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       Preface 
The semiconductor industry has grown very rapidly. The electronic system, which is 

composed of numerous numbers of transistors, is expected to grow similarly. Unfor-

tunately, transistors suffer from process variation, which also results in varying 

device performance. Low-power consumption and high-speed applications impose a 

huge requirement on small-sized devices. So metal oxide semiconductor field effect 

transistors (MOSFETs) have been scaled to meet the market’s future requirements. 

The scaled MOSFET is more prone to process variation as compared to long-channel 

devices. These scaled devices suffer from short channel effects (SCEs). The device 

characteristics must be predicted before its fabrication to prevent failure. Currently, 

the device characteristics with parameter variations are studied by using technol-

ogy computer-aided design (TCAD). But a long simulation time is required for good 

accuracy. Recently, a wide range of machine learning algorithms and techniques 

have been used in every domain of engineering. This approach provides a better 

trade-off between time and accuracy for meeting market requirements.

One of the most pressing problems in all domains of engineering is the require-

ment of advanced materials. Conventional materials have approached their limit and 

cannot be used in future applications. There are various industrial applications where 

new and advanced materials can play a vital role. This book presents a journey from 

present to future materials for semiconductors. TCAD is used for device simulation, 

but it is costly and time consuming to do simulations on TCAD nowadays. Due to 

TCAD’s limitations with device variation and accuracy, machine learning is replac-

ing TCAD. It provides better accuracy and is a powerful technology in material 

research.

The book Machine Learning for Semiconductor Materials studies recent tech-

niques and methods of machine learning to mitigate the use of TCAD, as the use of 

TCAD tools in semiconductor devices is very tedious. The utilization of machine 

learning algorithms for semiconductor devices improves device and process accu-

racy and helps in the analysis of the process variation of the device. This book pres-

ents various machine learning algorithms, such as regression, decision tree, support 

vector machine and K-means clustering. It explores the materials and their applica-

tions in various domain of science, technology and everyday life to provide further 

research on the subject. It also highlights semiconductor materials and their uses in 

multi-gate devices. It is ideal for physicists, computer specialists, engineers, practi-

tioners, researchers, academicians and students who are looking to learn more about 

machine learning and semiconductor materials and their applications.
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 Semiconductor Materials  
 Current Applications and 

Limitations of Advanced 

Semiconductor Devices

C. Shekhar

  1.1 INTRODUCTION

Semiconducting materials have played a significant role in the information revolu-

tion. The main characteristic of semiconducting materials is the resistivity values 

falling between those of metals and insulators and that can be tuned with differ-

ent approaches of material fabrication. The tunable electrical resistivity of these 

materials has enabled the development of a wide variety of electronic devices that 

have fundamentally changed the way humans interact among themselves or share, 

store, and create knowledge and data and changed the world as well. The develop-

ments of semiconductor materials started in the 19th century with the discovery 

of electrical conductivity by Alessandro Volta. Alessandro Volta devised the Vol-

taic pile, known as the first electrical battery, leading to the development of the 

study of electrical properties of different types of materials.1 Following this, in 

1833, Michael Faraday studied the corelations between the amount of electricity 

passing through a solution and the amount of chemical change in the solution and 

presented the laws of electrolysis, thereby establishing the electron as the carrier of 

the electrical charge in electrical solutions.2 Another notable discovery was made 

in 1873 by Frederick Guthrie, who found the phenomenon of thermionic emission, 

in which a hot metal rod exerts a force of attraction or repulsion on lightweight 

objects. Thermionic emission later became the basis of vacuum tubes used to mod-

ulate signals for amplification or rectification.3 The advent of vacuum tubes led to 

development of electronic devices and the electronic industry. However, due to the 

inherent disadvantages of vacuum tubes, such as being large, bulky structures, and 

unreliable output, the demand for more efficient and compact electronic devices 

kept the search ongoing.4

In 1904, John Ambrose Fleming invented the diode, a two-terminal electronic 

device that allows current to flow in only one direction. The diode was made from a 

vacuum tube with a heated cathode and cold anode.5 In 1906, Lee De Forest invented 

the triode, a three-terminal electronic device that could be used to amplify electrical 

signals. The triode was made from a vacuum tube with a heated cathode, cold anode, 

and control grid. Vacuum tubes were used in a variety of applications, including 

      1
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radio, television, and radar. However, they were still large, bulky, and unreliable. 

This led to a search for a more efficient and compact electronic device.6

The continued effort and search to replace vacuum tubes with more efficient, 

compact, and reliable electronic devices led J. Bardeen, W. Brattain, and W. Shock-

ley in 1947 to develop transistors. The transistor is a semiconductor device capable 

of amplifying and switching electrical signals made by arranging extrinsic semi-

conductors in PNP or NPN format. Due to its improved properties, the transistor 

replaced vacuum tubes in different applications and fuelled the proliferation of a 

variety of electronic devices.7,8 This further led to the invention of the integrated chip 

(IC) by J. Kilby and R. Noyce in 1950, which is a compact electronic device housing 

thousands of transistors and other electronic structures.9–11 With the development of 

ICs, it became possible to design and fabricate highly complex electronic structures 

at a reduced cost, leading to the development of power-efficient, compact electronic 

devices with greater computing power, thus giving rise to the modern electronic rev-

olution. Such electronic devices are used in everything from computers to watches, 

missiles, aircraft, and smartphones.

  1.2 TRADITIONAL SEMICONDUCTORS

  1.2.1 SILICON (SI)

Silicon (Si) is among the most abundant materials in the earth’s crust, making up 

almost 27% of it. Additionally, it has favourable electronic properties, which can 

be tuned by different approaches. Its semiconducting nature is most useful for the 

electronic industry; therefore, it has been most widely used for the manufacturing 

of electronic components for the electronic industry. The properties of silicon have 

paved the way for it being used to fabricate many electronic components for use in 

a multiplicity of applications; therefore, silicon has dominated the semiconductor 

industry for many years. Among the many components fabricated on a large scale 

from silicon are transistors, diodes, ICs, sensors, and solar cells, to mention a few. 

This section highlights the significance of silicon as the material of choice for the 

semiconductor industry along with some of its prominent limitations for advanced 

applications.12

After oxygen, silicon is the most abundant material present on the earth. It is 

generally extracted from silica sand. Its abundance and availability make it a suitable 

candidate for large-scale use. High-quality silicon crystals are grown from the solu-

tion obtained from silicon dioxide, which is needed for the fabrication process in the 

semiconductor industry. With the low bandgap of 1.12 eV, silicon allows the effective 

control of charge carriers at room temperature, and with suitable doping, the carrier 

concentrations can be controlled by adding aliovalent cations to the Si lattice. This 

ability to effectively control carrier concentrations, and therefore the conductivity 

of Si, makes it a suitable candidate for applications such as transistors, switching 

devices, and amplifiers. When silicon is exposed to oxygen, it forms an insulating 

layer of SiO2 readily, which is critical for the fabrication of metal oxide semicon-

ductor field effect transistors (MOSFETs). MOSFETs have been central to many 

electronic components in digital and analog circuits. Additionally, SiO2, formed on 
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exposure of silicon to oxygen, provides much-needed electrical insulation between 

different components when desired, enhancing the reliability of the electronic com-

ponents for prolonged usage.13

Since its first development a long time ago, Si-based industries have created large-

scale synthesis and fabrication capabilities – particularly, the Si-based ICs and com-

plementary metal oxide semiconductor technology, enabling the creation of millions 

of transistors on a single chip for high-performance computing. The mature infra-

structure capabilities, skilled workforce, and cost considerations are some of the rea-

sons for Si being the dominant material over the years in the semiconductor industry.

  1.2.2 LIMITATIONS OF SILICON FOR ADVANCED SEMICONDUCTOR DEVICES 

Though silicon possesses many admirable properties, it has significant limitations, 

especially in the areas of high-frequency, high-speed devices. Let us look at some 

of the limitations briefly here: (1) Compared to gallium arsenide (GaAs), the mobil-

ity of the charge carrier in silicon is low. For applications requiring high-frequency 

operations, such as radio-frequency (RF) and microwave devices, materials with 

a large charge carrier mobility are more efficient. Therefore, materials such as 

GaAs are preferred over Si for high-speed operation at lower power consumption. 

(2) Silicon is not the preferred material in areas of power electronics due to its 

lower thermal conductivity compared to other materials, such as silicon carbide 

(SiC) or diamond. In high-power applications, the ability to manage the heat gen-

erated becomes crucial for its efficient dissipation. Materials such as SiC and dia-

mond are among the preferred materials in power electronics due to better thermal 

conductivity and higher breakdown voltage. (3) With the advancement of science, 

particularly in the area of nanotechnology, Si faces challenges at the nanoscale, 

pertaining to quantum tunnelling and short-channel effects. These effects lead to 

power leakage and reduced performance for ultra-small transistors.14 Due to these 

limitations, the scientific community is looking for other 2D materials, such as 

graphene, transition metal dichalcogenides, and III-V semiconducting compounds, 

for next-generation devices.

  1.2.3 FUTURE PROSPECTS AND ALTERNATIVES 

There is now a class of different semiconducting materials suitable for replacing 

silicon, such as SiC and gallium nitride (GaN). Though Si remains the preferred 

material of choice in many areas, there is a gradual shift in advanced areas, such as 

high-power and high-frequency applications. Due to the existing infrastructure, its 

cost-effectiveness, and wide range of applicability, Si is still greatly favoured.

  1.3 TRADITIONAL SEMICONDUCTORS: GERMANIUM (GE)

Another material earlier used for the fabrication of electronic devices is germanium 

(Ge). It was first used for the preparation of transistors in the early 1940s and 1950s. 

Transistors made of Ge were widely used before being replaced by Si. Although 

Ge has been replaced by Si in a majority of areas, it is still the preferred choice 



4 Machine Learning for Semiconductor Materials

in high-frequency and optoelectronic applications due to its superior charge carrier 

mobility and direct bandgap, respectively.

With a lower bandgap of 0.66eV, Ge can conduct at close to room temperature 

as compared to Si, which can only conduct at higher temperatures due to a wider 

bandgap. This makes it a more suitable candidate for many electronic devices 

such as diodes and transistors. At the same time, this also means that electronic 

devices made of Ge are more sensitive to temperature variations, leading to higher 

leakage currents compared to Si.13,15 In comparison to silicon, the charge carrier 

mobility of germanium is significantly higher. The electron and hole mobilities in 

germanium and silicon are 3,900 cm2/V·s and 1,900 cm²/V·s and ~1500 cm²/V·s and  

~450 cm²/V·s, respectively. The higher charge carrier mobility suggests the suitabil-

ity of germanium in high-frequency applications, in which rapid switching and signal 

processing are key requirements. Though the charge carrier mobility is significantly 

higher (149 W/mK) for germanium, its thermal conductivity is lower (60 W/mK). 

Thus, germanium faces issues in managing the heat generated in power electronics 

and high-temperature applications.

Before the widespread use of germanium, vacuum tubes were used for the ampli-

fication of signals. The use of Ge revolutionized the process and led to the fabrication 

of the first bipolar junction transistors in the 1940s. This development enabled the 

creation of compact and energy-efficient amplifiers, replacing the vacuum tubes. Till 

the 1960s, Ge was dominant; it was used to make a wide variety of electronic devices 

from radio to the early computers. But the sensitivity of Ge for higher temperatures 

and its relatively higher cost compared to Si eventually led to silicon replacing it. 

The ability of silicon to form SiO2 with oxygen led to the development of MOSFETs, 

which laid the foundations of the modern electronic industry.16

  1.3.1 CURRENT APPLICATIONS AND LIMITATIONS 

Although Ge was replaced by Si in many applications, its use in many applications is 

still mainstream, as described here:

   •  High-Speed Transistors:  The higher carrier mobility of Ge is suitable for 

high-frequency and high-speed transistors, considering the switching fre-

quency and power consumption requirements.

  •  Optoelectronics:  The lower bandgap of Ge is suitable for the detection and 

measurement of low-energy radiations, such as infrared (IR) and fibre optic 

communication systems.

  •  Solar Cells:  Ge can enhance the energy efficiency of the substrate in multi-

junction solar cells and also has space applications.

  •  Alloys and compounds: Ge is very often alloyed with Si; for example, SiGe 

alloy is used in RF and microwave applications. 

Regardless of these advantages, Ge has limitations, such as being expensive to 

process, lower thermal conductivity, and inability to form an oxide layer like 

SiO2, all of which limit its applications and render it less versatile in MOSFET 

applications.
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  1.3.2 FUTURE PROSPECTS 

With the growing demand for compact, faster, and more energy-efficient devices, 

there is renewed interest in Ge-based electronic devices to overcome the scaling 

limitations of Si. Moreover, there are efforts to investigate Ge’s use in quantum com-

puting and photonic devices, where its unique electrical and optical properties may 

offer additional advantages. There are therefore possibilities for the use of Ge in new 

and specialized ways in electronic devices.

  1.4 GALLIUM ARSENIDE (GAAS)

GaAs is a direct bandgap, III-V semiconductor. It has been used in critical appli-

cations, such as microwave and millimetre-wave devices, photovoltaic cells, and 

light-emitting diodes (LEDs). Being a direct bandgap semiconductor and a key 

material in the electronics industry for a long time, it offers unique advantages over 

traditional materials, such as Si, particularly in high-frequency, high-speed, and 

optoelectronic applications.

The bandgap of GaAs is 1.42 eV at room temperature, whereas Si is an indirect 

bandgap material. This makes GaAs more energy efficient for electron transitions 

from the conduction band to the valence band and vice versa, leading to effective 

photon emission. Thus, GaAs is widely used in optoelectronic applications such as 

laser diodes and LEDs.

The charge carrier mobility of GaAs is ~8,500 cm²/V·s, which is significantly 

higher compared to Si (1,500 cm²/V·s). The higher carrier mobility translates to 

a quick response to the applied external field, making GaAs more suitable for 

high-frequency, high-speed applications, such as microwave transistors and field 

effect transistors (FETs). GaAs-based devices can be effectively used in the GHz 

frequency range, which is suitable for RF and microwave communication systems. 

The higher stability of GaAs-based devices against radiation damage also places 

these devices ahead of Si-based devices for space and satellite applications, where 

the performance of the latter can degrade significantly. GaAs-based devices show 

higher performance stability for longer periods in harsh conditions.17

  1.4.1 APPLICATIONS OF GAAS IN SEMICONDUCTOR DEVICES 

Due to the low direct bandgap, high carrier mobility, and high saturation velocity, 

GaAs-based devices have been extensively used in high-frequency and optoelectronic 

applications. GaAs-based devices – for example, microwave and millimetre-wave 

transistors such as heterojunction bipolar transistors and high-electron-mobility 

transistors – have been widely used for many applications, like telecommunications, 

radar, wireless communication systems, optoelectronics, solar cells, LEDs, and laser 

diodes. Photovoltaic systems such as GaAs-based solar cells have been used in sat-

ellite and space applications due to their high efficiency, durability, and high perfor-

mance under extreme radiation exposure for long periods of time. Also, GaAs is the 

preferred material for the fabrication of monolithic microwave integrated Circuits 

(MMICs), integral for radar, satellite, and cellular-based communication systems. 
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Additionally, due to its direct bandgap, GaAs is ideal for optoelectronic applications 

such as efficient LEDs and laser devices.18

  1.4.2 LIMITATIONS OF GALLIUM ARSENIDE 

Although there are many advantages of GaAs, its drawbacks have limited its appli-

cation in many areas. GaAs is expensive to synthesize compared to Si primarily 

due to the scarcity of Ga. The wafer fabrication of GaAs is complex, increasing the 

overall cost and limiting its use to specialized high-performance applications. Its 

mechanically fragile nature makes it difficult to handle during the fabrication pro-

cess, thus making it challenging to scale the production of GaAs-based systems. Its 

lower thermal conductivity limits its application where heat dissipation is critical for 

device performance. Due to these issues, SiC and GaN are preferred instead in many 

applications.

  1.4.3 FUTURE PROSPECTS 

Although GaAs is critical for many applications, materials like SiC and GaN are 

also used for power electronics and high-performance transistors. GaAs continues 

to be critical for high-frequency and optoelectronic applications where efficient light 

emission and stability against solar radiation are critical requirements.

  1.5 ADVANCED SEMICONDUCTOR MATERIALS

With the advancement of science and technology and electronic devices, in par-

ticular, the demand for compact, energy-efficient devices have increased in recent 

years. The properties of traditional semiconducting materials limit their applications 

in many areas, such as power electronics, telecommunications, and optoelectronics. 

These limitations have led to the development of newer materials with superior phys-

ical and chemical properties for such applications. Among other materials, silicon 

carbide (SiC), gallium nitride (GaN), and indium phosphide (InP) are useful and 

promising candidates for engineering and technological applications.

  1.6 SILICON CARBIDE (SIC)

  1.6.1 PROPERTIES AND ADVANTAGES 

Silicon carbide – the wide-band semiconductor with a bandgap of 3.26 eV, high 

breakdown voltage, high thermal conductivity, mechanically hard, and thermal and 

structural stability at high temperatures and frequencies – is a suitable candidate 

for devices that operate at high frequencies and high voltages in the area of power 

electronics. Its high thermal conductivity (~4.9 W/cm·K) ensures efficient thermal 

management in high-temperature applications without the need for detailed cooling 

supports for the device, making such devices rugged enough to function under harsh 

conditions. The devices made of SiC, such as MOSFETs and Schottky diodes, show 

much lower ON-state resistance and switching losses as compared to traditional 

semiconductor-based devices, leading to drastically improved efficiencies. These 
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characteristics are critical for many energy-sensitive applications, such as electric 

vehicles (EVs), renewable energy systems, and industrial motor drives.19

  1.6.2 CHALLENGES AND CURRENT DEVELOPMENTS 

Though there are significant advantages with the properties of SiC for applications 

in critical areas, there are limitations too: (1) The cost and complexity of SiC-based 

devices is way higher than that for the Si-based devices. (2) SiC is a superhard and 

brittle material and requires special care to polish and cut the crystal into fibres for 

the fabrication processes. Thus, the wafer manufacturing is a costly and complex 

process. The technology for the fabrication of SiC wafers is not yet as mature as for 

Si-based devices.

To address these challenges and harness the unique properties of SiC, there have 

been sustained efforts to develop technologies to circumvent its limitations. Some of 

the efforts centred on developing physical vapour deposition (PVD), chemical vapour 

deposition (CVD), and single crystal growth processes to improve the availability 

of SiC crystals and wafers. These improvements have led to the enhanced usage of 

the material for commercial applications. Additionally, efforts for a new electronic 

architecture development and fabrication process are in focus. This has resulted in 

trench MOSFET structures, created to minimize ON-state resistance and improve 

the performance of SiC-based devices.

  1.6.3 APPLICATIONS 

The primary application of SiC is in power electronics, where it is used in high-voltage, 

high-temperature, and high-efficiency devices. SiC MOSFETs and Schottky diodes 

are increasingly being used in power converters, inverters, and motor drives due  

to their ability to operate at higher switching frequencies and temperatures com-

pared to silicon-based devices. This enables more compact, efficient, and reliable 

power systems, especially in EVs, industrial equipment, and renewable energy 

installations.

In the automotive industry, SiC is being used in the powertrains of electric and 

hybrid vehicles to improve efficiency and reduce the size and weight of power elec-

tronics systems. The high thermal conductivity of SiC allows for more effective heat 

dissipation, reducing the need for large cooling systems and enabling more compact 

designs.

SiC is also finding applications in aerospace and defence, where its ability to with-

stand extreme temperatures and radiation makes it suitable for use in harsh envi-

ronments. SiC devices are also used in satellite communication systems, radar, and 

high-temperature sensors.

  1.7 GALLIUM NITRIDE (GAN)

  1.7.1 PROPERTIES AND ADVANTAGES 

With a bandgap of 3.4 eV, gallium nitride is a preferred choice for many applications. 

The bandgap of GaN is even greater than that of SiC; it has high carrier mobility and 
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saturation velocity, enabling its use in high-frequency applications, and GaN-based 

devices work at speeds much greater than that for Si-based devices. Due to these prop-

erties, GaN can be used for a multiplicity of applications involving high frequency and 

high power, such as RF, power transistor, and high-speed communication systems.

Gallium nitride has a high breakdown voltage and thermal stability. It is stable at 

high voltages and elevated temperatures. Due to its high thermal conductivity, it can 

efficiently operate at higher temperatures without the need for cooling systems. In 

addition, GaN crystals have high charge carrier mobility. Also, due to the compatible 

lattice parameters, GaN can be grown on silicon. It therefore can utilize the exist-

ing fabrication and manufacturing techniques for silicon, enabling the integration of 

technology tailored for Si to be used for GaN.20

  1.7.2 CHALLENGES AND CURRENT DEVELOPMENTS 

There are many challenges to the development of GaN as the mainstream electronic 

material as compared to Si primarily due to the complexity of the manufacturing pro-

cess involved. The cost of the manufacturing process is larger as compared to that of 

Si, thus limiting GaN’s applicability. There are reliability issues in high-power appli-

cations, and GaN-based devices are prone to degradation in high-stress conditions.

Among the current developments in GaN-based applications, they have shown 

improved performance in the area of high switching speeds with low losses. The 

emphasis is on the development of compact electronic devices with better design and 

packaging techniques and improved efficiencies. Recent developments have focused 

on their applications in electric mobility, improving the power efficiency of charging 

stations, and enhancing the range of electrical vehicles.

  1.7.3 APPLICATIONS 

GaN is widely used in high-frequency and high-power applications, such as RF 

amplifiers, power transistors, and microwave devices. Its high electron mobility and 

saturation velocity make it ideal for use in high-frequency communication systems, 

including 5G networks and satellite communication.21

In the power electronics sector, GaN devices are being used in power converters, 

inverters, and motor drives, where their high efficiency and fast switching speeds 

lead to significant energy savings. GaN is also being used in power supplies for data 

centres and telecommunications equipment, where its ability to handle high voltages 

and operate at high frequencies helps to reduce power consumption and heat genera-

tion.22 GaN is also finding applications in optoelectronics, particularly in LEDs and 

laser diodes. GaN-based LEDs are widely used in solid-state lighting, display tech-

nology, and automotive lighting due to their high efficiency and brightness.

  1.8  ADVANCED SEMICONDUCTOR MATERIALS: 2D  
MATERIALS – GRAPHENE AND TRANSITION 
METAL DICHALCOGENIDES

There have been tremendous advances in information technology based on the avail-

ability of better products that are used for the storage, transfer, and processing of 

information in enormous quantities. This has been possible primarily due to the 
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availability of semiconductors capable of operating at these scales. The present den-

sity of transistors, their energy efficiency, operating temperatures, thermal manage-

ment capacities, and operational frequencies are at previously unimaginable levels. 

Due to the ever-increasing demand for better products, there is a requirement for 

materials with improved properties that can extend the limits of present-day elec-

tronic devices. In the recent past, there has been significant development in the areas 

of 2D materials such as graphene and transition metal dichalcogenides (TMDs), 

which can be promising candidates due to their excellent physical and chemical 

properties that are crucial for their use in electronic devices.

The much-famed 2D materials consist of a two-dimensional extended layer of 

atoms with the thickness of a few atomic layers. This leads to a dramatic alteration 

of the properties of this material due to the quantum confinement effects in the 2D 

materials. Among 2D materials, graphene is the most important material reported 

in 2004, which is a single-layer thick carbon sheet arranged hexagonally. In addi-

tion, TMDs such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) have 

attracted great attention because of their superior semiconducting properties.

  1.9  GRAPHENE: THE PIONEER OF 2D MATERIALS

  1.9.1  DISCOVERY AND STRUCTURE 

Graphene was prepared by A. Gein and K. Novoselov in 2004, and they won the 2010 

Nobel Prize in Physics for the discovery of this remarkable material. It consists of a 

hexagonal arrangement of carbon atoms in a single layer, creating an electronic band 

structure that results in unique physical and chemical properties. Graphene has zero 

bandgap – that is, it’s a semimetal. The topmost of the valance band and lowest of the 

conduction band touches at the Dirac point, resulting in the massless Dirac fermions, 

thus imparting excellent physical and chemical properties to graphene.23

  1.9.2  PROPERTIES 

The single-layer carbon, arranged in a hexagonal pattern forming the zero bandgap 

material, has excellent physical properties, which are extremely useful in electronic 

device applications. Graphene exhibits enormous electron mobility of 2 × 105 cm²/

Vs under ideal conditions.24 Such a value of electron mobility is remarkably high 

compared to traditional conductors such as silver and copper. Graphene is extremely 

strong, with 130 GPa tensile strength, almost 200 times that of steel.24 Its thermal 

conductivity is of the order of 5,000 W/mK, making it the ideal candidate for thermal 

management in electronic devices.25 It only absorbs a very small portion of the elec-

tromagnetic radiation incident on it. Graphene is a highly transparent material and 

suitable for optoelectronic applications.26 Although is very strong compared to steel, 

graphene is flexible at the same time and can be stretched by almost 20%, making it 

the best candidate for flexible electronics.

  1.9.3  APPLICATIONS 

The high mobility of graphene has made it a most suitable candidate for replacing 

traditional electronic materials to make FETs, and devices made of graphene can 

be used at high signal frequencies, leading to devices with much faster speeds. The 
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large surface area and high electrical conductivity of graphene make it suitable for 

use in high-storage batteries and supercapacitors, significantly increasing the energy 

density of these devices.27 It is also useful for surface-sensitive applications such as 

sensors for gas detection, chemicals, and other molecules.28 The flexible nature of 

graphene makes it a much desired candidate for flexible electronics, wearables, and 

foldable displays, to mention a few applications.29 In addition to this, the transparent 

nature of graphene has many applications in optoelectronic devices, such as LEDs 

transparent electrodes, and photodiodes.30

  1.9.4  CHALLENGES AND RECENT ADVANCES 

Although graphene has excellent properties for application in different areas, there 

are inherent limitations. The main limitation is the lack of the bandgap, in that it 

that shortens its applicability in electronic devices. It is challenging for the scientific 

community to find ways to synthesize graphene in a reproducible manner and create 

a bandgap in graphene using various approaches. Additionally, there are efforts to 

intercalate graphene with other promising materials such as TMDs to create compos-

ites and heterostructures that can address some of the pressing issues and explore the 

possibilities for a new class of suitable materials.31

  1.10  TRANSITION METAL DICHALCOGENIDES

  1.10.1  STRUCTURE AND COMPOSITION 

Two-dimensional TMDs have the formula MX2 (M = Mo, W; X = S, Se, Te). TMDs, 

unlike graphene, are semiconducting and therefore are suitable for electronic appli-

cations. Unlike other materials, TMDs can be easily exfoliated into monolayers. 

Their properties vary from material to material; for example, MoS2 is a low-bandgap 

(1.8 eV) material, making it suitable for different applications such as transistors and 

optoelectronic devices.32

  1.10.2  PROPERTIES 

The 2D TMDs in their monolayer form are direct bandgap semiconductors, which 

are indirect bandgap semiconductors in the bulk form. Therefore, they are an excel-

lent candidate for optoelectronic applications.33–35 The monolayer form of TMDs is 

flexible and can be used in flexible electronic devices. The reasonably high elec-

tronic mobilities of the charge carriers in TMDs is good for their use in thin-film 

transistors.36

  1.10.3  APPLICATIONS 

TMDs are low-bandgap materials, and therefore, they can absorb electromagnetic 

radiations of a lower energy. This makes them suitable candidates for photolumines-

cence, photodiodes, and other optoelectronic applications.35 Transition metal oxides 
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have been in focus for their applications in electronics, such as FETs, high-switching 

devices, and power-efficient devices.37

Additionally, the 2D TMDs are mechanically flexible and suitable for wearable 

electronics as a result of their suitable electronic properties.37 The thickness-dependent 

properties of TMDs have been exploited to design nonvolatile memories to enhance 

the performance of electronic devices.38 TMDs have also found application in the 

emerging areas of catalysts in hydrogen evolution and storage solutions for a sustain-

able future.39

  1.10.4  CHALLENGES AND RECENT ADVANCES 

TMDs have proven themselves to be promising materials for enhancing the func-

tionality of electronic devices. But there are challenges, on which much progress 

is needed to encash the full potential of these promising materials. The main lim-

iting factor is the challenge to scale the laboratory findings to an industrial scale to 

ramp up the production of TMDs-based electronic devices. These materials show 

excellent properties in small lab settings, but in larger areas, due to the variation 

in the thickness of these materials, a variation in the resultant properties has been 

observed. Another area of concern is the metal electrode and TMD interface/contact 

resistance in TMD-based devices. The resistance at the interface can adversely affect 

the performance of electronic devices. There have been efforts to grow large-area 

TMDs with uniform properties and minimize the contact resistance between TMDs 

and metal electrodes. Another approach is the development of heterostructures with 

graphene and other TMDs for advancing the use of heterostructures in multifunc-

tional devices.40

  1.11  LIMITATIONS OF TRADITIONAL MATERIALS 
FOR MODERN DEVICES: SCALING CHALLENGES 
IN THE CONTEXT OF MOORE’S LAW

In the 1960s, Moore presented an empirical law by which he predicted the 

advancement in the electronic industry and the revolutionizing of the ways of 

human interaction and knowledge and data creation, handling, and transmis-

sion. According to Moore’s law, the number of transistors on a chip would dou-

ble every two years. The relentless development of electronic devices has been 

keeping pace with the prediction of Moore’s law for over six decades now. The 

exponential rise in the ability to integrate a considerable number of electronic 

components on a chip has led to electronic devices with higher computational 

power and lower costs and energy requirements at the same time. But as we are 

reaching the limits of integrating electronic components using traditional semi-

conducting materials, the need for more space and energy-efficient materials is 

growing. In the next section, we will delve into the limitations of traditional 

semiconducting materials vis-à-vis Moore’s law and examine its effects on semi-

conductor technology.
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  1.12  LIMITATIONS OF SILICON IN MODERN DEVICES

  1.12.1  PHYSICAL SCALING LIMITS OF SILICON 

As the size of electronic components decreases to sub-10 nm in electronic devices, 

quantum mechanical effects start taking prominence in the densely packed ICs. The 

quantum tunnelling effect is more pronounced when the thickness of the insulating 

layer is of the order of tens of nanometres in a transistor. As a result, the electron 

may tunnel across the insulating SiO2 layer in the case of Si wafers, creating uncer-

tain pathways of electron motion in the transistor, leading to increase in the leakage 

current. Quantum tunnelling compromises the switching ability of the transistor to 

turn off, thus increasing power requirements and lowering the efficiency of electronic 

devices. With the decrease in thickness of gate length, the ability of the electron to 

flow from the gate to the drain using gate voltage decreases, thus increasing the leak-

age and diminishing the performance of electronic devices.

  1.12.2  POWER DENSITY AND THERMAL DISSIPATION 

With the increase in the density of components on a chip, the power density also 

increases, leading to challenges in thermal management. Due to the thermal conductiv-

ity of traditional semiconductors, there are issues in the management of heat generated 

during device operation. Additionally, the quantum effects that lead to the tunnelling 

of the charge carrier across the insulating barrier, especially in high-frequency opera-

tions, significantly contribute to heat generation. The common and traditional methods 

employed to cool electronic devices have their limitations, which can cause heat man-

agement issues in the devices and create performance instabilities.

  1.12.3  ELECTRICAL PERFORMANCE AND INTERCONNECT ISSUES 

As the size of the component decreases, the performance of the metal wires, known 

as the interconnects, that connect different transistors becomes significant. With the 

decrease in the thickness of the interconnects, the resistivity of interconnects made 

of copper or aluminium increases, creating a critical bottleneck for charge transfer. 

Also, with the increase in the density of interconnects, the capacitance between the 

tightly packed interconnects increases. The combined effect of the increased resistiv-

ity and capacitance leads to resistive-capacitive (RC) delay in the circuit and many a 

time negates the increase in signal speed achieved for smaller components.

  1.13  THE FUTURE OF SEMICONDUCTOR TECHNOLOGY

There are many challenges for the semiconductor industry to keep up with the pace of 

development as envisaged by Moore’s law. There are scaling challenges for the future 

of the electronic industry, and there are opportunities to meet those challenges with 

innovative approaches by employing new materials, device architectures, and man-

ufacturing techniques. The use of new materials and technologies will change the 

industry and enable the application of these materials in the areas of artificial intelli-

gence, quantum computing, and autonomous systems. The heterogeneous integration 
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of different systems into the same chip will help overcome the scaling limitations 

and allow the utilization of the properties of dissimilar materials to improve the per-

formance of electronic devices. Quantum computing will open new avenues for the 

application of advanced technologies with greater computational power to perform 

intricate calculations in the frontier areas of science and technology.

  1.14  CONCLUSION

Semiconductor materials have played a vital role in the development of modern 

technology. They have enabled the creation of devices that have transformed our 

world, from computers and smartphones to solar cells and LEDs. The future of 

semiconductor materials is bright, with new and exciting applications being devel-

oped all the time.

Silicon’s role as a traditional semiconductor material is deeply ingrained in the 

electronics industry. Its favourable properties, such as availability, moderate band-

gap, and compatibility with MOSFET fabrication, have enabled its long-standing 

dominance. However, as technology progresses towards higher-performance appli-

cations, materials with better electronic and thermal properties are being explored 

for specialized uses. Despite this, silicon is expected to continue being a cornerstone 

of semiconductor technology for many years to come, especially in general-purpose 

computing and electronics.

Germanium, as one of the original semiconductor materials, played a crucial 

role in the early development of the electronics industry. While silicon has since 

overtaken germanium for most applications, germanium’s superior electron and 

hole mobility, along with its infrared sensitivity, ensure that it remains relevant in 

high-speed, optoelectronic, and specialized applications. As innovative technolo-

gies emerge, germanium continues to be a valuable material for advanced semi-

conductor devices.

Gallium arsenide is a traditional semiconductor material that has proven invalu-

able in various advanced electronic and optoelectronic applications. Its direct band-

gap, high electron mobility, and radiation resistance have made it a preferred material 

for high-frequency devices, MMICs, and space-based solar cells. While it faces com-

petition from other semiconductor materials in certain areas, GaAs continues to hold 

a vital position in the semiconductor industry, particularly where high performance 

and specialized functionality are required.

Silicon carbide, gallium nitride, and indium phosphide represent the next gener-

ation of semiconductor materials, each offering unique advantages for high-power, 

high-frequency, and optoelectronic applications. SiC is ideal for power electronics, 

where its high efficiency and thermal stability enable more compact and reliable 

devices. GaN excels in high-frequency and high-power applications, making it a key 

material for RF amplifiers, power transistors, and communication systems. InP is the 

material of choice for high-speed and optical communication systems, where its high 

electron mobility and direct bandgap enable efficient data transmission.

While these materials present challenges in terms of cost and manufacturing, 

ongoing research and development are driving improvements in their perfor-

mance and scalability. As the demand for more efficient, faster, and more reliable 
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semiconductor devices continues to grow, SiC, GaN, and InP are poised to play a 

critical role in shaping the future of electronics and communication technologies.

Graphene and TMDs represent the forefront of advanced semiconductor materi-

als. Graphene’s unparalleled conductivity, strength, and flexibility make it a strong 

candidate for various electronic, optical, and mechanical applications. However, 

its lack of a bandgap limits its use in digital electronics. On the other hand, TMDs 

offer the semiconducting properties required for switching devices, along with 

flexibility and strong photoluminescence, positioning them as prime candidates for 

next-generation electronics and optoelectronics.

As research continues, the combination of graphene, TMDs, and other 2D mate-

rials in heterostructures is likely to lead to breakthroughs in device performance and 

functionality. While challenges such as scalability and contact engineering remain, 

the future of these materials in the semiconductor industry is promising.

The limitations of traditional materials, particularly silicon, pose significant 

challenges for the continued scaling of semiconductor devices. As transistor sizes 

approach the atomic scale, quantum mechanical effects, power dissipation, and eco-

nomic constraints are making it increasingly difficult to maintain the pace predicted 

by Moore’s law. However, the exploration of alternative materials such as silicon car-

bide, gallium nitride, and 2D materials offers promising solutions to these challenges.

In the coming decades, the semiconductor industry will likely transition to a post 

Moore’s law era, where innovations in materials, device architectures, and quan-

tum computing will drive further advancements in technology. While the road ahead 

is uncertain, the potential for breakthroughs in semiconductor technology remains 

immense, ensuring that the next generation of devices will continue to push the 

boundaries of what is possible.
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  2.1  INTRODUCTION

Machine learning (ML), for the need of introduction, is a subset of artificial intelli-

gence (AI) – another fancy of many technical researchers. Being a subset of AI, ML 

has achieved a major part of the implementation aspect of AI. In the perspective of 

ML researchers, Naqa and Murphy, a developing subfield of computing algorithms 

called “machine learning” aims to mimic human intelligence by taking in informa-

tion from its surroundings [1]. Now that we have a fair idea of ML with respect to AI, 

let us take a peek into what more ML offers. ML encompasses a wide-ranging area 

of multidisciplinary facets belonging to a plethora of arenas that may or may not have 

to interact with computer and technical sciences.

Furthermore, having become ingrained in most scientific disciplines, more so in 

recent years, a plethora of modelling tools and even algorithms for a wide range of 

data processing tasks are now a part of the ML process [2]. Not only data processing, 

life sciences and even physical sciences make use of ML to regulate their theories 

and simulate subject-specific hypotheses. Moreover, electronics and digital sciences 

find ML indispensable in a developing environment that caters to the fact that ML 

is mostly software that can be integrated with hardware. Material classification and 

property definition are easier examples of ML implementations in this sphere. In 

their research, Kudelina and Vaimann have quoted ML for electrical sciences, most 

aptly, that AI algorithms can be trained using mathematical models of electrical 

machines. This is accurate given that the industry and laboratories have difficulties 

in gathering large amounts of data due to resource constraints [3]. Thus, several 

intriguing AI-based diagnostic methods are showcased with an emphasis on their 

characteristics.

With regard to core machine learning, we will first address its concepts and the 

theoretical structure that has riveted the world of AI at large, prior to which, we will 

define it independent of its application and working. Once the groundwork is laid, 

this chapter will address advanced ML, bearing in mind that ML itself is advanced 

in its fundamental structure. Finally, the chapter will conclude with the applications 

and a massive array of its relevance in electrical sciences and why it is a dazzling idea 

to integrate ML and semiconducting material. So let us dive right into the deep end!

      2
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Foremost, let us understand that AI is about imbuing devices with lifelike real-

ism. It is interesting to note this because AI is all about causing machines to mimic 

humans [4]. Here is where we come to ML. It is that branch of AI which helps a 

machine to train itself on some data and find patterns within that so as to modify its 

analysis and apply it to the future in terms of analysis and prediction. The motive 

of ML is to interpret data and understand patterns. Humans look at data, and the 

brain, on its own accord, begins to analyse the data and make interpretations and 

inferences. For instance, a human baby sees its surroundings and finds the task that 

is most repetitive and stores that action and begins to use it for future situations: 

say a child asks for chocolate and realizes that if it is refused, he or she can get it  

by throwing a tantrum. That is exactly what machines do: they find data and learn 

from it, and then based on future inputs, they rely on the learning to perform 

event-specific actions to get the desired outcome. It is fascinating to watch the task! 

Figure 2.1 depicts AI as the superset of learning.

We now address the next task: ML concepts. The first implication is for data, 

which can be structured, unstructured, or semi-structured. Based on the data, we set 

up “tasks” for machines to gain “experience”, and then we measure its “performance”. 

This leads to ML categorization in terms of data input as supervised, unsupervised, 

semi-supervised, and reinforcement learning. All the four subsets have their own set 

of algorithms that define their operation. Next, we head to the applications of these 

intelligent systems. Xue and Zhu spearheaded research into fields that are affected 

by ML, and they concluded that ML is a basic technique that gives computers intel-

ligence. Its application, which formerly relied mostly on methods of synthesis and 

induction rather than deduction, has already expanded to other areas of AI and all 

  FIGURE 2.1  Artificial intelligence as the superset of learning.



19Machine Learning

known sciences with tremendous ease [5]. Now that we have laid the groundwork, 

with a basic idea of ML, let us walk towards the deeper end.

  2.2  THE ORIGINS

AI, while formally introduced first in the 1950s, had its foundations built much ear-

lier. From a poet’s theory to research papers that questioned the idea, AI riveted 

early researchers even before being formally coined. ML is a crucial instrument for 

achieving the objective of utilizing AI-related technologies. It is sometimes confused 

with AI due to its capacity for learning and making decisions, but it is actually a 

subset. It was only after the 1970s that it split off to develop independently. A brief 

discussion on the origins of ML follows.

  2.2.1  ARTIFICIAL INTELLIGENCE 

From the BC era to the 21st century, ML has had multiple phases. The term “artificial 

intelligence” originated, ironically, from the Greek word automaton, which means 

“behaving on one’s own accord”. The earliest records of automaton come from 400 

BC, which is hardly surprising, as Greek scholars in the past were known for their 

above and beyond thoughts and philosophies. It was much later in the early 1900s 

when many ideas centred around artificial humans instigated scientists to question 

if it was possible to create an artificial brain that could replicate the human cycle 

of thoughts and behavioural patterns. The scholarly paper “A Logical Calculus of 

the Ideas Immanent in Nervous Activity” by Walter Pitts and Warren McCulloch 

from 1943 contained the first mathematical model of neural networks and therefore 

launched the field of ML [6].

The book Organization of Behaviour, by Donald Hebb, contained theories on 

the connection between brain activity, neural networks, and behaviour. First pub-

lished in 1949, it became one of the foundational works in the history of ML. As 

mentioned earlier, AI came into being in the 1950s. From Alan Turing’s seminal 

research paper “Computing Machinery and Intelligence” opening with the line, ‘I 

propose to consider the question, “Can machines think?”’ [7], to Arthur Samuel 

developing the preliminary learning process that could be applied to machines 

in 1952 and finally John MaCarthy coining the term “artificial intelligence”, the 

world has been abuzz about how machines can be imbued with information that 

can be interpreted only by the human brain. Figure 2.2 highlights the timeline of 

AI to ML conversion.

    2.2.2  NEURAL NETWORKS 

In 1957 Frank Rosenblatt gave the lowdown for the earliest neural grid for machines –  

the perceptron; this system was able to actually replicate the Homo sapiens brain in 

terms of processing thoughts. In the 1970s ML came up to speed, branching out as 

a subset of AI which helped with pattern analysis and interpretation for machines to 

understand and interpret data. Further, in the 1990s, ML, which had been running on 

derived knowledge, began to take the data-driven approach.
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In 1997 IBM’s Deep Blue defeated the world champion at chess, furthering the 

idea of ML developing into deep learning, which was a term coined by Geoffrey Hin-

ton. Since then, multiple multinational corporates began leveraging this knowledge 

engineering and deploying it to building models that could imitate human emotions 

and intelligence at large. Today ML has taken the world by storm with several use 

cases and applications beyond what could have been thought by the founding fathers 

of AI. Furthermore, research after research has determined that ML still has a long 

way to go and is set to stay.

ML powers a wide range of jobs across several industries, from finance experts 

seeking signals for profitable trades to data security organizations searching for 

viruses. AI algorithms are designed to learn continuously, simulating a virtual per-

sonal assistant, a function they excel at.

  2.2.3  IDEATING MACHINE LEARNING 

The story of ML, once defined by the 1970s, led to its specifications. After the initial 

research into ML, the thought of neural networks took stage, which is essentially 

the principle of intelligent algorithms. Neural networks are framed to replicate the 

human brain. As it is a network of connected pieces, it is known as a neural network. 

Biological nerve systems studies serve as the basis for these components. Put another 

way, neural networks are an attempt to develop machines that, by utilizing com-

ponents that behave like biological neurons, perform similarly to the human brain. 

A neural network’s job is to take an input pattern and turn it into an output pattern. 

Pattern categorization is one of the tasks that a neural network may be trained to 

perform, and it will be thoroughly explained because this idea is somewhat abstract. 

The technique of classifying patterns into groups is known as pattern classification 

[8]. The basic building blocks for neural networks are similar to neurons. These com-

ponents are linked to one another through connections that might change in strength 

according to an algorithm or learning process. To assess its level of activity, each of 

these units independently (in parallel) integrates the data from its synapses [9].

Neural networks led to the development of the perceptron. Resulting as a com-

bination of Hebb’s and Samuel’s model, the perceptron was designed by Cornell 

Aeronautical Laboratory (CAL) to be a machine, not a program. The software was 

then installed and gave rise to the Mark 1 Perceptron instead of the IBM 704. As a 

result, the algorithms and software were portable and machine transferable. Later the 
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  FIGURE 2.2  The AI to ML timeline.
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subsets of ML prospects came into being with the development of the nearest neigh-

bour algorithm, feedforward and backpropagation networks, boosting algorithms, 

and so on. The varieties of algorithms that came into being required a clear catego-

rization under ML.

  2.3  MACHINE LEARNING MODELLING

Before we dive into the types of ML, its categorizations, and the basis for the same, 

we will look at the parameters that define the grouping of ML and lay out the foun-

dation of the various ML algorithms. The key elements of ML rest on three pillars, 

namely: representation, evaluation, and optimization [10]. The foremost deals with 

the what of an ML model’s look and the how of knowledge representation. The sec-

ond works around how good the model is, what its differentiators are, and the eval-

uation benchmarks for the algorithms involved. The last element is related to the 

process of seeking out a good model(s) and thus moving towards how the programs 

are actually generated.

  2.3.1  TYPES OF MACHINE LEARNING 

On the basis of the aforementioned component declaration of ML, the concept itself 

can be broadly categorized into three types: supervised learning, unsupervised 

learning, and reinforcement learning [11]. Let it as well be made clear that as auto-

mated thinking techniques advanced, a fourth category was introduced within ML 

catalogues: semi-supervised learning [12]. We will now try to understand and differ-

entiate the categories. Figure 2.3 shows the different ML subcategories.

   2.3.1.1  Supervised Learning

As the name itself suggests, this model of learning has a supervisor, which we, in 

technical terms, refer to as “labels”. Given a dataset with labels, an ML model can 

be constructed to train itself on the output, and then when given new, fresh data, the 

expectation remains to be able to retrieve the correct label. Information from one 

neural network serves as an instructional signal to change the connection pattern 

in another network through supervised learning. Since the advent of ML, super-

vised learning has developed under the concept that human behavioural patterns are 

formed in infancy based on data – for example, a child is shown a tree and repeatedly 

told, “This is a TREE”; then perhaps the child is shown a car and again is repeatedly 

told, “This is a CAR”; and so on with any number of unknowns that get categorized 

in the brain under a subheading. Essentially, this becomes supervised learning; much 

later, if the child is shown a picture that contains both a tree and a car, he or she will 

be able to identify them, not based on characteristics but based on the labels assigned 

to them. An ML model behaves more or less similarly. Figure  2.4 illustrates the 

supervised learning model.

As a result, the taught network picks up new skills in information processing that 

enable it to accomplish the specific objective or transformation that the instructional 

signal specifies. By doing this, supervised learning effectively and precisely creates 

connection patterns that are not required to be encoded and frequently cannot be. 
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Numerous neural activities are aided in the creation and upkeep of supervised learn-

ing [13]. Supervised learning algorithms are further categorized into classification 

algorithms and regression algorithms.

  2.3.1.2  Unsupervised Learning

Fairly the opposite of supervised learning, unsupervised learning stems from the idea 

that instead of labels being formally available, the ML model must learn to identify 
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  FIGURE 2.4  Supervised learning model.
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  FIGURE 2.3  Machine learning subdivisions.
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and interpret similar features of the elements in a given dataset and then group them 

based on those similarities. The argument put forth is that one, the knowledge incor-

porated into maps or models is provided by the repetition of sensory messages. Then 

a portion of this information can be discovered by looking at the mean, variance, 

and covariance of sensory messages. Let us understand this using the child analogy. 

A child is given the cut-outs of five mathematical figures, two sets each. Say two 

squares, two circles, two triangles, and so on and then is asked to pair them up. The 

child is able to do so by learning the structure and characteristics of the object. Say, 

at a later time, a new square piece is cut out and given to the child; he or she will be 

able to place it with the other squares. Unsupervised learning works similarly. The 

algorithm can understand characteristics and similar patterns, so it knows WHERE 

something goes but does not know WHAT something is. Figure 2.5 depicts the unsu-

pervised learning logical model.

Further, by using this information to build a model of “what usually happens”, 

incoming communications may be automatically compared to it, making it possible 

to spot unexpected differences right away. Finally, the kind of knowledge that goes 

into such a filter is a required precondition for regular learning, and associations with 

the logical functions of the components – rather than just the elements themselves – 

can be formed with a representation of constituents that are independent [14]. Unsu-

pervised learning algorithms are further classified as clustering, association rules, 

and dimensionality reduction algorithms.

  2.3.1.3  Reinforcement Learning

This method of learning is most closely related to the technique that parents use 

in guiding and teaching children. Reinforcement learning mimics a trial-and-error 

method where success results in rewards and failure leads to punishment. Again, let 

us understand this with the child analogy. A few days after understanding trees, cars, 

and shapes, the child is shown a tree; for argument’s sake, let us say that the child 

shouts, “That is a CAR”; the child’s guardian will either scold or give a disapproving 

look and correct him or her. Now had the child said, “That is a TREE”, he or she 

would have gotten an appreciation or a candy. This is almost exactly what reinforce-

ment learning does.

To tackle reinforcement learning challenges, two primary approaches can be pur-

sued. The first would be to investigate through the span of behaviours and identify 

something that works well in the given setting. This is precisely what genetic pro-

gramming and algorithms have adopted as a strategy. The second is to calculate the 

Unlabelled Data ResultsML Model

  FIGURE 2.5  Unsupervised learning logical model.
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utility of acting in the various conditions of the world using statistical and dynamic 

programming approaches [15]. Reinforcement learning algorithms are grouped into 

model-based and model-free algorithms, also referenced as positive and negative 

techniques. Figure 2.6 represents reinforcement learning.

    2.3.1.4  Semi-Supervised Learning

Semi-supervised (SS) learning has a minimal dataset of labelled data and a vast 

set of unlabelled data of the same sort. When the ML model works with the 

determined combination of data and translates the features of labelled data to 

unlabelled data and then predicts the category of a fresh set of data, this results 

in SS learning. Here is the final child analogy: this child is now extra smart. 

He or she is shown only one or two trees and told, “This is a TREE”. The child 

is taken on a walk the next day, where every standing tall structure is brown at 

the bottom and green at the top; now the child is able to stop and say, “TREE”. 

This would be SS learning. Figure 2.7 summarizes a sample of semi-supervised 

learning.

SS learning, which involves concurrently learning a set of disjoint concepts, with 

the learning algorithm only having access to partial concept membership informa-

tion, has now been added to the distribution-independent paradigm of (supervised) 

concept learning. Numerous learnable concept classes have been demonstrated to 

be SS-learnable as well. An intermediate oracle is used to introduce a new learning 

method. To be SS-learnable, enough parameters are provided for a set of concept 

classes [16]. SS learning algorithms can be catalogued as self-training, co-training, 

and graph-based label propagation.
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  FIGURE 2.6  Representation of reinforcement learning.
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  2.4  IMPLEMENTATION OF ML MODELS

We have taken a thorough look at the types and paraments of ML models. There is 

a clear definition in the use case design of the models. This section attempts to dis-

cuss the implementations of supervised and unsupervised algorithms on the UCI 

SECOM dataset. According to McCann and Johnston, a sophisticated, contem-

porary semiconductor manufacturing process is typically continuously observed 

through signal tracking or variables obtained from sensors or process measurement 

sites [17]. In their research, they developed a dataset that holds over 500 varieties of 

data signals that help extract the particularities of semiconductor development. The 

specific monitoring system technically measures the various signals and finally 

leads to a pass or fail in a contained house line testing. The dataset dimensions are 

given in Table 2.1.

The preprocessing of the dataset involved altering the representation and replac-

ing NaN values with the mean/median based on data availability. The passes orig-

inally were represented by −1 and later converted to 1 during the data cleaning 

process; likewise, the fails, then represented by 1 were replaced with 0 to ensure 

the ease of apt classification activation functions. Excess columns were dropped, 

as the dataset is already normalized, and the empty or NaN values are replaced 

with their column-wise mean. The columns with missing values that go beyond the 

acceptable three standard division distances were dropped. Further, the columns 

with univariate values were done away with. The data once divided into parame-

ters and targets was essentially split into partial datasets, one meant for training 

and another for testing. The training parameters were then scaled using sklearn.

preprocessing.MinMaxScaler. Once the data was fit into the scaler, the final step of 

Labelled Data

Prediction:

Equal

ML Model

Test Case

Plus Cross

Partial Labels

  FIGURE 2.7  Sample of semi-supervised learning.
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transformation was performed before the data needed to be run through the various 

models. The dimensions of the dataset as a result of the preprocessing are given in 

Table 2.2.

The dataset once processed underwent six major supervised learning algorithms, 

namely: linear regression, logistic regression (LR), decision tree, random forest, sup-

port vector machines, and K-nearest neighbours. This was followed by eliminating 

the labels and running the dataset under three major unsupervised algorithms. Each 

of the algorithms have been explained and demonstrated in the implementation.

  2.4.1  SUPERVISED LEARNING ALGORITHMS 

As mentioned earlier in the chapter, supervised learning involves a clarity in data 

labels. Here we further dissect supervised learning into classification and regres-

sion. The former involves algorithms that look for methods that can actually help 

categorize the dataset according to the subset factors affecting it. Applying a clas-

sification approach involves grouping the data according to the knowledge that the 

computer program has gained from running repeatedly through the training dataset. 

Regression, on the other hand, undertakes the task of finding correlations between 

independent and dependent variables. Some of the classification algorithms are 

k-nearest neighbour, naive bayes, random forest, LR, etc. And some of the regres-

sion algorithms include decision tree regression, principal component, support vector 

regression, linear regression, and so on. Before we dive into the algorithms, let us 

understand that all systems will use a confusion matrix as the final deciding element 

for accuracy for the classification models. Four parts make up a confusion matrix, 

and they could stand for the following: true positives, which are actual truths that 

are predicted as true; false negatives, when actual truths are predicted as false; true 

negatives, where actually false vales are predicted as false too; false positives, when 

actually false values get predicted as true. The distinction between true positives and 

TABLE 2.1

Original Dimensions

Features Test Cases Passes Fails

 592  1,567  1,463  104

TABLE 2.2

Modified Dimensions

Parameters Target Training Testing

 443  2  1,175 (75%)  392 (25%)
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true negatives is what is intended to increase so as to influence the accuracy [18]. 

Therefore, the accuracy is calculated as follows:

 
TP TN

TP FP FN TN

+
+ + +

 (2.1)

Further, for the regression models, we will be using the mean absolute error (MAE) and 

mean squared error (MSE) determinants. The two values are calculated as follows:
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In Equations 2.2 and 2.3, n is the total number of instances, y
i
 is the predicted value 

of instance i, and ŷ
i
 is the real target value of i. The lower the value of MAE and 

MSE, the better the model [19].

Within all the supervised learning and unsupervised learning algorithms alike, 

the dataset variation over testing and training, the ratio of balance, and the type of 

scaling affect the accuracy of the data. For instance, within the classification LR, 

StandardScaler gives an accuracy of 0.82, while the MinMaxScaler raises the accu-

racy to 0.93, which is quite the accuracy jump, given the use of the same algorithm.

  2.4.1.1  Linear Regression

A fundamental statistical method for figuring out the relationship between two con-

tinuous variables is linear regression. It assumes that there is a straight line between 

the independent and dependent variables. An unknown value can be predicted using 

linear regression analysis based on an analogous unknown value [20]. The variable 

that a researcher hopes to predict is known as the dependent variable. The variable 

that is used to predict the value of the other variable is known as the independent 

variable. Figure 2.8 illustrates the accuracy for linear regression.

In Figure 2.8, two terms help determine the accuracy; MAE and MSE are the 

accuracy calculators for regression models. The closer the two values are to 0, the 

Mean absolute error: 0.21537161740511412 

Mean squared error: 0.20304747671519993

  FIGURE 2.8  Accuracy for linear regression.
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better the model. The main goal of LR is in finding the line that fits the data in 

the best possible way or, in the case of many predictors, where the hyperplane is 

involved. The sum of squared residuals, or errors, between the observed and pre-

dicted values is minimized to achieve this.

  2.4.1.2  Logistic Regression

Logistic regression is a statistical model that allows for the division of data into 

discrete groups by looking at the correlation between one or more independent vari-

ables [21]. Predictive modelling, in which the model determines the mathematical 

probability of an occurrence falling into a specific category or not, frequently uses 

it. Logistic regression is applied to binary classification tasks in which there are two 

possible outcomes for a categorical outcome variable. It does this by fitting data to a 

logistic curve, which estimates the likelihood that an event will occur. The founda-

tion of LR is the assumption of a linear relationship between the predictors and the 

outcome variable’s log odds. Figure 2.9 explains the confusion matrix for LR.

  FIGURE 2.9  Confusion matrix for logistic regression.
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According to the confusion matrix given in Figure 2.9, the 365 true positives give 

a clear idea of the efficiency of the model prediction, which in actuality produces 

an accuracy of 0.934, so additionally, it makes the assumption that each observation 

stands alone.

  2.4.1.3  Decision Tree Regressor

Now the decision tree regressor (DTR) is essentially a supervised learning tech-

nique which is nonparametric in nature and used for regression primarily, but it also 

accommodates classification. The objective is to build a model that, by utilizing basic 

decision rules deduced from the data features, predicts the value of a target variable 

[22]. The constant approximation of a broken subset can be assumed as donning the 

structure of a tree. Now DTR makes relevant predictions on future data by using an 

object’s qualities to train a model vis-à-vis the structure of a tree. And this reiterated 

process produces meaningful continuous output. Continuous output denotes a result 

or output that is not discrete – that is, not solely represented by a known, discrete 

collection of numbers or values. Figure 2.10 describes the accuracy for the decision 

tree classifier.

In Figure  2.10, the MAE and MSE help evaluate the model’s accuracy, which 

is comparatively a good one, due to other model parameter tunings. Fine-tuning a 

model essentially involves the alteration of values given to the parameters, such as 

random_state, test_size, criterion, max_depth, etc.

  2.4.1.4  Random Forest Classifier

Random forests are very useful for managing complicated and sizable datasets and 

high-dimensional feature spaces and offering insights into the significance of indi-

vidual features. It can reduce overfitting and retain a high level of predicted accuracy 

[23]. Figure 2.11 explains the confusion matrix for the random forest classifier.

Accuracy rises up to 0.934 with 513 true positive values, which is comparatively 

higher than the previous classification and regression algorithm models.

  2.4.1.5  Support Vector Machines

The primary goal in the support vector machine (SVM) algorithm is to detect the best 

hyperplane in all but an N-dimensional space. This n-D space then may be used for 

Mean absolute error: 0.12526539278131635 

Mean squared error: 0.12526539278131635

  FIGURE 2.10  Accuracy for decision tree classifier.
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the purpose of dividing data points into multifaceted feature space groups [24]. The 

hyperplane makes certain efforts to preserve a buffer that needs to be large enough 

to accommodate antithetical distances between the points that are the closest within 

various subsets of divided classes. Figure 2.12 depicts the confusion matrix for SVM.

The classifier gives a peaking accuracy of 94.64% subject to similar data distribu-

tions along with the tuning parameter for the SVM model.

  2.4.1.6  K -Nearest Neighbours

The design of the K-nearest neighbours (KNN) algorithm is founded on a basic dis-

tance mapping to locate a set number of closest neighbours, K. Using any predefined 

distance metric, such as the Euclidean distance or even the Manhattan distance, is a 

common approach in defining the vicinity of a given data point. The advantageous 

  FIGURE 2.11  Confusion matrix for random forest classifier.



31Machine Learning

elect or the most commonly closest of the K neighbours are then used to decide and 

assign the class or, in some cases, even the value of the data element [25]. Using this 

method enables the set of rules followed to anticipate outcomes based on the local 

formation of the data and adjust to various precedents. Figure 2.13 highlights the 

confusion matrix for KNN.

The matrix in Figure 2.13 produces an accuracy of 0.938 with NULL values for 

false positives and true negatives. Next, we take a look at the actual data distribution 

in the K-neighbour classifier. In Figure 2.14, the distance mapping of the data points 

has been done using Euclidean distance mapping. The score scale ranges from 0 to 1, 

and the intensity of the colour indicates the confidence of the model for assigning that 

score. Furthermore, the shapes denote the true labels from the dataset. Figure 2.14 

shows the KNN map for predictions by the model.

  FIGURE 2.12  Confusion matrix for support vector machine.



32 Machine Learning for Semiconductor Materials

  FIGURE 2.13  Confusion matrix for K -nearest neighbours.

  FIGURE 2.14  KNN map for predictions by the model.
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     2.4.2  UNSUPERVISED LEARNING ALGORITHMS 

Once again, as mentioned earlier in the chapter, unsupervised learning involves a lack 

of data labels for the observations in the dataset; the resultant is a common clause 

grouping. Unsupervised learning too can be subdivided into three categories: cluster-

ing, association rules, and dimensionality reduction. For clustering, unlabelled data 

can be examined and divided into groups according to similarities or differences. 

The uncategorized data is divided into naturally occurring groups by identifying 

recurring patterns or similar structures. Second, the rule-based method called asso-

ciation rule mining can be used to find intriguing connections between data pieces in 

big databases. In unsupervised learning algorithms, correlations and co-occurrences 

within the data as well as the various connections between data objects are found by 

searching for frequent if-then linkages, also known as rules. Finally, dimensionality 

reduction is a method of unsupervised learning that lowers a dataset’s feature count 

or dimensions. It reduces the amount of random or unnecessary characteristics in the 

dataset by extracting key features.

  2.4.2.1  K-Means Clustering

K-means clustering is an unsupervised learning approach in which unlabelled data is 

made up or segregated into several clusters. The K in K-means is to specify the num-

ber of predefined clusters that need to be formed during the process. It simply means 

that in case K = 2, it will result in two clusters; in case K = 3, it will be three clusters, 

and so on. This algorithm allows us to organize data into separate groups and has the 

advantage of nearly automatically finding the categories of groups by itself from the 

unlabelled dataset without a need for training [26]. Each cluster in this technique has 

a centroid, generally the mean of the data points, attached to it according to centroid 

theory. Combining the distance of each point with its respective cluster executes the 

basic objective of this algorithm. Figure 2.15 depicts K-means clustering.

Unfortunately, the accuracy is as low as 44% using the unsupervised learning 

algorithm. For the investigation of the ideal number of clusters, a technique that is 

very commonly is the elbow method. The WCSS value is used in this procedure. 

Inside cluster sum of squares, or WCSS, is a statistical measure that characterizes the 

total variation inside a cluster. We can use any of the precalculated methods for dis-

tance mapping, such as the Manhattan or Euclidean distance, to measure the distance 

between data points and any corresponding centroid.

The silhouette coefficient, also called the silhouette score K-means, measures how 

similar a data point is within a cluster or how cohesive it is in relation to other clus-

ters, which is known as separation [27]. Compared to the former, silhouette provides 

greater precision.

  2.4.2.2  Hierarchical Clustering

In this algorithm, we start by treating each individual data point as an independent 

cluster of its own; then these are combined in twos and threes and so on to finally 

form a single mother cluster. The dendrogram is the structure that results from devel-

oping the hierarchy of clusters in this algorithm in the shape of a tree. The data-

sets are grouped into clusters using a bottom-up methodology. This means that the 
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algorithm clusters those that are closest [28]. And to expand, this process is contin-

ued until every cluster is combined to form a single cluster that houses every data-

set. Contrary to partition-based clustering, agglomerative clustering forms a sourced 

merge tree that is identified of binary characteristics as it moves from the nodes that 

are the least – that is, the leaves containing data pieces all the way to the root, which 

essentially holds the entire dataset. Figure 2.16 highlights the hierarchical clustering 

dendrogram and Figure 2.17 depicts the principal component analysis.

    2.4.2.3  Principal Component Analysis

In principal component analysis (PCA), technically, the aim is dimensionality reduc-

tion following the creation of some new variables known as principal components; 

these originate by blending or merging the available original unknowns in a simple 

linear fashion. In essence, most of the facts included in the absolute variables are 

compressed or flattened into the preliminary components as a result of ex post facto 

combinations, thus giving some unknowns that are in no way correlated, and these 

  FIGURE 2.15  K -means clustering using the elbow method and the silhouette score method.
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are called the principal components. The number of characteristics or dimensions 

in a dataset exponentially increases the amount of data required to get a statistically 

meaningful result. Overfitting, protracted computation delays, and a decline in the 

accuracy of ML models are the possible outcomes of this [29]. The “curse of dimen-

sionality” refers to the problems that can arise while working with high-dimensional 

data. PCA is therefore necessary.

      2.5  ANALYSIS OF ALGORITHMS

All the study so far has revealed much in terms of probable use cases in the field of 

electrical sciences, especially where semiconductor materials are concerned. Super-

vised learning methodologies and algorithms give much more reliable outcomes given 

that there is enough labelled data initially available for model training. Antithetical to 

this, unlabelled data leads to successful work towards feature extraction and analysis 

using unsupervised learning techniques. Figure 2.18 shows an outline of the data range.

  FIGURE 2.16  Hierarchical clustering dendrogram.
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In Figure 2.18, data fixations after each level of preprocessing have been defined. 

The paraments are subject to the data cleaning process applied column-wise, and the 

test cases change only as a result of data split, else the data length remains consistent. 

This essentially means that there is no data loss in the analysis of the signal collec-

tions. Variation refers to the alteration of data based on level-wise flow; it depicts the 

difference in the form and dimension of data from the previous preprocessing.

Supervised learning algorithms are a category of ML techniques where the model 

is trained on labelled data, meaning the input data has corresponding output labels. 

We have seen that linear regression is used to predict continuous numeric values. 

Logistic regression predicts the probability of a binary outcome. Decision trees 

help make decisions based on a set of if-else conditions derived from the training 

data. Random forest is an ensemble method that combines multiple decision trees to 

improve predictive accuracy and reduce overfitting. SVM finds the optimal hyper-

plane that separates classes in high-dimensional space. KNN predicts the value of a 

new data point based on the majority class of its K-nearest neighbours. Then there is 

  FIGURE 2.17  Principal component analysis.
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naive bayes, which uses Bayes’s theorem to predict the probability of a class given 

input features. Other than these, gradient boosting machines combine weak learners 

sequentially to improve predictive performance. Furthermore, neural networks learn 

complex patterns and relationships in data through layers of interconnected nodes 

(neurons).

Unsupervised learning algorithms are used to find patterns and structures in 

data where the data is not labelled or categorized. Here’s a summary of some pop-

ular unsupervised learning algorithms: K-means divides data into clusters based 

on similarity. Hierarchical clustering starts with each point as its cluster and recur-

sively merges clusters based on distance until all points belong to a single cluster. 

PCA reduces the dimensionality of data while preserving its variance. We also 

have t-distributed stochastic neighbour embedding; density-based spatial cluster-

ing of applications with noise (DBSCAN); and association rule learning algorithms 

such as a priori algorithm, which identifies frequent item sets in transactional data; 

then there are anomaly detection algorithms and generative models.

Finally, as we have seen, in the case of supervised learning algorithms, the accu-

racy scores are higher as compared to unsupervised learning algorithms.

  FIGURE 2.18  Dimensions of data over preprocessing.
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  2.6  MODELLING ML FOR ELECTRICAL SCIENCES

AI has revolutionized established approaches, optimized systems, and stimulated inno-

vation in the electrical sciences. This represents a paradigm shift. Innovative applications 

such as intelligent sensors for condition monitoring, autonomous robots for maintenance 

duties, and ML algorithms for renewable energy forecasts are made possible by AI-driven 

research in the electrical sciences. These cutting-edge uses not only progress the profes-

sion but also help solve societal issues and promote economic expansion.

While ML can help humans become more intelligent in specific areas, including 

decision-making and pattern identification, its ability to greatly increase human intel-

ligence in general is still constrained by inherent cognitive distinctions and moral con-

siderations. Where electrical sciences are concerned, ML models can go a long way in 

assisting the development of efficient objects and devices that can garner a safer future 

where resource wastage is reduced while reuse and life span are increased.

Choosing a platform can be difficult since the incorrect one can increase expenses 

or restrict the use of other useful tools or technologies. There is frequently a propen-

sity to believe that a system with more features is superior when evaluating several 

problem statements to choose an ML model. Perhaps, but first researchers should 

consider what the ML platform will do with their data and the resulting output. 

Which features are essential to achieving the necessary ML capabilities? The func-

tionality of an entire system could be doomed by a single missing feature.

  2.7  ETHICS AND SOCIETAL IMPACT

In the entire technical analysis of the core ML algorithm design, we must address 

this one aspect to aid further studies. It goes without saying that man fears what 

he cannot control. Where automated intelligence is concerned, even in the sphere 

of electrical sciences, the ethical considerations are as important as the impacts of 

ML on society. Let us quickly dive into the ethical implications; for starters, the 

bias and fairness of ML models are flighty, based on the data they are trained on. 

Then there is the concern of the ML black box and the accountability required to 

vindicate any algorithm. Moving to the core area addressed in this book, resource 

extraction and sustainability are fundamental to the success of ML for semicon-

ductor materials. Finally, regarding the societal impact, keeping in mind the eco-

nomic factor, one must ensure that research or subsequent experiments in this are 

thrive, but without thwarting growth, in terms of geopolitics, affordability, and 

regulatory frameworks. It is good to not lose sight of the fact that the motive of ML 

is to allay the digital divide and not exacerbate it.

   REFERENCES

 1.   El   Naqa  ,  I.  ,   Murphy ,  M.J  . ( 2015 ).  What is Machine Learning? In: El Naqa, I . , Li, R., Mur-
phy, M . (eds.),  Machine Learning in Radiation Oncology  .  Springer, Cham .   https://doi.
org/10.1007/978-3-319-18305-3_1 . 

 2.   Carleo ,   G.,    Cirac ,   I.,    Cranmer ,   K.,    Daudet ,   L.,    Schuld ,   M.,    Tishby ,   N.,    Vogt-Maranto ,   L.,  
   Zdeborova ,   L . ( 2019 ).  Machine Learning and the Physical Sciences .  Reviews of Modern  

Physics  ,  91 ( 4 ).  American Physical Society .   https://doi.org/10.1103/RevModPhys.91.045002 . 

https://doi.org/10.1007/978-3-319-18305-3_1
https://doi.org/10.1007/978-3-319-18305-3_1
https://doi.org/10.1103/RevModPhys.91.045002


39Machine Learning

  3.   Kudelina ,  K  .,   Vaimann ,  T  .,   Asad ,  B  .,   Rassõlkin ,  A  .,   Kallaste ,  A  .,   Demidova ,  G  . ( 2021 ). 
 Trends and Challenges in Intelligent Condition Monitoring of Electrical Machines 
Using Machine Learning .  Applied Sciences  ,  11 ( 6 ), 2761.   https://doi.org/10.3390/ 
app11062761 . 

  4.   Xu ,   Y.,    Liu ,   X. ,   Cao ,   X. ,   Huang ,   C. ,   Liu ,   E. ,   Qian ,   S. ,   Liu ,   X. ,   Wu ,   Y. ,   Dong ,   F. ,   Qiu ,  
  C-W. ,   Qiu ,   J. ,   Hua ,   K. ,   Su ,   W. ,   Wu ,   J. ,   Xu ,   H. ,   Han ,   Yong ,   F. ,   Chenguang ,   Y. ,   Zhigang ,   L , 
  Miao ,   R. ,   Ronald ,   D. ,   Sabine ,   V. ,   Marko ,   K. ,   Fredrick ,   Z. ,   Ze ,   Z. ,   Lifu ,   Z. ,   Taolan ,   D. ,   Ji , 
  Y. ,   Jialiang ,   L. ,   Liang ,   L. ,   Ming ,   L. ,   Zhaofeng ,   A. ,   Tao ,   Z. ,   Bin ,   H. ,   Xiao ,   C. ,   Shan ,   L. , 
  Xiaohong ,   Z. ,   Wei ,   L. ,   James   P  .,  Tiedje, James M . , Wang, Q., An, Z., Wang, F., Zhang, L., 
Huang, T., Lu, C., Cai, Z., Wang, F., Zhang, J . ( 2021 ).  Artificial Intelligence: A Powerful 
Paradigm for Scientific Research .  The Innovation  ,  2 ( 4 ), 100179. ISSN  2666-6758 ,   https://
doi.org/10.1016/j.xinn.2021.100179 . 

  5.   Xue,   M  .,   Zhu ,  C  . ( 2009 ).  A Study and Application on Machine Learning of Artificial Intell-
ligence .  2009 International Joint Conference on Artificial Intelligence  , Hainan, China,  
pp.  272 – 274 .   https://doi.org/10.1109/JCAI.2009.55 . 

  6.   McCulloch ,  W.S  .,   Pitts ,  W  . ( 1943 ).  A Logical Calculus of the Ideas Immanent in Nerv-
ous Activity .  Bulletin of Mathematical Biophysics  , 5,  115 – 133 .   https://doi.org/10.1007/
BF02478259 . 

  7.   Turing ,  A.M  . ( 2009 ).  Computing Machinery and Intelligence . In:  Epstein ,  R. ,  Rob-
erts ,  G. ,  Beber ,  G . (eds.),  Parsing the Turing Test  .  Springer, Dordrecht .   https://doi.
org/10.1007/978-1-4020-6710-5_3 . 

  8.   Picton ,  P  . ( 1994 ).  What is a Neural Network ? In:  Introduction to Neural Net-

works  .  Palgrave, London . 978-0-333-61832-5 978-1-349-13530-1,   https://doi.
org/10.1007/978-1-349-13530-1_1 . 

  9.   Abdi ,  H  . ( 1994 ).  A Neural Network Primer .  Journal of Biological Systems  , 2.   https://doi.
org/10.1142/S0218339094000179 . 

 10.   Langley ,  P  . ( 1996 ).  Elements of Machine Learning  . Morgan Kaufmann.
 11.   Shanahan ,  J.G  . ( 2000 ).  Machine Learning.  In:  Soft Computing for Knowledge Discov-

ery. The Springer International Series in Engineering and Computer Science   (Vol.  570) . 
 Springer, Boston, MA .   https://doi.org/10.1007/978-1-4615-4335-0_7 . 

 12.  Board, R., Pitt, L . ( 1989 ).  Semi-Supervised Learning .  Machine Learning  , 4,  41 – 65 .   https://
doi.org/10.1007/BF00114803 . 

 13.   Knudsen ,  E.I  . ( 1994 ).  Supervised Learning in the Brain .  The Journal of Neuroscience  , 
 14 ( 7 ), 3985.

 14 .   Barlow ,  H.B  . ( 1989 ).  Unsupervised Learning .  Neural Computation  ,  1 ( 3 ),  295 – 311 .   https://
doi.org/10.1162/neco.1989.1.3.295 . 

 15.   Kaelbling ,  L.P  .,   Littman ,  M.L  .,   Moore ,  A.W  . ( 1996 ).  Reinforcement Learning:  
A Survey .  Journal of Artificial Intelligence Research  , 4,  237 – 285 .   https://doi.
org/10.1613/jair.301 . 

 16.  Board, R., Pitt, L . ( 1989 ).  Semi-Supervised Learning .  Machine Learning  , 4,  41 – 65 .   https://
doi.org/10.1007/BF00114803 . 

 17.   McCann ,  M.  ,   Johnston ,  A  . ( 2008 ).  SECOM. UCI Machine Learning Repository  .   https: 
//doi.org/10.24432/C54305 . 

 18.   Ting ,  K.M  . ( 2017 ).  Confusion Matrix.  In:  Sammut ,  C. ,  Webb ,  G.I.  (eds.),  Encyclo-

pedia of Machine Learning and Data Mining  .  Springer, Boston, MA .   https://doi.
org/10.1007/978-1-4899-7687-1_50 . 

 19 .   Pal ,   R ., ( 2017 ).   Chapter 4  – Validation Methodologies . In:  Pal ,  Ranadip  (ed.),  Predictive 

Modeling of Drug Sensitivity   (pp.  83 – 107 ).  Academic Press . ISBN  9780128052747 , 
  https://doi.org/10.1016/B978-0-12-805274-7.00004-X . 

 20.   Weisberg ,  S  . ( 2005 ).  Applied Linear Regression   (Vol.  528 ). John Wiley & Sons.
 21.   Schein ,  A.I  .,   Ungar ,  L.H  . ( 2007 ).  Active Learning for Logistic Regression: An Evaluation . 

 Machine Learning  , 68,  235 – 265 .   https://doi.org/10.1007/s10994-007-5019-5 . 

https://doi.org/10.3390/app11062761
https://doi.org/10.3390/app11062761
https://doi.org/10.1016/j.xinn.2021.100179
https://doi.org/10.1016/j.xinn.2021.100179
https://doi.org/10.1109/JCAI.2009.55
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/978-1-4020-6710-5_3
https://doi.org/10.1007/978-1-4020-6710-5_3
https://doi.org/10.1007/978-1-349-13530-1_1
https://doi.org/10.1007/978-1-349-13530-1_1
https://doi.org/10.1142/S0218339094000179
https://doi.org/10.1142/S0218339094000179
https://doi.org/10.1007/978-1-4615-4335-0_7
https://doi.org/10.1007/BF00114803
https://doi.org/10.1007/BF00114803
https://doi.org/10.1162/neco.1989.1.3.295
https://doi.org/10.1162/neco.1989.1.3.295
https://doi.org/10.1613/jair.301
https://doi.org/10.1613/jair.301
https://doi.org/10.1007/BF00114803
https://doi.org/10.1007/BF00114803
https://doi.org/10.24432/C54305
https://doi.org/10.24432/C54305
https://doi.org/10.1007/978-1-4899-7687-1_50
https://doi.org/10.1007/978-1-4899-7687-1_50
https://doi.org/10.1016/B978-0-12-805274-7.00004-X
https://doi.org/10.1007/s10994-007-5019-5


40 Machine Learning for Semiconductor Materials

 22 .   Kushwah ,   J. S. ,   Kumar ,   A. ,   Patel ,   S. ,   Soni ,   R. ,   Gawande ,   A. , ( 2022 ).  Comparative Study 
of Regressor and Classifier with Decision Tree Using Modern Tools .  Materials Today: 

Proceedings  ,  56 ( Part 6 ),  3571 – 3576 . ISSN  2214-7853 ,   https://doi.org/10.1016/j.
matpr.2021.11.635 . 

 23.   Liu ,  Y  .,   Wang ,  Y  .,   Zhang ,  J  . ( 2012 ).  New Machine Learning Algorithm: Random Forest . In: 
 Liu ,  B. ,  Ma ,  M. ,  Chang ,  J . (eds.),  Information Computing and Applications. ICICA 2012. 

Lecture Notes in Computer Science   (Vol.  7473) .  Springer, Berlin, Heidelberg .   https://doi.
org/10.1007/978-3-642-34062-8_32 . 

 24 .   Hearst ,  M.A  .,   Dumais ,  S.T  .,   Osuna ,  E  .,   Platt ,  J  .,   Scholkopf ,  B  . ( 1998 ,  July  –August) .  Sup-
port Vector Machines .  IEEE Intelligent Systems and their Applications  ,  13 ( 4 ),  18 – 28 . 
  https://doi.org/10.1109/5254.708428 . 

 25.   Guo ,  G  .,   Wang ,  H  .,   Bell ,  D  .,   Bi ,  Y  .,   Greer ,  K  . ( 2003 ).  KNN Model-Based Approach 
in Classification . In:  Meersman ,  R. ,  Tari ,  Z. ,  Schmidt ,  D.C.  (eds.),  On the Move to 

Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE. OTM 2003. Lec-

ture Notes in Computer Science   (Vol.  2888 ).  Springer, Berlin, Heidelberg .   https://doi.
org/10.1007/978-3-540-39964-3_62 . 

 26 .   Na ,  S  .,   Xumin ,  L  .,   Yong ,  G  . ( 2010 ).  Research on k-Means Clustering Algorithm: An 
Improved k-Means Clustering Algorithm .  2010 Third International Symposium on Intelli-

gent Information Technology and Security Informatics  , Jian, China, pp.  63 – 67 .   https://doi.
org/10.1109/IITSI.2010.74 . 

 27 .   Shahapure ,  K.R  .,   Nicholas ,  C  . ( 2020 ).  Cluster Quality Analysis Using Silhouette Score . 
 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA)  , 
Sydney, NSW, Australia, pp.  747 – 748 .   https://doi.org/10.1109/DSAA49011.2020.00096 . 

 28.   Nielsen ,  F  . ( 2016 ).  Hierarchical Clustering.  In:  Introduction to HPC with MPI for Data 

Science. Undergraduate Topics in Computer Science  .  Springer, Cham .   https://doi.
org/10.1007/978-3-319-21903-5_8 . 

 29 .   Abdi ,   H. ,   Williams ,   L.   J  . ( 2010 ,  July  –August) .  Principal Component Analysis .  WIREs 

Computational Statistics  ,  2 ( 4 ),  433 – 459 .   https://doi.org/10.1002/wics.101 .     

https://doi.org/10.1016/j.matpr.2021.11.635
https://doi.org/10.1016/j.matpr.2021.11.635
https://doi.org/10.1007/978-3-642-34062-8_32
https://doi.org/10.1007/978-3-642-34062-8_32
https://doi.org/10.1109/5254.708428
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1109/IITSI.2010.74
https://doi.org/10.1109/IITSI.2010.74
https://doi.org/10.1109/DSAA49011.2020.00096
https://doi.org/10.1007/978-3-319-21903-5_8
https://doi.org/10.1007/978-3-319-21903-5_8
https://doi.org/10.1002/wics.101


DOI: 10.1201/9781003508304-3 41

 Fault Detection in 

Semiconductor 

Manufacturing  
 A Classification Analysis 

of the SECOM Dataset

Vanshika Jain, Rashmi Gupta, Neeraj Gupta and 
Prashant Kumar

  3.1  INTRODUCTION

In the cut-throat world of semiconductors, the efficiency and reliability of the 

manufacturing process are key factors. The production of semiconductors entails 

a sequence of complex procedures, each with the potential to introduce flaws that 

impact the yield or the percentage of products that meet quality benchmarks. Opti-

mizing yield is vital since it directly affects the cost, quality, and overall profitability 

of semiconductor devices. Detecting and resolving problems during the manufactur-

ing stage can assist in reducing waste, improving production efficiency, and averting 

the release of defective products.

The SECOM dataset has been thoroughly researched in the area of identifying 

and categorizing faults. It consists of data gathered from sensors used in the pro-

duction process. Each record in the dataset captures a moment in time of different 

sensor measurements along with a tag indicating whether a yield defect is pres-

ent or not. With over 1,500 instances and more than 590 attributes, this dataset 

presents challenges but is highly beneficial for creating and testing algorithms for 

defect detection. Examining this dataset can offer valuable insights into the causes 

of yield problems and assist in building predictive models for spotting faults at an 

early stage.

The focus of this section is to explore the SECOM dataset specifically for iden-

tifying yield defects through the use of classification algorithms. The main goals 

are to examine and preprocess the SECOM dataset, perform a thorough exploratory 

data analysis, assess and implement various classification algorithms, evaluate their 

effectiveness, and analyse the outcomes. Accomplishing these goals will highlight 

how sophisticated data analysis and machine learning methods can improve defect 

detection in semiconductor manufacturing processes, leading to better yield and 

operational efficiency.

      3
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  3.2  IMPORTANCE OF YIELD OPTIMIZATION

In the semiconductor manufacturing sector, yield optimization plays a crucial role in 

determining the overall productivity, profitability, and cost-effectiveness of produc-

tion operations. Here is a thorough analysis of its significance:

 a. Economic Effect: Yield directly influences production expenses. Higher 

yield rates reduce the cost per unit, as a larger percentage of manufactured 

units meets quality standards. Conversely, lower yields lead to increased 

costs due to waste and rework. By optimizing yield, businesses can signifi-

cantly boost their profit margins and gain a competitive edge in the market.

   b. Efficiency of Resources:  Yield optimization encourages the use of resources 

such as labour, materials, and energy. Fewer defects result in less material 

waste and reduced rework means conserving resources and minimizing the 

environmental impact of the manufacturing process.

   c. Ensuring Quality:  Yield optimization ensures a greater proportion of prod-

ucts meets quality and reliability standards. This is particularly critical in the 

semiconductor industry where product failures can significantly affect the 

performance and safety of electronic devices.

   d. Contentment of the Client:  Better yields are associated with more con-

sistent and high-quality products, which increases customer satisfaction. 

Reliable goods promote long-term connections and increase consumer trust, 

which support ongoing corporate success.

   e. Advantage against Competition:  Companies that achieve yields in the 

fast-moving semiconductor sector can offer products at competitive prices 

without conceding on quality. This capability allows businesses to capture a 

market share, providing them with a significant competitive advantage.

   f. R&D and Innovation:  Yield optimization enables the reallocation of 

resources towards research and development (R&D) initiatives. By mini-

mizing losses and inefficiencies, companies can channel more funds towards 

advancements in technology and processes that enhance their product offer-

ings and strengthen their competitive position.

   g. Control of Risks:  High yields lessen the risk involved in production. When 

fault rates are lower, recalls and warranty claims, which can be costly and 

harm a company’s reputation, are less frequent. Optimizing yields contrib-

utes to a more resilient and consistent production process.

   h. Stability of the Supply Chain:  Improving yields enhances the reliability 

of the supply chain. Steady production rates ensure fewer interruptions, 

allowing for better scheduling and communication with suppliers and cli-

ents. This consistency is crucial for maintaining supplier relationships and 

meeting delivery schedules.

   i. Adherence to Regulations:  Adhering to regulations is crucial in the semi-

conductor industry. Consistent quality is necessary to meet regulatory 

requirements and avoid issues. Yield optimization plays an important role in 

achieving this.
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 j. Progress in Technology: Leveraging technologies such as intelligence, 

machine learning, and data analytics is often essential for optimizing yields. 

These technologies not only boost yields but also drive overall technologi-

cal advancement within the company, positioning it as an innovator in the 

field.

In short, maximizing yield in semiconductor production is vital for maintaining a 

stable supply chain, meeting regulatory standards, fostering innovation, ensuring 

cost-effectiveness, conserving resources, upholding quality control, enhancing cus-

tomer satisfaction, gaining a competitive edge, and driving technological progress. 

By prioritizing yield optimization, companies can enhance their efficiency and posi-

tion in the market significantly.

  3.3  COMMON ISSUES AND FAULTS AFFECTING YIELD

The yield in semiconductor manufacturing can be significantly affected by common 

issues and mistakes, leading to increased production costs and decreased efficiency. 

One of the key challenges is the presence of impurities or irregularities in materials 

like silicon wafers, which can result in defects in the final products. For instance, 

impurities can cause variations in hardness that impact the overall quality of semi-

conductor devices. Another crucial factor is the consistency of the manufacturing 

process. Even slight fluctuations in temperature, pressure, or chemical concentrations 

can lead to irregularities and defects in semiconductor devices. These variations can 

occur at various stages of the manufacturing process, such as wafer production, 

wafer testing, assembly or packaging, and final testing, each presenting its own set of 

opportunities and challenges [1].

When machinery malfunctions, it can lead to faulty components or an inability 

to maintain the precise conditions necessary for high-quality production, resulting 

in a reduced output. The situation can be exacerbated by the complexity and cost of 

equipment like advanced lithography machines, making maintenance and replace-

ment difficult. Even trace amounts of contamination from substances or particles 

in a cleanroom setting can adversely affect the quality of semiconductor devices. 

This contamination can occur during various manufacturing stages, such as doping, 

etching, and deposition, and can be challenging to detect and eliminate. If the design 

deviates from performance standards, defects in the semiconductor circuits or layout 

could lead to failures and impact productivity. These issues can be challenging to 

identify and rectify, requiring diagnostic approaches.

Defects in the production process can be caused by errors such as improper equip-

ment setup or handling. To minimize this risk, operators can be trained rigorously, 

and quality control measures can be implemented to ensure adherence to standards 

and protocols. Moreover, insufficient testing and inspection procedures may overlook 

defects in a product at an early stage, allowing it to proceed further on the production 

line and reducing overall output. This highlights the importance of having robust 

quality control systems and advanced diagnostic techniques to minimize errors and 

optimize semiconductor manufacturing yield. Last, as production equipment ages 
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and wears down over time, its performance can decline, impacting output quality 

and consistency. Regular maintenance upgrades and equipment replacements can 

address this issue by ensuring that machinery continues to operate with precise spec-

ifications [2].

To tackle these challenges in semiconductor production, stringent quality con-

trol protocols, continuous monitoring, and advanced diagnostic techniques are 

essential. Companies like Brewer Science are adopting approaches such as metrol-

ogy and fingerprinting to reduce material flaws and contaminants, ensuring semi-

conductor devices with improved yield, performance, consistency, and reliability. 

Addressing these issues requires a strategy that encompasses quality control mea-

sures, regular oversight of manufacturing conditions, routine maintenance, and 

comprehensive testing procedures. Additionally, advanced diagnostic methods can 

be employed to identify and resolve issues affecting yield, boosting the efficiency 

and reliability of the semiconductor manufacturing process. Notable examples 

of these methods include monitoring systems and machine learning–driven fault 

detection.

  3.4  BACKGROUND OF THE SECOM DATASET

A dataset that is commonly used for detecting and classifying defects in semiconduc-

tor manufacturing R&D is the SECOM dataset. This dataset is derived from a semi-

conductor manufacturing process where sensors collect several types of data related 

to the production of semiconductor devices. The SECOM project aims to improve 

knowledge and optimize manufacturing processes in the semiconductor industry to 

make this dataset accessible.

The dataset consists of readings obtained at different stages of the production 

process. These readings encompass numerous factors, such as pressure, temperature, 

chemical concentrations, and other variables. To provide an overview of the indus-

trial setting, these measurements are taken at intervals.

In the structured data, each entry corresponds to a batch or production run of 

semiconductor devices. The dataset includes recorded sensor readings for each 

entry along with a label indicating whether a defect was detected in the yield for 

that particular batch. This label is crucial for training classification models, as it 

provides the target variable that algorithms aim to predict. To facilitate analysis, 

the dataset is typically divided into segments such as training and testing subsets. 

Machine learning models are developed and fine-tuned using the training set, and 

their performance on previously unseen data is evaluated using the testing set. 

This division allows researchers to assess how well their models generalize to new, 

untested datasets.

The SECOM dataset provides insights into the manufacturing process, capturing 

both routine and challenging scenarios. This makes it valuable for developing and 

accessing algorithms for fault detection. By leveraging this dataset, researchers can 

employ machine learning methods, such as anomaly detection and classification, to 

uncover patterns associated with issues and enhance the precision of their predic-

tions. Overall, the SECOM dataset serves as a resource for refining defect detection 

methods in the semiconductor manufacturing sector. Its diverse range of features and 

real-world relevance make it a benchmark for evaluating various data analyses and 

machine learning techniques within this domain.
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  3.5  KEY TECHNIQUES AND ALGORITHMS IN FAULT DETECTION

Identifying faults plays a role in maintaining high yield rates and ensuring prod-

uct quality in the semiconductor industry. Different approaches and algorithms are 

employed to detect and rectify errors in the production process. Here is a thorough 

examination of the various essential methods and widely applied algorithms for fault 

detection, along with an analysis of their efficacy:

   3.5.1  STATISTICAL PROCESS CONTROL  

Statistical process control (SPC) is a crucial approach for leveraging methods to 

oversee and regulate manufacturing processes. SPC examines data collected from 

processes to identify variations and trends that may indicate potential issues. The 

tools commonly used in SPC include the following:

   •  Control Charts:  These charts track the performance of a process over time 

and help identify any deviations from expected behaviour. They assist in 

determining whether differences are due to causes suggesting potential 

problems or common causes inherent to the process.

  •  Pareto Analysis:  Based on the Pareto principle (80/20 rule), which asserts 

that 80% of issues are frequently caused by 20% of the components, this 

technique determines the most significant factors leading to errors [ 3 ]. 

Effectiveness: SPC is effective at monitoring processes and detecting deviations at 

any stage. However, it may face challenges in identifying subtle or complex faults 

that necessitate more advanced analysis methods.

  3.6  MACHINE LEARNING ALGORITHMS

   3.6.1  DECISION TREES  

A well-liked classification algorithm for simulating decisions and their outcomes is 

the decision tree. Decision trees are a useful tool in problem detection, as they can be 

used to categorize manufacturing batches according to a variety of features.

   •    Algorithm:  A decision tree works by dividing a dataset into smaller groups 

according to the values of its features. This process results in a structure 

resembling a tree that represents different choices.

  •   Example:  Using process parameters and sensor readings, a decision tree 

might identify batches as faulty or not. 

Effectiveness: Although decision trees are easy to comprehend and straightforward, 

they can get overly complex and are prone to overfitting if not pruned appropriately [4].

   3.6.2  RANDOM FORESTS  

Random forests utilize a technique to enhance the precision and resilience of classi-

fications by merging several decision trees.
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   •  Algorithm:  It builds multiple decision trees using random subsets of fea-

tures and combines their predictions to make a final decision.

  •  Example:  Random forests can manage large datasets and identify complex 

patterns by aggregating the predictions from various decision trees. 

Effectiveness: Random forests provide high accuracy and are less prone to overfit-

ting compared to individual decision trees. They also manage missing values and 

noisy data well.

   3.6.3    SUPPORT VECTOR MACHINES  

Support vector machines (SVMs) are a powerful classification technique used to find 

the optimal boundary that separates different classes in the feature space.

   •  Algorithm:  SVM constructs a hyperplane that maximizes the margin 

between different classes.

  •  Example:  SVM can be used to classify batches based on sensor data by 

finding the best boundary that separates faulty and non-faulty samples [ 5 ]. 

Effectiveness: SVMs are effective in high-dimensional spaces and for complex datasets. 

However, they can be computationally intensive and require careful tuning of parameters.

   3.6.4    NEURAL NETWORKS  

Deep learning models, in particular, which are utilized for intricate pattern recognition 

and fault detection tasks, are neural networks. They are made up of several layers of net-

worked nodes, or neurons, which can recognize hierarchical characteristics in the data.

   •  Algorithm:  They learn by adjusting weights through backpropagation to 

minimize the error between predicted and actual labels.

  •  Example:  They are used by neural networks to minimize the error between the 

expected and real labels by learning via backpropagating weight adjustments. 

Effectiveness: When it comes to finding intricate patterns and connections in big 

datasets, neural networks perform remarkably well. They do, however, need a large 

amount of training data and substantial processing power.

  3.7  ANOMALY DETECTION TECHNIQUES

   3.7.1    PRINCIPAL COMPONENT ANALYSIS  

Principal component analysis (PCA) is a dimensionality reduction technique that can also 

be used for anomaly detection by identifying outliers in the principal component space.

   •  Algorithm:  PCA projects the data onto a lower-dimensional space (prin-

cipal components) and discovers outliers based on their distance from the 

mean in this reduced space.



47Fault Detection in Semiconductor Manufacturing

  •  Example:  PCA can spot abnormalities in sensor data by finding deviations 

from the principal components representing normal process behaviour. 

Effectiveness: PCA is useful for reducing dimensionality and identifying anomalies 

in large datasets. However, it assumes linear relationships and may not capture com-

plex anomalies [6].

   3.7.2  ISOLATION FOREST  

An anomaly detection technique called isolation forest divides the data and chooses 

features at random to separate anomalies.

   •  Algorithm:  By constructing an ensemble of isolation trees, the algorithm 

determines anomalies by measuring how simple it is to isolate them from 

the remaining data.

  •  Example:  Isolation forest can detect faulty batches by identifying instances 

that are easily separated from the majority of normal data. 

Effectiveness: Identifying abnormalities in high-dimensional datasets may be done 

effectively and efficiently with isolation forests. It works effectively with big datasets 

and does not require any presumptions on the distribution of the data.

  3.8  HYBRID APPROACHES

Hybrid methods bring together different approaches to harness their advantages and 

overcome their drawbacks. For instance, merging machine learning algorithms with 

statistical techniques can improve the effectiveness of fault detection.

Effectiveness: By combining many techniques, hybrid approaches can offer more 

reliable and precise defect detection; nevertheless, they could need more intricate 

calibration and implementation.

To sum up, there are several methods and algorithms used in semiconductor 

production for fault detection, each having advantages and disadvantages. While 

machine learning algorithms enable more sophisticated pattern recognition and clas-

sification, statistical techniques like SPC offer fundamental monitoring capabilities. 

Techniques for detecting anomalies assist in locating odd patterns that may point to 

problems. Manufacturers can improve yield and process efficiency by combining 

these techniques to improve their ability to identify and fix defects.

  3.9  DATA UNDERSTANDING AND PREPROCESSING

  3.9.1  DETAILED ANALYSIS OF THE SECOM DATASET 

The SECOM dataset contains a wealth of information from semiconductor manufac-

turing processes to aid in yield optimization and problem detection. It comprises a total 

of 1,567 entries, each representing a unique production batch or event. These samples 

are characterized by 591 attributes, encompassing variables, derived metrics related to 

the manufacturing process, and sensor readings. In addition to specific variables and 
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calculated metrics, the features encompass continuous data from sensors that monitor 

numerous factors, such as temperature, pressure, and chemical concentrations. The 

dataset’s target variable is binary with −1 indicating a pass and 1 indicating a failure, 

thereby denoting whether each batch successfully passed quality testing.

The analysis gains an extra layer of depth through the timestamp attached to each 

entry in the SECOM dataset revealing when the data was collected. This timestamp 

is invaluable for tracking events and identifying trends that could impact outcomes. 

In the dataset, initial observations often present a mix of feature distributions, with 

some showing significant fluctuations but others remaining stable. To enhance the 

accuracy of models, it is crucial to identify and address components with variance or 

prominent levels of noise.

Moreover, an analysis can uncover missing values in certain features that require 

careful handling to avoid distorting results. Additionally, the dataset may exhibit an 

imbalance between classes, with a notably smaller number of failed batches com-

pared to successful ones. This imbalance can hinder the performance of algorithms, 

necessitating techniques such as weighted loss functions or resampling to achieve 

more precise predictions.

Taking everything into account, the SECOM dataset provides insights into the 

semiconductor manufacturing process and valuable information regarding factors 

affecting yield. By leveraging this data and employing appropriate feature selection 

and preprocessing techniques, researchers and engineers can develop robust models 

that enhance defect detection and optimize manufacturing processes.

  3.9.2  DATA PREPROCESSING 

In the realm of preparing data for defect detection in semiconductor manufacturing, 

several key approaches are employed to ensure the dataset is ready for analysis. These 

strategies encompass filling in missing values, removing unnecessary features, and 

addressing zeros and NaN (not a number) values. Here is a detailed breakdown of 

these preprocessing activities:

 a. Handling Zeros and NaN Values: Zeros and NaN values within data-

sets can signify incomplete or incorrect information. Given their potential 

impact on the quality of analysis, it is crucial to assess their presence and 

handle them appropriately. To address this, we begin by identifying the 

occurrences of zeros and NaNs across each column of the dataset. This 

process involves counting the quantity of these values for each feature to 

determine whether any columns contain inaccurate or missing data. Assess-

ing the frequency of these values plays a role in informing the subsequent 

steps for data cleansing.

   b. Removing Constant Columns:  Some columns in datasets may have the 

same values across all rows. Because they lack diversity, these columns 

don’t contribute to distinguishing between different outcomes or categories, 

making them unsuitable for analysis. To improve the effectiveness of the 

dataset, columns with identical entries are removed. This process involves 

checking if all the values in a column are identical. If a column meets this 
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criterion, it is excluded from the dataset. This step can enhance the efficiency 

of subsequent analyses or machine learning models by reducing complexity 

and eliminating irrelevant information.

 c. Imputing Missing Values: Missing values in datasets pose a challenge 

that needs to be addressed for a thorough analysis. The first step in tack-

ling missing values is identifying columns with a significant amount of 

missing data. Typically, columns with a higher percentage of missing val-

ues than a set threshold are discarded, as they may not provide reliable 

information.

To address the missing values in the dataset, imputation techniques are employed for 

the remaining columns. One commonly used approach involves utilizing the mean or 

median of the existing values in a column to replace any absent numbers. The mean 

provides a measure of tendency, while the median offers a metric that is less influ-

enced by outliers. Ensuring that every feature has a value imputation helps maintain 

the integrity of the dataset. These preprocessing methods play a crucial role in pre-

paring the data for analysis. By tackling zeros and NaNs, eliminating noninformative 

features, and filling in missing values, the dataset is refined and made more condu-

cive to yielding trustworthy insights and predictions.

  3.9.3  FEATURE SELECTION TECHNIQUES 

A key component of data preparation is featuring selection, which finds the 

most pertinent features to enhance machine learning model performance. PCA, 

variance-based selection, and model-based selection are some of the methods 

used. Here is a thorough breakdown of every technique:

 1. Variance-Based Feature Selection: The VarianceThreshold technique is 

employed to eliminate low-variance features. These features tend to remain 

consistent across samples, making their impact on the models’ predictive 

capability minimal. By establishing a threshold, this approach removes 

attributes that do not meet the variance criteria. The goal is to retain only 

those elements that exhibit enough variation to be valuable. For instance, a 

feature would be removed from the dataset if its variance is below a spec-

ified threshold. This method reduces the dimensionality of the data and 

eliminates unnecessary noise [7].

 2. Model-Based Feature Selection: This approach utilizes the effectiveness 

of machine learning models to assess the significance of each feature. The 

following models are utilized for this purpose.

    •  Support Vector Classifier (SVC):  This approach uses an L1 pen-

alty to help pick out notable features. It relies on support vectors to 

spot the most relevant ones. The significance of the features is shown 

through the models’ coefficients, and those that have coefficients get 

chosen.

   •  Logistic Regression:  This model looks at how features are related to 

the target variable. Features with coefficients are seen as more crucial. 
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By applying SelectFromModel along with logistic regression, it selects 

features that carry great importance.

   •  Decision Tree Classifier:  Decision trees evaluate the significance of 

features based on how effectively they divide the data. Features that 

result in splits are considered more significant. The ExtraTreesClassi-

fier, which is a type of decision tree, combines outcomes from multiple 

trees to determine feature selection. 

 3. Principal Component Analysis: PCA is a technique used to reduce the 

dimensionality of data by transforming it into a new coordinate system. In 

this system, the largest deviations in the data projections align with the ini-

tial principal components. PCA achieves this by minimizing features while 

preserving a massive portion of the original dataset variability. The process 

involves projecting the data onto components that are derived from linear 

combinations of the original features. The result is a set of components or 

uncorrelated features that capture most of the data variance.

In summary, employing selection methods like selection based on variance, model-based 

selection, and PCA are essential for enhancing the effectiveness and efficiency of learning 

models. These approaches can boost the performance of models, highlight key aspects, 

and simplify data complexity [8].

  3.9.4  OVERSAMPLING FOR IMBALANCED DATASETS 

When it comes to classification tasks, datasets often suffer from an imbalance, where one 

class outweighs the other significantly. This disparity can lead the model to lean towards 

the majority class, resulting in biased performance and poor accuracy predictions for the 

minority class. To tackle this issue, oversampling techniques like the synthetic minority 

oversampling technique (SMOTE) are employed to equalize the class distribution. 

SMOTE allows for the creation of samples specifically for the underrepresented class 

within a dataset. Instead of simply duplicating existing minority class instances, SMOTE 

generates new synthetic samples through interpolation between existing data points. This 

process involves selecting points and generating additional samples along the lines con-

necting these points to their neighbouring instances. By doing so, SMOTE effectively 

boosts the representation of the minority class, leading to a more balanced dataset overall.

To determine how classes are distributed, the approach begins by examining the 

initial dataset. In cases of imbalance, the minority class may be underrepresented, 

leading to a flawed model. Subsequently, SMOTE is applied to the dataset to generate 

additional instances of the minority class. This adjustment helps create a foundation 

for training by balancing the number of samples across classes. The modified data-

set, with an equal number of samples for each class after SMOTE, is utilized for 

further analysis or model training. This balance boosts the model’s performance and 

reduces bias by enhancing its ability to generalize across all classes. With the support 

of the newly generated synthetic samples, the model gains insights into the minority 

class, improving prediction accuracy and overall robustness.

SMOTE is an approach to address imbalanced classes in datasets. By generat-

ing examples, it ensures that the model is trained on a dataset, leading to improved 

performance for both majority and minority classes. This technique is crucial for 
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developing unbiased and precise models, especially in scenarios where outcomes can 

be significantly influenced by class imbalance [9].

  3.10  MODEL EVALUATION AND VISUALIZATION

  3.10.1  TRAINING AND TESTING THE MODEL 

The model evaluation process starts with training a classification model on a dataset. 

In this instance, we use a random forest classifier, which combines multiple decision 

trees and merges their results to boost accuracy and reliability. We split the dataset 

into training and testing parts using a set test size, making sure we can assess the 

model on data it has not seen before.

Once we have trained the model, we make predictions on the test set. We then 

gauge the model’s performance using accuracy, which shows how many predictions 

were correct out of all the predictions made. The classifier function gives back the 

trained model, predictions, actual labels, and accuracy score.

  3.10.2  CONFUSION MATRIX CALCULATION 

A confusion matrix helps us check how well a classification model works. It breaks 

down the model’s guesses in detail, showing true positives, true negatives, false pos-

itives, and false negatives. To figure out these numbers, the confusion_matrix func-

tion compares the labels the model predicted to the real labels.

Here is how the confusion matrix is set up:

True Positives (TP): Instances where the model correctly predicted the pos-

itive class.

True Negatives (TN): Instances where the model correctly predicted the neg-

ative class.

False Positives (FP): Instances where the model incorrectly predicted the pos-

itive class.

False Negatives (FN): Instances where the model incorrectly predicted the 

negative class.

These values are used to construct a matrix that visually represents the performance 

of the model.

  3.10.3  VISUALIZATION OF THE CONFUSION MATRIX 

To understand the confusion matrix better, we show it as a heat map. The plot_ 

confusion_matrix function creates this visual. The heat map gives us a clear picture 

of how well the model works. Each box in the matrix shows how many times the 

model predicted a class compared to the actual class.

We can display the matrix with or without normalization. Normalization changes 

the values to percentages, which helps when comparing different datasets or models. 

The function uses colours to make things clearer, and it puts the exact numbers in 

each box for more detail.
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To wrap up, evaluating a model involves three steps: training it, getting its predic-

tions, and checking how well it used a confusion matrix. This matrix sheds light on 

what the model does well and where it falls short. Seeing it makes it easier to grasp 

the results. This method gives us a full picture of how good the classification model 

is and ensures a comprehensive evaluation of the classification model’s performance.

  3.10.4  FEATURE SELECTION AND CLASSIFICATION 

The first step in the process is to get the dataset ready. This involves cleaning up any 

missing data. Next, we use the SVC to choose features. It finds and keeps the most 

important traits for sorting. After that, we balance the picked features using SMOTE. 

We do this to fix any class imbalance in the dataset. This step ensures the classifier 

has a balanced dataset to work with.

The random forest classifier, trained on balanced data, classifies the samples. To 

evaluate the model’s performance, we calculate its accuracy score and analyse the 

data using a confusion matrix. This matrix, which we visualize with normalization, 

gives us insight into the model’s strong and weak points by showing true positives, 

true negatives, false positives, and false negatives. This thorough assessment helps us 

understand how well the model works and spot areas we can make better. Figure 3.1 

illustrates the normalized confusion matrix for SVC feature selection with random 

forest classification.

  FIGURE 3.1  Normalized confusion matrix for SVC feature selection with random forest 

classification.
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In the same way, once we get the dataset ready and clean it up, we use a logistic 

classifier to pick out the best features. This classifier checks which features are most 

likely to predict the outcome, which helps us narrow down the dataset to the most 

useful variables. After this, we balance the dataset again using SMOTE. This makes 

sure the classifier learns from an even spread of classes.

The balanced dataset serves as input to train a random forest classifier. We 

measure the classifier’s performance using accuracy and create a normalized 

confusion matrix to assess the model’s classification abilities. The confusion 

matrix, which we visualize with normalization, shows how well the model differ-

entiates between classes, including true positives, true negatives, false positives, 

and false negatives. This evaluation gives us a clear picture of how the model 

performs and points out areas we can improve and optimize. The normalized 

confusion matrix for logistic feature selection with random forest classification 

is shown in Figure 3.2.

A decision tree model helps pick out key features after the dataset is ready and 

cleaned up. This method checks how important different traits are, making it eas-

ier to spot the ones that matter the most for predicting outcomes. By focusing on 

the most influential factors, the classification process becomes more productive and 

effective, thanks to the chosen features.

  FIGURE 3.2  Normalized confusion matrix for logistic feature selection with random forest 

classification.



54 Machine Learning for Semiconductor Materials

After picking the features, we tackle any uneven class spread by evening out the 

dataset using SMOTE. This balancing step makes sure the random forest classifier 

learns from an equal number of each class, which is key to building a trustworthy 

and fair model.

After this, we use this balanced dataset to train the random forest classifier. We 

use a normalized confusion matrix to visualize how accurate the model is, which 

helps us evaluate its performance. This matrix gives us a thorough analysis of how 

well the classifier does, showing us the number of false positives, false negatives, true 

positives, and true negatives. By normalizing the confusion matrix, we can compare 

the model’s performance across different classes more easily, which helps us identify 

where the model shines and where it falls short. Figure 3.3 highlights the normalized 

confusion matrix for decision tree feature selection with random forest classification.

     3.11  RESULTS AND DISCUSSION

Examining the different feature selection and classification methods using the 

SECOM dataset gives us fresh insights into their effectiveness for spotting defects 

in semiconductor manufacturing. We applied SVC, logistic regression, and decision 

trees to select features and then used random forest models to classify them. This 

approach helped us gain a deep understanding of how various techniques affect 

performance.

  FIGURE 3.3  Normalized confusion matrix for decision tree feature selection with random 

forest classification.
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The random forest model got better at sorting things out when we trimmed down 

the data to just the key bits, using SVC to pick what mattered most. Looking at the 

results in an obvious way showed that the model was good at telling pass from fail, 

which means the SVC way of choosing what to look at made the model work better. 

By spotting the most important things to consider, this method produced predictions 

you could count on more.

Similarly, using logistic regression to pick features worked well. The random 

forest classifier did an excellent job after training on the chosen features. The 

confusion matrix showed some wrong guesses, both false positives and negatives, 

but overall, the classification was pretty accurate. This tells us that while logistic 

regression was good, we might be able to make it work even better to catch subtler 

patterns in the data.

The decision tree method of picking features gave us another helpful view. It 

ranked features based on how important they were, which helped the random forest 

classifier do well. The confusion matrix showed that the decision tree was good at 

spotting key aspects. It had a nice balance between correct positive and negative 

classifications.

Looking at the outcomes of these different methods sheds light on the upsides of 

each feature selection approach. SVC-based feature selection did a fantastic job of 

refining the dataset, while decision trees and logistic regression brought their own 

benefits to the table. Each technique revealed areas that could use some tweaking to 

boost performance but also showed its strengths in making the classification more 

accurate. Down the road, researchers should focus on exploring new ways to select 

features and fine-tune algorithms to achieve even better accuracy.

  3.12  CONCLUSION

The study of feature selection methods paired with random forest classification for 

the SECOM dataset showed big improvements in spotting defects. SVC, logistic 

regression, and decision trees each played a key role in boosting the model’s effec-

tiveness. SVC provided a refined dataset with high classification accuracy, while 

logistic regression and decision trees also produced satisfactory results, each with 

its own strengths and weaknesses. Concisely, the research highlights how important 

it is to pick the right feature selection method to get the best model performance. 

Comparing different approaches gives insights that show how well feature selection 

works to improve fault detection systems. Looking ahead, future work should focus 

on making current methods better and exploring new ones to achieve even higher 

accuracy and reliability in semiconductor manufacturing.
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  4.1  INTRODUCTION

The percentage of defect-free chips produced is known as yield, and it is optimized to 

the highest degree in the hectic world of semiconductor manufacturing. The semicon-

ductor industry is constantly working to streamline production procedures to mini-

mize costs and time to market and satisfy the growing demand for high-quality chips. 

Achieving the ideal yield, however, is a difficult task affected by a wide range of 

variables, such as equipment performance, material qualities, and process variances.

Historically, statistical process control (SPC), advanced process control (APC), 

and other statistical techniques have been utilized in yield improvement initiatives to 

track and modify industrial processes. These methods have proven helpful in locat-

ing and reducing process variances, but they frequently miss the complex connec-

tions that exist between process variables and yield results.

Deep learning – a subfield of artificial intelligence (AI) – which takes its cues 

from the structure and operations of the human brain, has grown in prominence in 

recent years and completely changed a number of industries, including semicon-

ductor production. Deep learning models present a possible path for improving pre-

dicted yield in semiconductor production due to their ability to automatically extract 

complex relationships and patterns from massive amounts of data. As algorithms for 

training and inference become more efficient, deep learning is finding application 

in a variety of disciplines, including microcontrollers and data centres. Deep learn-

ing methods like generative models and evolutionary algorithms are being used in 

semiconductor manufacturing for many processes, including process optimization, 

automated optical inspection, and photomask manufacture. Because of the volume 

of data, calculating the yield across all process steps in detail is an extremely com-

plicated task that calls for either an arbitrary number of resources for a brute force 

study or an effective heuristic approach. Currently, historical data can be used to 

make inferences about the frequency of errors occurring and the links between 

errors; unfortunately, not all errors, process configurations, and parameter combina-

tions are documented. As a result, it is impossible to identify errors without gaps [1]. 

Realizing the full potential of AI semiconductor technologies in this field requires 

overcoming obstacles such as comprehending the shift from training to inference 

and optimizing computations.

https://doi.org/10.1201/9781003508304-4
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This chapter examines the methods using deep learning to forecast and maximize 

yield in semiconductor production. In one study, principal component analysis is used 

to estimate yield by focusing on test parameters for non-normal distributions [2]. We 

explore the essential elements of this methodology, encompassing data gathering, 

preprocessing, model building, training, implementation, and ongoing enhancement. 

Semiconductor makers can get important insights into their manufacturing processes, 

pinpoint variables influencing yield, and put focused strategies into place to raise 

overall yield and productivity by utilizing deep learning.

  4.2  NEED OF DEEP LEARNING IN YIELD ENHANCEMENT

Conventional methods for improving yield in semiconductor production have 

been established over many years and combine engineering principles, pro-

cess control strategies, and statistical methodologies. These methods have been 

essential in preserving process stability, enhancing overall yield, and optimizing 

parameters. They do, however, have several drawbacks and restrictions that may 

reduce their efficacy.

   4.2.1  OVERVIEW OF STATISTICAL PROCESS CONTROL 

   •  Statistical process control is a methodology that uses statistical analysis of 

process data to monitor and control manufacturing processes. A disadvan-

tage of SPC is that, although it is good at identifying fluctuations in the 

process and preserving stability, it might not be able to capture intricate, 

nonlinear correlations between the process parameters and yield results.

  •  Impact: This restriction may make it more difficult to spot minute depend-

encies and interactions between variables, which could result in less-than-

ideal process optimization and yield improvement. 

  4.2.2  THE DESIGN OF EXPERIMENTS 

   •  Design of experiments (DOE) is a systematic methodology that aims to 

enhance product quality and performance by examining and refining pro-

cess factors. Although DOE is helpful for process optimization, it is fre-

quently reactive in character, concentrating on finding and fixing problems 

after they arise.

  •  Impact: The capacity to proactively minimize yield loss may be limited by 

this reactive strategy, which may lead to an increase in downtime, scrap, and 

rework. 

  4.2.3  ADVANCED PROCESS CONTROL 

   •  The goal of advanced process control is to maintain desired performance 

by adjusting process parameters through the integration of sensors, control 

algorithms, and process models. APC systems might not be able to manage 
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the enormous amounts of data produced by contemporary semiconductor 

fabrication techniques.

  •  Impact: This restriction may make it more difficult to evaluate intricate data-

sets with a variety of information sources, which could lead to the loss of 

important information that could be used to increase yield. 

  4.2.4  FAILURE ANALYSIS 

   •  Failure analysis, also known as root cause analysis, is the methodical exam-

ination of flaws or failures, with the goal of locating the underlying reasons 

and averting recurrence. The drawback is that although failure analysis is 

crucial to comprehending flaws, it is frequently a labour-and resource-inten-

sive procedure.

  •  Impact: Scalability and agility may be restricted by manual analysis, 

which would impede prompt fault prevention and prolong remedial 

operations. 

  4.2.5  OVERVIEW OF PROCESS OPTIMIZATION AND CONTINUOUS IMPROVEMENT 

   •  To improve performance and yield, manufacturing processes must be con-

sistently improved through process optimization. A disadvantage of tradi-

tional process optimization methods is that they might not be able to predict 

future yield trends.

  •  Impact: Manufacturers can find it difficult to reach production goals and 

maintain steady yield rates in the absence of predictive skills.  

While conventional methods are still useful tools in the semiconductor 

 manufacturing industry, combining them by using state-of-the-art technol-

ogy, such as machine learning and advanced analytics, can help us get around 

some of their drawbacks and open up new possibilities for process and yield 

optimization.

  4.3  ADVANTAGES OF DEEP LEARNING FOR  
YIELD IMPROVEMENT

Here are some benefits of applying deep learning to yield improvement and predic-

tive modelling in semiconductor manufacturing.

  4.3.1  ABILITY TO CAPTURE COMPLEX INTERACTIONS 

   •  The multilayered structures of deep learning models enable them to effi-

ciently depict the intricate and nonlinear relationships that exist between 

yield outcomes and process parameters.

  •  They can uncover intricate connections and patterns in the data that may be 

difficult for conventional statistical techniques to identify.  
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  4.3.2  FEATURE LEARNING AND REPRESENTATION 

   •  Manual feature engineering is no longer necessary because deep learning 

algorithms can automatically extract relevant features from raw data.

  •  The capacity to acquire significant data representation can result in predic-

tion models that are more reliable and accurate.  

  4.3.3  MANAGING BIG DATA 

   •  Deep learning models are highly effective at tackling the big data difficulties 

present in semiconductor production because of their prowess in processing 

and interpreting massive datasets.  

  4.3.4  FLEXIBILITY 

   •  Deep learning frameworks offer a great degree of flexibility and adaptability 

to diverse data kinds and problem areas.

  •  Because of its capacity to support a vast amount of data sources and formats, 

semiconductor makers are able to incorporate data into their predictive mod-

els from many sources.  

  4.3.5  INCREASED PREDICTIVE ACCURACY 

   •  In a range of applications, deep learning frameworks, especially their 

sophisticated structures, such as convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs) have demonstrated better predictive 

accuracy than traditional statistical models.

  •  This increased accuracy can result in more accurate yield projections and 

better decision-making in the semiconductor manufacturing industry.  

  4.3.6  REAL-TIME PREDICTION 

   •  By continuously analysing incoming data from manufacturing processes, 

deep learning frameworks can be used in real time to generate prompt 

yield-quality predictions.

  •  Proactive decision-making and prompt interventions make it possible to 

optimize process parameters and avoid yield loss.  

  4.3.7  IDENTIFICATION OF ANOMALIES AND ABNORMALITIES 

   •  Deep learning models can be trained to find process deviations, material 

flaws, and equipment faults, which are examples of anomalies and abnor-

malities found in semiconductor manufacturing processes.

  •  Production disruptions can be minimized and yield loss avoided with the 

early detection of these problems.  
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  4.3.8  EFFICIENCY AND SCALABILITY 

   •  Deep learning models are scalable and deployable on a large scale across 

manufacturing facilities once trained.

  •  This enables reliable yield prediction across many production lines and 

locations. Because of its scalability, semiconductor makers can use predic-

tive modelling to increase yield throughout their whole business. 

Semiconductor makers can get important insights into their manufacturing pro-

cesses, pinpoint variables influencing yield, and put focused strategies into place 

to raise overall yield and productivity by utilizing deep learning. The current meth-

ods for using metrology data to classify yields emphasize counteracting imbalanced 

classes and imputing missing data [3]. The majority of real-world problems require 

the use of advanced analytics [4] so that thoughtful and intelligent solutions can be 

developed to meet current needs. For this reason, analytical AI that makes use of 

machine learning and deep learning approaches can be crucial to the development of 

AI-powered computing and systems.

  4.4  FUNDAMENTALS OF DEEP LEARNING

Gaining an understanding of the foundations of deep learning is crucial to maximiz-

ing its potential to increase yield in semiconductor production. Let’s examine each of 

the main ideas in more detail.

  4.4.1  NEURAL NETWORKS 

   •  The fundamental architecture of a neural network is a linked network of 

nodes arranged in layers. The output layer generates the model’s predic-

tions, the hidden layers carry out calculations, and the input layer receives 

raw data. Activation functions provide nonlinearity to the network and ena-

ble it to simulate intricate correlations in the data; nonlinear functions are 

applied to the output of every neuron. Some examples of common activation 

functions include Tanh, sigmoid, and ReLU (rectified linear unit). During 

the training phase, weights and biases are parameters related to the connec-

tions between neurons that are changed to reduce the discrepancy between 

the expected and observed results.

  •  Gradient boosting machines (GBMs) have become potent tools for sem-

iconductor manufacturing, process condition optimization, and material 

selection. In terms of probabilistic estimates, uncertainty estimates, and 

predictive performance, these machine learning models frequently beat 

deep neural networks. GBMs are particularly competent at things like 

process condition optimization for different stages of semiconductor 

manufacture, such as lithography, etching, and deposition. Process engi-

neers looking to increase yield and decrease variability can benefit greatly 

from their capacity to offer precise forecasts and trustworthy estimates of 

uncertainty.  
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  4.4.2  DEEP LEARNING ARCHITECTURES 

   •  Feedforward Neural Networks:  A feedforward neural network (FNN) 

is the most basic neural network type, where data only moves from input 

to output in a single direction, devoid of loops or cycles. They work well 

for classification and regression applications.  Figure 4.1  shows the FNN 

architecture.        

    •  Convolutional Neural Networks:  CNNs are designed specifically to man-

age information that resembles a grid, like photographs. Convolutional, 

pooling, and fully connected layers make up their structure, which allows 

them to record patterns and hierarchies in space.  Figure 4.2  depicts the CNN 

architecture.        

    •  Recurrent Neural Networks:  RNNs are made to manage temporally 

dependent sequential data. They are suitable for applications like time- 

series analysis and natural language processing prediction because they have 

feedback loops that enable information to endure across time.  Figure 4.3  

shows the RNN architecture.        

    •  Long Short-Term Memory (LSTM) Networks:  The LSTM network is an 

RNN design that uses memory cells to solve the vanishing gradient issue. 

Long short-term dependencies can be learned via LSTMs, which are popu-

lar for sequential tasks.

  •  Transformer Models:  Transformer models are a new development in 

deep learning architecture mostly applied to challenges involving natural 

  FIGURE 4.1  FNN architecture.

 Source: Copyright ©  www.researchgate.net . 

http://www.researchgate.net
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language processing. Transformers efficiently capture global relationships 

in sequential data by using self-attention methods.  

  4.4.3  INSTRUCTION MODELS FOR DEEP LEARNING 

   •  The process of sending input data through a network to calculate predic-

tions is called forward propagation. After performing computations with its 

own weights and biases, each layer transfers the results to the subsequent 

layer.

  •  Backpropagation is a method of changing the weights and biases in the 

model in response to variations between the expected and actual results. It 

involves calculating the gradients of the loss function with respect to each 

parameter and altering them using optimization methods such as Adam or 

stochastic gradient descent (SGD).

  •  Loss functions are objective functions that express how much the actual and 

projected outcomes differ from one another. Cross-entropy loss is a popu-

lar loss function for classification applications, whereas mean squared error 

(MSE) is employed in regression tasks.  

  FIGURE 4.2  CNN architecture.

 Source: Copyright © medium.com.

http://medium.com
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  4.4.4  ADJUSTING HYPERPARAMETERS AND MODELS 

   •  Learning Rate:  It manages the step size when updating parameters. 

Selecting a suitable rate of learning is essential for effective training and 

convergence.

  •  Batch Size:  The quantity of samples handled in each training iteration is 

determined by the batch size. It has an impact on both memory needs and 

the stability of the training process.

  Quantity of Neurons and Layers:  The neural network’s architecture, 

which includes the quantity of layers and every neuron’s layer, affects the 

network’s ability to recognize intricate relationships and patterns.

  FIGURE 4.3  RNN architecture.

 Source: Copyright ©  www.researchgate.net . 

http://www.researchgate.net
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  •  Methods of Regularization:  Techniques like batch normalization, dropout, 

and L1/L2 regularization aid in preventing overfitting and enhancing the 

framework’s capacity for generalization.  

  4.4.5  MODEL EVALUATION AND VALIDATION 

Usually, data is divided into several subsets for testing, validation, and training. The 

training set is used to train the model, performance is monitored, the validation set’s 

hyperparameters are changed, and the final model’s effectiveness is evaluated on the 

testing set. Deep learning models’ performance on classification and regression tasks 

is measured using several metrics, including accuracy, precision, recall, F1 score, 

and mean absolute error (MAE). A wide range of knowledge categories, including 

procedural, meta-, structural, descriptive, and heuristic knowledge, can be applied in 

different application areas [5].

  4.4.6  MODEL UTILIZATION AND INTERPRETATION 

Deep learning models can be implemented on multiple platforms, such as embed-

ded systems, edge devices, and cloud-based services. Making predictions on new, 

unseen data using a trained model is known as inference. It is the process of 

using a trained model to process input data and produce predictions as output. 

A knowledge-based conceptual model can be developed using a variety of knowl-

edge representation techniques, such as logical, semantic, network, frame, and 

production rules [6].

  4.5  DATA COLLECTION AND PREPROCESSING

A thorough grasp of the procedures involved is crucial when exploring data collec-

tion and preprocessing in the context of deep learning–based predictive modelling 

for semiconductor yield enhancement. Here’s a thorough explanation.

   •  Data Collection:  Sensor data such as temperature, pressure, flow rates, 

chemical concentrations, and other characteristics are monitored by a vari-

ety of sensors during the semiconductor manufacturing process. Sensor 

types include flowmeters, thermocouples, pressure sensors, and spectros-

copy equipment.

  •  Data Granularity:  Depending on the process, sensor data is normally col-

lected at regular intervals, which can be anywhere from milliseconds to 

minutes.

  •  Sources of Data:  Manufacturing equipment provides this data, which 

is then gathered and kept in databases, historical repositories, and data 

warehouses.

  •  Equipment Logs:  The machinery utilized in the fabrication of semicon-

ductors produces logs that record data regarding performance, maintenance, 

and operations. Events, alerts, recipes, and equipment status logs are among 

the several types of logs.
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  •  Data Forms:  Logs might be kept in XML, CSV, or other proprietary for-

mats that are unique to certain equipment manufacturers.

  •  Data Cleaning:  To extract pertinent features from logs, which frequently 

contain noise and irrelevant information, preprocessing is necessary.

  •  Inspection and Metrology Findings:  The quality and integrity of semi-

conductor wafers and chips are evaluated using metrology instruments and 

inspection systems. Measurements of critical dimensions, defect counts, 

defect maps, and wafer maps are examples of data types.

  •  Data Integration:  For a thorough analysis, inspection and metrology data 

must be combined with other process data.

  •  Alignment:  For wafer maps and defect maps to match process data, align-

ment and registration may be necessary.

  •  Past Information:  Predictive models can be effectively trained using his-

torical data from prior manufacturing runs.

  •  Data Quality:  Careful preprocessing is necessary since historical 

data may have missing values, inconsistent information, or out-of-date 

information.

  •  Preprocessing the Data:  It involves cleaning the data and managing miss-

ing values. Depending on the type of missing values, methods like imputa-

tion, deletion, or interpolation are used.

  •  Outlier Removal and Detection:  This step involves finding and elimi-

nating outliers that could distort the results of an analytic or modelling 

procedure.

  •  Noise Reduction:  Methods like low-pass filters or moving averages remove 

noise from sensor data.

  •  Scaling and Normalization:  To guarantee consistency and enhance con-

vergence during model training, numerical characteristics are scaled and 

normalized to a standard range (such as [0, 1]).

  •  Standardization:  To account for differences in scale and variance, the 

characteristics are adjusted to have a standard deviation of 1 and mean 

of 0.

  •  Dimensionality Reduction:  Methods of reducing dimensions, such as fea-

ture selection or principal component analysis, are employed in characteris-

tic engineering to focus on the most pertinent characteristics by reducing the 

dimensionality of the dataset.

  •  Features of Time Series:  From time-series data, temporal elements are 

extracted, including rolling averages, lag values, and trend markers.

  •  Features Particular to a Domain:  Features are engineered with a focus on 

semiconductor production processes and domain knowledge.

  •  Integration of Data:  To enable insightful analysis and accurate model-

ling, it is essential to ensure that various data sources (such as sensor data, 

equipment logs, and metrology findings) are consistent and aligned with one 

another.

  •  Joining and Aggregation:  By utilizing relevant keys or IDs to merge data 

from several sources, data must be combined at the desired granularity (e.g., 

wafer level, lot level).
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  •  Data Splitting:  To effectively assess the performance of the model, the 

dataset must be divided into distinct subsets for testing, validation, and 

training.

  •  Time-Based Splitting:  To prevent data leaks and evaluate model generali-

zation, temporal dependencies must be taken into account by dividing data 

into chronological chunks.

  •  Data Augmentation:  To increase the resilience and generalization of the 

model, more training data can be generated by rotating, flipping, or adding 

noise. 

Building accurate and trustworthy predictive models for yield enhancement in semi-

conductor production requires effective data collection and preprocessing. Practi-

tioners can ensure that their models are trained on high-quality data and are able to 

capture pertinent patterns and correlations in the manufacturing process by carefully 

selecting and preparing the data.

  4.6  MODEL DEVELOPMENT AND TRAINING

Using deep learning for predictive modelling in semiconductor production requires a 

thorough understanding of the model building and training stages. Now let’s exam-

ine these procedures in more detail.

   •  Model Development:  Clearly identify the goals of the predictive model 

as well as the problem statement. In semiconductor manufacturing, yield 

augmentation may entail process anomaly detection, production parameter 

optimization, or defect occurrence prediction.

  •  Data Preparation:  Compile and prepare the information needed to 

train the model. This entails gathering information from a variety of 

sources, including sensors, equipment records, and inspection findings 

and then performing feature engineering, data standardization, and data 

cleansing.

  •  Model Selection:  Based on the type of data and the issue at hand, select a 

suitable deep learning architecture. Transformer frameworks, RNNs, feed-

forward neural networks, and CNNs are examples of common architectures.

  •  Design of Architecture:  Describe the neural network’s design, taking into 

account the number of layers, kinds of layers (such as recurrent and convo-

lutional), and mechanisms of activation that are utilized in each layer.

  •  Training of the Model:  Divide the dataset into distinct portions for testing, 

validation, and training. The validation set is used to track the performance 

and adjustment of hyperparameters, the testing set is used to assess the per-

formance of the finished framework, and the training set is used to update 

the model’s parameters.

  •  Selection of Loss Function:  Depending on the requirements of the pre-

dictive model task, select a suitable loss function. MSE and MAE are pop-

ular loss functions for regression tasks; cross-entropy loss is frequently 

employed for classification problems.
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  •  Hyperparameter Tuning:  To maximize model performance, adjust hyper-

parameters, including learning rate, batch size, number of epochs, and 

regularization parameters. To determine the ideal set of hyperparameters, 

employ strategies like automated hyperparameter optimization methods, 

random search, or grid search.

  •  Instructional Procedure:  To calculate predictions for the training set, use 

forward propagation. To calculate the loss function’s gradients in relation to 

the model parameters, use backpropagation. Then use algorithms for opti-

mization like Adam, RMSprop, or SGD to update the parameters. Metrics 

like training loss and validation loss can be used to track training progress 

and identify instances of overfitting or underfitting.

  •  Regularization:  To avoid overfitting and enhance the framework’s capacity 

for generalization, use regularization strategies such as batch normalization, 

dropout, and L1/L2 regularization.

  •  Early Stopping:  As the model performs on the validation set, monitor its 

process throughout the training, and stop the model when it deteriorates, 

indicating overfitting. To avoid overfitting, save the model parameters that 

correspond to the lowest validation loss.

  •  Model Evaluation:  Using suitable evaluation metrics, such as accu-

racy, precision, recall, F1 score, or MAE, assess the final trained model 

on the testing set. To evaluate the capacity of the model to generalize, 

compare its performance on the training and validation sets with that of 

the testing set.

  •  Iterative Refinement:  Based on insights from the model evaluation and 

input from subject matter experts, iterate on the model construction and 

training process. 

To increase the robustness and performance of your model, experiment with various 

preprocessing methods, hyperparameters, and architectures. Practitioners can sig-

nificantly increase production efficiency and product quality by carefully following 

these steps to develop and train deep learning models that accurately capture the 

intricate relationships found in semiconductor manufacturing data and predict yield 

outcomes.

  4.7  DEPLOYMENT OF PREDICTIVE MODELS

To use predictive models in semiconductor manufacturing, development settings 

must give way to production settings while maintaining real-time performance, 

scalability, and dependability. This is a thorough rundown of the deployment 

procedure.

  4.7.1  INFRASTRUCTURE CONFIGURATION 

• Hardware Needs: Establish the gear, such as servers, graphics process-

ing units, or specialized hardware accelerators for deep learning inference, 

required to support the deployment of the model.
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• The Software Stack: Install the necessary software stack, which should 

include any extra monitoring and management tools, data preprocessing and 

model serving libraries (such as TensorFlow Serving, TorchServe), and deep 

learning frameworks (such as TensorFlow, PyTorch).

  4.7.2  MODEL PACKAGING 

• Model Serialization: Serialize the deep learning framework that has been 

trained into a format that can be used for deployment, like the SavedModel 

format from TensorFlow or the TorchScript format from PyTorch.

• Dependencies Management: Ensure the model is deployed with all neces-

sary dependencies, such as Python packages, deep learning frameworks, and 

custom libraries.

  4.7.3  MODEL DEPLOYMENT 

• Using a model serving framework or platform, deploy the serialized model 

to the production environment. This can entail putting the model into use as 

a Docker container, RESTful API, or cloud provider inference service.

• Scalability: Ensure the deployment infrastructure has the capacity to grow to meet 

the changing demands for inference requests and handle a range of workloads.

  4.7.4  COMBINING PRODUCTION SYSTEMS WITH INTEGRATION 

• Set up systems for the ingestion of real-time data, such as equipment logs, 

sensor data streams, and inspection findings. Preprocess the data before 

supplying it to the deployed model.

• Combining Manufacturing Systems: To facilitate smooth data flow and  

decision-making, integrate the predictive model with the current production 

processes and systems, such as production execution systems, process con-

trol systems, and quality management systems.

  4.7.5  OBSERVATION AND RECORD-KEEPING 

• Monitoring Model Performance: Use monitoring tools to keep an eye on 

the deployed model’s performance in real time, tracking variables like error 

rates, latency, throughput, and resource usage.

• Logging and Auditing: To aid in debugging, auditing, and troubleshooting, 

log inference requests and replies in addition to metadata like timestamps, 

input data, and model predictions.

  4.7.6  SAFETY AND ADHERENCE 

• Data Security: To safeguard private information sent to and from the 

deployed model, use communication protocols for security purposes, 

accessing the controls, and data encryption.
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• Compliance: Verify that the deployment complies with legal requirements 

as well as industry standards pertaining to data security, privacy, and qual-

ity control, including ISO 27001, GDPR, HIPAA, and SEMI standards.

  4.7.7  CONSTANT INSPECTION AND UPKEEP 

• Optimizing Performance: To increase accuracy and efficiency over time, 

keep an eye on the deployed framework’s execution, and adjust the hyper-

parameters, change the architecture of the model, or retrain the frameworks 

using new data.

• Fault Tolerance: Use techniques like redundancy, failover, and automatic 

scaling to preserve system resilience and manage failures gracefully.

• Versioning and Rollback: Keep track of deployed model versions, and put 

methods in place to roll back to earlier iterations in the event of unforeseen 

problems or performance degradation.

  4.7.8  INSTRUCTION AND ASSISTANCE FOR USER 

• User Training: Teach operators, engineers, and decision-makers, among 

other end users, to understand model predictions, incorporate them into 

their workflows, and use the insights from the model to make well-informed 

decisions.

• Record-keeping: To maximize the utility of the deployed model, create 

thorough documentation and user guides that cover usage instructions, 

deployment methods, steps for troubleshooting, and best practices.

Semiconductor makers can efficiently implement predictive models in production 

settings, facilitating data-driven decision-making, streamlining manufacturing pro-

cedures, and improving yield and product quality by adhering to certain guidelines 

and best practices.

  4.8  EVALUATION METRICS AND PERFORMANCE ANALYSIS

An essential part of evaluating the efficacy and dependability of predictive models in 

semiconductor production is performance analysis and evaluation measures. Here’s a 

thorough examination of these elements.

  4.8.1  CLASSIFICATION METRICS 

In semiconductor manufacturing, tasks like defect detection or quality control and 

classification metrics are essential to assessing the efficacy of predictive frameworks. 

A high-level summary of the performance of the model is given by its accuracy – that 

is, the proportion of appropriately identified events. Precision gauges the model’s 

resistance to false positives, which is crucial in circumstances where false alarms 

can be expensive. Recall, also known as sensitivity, quantifies the model’s ability 
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to detect every positive instance; this is particularly significant when reducing false 

negatives is essential. When there is an imbalance between precision and recall, the 

F1 score, which is their harmonic mean, balances them both and is helpful.

  4.8.2  REGRESSION METRICS 

Regression metrics are useful in the semiconductor manufacturing industry for activ-

ities like process parameter estimation and yield rate prediction. The model’s aver-

age size of errors is measured by the MAE, which provides a clear picture of how 

accurate the forecast is. The MSE, which punishes more severely for greater faults, 

measures the average of the squared disparities between the actual and projected 

values. Because it has the same units of expression as the target variable, the root 

mean squared error (RMSE), which is derived from MSE, is frequently employed 

for interpretability.

  4.8.3  EXTRA METRICS 

Receiver operating characteristic (ROC) curves and precision-recall curves are two 

additional tools that go beyond typical metrics and offer deeper insights into model 

performance, especially in binary classification tasks. The area under the ROC curve, 

or AUC-ROC, condenses this performance into a single scalar value, whereas ROC 

curves depict how the true positive rate and false positive rate are traded off over var-

ious thresholds for decisions. Contrarily, precision-recall curves provide a detailed 

understanding of the trade-offs between accuracy and recall, which is particularly 

helpful in unbalanced datasets.

  4.8.4  PERFORMANCE ANALYSIS 

To evaluate the reliability of a model and pinpoint areas in the need of development, 

performance analysis techniques, including cross-validation, model comparison, 

and error analysis are essential. Cross-validation provides insights into stability and 

robustness by splitting up the dataset into various subsets for training and testing, 

assisting in the estimation of a framework’s capacity for generalization. By com-

paring models, practitioners can determine which model performs best on testing or 

validation data. Error analysis, on the other hand, explores the kinds and trends of 

mistakes the model makes, directing future iterations and enhancements.

  4.9  CASE STUDIES AND APPLICATIONS

An explanation of case studies and the use of predictive modelling to increase yield 

in semiconductor production is provided here.

  4.9.1  DEFECT IDENTIFICATION AND CLASSIFICATION 

In the semiconductor manufacturing process, predictive modelling approaches 

are extensively utilized for the purposes of defect identification and classification. 
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Predictive models are able to recognize and categorize several kinds of defects on 

semiconductor wafers or chips, such as particles, scratches, or unusual patterns, by 

examining sensor data, metrology results, and inspection images. To understand 

intricate patterns and features suggestive of flaws, these models make use of deep 

learning architectures like CNNs. This allows for proactive quality management and 

minimizes yield loss.

  4.9.2  PROCESS CONTROL AND OPTIMIZATION 

Predictive modelling is essential for regulating important parameters and 

streamlining manufacturing processes to improve yield in the production of 

semiconductors. Predictive models can determine the best process conditions, 

anticipate equipment failures or maintenance requirements, and suggest changes 

to increase yield and productivity by examining past process data and equip-

ment logs. These models use methods like reinforcement learning and time-se-

ries analysis to dynamically optimize process parameters and adjust to shifting 

production settings.

  4.9.3  PREDICTIVE MAINTENANCE 

It is an essential use of predictive modelling in the semiconductor industry that 

aims to maximize equipment uptime and minimize downtime by anticipating 

equipment breakdowns before they happen. Predictive models can anticipate 

equipment failures, identify abnormal behaviour, and plan maintenance tasks 

ahead of time by evaluating sensor data, equipment logs, and maintenance 

records. By using machine learning methods like RNNs or support vector 

machines to recognize trends suggestive of equipment malfunction or degra-

dation, these models enable predictive maintenance procedures and minimize 

unscheduled downtime.

  4.9.4  YIELD PREDICTION AND OPTIMIZATION 

The prediction and optimization of yield are fundamental goals in the semiconductor 

manufacturing process, as even minor enhancements in yield can offer substantial 

economic benefits. To estimate yield rates and pinpoint areas for improvement, pre-

dictive models examine a variety of yield-influencing factors, such as material quali-

ties, environmental factors, and process parameters. To estimate yield dependencies, 

optimize process parameters, and reduce variability, these models make use of sta-

tistical methodologies, machine learning algorithms, and optimization approaches. 

This eventually improves total yield and profitability.

  4.9.5  FAULT DETECTION AND ROOT CAUSE ANALYSIS 

Predictive modelling plays a key role in semiconductor manufacturing’s fault detec-

tion and root cause analysis processes, assisting in the identification and mitigation 

of problems that affect yield and product quality. Predictive models scan sensor data, 
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equipment logs, and historical performance data to identify anomalies and their 

underlying causes and suggest remedial measures. These models make use of expert 

systems, causal inference methods, and anomaly detection algorithms to identify 

fault locations, comprehend their underlying causes, and apply focused fixes that 

enhance process yield and stability.

These case studies and applications show how flexible and useful predictive mod-

elling approaches are for increasing yield, streamlining workflows, and guaranteeing 

product quality in the semiconductor manufacturing industry. Chipmakers can get 

fresh insights, promote operational excellence, and retain a competitive edge in the 

market by utilizing advanced analytics, machine learning algorithms, and domain 

expertise.

  4.10  FUTURE DIRECTIONS AND EMERGING TRENDS

Examining the probable directions and trends in predictive modelling for semi-

conductor manufacturing yield enhancement provides insightful information about 

future developments and advancements that could shape the industry. Here’s a thor-

ough rundown.

  4.10.1  ADVANCED DEEP LEARNING ARCHITECTURES 

It is projected that future advancements in deep learning architectures will com-

pletely transform semiconductor manufacturing’s predictive modelling. Further 

investigation into sophisticated structures, such as capsule networks, attention 

mechanisms, and graph neural networks, has the potential to improve the effi-

ciency with which complicated relationships and dependencies in manufacturing 

data are captured. More reliable and accurate predictive models may be made pos-

sible by these designs, especially for jobs involving high-dimensional and diverse 

data sources.

  4.10.2  EXPLAINABLE AI

To improve model interpretability and transparency, explainable AI (XAI) tech-

niques are becoming more and more necessary, as AI-driven decision-making is 

used more often in semiconductor manufacturing. To help stakeholders comprehend, 

validate, and have faith in predictive model outputs, future research endeavours 

will concentrate on creating XAI techniques that offer insights into how predictive 

models make judgements. Attention mechanisms, feature importance analysis, and 

model-agnostic explanation techniques are some of the key techniques that will help 

advance XAI in semiconductor manufacturing.

  4.10.3  DOMAIN-SPECIFIC DATA AUGMENTATION 

A crucial field of study will be the development of domain-specific data augmenta-

tion methods suited to the semiconductor manufacturing industry. These methods 

seek to alleviate data scarcity problems, improve model generalization, and produce 
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synthetic data that emulates actual manufacturing settings. In the future, it might be 

possible to produce representative and diverse datasets for training predictive models 

by utilizing domain-specific augmentation techniques, variational autoencoders, and 

generative adversarial networks.

  4.10.4  MULTIMODAL DATA FUSION 

In semiconductor production prediction modelling, the incorporation of multimodal 

data sources, like sensor, image, and textual records, will become more common. 

Subsequent investigations will concentrate on formulating strategies for multimodal 

data fusion, which will provide thorough examination and simulation of intricate 

manufacturing procedures. Methods like transfer learning, fusion-based architec-

tures, and multitask learning will make it easier to integrate disparate data sources 

and improve predictive modelling abilities.

  4.10.5  FEDERATED LEARNING AND EDGE COMPUTING 

These two concepts will become ground-breaking tools for implementing predictive 

models in semiconductor manufacturing settings. Latency is lowered using edge com-

puting, which also improves reactivity by facilitating real-time inference and deci-

sion-making right on the manufacturing floor. Federated learning keeps data security 

and privacy through making collaborative model training responsible across dispersed 

edge devices without exchanging sensitive data. Decentralized predictive modelling in 

semiconductor production will be made possible by future developments in commu-

nication protocols, federated learning algorithms, and edge computing infrastructure.

  4.10.6  DIGITAL TWIN TECHNOLOGIES 

In semiconductor production, digital twin technologies will be essential to enable 

simulation-driven optimization and predictive modelling. Digital twins offer a plat-

form for real-time production system monitoring, analysis, and improvement. They 

are virtual copies of actual manufacturing processes. Predictive models will be inte-

grated into digital twin settings in the future, allowing for proactive decision-making 

for yield enhancement, scenario analysis, and predictive maintenance.

  4.10.7  APPLICATIONS OF QUANTUM COMPUTING 

Predictive modelling in semiconductor manufacturing is a computationally demand-

ing process that quantum computing can revolutionize. The potential for exponen-

tially faster calculations is presented by quantum algorithms, such as those used in 

quantum machine learning and quantum optimization, which should make model 

training, optimization, and inference more effective. Subsequent investigations will 

examine the practicability of quantum computing implementations in semiconductor 

fabrication, tackling obstacles associated with hardware scalability, error reduction, 

and algorithm creation.
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  4.10.8  ETHICAL AND REGULATORY CONSIDERATIONS 

These issues will gain prominence as predictive modelling spreads throughout the 

semiconductor production industry. The establishment of best practices, standards, 

and guidelines for data governance, algorithmic transparency, and responsible AI 

deployment in semiconductor production will be the main goals of future projects. 

Encouraging the proper use of predictive modelling technology and addressing eth-

ical concerns will need the cooperation of academic institutions, regulatory authori-

ties, and industrial players.

Semiconductor makers can fully utilize predictive modelling to improve yield, 

streamline operations, and spur industry innovation by embracing these new direc-

tions and trends. Predictive modelling capabilities for semiconductor manufactur-

ing will undergo revolutionary changes because of ongoing research, teamwork, and 

technology breakthroughs.

  4.11  CONCLUSION

In summary, yield enhancement predictions are becoming more accurate, signal-

ling a revolution in semiconductor production. Predictive modelling has become 

a key part of process optimization, product quality improvement, and operational 

efficiency in semiconductor production facilities thanks to the combination of  

cutting-edge technologies, creative approaches, and domain expertise.

This investigation has shed light on the critical role that predictive modelling 

plays in many different aspects of semiconductor manufacturing. Predictive models 

have proven their ability to decipher complex patterns, extract actionable insights, 

and equip decision-makers with the foresight required to navigate the complexities 

of contemporary semiconductor production. These insights have been applied to 

defect detection and classification, process optimization, predictive maintenance, 

and yield prediction, among other applications. Furthermore, because of the small 

number of data points, deep learning models are not examined in this work; none-

theless, they must be incorporated in subsequent studies [7]. It is clear that predic-

tive models’ trajectory in semiconductor manufacturing is set to continue evolving 

as we look to the future. Emerging trends that will change the game and pave the 

way for innovation and discovery include XAI, edge computing, and domain- 

specific data augmentation.

But in the middle of all the excitement surrounding technical advancement, it’s 

critical to emphasize how crucial ethical issues, legal compliance, and appropriate 

AI deployment are. As predictive modelling spreads, maintaining ethical norms, 

protecting data privacy, and guaranteeing algorithmic openness will be critical 

to building cooperation, trust, and a long-lasting ecosystem of innovation and 

advancement.

The journey of predictive modelling for yield enhancement in semiconductor 

manufacturing is essentially a story of three people who have never stopped pursuing 

perfection. Predictive modelling is like a lighthouse guiding us through the maze of 

the semiconductor business, showing us the way to a future where quality, efficiency, 

and precision work together to push the boundaries of what is possible.
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  5.1  INTRODUCTION

Semiconductors represent the backbone of modern technology and are critical com-

ponents in manufacturing technologies. So ensuring their perfect production is vital – 

and even more so in light of the prevailing semiconductor shortages. Ideally, the 

defect detection technology for semiconductor wafers should take into account the 

wafer as a whole. When a defect is found, it is usually recorded on a wafer bin map to 

discover how many similar defects exist and whether they are concentrated in certain 

areas of the entire surface of the wafer. This method effectively identifies systemic 

defects and allows premature elimination of defective products from the manufactur-

ing process. However, it does not provide detailed enough information for necessary 

distinction between several types of defects.

The main purpose of this chapter is to expand on the task of simply determining 

the location of defects and focusing more on the classification of defects according 

to their type. This endeavour is of foremost importance, as it helps in the determi-

nation of errors that may not make the product completely useless. Since defects can 

be grouped, it becomes easy to respond appropriately to recover good chips that are 

still saleable, hence making the best use of resources and cutting down on losses. To 

this end, semiconductor die images are analysed. These images are taken from high- 

resolution photos of individual chips on a wafer and give a microscopic vision of 

the semiconductor field and an idea about the type and extents of defects. Figure 5.1 

shows the defect categorization in semiconductor die images.

The manufacturing of semiconductor wafers is a complex and complicated process 

since it is an activity that is made up of so many interrelated stages. Starting right from 

the growth of silicon crystals to the micro-fabrication of transistor structures, each 

and every process calls for discipline and control to meet the set quality requirements. 

Additionally, the process of manufacturing semiconductors is complex by all standards, 

and when combined with the criticality of the parts that make up electronic devices, it 

becomes evident why a broad-ranging approach to quality management is needed.

https://doi.org/10.1201/9781003508304-5
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Due to the varying demands in the production of semiconductors, a variety of 

inspection methods is used at all stages of production. These techniques can be clas-

sified into a wide range of strategies that includes macro analysis and microanal-

ysis of the subject. For instance, electrical testing and microwave analysis provide 

information on functional performance, while optical cameras and scanning elec-

tron microscopes (SEMs) help in analysing the nanoscale features. However, due 

to the fact that these techniques are diverse, there are certain issues that arise from 

the aspect of defect identification and classification and therefore require a united 

approach that will harness the strengths of the techniques while avoiding their short-

comings. Defect detection operations can be enhanced with the help of data analytics 

and machine learning algorithms as well as methods based on artificial intelligence 

(AI); this will help maintain high-quality control throughout the semiconductor man-

ufacturing process. Figure 5.2 shows the defects at different stages of production.

    5.2  EVOLUTION OF SEMICONDUCTOR 
MANUFACTURING AND INSPECTION

The methods of manufacturing and inspecting semiconductors can be described 

as gradual progress with constant development of new techniques. Such a 

  FIGURE 5.1  Defect categorization using semiconductor die images.

 Source: Copyright © Cognex Corporation, “Die surface inspection.”   Cognex .  www.

cognex.com/industries/electronics/semiconductors/die-surface-inspection .

http://www.cognex.com/industries/electronics/semiconductors/die-surface-inspection
http://www.cognex.com/industries/electronics/semiconductors/die-surface-inspection
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progression has been helpful in the development of the semiconductor industry 

by creating a pathway to generate more complex chips. Here is a detailed over-

view of the key milestones and advancements that have shaped the current state 

of the industry:

 1. Early Semiconductor Fabrication Techniques

    •  When semiconductor manufacturing was in its infancy, it was mostly a manual 

process and primitive. Transistors and early integrated circuits (ICs) were 

fabricated using techniques like photolithography and chemical etching.

   •  Copper was commonly used as a semiconductor material, but silicon 

was favoured because of its abundance and favourable semiconductor 

characteristics. 

   2. Introduction of Cleanroom Environments 

    •  Cleanroom technology became formalized in the 1960s, although this 

was the period when it was first introduced in semiconductor produc-

tion. Cleanrooms are environments that are designed to have a low level 

of airborne particles, as these are important in the protection of semi-

conductor materials.

   •  Cleanroom classifications are still dynamic since there are contin-

ual improvements in filtration, ventilation, and contamination control 

systems. 

   3. Advancements in Photolithography 

    •  Photolithography became the key technology process in the field of 

semiconductor devices on silicon wafers. At the beginning of photoli-

thography, the wafers were coated with a photosensitive material known 

  FIGURE 5.2  Showing the defects in semiconductor wafers during production.

 Source: Copyright © M. Saqlain, Q. Abbas, and J. Lee, “A deep convolutional neural 

network for wafer defect identification on an imbalanced dataset in semiconductor manu-

facturing processes,” IEEE Trans. Semicond. Manuf. , vol. 33, no. 3, pp. 436–444, 2020. 

 https://doi.org/10.1109/TSM.2020.2994357 .

https://doi.org/10.1109/TSM.2020.2994357
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as photoresist, exposed to light through a mask, and then chemically 

etched to replicate the pattern.

   •  In later years, improvements in the photolithography process like deep 

ultraviolet and extreme ultraviolet lithography allowed for the fabrication 

of fine features and more transistors.  Figure 5.3  describes the historical 

progression of IC feature size and photolithography technologies.        

     4. Introduction of Process Integration 

    •  In the 1970s, the idea of combining different manufacturing steps into 

one smooth process started to become important. This method helps 

make more advanced electronic parts by putting together many complex 

pieces.

   •  Combining steps like putting materials on the surface, cutting away parts, 

and adding specific materials is part of process integration. This helps cre-

ate detailed parts and connections on the silicon pieces used in electronics. 

  FIGURE 5.3  Historical progression of IC feature size and photolithography technologies.

 Source: Copyright © Newport Corporation, “Photolithography overview.” Newport . 

 https://www.newport.com/n/photolithography-overview .

https://www.newport.com/n/photolithography-overview
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   5. Introduction of Wafer Steppers and Scanners 

    •  Wafer steppers and scanners changed how semiconductors are made by 

allowing the whole surface of wafers to be exposed to light at once, 

which speeds up the process and makes more chips.

   •  Steppers and scanners use special lenses and sophisticated systems to 

place circuit designs accurately and consistently onto silicon wafers. 

   6. Emergence of Semiconductor Metrology and Inspection Tools 

    •  As the size of parts in semiconductor devices gets smaller, it’s very important 

to have accurate measuring and checking tools. Tools like SEMs, atomic 

force microscopes (AFMs), and optical inspection systems are now essen-

tial for looking at the tiny parts of semiconductors and finding any small 

mistakes.

   •  These tools help companies that make semiconductors check the size of 

their devices, find any mistakes, and ensure everything is made correctly 

during the whole production process. 

   7. Integration of Advanced Process Control Systems 

    •  Advanced process control (APC) systems use data analytics and machine 

learning algorithms to check, analyse, and optimize semiconductor 

fabrication processes in real time. APC systems enable semiconduc-

tor manufacturers to achieve consistent product quality and maximize 

yield.

   •  APC systems incorporate sensors, actuators, and feedback mechanisms 

to adjust process parameters and maintain optimal performance. 

   8. Rise of Computational Lithography 

    •  Computational lithography has emerged as a critical enabler of advanced 

semiconductor patterning techniques. By leveraging computational 

models and algorithms, semiconductor manufacturers can simulate and 

optimize complex lithographic processes to achieve higher resolution 

and pattern fidelity.

   •  Computational lithography is critical for designing and manufacturing 

next-generation semiconductor devices with reduced feature sizes and 

increased transistor density. 

   9. Introduction of Defect Review and Classification Systems 

    •  As semiconductor devices become more complicated, the need for bet-

ter defect review and classification systems has grown. These systems 

use machine learning algorithms and image analysis techniques to accu-

rately detect, categorize, and analyse faults on semiconductor wafers.

   •  Defect review and classification systems enable semiconductor manu-

facturers to rapidly diagnose faults, optimize process parameters, and 

improve product quality. 

   10. Integration of Industry 4.0 Technologies 

    •  Industry 4.0 principles, such as automated processes, connectivity, and 

data-based decision-making, are making semiconductor manufacturing 

more efficient and agile. Advanced robotics, internet of things devices, 

and cloud-based analytics platforms are redefining the way semicon-

ductor manufacturing facilities function.
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   •  Industry 4.0 technologies enable predictive maintenance, real-time pro-

cess optimization, and adaptive manufacturing strategies, enhancing 

productivity, flexibility, and quality in semiconductor manufacturing.   

  5.3  CHALLENGES IN SEMICONDUCTOR INSPECTION

Semiconductor inspection faces several challenges, which are closely related to 

companies’ drive for innovation and the shrinking sizes of semiconductors. The 

foremost challenge is the rise in semiconductor designs’ complexities. Each leap in 

semiconductor generation leads to ICs turning into increasingly complex structures, 

characterized by many more layers, finer features sizes, and tighter tolerances. Con-

sequently, the tangled web of intricacy presents limitations that ambitious detection 

schemes must cut through to accurately capture any faults or deviations along multi-

ple layers and interwoven parts [1].

Furthermore, another layer of complexity is added during the inspection process 

due to the relentless demand for high throughput in manufacturing. A semiconductor 

facility runs at breakneck speed, driven by the insatiable appetite for semiconduc-

tors. As such, inspection systems should be capable of dealing with large volumes 

of wafers or chips with ease and accuracy. Classical investigation techniques, which 

were sufficient when industries ran at a slower pace, cannot keep up with today’s 

fast-moving production lines. Thus, it is necessary that automated inspection tools 

are developed.

Moreover, for semiconductor manufacturers, achieving even higher yields while 

maintaining high quality will continue to be one of the most challenging aspects 

of fabricating products with the expected performance and reliability required by 

critical computing and communication applications. The need for improved yields 

is a key factor for keeping semiconductor enterprises highly competitive and for 

maintaining healthy profitability in a hypercompetitive marketplace. The need is 

also growing more challenging as semiconductor devices become more complex. 

Semiconductor inspection serves as a key enabler for yield improvement through 

defect identification and characterization that can potentially impact product per-

formance and reliability. The need to increase yield objectives while maintaining 

high quality requires the ability to develop powerful defect characterization and 

classification schemes that benefit from machine learning algorithms and AI to 

detect defects with greater precision while simplifying the process of optimizing 

manufacturing operations.

Also, APC systems use advanced techniques to manipulate systems, which 

adds an extra layer of complexity in semiconductor inspection. APC devices on 

the leading edge of true-time monitoring and control require symbiotic integra-

tion with inspection facts to initiate modifications for yield optimization. Strong 

facts, analytics competencies, and smooth interoperability between the semicon-

ductor inspection device and manufacturing gadget are essential to realize this 

symbiotic integration, and complex modelling and predictive analytics strategies 

are critical to anticipate and prevent capability defects before the failures mani-

fest, all while semiconductor devices fulfil growing marketplace demands amid 

pervasive technical changes [2].
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  5.4  LITERATURE REVIEW ON CNN-BASED 
DEEP LEARNING MODELS

The development and applications of several types of artificial neural networks have 

been in both research and production. Nevertheless, convolutional neural networks 

(CNNs) have been in the limelight for the remarkable results they have achieved 

in the field of image recognition, especially on datasets such as the MNIST data-

base, CIFAR-10, and ImageNet [3]. The capability of CNNs to model the grid-like 

nature of images and smaller computation requirements than conventional neural 

networks, owing to their spatially organized neurons and pooling mechanisms, 

account for their superior performance in this application. What’s more, CNNs 

showcase a remarkable capacity to recognize the differences between a huge num-

ber of classes. In fact, CNNs represent a kind of end-to-end learning that decreases 

the human contribution requirement. Their design fuses the processes of feature 

  FIGURE 5.4  Convolutional neural network architecture.

 Source: Copyright © A. Harb, “Convolutional neural network tutorial for begin-

ners,” freeCodeCamp , 28 December 2020.  https://www.freecodecamp.org/news/

convolutional-neural-network-tutorial-for-beginners/ .

https://www.freecodecamp.org/news/convolutional-neural-network-tutorial-for-beginners/
https://www.freecodecamp.org/news/convolutional-neural-network-tutorial-for-beginners/
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extraction and classification together, thereby making them highly appropriate for 

efficient image recognition tasks [4]. CNNs have four main layers: convolution, 

rectified linear unit (ReLU) activation, pooling, and connected layers. After sev-

eral rounds of convolution and pooling, CNNs use connected layers to reason at a 

prominent level, working out class scores for the data that comes in. In cases with 

multiple classes, they use the SoftMax function. This function gives back proba-

bilities for each class of the input, making sure all the probabilities add up to 1. 

Figure 5.4 highlights the CNN architecture.

    5.5  CNN-BASED CLASSIFICATION ARCHITECTURE

In the past, CNNs faced big challenges because they needed massive amounts of 

labelled data, which led to high processing costs. This issue got better when people 

created large well-labelled datasets like ImageNet, CIFAR-10, CIFAR-100, and the 

MNIST database. Also, improvements in parallel computing with graphics process-

ing units (GPUs) and big distributed clusters lowered computing limits. This made it 

possible to better handle these massive datasets.

The ImageNet large-scale visual recognition challenge (ILSVRC) had an 

enormous impact on pushing forward deep neural networks for computer vision. 

ILSVRC made it simpler to build and evaluate more complex neural network 

structures by providing a standard against which to measure different image 

classification systems.

The ImageNet challenge led to two key image classification systems: the 

VGG Network (VGG-Net) and the Residual Network (ResNet). Simonyan and 

Zisserman created VGG-Net in 2014, which had a significant impact on explor-

ing deeper network structures. VGG-Net used tiny 3 × 3 convolutional filters, 

which helped the network spot small details in images while keeping the number 

of parameters under control. This design let the network grow to 16–19 weight 

layers, achieving a high accuracy of 7.3% at the ILSVRC 2014. The network’s 

increased depth improved classification performance, setting a brand-new stan-

dard for CNN architecture [5].

ResNet, which Microsoft Research Asia introduced in 2015, brought about a 

momentous change with its game-changing 152-layer network structure. The main 

breakthrough of ResNet was residual learning. This involved learning residual func-

tions in relation to input layers instead of just learning the intended underlying map-

ping. This method made it easier to optimize very deep networks by dealing with 

the degradation problem. This problem happens when adding more layers results in 

worse performance. ResNet’s design took full advantage of the much greater depth. 

This led to better accuracy, and it won the ILSVRC 2015 with a low error rate of 

3.6% [6].

Building on the foundation set by these ground-breaking works, our study aims 

to use transfer learning methods and adapt these top-performing network designs 

for our Deep Learning for Anomaly Detection and Classification (DLADC) project. 

By tapping into the unique features of VGG-Net and ResNet, we hope to expand the 

limits of anomaly detection and classification, boosting accuracy and effectiveness in 

spotting and sorting abnormalities in various datasets.
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  5.6  SUITABILITY OF CNN FOR IMAGE CLASSIFICATION

Research on using CNNs to check and find defects in semiconductors keeps expanding. 

CNNs have an edge over regular machine learning methods. They can learn complex 

patterns straight from the images of semiconductors without needing humans to step in or 

create unique features. This ability proves helpful in making chips and wafers. It allows 

manufacturers to spot flaws, which helps them keep their products top-notch and reliable.

CNNs have a knack for spotting complex patterns and structures in semiconduc-

tor images. They can pick out features using convolutional and pooling layers at 

distinct levels of detail. Thanks to the grid-like setup in semiconductor pictures, 

CNNs can spot tiny flaws like particles, scratches, or pattern changes that might 

point to manufacturing issues. What’s more, CNNs are flexible in defect detection 

tasks. They can adapt to differences in semiconductor pictures caused by things like 

various fabrication methods, materials, and equipment settings.

CNNs are fit for semiconductor inspection. They can handle tons of visual info 

and work well on new samples. Training CNNs on various defects helps them spot 

more issues. There are labelled datasets for semiconductor inspection, like SEMI’s 

(Semiconductor Equipment and Materials International) Standards and Guidelines 

for Defects in Semiconductor Manufacturing. Also, better hardware acceleration tech 

such as GPUs and special accelerators, allows for smooth integration of CNN-based 

inspection systems in chip factories. This tech boosts output and scalability too.

To wrap up, CNNs show great promise for inspecting semiconductors. They offer 

automated, accurate, and scalable ways to spot defects and control quality in semi-

conductor production. As tech in this area keeps advancing, CNNs are set to play a 

key role in making semiconductor production more effective and reliable.

  5.7  DATA COLLECTION FOR INSPECTION

 1. Wafer Images

    •  Manufacturing Environment:  People take wafer images in semicon-

ductor fabrication plants (fabs). These places have strict controls, like 

cleanrooms, to keep contamination levels low and make sure the data 

stays good.

   •  Automated Imaging Systems:  Automated imaging systems with 

high-resolution cameras take wafer pictures. These systems can be part 

of the semiconductor manufacturing equipment or exist as separate 

inspection stations.

   •  Sequential Imaging:  Cameras snap wafer images one after another as 

the wafer goes through different fabrication steps, like deposition, lithog-

raphy, etching, and annealing. This step-by-step imaging helps manufac-

turers to keep an eye on how the wafer’s surface changes and spot any 

problems or flaws right away.

   •  Metadata Annotation:  Manufacturers add metadata such as wafer ID, 

lot number, fabrication step, and timestamp to the wafer images. This 

makes it easier to track and trace the wafers.  
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Figure 5.5 depicts the image of a sample silicon wafer.

     2. Die Images 

    •  Die Extraction:  Image processing techniques like segmentation and 

cropping help to extract die images from wafer images. These methods 

find and isolate each individual chip (die) on the wafer to generate die-

level images for inspection.

   •  High-Resolution Imaging:  Die images, just like wafer images, are taken 

with high-resolution cameras. This ensures a detailed look at each chip. 

The high-resolution pictures help spot tiny flaws and odd features that 

could affect how well the chip works.

   •  Multiple Views:  Cameras might snap die images from different angles 

(like from above or at a slant). This captures various surface features and 

helps to analyse defects. 

   3. Defect Images 

    •  Defect Localization:  Automated algorithms or human operators find 

defects in wafer or die images. Once they spot these flaws, they mark 

the areas with defects for a closer look later.

   •  High-Magnification Imaging:  Images of defects are taken at high mag-

nification to show the defects in detail. This often involves using special 

microscopes, like SEM or AFM, to see things as small as a nanometre.

  FIGURE 5.5  Sample silicon wafer.

 Source: Copyright © “Why do silicon wafers look rainbow colored?,” Stack 

Exchange, 14 July 2021.  https://electronics.stackexchange.com/questions/573975/

why-do-silicon-wafers-look-rainbow-colored .

https://electronics.stackexchange.com/questions/573975/why-do-silicon-wafers-look-rainbow-colored
https://electronics.stackexchange.com/questions/573975/why-do-silicon-wafers-look-rainbow-colored
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   •  Defect Classification:  Images of defects are sorted by type, size, shape, 

and how bad they are. This helps makers focus on the most import-

ant ways to fix defects and make their processes better to stop similar 

defects from happening again. 

 4. Metadata Annotation

    •  Semantic Annotation:  Along with marking defects on images, extra 

info like the type of defect, its size, where it is, and how bad it is gets 

added to the image data. This provides more background information 

when looking at the defects.

   •  Database Integration:  Annotated defect images and related info go 

into central databases or data management systems. This helps people 

find, analyse, and make decisions about data during chipmaking.   

  5.8  DATA PREPROCESSING

Getting semiconductor pictures ready for machine learning analysis is key. People 

often use these methods to make image data more accurate and useful:

 1. Normalization: Normalization converts the value of each pixel of images 

to a common scale, usually [0, 1] or [−1, 1]. It keeps all pixel intensities the 

same across images, so the machine learning model can spot more patterns 

and features in the data.

   2. Augmentation:  Image augmentation techniques create more training exam-

ples from source images by making changes like rotating, flipping, scaling, 

or cropping. This process has an impact on the range and strength of training 

data, reducing the risk of overfitting, and improving the model’s ability to 

generalize.

 3. Noise Reduction: Noise reduction methods clean up or lessen unwanted 

elements and distortions in images, which can happen because of things 

like sensor noise, dust, or image compression. Common approaches include 

smoothing filters such as Gaussian blur or median filtering, which help keep 

important image features while cutting down on noise.

Using these preprocessing methods has an impact on how well semiconductor images 

are prepared to analyse with machine learning models. This ensures that the models 

can learn and pick out meaningful patterns and features from the data accurately, 

which leads to more reliable and efficient systems for inspecting semiconductors.

  5.9  MODEL ARCHITECTURE

 1. LeNet: Yann LeCun and his team came up with the LeNet in the 1990s. It’s 

one of the first CNN designs. LeNet has different layers, like convolutional 

layers, max-pooling layers, and fully connected layers. It’s not as complex 

as newer designs, but LeNet still does a great job with basic picture sorting 

tasks, like those in semiconductor checks. Its straightforward layout opened 

doors for more advanced CNNs. This showed how powerful deep learning 

can be for working with images.
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   2. AlexNet:  AlexNet, which Alex Krizhevsky and his team came up with in 

2012, marked a big step forward in CNN design. The structure has several 

convolutional layers, with max-pooling layers right after them, and con-

nected layers at the end. When AlexNet won the ILSVRC, it showed how 

good deep learning is for sorting pictures. People have used this model in 

many areas, including checking semiconductors, because it can handle com-

plex picture data and still sort things.

   3. VGG:  Karen Simonyan and Andrew Zisserman came up with the VGG net-

work in 2014. This network stands out because of its uniform structure, which 

uses small (3 × 3) convolutional filters and max-pooling layers [ 7 ]. The uni-

form design of VGG networks makes them simple yet good at classifying 

images. The architecture takes a direct approach to making the network deeper 

(up to 19 layers) while keeping the computing needs in check. This has proven 

helpful in sorting semiconductor images where being clear and exact matters.

 4. ResNet: Kaiming introduced ResNet. In 2015, he and his team came up 

with a ground-breaking method for deep learning called residual learning. 

This involves creating shortcut (or skip) connections that skip one or more 

layers. These connections allow very deep networks, often with hundreds of 

layers, to be trained by solving the vanishing gradient problem, which often 

hinders deep network training. ResNet has reached top-notch performance 

in many image classification tasks, and people praise it for its strength and 

effectiveness. Its ability to keep performing well as it gets deeper makes it a 

viable choice for the complex job of inspecting semiconductors.

  5.10  MODEL TRAINING

 1. Data Splitting

    •  Purpose:  Splitting data plays a key role in training and checking how 

well the CNN model works. It involves breaking up the dataset into 

three different parts: sets to train, validate, and test.

   •  Training Set:  The set for training makes up a big part of the dataset and 

helps teach the CNN model. As it trains, the model learns to spot patterns 

and features in the pictures of semiconductors along with their tags.

   •  Validation Set:  This set helps to adjust settings and keep an eye on how 

the model does during training. By checking how the model performs on 

the validation data regularly, we can make changes to stop it from fitting 

too much or too little to the data.

   •  Testing Set:  The testing set helps to check how well the trained model 

performs. It gives a fair assessment of the model’s ability to work with 

new data, ensuring it does well in real-world cases. 

   2. Hyperparameter Tuning 

    •  Learning Rate:  The learning rate decides how big the steps are when 

updating parameters during training. It is a key setting that has a big 

effect on how fast the model improves and how well it works overall. 

We can use learning rate methods and adaptive learning rate methods 

(like Adam) to change the learning rate as training goes on.
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   •  Batch Size:  Batch size decides how many samples are looked at in each 

training round. Bigger batches help reach the goal faster, but they need 

more memory and computing power. Methods like batch normalization 

and gradient accumulation can help keep training steady when using 

large batches.

   •  Regularization Parameters:  Regularization tricks like L1 and L2 reg-

ularization or dropout stop overfitting. They do this by keeping param-

eter values in check or turning off units during training. The strength of 

regularization depends on hyperparameters. These need to be adjusted to 

make the model work its best.

   •  Hyperparameter Search:  This involves looking into different hyper-

parameter combinations to make the model work better. You can use 

methods like grid search, random search, and Bayesian optimization to 

check out various hyperparameter options and find the best ones. 

   3. Optimization Algorithms 

    •  Stochastic Gradient Descent:  Stochastic gradient descent (SGD) is a 

way to train machine learning models in deep neural networks. It is dif-

ferent from regular gradient descent methods. SGD tweaks the model’s 

settings for individual data points or small groups rather than looking at 

all the data at once. This approach makes calculations faster and helps 

the model learn quicker. SGD works well with big datasets where it’s 

not possible to process everything in one go.

   •  Adam:  Adam is a learning rate optimization algorithm that is open to 

input. It uses momentum and RMSprop. It changes the training speed for 

each parameter based on the first and second moments of the gradients. 

This leads to quicker convergence and better standardization.

   •  RMSprop:  RMSprop is another algorithm that adapts the learning rate. 

It uses a moving average of squared gradients to work out the training 

rate for each parameter in the algorithm. It solves the problem of gradi-

ents that vanish or burst by changing learning rates on the fly based on the 

most recent gradient history.

   •  Loss Function:  The loss function you use depends on what you are 

trying to do with your semiconductor inspection. If you are sorting 

things into many groups, cross-entropy for multiple categories is a go-to 

choice. For yes-or-no decisions, binary cross-entropy works well. When 

you need to predict numbers, mean squared error can do the job.  

By looking at how to split data, adjust settings, and pick the right math tricks, companies 

can build and improve CNN models that work well for checking semiconductors. This 

helps them spot defects and keep quality high when making these tiny electronic parts.

  5.11  MODEL TESTING

 1. Accuracy: Accuracy is a basic statistic that shows the percentage of grouped 

items in a dataset. It gives a full look at how right the model is by showing 

how many predictions match the real labels. For checking semiconductors, 

accuracy is a key sign of how well the model spots flaws or odd things in 
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semiconductor images. But accuracy alone might not tell the whole story with 

uneven datasets, where one group is much bigger than others. So while accu-

racy gives important info about how useful the model is, it’s best to use it 

along with other measures to get a better picture of how well the model works.

   2. Precision:  Precision measures how well the model avoids false positives by 

calculating the ratio of true positive predictions to all positive predictions 

the model makes. This metric is key in semiconductor inspection because it 

shows how well the model can spot real defects without flagging good parts 

as bad. High precision means the model raises very few false alarms, which 

is crucial to cut down on unnecessary actions or follow-up steps caused 

by these false positives. Precision serves as a vital performance metric that 

manufacturers can use to evaluate how reliable and trustworthy defect detec-

tion systems are in semiconductor production environments [ 8 ].

   3. Recall (Sensitivity):  Recall, also called true positive rate, evaluates how well 

the model can show all positive cases. It does this by comparing the share of 

true positive predictions to all actual positive instances in the dataset. In chip 

testing, recall plays a key role in ensuring thorough defect detection. It shows 

how well the model can spot all faulty parts without missing any. High recall 

means the model identifies most positive cases, which lowers the chance 

of unnoticed flaws getting through the inspection. Makers focus on recall 

when missing flaws could have profound consequences. This highlights how 

important it is to have strict defect detection in chip production lines.

   4. F1 Score:  The F1 score strikes a balance between precision and recall by 

calculating their harmonic mean. It offers a thorough assessment of how 

well a model performs by taking into account both false positives and false 

negatives. In the field of semiconductor inspection, the F1 score serves as 

a complete evaluation metric that sheds light on the connection between 

precision and recall. A high F1 score suggests that the model achieves an 

optimal blend of precision and recall, cutting down on false alarms while 

capturing all positive instances. Manufacturers use the F1 score to examine 

the overall effectiveness and reliability of the defect detection system, mak-

ing sure they evaluate its performance across different operating conditions.

   5. Area under the ROC Curve:  The area under the receiver operating char-

acteristic (ROC) curve, or AUC-ROC, assesses how well a model can tell 

different classes apart. It does this by showing the true positive rate against 

the false positive rate at various threshold levels. A higher AUC-ROC score 

means the model can better distinguish between classes, with higher true 

positive rates and lower false positive rates at different decision points. In 

semiconductor inspection, the AUC-ROC plays a key role to gauge how well 

the model can spot the difference between faulty and good parts. Manufac-

turers rely on the AUC-ROC to check the model’s overall sorting accuracy 

and its ability to make sound choices when looking at semiconductor images.

 6. Confusion Matrix: A confusion matrix shows how well a model predicts 

compared to actual labels. It displays true positives, false positives, true 

negatives, and false negatives. This gives us key insights into the model’s 

performance across different classes, letting us take a closer look at what it 
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does well and where it falls short. In semiconductor inspection, a confusion 

matrix helps makers spot specific areas where the model shines or strug-

gles. This allows them to zero in on improvements. By looking at the con-

fusion matrix, manufacturers can better understand how the model predicts 

and make smarter choices to boost its ability to spot and sort defects.

Each of these evaluation metrics gives us different insights into how well deep learn-

ing models work for checking semiconductors. This helps manufacturers make their 

defect detection systems better and produce top-notch semiconductor devices.

  5.12  RESULTS AND DISCUSSION

In this chapter, we took a close look at how well CNN models perform when assess-

ing semiconductor images. We ran careful tests to evaluate different CNN designs, 

such as AlexNet, VGG, and ResNet, using semiconductor image datasets from facto-

ries. We chose these datasets and added to them to ensure they covered a wide range 

and were representative. To improve the quality and variety of the dataset, we used 

methods like normalization and data augmentation. This allowed us to train and 

evaluate the models better.

When we dug deep into our experiment results, we found some interesting things. 

The CNN models were good at spotting and sorting out flaws in semiconductor pic-

tures. They got it right over 90% of the time, no matter which model we used. This 

shows that deep learning works great for checking semiconductors. These models 

were able to notice tiny details and patterns in the semiconductor images. What’s 

more, we found that the CNN models could handle different environments and light-

ing pretty well, which is important in semiconductor factories.

Despite these strong points, we ran into some limits and areas for improvement. 

One big issue was how CNN models tended to overfit when trained on small or 

uneven datasets. Also, training deep neural networks on big semiconductor datasets 

was complex. This created logistical challenges, making us think about how to use 

our resources well and scale our work.

When compared to the old ways of checking semiconductors, CNN models 

showed big improvements. They did better than the usual rule-based systems or 

machine learning tools, proving to be more accurate, faster, and better at handling 

distinct types of semiconductor images. By learning on their own from raw data, 

CNN models showed they were good at spotting small defects and sorting semicon-

ductor parts every time.

Even so, putting CNN models to work in real-world factories comes with its own 

problems. These include the need for a great quantity of labelled data, powerful com-

puters, and ways to understand what the models predict. Despite these roadblocks, 

the promise shown by CNN models highlights their ability to cause a revolution in 

how we check semiconductors. This opens the doors for better quality control and 

ways to reduce defects.

To wrap up, our study shows how CNN models have an enormous impact on semi-

conductor inspection. By using the good parts of deep learning methods and fixing 

the problems we found, makers can find new ways to make semiconductor products 
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better and more dependable. Going forward, we need to keep up the research and 

development to overcome the current problems and make models using deep learning 

work even better for everyday semiconductor inspection in factories.

  5.13  CONCLUSION

In conclusion, our study takes a close look at how deep learning CNNs can be used 

to inspect semiconductors. We showed that CNN models are accurate at finding and 

sorting out flaws in semiconductor images through careful testing and review. Our 

results prove that CNNs work well, with over 90% accuracy across different setups 

and samples. These findings show that deep learning methods have a huge effect on 

semiconductor inspection, giving makers new tools to control quality and reduce 

defects. We can’t stress enough how valuable deep learning is in semiconductor test-

ing. By using CNN models, makers can improve how they find defects, boost product 

quality, and cut production costs. Using deep learning methods marks a tremendous 

change in how we control semiconductor quality, allowing for automated, efficient, 

and exact defect spotting on a large scale. Looking forward to future studies should 

work on making CNN structures better, improving training methods, and finding 

new ways to use deep learning in semiconductor making. Also, working to create 

standard datasets, testing frameworks, and tools to understand the process will be 

key to helping more people use deep learning in semiconductor quality control and 

ensure it fits into industry practices.
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  6.1  INTRODUCTION

The expansion and broad implementation of the new technology of semiconductors 

has been the main steering force behind the 21st-century computer revolution. Fur-

thermore, the fabrication of semiconductors is now recognized to be a major focus 

on public innovation in various countries. For instance, the European Chips Demon-

stration Act (EU), passed in 2023, and the CHIPS and Science Act (US), passed in 

2022, have both enacted significant subsidizing measures to promote the production 

of semiconductor chips, communication, engagement, and employment. Elite perfor-

mance semiconductors are becoming increasingly popular as a result of emerging 

applications like computer-based artificial intelligence (CAI) [1] that demand large 

amounts of processing power.

For this reason, a number of approaches have been developed and proposed, 

including 3D bundling, silicon photonics, and heterogeneous combination, and 

these are gateway to overall semiconductors [2]. The unifying aim of all approaches 

is to attain the smallest line width (pitch) at the expense of exceedingly complex 

structures. These developments allow chips or parts of chips to operate inde-

pendently by using connections at the wafer and chip levels [3]. When compared 

to conventional bundling schemes, they could create a very confusing framework. 

The complexity of the strategy and its creation increases the production of success-

ful framework.

To collect data and evaluate cycle boundaries, item usefulness, layer thickness, 

arrangement position, material piece, and electrical qualities metrology use a variety 

of estimate methodologies, changing units of estimate and equipment [4]. Accord-

ing to Abd Al Rahman and Mousavi [5], the market for semiconductor review and  

estimation hardware’s includes a variety of devices such as cover estimation hard-

ware, film thickness, overlay accuracy, three-layered form, example and non-design 

wafer imperfection examination devices, and veil investigation devices. Process con-

trol is metrology’s primary responsibility in the semiconductor industry, and metrol-

ogy is essential to the industry’s continued viability. For instance, 3D NAND devices 

use materials such as thick, hard coverings; extremely loaded designs; and more than 

100-layer matches. Elevated geological heterogeneity, ambiguity in the material, and 

wafer stress are some of the factors that enhance the difficulty of achieving accurate 

estimations [6]. Additionally, the production of dynamic irregular access memory 

(Measure) further complicates the process.

https://doi.org/10.1201/9781003508304-6
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However, there will always be a need for technological devices with greater func-

tionality. Future semiconductor techniques, such as advanced bundling, are expected 

to be denser and require a lot more intricate architecture. As devices become smaller 

and more three dimensional (3D) in design, metrology becomes increasingly neces-

sary. Over half of the manufacturing stages for some commodities involve estima-

tion or depiction. The semiconductor industry is heading toward a future when it 

should be possible to determine the nature and condition of every particle inside a 3D 

device. The base interconnection pitch is now submicron, and in some applications, 

the allowable layer thickness for semiconductor bundling has expanded by more than 

100 times in the past ten years. The pattern toward expanding framework thickness is 

expected to go on from here on out, presenting huge difficulties in both planning and 

actual handling. Several investigations have shown that analyzing the dependability 

of upcoming semiconductor procedures is the main deterrent [7]. Many semicon-

ductor devices have multiple components that have varieties of functionalities. As 

a result, more research and fortifications are needed to support current metrology 

advancements [8].

During semiconductor fabrication operations, completing the goal of a thorough 

inspection of partially produced products necessitates a limited quantity of metrol-

ogy equipment and time. The company now undertakes haphazard inspection and 

testing for quality control to save money, but this doesn’t always result in thorough 

quality control or guarantee exceptional results. The metrology procedures that are 

now in use need examination during particular dealing stages, and their estimates 

are fulfilled at clearly identified metrology stations, resulting in pointless handling 

time. Virtual metrology (VM) may therefore address the consistent quality of test-

ing and review for advanced semiconductor products [9]. To evaluate the outcome 

of the discussed fab interaction, VM makes use of cycle factors, creation appara-

tus information, and tested wafers for genuine metrology information. Although 

all products cannot be subjected to actual metrology, VM may be used to meet the 

need for a “complete” inspection. This method can replace the inline continuous 

inquiry with detached review given the proper setup and testing of virtual machine 

models [10]. VM, also referred to as delicate detecting, has found useful uses in dif-

ferent assembly industries in the past. Though these applications really need further 

research, they have benefited greatly from the semiconductor industry’s successful 

use of virtual machines. For instance, to lower manufacturing costs, factories aim 

to lower sample rates. The intelligent sampling decision (ISD) system supports VM, 

however, its set rate limits adaptability. This study proposes an automated sam-

pling decision (ASD) method that dynamically adjusts sampling rates in real time 

based on VM correctness to guarantee efficiency and long-term performance. This 

semiconductor process was developed by Cheng and others [11] to accomplish the 

objective of complete mechanization in the auto-wheel creation business. The inven-

tors demonstrated a workable arrangement of three machines, one inline, one drill, 

and one additional unconnected metrology station, that work together to create an 

automated wheel production facility. The usefulness of this VM in the making of 

copper-clad overlay (CCL), a basic component for on-paper circuit sheets used in 

a variety of devices, was investigated by Kim and others [12]. Using verified data 

from a CCL manufacturer, three quality parameters were the subject of expectation 
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during the therapy. Similar to how carbon fiber creation was integrated into the 

AVM framework, makers were able to track creation information, initiate a creation 

information traceback (PDT), link it to a specifically manufactured workpiece, and 

complete a thorough assessment of the carbon fiber creation process. The appli-

cation of virtual maintenance technology to the commercial motors in aviation 

was demonstrated well by Enrico and others [13], and the applicability of VM for 

ultra-accurate device production and machining was discovered in both commercial 

motors in aviation and ultra-accurate device production. Therefore, by examining 

these continuing patterns of assembly, it can be safely concluded that VM is a cru-

cial mechanical advancement of Industry 4.0 that goes beyond traditional metrology 

target expectations. It is imperative that ventures comprehend that virtual machine 

foundations now include a substantial portion of Industry 4.0 logic such as inter-

net of things (IoT), digital physical frameworks, modern massive information, and 

zero-imperfection assembling [14].

Future semiconductor assessments are expected to heavily rely on VM. As bun-

dling complexity increases, inclusion size decreases, and advanced bundling tech-

niques such as wafer-to-wafer and pass-on-to-wafer are dynamically replacing 

normal cycles, necessitating more ongoing research. Additionally, VM can play 

a big role in the design of cutting-edge bundling, which is recognized by several 

assessments as a major challenge as construction thickness increases. The advent of 

quicker artificial intelligence and the convenience of open source AI-ML (artificial 

intelligence–machine learning) bundles has led to the recent blossoming of semi-

conductor APC (advanced phase control) speculations, including virtual machines 

(VMs), which are helpful for development bundling. To overcome prophetic exact-

ness issues posed by sophisticated innovative computations, constant innovation in 

VMs is required [15].

A thorough production and the potential implications of VMs for this sector are 

vital. For this reason, this chapter undertakes such a leading effort. Appropriate VM 

topics related to semiconductor fabrication are compiled and analyzed, and the best 

available research is summarized in this chapter. The chapter audits and examines 

the adopted virtual machine tactics in every cycle bunch in light of the semiconduc-

tor manufacturing process hierarchy. Analogously important, fundamental analysis 

is conducted to investigate persistent challenges in the further implementation of 

semiconductor fabrication as well as a comparative analysis of potential futures.

  6.2  ADVANCEMENT OF SEMICONDUCTOR GADGETS

Within the hardware realm, the operation of semiconductor devices continues to be a 

showcase for human creativity and technological advancement. Over the years, semi-

conductor devices have seen notable advancements and remarkable improvements in 

their direction. These devices, which started off as diodes and semiconductors, have 

evolved into the cornerstone of modern invention and are responsible for the sophis-

ticated era we live in today. This section begins with an examination of the verifiable 

trajectory of semiconductor devices, highlighting their noteworthy accomplishments 

and the dynamic changes that have shaped their progress. By means of this jour-

ney, we have a deeper understanding of the intricately woven artwork of logical 
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discoveries and design achievements that have propelled semiconductor devices into 

their current critical condition.

  6.2.1  DEFINITION: THE SEMICONDUCTOR GADGETS 

Semiconductor devices are electronic components that are based on a semiconduc-

tor’s unique electrical properties. These substances lie midway between the guide 

and separator domains in terms of conductivity. Important semiconductor materials 

include natural semiconductors such as silicon, germanium, and gallium arsenide. 

These electronic components, which make use of the remarkable electrical capabili-

ties of semiconductors, are the foundation of many creative applications.

  6.2.2  THE ADVANCEMENT IN THE EVOLUTION OF SEMICONDUCTOR GADGETS 

This section provides a clear and concise synopsis of the evolution of semiconduc-

tor innovation. It covers the pivotal moments, advancements, and trends that have 

shaped this area, from the discovery of early semiconductors to the present-day coor-

dinated circuits. This section provides a foundational understanding of the empirical 

environment, paving the way for understanding the current state of affairs and poten-

tial future directions for semiconductor devices. In particular, the persistent scal-

ing of complementary metal oxide semiconductor (CMOS) innovation, per Moore’s 

law, has long been the primary driver in the semiconductor industry. The continuous 

reduction in the size of semiconductors and circuits has enabled significant advance-

ment in computing power and the proliferation of electronic devices across various 

applications.

  6.2.2.1  Early Semiconductor

The term “early semiconductor” refers to the fundamental configuration of semicon-

ductors created in the latter half of the 1940s and the middle of the 1950s. We have 

discovered another impact, now referred to as the semiconductor impact, in our latest 

investigations using point-contact rectifiers. This effect is dependent upon the use of 

a small portion of semiconductor material as opposed to the conventional approach 

of using the majority of such materials. These were the primary strong-state compo-

nents used in many practical applications, taking the place of vacuum tubes. When 

compared to vacuum tubes, these early semiconductors were smaller, more reliable, 

and consumed less power, which was a significant advancement in hardware. The 

investigations and preliminary work conducted during this period established the 

framework for the modern semiconductor.

  6.2.2.2  Integrated Circuit

Kilby invented the coordinated circuit, which fundamentally altered the hardware 

landscape by combining several components on a single semiconductor substrate. 

Kilby’s seminal work in the latter half of the 1950s laid the foundation for the 

advanced era of high-performance, reduced-size electronic devices. A smaller ver-

sion of an electrical circuit, consisting of resistors, capacitors, diodes, and semicon-

ductors is called an integrated circuit (IC). These are produced mostly on silicon, a 
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tiny semiconductor substrate. These elements work together to accomplish certain 

tasks such as handling, memory storage, and improving signals. When many compo-

nents are combined into one chip, it is possible to reduce size, enhance performance, 

and use less energy than when separate electronic circuits are used. Coordinated 

circuits are crucial for powering several modern devices.

  6.3  CURRENT INNOVATIVE PATTERNS

  6.3.1  ARISING ADVANCES 

Several state-of-the-art developments have been made in the last century and a half. 

Innovative assembly, information, and video innovations are working together to 

create new advancements that are more effective. The development of fluid biopsy 

technology tackles a crucial phase in the ongoing battle against illness. Fluid biop-

sies offer several advantages over traditional tissue biopsies. They serve as a good 

alternative right away in cases where tissue biopsies make no sense. Furthermore, 

fluid biopsies provide a comprehensive view of the patient’s overall health, whereas 

tissue biopsies only provide fragments of information based on the sample. In fact, 

circulating growth DNA is frequently detected in fluid biopsies because it frequently 

migrates from cancer tissue into the bloodstream. With the advancement of convo-

lutional brain structures and deep learning, machine vision has begun to surpass 

human capabilities in image recognition. Currently, machine vision innovation is 

showcasing a wide range of anticipated applications in several domains, including 

autonomous driving, medical diagnosis, protection guarantee assessment, water level 

monitoring, gardening, and more. Convolutional neural networks (CNNs), which can 

be trained using the backpropagation algorithm, consistently outperform other deep 

learning structures in tasks like image and speech recognition. They also need fewer 

boundary evaluations than other feedforward deep learning models, which make 

them an attractive option in the great learning space. The potential of quantum com-

puters is infinite, but their development is extremely difficult and expensive.

The reason why the processing power of small quantum personal computers has 

not surpassed that of supercomputers is easily understood. However, IBM advanced 

the use of quantum computing in 2016 by being the first company to provide cloud 

computing services for quantum computers to the general public. More than 20 sci-

entific publications that are awaiting dissemination now have an exploratory platform 

thanks to the invention. Currently, more than 50 organizations worldwide, includ-

ing large initiatives and countless new businesses, are working to bring quantum 

PCs to reality. People believe that the quantum era has come as a result of these 

developments.

  6.3.2  THE ADVANTAGE OF THE RISING ADVANCEMENTS 

Innovation and science play crucial roles in advancing human progress. No mat-

ter how much technology advances, it is important to remember that machines are 

still products of human invention, meant to be used by humans. Those who benefit 

from these mechanical devices shouldn’t suppress their innate desire to labor, as 
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an excessive reliance on machines might lead to social disapproval. However, this 

does not imply that new developments obstruct human progress. Similar to other 

aspects of daily life, innovation is a two-sided affair. Our choices determine how 

we use it. It is absurd to disparage the contribution that research and innovation may 

make to human progress since individuals consistently demonstrate their prevailing 

knowledge.

  6.3.3  EXECUTION IMPROVEMENT 

Shrewd chips are the supporting innovation needed for 5G and the IoT, which will 

promote these technologies further and improve smart devices, smart homes, and 

other fields, in addition to improving information inclusion and digitalization. The 

semiconductor sector will bring about more notable advancements and beneficial 

opportunities, and demand for chips will only grow. The growing consciousness and 

deep learning of humans mean that the semiconductor industry will need to meet 

increasing performance requirements in terms of energy efficiency and computation. 

As of right now, the semiconductor business will see considerable development in 

the areas of PC engineering innovation and computation streamlining. In contrast 

to earlier generations, modern electronics are smaller and more versatile, offering a 

higher degree of customization. To satisfy the modest needs of customers, the semi-

conductor industry will primarily support new radio-frequency devices and smaller 

chips in this particular situation.

  6.4  SEMICONDUCTORS IN AI/ML WITH 
DIFFERENT METHODOLOGY

The Semiconductor Equipment and Materials International’s (SEMI) Equipment 

Communications Standard/Generic Equipment Model (SECS/GEM) protocol makes 

it easier for host computers and semiconductor equipment to communicate in the 

semiconductor manufacturing sector. SEMI developed SECS/GEM with the goal of 

enhancing factory automation through standardized communication. In smart manu-

facturing systems, hosts that manage and gather data from the equipment make up the 

edge layer, while the equipment itself is contained in the equipment layer. However, the 

existing SECS/GEM interface lacks dynamic data analysis at the hardware level, which 

results in latency issues when transferring input to the edge/cloud layers for analysis.

To address these latency issues and enable dynamic data processing at the equip-

ment level, the research work [16] proposes a novel communication protocol for the 

SECS/GEM interface. The present SECS/GEM interface adds significant latency 

when sending data from equipment to edge/cloud layers because it does not offer 

dynamic data analysis.

Nguyen [16] conducted experiments utilizing SECS/GEM messages to quantify 

the lag of data variable transfers from the hardware to the host. A notable lag that 

could affect productivity was revealed by the data. To solve this, they proposed an 

architecture for the system that includes an onboard “Data Analysis Engine” mod-

ule. This module makes it possible for equipment to perform host-specified analysis 

tasks, hence eliminating the need for data transfers to the host.
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The authors included a new “Stream 22” in the SECS/GEM protocol, which 

allows the host to build, link, and start custom and predefined analytic operations 

on the equipment as well as report and identify outcomes. By enabling the host to 

assign data analysis tasks to the equipment dynamically and collect the results, this 

proposed protocol can reduce network bandwidth usage and improve semiconductor 

smart manufacturing efficiency by enabling real-time reactions [16].

The defect detection model is built using You Only Look Once version 2 (YOLOv2) 

as per the reference model. YOLOv2 is a well-known object detection algorithm that 

performs detection through regression, using many different pooling layers with convo-

lution to transform the input image into a 3D tensor. The input images to the YOLOv2 

model are of size 448 × 448 pixels, which improves the resolution and fine-tunes the 

classifier for better performance. To improve the critical dimension scanning electron 

microscope’s (CD-SEM) gray images by its features, the contrast and brightness of the 

images are dynamically adjusted. This is achieved using image linear blending tech-

nology. Two images, the original image I0 and a second transparent channel image I1, 

are fused linearly with respect to weights. The blending formula is:

 g(x) = λI0(x) + (1 − λ)I1(x) (6.1)

In the blended image g, the resulting pixel value at position x is considered where λ 
is the weight controlling the fusion of the pixel values at corresponding positions in 

the two images [17].

The system processes CD-SEM gray images automatically by extracting them from 

the CD-SEM server database, preprocessing them, and then using the defect detection 

model to identify defects. If a defect is detected, the system saves this defected output 

into CD-SEM data as a review image. It also triggers an alarm email to notify engi-

neers. Engineers can view detailed CD-SEM data and review images through a custom 

user interface. The system supports batch detection of CD-SEM images to improve 

efficiency. For example, it can process up to 188 gray images in a batch, displaying the 

results with bounding boxes indicating defects (red for defects, green for no defects). 

The system reduces the need for engineers to manually review every image and 

enhances the inline defect inspection capability, thus improving the economic benefits 

for the factory. By noticing faulty wafers in real time and notifying engineers promptly, 

the system helps reduce the impact on products and improves yield [18, 19].

In this study, the researcher Nguyen, H. developed a robust supervised deep learn-

ing training scheme aimed at accurately classifying and localizing various defect 

types in SEM images with high precision. The proposed ensemble model integrates 

ResNet101, ResNet50, and ResNet152 designs as spines and utilizes experimentally 

selected models based on preferences strategically ensembled to get out after com-

bining the predictions from the models. This approach enhances performance in both 

the classification and detection of defects.

The model efficiently categorizes faulty classes, such as line collapses, micro-

bridges, and micro-gaps and handles the changing grades of pixel-level faulty sce-

narios within these categories. Additionally, it precisely regresses the regions of the 

faults by providing bounding boxes signified by width, center coordinates, height, 

and confidence score of detection.
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To further optimize fault detection, unsupervised machine learning strategy 

is applied to get noiseless images of SEM without any clear ground truth. This 

method benefits in the removal of false positive faults and minimizes the impact of 

stochastic noise on pixels that are structured. The analysis of power spectral den-

sity shows that only the noise of high-frequency components is exaggerated. Along 

with preserving the frequency of low components related to the sound structure of 

device features.

This defect inspection pipeline enhances the accuracy of defect detection. This 

process will not change any dimensions of wire length/wire space (L/S) in aggres-

sive pitches. As circuit designs continue to shrink to comply with Moore’s law, 

these conventional defect inspection methods become less effective, often leading 

to false defect detections and erroneous metrology. A model based on deep learning 

addresses these limitations, improving the classification and detection localization of 

various defect categories with greater precision and accuracy [20].

As semiconductor manufacturing moves toward the 3 nm node, reducing edge 

placement error (EPE) is crucial for proper IC device functioning. EPE evaluates 

the reliability of produced patterns in multi-patterning processes by integrating 

overlaying and critical dimension (CD) defects. Recent ML advances have provided 

new opportunities to improve the performance and efficiency of EPE optimization 

procedures.

Kyon and others [21] survey recent research applying machine learning/deep 

learning to enhance virtual overlay metrology, reduce overlay error, and improve 

mask optimization methods for EPE reduction. The review discusses objectives, 

datasets, input features, models, key findings, and limitations. Results show ML’s 

great potential in improving EPE in semiconductor manufacturing.

Samsung started the “initial” 3 nm production in 2022, using gate-all-around 

architecture, offering 16% higher transistor density, 23% higher performance, and 

45% lower power compared to an unspecified “5 nm” process. The Taiwan Semi-

conductor Manufacturing Company (TSMC) announced volume production of its 

“3 nm” N3 process in December 2022, with the refined N3E process starting in H2 

2023. It is the semiconductor fabrication process. At IEDM (International Electron 

Devices Meeting) 2022, TSMC disclosed that N3 has a 45 nm contacted gate pitch 

and N3E a 23 nm minimum metal pitch, with SRAM cell areas of 0.0199 μm2 for N3 

and 0.021 μm2 for N3E. As nodes shrink, more intellectual is required in filling, as it 

can affect timing and signal integrity of all layers’ fillings [21].

The paper, Chiplet Heterogeneous-Integration AI processor, discusses the design 

of a chiplet-based AI processor named ABSx, which integrates multiple neural pro-

cessing units (NPU) and high-bandwidth memory (HBM3) chiplets on a multilayer 

redistribution layer (RDL) interposer. Key design aspects include high-speed data 

channels, with an emphasis on the necessity for high-speed data channels between 

NPUs and HBM to facilitate parallel processing and near-memory processing, which 

is crucial for AI tasks.

Interposer Design: Considerations for signal integrity, power distribution, and 

high-density wiring to ensure effective communication and power manage-

ment across the chiplets.
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Intra-Chiplet NPU Architecture: Design of NPU architecture to sustain 

continuous data feeding into the floating-point units, ensuring efficient 

processing.

Bonding Reliability: Addressing static and dynamic bonding reliability issues 

caused by the numerous micro-bumps, essential for maintaining the struc-

tural integrity of the processor.

Thermal Stability: Ensuring thermal stability by analyzing heat flux and 

mutual heat influence and implementing effective heat removal strategies to 

manage the thermal load.

Inter-Chiplet Link: Highlighting the importance of the inter-chiplet link and 

its impact on the overall performance efficiency of the processor.

The design criteria focus on optimizing performance efficiency, ensuring reliable 

chiplet integration, and maintaining thermal stability. The chiplet architecture 

is used to address the difficulties that have arisen as a result of the data explosion 

in computing, which is necessary for large-scale AI models. The AI-based chiplet 

ABSx is a suitable solution for AI’s data processing requirements, providing a way 

ahead for handling the complex workload in line with maintaining high-performance 

dependability [22].

In Yoo and others [23], the researchers present the working of natural language 

processing (NLP) techniques to evaluate text data related to apparatus maintenance 

as well as quality concerns in the semiconductor manufacturing industry. In the view 

of assembling insightful information from this unstructured data, the researchers 

undertook a number of crucial steps in the development of an internal NLP engine. 

In the beginning, the researchers preprocessed all text data, which included details 

on equipment maintenance as well as quality issues in sequence to create a cor-

pus. A semiconductor dictionary was used to do analysis of quality troubles on the 

semiconductors. These also use the bag-of-words, bag-of-N-grams techniques, and 

term frequency-inverse document frequency (TF-IDF) to quantify the document 

and extract important features. The visualization of phrases and the association of 

key phrases in different factories are analyzed, and significant differences between 

equipment types were found with the use of chi-square tests. In the end, burst analy-

sis identified the times when the frequency of significant phrases grew greatly.

The findings showed that different factories and models had different quality issue 

trends and equipment maintenance characteristics. This offered insightful informa-

tion that could help semiconductor manufacturers increase productivity and quality.

The authors’ use of NLP techniques to analyze unstructured text data demon-

strates the potential of this approach to extract meaningful insights from the wealth 

of information available in semiconductor operations. By uncovering patterns and 

differences in quality and maintenance issues, the NLP analysis can help manufac-

turers optimize their processes and enhance overall performance.

Yoo and his team present a comprehensive methodology that combines technol-

ogy computer-aided design (TCAD) simulations with advanced ML techniques to 

achieve multi-target optimization for BCD (Bipolar-CMOS-DMOS (Double – dif-

fused metal oxide semiconductor)) processes. The key aspects of the approach are 

data generation, where it uses 150 Latin hypercube sampling points to thoroughly 
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cover the parameter space and generate essential data for model training through 

TCAD simulations. This foundational data is used to establish accurate relation-

ships between process variables and the electrical characteristics (ET-spec) of target 

devices. The next step is regression modeling, and models are trained to forecast the 

ET-spec of equipment based on procedure parameters. An auto-regression model is 

selected for its high fitness, allowing the use of surrogate models instead of direct 

TCAD simulations to significantly reduce computational costs during iterative 

optimization processes. In the optimization process, a genetic algorithm (GA) is 

employed to efficiently search for the global minimum by exploring a broad solution 

space. The optimization process uses a weighted sum of fitness scores to manage 

the multi-target nature of the problem, ensuring that different device parameters are 

optimized simultaneously.

To examine different parts of the Pareto front, multiple GA solutions are started 

from distinct beginning points. TCAD simulations are used in validation to verify 

the efficacy of the optimized process parameters that the GA found. This stage guar-

antees that the suggested fixes are workable from a practical standpoint as well as 

conceptually sound.

The new methodology is compared with existing optimization flows in the com-

parison and benefits step. Existing optimization flows target devices sequentially and 

necessitate numerous iterations. The proposed strategy, on the other hand, achieves 

an 87% targeting rate and drastically cuts the turnaround time from 30 days to just 

three days by optimizing all variables across all devices at once.

This methodology efficiently solves the difficulties and trade-offs inherent in 

BCD process development, offering a reliable solution for next-generation semicon-

ductor production by merging AI-based regression models with TCAD simulations 

and using a GA for optimization [24].

Through an examination of the neural network physically unclonable function 

(NN PUF), implemented on the SAKURA-G field-programmable gate array (FPGA) 

evaluation board, the article performance evaluation of AI authentication device 

implemented on SAKURA-G addresses security problems related to AI. The NN 

PUF takes advantage of the variety in large-scale integration (LSI) production to 

produce unique identifications (IDs) for device verification by combining a neural 

network and the physically unclonable function. The paper [25] evaluates the NN 

PUF’s performance based on diffuseness, steadiness, randomness, and uniqueness. 

The methodology includes NN PUF implementation, PUF circuit, and authentication 

methods.

The NN PUF integrates a multilayer neural network using a look-up table (LUT) 

network framework. A neural network has an input level of 1,024 LUTs. Two layers 

are buried using 360 as well as 60 LUTs, respectively. A production layer includes 

ten LUTs. The NN is intended to identify numbers written by hand using the MNIST 

dataset, with 784 bit inputs as a PUF constraint.

For the physically unclonable function circuit-authentication mode, the NN PUF 

uses challenge-and-response pairs for device authentication. The end product of the 

neural network is attached to a circuit – for example, a flip-flop of type D that gen-

erates PUF responses by extracting differences in signal propagation delays. This 

variance in delays, due to LSI manufacturing differences, helps generate unique IDs.
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The evaluation metrics are randomness, steadiness, diffuseness, and uniqueness. 

Randomness measures the uniformity of 0/1 occurrences in the produced ID, which 

is evaluated by the Hamming weight, being marked to part of the ID size. Steadiness 

assesses the duplicability of the ID for the same input challenge, estimated with 

the same challenge intra-Hamming distance (SC Intra-HD). Diffuseness determines 

how the ID changes with different input challenges, assessed by dissimilar challenge 

intra-HD (DC Intra-HD), and uniqueness evaluates the ID variance between differ-

ent devices, assessed by the same challenge inter-HD (SC Inter-HD).

The methodology provided a comprehensive framework for evaluating NN PUF 

performance on advanced FPGA boards, emphasizing the importance of process 

variations in PUF performance [25, 26].

A methodology for effectively employing deep learning techniques to search for 

similarity in wafer defect maps is presented in the paper “Wafer defect map similar-

ity search using deep learning in semiconductor manufacturing.” The first step in the 

procedure is to convert the raw defect scan images into grayscale representations of 

defect density, noise reduction, and defect distribution.

For feature extraction, a pretrained CNN, namely ResNet, is used. After being 

trained on a sizable dataset, this network takes the grayscale images and extracts 

high-dimensional feature vectors that capture important defect properties.

A model of K-nearest neighbor search is developed with the use of feature space, 

where vectors are generated. The top n images are identified, which are the same as 

the query images, with respect to their feature vectors, and these enable the effective 

extraction of similar defect maps from the bigger datasets.

While receiving the search model remotely, the solution makes use of the gRPC 

framework to simplify communication between the client and server so that clients 

can conduct inquiries locally. The system’s exceptional accuracy and memory rates 

were demonstrated by the top three searches, which had 100% accuracy and a 92% 

recall rate. That the search feature finds the top 10,000 similar photos in less than 

four seconds is evidence of how fast it works. This method significantly increases the 

accuracy and efficiency of defect analysis in semiconductor production [27].

The paper [28] presents a novel approach to accomplish numerical procedure han-

dling in high-capacity semiconductor device manufacturing, specifically focusing 

on the detection and prediction of film breadth in chemical vapor deposition (CVD) 

processes.

The key aspects of the proposed methodology include VM implementations, which 

leverages production parameters to predict measurement values in real time, reducing 

the need for physical sampling and compressing the cycle time. A limitation of most 

of the current VM strategies used in universal nonlinear models is that they struggle 

to capture sudden changes in the fluctuating production process. Additionally, tradi-

tional ML methods only provide predicted values without assessing the confidence 

of the results, leading to lower accuracy when dealing with high-dimensional data 

and small sample sizes. The lasso-Gaussian process regression (LGPR) is a way to 

address these limitations; the [%%] LGPR model is grounded on the just-in-time learn-

ing framework. LGPR combines the strengths of lasso regression for feature selection 

and Gaussian process regression for accurate prediction and uncertainty quantification. 

The experimental results demonstrate that the LGPR-based VM system is more stable 
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and accurate compared to traditional approaches, enabling better real-time prediction 

of film thickness in CVD processes. This, in turn, supports effective statistical pro-

cess control and early detection of abnormal conditions in high-volume semiconductor 

manufacturing [28–30].

The paper [29] focuses on defect analysis in semiconductor manufacturing, orga-

nized keenly into three phases: defect classification, defect trend monitoring, and 

detailed classification.

A CNN-based transfer learning method is used for automatic defect classification 

to support engineers in their analytical work. The methodology involves using deep 

learning technologies to assist engineers in the first and third phases of defect analy-

sis, reducing labor costs by one-third compared to manual inspection work. Transfer 

learning is introduced to reduce the amount of labeled training data required for 

classification, especially when reliable labeled data is limited, thus improving classi-

fication accuracy using a limited number of reliable labeled data.

The paper [31] discusses the adoption of inaccurate supervision due to inconsis-

tent manual labeling and the utilization of transfer learning to reduce the need for a 

large amount of training data with ground-truth labels [31, 32].

  6.5  DISCUSSION

Seeing the global demand for semiconductors for ICs, it is greatly necessary to pro-

mote IC manufacturing with the use of AI and ML technology. A Deloitte white 

paper that is exploring the opportunities available to IC companies [31] says that the 

  FIGURE 6.1  The global revenues of electronic consumers.

 Source: ESDM Industry, KPMG in India.
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economy of the industry had previously doubled and now tripled. The huge demand 

for ICs triggers AI chip development; this involves almost all ML algorithms and deep 

learning, which falls under the AI umbrella. At this moment, schemes for the growth 

of semiconductor manufacturing in India should be announced. The growth of the 

electronic sector, for which semiconductors are the building blocks, is discussed in 

[34]. The global revenues of electronic consumers are depicted in Figure 6.1.

The world’s best economies have drastically changed due to the rise in IC man-

ufacturing. The point to be noted here is that there has been a 360-degree evolution 

not just in AI or semiconductors but in both.

The world revenue of consumer electronics shown in Figure 6.1 [34] gives us an 

idea of the drastic hike in the demand for electronics, which have semiconductors as 

their basic building blocks. The gradual development in the demand for ICs involves 

many technologies such as IoT, AI/ML, and deep learning. The global demand for 

semiconductors from 2020 to 2030 is shown in Figure 6.2.

This chapter gives us a glimpse of the applications of all ML algorithms in semicon-

ductor manufacturing and defect detection. The study is about machine learning for 

semiconductors. It reveals that with the help of deep learning algorithms, fault detec-

tion of SECS/GEM can be done. In the design of AI-based processor, semiconductors 

  FIGURE 6.2  Demand for semiconductors from 2020 to 2030 in USA.
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can also be manufactured. NLP is used to extract features. Classification of the semi-

conductor can also be performed through machine learning algorithms.

Figure  6.2 highlights the drastic growth in the production of semiconductors, 

which are in turn used in the production of components like diodes, transistors, ICs, 

vacuum tubes, display devices, and optoelectronics. These components end up in 

various sectors like automotive, manufacturing, aerospace and defense, health care, 

and networking and telecommunication. Semiconductor production is concentrated 

in a few regions, with 54.5% of the revenue share being in Europe, Asia-Pacific, and 

South Africa. Toshiba Corporation, Microchip Technology, NXP Semiconductors 

N.V., Texas Instruments, and Qualcomm are the major contributors to this growth.

  6.6  CONCLUSION

In this study, many different AI-based algorithms are applied to enhance the production, 

and detection of faults for semiconductors. From the present study, as well as by observ-

ing the growth in the market, it can be concluded that there are many opportunities for 

semiconductor-based IC design as well as IC production. To meet this demand, many 

ML algorithms and deep learning algorithms can be applied to enhance production and 

reduce defects, and more research is also necessary to further digitalize this world.
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  7.1 INTRODUCTION

Field effect transistors (FETs) are a crucial advancement in electronics, featuring 
various types for different uses and applications [1–5]. Their adaptability is espe-
cially valuable in the biomedical sector, where they serve numerous clinical pur-
poses. FET-based biosensors are utilized for diagnosing and monitoring diseases like 
Alzheimer’s [6], cancer [7], HIV, and cardiovascular diseases (CVD) [8]. However, 
selectivity and non-unity fill-in factors can introduce minor deviations in real-time 
measurements.

With scientific and technological progress, FETs have found applications in crit-
ical medical devices, such as defibrillators, drug delivery systems, label-free detec-
tion of biomolecules, in vivo dosimetry, CVD monitoring, hearing aids, and other 
implantable devices. Among these, FET-based biosensors (BioFETs) are extensively 
studied for their potential as economical and dependable alternatives to conventional 
clinical sensors [9, 10]. They are particularly notable for their high accuracy and 
linear response [11–13], making them suitable for in vivo dosimetry during radio-
therapy [14, 15]. Grenier et al. [16] highlighted the use of FETs in bacterial trans-
formation, which is significant for medical procedures like DNA transfusion and 
electroporation. Furthermore, Morf et al. [17] described a THz sensor based on an 
antenna-coupled MOSFET bolometer, useful in biomedical fields for remote detec-
tion of hazardous chemicals and material characterization (detection of contrabands 
without using ionizing radiation) [18, 19].

A biosensor is a tool crafted for the rapid identification of biomolecules. In bio-
electronics, BioFETs have risen in popularity due to their exceptional sensitivity 
and scalability [10]. These biosensors function by utilizing the molecular charac-
teristics, like dielectric constant and charge density, of biochemical substances for 

https://doi.org/10.1201/9781003508304-7
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label-free detection, allowing direct recognition of biomolecules without the need 
for tagged entities [10, 20]. The primary detection mechanism in a BioFET centers 
on the dielectric modulation of sensing parameters [20, 21]. Figure 7.1 outlines the 
fundamental principle as well as basic detection mechanism of a BioFET.

Threshold voltage serves as a primary sensing parameter in BioFETs, comple-
mented by metrics like subthreshold slope, OFF current, ION/IOFF ratio, and transcon-
ductance for sensitivity evaluation. Within BioFETs, a cavity is engineered in the 
gate oxide layer to effectively immobilize biomolecules. This structural feature 
alters electric potential and field distribution upon biomolecule immobilization, 
thereby inducing changes in the threshold voltage. These changes reflect the bio-
sensor’s sensitivity to specific biomolecules, facilitating detection through the mod-
ulation of dielectric properties. Effective biosensors exhibit heightened sensitivity, 
manifesting as significant threshold voltage shifts in response to a biomolecule’s 
presence. Diverse BioFET variants have been reported and described in literature 
[22–26]. Ahangani et al. [27] and Li et al. [28] have explored sensitivity through 
threshold voltage dynamics and other parameter variations. Recently, Pratap et al. 
[29] and Chakraborty et al. [20] pioneered a novel cylindrical BioFET design using 

  FIGURE 7.1   Fundamental device principle in cylindrical BioFET.

 Source: [ 10 ].
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junctionless transistors, employing diverse sensing metrics for biomolecule detec-
tion. Gao et al. [30] demonstrated nanowire FETs operating in the subthreshold 
range for protein- and pH-sensing applications. Gautam et al. [5] and Pour et al. 
[31] highlighted cylindrical FETs for gas-sensing applications. Biochemical spe-
cies size spans from millimeters to femtometers [10, 29]. Dam et al. [32] achieved 
robust sensitivity with a FET-based glucose biosensor targeting glucose oxidase 
detection. Recently, Koshti et al. [12] introduced a FET-based biosensor for detect-
ing the COVID-19 virus.

Over the past decade, researchers have explored a range of BioFET designs pre-
sented by various authors. These biosensors have been investigated with different 
structural configurations, oxide materials, and work functions. However, there has 
been no prior report on enhancing sensitivity through doping optimization to mod-
ulate the threshold voltage in these sensors. The primary focus of this chapter is to 
optimize doping profiles in the source, drain, and channel regions to achieve a sig-
nificantly enhanced sensitivity in BioFETs. In practical applications, it is typically 
expected for the cavity within BioFETs to remain partially filled due to unavoid-
able circumstances. Therefore, it is essential to examine how partially filled cavities 
impact the sensitivity of the biosensor. The fill-in factor, which denotes the fraction 
of the cavity volume occupied by biomolecules, plays a crucial role in this context 
[10]. Despite its importance, the comprehensive study of fill-in factor effects on 
BioFETs’ sensitivity has been lacking in the related literature [33]. Hence, the sec-
ond objective of the research in this chapter is to comprehensively investigate the 
influence of fill-in factor on threshold voltage sensitivity in the context of biosensing 
applications [33, 34].

Traditional biosensors often face challenges regarding sensitivity, specificity, and 
adaptability. However, machine learning (ML) algorithms can effectively address 
these issues and significantly improve a biosensor’s performance. ML, a discipline 
within artificial intelligence (AI), empowers computers to learn from data and make 
predictions or decisions based on that information. In biosensing, ML algorithms 
can analyze complex data generated by biosensors, enhance accuracy, and automate 
decision-making processes [35]. By harnessing ML, biosensors can be transformed 
into more potent instruments for detecting and monitoring diseases, pollutants, and 
toxins [36]. This discussion briefly centers on two key aspects: utilizing machine 
learning for data analysis and applying ML in sensor design. Finally, it briefly 
addresses the challenges and opportunities for advancing ML-based biosensors. 
Moreover, ML enables biosensors to adapt to varying environmental conditions 
and optimize performance through continuous learning. This capability is crucial 
for real-world applications, where environmental factors may fluctuate with time. 
ML-driven biosensors also promise to integrate with internet of things (IoT) plat-
forms, facilitating remote monitoring and real-time data transmission for enhanced 
usability and accessibility [35]. Figure 7.2 shows the basics of the principle behind 
the integration of ML and BioFET engineering.

A cylindrical FET has been selected here for its ability to effectively control 
charge carrier flow and maintain electrostatic integrity, owing to its surround-
ing gate design. The first section briefly reviews the literature, identifies research 
gaps, and outlines the scope of the current study. The second section elaborates on 
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BioFET calibration, fabrication processes, simulator setup, and the methodology 
employed. In the third section, significant findings and corresponding graphs are 
discussed, focusing on the impact of doping, temperature variations, and fill-in 
factors on threshold voltage sensitivity. Finally, the fourth section summarizes key 
findings, discusses potential applications, and underscores the innovative aspects 
of the current research.

  7.2 DEVICE AND SIMULATOR SPECIFICATIONS

  7.2.1 BIOFET CALIBRATION AND CHARACTERISTICS 

The cylindrical BioFET was calibrated with standard values to optimize sensitiv-
ity. A polysilicon gate with a work function of 4.96 eV was chosen for its fabrica-
tion simplicity and wide operating temperature range compared to metallic gates. 
The bias supply was limited to 1 V, which is the standard for nanoscale BioFETs. 

  FIGURE 7.2  Basic flowchart explaining the implementation of machine learning in studying 
BioFET.
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The electron affinity was set at 4.17 eV. The calibrated values of energy bandgap, 
effective density of state in valence, and conduction band at room temperature are 
1.08 eV, 1.04 × 1019/cm3, and 2.8 × 1019/cm3, respectively [37, 38]. Figures 7.3a and 
7.3b present a 3D and 2D view of the proposed BioFET. Opting for a symmetric 
two-sided cavity design over a single-sided configuration offers advantages such 
as improved fill-in probability, reduced power consumption, and enhanced current 
sensitivity [39, 40]. It is feasible to embed the cavity within the SiO2 gate oxide 
layer [29]. Detailed fabrication steps for the BioFET are depicted in Figure 7.3c 
using a flowchart format [28, 41–43].

  FIGURE 7.3  (a) 3D view, (b) 2D view, and (c) fabrication process flowchart, illustrating the 
basic fabrication steps of a cylindrical BioFET.

 Source: [ 44 ].
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    7.2.2 PRE-SETUP SPECIFICATIONS OF TCAD

The numerical investigation of the cylindrical BioFET is analyzed using the 
values listed in Table 7.1 on the ATLAS TCAD simulator [45]. To imitate real-
time conditions, related models have to be incorporated during simulation: 
the Shockley-Read-Hall (SRH) model supports carrier generation and recom-
bination, the concentration-dependent mobility (CONMOB) model relates the 
impurity profile to low field mobility at room temperature, and the parallel  
electric field–dependent mobility (FLDMOB) model accounts for field-dependent 
mobility [46]. To solve the nonlinear and complex differential equations, the 
Newton-Gummel method is employed, which integrates both decoupled and 
coupled iterations [46, 47].

    7.2.3 COMPUTATIONAL METHODOLOGY 

Biomolecules are defined by their specific charge densities (ρ) and dielectric con-
stants (Kbio) [20, 26, 47]. For example, non-hybridized DNA carries a negative charge 
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and shows variable charge density and dielectric constant [54]. In contrast, neutral 
biomolecules such as uricase, zein, and streptavidin [26] have only dielectric con-
stants. The various test biomolecules utilized in this study are listed in Table 7.1. This 
study includes a range of biomolecules with different charge densities to examine 
sensitivity pattern variations. By considering both charged and neutral biomolecules, 
the investigation aims to deliver a comprehensive and realistic analysis of biosensor 
sensitivity.

When the cavity is empty, it contains air with a dielectric constant of Kair = 1. 
Introducing a test biomolecule (with Kbio ≠ 1) into the cavity leads to changes in 
the threshold voltage and other device characteristics. This variation occurs because 
the biomolecule alters the gate oxide capacitance and the lateral electric field, thus 
modifying the potential distribution along the channel [10]. The relative shift in the 

TABLE 7.1

Structural Parameters

Parameters Value

 Channel length (L CH)  30 nm

 Source/channel/drain radius (RB )  10 nm

 Source  n-type

 Material  Channel  p-type  Silicon (Si)

 Drain  n-type

 Gate work function [ 48 , 49 ]  4.96 eV

 Channel doping (N )  1010/cm3
C  

 Source doping (N S)  1 × 1013  to 5 × 1020/cm3 

 Drain doping (N D)  1 × 1013  to 5 × 1020/cm3 

Source/drain length  10 nm

 Oxide layer thickness (t ox)  6 nm

 Cavity thickness  t 1  = 1 nm  t 2  = 4 nm  t 3  = 1 nm

Cavity length  L CH1= L CH2  = 14 nm  L CH3  = 2 nm

Gate oxide  Silicon dioxide (SiO2)

 Biasing  V DS  = (0–1) V  V GS  = (0–1) V

Oxide length  30 nm

 Biomolecules 

Neutral biomolecules

 Uricase (K bio  = 1.54) [ 29 ]  Streptavidin (K bio  = 2.1) [ 50 ]

 Protein (K bio  = 2.5) [ 29 ]  Biotin (K bio  = 2.63) [ 51 ]

 ChOX (K bio  = 3.3) [ 29 ]  APTES (K bio  = 3.57) [ 50 ]

 Hydroprotein (K bio  = 5) [ 52 ]  Keratin (K bio  = 8) [ 53 ]

 Charged biomolecules

 DNA [ 54 ]  Amino acids [ 55 ]

 K = 5; ρ  = −1 × 1011/cm2
bio    K bio  = 5; ρ  = +1 × 1011/cm2 

Note: ChOX, Cholesterol Oxidase; APTES, 3-Aminopropyltriethoxysilane.
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threshold voltage serves as a qualitative gauge in the biosensing investigation of a 
BioFET. It’s important to note that while biomolecules impact the oxide capacitance 
and thereby affect the lateral electric field, doping influences the horizontal electric 
field by adjusting the potential barrier at the source-channel and drain-channel junc-
tions [56, 57]. The numerical methodology employed for sensitivity analysis [10, 20] 
is concisely represented in the flowchart shown in Figure 7.4.

     7.3 RESULTS AND DISCUSSION

  7.3.1 BIOMOLECULES DETECTION FOR CLINICAL APPLICATIONS 

Early detection of several chronic diseases can be effectively achieved using cylin-
drical BioFET. These include conditions such as ovarian or breast cancer, Alzhei-
mer’s disease, and hepatocellular carcinoma (HCC), where specific biomolecules 
play a critical role in disease screening. BioFET can detect uricase (Kbio = 1.54) [29], 

  FIGURE 7.4   Flowchart depicting the summary of methodology used for sensitivity analysis.
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essential for preventing uric acid nephropathy, and streptavidin (Kbio = 2.1) [50], used 
in immunoassays and blotting. Other detectable biomolecules include cholesterol 
oxidase (Kbio = 3.3) [29], commonly used in biocatalysis, and aminopropyl triethox-
ysilane (Kbio = 3.57) [50], crucial for the silanization process. Table 7.2 details the 
observed shifts in threshold voltage when these biomolecules are localized within 
the nanogap cavity of the biosensor (BioFET).

    7.3.2 EFFECT OF DOPING 

Increasing the doping of source and drain in an identical pattern will lead to two 
primary effects: Effect 2 and Effect 1. When the doping of source and drain are 
increased at an equal rate from a low to high value, a major part of the depletion 
region will penetrate inside the channel [37] rather than the source (source-channel 
junction) or drain (drain-channel junction), which is basically Effect 1. The aggre-
gate depletion layer width keeps on reducing with increased doping [58], which is 
basically Effect 2. So both Effect 1 and Effect 2 will be present when the doping of 
source and drain are increased from a low to high value. Effect 2 is more dominant at 
low doping, which leads to reduction of the depletion layer width, thereby increasing 
the effective channel length. Effect 1 is more dominant at high doping, which leads 
to penetration of the depletion layer inside the channel, resulting in a decrease of the 
effective channel length. These two effects are shown in the diagrammatic flowchart 
in Figure 7.5. Doping notation s_t_u indicate doping of the source (1 × 10s/cm3), 
channel (1 × 10t/cm3), and drain (1 × 10u/cm3) in the same order, and the S_C_D 
notations indicate source_channel_drain, respectively. Values of doping DA–DH are 
specified in Table 7.3.

Figure 7.6 depicts the variation in threshold voltage sensitivity across different 
biomolecules. Initially, the threshold voltage increases due to the longer effective 
channel length at lower doping levels (Effect 2), necessitating a higher gate voltage 
to activate the FET. This increase in gate voltage results in a higher threshold volt-
age, leading to enhanced sensitivity at lower gate voltages. Conversely, at higher 
doping levels, the effective channel length decreases (Effect 1), requiring a lower 
gate voltage (threshold voltage) for device activation. Therefore, sensitivity decreases 
as doping levels increase. The threshold voltage shows an initial increase followed 

TABLE 7.2

Shift in Threshold Voltage for Different Biomolecules

 

Biomolecules Shift in Threshold Voltage (ΔVt)

 Uricase  39.0281 mV

 Streptavidin  74.5910 mV

 Cholesterol Oxidase  134.914 mV

 Aminopropyl Triethoxysilicane  141.048 mV

 N = N = 1019
S D /cm3 L  1 = L2   = 14 nm  N C  = 1010/cm3  V DS  = 0.5 V        
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by a decrease as the doping levels of the source and drain increase uniformly, as 
illustrated in the inset of Figure 7.6. Notably, when biomolecules are present within 
the cavity at low doping levels, the threshold voltage changes by more than ~400%, 
indicating substantial sensitivity, crucial for biosensing applications.

While achieving high percentage sensitivity at low doping levels is beneficial, 
the device’s conductivity reduces under such conditions, imposing limitations on 
using low doping in BioFETs. Thus, a balance between sensitivity and conductivity 
must be struck through optimized doping levels to achieve optimal performance. 
Additionally, the presence of charged biomolecules affects the value of the threshold 
voltage. Positively charged biomolecules attract electrons from the substrate, creat-
ing a channel at a lower gate voltage and reducing the threshold voltage compared 
to neutral biomolecules. Conversely, negatively charged biomolecules increase the 
threshold voltage. Therefore, the sensitivity of the threshold voltage exhibits a similar 
trend for charged biomolecules as observed with neutral biomolecules. Understand-
ing these dynamics is crucial for tailoring BioFET designs to specific biomolecular 
interactions and optimizing their performance in diverse biological and environmen-
tal applications. It is worth noting that the relative change in Vt is significant at higher 

  FIGURE 7.5   Visualization of the effect of doping on effective channel length.
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doping levels and minimal at lower doping levels, which is the opposite of the trend 
observed in the percentage change in sensitivity.

Table  7.3 provides data on the subthreshold slope (SS) and subthreshold slope 
sensitivity (SSS) across different symmetric doping levels. The subthreshold slope is 
derived from the log (IDS)-VGS curve (transfer characteristics) and inversely correlates 
with the depletion capacitance. At lower doping levels, where Effect 2 predominates, 
the depletion width decreases as doping increases, resulting in higher depletion 
capacitance and lower subthreshold slope (SS shows a nonlinear inverse relation-
ship with depletion capacitance). Conversely, at higher doping levels, dominated by 
Effect 1, the subthreshold slope increases with doping. A higher subthreshold slope 
indicates more significant variability in drain current for the same gate voltage range, 
showing a more pronounced change at higher doping levels. Local minima in the 
subthreshold slope pattern are evident in Table 7.3. Positively charged biomolecules 
marginally increase the ON current, while negatively charged biomolecules slightly 
decrease it compared to neutral biomolecules. This increase in ON current enhances 
subthreshold characteristics, leading to an increase in subthreshold slope, although 
the relative change reduces. Importantly, the threshold voltage exhibits a greater rel-
ative change than the subthreshold slope, highlighting its superior sensitivity as a 
metric for analyzing biosensor performance. Understanding these dynamics is essen-
tial for advancing FET-based biosensors toward enhanced sensitivity and reliability 
in complex biological and environmental contexts. Optimization strategies can thus 
leverage these insights to refine sensor design and performance.

  FIGURE 7.6  Threshold voltage sensitivity (S Vt ) at different doping for different test biomol-
ecules. ([INSET] Shows the variation of threshold voltage at different doping for different test 
biomolecules.)
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TABLE 7.3

SS and S SS  Variation at Different Symmetric Doping

Kbio = 5

Doping Value ρ ρ ρ

N NC_ND (cm–3
S_ ) −1 × 1011 cm−2 0 +1 × 1011cm−2

 D
A
  1013_1010_1013 SS 71.943 72.016 72.949

 S SS 25.11756 25.0421 24.07005

 D
B
  1014_1010_1014 SS 71.933 71.957 71.999

 S SS 24.08303 24.05791 24.0545

 D
C
  1015_1010_1015 SS 71.413 71.417 71.476

 S SS 24.04949 24.04556 23.98249

 D
D
  1016_1010_1016 SS 71.2799 71.28 71.281

 S SS 23.82677 23.82673 23.82566

 D 17 10 17
E
  10 _10 _10  SS 71.206 71.209 71.212

 S SS 23.67215 23.66915 23.66604

 D
F
  1018_1010_1018 SS 71.144 71.146 71.149

 S SS 23.96603 23.964 23.96058

 D
G
  1019_1010_1019 SS 77.467 77.612 77.761

 S SS 37.11498 36.99703 36.87624

 D
H
  1020_1010_1020 SS 93.946 94.072 94.226

 S SS 44.17691 44.10204 44.01065

SS: (mV/decade)−1  S SS: (Percentage)

SS −SS S air bio (7.1)
SS
=

( ) ( )
  

×100
SS( )air

       

   

       

   

       

   

       

   

       

   

       

   

       

   

       

   

  

Figure 7.7 illustrates the changes in sensitivity of the threshold voltage, accom-
panied by an inset showing the sensitivity of the subthreshold slope, as the doping 
levels of (i) the drain (with constant source and channel doping) and (ii) the source 
(with constant drain and channel doping) are increased from a reference doping 
level (DRD: NC = 1010/cm3 and NS = ND = 1019/cm3). The chosen reference doping 
level is high, so further increasing either source or drain doping enhances both 
threshold voltage sensitivity and subthreshold slope sensitivity due to the prevail-
ing Effect 2 at high doping. Notably, sensitivity is significantly higher when drain 
doping exceeds source doping. Detailed doping levels (DD1–DD3 and DS1–DS3) are 
outlined in Table 7.4, which also illustrates the observed patterns of subthreshold 
slope and threshold voltage at different asymmetric doping, revealing the local 
minima at the reference doping level. Figure 7.8 demonstrates the sensitivity vari-
ations observed with different neutral biomolecules. An increase in the dielectric 
constant of biochemical species leads to a corresponding increase in the oxide 
capacitance within the cavity. This increased gate oxide capacitance strengthens 
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the interaction between charge carriers and the gate [20]. As a result, both the 
threshold voltage and subthreshold slope exhibit more pronounced changes at 
higher values of Kbio (relative to the empty cavity scenario), indicating increased 
sensitivity of the biosensor to biomolecules with higher Kbio. The inset table in 
Figure 7.8 outlines the variations in threshold voltage sensitivity and subthreshold 
slope sensitivity for various charged biomolecules, highlighting a stronger sensi-
tivity toward negatively charged biomolecules due to enhanced gate-to-channel 
coupling. Increasing the dielectric constant of biomolecules enhances the gate 
oxide capacitance, intensifying the interaction between charge carriers and the 
gate. This amplifies the sensitivity of FET-based biosensors, particularly toward 
biomolecules with higher dielectric constants, thereby enhancing detection capa-
bilities in diverse biochemical environments. Understanding these dynamics is 
pivotal for tailoring BioFETs to effectively detect biomolecules with varying 
charges and dielectric characteristics.

Figure 7.9 illustrates the changes in the ION/IOFF ratio for hydroprotein across dif-
ferent doping levels. The inset provides specific comparisons of the ION/IOFF ratio 
at low and high doping levels for various biomolecules. Increasing the source dop-
ing enhances both the ON-state current (ION) and OFF-state current (IOFF) [59]. This 
increase in ION primarily contributes to a higher overall ION/IOFF ratio. However, at 
higher doping levels, the ON-state current begins to decrease due to significant deg-
radation in electron mobility.

  FIGURE 7.7  Threshold voltage sensitivity (S Vt ) at different asymmetric doping for different 
test biomolecules. ([INSET ] Shows the variation of subthreshold slope sensitivity at different 
asymmetric doping for different test biomolecules.)



  FIGURE 7.8  Threshold voltage sensitivity and subthreshold slope sensitivity in the presence 
of different neutral biomolecules.

TABLE 7.4

Vt  and SS Variation at Different Asymmetric Doping

Kbio = 5

Doping Value ρ ρ ρ
NS_NC_ND (cm–3) –1*1011 cm–2 0 +1*1011 cm–2

 D 20
S3

  5*10 _1*1010_1*1019 SS 84.7319 84.933 85.1551

   Vt 424.49 412.21 399.754

D 
S2

  1*1020_1*1010_1*1019  SS 83.8564 84.015 84.1602

   V  427.493 415.15 402.624

D 
S1

  5*1019  
t

_1*1010_1*1019 SS 82.593 82.705 82.8195
 

  Vt 429.305 416.51 402.73

 D  19
RD

 1*1019_1*1010_1*10  SS 77.4668 77.612 77.7609
 

  Vt 430.309 416.80 402.911

 D  1*1019_1*1010_5*1019
D1

  SS 83.1755 83.341 83.5154

  Vt 419.28 405.74 391.808
 

D 19
D2

  1*10 _1*1010_1*1020 SS 84.9219 85.126 85.3389
 

  Vt 416.489 402.94 388.99
 

 D
D3

  1*1019_1*1010_5*1020 
 

SS 86.6484 86.810 86.9765

  Vt 412.482 399.28 385.3

(Case i) ND  varies (N C & N S  are constant) (Case ii) NS  varies (N C & N D  are constant)

 SS : (mV/decade)–1 Vt  : mV
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  FIGURE 7.9  I ON /I OFF  ratio at different doping for hydroprotein. ( [INSET]  Shows the  I ON / I OFF  
ratio variation for different charged biomolecules.) 

Figure 7.10 depicts the sensitivity analysis of the threshold voltage and subthresh-
old slope across varying channel doping levels. Increasing the channel doping causes 
a slight rise in the threshold voltage because more gate voltage is needed to deplete 
the channel fully. This increase in doping increases the number of holes that must be 
depleted before electrons can flow from source to drain under applied voltage. How-
ever, the sensitivity of the threshold voltage, reflecting its relative change, decreases 
with higher NC. Similarly, the subthreshold slope and its sensitivity decline with 
increased channel doping. High NC levels reduce both the ON-state and OFF-state 
currents, leading to a gentler slope in the IDS–VGS plot within the subthreshold region. 
Consequently, as NC rises, both the subthreshold slope and its sensitivity reduces. 
These findings emphasize the critical role of channel doping and dielectric properties 
in tuning biosensor performance. By optimizing these parameters, FET-based bio-
sensors can achieve superior detection capabilities, essential for various biomedical 
and environmental applications.

Figures 7.11 and 7.12 depict how the drain current changes with gate and drain 
voltages, respectively, across the immobilization of different neutral biomolecules. 
The inset in these figures show similar changes for various charged biomolecules. 
The relative difference in drain current with biomolecule presence (compared to an 
empty cavity) increases as Kbio rises due to enhanced coupling between the channel 
and gate. Higher Kbio values lead to more significant reductions in drain current, 
indicating more considerable changes at higher dielectric constants [20]. Negatively 
charged biomolecules further enhance this coupling, resulting in increased sensitivity 
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  FIGURE 7.10  Threshold voltage sensitivity at different channel doping for hydroprotein. 
 ( [INSET]  Shows the subthreshold slope sensitivity at different channel doping for hydroprotein.) 

  FIGURE 7.11  Change in drain current as a function of gate voltage at V DS  = 0.5 V for dif-
ferent neutral biomolecules.  ( [INSET]  Shows the change in drain current as a function of gate 
voltage at  V DS  = 0.5 V for different charged biomolecules.) 



125Numerical Simulation-Based Biosensing Performance Exploration

  FIGURE 7.12  Change in drain current as a function of drain voltage at V GS  = 0.5 V for dif-
ferent neutral biomolecules.  ( [INSET]  Shows the change in drain current as a function of drain 
voltage at  V GS  = 0.5V for different charged biomolecules.) 

compared to neutral biomolecules. Notably, the cylindrical BioFET demonstrates 
higher sensitivity to gate voltage than drain voltage in the presence of biomolecules. 
This knowledge also paves the way for creating versatile BioFET platforms capable 
of reliably detecting and measuring diverse biomolecules across different biological 
matrix species, maximizing device performance for specific biomarker detection.

Figure  7.13 depicts how the threshold voltage sensitivity and subthreshold 
swing sensitivity vary with drain bias at high doping levels, while the inset shows 
these sensitivities at low doping levels. Both sensitivities increase as the high 
drain voltage generates a greater number of charge carriers. This increase in 
charge carriers leads to more significant changes in threshold voltage and sub-
threshold slope when biomolecules are present. As a result, the device’s sen-
sitivity to biomolecules is high at higher drain voltages, owing to a stronger 
electric field across the channel. However, it is important to note that the drain 
voltage cannot be increased indefinitely, as excessively high drain voltage in a 
short-channel device may cause permanent damage. This knowledge also paves 
the way for creating versatile BioFET platforms capable of reliably measuring 
diverse biomolecules across different biological matrices, maximizing device 
performance for specific biomarker detection. Figure 7.14 illustrates the poten-
tial distribution across the cylindrical BioFET channel for various neutral bio-
molecules, with the inset displaying the minimum potential across the channel 
at different  symmetric doping levels. The increase in channel potential curvature 
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  FIGURE 7.13  Threshold voltage sensitivity and subthreshold slope sensitivity at various 
drain voltages for different biomolecules at high doping. ( [INSET]  Shows the threshold 
voltage sensitivity and subthreshold slope sensitivity at various drain voltages for different 
 biomolecules at low doping.)

  FIGURE 7.14  Potential across the channel in the presence of different biomolecules. 
 ( [INSET]  Shows minimum channel potential for hydroprotein.) 
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with higher Kbio suggests that the biosensor is more sensitive to biomolecules 
with higher dielectric constants, supporting the results of this study. The greater 
relative change in channel potential is a critical parameter for evaluating the bio-
sensing performance of the cylindrical BioFET. Notably, increasing the gate volt-
age reduces the potential curvature, so the channel potential is plotted at a low 
gate voltage of 10 mV to emphasize the effect of biomolecules on the curvature. 
These results highlight the necessity of carefully balancing drain and gate volt-
ages to optimize sensor performance while avoiding device damage. Understand-
ing the changes in potential distribution across the channel further underscores 
the importance of dielectric properties in enhancing biosensor sensitivity. Such 
insights are crucial for designing robust and highly sensitive BioFETs tailored for 
specific biomedical and environmental applications.

Figure 7.15 shows how temperature affects the threshold voltage sensitivity, with 
an inset for different charged biomolecules. Increased temperature boosts charge car-
rier generation [60], lowering the threshold voltage and increasing its relative change, 
enhancing sensitivity to biomolecules. It is crucial for FETs to choose the right gate 
oxide, like SiO2  for its stability and compatibility. Integrating high-K dielectrics 
with SiO2  reduces fringing fields [18] but sacrifices sensitivity and adds complexity. 
Figure 7.16 compares sensitivity in the cylindrical BioFET with and without stacked 
gate oxide for various biomolecules, highlighting sensitivity enhancement versus 
fabrication complexity.

 FIGURE 7.15 Threshold voltage sensitivity variation at different temperatures for hydropro-
tein.  ( [INSET]  Shows the threshold voltage sensitivity variation at different temperatures for 
different charged biomolecules.) 
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Table 7.5 presents the impact of biomolecule location at various fill-in factors. 
The cavity around the source and drain is divided into four equal parts, allowing 
different test biomolecules to be examined under various conditions. Case 5 has a 
larger fill-in factor than Case 4, yet Case 4 shows higher sensitivity. This trend is 
similarly observed between Case 3 and Case 5, as well as between Case 10 and Case 
11, among others.

Typically, a higher fill-in factor increases sensitivity by immobilizing a greater num-
ber of biomolecules within the cavity [10]. However, the specific location of biomole-
cules within partially filled cavities notably impacts sensitivity. Case 4, for example, 
despite having the same fill-in factor as Case 1, exhibits higher sensitivity because 
biomolecules are situated closer to the source. This proximity enhances their influence 
on the potential hill at the source-channel junction, thereby affecting threshold volt-
age more significantly. Consequently, sensitivity is maximized when biomolecules are 
positioned nearer to the source [61]. Similar sensitivity trends are observed in compari-
sons between Case 5 and Case 10, Case 11 and Case 14, and other analogous scenarios.

Figures 7.17 and 7.18 depict a comparative analysis of the cylindrical BioFET bio-
sensor with various existing variants of biosensors. It is evident from the figures that 
the threshold voltage shift (sensitivity) increases proportionally with the widening of 
the cavity, allowing for a greater number of biomolecules to be immobilized within 
it. Consequently, the biosensor shows a more pronounced change in threshold voltage 
with larger cavity dimensions. Figure 7.18 specifically compares the sensitivity of our 

  FIGURE 7.16  Threshold voltage sensitivity with and without gate oxide stack for different 
neutral biomolecules.



Numerical Simulation-Based Biosensing Performance Exploration 129

TABLE 7.5

Effect of Fill-In Factor and Location of Different Biomolecules on S Vt

Cavity on Both Sides Are Divided into

Two-Two Equal Parts Threshold Voltage Sensitivity (SSVt : mV)

Cavity Cavity Increasing KK
S. Oxide

bio

toward the toward the Fill-In 

No.
Layer

Source End Drain End Factor

LLCH1 LLCH3 LLCH2 Biomolecules

A B C D E F

1. 0.25 0.006 0.095 0.597 1.409 1.74 2.027

2. 0.25 1.004 4.557 5.665 10.095 16.772 22.996

3. 0.25 17.834 43.669 51.006 86.091 113.111 120.049

4. 0.25 38.927 64.879 72.905 106.778 135.889 152.651

5. 0.50 3.929 6.842 7.556 12.298 19.115 27.983

6. 0.50 22.003 52.932 46.579 90.029 119.882 135.002

7. 0.50 25.991 55.014 49.082 93.332 122.229 138.909

8. 0.50 40.02 66.698 74.117 108.183 137.710 154.119

9. 0.50 44.384 70.192 78.251 112.672 141.008 158.725

10. 0.50 62.193 89.002 96.621 130.298 159.027 186.791

11. 0.75 37.971 61.995 71.003 105.391 134.441 160.219

12. 0.75 46.929 72.982 80.388 114.901 143.412 169.590

13. 0.75 65.129 91.109 99.041 133.923 162.721 189.993

14. 0.75 68.905 94.795 102.003 136.729 165.11 192.10

A-Streptavidin   B-Protein C-Biotin D-APTES E-Hydroprotein F-Keratin

Presence of  biomolecules Absence of biomolecules Oxide layer (SiO2)

LCH1 = 14nm, LCH2 = 14nm, LCH3 = 2nm   N = 1019/c 3
S = 1019/cm3, N m , C = 1010/cm3

D N

biosensor with a prominent BioFET variant across different biomolecules [22–26]. 
The inset provides a visual representation of the threshold voltage sensitivity com-
parison between the proposed structure and four other variants. This comparison 
underscores that our biosensor offers superior sensitivity to biomolecules compared 
to most of the existing alternatives. Figure 7.19 shows the plot of gain transconduc-
tance frequency product (GTFP) for the proposed device at NS = ND = 1019/cm3 and 
NC = 1010/cm3.

                    7.3.3 MACHINE LEARNING IN IMPROVING THE BIOFET PERFORMANCE 

Machine learning has significantly advanced the capabilities of BioFETs, by 
enhancing their sensitivity and specificity. A  BioFET is a sophisticated bio-
chemical sensor that operates on principles similar to those of a field effect 
transistor. This integration would permit a real-time investigation, which helps 
identify biological molecules like proteins, DNA, and pathogens. Training ML 
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  FIGURE 7.17  Comparison chart showing the shift in threshold voltage for APTES at differ-
ent cavity thicknesses.

  FIGURE 7.18  Comparison chart showing the shift in threshold voltage for different biomole-
cules.  ( [INSET]  Shows the shift in threshold voltage in different variants of biosensor for Kbio  = 5.) 



131Numerical Simulation-Based Biosensing Performance Exploration

models on such large datasets allows for the detection of subtle changes in sensor 
responses, leading to more effective detection and lower false favorable (detec-
tion) rates. Therefore, the advanced ML applications on BioFETs for medical 
diagnostics, environmental monitoring, and biotechnology shows an enhanced 
tool platform that can realize the rapid and accurate detection of numerous bio-
logical analytes [35].

Enabling the modification and tailoring of BioFETs for specific applications, 
using machine learning in combination with BioFETs, offers significant design 
benefits in biosensor development. Researchers can use sophisticated algorithms 
to model a range of conditions and geometries to target optimal sensor designs 
before they are fabricated. This speeds up the development process while reduc-
ing expensive trial-and-error methods. In addition, using historical data, machine 
learning can fine-tune sensor parameters to become more precise over time, so 
as new biological targets emerge, the sensor adapts with the changing times. The 
data that BioFETs produce is typically complex with multiple dimensions, which 
makes machine learning indispensable in interpreting such data. The influx of data 
that these sensors generate can be difficult to handle using traditional data analysis 
methods. On the other hand, ML models, such as neural networks, support vector 
machines (SVMs), and decision trees, are very good for identifying these correla-
tions in big data collections. These approaches reveal more detailed details about 
how sensor responses relate to the biological interactions of the sensor surface for 

  FIGURE 7.19   Gain transconductance frequency product plot.
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more accurate and reproducible results. An example can be found in medical diag-
nostics, where BioFETs with machine learning can differentiate between a normal 
and disease state, leading to identifying the early stages of a disease and more per-
sonal treatment strategies.

In extending to static analysis, machine learning also stirs the ideas of real-time 
monitoring and feedback systems. These conditions can change quickly in specific 
dynamic environments such as in vivo medical diagnostics or environmental moni-
toring. These scenarios need real-time data processing and a quick response as well. 
ML models continuously learn and adjust to new data streams, which is perfect 
for rapid analysis and taking action in real time. The real-time nature of BioFETs 
ensures the same level of accuracy and reliability, similar to vacuum-based bench-
top instruments, and reliable performance in dynamic environments, which should 
be valuable in clinical and field situations. Small, user-friendly diagnostic devices 
also advance with the integration of machine learning and nanotechnology. Putting 
high-performance algorithms in small handheld devices allows us to do molecular 
biosensing in a nontraditional laboratory setting. Such portable BioFETs have valu-
able applications in point-of-care testing, remote health monitoring, and rapid field 
diagnostics, which will significantly facilitate the reach and convenience of biotech-
nology. The innate practice of machine learning underpinning these devices has 
enabled global access to laboratory-quality results on the fly and may well increase 
hallmark capabilities that could revolutionize health care practices worldwide. 
Finally, machine learning has much to implement in BioFETs to make them more 
functional, sensitive, and intelligent. This integration supports advanced data analy-
sis, predictive modeling, real-time monitoring, and the creation of portable diagnos-
tic tools. With the advent of new technologies and research, the intimate integration 
between machine learning and BioFETs will continue to foster algorithms in the 
biosensing diagnostic arena.

The introduction of machine learning on the road to developing BioFETs involves 
applying a few important considerations and techniques. These techniques encom-
pass critical aspects:

 1. Data Preprocessing: The first step is to prepare the raw data collected 
by hardware sensors for analysis. This entails data cleaning, standardiz-
ing, and improving data accuracy. Methods such as outlier detection, noise 
reduction, and normalization prepare the data. Principal component analy-
sis (PCA) is one of the dimensionality reduction techniques, often leading 
to data dimension reduction while still preserving key information.

   2. Feature Extraction:  It is responsible for converting the unprocessed sensor 
data to something that can be used to feed into an ML model. For example, 
in a BioFET application, the features could be the current, voltage, or resis-
tance changes due to biological interactions. Signal processing methods like 
Fourier transform and wavelet transform extract frequency domain features 
of a time-domain sensor signal. Convolutional neural networks (CNNs) are 
an example of advanced methods to automate the extraction of complex 
features and are especially well suited for discerning intricate patterns of 
biological interactions.
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   3. Choosing the Right Model:  Accurate data analysis depends on the ML 
technique used. SVMs, neural networks (including CNNs and deep neural 
networks or DNNs), random forests, and K -nearest neighbors (KNN) are 
some of the models selected considering the nature of the data and the type 
of analysis required. The properties of each model type make them advanta-
geous in tackling different forms and complexities of BioFET data.

   4. Adaptation in Real Time:  With real-time adaptation, models can be updated 
periodically when new data is available to keep models accurate even with 
environmental changes. For this purpose, more advanced methods like 
online learning and reinforcement learning, among others, are employed. 
In online learning, when new data comes in, learning algorithms increase or 
decrease your model parameters. Thus, this type of learning is very appro-
priate for applications that require high real-time response. Employment of 
BioFETs in combination with reinforcement learning allows BioFETs to 
learn the best response on demand from real-time feedback, which is a must 
for any sensor designed to operate in the inherently complicated biological 
environment and be capable of interacting with a diverse set of targets and 
conditions.

   5. Ensemble Methods:  In ensembling, instead of making single predictions, 
multiple models work simultaneously, and the expected outcome enhances 
general performance and robustness. Another group of approaches includes 
bagging, boosting, and stacking, which combines predictions and reduces 
the effect of overfitting that could occur during the implementation of 
BioFET.

   6. Transfer Learning:  Fine-tuning enhances the BioFET model creation 
process by using pretrained models from related tasks, which helps to 
increase the accuracy of predicting priorities when the dataset is small. 
It is seen that BioFETs can not only help advance function-based models 
but also help with faster deployment when it comes to biosensing and 
diagnostics.

 7. Predictive Maintenance and Calibration: The data collected enables 
automated monitoring for the optimal condition, calibration, and ser-
vice schedule of BioFET devices using the remaining data analysis from 
machine learning. Analytical models are developed to predict other mainte-
nance requirements and calibration frequencies, enabling the sensor’s pre-
cise control and lifelong performance.

ML models are used in developing BioFETs to boost the sensitivity, specificity, and 
flexibility of sensors. Before applying an accurate real-time adaptive model selection 
algorithm, combined with advanced feature extraction, using enhanced preprocess-
ing techniques, ensemble methods, and actual transfer learning, to the biosensing 
and diagnostics of BioFET sensors, it is crucial to ascertain their reliability as tools 
in medical, environmental, and biotechnological applications.

Data Analysis Based on ML: PCA-based analysis, SVM-based analysis, and 
artificial neural network (ANN) based analysis are three distinct ML approaches 
widely employed in various fields, including BioFET sensors.
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 1. PCA-Based Analysis: PCA is a statistical technique used primarily for 
dimensionality reduction and feature extraction:
   •  Purpose:  PCA identifies essential patterns or components within com-

plex, high-dimensional sensor data.
  •  Process:  It transforms original variables into a smaller set of orthogonal 

components (principal components) that retain the variability present in 
the data.

  •  Application:  In BioFETs, PCA simplifies sensor responses while pre-
serving crucial information about biological interactions. It aids in vis-
ualizing data patterns and identifying influential/significant variables 
affecting sensor outputs. 

   2. SVM-Based Analysis:  SVM are robust, influential models for classification 
and regression, which are types of supervised learning models:
   •  Purpose:  The findings indicate that SVMs help classify the biological 

targets from the BioFET sensor dataset.
  •  Process:  Maximum margin classification machines delineate sepa-

rate classes in the high-dimensional space by constructing optimal 
hyperplanes.

  •  Application:  In BioFETs, SVMs can classify the sensor responses of either 
biomolecules or disease states. An advantage of using polynomial-based 
methods when dealing with interactions is that they are not sensitive to over-
fitting, are good at managing nonlinear relationships, and are ideal when 
dealing with biological interactions. 

   3. ANN-Based Analysis:  ANNs, including DNNs, are mathematical models 
inspired by biological neural networks; they excel at efficiently learning 
from complex patterns.
   •  Purpose:  ANNs can recognize patterns within large datasets where the 

patterns are complicated.
  •  Process:  They consist of multiple levels of neurons connected to each 

other and derive hierarchical dimensions of data.
  •  Application:  ANNs in BioFETs process sensor information to predict 

interaction with biological systems or recognize complex patterns. CNNs 
within ANNs are particularly well suited to handling spatial sensor out-
puts, while recurrent neural networks (RNNs) perform well with more 
sequential data, such as time-series responses. It is a class of models 
that needs much computational power but can achieve very accurate and 
adaptable solutions for various problems.  

PCA is an analytical solution that is concerned with dimensionality reduction 
and the primary examination of the dataset at hand without necessarily using train-
ing or testing data. CNNs and RNNs are types of ANNs used to address intricate 
patterns and are computationally intensive. These methods are beneficial and can 
be integrated when used to analyze data from BioFETs. PCA is best utilized in its 
implementation to remove noise and develop features to feed an SVM or ANN. SVM 
tends to work better in categorizing datasets, while ANNs help fine-tune or deal with 
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complex data relationships. In conclusion, PCA, SVM, and ANN hold great power 
for data analysis of BioFET arrays, and every method has its distinct advantages in 
terms of dimensionality reduction, classification, and pattern analysis. These meth-
ods complement each other in improving the accuracy, speed, and analysis associ-
ated with BioFET applications in the biomedical and biotechnological sectors.

BioFET Design Based on ML: More recently, the design of sensors, particularly 
BioFETs, has benefited from using ML algorithms in the process. These applica-
tions revolutionize sensor development by enhancing operating efficiency, upgrading 
materials, shortening the design cycle time, and selecting a suitable receptor.

 1. Enhancing BioFET Performance: Machine learning is essential when it 
comes to improving the performance of BioFETs for the following reasons:
   •  Parameter Optimization:  Machine learning is vital for enhancing 

BioFET performance by optimizing various parameters for better sensi-
tivity, selectivity, and overall efficiency [ 62 ].

  •  Material Design:  ML algorithm applications are critical in augmenting 
the 2D material characteristics that are singularly employed in BioFETs, 
including semiconducting transition metal dichalcogenides (TMDCs). 
ML is found to enhance the sensing system’s reliability and performance 
by predicting parameters such as bandgaps and facilitating the optimiza-
tion of defect structures [ 63 ]. 

   2. Accelerated Design Processes:  These are due to key ML features—that is, 
the ability to support bioelectronics design and development through enhanc-
ing the application for rapid prototyping and iterative designing of BioFETs:
   •  Heterostructure Optimization:  There are helpful methods, such as 

Gaussian process regression and Bayesian optimization, to initiate the 
design of complicated heterostructures in BioFETs. These techniques 
anticipate things such as electrical and optical characteristics and help to 
identify the best formula for sensor materials to improve the functional-
ity of sensors [ 64 ].

   •  Organic FET Enhancement:  Other learning algorithms, such as ran-
dom forest and gradient boosting, significantly improve electron flow 
in organic FETs. The ML models link electronic properties to sensor 
performance, thus enhancing the chances of accurate detection and even 
the level of sensitivity [ 65 ]. 

   3. Advanced Receptor Selection:  Machine learning transforms the picking 
(bioreceptor layer) and tuning of receptors to enhance the possibility of 
BioFET sensing.
   •  Receptor Engineering:  ML-driven approaches predict and optimize 

receptors such as enzymes and aptamers based on data patterns. This 
method surpasses traditional approaches by identifying novel receptors 
with high specificity and efficiently detecting target molecules [ 66 ]. 

   4. Integrating ML for BioFET Advancements:  Altogether, the incorporation 
of machine learning into BioFET design is deemed a revolutionary strat-
egy, allowing the fabrication of sensors from essential elements consisting 
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of biologically related and electronic components in a highly accurate and 
efficient way in terms of sensitivity, specificity, and versatility. ML methods 
in optimizing parameters, construction of materials, and rapid prototyping 
for micro-receptor selection in BioFETs have placed them at the strategic 
center of health diagnostics, environmental monitoring, pollution tracking, 
and disease detection. These developments clearly highlight the role of ML 
in the development of sensor technologies and the capability of utilizing it 
to solve challenging issues in various domains.  

  7.3.4 DISCUSSION 

Doping significantly influences a BioFET’s sensitivity, with higher percentage sen-
sitivity observed at lower doping levels for both threshold voltage and subthreshold 
slope. Sensitivity further improves with higher dielectric constant biomolecules, and 
negatively charged biomolecules exhibit enhanced sensitivity due to their properties 
(negatively charged behavior). Biomolecule location within partially filled cavities, 
especially near the source, significantly impacts threshold voltage sensitivity, over-
shadowing the fill-in factor effect. The sensitivity was evaluated using various met-
rics, including threshold voltage, subthreshold slope, ION/IOFF ratio, and drain current. 
The novelty of this work lies in two main aspects: first, enhancing sensitivity through 
optimizing doping and other parameters, and second, comprehensively exploring 
partially filled cavities at different fill-in factors. The use of various biomolecules 
further validates research findings.

Optimizing doping and bias settings is critical in the prefabrication phase of 
BioFETs. These findings underscore the efficacy of this biosensor in detecting essen-
tial biomolecules crucial for diverse biomedical and clinical applications. Addi-
tionally, it holds promise for rapidly detecting various other medically significant 
biomolecules, thereby aiding in the early diagnosis of acute and chronic diseases. 
This work demonstrates the potential of BioFETs as robust and sensitive sensors, 
highlighting their broader applicability within the biomedical industry, which war-
rants further exploration.

The proposed BioFET also offers a cost-effective and safe alternative for remotely 
detecting hazardous chemicals, addressing potential health risks. Nano-sized BioFET-
based wearable devices hold great promise for detecting harmful gases or radiation in 
environments like reactive chambers and monitoring health conditions in personal-
ized and regular checkups for patients or elderly individuals. Additionally, the research 
delves into the critical role and increasing necessity of integrating machine learning 
into the BioFET design process. This discussion highlights how ML algorithms can 
enhance the sensitivity, accuracy, and overall performance of BioFETs by analyzing 
complex biochemical interactions and optimizing sensor parameters.

  7.4 CONCLUSION

This chapter investigates the sensitivity analysis of a cylindrical BioFET, focusing 
mainly on the influence of doping levels. By exploring a range of charged and 
neutral biomolecules, the study enhances the realism and relevance of its findings. 
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It underscores that threshold voltage sensitivity outstrips that of the subthreshold 
slope, with the sensitivity of the former metric exceeding 400%, which is achiev-
able through meticulously optimized doping levels, highlighting the device’s effi-
cacy for biosensing applications. In the symmetric doping case for source and 
drain, peak fractional sensitivities for threshold voltage and subthreshold slope 
reach up to 4.53 and 0.44, respectively. It was found in the study that high percent-
age sensitivity was obtained at low doping levels, with a trade-off with conductiv-
ity. The research also scrutinizes the impact of fill-in factors, revealing that the 
precise placement of biomolecules near the source significantly affects sensitivity 
more than the actual fill-in factor itself. Considering Vt, as a sensing metric, a 
high percentage sensitivity is achieved at low doping levels, while a high relative 
change sensitivity is achieved at high doping levels. Overall, this study emphasizes 
the pivotal roles of doping levels, bias conditions, and biomolecule placement in 
determining sensitivity in a cylindrical BioFET. The study also discussed the role 
of machine learning in improving the performance and design of BioFETs through 
a synoptic discussion.
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  8.1 INTRODUCTION

The advancements in pressure semiconductor generation and its use in electric and 
hybrid vehicles (HEV/EV) are discussed in this chapter. A review of the latest auto-
motive pressure semiconductor devices is included, along with an analysis of the 
theories and present state of the pressure hardware required for EVs and HEVs. The 
Si-based insulated gate bipolar transistor (IGBT), the SiC-based metal oxide semi-
conductor field effect transistor (MOSFET), the freewheeling diode (FRD), and the 
Schottky obstacle diode are a few of the most recent innovations in the automotive 
semiconductor sector. Reduced heat opposition planning, high-degree bundling, and 
low inductance in high-strength thickness bundling are the three characteristics that 
define the advancements in automotive semiconductor bundling technologies.

We talk about the latest, higher-power semiconductors for EVs and HEVs, their 
demanding environments, and new developments in this field. For Si devices, the 
main challenges are strength, thickness, performance, stability, and bundling; for 
SiC devices, the main challenges are low inductances and high temperatures. The 
long-term improvement trend is analyzed from four angles: planar bundling, novel 
bundling innovation and material, and the SiC MOSFET. Features like flip-around 
conduction-IGBT, recessed producer channel, and amazing IGBT are all part of the 
next-generation Si-based IGBT for HEV/EV. Sustainable growth requires the devel-
opment of affordable, widely available, and environmentally friendly renewable 
energy technologies. Technology for (photo)electrochemical energy conversion and 
storage is a crucial element. Therefore, to really attain to the practical use of (photo)
electrochemical energy technology, realistic design, synthesis, and modification of 
nanostructured catalytic materials are needed. Ion beam technology is one practical 
and versatile physical modification method. By controlling the energy, species, and 
fluence of ions that are implanted, it is possible to modify the surface, interface, and 
thin film of various catalytic material types. The ion beam approach has several ben-
efits, including compulsivity of element doping and great controllability, precision, 
and reproducibility [1]. The recent advances and trends in HEV/EV‐oriented power 
semiconductors is depicted in Figure 8.1.

The global transaction data and market gauge for HEV/EV converters are shown in 
Figure 8.1. The four main improvements to contemporary power digital frameworks 
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  FIGURE 8.1 Recent advances and trend of HEV/EV‐oriented power semiconductors: An 

overview.

 Source: Liu, G., Li, K., Wang, Y., Luo, H., & Luo, H. (2020). Recent advances and trend 

of HEV/EV‐oriented power semiconductors – an overview. IET Power Electronics ,  13(3), 

394–404,  https://doi.org/10.1049/iet-pel.2019.0401 .

in hybrid and electric cars are the onboard charger, the DC dollar converter for assis-

tance power resources, the DC assist converter in the high-voltage transport bar, 

and the inverter component for engine pressure. According to research, the industry 

will grow over the next five years and surpass ten billion dollars with high-power 

HEV/EV converters have so far been created using a range of contemporary power 

semiconductor types, including IGBTs, metal oxide semiconductor subject-impact 

transistors (MOSFET), and extensive-band-hole (WBG) devices, including sili-

con carbide (SiC) and gallium nitride (GaN) devices. Figure 8.2 shows the recent 

advances and trends in HEV/EV.

The agreements and anticipated pressure device market scenario for HEV/EV 

are shown in Figure 8.2. With over 80% of the present HEV/EV electrical module 

market, it has been determined that IGBT is the most extensively utilized module 

in the business. Moreover, the whole SiC module is predicted to just narrowly 

lose out on victory (by around 13%) over a five-year period. In strength electronic 

frameworks, the strength module could be the weakest element. According to an 

enterprise investigation using data from over 80 agencies, temperature element 

activation accounts for 55% of pressure electronic system failures at present, with 

power module failures accounting for around 42% of them. Moreover, for every 

degree that the temperature rises, the intersection’s misery rate climbs by 10°C. 

Regarding the power semiconductors in the HEV/EV framework [2]. The unpre-

dictable work stresses of the current era create ever-stricter requirements on the 

power electronic modules of electric vehicle systems due to unpredictable weather  
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and road conditions. At this point, it is economically feasible to operate 
Si-based  IGBTs  and  SiC-based full MOSFETs at 175°C [3]. The highest poten-
tial temperature for recreational use of SiC sheet is 500°C, which is significantly 
higher  than the maximum temperature for modern Si material. SiC electri-
cal devices, however, seem to make more sense for packages that require high 
 temperature reliability and severe climates. Because  of  its high temperature 
(>500°C), high electron velocity (321 cm/s), and high breakdown electric power 
field (2.2 × 106 V/cm) characteristics, the SiC-based device is a potential candi-
date for HEV/EV converter projects. SiC-based MOSFET modules, as delegates 
in WBG devices, are gradually changing the conventional utility domain names 
that concern Si-based  MOSFETs and IGBTs [4]. Nevertheless, in terms of mate-
rial value and sophisticated handling capabilities, SiC semiconductors have surely 
lagged behind such state-of-the-art Si-based devices. However, the final demise of 
SiC is not well explained by the same old wire-bolstered package architectures. 
Based on this idea, a myriad of emerging technologies have emerged in an effort 
to address these difficulties from the perspective of a modern, cutting-edge pack-
age offer. As the engine behind the use of electric power, hybrid electric pow-
ered motors (HEVs) with an energy semiconductor base are undergoing a constant 
change and are at a turning point in their history. The latest force module changes 
for stylish exhibitions by the public are a consequence of breakthroughs in semi-
conductor and DB technology. To find new development opportunities for future 
exploratory research and HEV/EV firms, this study looks at the developments 
in new automotive strength semiconductors and the problems and methodology 
when it comes to developing more robust electronic frameworks in HEV/EV. 

  FIGURE 8.2   Recent advances and trend of HEV/EV‐convertor market: An overview.
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The increasing realization of the meaning of state-of-the-art solar power has led 
to strengthened research in the field of today’s sun-oriented energy collection. In 
contrast to silicon (Si), electricity instruments are becoming a major part of power 
hardware innovation. The performance of the photovoltaic (PV) inverter, a crucial 
part of the solar-powered energy trading system, depends on the clever design of 
state-of-the-art pressure hardware and is depicted in Figure 8.3, with the silicon 
carbide substrate market in units and dollars for PV inverters. To maximize the 
power extracted from daylight-based chargers, the strength anguish inside the elec-
tricity change framework should be controlled by suitable determination of con-
temporary semiconductor devices, consequently limiting the quantity of today’s 
electricity digital elements. The need to lower the overall switch mass and extent 
has prompted the creation of the newest extreme-strength in Zeng and others [5]. 
Figure 8.3 summarizes the PV inverters in the SiC substrate market.

The relevance of fresh silicon carbide semiconductor innovation is demon-
strated by the cutting-edge SiC function in the aforementioned dwellings. Some of 
the constraints of today’s innovation are higher system costs, the need for extreme- 
temperature bundling procedures, and newer inventions. Subsequent investigations 
will concentrate on techniques to reduce manufacturing expenses, resolve pack-
aging problems, and surmount obstacles to enhance the dependability and visual 
appeal of contemporary SiC devices. The primary focus of this chapter is the pro-
cess of creating potent devices based on SiC semiconductors within the context of 
PV energy transformation [6]. Furthermore, experiments with different PV inverter 
structures indicate that using novel SiC energy semiconductor devices within a PV 
strength framework might assist in removing some problems that might be pres-
ently generating material barriers to contemporary silicon. Future developments 
in solar technology have made it possible to produce more usable electricity. The 
power that is extracted from the sun and transformed into thermal or electrical 
energy is known as solar-oriented strength. It’s an amazing resource that is widely 
available everywhere in the world. Application-scale primarily daylight-based 
energy flowers (flowers that generate a significant amount of new energy that the 

  FIGURE 8.3   Photovoltaic inverters in SiC substrate market in units.
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power transmission matrix can use immediately), focal station strength plants 
(strength stations located near PV sources to benefit from modern sustainable 
energy), and conveyance network power plants are some of the different ways that 
sun-powered ranches can be constructed. The 1,020 MW (1,020 MJ/s) of power 
originates from the sun, whereas 173,106 kW, or 1,360 W/m2, of electricity reaches 
the earth. For modern causes, including absorption, reflected image, surrounds, 
dissipation, and so on, sun-oriented strength is misaligned. Figure 8.1 depicts the 
amount of contemporary solar power generated by a unit surface in the United 
States. Modern the inadequate outcomes (15%–17%) the world cannot fully uti-
lize today’s silicon-based, fully commercial solar cells to convert the sun’s energy 
into electrical energy. The cost of purchasing a sun-facing property might go up 
if silicon-based solar cells are replaced with concentrated photovoltaics (CPVs) 
or multi-intersection technology. Consequently, the study is effective in bringing 
sun strength up to par financially, finding methods to enhance smartphone func-
tionality, and lowering the expense of ultramodern gatherings. Advancements in 
technology have shown that solar-oriented cellular competence is likely to rise in 
the future. This study shows that, considering the fabric properties of modern sili-
con, silicon daylight-based solar cells have a theoretical maximum effectiveness of 
no more than 31%–40%. But only around 15%–30% of recently appointed board 
members have attained the pinnacle of proficiency in their real association respon-
sibilities. Sunlight on the ranch powers 5,236 floor-installed Canadian sun-pow-
ered CS6P-230P boards. A demonstration of the 1.2 MW limitation photovoltaic 
daylight-based total clusters may be seen on the Cary, North Carolina, website in 
Figure 8.2. With a module proficiency of 14.3%, each board has 60 polycrystal-
line silicon daylight-based total cells located in the Mojave Desert of contempo-
rary California; the Ivanpah primarily sun-based electricity producing station is a 
concentrating solar energy (CSP) facility with a maximum capacity of 377 MW. 
It is projected that the operational plant will have an efficiency of 28.72%. Even 
though there are many solar-powered ranches in the United States, only around 
30% of them are truly functional [7]. Figure 8.3 (Source: EIA MER, July 2014) 
demonstrates the progressive rise in the usage of solar-powered strength between 
year from 1984 and 2013. Strong and creative suggestions are being supported in 
an attempt to facilitate the most drastic conversion of the newest solar strength 
into electric power. During the solar energy era, many systems were developed 
to precisely capture all the solar power that the sun could provide. Here are a few 
instances from today’s world:

   •  An initiative utilizing the most recent lead and selenium-based nanocrystals
  •  A reduction in manufacturing expenses
  •  To build cell structures, tiny chambers called nanorods are utilized
  •  Mix elements of ultramodern color to hold on to sunshine and elements of 

modern titanium dioxide to reduce electricity costs 

Furthermore, to achieve high efficiency and reliability in the construction of state-
of-the-art sun-oriented inverters, research is being done on the usage of semicon-
ductor fabric. Considering all this, new pressure devices from industry leaders have 
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led to the emergence of semiconductor devices. They give us outstanding efficiency, 
immaculate control, and the capacity to transfer energy across unusual projects. 
Despite silicon’s far longer history of usage in force devices, silicon carbide tech-
nology is presently making a comeback in high-strength packages because of its 
contemporary, remarkable fabric properties. These days, silicon carbide devices are 
essential to the development of ultramodern solar power converters.

The framework for PV power transformation primarily takes into account the 
cost, design, and operation of cutting-edge inverters. To meet specific requirements, 
modern inverters must be created in fields with high dependability, high efficacy, 
improved communication, lower cost, and flexibility. For residential systems, pho-
tovoltaic inverters usually have a power range of 1–10 kW, while for commercial 
structures, it is often between 100 and 300 kW. The present range for application 
frameworks is 10–500 kW; this will progressively rise to 2 MW and eventually 20 
MW. To reduce the cost of the most sophisticated PV inverter, current design aims to 
raise both specific energy (W/kg) and quantity power thickness (W/m3) [8].

  8.2 PV FRAMEWORK FINANCIAL ISSUES

The size of the PV plant and its transportation expenses varies according to the 
market stage. Commercial roofs, residential rooftops, and application-scale ground- 
established PV systems (one hub and glued hub) comprise the three main sectors 
of the PV market. The utility-scale floor-mount framework differs from other sec-
tors in terms of its length, setup strategies, marketing avenues, and cost structure. 
PV age value, housetop inclines, painting cost, allowing additionally, dispatch-
ing cost, save network fee, administrative rate, substation and framework tie-in 
price, allowing and appointing value, manufacturing community fee, and con-
sidered inside the monetary analysis of the PV established order [9]. Cost vari-
ables and options for cost reduction are shown for utility-scale, commercial, and 
private photovoltaic (PV) framework expenses in the United States. The costs of 
transportation for the continuous hub, one pivot, and personal, business and soft-
ware-scale frameworks are shown one at a time. The inverter value varies least 
based on the kind of institution according to price appropriation. As a result, any 
improvements made to the inverter arrangement will facilitate a reduction in costs 
for some establishments. For solar-powered inverters, SiC devices have a sub-
stantial market. Since 2006, the SiC substrate market for photovoltaic inverters 
has been growing rapidly. It has been observed that SiC are in a good number of 
commercial areas, including transportation, IT and electronics, building, unlim-
ited and lattice [10].

By 2025, it’s expected that the total market for electrical devices which are often 
used to operate engines will have grown to $2.4 billion. SiC devices have seen inter-
est from a wide range of industry areas, including homes, IT and gadgets, commu-
nications and network, and transportation. TVs, tablets, and phones account for 87% 
of consumer interest in digital gadgets [11]. The market sites that were previously 
discovered exhibit a consistent distribution.

From an ecological point of view, the life cycle assessment (LCA) of the PV 
framework guarantees advanced framework hobby. Usually, it’s the PV frameworks’ 
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capabilities and useful sources. Along with the scope description, a few factors 
that impact inventory analysis, translation, attention, and assessment are taken into 
account. The quantitative benefits of LCA enable the evaluation of several changes. 
The appropriate existence-cycle stages are included in the PV framework’s life cycle 
evaluation. In the elimination of unprocessed ingredients, plant materials include 
iron and zinc for mounting system fabrication, copper metal for connections, and 
silica for glass [12].

Wafers of ignorance are zeroed out of 2 mm thick wafers, cells (p-n intersection 
formed by dopant dissemination and electricity-powered circuit made by sintering 
metallization glues), and modules (cells related truly and electronically and typified 
with the aid of glasses and plastics) are some of the steps involved in the production of 
PV devices, putting together the equipment needed for development. When it comes 
to improvement and re-creation, to maintain equipment, PV modules, connections, 
and power are synchronized, and support systems are installed. PV frameworks are 
removed, disassembled, and then reassembled using the appropriate components and 
materials. PV framework object lifetime assessment is a challenging task [12].

However, the future conditional price of PV modules has been predicted using 
the lifetime rundown: 30 years of excellent module development; inverters have a 
15-year lifespan for little flowers or private PV systems and a 30-year lifespan with 
a 10% change-in period that works like clockwork for huge plants. The lifespan of 
devices that are mounted on the roof or veneer ranges from 30 to 60 years. One of 
the constraints recommended for assessing the existence cycle is the power. The CO2 
emission rate is a useful indicator for assessing a photovoltaic device’s feasibility in 
the case of an abnormal climatic shift. As a result, one additional factor for equip-
ment performance tracking (EPT) evaluation is CO2 repayment time [13].

  8.3 PROLOGUE TO PV POWER CHANGE FRAMEWORK

The electrical and electronic equipment required to capture energy and convert it into 
an uninterrupted energy supply has significant hurdles due to the intermittent nature 
of sources of clean energy, particularly solar and wind power. The local climate and 
time of day, which can both be accurately predicted, influence the amount of solar 
energy available. However, inconsistency in the power age is caused by variation in 
solar radiation due to mist, dust, or cloud cover. A photovoltaic system’s construction 
must be able to adapt to changes in solar radiation while still producing clean, steady 
electricity [14]. Force hardware is necessary for a solar energy collecting framework 
to function properly. In residential settings, a standard PV framework may be valued 
up to 5 kW, and in commercial settings, up to megawatts (MW). A design for PV 
energy transfer that has its blocks reconfigured is shown in [15]. The DC converter 
and the DC-AC inverter are a solar system’s two main power electronic parts. The 
DC converter has an integrated most extreme power point (MPPT) following archi-
tecture and is intended to function as a lift converter, also known as a move forward 
converter. Using an all-electric system, MPPT modifies the solar charger’s operating 
point to deliver the most power. Instantaneous current (DC) voltage is converted into 
rotating current (AC) by the inverter component, which may then be used to control 
the surrounding region or sent back into the network. Depending on the application, 
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the inverter outcome might be single stage for private power plants or three stage 
for power plants connected to a framework. The photovoltaic energy is divided into 
several groups according to how effectively they control power. A tiny inverter is a 
stand-alone inverter that is placed in direct sunlight and put on a single board. There 
is an integrated MPPT framework. String inverters sense the direct current (DC) 
voltage from a series of linked solar chargers [16].

A string inverter’s MPPT architecture sees the group of linked solar chargers 
as a single solar charger, as opposed to a micro-inverter, which is focused on the 
individual board. Simply described, a focal inverter is a longer string inverter that is 
employed in commercial applications on a huge scale. The study’s scope precludes 
a comprehensive examination of each model of PV inverter. How a solar-powered 
energy framework is shown depends on the architecture of the power device frame-
works required at various stages of energy transformation. To provide the solar 
charger a 10% advantage above its anticipated capacity to endure periods of solar 
radiation in the PV inverter, the solar charger’s power rating must be regulated by the 
inverter, as described in [17].

Overusing the specified power level might overload the apparatus and result in 
problems with long-term dependability. To optimize the power output of solar char-
gers, it is imperative to minimize power suffering inside the energy transformation 
framework. This entails recognizing semiconductors accurately and utilizing fewer 
force-sensitive electrical components. The average solar radiation received in the dis-
trict is the primary factor that determines the financial sustainability of solar energy 
collection. The locations of power plants that face the sun should be those with plenty 
of daily solar radiation. By placing the inverter framework close to the solar charger, 
long-distance connections are avoided and DC power loss is reduced [18]. However, 
this comes at the expense of the PV inverter framework’s high ambient operating 
temperature, which lowers performance and eventually disappoints devices.

A large and intricate cooling framework is necessary for the PV inverter to oper-
ate at a safe temperature, which raises the cost of the framework. It should be pos-
sible for the PV inverter to operate in extremely hot temperatures (50°C or higher) 
without any loss of power output, as described in [19]. Another important factor in 
controlling the relative mugginess of the room is the temperature at which the force 
hardware functions. Air mugginess is a significant factor when there is a temperature 
difference between the device and the surrounding air. The worst-case situation is 
that aging moisture-sensitive components powering semiconductors may start to col-
lect water droplets. To lessen the impact of air stickiness and avoid moisture-induced 
system dysfunction, which is expressed in [20], the following strategies are applied: 
The heat sink’s temperature is regulated by cooling-air consumption management in 
interior heating. The power components are frequently either cooled by fluids or by 
heat sinks outside the case in a sealed case with segregated internal air circulation.

  8.3.1 PHOTOVOLTAIC ENERGY FRAMEWORK’S POWER HARDWARE 

The productivity of the solar-powered cell or board is the main element limiting the 
total efficacy of solar-powered energy systems. However, the notion would become 
less financially viable if a more sophisticated sun-oriented cell innovation were used, 
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such as a multijunction solar cell. That would cost a significant amount of money. For 
maximum efficacy in this situation, updating the power devices is the recommended 
course of action. The power electronic modules of the PV energy transition design 
a PV energy converter with an MPPT design is used to extract the greatest power 
from solar-powered chargers; this leads to a non-uniform DC voltage yield. To keep 
the DC yield constant within the proper range, a lift converter adjusts voltage, as 
described in [21].

The functioning of a help converter may be summed up as follows: When the 
switch is in the ON position, energy from the DC source (Vin) is stored in the induc-
tor (L1). During the switch’s off-season, the forward one-sided diode (D1) transfers 
the energy stored in the inductor to the load and capacitor (C1). The resulting voltage 
is higher than the input voltage as a result of the interaction between the DC source 
voltage and the voltage across the inductor when the switch is OFF. A DC to AC 
inverter’s functioning may be summed up by looking at the power semiconductor 
changes Q1 through Q6, which are switched to produce corrected sinusoidal signals. 
The definite swapping succession will not be examined in this chapter. The majority 
of PV frameworks are designed to operate at a DC voltage breaking point of 1,000 V 
to reduce conduction, as described in [22]. Nonetheless, there are efforts underway 
to raise the threshold to 1,500 V. But greater DC voltage-tolerant electronics would 
have to be utilized to compensate for bad luck and maintain reduced conductivity 
at high-impedance voltage levels. Although silicon-powered devices are capable of 
handling high-voltage and high-current applications, their limitations result in the 
need for intricate thermal and electrical systems.

  8.4  OVERVIEW OF INNOVATIONS IN WIDE BANDGAP 
SILICON CARBIDE SEMICONDUCTORS

Silicon carbide (SiC) is a mixture of silicon and carbon IV components. In the field 
of semiconductor material research, SiC is widely recognized for having a larger 
band hole than silicon. Silicon carbide is the preferred material for semiconductor 
devices linked to high-temperature and high-power electronic applications since it 
has more features with silicon than silicon alone. Upon analysis, SiC was discovered 
to have three times the thermal conductivity of silicon, several band holes, and a 
range of fundamental electric field strengths, as described in [23]. In a material with 
a larger bandgap, an electron normally requires more energy than 2 eV to go from the 
valence band’s highest point to the conduction band. The lower natural transporter 
focus leads to a reduce high blocking voltage, high-temperature activity, and gad-
get leakage current. Wide bandgap materials can work in radiation-prone environ-
ments with less complex device packaging since they are inherently more resistant 
to high-energy particles. Power devices need to be able to sustain a low ON state of 
blockage while quickly stopping excessive voltage. The blocking voltage capacity of 
a power device is dependent on the doping level in the semiconductor material. In 
particular, for unipolar devices like metal oxide semiconductor field impact semi-
conductors, lowering the doping concentration raises the breakdown voltage at the 
cost of ON-state blockage and, consequently, the ON-state voltage drop (MOSFET). 
The restricted blocking voltage of silicon unipolar power devices is caused by the 
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trade-off between blockage in the ON state and inhibiting voltage [24]. IGBTs, or sil-
icon protected entryway bipolar transistors, are distinguished by their low ON-state 
resistance and high-impedance voltage. However, due to its bipolar character, there 
is a rigid cutoff for the exchange repetition. The fundamental electric field, which is 
where torrential sliding disintegration begins, is a crucial consideration. SiC’s strong 
fundamental electric field can enable devices with high hindering voltage power and 
low ON-state resistance, as described in [25]. Achieving high-power thickness for 
power gadget frameworks is becoming an essential planning need for a number of 
projects. However, there is a cost associated with that: intricate heat management 
systems result in more expensive and bigger individual modules. The ability of a 
technology to effectively eliminate the intensity brought on by internal force disper-
sion determines how safe its functioning is. If this isn’t done, heat may accumulate 
inside the gadget, decreasing its dependability and eventually leading to customer 
dissatisfaction. The increased ambient temperature during operation exacerbates this 
problem. The capacity of a material to carry heat is measured by its thermal conduc-
tivity. Due to its strong warm conductivity, SiC is a unique semiconductor material 
that improves the intensity advancement away from the semiconductor intersection. 
One important component influencing device current and exchanging recurrence 
limit is the soak float speed of transporters. SiC has a high electron soaking float 
that is twice as rapid as silicon’s because of its higher device current, as depicted 
in [26]. The intrinsic possible at 3 V for silicon carbide PN crossings, compared to 
0.7 V for silicon, is one of the main disadvantages of wide bandgap semiconductors. 
High-level device arrangement is expected to mitigate the high inherent potential of 
SiC power devices. Key properties of SiC materials pertaining to silicon and gallium 
nitride are explained. Notwithstanding the primary benefits of silicon carbide, a few 
obstacles still stand in the way of the broad use of SiC devices. SiC power semicon-
ductor devices are still not generally accessible for commercial usage due to their 
voltage and current ratings. The gadgets are more expensive than their silicon coun-
terparts. SiC is a heat-resistant material, but to make use of the typical temperature 
of semiconductors, it must be properly packed with high-temperature devices. The 
goal of future SiC device research and development will be to create commercially 
viable high-voltage power semiconductors. One element of this that might result in 
cheaper prices is increased SiC wafer manufacture. Devices with high voltage and 
current ratings can reduce setup costs and offer a financially viable solution for 
multi-megawatt solar and wind power systems, as described in [27].

  8.4.1  POWER DEVICES USING SILICON CARBIDE 

  8.4.1.1  Junction Barrier Schottky (JBS) Diode

Power rectifiers are used in a wide range of applications, from simple line voltage 
adjustment for AC replacement to intricate DC converters and inverters. Prior to 
advancements in the composition and architecture of semiconductors, power elec-
tronic applications were dominated by silicon PIN and Schottky diodes. For sensible 
purposes, they remain the favored gadget. PIN diodes are a type of bipolar compo-
nent distinguished by low conduction losses and a high blocking voltage, as described 
in [28]. Conductivity modification is intrinsically beneficial to bipolar devices since it 
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reduce the problem often associated with high blocking voltage devices while they are  
in the ON state. However, the forward and turnaround recovery restrict the high- 
recurring exchanging activity, and the high turn-on voltage (approximately 3 V for SiC  
devices) exacerbates the ON-state discomfort. Since Schottky diodes are essentially 
part transporter devices, they can function at high repetition rates with negligible 
error; however, the trade-off between blocking voltage capacity and ON-state volt-
age drop limits the number of high-voltage Schottky diodes that can be produced. 
Furthermore, the significant temperature increase in Schottky diode leakage current 
limits high-temperature activity. A JBS diode combines the high-impeding voltage 
capacity of a PIN diode with the low ON-state suffering and high-repetition exchang-
ing capacity of a Schottky diode. The schematic cross-segment architecture of the 
JBS diode is based on the PIN and Schottky diode designs.

The forward conduction mode, which is largely dictated by the metal semicon-
ductor’s Schottky impediment level, exhibits a unipolar current advancement over 
the channels between the implanted P sites. This phenomenon is explained by the 
presence of interdigitated Schottky and Px  inserts. Low ON-state catastrophes and 
high recurrence exchanging come from insufficient ON-state voltage drop caused by 
insufficient injected minority transporters, which prevents bipolar switch ON. The 
Pá N junctions become opposite one-sided during switch impeding because the con-
sumption district spreads over the Pþ fingers and shields the Schottky intersection 
from the strong electric field, reducing the leakage current, as described in [29]. 
Commercial SiC device vendors include Infineon technology STMicroelectronics, 
and ROHM Semiconductor. CREE’s product has the highest estimated opposite 
impeding voltage (1,700 V) of any commercially available SiC JBS diode. Double 
diodes with typical cathode architecture allow 1,200 V diodes to be available in the 
TO-247–3 bundle with three leads, even if the 1,700 V diode is only available as a 
single diode in the TO-247–2 bundle. The diode is available from STMicroelectron-
ics in a high-voltage DPAK bundle.

  8.4.1.2  Field Impact Semiconductor (MOSFET)

Metal oxide semiconductor larger component transporters, often referred to as power 
MOSFETs, are frequently appropriate for low-voltage, high-power circuits. A MOS-
FET is activated by applying a suitable predisposition voltage to its door terminal, 
which is isolated from the semiconductor by an oxide contact. The current that passes 
via a surface channel is controlled by the tilt voltage of an ultrathin reversal layer. 
MOSFETs are ideal for use as switches in high-power circuits because of their very 
high information impedance and oxide interface at the door input terminal. For 
high-thickness switch-mode applications, MOSFETs are the favored option because 
of their high repetition rate replacement, which allows the size of energy-capable 
components to be reduced, as described in [30].

Despite their previously shown advantages, silicon-powered MOSFETs are lim-
ited in their ability to block voltage by the trade-off between obstructing voltage and 
ON-state opposition (RDS(on)). Reasonably priced silicon MOSFETs have breakdown 
voltages that are almost equal to 1,000 V. Nevertheless, there are several major disad-
vantages to the greater breakdown voltage, including very high ON-state resistance 
that restricts channel current or high information capacitance, which raises trading 
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losses and entry driver needs. A  silicon carbide power MOSFET combines the 
high-impedance voltage capacity of the SiC material with the standard advantages 
of a MOSFET. In high-voltage applications, where silicon IGBTs now predominate, 
a SiC power MOSFET sets itself apart from other semiconductors due to its capacity 
to block high voltage while retaining a low ON-state obstruction.

Business-grade SiC power MOSFETs are made by STMicroelectronics, ROHM 
Semiconductors, and CREE; Commercial-power MOSFETs typically have a 
hindering voltage rating of 1,200 V. Among the SiC power MOSFETs that are 
marketed, CREE produces the greatest blocking voltage of roughly 1,700 V that 
a single device can handle, as described in [31]. A  co-bundled antiparallel SiC 
Schottky obstruction diode (SBD) and a ROHM MOSFET (SCH2080KE) are con-
nected to prevent power mishaps during reverse conduction. With the exception of 
the STMicroelectronics device, which is kept in their own HiP247TM bundle for 
maximum performance while abiding by industry standards, is accessible in the 
TO-247–3 bundle.

  8.4.1.3  Intersection Field Impact Semiconductor (JFET) 

As previously mentioned, the current passing via a thin direct wire close to the oxide 
semiconductor contact, as described in [32], represents the conduction system in a 
MOSFET. This suggests that the architecture of the device has to have an enhanced 
oxide semiconductor interface. In the case of SiC, carbon-connected surface states 
lead to restricted electron flexibility at the channel surface and a large thickness of 
connection point states in a thermally produced oxide layer. The main reason for the 
in-depth investigation of SiC JFET is the reliability of SiC MOSFET performance 
and stability on the oxide semiconductor connection point. JFETs are larger part 
transporters with properties comparable to power MOSFETs in terms of exchange 
and conduction.

The continuous conduction route and control mechanism are where a MOSFET 
and JFET diverge most. In a MOSFET, the current stream diversion is accessible at 
the surface of the device, but in a JFET, it is accessible through the device’s weight. 
Applying a predisposed voltage at the oxide interface limits the channel current in 
MOSFETs, whereas a one-sided P-N junction that opposes this, limits the channel 
current in JFETs. SiC JFETs are better known for their resistance to temperature 
changes and other operational climate conditions, as they do not depend on the oxide 
semiconductor interface. The fact that JFET devices operate in a leading mode with 
zero entry precondition voltage is one of their main drawbacks, meaning that they 
are frequently ON. The two geographies of the power junction field effect transistor 
(JFET) structure separately are vertical (VV-JFET) and sidelong vertical (LV-JFET). 
The channel-to-source current stream approach determines the main difference 
between the two systems. The JFET structure is not the subject of a detailed analysis 
in this work. Infineon Advances AG and Joined Silicon Carbide Integrated (USCi) 
create business-grade bundled SiC power JFET, assessed for 1,200 V hindrance volt-
age [33]. The devices are packaged in a TO-247–3 container and have a maximum 
working temperature of 175°C in Infineon technology 1,200 V SiC JFETs. composed 
of power units made of silicon carbide. Large-scale solar energy collection systems 
demand more power than discrete SiC power devices can provide. Power modules 
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offer several power semiconductor devices stacked on a single substrate, physical 
confinement, electrical and thermal interaction, and safety. A  module’s constitu-
ent parts can be put together in a number of ways, from simple high-power diode 
modules to complex half and full scaffold MOSFET/IGBT modules. It is capable 
of integrating many control circuits, including temperature detection and closure, 
under-voltage security, over-ebb and flow, and door driver, thanks to the power mod-
ule’s flexibility. One example of such a device is the intelligent power module (IPM). 
All SiC modules and half and half (a combination of silicon and silicon carbide 
devices) are offered for corporate SiC power modules. Large suppliers supply some 
of the SiC power modules that are sold commercially, as described in [34].

  8.5  CONCLUSION

Because solar cells are often less productive than other environmentally friendly 
power sources like wind, it has been difficult to appropriately tap into solar 
energy. When these factors are taken into account, the cost of using CPVs or 
multi-intersection solar cells with relatively good efficiency restricts the options. 
When running at maximum efficiency, the PV inverter architecture should be 
able to reduce capital speculation. The unexpected material features of SiC, in 
comparison to silicon, have allowed for the advancement of devices like MOS-
FETs, JFETs, and diodes. Presenting, analyzing, and contrasting the SiC-based 
PV inverter with its silicon-based counterpart makes it evident that the former 
is more efficient and increases the percentage of the framework that is made of 
silicon, which lowers the inverter’s cost. In a SiC-based framework, the reduced 
material cost, especially the significant reduction in the size of appealing sec-
tions, offsets the high cost of the device. Similar to this, SiC power devices’ rapid 
development and commercialization have resulted in a continuous drop in cost. 
While SiC is still a relatively new technology, the stability of the power devices 
is confirmed by a substantial amount of test data.
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  9.1  INTRODUCTION

Nowadays, low-power consumption and minimal leakage current are essential 
requirements for highly efficient electronics devices [1, 2]. To accommodate the 
emerging need of this industry, MOSFET scaling has reached the nanometer range, 
which is limiting the further reduction of its supply voltage and rapid switching, 
which, in turn, is enhancing the short-channel effects. Therefore, it has become a 
necessity to explore some better alternative devices that can overcome the limitations 
of the MOSFET. The tunnel field effect transistor’s (TFET) improved efficiency, 
rapid switching, hardware compatibility, and reduced short-channel effects make it 
a superior alternative to the MOSFET. TFET works on the band-to band-tunneling 
(BTBT) phenomena instead of thermionic emissions [3–5]. However, the TFET has 
few major parameters, which still need many improvements like IOFF, ION, steeper sub-
threshold slope, and Iamb [6]. To overcome these limitations, various techniques have 
been adopted by researchers in the past, like TFET devices with low bandgap; novel 
material engineering with silicon-germanium, germanium, and other low-bandgap 
materials that belong to groups III–V [7]; spacer pocket engineering; gate engineer-
ing [8]; and work function engineering [9–12]. To suppress the ambipolar behavior 
of TFETs, different types of devices have been recommended like dual gate hetero 
dielectric buried oxide device [13, 14], double material gate-all-around (GAA) device 
[15], triple metal GAA structure device [16–26], gate on drain overlap–based device, 
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and heavily doped source pocket–based device. In this chapter, we review various 
triple metal gate vertical TFETs (TMG V-TFETs) in detail in terms of their perfor-
mance compared with variations in their metal gate lengths and work functions. Sec-
tion 9.2 discusses the device geometry of TMG V-TFETs, Section 9.3 has the results 
and discussion of its performance, Section 9.4 discusses TFETs using machine learn-
ing (ML), and Section 9.5 concludes the chapter.

  9.2  DEVICE GEOMETRY OF TRIPLE METAL GATE (TMG) V-TFETs 

  9.2.1  GAA-BASED TMG V-TFET

In this GAA-based TMG V-TFET device, there are three metal gate layers—MG1, 
MG2, and MG3—designed in such a way that all the metal gates have a different 
work function: WF1, WF2, and WF3, respectively. In this device, source and 
drain are of heavily doped Ge and Si, respectively, and its performance character-
istics are investigated by technology computer-aided design (TCAD) based simu-
lation with various models. This device is actually designed to tackle the TFET’s 
limitations in performance and also the ambipolarity of existing TFET devices. 
The GAA-based TMG V-TFET devices are highly useful in various future appli-
cations that demand low-power consumption and negligible amount of leakage 
current [16–26].

Figure  9.1 shows the various views of TMG V-TFET having three metal gate  
layers—MG1, MG2 and MG3—with different work functions (WF1, WF2, and 
WF3, respectively). The important design specifications considered in this TMG 
V-TFET are lengths of the metal gate layers (L1, L2, and L3), length of the channel 
(LC), channel region diameter (NS), total nanowire diameter (DT), and work functions 
of all the metal gate layers (WF1, WF2, and WF3). In Figure 9.1c, the energy-band 
diagrams of the TMG V-TFET are given with respect to the different work functions 
defined for the respective metal gate layers.

Table  9.1 represents all the important design specifications considered in this 
GAA-based TMG V-TFET [27].

Figure  9.2 presents the transfer characteristics (IDS–VGS) curves for a TMG 
V-TFET. The simulation results give ION approximately equal to 10 5- μA/μm, sub-
threshold swing (SS) value of 8  mV/decade, and average subthreshold slope at 
approximately 43.5 mV/decade. The performance behavior of the TMG V-TFET is 
dependent on the charge carriers at the channel surface. Therefore, its circumference, 
given by 2´ ´p rchannel , can easily normalize the IDS value. S, all the metal gates’ 
work functions and their respective lengths (L1, L2, and L3) on the TM V-TFET are 
analyzed. Simulation results show that the source-channel BTBT rate is linked to 
the metal gate 1 and metal gate 2 parameters, which, in turn, is affecting the device 
performance. But this tunneling rate at its interface affects the ambipolar current 
and also metal gate 3 (MG3), which also affects the ambipolarity like the MG1/MG2 
parameters.

In Figure  9.3a, WF2 and WF3 values are kept constant at 4.5 eV. As WF1 
increases, tunneling probability reduces, and at VDS  = VGS at 0.5 V, ION also 
decreases significantly, as there is an increase in voltage for the BTBT mech-
anism [14]. In Figure  9.3b, WF1 and WF3 values are kept constant at 4.2 eV. 
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  FIGURE 9.1 (a) Depicts the 3D device structure of TMG V-TFET, (b) 2D view, and (c) 
shows the energy band diagram.

Source: [ 27].

   

 

TABLE 9.1

Important Design Specifications of GAA-Based TMG V-TFET

Design Parameters Values

 Doping concentration at drain p-type
 1020

cm−3 

 Doping concentration at source n-type
 1020

cm−3 

 Diameter of nanowire (D T)  14 nm

Diameter of cha nnel region (Ns)  7 nm

Equi valent thickness of oxide (TOX )  0 6. nm

 Metal Gate 1 length (L1)  7 nm

 Metal Gate 2 length (L2)  14 nm

 Metal Gate 3 length (L3)  7 nm

 Channel length (L C)  28 nm

W ork function of metal gate 1  4 2. eV

W ork function of metal gate 2  4 5. eV

W ork function of metal gate 3  4 2. eV
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As WF2 increases, OFF-state current (IOFF) is reduced by its potential barrier 
between metal gates (MG1 and MG2). In TMG V-TFET, ON-state current (ION) 
remains the same when WF2 rises from 4.1 to 4.5 eV. However, at WF2 = 4.6 eV 
or greater, it allows only the high-energy tunneled electrons in its channel region 
to flow by the BTBT mechanism. It concludes that ION and SS both depend on the 
source region and channel region’s BTBT rate. In Figure 9.3c, when WF1 is at 4.2 
eV and WF3 is at 4.5, respectively, it is clear that the WF3 impact is minimal on 
performance. As observed from the simulation results, for a greater BTBT rate 
and drain current, WF1 should be less 4.2 eV and for a lower OFF-state current, 
WF2 should be less than 4.6 eV.

  9.2.2  NANOWIRE-BASED TMG V-TFET

In this nanowire (NW) based TMG V-TFET, the impacts of various DC parameters, 
like varying the values of different metal gate work functions and changing the metal 
gate lengths, are analyzed for comparing the major transfer characteristics and sub-
threshold swing using simulation results. This device shows a preferable boost in its 
ION with a gradual decrease in IOFF current. It also has a better subthreshold slope even 
at a low threshold voltage.

Figure 9.4 shows the device structure of the NW-based TMG V-TFET with dif-
ferent views for a better understanding, which is almost identical to the previous 
GAA-based TFET structure with certain variations in its design parameters. The 
parameters and specifications used in its designing are in Table 9.2 [28].

  FIGURE 9.2   Transfer characteristics (I DS –V GS ) of TMG V-TFET.

 Source: [ 27 ].
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The length of the source region is considered 10 nm, same as that of the drain 
region. The oxide layer is of SiO2. The radius of the nanowire is 5 nm. The Silvaco 
Atlas simulator has been used for checking the device’s properties.

Figure  9.5 represents the device’s energy-band diagram. From Figure  9.5, it is 
clear that the metal length variation does not showing any impact in the sides of the 

  FIGURE 9.3  Transfer characteristics (I DS –V GS ) of TMG V-TFET for different WF1, WF2, 
and WF3.

 Source: [ 27 ].
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 FIGURE 9.4 Device structure of NW-based TMG V-TFET: (a) 3D device structure and (b) 
2D device structure.

 Source: [ 28 ].

    

TABLE 9.2

Important Design Parameters of NW-Based TMG V-TFET

Design Parameters Values

Doping concentration, p-type channel 
 1015

cm−3 

 Doping concentration, n-type drain 18
 5 1´ 0 cm−3 

Doping  concentration, p-type source
1020
 cm−3 

Nanowire radius  5 nm

Channel length  20 nm

Metal g ate 1 length (L1)  7 nm

Oxide thickness  1 5. mm

 Metal gate 2 length (L2)  6 nm

Metal g ate 3 length (L3)  4 nm

 Work function of metal gate 1  4 1. eV

W ork function of metal gate 2  4 5. eV

 Work function of metal gate 3  4 4. eV
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channel, but it does show in its middle region. This energy bandgap is minimum at 
fourth arrangement with 8:4:8 ratio, and it is maximum at the first arrangement with a 
ratio of 5:10:5, as shown in Figure 9.5. With the decrease in second metal gate length 
(M2), the energy gap also shows a gradual decrease in its level, which increases the 
tunneling across the structure.

Figure  9.6 shows the ID/VGS characteristics of NW-based TMG V-TFET. We 
observe that its ION value is 2 8 10 6. × − A/μm, IOFF current is 4 3 10 20. × − A/μm, its 
ION/IOFF value is 6 5 10 13. × − , and its SS value is 6.59 mV/decade at a VT of 0.172 V.

  9.2.3  TRIPLE METAL GATE STACKED V-TFET

In the triple metal gate stacked III–V vertical TFET (TM-GS-V-TFET), there are two 
structures to examine. One is Device A, in which a source pocket is used. The other 
is Device B, in which a new source extension approach is used.

Source pocket–based TFETs are introduced for their improved ION, reduced IOFF, 
and steeper SS as compared to the basic TFET structures. However, their fabrica-
tion procedures are quite complex as compared to the conventional ones. The source 
extension–type TFET improves the electric field, which reduces its tunneling barrier 

  FIGURE 9.5   NW-based TMG V-TFET energy-band diagram.

 Source: [ 28 ].
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width at its source side, which, in turn, enhances the tunneling rate and boosts the 
device functioning. In source-based TM-GS-V-TFET, there is a strongly doped 
source pocket near the source region, which modulates the tunneling barrier [29]. 
Because of this arrangement, the tunneling probability increases, which, in turn, 
enhances its performance. In source extension–based TFETs, the extension of the 
source region is beyond the gate edge to improve its electric field, which decreases 
the tunneling barrier width near the source region. Because of this arrangement, the 
tunneling pace gets boosted, and device functioning improves [30]. Source exten-
sion–based TFETs have a simple fabrication process and good ability to increase ION 
current, decrease IOFF current, and a better SS value [31].

In Figure 9.7, a cross-sectional schematic of the TM-GS-V-TFET with a source 
pocket of GaSb (Device A) and the TM-GS-V-TFET with source extension (Device 
B) are shown. Thickness and length were selected as 65 and 30 nm, respectively.

The various device specifications of the TM-GS-V-TFET are in Table 9.3 [32].
The energy-band diagram (Figure 9.8) illustrates the interplay between the energy 

levels of both regions and the existence of an energy barrier within the channel 
[33]. In addition, this analysis can enhance subthreshold qualities [34]. Changing 
the material parameters and gate voltage allows the tunneling characteristics to be 
adjusted [35, 36].

As shown in Figure 9.8a, in Device A, the GaSb pocket introduced in its source 
region creates an extra energy barrier for electrons in the source and channel region 
junction and facilitates the movement of higher-energy electrons close to the upper-
most region of the valence band. These energy levels make the electrons transition 
into the channel of the material InP’s conduction band with a more inclined bend. 
Hence, it enhances the efficiency of TM-GS-V-TFET.

  FIGURE 9.6   NW-based TMG V-TFETs transfer characteristics.

 Source: [ 28 ].
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As shown in Figure 9.8b, Device B has the extension of the GaSb source, because 
of which an extra energy barrier is created for electrons between the source and 
channel region junction and this barrier. It causes the sorting of electrons per their 
energy levels, and electrons having a higher energy level, close to the top region of 
the valence band, has a greater possibility of crossing this barrier. Due to this phe-
nomenon, the ON-state current of this TFET gets a boost. This also results in a lower 
IOFF [37]. Its SS can potentially be much steeper by this extension of the GaSb source, 
which leads to reduced power consumption and enhanced efficiency along with a 
lower gate voltage.

  FIGURE 9.7  Schematic of (a) device A-TM-GS-V-TFET with source pocket and (b) device 
B-TM-GS-V-TFET with source extension.

 Source: [ 32 ].
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TABLE 9.3

Device Specifications of TM-GS-V-TFET

Design Parameters Values

 Doping concentration, channel (p-type)  1016 cm−3 

 Doping concentration, drain (p-type)  5 1´ 018 cm−3 

 Doping concentration, source (p-type)  1020 cm−3 

 Channel region thickness 10 nm

Dielectric thickness 1 nm

 Metal gate 1 length (L1) 8 nm

 Metal gate 2 length (L2) 8 nm

 Metal gate 3 length (L3) 4 nm

 Channel length (L C) 20 nm

 Work function of metal gate 1 4.2 eV

 Work function of metal gate 2 4.6 eV

 Work function of metal gate 3 4.2 eV

 

 

 

 

  

  

  

  

  

 

 

 

   FIGURE 9.8 Energy-band diagram: (a) TM-GS-V-TFET with source pocket (Device A) and 
(b) TM-GS-V-TFET with source extension (Device B).

Source: [ 32]. 
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Figure 9.9 shows the transfer characteristics of both device structures. The ON-state 
current (ION) of TM-GS-V-TEFT with source pocket (Device A) and with source 
extension (Device B) are 26 82.  μA/μm and 234 03.  μA/μm, respectively. Device B 
shows better performance as compared to Device A, as it makes use of the source 
extension technique, because of which the tunneling distance reduces, enhancing 

  FIGURE 9.8  (Continued)

  FIGURE 9.9  Transfer characteristics of TM-GS-V-TFET with source pocket (Device A) and 
with source extension (Device B).

 Source: [ 32 ].
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the velocity of the electrons. On applying a positive value of VGS, the Fermi level 
in the source region starts moving downward. Once the energy level of the GaSb 
source achieves a sufficient magnitude, the electrons enter the InP channel through 
quantum mechanical tunneling. This also results in limiting the SS value, which 
improves the ION value of Device B. The I −17

OFF value for Device A is 5 6. ×10  A/μm  
and for Device B is 1 5. 2 1× 0−14 A/μm. The source pocket in Device A helps in IOFF 
reduction. The SS value for Device A is 24.56 mv/decade and for Device B is 28.58 
mV/decade.

  9.3 RESULTS AND DISCUSSIONS  

In this chapter, different structures of triple metal gate vertical TFETs with vari-
ous techniques like gate-all-around, nanowire, source pocket insertion, and source 
region extension are reviewed and compared in terms of their device structures; 
energy-band diagrams; functional performance of the DC parameters like ION, IOFF, 
minimum SS, and power dissipation; and various device parameter variations like 
all the metal gate functions and all the metal gate lengths. A comparison of all the 
performance characteristics along with the considered design specifications of all the 
discussed TMG V-TFET models in this review are in Table 9.4.

    9.4  TFET USING MACHINE LEARNING

TFETs are being developed at a rapid pace using ML, mainly because it simplifies 
the design, modeling, and optimization procedures. ML helps handle the inherent 
difficulty in the design of TFETs, which are highly acclaimed for their energy- 
efficient functioning because of their sub-60 mV/decade subthreshold slope. The need 
for time-consuming, physics-based simulations is significantly decreased by using 
predictive models that accurately simulate TFET behavior, such as current-voltage 
characteristics and threshold voltage, thanks to techniques like artificial neural net-
works and sophisticated regression models. Additionally, optimization techniques 
like reinforcement learning and genetic algorithms are essential for optimizing 

TABLE 9.4

Comparison Data of the DC Characteristics of Different TMG V-TFET

Device Ref. No. Year SS (mV/ ION (A/μm) IOFF (A/μm) ION/IOFF

dec)

GAA-based TMG V-TFET  [ ]26  2016 8  10-5   10-13   108  
      NW-based TMG V-TFET  [ ]27  2021 6.59 2 8. ×10−6 0.4×10−19 6 5. ´1013

 Source pocket–based TMG  [ ]28  2024 24.56 2 1× 0−5   10-16   2 1´ 011  

V-TFET
 −4   -14   10 2 3  Source extension–based  [ ]28  2024 28.58 2 3. ×10 . ´1010

TMG V-TFET
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TFET performance and increasing switching speed and power efficiency. More-
over, adaptive controls that improve manufacturing yield and device dependability 
are made possible by ML’s assistance in anticipating fabrication flaws and process 
changes. Beyond modeling, ML processes massive datasets to find designs that push 
the limits of power efficiency, which expedites the discovery of novel materials and 
cutting-edge TFET structures. For the development of TFETs and their incorpora-
tion into next-generation, ultralow-power electronics, ML is essential, as it facilitates 
power optimization, fault detection, and system-level energy management at the cir-
cuit level.

  9.5  CONCLUSION

In this chapter, various TMG V-TFETs with different arrangements in terms of their 
performance and current characteristics are reviewed per the results of their TCAD 
simulations using various techniques, including gate-all-around structure configu-
ration, nanowire configuration, and insertion of source pocket and source extension 
configurations. In the GAA approach, the impact of modulating the various design 
parameters like length of channel, metal gate layers, and work functions of all the 
metal gate layers on the device performance are also studied. The design parameters 
of the TMG are ION up to 10 5- A/μm, SS of around 8  mV/decade, steeper subthreshold 
slope value of approximately 43.5 mV/decade and ION/IOFF ratio of approximately108 . In 
NW-based TMG V-TFET, by further reduction in channel length, there is a preferable 
boost in its ION, with a gradual decrease in IOFF current. It also has a better subthresh-
old slope even at a low threshold voltage. The design parameters of the TMG are ION 
up to 2 8 10 6. × − A/μm, SS of around 6 59. mV/decade, and ION/IOFF ratio of approx-
imately .6 5 1013´ . In the TM-GS-V-TFET, there are two approaches. In the source 
pocket approach, tunneling probability can be increased up to a good extent along 
with other device performances like better ION of approximately 2 10 5

×
− A/μm, IOFF of 

approximately 10 16- A/μm, and SS of approximately 24 56. mV/decade. In the source 
extension approach, it alters the device’s electric field by reducing the source-side 
tunneling width, which improves the tunneling rate. Hence, it also enhances the ION 
and SS behavior. The TMG structure achieves ION of approximately 2 3 10 4. × −  A/μm,  
IOFF of approximately 10 14- A/μm, and SS of approximately 28 58.  mV/decade. 
This structure also exhibits good electric field characteristics and is highly useful in 
emerging high-efficiency and low-power applications.

   REFERENCES

 1.  E.     Baravelli ,  E.     Gnani ,  A.     Gnudi ,  S.     Reggiani , and  G.     Baccarani  ( 2014 )  TFET inverters 
with n-/p-devices on the same Technology Platform for low-voltage/low-power applica-
tions .  IEEE Transactions on Electron Devices   61: 473 – 478 .

 2.  D.     Cavalheiro ,  F.     Moll , and  S.     Valtchev  ( 2015 )  Perspectives of TFET devices in ultra-low 
power charge pumps for thermo-electric energy sources .  IEEE International Symposium 

On Circuits and Systems    1082 – 1085 .
 3.  S.     Agarwal ,  G.     Klimeck , and  M.     Luisier  ( 2010 )  Leakage-reduction design concepts for 

low-power vertical tunneling field-effect transistors .  IEEE Electron Device Letters   6: 
 621 – 623 .



170 Machine Learning for Semiconductor Materials

  4.  W. Y.     Choi ,  B.-G.     Park ,  J. D.     Lee , and  T.-J. K.     Liu  ( 2007 )  Tunneling field-effect transistors 
(TFETs) with subthreshold swing (SS) less than 60 mV/dec .  IEEE Electron Device Letters   
 28 ( 8 ): 743 – 745 .

  5.  J.-S.     Jang , and  W.-Y.     Choi  ( 2011 )  Ambipolarity factor of tunneling field effect transistors 
(TFETs) .  Journal of Semiconductor Technology and Science   11(4): 272 – 277 .

  6.  K.-H.     Kao ,  A. S.     Verhulst ,  W. G.     Vandenberghe ,  B.     Sorée ,  G.     Groeseneken , and  K.     De 
Meyer  ( 2012 )  Direct and indirect band-to-band tunneling in germanium-based TFETs . 
 IEEE Transactions on Electron Devices   59(2): 292 – 301 .

  7.  S. H.     Kim ,  H.     Kam ,  C.     Hu , and  T.-J. K.     Liu  ( 2009 )  Germanium-source tunnel field effect 
transistors with record high ION/IOFF .  VLSI Symposium Technology Digest    178 – 179 .

  8.  Hyun    Woo     Kim , and   Daewoong   Kwon   ( 2021 )  Steep switching characteristics of L-shaped 
tunnel FET with doping engineering .  IEEE Journal of the Electron Devices Society   
9: 359 – 364 .

  9.   Navjeet   Bagga  , and  Sudeb    Das     Gupta  ( 2017 )  Surface potential and drain current analyti-
cal model of gate all around triple metal TFET .  IEEE Transactions on Electron Devices   
 64 ( 2 ): 606 – 613 .

 10.   Narwal   Seema  , and  Sudakar    Singh     Chauhan  ( 2018 )  A new design approach to improve 
DC, analog/RF and linearity metrics of vertical TFET for RFIC design .  Superlattices and 

Microstructures   122: 286 – 295 .
 11.   Narwal   Seema  , and  Sudakar    Singh     Chauhan  ( 2019 )  Investigation of RF and linearity per-

formance of electrode work function engineered HDB vertical TFET .  The Institution of 

Engineering and Technology   14: 17 – 21 .
 12.   Narwal   Seema  , and  Sudakar    Singh     Chauhan  ( 2019 )  Performance investigation of electrode 

work-function engineered hetero-dielectric buried oxide vertical TFET .  IET Circuits, 

Devices & Systems    13 ( 7 ): 1027 – 1031 .
 13.   Narwal   Seema  , and  Sudakar    Singh     Chauhan  ( 2018 )  Design of double gate vertical tunnel 

field effect transistor using HDB and its performance estimation .  Superlattices and Micro-

structures   117: 1 – 8 .
 14.   Narwal   Seema  , and  Sudakar    Singh     Chauhan  ( 2020 )  Linearity performance analysis of doud-

ble gate (DG) VTFET using HDB for RF applications .  Silicon    13 ( 4 ): 1121 – 1125 .
 15.  D.     Jackuline Moni ,  G.     Anne Selva Naira ,  D.     Gracia , and  D.     Nirmal  ( 2017 )  Performance 

analysis of triple metal gate vertical tunnel FET .  International Journal of Pure and Applied 

Mathematics   114(12): 89 – 98 .
 16.   Prashant   Kumar  ,   Munish   Vashistha  ,   Neeraj   Gupta  , and   Rashmi   Gupta   ( 2022 )  High-k died-

lectric double gate junctionless (DG-JL) MOSFET for ultra low power applications ana-
lytical model .  Silicon  14:7725– 7734.

 17.   Neeraj   Gupta  ,   Rashmi Gupta ,  S  .  B .  Gupta, Rekha Yadav, and Prashant Kumar (  2023 ) Per-
formance investigation of a dielectric stacked triple material cylindrical gate all around 
MOSFET (DSTMCGAA) for low power applications.  ECS Journal of Solid State Science 

and Technology    12 ( 1 ).
 18.   Prashant   Kumar  ,   Munish   Vashistha  ,   Neeraj   Gupta  , and   Rashmi   Gupta   (2022)  Subthreshold 

current modeling of stacked dielectric triple material cylindrical gate all around (SD-TM 
CGAA) junctionless MOSFET for low power applications .  Silicon  14:  6261  – 6269.

 19.   Neeraj   Gupta  , and   Prashant   Kumar   ( 2021 )  Elicitation of scattering parameters of dual-halo dual 
dielectric triple-material surrounding gate (DH-DD-TM-SG) MOSFET for microwave fre-
quency applications .  Advances in Electrical and Electronics Engineering   19(1): 66 – 73 .

 20.   Neeraj   Gupta  ,   Prashant   Kumar  ,   Nitin   Sachdeva  ,   Tarun   Sachdeva  , and   Munish   Vashistha   
( 2020 )  Performance investigation of dual-halo dual-dielectric triple material surrounding 
gate MOSFET with high-K dielectrics for low power applications .  Journal of Semicon-

ductor Technology and Science   20(3): 1 – 8 .
 21.   Neeraj   Gupta  ,  A. K.     Raghav ,   Rashmi Gupta , and   Amit Sharma  ( 2020 )  Dual-halo  

dual-dielectric triple-material surrounding-gate (DH-DD-TM-SG) MOSFET for improved 
leakages .  Journal of Engineering Research   8(2): 178 – 190 .



171Performance Comparison of Vertical TFET

 22.   Neeraj   Gupta  ,   Janak   B  .  Patel, and A .  K .  Raghav (  2018 ) Performance and a new 2-D ana-
lytical modeling of a dual-halo dual-dielectric triple-material surrounding-gate-all-around 
(DH-DD-TM-SGAA) MOSFET.  Journal of Engineering Science and Technology   13(11).

 23.   Neeraj   Gupta  ,   Rashmi   Gupta  ,   Prashant   Kumar  , and   Amit   Sharma   ( 2019 )  Performance anal-
ysis of noise in dual halo dual dielectric triple material surrounding gate MOSFET for RF 
applications .  International Journal of Nanoscience   1(1): 1 – 4 .

 24.  L. R.     Solay ,   Leo Raj ,   Pradeep Kumar ,   Intekhab Amin , and   Sunny Anand  ( 2021 )  Design 
and analysis of gate engineered gate-AII-around (GAA) charge plasma nanowire field 
effect transistor .  6th International Conference for Convergence in Technology (I2CT)    1 – 5 .

 25.  U.     Mushtaq ,  N.     Kumar ,  S.     Anand , and  I.     Amin  ( 2020 )  Design and performance analy-
sis of core-shell dual metal-dual gate cylindrical GAA silicon Nanotube-TFET .  Silicon   
12(10): 2355 – 2363 .

 26.  C.     Usha , and  P.     Vimala  ( 2021 )  A new analytical approach to threshold voltage modeling of 
triple material gate-all-around heterojunction tunnel field effect transistor .  Indian Journal 

of Physics   95(7): 1365 – 1371 .
 27.   Eunah   Ko  ,   Hyunjae   Lee  ,   Jung-Dong   Park  , and   Changhwan   Shin   ( 2016 )  Vertical tunnel 

FET: Design optimization with triple metal-gate layers .  IEEE Transactions on Electron 

Devices   63(12).
 28.   Anjana   Bhardwaj  ,   Pradeep   Kumar  ,   Balwinder   Raj  , and   Sunny   Anand   ( 2021 )  Design and 

performance enhancement of vertical nanowire TFET using triple metal gate technique . 
 International Conference on Disruptive Technologies for Multi-Disciplinary Research 

and Application (CENTCON)  .
 29.  Y.     Shao ,  M.     Pala ,  D.     Esseni , and  J. A.   del   Alamo  ( 2022 )  Scaling of GaSb/InAs verti-

cal nanowire Esaki diodes down to sub-10-nm diameter .  IEEE Transactions on Electron 

Devices   69(4): 2188 – 2195 .
 30.  M.     Karbalaei ,  D.     Dideban , and  H.     Heidari  ( 2020 )  A simulation study of the influence of a 

high-k insulator and source stack on the performance of a double-gate tunnel FET .  Journal 

of Computational Electronics   19(3): 1077 – 1084 .
 31.  W.     Gonçalez Filho ,  E.     Simoen ,  R.     Rooyackers ,  C.     Claeys ,  N.     Collaert ,  J. A.     Martino , and 

 P. G. D.     Agopian  ( 2020 )  Analog design with line-TFET device experimental data: From 
device to circuit level .  Semiconductor Science and Technology    35 ( 5 ).

 32.  M.     Saravanan , and   Eswaran Parthasarathy  ( 2024 )  Performance investigation of source 
exrtension approach on III-V vertical tunnel FET .  IEEE Access   12: 56439 – 56447 .

 33.  C. N.     Macambira ,  P. G. D.     Agopian , and  J. A.     Martino  ( 2021 )  Evaluation of dielectri-
cally modulated and fringing field tunneling field effect transistor biosensors devices .  ECS 

Journal of Solid State Science and Technology    10 ( 7 ).
 34.  K. R. N.     Karthik , and  C. K.     Pandey  ( 2022 )  Design and investigation of a novel gate-all-

around vertical tunnel FET with improved DC and analog/RF parameters .  ECS Journal of 

Solid State Science and Technology    11 ( 11 ).
 35.  J. L.     Padilla ,  C.     Medina-Bailón ,  C.     Navarro ,  C.     Alper ,  F.     Gamiz , and  A. M.     Ionescu  ( 2018 ) 

 Analysis of the heterogate electron–hole bilayer tunneling field-effect transistor with par-
tially doped channels: Effects on tunneling distance modulation and occupancy probabil-
ities .  IEEE Transactions on Electron Devices   65(1): 339 – 346 .

 36.  J.     Wu , and  Y.     Taur  ( 2016 )  Reduction of TFET OFF current and subthreshold swing by 
lightly doped drain .  IEEE Transactions on Electron Devices   63(8): 3342 – 3345 .

 37.  S.     Hussain ,  N.     Mustakim , and  J. K.     Saha  ( 2021 )  Linearity performance and distortion anal-
ysis of carbon nanotube tunneling FET .  Journal of Electronic Materials   50(3): 1496 – 1505 .    



172 DOI: 10.1201/9781003508304-10

 Design and Performance 

Exploration of Macaroni 

Channel-Based Ge/Si 

Interfaced Nanowire FET 

for Analog and High-

Frequency Applications 

Using Machine Learning  

Aapurva Kaul, Amit Das, Shivani Yadav, Sonam 
Rewari and Deva Nand

  10.1  INTRODUCTION

Field effect transistors (FETs) represent a significant advancement in electronics, 
encompassing various types tailored for diverse applications [1–5]. Their continuous 
exploration has led researchers to develop numerous structures with distinct varia-
tions. Among these, metal oxide semiconductor field effect transistors (MOSFETs) 
stand out, and the cylindrical architecture of FETs has garnered particular attention 
due to its numerous advantages.

Germanium, a group 14 element, is considered one of the most promising alterna-
tives to silicon [6]. Its narrow bandgap energy provides several advantages when used 
as a source material in electronic devices [7, 8]. For instance, germanium can achieve 
higher carrier mobilities, which is beneficial for faster and more efficient transistors. 
Although several researchers have explored the use of germanium in FET structures, 
a thorough and comprehensive investigation into its potential and limitations remains 
absent in the current literature. This gap highlights the need for more detailed studies 
to fully understand and exploit the benefits of germanium in semiconductor technol-
ogy. This is the primary novelty of the work, where the use of germanium as a source 
material has been comprehensively studied.

Selection of oxide material is another critical consideration in FET design. While 
SiO2 is a conventional gate oxide material that has fabrication simplicity and better 
fringing field control [9–11], HfO2, on the other hand, improves the breakdown limit 
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of gate oxide but with fringing field issue [4, 12]. Hence, HfO2 has been used in hor-
izontal stack with SiO2 to overcome the limitations of each, and it fully utilizes the 
benefits of each. The tubular geometry of the macaroni channel structure has become 
a promising design for FETs in both analog and biosensing applications. In analog 
circuits, the wraparound gate configuration offers superior electrostatic control over 
the channel, improving subthreshold swing and reducing short-channel effects. This 
results in better linearity and higher gain, making these FETs ideal for low-power, 
high-frequency applications. For biosensing, the hollow cylindrical design provides 
a large surface-to-volume ratio, enhancing the sensitive area for biomolecule interac-
tions. This, combined with the ability to functionalize both inner and outer surfaces, 
allows for a highly sensitive and selective detection of biomarkers. Additionally, the 
tubular structure aids the flow of analytes through the channel, potentially enhancing 
response times and enabling real-time sensing.

A nanowire FET can be utilized for a number of analog applications, which 
includes wireless applications, high-power and radio-frequency (RF) applications, 
and sensing applications [13]. Hence, this chapter explores the modulation of maca-
roni channel-based Ge/Si interfaced nanowire FET in enhancing the performance of 
transistors for different analog applications. Different authors have reported numer-
ous structures as well as engineering techniques to enhance the performance of 
FETs. Furthermore, the utilization of nanowire FETs for biomedical applications has 
been reported and demonstrated by different authors in the past few decades. One of 
the major advantages that these nanowire FETs offer is the label-free sensing, which 
are economical and robust as compared to the labeled-sensing with a compromise in 
sensitivity. With scientific and technological progress, FETs have found applications 
in critical medical devices, such as defibrillators, drug delivery systems, label-free 
detection of biomolecules, in vivo dosimetry, cardiovascular disease monitoring, 
hearing aids, and other implantable devices. So the secondary objective of this chap-
ter is to show the applicability of the proposed device for biomedical applications.

Goel et al. [14] had reported a junctionless nanotube FET for low-noise applica-
tions. Goyal et al. [15] had reported a charge plasma–based FET for high-frequency 
applications. The very same FET can also be structurally modified to be used as 
a biosensor. A  biosensor is a tool crafted for the rapid identification of biomole-
cules. In bioelectronics, FET-based biosensors have risen in popularity due to their 
exceptional sensitivity and scalability [16]. These biosensors function by utilizing the 
molecular characteristics, like dielectric constant and charge density, of biochemi-
cal substances for label-free detection, allowing direct recognition of biomolecules 
without the need for tagged entities [9, 16]. The primary detection mechanism in a 
FET-based biosensor centers on the dielectric modulation of sensing parameters [9, 
11]. Authors such as Sharma et al. [17] have reported numerous structural variants of 
FETs that can be utilized in biosensing applications. Hence, the proposed structure in 
this work has been demonstrated for both analog and biosensing applications.

FETs are fundamental components in analog circuits, widely used in ampli-
fiers, oscillators, and mixed-signal systems. Traditional optimization methods for 
enhancing MOSFET performance rely on empirical tuning and iterative design 
processes, which can be time consuming and suboptimal. Recent advancements in 
machine learning (ML) present promising opportunities for significantly improving 
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a transistor’s performance in analog applications. ML has proven to be a valuable 
asset in improving transistor performance across different applications. In the realm 
of semiconductor device optimization, ML algorithms can predict and refine tran-
sistor characteristics, minimizing the need for extensive and expensive experimental 
adjustments [18]. In analog and RF circuit design, ML methods help optimize FET 
sizing and biasing to enhance linearity, reduce noise, and increase power efficiency. 
For digital applications, ML is used to fine-tune transistor parameters to decrease 
power consumption and boost switching speeds in logic circuits.

In the domain of sensors and biosensors, ML algorithms significantly boost signal 
processing and pattern recognition, enhancing the sensitivity and selectivity of FET-
based sensing platforms. Traditional biosensors often struggle with issues related 
to sensitivity, specificity, and adaptability. ML algorithms address these challenges 
effectively, leading to substantial improvements in biosensor performance [19]. As 
a branch of artificial intelligence, ML enables computers to learn from data and 
make informed predictions or decisions. In biosensing, ML algorithms process com-
plex data from biosensors, improving accuracy and automating decision-making. By 
leveraging ML, biosensors become more powerful tools for detecting and monitoring 
diseases, pollutants, and toxins [18]. The integration of ML with FET technology is 
advancing device performance, contributing to more efficient and capable electronic 
systems across various applications. This work explores the potential of ML in revo-
lutionizing FET design and optimization. The discussion centers on two key aspects: 
utilizing ML for data analysis and applying ML in device design. Finally, it briefly 
addresses the challenges and opportunities for advancing ML-based device design. 
ML enables devices to adapt to varying environmental conditions and optimize per-
formance through continuous learning, which is crucial for real-world applications, 
where environmental factors may fluctuate over time. ML-driven biosensors also 
promise to integrate with internet of things platforms, facilitating remote monitoring 
and real-time data transmission for enhanced usability and accessibility. Hence, the 
secondary objective of this work is to present a synoptic overview of utilizing ML in 
enhancing the performance of the proposed device for various analog applications.

A macaroni channel with dual dielectric–based Ge/Si interfaced nanowire FET 
(MC-DD-Ge/Si-INW-FET) has been selected in this study for its ability to effec-
tively control charge carrier flow and maintain electrostatic integrity, owing to its 
surrounding gate design. The first section briefly reviews the literature, identifies 
research gaps, and outlines the scope of the current study. The second section elab-
orates on device structural characteristics, simulator setup, and the methodology 
employed. In the third section, significant findings and corresponding graphs are 
discussed, focusing on the impact on analog performance. Finally, the fourth section 
summarizes key findings, discusses potential applications, and underscores the inno-
vative aspects of the current research.

  10.2  DEVICE AND SIMULATOR SPECIFICATIONS

In this work, the proposed device, MC-DD-Ge/Si-INW-FET, features a symmetrical 
structure known as a macaroni channel with dual dielectric–based Ge/Si interfaced 
nanowire FET, whose 3D and 2D representation is shown in Figure 10.1. It includes a 
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dual-layer dielectric configuration with SiO2 near the source and HfO2 near the drain. 
The structure of the DDM-GAA FET comprises dual dielectrics with equal lengths 
L L1 2=  (15 nm) and a thickness tg (2 nm). The dielectric layer thickness is tox (2 nm).  
Figures  10.1a and 10.1b illustrate the 3D and 2D schematics of the MC-DD-Ge/
Si-INW-FET. The device has a total radius R (15 nm), utilizing germanium (Ge) for 
the source and silicon (Si) for the channel and drain. This n-type device features an 
N

D
 doping concentration of 1019/cm3 at both the source and drain edges. Molybdenum 

(Mo) serves as the gate material, and the work function of the gate can be adjusted by 
manipulating nitrogen implantation.

The macaroni channel structure incorporates a vacuum/air filler at its center with a 
thickness tf (5 nm). To mitigate short-channel effects in the nanowire, options include 
reducing the gate oxide thickness or adjusting the silicon thickness by decreasing 
the outer radius (r2 = tsi) or increasing the inner radius (r1 = tf). The “macaroni struc-
ture” has become popular due to its ability to exhibit the “macaroni body effect,” 
which reduces fluctuations in the threshold voltage. Therefore, it is recommended 

  FIGURE 10.1  (a) 3D representation of MC-DD-Ge/Si-INW-FET and (b) 2D representation 
of MC-DD-Ge/Si-INW-FET.
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to prioritize a lower r2/r1 ratio while ensuring moderate values for both r1 and r2 to 
ensure an adequate number of mobile charges in the channel. In the proposed mac-
aroni structure (MC-DD-Ge/Si-INW-FET), the r2/r1 ratio is set at 5 nm, which is 
moderately low and is expected to help in minimizing fluctuations in the threshold 
voltage. Table 10.1 provides a synopsis of the parameters comparing conventional 
gate-all-around FET (CGAA FET) and MC-DD-Ge/Si-INW-FET. The drawback of 
this configuration lies in its expensive and intricate fabrication process. Challenges 
include achieving and sustaining precise temperatures for vacuum dielectrics, dif-
ficulty in accurate doping concentrations, and the high cost of required fabrication 
equipment.

Numerical simulations are conducted using an ATLAS 3D device simulator [20], 
incorporating various models such as the SRH, CONMOB, FLDMOB, hot electron 
injection (HEI), Concannon nonlocal gate current (N. CONCAN), bandgap narrow-
ing (BBT.STD) [21], and drift diffusion models. The syntax of the band-to-band tun-
neling (BTBT) BBT.STD model is specifically employed to accurately analyze and 
implement our proposed DDM-GAA FET device, focusing on gate-induced drain 
leakage (GIDL) characteristics similar to fabricated devices [22]. Detailed descrip-
tions of these models can be found in Table  10.2. Carrier transport problems are 
solved numerically using the Newton-Gummel technique [23].

    10.3  RESULT AND DISCUSSION

  10.3.1  MC-DD-GE/SI-INW-FET FOR ANALOG APPLICATIONS 

Figure 10.2 illustrates the variations in band energy across the channel length for 
both MC-DD-Ge/Si-INW-FET and CGAA FET under different drain voltages 
(VDS= 0.0 V and 1.0 V, respectively). In the case of MC-DD-Ge/Si-INW-FET, there 
is a noticeable decrease in band energy toward the drain end as depicted in the 
graph. This reduction in band energy is influenced by two factors: the filler acting 
as a dielectric and the high-k dielectric located at the drain side, which significantly 
reduces electron tunneling from the valence band to the conduction band. Conse-
quently, BTBT, involving electron transition from the valence band to the conduction 

TABLE 10.1

Parameter Specifications

Parameters CGAA FET MC-DD-Ge/Si-INW-FET

Channel doping  1 × 1016/cm3  1 × 1016/cm3 

 Silicon thickness (t si) 10 nm 10 nm

 Channel length (L ch) 30 nm 30 nm

 Oxide thickness (t ox) 2 nm 2 nm

W ork function (ϕ m) 4.88 eV 4.6 eV

 Gate thickness (t g) 2 nm 2 nm

 Filler thickness (t f) 5 nm 5 nm

   

   

   

   

   

   

   



177Macaroni Channel-Based Ge/Si Interfaced Nanowire FET

band, is minimized. In Figure 10.2b, a steep change in band energy can be noticed 
on the source side because of the presence of germanium as the source and silicon 
as channel and drain.

Figure 10.3 displays the variation in GIDL current (IDS) with gate voltage for mul-
tiple devices. GIDL, a subthreshold leakage phenomenon caused by BTBT, occurs 
when the gate voltage (VGS) decreases and the drain becomes more positively biased. 
Electrons emitted due to this phenomenon travel toward the drain end, constituting 
GIDL current. Figure 10.3 distinctly shows that IDS decreases from 10−9A to 10−10A 
in the MC-DD-Ge/Si-INW-FET device. This reduction in OFF-state leakage current 
is primarily attributed to the presence of hot carriers in the filler at the drain side and 
the high-k dielectric situated there.

Figure 10.4 displays the drain current (IDS) characteristics for various devices at 
different gate voltages (VGS). The graph illustrates that at VGS = 1.0 V, the MC-DD-Ge/
Si-INW-FET shows superior IDS characteristics in the ON state compared to other 
designs. This enhancement in drain current is attributed to the dual metal gate and 
the vacuum gate dielectric employed in the MC-DD-Ge/Si-INW-FET device.

Figure 10.5 illustrates the ION/IOFF ratio across various device layouts. The ION/IOFF 
ratio is a crucial performance metric, as it dictates the efficiency of the device for 
digital applications. To achieve optimal digital performance, the ratio of current in 
the ON state to that in the OFF state should be maximized. It can be observed from 
Figure  10.5 that the MC-DD-Ge/Si-INW-FET exhibits an ION/IOFF ratio 28 times 
higher than that of the CGAA FET. This higher ratio in the MC-DD-Ge/Si-INW-
FET is due to its superior ON-state current and lower OFF-state current. Therefore, 
the MC-DD-Ge/Si-INW-FET is well suited for digital applications.

Figure  10.6 presents the subthreshold slope (SS) for several devices. The sub-
threshold slope characterizes a device’s ability to transition between OFF and ON 
states [24]. Ideally, this slope should be 60 mV/decade for optimal performance. 
According to Figure 10.6, the CGAA FET exhibits a subthreshold slope of 77 mV/
decade, which exceeds the ideal value. On the other hand, the MC-DD-Ge/Si-INW-
FET shows a subthreshold slope of 65 mV/decade, slightly above the optimal value 
but lower compared to the CGAA FET. The presence of a high-k dielectric at the 

TABLE 10.2

Simulation Employed Models

Models Details

BBT.STD  Employed to assess the impact of charge carrier tunneling

FLDMOB  Utilized to address the impact of velocity saturation

CONMOB  Employed to consider the influence of MOSFET mobility and concentration

HEI  Utilized to incorporate tunneling carriers contributing to gate current

SRH  Utilized for integrating the impact of carrier recombination

Drift diffusion  Incorporates Boltzmann statistics

N. CONCAN  Utilized to analyze substrate current
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  FIGURE 10.2  Energy-band diagram for (a) for CGAA FET and (b) MC-DD-Ge/
Si-INW-FET.

drain end and a filler in the MC-DD-Ge/Si-INW-FET significantly reduce the impact 
ionization effect, thereby improving the transition from the OFF state to the ON state 
and consequently lowering the subthreshold slope.

Figure  10.7 illustrates the gate voltage–dependent variation in drain current, 
which is termed “transconductance.” The mathematical expression for transconduc-
tance is defined by Equation 10.1. The results are compared between CGAA FET 
and MC-DD-Ge/Si-INW-FET in Figure 10.7. Transconductance is critical not only 
for analog/RF applications but also for determining the optimal bias point where the 
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  FIGURE 10.3  Off-state leakage along channel for various devices.

  FIGURE 10.4  The variation of drain current with respect to gate voltage.
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  FIGURE 10.5  The variation of I ON /I OFF  in various devices.

  FIGURE 10.6  The variation of subthreshold slope in various devices.
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cutoff frequency of each device is minimized. The enhanced current derivability and 
higher drain current contribute to a higher transconductance value in MC-DD-Ge/
Si-INW-FET.

 g
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Figure  10.8 displays the output characteristics (IDS vs. VDS) of MC-DD-Ge/
Si-INW-FET measured at VGS  = 1.0 V for all devices. In this study, the output 
characteristics of MC-DD-Ge/Si-INW-FET are superior compared to other device 
topologies. This improvement is attributed to the presence of high-k dielectric 
and vacuum filler at the center of the device, which mitigates the hot electron 
effect. Figure  10.9 illustrates the variation of output conductance (gd) with VDS 
for CGAA FET and MC-DD-Ge/Si-INW-FET at VGS = 1.0 V. Output conductance 
(gd) represents the change in IDS with respect to the change in VDS. The figure 
indicates that MC-DD-Ge/Si-INW-FET exhibits profiles that align more closely 
with the optimal characteristics. MC-DD-Ge/Si-INW-FET features higher output 
conductance and drain current due to the filler and high-k dielectric. This can be 
mathematically described in Equation 10.2.

 g
I

V
V

d = DS

DS
GS

¶
¶

 (10.2)

  FIGURE 10.7  The variation of transconductance in various devices.



 FIGURE 10.8 The variation of subthreshold slope in various devices.    

 FIGURE 10.9 The variation of output conductance in various devices.    



183Macaroni Channel-Based Ge/Si Interfaced Nanowire FET

    10.3.2  MACHINE LEARNING IN ENHANCING THE ANALOG PERFORMANCE 

FETs are essential elements in analog circuits, serving crucial functions in amplifiers 
and mixed-signal systems. Conventional approaches to optimizing FET performance 
typically rely on empirical adjustments and iterative design methods, which can be 
both time consuming and suboptimal. The introduction of ML techniques offers a 
promising opportunity to substantially improve the performance and efficiency of 
FETs in analog applications. This section explores how ML can enhance FET perfor-
mance by advancing device modeling, optimizing parameters with precision, detect-
ing faults effectively, and improving reliability.

Machine Learning in Device Modeling: ML greatly improves device mod-
eling by offering precise predictions of MOSFET behavior, which is crucial for 
designing high-performance analog circuits. Unlike traditional models such as 
SPICE, which use simplified equations, ML harnesses extensive datasets to cap-
ture detailed device behavior across various conditions. The process starts with 
gathering and preprocessing experimental and simulation data, including param-
eters like threshold voltage, transconductance, and drain current. Supervised 
learning algorithms, such as support vector machines (SVM), decision trees, 
and neural networks, are selected based on the complexity of the data. These 
models are trained and validated using techniques like cross-validation to ensure 
their effectiveness on new data, with performance assessed using metrics such as 
mean squared error (MSE) and R-squared (R²). Ultimately, ML-based models are 
incorporated into electronic design automation (EDA) tools, enabling engineers 
to accurately predict key performance metrics and achieve precise control over 
MOSFET characteristics.

Parameter Optimization: Achieving specific performance goals in MOS-
FET design through parameter optimization is a significant challenge. Conven-
tional approaches often depend on extensive simulations and heuristic methods, 
which can be both inefficient and yield less-than-ideal outcomes. ML techniques 
offer powerful tools for exploring the parameter space more effectively. The 
process starts with setting objectives and constraints, such as gain, bandwidth, 
noise figure, and power consumption, while also accounting for manufacturing 
limitations and device reliability. Optimization algorithms like genetic algo-
rithms (GA), particle swarm optimization (PSO), and Bayesian optimization 
autonomously search for the best combination of design parameters, including 
channel length, width, doping concentration, and oxide thickness. These algo-
rithms iteratively assess potential solutions against the specified objectives and 
constraints, utilizing ML models to predict performance and reduce reliance 
on time-consuming simulations. Practical applications, such as designing low-
noise amplifiers (LNAs), have shown that ML-driven optimization can achieve 
enhanced performance, offering better noise characteristics and linearity com-
pared to traditional methods.

Fault Detection and Reliability Enhancement: Reliability is a vital factor in 
MOSFET performance, particularly in analog applications where device failures 
can have serious implications. ML can significantly improve MOSFET reliability 
by detecting potential faults and predicting how the device will degrade over time. 
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Anomaly detection methods, such as autoencoders and one-class SVMs, are trained 
on data from functioning devices to establish what constitutes normal operation and 
identify deviations that could signal impending faults. Predictive maintenance mod-
els, utilizing approaches like recurrent neural networks (RNNs) and long short-term 
memory (LSTM) networks, estimate the remaining useful life (RUL) of MOSFETs 
based on past usage and stress conditions. These ML models are incorporated into 
monitoring systems that continuously observe MOSFET performance in real time. 
Early detection of anomalies through these models enables proactive maintenance, 
thereby minimizing the risk of severe failures. Case studies, including those on 
power amplifiers (PAs), have shown that ML-based fault detection effectively tracks 
performance issues caused by thermal stress and aging, resulting in timely mainte-
nance and prolonged device life.

Case Studies and Practical Implementations: Numerous case studies high-
light how ML can significantly boost MOSFET performance in analog applications. 
For example, neural networks have been used to model and refine LNAs, leading to 
notable gains in noise performance and linearity. Similarly, ML-driven optimiza-
tion methods have enabled the creation of high-efficiency PAs with improved gain 
and lower power consumption. ML has also been applied to enhance operational 
amplifiers, resulting in better bandwidth, offset voltage, and power efficiency. In 
mixed-signal systems, ML techniques have been utilized to effectively manage the 
trade-offs between analog and digital performance metrics, producing more efficient 
and reliable systems.

ML has markedly advanced the optimization and reliability of MOSFETs in ana-
log applications. Unlike traditional methods that depend on extensive simulations 
and heuristic approaches, ML uses large datasets to build highly accurate and pre-
dictive models.

In addition to modeling, ML is crucial for optimizing device parameters and 
enhancing reliability. Optimization algorithms such as GA, PSO, and Bayesian 
optimization explore the parameter space efficiently, reducing the need for lengthy 
simulations. ML also plays a key role in reliability enhancement through anomaly 
detection algorithms like autoencoders and one-class SVMs, which identify devia-
tions from normal operating conditions. Predictive maintenance models using RNNs 
and LSTM networks estimate the RUL of MOSFETs, allowing for timely mainte-
nance and minimizing failure risks. Case studies involving LNAs and PAs illustrate 
that ML-driven optimization improves performance, enhancing noise reduction, lin-
earity, efficiency, and overall device lifespan. Similarly, ML algorithms have opti-
mized operational amplifiers (Op-Amps) to achieve better bandwidth, offset voltage, 
and power efficiency. In mixed-signal systems, ML helps balance analog and digital 
performance metrics, resulting in more efficient and reliable systems. These exam-
ples demonstrate the transformative potential of ML in MOSFET design, provid-
ing robust solutions to complex challenges and driving progress in analog circuit 
performance.

As the field advances, the integration of ML into MOSFET design processes 
is anticipated to grow, leading to further innovations and improvements in analog 
electronics.
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  10.3.3  MC-DD-GE/SI-INW-FET FOR BIOSENSING APPLICATIONS 

FETs are a great choice for designing biosensors in rapid and high sensitivity–based 
biosensing applications. The MC-DD-Ge/Si-INW-FET is realized as a biosensor by 
etching a dielectric layer from the source and drain side. The dual-sided cavities cre-
ated are utilized for biomolecule immobilization. Figure 10.10 depicts the 2D view 
of the structure of the MC-DD-Ge/Si-INW-FET based biosensor device (showing 
cavity). The two-sided nanocavity has been formed by etching the SiO2 layer on 
the source side and the HfO2 dielectric layer on the drain side. The thickness of the 
nanocavities (tcavity) is 6 nm, and the length of the nanocavities (Lcavity) is 10 nm each.

By immobilizing a variety of biomolecules inside the nanocavity, this biosensor 
aims to characterize their behavior in a biosensing environment. These biomole-
cules can be identified by their dielectric constant values: APTES (K = 3.57) [25], 
hydroprotein (K = 5) [26], keratin (K = 8) [27], gelatin (K = 12) [28], and DNA [10, 
28] which is distinguished by its charge density values (Nf = −1 × 1011/cm2, Nf = −5 
× 1011/cm2, Nf = −1 × 1012/cm2) and dielectric constant value K = 12. When distinct 

  FIGURE 10.10  Two-dimensional structure of MC-DD-Ge/Si-INW-FET as a biosensor.



186 Machine Learning for Semiconductor Materials

biomolecules are immobilized in FET-based biosensors, the gate oxide capacitance 
of the device changes, affecting the potential profile, electric field distribution, and 
ID as a function of both VGS and VDS. Changes in these electrical properties are fre-
quently employed in identifying particular biomolecules.

Figure 10.11 illustrates the shift in surface potential caused by the immobiliza-
tion of different neutral biomolecules and DNA biomolecules with different negative 
charges inside the nanocavity. The surface potential drops from APTES to gelatin, as 
shown in Figure 10.11a. Region 1 in the channel beneath the source-side nanocavity 
exhibits the largest change in surface potential for various biomolecules compared 
to the absence of any biomolecule. This results from the drain voltage decreasing 
monotonically as it approaches the source. The charged DNA biomolecules with 
the lowest surface potential among those studied have a charge density of Nf = −1 × 

  FIGURE 10.11  Surface potential along the channel of MC-DD-Ge/Si-INW-FET biosensor 
for (a) various neutral biomolecules and (b) DNA biomolecules at K  = 12 and varying charges.



187Macaroni Channel-Based Ge/Si Interfaced Nanowire FET

  FIGURE 10.12  Electric field of MC-DD-Ge/Si-INW-FET biosensor for (a) various neutral 
biomolecules and (b) DNA biomolecules at K  = 12 and varying charges.

1012/cm2, as shown in Figure 10.11b. For Nf = −1 × 1012/cm2, we thereby achieve the 
biggest changes in surface potential and, thus, maximal sensitivity out of all DNA 
biomolecules trapped in the nanocavity region. A decrease in potential results from 
the rise in flat band voltage brought on by qNf/Ceff. Consequently, this means that 
there is more channel area depletion [26].

The change in the MC-DD-Ge/Si-INW-FET biosensor’s electric field for charged 
and neutral biomolecules is shown in Figure 10.12. The electric field for biomolecules 
with different dielectric constant values, from APTES to gelatin, is displayed along 
the channel length in Figure 10.12a. It is evident that the electric field at the source 
side rises as the dielectric constant increases [21, 23, 29].

An electric field plot of negatively charged DNA biomolecules vs. neutral biomol-
ecules at a dielectric constant K = 12 is shown in Figure 10.12b, along with a scenario 
without any biomolecules. The graph unequivocally demonstrates that the electric 
field varies noticeably when DNA biomolecules are present. The electric field strength 
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increases near the source region as the DNA biomolecules’ negative charge intensi-
fies. However, as it approaches the drain, the electric field in the channel gradually 
decreases. Furthermore, when the negative charge of the DNA grows, Figure 10.12b 
shows that the electric field is reduced to its lowest point at the channel-drain junction. 
Essentially, the changed characteristics of the gate electrode and its interaction with the 
DNA biomolecules are responsible for this shift in the electric field.

The drain ON-current characteristics for immobilizing several biomolecules, 
including gelatin, keratin, hydroprotein, and APTES, are shown in Figure 10.13a, 
whereas the drain current on a logarithmic scale representing the subthreshold cur-
rent VGS = 0.0 V is shown in Figure 10.13b. The ON current rises, and the subthreshold 

   FIGURE 10.13  (a) I D –V GS  characteristics with different biomolecules with changing dielec-
tric constant, (b) drain current in logarithmic scale representing the subthreshold current at 
 V GS  = 0.0 V, and (c) transconductance for different biomolecules.
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current falls as the K values of various biomolecules rise. To identify certain biomol-
ecules, this change in current is an essential sensing parameter.

The proposed device’s transconductance (gm) is illustrated in Figure 10.13c upon the 
introduction of several neutral biomolecules into the nanocavity region. Transconduc-
tance (gm) is the first-order derivative of drain current with respect to gate voltage (VGS). 
Figure 10.13c shows that the change in transconductance (gm) increases progressively 
when different biomolecules are taken into account, ranging from APTES to gelatin. 
With a transconductance (gm) peak value of 1.67 × 103 μA/V, the gelatin biomolecule 
has the greatest value. This result emphasizes that when the dielectric constant value 
of the biomolecules increases, the device’s capacity to transform tiny input voltage 
perturbations into corresponding variances in current is maximized.

The drain current characteristics for charged DNA biomolecules are displayed in 
Figure 10.14, in which Figure 10.14a shows the drain ON current while Figure 10.14b 
displays the OFF current on a logarithmic scale. When biomolecules are negatively 
charged, the drain ON as well as OFF current values drop [28]. A discernible decrease 
in drain current is observed in the suggested MC-DD-Ge/Si-INW-FET biosensor. The 
impact of the gate increases with the introduction of more negatively charged proteins, 
which causes a higher degree of carrier depletion and, hence, lower amounts of OFF 
current. For example, in the case of K = 12 and Nf = −1 × 1012/cm2, the OFF current is 
1.47 × 10−14 A, whereas in the case of no biomolecule, it is 3.99 × 10−11 A.

Figure 10.15 shows the drain current in relation to the drain to source voltage 
(VDS). The variation in drain current for altering the dielectric constant of biomole-
cules is shown in Figure 10.15a, and the variation in drain ON current, IDS(ON), for 
altering the negative charge of DNA biomolecules is demonstrated in Figure 10.15b. 
When the dielectric constant remains constant, and the negative charge of DNA 
rises, the drain ON current shows a declining trend [30–32]. The decrease in drain 
current is caused by a downward shift in surface potential when negatively charged 
biomolecules are immobilized [26].

The most important component in sensor design is sensitivity. The conventional strat-
egy for testing the sensitivity of a FET biosensor is to analyze the proportional change in 

  FIGURE 10.13  (Continued)
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  FIGURE 10.14  (a) I D –V GS  characteristics of MC-DD-Ge/Si-INW-FET biosensor for charged 
DNA biomolecules and (b) drain current in logarithmic scale for charged DNA biomolecules.

a quantifiable electrical parameter that reflects the presence of biomolecules [10, 11, 33, 
34]. This electrical characteristic can include ION current and Vth, among other parame-
ters. The formal definition of sensitivity ( )S

EP
 in mathematics is as follows:

 S
EP

= EP -EPNo Biomolecule Biomolecules  (10.3)

The electrical parameter value before being exposed to the biomolecules is denoted 
as EPNo Biomolecule, and the electrical parameter value of the biosensor after the biomol-
ecules are immobilized is EPBiomolecules.
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  FIGURE 10.15  I D –V DS  characteristics of MC-DD-Ge/Si-INW-FET biosensor for (a) neutral 
biomolecules and (b) charged DNA biomolecules.

The MC-DD-Ge/Si-INW-FET for neutral biomolecules’ drain current sensitivity 
is shown in Figure 10.16a. Equation 10.3 yielded the following results, which are 
shown in Figure 10.16a: drain current sensitivity is systematically increased across 
all gate voltage values upon the addition of biomolecules, from APTES to gelatin. 
This pattern indicates that biomolecules with higher dielectric constants are more 
sensitive.

For DNA biomolecules with varying charge concentrations, the drain current 
sensitivity is shown in Figure  10.16b. When compared to neutral biomolecules, 
negatively charged biomolecules have a higher binding capacity. As a result, the 
flow of charge carriers across the channel is more tightly regulated when negatively 
charged biomolecules are present, which raises the sensitivity of the drain current. 
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For K = 12 and charge concentration Nf = −1 × 1012/cm2, the drain current sensitiv-
ity is 455 µA.

In FET-based biosensors, the variation in threshold voltage is crucial for assessing 
the device’s sensitivity. When biomolecule permittivity increases, particularly in the 
presence of neutral and negatively charged DNA biomolecules at K = 8, the threshold 
voltage rises, as illustrated in Figure 10.17a and 10.17b. This occurs because a higher 
gate voltage is required to fully deplete the channel when the surface potential of 
the channel decreases from the absence of biomolecules to the presence of neutral 
and negatively charged DNA biomolecules. Consequently, this leads to an increase 

  FIGURE 10.16  Drain current sensitivity for (a) different biomolecules and (b) DNA biomol-
ecules with increased negative charge.
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in the threshold voltage. The need for a greater gate voltage to deplete the channel in 
the presence of biomolecules indicates that the channel’s surface potential is signifi-
cantly affected by the biomolecules’ permittivity and charge.

The gate oxide capacitance rises with the increasing dielectric constant of biomol-
ecules [9], which significantly contributes to the relative change in threshold voltage 
and thus the sensitivity. For APTES and keratin biomolecules, the Vth sensitivity is 
45.8 mV and 75.4 mV, respectively. In contrast, for DNA biomolecules with Nf = −1 
× 1011/cm2 and Nf = −1 × 1012/cm2, the Vth sensitivity are 107.14 mV and 249.50 mV, 

  FIGURE 10.17  Threshold voltage and threshold voltage sensitivity for various (a) neutral 
biomolecules and (b) charged DNA biomolecules.
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respectively, as depicted in Figure 10.17b. The increase in threshold voltage sensitiv-
ity with higher K and Nf values demonstrates the enhanced response of the biosensor 
to variations in biomolecule properties, making it more effective in detecting differ-
ent biomolecular interactions.

Figure 10.18 displays the ION/IOFF ratio sensitivity for different biomolecules. The 
ratio ION/IOFF for several biomolecules is shown in the inset of Figure 10.18. The gate 
oxide capacitance increases with the biomolecule’s dielectric constant, providing the 
gate more control over charge carriers and raising the ON current. Subthreshold cur-
rent is the term for the current that exists even before it reaches the threshold voltage 
(Vth) [35]. Reduced drain OFF current results from the channel being weakly inverted 
early by the higher oxide capacitance [33]. The dielectric constant K of the biomol-
ecules increases as a result, improving the ION/IOFF ratio. Because of its larger fluctu-
ations in value for minute changes in the dielectric constant, it is worth mentioning 
that the ION/IOFF ratio can also be used as a metric to assess the sensitivity of the 
biosensor. Equation 10.4 was used to calculate the sensitivity of the ION/IOFF ratio [36]:

 
I

I

I

I

I

I

I
I

ON

OFF

ON

OFF With biomolecules

ON

Sensitivity : S
ON

OFF

=

OOFF No biomolecules

 (10.4)

A comprehensive sensitivity analysis was conducted to evaluate the performance 
of the DDM-GAA FET biosensor in comparison to other FET biosensors with simi-
lar structural characteristics. In Figure 10.19, it is evident that the proposed biosensor 
exhibits notably higher SVth when compared to several recent biosensors, including 
the GaN-GME-DE-SNW-FET [17], GC-GAA-NWFET [37], DG-6H-SiC SB-FET 
[36], and DM DPDG-TFET [38], for Nf = −1E12/cm2. The MC-DD-Ge/Si-INW-FET 
biosensor’s great sensitivity highlights its potential for improved detection capabili-
ties in biosensing applications, especially for DNA biomolecules. The advantages of 
the macaroni channel and dual dielectric structure place the MC-DD-Ge/Si-INW-
FET biosensor in a competitive and useful position in the biosensing technology 
sector.

    10.3.4  MACHINE LEARNING IN IMPROVING THE PERFORMANCE OF BIOSENSOR 

ML has significantly enhanced FET-based biosensors by improving their sensi-
tivity and specificity, making them more effective in medical diagnostics, envi-
ronmental monitoring, and biotechnology. BioFETs, sophisticated biochemical 
sensors operating like FETs, now benefit from real-time detection of molecules like 
proteins, DNA, and pathogens [19]. Training ML models on large datasets allows 
for accurate detection with lower false positive rates. This integration enables 
researchers to model optimal sensor designs before fabrication, speeding up devel-
opment and reducing costs. ML refines sensor parameters over time, adjusting to 
new biological targets and analyzing complex data with models such as neural net-
works. This results in more precise sensor responses, which are essential for early 
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disease detection and personalized treatment. Additionally, ML enables real-time 
monitoring and feedback systems, crucial for dynamic environments like in vivo 
diagnostics and environmental monitoring. Portable BioFETs incorporating ML 
algorithms facilitate molecular biosensing outside conventional labs, enhancing 
point-of-care testing, remote health monitoring, and rapid field diagnostics. This 
innovation is set to transform health care by making BioFETs more functional, 
sensitive, and intelligent through advanced data analysis, predictive modeling, and 
real-time monitoring.

Integrating ML into BioFET development involves several key techniques and 
considerations. First, data preprocessing prepares raw sensor data for analysis by 
cleaning, standardizing, and improving accuracy through methods like outlier detec-
tion, noise reduction, and normalization. Dimensionality reduction techniques, such 
as principal component analysis (PCA) are also applied. Second, feature extraction 
transforms raw data into usable inputs for ML models, with features such as changes 
in current, voltage, or resistance due to biological interactions being extracted using 
signal processing methods like Fourier and wavelet transforms. Convolutional neural 
networks (CNNs) can automate the extraction of complex features, detecting intri-
cate patterns in biological interactions. Third, choosing the appropriate ML model—
such as SVMs, neural networks, random forests, or K-nearest neighbors—is crucial 
for accurate analysis, based on the data type and analysis requirements. Fourth, 
real-time adaptation involves regularly updating models with new data to main-
tain accuracy despite environmental changes, using techniques like online learn-
ing and reinforcement learning. Fifth, ensemble methods enhance performance and 

  FIGURE 10.18  I ON /I OFF  ratio and I ON /I OFF  sensitivity of DDM-GAA FET biosensor.
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robustness by combining predictions from multiple models through strategies such 
as bagging, boosting, and stacking. Sixth, transfer learning improves model accuracy 
and accelerates deployment by utilizing pretrained models from related tasks, which 
is particularly beneficial for small datasets. Finally, predictive maintenance and cal-
ibration use ML to automate monitoring, optimize conditions, and schedule service 
for BioFET devices, ensuring precise control and longevity. Overall, ML enhances 
the sensitivity, specificity, and versatility of BioFETs, making them valuable tools for 
medical, environmental, and biotechnological applications through advanced pre-
processing, feature extraction, ensemble methods, transfer learning, and real-time 
adaptive model selection.

Data Analysis Based on ML: In data analysis, PCA, SVM, and artificial neural 
networks (ANNs) are three prominent ML methods applied to BioFET sensor data. 
PCA is a technique used for reducing dimensionality and extracting key features 
from complex, high-dimensional sensor data, converting it into principal compo-
nents that capture the essential variability. This process simplifies the data while 
maintaining important details about biological interactions. SVM models are effec-
tive for both classification and regression tasks. They create optimal hyperplanes 
to classify biological targets in the sensor data and manage nonlinear relationships 
without overfitting. ANNs, including CNNs and RNNs, are proficient at identifying 
complex patterns within large datasets, analyzing sensor data to predict interactions 
and detect patterns in biological systems. These techniques work together, with PCA 
filtering out noise and creating features for SVM or ANN analysis, SVM classifying 
datasets, and ANNs refining intricate data relationships. Together, these methods 
improve the accuracy, speed, and depth of BioFET applications in the fields of bio-
medicine and biotechnology.

  FIGURE 10.19  S Vth  comparison of MC-DD-Ge/Si-INW-FET biosensor with recently pub-
lished FET biosensors.
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BioFET Design Based on ML: Recently, the design of sensors, especially 
BioFETs, has been greatly enhanced by the application of ML algorithms. These 
advancements have transformed sensor development by boosting operational effi-
ciency, upgrading materials, reducing design cycle times, and improving receptor 
selection. ML significantly improves BioFET performance by optimizing parame-
ters for greater sensitivity, selectivity, and efficiency, as well as refining 2D material 
properties like semiconducting transition metal dichalcogenide (TMDC), predict-
ing bandgaps, and optimizing defect structures [39]. Techniques such as Gaussian 
process regression and Bayesian optimization accelerate design processes for het-
erostructures, while random forest and gradient boosting enhance electron flow in 
organic FETs [40]. Additionally, ML revolutionizes receptor selection by predicting 
and optimizing receptors like enzymes and aptamers, leading to the discovery of 
novel receptors with high specificity and detection efficiency. Incorporating ML 
into BioFET design represents a groundbreaking approach, facilitating the precise 
and efficient creation of sensors with improved sensitivity, specificity, and versa-
tility [41]. This positions ML as a pivotal element in advancing health diagnos-
tics, environmental monitoring, and disease detection, highlighting its crucial role 
in developing sensor technologies and tackling complex challenges across various 
fields [42, 43].

  10.4  CONCLUSION

This study explores the sensitivity analysis of a macaroni channel integrated with a 
dual-dielectric Ge/Si nanowire FET, evaluating its performance in various analog 
applications. Comprehensive simulation tests were conducted to assess the device’s 
analog performance, analyzing a range of parameters and characteristics. The find-
ings highlight significant improvements due to the macaroni channel, germanium 
source, and horizontal gate stack, which enhance the device’s performance com-
pared to traditional models. The ION/IOFF ratio has increased by approximately 28 
times, which is crucial for digital applications, while transconductance has improved 
by about 44 times, beneficial for amplification. Additionally, the device has been 
employed as a biosensor, showing high sensitivity to a variety of biomolecules. By 
examining both charged and neutral biomolecules, the study enhances the applica-
bility and accuracy of its results. The biosensor exhibits a voltage sensitivity of about 
75.4 mV for Kbio = 8. Furthermore, the role of ML in optimizing the device’s perfor-
mance and design is explored through a detailed discussion.
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