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Preface

In the ever-evolving landscape of technology, we find ourselves at a 

fascinating intersection where the worlds of machine learning and 

embedded systems converge. This convergence has given birth to Tiny 

Machine Learning (often shortened as TinyML®, trademark of the EdgeAI 

foundation)—a field that brings the power of artificial intelligence to the 

smallest and most resource-constrained computing devices. Rather than 

requiring expensive cloud infrastructure or powerful computers, Tiny 

ML allows sophisticated algorithms to run directly on microcontrollers, 

enabling a new generation of intelligent devices that can make decisions 

locally, with minimal power consumption and without Internet 

connectivity.

For Arduino enthusiasts, TinyML represents both an exciting 

opportunity and a significant challenge. The Arduino platform has long 

been beloved for its accessibility, allowing individuals with minimal 

programming experience to create interactive electronic projects quickly. 

Now, with TinyML, this accessible platform gains the ability to implement 

sophisticated machine learning capabilities that were previously 

beyond reach.

However, the journey into TinyML can be daunting, especially for 

those who may not have a background in data science or machine 

learning. Many tutorials and resources assume prior knowledge 

of machine learning principles or require extensive mathematical 

understanding, creating a significant barrier to entry. Furthermore, 

the constraints of microcontroller environments add another layer of 

complexity. Unlike cloud-based machine learning systems with virtually 

unlimited resources, TinyML development requires careful optimization 
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to fit within tight memory constraints, limited processing power, and strict 

energy budgets. Converting and optimizing machine learning models 

for these environments demands specialized knowledge that bridges 

the gap between traditional machine learning and embedded systems 

programming.

This is precisely why this book exists. Tiny Machine Learning 

Quickstart takes a fundamentally different approach to teaching 

TinyML. Rather than digging too much into the theoretical and 

mathematical foundations of data science, we start with working solutions 

and practical code that you can implement immediately from the very 

first chapters. While understanding the underlying principles of machine 

learning is undoubtedly valuable, many Arduino enthusiasts simply want 

to add intelligent features to their projects without becoming machine 

learning experts. This book respects that desire by providing ready-to-use 

code snippets, complete workflows, and practical techniques that deliver 

results first, with theory introduced only where necessary to support 

practical understanding.

�About This Book
Throughout the pages of this book, you’ll find a collection of carefully 

crafted, copy-paste solutions that address common TinyML challenges. 

Need to build a gesture recognition system? There’s a snippet for that. 

Want to implement keyword spotting to respond to voice commands? 

You’ll find working code ready to be adapted to your project. Interested 

in object detection from camera images? We’ve got you covered with 

implementations you can use right away. As you journey through these 

chapters, you’ll develop hands-on skills that enable you to:

•	 Implement machine learning models on Arduino 

boards without needing to understand the 

mathematical intricacies of each algorithm.

Preface
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•	 Follow straightforward workflows that take you from 

idea to functioning prototype without getting lost in 

theoretical detours.

•	 Adapt proven code patterns to suit your specific project 

requirements, building upon solid foundations rather 

than starting from scratch.

•	 Optimize your TinyML implementations for 

performance, energy efficiency, and reliability using 

practical techniques rather than abstract concepts.

•	 Troubleshoot common issues with tested solutions 

that address the real-world challenges of deploying 

machine learning on constrained devices.

The book deliberately avoids the trap of trying to transform you into a 

machine learning researcher. Instead, it treats TinyML as another powerful 

tool in your Arduino toolkit—one that happens to bring intelligence to 

your creations. Just as you don’t need to understand semiconductor 

physics to use an Arduino, you don’t need to grasp every nuance of neural 

network design to implement effective TinyML solutions.

Whether you’re a hobbyist looking to add intelligence to your weekend 

projects, an educator seeking accessible ways to introduce students to AI 

concepts, or a professional hoping to prototype smart devices quickly, 

this book offers a pragmatic path forward. In a field often characterized 

by complexity and theoretical depth, “Tiny Machine Learning Quickstart” 

stands as an invitation to simply begin building—and to learn through the 

joy of creation rather than the labor of study.

So power up your Arduino, prepare your development environment, 

and get ready to embark on a hands-on journey into the world of tiny 

machine learning. The future of intelligent embedded systems awaits, and 

it’s more accessible than you might have imagined.

Preface



xx

�What You Need to Know Already
This book is geared towards Arduino programmers, so you should already 

be familiar with Arduino programming, sketch uploading and debugging. 

For the sake of projects in this book, even a beginner-level experience 

would be sufficient.

The machine learning part is coded in Python: even if most examples 

are meant to be copy-pasted and run as-is, at least a minor knowledge 

of the language, how to install packages and how to run a script will 

greatly help.

�Dedication
To my lovely wife Alessia, my heartfilling daughter Adelia and my whole 

family. They made me the happy person I am today.

Preface
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CHAPTER 1

Tiny Machine 
Learning
Your journey begins! This chapter explores the basics of machine learning 

and what tiny machine learning is all about. You’ll learn how it is changing 

many industries by allowing AI models to run on tiny devices like 

microcontrollers, sensors, and other Internet of Things (IoT) gadgets. We’ll 

dive into the challenges and opportunities that come with this new frontier 

technology and discuss how it impacts industries and individuals. The 

second part of this chapter breaks down the key concepts and terminology 

you need to know to understand machine learning. It starts with the basics 

and covers essential terms like supervised and unsupervised learning, 

classification and regression, and how to measure a model’s performance.

Don’t worry if you’re new to this topic—the chapter takes it one step 

at a time, covering the fundamentals, and by the end of this chapter, you’ll 

have a solid grasp of the basics. If you’re already familiar with machine 

learning, you can skip ahead, but make sure to at least glance over the 

headings to ensure you’re not missing any crucial concepts.

Understanding this chapter is mandatory for grasping the rest of the 

book, so take your time and absorb all the information.

https://doi.org/10.1007/979-8-8688-1294-1_1#DOI
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�What Is Machine Learning?
Machine learning is a field of study that enables computers to 
learn without being explicitly programmed.

—Artur Samuel, 1959

This definition (one of the many available on the subject—and maybe the 

one that most directly conveys the point) contrasts with the traditional 

approach to computer programming, where you provide instructions to 

the computer, which then executes them (see Figure 1-1).

Figure 1-1.  Traditional programming vs. machine learning

In many cases, it is challenging to come up with exact instructions to 

achieve a specific goal in software development. For instance, consider a 

program that detects spam emails. If you were to write such a detector by 

hand, you would likely look for words that are commonly associated with 

spam, such as free, amazing, or you are the winner. However, this approach 

would require enumerating all possible spammy words and developing a 

formula for a spam score. This task can be time-consuming and may not 

be feasible with a satisfactory degree of accuracy.

Chapter 1  Tiny Machine Learning



3

Machine learning is a relevant approach when it is unclear how 

to classify information or extract new knowledge from existing data. 

It systematically analyzes data to identify patterns that may not be 

immediately apparent to the human eye. After a model has been trained 

on its task, it can be used to make inferences (predict a result based on the 

input data).

There are hundreds of different ways a computer can detect and extract 

patterns from data; since this is not a book about machine learning theory,  

I only briefly touch a few of them when needed. Besides detecting 

undercover patterns in data once, machine learning can be run periodically 

without human intervention, ensuring that its decision-making capabilities 

remain up to date, which is a huge advantage.

Historically, the power of machine learning algorithms has increased 

over time, largely due to the growth in the size and complexity of the 

models. This has led to an increasing need for resources, such as RAM 

and CPU/GPUs, which can be challenging when working with embedded 

or microcontroller-based systems. However, it does not mean machine 

learning cannot be run on tiny hardware.

�What Is Tiny Machine Learning?
If you’re reading this book instead of a book about traditional machine 

learning, it means you’re working in the embedded world. By embedded,  

I mean hardware that focuses on a single task (as opposed to a desktop PC 

that is meant to run a wide range of software for many different purposes) 

and can interact with the surrounding environment through sensors and 

actuators. Due to size, efficiency, power, and cost constraints, embedded 

hardware is characterized by limited resources (CPU, program space, and 

RAM). Even though the word embedded can cover a wide range of devices, 

in this book it refers to microcontroller hardware (a.k.a. MCUs).

Chapter 1  Tiny Machine Learning
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That said, tiny machine learning, also known as TinyML (trademark 

of the EDGE AI FOUNDATION), is a specialized area of machine learning 

that focuses on optimizing models to run on our embedded devices. This 

optimization can take two forms.

•	 Creating custom models that are designed to be as 

small as possible

•	 Adapting existing models through compression to fit 

within hardware constraints

As you might expect, not all models can be compressed to run on such 

limited resources, but you will be surprised by the many possibilities still 

available to you. These options are examined in this book.

The fundamental enabling factor for TinyML is an asymmetry in the 

machine learning process: the resources required to execute a model (give 

input data and ask for output—inference) are typically orders of magnitude 

less than the resources required to train a model (give input data and ask 

to discover patterns—training). We can exploit this asymmetry by training 

our models on resource-heavy hardware, such as a desktop PC, and then 

converting them into a lightweight format that fits the constraints of our 

embedded hardware.

While there exists the possibility to make the training work on devices 

with limited resources under specific constraints (on-device learning and 

federated learning), this book focuses on the asymmetric workflow since 

it gives us a lot more freedom in the choice of the models, allows for larger 

training data sizes and simplifies the overall development by leveraging 

well-tested software and tools (on-device learning and federated learning 

are still in their infancy).

The first part of each chapter is executed on your powerful PC with 

plenty of resources. You experiment, make changes, and iterate until 

you get results that satisfy the quality requirements. The second part 

of each chapter shows you how to generate C++ code that runs on the 

microcontroller and only performs inference.

Chapter 1  Tiny Machine Learning
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�What Can Be Considered “Tiny”?
The definition of TinyML has undergone significant changes over the 

years. My initial approach to TinyML was a blog post on the TensorFlow 

website titled “How to Get Started with Machine Learning on Arduino.” 

The post showcased several machine learning projects running on an 

Arduino Nano BLE Sense, which features an ARM Cortex-M4 CPU, 1 MB of 

flash memory, and 256 KB of RAM. Since then, two notable developments 

have occurred.

TinyML has become synonymous with TensorFlow for 

Microcontrollers, a specific version of TensorFlow designed for embedded 

hardware. This is largely due to advertising efforts by the TensorFlow team 

and vendors that have invested in the technology.

The maker community has successfully run TensorFlow on a range of 

microcontrollers and more powerful hardware, including the Raspberry 

Pi and NVIDIA Jetson Nano. This has led to the coining of a new, more 

encompassing term: EdgeAI.

In this sense, TinyML is a subset of the more general field of EdgeAI, 

which is a subset of AI. The remainder of this book doesn’t cover EdgeAI 

(AI on portable or mobile devices with a CPU at gigahertz frequency), 

but only TinyML (AI on bare metal hardware with a CPU in the 

megahertz range).

An alternative perspective for defining the boundaries of what constitutes 

“tiny” in TinyML is power consumption. The EDGE AI FOUNDATION is 

a community focused on ultra-low power machine learning at the edge. 

However, this term is not precisely defined and can be interpreted in different 

ways. Typically, it refers to power consumption in the milliwatt range. With 

this definition, the Raspberry Pi Zero (1 GHz CPU and 512 MB RAM) would 

fall under the tiny umbrella considering its average power consumption 

of 500–700 mW; but it would be at the high end of the power spectrum, 

consuming ten times the energy of a typical microcontroller. Figure 1-2 shows 

examples of what is considered “tiny” or not under this definition.

Chapter 1  Tiny Machine Learning
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Figure 1-2.  Examples of “tiny” and “not tiny” hardware

For this reason, let’s establish a set of soft boundaries for what is and is 

not considered tiny in the context of this book.

Note T his book considers valid TinyML hardware microcontrollers 
with at most 8 MB of program memory and 4 MB of RAM.

Table 1-1 lists a few examples of TinyML and EdgeAI devices with their 

hardware specs.

Chapter 1  Tiny Machine Learning
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Table 1-1.  Hardware Specs for TinyML and EdgeAI Devices

Device Hardware Specs TinyML or EdgeAI?

Arduino Nano 

and Nicla family

ARM Cortex M CPU at 64-480 

MHz256 KB — 1 MB RAM

TinyML

ESP32S3 Xtensa dual-core CPU at 240 MHz512 KB 

RAM + external 1 MB RAM (optional)

TinyML

Teensy 4.1 ARM Cortex M7 CPU at 912 MHz1MB RAM TinyML

Raspberry Pi 5 Broadcom BCM2712 quad-core CPU at 2.4 

GHzUp to 16 GB RAM

EdgeAI

NVIDIA Jetson 

Nano

ARM Cortex A57 CPU at 921 MHz4 GB RAM Edge AI

Does this mean you won’t be able to run the code listed in this book 

on more powerful targets? No, it doesn’t. In most cases, you can run the 

generated code on any hardware that supports C++. However, the primary 

focus of this book is to showcase the optimizations and trade-offs that 

differentiate tiny machine learning from traditional machine learning. If 

your hardware supports more powerful models and algorithms, you need a 

compelling reason to prefer less capable ones.

�Why Machine Learning on Microcontrollers?
Most machine learning applications today are designed to run on powerful 

hardware, often in cloud computing environments with (virtually) 

unlimited resources. So, why consider running machine learning on 

tiny, resource-constrained microcontrollers (MCUs)? Under what 

circumstances do microcontrollers outperform desktop PCs or cloud 

computing?

Chapter 1  Tiny Machine Learning
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�Bandwidth

Connectivity is a fundamental aspect of our digital lives. We are constantly 

connected, and most of our data is transmitted over networks. However, 

this is not always the case for embedded hardware. Many microcontrollers 

lack radio capabilities and rely solely on their internal components to 

perform tasks. If they want to perform machine learning, they must do so 

locally.

Even if they can connect to more powerful devices, it does not mean 

they can transmit all the data they collect. Transmitting data can be costly, 

both in terms of money and power consumption. Networking is often the 

most power-hungry component of embedded hardware, and your device 

may be operating on a limited energy budget (e.g., batteries). It is more 

practical to perform machine learning inference locally and transmit only 

the results to a remote location (e.g., for monitoring purposes).

�Latency

Transmitting data also incurs time costs. Embedded hardware often 

requires real-time processing (e.g., self-driving cars or industrial control 

systems). If your device relies on a remote server for instructions, it may 

fail due to network latency and create a regulatory disaster (e.g., a car 

accident or machinery malfunction).

Local machine learning may be slower than transmitting data to a 

remote server and waiting for a response. However, it is predictable. The 

time inference takes to complete is typically consistent across runs. You 

can benchmark this time and factor it into your system’s development. 

Yet, network time is unreliable and often fluctuates based on network 

conditions outside your control.

Chapter 1  Tiny Machine Learning
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�Privacy

Not all data is sensitive, and users may not be concerned about 

transmitting it over the internet for processing. However, sensitive 

data should not leave the device that collected it. Audio and video 

data, for example, may be considered private, and many individuals 

are uncomfortable knowing that their data is exposed to third-party 

companies and susceptible to leaks or breaches.

In some industries, such as security, health, or childcare, strict 

privacy regulations must be followed. In these cases, it is preferable, if 

not mandatory, to keep data local and analyze it on the same device that 

collected it.

�Ubiquitous Computing

The rise of the Internet of Things (IoT) has led to an explosion in the 

number of smart electronic devices surrounding us. We are surrounded 

by thousands of objects with microcontrollers, such as light bulbs, 

ovens, cameras, and thermostats. Due to size and power consumption 

constraints, these objects cannot afford large or power-hungry 

motherboards. They must be affordable to keep the end price as low 

as possible. They must be self-contained because they are deployed in 

unpredictable environments. TinyML enables each object to implement 

intelligence into its operating mode, ranging from simple environment 

understanding (e.g., detecting when a room is empty) to more complex 

tasks like speech recognition.

�Low Power

Microcontrollers are characterized by their low power consumption. To 

put this into perspective, the following are common machine learning 

hardware’s typical power consumption levels.

Chapter 1  Tiny Machine Learning
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•	 Microcontroller: 0.1–0.5 W

•	 Raspberry Pi: 2–5 W

•	 Jetson Nano: 5–10 W

•	 Desktop PC with GPU: 10–50 W

If your deployment has a low power budget (e.g., you are off-grid and 

rely on batteries or solar energy), you cannot afford to supply watts of 

power continuously. You are forced to choose the least power-demanding 

solution. This solution is usually represented by microcontrollers, which 

often provide ultra-low power modes that reduce their consumption 

even lower to microwatts, greatly extending the battery life. If your project 

requires lightweight, sporadic machine learning that runs at regular 

intervals or only when new data is available, you can avoid wasting power 

by keeping an oversized piece of hardware idle most of the time.

�What Can Tiny Machine Learning Do?
Despite its small size, machine learning on resource-constrained devices 

can still achieve impressive results. Don’t be hasty in thinking that tiny is 

synonymous with useless. Many industries and verticals have already been 

impacted by TinyML, and it has proven to work reliably and satisfactorily 

in widespread real-world applications.

�Human Activity Recognition

Smartwatches have made this use case popular in recent years. Thanks to 

the onboard accelerometer, they can detect the activity you are performing 

(running, walking, swimming, etc.). They’ve also been tuned for the elder 

assistance niche, where they can detect elders’ falls and alert caregivers 

accordingly. This kind of device must obey a large number of constraints 

(consumes little power to save battery and prevent overheating, and runs 

fully locally because connectivity is not guaranteed), yet it works so well 

Chapter 1  Tiny Machine Learning
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that it has become a mainstream gadget for people who do sports and 

fitness. Chapters 4 and 5 approach the task of time series classification 

using distinct tools and techniques.

�Keyword Spotting

The phrases “Hey Alexa” and “Hey Google” have become familiar in recent 

years. Devices that respond to our voice commands enter our homes and 

smartphones. To provide a high level of speech recognition accuracy, these 

devices require an Internet connection to perform the word recognition 

in the cloud. That said, it would pose serious privacy concerns if these 

devices were streaming everything to remote servers. They instead look 

locally for the magic activation words, and only when those words are 

found do they start streaming. Chapter 6 leverages the Edge Impulse 

platform to train a model that recognizes the magic words “Hey Arduino” 

fully locally.

�Image Classification and Object Detection

Image recognition is an area where neural networks and deep learning 

have shown impressive results compared to humans. These models have 

been used in various industrial settings, such as computer-vision-guided 

machinery in industrial plants to identify and sort products or self-driving 

robots and cars.

Computer vision models tend to have a high degree of complexity, 

given the vast number of subjects that an image can contain. Nevertheless, 

some powerful yet lightweight architectures have been proposed in recent 

years that are suitable for the TinyML environment. Chapter 7 leverages 

the Edge Impulse platform to perform object detection (which objects are 

present in the image? Where are they located?). If a couple of years ago 

these models would have required a few seconds to run on commodity 

microcontroller hardware, nowadays you can perform object detection on 

10 USD hardware at an astonishing speed of up to 20 frames per second.

Chapter 1  Tiny Machine Learning
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�Predictive Maintenance

One key application of TinyML in industrial settings is in the monitoring 

of equipment, such as pumps, motors, and compressors. TinyML-powered 

sensors can be deployed to monitor equipment performance to detect 

early signs of wear and tear and predict when maintenance is required. 

This enables industrial operators to schedule maintenance during planned 

downtime, reducing the risk of unexpected equipment failures and 

minimizing the impact on production.

�What Can’t Tiny Machine Learning Do?
Not all machine learning tasks are suitable for tiny computers. Many recent 

advancements in the field often struggle to run on consumer-level desktop 

hardware, let alone tiny machines.

�Large Language Models

In November 2022, ChatGPT revolutionized the artificial intelligence 

world by demonstrating its ability to understand human instructions and 

respond in a human-like style. Since then, large language models (LLMs) 

have gained significant attention, and their development has accelerated. 

These models are characterized by their massive size, often with billions 

(or even trillions) of parameters and requiring billions of mathematical 

operations. Unfortunately, such models are unlikely to fit on 2 MB of RAM 

now and for the years to come.

�Image Generation Models

Similar to language models, image generative models, such as Stable 

Diffusion, are renowned for their massive resource requirements. These 

models are designed to run on graphics processing units (GPUs) with 

Chapter 1  Tiny Machine Learning
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tens of gigabytes of RAM. Even simpler models can take seconds or 

minutes to run on everyday laptops, making it impractical to run them on 

microcontrollers in the near future.

�Point Cloud and LIDAR

In the context of Arduino projects, you may want to program an 

autonomous vehicle driven by a LIDAR sensor, as many autonomous 

vacuum cleaners do. Although this application area may seem suitable for 

embedded hardware, reconstructing a 2D/3D scene from the LIDAR point 

cloud is a math-intensive operation that requires a powerful processing 

unit. While the CPU does not need to be massive, you still need a modest- 

sized one—like a Raspberry Pi.

Now, let’s focus on the fundamental concepts of machine learning. 

This is essential because these concepts are explored throughout the rest 

of the book.

The section that follows may appear like a list of definitions, and you 

may be inclined to skip it. However, do not do so. These entries are not 

simply definitions but rather a concise explanation of key concepts that 

are crucial to understanding the subsequent chapters. These concepts are 

presented in a clear and accessible manner, making them easy to grasp, 

even if you are new to the subject.

�Machine Learning Glossary
Before moving on to practical code examples in the next chapters, you must 

become familiar with a few terms and concepts that are the cornerstones of 

machine learning. Without this prior knowledge, you won’t be able to follow 

the theory and practice that comes in the next chapters. So, take some time 

to assimilate the following paragraphs as best you can.
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Remember that most TinyML comes after the traditional machine 

learning workflow: you first develop a model and then optimize it to run 

on embedded hardware. If you don’t understand the basics of machine 

learning, you just can’t do tiny machine learning.

Note T he following paragraphs are not meant to perfectly match 
the scientific definitions in a math-oriented textbook. They’re 
intended to convey the point with an accessible language instead.

�Supervised vs. Unsupervised
Let’s revisit the definition of machine learning I introduced at the 

beginning of this chapter.

Machine learning is the field of study that enables computers 
to learn without being explicitly programmed.

How does a computer accomplish a task without being programmed? 

In machine learning, the computer learns from the data it is given. Data 

can take many forms, such as sensor data, images, audio, or raw numbers. 

The underlying assumption of the machine learning approach is that this 

data contains patterns that may or may not be obvious. However, these 

patterns must exist for any software to be able to learn something useful.

If the data is organized into existing categories or it is known a priori 

what output is expected given an input, it is supervised learning. In 

supervised learning, you provide the model with labeled data, saying, 

“When the input looks like this, the output should be that.” After the 

training phase, your objective is for the generated model to produce 

the correct output on new, unseen data. Each model has its unique way 

of learning this relationship, and each algorithm has varying modeling 

capabilities. No single model works best for every project, so you need to 

try a few before finding the optimal one for the task.

Chapter 1  Tiny Machine Learning



15

On the other hand, unsupervised learning does not involve outputs. 

You only have input data and are wondering if it contains naturally 

occurring patterns. These patterns may not exist at all, or they may be 

blurred and fuzzy. Your objective in unsupervised learning is twofold: 

first, to determine whether any pattern exists, and second, to assess how 

well it fits the data. Examples of unsupervised learning include clustering 

(grouping similar data together), dimensionality reduction (compressing 

data without losing too much information), and association rule mining 

(identifying patterns between events).

Figure 1-3 helps clarify the distinction.

Figure 1-3.  Supervised vs. unsupervised learning

Note T his book only covers supervised learning. It is the most 
exploitable for real-world projects and lends itself better to tiny 
machine learning applications.
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�Ground Truth
In supervised learning, ground truth is the correct output of your input 

data. The model uses it to learn what the result should look like when 

presented with a given input. After the model has learned its parameters, 

the ground truth values are compared with the predicted values to assess 

the learning performance.

�Regression vs. Classification
Regression, a form of supervised learning, is the task of predicting a 

continuous variable from an input. For instance, you might use regression 

to infer the apparent air temperature from humidity readings or predict the 

progression of diabetes in a patient based on their age, weight, and blood 

analysis.

You can have various combinations of inputs and outputs in 

regression, including one input and one output, multiple inputs and 

one output, or multiple inputs and multiple outputs. While the output 

variable(s) must be continuous, there is no constraint on the input 

variables, which can be all continuous, all categorical (discrete), or a mix 

of both.

Classification, part of supervised learning, identifies to which class or 

classes an input belongs. This task has several important specifications.

•	 An input can belong to none, one, or multiple classes.

•	 The list of classes is completely known, meaning a 

model cannot detect a class it has never seen before.

The task is a one-label classification if all input samples belong to exactly 

one class. If samples can belong to one or more classes, it is called multi-

label classification. To simplify development, we assume that a sample 

belongs to at least one class. If it does not, you can discard the sample or 

create an “unknown” class that groups all samples without a label.
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An example of classification is determining whether an image depicts a 

dog or a cat or whether an audio sample contains the words “Hey Google” 

(with “contains” and “does not contain” labels).

See Figure 1-4 for a visual explanation of the difference.

Figure 1-4.  Regression vs. classification

Note T his book focuses on regression and one-label classification.

�Binary vs. Multiclass

Binary classification is a type of classification problem where you have 

only two classes. These classes can represent anything, such as cat vs. dog, 

spam vs. ham (not spam), or healthy vs. sick. In binary classification, you 

assign a numeric value of 0 or 1 to each class. It is a common convention 

to assign 1 to the positive class and 0 to the negative class. But, this 

assignment is arbitrary in cases where the classes do not have a natural 

positive or negative interpretation, such as dog vs. cat.

Multiclass classification, on the other hand, is a type of classification 

problem where you have more than two classes. There is no theoretical 

limit to the number of classes, and some classification problems, such 
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as image recognition, can involve thousands of classes. However, the 

more classes you have, the more complex the classification problem 

may become.

Some classification models are designed to work with multiple classes, 

while others are designed to work with only two classes. However, binary- 

only classification models can be extended to work with multiple classes 

using one of two strategies: one vs. all or one vs. one.

�One vs. All

The one vs. all strategy involves training a separate binary classifier for 

each class (see Figure 1-5). Each classifier is trained to distinguish between 

the class of interest and all other classes. The final prediction is made by 

selecting the class with the highest confidence score.

For example, in a three-class problem (A, B, C), the one vs. all strategy 

would involve training three binary classifiers.

•	 Classifier 1: A vs. (B or C)

•	 Classifier 2: B vs. (A or C)

•	 Classifier 3: C vs. (A or B)

This strategy only works for binary classifiers that produce a score or 

probability for their predictions (not all models do). For each new input 

sample to be classified, all the classifiers make a prediction, and the 

positive prediction with the highest score is chosen. If no classifier makes 

a positive prediction or the score is below a confidence threshold, the 

sample should be marked as unknown or unclassifiable.
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Figure 1-5.  One vs. all multiclass strategy

Caution I t is important to note that if you have many classes with 
many samples each, there is a risk that each classifier is trained on 
an imbalanced dataset (few samples that belong to one class and 
many samples that belong to the other class), which can lead to poor 
results.

�One vs. One

The one vs. one strategy involves training a separate binary classifier for 

each pair of classes. In a three-class problem (A, B, C), the one vs. one 

strategy would involve training three binary classifiers.

•	 Classifier 1: A vs. B

•	 Classifier 2: A vs. C

•	 Classifier 3: B vs. C
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The number of classifiers grows quadratically with the number of 

classes according to the following formula.

	
numberofclassifiers

numberofclasses numberofclasses
�

� �� �1
2 	

For example, you will need 45 classifiers for a classification task with 10 

labels. The one vs. one strategy does not require that a classifier produces 

a score for its prediction. The winning class has the most votes if the 

output is a discrete 0 or 1 (see Figure 1-6). If the classifier can produce a 

confidence score, you may sum either the scores or the votes.

As with the one vs. all strategy, it may happen that no class achieves 

the majority of votes, and the sample should be marked as unknown or 

unclassifiable.

Figure 1-6.  One vs. one multiclass strategy
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�Metrics
To evaluate the performance of a model, you need a metric. In supervised 

machine learning, a metric is a numerical value that measures how 

well the model’s output matches the expected output. For classification 

problems, a metric tells you the number of classifications the model got 

correct from the total number of predictions. For regression problems, it 

measures the difference between the predicted and expected values.

�Metrics for Binary Classification
In binary classification, the outcomes are limited to 0 and 1. A simple and 

widely used metric is accuracy, which is defined as the number of correct 

predictions divided by the total number of predictions. A higher accuracy 

indicates better performance. However, accuracy can be misleading, as it 

does not provide information about the model’s performance in each class.

To illustrate the fallacy of accuracy as a metric, let’s consider an 

example. Suppose you train a spam detector to classify emails as spam or 

not spam (a.k.a. “ham”). You have 900 ham emails and 100 spam emails 

in your dataset. The model achieves an accuracy of 90%. Can this be 

considered a satisfactory result? Actually, no, since 90% is the accuracy 

you get by always classifying an email as ham (which means the classifier 

didn’t learnt anything at all!).

Two additional metrics are commonly used to address this limitation: 

precision and recall. To understand what they represent, let’s first 

enumerate the possible outcomes in a binary classification problem.

•	 True positive (TP): The true outcome was 1, and the 

classifier correctly predicted 1.

•	 True negative (TN): The true outcome was 0, and the 

classifier correctly predicted 0.
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•	 False positive (FP): The true outcome was 0, and the 

classifier wrongly predicted 1.

•	 False negative (FN): The true outcome was 1, and the 

classifier wrongly predicted 0.

Precision measures how many times the classifier was correct when 

it predicted 1. Recall measures how many times the classifier predicted 1 

against the total number of actual 1s.

	
precision

TP

TP FP
�

� 	

	
recall

TP

TP FN
�

� 	

Figure 1-7 explains the same concepts with a diagram.

Figure 1-7.  Precision and recall
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Let’s go back to the spam detector example that always classifies 

emails as ham. Assign the value 0 to “ham” and 1 to “spam”. Let’s compute 

the metrics.

True positive  = 0         How many correct spam predictions?
True negative  = 900       How many correct ham predictions?
False positive = 0         How many wrong spam predictions?
False negative = 100       How many wrong ham predictions?

Precision = TP / (TP + FP) = 0 / 900 = 0%
Recall    = TP / (TP + FN) = 0 / 100 = 0%

We now have a completely different view of our classifier performance. 

Our classifier obviously did an awful job in learning how to recognize a 

spam email, even if the overall accuracy looked high.

How can it be possible that the classification effectiveness is so low 

given an accuracy so high? It happened because the dataset is unbalanced: 

the number of instances of one class (ham) is much larger than that of 

the other class (spam). In these cases, many algorithms favor the majority 

class due to the implementation details of how they learn (they optimize 

for accuracy instead of precision and recall).

If you prefer a single metric to describe your classifier that doesn’t 

fool you as accuracy does, you can refer to the F1 score, which combines 

precision and recall into a single number.

	
F

precision recall

precision recall
1

2
�

� �
� 	

A high F1 score means that both precision and recall are high; a low F1 

score needs more investigation since it can be due to either low precision 

or low recall (or both!).
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�Metrics for Multiclass Classification

In multiclass classification, you can use the same binary metrics (accuracy, 

precision, recall) for each class, applying a one vs. all binarization 

scheme. However, a more informative metric is the confusion matrix (see 

Figure 1-8).

A confusion matrix is a table that displays the number of correct and 

incorrect predictions for each class. The table has rows and columns 

equal to the number of classes, where each cell represents the number of 

samples whose true class is the row label and whose predicted class is the 

column label.

Figure 1-8 depicts an example of a confusion matrix referred to the 

Iris flower dataset [1], which tries to assign the correct Iris species (setosa, 

virginica, and versicolor) based on sepal and petal dimensions.

Figure 1-8.  Example of confusion matrix for the Iris flower dataset
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The diagonal cells of the matrix represent the number of correct 

predictions, while the off-diagonal cells represent the errors. The 

confusion matrix provides valuable insights into the model’s performance, 

such as the following.

•	 The overall accuracy of the model (sum of left diagonal 

against the total number of samples)

•	 The precision and recall of each class

•	 The number of misclassified samples

In Figure 1-8, you interpret the off-diagonal values as follows.

•	 The number 1 represents the samples whose true class 

was versicolor but were classified as setosa.

•	 The number 2 represents the samples whose true class 

was setosa but were classified as virginica.

This matrix can tell you a lot of information at a glance.

•	 The classifier was pretty good (72 correct classifications 

out of 75). Errors are low compared to correct 

classifications.

•	 Versicolor has 100% precision (when the classifier 

predicted versicolor, it always was a true versicolor) and 

recall (all versicolor samples were correctly picked).

•	 Setosa has 96% precision (28/29, the classifier was 

wrong once).

•	 Virginica has 96% recall (29/30 occurrences were 

correctly picked).
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This is a pretty good confusion matrix. (The Iris flower dataset is a toy 

dataset, and it is very easy to classify.) You may encounter much worse 

cases in your real-world projects, as in Figure 1-9.

Figure 1-9.  Poor confusion matrix 1

In this example, the overall accuracy is in the 70%–80% range, and you 

can see that the errors are uniformly spread across all classes. In these 

cases, you need to increase the modeling power of your current model via 

parameter tuning (if possible) or look for a more capable model.
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�Metrics for Regression

Regression is predicting a continuous variable from a set of inputs. In this 

case, you typically do not aim for a perfect match between expected and 

predicted values. Instead, you want your predictions to fall within an 

acceptable error range from the actual ones. There are two main errors 

that are commonly used as regression metrics.

�Root Mean Squared Error

The root mean squared error (RMSE) is the square root of the average of 

the squares of the errors.

	
RMSE

N
truth pred

i

N

i i� �� �
�
�1

1

2
	

truthi is the expected value and predi the predicted one.

Using the square operator in the RMSE gives more importance to 

larger errors and outliers and always produces a positive result. Taking 

the square root of the result has two effects: it makes it easier to compare 

distinct RMSE values by providing a narrower range, and it gives the RMSE 

the same unit as the output variable, such as centimeters for a person’s 

height regression task.

Note A  good regression model has a low RMSE.

�Mean Absolute Error

The mean absolute error (MAE) is the average of the absolute value of the 

errors. It differs from the MSE because the square operator does not inflate 

error magnitudes, so their contribution is linear instead of quadratic. We 

still apply some positivization (absolute value) to avoid errors of opposite 

sign producing a null or very low error metric.
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MAE

N
truth pred

i

N
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1 	

Note A  good regression model has a low MAE.

Which one should you choose? It depends on your project, and until 

you are familiar with machine learning in general, I recommend you 

monitor both while developing.

�Coefficient of Determination

The coefficient of determination (R2) is a number between 0 (worst case) 

and 1 (best case) that expresses how well our input features explain the 

output. If it is high (larger than 0.9), our features contain almost all the 

information required to make a good prediction. If it is low, we’re probably 

missing important features that are relevant to the output. In a real-world 

scenario, you can expect a good R2 to be in the range of 0.8–0.95. Lower 

values may indicate that you need to find better attributes as predictors. 

Higher values may signal a trivial problem or a leak of the output into 

the inputs.
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In the best case, ŷi (the prediction) matches yi (the expected output) 

perfectly, so the fraction is 0 and R2 is 1.
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�Overfitting and Underfitting
Machine learning models can vary in complexity, and even the same 

model can be configured to be more or less descriptive. You might assume 

that the more descriptive a model is, the better the results. However, this is 

not always the case.

Overfitting is a condition where a model learns the training data too 

closely. In this scenario, the model begins to memorize the data instead of 

learning to generalize it. Several factors can cause this.

•	 A small and/or noisy dataset

•	 A dataset with many uninformative attributes

•	 A model with more descriptive power than required by 

the data

For example, let’s say you want to create a model to predict a house 

price. You select input attributes such as the area, number of rooms, and 

whether it has a swimming pool. However, you also include attributes 

like the color of the walls, the size of the TV, and the height of the current 

owner. How much would you trust a model that assigns higher prices to 

houses whose owner is taller than 180 cm?

To address overfitting, you can try the following solutions.

•	 Choose a simpler model or constrain the model (if 

possible).

•	 Reduce the number of data attributes.

•	 Gather more data.

•	 Reduce noise in the data (fix errors and remove 

outliers).
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Underfitting is the opposite of overfitting. It occurs when a model 

cannot learn the underlying data pattern and exhibits poor performance. 

This can be due to a model being too simple or the data missing important 

features.

For instance, you might be using a linear model to learn a quadratic 

relation or try to predict a house price based solely on its year of 

construction. To address underfitting, you can try the following solutions.

•	 Choose a more complex model or release its 

constraints (if possible).

•	 Increase the number of data attributes.

•	 Gather more data.

•	 Reduce noise in the data (fix errors and remove 

outliers).

Figure 1-10 visually shows the problem of overfitting and underfitting 

for classification and regression tasks.

Figure 1-10.  Underfitting and overfitting in regression and 
classification
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�Training vs. Validation vs. Test
When developing a machine learning project, it is crucial to evaluate 

the effectiveness of different features, models, and model parameters’ 

configurations using a fair and objective evaluation process.

One of the most superficial errors we may commit is to stop iterating 

when our metrics look good, only to later discover that our model is 

overfitted. To avoid overfitting, where a model memorizes the input 

rather than learning from it, we typically split our data into three buckets: 

training, validation, and test sets.

The training data is fed as input to the algorithm to create a model. 

Since this is the most “data-intensive” process, the training set typically 

comprises 50%–70% of the samples. The model learns from this data and 

adjusts its parameters to minimize errors.

The model never uses the validation data to learn. Instead, it selects 

the model parameters that yield the highest metric (e.g., accuracy) on 

this unseen data. Since the model has not seen this data during training, 

it must generalize from the training samples to achieve a satisfactory 

result. Typically, 10%–20% of the data is used as validation. If no model 

parameters need to be tuned, the validation set is unnecessary.

To assess the actual model performance (after training), we use the test 

set, which is another split of the original data that the classifier has never 

seen during training or validation. The metric reported on this data is the 

value we expect to see in the real world. Typically, 10%–30% of the data is 

used as a test.

You may wonder why both validation and test sets are necessary. If 

we only use the test set for evaluation, we will select the model with the 

highest metric (accuracy, F1 score, MAE, RMSE, etc.) on that specific set. 

This result will be biased, and based on new, never-seen data, that model 

could (and probably will) perform worse. We are overconfident in our 

model’s prediction power.
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Let’s consider an example to illustrate these concepts better. Imagine 

you’re a teacher, and you want to test your students’ knowledge. You give 

them a quiz to see how well they’ve learned the lesson’s material.

The training set is like the textbook and class notes. You use this data 

to teach the students (your machine learning model) the concepts. They 

learn from this data and try to generalize the formulas or key concepts.

The validation set is like a practice quiz. You use this data to see how 

well the students have learned, but you can still correct their mistakes 

and adjust your teaching methods. This helps them fine-tune their 

understanding of the lessons (model’s parameters) for better results.

The test set is like the final exam. You use this data to evaluate a 

student’s knowledge in a real-world scenario without any feedback or 

corrections. This gives you an unbiased estimate of how well the students 

(model) will perform in the real world.

Summarizing, here’s why you need both validation and test sets.

•	 To prevent overfitting: If you only use the training set, 

the model might become too specialized in the training 

data and not generalize well to new, unseen data. The 

validation set helps prevent overfitting by showing how 

well the model performs on unseen data.

•	 To optimize parameters: The validation set helps you 

tune your model’s parameters. You can try different 

settings, evaluate the model on the validation set, and 

choose the best one.

•	 To drop bias: The test set provides an unbiased 

evaluation of your model’s performance. Since you 

didn’t use this data to train or optimize the model, it 

gives you a realistic estimate of how well the model will 

perform in real-world scenarios.
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�Feature Engineering
Feature engineering transforms raw data into a more effective set of 

inputs for machine learning models. Raw data can be noisy, redundant, 

or useless, and these values can have a negative impact on the model’s 

learning process. By transforming the data into a format more suitable 

for the model, you can significantly improve the accuracy of predictions. 

Some common feature engineering steps include the following.

•	 Converting an audio signal into its frequency 

components

•	 Extracting statistical moments (such as mean, variance, 

and standard deviation) or spectral values (such as 

energy and entropy) from time series data

•	 Scaling input data into a fixed range (such as [0, 1] or 

[–1, 1]) can help to prevent features from dominating 

the model’s predictions.

Each data type typically has a standard feature engineering pipeline 

that you can reuse across different projects. Some of these pipelines are 

examined in more detail in upcoming chapters.

One key point to pay attention to is the dimensionality of the data. You 

may think that having more data will always make it easier for a classifier to 

learn how to characterize each class. However, this is not always the case. 

In some scenarios, having too much data can actually hurt the learning 

process and lead to poor results. (There is a specific name for this: curse of 

dimensionality.)

Additionally, you must consider that more input data usually results in 

larger and slower models. In the context of TinyML, you want to have the 

leanest models possible to conserve precious resources when deploying the 

classifiers to your board. In projects dealing with high-dimensional data, 

it may make sense to apply dimensionality reduction algorithms, which 
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combine different features into a lower set, or feature selection, which is the 

process of discarding features that do not contribute significantly to the 

classification result. A feature may be (almost) useless for classification/

regression tasks for two reasons.

•	 It is highly correlated with another one, making it 

redundant and unnecessary.

•	 It does not characterize each class/output from the 

others, making it irrelevant.

After feature selection, your classification accuracy may drop slightly, 

depending on the specific dataset. Your job is to find the optimal trade-off 

between accuracy and resource constraints for your specific deployment. 

As a general rule, the more features you can discard, the better.

�Types of Data
Machine learning can operate on a variety of types of data. Some types of 

data may be fed as is to machine learning models (or at least to a group 

of them), and some others require important feature engineering steps to 

help the model make sense of them. This section covers the types of data 

you will encounter later in the book. It doesn’t cover every industry, but 

likely the most common ones. They are listed by increasing complexity in 

terms of analysis and/or information density.

�Tabular Data

Tabular data refers to a type of data that is structured and organized into 

rows and columns, similar to a spreadsheet or a table. Imagine a table 

with rows and columns, where each row represents a single observation 

or sample, and each column represents a feature or variable. For example, 

a spreadsheet representing the exam outcomes of a class of students is a 

good example of tabular data. Each row represents a student, and each 

column represents their outcome in a given exam.
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Here are some key characteristics of tabular data.

•	 Structured data: Tabular data is highly structured, 

meaning that each row and column has a specific 

meaning and format.

•	 Rows represent samples: Each row in the table 

represents a single sample or observation, such as a 

student, a customer, a transaction, or a product.

•	 Columns represent features: Each column in the 

table represents a feature or variable, such as the 

exam’s outcome, age, income, product category, or 

purchase amount.

•	 Homogeneous data: The data in each column is of the 

same data type, such as numerical, categorical, or text.

•	 Fixed schema: The structure of the table, including the 

number of columns and their data types, is fixed and 

well-defined.

•	 Row isolation: Each row (sample) is independent of 

the others. You can freely rearrange the order of rows 

without compromising the information that each 

row yields.

In IoT and physical computing, data often comes from sensors. If 

you consider sensors’ readings on their own, one at a time, that may be 

considered tabular data. For example, let’s say you want to use a multi-gas 

odor sensor to detect different types of alcoholic drinks [2]. This sensor 

outputs the concentrations of many gases (carbon monoxide, nitrogen 

dioxide, ethanol, etc.) maybe every second. You don’t want to monitor 

these values over time: you only consider the concentrations when you 

read the sensor. This is tabular data. More examples of tabular data that 

you may work with in your embedded projects include the following.
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•	 Atmospheric measurements (temperature, humidity, 

pressure)

•	 Color and light intensity

•	 Distance, speed, tilt angle

At this step, feature engineering operates on single samples. It only 

considers transformations that are either individual (relative to the sample 

at hand) or global (relative to the entire population of samples).

Chapter 2 focuses on tabular data classification, while Chapter 3 

discusses regression.

�Time Series Data

Time series data refers to cases where time is an added dimension to the 

collected data. In this context, you have two sources of information.

•	 The measurement values at a given point in time

•	 How values change over time

You can still store time series data in a tabular format, but the order of 

the rows is crucial. If you rearrange the rows in random order, you lose a 

significant amount of the intrinsic patterns of the data. Time series data may 

not have a fixed or uniform sampling frequency, and different sensors may 

have different frequencies (from a few samples per second to hundreds).

The following are some key differences between time series and 

tabular data.

•	 Time: It is as important as measurement values. A 

single sample holds very little information; what makes 

a pattern is how the values evolve over time.

•	 Numeric only: While tabular values may be a 

combination of numeric and categorical data, time 

series data is always numeric.

Chapter 1  Tiny Machine Learning



37

Given that data comes in as a stream of values and our hardware 

memory is limited, it is mandatory to window the data. Windowing is the 

process of only considering a chunk of data (the most recent one) at a 

time, discarding old data as fresh one comes in. Figure 1-11 depicts the 

windowing process over time.

Figure 1-11.  Sliding window

The following are some typical sources of time series data.

•	 accelerometer and gyroscope to detect movements or 

vibration patterns

•	 current and voltage to classify a device operating mode 

(e.g., idle, light load, or heavy load)

•	 atmospheric sensors (temperature, humidity, pressure) 

to predict if it will snow in the next hour
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•	 brain and muscle electric signals (EEG and ECG) to 

remotely control devices

Feature engineering of time series often consists of extracting statistical 

values from the windows in the time domain, such as the following.

•	 Minimum/maximum/average

•	 Variance/skew/kurtosis

•	 Count of values above/below the mean

•	 Zero crossings

•	 The frequency domain (Fourier transform)

These steps are required not only to reduce the dimensionality of the 

data (which can be a problem on its own) but also to de-noise the input 

and improve its information content. Remember that each sample in a 

time series holds little information on its own: packing many samples 

together doesn’t sum information up linearly.

Chapter 4 approaches time series classification using the Edge Impulse 

low-code platform and frequency domain features. Chapter 5 discusses 

time series classification using pure Python and time domain descriptors.

�Audio

Audio is a special kind of time series data. In the embedded world, it works 

at pretty standard sampling frequencies (8, 16, or 20 kHz) and amplitudes 

(represented as a signed 16-bit integer, from –32768 to +32767). At these high 

frequencies, extracting features in the time domain becomes problematic, 

and even if you could, they may not be the most suitable solution.

We approach audio classification using a custom version of frequency 

domain features called a Mel spectrogram. This transform maps the audio 

data from the time domain to the time-frequency domain. In this new 

domain, you can compute specific features that will become the input for 

the classification model. Given the amount of computation required and 
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the (near) real-time execution constraints, optimized algorithms have been 

developed to perform the Fourier transform in a timely manner, and many 

hardware vendors have even introduced hardware acceleration for it.

Chapter 6 implements spoken word classification using the Edge 

Impulse low-code platform.

�Images and Spatial Data

Images are a special kind of spatial data with an intrinsic arrangement in 

the XYZ space. They are a grid of pixels arranged in rows and columns, 

and each pixel’s value is as important as its position. Each pixel is strictly 

correlated with its neighbors: rearranging the pixels randomly along the 

rows or the columns would completely destroy the original image (the 

same way as rearranging time series did). However, spatial data is not 

limited to camera images. There exist a couple more examples that are 

common in the embedded environment.

•	 Thermal camera: this sensor perceives the infrared 

light that strictly correlates with objects’ temperatures. 

Depending on the sensor, the resolution can be 8×8, 

32×24, or 160×120. In this case, every pixel’s value 

represents the estimated temperature.

•	 Time of flight arrays: time of flight is a technique used 

to detect distances by measuring how much time the 

light takes to bounce against an object and return to 

its source. With specialized hardware (called SPAD 

arrays), you can measure distances over many points in 

the 3D space in a single run. Resolution is still limited, 

with the most common sensors achieving a 4×4 or 

8×8 output.

No matter what pixels represent (light intensity, temperature, or 

distance), spatial data may leverage a class of algorithms developed 
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specifically for images. As long your data looks like an image (values are 

bounded to a specific domain, e.g., 0–1 or 0–255), they should work fine no 

matter what pixels represent.

It should be evident that a “visual” camera has resolutions much higher 

than the alternatives described (up to 5 MP for some microcontrollers). 

So, images carry much more information than an 8×8 SPAD array output. 

Processing that much data can take a lot of time and resources. Considering 

our definition of embedded hardware (2 MB of flash memory and 2 MB 

of RAM), image analysis must be limited to low-resolution images (96×96 

being a good compromise between accuracy and resources’ usage). Also, 

only a subset of the available models can fit our hardware constraints. 

Advanced deep learning models commonly used on desktop hardware (e.g., 

YOLO architectures [3]) are not suitable in their default, full width form.

Chapter 7 explains the object detection process: how to recognize 

objects of interest inside an image.

To close the book, Chapter 8 approaches the field of artificial 

neural networks for embedded devices with a hands-on, code-oriented 

introduction to the TensorFlow framework [4]. You learn four common 

network topologies and how/when to use them in Python (for training) 

and Arduino (for inference).

�Summary
This chapter introduced the core idea of machine learning in general and 

the differentiating points that make TinyML a unique, separated niche. You 

got an overview of TinyML application industries, use cases, and what it 

still can’t achieve. Finally, you were introduced to the technical terms and 

concepts of machine learning so that you don’t get lost throughout the rest 

of the book and the kind of data you will be working with.

The next chapter starts with classifying tabular data, the simplest data 

type due to the row independence condition.
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CHAPTER 2

Tabular Data 
Classification
Tabular data refers to data that is structured and organized into rows and 

columns, similar to a spreadsheet. Tabular data classification is the task of 

receiving input from the columns of a single row and deciding which class 

that row belongs to.

The order of the rows is not important since each one is self-contained 

and isolated from the others. Feature engineering on tabular data operates 

considering either a single row at a time (row-level feature engineering) or 

all the rows at once (dataset-level feature engineering).

This chapter replicates the fruit classification project from the Arduino 

blog [1] that detects fruit based on its color components (see Figure 2-1). 

However, we won’t use TensorFlow or neural networks. This chapter, 

Chapter 3, and Chapter 5 are designed to use traditional machine learning, 

instead of deep learning (TensorFlow and similar). The models generated 

work on almost any microcontroller, even 8-bit ones (e.g., ATMega 

or Attiny series), with as little as 10–20 KB of RAM (depending on the 

model size).

https://doi.org/10.1007/979-8-8688-1294-1_2#DOI
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Figure 2-1.  Demo of the result of Chapter 2 project

Let’s go through the following steps to complete our project.

	 1.	 Capture data using our microcontroller and external 

sensors.

	 2.	 Load and inspect the data using Python.

	 3.	 Perform feature engineering using Python.

	 4.	 Train a classification model using Python.

	 5.	 Convert the model to C++ and deploy it back to our 

microcontroller.

Each step gradually introduces the theory and tools that are required 

(or that make it easier) to accomplish the task. Do not skip any step; 

otherwise, you won’t be able to get the correct results at the end. The same 

workflow also applies to Chapter 3 and Chapter 5.
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�Required Hardware
We need a color sensor since we want to classify different fruits based on 

their color. One of the following setups will work fine.

•	 Arduino Nano BLE Sense, with built-in APDS9960 

sensor (see Figure 2-2)

Figure 2-2.  Arduino Nano BLE Sense
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•	 Any microcontroller with an external TCS3200 sensor 

(see Figure 2-3). This sensor has four control pins (S0/

S1 for frequency scaling, S2/S3 for color) that need to 

be connected to digital output pins and one output pin 

for the detected signal (to be read using the pulseIn 

function).

Figure 2-3.  Wiring of TCS3200 color sensor

If you don’t have fruits of different colors (e.g., banana, apple, orange), 

you can replace them with any colored object. Make sure that each object 

has a clear, distinctive color (avoid using a banana and a lemon).

�Required Software
The only strict requirements for this project (and for all the projects in this 

book) are that you must install Python 3.10 or higher on your PC and the 

Arduino IDE (Platform IO with Arduino support is fine, too).

There are some optional steps that I suggest you carry on to ensure a 

smooth programming experience throughout the rest of this book, though.

Chapter 2  Tabular Data Classification



45

�Create A Python Virtual Environment
Let’s use Python with some third-party packages to perform our machine 

learning tasks. To keep our code and dependencies isolated, we will create 

a Python virtual environment.

A virtual environment in the context of Python is an isolated, project- 

specific installation of a Python interpreter, plus all the required additional 

libraries that the project needs. Since you likely have many Python projects 

on your PC, created at different times, version compatibility problems may 

arise if you install packages globally (due to updates in the dependencies). 

A virtual environment for each project prevents these conflicts by using 

different versions for different projects.

A virtual environment is created only once. Then, to be used, it needs to be 

activated. Every time you close your terminal, the environment is automatically 

deactivated, and you must reactivate it the next time you want to use it.

To create a virtual environment for this book, open your terminal into a 

dedicated folder and run the following command.

# create a new virtual environment (run only once)
$ python -m venv <name of the environment>

To activate the environment (while inside the root folder), run one of 

the following (depending on your setup).

# Windows Command Prompt
$ <name of the environment>\Scripts\activate.bat

# Windows PowerShell
$ <name of the environment>\Scripts\activate.ps1

# Linux/OS X
$ source <name of the environment>/bin/activate
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These commands translate to the following if you want the virtual 

environment to be named tinyml.

$ python -m venv tinyml

# Windows Command Prompt
$ tinyml\Scripts\activate.bat

# Windows PowerShell
$ tinyml\Scripts\activate.ps1

# Linux/OS X
$ source tinyml/bin/activate

After activating the virtual environment, you can start installing the 

required packages. I created a companion package for this book called 

tinyml4all. To install, execute the following line inside your virtual 

environment.

(tinyml)$ python -m pip install tinyml4all

Tip I f the Python command is not recognized, try to replace it with 
python3.

When running the Python code examples from this book, be sure 
you have activated your venv first; otherwise, you get many errors 
(missing dependencies, most of the time).

�tinyml4all Arduino Library
To assist you in the tasks that run on the microcontroller, I created a 

companion Arduino library called tinyml4all that you can install from the 

Arduino Library Manager. Even though it is completely optional, I strongly 
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suggest you install it. This way, you can run the sketches provided in this 

book without any modification. Figure 2-4 shows the correct library from 

the Arduino Library Manager window.

Tip T o open the Library Manager, open the Arduino IDE and 
navigate to Sketch ➤ Include library ➤ Manager libraries.

Figure 2-4.  Install tinyml4all Arduino library from the 
Library Manager

�Capture Data
The first step in any machine learning project is to collect data. Sometimes, 

you may already have data (collected in the past or downloaded from the 

Internet). Other times, you need to collect new data from your board and 

sensors.
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Collecting quality data is a crucial step. There’s a saying in the machine 

learning industry that says, “garbage in, garbage out.” If your input data 

is noisy, missing, and low quality, your model’s output mirrors that 

quality. So, take any effort you can to collect the best data possible. Often, 

collecting data is time-consuming or costly. Depending on your project 

requirements, you must evaluate how much value you assign to high-

quality input data. Not paying attention to this step can invalidate all later 

processing and preclude a successful result.

When collecting data for an Arduino project, it is pretty sure that data 

comes from sensors. You need to save that data and move it onto your 

PC. The following sections enumerate some of these ways. Your choice 

depends on your board capabilities (does it have an SD card slot or BLE/

Wi-Fi connectivity?) and the amount of data you will capture. (Is it a quick 

session, or do you collect for many minutes or hours?) If you have other 

preferred methods, you can use them. What matters is that you have a file 

(or many files) on your PC containing the collected data.

In the context of this project, our data is the red, green, and blue (RGB) 

components of the light reflected by each of the fruits. To achieve a good 

quality capture, be sure the environment is well illuminated. You only need 

to point your color sensor toward the fruit at a recommended distance of 

15–30 cm (see Figure 2-5).
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Figure 2-5.  Example setup for RGB collection

�1. Manually Copy Data from Serial Monitor
It may sound dumb, but the most straightforward, simple way to get data 

from your microcontroller is to print it on the Serial Monitor and manually 

copy and paste it into a file on your PC. For quick-and-dirty projects, this is 

by far the fastest way to get started.

Of course, you want to properly format your data before printing 

otherwise, you won’t be able to easily process it in Python later. If you 

installed the tinyml4all Arduino library, this should be fairly easy. The 

most suitable format for Python ingestion and processing is comma-

separated value (CSV) encoding. It is a text-based format that stores data 

in rows and columns. Each row is on a line. Each column is separated from 

the others with a comma.
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In this project, each row stores the red, green, and blue light 

components from our color sensor at a one-second interval. Depending 

on the type of color sensor you are using (Arduino Nano BLE Sense with 

built-in APDS9960 or external TCS3200), the code to instantiate the sensor 

will look slightly different. Apart from that, the rest of the code is identical 

for both cases. If using the Arduino Nano BLE Sense board, create a new 

Arduino project and copy-paste the code from Listing 2-1.

Listing 2-1.  Collect Color Readings from APDS9960 Sensor with 

User Prompts

/**
* Listing 2-1
* Collect RGB data in CSV format from user prompt.
*
* Required hardware: Arduino Nano BLE Sense.
*/
#include <Arduino_APDS9960.h>
#include <tinyml4all.h>

using tinyml4all::promptString;
using tinyml4all::promptInt;
using tinyml4all::printCSV;

tinyml4all::APDS9960 sensor;

void setup() {
    Serial.begin(115200);
    while (!Serial);
    Serial.println("Collect RGB values as CSV");

    // init sensor (will throw an error if it fails)
    sensor.begin();
}
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void loop() {
    // get fruit name and number of samples from user
    String fruit   = promptString("Which fruit is this?");
    int numSamples = promptInt("How many samples to capture?");

    for (int i = 0; i < numSamples; i++) {
        // read sensor values and print in CSV format
        sensor.readColor();
        printCSV(sensor.r, sensor.g, sensor.b, fruit);
        delay(1000);
    }

}

Note I f you’re using an external TCS3200 sensor, refer to the book’s 
code repository.

Flash the sketch to your board and open the Serial Monitor. Choose 

a fruit, point the board toward it at 15–30 cm, and enter its name when 

prompted; then enter 50 for the number of samples. The CSV lines appear 

every second (see Figure 2-6).

Figure 2-6.  Serial output of fruit data collection
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To collect good quality and robust data, move the sensor around a 

bit while the collection procedure is in progress—get closer, then further, 

then to the left, then to the right (while still pointing in the direction of the 

fruit)—to create some variability in the data (see Figure 2-7). Repeat the 

same process for each fruit you’re going to recognize. I suggest you collect 

30-50 samples for each.

Figure 2-7.  Collect RGB values from different angles

When you’re done, copy the contents from the Serial Monitor into a file 

named fruits.csv inside your Python project folder.

To make it a proper CSV, you need to remove all the lines that don’t 

contain data (“Which fruit is this?” and “How many samples to capture”) 

and add a heading with the columns’ names, specifying what each column 

represents. In this project, the first three values represent the light’s red, 

green, and blue components, and the fourth is the fruit’s name, so we 

prepend a line with the contents r, g, b, fruit.

# excerpt of the file fruits.csv
r,g,b,fruit
17,12,9,banana
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17,13,8,banana
16,13,9,banana
18,10,10,banana
38,23,18,orange
40,22,18,orange
49,25,19,orange
65,31,22,orange
54,25,18,orange

�2. Read Serial Output from Python
Manually copy-pasting data from the Serial Monitor works fine until you 

have a low volume of data. If your data is produced at high rates or has 

many attributes, or you need to collect it for a long time, it may be more 

practical to use a Python script that saves you from the manual work and 

automatically reads the Serial output from the microcontroller, saving it 

to a file.

The Arduino code in Listing 2-2 has been updated to continuously 

read and print values to the Serial output without human intervention. We 

handle the prompting from Python.

Listing 2-2.  Collect Color Readings from APDS9960 Sensor Without 

User Prompts

/**
* Listing 2-2
* Collect RGB data in CSV format without user prompt.
*
* Required hardware: Arduino Nano BLE Sense.
*/
#include <Arduino_APDS9960.h>
#include <tinyml4all.h>
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using tinyml4all::promptString;
using tinyml4all::promptInt;
using tinyml4all::printCSV;

tinyml4all::APDS9960 sensor;

void setup() {
  Serial.begin(115200);
  while (!Serial);
  Serial.println("Collect fruits colors as CSV");

  // init sensor (will throw an error if it fails)
  sensor.begin();
}

void loop() {
  // read sensor values and print in CSV format
  // without user intervention
  sensor.readColor();
  printCSV(sensor.r, sensor.g, sensor.b);
  delay(1000);
}

Create a new Python script inside the project’s folder named capture_
colors.py, with the contents from Listing 2-3. The script asks you to 

input the fruit name and the number of samples to capture, and then the 

automatic acquisition over the serial port starts. When you’ve finished, 

leave the fruit name blank to exit.

Caution B e sure to replace the highlighted values in the script with 
your own values!
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Listing 2-3.  Capture Data from Serial in Python

from tinyml4all.tabular import capture_serial

while True:
    # prompt user for fruit name and number of samples
    fruit = input("Which fruit is this? ")
    num_samples = input("How many samples to capture? ")

    # exit when fruit or number of samples is blank
    if not fruit or not num_samples:
        break

    # start the capturing
    # will connect to the serial port and read its data
    capture_serial(
        # board serial port
        # * is a wildcard match
        # on Windows, this will look like COM1 or similar
        port="/dev/cu.usb*",  #
        # must match with the Arduino sketch
        baudrate=115200,
        # file name where output will be stored
        save_to="fruits.csv",
        # the list of columns to save
        headings="r, g, b, fruit",,
        # board only sends r, g, b
        # so we append the fruit manually
        append_values=[fruit],
        num_samples=int(num_samples)
    )

To run the code, open a terminal inside the folder where the script 

is located and run the following command. (remember to activate the 
virtual environment first!)
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(tinyml)$ python capture_colors.py
Which fruit is this? banana
How many samples to capture? 30
Connected to serial port
100%|██████████| 30/30 [00:30<00:00,  1.01s/it]
Disconnected from serial port

Repeat the process for every fruit you want to classify. When done, if 

you open the fruits.csv file, you find content similar to the following.

# excerpt of the file fruits.csv
r,g,b,fruit
38,23,18,banana
40,22,18,banana
49,25,19,banana
65,31,22,banana
54,25,18,banana

Tip I f you get an error reading the Serial port, be sure that you 
entered the correct port name and you don’t have the Arduino IDE 
Serial Monitor open already! If that’s the case, close it and re-run the 
Python script.

�3. Save to SD Card
If you don’t want wires going from your board to your PC, or the board 

cannot be easily reached, you can store data on an SD card. Not all boards 

come equipped with an SD slot, so consider this when buying a new board. 

Otherwise, you can add an external SD card reader connected via SPI 

pins. Listing 2-4 is a sketch that stores the RGB readings of the Arduino 
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Nano BLE Sense to an externally connected SD card reader. Many SD 

card readers require a connection to the default SPI pins of the board 

(check your board’s datasheet) plus one more pin (called CS) that can be 

connected to a pin of your choice. That value must be configured in  

Listing 2-4 to make it work.

Caution R eplace the values in bold with your specific values!

Listing 2-4.  Save Color Readings to SD Card

/**
* Listing 2-4
* Collect RGB data in CSV format and store on SD card.
*
* Required hardware: Arduino Nano BLE Sense.
* Required hardware: SPI SD card reader
*/
#include <SPI.h>
#include <SD.h>
#include <Arduino_APDS9960.h>
#include <tinyml4all.h>

tinyml4all::APDS9960 sensor;
tinyml4all::SDCard card;
// replace with the correct pin!
// see the SD card reader module datasheet to find this value
const uint8_t CS_PIN = 4;

void setup() {
  Serial.begin(115200);
  while (!Serial);
  Serial.println("Collect fruits colors as CSV on SD card");
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  // init sensor and SD card
  // then open file for writing
  // will throw an error if something goes wrong
  sensor.begin();
  card.begin(CS_PIN);
  card.writing("fruits.csv");
}

void loop() {
  // read sensor values and print in CSV format
  sensor.readColor();
  card.println(sensor.r, sensor.g, sensor.b);
  delay(1000);
}

Now, you can power the board using a power bank (Figure 2-8) 

or a battery and collect data without strings attached. Since we can’t 

interact with the board, we’re collecting a single file with only the RGB 

components, without the fruit name. Collect a few seconds of data for 

each fruit, then somehow mark the end of the fruit’s session (e.g., put 

your hand in front of the sensor so that it reads very low values for all the 

components) and move to the next.
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Figure 2-8.  External SD card reader setup

Tip I f there’s a lag between the moment you power up the board 
and the moment you start pointing the sensor to the fruit, delete the 
first few lines. Do the same with the last few ones.

When you’re done, move the file from the SD card to the project folder. 

You must impute the correct fruit to each row. One way is to open the file 

in Excel and manually add a fruit column (use the drag option to edit 

cells in bulk) and delete the spurious rows (those with all low values).

Another way is to create a file for each fruit: copy-paste all the rows 

relative to the same fruit into their own CSV file. (I suggest you create a 

dedicated folder to put them in.)
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Caution R emember to add headers to each file!

You should end up with a folder layout similar to the following.

|- your project
  |- capture_colors.py
  |- fruits
    |- apple.csv
    |- banana.csv
      |- orange.csv

No matter the approach you chose, after you complete the procedure 

for each fruit, you should have either a single fruits.csv file (with R, G, B, 

and fruit columns) or a list of distinct CSV files (one for each fruit, with R, 

G, and B columns).

�Load and Inspect Data
The next step in our tiny machine learning workflow is to load and inspect 

data. You should never underestimate the value of visual inspection 

because you are the first sentinel to judge whether your data is garbage. 

Blindly running machine learning algorithms on data that you know 

nothing about results in poor performance at best or wasted work at worst.

The next section lists some ways to load data in your Python script. It 

covers cases where your data is organized in one of two possible layouts.

•	 One CSV file for each class, stored inside the 

same folder

•	 One file with all the data and labels

In the tinyml4all package, each type of data has a specialized class 

responsible for loading and manipulation: in the case of tabular data, that 

class is named Table.
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Caution R egardless of how you stored the files, it is mandatory that 
the first line of each CSV file is the columns’ headers!

�One File per Class
In this scenario, the files only contain observations (RGB light values) but 

not labels. The label is encoded implicitly in the file name. Use Listing 2-5 

to load data arranged in this format.

Listing 2-5.  Load All CSV Files from a Folder

from tinyml4all.tabular.classification import Table

table = Table.read_csv_folder("fruits")

# print the first few rows of table
print(table.head())

r g b __target_name__

0 38 23 18 orange

1 40 22 18 orange

2 49 25 19 orange

3 65 31 22 orange

4 54 25 18 orange

# print a few metrics for the table
print(table.describe())
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r g b

count 150 150 150

mean 33,3 19,9 16,9

std 12,24 5,6 3,86

min 12 8 8

25% 22 16,25 15

50% 33 19 17

75% 42,5 23 19

max 65 59 46

The preceding table is for a dataset of three files with 50 lines each (so 

count = 150). It is a quick summary of the distribution of your data.

Tip I f you get a FileNotFound error or something similar, ensure the 
path to the folder is correct and contains valid CSV files.

�One File for All Classes
If your data is packed into a single file, refer to Listing 2-6.

In this case, you must manually specify which column contains the 

ground truth labels.

Listing 2-6.  Load a Single CSV File

from tinyml4all.tabular.classification import Table

table = Table.read_csv("fruits.csv")
# specify column that contains the labels
table.set_targets(column="fruit")
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r g b

count 150 150 150

mean 33,3 19,9 16,9

std 12,24 5,6 3,86

min 12 8 8

25% 22 16,25 15

50% 33 19 17

75% 42,5 23 19

max 65 59 46

The result is the same as earlier.

�Manipulate Table
If you’ve ever used the pandas Python package [2], you’ll notice that 

the table object looks like a DataFrame. And you’d be correct since the 

Table class mimics that API while adding new functionalities for machine 

learning. For those who’ve never used pandas, here’s a list of the most 

common operations that you can perform on a Table instance.

�Select a Single Column

Typically, your data comprises many columns (r, g, b in our project). If 

you want to access a single column from the table, you can use the bracket 

notation (see Listing 2-7).

Listing 2-7.  Extract a Single Column from a Table

red = table["r"]
# red is a pandas.Series object
      red
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0      38
1      40
2      49
3      65
4      54

�Select a Subset of Columns

In the same way you can select a single column, you can also select many 

columns simultaneously to create a subset table (see Listing 2-8).

Listing 2-8.  Create a New Table with a Subset of Columns

table2 = table[["r", "g"]]
    r   g
0  38  23
1  40  22
2  49  25
3  65  31
4  54  25

�Select a Subset of Rows

Instead of selecting a subset of columns, you may select a subset of rows 

based on their index (see Listing 2-9).

Listing 2-9.  Create a New Table with a Subset of the Rows

# get a single row
row = table[0]
{'r': 38, 'g': 23, 'b': 18, '__target__': 'orange'}

# get rows from 10 to 30
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table2 = table[10:30]
    r   g   b
0  40  22  18
1  49  25  19
2  65  31  22
3  54  25  18
...
19  45  23  15

�Access the Underlying DataFrame

If you know pandas and want to access the underlying DataFrame that is 

wrapped inside the table object directly, you can do so by accessing its df 

attribute (see Listing 2-10).

Listing 2-10.  Access the Underlying DataFrame Object

df = table.df

Caution T he returned DataFrame is read-only! Altering it won’t 
alter the table instance.

�Apply labels

Your dataset must always have labels to perform classification. If you save 

each class’s data inside a distinct file, the label is encoded in the file name. 

If you have a single file with the observations from all the classes, you 

should have a column that specifies the label for each row. If you don’t 

have this column, you must add the labels manually.
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No script does this for you automatically. You have to perform this task 

by hand. The only way you can speed this process up (instead of going one 

row at a time and inputting the correct label one by one) is if your rows are 

sorted by label. If you know that rows from a to b share the same label, you 

can refer to Listing 2-11 for editing the label in bulk.

Listing 2-11.  Set Table Labels Based on Row Indices

# set the "orange" label on rows from 0 to 29
table.set_targets(label="orange", rows=(0, 29))

# set the "banana" label on rows from 30 to 59
table.set_targets(label="banana", rows=(30, 59))

�Plot Data
To visually inspect your data, you can plot it. This helps you get an 

overview of the data at a glance. Don’t forget that your job, in this early 

step, is to spot signs of low-quality input (values that are missing, outliers, 

or plain wrong).

Visually inspecting your data is an essential practice that should never 

be underestimated. It’s crucial to remember that machine learning isn’t 

akin to black magic; it can only distinguish patterns that genuinely exist 

in the dataset. If you cannot visually discern differences between classes 

when plotting your data, it’s likely that a machine learning model struggles 

as well—no matter how sophisticated the model might be. Two primary 

types of plots are available for tabular data.

•	 scatter plot of dimensionality-reduced data: Unless 

your data has exactly two features (which is very 

unlikely), this kind of plot collapses the n columns of 

the data into two components to be plotted on a 2D 

scatter plot.
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•	 pair plot: It generates a matrix of “binary” scatter 

plots, where each plot only considers two out of the n 

features.

�2D Scatter Plot

Your data is composed of several columns, usually more than two. How 

is it possible to draw so many dimensions on a 2D plot? One obvious 

solution would be to arbitrarily select only two to plot and ignore the 

others. Of course, this discards a lot of information that is indeed present 

in the original data, so let’s hope better solutions exist. And they do indeed.

The transformation from a high-dimensional space to a lower- 

dimensional one is called dimensionality reduction. Depending on the use 

case, many different algorithms exist that perform this task, each with pros 

and cons.

The tinyml4all library implements one called T-Distributed 

Stochastic Neighbor Embedding (t-SNE) [3] that works well for 

visualization purposes. You won’t even need to bother since it is handled 

transparently for you (see Listing 2-12 and Figure 2-9).

Listing 2-12.  Draw a 2D Scatter Plot of the Entire Table

table.scatter()
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Figure 2-9.  Scatter plot of tabular dataset

You can see that points of different fruits are pretty well clustered. This 

is a good sign that our data is separable and easily classified.

�Pair Plot Matrix

A pair plot is a matrix of scatter plots. Instead of collapsing all the 

dimensions down to two, a pair plot—as the name suggests—picks pairs 

of features and only plots that pair (see Figure 2-10). By enumerating 

every single pair, the pair plot gives a detailed view of your data. It comes 

naturally that, with the number of scatter plots growing quadratically with 

the number of columns, this visualization may become slow with large 

datasets and hard to fit into the screen.

Chapter 2  Tabular Data Classification



69

Nevertheless, the value you get from such visualization is worth the 

time. Listing 2-13 shows how to draw a pair plot for a tabular dataset.

Listing 2-13.  Draw a Pair Plot of the Table

table.pairplot()

Figure 2-10.  Pair plot of tabular data

Table 2-1 summarizes the differences between the two kinds of plots.
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Table 2-1.  Scatter Plot vs. Pair Plot

Pros Cons

Scatter Gives a quick view of the entire 

dataset; it is fast

A lot of information may get lost in the 

process, especially with high-dimensional 

data

Pair Covers all the features; it is 

easier to spot class boundaries

Can be slow with high-dimensional or 

large datasets

Listing 2-14 summarizes what you’ve seen so far in terms of tabular 

data loading and visualization.

Listing 2-14.  Summary of Tabular Data Operations

from tinyml4all.tabular.classification import Table

# load table from file
table = Table.read_csv("fruits.csv")

# load table from folder of files
table = Table.read_csv_folder("fruits")

# set labels from column
table.set_targets(column="fruit")

# set labels on a subset of rows
table.set_targets(label="apple", rows=(0, 30))

# select a single column
red = table["r"]

# select a subset of columns
rg = table[["r", "g"]]

# select a single row
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row = table[0]

# select a subset of rows
first_10 = table[0:10]

# draw scatter plot
table.scatter()

# draw pair plot
table.pairplot()

�Feature Engineering
The distinctive trait of tabular data is that every sample is totally 

independent of the others, so it can be treated individually and in isolation 

(compared to time series/audio data where each sample is correlated 

temporally with its neighbors or to images where each pixel is correlated 

spatially with the others).

Tabular data, though, can group values on different scales within 

the same sample. Let’s consider a weather station device that collects 

temperature, humidity, and pressure: temperature may range from –30°C 

to +50°C, relative humidity is always in the range of 0–100 (since it’s a 

percentage), and pressure floats around the 100,000 Pascal at sea level.

For certain classifiers, the difference in scale may not be relevant, but 

for many algorithms, it is mandatory that all the values are in the same 

ballpark. Some models may even require that the values lie in a specific 

range (e.g., [–1, +1] or [0, +1]).

Besides this operation of feature scaling, the feature engineering step for 

tabular data is devoted to transforming the input data so that the machine 

learning model can better pick up the underlying patterns. There are many 

transformations available. The most common are covered in this chapter. 

You won’t use all of them at the same time in a single project. You must use 

your judgment every time to understand which fits your current dataset best.
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The tinyml4all Python package implements a few different operators 

for this task. To leave this introduction as slim and approachable as 

possible, let’s now deal with only the relevant ones for this project. Please 

refer to Appendix A for a list of more operators and a more in-depth 

explanation of those introduced here.

�Feature Scaling
Feature scaling, sometimes called normalization, is a transformation that 

maps each feature’s domain into a new domain. You may want to perform 

this operation because the machine learning algorithm requires (or 

works better with) data on the same scale or to make it easier to compare 

different features that don’t share the same scale (as in the case of the 

weather station).

Different forms of feature scaling can be grouped into two categories 

based on how the scaling factor is applied.

•	 Instance-based scaling only uses the data from the 

current sample to implement the mapping.

•	 Population-based scaling first scans the entire dataset 

to compute a set of statistics (e.g., min, max, mean, 

standard deviation), then uses these statistics to scale 

each observation.

The most widespread feature scaling strategy is probably the min-max 

normalization. As the name suggests, this normalization first computes 

the minimum and maximum of each column of the tabular dataset. Then, 

it maps each sample’s values to the range [0, 1] according to the following 

min-max normalization formula.

	
x

x x

x x

- ( )
( ) - ( )
min

max min 	
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Listing 2-15 shows how to apply min-max normalization to a tabular 

dataset using the tinyml4all package.

Listing 2-15.  Apply Min-Max Normalization to Table

from tinyml4all.tabular.features import Scale

minmax = Scale(method="minmax")
table 2 = minmax(table)

r g b

count 150 150 150

mean 0,4019 0,2333 0,2344

std 0,231 0,1098 0,1016

min 0 0 0

25% 0,1887 0,1618 0,1842

50% 0,3962 0,2157 0,2368

75% 0,5755 0,2941 0,2895

max 1 1 1

Inspecting the output, you can see that every column now falls in the 

[0, 1] range (min and max rows), regardless of their original domains.

One of the downsides of min-max normalization is that it is sensitive to 

outliers. Consider the following list of values, where 1000 is the outlier.

0, 20, 21, 22, 23, 24, 25, 1000

After min-max normalization, the list becomes

0, 0.02, 0.021, 0.022, 0.023, 0.024, 0.025, 1
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Even if most of the data is floating around the value 20, the presence of 

an outlier determines a “compression” of the range of interest. Without the 

outlier, the normalized series would have been as follows.

0, 0.8, 0.84, 0.88, 0.92, 0.96, 1

It has a much higher spread factor. So, before you apply min-max 

normalization, beware of outliers.

Caution  Min-max normalization is sensitive to outliers!

�How to Identify Outliers
How do you identify outliers? It is as easy as looking at the table summary. 

Look at how the values change for each column, moving from min to max. 

If the difference between each two consecutive rows is in the same figure, 

then your data is evenly distributed. But if the difference between min 

and 25% or 75% and max is much larger than the average, your column 

probably contains outliers.

       column_with_outliers
count            106.000000
mean              -0.249395
std                1.782681
min               -8.000000
25%               �-0.972149  # 25% - min = 7 ← sign of 

outliers
50%               -0.364116  # 50% - 25% = 0.6
75%                0.637160  # 75% - 50% = 1
max                7.000000  # max – 75% = 6.4 ← sign of outl

For the best feature scaling to apply in the presence of outliers, refer to 

robust scaling in Appendix A.
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Figure 2-11 summarizes in a plot the results of the feature scaling 

methods enumerated so far (plus those from Appendix A).

Figure 2-11.  Comparison of feature scaling methods

It is interesting to note that min-max, z-score, and robust scaling do 

not alter the distribution of the data (since they’re population-based, 

linear methods).
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�Feature Selection
Chapter 1 introduced the notion of feature selection. Let’s recap its goals.

•	 Prevent the curse of dimensionality

•	 Drop features that are highly correlated (redundant)

•	 Drop features that do not characterize a class 

(irrelevant)

•	 Achieve the highest possible metric (e.g., accuracy, F1 

score, RMSE) with the lowest number of features

The optimal way to perform feature selection would be to start 

with all the features and iteratively remove one column at a time. If the 

classification metrics stay almost the same, then that feature is not very 

important. Repeating this process until there’s no way to keep the metric 

as-is would yield the best result possible.

If you have few features and a small dataset, this path may be doable. 

But this process can often take prohibitively long to complete, and you may 

be interested in quicker, more approximate alternatives.

Since this project only deals with three input variables, feature 

selection would be of little use here. Since it comes in handy in later 

chapters, let’s quickly enumerate the available options.
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�Sequential Feature Selection
This is an exhaustive approach. It tries all the combinations of columns 

to finally achieve the optimal result. Depending on the ratio of features 

that you want to keep, it may be faster to either drop features one at a 

time or instead start with an empty list and add one feature at a time 

(choosing the one that most improves the metric). This is specified by the 

direction parameter. With this specific method, you can manually choose 

the number of resulting features to keep or rely on the autoselection 

mechanism to find the best number for you (see Listing 2-16).

Listing 2-16.  Apply Sequential Feature Selection

from tinyml4all.tabular.features import Select

# direction = forward will grow from 0 to n features
# direction = backward will shrink from N to n features
select = Select(sequential="auto", direction="forward")
table2 = select(table)
print(table2.head())
    r
0  38
1  40
2  49
3  65
4  54

Using the autoselection mechanism, it was found that the Red column 

alone is sufficient to achieve a good classification result.
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�Score-based Selection
A faster, classifier-free method to decide which features to drop is based on 

univariate statistical tests. These tests produce a score for each column; the 

score represents how important that feature looks for classification tasks. I 

used the term looks because you can’t be sure how that variable influences 

the specific classifier that you will use later, so you rely on a statistical 

approach. In this case, you must manually choose the number of columns 

to keep. There’s no auto setting (see Listing 2-17).

Listing 2-17.  Apply Univariate Feature Selection

# 1 is the number of columns to select
select = Select(univariate=1)
table2 = select(table)
print(table2.head())
    r
0  38
1  40
2  49
3  65
4  54

Also, the univariate test selected the Red column. However, this may 

not be the case for every dataset.

�Recursive Feature Elimination (RFE)
RFE can be looked at as a faster version of sequential feature selection. 

Again, it requires a classifier to decide which features to drop recursively. The 

classifier must satisfy a requirement: it must produce a feature importance 

score (not all classifiers do). This score is used to select the column that 

contributed the least to the classification result. This process is repeated 

recursively until the desired number of features is achieved Listing 2-18).
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Listing 2-18.  Apply Recursive Feature Elimination

# 1 is the number of columns to select
select = Select(rfe=1)
table2 = select(table)
print(table2.head())
    r
0  38
1  40
2  49
3  65
4  54

Table 2-2 lists a few guidelines that you can use to choose which one of 

the described methods to use in your specific project.

Table 2-2.  Guidelines to Choose the Best Feature Selection Method

Pros Cons

Univariate Fast; recommended in the early stages 

of development

Not guaranteed to result in 

the optimal selection

Recursive Faster than sequential; likely converges 

to the optimal solution; prefer to 

univariate on medium datasets

May become slow with 

certain classifiers on large 

datasets

Sequential Likely converges to the optimal solution May become slow with 

certain classifiers on large 

datasets

Note  You can also manually choose the columns to keep 
with Select(include=["r", "b"]) or to discard with 
Select(exclude=["g"]).
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Back to our fruit classification project: let’s consider which feature 

engineering methods look the most appropriate.

•	 There are only three features, so feature selection 

brings little value.

•	 All the features are continuous, and discretization 

doesn’t make much sense. (We could optionally apply 

binning, but it would be of little value in this case).

•	 Feature scaling can benefit some classifiers (and there 

aren’t any outliers).

Given these highlights, let’s only implement min-max normalization 

for now (see Listing 2-19).

Listing 2-19.  Apply Feature Engineering to Our Fruits Dataset

from tinyml4all.tabular.classification import Table, Chain
from tinyml4all.tabular.features import Scale

table = Table.read_csv("fruits.csv")
# use a Chain to accommodate the case for more steps
optimal_chain = Chain(Scale(method="minmax"))
table2 = optimal_chain(table)

�Classification Models
The next step of our tiny machine learning workflow revolves around 

classification models. This step trains an algorithm to recognize the 

distinctive characteristics of each fruit.

If you did a good job during the feature engineering step, this part 

should proceed smoothly. You should get acceptable results out of the 

box, and your focus is optimizing (a.k.a. tuning) the model parameters you 

chose to increase the accuracy/F1 score to its maximum. Some models 
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may require more work than others to exhibit good results. Next, let’s 

discuss the classifiers available in the tinyml4all package, highlighting 

the ones you should use until you master the pros and cons of each to 

make an informed choice.

The following are the main distinctive traits that characterize each type 

of classifier.

•	 Robustness/invariance to feature scaling: Some 

classifiers (e.g., decision tree) can classify data no 

matter the input scale (so normalization can be 

skipped). Others (e.g., logistic regression) work better if 

features share a common scale.

•	 Linearity/non-linearity: Some classifiers only work 

with linearly separable data (e.g., linear SVM), while 

others allow for polynomial or radial boundaries (e.g., 

SVM with Gaussian kernel). Some others are rule- 

based (e.g., decision tree).

•	 Memory requirements: Since our final goal is to 

deploy the trained model to a resource-constrained 

device, you should always remember that we want the 

model to be as small as possible and run as quickly 

as possible. Decision tree-based classifiers run really 

fast and require almost zero RAM (they compile to 

if-then-else blocks). In contrast, others perform matrix 

multiplications to compute the result, meaning they 

have to store some weights in memory. Their memory, 

therefore, increases linearly (or even more) with the 

number of input features.

All the classifiers in the tinyml4all package share the same interface, 

so you can swap one for another without changing the rest of the code.
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�Decision Tree
A decision tree (see Figure 2-12) is probably the most intuitive classifier. As 

its name suggests, it creates a tree data structure that progressively splits 

on the dataset features to come up with a decision.

Figure 2-12.  Example of decision tree classifier

At each step, the algorithm has to choose which feature to split and on 

which value. How is this choice made? It is done based on the information 

gain principle (you can find a gentle introduction to this concept at [4]). 

In plain words, a split is made where the separation among the different 

classes improves the most: the more a class becomes clustered after a split, 

the more the information content increases.

�Pros

Decision trees are commonly used in many tasks because they exhibit a 

few desirable properties.
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•	 Simple to understand and interpret: You can look 

at a tree and clearly understand why it made a given 

classification.

•	 It requires little data preparation: You don’t need 

normalization, and it works out of the box with non- 

numerical (categorical) data. You may only want to 

evaluate if binning improves the results.

•	 Innate feature selection: Unimportant features are 

automatically ignored since they won’t produce any 

significant information gain.

•	 Very fast inference time: Once on your 

microcontroller, the tree translates to a plain list of if- 
then-else without any mathematical computation.

�Cons

Of course, a decision tree is not a good fit for all projects since it still suffers 

from the following disadvantages.

•	 Tendency to overfitting: The learned model can be 

overly complex and fitted to the training data. This can 

be easily alleviated by parameter tuning (for example, 

limiting the depth of the tree).

•	 Instability: Small variations in the data might result in 

a completely different tree being generated.

•	 Optimality not guaranteed: Since practical 

implementations are based on some heuristics to 

speed up the learning process (which would otherwise 

take too long), it can happen that the resulting tree is 

not the optimal one.
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•	 Some concepts are hard to learn: This is because 

decision trees do not express them easily, such as XOR, 

parity, or multiplexer problems.

•	 Bias on unbalanced datasets: Decision tree learners 

create biased trees if some class dominates. It is 

recommended to balance the dataset prior to fitting 

with the decision tree.

�Random Forest
Simply put, random forest [5] is an ensemble of decision trees. Instead of 

training a single decision tree, random forest trains many different trees, 

each on a different subsample of the training set: this greatly reduces the 

chances of overfitting and generally boosts the ensemble accuracy.

Even more than selecting a subsample of the training dataset in terms 

of observations, random forest applies a technique called feature bagging, 

which feeds to each tree only a random subset of features. This prevents 

even more overfitting. So, given an input dataset of n observations of m 

attributes, each tree receives as input n′ observations made of m′ attributes, 

with n′< n and m′< m.

At inference time, each tree predicts its own output class; the class with 

the most votes wins and is selected as the ensemble prediction.

�Pros

•	 The same as decision tree pros

•	 It has very good accuracy out of the box: random forest 

is one of the most straightforward classifiers to use since 

it performs very well with little to no tuning. Setting a 

reasonable default for the number of trees (10–20) suffice. 

You can always tune the inner decision tree parameters 

for top-notch accuracy (max depth, split logic, etc.).
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�Cons

•	 The same as decision tree cons

•	 Black box—in contrast to decision tree, random forest 

loses its explainability because you can no longer grasp 

why it predicted a given output due to combining a 

multitude of trees.

Tip T hanks to its good accuracy out-of-the-box and insensitivity to 
many feature engineering pre-preprocessing, I recommend you use 
random forest as your default classifier.

�Extreme Gradient Boosting
Extreme gradient boosting (XGBoost) [6] has gained popularity since its 

introduction in 2014 because it has won many online machine learning 

competitions. It is, first of all, a gradient boosting technique: similarly 

to random forest, it combines multiple decision trees. Differently from 

random forests—which trains the trees in parallel and where each tree is 

independent of the others—Gradient Boosting trains them in series. Each 

tree is trained on the results of the previous one: at each iteration, the 

algorithm tries to reduce a loss function (how badly it performed on the 

training data).

How? Learning from the errors of the previous one. The core idea of 

XGBoost is to model the residual errors in cascade to eventually correct 

them. The “extreme” in Extreme Gradient Boosting emphasizes several 

software optimizations that greatly improve training time and prediction 

accuracy.
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�Pros

•	 The same as random forest pros

•	 Very robust to overfitting

�Cons

•	 The same as random forest pros

•	 Slower than random forest

�Logistic Regression
Despite its name, logistic regression is used as a binary classification 

algorithm. It borrows its name from the linear regression, which produces 

a linear model in the form described in the following linear regression 

output formula.

	 y w xi
T

i·

xi is the input sample, and w is a weight vector. This means that each 

value in the input sample is multiplied by a weight, and the result is 

accumulated. This produces a continuous output (as in the regression).

To move from regression to classification, logistic regression applies 

the logistic function to the output so that its domain becomes [0, 1]: in 

the binary classification case, this value represents the probability that 

the current sample belongs to the positive class. Figure 2-13 displays the 

logistic function plot.
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Figure 2-13.  The logit function

The objective of the training phase for logistic regression is to minimize 

the classification error or, conversely, to maximize the likelihood.

The following computes the probability of sample i-th belonging to the 

positive class.

	 p logit w xi
T

i= ( )· 	

The likelihood of the entire dataset is computed in the following formula.

	
L w y p y p

i

N

i i i i( ) = ( ) + -( ) -( )
=
å

1

1 1ln ln
	

Chapter 2  Tabular Data Classification



90

yᵢ is the ground truth label of the sample (either 0 or 1 since this is a 

binary classifier). You can interpret the formula using the following intuition:

•	 If yᵢ is 1 and pᵢ > 0.5, the likelihood increases (correct 

classification).

•	 If yᵢ is 0 and pᵢ < 0.5, the likelihood increases (correct 

classification).

•	 If yᵢ is 1 and pᵢ < 0.5, the likelihood decreases (wrong 

classification).

•	 If yᵢ is 0 and pᵢ > 0.5, the likelihood decreases (wrong 

classification).

At the end of the training, the weight vector w is such that the global 

likelihood is at its maximum, or equally, we got the highest number of 

correct classifications. The multiclass case follows a very similar pattern, 

but its demonstration is out of the scope of this book.

�Pros

•	 Fast inference time (linear in the number of features)

•	 Predicts a probability of class membership

•	 The weight coefficients could indicate the 

“importance” of a feature for the class membership

�Cons

•	 Sensitive to noise and outliers

•	 The number of weights grows linearly with the number 

of inputs

•	 Linear model, so you’d better transform your input data 

to improve the accuracy (apply power, log, square root 

operations)
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•	 Sensitive to correlated input

•	 May not converge to an optimal value for w

�Support Vector Machines
Support vector machines (SVM) are a binary classification algorithm 

applicable to multiclass problems using the one vs. one voting scheme 

(refer to Chapter 1).

The core idea of SVM is to find a separation boundary between the two 

classes with a margin as large as possible to provide a robust classification. 

Figure 2-14 is a visual intuition.

Figure 2-14.  SVM separation margin
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The margin is computed only from a few meaningful points in the 

training set: the support vectors. These points are the most difficult to 

classify since they live on the border between the two classes.

However, in real-world data, it is often not easy to find a clear 

separation between the two classes—often, this separation doesn’t even 

exist! To solve this problem, the main intuition of SVM is to project the 

original data in a higher-dimensional domain. If the original data is 1D, for 

example, it can be projected into a 2D space (see Figure 2-15).

Figure 2-15.  SVM projection into higher-dimensional space

The rationale is that in this new highly dimensional space, the two 

classes are more clearly separable. Different functions can perform such 

projection, and the math involved uses the kernel trick, but that falls out of 

the scope of this introductory paragraph.

�Pros

•	 Effective with highly dimensional data

•	 Only uses the support vectors for inference

•	 Robust against outliers
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�Cons

•	 Training time doesn’t scale well with the number of 

training samples

•	 Doesn’t perform very well in the presence of many 

overlapping classes

•	 Requires tuning of multiple parameters to perform well

•	 Works only on numeric inputs

•	 Black box model

•	 With n features and k support vectors, the number of 

weights to store in RAM is n * k (k being larger 
the less separable the classes, at least one 
per class—often more)

Table 2-3 summarizes the advantages and disadvantages of 

classier types.

Table 2-3.  Comparison of Classifiers

Pros Cons

Decision 
Tree

Fast to train and execute; 

insensitive to features’ 

scale; memory-efficient 

once deployed

Prone to overfitting and bias in 

unbalanced settings; may exhibit 

suboptimal accuracy

Random 
Forest

The same as decision tree 

pros; shows better accuracy 

out-of-the-box

Not interpretable

(continued)
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Pros Cons

XGBoost The same as random forest 

pros; can add a few % in 

accuracy

Slower to train than random forest

Logistic 
Regression

Inference time and memory 

linear in the number of 

features

Inference time and memory linear in 

the number of features; linear model; 

sensitive to outliers

SVM Effective with high- 

dimensional data; robust 

against outliers

Slow to train on large datasets; requires 

parameter tuning to work well; inference 

time and memory more-than-linear in 

the number of features

Table 2-3.  (continued)

Now that the available classifiers have been enumerated, let’s look at 

how to apply them to the fruits project (see Listing 2-20). Classifiers are no 

different from feature engineering steps in their API.

Listing 2-20.  Train Classifier and Make Predictions

from tinyml4all.tabular.classification.models import 
DecisionTree, RandomForest, LogisticRegression, SVM

# print a description of the parameters you can set
# on the given classifier
print(help(RandomForest))

# train classifier and make predictions
rf = RandomForest(n_estimators=20)
table2 = rf(table)
# table.full() prints the data + true labels + predicted labels
print(table2.full())
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r g b truth __prediction__

0 38 23 18 orange orange

1 40 22 18 orange orange

2 49 25 19 orange orange

3 65 31 22 orange orange

4 54 25 18 orange orange

To quickly inspect how well your classifier performed overall without 

comparing each row manually, you can generate a classification report 

with the code in Listing 2-21.

Listing 2-21.  Generate a Classification Report

print(table2.classification_report())
              precision    recall  f1-score   support

      orange       1.00      0.90      0.95        50
      tomato       0.89      1.00      0.94        50
    zucchini       1.00      0.98      0.99        50

    accuracy                           0.96       150
   macro avg       0.96      0.96      0.96       150
weighted avg       0.96      0.96      0.96       150

+-------------------+--------+-------+---------- +
| True vs. Predicted | orange | tomato | zucchini  |
+-------------------+--------+------ -+----------+
|       orange       |   45   |   5    |    0      |
|       tomato       |   0    |   50   |    0      |
|      zucchini      |   0    |   1    |    49     |
+-------------------+--------+--------+----------+

Chapter 2  Tabular Data Classification



96

The report contains a detailed list of metrics for each class (precision, 

recall, F1 score), overall accuracy, and the confusion matrix. You can 

leverage this information to judge your classifier’s performance and 

compare different classifiers’ results.

�Classification Chain
So far, you’ve seen how to perform feature engineering and classification 

in Python by considering each component on its own. But these steps 

don’t live in isolation: you must always perform them in the same order to 

get reproducible results. You can do this manually if you want, but to make 

this process more manageable and to be able to export the workflow to 

C++ later, you need to create a chain.

A chain is, at its core, a list of operations that act sequentially on the 

data. Each operation produces an output fed as input to the next until the 

final result is generated. The Chain class can handle any feature scaling, 

feature selection, and classification operator described so far. Listing 2-22 

shows how to instantiate a full classification chain for the fruit dataset.

Listing 2-22.  Create a Classification Pipeline for a Table Object

from tinyml4all.tabular.classification import Table, Chain
from tinyml4all.tabular.classification.models import 
RandomForest
from tinyml4all.tabular.features import Scale

table = Table.read_csv("fruits.csv")
chain = Chain(
      Scale("minmax"),
      RandomForest()
)
classified = chain(table)
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r g b truth prediction

0 0,491 0,294 0,263 orange orange

1 0,528 0,275 0,263 orange orange

2 0,698 0,333 0,289 orange orange

3 1 0,451 0,368 orange orange

4 0,792 0,333 0,263 orange orange

The first time you call a chain on a table, it goes through each step and 

fits it (to learn its internal parameters). After the initial training phase, 

you can apply it to any other table: this time, the chain remembers its 

parameters. It only applies the corresponding transformation to the new 

table (see Listing 2-23).

Listing 2-23.  Apply Classification Pipeline to a New Dataset

table1 = Table.read_csv("dataset_1.csv")
table2 = Table.read_csv("dataset_2.csv")
chain = Chain(
      Scale("minmax"),
      RandomForest()
)

# train chain on table1
chain(table1)

# apply chain to table2
# this will use the parameters learned on table1
# e.g., use min/max from table1
table2_classified = chain(table2)
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�Deploy to Arduino
At this point, the machine learning workflow is done. We implemented 

feature engineering and classification on our powerful desktop PC; the 

accuracy achieved by the classifier meets our expectations.

Here is where the tiny part comes in. The last step is to finally convert 

our pipeline to C++ so that we can import the code into our embedded 

project.

Listing 2-24 shows how to do this and save the result to a file called 

FruitChain.h in the same folder as your Python script.

Listing 2-24.  Convert Pipeline from Python to C++

chain.convert_to("c++", class_name="FruitChain",  
save_to="FruitChain.h")

The generated code is a stand-alone class that you can import into any 

C++ project (Arduino, PlatformIO, ESP-IDF, etc.). You don’t really have to 

dig into how it works internally: you only need a single line to invoke it. 

This code works equally well on almost any microcontroller that supports 

C++ (8- or 32-bit, with or without Floating Point Unit, from ARM, Atmel, or 

Espressif).

�How to Use in Arduino Sketch
We now have all the tools needed to complete our fruit classification 

project. The code to configure and read the color sensor is the same as 

Listing 2-2. Listing 2-25 adds the logic to classify the fruit and print the 

result to the Serial Monitor.
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Listing 2-25.  Arduino Sketch to Classify Fruit Based on Color

/**
 * Listing 2-25
 * Predict fruit from RGB color components.
 *
 * Required hardware: Arduino Nano BLE Sense.
 */
#include <Arduino_APDS9960.h>
#include <tinyml4all.h>
// put the generated file from Python inside the Arduino
// sketch folder!
#include "./FruitChain.h"

tinyml4all::APDS9960 sensor;
tinyml4all::FruitChain chain;

void setup() {
    Serial.begin(115200);
    while (!Serial);
    Serial.println("Fruits classification example");

    sensor.begin();
}

void loop() {
    sensor.readColor();

    // chain(input) will return true on success
    // false on error
    if (!chain(sensor.r, sensor.g, sensor.b))
      return;

    // the predicted human-readable label is in
    // chain.output.classification.label
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    // the numeric output (0, 1, 2, ...) is in
    // chain.output.classification.idx
    Serial.print("I think this is ");
    Serial.println(chain.output.classification.label);

    delay(1000);
}

Upload the sketch and open the Serial Monitor. You see that the board 

makes a classification each second. Put the different fruits in front of the 

sensor and watch the results update accordingly (see Figure 2-16).

Figure 2-16.  Live classification of fruit from RGB components

Congratulations, you completed your first TinyML project!
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�Warnings
I want to draw your attention to a detail that you may have missed. Point 

your color sensor at something different from your fruits—the wall or your 

desk. What does the classifier predict?

It may surprise you that the classifier is still predicting one of the fruits. You 

could expect that the classifier would have detected that it was not pointing 

to any of the fruits and responded accordingly. Sadly, it doesn’t work this 

way. Recall that in a classification task, the list of classes is completely known, 

meaning that a model cannot detect a class it has never seen before.

We trained our model only on the fruit classes. It doesn’t have the 

concept of a “wall” or a “desk,” so it will never predict that. If we wanted to 

teach the classifier to recognize that it is not looking at any fruit, we must 

also show the data of these cases.

Caution  Classifiers only recognize cases they have seen during 
training. If you have a case for “no object of interest” (e.g., no fruit), 
you need to collect data for it.

�Summary
This chapter was dense with new information. You learned how to 

collect data from your microcontroller either manually or with the help 

of automated tools; then you got an overview of the feature engineering 

methods available to you to make the raw data you collected easier to later 

classify and (a subset of) the many models that make the machine learning 

landscape. As a last step, you were able to convert the tools required to 

perform an end-to-end classification pipeline from Python to performant 

C++ so that they can be imported into any embedded project.

The next chapter also focuses on tabular data. Given classification was 

covered in this chapter, the next chapter expands on regression.
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CHAPTER 3

Tabular Data 
Regression
Tabular data regression shares many of the steps required to perform 

tabular data classification (namely, data capture and feature engineering). 

It differs for the data plotting and the algorithm selection part. This chapter 

features a project that highlights the workflow required for a regression 

task but moves quickly through the topics covered in Chapter 2. The 

primary focus of this chapter is to showcase the peculiarities of regression.

The project that guides us through this chapter is a proximity meter 

inferred from RGB color components. Chapter 2 demonstrated that color 

components can be used to classify colored objects. However, color 

components depend on ambient light (the greater the illumination, the 

higher the values). You can leverage this phenomenon to estimate how far 

the sensor is from a flat surface: the more you approach the surface, the 

more shadow the board and your own body cast on it, thus lowering the 

detected intensities. The task is to model this relationship between color 

intensities and distance (see Figure 3-1).

https://doi.org/10.1007/979-8-8688-1294-1_3#DOI
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Figure 3-1.  The result of distance prediction from RGB components

The steps required to complete the project are the same as those 

outlined in Chapter 2.

	 1.	 Collect data (RGB + distance in this case).

	 2.	 Load and inspect data to spot anomalies and bad 

data and understand the relation between input and 

output (if it exists!).

	 3.	 Perform feature engineering to boost the modeling 

efficacy.

	 4.	 Train a machine learning model for the regression 

task and assess its performance.

	 5.	 Convert the entire regression chain to C++ and 

deploy the code to our board.
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Since many aspects are identical to what you’ve seen working with 

tabular data, this chapter focuses on those who change from classification 

to regression.

�Required Hardware
As in Chapter 2, you need a color sensor to reuse the same hardware you 

already have. In addition to that, you need a distance sensor. Since this toy 

project does not need to achieve millimeter accuracy, any distance sensor 

will do the job (ultrasonic, time-of-flight, IR, etc.).

The Arduino Nano BLE Sense board has a proximity sensor built-in 

(the same APDS that detects the colors), but I found that it doesn’t work 

well at low distances (<5 cm), so I preferred to hook an external ultrasonic 

sensor (see Figure 3-2).

Figure 3-2.  Ultrasonic circuit diagram
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The ultrasonic distance sensor uses sound waves to measure the 

distance to an object. It follows the time-of-flight principle, measuring 

the time an ultrasonic pulse takes to travel to an object and back. When 

the TRIG pin is set to high, the sensor emits an ultrasonic sound wave at 

a frequency of 40 kHz via its transmitter; the emitted sound wave travels 

through the air and reflects off an object in its path. The sensor’s receiver 

detects the reflected wave and outputs a high signal on the ECHO pin 

to the Arduino. The measured time between the trigger and the echo is 

directly proportional to the distance of the object via the speed of sound in 

the air (approximately 343 meters per second).

�Capture Data
Let’s leverage the Python collection script from Chapter 2 to capture data. 

The Arduino sketch is similar to the color collection one, with the addition 

of the distance reading. Depending on the distance sensor you’re using, 

the code may vary slightly. Listing 3-1 assumes you wired an ultrasonic 

distance sensor (HC-SR04) to pins 4 and 5.

Note R eplace the TRIG and ECHO pins with your own!

Listing 3-1.  Collect RGB + Distance Data in CSV Format

Nano

/**
 * Listing 3-1
 * Collect RGB + distance data in CSV format (unattended).
 *
 * Required hardware: Arduino Nano BLE Sense.
 * Required hardware: Ultrasonic distance sensor (HC-SR04)
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 */
#include <Arduino_APDS9960.h>
#include <tinyml4all.h>

#define ECHO 2
#define TRIG 3

using tinyml4all::printCSV;

tinyml4all::APDS9960 sensor;
tinyml4all::Ultrasonic ultrasonic(ECHO, TRIG);

void setup() {
  Serial.begin(115200);
  while (!Serial);
  Serial.println("Collect RGB + distance as CSV");

  // init color and distance sensors
  sensor.begin();
  ultrasonic.begin();
}

void loop() {
  // read R, G, B
  sensor.readColor();

  // read distance in millimeters
  uint16_t distance = ultrasonic.millimiters();

  // print data as CSV
  printCSV(sensor.r, sensor.g, sensor.b, distance);
  delay(1000);
}
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Flash the sketch to your board and confirm it works by opening the 

Serial Monitor (see Figure 3-3).

Figure 3-3.  RGB distance collect Serial output

The Python script shown in Listing 3-2 is a replica of Listing 2-3 from 

Chapter 2, reported here for convenience. The only modification is that we 

now continuously poll data from the board without asking for fruit names 

and the number of samples.

Listing 3-2.  Capture Data from Serial in Python

from tinyml4all.tabular import capture_serial

capture_serial(
    # * is a wildcard character that matches anything
    # on Windows, this will look like COM1 or similar
    port="/dev/cu.usb*",
    baudrate=115200,
    # file where data will be saved
    save_to="rgb-distance.csv",
    # name of columns
    headings=""r,g,b,distance"",,
    num_samples=100
)
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To run the code, open a terminal inside the folder where the script is 

located and run.

(tinyml)$ python capture_rgb_distance.py
Press [Enter] when you're ready to start:
Task will start in 3...2...1...START!
100%|██████████| 100/100 [00:100<00:00,  1s/it]
Collected 100 lines of data

During this phase, start from 2 to 3 cm away from a bright, flat surface 

and slowly move the board/sensor far and far away (consider that it is 

taking one reading per second, so do it in small steps).

When the process finishes, be sure you have a rgb-distance.csv file 

with 100 lines of data, then move on.

�Load and Inspect Data
The data captured is still in tabular form, so you can reuse all the listings 

from Chapter 2 to manipulate the table instance. In this case, there is a 

single file with all the data, so the relevant code to load it is replicated in 

Listing 3-3.

Listing 3-3.  Load a Single CSV File

# note that this time the module is called regression
# instead of classification!
from tinyml4all.tabular.regression import Table

table = Table.read_csv("rgb-distance.csv")
table.set_targets(column="distance")
print(table.describe())
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r g b __target__

count 100 100 100 100

mean 133,9 164,66 189,44 244,64

std 28,664 38,523 40,609 132,33

min 80 94 110 49

25% 108 128,75 153 141,5

50% 143,5 178 204 219,5

75% 160 201,25 226,75 354

max 168 210 232 480

The code to load a table for regression is the same as for classification, 

and the responsible class is still called Table. Pay attention, though, to the 

import statement: it changed from tinyml4all.tabular.classification 

to tinyml4all.tabular.regression! The set_targets function didn’t 

change either in its form. But the underlying logic is a lot different: 

while for classification tasks, the targets are labels, now they represent 

continuous values—and they’re treated like the rest of the columns in the 

table summary report.

Once data is loaded, you can plot it.

�Plot Regression Data
In the context of regression, colored scatter plots and pair plots, as you 

saw in the previous chapter, have no meaning. They are meant to visualize 

clusters of data based on class membership. However, regression has no 

such thing as classes; instead, there are continuous outputs.

Plotting regression data is a bit harder than plotting classification data 

in the case of many input variables, but you can still deduct a good level of 

information.
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�One Input
If your problem has only one input variable, it is straightforward. You plot 

the input variable vs. the output variable on a Cartesian plane using the 

code in Listing 3-4. The output is displayed in Figure 3-4.

Listing 3-4.  Draw a Scatter Plot of One Input

# only plot a single column

table.scatter(column="r")

Figure 3-4.  Scatter regression plot of a single column

The red line you see in the middle is the linear regression output. How 

that line is defined is demonstrated later; for now, just consider that one 

the best possible fit for a straight line to match the input data.
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�Many Inputs, Many Scatters
If your data has many inputs, the trivial extension is to plot the target 

variable against all the inputs (see Listing 3-5 and Figure 3-5).

Note  While it could be possible to apply dimensionality reduction 
to collapse the columns to two or even one variable (like you did 
for classification), the result would be disappointing. There’s a good 
chance that the resulting variable(s) doesn’t exhibit any straight 
relation with the output variable, so your plot would be misleading.

Listing 3-5.  Draw Scatter Plot of Many Inputs

# you can stack the plots horizontally or vertically
# default is vertically
table.scatter(orientation="vertical")
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Figure 3-5.  Scatter regression plots of all columns of the table

By looking at the plots, you can see that there is a strong relation 

between the color components and the distance since all dots are not too 

distant from the red line, and they seem to follow a monotonically growing 
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distribution (values on the right are greater than values on the left). If the 

dots had looked much sparser and more scattered, it would’ve been a sign 

that—maybe—a relation between input and output could not be found—at 

least not without feature engineering first.

�Feature Engineering
Many regression models work well with linear relationships between 

inputs and output(s). Not all data, though, exhibits such a relationship 

as-is. It may happen that a linear relation still exists, but on monotonic 

functional mappings of the input or a combination of inputs.

�Monotonic Functional Mappings
What is a monotonic functional mapping?

It simply is a mathematical function applied to the input that preserves 

its order (i.e., if x1 < x2, then f(x1) < f(x2)). This function can be as 

simple as the power, logarithmic, or exponential operator. Let’s consider 

the simple formula.

	 y x� �3 52 	

As simple as it looks, linear regression cannot model this function. The 

role of many feature engineering operators for regression is to apply one or 

more mappings so that a new feature is linearly correlated with the output.
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At this point, most of the regression models available can predict 

the outputs with a good degree of accuracy. A wide range of common 

mappings can be suitable in most cases.
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•	 Power of 2, power of 3, square root, inverse

•	 Exponential and logarithm

•	 Box-Cox and Yeo-Johnson

Box-Cox and Yeo-Johnson are discussed in the Appendix A, so refer 

to it for more information. Listing 3-6 showcases how you can apply the 

power and exponential/logarithm transforms to a tabular dataset. You 

can optionally apply only a subset of all the available mappings and 

apply them only to a subset of columns. The available mappings are (see 

Figure 3-6).

•	 square (power of 2)

•	 cube (power of 3)

•	 sqrt (square root)

•	 inverse (1/x)

•	 exp (exponential – ex)

•	 log (natural logarithm)

Figure 3-6.  Monotonic functional mapping plots
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Listing 3-6.  Apply Monotonic Functional Transforms

from tinyml4all.tabular.features import Monotonic

# apply the square and cube mapping to all columns
square_and_cube = Monotonic(functions="square, cube")

# apply all the mappings only to the "r" column
only_r = Monotonic(columns="r")

# apply all mappings to all columns
monotonic = Monotonic()

# run the transform on the table
table2 = monotonic(table)
print(table2.describe())

r g b ... sqrt(g) inverse(g) log(g)

count 100 100 100 ... 100 100 100

mean 14,36 15,18 19,037 ... 3,664 0,105 2,572

std 9,963 11,167 11,442 ... 1,328 0,065 0,643

min 4 3 6 ... 1,732 0,02 1,386

25% 7 6 10 ... 2,449 0,045 1,946

50% 10 11 15 ... 3,317 0,091 2,485

75% 20 22 26 ... 4,69 0,167 3,135

max 46 51 55 ... 7,141 0,333 3,951

Which mappings should you use? It all depends on your data, which is 

where plotting is handy. By looking at each regression plot, you should be 

able to associate the shape of the dots’ distribution to one of the available 

functions. If that’s the case, you can be laser-focused and only apply the 
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strictly necessary transform to the column that needs it. Otherwise, if you 

cannot spot any good match, leave it blank so all are tried—and maybe add 

a feature selection step later.

Caution T he exponential operator can grow very quickly to 
intractable numbers! I strongly recommend you always apply feature 
scaling before.

�Polynomial Input Combinations
Sometimes, your features may carry important information when 

considered together instead of in isolation.

For example, imagine you want to create a model in the healthcare 

industry, and you deal with patients’ data. It is well known that height and 

weight, on their own, may not be relevant to determine whether a person 

is in good shape, but combined, they better describe the status of a person.

The polynomial feature transformation generates new features by 

multiplying each pair of columns. It also generates squared columns 

(multiplying a column by itself). Listing 3-7 shows how to use it.

Listing 3-7.  Apply Polynomial Features Expansion

from tinyml4all.tabular.regression import Table
from tinyml4all.tabular.features import Multiply

# assume the people.csv files contains width (w), height (h)
# and BMI of a group of people
table = Table.read_csv("people.csv")
table.set_targets(column="bmi")

# if you omit the columns parameter,
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# all columns will be considered
mult = Multiply(columns=["w", "h"])
table 2 = mult(table)

h w h_x_h w_x_w h_x_w

0 74 242 5453 58512 17863

1 69 162 4731 26345 11164

2 74 213 5492 45259 15766

3 72 220 5145 48419 15784

4 70 206 4883 42580 14420

Tip S ince multiplication can lead to very large values or be 
skewed if the two columns are in completely different ranges, it is 
recommended that you first apply feature normalization.

�Regression Models
As for classification, regression has many available models from which 

to choose. They vary by descriptive power and complexity: until you get 

familiar with them, I suggest you try all for your specific project and select 

the one that performs best. This section introduces the following models.

•	 Ordinary Least Squares or Linear Regression

•	 Ridge

•	 Lasso

•	 Decision tree

•	 Random forest
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�Ordinary Least Squares
Also known as linear regression, the most used model for regression is the 

ordinary least squares (OLS) method. It assumes that a linear relationship 

exists between the samples (denoted by X) and the ground truth (denoted 

by Y). This linear relationship can be expressed in matrix form with the 

following formula.

	 Y W XT� � 	

W T is an unknown weight matrix that we aim to find. Since we often 

cannot find an exact solution to this equation, this method aims to 

minimize the sum of squared errors between ground truth and model’s 

predictions.

	
minimize truth pred
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This iterative process should converge to the optimal solution after 

a given number of iterations. Listing 3-7 is an example of how to use this 

method and the others covered in this chapter.

�Ridge and Lasso
One problem with ordinary least squares is that it has no limits on the 

magnitude of its weights. It may happen, for example, that—for our 

distance from the RGB project—it comes out with a relation similar to the 

following.

	 dist r g b� � �1432 785 354 	
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Now, this is a legitimate relationship that could exist. But most of the 

time, in a real-world scenario, we can expect that the magnitudes of the 

coefficients are much smaller (depending on the scales of the inputs) and 

that those strange numbers are a sign of overfitting. The Ridge [1] regressor 

tries to minimize the prediction error but also tries to keep the weights as 

low as possible, thus reducing the chance of overfitting.

The Lasso [2] method is similar in spirit to Ridge in that it also tries to 

regularize the weight parameters. While Ridge’s objective is to keep their 

values as low as possible, Lasso’s objective is to set the highest possible 

number of them to zero, thus creating a sparse solution (where only a few 

of the values are non-zero). This trait can be useful in settings with many 

(irrelevant) inputs.

Refer to Listing 3-7 for a code example.

�Decision Tree and Random Forest
Not all regression relationships are linear (either on the raw input or their 

transformed versions). The models mentioned earlier may fall short if 

your data exhibits more complex relationships. One option would be to 

introduce non-linear features through feature engineering. Another option 

is to use a highly non-linear model like decision tree (and, by extension, 

random forest).

These models work the same way in the classification setting: they 

generate a sequence of splits on the input features. Each split ends in a 

(continuous) output value, instead of a class label (see Figure 3-7).

Chapter 3  Tabular Data Regression



121

Figure 3-7.  Decision tree for regression

Table 3-1 summarizes the characteristics of the models enumerated so far.

Table 3-1.  Summary of Regression Models

Pros Cons

Ordinary Least 
Squares (OLS)

Works well with linear data; fast 

to train; memory linear in the 

number of features

May overfit; doesn’t work well 

with non-linear data

Ridge Less prone to overfitting than 

OLS

Doesn’t work well with non-

linear data

Lasso Less prone to overfitting than 

OLS

Doesn’t work well with  

non-linear data

Decision Tree/
Random Forest

Works well with highly  

non-linear data

May require parameter tuning 

not to overfit. Not recommended 

for very linear data
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You can refer to Listing 3-8 to use any of these regressors.

Listing 3-8.  Apply Regression Model to Table

from tinyml4all.tabular.regression.models import Linear, Ridge, 
Lasso, DecisionTree, RandomForest

linear = Linear()
ridge = Ridge()
lasso = Lasso()
tree = DecisionTree()
rf = RandomForest()
# apply any of the models above
table2 = linear(table)

# get metrics
print(table2.regression_report())
+-------+-------+------+------+
|  MAE   |  RMSE | MAPE  | R^2   |
+-------+-------+------+------+
| 32.33  | 38.17 | 43%   | 0.80 |
+-------+-------+------+------+

�Regression Chain
After you have experimented with the different processing operators 

enumerated so far and inspected both the scatter and the reports, you can 

finally assemble a complete regression chain that produces the best output 

possible (Listing 3-9).

For the RGB distance dataset from this project, the following chain, 

which is made of robust feature scaling, monotonic functional mappings, 

and linear regression, performed pretty well.
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Listing 3-9.  Complete Regression Chain for RGB Distance Dataset

from tinyml4all.tabular.regression import Table, Chain
from tinyml4all.tabular.regression.models import Linear
from tinyml4all.tabular.features import Scale, 
Monotonic, Select

table = Table.read_csv(""rgb-distance.csv"")
table.set_targets(column=""distance"")
chain = Chain(
    Scale("robust"),
    Monotonic(),
    # optional, may decrease accuracy a bit
    #Select(sequential="auto", estimator=Linear()),
    Linear()
)
predictions = chain(table)
print(predictions.regression_report())
+-------+-------+------+------+
|  MAE   |  RMSE | MAPE  | R^2   |
+-------+-------+------+------+
| 6.29   |  8.19  | 4%    | 1.00   |
+-------+-------+------+------+

Since our distance is expressed in millimeters, the results highlight that 

the average absolute error of our model is 6 mm. This is a reasonable error 

for our simple project based on a pretty naive correlation between ambient 

light and distance.

If you’re not satisfied, you must revise your chain composition. Since 

feature scaling improves the results in almost every case, you should focus 

on the feature engineering part—maybe add a polynomial combination 

step? The choice of model is whether the relation between input and 

output is linear. Or would a tree-based model would work better?
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�Deployment
After you’re satisfied with the results of the regression, it is time to port it 

to C++. A regression chain is no different from a classification chain, as 

seen in Listing 3-10. The generated code is a stand-alone class that you can 

import into any C++ project (not necessarily Arduino-based). Copy the 

generated file inside your Arduino project folder before moving to the next 

section!

Listing 3-10.  Convert Regression Chain to C++

chain.convert_to("c++", class_name="DistanceChain", save_to="""
DistanceChain.h""")

�How to Deployment Use in Arduino Sketch
Similar to Chapter 2, the deployment sketch is almost identical to the 

capturing sketch: it only adds a few lines to run the regression on the 

inputs. The chain receives three inputs: the red, green, and blue light 

components. It then produces a single, continuous output with the 

estimated distance in millimeters. Listing 3-11 assumes you still have your 

distance sensor attached so that you can compare the predictions versus 

the actual distances. After you assess the system’s field performance, you 

can remove the distance sensor. (Otherwise, it would be pointless to use an 

estimated value when you have the measured one!)

Listing 3-11.  Arduino Sketch to Predict Distance Based on RGB 

Components

Nano
/**
 * Listing 3-11
 * Predict distance from RGB
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 *
 * Required hardware: Arduino Nano BLE Sense.
 * Optional hardware: Ultrasonic distance sensor (HC-SR04)
 */
#include <Arduino_APDS9960.h>
#include <tinyml4all.h>
// this is the file generated in Listing 3-10
#include "./DistanceChain.h"

// replace with your own pins, if different
#define ECHO 2
#define TRIG 3

using tinyml4all::printCSV;

tinyml4all::APDS9960 sensor;
tinyml4all::Ultrasonic ultrasonic(ECHO, TRIG);
tinyml4all::DistanceChain chain;

void setup() {
  Serial.begin(115200);
  while (!Serial);
  Serial.println("Predict distance from RGB");

  // init sensors
  // will throw an error if something goes wrong
  sensor.begin();
  ultrasonic.begin();
}

void loop() {
  // read R, G, B
  sensor.readColor();
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  // feed data to the regression chain
  // should always return true
  if (!chain(sensor.r, sensor.g, sensor.b))
    return;

  // the chain output is in output.regression.value
  Serial.print("Predicted distance: ");
  Serial.print(chain.output.regression.value);
  Serial.print(" mm");

  // if a distance sensor is available,
  // print the error between measured and predicted
  uint16_t distance = ultrasonic.millimiters();
  int16_t error = chain.output.regression.value - distance;

  Serial.print(" (");
  Serial.print(error);
  Serial.print(" mm off)");

  Serial.println();
  delay(1000);
}

As you can see, the regression chain API still consists of a single 

method: chain(inputs). It runs all the chained steps behind the scenes 

and stores the result in output.regression.value, which is a continuous 

number in this case. Figure 3-8 reports the logs from Listing 3-11, with the 

error ranging from –4 to 9 mm.
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Figure 3-8.  Predictions output on Serial Monitor

Now try it yourself. Start with the board near the bright, flat surface you 

used to capture training data and see if the predicted distance matches the 

measured one.

Caution I t is important that the surface and illumination are similar 
to when you collected the training data; otherwise, results may be off 
by a large amount or be completely wrong!

�Summary
This chapter introduced a handful of new concepts. Tabular regression 

shares most of its development cycle with classification. This is why we 

only focused on the aspects where it differs: visualization and models.

Scatter plots were used to visualize regression data. To model 

regression data, there are a few new algorithms specific to this task, but 

there are also variations of those we already adopted for classification 

(decision tree and random forest).

Chapter 3  Tabular Data Regression



128

After our job in Python is done, the deployment on the microcontroller 

using the Arduino framework stays the same as in Chapter 2. A single call 

to chain(inputs) runs all the necessary computation behind the scenes 

and produces the output we’re interested in.

Now that we’re done with tabular data, it is time to move to a new data 

type: time series.
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CHAPTER 4

Time Series 
Classification Using 
Edge Impulse
Time series data refers to data where time is as important as the measured 

values. Rearranging the order of the samples would completely overturn 

the underlying data patterns. Time series classification is the task of 

receiving a batch (windows) of inputs and deciding to which class the 

whole batch belongs.

You can still optionally apply some transformations at the row level 

(normalization, binning), but feature engineering in the context of time 

series is focused on extracting describing statistics from each window 

of data.

This chapter introduces time series classification using the no-code 

tool Edge Impulse [1]. The project that we’re going to build is a continuous 

motion classifier: it detects which gestures (among a few available) we’re 

performing based on accelerometer data (see Figure 4-1). It serves as an 

archetype for many similar use cases that need to classify a constant and 

repetitive stream of data.

•	 Hourly temperature over days

•	 EMG (electromyography) signals from muscles

•	 Motor speed in an industrial setting

https://doi.org/10.1007/979-8-8688-1294-1_4#DOI
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Figure 4-1.  Examples of continuous gestures

The following list highlights the main steps.

	 1.	 Capture data using our microcontroller.

	 2.	 Load and inspect data on our PC using Python.

	 3.	 Create a new project on Edge Impulse.

	 4.	 Upload CSV data and specify its layout.

	 5.	 Split between train and test datasets.

	 6.	 Perform feature extraction.

	 7.	 Define and train a neural network architecture.

	 8.	 Assess the model performance on the test set.

	 9.	 Export the model into Arduino library format.

	 10.	 Deploy the Edge Impulse model back to our 

microcontroller.
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Using a no-code tool allows you to quickly and easily iterate on various 

model configurations without worrying too much about the technical 

details. This chapter focuses on introducing time series-related concepts 

(windows, overlap, time-domain, and frequency-domain features) and 

getting the job done. Chapter 5 digs deeper into the implementation 

details and optimizations for a lighter and faster deployment.

�Required Hardware
You need accelerometer and gyroscope data to work with. Several boards 

have an inertial measurement unit equipped, or you can connect an 

external one to your current board. Popular modules include MPU92650, 

MPU6886, and LSM6DS3. This book’s code examples use the Arduino 
Nano BLE Sense with built-in LSM9DS1.

An inertial measurement unit (IMU) is a sensor module used to 

measure motion, orientation, and velocity. It combines data from 

multiple sensors—accelerometer, gyroscope, and magnetometer—to 

comprehensively understand movement and positioning in 3D space.

An IMU detects changes in motion and orientation using the following 

sensors.

•	 Accelerometer: Measures linear acceleration (e.g., 

movement along the x, y, and z axes). It helps determine 

tilt and movement speed but can’t distinguish between 

gravitational acceleration and actual movement.

•	 Gyroscope: Measures angular velocity (i.e., rotational 

speed around each axis). It helps track orientation 

changes but is prone to drift over time.

•	 Magnetometer: Measures the earth’s magnetic field to 

determine absolute heading (like a compass). It helps 

correct gyroscope drift but can be affected by local 

magnetic interference.
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By fusing these sensors’ readings through dedicated algorithms, you 

can estimate an object’s attitude and heading state in space. IMU sensors 

usually come into three distinct packages.

•	 3-axis: only includes the accelerometer

•	 6-axis: includes accelerometer and gyroscope

•	 9-axis: includes accelerometer, gyroscope, and 

magnetometer

The magnetometer is often overlooked, but it should still be 

considered if you can afford a 9-axis module since it can help mitigate 

the gyroscope drift error. It can also be a useful sensor when paired with a 

magnet (see the project in Chapter 5).

�Required Software
You need the software detailed in Chapter 2 on your local computer, so 

please refer to that chapter if you’re not following the book linearly.

Other than that, you need to create a free account on the Edge 

Impulse website. Head to https://studio.edgeimpulse.com/signup and 

complete the required steps. Figure 4-2 depicts the development workflow 

of the Edge Impulse platform.
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Figure 4-2.  Edge Impulse development workflow

�Capture Data
As showcased in Chapter 2, you have different ways to collect data from 

your board and move that to your PC.

•	 Copy-paste from Serial Monitor

•	 Using Python to read from Serial

•	 Store data on SD card

This chapter leverages method 2 and uses Python to format our time 

series data nicely. Copy/pasting from serial, though more immediate, 

suffers a couple of drawbacks.

•	 We’re going to collect a lot of data (~100 samples/

second), and there’s the risk that the Serial Monitor 

overflows, thus discarding old samples.
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•	 Since our board doesn’t have a real-time clock built-in, 

we would need to manually create a timestamp (we 

only have relative time by calling millis()).

The tinyml4all Python library solves these problems nicely.

Let’s start with the sketch for the Arduino Nano BLE Sense. If you’re 

using a different board, replace the IMU reading logic with the proper code 

(see Listing 4-1).

Listing 4-1.  Collect IMU (acceleration + gyroscope) data sketch

/**
 * Listing 4-1: Read accelerometer + gyroscope data
 *
 * Required hardware: Arduino Nano BLE Sense.
 */
#include <Arduino_LSM9DS1.h>
#include <tinyml4all.h>

using tinyml4all::printCSV;

tinyml4all::LSM9DS1 imu;

void setup() {
  Serial.begin(115200);
  while (!Serial);
  Serial.println("Collect acc+gyro data as CSV");

  // init IMU sensor (will throw an error on failure)
  imu.begin();
}

void loop() {
  // read accelerometer and gyroscope
  imu.readAcceleration();
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  imu.readGyroscope();

  �printCSV(millis(), imu.ax, imu.ay, imu.az, imu.gx, imu.gy, 
imu.gz);

  // no manual delay, default sample rate is ~100 Hz
}

After you flash the sketch to your board and confirm it works by 

opening the Serial Monitor (see Figure 4-3), you need to run the Python 

script that reads the data. Listing 4-2 is similar to Listing 2-3 from Chapter 2,  

reported here for convenience. The only modification is in the names of 

columns.

Figure 4-3.  Serial output of IMU data collection

Listing 4-2.  Capture Data from Serial in Python

from tinyml4all.time import capture_serial

while True:
    gesture = input("Which gesture is this? ")
    duration = input("How many seconds to capture? ")

    if not gesture or not duration:
        break

Chapter 4  Time Series Classification Using Edge Impulse



136

    capture_serial(
        # * is a wildcard character
        port="/dev/cu.usb*",
        # match with Arduino sketch
        baudrate=115200,
        duration=f"{duration} seconds",
        save_to=f"motion/{gesture}.csv",
        # must match the order in the Arduino sketch!
        headings="millis, ax, ay, az, gx, gy, gz"
    )

To run the code, open a terminal inside the folder where the script is 

located, activate the Python virtual environment and type.

(tinyml)$ python capture_motion.py
Folder motion does not exist: create now? [y|n] y
Which gesture is this? wave
How many seconds to capture? 30
Serial port connected
Press [Enter] when you're ready to start:
Task will start in 3...2...1...START!
100%|██████████| 30/30 [00:30<00:00,  1.00s/it]
Collected 3689 lines of data

When the countdown finishes, perform your desired gesture in a 

continuous pattern. Good examples of continuous gestures are waving 

the board, moving in circles, shaking, and sliding back and forth. Repeat 

the collection process for every gesture you want to classify, changing the 

file name accordingly each time; 20–30 seconds for each gesture is a good 

starting point.
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Tip T he first time, start with a limited number of gestures (3–4) 
so that you’re more likely to achieve good results without too 
much tuning. After you succeed, you can add more gestures later if 
required.

Caution R emember to record an idle class where you don’t perform 
any movement; otherwise, the classifier tries to find the best match 
among the known gestures.

When you’re done recording the gestures, you should have a folder 

with the different files inside your project.

|- your-project-root
 |- capture_motion.py
 |- motion
  |- idle.csv

  |- shake.csv
  |- slide.csv
  |- wave.csv

�Load And Inspect the Data
Loading time series data is pretty much the same as loading tabular data, 

as you saw in Chapter 2 and Chapter 3. The main difference is that we’re 

not leveraging the Table class. Instead, let’s use the TimeSeries class (see 

Listing 4-3). Apart from that, the rest stays identical.
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Listing 4-3.  Load All CSV Files from a Folder

from tinyml4all.time.continuous.classification import 
TimeSeries

ts = TimeSeries.read_csv_folder("motion")
ts.label_from_sources(padding="1s")
print(ts.head())

timestamp ax ay ... gy gz

0 12:04:36.782244 -0,018 -0,021 ... 0,977 -0,427

1 12:04:36.790244 -0,019 -0,021 ... 0,977 -0,488

2 12:04:36.799244 -0,02 -0,021 ... 0,732 -0,488

3 12:04:36.807244 -0,02 -0,021 ... 0,671 -0,427

4 12:04:36.815244 -0,02 -0,024 ... 0,916 -0,61

When loading multiple files, it is mandatory that their timestamps do 
not overlap!

�Plot Time Series Data
In the context of time series data, scatter plots have no meaning. Since 

time is a foundational dimension, the most intuitive plot is a line with 

time on the x axis and the other measurements on the y axis. Listing 4-4 

differentiates each measurement with a different line color and different 

classes by the background color, as depicted in Figure 4-4.
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Listing 4-4.  Draw Line Plot

# all the arguments are optional
ts.line(
    title="Continuous gestures",
    normalize=True,

    line_palette="magma",
    bg_palette="viridis"
)

Figure 4-4.  Time series line plot

You can interact with the plot by dragging the mouse to zoom over a 

specific area. Double-click to reset the zoom.

�Feature Engineering
Time series feature engineering is focused on windows of data. A window 

is simply a group of readings related by their timestamps.
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A window is a FIFO (first in, first out) data structure: when a new 

sample arrives, it is queued at the end of the window. When the window 

reaches its maximum length, the eldest sample is discarded to make room 

for the new one (see Figure 4-5).

Figure 4-5.  Rolling window logic

Figure 4-5 depicts the most general case, where each window has the 

same duration, but the number of samples it contains may vary (due to 

a signal with non-constant frequency). In our case, though, the machine 

learning model expects a fixed number of inputs, so there are two choices.

•	 Ignore the windows that do not group the correct 

number of samples.

•	 Consider windows of the same length instead of the 

same duration.
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Option 1 suffers from several problems (e.g., if data is produced at 

irregular intervals, we risk never—or hardly ever—getting a window 

with the correct number of samples). Option 2 is easy to implement and 

guarantees the generation of predictions as new samples arrive (the 

drawback is that it assumes a constant sampling frequency—which may 

not always be the case). For ease of implementation, from now on, let’s 

assume that all windows of data share the same number of samples. This 

number is the length of the window.

Let’s make a practical example. Suppose you have an array of 

ten values.

2, 3, 6, 4, 3, 4, 7, 8, 5, 4

We can chunk this data into windows of five items, with a shift (how 

much the window slides to the right) of 2. This results in windows like the 

following lines display.

window 1 (index 1 to 5): 2, 3, 6, 4, 3
window 2 (index 3 to 7): 6, 4, 3, 4, 7
window 3 (index 5 to 9): 3, 4, 7, 8, 5

Given a window of data, we can generate features in two domains.

•	 Time analyzes the data “as is” as a sequence of 

numbers over which you can compute statistical 

moments (min, max, average, standard deviation, 

etc.) and shape descriptors (number of peaks, count of 

values above or below the mean or zero, etc.)

•	 Frequency applies a transformation (Fourier transform 

[2]) that maps the original sequence of numbers into 

a new domain. In this domain, the numbers represent 

how much a given frequency is relevant to the 

original signal.
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There’s also a third option: don’t generate features at all. Or, better, let 

a neural network figure out the features on its own. You see this in action in 

Chapter 8.

Each domain has advantages and disadvantages.

�Time-Domain Features
If you treat each measurement from the window of data as a numeric 

series, you can borrow a lot of metrics from classic statistics to describe the 

series. The overall goal of all these metrics is to describe the shape of the 

series (see Figure 4-6). Metrics like mean, standard deviation, skew, and 

kurtosis are often sufficient to capture the intrinsic characteristics of a time 

series and help differentiate among different classes.

Figure 4-6.  Example of skewed curves

One of the advantages of time-domain features is that they make very 

few assumptions about the data patterns. You can get meaningful metrics 

over any series, no matter how noisy or irregular it is; it can even handle 

missing data pretty well. The second advantage is that these metrics are 

easy and fast to calculate: there’s no complex math involved, and any 

embedded CPU can complete this task in the order of microseconds.
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On the other hand, this simplicity can sometimes become a limitation, 

and the descriptive power of these metrics could not be sufficient to 

capture the underlying data patterns, especially in the case of repetitive, 

periodic time series.

�Frequency Domain Features
Frequency domain features don’t look at the raw numbers in the series. 

They apply a transformation to project the time values into the domain 

frequency. This operation is performed by the Fourier transform. The 

theory and math behind it can be a little daunting to get right and is out 

of the scope of this book. What matters to us in tiny machine learning is 

that this operation requires much more computations than the classic 

statistic features. The features it extracts are meant to describe the 

main frequencies that compose a time series instead of its shape (see 

Figure 4-7).
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Figure 4-7.  Frequency content of time series

So, why would you prefer the frequency domain over (or in 

conjunction with) the time domain?

The answer is that frequency domain features exhibit superior 

descriptive power in the context of repetitive and periodic patterns. 

They’re usually much more dense (produce a higher number of 

coefficients) and can discriminate with confidence between different 

classes. Fourier transform is a great choice if you’re modeling continuous 

motion, like in this chapter.
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�Edge Impulse for Continuous Motion
This section is a step-by-step walkthrough of the Edge Impulse platform 

for continuous motion classification. Edge Impulse can also handle audio 

data and images, as explained in Chapter 6 and Chapter 7. Getting familiar 

with this tool speeds up your workflow across many different projects, so 

take some time to explore it beyond this chapter’s strict requirements.

Edge Impulse is a low-code tool: it allows you to generate a model 

without writing any code through their GUI. You only need to write code to 

integrate the generated model inside your Arduino sketch. It is a great tool 

for beginners who don’t want to dig too much into the complex details of 

feature extraction and classification. It also provides built-in quick tools for 

data labeling, so you don’t have to use third-party software for this task.

Head to https://studio.edgeimpulse.com/studio/profile/
projects and create a new project. Call it continuous motion.

Note  You can give your project any other name you prefer. (Keep it 
under 20 characters, though, since long names may cause troubles 
later with the Arduino IDE). Remember that you need to adapt some 
code later to reflect the change!

�Edge Impulse Workflow
When working with the Edge Impulse platform, your workflow is very 

linear. The side menu on the project home page highlights all the available 

steps in (almost) the exact order you must follow (see Figure 4-8).

•	 Dashboard: An overview of the project, with quick 

links to later steps, tutorials, and project management 

actions (e.g., delete project).
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•	 Devices: You can connect one of the supported devices 

using Serial (via EI CLI), WebUSB, or Wi-Fi (e.g., your 

smartphone) and capture data directly from this page 

without first creating a CSV file, as we’ve done so far. I 

don’t usually use this feature since I prefer to have the 

files I’ll be working on in the format I prefer, but this 

can come in handy for quick tests.

•	 Data acquisition: Here, you can handle your datasets. 

It keeps track of the files you upload, handles the train/

test split, and gives a preview of the data (it’s really 

handy for images!). You can perform many actions 

(delete, label, move samples) with the context menu.

•	 Impulse design: This is the core of the entire platform. 

An impulse is the equivalent of the chain seen in 

Chapter 2 and Chapter 3. It groups the feature 

engineering process and a classification (or regression) 

model. Its job is to take your input data and perform 

the computations required to obtain the expected 

output. It is articulated in nested steps.

•	 Create impulse: A configuration screen where you 

specify the type of task and features you want to use 

(classification vs. regression, spectral features vs. 

raw data.)

•	 Feature extraction: The name of this menu item 

changes according to what you selected in the previous 

screen. For time series classification, this item will 

likely be spectral features. No matter the specific item, 

though, this page allows configuring the specific 

parameters of the feature extractor step.
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•	 Classifier: Here, you define the neural network 

topology (either from scratch or using a reference 

architecture among the supported ones) and run the 

training. When the process is completed, you get a nice 

confusion matrix to inspect the results.

•	 Live classification: If you connected a supported 

device earlier, you can now run predictions over the 

live data from the device without the need to flash any 

firmware. In this case, the predictions are made in the 

cloud, so you can preview the model’s accuracy on real- 

world data.

•	 Model testing: Recall that the data acquisition step 

handles the train/test split. On this page, you can run 

the model on the test dataset and see how it performs.

•	 Deployment: After you’re done with the configuration, 

tuning, and testing online, it’s time to export the 

trained model to C++ so that it can be integrated into 

your project. This page gives many export options for 

the many supported boards and desktop operating 

systems, too.

•	 Versioning: Frequently, you experiment with different 

datasets, different models, and different configurations. 

You may want to keep track of all these experiments to 

avoid losing important settings that you may want to 

recall later. Versioning gives the possibility to create a 

snapshot of the current state of the project in time. You 

can then make the edits you want with the peace of 

mind that you will later be able to restore the previous 

state as if nothing happened later.
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•	 Experiments: It is a more advanced feature that allows 

you to configure and train multiple impulses over the 

same data and compare their results to select the best. 

By default, it only lists the results of the current (only) 

impulse, but as you create new ones, they are listed in a 

nice table for quick comparison.

Figure 4-8.  Edge Impulse project menu

The projects in this book don’t use every feature of the platform. The 

following describes the steps of our workflow.

	 1.	 Configure data format (this is only necessary in this 

chapter since data in CSV files can be arranged in 

different layouts. Images and audio files are  

self-explanatory).
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	 2.	 Upload data and split into train/test.

	 3.	 Define the impulse structure and parameters.

	 4.	 Perform feature extraction.

	 5.	 Train a model.

	 6.	 Deploy as an Arduino library.

�CSV Layout Configuration Wizard
Edge Impulse is often used for audio and image classification. Audio 

and image files are self-explanatory in that each file clearly means what 

it represents (and how this information is encoded). CSV data, on the 

other hand, can be arranged in many different layouts, and each row may 

contain a wide range of data types. For this reason, you have to instruct 

Edge Impulse about how to interpret the files you’re going to upload before 

it can ingest them properly.

You perform this operation using the CSV Wizard, a guided 

configuration tool that incrementally asks you to define the layout of 

your data.

Tip R efer to the online materials for a video walkthrough of the CSV 
Wizard configuration.

Navigate to Data acquisition ➤ CSV Wizard tab and upload one of the 

files you captured earlier (see Figure 4-9).
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Figure 4-9.  Edge Impulse CSV Wizard intro

Confirm the data looks correct and move to step 3 (see Figure 4-10). 

Here, you must select the following options.

•	 Is this time series data? Yes, this is time series data 

(either raw sensor data or processed features).

•	 How is your time series data formatted? Each row 

contains a reading, and sensor values are columns.

•	 Do you have a timestamp or time elapsed column? 

Yes, it’s timestamp.

•	 What type of data is your timestamp column? Full 

timestamp.

•	 Override timestamp difference? <your sampling 
frequency>. If it warns you that the difference is not 

consistent, choose the proper one. For example, in 

our project, the sampling rate is 120 Hz, so the time 

interval is 8.3 ms. You can round to 9 or 8; it makes no 

difference.
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Figure 4-10.  Edge Impulse CSV Wizard

The next two steps are short and easy (see Figure 4-11).

•	 Do you have a column that contains the label (the 
value you want to predict)? No.

•	 Which columns contain your values? Tick all.
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•	 How long do you want your samples to be? Unlimited.

Figure 4-11.  Edge Impulse CSV Wizard configuration (continued)

Now that the data layout has been defined, you can import as many 

files as you need without hassle.
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�Upload Files
Head back to Data acquisition from the menu and click the Add data 

button. Choose Upload data and select the files you captured in the 

previous step. Leave the default options checked (see Figure 4-12).

•	 Select individual files

•	 Training

•	 Infer from the file name

Figure 4-12.  Edge Impulse data upload form
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We uploaded all files as training data because Edge Impulse performs 

train/test splitting on CSV files by applying an automatic split that doesn’t 

preserve the correct time order of data and can’t be configured. Manual 

splitting gives you greater control over the process, such as deciding the 

split percentage.

�Train/Test Split
You should have a few entries in your dataset panel, one for each file. 

Go through each row and click the three dots on the right. This opens a 

context menu with a list of actions. Click Split sample to open the split 

GUI. Delete all the segments that have been created automatically and 

only define two segments: one for training and one for testing. The first (for 

training) should be larger so that the model has more data to learn from. 

Figure 4-13 shows an example.

Figure 4-13.  Edge Impulse train/test split
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Returning to the Data Acquisition page, you should see one new row 

in the list of samples. The naming follows the scheme <label_of_class>.
s1 and <label_of_class>.s2 (e.g., idle.s1 and idle.s2). s1 is the sample 

to use for training; s2 is for testing. Click the three dots on the right of the 

s2 sample and select Move to test set. Then, repeat the same procedure for 

all your uploaded samples (see Figure 4-14).

Figure 4-14.  Edge Impulse dataset statistics

�Impulse Design
Here’s where the actual classification tasks start. Each type of data has its 

own feature engineering block, which you can configure visually using the 

GUI (see Figure 4-15).
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Figure 4-15.  Impulse design

�Time Series Data Block

In our case of time series classification, two parameters need to be 

configured.

•	 Window size: The duration of each window of data. 

It must be configured in milliseconds because the 

Edge Impulse platform assumes your data has a fixed 

sampling rate (inferred from the uploaded data).
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•	 Window increase: This was called shift earlier in 

this chapter and indicates how much (again in 

milliseconds) the window should slide to the right 

when it is full.

In continuous motion, you should size the window duration to capture 

at least a few repetitions of the gestures you want to recognize. For the sake 

of this project, a value between one and two seconds works fine.

�Spectral Analysis Block

As a preprocessing block, select Spectral Analysis and tick all the input 

axes. Under the hood, this block extracts a mixture of time domain (like 

root mean square value, skew, and kurtosis) and frequency domain 

features (spectral power at different frequencies).

After you save the impulse by clicking the respective button, a Spectral 
features entry appears on the left menu, where you can configure many 

parameters for this block. To be tuned properly, they required a strong 

understanding of how FFT and other frequency domain algorithms 

work—which is out of the scope of this book—so for the moment, it is fine 

to continue with the defaults (see Figure 4-16). If you later feel that the 

model is not performing at its best and want to dig more into this page, the 

most intuitive parameter you can tweak is the FFT length; increasing this 

value considers more points for the FFT generation and could potentially 

improve the overall accuracy.
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Figure 4-16.  Edge Impulse feature extraction configuration

Next, click Save parameters to go to the Generate Features page. Click 

the Generate features button and wait for the process to finish (this step 

is mandatory; otherwise, you won’t be able to train the model later). When 

it has been processed, a scatter plot appears, displaying the clustered data 

(similar to the scatter plot drawn in Chapter 2 for tabular data). Figure 4-16 

shows the distinct colored clusters for each class.

�Learning Block

The last block to configure is the learning block. It is pretty limited right 

now and it even guides us by showing the recommended block that is 

classification, so select that and hit the Save Impulse button.

A classifier entry appears in the menu on the left, under Spectral 
features. Click it to open the model training configuration page. The 

default topology proposed is a neural network of two dense layers with few 

neurons each. On my dataset, leaving all the options to their default value 

achieved near 100% classification accuracy, indicating that the extracted 

features are so good that even a simple model without any proper 

customization can correctly classify them (see Figure 4-17).
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Figure 4-17.  Edge Impulse classification

You can use a couple of important parameters a lot while working on 

this page, so here’s what they do.

•	 Number of training cycles: It addresses how long the 

model should learn. A sensible default value is 50. You 

can try to increase this value if the accuracy is low, but it 

looks like it is increasing (see later for how to check this).
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•	 Learning rate: It controls how much the model should 

update its weights at each epoch. My go-to value is 

0.005: lower values may result in higher accuracy but 

require more training cycles. Notice that it differs from 

the 0.0005 set by default (one less zero)!

�How Do We Detect If Accuracy Is Improving 
Over Time?

After you click Save & Train, the model starts learning. On the right, there’s 

a Training output block where logs appear during the process. They look 

like the following lines.

Training model...
Training on 157 inputs, validating on 40 inputs
Using batch size: 32
Epoch 1/30
5/5 - 1s - loss: 1.2153 - accuracy: 0.6624 - val_loss: 0.8915  
- val_accuracy: 0.6750 - 831ms/epoch - 166ms/step
Epoch 2/30
5/5 - 0s - loss: 0.7945 - accuracy: 0.6433 - val_loss: 0.4627  
- val_accuracy: 0.6750 - 34ms/epoch - 7ms/step
Epoch 3/30
5/5 - 0s - loss: 0.4370 - accuracy: 0.7134 - val_loss: 0.2049  
- val_accuracy: 0.9500 - 62ms/epoch – 12ms/step
Epoch 4/30
5/5 - 0s - loss: 0.2389 - accuracy: 0.9045 - val_loss: 0.1047  
- val_accuracy: 1.0000 - 29ms/epoch - 6ms/step
Epoch 5/30
5/5 - 0s - loss: 0.1518 - accuracy: 0.9554 - val_loss: 0.0726  
- val_accuracy: 1.0000 - 61ms/epoch - 12ms/step
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As you can see, each line reports the accuracy and loss on the 

validation split at each epoch. You already know what the accuracy is, but 

what about the loss? It is a function that quantifies how well or poorly a 

neural network is performing by measuring the difference between the 

model’s predictions and the actual target values. If the loss decreases, the 

model learns better representations of the data. During the training phase, 

the objective of the network is to minimize this value rather than increase 

accuracy. An high Model accuracy is a direct result of a model with a low 

loss value—because it has learned a good representation of the data, it can 

produce good predictions that match the ground truth.

In the example, the validation loss is decreasing at each step: that’s a 

sign that the model is learning. (It is expected since we’re beginning the 

process.) If you look at the logs from the last few epochs, you can see that 

the loss stays almost the same.

Epoch 57/60
5/5 - 0s - loss: 0.0092 - accuracy: 1.0000 - val_loss: 0.0022  
- val_accuracy: 1.0000 - 61ms/epoch - 12ms/step
Epoch 58/60
5/5 - 0s - loss: 0.0090 - accuracy: 1.0000 - val_loss: 0.0022  
- val_accuracy: 1.0000 - 29ms/epoch - 6ms/step
Epoch 59/60
5/5 - 0s - loss: 0.0088 - accuracy: 1.0000 - val_loss: 0.0021  
- val_accuracy: 1.0000 - 61ms/epoch - 12ms/step
Epoch 60/60
5/5 - 0s - loss: 0.0087 - accuracy: 1.0000 - val_loss: 0.0021  
- val_accuracy: 1.0000 - 28ms/epoch – 6ms/step

That is a sign that we’re running the training for too many cycles and 

wasting time because the model reached a plateau. Even more, it may be 

the case that, for certain datasets, the model starts overfitting, resulting in a 

degradation of its accuracy!
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Caution  When training a model, keep an eye on the validation loss 
to spot signs of overtraining and overfitting!

Chapter 8 delves into the different neural network architectures, but 

let’s briefly go over what a fully connected neural network (FCNN) is and 

what the dense layers in Edge Impulse represent.

�Fully Connected Neural Networks
Artificial neural networks are data structures inspired by the structure 

and function of the human brain. A neural network is a complex system of 

interconnected nodes or neurons that process and transmit information. 

Each neuron receives one or more inputs, performs a computation on 

those inputs, and then sends the output to other neurons. This process 

allows the network to learn and represent complex patterns in data. 

Neurons (the atomic component) are organized into layers, stacked one 

after the other. Fully connected neural networks are characterized by each 

neuron at layer n being connected with each neuron at layer n + 1 (see 

Figure 4-18).

Figure 4-18.  Fully connected neural network
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�The Structure of a Perceptron

A neuron, also known as a perceptron, is the basic building block of a fully 

connected neural network. It consists of four main components.

•	 Inputs: The neuron receives one or more input values 

from the previous layer (or the input sample in the case 

of the first layer).

•	 Weights: Each input is associated with a weight, 

which determines the importance of that input in the 

calculation.

•	 Bias (optional): Each neuron may introduce a fixed 

offset to shift its output value.

•	 Activation function: When working with linear 

weights, this function introduces a non-linearity, which 

allows us to learn more complex relationships.

The output of the neuron is calculated using the following formula.

	 output activation inputs weights bias� � �� � �( ) 	

�What Are Dense layers?

A dense layer is a group of perceptrons defined by the number of neurons 

in it. Considering the full connection, you have to remember that the 

number of weights of a dense layer grows linearly with the number of its 

inputs and neurons. A dense layer with 20 inputs and 30 neurons stores 

600 weights.

Now that you know what a dense layer is and how the number of 

neurons influences the size of the network feel free to experiment with 

different combinations of layers until you find the sweet spot between size 

(lower is better) and accuracy (higher is better).
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�Testing
If the confusion matrix on the training page satisfies your expectations, 

move to the Model Testing page (from the menu on the left) to assess the 

model accuracy on samples it has never seen during training or validation. 

Click the Classify all button and wait for the results. In the best scenario, 

all the rows are green (indicating a perfect prediction). A realistic scenario 

like ours probably gets results that look worse than those during training. 

That’s totally fine and expected.

Remember that the accuracy you get on the validation data is an 

overestimation of the model’s true capability to generalize to new data, so 

this page is of utmost importance in deciding whether you can be satisfied 

with your model. It may well happen that a 100% accuracy on the training 

page becomes 80% or lower on the test set. It may be a sign of overfitting, 

and you need to take action to counter it (e.g., tuning the Spectral Features 

step or the network architecture).

In my case, the accuracy on the test set was still 100%, so I moved on to 

deployment.

�Deployment
The training procedure is complete at this point, and you can move your 

model from the cloud to your device. Click Deployment in the left menu 

and export the impulse as an Arduino library (see Figure 4-19).
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Figure 4-19.  Edge Impulse export

This downloads a ZIP file. Extract the contents of the zip inside your 

Arduino IDE libraries folder. The library is named <name-of-project_
inferencing> (continuous-motion_inferencing in my case).

Caution I f you want to rename the library, remember to rename 
both the folder and the .h file inside the src folder.

Now that the Edge Impulse model is a library, it is time to modify the 

initial sketch that only captured data to integrate the classification part. 

Create a new sketch called Continuous_Motion_Classification.ino and 

paste the code shown in Listing 4-5.
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Caution L isting 4-5 assumes your library is named continuous- 
motion_inferencing. If your generated library has a different 
name, replace it with the correct one.

Listing 4-5.  Run Impulse on Accelerometer Data

/**
 * Listing 4-5: Run Edge Impulse model on IMU data
 *
 * Required hardware: Arduino Nano BLE Sense
 */
// next line *must* match with the window increase value in the 
Impulse Design page from EI Studio
#define EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW (1000 / 250)

#include <continuous-motion_inferencing.h>
#include <Arduino_LSM9DS1.h>
#include <tinyml4all.h>

using tinyml4all::printCSV;

tinyml4all::LSM9DS1 imu;
tinyml4all::Impulse impulse;

void setup() {
  Serial.begin(115200);
  while (!Serial);
  Serial.println("Classify motion with Edge Impulse");

  imu.begin();

  // init EI model (will throw an error on failure)
  impulse.begin();
}
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void loop() {
  // read accelerometer and gyroscope
  imu.readAcceleration();
  imu.readGyroscope();

  // queue data
  impulse.queue(
    imu.ax, imu.ay, imu.az,
    imu.gx, imu.gy, imu.gz
  );

  // when window of data is full, run prediction
  // otherwise return
  if (!impulse.isReady())
    return;

  Serial.print("Running prediction... ");

  // run inference
  if (!impulse.run()) {
    Serial.println(impulse.error());
    return;
  }

  // print results
  Serial.print("Predicted motion is ");
  Serial.print(impulse.label());
  Serial.print(" with confidence ");
  Serial.println(impulse.confidence());
}

Compile and upload the sketch, then open the Serial Monitor to see 

the live stream of predictions (see Figure 4-20).
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Figure 4-20.  Inference serial output

Caution  Compilation time may be long. On my Intel MacBook Pro, it 
takes three to four minutes!

Congratulations! You’ve completed your first Edge Impulse project.

Hopefully, it was a streamlined process that you can easily replicate 

in future projects. If you ever feel lost, return to this chapter and use it as a 

reference and step-by-step guide.

Note T he generated model takes ~90 milliseconds to run on my 
Arduino Nano BLE Sense. This value is used as a benchmark in the 
next chapter, which implements only time-domain features to see 
how they compare in terms of execution time.

Visit the online materials repository for a video demo of the live 

classification.
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�Edge Impulse Shortcomings
Edge Impulse is a great platform. I frequently use it, and I’m amazed by the 

quality of the models it produces. That said, there are a few shortcomings 

that still frustrate me (not on the platform itself, but on the Arduino 

IDE side).

�Painfully Long Compilation Times

Edge Impulse uses TensorFlow under the hoods. This means that every 

time you compile your project, TensorFlow needs to be compiled, too. 

Compilation takes time because it has a large codebase on its own. A lot of 

time. This can quickly become annoying when you’re in the development 

stage and need to make frequent changes to code. Even after the first 

compilation, when the Arduino IDE has created some cache artifacts to 

speed up the process, compiling your sketch may take about one minute.

�Cache Invalidation

Let’s say you train a model, deploy it to your board, and find it performs 

badly. Then, you return to Edge Impulse and train a new model with 

different configurations to improve its accuracy. You download the new 

ZIP library, replace the old one, and compile your sketch again.

Guess what? You’re still using the old model! As counterintuitive as it 

is, that’s what’s happening. This is because the Arduino IDE builds a cache 

to speed up the compilation process. This cache lives until you restart the 

IDE. Due to the caching implementation, the IDE cannot detect that the files 

from your library have changed (since they all have the same names), so it 

continues reusing the cached version. To force the use of the new version, 

you must restart the IDE altogether. This means that you must wait.

•	 The time it takes to launch the IDE

•	 The time it takes to compile TensorFlow for the first 

time (3–4 minutes)
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I don’t know about you, but this waiting destroys my productivity.

All that said, I still think Edge Impulse models are a great option for 

your TinyML projects.

�Summary
Time series is a common data type when working with TinyML projects. 

It covers every project where data changes over time (accelerometer, 

temperature, EMG), and being able to classify this data opens a wide range 

of opportunities.

This chapter presented the Edge Impulse platform, a low-code tool 

that empowers you to visually create advanced machine learning models 

ready to be deployed. Under the hood, it uses frequency domain features 

(Fourier transform) and TensorFlow, thus achieving top-notch accuracy. 

Thanks to the tinyml4all Arduino library, it only takes a couple of lines of 

code to integrate these models into your Arduino projects.

The next chapter demonstrates how it is possible to classify time series 

data using time-domain features and “classical” machine learning models. 

This produces a more lightweight classification pipeline that is powerful 

enough to achieve satisfactory results.
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CHAPTER 5

Time Series 
Classification  
Using Python
Chapter 4 introduced the problem of time series classification. By 

leveraging a low-code tool like Edge Impulse, we successfully deployed a 

classification model without digging into the details of Fourier transform 

and power spectrum feature extraction. Also, the neural network used 

as a classifier acted like a black box to us, leaving us only the mandatory 

task of configuring the number and width of layers (you are even allowed 

to configure the Python code to define and train the model, but that is in 

“Expert” mode and out of the scope of this introductory book).

This chapter takes a more code-oriented approach and explores what 

makes a good time series classification pipeline using time-domain 

features, introducing new feature engineering operators. As a last step, we 

export the selected chain to plain C++ code (like in Chapters 2 and 3) to be 

embedded into any Arduino project.

The project of this chapter is a media control pad for our PC.

https://doi.org/10.1007/979-8-8688-1294-1_5#DOI
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The following are common actions you expect from a media 

control device.

•	 Raise/lower volume: Slide your finger up (raise) 

or down (lower) along the imaginary vertical axis of 

the pad.

•	 Move next/back: Slide your finger left (next) or right 

(back) along the imaginary horizontal axis of the pad.

•	 Play/pause: Tap the middle of the pad.

Let’s perform these gestures on a flat surface (e.g., a desk) with the help 

of a small magnet (see Figure 5-1).

Figure 5-1.  Examples of gestures

�Hardware Requirements
You could leverage accelerometer and gyroscope data in this project, like 

in Chapter 4, but let’s try to vary the nature of the data we are working with. 

This time, we exploit the Arduino Nano BLE Sense built-in magnetometer 
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instead. Many of the inertia measurement unit (IMU) sensors mentioned 

in Chapter 4 have such a sensor built-in, so you don’t need external 

hardware. A little magnet taped at the tip of your finger can disturb the 

earth’s magnetic field in a measurable way; that perturbation (on the x, y, 

and z axes) becomes our input data.

For this project, you need the following.

•	 An IMU with a magnetometer (e.g., the one on 

the Arduino Nano BLE Sense) or an external 

magnetometer sensor

•	 A small magnet

•	 A flat surface to use as a pad

Tip R efer to the online materials repository for a video demo of 
the setup.

�Capture Data
This section shares a lot with the similar one in Chapter 4 because we’re 

still collecting sensor values over time. However, whereas Chapter 4 

focused on continuous motion, this project works with episodic motion—

gestures and movements that are performed only one or two times, not 

continuously. Don’t underestimate this difference because it means a lot, as 

you’ll see later.

The following are the steps to collect data from our board.

	 1.	 Read IMU (magnetometer data in particular).

	 2.	 Print CSV-encoded data to the Serial Monitor.

	 3.	 Collect data in Python as CSV files.
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Listing 5-1 contains the Arduino sketch.

Listing 5-1.  Collect Magnetometer Data Sketch

/**
 * Listing 5-1: Read magnetometer data
 *
 * Required hardware: Arduino Nano BLE Sense.
 */
#include <Arduino_LSM9DS1.h>
#include <tinyml4all.h>

using tinyml4all::printCSV;

tinyml4all::LSM9DS1 imu;

void setup() {
  Serial.begin(115200);
  while (!Serial);
  Serial.println("Collect magnetometer data as CSV");

  // init IMU sensor (will throw an error on failure)
  imu.begin();
}

void loop() {
  // read magnetometer
  imu.readMagneticField();
  printCSV(millis(), imu.mx, imu.my, imu.mz);

  // no manual delay, default sample rate is ~80 Hz
}

You can debug the output by opening the Serial Plotter and bringing 

a magnet close to the board. You see the plot lines bending depending on 

the position of the magnet (see Figure 5-2).
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Figure 5-2.  Serial plot of magnetometer in the presence of a magnet

To easily perform these actions comfortably, use tape to secure the 

magnet at the tip of your index finger.

After you confirm the sketch is working, create a new Python script. 

Listing 5-2 is almost a replica of Listing 4-2, but the names of columns were 

adjusted.

Listing 5-2.  Capture Data from Serial in Python

from tinyml4all.time import capture_serial

while True:
    # prompt user for label and duration of sampling
    gesture = input("Which media control gesture is this? ")
    duration = input("How many seconds to capture? ")

    # exit when label or duration is empty
    if not gesture or not duration:
        break
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    capture_serial(
        # * is a wildcard character that matches anything
        # on Windows it will look like COM1 or similar
        port="/dev/cu.usb*",
        baudrate=115200,
        # destination file
        save_to=f"media-control/{gesture}.csv",
        duration=f"{duration} seconds",
        # name of the columns
        headings="millis, mx, my, mz"
    )

To run the code, open a terminal inside the folder where the script is 

located, activate the virtual environment, and type.

(tinyml)$ python capture_magnetometer.py
Press [Enter] when you're ready to start:
Which media control gesture is this? volume-up
How many seconds to capture?> 60
Task will start in 3...2...1...START!
Connected to serial port
100%|██████████| 60/60 [00:60<00:00,  1.00s/it]
Collected 1085 lines of data

Caution A lways remember to record an idle class! Start the 
recording and do nothing, or move just a little bit.

Figure 5-3 shows some of the recorded gestures. Apart from the first 

(the idle class), you should be able to see the repetitions of each gesture a 

few times in each subplot.
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Figure 5-3.  Time series plot of media control gestures

�Data Labeling
While this step was “automatic” in Chapter 4, it now must be completed 

manually. This can be tedious if you have a lot of data, but remember that 

dataset preparation (collection and labeling) is usually time-consuming. 

Nevertheless, the higher the quality of your input data, the higher the 

quality of your classification results.

The tinyml4all Python package ships with a simple built-in time 

series labeling tool that runs in your browser. To start it, we must first load 

the time series data (Listing 5-3).

Listing 5-3.  Load and Label Time Series Data

# note that the packaged changed from continuous
# to episodic!
from tinyml4all.time.episodic.classification import TimeSeries

ts = TimeSeries.read_csv_folder("media-control")

# run labeling GUI
ts.label_gui()

A new browser window opens with the plot of the time series and 

instructions on how to mark events of interest. In a nutshell, you only need 

to click in the middle of an event; a marker appears to confirm it. Repeat 

the process for each event, for each media control gesture (see Figure 5-4).
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Figure 5-4.  Time series labeled events

When you finish the labeling job, copy the contents from the Output 

tab (at the bottom of the page) and paste them into a new file called 

labels.json (or click the download icon) and move it inside the media-
control folder. With this convention, the labels are automatically picked 

up from the TimeSeries.read_csv_folder function the next time you load 

your data.

Caution Y ou may find one or more PKL files inside your data folder. 
They are created automatically from the tinyml4all library and 
contain a compact representation of the time series data. Don’t 
delete them since they allow faster loading time when you run your 
code more than once.

Confirm this by running the Python code shown in Listing 5-4.
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Listing 5-4.  Load Time Series Data with Labels and Events

from tinyml4all.time.episodic.classification import TimeSeries

ts = TimeSeries.read_csv_folder("media-control")
print(ts.events)
Events [volume-up (duration=800ms, count=24), volume-down
(duration=800ms, count=22), next (duration=800ms, count=22), back
(duration=800ms, count=23),) tap (duration=500ms, count=24)]

�Feature Engineering
This chapter approaches the time series feature engineering manually. 

What makes a good feature in this context? As usual, we want to 

manipulate the input data so that the classifier at the end of the chain can 

easily classify it.

We often work with multidimensional data (made by many 

measurements): accelerometer, gyroscope, and magnetometer are made 

by three channels each; EMG (electromyography) data is usually made 

by three or eight channels; light sensors output R, G, and B values. Let’s 

consider each measurement/dimension on its own; the features are 

extracted along each dimension, and values across dimensions are never 

mixed. For this reason, the rest of the chapter focuses on analyzing a single 

time series. In the case of multidimensional input data, we replicate the 

same analysis for each dimension and eventually concatenate the features 

of each to form a single feature vector.
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Note  Some tabular data feature engineering may also apply to time 
series data. Normalization, for example, is still a suggested operation 
that you should perform. Discretization and power transform  
(see Appendix A) have little significance in this new context instead.

�Statistical Moments
Statistical moments are values that characterize the shape of a function. 

You should be familiar with them if you have some knowledge of statistics.

•	 Mean: The average value of a dataset. It’s calculated by 

summing all values and dividing by the number of data 

points. The mean represents the central tendency of 

the data.

•	 Standard deviation: A measure of how spread out 

the data is from the mean. It’s calculated by taking the 

square root of the average squared difference between 

each data point and the mean. A higher standard 

deviation indicates more variability in the data.

•	 Skew: A measure of the asymmetry of the data 

distribution. Positive skew means the tail of the 

distribution extends more to the right, while negative 

skew means it extends more to the left. A skew of zero 

indicates a symmetric distribution.

•	 Kurtosis: A measure of the tail density of the data 

distribution. It describes how heavy the tails are 

compared to a normal distribution. High kurtosis 

indicates more extreme outliers (many samples far 

from the mean), while low kurtosis suggests fewer 

outliers. A normal distribution has a kurtosis of 3.
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This group includes the minimum and maximum values of the series.

�Autocorrelation
Autocorrelation measures how similar a time series is to itself at different 

points in time. It tells us how much the current value in a time series 

is related to its past values. In autocorrelation, lag refers to the time 

difference between a current and past observations. For example, lag=1 

means comparing each data point with the one immediately before it, 

lag=2 means comparing it with the point two steps back, and so on.

Autocorrelation can be positive (values tend to move in the same 

direction over time) or negative (values tend to alternate directions). The 

strength of autocorrelation ranges from –1 to 1, where 1 indicates perfect 

positive correlation, –1 indicates perfect negative correlation, and 0 

indicates no correlation. It is a good feature descriptor because it captures 

short-term patterns, no matter the scale of the data (since it is based on a 

difference).

�Shape Metrics
Finally, other descriptors can become useful for an accurate classification.

•	 Number of peaks: How many peaks (min or max 

values) are in the series? The higher this number, the 

less flat the series is.

•	 Count above/below mean: How many samples have a 

value greater/lower than the mean?

All these descriptors can be extracted from a single time series. If 

the time series covers a duration of hundreds of samples, these values 

may not capture its full underlying pattern. For this reason, let’s break 

our long input segment into shorter, overlapping chunks using a 

windowing scheme.
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�Windowing
Windowing is a core operation of time series classification. It is the process 

of taking a long list of values and rearranging them into many sublists 

of fixed length. The time-domain features are then computed over each 

of these windows. This process generates a feature vector that is denser 

(captures patterns at a finer level of detail) and should help boost the 

accuracy of the classification. When you define a window, there are 

actually two parameters to configure.

•	 Length: How many samples are contained inside 

a window

•	 Shift: When the window is full, how many samples are 

discarded to make room for new ones

The shift parameter can be considered rate limiting: the shorter the 

shift, the more frequent the classification. This allows faster responses to 

changes in the data and serves well if you apply a moving average on the 

outputs (to avoid spurious misclassifications). In contrast, a large shift 

implies fewer CPU computations, leaving time to complete other tasks  

(if you have any).

To make for even denser features, it is also possible to chunk data into 

medium-sized windows (e.g., two seconds) and then chunk each window 

once more (e.g., 400 ms chunks). When dealing with complex input data, 

this approach should improve classification accuracy. In our project, the 

frequency of the magnetometer is 80 samples per second, and the duration 

of the events is under one second. Subchunking shouldn’t make a huge 

difference, but for the sake of demonstration, Listing 5-5 uses a subchunk 

of 200 ms. If you set a subchunk duration, that becomes the shift of the 

window. Otherwise, you must specify this value manually.
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�One vs. Rest
Depending on your specific project, you may have many classes sharing all 

the same duration (the easiest case), or they may have different durations 

(the case no one talks about but that happens frequently in the real world). 

To accommodate all projects, the tinyml4all package treats all episodic 

time series classification tasks as a one vs. rest problem—even if all the 

labels share the same length.

If you recall from Chapter 1, one vs. rest means that many classifiers 

are trained, one for each class. The objective of each classifier is to learn to 

differentiate the class of interest from anything else (e.g., “volume up” vs. 

“not volume up” in our case). This introduces a lot of complexity behind 

the scenes, but it is mandatory to handle different use cases properly.

�Episodic Time Series Classification Chain
Now that all the pieces are together, it is time to assemble a chain of 

operations that pre-process, rearrange into windows, extract features from, 

and classify our time series input data.

This time, the Chain class has a more structured format that mimics 

the different parts required.

•	 pre (for pre-processing): A list of steps that are applied 

to the input data no matter their label (e.g., scaling, 

normalization, binning). This is optional.

•	 chunk: Defines the duration of the subchunks. This is 

optional.

•	 features: A step (or list of steps) responsible for 

extracting features from each window (or chunk). 

The tinyml4all library ships with a few (as described 

earlier in this chapter), but you could implement your 

own if needed. This is mandatory.
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•	 ovr: A list of steps to run after the feature extraction on 

binary views of the data (class of interest vs. not class of 

interest). Here, you put a classifier and any other step 

you see fit (e.g., feature selection). This is mandatory.

Listing 5-5 instantiates a chain with the following configuration.

•	 Min-max normalization

•	 Chunks of 200 ms

•	 Time-domain feature extraction

•	 Feature selection

•	 Random forest classifier

Listing 5-5.  Episodic Time Series Classification Pipeline

from tinyml4all.time.episodic.classification import 
TimeSeries, Chain
from tinyml4all.time.episodic.features import Window
from tinyml4all.time.features import Scale, Moments, 
Autocorrelation, Peaks, CountAboveMean, Select
from tinyml4all.time.models import RandomForest

ts = TimeSeries.read_csv_folder("media-control")

chain = Chain(
    pre=[Scale("minmax")],
    �window=Window(chunk="250ms", features=[Moments(), 

Autocorrelation(), Peaks(), CountAboveMean()],
    ovr=[
        Select(sequential="auto"),
        RandomForest()
    ]
)
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tables = chain(ts)

# one vs rest classification produces N binary tables
# with classes "<class of interest>" and
# "not <class of interest>"
for table in tables:
    print(table.classification_report())

               precision    recall  f1-score   support

not volume-up       1.00      1.00      1.00       230
    volume-up       1.00      1.00      1.00        26

     accuracy                           1.00       256
    macro avg       1.00      1.00      1.00       256
 weighted avg       1.00      1.00      1.00       156

+-------------------+---------------+-----------+
| True vs Predicted  | not volume-up  | volume-up |
+-------------------+---------------+-----------+
|   not volume-up    |      230       |     0      |
|     volume-up      |       0       |    26      |
+-------------------+---------------+-----------+

Wait a minute, something looks out of place! We were working with 

time series, so why does the chain call returns tables? We lost the time 

dimension because we extracted a list of features from each window of 

data that describes an entire chunk of values with a handful of metrics. 

Time was only needed to group samples together in windows based 

on timestamps. After the feature extraction, it has no more meaningful 

purpose.
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Note  When working with “traditional” machine learning models, 
you always want to reframe your data to look like a table because 
that’s the format those models are meant to process. Chapter 8 
explains that you may create neural network architectures that work 
straightaway with temporal data instead.

�Deploy to Arduino
At this point, the training workflow is done. We implemented feature 

engineering and classification on our powerful desktop PC; the accuracy 

achieved by the classifier meets our expectations. Here is where the tiny 

part comes in. The last step is to finally convert our chain to C++ so that we 

can import the code into our embedded project. Listing 5-6 shows how to 

generate such code.

Listing 5-6.  Convert Time Series Classification Pipeline from 

Python to C++

chain.convert_to("c++", class_name="MediaControlChain",  
save_to="MediaControlChain.h")

Copy the generated file inside your project’s folder to run the 

classification in your sketch. Then, upload the code in Listing 5-7. This 

sketch uses the USB HID features of the Arduino Nano BLE Sense, which 

allows the board to act as a keyboard connected to your PC to simulate 

key presses. If you’re using a different board that doesn’t support this 

protocol, you must devise a different actuation logic (e.g., send commands 

over Serial and write a script that runs on your PC to decode or send them 

over BLE).
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Listing 5-7.  Arduino Sketch to Control Media Using Gestures

/**
 * Listing 5-7: Predict media control gestures
 *              using time domain features
 *
 * Required hardware: Arduino Nano BLE Sense
 */
#include <Arduino_LSM9DS1.h>
#include <PluggableUSBHID.h>
#include <USBKeyboard.h>
#include <tinyml4all.h>
// this is the file generated earlier
#include "./MediaControlChain.h"

tinyml4all::LSM9DS1 imu;
tinyml4all::MediaControlChain chain;
USBKeyboard keyboard;

void setup() {
  Serial.begin(115200);
  while (!Serial);
  Serial.println("Predict media control gestures");

  // init IMU sensor
  imu.begin();
}

void loop() {
  // read magnetometer
  imu.readMagneticField();
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  // try to run prediction
  // if window is not full, will return false
  if (!chain(imu.mx, imu.my, imu.mz))
    return;

  // here the chain run successfully
  // �chain.output.classification.idx holds the most probable 

class index
  // �chain.output.classification.label holds the most probable 

class label

  // ignore idle class
  if (chain.output.classification.label == "idle")
    return;

  // print the inferred gesture
  Serial.print("Predicted ");
  Serial.print(chain.output.classification.label);
  Serial.print(" with confidence ");
  Serial.println(chain.output.classification.confidence);

  // trigger key presses based on label
  if (chain.label == "tap")
    keyboard.media_control(KEY_PLAY_PAUSE);
  else if (chain.label == "next")
    keyboard.media_control(KEY_NEXT_TRACK);
  // and so on...

  // for the list of available keys, visit
  // �https://github.com/arduino/ArduinoCore-mbed/blob/main/

libraries/USBHID/src/USBKeyboard.h
}
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Open the Serial Monitor and start performing the media control 

gestures. You should see something similar to the output in Figure 5-5.

Figure 5-5.  Media control gestures prediction output

The prediction time is about 4 ms. Comparing that with the 90 ms of 

the Edge Impulse model, you can appreciate how much faster this method 

is (the downside is that it is generally less accurate).

Tip R efer to the online materials repository for a demo video of the 
project in action.

�Summary
This chapter tackled the time series classification task by leveraging a 

code-oriented workflow that leverages manual episodic labeling and  

time-domain features. With respect to the low-code, Fourier transform–based 

approach, this requires a bit more configuration from our side, but the result is 

more lightweight and faster.
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Accuracy greatly depends on the data you collect for training and the 

types of events you want to classify. Continuous motion is easier to detect 

thanks to its long duration and repetitive pattern. Episodic, one-time events 

require a more granular and reactive model to quickly grasp changes in 

almost real time. The chain introduced here tries to achieve such results.

The next chapter introduces a new data type: audio. While technically 

still a time series (air pressure variation over time), in practice, audio 

deserves a tailor-made processing framework due to its high frequency (8 

or 16 kHz, usually) and specific interpretation by the human ear/brain that 

goes beyond the pure temporal analysis.
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CHAPTER 6

Audio Wake Word 
Detection with Edge 
Impulse
In the world of TinyML and audio processing, audio wake word 

detection—a.k.a. keyword spotting (KWS)—has become essential for 

enabling hands-free interactions with our devices. From smart speakers to 

mobile phones, KWS systems constantly listen for specific wake words or 

commands. However, implementing these systems on resource- 

constrained devices presents unique challenges, particularly when 

processing raw audio data efficiently.

So far, you worked with numeric data that represented sensor values. 

Those values could be well arranged into a tabular format, either with a 

timestamp (time series) or without one. A completely different type of data 

is audio. Even if, from a technical point of view, audio is still a time series, 

its intrinsic meaning goes far beyond its mere waveform. The human brain 

can associate much more information with audio signals than regular time 

series, and we can detect sounds and words from them.

https://doi.org/10.1007/979-8-8688-1294-1_6#DOI
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This chapter is devoted to audio classification using the Edge Impulse 

low code platform. You take a brief tour of how audio can be captured 

using a digital microcontroller, which features constitute the state-of-the-

art descriptors for speech analysis, and how to detect specific words from 

your board. As a reference project for this chapter, we build a clone of the 

widely used voice assistant devices (Alexa, Siri, Google Home), which are 

limited to their activation mechanism. Instead of “OK Google,” you can 

wake up your Arduino board with the “Hey Arduino” vocal command (see 

Figure 6-1).

Figure 6-1.  Audio wake word detection

Chapter 6  Audio Wake Word Detection with Edge Impulse



193

�Hardware Requirements
You need a microphone to capture audio from your Arduino board. A few 

boards come with a microphone built-in, including the following.

•	 Arduino Nano BLE Sense, Arduino RP2040 Connect, 

and Nicla Vision (PDM interface)

•	 Seeed Studio Wio Terminal and LILYGO TTGO variants 

(I2S interface)

If you don’t have any of these, you can buy an external microphone 

and hook it up according to its requirements. Usually, mics for Arduino 

boards come in two shapes.

•	 PDM (pulse-density modulation): The audio 

waveform is encoded in the density of the digital pulses 

and requires specialized software to be decoded. 

It usually only handles mono audio with 16 bits 

per sample.

•	 I2S (Inter-IC Sound): The audio output comes already 

encoded, so there’s no need for further processing. 

I2S mics in the Arduino ecosystem can usually handle 

stereo audio at 32 bits per sample.

Check that the mic you buy is compatible with your board before 

you order!

The code listings in the rest of this chapter assume you are using 

an Arduino Nano BLE Sense. You can find more examples for different 

devices in the book code repository.
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�Software Requirements
Depending on the type of microphone you’re going to use, you need the 

respective Arduino library. The Arduino boards I mentioned ship with 

an official PDM.h library from the Arduino core itself. Boards from other 

vendors may ship with similar libraries. When using the I2S mics, you’ll 

usually leverage the built-in I2S.h library.

The tinyml4all Arduino library comes with some utility adapters for 

most common configurations to zero the differences between models, but 

100% coverage is not guaranteed.

On the Python side, you only need the tinyml4all package (which you 

should have already installed).

�Capture Data
To form our dataset for the “Hey Arduino” wake word detection, we will 

speak those words aloud at least 30 times while recording them with our 

board. These samples make our positive dataset. As highlighted in Chapter 

1, a classification task requires all the classes to be known beforehand. But 

we only have a single class here, right?

Not really.

It turns out that when dealing with problems with only a single class of 

interest, you can reframe the problem as a binary classification task. The 

two classes are the class of interest (“Hey Arduino”) and the not class of 

interest/unknown (everything but “Hey Arduino”).

This setting is important, and you need to be aware of it. During 

training, your classifier should experience the whole spectrum of possible 

inputs to be reliable. If you only show it a limited set of cases (e.g., “Hey 

Arduino” and silence), how can you expect it to respond correctly to an 

unknown sound (e.g., “Thank you”)?
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Many tutorials on the web fail at this point: they tell you to record the 

wake word and silence only. If you were to follow that path, chances are 

that the model would respond to the wake word and pretty much every 

other sound since that would be more similar to the wake word than it 

would be to silence. If you don’t want to spend a long time gathering data 

by yourself, a reliable approach is to download a “sounds in the wild” 

dataset that contains pre-recorded audio samples of different sounds 

(environmental, synthetic, or human voice; e.g., traffic jam, dishwasher, 

ringtones, animal roars), as highlighted later.

Tip S ince this is the era of accessible generative AI, I’ll also show 
you how you can leverage text-to-speech synthesis to generate 
artificial training data to make your model better generalize to voices 
different from yours.

That considered, after the 30 positive samples, let’s collect at least 

the same number of negative samples. They can be silence, noise, songs 

from Spotify, or us saying something different from the wake word. What 

matters the most is that these samples should cover as much as possible 

the spectrum of inputs our board could receive once it has been deployed 

and is ready to wait for the designated word to be pronounced.

Note E ven if not strictly necessary, we will set up a classification 
task with three classes: wake word, unknown (spoken words), and 
noise (environmental sounds). This should help the model better 
cluster similar samples into their specific class instead of merging 
everything under the same label.
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�Audio Data Format
Audio data comes at a very high speed. For example, the built-in mic 

from the Arduino Nano BLE Sense has a sampling frequency of 16 kHz. 

That means that every second, you must read, store, and transmit 16,000 

values! Since the generated values are 16-bit signed integers (from –32768 

to 32767), the most compact way to transmit them from the board to the 

PC is the binary format. If we were to adopt the ASCII encoding (writing 

them as plain numbers) with CSV format, we could end up using up to six 

characters per value (five for the numbers, one for the comma): that would 

be a waste of space.

This means the copy-paste approach to data capture is ruled out. Since 

the Arduino Nano BLE Sense doesn’t have Wi-Fi hardware or a built-in SD 

card reader, we will ignore them, too. (You can still attach an external SD 

card reader if you want.)

The only one remaining is the ingestion from the tinyml4all Python 

library. This time, we won’t create a single file per class with all the data 

packed inside. We want a single file for each audio sample to manually 

check whether it’s good or not and easily handle it throughout our desktop 

filesystem.

Edge Impulse also has a built-in data capture mechanism integrated 

into the browser. It is particularly handy to capture data from your 

smartphone but to use your microcontroller, you must install the Arduino 

CLI (command-line interface), and unless your browser supports the 

WebUSB standard, you must install their own CLI. We won’t go this route, 

but you can browse their documentation to learn more.

�Arduino Sketch
This section varies based on your board and microphone. Listing 6-1 is for 

the Arduino Nano BLE Sense with a built-in PDM microphone. You can 

find more examples of other variants in the book code repository.
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The sketch is provided to be run as is, without modifications. The only 

parameter you may be interested in changing is the volume. It accepts a 

value from 0 (minimum) to 100 (maximum). The higher the volume, the 

stronger the intensity of your voice when recorded.

Caution  You start hearing distortions at high volumes (70 and 
above), so don’t exaggerate.

Listing 6-1.  Arduino Sketch to Capture Audio from PDM 

Microphone

/**
 * Listing 6-1: Collect audio data from PDM microphone.
 *
 * Required hardware: Arduino Nano BLE Sense
 * Required hardware: or any board with a PDM microphone
 *                    (e.g., Nano RP2040 Connect)
 */
#include <PDM.h>
#include <tinyml4all.h>

tinyml4all::PDMicrophone mic;

void setup() {
  // increase Serial speed
  Serial.begin(115200 * 2);
  while (!Serial);
  Serial.println("Collect audio data");
  // refer to the board datasheet for the mic frequency
  // (Nano RP2040 Connect frequency is 21kHz, for example)
  mic.frequency("16 khz");
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  // volume goes from 0 to 100
  mic.volume(30);

  // configure microphone
  mic.begin();
}

void loop() {
  // await data to be available
  mic.await();

  // send over Serial
  mic.print();
}

After the sketch is flashed, confirm that the board is streaming the 

audio data over Serial by opening the Serial Monitor. The output will look 

like garbage since it’s binary data, not text (see Figure 6-2). The important 

thing is that something gets printed. Now, it’s time to run the Python 

collector script.

Figure 6-2.  Audio binary serial output
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�Python Code
You must configure a few parameters before running the Python script 

(Listing 6-2).

•	 The number of samples (not seconds!) you want 

to capture

•	 To which port the board is connected

•	 Where to store the audio files

•	 How long the wake word lasts

•	 The frequency of the captured audio

Caution D ouble-check that the frequency in Python matches 
that of your microphone. Arduino Nano BLE Sense has a 16 kHz 
sample frequency, and Arduino Nano Rp2040 Connect has a 21 kHz 
frequency instead, for example.

Double-check that the baud rate in Python matches that of the 
Arduino sketch!

Listing 6-2.  Capture Wake Words from Serial in Python

from tinyml4all.audio import capture_serial

if __name__ == '__main__':
    capture_serial(
        # * is a wildcard match
        port="dev/cu.usb*",
        baudrate=115200 * 2,
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        num_samples=30,
        word_duration="2 seconds",
        save_to="wakeword",
        mic_frequency="16 khz"
    )

The program prompts you to confirm the start of the capture of each 

sample by pressing [Enter]. After you confirm, say your word aloud. A log 

message lets you know the status of the capture.

The code to capture non-wake words is the same (see Listing 6-3). Just 

save the files to a different folder.

Listing 6-3.  Capture Non-Wake Words from Serial in Python

from tinyml4all.audio import capture_serial

if __name__ == '__main__':
    capture_serial(
        port="dev/cu.usb*",
        baudrate=115200 * 2,
        num_samples=30,
        word_duration="2 s",
        save_to="unknown",
        mic_frequency="16 khz"
    )

Run both the scripts. You should have two folders with 30 audio files 

inside each. The audio capture process may not be perfect, so manually 

listen to each sample to confirm it is good. If not, delete the file and re-run 

the script.
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�Third-Party Datasets
Collecting data on your own usually requires a lot of time and effort. Even 

after you collected a handful of data, you run the risk that the model may 

not generalize well. In the context of our keyword spotting project, let’s say 

you repeated 100 times the wake word you want to recognize. This seems 

like a legitimate amount of data to train a model, right? Yes, but only if you 

can tolerate the model only recognizing your voice!

Generalization is the ability of a model to recognize the same wake 

word pronounced by people other than you. This is how commercial home 

assistants work since they’re intended for the mass market. If you want 

to achieve a similar level of generalization, you need more data in both 

quantity and variety.

A quick and easy shortcut to this is searching online for an existing 

dataset. The data science industry is helpful when sharing their data, so 

something related to your current project may already exist on the web, 

such as Common Voice from Mozilla (https://commonvoice.mozilla.
org/en). This greatly speeds up your data collection process and allows 

you to add a high degree of variability to your data.

Edge Impulse provides a dataset for the keyword spotting problem [1]. 

It contains hundreds of samples for the Yes, No, Unknown (any word that 

is neither yes nor no) and Noise (environmental sounds) classes. We’re 

not interested in the Yes and No files since we already have our own wake 

word, but we’ll borrow the other two classes of files. So navigate to the 

dataset page, download the ZIP file and extract it on your computer.

�Synthetic Wake Word Generation
Artificial intelligence has become ubiquitous in the last few years. With the 

exploitation of large language models, the industry of generative artificial 

intelligence is experiencing highly accelerated growth in the science 

landscape. It turns out that we can leverage generative models for our 

TinyML project, too.
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Thanks to mainstream text-to-speech synthesis tools readily available 

today, we can quickly generate many variations of tone, pronunciation, 

and pitch in seconds. I’ve made a dataset publicly available with tens of 

samples for our “Hey Arduino” wake word that you can download from the 

book repository.

Next, let’s discuss how to generate such a dataset.

�Azure Text-to-Speech

Many platforms offer text-to-speech (a.k.a. TTS) tools. Most are paid 

services, but the largest ones—like Microsoft Azure and Amazon Web 

Services—have a free plan available. The tinyml4all Python package 

provides an implementation based on the Azure TTS service, so you need 

to register and create a free cloud instance on their website [2].

Once done, you need two pieces of information from your Azure 

dashboard (see Figure 6-3).

•	 api_key: An alphanumeric string that identifies you 

(either key1 or key2).

•	 region: The data center your cloud instance is 

deployed to. 
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Figure 6-3.  Azure dashboard credentials

Now, you can generate two distinct datasets in seconds: wake word 

and unknown.

The dataset generation process is articulated in the following steps.

	 1.	 For the input language, download the list of available  

synthetic voices. The number of voices may range from  

as much as 56 for English to as low as 2 (male and female)  

for minor languages. Using varying voices makes the  

model robust to different people’s tones and accents.

	 2.	 Generate combinatorial tuples of {voice, pitch, speech  

rate, volume} to increase variability even further.

	 3.	 Synthesize speech from text with each of the 

combinations.

For the English language, this can quickly add up to 500+ samples 

generated for a given text!
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�How to Generate a Wake Word Dataset

In this case, we’re restricted in the choice of text. Of course, we can only 

generate the exact keyword we want to recognize. Create a new Python 

script, activate your virtual environment and run the code in Listing 6-4. 

When the script finishes running, you will find 30 audio files in the 

specified folder (it should take less than one minute to complete).

Caution R eplace the values in bold with your own!

Listing 6-4.  Generate Synthetic Wake Words

from tinyml4all.audio import synthesize_speech

synthesize_speech(
    api_key="<your_azure_key>",
    region="<your_azure_region>",
    language="en-US",
    save_to="synthetic/wakeword",
    text="Hey Arduino",
    # must match with the duration in Listing 6-2
    duration="2 s",
    freq="16 khz",
    num_samples=30,
    # pitch percent variations
    # negative means lower pitch
    pitches=[0, -15, 15],
    # rate percent variations
    # negative means slower
    rates=[0, -10]
) 
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Caution  duration and freq must match the ones you used while 
capturing real-world data using your Arduino board!

�How to Generate an Unknown Dataset

In unknown words, there is more freedom. Text-to-speech can only 

synthesize spoken words, not environmental sounds, so let’s choose a 

random selection of words that share a similar duration with our wake 

word. Feel free to input as many variations as you prefer so that the dataset 

covers a lot of real-world scenarios. The code in Listing 6-5 is nearly the 

same as Listing 6-4; the only parameters that change are the save_to folder 

and text.

Listing 6-5.  Generate Synthetic Unknown Words

from tinyml4all.audio import synthesize_speech

synthesize_speech(
    api_key="<your_azure_key>",
    region="<your_azure_region>",
    language="en-US",
    save_to="synthetic/unknown",
    text=["Hello world", "Thank you", "Good morning"],
    # must match with the duration in Listing 6-2
    duration="2 s",
    freq="16 khz",
    num_samples=50,
    # pitch percent variations
    # negative means lower pitch
    pitches=[0, -15, 15],
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    # rate percent variations
    # negative means slower
    rates=[0, -10]
)

Feel free to generate as much synthetic data as you see fit. I’d 

recommend at least 50 samples. 

Caution A udio labels are inferred from the innermost folder name 
of the files. So be sure that both recorded and synthetic samples 
share the same folder name (wakeword and unknown)!

�Load and Inspect Data
Inspecting audio data visually in bulk is less intuitive than tabular and time 

series data. Even though a single audio sample can be plotted much like 

time series data (though with a single dimension—the intensity), plotting 

many samples one after the other suffers a couple drawbacks: the plot can 

become very long (16,000 samples per second × 30 samples × 2 seconds 

each makes nearly 1 million points!), and you wouldn’t be able to easily 

compare samples that are not adjacent.

Keeping in mind that the best way to evaluate the quality of your 

samples is by listening to each, you can attempt to perform a visual 

inspection of how similar our wake words look by plotting them one on 

top of the other, aligned on the time axis. This way, each sample should 

resemble a common pattern, and outliers should be easy to spot. To make 

it easy to identify (possible) outliers, let’s generate an interactive plot (see 

Figure 6-4) that opens in your web browser and highlights the sample 

under your mouse cursor (see Listing 6-6).
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Listing 6-6.  Plot Audio Files from a Folder (Overlapping)

from tinyml4all.audio import Album

album = Album.read_wav_folders(
  "wakeword",
  "unknown",
  "synthetic/wakeword",  "synthetic/unknown"
)
# plot samples (overlapping)
album.overlap_plot(
  palette="magma",
  samples_per_class=50,
  points_per_sample=1_000)

Figure 6-4.  Overlap plot of audio samples

If you still want to plot each sample on a single plot, one after the other, 

refer to Listing 6-7. The result is displayed in Figure 6-5.
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Listing 6-7.  Plot Audio Files from a Folder (Sequential)

album.sequential_plot(
  palette="viridis",
  samples_per_class=10,
  points_per_sample=1_000)

Figure 6-5.  Sequential plot of audio samples

In Figure 6-4, all the audio samples of the two classes are plotted 

aligned on the same time axis. Even though the absolute value of the 

intensity may vary slightly from sample to sample, a recurring pattern is 

clearly visible. There may be a bit of misalignment every now and then, but 

that’s totally expected. Move your mouse cursor over the plot to highlight a 

single sample.

In Figure 6-5, wake words are colored in blue, and unknowns in green. 

Samples are spaced apart from each other for improved readability. You 

should be able to see that wake words share a similar shape (even if there 

are differences between recorded and synthetic samples). The unknown 

samples differ from each other. (The first few samples are silence, thus the 

low intensity.)
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Our data looks good. There are no clear signs of malformed samples. If 

that’s not the case with your dataset, delete the corrupted or plain wrong 

files and collect a few more good samples.

�Edge Impulse Data Acquisition
After you have collected a good amount of quality data, move on to 

https://edgeimpulse.com and create a new project named keyword_

spotting. Like in Chapter 4, you must upload your files. This time, there’s no 

wizard to configure beforehand, and you can immediately go to the upload 

form. Upload data in three sessions: first, upload the wake word samples, 

then the unknown, and finally, the noise (from the Edge Impulse synthetic 

dataset downloaded earlier). Each time, be sure to do the following.

	 1.	 Enter the correct label manually.

	 2.	 Tick the Automatically split between training and 
test testing checkbox (see Figure 6-6).
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Figure 6-6.  Edge Impulse data upload form

Note U pload both your own data and synthetic/downloaded data!

�Feature Engineering
At this point in the book, you should know that feature engineering 

is a crucial step in a machine learning pipeline. Audio data makes no 

difference. Besides the usual benefits (better model learning), additional 

benefits are specific to this data type.
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•	 Dimensionality reduction and computational 
efficiency: Raw audio data contains a vast amount 

of information, much of which is not relevant for 

keyword detection. Feature extraction helps reduce 

this dimensionality, focusing on the most important 

aspects of the signal, thus creating a more compact and 

computationally efficient representation.

•	 Noise reduction: By extracting specific features, we can 

often separate the signal of interest from background 

noise, improving the robustness of our KWS system.

Several considerations must be made to accommodate the human 

perception of sound is not linear. The standard feature descriptors for 

keyword spotting are called Mel-frequency cepstral coefficients (MFCCs), 

but before you can understand what they are and how they’re computed, 

you need to know what a Mel spectrogram is.

�Mel Spectrogram
The Mel spectrogram is a visual representation of sound that considers 

how humans perceive different frequencies. It is widely used in audio 

analysis and speech recognition tasks. To understand the Mel spectrogram, 

let’s break down its components and the process of its creation.

•	 Short-time Fourier transform (STFT): The first step in 

creating a Mel spectrogram is to perform STFT on the 

audio signal. The STFT is a technique that analyzes how 

the frequency content of a signal changes over time. It does 

this by dividing the signal into short, overlapping segments 

(usually 20-40 ms each) and applying a Fourier transform 

to each segment. The Fourier transform converts the time-

domain signal into the frequency domain, showing which 

frequencies and their respective amplitudes are present.
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•	 Spectrogram: The result of the STFT is a spectrogram, a 

two-dimensional signal representation. The horizontal 

axis represents time, the vertical axis represents frequency, 

and the intensity at each point represents the amplitude or 

energy of that frequency at that particular time. For a more 

intuitive understanding, you can visualize this matrix as an 

image (see Figure 6-7, left).	

•	 Mel scale: The human ear perceives pitch in a non- 

linear fashion. We are more sensitive to changes in 

lower frequencies than in higher frequencies. The Mel 

scale is a perceptual scale of pitches that aims to mimic 

this human perception. It is approximately linear below 

1000 Hz and logarithmic above 1000 Hz.

•	 Mel filter banks: to convert the spectrogram to a 

Mel spectrogram, we apply a series of triangular 

filters called Mel filter banks. These filters are spaced 

according to the Mel scale, with more filters in the 

lower frequency range and fewer in the higher 

frequency range. Each filter computes the average 

energy in a specific frequency range, weighted by the 

filter’s triangle shape.

•	 Logarithmic compression (dB): After applying 

the Mel filter banks, we take the logarithm of the 

resulting energies. This step is crucial because human 

perception of loudness is approximately logarithmic. 

It helps compress the spectrogram’s dynamic range, 

making quieter sounds more visible and reducing the 

dominance of louder sounds (see Figure 6-7, right).	
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Figure 6-7.  Mel spectrogram before (left) and after (right) 
logarithmic compression

•	 With respect to the raw STFT matrix, the vertical axis of 

the Mel spectrogram represents Mel frequency bands 

instead of linear frequency, and the color or intensity 

represents the log-compressed energy in each Mel 

band at each time point.

Why is the Mel spectrogram so effective for audio keyword spotting?

•	 Perceptual alignment: The Mel scale aligns well with 

human auditory perception, focusing on the frequency 

ranges most important for speech recognition.

•	 Time-frequency representation: Mel spectrograms 

capture both temporal and spectral information, which 

is crucial for identifying speech patterns.

•	 Robustness: Mel spectrograms are relatively robust to 

small variations in pitch and speaker characteristics.
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�Mel-Frequency Cepstral Coefficients
The Mel spectrogram is already a good candidate as a feature descriptor. 

It is a matrix that could be fed as input to a convolutional neural network 

(CNN) with good results out of the box. An MFCC is a process that 

generates a subset of that matrix (kind of feature selection). But if the Mel 

spectrogram is a valid option already, why are we adding another step? Is it 

really worth it?

Yes, it often is. MFCC extraction achieves two important objectives.

•	 Effective dimensionality reduction: Dimensionality 

reduction was introduced in Chapter 2. MFCCs, 

however, are computed in a different, audio-specific 

manner. They only select 12 to 20 features from the 

original Mel spectrogram using a discrete cosine 

transform (DCT), which generates highly decorrelated 

outputs.

•	 Noise robustness improvement: By discarding higher 

frequency components, MFCCs exhibit better rejection 

of noise.

The result of this process is a matrix of MFCC values, where each 

column represents a time frame, and each row corresponds to a cepstral 

coefficient. The number of rows is equal to the number of retained 

coefficients (12–20), and the number of columns depends on the duration 

of the audio and the frame rate used in the analysis (e.g., 1 second of audio 

divided into non-overlapping windows of 40 ms = 25 slices of time).
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�Audio Classification with Edge Impulse
Being a low-code tool, Edge Impulse hides all the implementation details 

of MFCCs from you. On the Create Impulse page, make the following 

selections.

•	 Window size: It should match the audio samples 

(2000 ms).

•	 Window increase: It should be large enough to allow 

the inference to run but not too large so as not to miss 

keywords. Also, it should be an integer divisor of 1000 

to align with the tinyml4all Arduino library. A good 

default is 250 ms.

•	 Processing block: Audio (MFCC).

•	 Learning block: Classification.

Next, move to the MFCC page on the side menu to configure the 

feature extractor (see Figure 6-8). You can tweak a few options, but you 

should know what you’re doing before making any changes. The defaults 

work well in our case, so we won’t touch this page. Feel free to come back 

here if you later find out that your model is not performing well. The 

following are some options for tuning.

•	 Number of coefficients: You can increase this value to 

increase the number of features retained.

•	 Frame length and stride: You can increase the frame 

and make the stride a divisor to create overlapping 

windows.

•	 FFT length: Larger values compute more coefficients. 

Since FFT is a costly operation, I suggest you keep this 

value as low as possible.
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Save the parameters and generate features on the next tab; when the 

process finishes, the feature explorer can give you an idea about how well 

the features are clustered.

Figure 6-8.  Edge Impulse MFCC configuration

�Convolutional Neural Networks
We’re now at the classification stage. Chapter 4 used a fully connected 

neural network made of two layers of neurons. Now that our features are 

a list of vectors, that topology may not be the best solution. A different 

topology often achieves state-of-the-art accuracy for image classification 

tasks: convolutional neural networks (CNNs)
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Chapter 8 digs deeper into CNNs. At this stage, you only need to know 

that convolution may happen at different dimensional depths: 1D and 2D 

are the most common. 1D convolution works on sequential data (e.g., raw 

time series), while 2D convolution works on matrixes (e.g., images).

Convolution is an efficient operator that considers small regions of 

data at a single time (called patches) instead of each value individually—as 

fully connected networks do. A patch can either be a short sequence in the 

1D case or a small matrix in 2D (common values for image classification 

tasks are 3×3 or 5×5, for example). The convolution filter (also known as 

the kernel, a matrix of coefficients of the same size as the patch) slides over 

each region of the input data and performs the dot product between the 

two (that is, the sum of element-wise multiplication of its coefficients with 

the values of the patch) to produce a single output value (see Figure 6-9).

Figure 6-9.  2D convolution procedure

The kernel coefficients are initialized with random values; the learning 

process then consists of updating their values so that the classification 

results yield the highest accuracy.

From a memory point of view, convolution exhibits a huge 

improvement over full connection because the number of weights to store 

is independent of the input size. For example, the same 3×3 convolution 

filter works on 96×96 images as on 512×512 images; it just needs to slide 

more times.
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MFCCs are often represented as images, but technically, they aren’t 

(they don’t depict real-world entities, and the vectors are not really 

“spatially” correlated). This is why Edge Impulse lets you choose which 

architecture you prefer for audio classification. 1D convolution is the most 

natural choice for this type of input data, but you can still treat the MFCC 

matrix as if it were an image and use 2D convolution. Since 1D convolution 

is more lightweight than 2D and generally exhibits better accuracy, it is 

selected by default (see Figure 6-10).

Figure 6-10.  Edge Impulse training configuration
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You can also tweak a couple of training parameters for faster training.

•	 Number of training cycles: This addresses how long 

the model should learn. With few samples, 50 is a good 

default.

•	 Learning rate: It controls how much the model should 

update its weights at each epoch. My go-to value is 

0.005 (lower values may result in higher accuracy but 

may require more training cycles).

Since our dataset is limited, we can train the model for as few as 30–50 

epochs while still achieving very good accuracy, as shown in Figure 6-11. 

When starting out and iterating fast on your model, keep the epochs 

number low and monitor if the metrics displayed in the logs improve over 

time. It is a waste of time to wait for 100 epochs of training if the model 

accuracy stays the same from epoch 30 (which happens frequently with 

easy datasets).

If your training goes like mine, you may be worried about the “low” 

accuracy on noise and unknown (about 85%). But remember that this 

project is only interested in the wake word class. If the model confuses 

a sample of the unknown class with one from the noise class, it is not a 

problem for us!

Chapter 6  Audio Wake Word Detection with Edge Impulse



220

Figure 6-11.  Edge Impulse confusion matrix

�Testing
If the confusion matrix on the training page satisfies your expectations, 

move to the Model Testing page (from the menu on the left) to assess the 

model accuracy on audio it has never seen during training or validation. 

Click the Classify all button and wait for the results. In the best scenario, 

all the rows are green (indicating a perfect prediction). In a realistic 

scenario like ours—where we used synthetic data—you will probably get 

results that look worse than those during training (see Figure 6-12). That’s 

totally fine and expected.
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Figure 6-12.  Edge Impulse wake word detection test results

While most wake words are picked up correctly, there are some errors 

(the row with the noise label) and even a few uncertain classifications. 

These are classifications where the wake word is detected but with a 

confidence that is considered too low to be reliable. You can configure 

the “acceptable” confidence by clicking the gear icon to the right of the 

Classify all button and selecting Set confidence thresholds. I usually go 

for at least 0.6.

Take the time to manually inspect some errors (click the three dots to 

the right of the row and select Show classification) to understand why the 

model failed and if there’s a recurring pattern in the samples misclassified. 

If you feel like the model does not match your expectations in terms of 

accuracy, go back to the training page and tune the parameters introduced 

in the previous section (model architecture, number of training cycles, 

learning rate). Repeat until you get better results.
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Tip I f you still can’t get good results no matter how hard you try 
to tune the training process, the reason may be a bad dataset. Take 
time to collect more data or move some of the samples that failed 
to classify to the training set (click the three dots to the right of 
the red rows and select Move to the training set), then train the 
model again.

�Deployment
Download the model in the Arduino library format (see Chapter 4 for 

reference) and extract the ZIP file into your Arduino libraries folder. If you 

named your project keyword_spotting, the library is named keyword_
spotting_inferencing.

�Continuous Classification
STFT works on small windows of data (usually 20–40 ms), and its results 

are used to form the Mel spectrogram. When a new chunk of data arrives, 

the eldest one is discarded to make room for the latest. Recomputing the 

FT again for every chunk would waste time and resources since their result 

would not change.

Edge Impulse has a built-in mechanism to handle this continuous 

stream of data that you can leverage to achieve a near real-time 

classification speed. To fully exploit this technique, match EI_CLASSIFIER_
SLICES_PER_MODEL_WINDOW in Listing 6-8 with the same value you set on 

the Impulse Design page.
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Listing 6-8.  Arduino Sketch for Keyword Spotting Using 

Edge Impulse

/**
 * Listing 6-8: Audio wake word detection using Edge Impulse
 *
 * Required hardware: Arduino Nano BLE Sense
 */
// next line *must* match with the window increase value in the 
Impulse Design page from EI Studio
#define EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW (1000 / 250)

#include <PDM.h>
// replace with the correct name of the library
// downloaded from Edge Impulse Studio
#include <keyword_spotting_inferencing.h>
#include <tinyml4all.h>

tinyml4all::PDMicrophone mic;
tinyml4all::Impulse impulse;

void setup() {
  Serial.begin(115200);
  while (!Serial);
  Serial.println("Keyword spotting with Edge Impulse");

  // match the volume with the one used for data collection!
  mic.frequency("16 khz");
  mic.volume(30);
  mic.begin();
  // init Edge Impulse library
  impulse.begin();
  // while testing, you can enable verbose output by
  // setting this value to true
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  impulse.verbose(false);
}

void loop() {
  // await for audio data to be ready
  mic.await();

  // feed data to the impulse queue
  if (!impulse.queue(mic)) {
    Serial.println(impulse.error());
    return;
  }
  // skip non wake word
  if (impulse.label() != "wakeword")
    return;

  Serial.print("Wake word detected with confidence ");
  Serial.println(impulse.confidence());

  // customize here with your own logic
}

Compile the sketch (it takes a few minutes) and then upload it. Open 

the Serial Monitor and repeat the wake word aloud. You should see that 

the detection succeeded (see Figure 6-13).

Figure 6-13.  Wake word detection output
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Inference time is not bad at all. It takes 77 ms to run a single inference. 

And since the PDM microphone captures data in a background task, you 

don’t have waiting queues, nor do you risk missing chunks of data while 

performing inference.

Once this wake word detection project is working, you can collect more 

words to classify. Maybe you can implement a local music player assistant 

to detect Play, Pause, and Next to control your stereo using your voice—or 

Day and Night to control your home’s lights. There are endless possibilities 

open to you.

Tip T ry to keep your wake words short (one or two seconds), or the 
processing time may be too long!

�Summary
This chapter addressed a new type of data: audio. This is a very dense 

kind of data (many thousands of samples per second), but thanks to the 

tinyml4all library, we had no problems collecting training data fast. We 

were also able to leverage Generative AI to create a synthetic dataset in a 

matter of seconds.

The Edge Impulse low code platform made it easy to extract complex 

features using advanced algorithms (fast Fourier transform, Mel 

spectrogram, and MFCCs) and classify them using a convolutional neural 

network.

Deployment was pretty similar to Chapter 4. Reusing previous 

computations in the Mel spectrogram made it possible to achieve an 

astonishing inference speed of 13 classifications per second (77 ms per 

classification).

The next chapter addresses images using real-time object detection 

with an ESP32 camera.
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CHAPTER 7

Object Detection 
with Edge Impulse
You have arrived at the last data type in this book: images. Images are so 

common in our everyday lives that we underestimate how complex and 

information-dense they are. Our brain has evolved for thousands of years 

to extract this information, even in bad environmental conditions (low 

light, occlusion, blurring, etc.). Training a computer program to replicate 

this same level of accuracy is a highly demanding task that still suffers 

compared with humans in many use cases.

Nevertheless, huge improvements have been achieved in this area, 

and today, we have many tools to perform object detection, which 

identifies objects of interest in images. This differs from pure classification: 

classifying an image means attributing a label to the entire image. Object 

detection, instead, is like classifying regions of the image, allowing the 

possibility of having more than one object of interest in the same image. 

Even many objects of different classes!

To lower the entry barrier to the tough problem of object detection 

on resource-constrained devices, we’re once again leveraging the Edge 

Impulse platform. By now, you should have realized how versatile this 

platform is and how much it eases development. This chapter trains 

a model to recognize a single object of interest—a toy penguin (see 

Figure 7-1). Once familiar with this method, you can extend the project to 

recognize many different objects with little to no modifications.
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Figure 7-1.  Object detection target

�Hardware Requirements
You need a board with camera support. There are a few boards that come 

with a camera built-in.

•	 Arduino-based: Nicla Vision, Portenta H7 + 

vision shield

•	 ESP32-based: AiThinker, XIAO Sense, TTGO series, 

M5Stack series, ESP-EYE

Otherwise, you could try the more basic OV7670 camera that can work 

with many boards (e.g., Arduino Nano BLE Sense or Raspberry Pi Zero). 

But I discourage you from going this route because of the low quality and 

difficult wiring.
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Caution W hen looking for an ESP32 camera, beware that there are 
at least two chip variants. ESP32 is the “first” generation of chips 
with lower prices and specs. ESP32-S3 is the “next” generation: 
it costs a few more dollars, but the performance gain is huge. If 
possible, choose the S3 variant!

�Software Requirements
The tinyml4all Arduino library has utility adapters for ESP32 and 

Arduino-based cameras, so the code stays the same. If you’re going to use 

the OV7670 model, you need to write your own code to capture frames 

from it.

On the Python side, you only need the tinyml4all package (which you 

should have already installed).

�Capture Data
To build the object detection dataset, you need to capture some images. 

How many images make a good dataset? As usual, the more, the better. But 

from my experience, you can achieve good results with as few as 50 images 

for each object.

Caution  You need to manually label each image you capture, so 
start low and add more later only if needed!

Many tutorials that you’ll find on the web suggest that you use images 

from Google/the Internet to train your model. Some others suggest 

collecting data using your smartphone. Even if this approach could work 
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well thanks to the generalization properties of the model, I strongly suggest 

you capture your own data with the same hardware that runs the inference 

(the microcontroller itself). It will better resemble your deployment 

scenario, and you will generally achieve higher accuracy.

Tip E mbedded camera sensors usually have poor quality and are 
impacted by environmental factors (e.g., poor illumination), unlike 
smartphones, which automatically correct most of these problems. 
A model trained on smartphone images may not perform well on 
embedded sensors’ images.

�Arduino Sketch to Collect Images
Let’s send the captured frames over serial. Feel free to use an SD card if you 

prefer. (Most of the code won’t change. You only need to write data on a 

file). Listing 7-1 has been tested on an ESP32-S3 camera: consult the book 

code repository if you’re using a different model.

Tip I f using the ESP32 or ESP32S3, enable the external PSRAM 
option from the Tools menu of the Arduino IDE.

Listing 7-1.  Send Images over Serial

/**
 * Listing 7-1: Collect images from camera
 *
 * Required hardware: ESP32 camera
 */
#include <tinyml4all.h>
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tinyml4all::Camera camera;

void setup() {
  // increase Serial speed for fast data transmission
  Serial.begin(115200 * 2);
  while (!Serial);
  Serial.println("Collect images");

  // choose model from list
  camera.promptModel();
  // next times, you can set it directly by name
  // camera.setModel("aithinker");

  // configure camera for collection mode
  camera.collecting();

  // init camera (will throw an error on failure)
  camera.begin();
}

void loop() {
  // grab a new frame
  if (!camera.grab()) {
    Serial.println("Can't grab new frame");
    return;
  }
  // print frame to Serial (to be read from Python)
  camera.print();
  delay(1000);
}
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Tip T he serial speed was increased for a faster transmission. With 
a one-second delay, the speed gain is not noticeable (it only saves 
a few milliseconds), but it comes in handy to collect images at a 
higher rate.

After the sketch is flashed, confirm that the board is streaming the 

image data over serial by opening the Serial Monitor. The output will look 

like garbage since it’s binary data, not text. The important thing is that 

something gets printed. Now, it’s time to run the Python collector script.

Tip I f you get weird error messages or your board reboots when 
initializing the camera, double-check that you selected the correct 
model from the prompted menu.

�Python Code to Read Images
On the Python side, the code looks similar to that used in previous 

chapters. As usual, you must configure the serial port, the number of 

samples to capture, and the destination folder (Listing 7-2). A preview of 

the camera is displayed, so you can fix the camera position if needed  

(see Figure 7-2).

Listing 7-2.  Collect Images over Serial

from tinyml4all.image import capture_serial

while True:
    # prompt user for object name and number of images
    object = input("Which object is this? ")
    num_samples = input("How many images to capture? ")
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    # exit if object name or duration is empty
    if not object or not num_samples:
        break
    capture_serial(
        # * is a wildcard character that matches anything
        # on Windows it will look like COM1 or similar
        port="/dev/cu.usb*",
        # must match with the Arduino sketch
        baudrate=115200 * 2,
        save_to=f"objects/{object}",
        num_samples=int(num_samples)
    )

Which object is this? penguin
How many images to capture? 30
Connected to serial port
100%|██████████| 30/30 [00:33<00:00,  1.35s/it]
Disconnected from serial port
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Figure 7-2.  Image collection preview window

Put the object in the correct position, possibly at the center of the 

frame and with good illumination, and complete the process. Next, open 

the destination folder and double-check that the images look good using 

your OS File Explorer.

You have to run at least two capture sessions.

•	 capture your object of interest

•	 capture background data (no object)
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The background data works the same as the unknown class introduced 

in Chapter 6; it hints at the model of what the object doesn’t look like. Feel 

free to collect images of your surroundings, including chairs, computer 

monitors, walls, and windows. The more varied the images, the better.

�Edge Impulse Data Acquisition
After you have collected a good amount of quality data, move on to 

https://edgeimpulse.com and create a new project named object- 
detection. As you saw in Chapter 6, you must upload your files to start 

(see Figure 7-3). The process is identical to our audio project.

	 1.	 Select either individual files or entire folder.

	 2.	 Enter the correct label manually.

	 3.	 Tick the Automatically split between training and 
test testing checkbox.
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Figure 7-3.  Edge Impulse data upload form

But don’t do this yet! Before you upload all the images you collected, 

read the next paragraph first!

You may be tempted to upload all your files while at the upload form. 

That would be a bad move. This is an object detection project, but you 

haven’t yet defined which one our object of interest is inside Edge Impulse. 

First, upload the images of your object of interest (the penguin toy, in 

my case). After the upload is done, you are prompted if this is an object 

detection project (see Figure 7-4). Click Yes.
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Figure 7-4.  Edge Impulse labeling method selection

Instead of uploading more images, close the form and click Labeling 
queue from the top menu (see Figure 7-5).

Figure 7-5.  Edge Impulse labeling queue menu item

A new window opens where you can see your images in the center and 

the message: “Use your mouse to drag a box around an object to add a label. 

Then click Save labels to advance to the next item.” That’s what you will do 

for all the images: draw a box around each object of interest and assign it the 

correct label. If you leave the Track objects between frames selected, the 

process will be faster because, typically, you only need to do minor fixes to 

the bounding box that is automatically positioned (see Figure 7-6).

Chapter 7  Object Detection with Edge Impulse



238

Figure 7-6.  Edge Impulse bounding box drawing tool

Tip I f you upload all the images at once, the labeling queue mixes 
the different objects, and you will lose a lot of time drawing the 
bounding boxes!

If you have more objects, upload them one at a time and do the labelling 

for each. After you finish the objects of interest images, upload the background 

images. Then open the labeling queue again and click Save labels without 

drawing anything. Since this is background, there’s nothing to highlight.

�Feature Engineering
Feature engineering for image classification and object detection is 

inexistent. Or better, it is built into the model. As stated in Chapter 6, 

when it comes to images, the reference neural network architecture is 

convolutional. Even if it is pretty hard to “see” what happens exactly in the 

middle layers of a convolutional neural network, an intuitive qualitative 

interpretation is that those filters (each layer has many filters) learn to 
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recognize patterns and features more and more complex as the input 

moves forward the network. The first layers often learn basic features like 

edges and corners, while the deeper layers learn to recognize basic shapes 

and textures (see Figure 7-7).

Figure 7-7.  Activation maps of inner layers of a 2D convolutional 
neural network

The whole point of a convolutional neural network is that its modeling 

power is so efficient that it figures out how to best detect recurring patterns 

in the different classes. What a couple of decades ago was a manual task 

has been completely automated today.

�Impulse Design
There’s not much you can do here because the processing and 

classification blocks are fixed for this type of data (see Figure 7-8). But you 

still must make two important decisions.

•	 Image size: Your camera can capture frames at different 

resolutions. A pretty common resolution is 320×240 

pixels. Despite this resolution looking pretty small 

compared to our everyday experience of photos (several 

megapixels), it is in the high range of the image analysis 

spectrum. Most “mobile” neural networks (meant to 
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run on low-end CPUs like smartphones from a few years 

ago or a Raspberry Pi) work on 192×192 images or lower. 

Your board can’t even handle that size probably!

	 To avoid out-of-memory errors, I suggest starting with 

a size of 80×80 in RGB mode or 96×96 in grayscale 

mode. You can always come back later and increase the 

resolution if the model performs badly and you have 

enough resources for a larger model. I discourage you 

from trying anything higher than 128×128.

•	 Color depth (on the Image page): Most cameras can 

capture images in RGB or grayscale modes. Even if your 

captured frames are in RGB, you can force the model to 

process them in grayscale. Why would you do that? For 

memory constraints reasons, of course. Intuitively, you 

can expect an RGB model to require three times the 

memory of a grayscale model to store its intermediate 

results and triple the time to execute. Unless your 

board has plenty of RAM, this can be prohibitive and 

prevent your model from working.

Figure 7-8.  Edge Impulse Design page for object detection

When it comes to the model configuration step, Edge Impulse provides 

two alternative architectures that fit inside a microcontroller. (They offer 

more options for Raspberry Pi/Jetson Nano/PC targets).
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•	 FOMO MobileNetV2 0.1

•	 FOMO MobileNetV2 0.35

Note  FOMO stands for “Faster Objects, More Objects” and is the 
branded name that the Edge Impulse team gave to their custom, 
optimized implementation of object detection.

First, both models are derived from MobileNetV2[1], a lightweight and 

efficient convolutional neural network architecture designed for mobile 

devices (like our smartphones). However, smartphones are still orders of 

magnitude more powerful than a microcontroller (gigabytes of RAM, CPU 

frequencies in the gigahertz range), so that network is still too heavyweight 

to be considered “tiny,” as defined in this book.

That’s where the decimal number after its name comes into play. It is 

called a width multiplier and controls the number of filters in the network. 

As briefly introduced in Chapter 6, a convolution layer is made of many 

filters (or kernels). The width multiplier decimates the number of these 

filters starting from the original count. A width multiplier of 0.1 means that 

only 10% of the original number of filters is used; 0.35 implies roughly one- 

third of the count.

The huge achievement is that the reduction in the number of total 

weights of the network is quadratically proportional to this multiplier. 

Since the number of weights in a convolutional layer depends on the 

number of input channels, the number of output channels, and the kernel 

size, scaling the number of filters by α (0.1 or 0.35) reduces the number of 

weights quadratically for the following reasons.

•	 The number of output channels is reduced by α.

•	 The number of input channels to subsequent layers is 

also reduced by α.

•	 The kernel size is constant.
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Thus, the 0.35 variant only holds about 12% of the original 

MobileNetV2 weights, while the 0.1 variant reduces the size to only 1% of 

the original! Of course, you can expect the larger version to show better 

accuracy.

Which one you choose depends on a couple of factors.

•	 Memory constraints: Low-resources boards cannot 

handle the larger version, forcing your choice. If you’re 

using RGB images, keep in mind that the problem only 

gets worse.

•	 Time constraints: If you’re building a near real-time 

project (e.g., an autonomous robot) and need the 

highest responsiveness possible, you’re more interested 

in running fast than accurately. On the other hand, if 

you can afford to spend up to 500 ms to analyze a single 

frame and have enough memory, the 0.35 version is 

more reliable.

For my project, I chose the 0.1 variant. If your dataset has only high- 

quality images, you can expect a high accuracy even from this smaller 

model. You can choose a different model on the Object Detection page 

(menu on the left) by clicking Choose a different model, as shown in 

Figure 7-9.

Chapter 7  Object Detection with Edge Impulse



243

Figure 7-9.  Choose FOMO model

Run the training and then move to the model testing page.

�Testing
If the confusion matrix on the training page satisfies your expectations, 

move to the Model Testing page (from the menu on the left) to assess the 

model accuracy on images it has never seen during training or validation. 

Click the Classify all button and wait for the results. In the best scenario, 

all the rows are green (indicating a correct prediction; see Figure 7-10).

Chapter 7  Object Detection with Edge Impulse



244

Figure 7-10.  Edge Impulse model results on test set

On more complex datasets, it is more likely that some objects will 

be classified incorrectly—or not detected at all! You should pay a lot of 

attention to these results (way more than those on the training page) 

because they’re the most reliable indication of how the model will perform 

after being deployed on new images it has never seen.

Take the time to manually inspect some errors (click the three dots 

to the right of the row and select Show classification). If you feel like the 

model does not match your expectations in terms of accuracy, go back 

to the training page and tune the parameters introduced in the previous 

chapter (model architecture, number of training cycles, learning rate). 

Repeat until you get better results.

Caution I f you don’t get good results no matter how hard you try to 
tune the training process, the reason may be a bad dataset. Collect 
more images and double-check that the bounding boxes you draw 
are correct.
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�Deployment
To deploy the object detection model inside an Arduino sketch, download 

the model in the Arduino library format (see Chapter 4 if you cannot find 

how to do this) and extract the zip into your Arduino libraries folder. If 

you named your project object-detection, the library is named object-
detection_inferencing.

Create a new Arduino project and paste the code in Listing 7-3.

Listing 7-3.  Arduino Sketch for Object Detection Using 

Edge Impulse

/**
 * Listing 7-3: Object detection using Edge Impulse.
 *
 * Required hardware: ESP32 camera
 *
 * Notes: when using ESP32 boards, don't forget
 * to enable PSRAM from the Tools menu!
 */
#include <object-detection_inferencing.h>
#include <tinyml4all.h>

tinyml4all::Camera camera;
tinyml4all::Impulse impulse;

void setup() {
  Serial.begin(115200);
  while (!Serial);
  Serial.println("Run Edge Impulse Object Detection");

  // choose model from list
  camera.promptModel();
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  // next times, you can set it directly by name
  // camera.setModel("wroom-s3");

  // configure camera for inference mode
  camera.inferencing();
  // init camera
  camera.begin();

  // init Edge Impulse model
  impulse.begin();
}

void loop() {
  // gran new frame
  if (!camera.grab()) {
    Serial.println("Can't grab new frame");
    return;
  }

  // run impulse
  if (!impulse.run(camera)) {
    Serial.println(impulse.error());
    return;
  }

  // if no object is detected, return
  if (impulse.count() == 0)
    return;

  // print how many objects have been detected
  Serial.print("Found ");
  Serial.print(impulse.count());
  Serial.println(" object(s)");
  // print objects with coordinates

Chapter 7  Object Detection with Edge Impulse



247

  for (int i = 0; i < impulse.count(); i++) {
    auto object = impulse.object(i);

    Serial.print(" > ");
    Serial.print(object.label);
    Serial.print(" at coordinates ");
    // cx, cy are the coordinates of the
    // center of the object
    Serial.print(object.cx);
    Serial.print(", ");
    Serial.print(object.cy);
    Serial.print(" (confidence ");
    Serial.print(object.confidence);
    Serial.println(")");
  }
}

Compile the sketch—it takes a few minutes the first time—and upload. 

Open the Serial Monitor and put your object of interest in front of the 

camera. You should see that the detection succeeded when you put the 

object of interest in front of the camera (see Figure 7-11).

Figure 7-11.  Inference serial output
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To give you some figures on the execution time of this project, consider 

that an ESP32 (non-S3) takes ~280ms to run a MobileNetV2 0.1 model on 

64×64 RGB frames. An ESP32 S3 takes ~35ms. The Arduino Nicla Vision is 

even faster at 20ms!

The accuracy is far from 100%, but that was expected given the 

poor sensor quality and the low model resolution. When implementing 

production firmware, you must consider that the model may miss some 

frames or detect objects that aren’t really there.

�Visual Debugging
Getting the detection results printed on the Serial Monitor is the quickest 

way to assert that the model is working. But is it also possible to visually 

inspect the results? Can you get a nice preview of what the camera sees 

and where the object of interest is located? Yes, of course.

The following Arduino sketch combines Listing 7-1 and Listing 7-3. 

Let’s print the frame and the prediction results over the serial connection 

(see Listing 7-4) to be later analyzed and displayed from a Python script.

Listing 7-4.  Arduino Sketch to Debug Object Detection Results

/**
 * Listing 7-4: Debug object detection results
 *
 * Required hardware: ESP32 camera
 *
 * Notes: when using ESP32 boards, don't forget
 * to enable PSRAM from the Tools menu!
 */
#include <object_detection_inferencing.h>
#include <tinyml4all.h>
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tinyml4all::Camera camera;
tinyml4all::Impulse impulse;

void setup() {
  // increase Serial speed for faster image transfers
  Serial.begin(115200 * 2);
  while (!Serial);
  Serial.println("Debug object detection results");
 
  // set it directly by name
  camera.setModel("wroom-s3");

  // configure camera for inference mode
  camera.inferencing();

  // init camera
  camera.begin();

  // init Edge Impulse model
  impulse.begin();
}

void loop() {
  // gran new frame
  if (!camera.grab()) {
    Serial.println("Can't grab new frame");
    return;
  }

  // print frame
  camera.print();
  // run impulse
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  if (!impulse.run(camera)) {
    Serial.println(impulse.error.msg);
    return;
  }

  if (impulse.count() == 0)
    return;

  Serial.print("Found ");
  Serial.print(impulse.count());
  Serial.println(" object(s)");
  // print objects with coordinates
  for (int i = 0; i < impulse.count(); i++) {
    auto object = impulse.at(i);

    Serial.print(" > ");
    Serial.print(object.label);
    Serial.print(" at coordinates ");
    // cx, cy are the coordinates of the
    // center of the object
    Serial.print(object.cx);
    Serial.print(", ");
    Serial.print(object.cy);
    Serial.print(" (confidence ");
    Serial.print(object.confidence);
    Serial.println(")");
  }
}

Chapter 7  Object Detection with Edge Impulse



251

Next, create a new Python script (see Listing 7-5). The script is similar 

to Listing 7-2, but this time, you won’t be prompted for the name of the 

object since it is for visualization purposes only.

Listing 7-5.  Display Object Detection Results

from tinyml4all.image import debug_serial

debug_serial(
    # * is a wildcard character that matches anything
    port="/dev/cu.usb*",
    # must match with the Arduino sketch
    baudrate=115200 * 2
)

Run the script, and a new window should appear with a preview of 

the camera stream (see Figure 7-12) and a red dot on the object of interest 

(if any).
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Figure 7-12.  Object detection results debug window

Congratulations! You completed your first object detection project 

and the last hands-on from this book. Take some time to celebrate your 

achievements.

�Summary
This last “beginner-friendly” chapter leveraged the low-code Edge Impulse 

platform to implement state-of-the-art real-time object detection on our 

camera-equipped board. The workflow was linear and intuitive: capture 
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images of our object of interest, label them using a simple GUI by drawing 

bounding boxes around the object, train a neural network to do the heavy 

work, and deploy the network back to our microcontroller.

Every operation on the board was just a couple of lines away, thanks to 

the tinyml4all library, so you have total control over your firmware. You 

can integrate custom logic (e.g., activate a relay, turn on an LED) when 

objects are detected, and we even have access to the (rough) position 

of the object for more advanced applications (e.g., pan/tilt servo motor, 

autonomous driving robot).

The final chapter takes a huge step forward and digs into the ins 

and outs of artificial neural networks: how they work, how to create and 

train one from scratch, and finally, how to deploy it back to our Arduino 

microcontroller without relying on external platforms.
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CHAPTER 8

TensorFlow 
from Scratch
So far, we’ve either implemented “traditional” machine learning with 

manual feature engineering and classifiers/regressors models or leveraged 

the low-code Edge Impulse platform to unleash the power of neural 

networks without digging into the nitty gritty details of code. But this 

book aims to turn you into a proficient TinyML practitioner, and it won’t 

be complete without a hands-on chapter on how to work with neural 

networks by writing code.

Several Python frameworks implement neural networks, and one of 

the most used—and the only one that integrates well with the Arduino 

environment—is TensorFlow [1]. TensorFlow is a project managed by 

Google that powers many products that run state-of-the-art deep learning 

algorithms. This chapter focuses on four architectures that can be ported 

to our embedded hardware: multilayer perceptron for tabular data 

classification, recurrent neural networks and 1D convolutional neural 

networks for time series classification, and 2D convolutional neural 

networks for image classification.

Let’s leverage the project data already collected (or use toy datasets or 

synthetic data) and focus on the definition, training, and deployment part 

of neural networks using Python and the tinyml4all package.

https://doi.org/10.1007/979-8-8688-1294-1_8#DOI
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�Required Hardware
This chapter focuses on teaching you how to train and deploy neural 

network architectures.

For this reason, the only hardware requirement is a board capable of 

running TensorFlow models. Due to compatibility easiness, the Arduino 

code in this chapter runs equally well on the following.

•	 ARM Cortex-M boards (Arduino Nano and Nicla 

families, Raspberry Pi Zero)

•	 ESP32 (both S3 and non-S3 variants)

If you have a different chipset, refer to the specific documentation from 

the board supplier.

Caution  TensorFlow models need a lot of RAM to work, so choose a 
board with 256 KB at minimum (even better 512 KB).

�Required Software
On the Python side, apart from the tinyml4all library, you need the 

TensorFlow library. This is not included by default because it is large (>100 

MB), and not everyone may find it useful.

To install it, open your terminal, activate your virtual environment, and 

type the following commands.

(tinyml) $ python -m pip install "tinyml4all[tensorflow]"

This installs a specific version of TensorFlow (2.15.1) because newer 

releases won’t work with all the models described in this chapter. If you 

already have a later version installed, you must downgrade.
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Tip  If you don’t want (or can’t) install TensorFlow on your PC, you 
can run the following Python scripts in Google Colab (https://
colab.research.google.com), a cloud computing environment 
from Google. The free tier even provides a GPU, giving you a lot 
of power.

Run the following line in the first cell to set up all the dependencies.

! python -m pip install "tinyml4all[tensorflow]"

On the Arduino side, you must install an additional library. Again, 

TensorFlow is a large dependency that may slow the compilation down 

when not needed, so it’s not included in the tinyml4all Arduino library.

Open the Library Manager from the Arduino IDE, search for 

tensorflow-runtime-universal, and install it (see Figure 8-1).

Figure 8-1.  Install tensorflow-runtime-universal Arduino library
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�Neural Network Structure
Neural networks come in many shapes. Since this book is not about deep 

learning, it only focuses on the simplest architecture, called sequential, 

where a network is defined as a sequence of layers. Layers are, in simple 

terms, groups of neurons.

The neuron is the fundamental atomic component of a network. There 

are many types of neurons, each encapsulating a different computation 

logic. By leveraging the ensemble of (possibly different types of) neurons, 

the entire network can model complex input/output relations (see 

Figure 8-2).

Figure 8-2.  Neural network topology example

Every network architecture is composed of three essential parts, which 

are always present.
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•	 Input layer: The very first layer of a network is 

represented by its inputs. These values come from the 

outside world and are not really under the control of the 

network. Input values can be tabular data, audio, time 

series, images, videos, and so on. What characterizes 

the input is its shape (how many dimensions it has).

•	 Output layer: This is the last layer of the network 

and contains the results we’re interested in. For 

classification tasks, this layer usually contains the 

probability that the input sample belongs to each 

possible class. For regression tasks, this layer contains 

the predicted values. For this reason, the output layer 

shape is also somehow out of our control and not 

arbitrarily configurable.

•	 Hidden layers: These are all the layers that are placed 

between the input and output ones. Depending on 

the network topology, they can contain a few or many 

layers (even tens or hundreds), all the same type or 

from different types, with varying sizes and complexity. 

This is the part you have control over. The role of 

this part is to allow the network to learn the relation 

between the inputs and the outputs. More layers lead 

to more complex relationships at the cost of more 

memory/computation requirements.

Caution W hen working with TinyML, you want to keep the hidden 
layers as lean as possible to respect the hardware constraints.
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�Forward Pass
Given an input sample, going through the network layers to produce a 

result is called inference or forward pass (it helps imagine the network 

developing horizontally from left to right). The data flow happens 

sequentially: the first hidden layer processes the input values. Its outputs 

become the input for the second hidden layer, and so on, until we reach 

the end at the output layer (non-sequential architectures may have 

different execution paths).

�Backward Pass
Now that you know how to produce an output, you need a way to train the 

network to produce accurate outputs. This is achieved with a backward pass 

(also called back-propagation). The intuitive logic of back-propagation is the 

following.

	 1.	 Each neuron in the network is initialized with semi-

random values, so they hold no knowledge about 

the data. They’re in a blank state.

	 2.	 Given an input, you compute its corresponding 

output. Presumably, this output will be wrong since 

the network has never seen this data.

	 3.	 You then compute the error (e.g., the current output 

minus the expected output for regression) and go 

back to each layer, saying, “At your current state, you 

produced this error. Try to update your state so that 

the error is reduced.” This update process varies for 

each neuron type.
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	 4.	 By repeating this process. for each input sample, 

things should improve. However, only showing 

each input a single time may not be enough for the 

network to work fine (especially if there are many 

neurons whose interactions can create waterfall 

effects). For this reason, this process is repeated 

many times (called epochs). Usually, the larger the 

network, the more epochs are required to achieve 

good results.

This is a very broad description of how neural networks work. Each 

specific type of neuron has a different forward and backward (update) 

logic. Let’s explore the most common neurons. and architectures.

�Multilayer Perceptron
As the name suggests, a multilayer perceptron (MLP)—also called a fully 

connected network— is made of many layers of perceptrons. A perceptron 

is a (simplified) mathematical representation inspired by the human brain 

cells (see Figure 8-3).
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Figure 8-3.  Diagram of a perceptron neuron
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In simple terms, the brain cells (a.k.a. neurons) receive signals from 

other neurons with connections of varying strengths (synaptics) and 

process them. If the result exceeds a given threshold, they produce an 

output signal (action potential). In 1957, the psychologist Frank Rosenblatt 

[2] had the intuition to replicate this mechanism, in a simplified form, into 

an electronic device. Today, the foundational principle of a perceptron 

remains unchanged.

•	 The perceptron receives n inputs, from the outer world 

(e.g., sensors) or other neurons.

•	 Each input has a weight associated. The processing 

inside the perceptron consists of the dot product 

between the weights and the inputs, plus an offset 

(called bias).

•	 To simulate the action potential firing, the result of the 

dot product undergoes an activation function, which 

introduces a non-linearity in the model.

The most important element of the perceptron is probably the 

activation function. Without this, the entire model would be linear 

despite the number of neurons. With the introduction of a non-linearity 

at each neuron, the model is able to learn more complex relations. The 

most common activation function is a rectified linear unit (ReLU), which 

truncates all negative values to 0, as explained in the following formula.

	 ReLU x  = max x� � � �0,
	

The multilayer part of an MLP is achieved by stacking groups of 

perceptrons one after the other in a very schematic topology where each 

neuron in a layer is connected to each other in the next layer (thus fully 

connected, as seen in Figure 8-4).

Chapter 8  TensorFlow from Scratch



264

Figure 8-4.  Fully connected topology

Now, let’s make a quick example to investigate how the number of 

layers and neurons affects the total number of weights. Assume we have a 

network with ten inputs, three outputs, and three hidden layers with 8, 16, 

and 24 neurons, respectively. You can easily compute the total number of 

weights that comprise this network.

•	 The first hidden layers receive 10 inputs, so each 

perceptron has 10 weights + 1 bias. With 8 perceptrons, 

there are 8 * 11 = 88 weights.

•	 The second hidden layers receive 8 inputs, so 16 *  

(8 + 1) = 144 weights.

•	 The third hidden layer receives 16 inputs, so 24 *  

(16 + 1) = 408 weights.

•	 The output layer receives 24 inputs and has three 

neurons, so 3 * (24 + 1) = 75 weights.
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Total weights = 88 + 144 + 408 + 75 = 715.
As you can see, the number of weights can quickly grow and add up as 

the number of layers and neurons inside each layer grows. You can easily 

find networks with hidden layers of 64 or 128 neurons, which produce 

thousands of weights each. This may not be a problem when running 

on your desktop PC, but it can easily saturate the available RAM on your 

microcontroller. Always remember this when trying out a fully connected 

topology for your project!

As a companion drawback, it is also evident that the more weights, 

the more computations the CPU must perform, so the longer it takes to 

produce a result on your slow embedded hardware.

�How to Train a Multilayer Perceptron
Now that you know what makes an MLP, it’s time to create and train one in 

Python. Since fully connected networks work fine with tabular data, let’s 

use a toy dataset called Iris [3], which classifies the species of an Iris flower 

by its sepal and petal width and length (see Figure 8-5).

Figure 8-5.  Iris dataset samples

This is a toy dataset that is very easy to classify. Using a random forest 

classifier, you can expect 95% or higher accuracy with no pre-processing. 

Listing 8-1 introduces the MLP class and explains how to add layers, train 

the network, and get a classification report. Figure 8-6 displays the loss and 

accuracy of the network.
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Listing 8-1.  Train an MLP on the Iris Toy Dataset

from tinyml4all.tensorflow import MLP
from tinyml4all.tensorflow.layers import Perceptron
from tinyml4all.datasets import Iris

# Iris is an instance of tinyml4all.tabular.
classification.Table

print(Iris)

# instantiate a new network for the Iris dataset
mlp = MLP()
# 8, 16, 24 are the number of perceptrons for each layer
mlp.add(Perceptron(8))
mlp.add(Perceptron(16))
mlp.add(Perceptron(24))

# display network architecture
# X is the input data
# Y are the labels
# task can either be "classification" or "regression"
print(mlp.compile(X=Iris.numeric, Y=Iris.targets.values, 
task="classification"))
Model: "sequential"
_______________________________________________________________
 Layer (type)                Output Shape              Param #
===============================================================
 dense (Dense)               (None, 8)                 40

 dense_1 (Dense)             (None, 16)                144

 dense_2 (Dense)             (None, 24)                408

 dense_3 (Dense)             (None, 3)                 75

===============================================================
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Total params: 667 (2.61 KB)
Trainable params: 667 (2.61 KB)
Non-trainable params: 0 (0.00 Byte)
_______________________________________________________________

# train neural network and display accuracy plot
mlp.fit(X=Iris.numeric, Y=Iris.targets.values, epochs=50, 
plot=True)

# print accuracy on the training/validation set
mlp.classification_report()

              precision    recall  f1-score   support

      setosa       1.00      1.00      1.00        50
  versicolor       1.00      0.92      0.96        50
   virginica       0.93      1.00      0.96        50

    accuracy                           0.97       150
   macro avg       0.98      0.97      0.97       150
weighted avg       0.98      0.97      0.97       150
+-------------------+--------+------------+-----------+
| True vs Predicted  | setosa  | versicolor  | virginica  |
+-------------------+--------+------------+-----------+
|       setosa       |   50    |     0       |     0      |
|     versicolor     |   0     |     46      |     4      |
|     virginica      |   0     |     0       |     50     |
+-------------------+--------+------------+-----------+
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Figure 8-6.  MLP loss and accuracy plot

Tip  If you have used TensorFlow before, you may find the class 
names in the code disappointing. They were chosen to be consistent 
with the text in this book, but they’re just aliases for built-in layers. 
Perceptron maps one-to-one to dense and MLP to sequential.

I want you to notice one thing: we added three perceptron layers 

(with 8, 16, and 24 neurons each), but the network dump is showing 

one additional dense layer with three neurons. Why is that? All the 

architectures showcased in this chapter (MLP, RNN, CNN1D, and CNN2D) 

perform some manipulations to the layers before building the final model. 

In this case, the MLP class injected one final layer with as many neurons 

as the number of classes (three for setosa, virginica, and versicolor) 

with a softmax activation function [4] that produces class membership 

probabilities.
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The output of the network is not a single value as you might expect, 

indicating the predicted class, but a vector of values (probabilities) 

ranging from 0 to 1, one value per class. If you need a single output, you 

can pick the class with the highest probability. This scheme allows for a 

more granular output handling because you can introduce an uncertain 

metaclass if the confidence is below a given threshold (like Edge Impulse 

does in its Model Testing page).

Tip  If you used TensorFlow before, you might have noticed that 
you don’t have to define the loss function nor the metrics: this is all 
handled for you with task="classification". If you want to take 
total control over the compile() parameters, you can still supply 
them and they take precedence over the defaults.

�Built-in Validation

To train a neural network effectively, you need a validation set. For this 

reason, when you call fit(), a split between train and validation sets 

is automatically created. The default is 80% for training and 20% for 

validation.

You can change the validation ratio manually if you’d like.

# use 30% of data as validation

mlp.fit(X=Iris.numeric, Y=Iris.targets.values, validation_
data=0.3, epochs=50, plot=True)

Even if discouraged, you can disable validation altogether.

mlp.fit(X=Iris.numeric, Y=Iris.targets.values, validation_
data=0, epochs=50, plot=True)
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A test split is not automatically created. You can force the generation of 

a test split with the test_data argument.

# use 20% of data as test
mlp.fit(X=Iris.numeric, Y=Iris.targets.values, test_data=0.2, 
epochs=50, plot=True)

Or, if you have an externally defined test dataset (e.g., loaded from 

another CSV file), you can use it instead.

# set external test dataset
test_dataset = Table.read_csv("test_dataset.csv")
X_train = Iris.numeric
Y_train = Iris.targets.values
X_test = test_dataset.numeric
Y_test = test_dataset.targets.values
mlp.fit(X_train, Y_train, test_data=(X_test, Y_test), 
epochs=50, plot=True)

Note  If you define a test while fitting, metrics and plots use it 
instead of the validation one.

�How to Deploy a Multilayer Perceptron
To convert the MLP into Arduino-compatible C++ code, simply run the 

following.

mlp.convert_to("c++", save_to="IrisMLP.h")

The generated code encapsulates all the complex parts required to run 

TensorFlow on a microcontroller and exposes a deadly simple API (see 

Listing 8-2). The output of the example is shown in Figure 8-7.
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Listing 8-2.  Run MLP on Arduino

#include "./IrisMLP.h"

// ARENA is the amount of memory to reserve for the model.
// larger models need more memory, but there's not a
// formula to calculate the optimal value,
// is a trial-and-error process
#define ARENA 20000

tinyml4all::MLP<ARENA> mlp;
float setosa[] = {5.1, 3.5, 1.4, 0.2};
float virginica[] = {7.6, 3.0, 6.6, 2.1};
float versicolor[] = {6.8, 2.8, 4.8, 1.4};

void setup() {
     Serial.begin(115200);
     while (!Serial);
     Serial.println("TensorFlow MLP demo");

     // init network
     mlp.begin();

}
void loop() {
     // run network on given sample
     if (!mlp.predict(setosa)) {
          Serial.println(mlp.error());
          return;
     }
     // mlp.label holds the name of the predicted class
     // mlp.idx holds the numeric id of the predicted class
     // �mlp .value holds the numeric output (for regression 

tasks only)
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     // mlp.confidence is the probability of the prediction
     //             (from 0 to 1)
     // �mlp .confidences  is an array with the confidences of 

all the classes
     //          (one for each class for classification)

     // mlp.outputsAsString returns each class' score, from
     //                 0 to 1 (classification only)
     Serial.print("Predicted class ");
     Serial.print(mlp.label);
     Serial.print(" with confidence ");
     Serial.println(mlp.confidence);

     Serial.print(" > Scores: ");
     Serial.println(mlp.outputsAsString());
     delay(1000);
}

Figure 8-7.  MLP output example

Note  The perceptron is a ubiquitous operator. It appears as a glue 
between specialized operators (LSTM, convolution) and the output 
layer in almost every network topology, often in the final layers. You 
find it in every other type of network discussed in this chapter.
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�Deep Learning
Chapters 4 and 5 approached the classification of time series as a two- 

step process: (1) extract meaningful features from time series (either 

using the Fourier transform or time-domain descriptors) and (2) classify 

those features using a tabular classifier (fully connected network on Edge 

Impulse, random forest in Python).

With the rise in popularity and accessibility of deep learning 

techniques in recent years, a different approach has become widespread: 

embed the feature extraction inside the same neural network that does the 

classification. In this sense, there’s an important paradigm shift. Before, we 

manually defined what we thought could make a good feature vector. Now, 

we delegate to a machine learning/deep learning model to construct the 

best features, driven by a training process on the input dataset. Depending 

on the dataset and the type of network, this approach can yield better 

accuracy than our manual work.

�Deep Learning Disadvantages in the 
TinyML Context
Of course, there’s a coin-flip: to be so expressive, the network has to grow 

in size and complexity. The fully connected network trained in Chapter 4 

consisted of just two layers with a few neurons each (since the hard work 

was concentrated in the spectral analysis step). This simple topology 

was meant to work on heavily processed input data, and there’s no way it 

could have worked well on raw accelerometer samples. In the context of 

TinyML, where resources are extremely constrained, it is not a given that 

our board can run a network that does it all by itself (feature extraction 

+ classification), so it is our job to carefully evaluate which approach to 

follow, given our specific use case.
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That said, many optimizations have been adopted to make it possible 

to run models larger and larger on embedded hardware, so we often can 

choose. Moreover, deep learning makes it possible to run sophisticated 

tasks on our cheap, energy-efficient hardware that would otherwise be 

impossible using only manual features.

Next, let’s examine two types of networks that fall under the deep 

learning umbrella: recurrent and convolutional neural networks.

�Recurrent Neural Networks and Long 
Short-Term Memory
Recurrent neural networks (RNNs) have specific topologies that work 

best with sequence data. They’ve been successfully applied to language 

translation, speech synthesis, video analysis, and, what matters most to us, 

time series classification.

What makes them different from a “regular” network (e.g., fully 

connected) is that the hidden neurons have memory. That means that 

when a new input arrives, the neuron uses its internal state to compute the 

output and then updates that state based on the input and the output (in 

addition to the traditional weights of fully connected and convolutional 

networks!).

Long short-term memory (LSTM) cells are the most widely used type 

of neurons in an RNN because of their excellent performances. They 

were introduced to solve technical problems during the learning steps 

that prevented the network from achieving satisfactory results over long-

duration inputs (vanishing and exploding gradients). Without going too 

much into the implementation details, here’s a quick overview of how 

these neurons work.
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	 1.	 Each LSTM cell has an internal state (like the 

weights in a perceptron) and a memory state 

(another set of weights).

	 2.	 When a new input is received, it computes a 

forget vector by combining the input vector and 

the internal state. Values close to 0 indicate that 

the corresponding element in the memory state 

should be forgotten; values close to 1 mean that the 

element should be retained.

	 3.	 It also computes a candidate vector, which is how to 

update the memory state based on the new input. 

The new memory state is computed as a weighted 

sum of the old state, the forget vector, and the 

candidate vector.

	 4.	 Eventually, the memory state and the input are used 

to update the internal state, which produces the 

output after passing the result through an activation 

function.

Figure 8-8 is a schematic view of the internal state of an LSTM cell.
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Figure 8-8.  LSTM internal structure

�How to Train a Recurring LSTM Neural Network
Thankfully, this process is completely transparent to the end user and 

handled behind the scenes. Creating an RNN network with LSTM cells 

is achieved with Listing 8-3. Let’s train the network on the continuous 

motion dataset collected in Chapter 4. The accuracy trend on the 

validation set is plotted in Figure 8-9.

Listing 8-3.  Train an LSTM Recurring Neural Network

from tinyml4all.tensorflow import RNN
from tinyml4all.tensorflow.layers import LSTM, Perceptron

from tinyml4all.time.continuous.classification import 
TimeSeries

ts = TimeSeries.read_csv_folder("Chapter4/motion")

ts.label_from_source()
# convert TimeSeries to X and Y training data for NN
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X, Y = ts.as_windows(duration="1s", shift="250ms")

rnn = RNN()
# two LSTM layers with 12 neurons + one Fully connected
rnn.add(LSTM(12))
rnn.add(LSTM(12))
rnn.add(Perceptron(32))

# display network architecture
print(rnn.compile(X, Y, task="classification"))

Model: "sequential"
____________________________________________________________
 Layer (type)                Output Shape             Param#
============================================================
 lstm (LSTM)                 (None, 125, 8)            480

 lstm_1 (LSTM)               (None, 125, 16)           1600

 flatten (Flatten)           (None, 2000)              0

 dense (Dense)               (None, 32)                64032

 dense_1 (Dense)             (None, 4)                 132

============================================================
Total params: 66244 (258.77 KB)
Trainable params: 66244 (258.77 KB)
Non-trainable params: 0 (0.00 Byte)
____________________________________________________________

# train neural network and display accuracy plot
rnn.fit(X, Y, epochs=50, plot=True)

# print accuracy on the validation set

print(rnn.classification_report())
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              precision    recall  f1-score   support

        idle       1.00      1.00      1.00        52
       shake       1.00      1.00      1.00        91
       slide       1.00      0.86      0.92        92
        wave       0.88      1.00      0.93        91

    accuracy                           0.96       326
   macro avg       0.97      0.96      0.96       326
weighted avg       0.97      0.96      0.96       326

+-------------------+------+-------+-------+------+
| True vs Predicted  | idle | shake | slide | wave  |
+-------------------+------+-------+-------+------+
|        idle        |  52   |   0    |   0    |  0    |
|       shake        |  0    |   91   |   0    |  0    |
|       slide        |  0    |   0    |   79   |  13   |
|        wave        |  0    |   0    |   0    |  91   |
+-------------------+------+-------+-------+------+

# export to Arduino-compatible C++
rnn.convert_to("c++", class_name="LSTM",  
save_to="MotionLSTM.h")
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Figure 8-9.  LSTM train loss and accuracy

�How to Deploy an RNN
Running an RNN on Arduino is the same as running an MLP. You don’t 

have to change a line. The part that would differ is how you create the input 

vector. A time series is usually built over time by queuing new samples as 

they are read and discarding old ones. You can handle this manually if you 

prefer, but the generated code can handle this for you out of the box.

Listing 8-4 showcases how to run an exported RNN to classify the 

accelerometer data from an Arduino Nano BLE Sense built-in IMU.

Listing 8-4.  Run LSTM Network on Accelerometer Data

/**
 * Listing 8-4: Classify continuous motion using LSTM model
 *
 * Required hardware: Arduino Nano BLE Sense
*/
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#include "./MotionLSTM.h"
#include <Arduino_LSM9DS1.h>
#include <tinyml4all.h>

// ARENA is the amount of memory to reserve for the model
// larger models needs more memory, but there's not a
// formula to calculate the optimal value
// is a trial-and-error process
#define ARENA 20000

tinyml4all::LSTM<ARENA> lstm;
tinyml4all::LSM9DS1 imu;

void setup() {
     Serial.begin(115200);
     while (!Serial);
     Serial.println("TensorFlow LSTM demo");

     imu.begin();
     lstm.begin();

}

void loop() {

     // read accelerometer and gyroscope
     imu.readAcceleration();
     imu.readGyroscope();

     // append readings to internal RNN queue
     �lstm.append(imu.ax, imu.ay, imu.az, imu.gx, imu.gy, 

imu.gz);

     // await until queue is full
     if (!lstm.isReady())
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          return;

     // run classification
     if (!lstm.predict()) {
          Serial.println(lstm.error());
          return;
     }

     // lstm.label holds the name of the predicted class
     // lstm.idx holds the numeric id of the predicted class
     // �lstm.value holds the numeric output (for regression 

tasks only)

     // lstm.confidence is the probability of the prediction
     // (from 0 to 1)
     // �lstm.confidences is an array with the confidences of 

all the classes
     // (one for each class for classification)

     // lstm.outputsAsString returns each class' score, from
     // 0 to 1 (classification only)
     Serial.print("Predicted class ");
     Serial.print(lstm.label);
     Serial.print(" with confidence ");
     Serial.println(lstm.confidence);
     Serial.print(" > Scores: ");
     Serial.println(lstm.outputsAsString());
     delay(1000);
}

If you want to handle the input array by yourself, call lstm.
predict(inputs) instead, where inputs is the array of input values 

arranged as At=1, Bt=1, Ct=1, At=2, Bt=2, Ct=2, … where A, B, and C 

are the sensors’ readings, and t is the time step.
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�1D Convolutional Neural Networks
Recurring neural networks are not the only architecture that works 

well with sequential data. 1D convolution neural networks (1D CNNs) 

are a (usually) faster, leaner alternative to them. This type of network 

doesn’t have memory, as the LSTM cells do, so they may not excel in 

modeling long-term relationships in the input data. Nevertheless, this is 

often unnecessary since the strongest connections are between nearby 

neighbors.

A 1D convolution is a mathematical operation that takes an input 

sequence (a list of numbers) and a smaller set of numbers (weights) called 

a filter or kernel and then combines them to produce a new sequence. 

Figure 8-10 illustrates the process.

Figure 8-10.  1D convolution
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With reference to the scenario depicted in Figure 8-10, let’s begin by 

considering the first three elements of the input array (in yellow). Each 

element is multiplied by the corresponding kernel element (in green), and 

the results are summed up (purple cells). This operation is called the dot 

product.

The kernel then slides to the right by one, and the same operation is 

repeated, this time with the input elements from 2 to 4. This process loops 

until the kernel is applied to the last three elements of the input.

The final result is a new sequence that is a weighted aggregation of the 

input sequence. To compose a 1D CNN, many of these kernels are packed 

inside a Conv1D layer, and many such layers are stacked one after the 

other. Between the last Conv1D layer and the output layer, one or more 

fully connected layers combine the extracted features (see Figure 8-11). 

The learning process consists of finding the optimal kernel weights that 

maximize the classification accuracy (in case of classification) or minimize 

the error (in case of regression).

Figure 8-11.  Conv1D network topology
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�How to Train a 1D CNN on Continuous Motion
This section focuses on continuous motion data as a representative 

example of time series classification. The same procedure works with 

any data that you can load with TimeSeries.read_csv or TimeSeries.
read_csv_folder. See Listing 8-5 for the code and Figure 8-12 for the 

accuracy plot.

Listing 8-5.  Train a Conv1D Network on Continuous Motion Data

from tinyml4all.tensorflow import CNN1D
from tinyml4all.tensorflow.layers import Conv1D, Perceptron

from tinyml4all.time.continuous.classification import 
TimeSeries

ts = TimeSeries.read_csv_folder("Chapter4/motion")
ts.label_from_source()
X, Y = ts.as_windows(duration="1s", shift="250ms")

cnn = CNN1D()

# refer to section "2D Convolutional networks" for what 
stride is
cnn.add(Conv1D(8, kernel_size=3, strides=2))
cnn.add(Conv1D(16, kernel_size=3, strides=2))
cnn.add(Conv1D(24, kernel_size=3, strides=2))
cnn.add(Perceptron(32))

# display network architecture
print(cnn.compile(X, Y, task="classification"))

Model: "sequential"
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_______________________________________________________________
 Layer (type)                Output Shape              Param #
===============================================================
 conv1d (Conv1D)             (None, 109, 8)            152

 conv1d_1 (Conv1D)           (None, 54, 16)            400

 conv1d_2 (Conv1D)           (None, 26, 24)            1176

 flatten (Flatten)           (None, 624)               0

 dense (Dense)               (None, 32)                20000

 dense_1 (Dense)             (None, 4)                 132

===============================================================
Total params: 21860 (85.39 KB)
Trainable params: 21860 (85.39 KB)
Non-trainable params: 0 (0.00 Byte)
_______________________________________________________________

# train neural network and display accuracy plot
cnn.fit(X, Y, epochs=50, plot=True)

# print accuracy on the validation set

print(cnn.classification_report())
              precision    recall  f1-score   support

        idle       0.97      0.98      0.98        60
       shake       0.98      0.97      0.98       104
       slide       1.00      1.00      1.00       106
        wave       0.97      0.97      0.97       105

    accuracy                           0.98       375
   macro avg       0.98      0.98      0.98       375
weighted avg       0.98      0.98      0.98       375
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+-------------------+------+-------+-------+------+
| True vs Predicted  | idle  | shake  | slide  | wave |
+-------------------+------+-------+-------+------+
|        idle        |  59   |   0    |   0    |  1    |
|       shake        |  1    |  101   |   0    |  2    |
|       slide        |  0    |   0    |  106   |  0    |
|        wave        |  1    |   2    |   0    | 102   |
+-------------------+------+-------+-------+------+

cnn.convert_to("c++", save_to="CNN1D.h")

Figure 8-12.  CNN1D loss and accuracy

�How to Deploy a 1D CNN
It turns out that running a 1D CNN in your Arduino sketch is the same 

as running an LSTM network. Since they both work on time series, 

everything that applied to it still holds true. And since the generated API 

is the same, you don’t have to change anything—apart from renaming 

tinyml4all::LSTM to tinyml4all::CNN1D.
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�2D Convolutional Neural Networks
A 2D convolutional neural network (2D CNN) works on 2D data. 2D 

data usually means images. Or to widen the application spectrum of 

CNNs: image-like data. By image-like data, I mean data arranged in two 

dimensions with values bounded into a specific domain.

•	 MFCC features: The ones extracted from Edge Impulse 

in Chapter 6. Pixels represent frequency contribution 

over time instead of light over space.

•	 Electroencephalogram/electromyogram/
accelerometer data: Every n-dimensional data 

collected over time can be reshaped into 2D windows 

(of shape number of features times time steps).

•	 Temperature/distance maps: Thermal cameras 

(e.g., MLX90640) and grid time-of-flight sensors (e.g., 

VL53L5CX) produce a 2D output, where each element 

represents temperature/distance instead of light.

If we abstract the concept of a pixel to encompass every kind of  

data— not only light—all of this can be rendered as images and thus 

become a suitable input for 2D CNNs.

The intuition behind the Conv2D operator is that 2D data is spatially 

correlated, and each pixel shares a relationship with its neighbors (called 

local receptive field). Many times, this field is a 3×3 or 5×5 grid. This 

relationship is encoded in the Conv2D operator weights (called a kernel) 

and is learned from the input dataset. The network can learn many 

different patterns (e.g., edges, corners, textures) by stacking many kernels 

together. With respect to fully connected networks, the reduction in the 

number of weights is drastic and, more importantly, is independent of the 

number of inputs/outputs. A Conv2D operator of shape 3×3 always stores 

nine weights, no matter if it applies to 96×96 or 512×512 images.
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�Downsampling and Stride
Conv2D layers are usually put at the beginning of a CNN. Their job is 

to extract features from the images that later perceptrons aggregate 

to produce the network’s output. As stated in the relevant paragraph, 

perceptrons’ number of weights grows linearly with the number of inputs. 

Since images are very “dense” types of data, usually made of thousands of 

pixels, this poses a problem, both in terms of memory and computation 

time and accuracy.

Let’s consider a 128×128 image and a Conv2D layer with 16 kernels. 

This produces 128 × 128 × 16 = 262,144 outputs. If we stack a fully 

connected layer with 32 neurons after it, we end up with ~8 million 

weights. Then we need an output layer, right? With ten classes, we’d need 

80 million more weights! Hopefully, you can see how quickly this becomes 

an intractable problem. To counter this situation, every CNN incorporates 

a downscaling strategy: the deeper the image moves into the network, the 

smaller it becomes. In many real-world architectures, the output of the 

last Conv2D layer has been brought down from 128×128 to 16×16. This 

downscaling brings a couple more benefits.

•	 It allows more kernels at deeper layers. The more you 

move along the layers, the more complex the extracted 

features are. If the first layers can extract edges and 

corners, the last layers usually learn to recognize 

shapes and simple objects. Having more kernels there 

means learning many different shapes, which should 

be highly correlated to the expected output.

•	 It mitigates overfitting. Reducing the number of 

inputs is an efficient way to prevent overfitting.
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•	 It offers translation invariance/noise rejection. By 

aggregating local features, small variations in the data 

are smoothed out, and the overall feature extraction 

is less sensitive to pixel noise or small translations of 

objects.

There are two ways to achieve downsampling in a CNN: pooling and 

strides.

�Pooling

A pooling layer is stacked right after a Conv2D layer to downsample its 

outputs. Its work is to aggregate small regions (usually 2×2) of the Conv2D 

outputs into a single value: this operation effectively halves the output 

image size. The most used aggregation operator is max, but one can also 

compute the average of each block (see Figure 8-13).

Figure 8-13.  Max pooling operator

The reason max pooling is the preferred one in classification is 

that it emphasizes the most prominent features, often leading to better 

performance in tasks in which detecting distinct and sharp features (like 

edges) is crucial.

�Strides

The second approach to downscaling is to increase the stride of the 

Conv2D operator itself. The stride indicates how much the kernel moves 

along the image. By default, it is 1, but this is not mandatory. You could, 
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for example, set the stride equal to the kernel size, in which case the 

convolution happens on non-overlapping blocks (don’t do this; this is just 

an example!).

Setting the stride to 2 effectively halves the output image size (see 

Figure 8-14).

Figure 8-14.  How stride works

Table 8-1 summarizes the differences between max pooling and stride 2.

Table 8-1.  Comparison of Pooling and Stride

Criterion Max Pooling Stride 2 Convolution

Key Benefit Retains the strongest feature 

(maximum) Usually performs 

better than stride

Kernel weights are “aware” 

of the downsampling during 

training

Information 
Retention

Aggressively reduces data (may 

lose info)

Retains more nuanced 

information (smoother)

Noise 
Robustness

More robust to noise (focuses on 

max)

May be more sensitive to noise 

or subtle shifts

Computational 
Cost

Requires convolution with stride = 

1, so more computations

1/4 the computations than with 

stride = 1

Ideal Use 
Cases

Emphasizing sharp, prominent 

features

Gradual downsampling while 

retaining more information
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In the context of TinyML, where we must sip every computation and 

memory allocation, stride has an edge over pooling for the following 

reasons.

•	 It requires half the computations along the 2 axis, 

making it four times faster than full convolution.

•	 It produces a half-size image straightaway, so less 

memory is required to store the intermediate results.

�How to Train a 2D CNN
Let’s train a 2D CNN to classify a toy dataset of images of dogs and cats 

(Listing 8-6). The dataset is included in the tinyml4all package and 

contains a total of 100 images (50 for each class). Images are 128×128, RGB 

mode. Figure 8-15 highlights some random images from the dataset.

Figure 8-15.  Examples of dogs and cats
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Note  This is image classification, not object detection! The model 
won’t be able to localize where the dog or the cat is in the image. It 
only tells if the image depicts one or the other.

Listing 8-6.  Train a 2D CNN for Image Classification

from tinyml4all.tensorflow import CNN2D
from tinyml4all.tensorflow.layers import Conv2D, MaxPooling2D, 
Perceptron
from tinyml4all.datasets import Pets

cnn = CNN2D(input_shape=(48, 48))

# example of Conv2 + max pooling
# 8 is the number of kernels
cnn.add(Conv2D(8, kernel_size=3))
cnn.add(MaxPooling2D())

# example of Conv2D with stride
cnn.add(Conv2D(16, kernel_size=3, strides=2))

# stride & max pooling
# (result is ¼ the size)
cnn.add(Conv2D(24, kernel_size=3, strides=2))
cnn.add(MaxPooling2D())

# fully connected layer before output
cnn.add(Perceptron(32))

# display network architecture
print(nn.compile(Pets.X, Pets.Y))

Model: "sequential"
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_______________________________________________________________
 Layer (type)                Output Shape              Param #
===============================================================
 conv2d (Conv2D)             (None, 94, 94, 8)         224

 max_pool2d (MaxPooling2D)   (None, 47, 47, 8)         0

 conv2d_1 (Conv2D)           (None, 23, 23, 16)        1168

 conv2d_2 (Conv2D)           (None, 11, 11, 24)        3480

 max_pool2d_1 (MaxPooling2D  (None, 5, 5, 24)          0

 flatten (Flatten)           (None, 600)               0

 dense (Dense)               (None, 32)                19232

 dense_1 (Dense)             (None, 2)                 66

===============================================================
Total params: 24170 (94.41 KB)
Trainable params: 24170 (94.41 KB)
Non-trainable params: 0 (0.00 Byte)
_______________________________________________________________

# train neural network and display accuracy plot
cnn.fit(Pets.X, Pets.Y, epochs=50, plot=True)

# print accuracy on the validation set

print(cnn.classification_report())

              precision    recall  f1-score   support

         dog       0.67      0.73      0.70        11
         cat       0.62      0.56      0.59         9

    accuracy                           0.65        20
   macro avg       0.65      0.64      0.64        20
weighted avg       0.65      0.65      0.65        20
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+-------------------+-----+-----+
| True vs Predicted  | dog | cat  |
+-------------------+-----+-----+
|        dog         |  8   |  3   |
|        cat         |  4   |  5   |
+-------------------+-----+-----+

cnn.convert_to("c++", class_name="CNN2D",  
save_to="PetsCNN2D.h")

Figure 8-16.  CNN2D loss and accuracy

�How to Deploy a 2D CNN

To run a 2D CNN, you need a 2D input. This can be an image, sensor 

values over time, or multipoint sensor readings. What matters most, 

though, in this case, is that the TensorFlow runtime expects 1D input data, 

even if it represents 2D entities. For this reason, you must flatten your input 

first and provide it in the form of an array, not a matrix. The following are 

examples of flattening techniques for common data types.
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•	 Image: The expected input format for a grayscale 

image is row major (first row’s pixels, second row’s 

pixels, etc.). For RGB images, the format is R1, G1, B1, R2, 

G2, B2, and so on. The grayscale case applies to all other 

image-like inputs.

•	 Sensors over time: The expected input format is time 

major (SensorAt=1, SensorBt=1, SensorAt=2, SensorBt=2).

Given these assumptions, Listing 8-7 runs a 2D CNN on a 48×48 

grayscale image, stored as a flattened uint8_t array (like the one you could 

get from an ESP32 or Nicla Vision camera).

Listing 8-7.  Run CNN2D on Arduino

#include "./PetsCNN2D.h"

// ARENA is the amount of memory to reserve for the model
// larger models needs more memory, but there's not a
// formula to calculate the optimal value
// is a trial-and-error process
#define ARENA 20000

tinyml4all::CNN2D<ARENA> cnn;
uint8_t dog[48*48] = {…};
uint8_t cat[48*48] = {…};

void setup() {
     Serial.begin(115200);
     while (!Serial);
     Serial.println("TensorFlow 2D CNN demo");

     cnn.begin();
}
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void loop() {
     // run classification on dog
     if (!cnn.predict(dog)) {
          Serial.println(nn.error());
          return;
     }

     // .label holds the name of the predicted class
     // .output holds the numeric output (for regression)
     //         or class id (for classification)
     // .outputs in an array with all the outputs
     //          (one for each class for classification)
     // .runtime_ms holds the duration of predictions
     // outputsAsString returns each class' score, from
     //                 0 to 1 (classification only)
     Serial.print("Expected dog, predicted ");
     Serial.print(cnn.label);
    
     Serial.print(" with confidence ");
     Serial.println(cnn.confidence);
     Serial.print(" > Scores: ");
     Serial.println(cnn.outputsAsString());

     // run classification on cat
     if (!cnn.predict(cat)) {
          Serial.println(cnn.error());
          return;
     }

     Serial.print("Expected cat, predicted ");
     Serial.print(cnn.label);
è
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     Serial.print(" with confidence ");
     Serial.println(cnn.confidence);
     Serial.print(" > Scores: ");
     Serial.println(nn.outputsAsString());
     delay(1000);
}

�Summary
This chapter was a hands-on introduction to the advanced topic of 

TensorFlow for Microcontrollers. This framework allows you to unleash 

the full power of neural networks, but as they say, “With great power 

comes great responsibility.” Tuning a topology that achieves satisfactory 

accuracy while keeping it as lean as possible for an efficient deployment 

on embedded hardware can be a hard task.

Neural networks come in many shapes and sizes, and here I tried to 

showcase the most common configurations and the ones that can be run 

for sure on Arduino-compatible hardware: fully connected for tabular data, 

LSTM and CNN1D for time series, CNN2D for images (and similar). Since 

TinyML is an ever-evolving field, more alternatives should be available to 

add to your toolset in the near future.

Even if it takes practice, once you gain experience and start to master 

the art of neural networks, you’ll be able to run surprisingly challenging 

tasks on your board without the need for an external PC connection or 

cloud services. This supercharges your productivity and redefines what’s 

possible for a tiny device.
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�APPENDIX A

More Feature 
Engineering 
Operators
This appendix introduces a few more feature engineering operators that 

you can use in your chains when working with tabular and/or time series 

data and digs more into some of those already introduced in the course 

of the book. They’ve been omitted from the main chapters because their 

use is more sporadic, but they’re still valuable and can greatly improve the 

quality of your model’s predictions.

�Feature Scaling
This section lists more methods available to perform feature scaling. As a 

recall, feature scaling is used to alter the domain of the input data, either 

with a linear transformation (min-max, z-score, robust operators), a non- 

linear one (Box-Cox and Yeo-Johnson), or an instance-based one (norm). 

You may want to perform this operation because the machine learning 

algorithm requires (or works better with) data in the same scale or to make 

it easier to compare different features that don’t share the same scale.

https://doi.org/10.1007/979-8-8688-1294-1#DOI
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�Z-Score Normalization
Also known as standardization, z-score normalization is a feature scaling 

method that consists of rescaling every column so that it has zero mean and 

unit variance, according to the following z-score normalization formula.

			 
x

x mean x

std x
�

� � �
� � 	

Being a linear, population-based transformation like the min-max 

normalization, z-score normalization exhibits the same limits with outliers.

Caution  Z-score normalization is sensitive to outliers!

Listing A-1 shows how to apply this normalization to a table dataset.

Listing A-1.  Apply Z-Score Normalization to Table

standard = Scale(method="zscore")
table2 = standard(table)
print(table2.describe())

r g b

count 150 150 150

mean 0 0 0

std 1,0034 1,0034 1,0034

min -1,7455 -2,1319 -2,3148

25% -0,926 -0,6539 -0,4955

50% -0,0246 -0,1612 0,0243

75% 0,7539 0,5554 0,5441

max 2,5978 7,0049 7,5613
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Note that the mean is 0, and the standard deviation is (almost) 1.

�Robust Normalization
Robust normalization comes into play when your data contains outliers. 

The word “robust” refers to the fact that it is less sensitive to outliers. 

Stemming from the z-score normalization formula, this is achieved with a 

clever substitution, described as follows.

•	 The mean is replaced by the median (the central 

value after sorting). Outliers are, by definition, at the 

very ends of the data range, so the central value is not 

influenced by them.

•	 The interquartile range (IQR) replaces the standard 

deviation. This is the range where the central 50% of 

the data.

				  
x

x median x

IQR
�

� � �
	

•	 Listing A-2 applies robust scaling to a table.

Listing A-2.  Apply Robust Normalization to Table

robust = Scale(method="robust")
table2 = robust(table)
print(table2.describe())
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r g b

count 150 150 150

mean 0,0146 0,1333 -0,0233

std 0,5972 0,8297 0,9651

min -1,0244 -1,6296 -2,25

25% -0,5366 -0,4074 -0,5

50% 0 0 0

75% 0,4634 0,5926 0,5

max 1,561 5,9259 7,25

�Unit Norm
This is an instance-based feature scaling strategy, so it does not compute 

global statistics. It consists of computing the norm of the sample and 

dividing each component by it.

				  
x

x

x
=

	

||x|| is the norm of x.

Caution S ince the norm is used to scale each component of the 
sample, it is strongly recommended that, if you also want to perform 
population-based feature scaling, it be performed beforehand.

There are different orders of norms to choose from.
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�L1 Norm

L1 norm, also known as the Manhattan norm, is calculated as the sum of 

the absolute values of the component of the vector.

				  
x x

i

N

i1 1
�

�� 	

The vector is a single sample in our case.

�L2 Norm

L2 norm, also known as the Euclidean norm, is defined as the square root 

of the sum of the squares of each component of the vector.

				    x x
i

N

i2 1

2�
�� 	

�L-max Norm

L-max norm is the maximum of the absolute values of the vector 

components.

				  
x ximax

max� � � 	

Listing A-3 summarizes how to use all the different norms.

Listing A-3.  Apply Unit Normalization to Table

# L1 norm
L1 = Scale(method="L1")
table2 = L1(table)
print(table2.describe())
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r g b

count 150 150 150

mean 0,4651 0,2874 0,2476

std 0,0774 0,0436 0,04

min 0,3226 0,1951 0,1719

25% 0,375 0,2609 0,2127

50% 0,4944 0,2732 0,2422

75% 0,5312 0,3333 0,2873

max 0,6098 0,3806 0,3188

# L2 norm
L2 = Scale(method="L2")
table2 = L2(table)
print(table2.describe())

r g b

count 150 150 150

mean 0,0188 0,0124 0,0108

std 0,004 0,0054 0,0047

min 0,0062 0,0055 0,0038

25% 0,0157 0,0084 0,0068

50% 0,0187 0,0102 0,0096

75% 0,0217 0,0165 0,0144

max 0,0332 0,03 0,0253
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# L-max norm
Lmax = Scale(method="Lmax")
table2 = Lmax(table)
print(table2.describe())

r g b

count 150 150 150

mean 0,9981 0,6509 0,5612

std 0,0145 0,2125 0,1852

min 0,8475 0,32 0,3143

25% 1 0,4907 0,4042

50% 1 0,5484 0,4857

75% 1 0,8933 0,7614

max 1 1 0,9167

�Box-Cox Power Transform
Box-Cox transform [1] belongs to the family of power transforms [2]. These 

functions apply non-linear mapping to the input to stabilize variance 

and make the data more normal distribution-like. The following formula 

explains how the Box-Cox transform operates while Listing A-4 reports the 

Python code to apply it.

	

y
y

i

i
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�

�
�

�
�

�
�
�
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Caution S ince the Box-Cox transform uses the logarithm operator, 
it only works with strictly positive data!

Listing A-4.  Apply Box-Cox Power Transform to Table

from tinyml4all.tabular.features import BoxCox

boxcox = BoxCox()
table 2 = boxcox(table)

r g b

count 150 150 150

mean 6.4087 2.2936 2.0929

std 1.1713 0.1512 0.1115

min 3.83 1.7369 1.6699

25% 5.3378 2.1957 2.0421

50% 6.5263 2.2897 2.1103

75% 7.3512 2.4006 2.1693

max 8.9006 2.8958 2.5908

�Yeo-Johnson Power Transform
Yeo-Johnson transform [3] belongs to the same family as the Box-Cox one. 

Differently from the former, though, it works with any data, even negative. 

The formula is a bit more articulated, but the concept stays the same: it 

aims to reduce the input variance (see Listing A-5).
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Listing A-5.  Apply Yeo-Johnson Power Transform to Table

from tinyml4all.tabular.features import YeoJohnson

yeojohnson = YeoJohnson()
table 2 = yeojohnson(table)

r g b

count 150 150 150

mean 6.276 2.1292 1.9302

std 1.0779 0.1168 0.0831

min 3.9118 1.7014 1.6159

25% 5.2894 2.0534 1.8922

50% 6.3834 2.1262 1.9432

75% 7.1437 2.2122 1.9873

max 8.5706 2.5908 2.2987

�Discretization
Feature discretization is the process of converting a continuous variable 

into a discrete one. This is done because many machine learning 

algorithms benefit from this process. The next paragraphs showcase the 

discretization strategies available in the tinyml4all package.
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�Binarization
Sometimes, a numeric value brings “too much” information for your use 

case, and you only need a binary feature.

For example, imagine you’re working on a weather station that collects 

temperature, humidity, and rain. Rain is a continuous variable expressed 

e.g., in mm/hour. For some tasks, it may be unnecessary to know exactly 

how much rain fell in a given hour; it may suffice to know whether it 

rained or not.

This process is called binarization, and it requires you to define a 

threshold—values below the threshold are converted to False, and values 

above are converted to True.

Typically, you don’t want to binarize all the columns of your data. In 

the weather station example, you want to keep temperature and humidity 

as continuous variables and only binarize the rain. This is why you must 

specify a column argument in Listing A-6.

Listing A-6.  Apply Binarization on the “Rain” Column Only

from tinyml4all.tabular.features import Discretize

bin_rain = Discretize (column="rain", threshold=0.1)
table 2 = bin_rain(table)

temperature humidity rain

0 22,1 40 False

1 23,3 41 False

2 9,6 60 True

3 9,7 61 True

4 9,5 65 True
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Now, the rain column only has True or False values.

If you want to binarize multiple columns, each with a different 

threshold, you can chain multiple calls, as shown in Listing A-7. This listing 

also shows that you can put the binarization result into a new column and 

flip the binarization logic (assign True to values below the threshold).

Listing A-7.  Apply Binarization on Multiple Columns

from tinyml4all.tabular.features import Discretize
from tinyml4all.tabular.classification import Chain

# 1. binarize temperatures above 20° and create column "hot"
# 2. binarize humidity above 80% and create column "wet"
# 3. binarize humidity below 20% and create column "dry"
# 4. binarize rain above 0.1

binarize_many = Chain(
    Discretize("temperature", threshold=20, append="hot"),
    Discretize("humidity", threshold=80, append="wet"),
    �Discretize("humidity", threshold=20, append="dry", 

flip=True),
    Discretize(column="rain", threshold=0.1)
)
table 2 = binarize_many(table)

temperature humidity rain hot wet dry

0 22,1 20 False True False True

1 23,3 30 False True False False

2 9,6 80 True False True False

3 9,7 81 True False True False

4 9,5 85 True False True False
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�Binning
Binning (also known as bucketing) is the process of fitting continuous data 

into a finite range of possible values (“bins” or “buckets”). The result of this 

transformation is that small fluctuations in data get smoothed out, and the 

model becomes less susceptible to overfitting.

In the example of the weather station, we may not need the full 

resolution of humidity in increments of one. A rough value in increments 

of ten is probably enough (see Listing A-8).

Listing A-8.  Apply Binning to Humidity Column

bin = Discretize("humidity", bins=10, append="humidity_bin")
table 2 = bin(table)

humidity humidity_bin

0 42 4

1 41 4

2 60 6

3 61 6

4 62 6

�One-Hot encoding
One-Hot encoding transforms a categorical column (one that can assume 

only a limited set of values; e.g., the days of the week) into a list of binary 

values, where only the value in the i-th position is 1 (i represents the 

position of the value in the list of available ones). This process greatly helps 

those models that assign an importance score to each feature because it 

allows different scores to be assigned to different values (see Listing A-9).
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Caution O ne-hot encoding only works with categorical, discrete 
data; you cannot encode a real-valued, continuous column.

Listing A-9.  Apply One-Hot Encoding

from tinyml4all.tabular.features import OneHot

onehot = OneHot(column="fruit")
table 2 = onehot(fruit)

fruit fruit=orange fruit=tomato fruit=zucchini

0 orange TRUE FALSE FALSE

1 orange TRUE FALSE FALSE

2 tomato FALSE TRUE FALSE

3 tomato FALSE TRUE FALSE

4 zucchini FALSE FALSE TRUE
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RGB components, 48, 49
save to SD card, 56–60
serial monitor and manually 

copy and paste data, 49–53
serial output from 

Python, 53–56
time series classification
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copy/pasting from serial, 133
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load and inspect the data, 
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plot time series data, 

138, 139
Python, 173–177
serial in Python, 135, 136
serial monitor, 135
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124, 183–185

Classification models
advantages and 

disadvantages, 94–97
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memory requirements, 83
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SVM, 91–96
tinyml4all, 83
XGBoost, 87, 88
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Arduino, 98–101
Arduino Nano BLE Sense, 43
capture data, 47–60
classification chain, 96, 97
classification models, 82–96
feature engineering, 41, 71, 72
feature scaling, 72–78
feature selection, 78–82
load and inspect data, 60–71
software

Python virtual 
environment, 45, 46

tinyml4all Arduino 
Library, 46, 47
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workflow, 42

CNNs, see Convolutional neural 
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Comma-separated value (CSV) 

encoding, 49, 51, 52
Computer vision models, 11
Confusion matrix, 24–26, 147, 164, 
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data, 1D CNN, 284–286

Conv2D operator, 287, 289
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216–219, 239, 241
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D
Data acquisition, 146, 147, 149, 
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tabular data, 34–36
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Decision tree, 84–86, 93, 120–122
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feature extraction, 273
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Deployment, 10, 124, 147, 164–168, 

222–225, 245–248
Dimensionality reduction, 15, 33, 
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E
EdgeAI, 5–7
Edge Impulse, 171, 196, 201, 222
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audio classification, 215, 216
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classification, 159
confusion matrix, 220
CSV Wizard, 149–152

data acquisition, 235–237
dataset statistics, 155
design, 155, 156
development workflow, 132, 133
feature extraction 

configuration, 158
GUI, 155
labeling method selection, 237
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learning block, 158–160
low code platform, 192
low-code tool, 145
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synthetic dataset, 209, 210
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training configuration, 218
train/test split, 154, 155
upload files, 153, 154
wake word detection test, 221
workflow, 145–149

Embedded camera sensors, 230
Episodic motion, 173
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Exponential operator, 114, 117
Extreme gradient boosting 
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F
FCNN, see Fully connected neural 

network (FCNN)
Feature bagging, 86
Feature discretization, 307
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Feature engineering, 33, 34, 210
for image classification and 

object detection, 238, 239
regression

monotonic functional 
mapping, 114–117

polynomial features 
expansion, 117, 118

Feature scaling, 71–78, 82, 123, 
299, 300

Feature selection
classification metrics, 78
RFE, 80–82
score-based selection, 80
sequential feature 

selection, 79, 80
FOMO model, 243
Frequency domain features, 38, 

131, 143, 144
FruitChain.h, 98
Fully connected neural 

network (FCNN)
characterized, 162
dense layer, 163
neurons, 162
perceptron, 163

G
Generalization, 201, 230
GPUs, see Graphics processing 

units (GPUs)
Gradient boosting, 87

Graphics processing units 
(GPUs), 3, 12

Ground truth, 16, 119, 161

H
Human activity recognition, 10, 11

I, J
Image generative models, 12
Image recognition, 11, 18
Images and spatial data, 39, 40
Impulse design, 145, 155–156, 

239, 240
IMU, see Inertial measurement 

unit (IMU)
IMU sensors, 132, 173
Inertial measurement unit (IMU), 

131, 132, 134, 135
Inference/forward pass, 260
Inference time, 85, 86, 90, 225
Instance-based feature scaling 

strategy, 302
Instance-based scaling, 72
Inter-IC Sound (I2S), 193
Internet of Things (IoT), 1, 9, 35
IoT, see Internet of Things (IoT)
I2S, see Inter-IC Sound (I2S)

K
Kernel, 217, 241, 282, 283, 287
Kernel trick, 92
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Keyword spotting (KWS), 11, 191, 
201, 209, 213

KWS, see Keyword spotting (KWS)

L
Large language models (LLMs),  

12, 201
Learning block, 158–160, 215
LIDAR point cloud, 13
LLMs, see Large language 

models (LLMs)
L-max norm, 303–305
Load and inspect data, 206–208

regression, 109, 110
tabular data classification

manipulate table, 63–66
one file for all classes,  

62, 63
one file per class, 61, 62
plot data, 66–71
in Python script, 60
tinyml4all package, 60
visual inspection, 60

Local receptive field, 287
Logarithmic compression (dB), 

212, 213
Logistic function, 88, 89
Logistic regression, 83, 88–91, 94
L1 and L2 norm, 303
Long short-term memory 

(LSTM), 274–279
LSTM, see Long short-term 

memory (LSTM)

M
Machine learning (ML), 186

advantage, 3
definition, 2
feature engineering, 33, 34
ground truth, 16
inferences, 3
metrics, 21–28
microcontrollers (MCUs), 7–10
overfitting, 29, 30
regression vs. 

classification, 16–20
supervised vs. 

unsupervised, 14, 15
test set, 31, 32
Tiny (see TinyML)
vs. traditional programming, 2
training data, 31
training set, 32
types of data, 34–40
underfitting, 30
validation set, 31, 32

MAE, see Mean absolute 
error (MAE)

Magnetometer data, 174, 175
Make predictions, 94
Manhattan norm, 303
Manipulate table

apply labels, 65, 66
DataFrame, 63, 65
single column, 63
subset of columns, 64
subset of rows, 64, 65

Matrix, pair plot, 68–71
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Max pooling operator, 289
MCUs, see 

Microcontrollers (MCUs)
Mean absolute error (MAE), 27, 28
Mel filter banks, 212
Mel spectrogram, 38, 211–214, 222
Memory constraints, 240, 242
Metrics

binary classification, 21–28
accuracy, 21
precision, 22
recall, 22
unbalanced, 23

multiclass classification, 24–26
regression, 27, 28

Microcontrollers (MCUs)
bandwidth, 8
latency, 8
low power consumption, 9, 10
PCs/cloud computing, 7
privacy, 9
ubiquitous computing, 9

Min-max normalization, 72–74
ML, see Machine learning (ML)
MLP, see Multilayer 

perceptron (MLP)
MobileNetV2, 241, 242
Model accuracy, 161, 164, 219, 220
Multiclass classification, 17

confusion matrix, 24–26
Iris flower dataset, 24, 26
off-diagonal values, 25, 26

Multilayer perceptron (MLP), 255, 
261, 263–268

N
Neural networks, 41

structure, 258, 259
topology, 258

Noise robustness 
improvement, 214

Normalization, 72, 83, 85, 300
NVIDIA Jetson Nano, 5

O
Object detection with 

Edge Impulse
Arduino-based, 228
Arduino sketch, 245–248
deployment, 245
ESP32-based, 228
ESP32-S3 camera, 230, 231
generalization properties, 230
Model Testing page, 243, 244
Python side, 232–235
tinyml4all Arduino library, 229
width multiplier, 241

OLS, see Ordinary least 
squares (OLS)

1D CNNs, see 1D convolution 
neural networks (1D CNNs)

1D convolution neural networks 
(1D CNNs), 282, 283

One-hot encoding, 300, 310–311
Ordinary least squares (OLS), 118, 

119, 121
Outliers, 27, 66, 74–78, 180, 206, 301
Overfitting, 29–32, 85, 120, 164, 288
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P, Q
Pair plot matrix, 68–71
PDM, see Pulse-density 

modulation (PDM)
Perceptron, 163, 261–264, 288
Perceptual alignment, 213
Physical computing, 35
Plot data

low-quality input, 66
pair plot matrix, 68–71
2D scatter plot, 67, 68
types, 66

Plot time series data, 138, 139
Plotting regression data

many inputs, many 
scatters, 112–114

one input, 111
Pooling layer, 289
Population-based scaling, 72
Proximity meter, 103
Pulse-density modulation 

(PDM), 193
Python

serial output from, 53–56
virtual environment, 45, 46

R
Random forest, 86–88, 93, 120–122
Raspberry Pi, 5, 13, 240
Raspberry Pi Zero, 5, 228, 256
Rate limiting, 182
Reason max pooling, 289
Rectified linear unit (ReLU), 263

Recurrent neural networks (RNNs)
on Arduino, 279
topologies, sequence data, 274

Recursive feature elimination 
(RFE), 80–82

Regression
Arduino Nano BLE Sense, 105
capture data, 106–109
chain, 122, 123
chain to C++, 124
characteristics, 121
coefficient of determination, 28
color sensor, 105
decision tree, 120–122
distance prediction, 103, 104
distance sensor, 105
feature engineering, 114–118
load and inspect data, 109, 110
MAE, 27, 28
monotonic functional 

mapping, 114–117
OLS, 119
plot regression data, 110–114
random forest, 120–122
ultrasonic sensor, 105, 106

Regression vs. classification
air temperature, 16
binary classification, 17
inputs and outputs, 16
multiclass classification, 17
multi-label classification, 16
one-label classification, 16
one vs. all strategy, 18, 19
one vs. one strategy, 19, 20
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ReLU, see Rectified linear 
unit (ReLU)

RFE, see Recursive feature 
elimination (RFE)

RGB components, 48, 58, 100, 
104, 124

RMSE, see Root mean squared 
error (RMSE)

RNNs, see Recurrent neural 
networks (RNNs)

Robust normalization, 301, 302
Robust scaling, 74, 77, 301
Root mean squared error (RMSE), 

27, 31, 78
Run LSTM Network on 

Accelerometer Data, 
279, 281

Run MLP on Arduino, 271

S
Score-based selection, 80
SD card, 48, 56–60, 196, 230
Sensor values, 150, 173, 191, 294
Sequential feature selection, 79, 80
Sequential plot of audio 

samples, 208
Shift parameter, 182
Short-time Fourier transform 

(STFT), 211–213, 222
Single time series, 179, 181
Spectral analysis block, 157, 158
Spectral features, 146, 157, 158, 164
Spectrogram, 212

STFT, see Short-time Fourier 
transform (STFT)

Strides, 288–291
Supervised vs. unsupervised 

machine learning, 14, 15
Support vector machines 

(SVM), 91–96
Support vectors, 92, 93
SVM, see Support vector 

machines (SVM)
Synthetic Unknown Words, 

205, 206
Synthetic wake word generation, 

202, 203, 205, 206

T
Tabular data

characteristics, 35
columns represent features, 35
feature/variable, 34
fixed schema, 35
homogeneous data, 35
regression (see Regression)
row isolation, 35
rows represent samples, 35
structured data, 35

T-Distributed Stochastic Neighbor 
Embedding (t-SNE), 67

Temperature/distance maps, 287
TensorFlow models, 41

Arduino IDE, search, 257
deployment ratio, 270–272
hardware requirement, 256
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for Microcontrollers, 297
tensorflow-runtime-universal 

Arduino library, 257
validation ratio, 269, 270

Text-to-speech, 195, 202–203, 205
Third-party datasets, 201
Time constraints, 242
Time-domain features, 142, 143, 

168, 171
Time-frequency 

representation, 213
Time-of-flight principle, 106
Time series classification, 273

capture data, 133–139
continuous motion classifier, 

129, 130
deployment

Arduino library, 164, 165
cache invalidation, 169, 170
compilation times, 168, 169
inference serial output, 168
run impulse on 

accelerometer data, 
166, 167

Edge Impulse (see Edge 
Impulse)

feature engineering, 139–144
IMU, 131, 132
magnetometer, 132
no-code tool, 131
Python

to C++, 186
capture data, 173–177

data labeling, 177
deploy to Arduino, 186–189
episodic time series 

classification 
chain, 183–186

feature engineering, 179–183
gestures, 172
IMU sensors, 173
magnetometer, 172
media control device, 172
move next/back, 172
play/pause, 172
raise/lower volume, 172

statistics, 129
testing, 164

Time series data, 33, 36–38, 129, 
137, 150

Time series data block, 156–157
Time series feature engineering

advantages and 
disadvantages, 142

FIFO (first in, first out) data 
structure, 140

frequency, 141
frequency domain features, 

143, 144
machine learning model, 140
Python

autocorrelation, 181
multidimensional data, 179
one vs. rest, 183
shape metrics, 181
statistical moments, 180, 181
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windowing, 182
time analyzes the data, 141
time-domain features, 142, 143
window logic, 140
windows of data, 139

TinyML
definition, 5
EdgeAI, 5–7
enabling factor, 4
federated learning, 4
hardware, 6
human activity 

recognition, 10, 11
image classification and object 

detection, 11
image generative models, 12
keyword spotting, 11
LIDAR point cloud, 13
LLMs, 12
on-device learning, 4
optimization, 4
predictive maintenance, 12
quality requirements, 4
Raspberry Pi Zero, 5
reliably and satisfactorily, 10
resource-heavy hardware, 4
TensorFlow, 5
tinyml4all, 46, 72, 83, 177

tinyml4all Arduino Library, 46, 47
tinyml4all.tabular.

classification, 110

2D convolutional neural network 
(2D CNN), 287, 291–296

2D scatter plot, 67, 68

U
Ubiquitous computing, 9
Ultrasonic sensor, 105, 106
Upload data, 149, 153, 209

V
Validation loss, 161, 162
Virtual environment, Python, 45, 46
Visual debugging, 248–252
Voice assistant devices, 192

W
Wake Word Dataset, 204
Wake word detection output, 224

X
XGBoost, see Extreme gradient 

boosting (XGBoost)

Y
Yeo-Johnson transform, 306, 307

Z
Z-score normalization, 300, 301

Time series feature 
engineering (cont.)
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