B 
from gensim.parsing.preprocessing import STOPWORDS as stopwords    #B 
 
stemmer = SnowballStemmer("english")    #C 
 
def stem(text): 
    return stemmer.stem(text)    #D 
 
def preprocess(text): 
    result = [] 
    for token in gensim.utils.simple_preprocess(text, min_len=4):    #E 
        if token not in stopwords: 
            result.append(stem(token))    #F 
    return result 

#A Import SnowballStemmer from nltk   
#B From gensim, import simple_preprocess functionality and stopwords list 
#C Use English version of the stemmer 
#D Define a function stem that takes a word as an input and returns its stem as an output  
#E simple_preprocess functionality allows you to do several useful things at once 
#F If a token is not in the stopwords list, apply stemming and add the stem to result 

Let’s see what effect this preprocessing step has on a specific document. Code Listing 10.3 
applies preprocess function to the very first document from your selected newsgroups 
collection and prints the preprocessing result next to the original document: 
  

 
9 See detailed documentation here: https://radimrehurek.com/gensim/utils.html?highlight=gensim.util#module-gensim.utils  
10 The “magic” number of 4 here is based on the widely recognized observation that many frequent and not topically specific words are short (i.e., about 3 

characters in length). Such are, for example, common abbreviations like lol, omg, etc. At the same time, they are unlikely to be captured by most 
stopwords lists. 
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Listing 10.3 Code to inspect the results of the preprocessing step 

doc_sample = newsgroups_all.data[0]    #A 
print('Original document: ') 
print(doc_sample)    #B 
 
print('\n\nTokenized document: ') 
words = [] 
for token in gensim.utils.tokenize(doc_sample): 
    words.append(token) 
print(words)    #C 
 
print('\n\nPreprocessed document: ') 
print(preprocess(doc_sample))    #D 

#A Extract a specific original document from the collection, e.g. the first one at index 0   
#B Print out the original document as is 
#C Check the output of the gensim’s tokenizer, which is produced by gensim.utils.tokenize 
#D Check the output of the preprocess function defined in Listing 10.2 

Here is what this code will produce for the very first document from newsgroups_all: 

Original document:  
Hi Xperts! 
 
How can I move the cursor with the keyboard (i.e. cursor keys),  
if no mouse is available? 
 
Any hints welcome. 
 
Thanks. 
 
Tokenized document:  
['Hi', 'Xperts', 'How', 'can', 'I', 'move', 'the', 'cursor', 'with', 'the', 'keyboard', 

'i', 'e', 'cursor', 'keys', 'if', 'no', 'mouse', 'is', 'available', 'Any', 'hints', 
'welcome', 'Thanks'] 

 
Preprocessed document:  
['xpert', 'cursor', 'keyboard', 'cursor', 'key', 'mous', 'avail', 'hint', 'welcom', 

'thank'] 

You can observe the following: the original text contains over 30 word tokens, including 
punctuation marks. Gensim’s tokenizer11 splits input text by whitespaces and punctuation 
marks, returning individual word tokens excluding punctuation marks as a result. Finally, 
preprocess function does several things at the same time: it tokenizes input text internally, 
converts all word tokens into lowercase, excludes not only punctuation marks but also 
stopwords and words shorter than 4 characters in length (thus, for example, removing “i” 
and “e”, which come from “i.e.”, often not covered by stopwords lists), and finally, outputs 
stems of the remaining word tokens. Figure 10.11 visualizes how this preprocessing step 
extracts the content from the original document, efficiently reducing the dimensionality of 
the original space:  

 
11 Gensim’s tokenizer is part of the gensim.utils group of functions, see the description here – https://radimrehurek.com/gensim/utils.html  
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Figure 10.11 Preprocess function allows you to considerably reduce the dimensionality of your original 
feature space: it converts all words to lowercase, removes punctuation marks, stopwords and words shorter 
than 4 characters, and outputs a list of stems for the remaining words. 

You can also check how a particular set of documents is represented after the 
preprocessing steps are applied to the original texts. Code Listing 10.4 shows how to extract 
the preprocessed output from the first 10 documents in the collection: 

Listing 10.4 Code to inspect the preprocessing output for a group of documents 

for i in range(0, 10):    #A 
    print(str(i) + "\t" + ", ".join(preprocess(newsgroups_all.data[i])[:10]))    #B 

#A Iterate through the documents, for example, through the list of the first 10 ones   
#B Print out each document’s index followed by the list of up to 10 first stems from this document 

The code from this Listing outputs the following lists of stems for the first 10 documents in 
your collection: 

0   xpert, cursor, keyboard, cursor, key, mous, avail, hint, welcom, thank 
1   obtain, copi, open, look, widget, obtain, need, order, copi, thank 
2   right, signal, strong, live, west, philadelphia, perfect, sport, fan, dream 
3   canadian, thing, coach, boston, bruin, colorado, rocki, summari, post, gather 
4   heck, feel, like, time, includ, cafeteria, work, half, time, headach 
5   damn, right, late, climb, meet, morn, bother, right, foot, asleep 
6   olympus, stylus, pocket, camera, smallest, class, includ, time, date, stamp 
7   includ, follow, chmos, clock, generat, driver, processor, chmos, eras, prom 
8   chang, intel, discov, xclient, xload, longer, work, bomb, messag, error 
9   termin, like, power, server, run, window, manag, special, client, program 

As you can see, each document is concisely summarized by a list of meaningful words. 
Can you tell which topic each document is on? 

Now, since the LDA algorithm relies on word (or stem) occurrences to detect topics in 
documents, you need to make sure that the same word occurrences across documents can 
be easily and efficiently detected by the algorithm. For instance, if two documents contain 
the same words, e.g., program, server and processor, there is a high chance they are on the 
same topic. The most suitable data structure to use in this case is a dictionary where each 
word is mapped to a unique identifier. This way, the algorithm can detect which identifiers 
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(words) occur in which documents and establish the similarity between documents efficiently. 
In fact, you have used this idea in several previous applications. 

Code Listing 10.5 shows how to convert the full set of words occurring in the documents 
in your collection into a dictionary, where each word is mapped to a unique identifier, using 
gensim functionality. You start by preprocessing all documents in your collection using the 
function preprocess defined in Listing 10.2. Then, you check the length of the resulting 
structure – this should be equal to the number of documents you have, i.e., 9,850. After 
that, you extract a dictionary of terms from all processed documents, processed_docs, using 
gensim.corpora.Dictionary12  and check the size of the resulting dictionary. Finally, you 
check what is stored in this dictionary: for example, you can iterate through the first 10 
items, printing out key (the unique identifier of a word stem) and value (the stem itself). 

 Listing 10.5 Code to convert word content of the documents into a dictionary 

processed_docs = [] 
for i in range(0, len(newsgroups_all.data)): 
    processed_docs.append(preprocess(newsgroups_all.data[i]))    #A 
 
print(len(processed_docs))    #B 
     
dictionary = gensim.corpora.Dictionary(processed_docs) 
print(len(dictionary))    #C 
 
index = 0 
for key, value in dictionary.iteritems(): 
    print(key, value) 
    index += 1 
    if index > 9: 
        break    #D 

#A Preprocess all documents in your collection using the function preprocess defined in Listing 10.2   
#B Check the length of the resulting structure 
#C Extract a dictionary of terms from all processed documents using gensim.corpora.Dictionary 
#D Check what is stored in this dictionary: for example, iterate through the first 10 items  

The code above prints out the following output: 

9850 
39350 
 
0 avail 
1 cursor 
2 hint 
3 key 
4 keyboard 
5 mous 
6 thank 
7 welcom 
8 xpert 
9 copi 

 
12 See full documentation here: https://radimrehurek.com/gensim/corpora/dictionary.html  
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Exercise 10.3 
How can you interpret this output? How are the word stems mapped to unique identifiers? 
 

Figure 10.12 visualizes how the original content of the first document is converted into a 
succinct summary containing only the meaningful word stems after all preprocessing steps: 

 
Figure 10.12 As a result of all preprocessing steps, the content of the original document is summarized by a 
selected set of meaningful word stems. As the visualization of the end result on the right shows, each selected 
word stem is represented with its unique identifier, and all the other words are filtered out. 

Unfortunately, the dictionary that you end up with as a result of this step still contains a 
relatively high number of items – over 39,000, which would result in your algorithm being 
quite slow. Fortunately, there are further steps you can apply to reduce the dimensionality: 
for instance, as discussed in Exercise 10.2, you can apply some cut-off thresholds, removing 
very frequent words and very rare ones, since none of these extremities are likely to help 
topic modelling. Code Listing 10.6 shows how to use gensim functionality to first filter out the 
extremes – the words below and above certain frequency thresholds, and then convert each 
document into a convenient representation where the counts for each word from the 
dictionary are stored in tuples next to the word stem ids. Specifically, in this code, you use 
dictionary.filter_extremes13 to discard word stems that occur in fewer than 
no_below=10 documents and in more than no_above=50% of the total number of 
documents in your collection. If the resulting number is over 100,000 word stems, you keep 
only the most frequent keep_n=10000 of them. Then, you convert each document in the 
collection into a list of tuples, where the occurring word stem ids are mapped to the number 
of their occurrences. In the end, you can check how a particular document is represented. 
  

 
13 See documentation here: https://radimrehurek.com/gensim/corpora/dictionary.html  
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Listing 10.6 Code to perform further dimensionality reduction on the documents 

dictionary.filter_extremes(no_below=10, no_above=0.5, keep_n=100000) 
print(len(dictionary))    #A 
 
bow_corpus = [dictionary.doc2bow(doc) for doc in processed_docs] 
print(bow_corpus[0])    #B    

#A First, discard very rare and very frequent word stems; then, keep only keep_n most frequent of the rest 
#B Convert each document in the collection into a list of tuples and check the output 

The code above produces the following output: 

5868 
 
[(0, 1), (1, 2), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1)] 

This means that after the “extremes” – word stems occurring in fewer than 10 and in 
more than 50% of the original collection of 9,850 documents – have been filtered out, you 
are left with 5,868 items (word stems) in the dictionary. This is a much more compact 
space than the original 39,350. If you print out the contents of the very first document (the 
one that you’ve looked into before in the Code Listing 10.3 and Figure 10.11) you can see 
that the filtering step didn’t remove any of the word stems from this document, as they 
happen to not be within any of the “extremes”. In particular, the output like [(0, 1), (1, 2), 
(2, 1), …] tells you that the dictionary item with id=0 occurs 1 time in this document, id=1 
occurs 2 times, id=2 occurs 1 time, and so on. Since after filtering the “extreme” items out 
the dictionary ids returned by the code from Listing 10.5 might have been overwritten (i.e., if 
a word stem is filtered out from the dictionary because it falls within one or another extreme, 
its id is reused for the next word stem that is kept in the dictionary), it is useful to check 
which word stems are behind particular ids. Code Listing 10.7 shows how to do that. You 
start by extracting a particular document from bow_corpus, e.g., the very first one here. 
Then, you print out the ids, the corresponding word stems (extracted from dictionary), and 
the number of occurrences of these word stems in this document extracted from 
bow_corpus. 

Listing 10.7 Code to check word stems behind ids from the dictionary 

bow_doc = bow_corpus[0]    #A    
 
for i in range(len(bow_doc)): 
    print(f"Key {bow_doc[i][0]} =\"{dictionary[bow_doc[i][0]]}\":\ 
    occurrences={bow_doc[i][1]}")   #B    

#A Extract a particular document from bow_corpus, e.g., the very first one here 
#B Print out the ids, corresponding word stems and the number of occurrences of these word stems 

This code prints out the following output, which should be familiar to you now since you’ve 
already seen in Figure 10.11 what word stems the first document contains: 
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Key 0 ="avail":       occurrences=1 
Key 1 ="cursor":      occurrences=2 
Key 2 ="hint":        occurrences=1 
Key 3 ="key":         occurrences=1 
Key 4 ="keyboard":    occurrences=1 
Key 5 ="mous":        occurrences=1 
Key 6 ="thank":       occurrences=1 
Key 7 ="welcom":      occurrences=1 
Key 8 ="xpert":       occurrences=1 

Note you can inspect any document using this code: for instance, to check the content of 
the 100th document in your collection, all you need to do is access bow_doc = 

bow_corpus[99] in the first line of code in Listing 10.7. 

10.2.3 Applying the LDA model 
Now that the data is preprocessed and converted to the right format, let’s run the LDA 
algorithm and detect topics in your collection of documents from the 20 Newsgroups dataset. 
With gensim it is quite easy to do and running the algorithm is just a matter of setting a 
number of parameters. Code Listing 10.8 shows how to do that. You start by initializing 
id2word to the dictionary where each word stem is mapped to a unique ID. Then, you 
initialize corpus to the bow_corpus that you created earlier: this data structure keeps the 
information on the stem occurrence and frequency across all documents in the collection. 
Next, you initialize lda_model to the LDA implementation from gensim.14 This model requires 
a number of arguments, which are explicitly specified in this code. Let’s go through them one 
by one.  

First of all, you provide the model with corpus and id2word initialized earlier in this code. 
Since you have a bit of an insight into the data (specifically, you have extracted the data 
from 10 labelled topics), it is reasonable to ask the algorithm to find num_topics=10. In 
addition, if you would like to get same results every time you run the code, set 
random_state to some number, e.g., 100 here. You also need to specify how often the 
algorithm should update its topic distributions (e.g., after each document with 
update_every=1), and, for efficiency reasons, you should train it over smaller bits of data 
than the whole dataset (e.g., over chunks of 1000 documents with chunksize=1000) 
passing through training passes=10 times. Next, with alpha=`symmetric’ you make sure 
that topics are initialized in a fair way, and with iterations=100 you put an upper bound on 
the total number of iterations through the data. Finally, per_word_topics ensures that you 
learn word-per-topic as well as topic-per-document distributions. In the end, you print out 
the results: use -1 as an argument to print_topics to output all topics in the data, and for 
each of them, print out its index and the most informative words identified for the topic. 
  

 
14 See the full documentation and description of all arguments and methods applicable to the model here: 

https://radimrehurek.com/gensim/models/ldamodel.html  
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Listing 10.8 Code to run the LDA algorithm on your documents 

id2word = dictionary    #A 
corpus = bow_corpus    #B 
 
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus, 
                                           id2word=id2word,    #C 
                                           num_topics=10, 
                                           random_state=100,    #D 
                                           update_every=1, 
                                           chunksize=1000, 
                                           passes=10,    #E 
                                           alpha='symmetric', 
                                           iterations=100, 
                                           per_word_topics=True)    #F 
 
for index, topic in lda_model.print_topics(-1): 
    print(f"Topic: {index} \nWords: {topic}")    #G    

#A Initialize id2word to the dictionary where each word stem is mapped to a unique ID 
#B Initialize corpus to the bow_corpus that you created earlier 
#C Initialize lda_model to the LDA implementation from gensim 
#D It is reasonable to ask the algorithm to find num_topics=10 
#E Specify how often the algorithm should update its topic distributions and train it over smaller bits of data 
#F Set up the remaining parameters 
#G Output all topics and for each of them print out its index and the most informative words identified 

The code above produces the following output: 

Topic: 0  
Words: 0.021*"encrypt" + 0.018*"secur" + 0.018*"chip" + 0.016*"govern" + 0.013*"clipper" + 

0.012*"public" + 0.010*"privaci" + 0.010*"key" + 0.010*"phone" + 0.009*"algorithm" 
Topic: 1  
Words: 0.017*"appear" + 0.014*"copi" + 0.013*"cover" + 0.013*"star" + 0.013*"book" + 

0.011*"penalti" + 0.010*"black" + 0.009*"comic" + 0.008*"blue" + 0.008*"green" 
Topic: 2  
Words: 0.031*"window" + 0.015*"server" + 0.012*"program" + 0.012*"file" + 0.012*"applic" + 

0.012*"display" + 0.011*"widget" + 0.010*"version" + 0.010*"motif" + 0.010*"support" 
Topic: 3  
Words: 0.015*"space" + 0.007*"launch" + 0.007*"year" + 0.007*"medic" + 0.006*"patient" + 

0.006*"orbit" + 0.006*"research" + 0.006*"diseas" + 0.005*"develop" + 0.005*"nasa" 
Topic: 4  
Words: 0.018*"armenian" + 0.011*"peopl" + 0.008*"kill" + 0.008*"said" + 0.007*"turkish" + 

0.006*"muslim" + 0.006*"jew" + 0.006*"govern" + 0.005*"state" + 0.005*"greek" 
Topic: 5  
Words: 0.024*"price" + 0.021*"sale" + 0.020*"offer" + 0.017*"drive" + 0.017*"sell" + 

0.016*"includ" + 0.013*"ship" + 0.013*"interest" + 0.011*"ask" + 0.010*"condit" 
Topic: 6  
Words: 0.018*"mail" + 0.016*"list" + 0.015*"file" + 0.015*"inform" + 0.013*"send" + 

0.012*"post" + 0.012*"avail" + 0.010*"request" + 0.010*"program" + 0.009*"includ" 
Topic: 7  
Words: 0.019*"like" + 0.016*"know" + 0.011*"time" + 0.011*"look" + 0.010*"think" + 

0.008*"want" + 0.008*"thing" + 0.008*"good" + 0.007*"go" + 0.007*"bike" 
Topic: 8  
Words: 0.033*"game" + 0.022*"team" + 0.017*"play" + 0.015*"year" + 0.013*"player" + 

0.011*"season" + 0.008*"hockey" + 0.008*"score" + 0.007*"leagu" + 0.007*"goal" 
Topic: 9  
Words: 0.013*"peopl" + 0.012*"think" + 0.011*"like" + 0.009*"time" + 0.009*"right" + 

0.009*"israel" + 0.009*"know" + 0.006*"reason" + 0.006*"point" + 0.006*"thing" 

387

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

Figure 10.13 visualizes this output for the first topics listing the top 3 most highly 
weighted words in each for brevity: 

 
Figure 10.13 The output from Code Listing 10.8: for brevity, only the first 6 topics with their top 3 most 
informative words are included 

In this output, each topic with its unique id (since you are using an unsupervised 
approach, this algorithm cannot assign the labels, thus it returns ids) is mapped with a set of 
most informative words that help the algorithm associate documents with this specific topic. 
For instance, the first topic Topic 0 is characterized by such word stems as encrypt (for 
encryption, encrypted, etc.), secur (for secure, security, etc.) and chip; the third topic Topic 
2 can be identified by the word stems like window (as in Windows), server and program; and 
so on. Note that the numerical values included in front of the word stems show the relative 
weight of each word in the topic (or its probability score) and the + sign suggest that the 
topic is composed of all these words in the specified proportion. Now let’s attempt Exercise 
10.4: 

Exercise 10.4 
You have originally used the data on the following categories: [comp.windows.x, misc.forsale, rec.autos, 
rec.motorcycles, rec.sport.baseball, rec.sport.hockey, sci.crypt, sci.med, sci.space, talk.politics.mideast]. Based on the 
most informative words in each topic returned by the algorithm from Code Listing 10.8, can you assign each topic id 
with a topic label from this original list? 
 

Let’s discuss this exercise together. To begin with, this exercise should remind you of a 
similar Exercise 9.7 where you tried to interpret the clusters as topics based on the most 
informative words within each identified cluster. Let’s use a copy of Table 9.5 here to 
interpret the topics identified by LDA and map them to the clusters from Chapter 9 on the 
one hand and to the labels from the 20 Newsgroups dataset on the other. 
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Table 10.2 Possible topic labels for the identified topics 

Label Cluster Topic Label Cluster Topic 

comp.windows.x 4 2, 6 rec.sport.hockey 2 8 

misc.forsale 3(?), 5, 7 5, 7(?) sci.crypt 0 0, 
6(?) 

rec.autos 6 7 sci.med 1 3 

rec.motorcycles 6 7 sci.space 8 3 

rec.sport.baseball 2 8 talk.politics.mideast 3(?), 9 4, 9 

As you can see from the interpretation of the output, just like with another unsupervised 
approach, clustering, implemented in the last chapter, the LDA algorithm comes up with a 
topic allocation which does not necessarily coincide with the topic labels from the original 
dataset. Some original topics, e.g., rec.sport.baseball and rec.sport.hockey, appear to 
be merged into one topic, Topic 8. At the same time, such topics as 
talk.politics.mideast and misc.forsale are split into multiple groups – note that you’ve 
got a similar result from the clustering algorithm, which also split these topics into two 
clusters each. This shows that there might truly be quite diverse sub-topics discussed under 
both titles and they perhaps shouldn’t be thought of as single homogeneous topics. However, 
there is something new that is discovered by the LDA algorithm in the data, which was not 
observed in the clustering output: first of all, it seems like sci.med and sci.space 
correspond to a single topic, Topic 3. Since both topics are science-related (note that they 
both come from the sci. thread), the algorithm identifies their internal similarities. 
Secondly, the LDA algorithm identifies Topic 1, characterized by such word stems as copi 
(as in copies), book and comic. This is a novel discovery in the data, encompassing 
documents that potentially cover a yet unidentified topic related to books. Figure 10.14 
summarizes the topics discovered by LDA and maps them, where possible, to the labels from 
the 20 Newsgroups data: 
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Figure 10.14 Summary of the topics discovered by the LDA algorithms with the labels from the 20 
Newsgroups dataset assigned to the identified topics, where possible 

10.2.4 Exploring the results 
Given that you are working with an unsupervised algorithm, it may be hard to interpret the 
results in a precise quantitative way. In this section, you’ll be looking into several approaches 
to results exploration. 

First of all, we’ve said earlier in this chapter that the LDA algorithm interprets each 
document as a mixture of topics. It is, in fact, possible to measure the contribution of the 
topics and, in particular, identify the main contributing topic for each document together with 
its most informative words. Code Listing 10.9 does exactly that. In this code, you first define 
a function analyse_topics that takes as input the LDA model, the word-frequency-per-
document structure from the corpus, and the original collection of texts. This function 
returns as output the main topic for each document (stored in main_topic), contribution of 
this topic to the mixture of topics in the document (stored in percentage), the most 
informative words (stored in keywords), and the original word stems from the document (in 
text_snippets). Then, for each document in the collection (corpus), you extract the most 
probable topic mixture identified by LDA as topic_list[0], sort the topics from the most 
probable to the least probable using sorted(…, reverse=True) applied to the topic probability 
score stored in field x[1],15 and extract the most probable topic from the resulting 
interpretation. It can be identified as the first item in the sorted list (thus, the identifier j=0), 
and it corresponds to a tuple (topic id, topic proportion). Next, you extract topic 
keywords using show_topic functionality16 and store the main topic id (topic_num), topic 

 
15 See https://docs.python.org/3/howto/sorting.html on sorting with a lambda expression. 
16 Check documentation here: https://radimrehurek.com/gensim/models/ldamodel.html  
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contribution as percentage rounded up to 4 digits after the decimal point (prop_topic), the 
first 5 most informative topic keywords (topic_keywords), and a list of up to 8 word stems 
from the original text (the limit of 8 is chosen for readability purposes only). Finally, you 
apply the analyse_topic function to the dataset and store the results. 

Listing 10.9 Code to identify the main topic for each document in the collection 

def analyse_topics(ldamodel, corpus, texts):    #A 
    main_topic = {} 
    percentage = {} 
    keywords = {} 
    text_snippets = {}    #B 
     
    for i, topic_list in enumerate(ldamodel[corpus]): 
        topic = topic_list[0]             
        topic = sorted(topic, key=lambda x: (x[1]), reverse=True)    #C 
 
        for j, (topic_num, prop_topic) in enumerate(topic): 
            if j == 0:    #D 
                wp = ldamodel.show_topic(topic_num)    #E 
                topic_keywords = ", ".join([word for word, prop in wp[:5]]) 
                main_topic[i] = int(topic_num) 
                percentage[i] = round(prop_topic,4) 
                keywords[i] = topic_keywords 
                text_snippets[i] = texts[i][:8]    #F 
            else: 
                break 
    return main_topic, percentage, keywords, text_snippets 
 
main_topic, percentage, keywords, text_snippets = analyse_topics( 
    lda_model, bow_corpus, processed_docs)    #G 

#A analyse_topics takes as input the LDA model, corpus, and the original collection of texts 
#B Return the main topic, its contribution, the most informative words, and the original word stems 
#C For each document in the collection, extract the most probable topic mixture and sort the topics 
#D Extract the most probable topic from the resulting interpretation 
#E Extract topic keywords using show_topic functionality 
#F Store the main topic id, its contribution, the most informative topic keywords, and a list of word stems 
#G Apply the analyse_topic function to the dataset and store the results 

Next, Code Listing 10.10 shows how to print out the results for a specified range of 
documents using a convenient tabulated format. 
  

391

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

Listing 10.10 Code to print out the main topic for each document in the collection 

indexes = [] 
rows = [] 
for i in range(0, 10):    #A 
    indexes.append(i) 
rows.append(['ID', 'Main Topic', 'Contribution (%)', 'Keywords', 'Snippet']) 
 
for idx in indexes: 
    rows.append([str(idx), f"{main_topic.get(idx)}",  
                f"{percentage.get(idx):.4f}", 
                f"{keywords.get(idx)}\n", 
                f"{text_snippets.get(idx)}"]) 
 
columns = zip(*rows) 
column_widths = [max(len(item) for item in col) for col in columns] 
for row in rows: 
    print(''.join(' {:{width}} '.format(row[i], width=column_widths[i])  
                  for i in range(0, len(row))))    #B 

#A Extract the output for the first 10 documents for simplicity 
#B Use the familiar printout routine to print the results in a tabulated manner 

The code above returns the following output for the first 10 documents in the collection ([…] 
is used to truncate the output for space reasons, and a table is used to make the output 
more readable). Note that you can always print the output for any specified number of 
documents, as well as return more than 5 most informative keywords per topic and more 
than 8 word stems from each document – just change these settings in the code in Listing 
10.9. 

ID Main 
Topic 

Contribution (%) Keywords Snippet 

0 2 0.8268 window, server, program, 
file, applic 

['xpert', 'cursor', 'keyboard', 'cursor', 'key', 
'mous', 'avail', 'hint'] 

1 6 0.4742 mail, list, file, inform, send ['obtain', 'copi', 'open', 'look', 'widget', 
'obtain', 'need', 'order'] 

[…] 

3 8 0.4159             game, team, play, year, 
player 

['canadian', 'thing', 'coach', 'boston', 'bruin', 
'colorado', 'rocki', 'summari'] 

[…] 

9 2 0.6383             window, server, program, 
file, applic 

['termin', 'like', 'power', 'server', 'run', 
'window', 'manag', 'special'] 

As this output suggests, both the first and the 10th documents are on Topic 2, characterized 
by such keywords as server, program, and file (you can also see from the text snippets why 
these documents may be topically related). At the same time, document 3 is on a topic 
related to sports, as is exemplified by such keywords as game, team, and play. 

Finally, we’ve started this chapter with the discussion on the LDA model saying that this 
is a unique model that allows you to investigate the interplay between words and topics in 
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the documents. So far, your analysis of the results didn’t allow you to appreciate the full 
extent of the model predictions. Luckily, there are a number of helpful visualization tools 
developed around this model, one of which – pyLDAvis – is particularly useful for the 
analysis.17 This tool provides you with an interactive interface to the LDA output, where you 
can explore both the topic distribution per documents in your collection and word distribution 
per topic, which is very useful when you try to interpret the output of the LDA model. You 
can run this tool and visualize the results directly in the Jupyter notebook, or you can save 
the results in an external HTML file. Code Listing 10.11 introduces the use of this tool in a 
concise piece of code. In this code, you start by import pyLDAvis functionality18 and making 
sure that the results can be visualized within the notebook. To apply the visualization tool, 
you’ll need to pass in the LDA model, the data with the word occurrences in corpus, and the 
mapping between word stems and their ids from id2word as arguments.19 Finally, you can 
run the visualization and inspect the results in the notebook. 

Listing 10.11 Code to visualize the output of LDA using pyLDAvis 

import pyLDAvis.gensim    #A 
pyLDAvis.enable_notebook()    #B 
vis = pyLDAvis.gensim.prepare(lda_model, corpus, dictionary=lda_model.id2word)    #C 
vis    #D 

#A Import pyLDAvis functionality 
#B Make sure the results can be visualized in the notebook 
#C Pass in the LDA model, the data with the word occurrences, and the mapping between word stems and their ids 
#D Run the visualization 

This code produces an interactive visualization of the words and topics, which you can 
directly explore in your notebook. The topics are represented as bubbles of the size relative 
to their distribution in the data (in addition, bubbles representing similar topics are located 
closer to each other in the space on the left), and the word stem list on the right shows 
contribution of each stem to each topic. You can hover your mouse over both the topics on 
the left exploring word contribution to the topic, and over the words on the right exploring 
word membership within various topics.  

 
17 This tool is available at https://github.com/bmabey/pyLDAvis. Install it following the instructions prior to running the code from Listing 10.11. 
18 Note: for newer versions of the tools, use import pyLDAvis.gensim_models 
19 Note: for newer versions of the tools, use pyLDAvis.gensim_models.prepare(…) 
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Figure 10.15 Topic 9 visualized with a bubble on the left is composed of all the words that are highlighted in 
the list on the right. From these words’ composition, you can tell that Topic 9 here corresponds to sales. The 
words are ordered by their relative contribution to the topic: e.g., price and sale are the main contributors, and 
most of their use corresponds to the documents on sales. At the same time, good contributes to this topic but, 
as the chart shows, it is also used elsewhere. 

For instance, Figure 10.15 visualizes word composition for a specific topic, denoted as 
Topic 9, which can be interpreted as a sales topic: it contains words like price, sale, offer, 
etc. At the same time, the chart on the right makes it clear that sale contributes to this topic 
fully, while price is almost fully associated with this topic, and words like good and work 
contribute to this topic only partially, since they probably are widely used elsewhere. 

How can you check where the rest of the word “weight” goes? If you hover over the 
words in the chart on the right, it will show you the topic membership for the words, 
highlighting the relevant topic bubbles. For instance, Figure 10.16 shows that the word game 
(highlighted in bold) is associated with two topics – one related to sales, and another to 
sports. 

394

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

 
Figure 10.16 Word game is associated with two topics: when you hover over it on the right, two topic bubbles 
are highlighted on the left – Topic 9 associated with anything sales-related, and Topic 5 associated with 
sports. The relative size of the bubbles tells you that game is much more strongly associated with the sports 
Topic 5. 
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10.3 Summary 
• Topic analysis as addressed within the unsupervised paradigm allows the applied 

algorithm to explore the data and identify interesting correspondences without any 
regard to predefined labels. 

• Specifically, Latent Dirichlet Allocation (LDA) is a widely used unsupervised approach 
for topic modelling. This approach treats each document as a mixture of topics and 
allows you to explore both document composition in terms of topics and topic 
composition in terms of words.20 

• LDA is a generative model. It assumes that each document is generated by an 
abstract generative process, which first selects an appropriate topic according to topic 
distribution and then picks words from this topic according to the word distribution 
per topic. 

• The topic structure, including the topics themselves, their distributions in documents, 
and word-to-topic assignments, is a latent (i.e., hidden) structure, thus the name of 
the algorithm. It is estimated and adjusted on the basis of the only observed 
parameter – words in documents. 

• Word distribution and topic distribution are the two fundamental blocks in the 
algorithm. The algorithm tries to estimate them directly from the data.  

• Gensim is another useful NLP toolkit. It is particularly suitable for all tasks around 
word meaning and topic modelling. 

• Using gensim, you can not only preprocess textual data but also apply an LDA model. 
As a result, this algorithm may help you discover new topics in the data.  

• As is common with unsupervised approaches, the results may be hard to evaluate 
quantitatively. pyLDAvis is an interactive visualization toolkit for topic modelling 
interpretation, which allows you to explore topic composition in terms of words and 
word membership in terms of topics. 

  

 
20 If you’d like to learn more about this insightful algorithm, check David Blei’s homepage here: http://www.cs.columbia.edu/~blei/topicmodeling.html, 

and take a look at his introductory paper on Probabilistic Topic Models here: http://www.cs.columbia.edu/~blei/papers/Blei2012.pdf  
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10.4 Solutions to exercises 
Solution to Exercise 10.2: 
You have done feature selection and come across dimensionality reduction in a number of 

previous applications. Often, this process relies on your intuitions or observations on the task 
and the data. Alternatively, you can run some preliminary experiments to figure out what the 
best settings for a specific algorithm would be. The following are reasonable choices for this 
scenario: 

a) The choice you are given is between considering each word form, for example, “car” 
and “cars”, “welcome” and “welcoming”, as a separate feature; or converting every 
word form to its dictionary version (i.e. lemma), which will merge “car” and “cars” into 
a single representation “car”; or extracting the core of each word form (stem), thus 
merging some words and lemmas even further – for instance, this will result in both 
“welcome” and “welcoming” to be represented as “welcom”.21 This means that the 
solution that results in the larger number of features is the one that relies on full word 
forms, however there is often no topic-related difference between “car” and “cars” or 
“sell” and “sells”. In practice, for algorithms that quickly increase in complexity with 
the number of features it is better to consider lemmatization or stemming. Stemming 
produces a more condensed feature space as compared to lemmatization, thus it 
would make the algorithm more efficient. The downside may be that, depending on 
the data, it might occasionally merge topically different words into a single 
representation. 

b) You may consider any or all of the following strategies:  

o removing stopwords since they usually do not bear any topic-related meaning 
(examples include “not”, “of”, “a”, etc.) 

o remove any other words that are likely to not bear any topic-related meaning even 
if they are not covered by a particular stopwords list – often such words are short 
ones (examples include various abbreviations like “lol” or “omg”) 

o remove extremely rare words as they might not occur in any further documents 
o remove very frequent words – just like stopwords, they are unlikely to distinguish 

between topics (an example of such a word is “post”, which might be used in a 
wide range of posts in the newsgroups data) 

Solution to Exercise 10.3: 
The first line simply tells you that all 9,850 documents from the original collection have 

been successfully preprocessed and stored in the processed_docs list. The number of word 
stems in the dictionary is printed next – it equals 39,350. Finally, you can see a list of the 
first 10 word stems from the created dictionary, where each identifier is mapped uniquely 
to a stem. For instance, the very first document that you looked into in the Code Listing 10.3 
and which was analyzed in Figure 10.11 consists of the following stems: ['xpert', 'cursor', 
'keyboard', 'cursor', 'key', 'mous', 'avail', 'hint', 'welcom', 'thank']. Note that there are 10 

 
21 This is a reminder on the differences between lemmas and lemmatization on the one hand, and stems and stemming on the other. We discussed these 

two preprocessing techniques in more detail in Chapter 3.  
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stems altogether, however cursor occurs in this list twice. When gensim converts the lists of 
words from each document into a single dictionary, it does two things: first, each word can 
only map to a single identifier, so that multiple occurrences of the same word are mapped to 
the same identifier; and second, the words are ordered alphabetically. If you wanted to 
manually convert ['xpert', 'cursor', 'keyboard', 'cursor', 'key', 'mous', 'avail', 'hint', 'welcom', 
'thank'] into a dictionary of terms using this strategy, you would first sort the words 
alphabetically as in ['avail', 'cursor', 'cursor', 'hint', 'key', 'keyboard', 'mous', 'thank', 
'welcom', 'xpert']; then you would remove duplicates; and finally, you would assign unique 
identifiers to each word stem as in [0='avail', 1='cursor', 2='hint', 3='key', 4='keyboard', 
5='mous', 6='thank', 7='welcom', 8='xpert'] – and this is precisely the output that you are 
getting from Code Listing 10.5. Once the algorithm is finished with the document 1, it moves 
on to the next document, applies the same procedure and appends the other unique words 
to the dictionary: for instance, you see that key 9 corresponds to the word stem copi, 
which comes from the second document (you can see this word stem in the output from the 
Code Listing 10.4).  
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Named Entity Recognition 

This chapter covers 

• Introduction to the task of Named Entity Recognition (NER) 
• Overview of sequence labelling approaches in NLP using NER as an example 
• Integration of NER into downstream tasks 
• Introduction to further data preprocessing tools and techniques (pandas) 

Previous chapters overviewed a number of NLP tasks: from binary classification tasks, such 
as author identification and sentiment analysis, to multi-class classification tasks, such as 
topic analysis. These applications deployed machine learning models and relied on a range of 
linguistic features, most often related to words or word characteristics. While it is true that 
individual words express information useful in the context of many NLP applications, often 
the information-bearing unit is actually larger than a single word. In chapter 4, you looked 
into the task of Information Extraction. Here is a reminder: this task allows you to extract 
facts and relevant information from an otherwise unstructured data, such as, for example, 
raw unprocessed text. As we discussed in chapter 4, this task is instrumental in a number of 
applications – from information management to database completion, to question answering. 
For instance, suppose you have a collection of texts on various personalities, including the 
Wikipedia article on Albert Einstein.1 Figure 11.1 shows a sentence from this article: 

 
1 https://en.wikipedia.org/wiki/Albert_Einstein  
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Figure 11.1 A sentence from the Wikipedia article on Albert Einstein with the critical information chunks 
(entities) highlighted. 

This single sentence provides you with answers to a whole range of questions, including: 

• Who was born in Ulm on 14 March 1879 [Albert Einstein] 
• Where was Albert Einstein born? [in Ulm, in the Kingdom of Wurttemberg, in the 

German Empire] 
• Where was Ulm located? [in the Kingdom of Wurttemberg, in the German Empire] 
• Where was the Kingdom of Wurttemberg located? [in the German Empire] 
• When was Albert Einstein born? [14 March 1879]  

Note that the majority of these questions require groups of words rather than single 
words as an answer: for instance, answering Albert to Who was born in Ulm on 14 March 
1879?, or 14 to When was Albert Einstein born? would be unsatisfactory. This means that the 
algorithm extracting relevant information from this sentence needs to take into account the 
possibility that groups of words may represent a single entity: specifically, in this sentence 
such entities are “Albert Einstein”, “Ulm”, “the Kingdom of Wurttemberg”, “the German 
Empire”, and “14 March 1879”, and each of them should be expected as a full answer to the 
relevant question. 

In addition, you may note that the entities identified in the sentence are also of different 
types: for example, “Albert Einstein” is a person (so are also “Pope”, “Madonna”, “Harry 
Potter”, etc.), “14 March 1879” is a date (so are also “1879”, “March 1879”, “14 March”, 
etc.), and “Ulm”, “the Kingdom of Wurttemberg”, and “the German Empire” are geo-political 
entities. Knowing the type of entity can also be used by the algorithm in such tasks as 
information extraction and question answering: for example, a question of the type Who …? 
should be answered with an entity of the type person, Where …? with a location or a geo-
political entity, and When …? with a date, since violating these restrictions would produce 
non-sensical answers.  

In this chapter, you will be working with the task of Named Entity Recognition (NER), 
concerned with detection and type identification of named entities. Named entities are real-
world objects (people, locations, organizations) that can be referred to with a proper name. 
The most widely used entity types include person, location (abbreviated as LOC), 
organization (abbreviated as ORG), and geo-political entity (abbreviated as GPE) – you have 
already seen examples of some of these, and this chapter will discuss other types in the due 
course. In practice, the set of named entities is extended with further expressions such as 
dates, time references, numerical expressions (for example, referring to money and currency 
indicators), and so on. Moreover, the types listed so far are quite general, but NER can also 
be adapted to other domains and application areas: for example, in bio-medical applications 
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“entities” can denote different types of proteins and genes, in the financial domain they can 
cover specific types of products, and so on. 

We will start this chapter with an overview of the named entity types and challenges 
involved in NER, and then we will discuss the approaches to NER adopted in practice. 
Specifically, such approaches rely on the use of machine learning algorithms, but more 
importantly, they also take into account sequential nature of language. Finally, you will learn 
how to apply NER in practice: named entities play an important role in natural language 
understanding (you have already seen examples from question answering and information 
extraction) and can be combined with the tasks that you addressed earlier in this book. Such 
tasks, which rely on the output of NLP tools (e.g., NER models) are technically called 
downstream tasks, since they aim to solve a problem different from, e.g., NER itself, but at 
the same time they benefit from knowing about named entities in text. For instance, 
identifying entities related to people, locations, organizations, and products in reviews can 
help better understand user’s or customer’s sentiment towards particular aspects of the 
product or service. 

To give you some examples, Figure 11.2 illustrates the use of NER for two downstream 
tasks. In the context of question answering, NER helps to identify the chunks of text that can 
answer a specific type of a question: for example, NEs denoting locations (LOC), or geo-
political entities (GPE) are appropriate as answers for a Where-question. In the context of 
information extraction, NER can help identify useful characteristics of a product that may be 
informative on their own or as features in a sentiment analysis or another related task.  

 
Figure 11.2 Downstream tasks relying on NER information: question answering (top) and information 
extraction (bottom). 
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Another example of a downstream task in which NER plays a central role is stock market 
movement prediction: it is widely known that certain types of events influence the trends in 
stock price movements.2 For example, the news about Steve Job’s death impacted Apple’s 
stock price negatively immediately after the event, while the news about Microsoft buying a 
new mobile phone business impacted its stock price positively. Suppose your goal is to build 
an application that can extract relevant facts from the news (e.g., “Apple’s CEO died”, 
“Microsoft buys mobile phone business”, “Oracle sues Google”, etc.) and then use these facts 
to predict stock prices for these companies. Figure 11.3 visualizes this idea. 

 
Figure 11.3 Stock market prices movement prediction based on the events reported in the news. 

Let’s formulate a scenario for this downstream task: it is widely known that certain 
events influence the trends of stock price movements: specifically, you can extract relevant 
facts from the news and then use these facts to predict company stock prices. Suppose you 
have access to a large collection of news; now your task is to extract the relevant events and 
facts that can be linked to the stock market in the downstream (stock market price 
prediction) application. How will you do that? 

11.1 Named Entity Recognition: Definitions and Challenges 
Let’s look closely into the task of Named Entity Recognition, provide definitions for various 
types of entities, and discuss challenges involved in this task. 

 
2 For more examples and justification, see Ding et al. (2014). Using Structured Events to Predict Stock Price Movement: An Empirical Investigation 

(https://emnlp2014.org/papers/pdf/EMNLP2014148.pdf).  
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11.1.1 Named Entity Types 
Let’s start by defining the major named entity types and their usefulness for downstream 
tasks. Figure 11.4 shows entities of five different types (GPE for geo-political entity, ORG for 
organization, CARDINAL for cardinal numbers, DATE, and PERSON) highlighted in a typical 
sentence that you could see on the news. 

 
Figure 11.4 Named entities of five different types highlighted in a typical sentence from the news. 

The notation used in this sentence is standard for the task of named entity recognition: 
some labels like DATE and PERSON, are self-explanatory; others are abbreviations or short 
forms of the full labels (e.g., ORG used for organization, and GPE for geo-political entities). 
The set of labels comes from the widely adopted annotation scheme in OntoNotes.3 What is 
important from a practitioner’s point of view is that this is the scheme that is used in NLP 
tools, including spaCy. Table 11.1 lists all named entity types typically used in practice and 
identified in text by spaCy’s NER component and provides a description and some illustrative 
examples for each of them.  
  

 
3 See full documentation here: https://catalog.ldc.upenn.edu/docs/LDC2013T19/OntoNotes-Release-5.0.pdf  
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Table 11.1 A comprehensive list of named entity labels with their descriptions and some 
illustrative examples. 

Type Description Example 

CARDINAL Numerals that do not fall under any other 
type 

I bought two books on Amazon for $20 

DATE Absolute or relative dates or periods I’m leaving tomorrow 

EVENT Named hurricanes, battles, wars, sports 
events, etc. 

The Olympic Games are held in Tokyo 

FAC Facilities: buildings, airports, highways, 
bridges, etc. 

I’m flying out of the JFK Airport 

GPE Geo-political entities: countries, cities, states New York is about 200 miles away from 
Washington DC 

LANGUAGE Any named language He speaks Japanese fluently 

LAW Named documents made into laws The American Constitution was the first 
complete written national constitution 

LOC Non-GPE locations: e.g., mountain ranges, 
bodies of water 

They are travelling down the Amazon 
River 

MONEY Monetary values, including unit I bought two books on Amazon for $20 

NORP Nationalities, religious or political groups The Canadians won the hockey game 
on Sunday night 

ORDINAL “First”, “second”, etc. The American Constitution was the first 
complete written national constitution 

ORG Organizations: companies, agencies, 
institutions, sports teams, etc. 

I bought two books on Amazon for $20 

PERCENT Percentage (including “%”) I bought two books on Amazon with a 
20% discount 

PERSON People, including fictional Harry Potter attended Hogwarts: School 
of Witchcraft and Wizardry 

PRODUCT Vehicles, weapons, foods, etc. (not services) The new MacBook Air is three times 
faster than other laptops 

QUANTITY Measurements, as of weight or distance New York is about 200 miles away from 
Washington DC 

TIME Times smaller than a day The Canadians won the hockey game 
on Sunday night 

WORK_OF_ART Titles of books, songs, etc. The Mona Lisa is a portrait painting by 
Leonardo da Vinci 

A couple of observations are due at this point: first of all, note that named entities of any 
type can consist of a single word (e.g., “two” or “tomorrow”) as well as a longer expression 
(e.g., “MacBook Air” or “about 200 miles”). Secondly, the same word or expression may 
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represent an entity of a different type depending on the context: for example, Amazon may 
refer to a river (LOC) or to a company (ORG). The next section will look into details of NER, 
but before we do that let’s get more experience with NER as Exercise 11.1 suggests. 

Exercise 11.1 
The NE labelling presented in Table 11.1 is used in spaCy. Familiarize yourself with the types and annotation by 
running spaCy’s NER on a selected set of examples: you can use the sentences from Table 11.1 or experiment with 
your own set of sentences. Do you disagree with any of the results? 

 
Code in Listing 11.1 provides you with a starting point. 

 

Listing 11.1 Code to run spaCy’s NER on a sentence 

import spacy 
nlp = spacy.load(“en_core_web_md”)    #A 
 
doc = nlp(“I bought two books on Amazon”)    #B 
for ent in doc.ents: 
    print(ent.text, ent.label_)    #C 
 

#A Import spacy and load a language model: en_core_web_md stands for the middle-size model4  
#B Process a selected sentence using spacy’s NLP pipeline 
#C For each identified entity, print out the entity itself and its type  

The code from this Listing prints out the following output: 

two CARDINAL 
Amazon ORG 

11.1.2 Challenges in Named Entity Recognition 
NER is a task concerned with identification of a word or phrase that constitutes an entity and 
with detection of the type of the identified entity. As examples from the previous section 
suggest, each of these steps has its own challenges. Before you read about these challenges, 
think about the question posed in Exercise 11.2. 

Exercise 11.2 
What challenges can you identify in NER, based on the examples from Table 11.1? 
 

Let’s look into these challenges together. 

 
4 Check out the different language models available for use with spaCy: https://spacy.io/models/en. Small model (en_core_web_sm) is suitable for 

most purposes and is more efficient to upload and use. However, larger models like en_core_web_md (medium) and en_core_web_lg (large) 
are more powerful and some NLP tasks will require the use of such larger models. The models should be installed prior to running the code examples 
with spacy. You can also install the models from within the Jupyter notebook using the command, e.g., !python -m spacy download 
en_core_web_md 
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• The first task that a NER algorithm solves is full entity span identification. As you can 
see in the examples from Figure 11.2 and Table 11.1, some entities consist of a single 
word, while others may span whole expressions, and it is not always trivial to identify 
where an expression starts and where it finishes. For instance, does the full entity 
consist of Amazon or Amazon River? It would seem reasonable to select the longest 
sequence of words that are likely to constitute a single named entity. However, 
compare the following two sentences: 

o Check out our [Amazon River]LOC maps selection. 
o On [Amazon]ORG [River maps]PRODUCT from ABC Publishers are sold for $5.5 

The first sentence contains a named entity of the type location (Amazon River). Even 
though the second sentence contains the same sequence of words, each of these two 
words actually belongs to a different named entity – Amazon is an organization, while 
River is part of a product name River maps. 

• Examples below illustrate one of the core reasons for why natural language processing 
is challenging – ambiguity. You have seen some examples of sentences with 
ambiguous analysis before, for example, when we discussed parsing and part-of-
speech tagging in chapter 4. For NER, ambiguity poses a number of challenges: one is 
related to span identification, as demonstrated above; another one is related to the 
fact that the same words and phrases may or may not be named entities. For some 
examples, consider the following pairs, where the first sentence in each pair contains 
a word used as a common, general noun, and the second sentence contains the same 
word being used as (part of) a named entity: 

o An apple a day keeps a doctor away vs. Apple announces a new iPad Pro 
o Turkey is the main dish served at Thanksgiving vs. Turkey is a country with 

amazing landscapes 
o The tiger is the largest living cat species vs. Tiger Woods is an American 

professional golfer 

Can you spot any characteristics distinguishing the two types of word usage (as a 
common noun vs. as a named entity) that may help the algorithm distinguish between 
the two? Think about this question, and we will discuss the answer to it in the next 
section.  

• Finally, as you have seen in the examples in Table 11.1, ambiguity in NER poses a 
challenge not only when the algorithm needs to define whether a word or a phrase is 
a named entity or not. Even if a word or a phrase is identified to be a named entity, 
the same entity may belong to different NE types. For example, Amazon may refer to 
a location or a company, April may be a name of a person or a month, JFK may refer 
to a person or a facility, and so on. The following examples are borrowed from Speech 
and Language Processing by Jurafsky and Martin and demonstrate as many as 4 

 
5 If this sentence baffles you, try adding a comma as in “On Amazon, River maps from ABC Publishers are sold for $5”. 
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different uses of the word Washington:6 

o WashingtonPER was born into slavery on the farm of James Burroughs. 
o WashingtonORG went up 2 games to 1 in the four-game series. 
o Blair arrived in WashingtonLOC for what may well be his last state visit. 
o In June, WashingtonGPE passed a primary seatbelt law. 

Note that in all these examples Washington is a named entity, but in each case, it is a 
named entity of a different type, as is clear from the surrounding context. 

This means that an algorithm has to identify the span of a potential named entity and 
make sure the identified expression or word is indeed a named entity, since the same phrase 
or word may or may not be a NE depending on the context of use. But even when it is 
established that an expression or a word is a named entity, this named entity may still 
belong to different types. How does the algorithm deal with these various levels of 
complexity? 

First of all, a typical NER algorithm combines the span identification and the named entity 
type identification steps into a single, joint task. Secondly, it approaches this task as a 
sequence labelling problem: specifically, it goes through the running text word-by-word and 
tries to decide whether a word is part of a specific type of a named entity. Figure 11.5 
provides the mental model for this process. 

 
Figure 11.5 Mental model for sequence labelling used to identify NEs in text. 

In fact, many tasks in NLP are framed as sequence labelling tasks, since language has a 
clear sequential nature. We have not looked into sequential tasks and sequence labelling in 
this book before, so let’s discuss this topic now. 

11.2 Named Entity Recognition as a Sequence Labelling Task 
Let’s look closely into what it means for a task to be a sequence labelling task and how this is 
applied to named entity recognition. You might have noticed from the examples overviewed 

 
6 See Section 8.3: https://web.stanford.edu/~jurafsky/slp3/8.pdf  
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in the previous section that ambiguity is present at various levels in language processing, yet 
whether a word or a phrase is a named entity or not and which type of a named entity it is 
depends on the context. Not surprisingly, named entity recognition is addressed using 
machine learning algorithms, which are capable of learning useful characteristics of the 
context. NER is typically addressed with supervised machine learning algorithms, which 
means that such algorithms are trained on annotated data. To that end, let’s start with the 
questions of how the data should be labelled for sequential tasks such as named entity 
recognition in a way that the algorithm can benefit from the most. 

11.2.1 The Basics: BIO Scheme 
Let’s look again at the example of a sentence with different types of named entities, 
presented in Figure 11.4. 

We said before that the way the NER algorithm identifies named entities and their types 
is by considering every word in sequence and deciding whether this word belongs to a named 
entity of a particular type. For instance, in Apple Inc. the word Apple is at the beginning of a 
named entity of type ORG and Inc. is at its end. Explicitly annotating the beginning and the 
end of a named entity expression and training the algorithm on such annotation helps it 
capture the information that if a word Apple is classified as beginning a named entity ORG, it 
is very likely that it will be followed by a word that finishes this named entity expression. 

The labelling scheme that is widely used for Named Entity Recognition and similar 
sequence labelling tasks is called BIO scheme, since it comprises three types of tags – 
Beginning, Inside, and Outside. We said that the goal of a NER algorithm is to jointly assign 
to every word its position in a named entity and its type, so in fact this scheme is expanded 
to accommodate for the type tags, too: for instance, there are tags B-PER and I-PER for the 
words beginning and inside of a named entity of the PER type; similarly, there are B-ORG, I-
ORG, B-LOC, I-LOC tags, and so on. O-tag is reserved for all words that are outside of any 
named entity and, for that reason, it does not have a type extension. Figure 11.6 shows the 
application of this scheme to the short example “the company’s CEO Tim Cook said”. 

 
Figure 11.6 BIO scheme applied to “tech giant Apple Inc.” 

In total, there are 2n+1 tags for n named entity types plus a single O-tag: for the 18 NE 
types from the OntoNotes presented in Table 11.1, this amounts to 37 tags in total. BIO 
scheme has two further extensions that you might encounter in practice: a less fine-grained 
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IO scheme, which distinguishes between the Inside and Outside tags only, and a more fine-
grained BIOES scheme, which also adds an End-of-entity tag for each type and a Single–
word entity for each type that consists of a single word. Table 11.2 illustrates the application 
of these annotation schemes to the beginning of our example: 

Table 11.2 NER as a sequence labelling task, showing IO, BIO, and BIOES taggings. The 
notation “…” is used for space reasons for all words that are outside any named entities – they 
are all marked as O. 

Words IO label BIO label BIOES label 

U.S. I-GPE B-GPE S-GPE 

tech O O O 

giant O O O 

Apple I-ORG B-ORG B-ORG 

Inc. I-ORG I-ORG E-ORG 

… O O O 

some I-CARDINAL B-CARDINAL B-CARDINAL 

100 I-CARDINAL I-CARDINAL E-CARDINAL 

… O O O 

the I-DATE B-DATE B-DATE 

last I-DATE I-DATE I-DATE 

six I-DATE I-DATE I-DATE 

years I-DATE I-DATE E-DATE 

, O O O 

This annotation is then used to train the sequential machine learning algorithm, described in 
the next section. Before you look into that, try solving Exercises 11.3 and 11.4. 

Exercise 11.3 
Table 11.2 doesn’t contain the annotation for the rest of the sentence. Provide the annotation for “the company’s CEO 
Tim Cook said” using the IO, BIO, and BIOES schemes. 
 

Exercise 11.4 
The complexity of a supervised machine learning task depends on the number of classes to distinguish between. The 
BIO scheme consists of 37 tags for 18 entity types. How many tags are there in the IO and BIOES schemes? 
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11.2.2 What does it Mean for a Task to be Sequential? 
Many real-word tasks show sequential nature. As an illustrative example, let’s consider how 
the temperature of water changes with respect to various possible actions applied to it: 
suppose water can stay in one of three states – cold, warm, or hot, as Figure 11.7 (left) 
illustrates. You can apply different actions to it: for example, heat it up or let it cool down. 
Let’s call a change from one state to another a state transition. Suppose you start heating 
cold water up and measure water temperature at regular intervals (say, every minute). Most 
likely you would observe the following sequence of states: cold → … → cold → warm → … → 
warm → hot. In other words, to get to the “hot” state, you would first stay in the “cold” state 
for some time, then you will need to transition through the “warm” state, and finally you will 
reach the “hot” state. At the same time, it is physically impossible to transition from the 
“cold” to the “hot” state immediately, bypassing the “warm” state. The reverse is true as 
well: if you let water cool down, the most likely sequence will be hot → … → hot → warm → 
… → warm → cold, but not hot → cold. 

 
Figure 11.7 Directed graphs visualizing a chain of states (vertices in the graph), transitions (edges), and 
probabilities associated with these transitions marked on each edge: for example, 0.2 on the edge from “cold” 
to “warm” in the graph on the left means there is a 0.2 probability of temperature change from the “cold” to 
the “warm” state. The graph on the left illustrates water temperature example, and the graph on the right – an 
example of transitions between words. 

In fact, these types of observations can be formalized and expressed as probabilities: for 
example, to estimate how probable it is to transition from the “cold” state to the “warm” 
state, you use your timed measurements and calculate the proportion of times that the 
temperature transitioned cold → warm among all the observations made for the “cold” state, 
i.e.: 
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Such probabilities estimated from the data and observations simply reflect how often 

certain events occur compared to other events and all possible outcomes. Figure 11.7 (left) 
shows the probabilities on the directed edges: for example, the edges between hot → cold 
and cold → hot are marked with 0.0, reflecting that it is impossible for the temperature to 
change between “hot” and “cold” directly bypassing the “warm” state. At the same time, you 
can see that the edges from the state back to itself are assigned with quite high 
probabilities: e.g., P(hot → hot)=0.8 means that 80% of the time if water temperature is hot 
at this particular point in time it will still be hot at the next time step (e.g., in a minute). 
Similarly, 60% of the time water will be warm at the next time step if it is currently warm, 
and in 80% of the cases water will still be cold in a minute from now if it is currently cold.  

Also note that this scheme describes the set of possibilities fully: suppose water is 
currently hot. What temperature will it be in a minute? Follow the arrows in Figure 11.7 (left) 
and you will see that with a probability of 0.8 (or in 80% of the cases) it will still be hot and 
with a probability of 0.2 (i.e., in the other 20%) it will be warm. What if it is currently warm? 
Then, with a probability of 0.6 it will still be warm in a minute, but there is a 20% chance 
that it will change to hot, and a 20% chance that it will change to cold. 

Where do language tasks fit into this? As a matter of fact, language is a highly 
structured, sequential system: for instance, you can say “Albert Einstein was born in Ulm” or 
“In Ulm, Albert Einstein was born”, but “Was Ulm Einstein born Albert in” is definitely weird if 
not nonsensical and can be understood only because we know what each word means and, 
thus, can still try to make sense of such word salad. At the same time, if you shuffle the 
words in other expressions like “Ann gave Bob a book”, you might end up not understanding 
what exactly is being said: e.g., in “A Bob book Ann gave”, who did what to whom? This 
shows that language has a specific structure to it and if this structure is violated, it is hard to 
make sense of the result. Figure 11.7 (right) shows a transition system for language, which 
follows a very similar strategy to the water temperature example from Figure 11.7 (left): it 
shows that if you see a word “a”, the next word may be “book” (“a book”) with a probability 
of 0.14, “new” (“a new house”) with a 15% chance, or some other word. If you see a word 
“new”, with a probability of 0.05 it may be followed by another “new” (“a new, new house”), 
with an 8% chance it may be followed by “a” (“no matter how new a car is, …”), in 17% of 
the cases it will be followed by “book” (“a new book”), and so on. Finally, if the word that 
you currently see is “book”, it will be followed by “a” (“book a flight”) 13% of the time, by 
“new” (“book new flights”) 10% of the time, or by some other word (note that in the 
language example, not all possible transitions are visualized in Figure 11.7). Such predictions 
on the likely sequences of words are behind many NLP applications: for instance, word 
prediction is used in predictive keyboards, query completion, and so on. 

Note that in the examples presented in Figure 11.7 the sequential models take into 
account a single previous state to predict the current state. Technically, such models are 
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called first-order Markov Models or Markov chains.7 It is also possible to take into account 
longer history of events: for example, second-order Markov models look into two previous 
states to predict the current state, and so on. 

NLP models that do not observe word order and shuffle words freely (as in “A Bob book 
Ann gave”) are called bag-of-words models – the analogy is that when you put words in a 
“bag”, their relative order is lost, and they get mixed among themselves like individual items 
in a bag. A number of NLP tasks use bag-of-words models: the tasks that you worked on 
before made little if any use of the sequential nature of language. Sometimes the presence 
of individual words is informative enough for the algorithm to identify a class (e.g., “lottery” 
strongly suggests spam, “amazing” is a strong signal of a positive sentiment, and “rugby” 
has a strong association with the sports topic). Yet, as we have noted earlier in this chapter, 
for NER it might not be enough to just observe a word (is “Apple” a fruit or a company?) or 
even a combination of words (as in “Amazon River Maps”) – more information needs to be 
extracted from the context and the way the previous words are labelled with NER tags. In 
the next section, you will look closely into how NER uses sequential information and how 
sequential information is encoded as features for the algorithm to make its decisions. 

11.2.3  Sequential Solution for NER 
Just like water temperature cannot change from “cold” immediately to “hot” or vice versa 
without going through the state of being “warm”, and just like there are certain sequential 
rules to how words are put together in a sentence (with “a new book” being much more 
likely in English than “a book new”), there are certain sequential rules to be observed in NER. 
For instance, if a certain word is labelled as beginning a particular type of an entity (e.g., B-
GPE for “New” in “New York”), it cannot be directly followed by a NE tag denoting inside of 
an entity of another type: e.g., I-EVENT cannot be assigned to “York” in “New York”, when 
“New” is already labelled as B-GPE, as I-GPE is the correct tag. In contrast, I-EVENT is 
applicable to “Year” in “New Year”, after “New” being tagged as B-EVENT. To make such 
decisions, a NER algorithm takes into account the context, the labels assigned to the 
previous words, as well as the current word and its properties. 

Let’s consider two examples with somewhat similar contexts: 

They celebrated  New Year 

O O  B-EVENT I-EVENT 

They live in New York 

O O O B-GPE I-GPE 

Your goal in the NER task is to assign the most likely sequence of tags to each sentence. 
Ideally, you would like to end up with the following labelling for the sentences: O – O – B-
EVENT – I-EVENT for “They celebrated New Year” and O – O – O – B-GPE – I-GPE for “They 
live in New York”. Figure 11.8 visualizes such “ideal” labelling for “They celebrated New 
Year”. 

 
7 See https://en.wikipedia.org/wiki/Markov_chain  
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Figure 11.8 The “ideal” NE labelling for “They celebrated New Year”. The circles denote states (i.e., NE labels) 
and the arrows denote transitions from one NE label to the next one. The implausible states for each word are 
greyed out (for example, I-EVT for “New”), the implausible transitions are dropped, and the preferred states 
and transitions are highlighted in bold. Since there are many more labels in the NER scheme, not all of them 
are included: “…” denotes “any other label” (e.g., B-GPE, I-GPE, and so on). 

As Figure 11.8 shows, it is possible to start a sentence with a word labelled as a 
beginning of some named entity, for example, B-EVENT or B-EVT (as in “ChristmasB-EVT is 
celebrated on December 25”). However, it is not possible to start a sentence with I-EVT (the 
tag for inside the EVENT entity), which is why it is greyed out in Figure 11.8 and there is no 
arrow connecting the beginning of the sentence (the START state) to I-EVT. Since the second 
word, “celebrated”, is a verb, it is unlikely that it belongs to any named entity type, therefore 
the most likely tag for it is O. “New” can be at the beginning of event (B-EVT as in “New 
Year”) or another entity type (e.g., B-GPE as in “New York”), or it can be a word used 
outside any entity (O). Finally, the only two possible transitions after tag B-EVT are O (if an 
event is named with a single word, like “Christmas”) or I-EVT. All possible transitions are 
marked with arrows in Figure 11.8; all impossible states are greyed out with the impossible 
transitions dropped (i.e., no connecting arrows); and the states and transitions highlighted in 
bold are the preferred ones. 

As you can see, there are multiple sources of information that are taken into account 
here: for example, word position in the sentence matters (tags of the types O and B-ENTITY, 
i.e., beginning an entity, can apply to the first word in a sentence, but I-ENTITY cannot); 
word characteristics matter (a verb like “celebrate” is unlikely to be part of any entity); the 
previous word and tag matter (if the previous tag is B-EVENT, the current tag is either I-
EVENT or O); the word shape matters (capital “N” in “New” makes it a better candidate for 
being part of an entity, while the most likely tag for “new” is O); and so on. 

This is, essentially, how the algorithm tries to assign the correct tag to each word in the 
sequence. For instance, suppose you have assigned tags O – O – B-EVENT to the sequence 
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“They celebrated New” and your current goal is to assign a NE tag to the word “Year”. The 
algorithm may consider a whole set of characteristic rules – let’s call them features by 
analogy with the features used by supervised machine learning algorithms in other tasks. 
The features in NER can use any information related to the current NE tag and previous NE 
tags, current word and the preceding context, and the position of the word in the sentence. 
Let’s define some feature templates for the features helping the algorithm predict that word4 
in “They celebrated New Year” (i.e., word4=“Year”) should be assigned with the tag I-EVENT 
after the previous word “New” is assigned with B-EVENT. It is common to use the notation yi 

for the current tag, yi-1 for the previous one, X for the input, and i for the position, so let’s 
use this notation in the feature templates: 

• f1(yi-1, yi, X, i): If current word is “Year” return 1, else return 0 

• f2(yi-1, yi, X, i): If current word is “York” return 1, else return 0 

• f3(yi-1, yi, X, i): If previous word is “New” return 1, else return 0 
• … 
• f12(yi-1, yi, X, i): If current word part-of-speech is noun return 1, else return 0 

• f13(yi-1, yi, X, i): If previous word part-of-speech is adjective return 1, else return 0 
• … 
• f23(yi-1, yi, X, i): If current word is in a gazetteer8 return 1, else return 0 
• … 
• f34(yi-1, yi, X, i): If current word shape is Xx9 return 1, else return 0 
• … 
• f45(yi-1, yi, X, i): If current word starts with prefix “Y” return 1, else return 0 

• f46(yi-1, yi, X, i): If current word starts with prefix “Ye” return 1, else return 0 
• … 

Feature indexes used in this list are made up, and as you can see, the list of features 
grows quickly with the examples from the data. When applied to our example, the features 
will yield the following values: 

• f1(yi-1=B-EVENT, yi=I-EVENT, X=“They celebrated New Year”, i=4)=1 

• f2(yi-1=B-EVENT, yi=I-EVENT, X=“They celebrated New Year”, i=4)=0 

• f3(yi-1=B-EVENT, yi=I-EVENT, X=“They celebrated New Year”, i=4)=1 
• … 
• f12(yi-1=B-EVENT, yi=I-EVENT, X=“They celebrated New Year”, i=4)=1 

• f13(yi-1=B-EVENT, yi=I-EVENT, X=“They celebrated New Year”, i=4)=1 
• … 
• f23(yi-1=B-EVENT, yi=I-EVENT, X=“They celebrated New Year”, i=4)=0 
• … 

 
8 A gazetteer (e.g., www.geonames.org) is a list of place names with millions of entries for locations including detailed geographical and political 

information. It is a very useful resource for identification of LOC, GPE, and some other types of named entities.  
9 The word shape is determined as follows: if a word contains capital letters they are replaced with ‘X’, lower-case letters are replaced with ‘x’, numbers 

with ‘d’, and punctuation marks are preserved: e.g., “U.S.A.” can be represented as “X.X.X.” and “11–12p.m.” as “d–dx.x.”. This helps capturing useful 
generalizable information. 
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• f34(yi-1=B-EVENT, yi=I-EVENT, X=“They celebrated New Year”, i=4)=1 
• … 
• f45(yi-1=B-EVENT, yi=I-EVENT, X=“They celebrated New Year”, i=4)=1 

• f46(yi-1=B-EVENT, yi=I-EVENT, X=“They celebrated New Year”, i=4)=1 

It should be noted that no single feature is capable of correctly identifying a NE tag in all 
cases; moreover, some features may be more informative than others. What the algorithm 
does in practice is the following: it weighs the contribution from each feature according to its 
informativeness and then it combines the values from all features, ranging from feature k=1 
to feature k=K (where k is just an index), by summing the individual contributions as 
follows: 

 
Equation 11.1 Sum over all features from feature with index k=1 to k=K over the feature values fk (equal to 
either 0 or 1) multiplied with respective weights wk. 

For example, if w1 for f1 is 0.4, w2 for f2 is 0.4, and w3 for f3 is 0.2, then the sum over 
these three features using the values for “They celebrated New Year” from above is:  

Result = w1 × f1 + w2 × f2 + w3 × f3 = 0.4 × 1 + 0.4 × 0 + 0.2 × 1 = 0.6 

The appropriate weights in this equation are learned from labelled data as is normally 
done for supervised machine learning algorithms. 

As was pointed out above, the ultimate goal of the algorithm is to assign the correct tags 
to all words in the sequence, so the expression is actually applied to each word in sequence, 
from i=1 (i.e., the first word in the sentence) to i=n (the last word), i.e.: 
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Equation 11.2 Apply the estimation from Equation 11.1 to each word in the sequence and sum the results 
over all words from i=1 to i=n. 

Specifically, this means that the algorithm is not only concerned with the correct 
assignment of the tag I-EVENT to “Year” in “They celebrated New Year”, but with the correct 
assignment of the whole sequence of tags O – O – B-EVENT – I-EVENT to “They celebrated 
New Year”. However, originally, the algorithm knows nothing about the correct tag for “They” 
and the correct tag for “celebrated” following “They”, and so on. Since originally the 
algorithm doesn’t know about the correct tags for the previous words, it actually considers all 
possible tags for the first word, then all possible tags for the second word, and so on: in 
other words, for the first word, it considers whether “They” can be tagged as B-EVENT, I-
EVENT, B-GPE, I-GPE, …, O, as Figure 11.8 demonstrated earlier; then for each tag applied 
to “They”, the algorithm moves on and considers whether “celebrated” can be tagged as B-
EVENT, I-EVENT, B-GPE, I-GPE, …, O; and so on. In the end, the result you are interested in 
is the sequence of all NE tags for all words that is most probable, i.e.: 

 
Equation 11.3 Use the estimation from Equation 11.2 and return the sequence of tags, which results in the 
maximum value. 

The formula in Equation 11.3 is exactly the same as the one in Equation 11.2, with just 
one modification: argmax means that you are looking for the sequence that results in the 
highest probability estimated by the rest of the formula; Y stands for the whole sequence of 
tags for all words in the input sentence; and the fancy font Y denotes the full set of possible 
combinations of tags. Recall the three BIO-style schemes introduced earlier in this chapter: 
the most coarse-grained IO scheme has 19 tags, which means that the total number of 
possible tag combinations for the sentence “They celebrated New Year”, consisting of 4 
words, is 194=130,321; the middle-range BIO scheme contains 37 distinct tags and results in 
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374=1,874,161 possible combinations; and finally, the most fine-grained BIOES scheme 
results in 734=28,398,241 possible tag combinations for a sentence consisting of 4 words. 
Note that a sentence consisting of 4 words is a relatively short sentence, yet the brute-force 
algorithm, i.e., the one that simply iterates through each possible combination at each step, 
rapidly becomes highly inefficient: after all, some tag combinations (like O → I-EVENT) are 
impossible, so there is no point in wasting effort on even considering them. In practice, 
instead of a brute-force algorithm more efficient algorithms based on dynamic programming 
are used.10 Instead of exhaustively considering all possible combinations, at each step a 
dynamic programming algorithm calculates the probability of all possible solutions given only 
the best, most optimal solution for the previous step. The algorithm then calculates the best 
move at the current point, stores it as the current best solution, and when it moves to the 
next step, it again considers only this best solution rather than all possible solutions, thus 
considerably reducing the number of overall possibilities to only the most promising ones. 
Figure 11.9 demonstrates the intuition behind dynamic estimation of the best NE tag that 
should be selected for “Year” given that the optimal solution O – O – B-EVENT is found for 
“They celebrated New”: 

 
Figure 11.9 A dynamic programming algorithm solves the following task: If the best (most likely) tag sequence 
so far is O – O – B-ENT, what is the most likely tag for “Year” at this point? 

 
10 The algorithm that is widely used for language-related sequence labelling tasks is the Viterbi algorithm: 

https://en.wikipedia.org/wiki/Viterbi_algorithm  
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This, in a nutshell, is how a sequence labelling algorithm solves the task of tag 
assignment. As was highlighted before, NER is not the only task that demonstrates 
sequential effects, and a number of other tasks in NLP are solved this way: one task that you 
have encountered before in this book, which is also a sequence labelling task and which, 
under the hood, is solved in a similar manner, is part-of-speech (PoS) tagging. You looked 
into this task in chapter 4 and used PoS tags as features in NLP applications in later 
chapters. The approach to sequence labelling outlined in this section is used by machine 
learning algorithms, most notably, Conditional Random Fields,11 although you don’t need to 
implement your own NER to be able to benefit from the results of this step in the NLP 
pipeline. For instance, spaCy, an NLP toolkit that you have extensively used before, has a 
NER implementation that you are going to rely on to solve the task set out in the scenario for 
this chapter. Next section delves into implementation details. 

11.3 Practical Applications of NER 
Let’s remind ourselves of the scenario for this chapter: it is widely known that certain events 
influence the trends of stock price movements: specifically, you can extract relevant facts 
from the news and then use these facts to predict company stock prices. Suppose you have 
access to a large collection of news; now your task is to extract the relevant events and facts 
that can be linked to the stock market in the downstream (stock market price prediction) 
application. How will you do that? 

This means that you have access to a collection of news texts, and among other 
preprocessing steps, you apply NER. Then you can focus only on the texts and sentences 
that are relevant for your task: for instance, if you are interested in the recent events, in 
which a particular company (e.g., “Apple”) participated, you can easily identify such texts, 
sentences, and contexts. Figure 11.10 shows a flow diagram for this process: 

 
Figure 11.10 Practical application of NER in downstream tasks (e.g., in further information extraction). 

11.3.1 Data Loading and Exploration 
There are multiple ways in which you can get access to news articles: for example, you can 
try to extract the up-to-date news articles from the news portals in real time – this, of 
course, would be a reasonable approach if you wanted to build an application that can predict 
outcomes for the current events. For the sake of the exercise in this chapter, however, we 

 
11 See https://en.wikipedia.org/wiki/Conditional_random_field  
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are going to use the data that has already been extracted from a range of news portals: the 
dataset called “All the news” is hosted on the Kaggle website.12 The dataset consists of 
143,000 articles scraped from 15 news websites, including The New York Times, CNN, 
Business Insider, The Washington Post, etc. The dataset is quite big and is split into three 
comma-separated values (.csv) files. In the examples in this chapter, you are going to be 
working with the file called articles1.csv, although, you are free to use other files in your 
own experiments. 

Many datasets available via Kaggle and similar platforms are stored in the .csv format – 
this basically means that the data is stored as a big spreadsheet file, where information is 
split between different rows and columns: for instance, in articles1.csv each row 
represents a single news article, described with a set of columns containing information on 
its title, author, the source website, the date of publication, its full content, etc. The 
separator used to define where the boundary between the information belonging to different 
data fields in .csv files is a comma. It’s time now to familiarize yourselves with pandas – a 
useful data preprocessing toolkit that helps you work with files in such formats as .csv and 
easily extract information from them. 

Pandas 
Pandas is a fast, powerful, flexible, and easy to use open-source data analysis and manipulation tool, built on top of 
Python.13 
 

Let’s use this toolkit to extract the information from the input file as Code Listing 11.2 
shows. In this code you import pandas once you’ve installed it. Since the dataset is split into 
multiple files, you need to provide the path location for the files, and then you can open a 
particular file using pandas read_csv functionality. The result is stored in a DataFrame df. 

Listing 11.2 Code to extract the data from the input file using pandas 

import pandas as pd    #A 
 
path = "all-the-news/"    #B 
df = pd.read_csv(path + "articles1.csv")    #C 
 

#A Import pandas once you’ve installed it   
#B Provide the path location for the files 
#C Open the file using pandas read_csv functionality; the result is stored in a DataFrame df 

The code from Listing 11.2 reads the contents of the .csv file, using comma as a delimiter to 
identify which information field (column) a particular string of text in the row belongs to. The 
result is called a DataFrame – a labelled data structure with columns of potentially different 
types (e.g., they can contain textual as well as numerical information). Pandas provides you 

 
12 It can be downloaded here: https://www.kaggle.com/snapcrack/all-the-news  
13 See more information and installation instructions here: https://pandas.pydata.org  
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with extensive functionality and allows you to investigate the contents of the DataFrame 
from various perspectives. You can learn more about this tool’s functionality from the 
documentation; the most useful functions at this point in your application are df.shape, 
which prints out the dimensionality of the data structure (for articles1.csv it is (50000, 
10), i.e., 50,000 rows representing individual news articles to 10 columns containing various 
information on these articles, from titles, to publication dates, to the full article content), and 
df.head(), which prints out the first five rows from your DataFrame. Both these functions 
serve as useful sanity checks – it is always a good idea to check what the data you are 
working with contains. Here is what df.head() returns for the DataFrame initialized in Code 
Listing 11.2: 

 
You can now explore the data in your DataFrame in more detail. For example, since the 

data from 15 news sources is split between several .csv files, let’s find out which news 
sources are covered by the current DataFrame – Code Listing 11.3 shows how to do that. 
Specifically, you need to extract the information from a particular column (here, 
“publication”) and apply unique() function to convert the result into a set. 

Listing 11.3 Code to extract the information on the news sources only 

sources = df["publication"].unique()    #A 
print(sources) 

#A Extract the information from the “publication” column and convert the result into a set 

As you can see, pandas, indeed, provides you with an easy way to extract and explore the 
information you need at this point: with just one line of code, you extract the contents of the 
column entitled “publication” in the DataFrame (this column indicates the news source for 
each article), and then apply the function unique() that converts the list into a set of unique 
values. Here is the output that this code produces: 

['New York Times' 'Breitbart' 'CNN' 'Business Insider' 'Atlantic'] 

Since the DataFrame contains as many as 50,000 articles, for the sake of this application, 
let’s focus on some articles only: for instance, let’s extract the text (content) of the first 
1,000 articles published in the New York Times. Code Listing 11.4 shows how to do that. 
First, you define a condition – the publication source should be “New York Times”. Then, 
you select the content from all articles that satisfy this condition (i.e., df.loc[condition, 
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:]), and from these, you only extract the first 1000 for simplicity. In the end, you can check 
the dimensionality of the extracted data structure using df.shape as before. 

Listing 11.4 Code to extract the content of articles from a specific source  

condition = df["publication"].isin(["New York Times"])    #A 
content_df = df.loc[condition, :]["content"][:1000]    #B 
content_df.shape    #C 

#A Define a condition for the publication source to be “New York Times”   
#B Select the content from all articles that satisfy this condition and only extract the first 1000 of them 
#C Check the dimensionality of the extracted data structure using df.shape as before 

The code above prints out (1000, ), confirming that you extracted 1,000 articles from the 
New York Times. The new data structure, content_df, is simply an array of 1,000 news 
texts. You can further check the contents of these articles using the functions mentioned 
before: e.g., content_df.head() will show the following content from the first five articles: 

 
11.3.2 Named Entity Types Exploration with spaCy 
Now that the data is loaded, let’s explore what entity types it contains. For that, you can rely 
on the NER functionality from spaCy14 – recall that you used it in an earlier exercise in Code 
Listing 11.1. 

Let’s start by iterating through the news articles, collecting all named entities identified in 
texts, and storing the number of occurrences in a Python dictionary, as Figure 11.11 
illustrates. 

 
14 For more examples and more information, check spaCy’s documentation: https://spacy.io/usage/linguistic-features#named-entities  
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Figure 11.11 Extract all named entities from news articles and store them in a Python dictionary. 

Code Listing 11.5 shows how to populate a dictionary with the named entities extracted 
from all news articles in content_df. First, you import spaCy and load a language model 
(here, medium size). Next, you define collect_entities function, which extracts named 
entities from all news articles and stores the statistics on them in a Python dictionary 
named_entities. Within this function, you process each news article with spaCy’s NLP 
pipeline and store the result in the processed_docs list for future use. Specifically, for each 
entity, you extract the text with ent.text (e.g., Apple) and store it as entity_text. In 
addition, you identify the type of the entity with ent.label_ (e.g., ORG) and store it as 
entity_type. Then, for each entity type (e.g., ORG), you extract the list of entities and their 
counts (e.g., [Facebook: 175, Apple Inc.: 63, …] currently stored in current_ents. After 
that, you update the counts in current_ents, incrementing the count for the entity stored as 
entity_text, and finally, you return the named_entities dictionary and the 
processed_docs list. 
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Listing 11.5 Code to populate a dictionary with NEs extracted from news articles 

import spacy 
nlp = spacy.load("en_core_web_md")    #A 
 
def collect_entites(data_frame):    #B 
    named_entities = {} 
    processed_docs = [] 
 
    for item in data_frame: 
        doc = nlp(item) 
        processed_docs.append(doc)    #C 
 
        for ent in doc.ents: 
            entity_text = ent.text    #D 
            entity_type = str(ent.label_)    #E 
            current_ents = {}    #F 
            if entity_type in named_entities.keys(): 
                current_ents = named_entities.get(entity_type) 
            current_ents[entity_text] = current_ents.get(entity_text, 0) + 1            
            named_entities[entity_type] = current_ents    #G 
    return named_entities, processed_docs 
 
named_entities, processed_docs = collect_entites(content_df)    #H  

#A Import spaCy and load a language model (here, medium-size) 
#B Define collect_entities function to extract named entities and store the statistics on them 
#C Process each news article with spaCy’s NLP pipeline and store the result in the processed_docs list 
#D For each entity, extract the text with ent.text (e.g., Apple) and store it as entity_text 
#E Identify the type of the entity with ent.label_ (e.g., ORG) and store it as entity_type 
#F For each entity type, extract the list of currently stored entities with their counts 
#G Update the counts in current_ents, incrementing the count for the entity stored as entity_text 
#H Return the named_entities dictionary and the processed_docs list 

To inspect the results, let’s print out the contents of the named_entities dictionary, as Code 
Listing 11.6 suggests. In this code, you print out the type of a named entity (e.g., ORG) and 
for each type, you extract all entities assigned with this type in the dictionary (e.g., 
[Facebook: 175, Apple Inc.: 63, …]). Then, you sort the entries by their frequency in 
descending order. For space reasons, this code suggests that you only print out the most 
frequent n ones (e.g., 10 here) of them. Additionally, it would be most informative to only 
look into entities that occur more than once. In the end, you print out the named entities and 
frequency counts. 
  

423

https://livebook.manning.com/book/getting-started-with-natural-language-processing/discussion


©Manning Publications Co.  To comment go to  liveBook 

Listing 11.6 Code to print out the named entities dictionary 

def print_out(named_entities): 
    for key in named_entities.keys():    #A 
        print(key) 
        entities = named_entities.get(key)    #B 
        sorted_keys = sorted(entities, key=entities.get, reverse=True) 
        for item in sorted_keys[:10]:    #C 
            if (entities.get(item)>1):    #D 
                print("   " + item + ": " + str(entities.get(item)))    #E 
 
print_out(named_entities) 

#A Print out the type of a named entity (e.g., ORG) 
#B Extract all entities of a particular type from the dictionary 
#C Sort the entries by their frequency in descending order and print out the most frequent n ones 
#D It would be most informative to only look into entities that occur more than once 
#E Print out the named entity and its frequency 

This code prints out all 18 named entity types with up to 10 most frequent named entities for 
each type. The full list is, of course, much longer, with many entities occurring in the data 
only a few times (that is why we limit the output here to the most frequent items only). Here 
is the output printed out for the GPE type:15 

GPE 
   the United States: 1148 
   Russia: 526 
   China: 515 
   Washington: 498 
   New York: 365 
   America: 359 
   Iran: 294 
   Mexico: 265 
   Britain: 236 
   California: 203 

Perhaps not surprisingly the most frequent geo-political entity mentioned in the New York 
Times articles is the United States (it is mentioned 1,148 times in total; in fact, this can be 
combined with the counts for other expressions used for the same entity, e.g., America and 
the like), followed by Russia (526 times), and China (515). As you can see, there is a lot of 
information contained in this dictionary.  

Another way in which you can explore the statistics on various NE types is to aggregate 
the counts on the types and print out the number of unique entries (for example Apple and 
Facebook would be counted as two separate named entities under the ORG type) as well as 
the total number of occurrences of each type (e.g., 175 counts for Facebook and 63 for Apple 
would result in the total number of 238 occurrences of the type ORG). Code Listing 11.7 
shows how to do that. It suggests that you print out information on the entity type (e.g., 
ORG), the number of unique entries belonging to a particular type (e.g., Apple and Facebook 
would contribute as two different entries for ORG), and the total number of occurrences of 
the entities of that particular type. To do that, you extract and aggregate the statistics for 

 
15 These results are obtained with spaCy version 3.1.0. If you are using a different version or a model different from en_core_web_md, it is possible 

that the precise numbers that you are getting are slightly different and you shouldn’t be alarmed by this difference in the results. 
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each NE type, and in the end, you print out the results in a tabulated format, with each row 
storing the statistics on a separate NE type.  

Listing 11.7 Code to aggregate the counts on all named entity types 

rows = [] 
rows.append(["Type:", "Entries:", "Total:"])    #A 
for ent_type in named_entities.keys(): 
    rows.append([ent_type, str(len(named_entities.get(ent_type))),  
                 str(sum(named_entities.get(ent_type).values()))])    #B 
 
columns = zip(*rows) 
column_widths = [max(len(item) for item in col) for col in columns] 
for row in rows: 
    print(''.join(' {:{width}} '.format(row[i], width=column_widths[i])  
                  for i in range(0, len(row))))    #C 

#A Print out the entity type, the number of unique entries, and the total number of entities occurrences 
#B Extract and aggregate the statistics for each NE type 
#C Print out the results, with each row storing the statistics on a separate NE type 

This code prints out the results shown in Table 11.3. 

Table 11.3 Aggregated statistics on the named entities from the news articles dataset – the NE 
types, the number of unique entries, and the total number of occurrences. 

Type Entries Total Type Entries Total 

GPE 1,661 14,747 EVENT  188 474 

NORP 487 7,459 TIME 531 1,407 

PERSON 9,651 30,431 FAC 570 1,226 

MONEY 679 1,234 ORDINAL 68 1,783 

ORG 4,892 14,197 QUANTITY 337 465 

CARDINAL 1,192 8,517 PERCENT 271 660 

DATE 3,011 14,905 WORK_OF_ART 1,258 1,818 

LAW 97 324 PRODUCT 229 527 

LOC 456 1,508 LANGUAGE 12 85 

As this table shows, the most frequently used named entities in the news articles are entities 
of the following types: PERSON, GPE, ORG, and DATE. This is, perhaps, not very surprising: 
after all, most often news report on the events that are related to people (PERSON), 
companies (ORG), countries (GPE), and usually news articles include references to specific 
dates. At the same time, the least frequently used entities are the ones of the type 
LANGUAGE: there are only 12 unique languages mentioned in this news articles dataset, and 
in total they are mentioned 85 times. Among the most frequently mentioned are English (48 
times), Arabic (8), and Spanish (7). You may also note that ORDINAL type has only 68 
unique entries: it is, naturally, a very compact list of items including entries like first, second, 
third, and so on. 
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11.3.3 Information Extraction Revisited 
Now that you have explored the data, you can look more closely into the information that the 
articles contain on specific entities of interest. Consider the scenario again: your task is to 
build an information extraction application focused on companies and the news that report 
on these companies. The dataset at hand, according to Table 11.4, contains information on 
as many as 4,892 companies. Of course, not all of them might be of interest to you, so it 
would make sense to select a few and extract information on them. 

Chapter 4 looked into the Information Extraction task, which was concerned with the 
extraction of relevant facts, e.g., actions in which certain personalities of interest are 
involved. Let’s revisit this task here, making the necessary modifications. Specifically:  

• Let’s extract actions together with their participants but focusing on participants of a 
particular type: e.g., companies (ORG) or a specific company (Apple). For that, you 
will work with a subset of sentences that contain the entity of interest. 

• Let’s extract the contexts in which an entity of interest (e.g., Apple) is one of the 
main participants (e.g., “Apple sued Qualcomm” or “Russia required Apple to …”). For 
that, you will use the linguistic information from the spaCy’s NLP pipeline, focusing on 
the cases where the entity is the subject (the main participant of the main action as 
Apple is in “Apple sued Qualcomm”) or the object (the second participant of the main 
action as Apple is in “Russia required Apple to …”). This information can be extracted 
from the spaCy’s parser output using nsubj and dobj relations, respectively. 

• Oftentimes the second participant of the action is linked to the main verb via a 
preposition: for instance, compare “Russia required Apple” to “The New York Times 
wrote about Apple”. In the first case, Apple is the direct object of the main verb 
required, and in the second case, it is an indirect object of the main verb wrote. Let’s 
make sure that both cases are covered by our information extraction algorithm. 

• Finally, as observed in the earlier examples, named entities may consist of a single 
word (Apple) or of several words (Apple Inc.). To that end, let’s make sure the code 
applies to both cases. 

Recall that spaCy’s NLP pipeline processes sentences (or full documents) and returns a 
data structure, which contains all sorts of information on the words in the sentence (text), 
including the information about the word’s type (part-of-speech, e.g., verb, noun, etc.), its 
named entity type, its role in the sentence (e.g., main verb or ROOT, main action’s participant 
or nsubj, and so on). Figure 11.12 provides a reminder. 
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Figure 11.12 A reminder on the information provided on the word tokens by spaCy pipeline. 

In addition, each word has a unique index that is linked to its position in the sentence. If 
a named entity consists of multiple words, some of them may be marked with the nsubj or 
dobj relations (i.e., relevant relations in your application), but your goal is to extract not 
only the word marked as nsubj or dobj but the whole named entity, which plays this role. To 
do that, the best way is to match the named entities to their roles in the sentence via the 
indexes assigned to the named entities in the sentence. Figure 11.13 illustrates this process. 

Specifically, Figure 11.13 looks into the following example: suppose your named entity of 
interest is a multi-word expression The New York Times and the full sentence is “The New 
York Times wrote about Apple”. Your goal is to identify whether The New York Times is one 
of the participants of the main action (wrote) in this sentence – the subject (the entity that 
performs the action) or an object (an entity to which the action applies). Indeed, The New 
York Times as a whole is the subject – it is the entity that performed the action of writing. 
However, since linguistic analysis applies to individual words rather than whole expressions, 
technically only the word Times is directly dependent on the main verb wrote – this is shown 
through the chain of relations in Figure 11.13. How can you extract the whole expression The 
New York Times? 

 
Figure 11.13 The aim of the extraction algorithm is to identify whether the named entity of interest is one of 
the participants in the main action: i.e., a subject or an object of the main verb. In a multi-word NE only one 
word will be marked with the relevant role (e.g., nsubj here), but the code needs to return the whole NE.  
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To do that, you first identify the indexes of the words covered by this expression in the 
sentence: for The New York Times these are [0, 1, 2, 3], as the left part of Figure 11.13 
shows. Next, you check if a word with any of these indexes plays a role of the subject or an 
object in the sentence. Indeed, the word that is the subject in the sentence has the index of 
3 (as is shown on the right-hand side of Figure 11.13). Therefore, you can return the whole 
named entity The New York Times as the subject of the main action in the sentence. 

The first step concerned with the identification of the indexes of the words contained in 
the named entity in question is solved with the code from the Listing 11.8. In this code, you 
define extract_span function, that takes as input a sentence and the entity of interest. It 
then populates the list of indexes with the indexes of the words included in the NE and 
returns the indexes list as an output. 

Listing 11.8 Code to extract the indexes of the words covered by the NE 

def extract_span(sent, entity):    #A 
    indexes = [] 
    for ent in sent.ents: 
        if ent.text==entity: 
            for i in range(int(ent.start), int(ent.end)): 
                indexes.append(i)    #B 
    return indexes    #C 

#A Define extract_span function, that takes as input a sentence and the entity of interest 
#B Populate the list of indexes with the indexes of the words included in the NE 
#C Return the indexes list as an output 

This code returns [0, 1, 2, 3] for extract_span(“The New York Times wrote about Apple”, 
“The New York Times”). 

The second half of the task, the one concerned with the identification of whether a named 
entity in question plays the role of one of the participants in the main action, is solved with 
the code from the Listing 11.9. This code may look familiar to you – it is a modification of a 
solution that was applied to extract information in chapter 4. In this code, you define 
extract_information function, that takes a sentence, the entity of interest, and the list of 
the indexes of all the words covered by this entity as an input. Then, you initialize the list of 
actions and an action with two participants. Next, you identify the main verb expressing 
the main action in the sentence and initialize the indexes for the subject and the object 
related to this main verb. The main verb itself is stored in the action variable; you can find 
the subject that is related to the main verb via the nsubj relation and store it as 
participant1 and its index as subj_ind. If there is a preposition attached to the verb (e.g., 
“write about”), then you need to search for the indirect object as the second participant. If 
such an object is a noun or a proper noun, you store it as participant2 and its index as 
obj_ind. If at this point both participants of the main action have been identified and their 
indexes are included in the indexes of the words covered by the entity, you add the action 
with two participants to the list of actions. Otherwise, if there is no preposition attached to 
the verb, participant2 is a direct object of the main verb, which can be identified via the 
dobj relation (e.g., “X bought Y”). In this case, you apply the same strategy as above, 
adding the action with two participants to the list of actions. In the end, if the final list of 
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actions is not empty, you print out the sentence and all actions together with the 
participants. 

 Listing 11.9 Code to extract information about the main participants of the action 

def extract_information(sent, entity, indexes):    #A 
    actions = [] 
    action = "" 
    participant1 = "" 
    participant2 = ""    #B 
         
    for token in sent: 
        if token.pos_=="VERB" and token.dep_=="ROOT":    #C 
            subj_ind = -1 
            obj_ind = -1    #D 
            action = token.text    #E 
            children = [child for child in token.children]    
            for child1 in children: 
                if child1.dep_=="nsubj": 
                    participant1 = child1.text 
                    subj_ind = int(child1.i)    #F 
                if child1.dep_=="prep": 
                    participant2 = "" 
                    child1_children = [child for child in child1.children] 
                    for child2 in child1_children: 
                        if child2.pos_ == "NOUN" or child2.pos_ == "PROPN": 
                            participant2 = child2.text 
                            obj_ind = int(child2.i)    #G 
                    if not participant2=="": 
                        if subj_ind in indexes: 
                            actions.append(entity + " " + action + " " + child1.text + " " 

+ participant2) 
                        elif obj_ind in indexes: 
                            actions.append(participant1 + " " + action + " " + child1.text 

+ " " + entity)    #H 
                if child1.dep_=="dobj" and (child1.pos_ == "NOUN" 
                                            or child1.pos_ == "PROPN"): 
                    participant2 = child1.text 
                    obj_ind = int(child1.i) 
                    if subj_ind in indexes: 
                        actions.append(entity + " " + action + " " + participant2) 
                    elif obj_ind in indexes: 
                        actions.append(participant1 + " " + action + " " + entity)    #I 
                     
    if not len(actions)==0: 
        print (f"\nSentence = {sent}") 
        for item in actions: 
            print(item)    #J 

#A Define extract_information function 
#B Initialize the list of actions and an action with two participants 
#C Identify the main verb expressing the main action in the sentence 
#D Initialize the indexes for the subject and the object related to the main verb 
#E Store the main verb itself in the action variable 
#F Find the subject via the nsubj relation and store it as participant1 and its index as subj_ind 
#G Search for the indirect object as the second participant and store it as participant2 and its index as obj_ind 
#H If both participants of the action are identified, add the action with two participants to the list of actions 
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#I If there is no preposition attached to the verb, find a direct object of the main verb via the dobj relation 
#J If the final list of actions is not empty, print out the sentence and all actions together with the participants 

Now let’s apply this code to your texts extracted from the news articles. Note, however, that 
the code in Listing 11.9 applies to the sentence level, since it relies on the information 
extracted from the parser (which applies to each sentence rather than the whole text). In 
addition, if you are only interested in a particular entity, it doesn’t make sense to waste 
algorithm’s efforts on the texts and sentences that don’t mention this entity at all. To this 
end, let’s first extract all sentences that mention the entity in question from processed_docs 
and then apply extract_information method to extract all tuples (participant1 + action 
+ participant2) from the sentences, where either participant1 or participant2 is the 
entity you are interested in. Code Listing 11.10 shows how to do that. In this code, you 
define entity_detector function that takes processed_docs, the entity of interest, and its 
type as input. If a sentence contains the input entity (e.g., Apple) of the specified type 
(e.g., ORG) among its named entities, you add this sentence to the output_sentences. 
Using this function, you find all sentences for a specific entity and print out the number of 
such sentences found. In the end, you apply extract_span and extract_information 
functions from the previous code listings to extract the information on the entity of interest 
from the set of sentences containing this entity. 

Listing 11.10 Code to extract information on the specific entity 

def entity_detector(processed_docs, entity, ent_type):    #A 
    output_sentences = [] 
    for doc in processed_docs: 
        for sent in doc.sents: 
            if entity in [ent.text for ent in sent.ents if ent.label_==ent_type]: 
                output_sentences.append(sent)    #B 
    return output_sentences    
 
entity = "Apple" 
ent_sentences = entity_detector(processed_docs, entity, "ORG") 
print(len(ent_sentences))    #C 
 
for sent in ent_sentences: 
    indexes = extract_span(sent, entity) 
    extract_information(sent, entity, indexes)    #D 

#A Define entity_detector function that takes processed_docs, the entity of interest, and its type as input 
#B Only consider sentences that contain the input entity of the specified type among its named entities 
#C Find all sentences for a specific entity and print out the number of such sentences found 
#D Apply extract_span and extract_information functions from the previous code listings 

This code uses “Apple” as the entity of interest and specifically looks for sentences, in which 
the company (ORG) Apple is mentioned. As the printout message shows, there are 59 such 
sentences. Not all sentences among these 59 sentences mention Apple as a subject or object 
of the main action, but the last line of code returns a number of such sentences with the 
tuples summarizing the main content, e.g.: 
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Sentence = Apple has previously removed other, less prominent media apps from its China 
store. 

Apple removed apps 
 
Sentence = Russia required Apple and Google to remove the LinkedIn app from their local 

stores. 
Russia required Apple 
 
Sentence = On Friday, Apple, its longtime partner, sued Qualcomm over what it said was $1 

billion in withheld rebates. 
Apple sued Qualcomm 
 

The main content of the sentences is concisely summarized by the tuples consisting of 
the main action and its two participants, so if you were interested in extracting only the 
sentences that have such informative content and that directly answer questions “What did 
Apple do to X?” or “What did Y do to Apple?” you could use the code from Listing 11.10.  

Exercise 11.5 
The code from Listing 11.10 allows you to extract information on named entities consisting of multiple words. Apply 
this code to the examples of such multi-word entities: e.g., you can search for the information on The New York Times 
or any other entity of your choice from the ones contained in the data (you can find more examples of multi-word 
entities in the output of the Code Listing 11.6 
 

11.3.4 Named Entities Visualization 
One of the most useful ways to explore named entities contained in text and to extract 
relevant information is to visualize the results of NER. For instance, the code from Listing 
11.10 allows you to extract the contexts in which a named entity of interest is one of the 
main participants, but what about all the other contexts? Among those missed by the 
algorithm applied in Code Listing 11.10 might be sentences with interesting and relevant 
content. To that end, let’s revisit extraction of sentences containing the entity in question 
and explore visualization to highlight the use of the entity alongside other relevant entities. 

Code Listing 11.11 uses spaCy’s visualization tool, displaCy, which allows you to 
highlight entities of different types in the selected set of sentences using distinct colors for 
each type. Specifically, after displacy is imported, you define visualize function that takes 
processed_docs, an entity of interest, and its type as input, identifies the sentences that 
contain the entity in question, and visualizes the context. You can test this code by applying 
it to any selected example. 
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Listing 11.11 Code to visualize named entities of various types in their contexts of use 

from spacy import displacy    #A 
 
def visualize(processed_docs, entity, ent_type):    #B 
    for doc in processed_docs: 
        for sent in doc.sents: 
            if entity in [ent.text for ent in sent.ents if ent.label_==ent_type]: 
                displacy.render(sent, style="ent")    #C 
 
visualize(processed_docs, "Apple", "ORG")    #D 

#A Import displacy 
#B Define visualize function that takes processed_docs, an entity of interest, and its type as input 
#C Identify the sentences that contain the entity in question and visualize the context 
#D Apply this code to a selected example 

This code displays all sentences, in which the company (ORG) Apple is mentioned. Other 
entities are highlighted with distinct colors. Figure 11.14 shows a small portion of the output. 

 
Figure 11.14 Contexts, in which the company (ORG) Apple is mentioned alongside other named entities. 
Entities of different types are highlighted using distinct colors. 

Finally, you might be interested specifically in the contexts in which the company Apple is 
mentioned alongside other companies. Let’s filter out all other information and only highlight 
named entities of the same type as the entity in question – i.e., all ORG NEs in this case. 
Code Listing 11.12 shows how to do that. Here, you define count_ents function that counts 
the number of entities of a certain type in a sentence. With an updated 
entity_detector_custom function, you extract only the sentences that mention the input 
entity of a specified type as well as at least one other entity of the same type. You can print 
out the number of sentences identified this way as a sanity check. Then, you define 
visualize_type function that applies visualization to the entities of a predefined type only. 
spaCy allows you to customize the colors for visualization and to apply gradient,16 and using 
this customized color scheme, you can finally visualize the results. 

 
16 You can choose other colors from https://htmlcolorcodes.com/color-chart/  
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Listing 11.12 Code to visualize named entities of a specific type only 

def count_ents(sent, ent_type):    #A 
    return len([ent.text for ent in sent.ents if ent.label_==ent_type])    
 
def entity_detector_custom(processed_docs, entity, ent_type):    #B 
    output_sentences = [] 
    for doc in processed_docs: 
        for sent in doc.sents: 
            if entity in [ent.text for ent in sent.ents if ent.label_==ent_type and 

count_ents(sent, ent_type)>1]: 
                output_sentences.append(sent) 
    return output_sentences 
 
output_sentences = entity_detector_custom(processed_docs, "Apple", "ORG") 
print(len(output_sentences))    #C 
 
def visualize_type(sents, entity, ent_type):    #D 
    colors = {"ORG": "linear-gradient(90deg, #64B5F6, #E0F7FA)"}    #E 
    options = {"ents": ["ORG"], "colors": colors} 
    for sent in sents: 
        displacy.render(sent, style="ent", options=options)    #F 
                 
visualize_type(processed_docs, "Apple", "ORG") 

#A Define count_ents function that counts the number of entities of a certain type in a sentence 
#B Extract sentences that mention entity of a specified type as well as at least one other entity of the same type 
#C Print out the number of sentences identified this way 
#D Define visualize_type function that applies visualization to the entities of a predefined type only 
#E spaCy allows you to customize the colors for visualization and to apply gradient 
#F Visualize the results using the customized color scheme 

Figure 11.15 shows some of the output of this code: 

 
Figure 11.15 Visualization of the company names in contexts mentioning the selected company of interest 
(Apple) using customized color scheme. 

Congratulations – with the code from this chapter you can now extract from a collection 
of news articles all relevant events and facts summarizing the actions undertaken by the 
participants of interest, for example, specific companies. These events can be further used in 
downstream tasks: for example, if you also harvest data on stock price movements, you can 
link the events extracted from the news to the changes in the stock prices immediately 
following such events, which will help you to predict how the stock price may change in view 
of similar events in the future. 
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11.4 Summary 
• Named Entity Recognition (NER) is one of the core NLP tasks, however, when the 

main goal of the application you are developing is not concerned with improvement of 
the core NLP task itself but rather relies on the output from the core NLP technology, 
this is called a downstream task. The tasks that benefit from NER include information 
extraction, question answering, and the like. 

• Named entities are real-world objects (people, locations, organizations, etc.) that can 
be referred to with a proper name, and named entity recognition is concerned with 
identification of the full span of such entities (as entities may consist of a single word 
like Apple or of multiple words like Albert Einstein) as well as the type of the 
expression.  

• The four most widely used types include person, location, organization, and geo-
political entity, although other types like time references and monetary units are also 
typically added. Moreover, it is also possible to train a customized NER algorithm for a 
specific domain: for instance, in biomedical texts, gene and protein names represent 
named entities. 

• NER is a challenging task: the major challenges are concerned with the identification 
of the full span of the expression (e.g., Amazon vs. Amazon River) and the type (e.g., 
Washington may be an entity of up to 4 different types depending on the context). 
The span and type identification are the tasks that in NER are typically solved jointly. 

• The set of named entities often used in practice is derived from the OntoNotes, and it 
contains 18 distinct NE types. The annotation scheme used to label NEs in data is 
called a BIO scheme (with a more coarse-grained variant being the IO, and the more 
fine-grained one being the BIOES scheme). This scheme explicitly annotates each 
word as Beginning a NE, being Inside of a NE, or Outside of a NE. 

• The NER task is typically framed as a sequence labelling task, and it is commonly 
addressed using a feature-based approach. NER is not the only NLP task that is solved 
using sequence labelling, since language shows strong sequential effects. Part-of-
speech tagging overviewed in chapter 4 is another example of a sequential task. 

• spaCy can be applied in practice to extract named entities of interest and facts related 
to these entities from a collection of news articles. 

• A very popular format in Data Science is .csv, which uses comma as a delimiter. An 
easy to use open-source data analysis and manipulation tool for Python practitioners 
that helps you work with such files is pandas. 

• Finally, you can explore the results of NER visually, using displaCy tool and color-
coding entities of different types with its help. 
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11.5 Conclusions 
This chapter concludes the introductory book on Natural Language Processing. You have 
covered a lot of ground since you first opened this book. Let’s briefly summarize what you 
have learned about: 

• The first couple of chapters provided you with a mild introduction into the field of NLP, 
using examples of applications in everyday life that, under the hood, rely on NLP 
technology. You looked into some of these applications in more detail and learned 
about the core tasks and techniques. 

• The earlier chapters of this book focused on the introduction of the fundamental NLP 
concepts and methods: you learned about tokenization, stemming and lemmatization, 
part-of-speech tagging and dependency parsing, among other things. To put these 
concepts and techniques in context, each of them was introduced as part of a more 
focused, practical NLP task: for instance, the earlier chapters focused on the 
development of an Information Search and an Information Extraction applications. 

• This book has taken a practical approach to learning from early on. Indeed, there is 
no better way to acquire new knowledge and skills than to put them in practice 
straight away. Apart from the Information Search and the Information Extraction 
applications, you have also built your own Spam Filter, Authorship Attribution 
algorithm, Sentiment Analyzer, and your own Topic Classifier. 

• Machine learning techniques play an important role in NLP these days and are widely 
used across various NLP tasks. This book has introduced you to a range of ML 
approaches covering supervised, unsupervised, and sequence-labelling frameworks. 

• Finally, this book has introduced good project development practices as each 
application followed the crucial steps in a Data Science project: from data exploration 
to preparation and preprocessing, to algorithm development, to, finally, evaluation. 

The field of NLP is one of the most popular and quickly developing fields in Artificial 
Intelligence and Data Science. The primary goal of this book has been to introduce you to 
this exciting and highly innovative field and equip you with the core knowledge and skills that 
would allow you to further explore the vast number of opportunities in this area. I sincerely 
hope that you will continue your journey. Here are some further pointers, where you can get 
ideas for your future NLP projects: 

• State-of-the-art NLP research is presented at the top NLP conferences of the 
Association of Computational Linguistics (ACL). All papers are in open access and can 
be found in the ACL Anthology: https://www.aclweb.org/anthology/. 

• Google Scholar (https://scholar.google.com) and arXiv (https://arxiv.org) are other 
good sources of up-to-date publications. 

• If you are looking for ready-to-use implementations, open access papers with code 
and datasets can be found on https://paperswithcode.com. 

• Last but not least, if you enjoy reading textbooks, especially the ones that combine 
theoretical background with practical advice, you should continue with the NLP books 
from Manning (https://www.manning.com).  
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11.6 Solutions to exercises 
Solution to Exercise 11.3: 
Table 11.4 shows the answer to this question. 

Table 11.4 BIO annotation for “the company’s CEO Tim Cook said”. 

Words IO label BIO label BIOES label 

the O O O 

company's O O O 

CEO O O O 

Tim I-PER B-PER B-PER 

Cook I-PER I-PER E-PER 

said O O O 
 
Solution to Exercise 11.4: 

a. IO scheme has 1 I-tag for each entity type plus a single O-tag for words outside any 
entity type. This results in n+1, or 19 tags for 18 entity types. 

b. BIOES scheme has 4 tags for each entity type (B, I, E, and S) plus one O-tag for 
words outside any entity type. This results in 4n+1, or 73 tags. 

As you can see, the more detailed schemes provide for finer granularity but also come at 
an expense of having more classes for the algorithm to distinguish between: while BIO 
scheme allows the algorithm to train on 37 classes, BIOES scheme has almost twice as many 
classes, which means the algorithm has to deal with higher complexity and may make more 
mistakes.  

Solution to Exercise 11.5: 
This exercise requires you to, essentially, change one line of code in the Code Listing 

11.10 (entity=“The New York Times”). In addition, you can see the output of this code in 
the Jupyter notebook for this chapter. 
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Installation Instructions 

To run the notebooks on your machine, check whether Python 3 is installed (all code was 
written and tested with Python 3.7). In addition, you will need the following libraries 
(notebooks were tested with the versions indicated in the brackets; if you use different 
versions, the code will still work but minor differences in the results are possible): 

• NLTK (v 3.5): check installation instructions for the toolkit 
at https://www.nltk.org/install.html and the accompanying data 
at https://www.nltk.org/data.html 

• SpaCy (v 3.1.3): check installation instructions at https://spacy.io/usage. You will 
also need to install models (e.g., en_core_web_sm, en_core_web_md, 
and en_core_web_lg) using the instructions on the website. 

• Gensim (v 3.8.0): check installation instructions 
at https://radimrehurek.com/gensim/ 

• Matplotlib (v 3.1.3): check installation instructions 
at https://matplotlib.org/users/installing.html 

• Scikit-learn (v 0.22.1): check installation instructions at http://scikit-
learn.org/stable/install.html 

• NumPy (v 1.18.1): check installation instructions 
at https://www.scipy.org/install.html 

• Pandas (v 1.0.1) check installation instructions 
at https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html 

Alternatively, a number of these libraries can be installed in one go 
through Anaconda distribution. 

For more information on Jupyter notebooks, check https://jupyter.org. 
Finally, all code examples from the book are available in the book’s repository 

(https://github.com/ekochmar/Getting-Started-with-NLP), where all further updates to the 
code will be posted. 
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