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Preface

The global energy landscape is undergoing a transformative shift, driven by the
twin imperatives of economic growth and sustainability. The rapidly evolving
energy sector needs appropriate implementation of Machine Learning (ML) along
with data analytics and energy economics at present. Price predictions together
with demand-side management and rational decision-making processes for com-
plex energy systems result from these data-driven approaches because of market
volatility and weather pattern modifications and technology advancements. This
book “Machine Learning Technologies on Energy Economics and Finance—Energy
and Sustainable Analytics” aims to solve this essential need through combined
advanced ML applications with energy economics and finance which establish a
whole framework to enhance global energy systems.

This book demonstrates its purpose to address vital issues in the energy field
because of unstable fossil fuel costs along with funding issues in renewable
endeavors and essential Sustainable Development Goals (SDGs) requirements.
Energy markets exhibit complex non-linear patterns which traditional economic and
financial models usually fail to understand properly. The text enables the connection
between machine learning and deep learning technologies to establish predictive
models which support better energy domain decision-making. The integration of
explainable AI (XAI) in predictive models guarantees transparent and interpretable
energy-related forecasts which strengthens belief in artificial intelligence solutions
for making decisions.

The primary audience of this book consists of researchers, academicians,
business professionals, policymakers, data scientists, engineers, and students who
want to investigate innovative ML approaches in energy economics and finance. The
book connects theoretical expertise with operational expertise to deliver meaningful
knowledge for those who want to use Al and ML technologies to develop energy
economics and finance.

This book distinguishes itself from others by devoting its focus to real-time
investigation outcomes with both industry expertise and state-of-the-art ML imple-
mentations for energy systems. This work exceeds traditional energy economics
books through its incorporation of hands-on coding experiences alongside real-
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world case studies and predictive analytics for practical insights. Advanced ML
techniques represent a substantial part of this book’s content alongside explainable
systems, practical applications, sustainable energy analytics, and the integration of
machine learning with various disciplines which include energy economics, finance,
and sustainability.

The book comprises thirteen chapters that group important thematic content
areas. The initial part introduces ML for Global Energy Analysis and Forecasting
through studies which analyze SDGs through clustering and trend prediction
and examine explainable Al for natural gas consumption and develop methods
for forecasting energy prices and predicting efficient gasoline spot prices. The
second portion investigates Energy Economics and Financial Modeling through its
exploration of energy finance and analysis of crude oil price forecasting together
with sustainable energy applications of ML. Renewable Energy and Sustainability
Analytics comprises three components which include energy transition assessment
of emerging economies and CO2 emissions and economic growth as well as
blending ensemble learning for energy consumption and biogas production analysis
and ML strategies for renewable energy and energy transition case studies.

Section 1: Machine Learning for Energy Forecasting
and Market Analysis

Energy forecasting and market analysis are crucial in making informed decisions
in the energy sector. In the energy market context, ML transforms the forecasting
skill of people when compared to traditional statistics in terms of optimization
and modeling. The category consists of chapters that implement ML techniques
to anticipate energy consumption along with crude oil market prices and natural gas
utilization through explainable approaches for transparent modeling.

Chapter 1 develops a machine learning system which studies worldwide energy
behavior and performs country SDG achievement clustering in addition to pro-
jecting essential energy measurements. Chapter 3 demonstrates how Categorical
Boosting enables better natural gas consumption prediction accuracy through
advanced ML modeling while demonstrating clear model decision logic. Chapter 4
describes the time-series modeling of crude oil price forecasting through analysis of
ARIMA, SARIMA, and VAR alongside statistical approaches. Chapter 6 compares
ML algorithms against traditional forecasting techniques by demonstrating superior
performance in predicting crude oil and solar prices and electricity and natural gas
values. Chapter 4 details an ensemble learning system optimized via hyperparameter
optimization for gasoline spot price prediction as it demonstrates the value of ML
in energy price modeling.

Collectively, these chapters showcase the role of ML in enhancing predictive
capabilities, optimizing resource allocation, and improving decision-making in
energy markets. By leveraging advanced algorithms and XAI tools, these studies
offer more interpretable, efficient, and scalable forecasting solutions.
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Section 2: Renewable Energy Transition, Sustainability,
and Economic Impact

The world faces an extreme challenge to move toward renewable energy systems
instead of maintaining dependence on fossil fuels for sustainable operations. Energy
technologies built from renewable sources serve three essential functions: they
decrease emissions of greenhouses gases, maintain stable energy costs, and protect
future energy availability. The adoption of renewable energy depends on economic
elements together with policy frameworks, regulatory conditions, and technology
options and their economic and environmental impacts.

Financial limitations for developing renewable energy in Bangladesh receive
detailed analysis in Chap. 2 to identify three alternative funding approaches
through green bonds together with public—private partnerships and crowdfunding
for breaking through investment obstacles. Chapter 5 examines developing sunbelt
countries through an energy transition comparison which reveals policy strategies
needed to reach sustainability goals. Chapter 11 explores ML and deep learning
(DL) techniques used in renewable energy applications through a detailed analysis
of advantages and drawbacks while introducing effective solutions to optimize
renewable energy forecasting efficiency. Chapter 13 explores how China and India
are handling their energy transition into sustainable models by analyzing both
positive and negative aspects on their macroeconomies. The chapters demonstrate
how implementing policies with financial strategies and ML solutions speeds up the
transition toward improved energy systems that are clean and efficient.

The section demonstrates how policy frameworks intersect with financial inno-
vations and Al-driven solutions to resolve obstacles in renewable energy implemen-
tation. The implementation of ML and XAI systems within sustainability analytics
gives researchers data-based knowledge about energy transition methods as well as
their sustained economic effects and environmental impact.

Section 3: Environmental and Financial Impact of Energy
Consumption

The consumption of energy manifests effective outcomes for environment sustain-
ability alongside financial market systems. The development of sustainable policies
demands proper knowledge about the relationships between energy consumption
and CO2 emissions together with economic stability and financial choices. The
combination of ML and economic modeling works to study CO2 emissions together
with financial stability along with primary energy production impacts.

The analysis in Chap. 7 uses an Explainable Al-driven model to study how CO2
emissions relate to economic growth through macroeconomic indicator assessments
of SDGs. The conventional econometric models receive new insights through
deep learning frameworks that include GRU, LSTM, and Bi-LSTM which analyze
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economic-environmental interactions differently. The authors introduce a primary
energy consumption forecasting solution in Chap. 8 using ML techniques while
showing its impact on national security alongside environmental sustainability and
economic development. The analysis of biogas production through explainable ML
models appears in Chap. 9 that delivers sustainable energy alternatives to waste-
to-energy investment barriers. The application of ML within sustainable energy
finance becomes the subject of Chap. 10 which displays how Al-powered financial
forecasting tools boost investment choices for petroleum resources as well as natural
gas and renewable energy.

This segment presents examples of how energy consumption optimization and
environmental reduction combined with financial decision enhancement are made
possible by ML and AI technologies in the energy industry. These studies turn
sustainability analytics into an Al-driven comprehensive approach to sustainable
development in decision-making toward securing a financial and environmental
balance.

One of the primary challenges in developing this book was the integration of
diverse ML methodologies while ensuring their applicability in energy economics
and finance. Energy systems are influenced by dynamic factors such as global
markets, geopolitical conflicts, climate policies, and technological disruptions. We
have proven by utilizing sophisticated ML techniques that predictions concerning
energy markets can be scientifically based yet both exact and simple to comprehend.
The book highlights the significance of XAl for energy decision-making and solves
Al interpretability issues by utilizing SHAP and ELI5 interpretability tools and
others. The authors of this research book collected extensive information through
collaborations with professionals from three fields: ML, Energy Economics, and
Data Analytics. We profoundly thank the authors together with universities and
research institutions which provide us with their endless backing and enriching
knowledge. We extend our highest admiration to our families for staying sup-
portive during this entire journey thus enabling us to complete our work. Al and
ML together with Energy Economics will gain more importance for developing
sustainable energy market strategies and policies since the energy sector continues
its development. The publication provides researchers alongside professionals and
policymakers with directions to implement Al-driven choice-based systems in
resolving worldwide energy problems. The studied area requires sustained academic
effort to create an operational system which ensures both economic sustainability
and energy infrastructure effectiveness. Through this invitation we guide readers
to investigate ML Technologies in Energy Economics and Finance to discover
revolutionary opportunities in Energy and Sustainable Analytics.

Swansea, UK Mohammad Zoynul Abedin
Dalian, China Wang Yong
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Analyzing Global Energy Patterns: ®)
Clustering Countries and Predicting Py
Trends Toward Achieving Sustainable
Development Goals

Mahmudul Hasan, Nusrat Afrin Shilpa, Ashrafuzzaman Sohag,
Md. Mahedi Hassan, and Md. Jahangir Alam Siddikee

1 Introduction

Sustainability has become a prominent planning concept since its inception in
the realm of economics and ecological thought (Nguyen et al., 2023). Described
as the endeavor to satisfy current needs without comprising the ability of future
generations to do the same, sustainability is multifaceted. The notion of energy
sustainability essentially applies the fundamental principles of sustainability to the
realm of energy (Khan et al., 2022). However, the concept of energy sustainability is
intricate and multifaceted. It encompasses ensuring the delivery of energy services
in a sustainable manner, thereby necessitating the provision of energy services
that are adequate, affordable, environmentally friendly, and socially acceptable
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for all individuals both presently and in the future (Achuo et al., 2022). Energy
sustainability mandates the sustainable utilization of energy within energy systems,
encompasses various processes from sourcing energy to its conversion into usable
forms, transportation, storage, and eventual consumption (Jiang et al., 2020). Energy
is primarily utilized to deliver energy services like heating, transportation, lighting,
and communication. Consequently, the promotion of energy sustainability hinges
on the establishment and utilization of sustainable energy systems and practices
(Zaharia et al., 2019). Energy sustainability is a vital component of the broader
concept of sustainability. Numerous nations, regions, and urban areas are striving
toward sustainability, promoting a reassessment of their current unsustainable
energy practices (Qudrat-Ullah & Nevo, 2021). Simply put, sustainability is char-
acterized by environmental, social, and economic dimensions, all of which are
intricately linked to energy. Energy, being essential for various activities, plays
a crucial role in achieving sustainability. The pursuit of energy sustainability is
impeded by significant environmental, social, and economic obstacles, includ-
ing climate change, escalating emissions, rapid resource depletion, affordability
concerns, and social disparities (Bibi et al., 2021). Addressing these challenges
effectively is imperative for the attainment of energy sustainability, yet it remains a
daunting and intricate task. Factors like artificial energy prices influenced by taxes,
incentives, economic, and political fluctuations further complicate the landscape
of energy sustainability and consumption (Ozcan et al., 2019). The sustainable
development goals (SDGs), which were endorsed by the United Nations General
Assembly (UNGA) in 2015, present a robust framework for fostering international
collaboration aimed at realizing a sustainable future for the globe. In 17 goals
of SDGs, along with their 169 targets encapsulated in “Agenda 2030,” lay out a
trajectory toward eradicating extreme poverty, combating inequality and injustice,
and safeguarding the environment. The success of agenda 2030 hinges significantly
on sustainable energy. SDG 7, the global energy objective, comprises three pivotal
targets: ensuring accessible, dependable, and widespread modern energy services,
substantially boosting the proportion of renewable energy in the global energy
mix, and doubling the worldwide rate of enhancement in energy efficiency. The
diverse targets within SDG 7 play a role in advancing other SDG objectives,
a subject that has gained heightened research attention recently (Allen et al.,
2016). Previous examinations of prospective energy trajectories demonstrate the
technical feasibility of achieving enhanced energy accessibility, air quality, and
energy reliability concurrently, while averting hazardous climate alterations. Indeed,
various alternative technologies and strategies have been identified as capable of
attaining these aims (Asmelash et al., 2020). During the twentieth century, mankind
extended its endeavors by harnessing the power of scientific advancements and
technological innovations. The outcomes are evident in the swift escalation of
the global populace and the attainment of elevated living standards in developed
nations. As societies embracing mass production and consumption patterns become
customary in these regions, the excessive utilization of resources and energy has
evolved into a persistent issue. The repercussions of these patterns are not confined
solely to these nations; they have also exerted notable impacts on developing
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countries. The worldwide population has grown reliant on a plentiful energy supply.
The necessity for a substantial energy reservoir has consequently led to a heavy
reliance on fossil fuels, notorious for their emission of carbon dioxide. The looming
threat of global warming triggered by the accumulation of carbon dioxide in the
atmosphere has hence become a pressing subject of contention (Helten, 2013). The
primary trigger of the fluctuation in supply and demand can be directly ascribed to
the system of segregation. In the year 2019, China represented 24% of the total
global energy consumption, positioning itself as the foremost importer of crude
oil and natural gas worldwide (Guo et al., 2021). Nevertheless, stringent measures
implemented in early 2020 brought numerous sectors to a near halt. Furthermore,
various European nations, the United States, and India jointly responsible for almost
one-third of the global energy consumption have enforced a series of isolation
protocols (Verhoef et al., 2023). Within this context, the global energy demand
has encountered an unparalleled downturn. Consequently, the outlook of the market
has turned increasingly delicate. While a gradual easing of restrictions and a slow
resurgence from isolation appears inevitable in due course, the substantial setback
in economic activities may endure permanently. All these elements contribute to
a crucial argument: the ambiguity stemming from the crisis and the necessity
for a seamless evolution of the energy sector (Biazzi, 2022). The proliferation of
renewable energy sources has initiated a global energy revolution with significant
geopolitical ramifications. The emergence of a novel era in energy will revolutionize
the interactions among nations and societies, ushering in a new era of energy
security, independence, and prosperity for humanity. In contrast to fossil fuels,
which are predominantly found in specific geographical areas, renewable energy
sources (RESs) can be harnessed in any country. Due to its ability to be generated
in various locations, renewable energy has the capacity to reshape the dynamics
of energy trading (Vagiona & Kamilakis, 2018). Earlier, Vagiona and Kamilakis
(2018) propose an integrated approach for the assessment and prioritization of
appropriate sites for the establishment of sustainable offshore wind farms. Through
the utilization of a combination of geographic information systems and multi-
criteria decision-making techniques, the generated outcomes guarantee the spatial
sustainability of these wind farms. Some researchers investigate the idea of hydro-
gen cities through the suggestion of hydrogen generation within urban areas. By
employing Geographic Information System (GIS) tools, the monthly capacity for
solar hydrogen production in urban regions of Mexico is evaluated (Juarez-Casildo
et al., 2022). The study’s findings reveal that the total annual hydrogen demand of
the country could be met by the production from specific urban areas for just 1
month at a relatively economical expense. Furthermore, additional findings support
earlier assertions regarding the minimal water demands and infrastructure footprint
associated with metropolitan production. The list of objectives of this research is
below:
The technical contributions of this chapter are as follows.

* We design an ML-driven framework to find the pattern and predicting trends
toward achieving sustainable development goals.
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*  We employ unsupervised ML method to cluster the countries based on electricity
access and renewable consumption for SDG.

*  We design an ensemble ML model to predict the SDGs that outperforms existing
ML models.

The structure of the remaining sections of this chapter is outlined as follows.
The related works are outlined in Sect. 2. Section 3 is dedicated to presenting our
proposed methodology and the experimental setup. We detail the approach we have
taken to address the research problem, including the methods, techniques, and tools
employed in our study. Within Sect. 4, we present the outcomes of our experiments.
The chapter concludes in Sect. 5 with a summary of our findings and their
significance. Additionally, we outline avenues for future research and development
in this domain, emphasizing the potential directions for further exploration and
enhancement.

2 Literature Review

The set of SDGs outlined by the United Nations serves as a strategic plan
which aimed at enhancing global sustainability by the target year of 2030. These
goals encompass various objectives such as combatting climate change, attaining
gender parity, ensuring universal access to quality education, and promoting quality
healthcare, among others, as part of the 17 specified targets (Sachs et al., 2019).
As the global community progresses toward achieving the aspirations of the 2030
agenda, there is a growing interest among governments and societies in exploring
strategies for attaining sustainable development. The advancement of technol-
ogy has brought about significant transformations in our lifestyles and business
practices (Stafford-Smith et al., 2017). Numerous nations have been promoting
the sharing of building energy data for the development of innovative models,
such as building energy benchmarks, across various building typologies. These
initiatives are designed to stimulate investments in energy efficiency and mitigate
building energy usage. The methodologies of benchmarking can be categorized as
white-box, black-box, or gray-box, based on the classification of models utilized
to forecast building energy efficiency (Papadopoulos et al., 2018). Information
on building energy consumption and its characteristics is crucial for conducting
benchmarking procedures. Nevertheless, the current absence of data presents a
significant obstacle in this context. In order to tackle this issue, Juarez-Casildo
et al. (2022) focused on exploring the utilization of machine learning to predict
the energy use intensities of bank branches situated at Brazil (Veiga et al., 2021).
The methodology applied in this research encompassed the acquisition of data
pertaining to the typology of bank branches and the archetype model along with its
fixed and variable inputs were identified to produce 48,000 samples that underwent
simulation using EnergyPlus software. The result of this study revealed that the
lighting power density and the weather parameter emerged as the most impactful
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variables in the estimation of energy consumption in bank branches. Previously,
Veiga et al. (2021) examined the progression of the global energy consumption
framework through the utilization of an evolutionary tree model (Hu et al., 2018).
Initially, a total of 144 countries and regions were segmented into four distinct
categories utilizing the k-means clustering technique. Nations and regions falling
within the same category typically exhibit comparable evolutionary trajectories.
Furthermore, nations classified as type IV, predominantly encompassing developed
nations, showcase the most varied energy consumption frameworks. Countries
can be positioned within the evolutionary tree of the global energy consumption
framework, and such placements can serve as a foundation for elevating a country’s
energy consumption framework based on analogous countries with greater diversity.
The analysis of smart meter data contributes significantly to enhancing the planning
and operations of power system. This research endeavor of Tang et al. (2022) made
investigation on identifying the determinants of residential energy consumption
behaviors through a socioeconomic lens, utilizing machine learning techniques
on consumption and demographic data. The study delves into the examination
of real-world smart meter data, extracting load patterns through robust clustering
methods. The correlation between consumer’s load patterns and specific socioe-
conomic indicators was delineated through the application of machine learning
algorithms. The proposed analytical framework, integrating feature selection and
machine learning techniques, demonstrated superior effectiveness compared to
XGBoost and traditional neural network models in capturing the relationship
between load patterns and socioeconomic indicators. It is also noted that with the
rise in population, urbanization, and standards of living, unprocessed wet waste
presents a notable obstacle and offers unexplored possibilities. So, Zhu et al. (2023)
concerned on this issue and presented an innovative framework that mobilized
advance machine learning methodologies such as deep neural networks, random
forest (RF), and extreme gradient boosting) with dual-objective optimization. This
strategy facilitates a comparative evaluation of the solid byproducts generated from
HTC and pyrolysis, with a focus on their Carbon Stability Index (CSI) and Return
on Energy Investment (REI) metric (Zhu et al., 2023). The evaluation allowed for
customizing char production for specific uses, resulting in optimal conditions for
both high energy efficiency and stable carbon storage. A case study involving wet
food waste revealed a substantial improvement from 4.83 to 14.43 in REI and an
elevation from 47.4 to 57.98 in CSI when compared to traditional HTC methods.
Lawrence et al. (2013) conducted a study on the worldwide distribution of energy
consumption per capita. Their research revealed a decline in the Gini coefficient,
G, from 0.66 in 1980 to 0.55 in 2010, indicating a reduction in inequality. The
distribution of energy consumption per capita globally in 2010 closely resembled
an exponential distribution, with a G value of 0.5, suggesting that the top third of
the global population utilizes two-thirds of the energy produced. Chen and Chen
(2011) undertook an analysis of the global energy landscape through a systematic
input-output simulation which identified the United States as the largest importer
of embodied energy but faced a deficit in energy reception. Fujimori et al. (2016)
executed a hindcasting a global energy model using an integrated assessment model.
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Their findings indicated a high level of reproducibility in global aggregated primary
energy, with wealthier nations displaying greater reproducibility compared to lower-
income nations. Through an analysis of entropy Information, Zhang et al. (2011)
assessed the transformation of China’s energy consumption pattern, highlighting a
gradual enhancement in Chinese energy utilization. Nevertheless, past studies have
neglected to explore the interconnections among energy consumption patterns in
various nations, indicating a necessity for further investigation into the evolution of
the global energy consumption structure.

3 Methodology

3.1 Approach Overview

The goal of this project is to explore the dataset and derive interesting insights from
it. Throughout the work on it, I decided to focus on (1) clustering the countries
and (2) generating predictions for the time until 2030, as 2030 is the target year for
completion of many of the SDG targets. We have used some ML algorithm and an
ensemble algorithm for better prediction and finally evaluate the performance of the
models by some performance measure techniques.

3.2 Machine Learning Algorithms
3.2.1 K-Means Clustering

K-Means clustering is an unsupervised ML algorithm utilized to partition a dataset
into K distinct clusters based on feature similarity. It is conducted by iteratively
assigning data points to the nearest cluster centroid, recalculating the centroids until
a stable solution is reached (Yang et al., 2024). This algorithm clusters objects
such that those within the same cluster share similar characteristics, while objects
in different clusters exhibit distinct characteristics. The function is as follows:
minimize J == C||x — ||, where k is the number of clusters, C; is the set of points
in cluster i, x is a data point, and ; is the centroid of cluster i.

3.2.2 Linear Regression (LR)

LR is a statistical approach which attempts to determine the relationship between
two variables by fitting a linear equation to observed data. In LR, one variable is an
explanatory variable and the other is a dependent variable (Hasan et al., 2024a). The
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basic form of the linear regression equation is Y = +X+, where Y is a dependent
variable (the variable being predicted or explained), X an independent variable (the
predictor variable) : intercept (the value of Y when X is 0), : the slope (the change in
Y for a one-unit change in X) : the error term (the difference between the observed
and predicted values of Y). RF is a widely used algorithm for ensemble learning
that utilizes multiple decision trees (DTs) for classification and regression tasks.
The algorithm builds a forest of numerous decision trees, each of which is trained
employing different samples of training data and the input attributes. The average
predictions of all the trees are considered (Mamun et al., 2024).

3.2.3 Light Gradient Boosting (LGB)

The LGB machine regressor is a breakthrough tree-based ensemble learning method
which helps to overcome the efficiency and scalability limitations of XGBoost in
massive dataset and high-dimensional input feature (Sajid et al., 2023). LGB is
an updated gradient boosting framework that utilizes the prediction results from
several DTs to make the final prediction. The LGB algorithm is comprised of two
main approaches: gradient-based one-side sampling (GOSS) and exclusive feature
bundling (EFB).

3.2.4 Decision Tree

A DT algorithm is a classic supervised learning model used for both classification
and regression. DT demonstrates a diagram depicts like as tree. It makes sequential
decisions based on attribute tests to classify data into different classes. DT is
commonly used for decision-making and classification tasks in data science (Hasan
et al., 2024b).

3.2.5 AdaBoost

AdaBoost (Adaptive Boosting) combines several weaker prediction algorithms into
a robust regression model (Hasan et al., 2023a). Initially, equal weights are assigned
to all data points. The model then processes the data, identifying misclassified
instances. The weights of these misclassified points are increased to improve the
model’s accuracy. The final prediction for binary classification is mathematically
represented as follows:
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3.2.6 CatBoost

CatBoost is one of the newest boosting ensemble machine learning models.
CatBoost utilizes ordered boosting and is an efficient enhancement of gradient
boosting in addressing the issue of target leakage (Prokhorenkova et al., 2018). This
is even effective in handling small datasets and categorical features.

3.2.7 B_DRRC

The B_DRRC model is a thoughtfully crafted blending ensemble that brings
together four well-known algorithms—DT, RF, Ridge, and CatBoost—each con-
tributing its unique strengths to improve predictions. Think of it as a team where
each member has different expertise: The DT offers a straightforward and easy-to-
understand structure, while RF adds reliability by averaging multiple trees to avoid
overfitting. Ridge acts as a stabilizer, handling tricky correlations in the data, and
CatBoost shines by efficiently processing complex categorical features (Hasan et al.,
2023c).

By blending these models, the B_DRRC approach ensures that no single model’s
weaknesses hold back performance. It is like getting different perspectives to make
the best possible decision, as one model might spot patterns that another misses,
leading to more balanced and accurate predictions. This combination helps the
B_DRRC model handle challenging datasets where simpler models might struggle,
making it a versatile and powerful tool for solving real-world problems with more
confidence and less bias.

3.3 Performance Measure Metrics

3.3.1 Mean Absolute Error (MAE)

MAE characterizes the alteration among the original and predictable values and is
mined as the dataset’s total alteration mean (Hasan et al., 2023d).

3.3.2 Mean Square Error (MSE)

The MSE is calculated to ensure that the original and decrypted images are in
variations or not.
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3.3.3 Root Mean Square Error (RMSE)

RMSE is defined as the measure of the differences between values that are predicted
by a model and values that are observed.

3.3.4 Mean Absolute Percentage Error (MAPE)

MAPE is a widely used metric for assessing forecast accuracy. It is calculated as
the average of absolute percentage errors (APEs). MAPE represents the actual and
forecasted values at a given data point, respectively.

3.3.5 R-Squared

R-Squared is a statistical measure that represents the proportion of the variance for
a dependent variable that is explained by an independent variable or variables in a
regression model (Hasan et al., 2023b). It is often used to assess the goodness of fit
of a model (0,1), indicating how well the model’s predictions match the actual data.

4 Result Analysis

4.1 Descriptive Analysis

Table 1 deals with the descriptive statistics of variables where the access to
electricity is 78.93% in average and the Skewness shows —1.2058, suggesting a

Table 1 Statistical characteristics of the variables of the SDG indicators

Variables Mean Std. Variance Skewness | Kurtosis
Access to electricity (% of 78.9337 | 30.2755 916.605 | —1.2058 | —0.0358
population)

Access to clean fuels for 63.2553 39.0437 1524.41 —0.5081 —1.4192
cooking

Renewable energy share in the | 32.6381 | 29.8949 893.705 0.6709 | —0.9058
total final energy
consumption (%)

Energy intensity level of 5.3073 3.5320 12.4750 2.5890 9.5037
primary energy (MJ/$2017 PPP

GDP)

Financial flows to developing 9.42e+07 | 2.98e+08 8.8804 8.3882 | 102.3670
countries (US $)

Renewable electricity 113.137 | 244.167 | 59617.52 5.3669 40.4502

generating capacity per capita
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left skew in the distribution. This means that most countries have electricity access
percentages higher than the mean, with a few having significantly lower access.
Table 1 also informs that about 63.25% of population has the access to clean
fuels for cooking while the variance is 1524.41, indicating a wide variance in
population of getting access. Notably, in average, only 32.64% of total population
gets renewable energy. However, there exists a positive skewness of 0.6709 that
indicates while most regions have renewable energy shares lower than the mean,
there exist a few with exceptionally high contributions. In average 94.3 million USD
is allocated in developing countries, while the variance is 8.88 which indicates a
wide disparity in financial flows among developing countries. A positive skewness
of 8.39 demonstrates the mismatch in the allocation and indicates that a few
countries get the most funds. Lastly, in average, the renewable energy generating
capacity per capita is 113.137 where the standard deviation is 244.167, indicating
significant variation among the different regions or countries.

Figure 1 illustrates the correlation matrix of variables. The correlation matrix
depicts that access to clean fuels for cooking has high positive correlation with

Fig. 1 Heatmap to represent the correlation among the variables
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access to electricity (% of population) by 87%. That means the higher the portion
of getting access to electricity, the higher to access to clean fuels for cooking. On
the contrary, renewable energy share in the total final energy consumption (%)
has a significantly negative correlation with access to clean fuels for cooking and
access to electricity (% of population) by (—79%) and (—78%), respectively. The
correlation reveals that countries with high share with electricity access and having
clean fuel to cook are usually the lowest share of renewable energy as share of
final energy consumption and vice versa. Notably, renewable energy share in the
total final energy consumption (%) has a minimal positive (0.0037%) with financial
flows to developing countries (US $). That indicates that financial allocation has a
minor impact on renewable energy consumption percentage.

4.2 Results of the Clustering

Based on energy consumption, this study has clustered the dataset using K-
means clustering. Analyzing the dataset, the elbow method suggests the number
of countries that suite for the study. Figure 2 depicts that elbow three (3) is mostly
curved. Therefore, this study considers three clusters (countries). The clusters are
less, medium, and high energy consumed countries.

Figure 3 displays the scatter diagram of data points of three clusters (low,
medium, and high) energy consumed nations derived from the elbow method K-

Fig. 2 Elbow method to determine the number of clusters
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Fig. 3 Results of the clustered countries

Table 2 The value SDG indicators of three different clusters

Variables Cluster 1 | Cluster 2 | Cluster 3
Access to electricity (% of population) 99.2806 |39.6755 |81.4477
Access to clean fuels for cooking 94.4446 7.2666 | 39.7324
Renewable energy share in the total final energy 15.1447 1 79.0230 | 50.0296

consumption (%)
Energy intensity level of primary energy (MJ/$2017 PPP 4.8234 7.1969 4.4819
GDP)

mean cluster. Countries that are in color green are low energy consuming, while
the purple denotes the high energy demanding nations, and finally, the yellow color
countries are in the medium position.

One of the most interesting findings is related to the outcome of clustering the
countries along the four indicators selected for the project. The clusters reveal that
countries with high share with electricity access are usually among the countries
with the lowest share of renewable energy as share of final energy consumption.
The opposite is true for countries with low electricity access, whereby their share
of renewables is among the highest. Table 2 informs that in cluster 1, above 99%
of total population of these countries has electricity access, while about 15% of
these electricity comes from renewable sources. On the other hand, around 40% of
population from Cluster 2 has the access of electricity. Most importantly, almost
80% of the total energy comes from renewable sources of this 40%. From Cluster
3, it is crystal that 81.46% has energy access, and from them 50.03% comes from
renewable energy sources.
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Table 3 Performance of the ML model to predict energy intensity level of primary energy

Model MAE MSE RMSE SMAPE R-Squared
LR 0.0674 0.0119 0.1093 39.1958 0.33
RF 0.0439 0.0074 0.0862 25.1477 0.40
LGB 0.0401 0.0045 0.0670 24.2634 0.64
DT 0.0345 0.0037 0.0606 21.2577 0.70
AdaBoost 0.0787 0.0097 0.0989 45.0591 0.21
CatBoost 0.0361 0.0031 0.0560 22.6648 0.75
B_DRRC 0.0301 0.0028 0.0456 18.6472 0.84

4.3 Prediction of the SDG Indicators Using ML

This study has predicted the SDG based on different indicators such as energy
intensity level of primary energy, access to electricity (% of population), and access
to clean fuels for cooking.

Table 3 displays the performance matrix of prediction result of ML algorithms on
energy intensity level of primary energy. The table shows that the novel algorithm
blending decision tree, random forest, and ridge regression (B_DRRC) performs far
better than the other ML algorithms. While the MAE, MSE, RMSE, and SMAPE
are the lowest for B_DRRC than the others by 0.0301, 0.0028, 0.0456, and 18.6472
respectively, the value of R2 is considerably better than other by 84%. That means
B_DRRC fits 84% with the dataset in predicting energy intensity level of primary
energy which is impressive for an ML algorithm. MAE is high of AdaBoost (0.0787)
followed by LR (0.0674). MSE and RMSE are comparably higher of LR by 0.0119
and 0.1093, respectively. After B_DRRC, CatBoost fits most with the prediction
model by 75% followed by DT (70%). Notably, the R-Square of AdaBoost is 21%
only which is too bad for this prediction model on this dataset.

The result of the prediction of energy intensity level of primary energy is
demonstrated in Fig. 4 as well. In this graphical representation, it is crystal that
all types of errors (MSE, MAE, and RMSE) are considerably lower than all other
algorithms, while the closest one is CatBoost. Notably, LR has the highest MSE and
RMSE, while AdaBoost has the highest MAE.

Table 4 displays the performance matrix of ML algorithms in predicting access
to electricity (% of population). The table informs those errors (MAE, MSE, RMSE,
and SMAPE) are minimal for B_DRRC in predicting electricity access populations
by 3.65%, 0.68%, 0.642%, and 10.6731, while the model fits the most as the R2 is
95%. In terms of MAE, MSE, and RMSE, Linear Regression results out the highest
error rate by 10.66%, 2.10%, and 21.4753 followed by AdaBoost 7.76%, 1.52%, and
18.1394, respectively. Considering RMSE, AdaBoost has the highest error rate than
others by 12.33%. Though LR has the lowest R-square (77%) out of all algorithms,
the model fits well as an ML algorithm. After B_DRRC, CatBoost performs well by
having minimal errors (MAE: 4.64%, MSE: 0.71%, RMSE: 8.42%, and SMAPE:
11.3367) and also the second highest R2: 92%.



14 M. Hasan et al.

Fig. 4 Errors of the models to predict energy intensity level of primary energy

Table 4 Performance of the ML model to predict access to electricity (% of population)

Model MAE MSE RMSE SMAPE R-Squared
LR 0.1066 0.0210 0.1149 21.4753 0.77
RF 0.0519 0.0138 0.1177 12.1570 0.85
LGB 0.0472 0.0072 0.0847 11.7098 0.90
DT 0.0421 0.0104 0.1019 10.5901 0.89
AdaBoost 0.0776 0.0152 0.1233 18.1394 0.84
CatBoost 0.0464 0.0071 0.0842 11.3367 0.92
B_DRRC 0.0365 0.0068 0.0642 10.6731 0.95

Figure 5 illustrates the errors of the models to predict access to electricity. The
figure shows that LR has the most MSE and MAE followed by AdaBoost, while
B_DRRC has the lowest. However, AdaBoost is containing the highest RMSE by
above 12%, and B_DRRC has the lowest by around 6%. Overall, B_DRRC has the
minimal error rate than other algorithms.

The performance of the ML model to predict “access to clean fuels for cooking”
is tabulated in Table 5. Table shows that LR experienced most errors such as
MAE 14.51%, MSE 3.21%, RMSE 17.91%, and SMAPE 48.4913 followed by
AdaBoost (MAE:13.52%, MSE: 2.47%, RMSE: 15.73%, and SMAPE: 42.7043).
Consequently, LR’s goodness of fit for this model is the lowest by 78%. The table
also depicts that B_DRRC has the minimal error rate by 5.10% of MAE, 1.01% of
MSE, 9.85% of RMSE, and 25.6521 of SMAPE, while the R2 is 95%. That means
the model 95% reads the dataset. Overall, this proposed model performs far better
than other models.
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Fig. 5 Errors of the models to predict access to electricity

Table 5 Performance of the ML model to predict access to clean fuels for cooking

Model MAE MSE RMSE SMAPE R-Squared
LR 0.1451 0.0321 0.1791 48.4913 0.78
RF 0.0758 0.0236 0.1536 27.2433 0.84
LGB 0.0711 0.0114 0.1067 30.2276 0.92
DT 0.0674 0.0196 0.1399 23.8521 0.87
AdaBoost 0.1352 0.0247 0.1573 42.7043 0.83
CatBoost 0.0707 0.0111 0.1054 29.5615 0.92
B_DRRC 0.0510 0.0101 0.0985 25.6521 0.95

To support Fig. 6 and visually illustrate the performance of selected models in
predicting access to clean fuel, Fig. 7 is presented. From the figure, it is visualized
that Linear Regression has experienced most error in all three performance measures
(MSE, MAE, and RMSE). Following LR, AdaBoost and Random Forest are posi-
tioning second and third, respectively. Most importantly, B_DRRC, the proposed
model, outperforms other algorithms that this has the lowest errors in all three
parameters.

Figure 8 represents the R2 values of all ML algorithms in three different
conditions such as energy intensity level, access to electricity, and access to fuels.
In all three categories, B_DRRC outperforms all other algorithms significantly. In
terms of energy intensity level, B_DRRC can read the dataset more than 80%,
while AdaBoost can read the dataset only by around 20%. The second-best model is
CatBoost which fits for the dataset by around 75%. Considering access to electricity,
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Fig. 6 Errors of the models to predict access to clean fuel

Fig. 7 R-Squared values of all
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Fig. 8 Predicted trend in energy intensity level of primary energy

all the algorithms performed well, but the B_DRRC is better here again by more
than 93%. The same happens for the access to clean fuel data that all the models
experienced satisfactory performance but B_DRRC outperformed all.

4.4 Predictive Trend up to 2030 of Different variables

Figure 8 shows the prediction result of primary energy intensity level using
B_DRRC, proposed model. In the Y axis, energy intensity level of primary energy
is given, while X axis deals with consecutive years from 2000 to 2030. The figure
informs that there remained a gradual decrease in energy intensity level from above
6 in 2000 to below 5 in 2019. However, the trend experienced a steep increase in
2020 to about ten levels. Most importantly, the prediction suggests that though there
was a sudden raise in intensity level in the early 2020, it will fall to around the same
level at the end of 2020. Then, the intensity level will continue decreasing gradually
in the preceding years and expected to reach below four (4) by 2030.

Figure 9 displays the prediction result of B_DRRC model on access to electricity.
Utilizing dataset from 2000 to 2020, this novel algorithm predicts the probable
average access to electricity till 2030. Average access to electricity experienced
a continuous increase over the entire span of 2000-2020. The average access to
electricity was around 73% of total population at the beginning which touched 85%
by 2020. Moreover, from 2012 to 2013, the access to electricity remained constant
by around 80.1%. Notably, it is expected to increase in the same pace in the next 10
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Fig. 9 Predicted trend in access to electricity

Fig. 10 Predicted trend in renewable energy share

years as well. The prediction result of this novel algorithm informs that the average
can be up to 92% within 2030.

Figure 10 shows the prediction result of renewable energy share in the total
energy consumption utilizing B_DRRC, a novel model. The figure illustrates that
the renewable energy usages experienced a gradual decrease in against total energy
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Fig. 11 Predicted trend in clean fuels for cooking access

consumption percentage. While the proportion was around 35% in 2020, the actual
condition after 19 years was more severe by around 31% in 2019. However, the
trend experienced a steep increase in 2020 to around 83%. Most importantly, the
prediction informs that though there was a sudden raise in renewable energy use
in the early 2020, it will fall to around the same level at the end of 2020. Then,
the consumption of renewable energy will experience a gradual downfall in the
preceding years and expected to reach around 30% in 2030 and expected to be
lowest of these three decades.

Figure 11 demonstrates the prediction result of B_DRRC model on access to
clean fuel for cooking. Employing dataset from 2000 to 2020, this novel algorithm
predicts the probable access to clean fuels for cooking till 2030. Average access to
electricity experienced a considerable increase over the years from 2000 to 2020.
The average access to clean fuel for cooking was about 58% of total population in
2000 which reached around 68% by 2020. Notably, the trend remained constant for
1 year (2012-2013) by around 65%. The proposed algorithm suggests that there
will be an increase in next 10 years as the same pace. The prediction of this novel
algorithm results out that the average will reach above 72% in 2030.



20 M. Hasan et al.

5 Conclusion and Future Work

The main objective of this work was analyzing global energy pattern. To achieve
this, we have employed ML algorithms both supervised and unsupervised and
ensemble ML algorithm to predict the different variables of SDGs. We have selected
the SDGs-related variables for our study and predicted each if the variables with
considering the others as dependent variables. We have designed an ensemble
algorithm to get the better performance to predict the SDG variables. Besides the
model building, we also show the predictive trend of “energy intensity level of
primary energy,” “access to electricity (% of population),” and “access to clean
fuels for cooking” up to 2030 by our developed model. Accurate energy prediction
helps us make smarter choices about how we use and distribute energy. By cutting
waste and focusing on renewable sources, it supports affordable and reliable access
for everyone, helps fight climate change, and builds stronger infrastructure. This
approach drives sustainable growth and a better future for communities worldwide.
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1 Introduction

This is universally accepted that energy is central to development. It enables invest-
ments, innovations, and the emergence of new industries that create employment
opportunities, vital to alleviating extreme poverty, foster inclusive growth and
promote shared prosperity on a more sustainable world. However, it is disheartening
that there are still 685 million people live without electricity globally, and approxi-
mately 2.1 billion people depend on traditional polluting fuels and technologies for
cooking their meals. Thus, keep energy access affordable, reliable, and sustainable
(The World Bank, 2018). On the other side, global warming has become one of the
most pressing challenges of our time, with human activities like burning fossil fuels
and deforestation exacerbating climate change through increased greenhouse gas
(GHG) emissions. Scaling up renewable energy and energy efficiency can help to
mitigate the adverse effects of climate change and environmental pollution (Lam
& Law, 2016). Renewable energy resources are natural resources which have a
vital role to meet up the energy demand (Islam et al., 2006; Ahmed et al., 2014).
Bangladesh’s renewable energy journey began in 2008, when the Ministry of Power,
Energy and Mineral Resources published their policy guidelines. Bangladesh has
set a clean energy or renewable target of 40 percent by 2041. Since then, up
until 2024, the sustainable energy niche in Bangladesh has been making sluggish
progress compared to other countries. According to SREDA (2020), in Bangladesh,
renewable energy sources make up only 3.1% of the national energy mix. Solar is
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responsible for the lion’s share of current renewable energy capacity, with 1080.36
MW. The country generates less than 1% of its electricity from hydropower. These
levels are far below the 13% global average (SREDA Homepage, n.d.; Tachev,
2024).

In contrast, developing countries have taken the lead in the global shift toward
renewable energy, with China adding the top annual solar power capacity, and India
and Brazil ranking among the top five. India, in particular, has made significant
strides toward renewable energy, targeting 50% of its energy mix from renewable
sources by 2030. By early 2023, India had already achieved an installed solar
capacity of 64 GW. The world is headed toward renewables, e.g. Iceland and
Norway generate nearly all their energy needs from renewable sources. Inspired
by these countries’ advancements, Denmark has set a goal to transition its entire
energy supply to renewable energy by 2050 (Chowdhury, 2024).

However, existing studies evidence that the lethargic progression of renewable
energy in Bangladesh may be due to various factors, ranging from government
policies to household awareness and reactions. It has been identified that knowledge
and information, regulatory frameworks, financial-economic conditions, market
dynamics, lack of adequate financing, technological issues, institutional challenges,
and behavioral aspects are barriers to the expansion of renewable energy such as
solar and wind energy (Mahmud & Roy, 2021a). On the other hand, the energy
sector’s dependence on large-scale projects, advanced technologies, and complex
infrastructure underscores its dependency on project finance and significant invest-
ments. Globally, the average annual investment in energy is approximately $413
billion, a figure that is growing, particularly in the developing world. Developing
countries will need an estimated $165 billion annually in electricity investments
through 2010, with this figure expected to rise by around 3% per year through 2030.
Because of the magnitude of their investments in the energy sector, international
financial institutions (IFIs) have the potential to profoundly affect future energy
paths (World Bank Group, 2007).

Furthermore, renewable energy sector are still relatively new, the research
and development efforts aimed at their further exploitation require significant
investments (Gielen et al., 2019; Strielkowski et al., 2021). However, due to high
upfront costs and the risk of commercializing renewable energy initiatives compared
with conventional energy like fossil fuel, a barrier exists in securing financing
of renewable energy projects (Warren, 2013). Also, the cost of solar cells in
Bangladesh is decreasing every day. This offers an opportunity for the Bangladesh
to invest in renewable energy sectors, thereby reducing overall infrastructure costs
and enhancing energy security systems (Bhuiyan et al., 2021).

Moreover, previous studies mainly focus on prospects, challenges of renewable
energy in Bangladesh and policy related to renewable energy (Bhuiyan et al., 2021;
Hossain et al., 2023; Uddin & Park, 2021; Abdullah-Al-Mahbub, & Islam, A.
R. M. T., 2023). But, few researches are conducted on energy finance. On the
other hand, existing research recommended that investment in renewable energy is
immediately needed to address the rising energy demand, mitigate climate change,
and foster sustainable development. Such investments bring about substantial socio-
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economic, environmental, and health benefits. Although falling renewable energy
technology costs have significantly lowered the upfront capital needed, financing
renewable energy projects remains difficult (Zhang & Wang, 2019; Michaelowa
et al., 2020). Therefore, the current study emphasizes on access to energy finance
for the development of renewable energy sector in Bangladesh because access to
finance is a critical component in the global effort to ensure that all individuals and
communities have reliable and sustainable energy sources.

This study is organized in the following manner. In the introduction section,
the background, problem, and aim of the study are presented; the following
section provides a comprehensive literature review, covering prior relevant studies
and key concepts that are essential for this research. This review establishes the
foundation for understanding the theoretical and empirical insights related to the
study’s focus. Afterward, we discuss the methodological framework, including
the strategies for data collection and an outline of the data analysis process.
The subsequent section is structured into two parts: the first part addresses the
orientation on current scenario of renewable energy, rationality of renewable energy
development, barriers to renewable financing as well as others obstacle for the
development of renewable energy sector in Bangladesh and the second section
shows policy related to renewable energy, green energy finance mechanism, and
data related to financing in renewable energy sector including refinancing scheme
by IDCOL, Bangladesh Banks, and loan from different international development
partners. The concluding section offers recommendations for the government and
key stakeholders, highlighting the need for strategic initiatives to improvement
in renewable energy finance. Furthermore, it highlights areas of improvement for
fostering investments in renewable energy projects.

2 Literature Review

2.1 Concept of Renewable Energy

Renewable energy refers to energy sources that are naturally replenished and
can be sustainably recovered from the environment. These include solar, wind,
hydropower, biomass, waves, tidal, and geothermal energy, all of which offer cleaner
alternatives to traditional fossil fuels. With the characteristics of sustainability and
low environmental pollution, the issue of renewable energy has received huge
attention (Lai et al., 2020). Renewable energy technologies like solar, mini/micro
hydro, wind, and biomass systems offer modern, sustainable solutions for rural
electrification. These systems are cost-effective, environmentally friendly, and can
be easily operated and managed by local communities, making them ideal for
expanding access to clean energy in remote areas. The development of rural
renewable energy is an effective way of reducing poverty and promoting sustain-
able development (Sapkota et al., 2013). Islam et al. (2008) conducted a study
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on sustainable energy resources and technologies for development activities in
Bangladesh, focusing on the electricity challenges faced in rural areas. The authors
concluded that renewable energy could serve as the primary energy source to
address the electricity issues in these regions (Islam et al., 2008). Islam et al.
(2011) discussed renewable energy technologies that can reduce energy shortage,
environmental degradation, and climate change effects in Bangladesh (Islam et al.,
2011). Therefore, as previous studies highlighted, renewable energy, branded by
sustainability and low environmental impact, is important for modern, sustainable
electrification and development. Technologies like solar, wind, and biomass are
effective in addressing electricity shortages and promoting sustainable development
particularly in Bangladesh’s rural areas.

2.2 Key Renewable Energy Sources in Bangladesh

The key renewable energy sources include solar energy from the sun, biomass, wind,
tidal, geothermal, and hydro. The availability of these resources determines the
extent to which each type of renewable energy can be utilized in a country. But,
Bangladesh lacks geothermal potential and has limited hydro potential, particularly
those reliant on elevation. Tidal energy is still in its early stages and has not yet
been commercialized. As a result, solar, wind, and biomass remain the only viable
alternatives. However, a significant challenge with biomass is the high demand for
agricultural and animal waste as fuel for cooking in rural areas. Solar energy is
the most reliable renewable energy resource that can be utilized on a large scale.
In contrast, wind has consistently been a challenging resource to assess within
the context of Bangladesh. From Bangladesh perspectives, the core barriers with
biomass are: the price is high, and accumulating huge quantities is tough, hence
costly. However, there is considerable potential through the bio gasification process,
although it would necessitate careful planning and effective management of bio-
resources. Therefore, this expectation is turning out to be true with local and foreign
investments occurring in grid-tied utility-scale solar parks and industrial rooftop
projects (Hossain & Chisti, 2022). A block diagram in Fig. 1 shows the list of
renewable energy sources in Bangladesh.

2.3 Concept of Energy Finance

Energy finance is an emerging interdisciplinary area that primarily focuses on the
connections between energy markets and financial markets. However, it is also
exploring energy products and markets through a financial lens. Zhang (2018)
explain that energy finance is the combination of six broad themes such as
energy and financial markets, pricing mechanisms, energy corporate finance, green
finance and investment, energy derivative markets, and energy risk management
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Fig. 1 Major renewable energy sources in Bangladesh

(Zhang, 2018). According to Friebe et al. (2013), sustainable energy finance is the
structuring of financial instruments and the mobilization of capital specifically for
the development and expansion of renewable energy sources and energy efficient
technologies, considering both environmental and economic objectives. In this study
energy finance is interchangeably used to mainly focus on financing in renewable
energy or the sustainable finance (Friebe et al., 2013).

Therefore, access to renewable energy finance refers to the ability of individ-
uals, businesses, and government to obtain financial resources necessary for the
development, deployment, and maintenance of renewable energy technologies such
as solar, wind, hydro, and biomass etc. Since supply of finance is crucial for the
development, deployment, and scaling of energy solutions that are both affordable
and sustainable, this study highlights the various ways of financing in renewable
energy sector in Bangladesh such as green finance by commercial banks and non-
bank financial institutions, IDCOL and Bangladesh Bank refinancing scheme, loan
and grants international development partners, green bond and different subsidies,
tailored to meet the specific needs of clean energy projects.

2.4 Financing in Renewable Energy Sector

Financing plays a vital role in the development of renewable energy projects. As
global concerns over climate change and environmental sustainability intensify, the
transition from fossil fuels to renewable energy sources has become more urgent.
However, this transition is heavily dependent on the availability and accessibility
of finance, which remains a significant barrier in many parts of the world. In the
early 2000s, renewable energy investments were seen as high risk due to the nascent
state of the technologies and the uncertainty of returns (International Energy Agency
(IEA), 2003). Conventional, financial institutions were often unwilling to invest in
renewable energy projects because of these perceived risks, comprising technology
performance risks, market risks, and policy-related risks (Beck & Martinot, 2004).
These barriers were compounded by the higher upfront capital costs related to
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renewable energy projects compared to conventional energy sources (Cochran et
al., 2014).

In spite of these challenges, various innovative financing mechanisms have
emerged over the years to address the specific needs of the renewable energy
sector. According to the World Bank (2018), green bonds, feed-in tariffs, power
purchase agreements (PPAs), and concessional loans have become increasingly
significant in mobilizing capital for renewable energy projects. Green bonds, in
particular, have gained popularity as they allow investors to fund environmental
projects while making returns on their investments (The World Bank, 2018). The
issuance of green bonds reached a record $269.5 billion in 2020 and built investors’
confidence in the renewable energy sector (Climate Bonds Initiative, 2021). Public
sector participation has also been critical in sinking the perceived risks and attracting
private investment in renewable energy. Government-backed financial instruments,
such as guarantees and subsidies, have been instrumental in creating a conducive
environment for renewable energy financing (Polzin et al., 2015). Feed-in tariffs
have been successfully implemented in countries like Germany and China to provide
long-term price guarantees for renewable energy producers, thus ensuring stable
revenues and attracting investments (Zhang et al., 2013). Similarly, public—private
partnerships (PPPs) have emerged as a viable model for financing large-scale
renewable energy projects, with governments sharing the financial risks with private
entities (Reiche & Bechberger, 2004). On the other side, in developing nations,
access to financing for renewable energy remains a significant challenge due to
fragile financial systems and lower investor confidence (Bhattacharya et al., 2019).
Microfinance institutions and development banks have started to play a more
prominent role in financing small-scale renewable energy projects, particularly in
rural areas where traditional banking services are limited. These institutions often
provide loans at concessional rates, enabling households and small businesses to
invest in renewable energy technologies like solar home systems (Dib et al., 2013).
However, the existing studies also highlight ongoing challenges in financing the
renewable energy sector. One major issue is the lack of identical metrics and
benchmarks for measuring the financial performance of renewable energy projects,
which disguises the investment decision-making (Inderst et al., 2012). Likewise, the
regulatory environment in many countries is still not fully supportive of renewable
energy financing, with inconsistent policies and bureaucratic difficulties preventing
potential investors (REN21, 2020). In the context of Bangladesh’s ambitious
renewable energy goals, achieving a 40 percent renewable energy capacity by 2041
presents significant financial challenges. Estimates suggest that the country would
need to invest between $1.53 billion and $1.71 billion annually from 2024 to 2041
to meet this target.

However, this amount does not account for the extra costs related to grid
modernization and the development of storage facilities, both of which are crucial
for the incorporation of renewable energy into the national grid. Current funding
available for sustainable energy projects is substantially lower than what is required,
indicating a significant financing gap. This shortfall underscores the need for inno-
vative financing mechanisms and greater international financial support to bridge the
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gap and ensure the successful transition to a sustainable energy future in Bangladesh
(Hossain, 2024). While significant progress has been made in developing innovative
financing mechanisms for the renewable energy sector, challenges remain. The
literature suggests that overcoming these challenges will require continued public
sector support, further development of financial instruments tailored to the unique
needs of renewable energy projects, and stronger regulatory frameworks to ensure
investor confidence. As the world transitions toward a low-carbon future, effective
financing strategies will be critical in scaling up renewable energy deployment
globally.

3 Methodology

The current study is going to investigate the access to energy finance for the
development of the renewable energy sector in Bangladesh, following the following
analytical framework along with the method and tools for data collection. Both
primary and secondary data were collected to conduct this research. For secondary
information, particularly on the policy and legal regime, a comprehensive review
of policies, articles, and reports linked to renewable energy and its finance was
explored, e.g. Power System Master Plan, Renewable Energy Policy, SREDA-
produced analysis, NDC, ADB reports, Bangladesh Bank’s Sustainable Finance
Policy, Private Sector Power Generation Policy of Bangladesh, Perspective Plan of
Bangladesh, 2021-2041, etc. Qualitative data are obtained from unstructured dis-
cussion with three banks personnel and one government official. We discussed with
them the barriers of renewable energy financing, existing financing mechanisms,
new financing methods and then interpreted the discussion. At the beginning of the
study, we discussed the renewable energy concept, classification of major renewable
energy products, existing renewable energy finance mechanism as well as reviewing
the why renewable energy from a theoretical perspective through a literature review.
Also, in order to understand the barriers of access to energy finance implementation
toward development of renewable energy sector in Bangladesh, we took the views of
key personnel of banks through unstructured discussion and attach with the findings
of previous studies. For measuring the trend of renewable financing in Bangladesh,
we used quantitative data and followed Johnson’s et al. (2011)’s research lineup,
i.e., Bangladesh Bank’s sustainable finance report, policy documents, and renewable
energy-related organization’s reports were reviewed for the investigation (Johnson
etal., 2011).

4 Current Scenario of Renewable Energy in Bangladesh

Bangladesh has great prospects for accelerating renewable energy deployment,
current targets remain weak. In Bangladesh, renewable energy sources make up
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Table 1 Renewable energy scenario in Bangladesh

Technology Off-grid (MW) | On-grid (MW) | Total (MW) | Technology Off-grid (MW)

Solar 373.84 706.52 1080.36
Wind 2 60.9 62.9
Hydro 0 230 230
Biogas electricity 0.69 0 0.69
Biomass electricity 0.40 0 0.40
Total 376.93 997.42 1374.35

Source: SREDA

only 3.1% of the national energy mix. Within this percentage, solar energy accounts
for 63.7%, followed by hydro at 35.7%, wind at 0.4%, and biogas at 1.4%, of the
installed capacity. In this situation, small-scale renewables, particularly Solar Home
Systems (SHS), offer greater promise. In 2018, the number of green energy users
reached 18 million (SREDA, 2024). For example, up to year 2018, Grameen Shakti
alone had installed over 4.13 million SHS, making it a leading player in the sector
(Mahmud & Roy, 2021b). Overall, the company experienced a 40% increase (1.6
million). But, in recent years, this sector has faced challenges for causing sluggish
growth. This decline signals a worrying trend for the clean energy industry as a
whole (Masukujjaman et al., 2021).

Table 1 presents the current scenario of renewable energy in Bangladesh which
shows both on-grid and off-grid renewable energy application. Solar energy has the
most substantial contribution, with 373.84 MW from off-grid and 706.52 MW from
on-grid installations, totaling 1,080.36 MW. It’s essential to note that due to the
expansion of rural electrification through grid extension, a significant number of
Solar PV Home Systems, which once carried great recognition to Bangladesh, are
now unused. Wind energy follows, predominantly in on-grid systems, contributing
60.9 MW on-grid and only 2 MW off-grid. Hydropower is solely on-grid, providing
230 MW. Biogas and biomass electricity contribute minimally, both in off-grid
setups. Overall, the total installed capacity for renewable energy in Bangladesh
amounts to 1,374.35 MW, with on-grid systems making up 997.42 MW and off-
grid systems contributing 376.93 MW.

5 Rationality to Development of Renewable Energy Sector

Renewable energy brings numerous benefits that extend beyond environmental
sustainability, positively impacting public health, agriculture, women’s empower-
ment, and employment generation. In addition, renewable energy sources (RES)
offer several advantages, including a reduction in energy dependence on foreign
countries, and the potential for cost savings (Gielen et al., 2019; Benti et al., 2023).
These benefits contribute to the holistic development of societies, environmental
and economies, particularly in developing countries like Bangladesh.
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Environmental benefits—Transitioning to green energy sources, such as solar,
wind, hydroelectric, and geothermal power, is a crucial component of climate
mitigation strategies. Unlike fossil fuels, renewable energy technologies offer clean,
abundant, and sustainable alternatives that can significantly reduce carbon emissions
and mitigate the impacts of climate change (Tiruye et al., 2021). In response to
the questions of—what is rationality to behind development renewable energy in
Bangladesh, Government officials who said

In think in Bangladesh, where air pollution is a critical problem, transitioning to renewable
energy can significantly improve air quality. The Renewable Energy Policy of Bangladesh
aims to generate 40% of total electricity from renewable sources by 2041, a goal that has
pushed significant investment in solar and wind energy projects. Achieving this target is
expected to reduce the carbon footprint and help mitigate the adverse effects of climate
change.

Health benefits—The adoption of renewable energy significantly improves pub-
lic health by reducing air pollution and associated health problems. Conventional
energy sources, such as coal and oil, emit pollutants that contribute to respiratory
diseases, cardiovascular conditions, and other health issues. According to a study,
air pollution from fossil fuels is responsible for an estimated 8.7 million premature
deaths annually worldwide (Vohra et al., 2021). Government officials and bankers
who said that

In Bangladesh, a transition to cleaner energy sources can substantially reduce the health
burden caused by air pollution. For example, the widespread use of solar energy can cut
down the reliance on biomass and kerosene, which are significant sources of indoor air
pollution and related health issues.

Agricultural benefits—Renewable energy can enhance agricultural productivity
and sustainability. For instance, solar-powered irrigation systems provide a reli-
able and cost-effective water supply for farming, reducing dependency on erratic
electricity supply and expensive diesel pumps. A study shows that solar irrigation
can increase crop yields by up to 20% and reduce water usage by 30% (Burney &
Naylor, 2012). Government officials given opinion

The adoption of solar irrigation has the potential to significantly improve agricultural

outcomes, given the country’s reliance on agriculture for livelihood. The government has

already installed over 1,500 solar irrigation pumps, benefiting thousands of farmers by
providing a sustainable and cost-effective water supply.

Women empowerment—Renewable energy projects can empower women by
providing them with new opportunities for economic participation and reducing
the time and labor burden associated with traditional energy collection methods.
For instance, access to clean and efficient energy sources can free up time spent on
collecting firewood, allowing women to engage in educational and entrepreneurial
activities (Clancy & Skutsch, 2013). The entire four experts given the opinion

Renewable energy particularly solar home systems program helps to women’s bring
empowered, if it connect with micro-credit program.
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Also existing study evidence that in Bangladesh, renewable energy initiatives
such as the Solar Home System (SHS) program have empowered over 4 million
households, many of which are led by women, by providing access to clean and
reliable energy (Khandker et al., 2014).

Employment generation—The renewable energy sector is a significant source
of job creation. It generates employment opportunities in various stages of the
value chain, including manufacturing, installation, maintenance, and operations.
According to the International Renewable Energy Agency (IRENA), renewable
energy jobs worldwide reached 11.5 million in 2019, with solar photovoltaic being
the largest employer (IRENA (International Renewable Energy Agency), 2020).
Bankers and govt. officials opined that

The renewable energy sector has created thousands of jobs, particularly in the solar energy

industry. The SHS program alone has generated employment for over 100,000 people in
manufacturing, sales, installation, and maintenance roles.

Therefore, the transition to renewable energy presents numerous benefits across
different sectors. By improving public health, enhancing agricultural productivity,
empowering women, and generating employment, renewable energy can play a
pivotal role in fostering sustainable and inclusive development. Addressing the
barriers to renewable energy adoption and leveraging these benefits is essential for
achieving a greener and more equitable future.

6 Barriers to Renewable Energy Development in Bangladesh

There are several barriers that have been underlined as the causes of slow develop-
ment of renewable energy in Bangladesh including policy and legal factors, finan-
cial, technological, infrastructural, social, and environmental. These constraints
prevent the expansion and successful execution of renewable energy projects even
though the country has massive prospects for solar, wind, and biomass resources,
i.e. overall renewable energy sector. The following sections outline the significant
barriers to renewable energy development in Bangladesh. These barriers are found
from the literature review and discussion with government officials and bankers who
are working with project financing and renewable energy project.

Predominantly, financial challenges for renewable energy investments include
weak local financial markets and unfavorable project scales. Limited access to
private sector equity funding exacerbates this issue, forcing projects to rely heavily
on bank credit, which can restrict necessary financial resources. But in countries
where there is a lack of bank credit, the high costs of debt and limited length
of loan tenure can be issues (IRENA (International Renewable Energy Agency),
2018). Unfavorable project scale also impacts renewable energy finance, as the
scale of investment in these projects is usually small and transaction costs are high,
which makes these projects particularly undesirable for bankers (Rahman, 2021).
Furthermore, there is a lack of innovative financial instruments and products tailored
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to the needs of renewable energy developers. Conventional financing mechanisms
are not always suitable for the unique characteristics of renewable energy projects,
which require different risk assessment and management approaches. One of the
primary barriers to renewable energy development in Bangladesh is the lack of
a comprehensive and consistent policy framework. While there are policies in
place to promote renewable energy, they are often fragmented and not effectively
enforced. Additionally, regulatory uncertainties and bureaucratic delays can impede
the approval and implementation of renewable energy projects (Mahmud & Roy,
2021b). Regulatory challenges that are hindrances in renewable energy projects
include unclear legal and regulatory frameworks including weak feed-in-tariff
pricing and non-bankable public—private agreements are major barriers (IRENA
(International Renewable Energy Agency), 2018; Moazzem & Hridoy, 2023).

The growth and deployment of renewable energy technologies in Bangladesh
are hampered by a lack of technical expertise and infrastructure. Limited research
and development (R&D) capabilities and the absence of local manufacturing facil-
ities for renewable energy equipment further obstruct technological advancement
(Chowdhuri et al., 2023). The dominance of conventional energy sources, such as
natural gas and coal, which are often subsidized and thus more economically attrac-
tive. The lack of a competitive market structure for renewable energy, coupled with
insufficient market incentives, also poses significant challenges. The development
of renewable energy infrastructure, such as grid connections and storage facilities,
is often lacking in Bangladesh. Many renewable energy projects, especially those in
remote or rural areas, face significant challenges in connecting to the national grid.
The absence of adequate energy storage solutions further complicates the integration
of intermittent renewable energy sources like solar and wind. There is a shortage of
skilled professionals and technicians required to design, install, operate, and main-
tain renewable energy systems (Hossain et al., 2023; Tarik-ul-Islam & Ferdousi,
2007). The economic sustainability of renewable energy projects can be hindered by
the higher initial costs compared to conventional energy sources. Additionally, the
absence of adequate incentives, such as feed-in tariffs or tax breaks for renewable
energy investments, can reduce the attractiveness of renewable energy projects to
investors. Renewable energy projects, particularly large-scale installations, can face
environmental challenges such as land use conflicts, biodiversity impacts, and water
resource management issues. These environmental considerations can slow down
project approvals and lead to public opposition (Karim et al., 2023). We summarize
the barriers in Fig. 2.

Therefore, addressing the barriers to renewable energy development in
Bangladesh requires a multifaceted approach that involves policy reforms, financial
innovations, technological advancements, and capacity building. By tackling
these challenges, Bangladesh can unlock its renewable energy potential, promote
sustainable development, and reduce its reliance on fossil fuels.
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Fig. 2 Renewable energy development barriers in Bangladesh

7 Renewable Energy Policy, Legal Framework,
and Financial Incentives for RE Development

In Bangladesh, both GDP and population have been increasing steadily. Subse-
quently, the demand for electricity is projected to reach 34,000 MW by 2030.
To address this rising demand, which outpaces the electricity generation capacity,
the government has executed many initiatives through policy-making, rigid reg-
ulation, and extensive investments in the sector. The government of Bangladesh
has committed to investing USD 70 billion over the next 15 years to create a
sustainable and green energy future for the country (Masud et al., 2019). Regulatory
measures and government policies greatly influence renewable energy finance, i.e.
it’s also called indirect financing or public financing mechanism. Public financing
mechanisms, including government grants, subsidies, and tax incentives, play a
pivotal role in catalyzing renewable energy projects. These mechanisms reduce the
financial burden on developers and investors, making renewable energy projects
more attractive. In addition, policies that stabilize the market for RECs offer legal
rights to the “renewable-ness” of electricity, making green energy projects more
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appealing financially. For example, in Bangladesh, the government has executed
numerous financial incentives to support renewable energy development, such as
the Sustainable and Renewable Energy Development Authority (SREDA) and the
Infrastructure Development Company Limited (IDCOL), which provide financing
and technical support for solar home systems and other renewable projects (Khan
et al., 2014). However, public financing alone is often insufficient to meet the large-
scale capital needs of renewable energy projects, especially in developing countries
where government budgets are limited (Zhang & Wang, 2019). Besides, policies
aim to reduce the risk associated with renewable energy investments and guide the
direction of finance flows. Here are number of distinguished policies and regulatory
measures take on by the government for its renewable energy infrastructure:

7.1 Policies and Legal Framework for Renewable Energy
Development

Government policies play a crucial role in shaping the pace and direction of
economic development. By establishing an enabling environment, these policies
can encourage private sector participation and attract private investments into
various economic activities. In accordance with the vision of the Article 16 of
“The Constitution of the People’s Republic of Bangladesh,” which is to eradicate
discrepancies in the living condition of living between urban and rural areas
through electrification and development, the government of Bangladesh has ratified
numerous policies and legal framework over the past few decades (Masud et al.,
2019). To achieve the aims of electrification through the development of both
conventional and alternative energy sources, several policies and legislations have
been established. These outlines are designed to facilitate the growth of energy
infrastructure, promote the use of renewable energy, and ensure energy security and
sustainability for the future. They provide guidelines for private sector involvement,
incentives for clean energy projects, and regulatory mechanisms to support the
development of a diversified energy portfolio. Table 2 shows the related policies.

In Bangladesh, the Sustainable and Renewable Energy Development Authority
(SREDA) was established as the government’s central body to promote renewable
energy and energy efficiency initiatives in both the public and private sectors. To

Table 2 Renewable energy related policies

Name of plan/Regulations Issued on
Renewable Energy Policy of Bangladesh (draft) 2022
Mujib Climate Prosperity Plan 2021
Nationally Determined Contributions 2020
Energy Efficiency and Conservation Rules 2015
The Sustainable and Renewable Energy Development Authority Act 2012
Renewable Energy Policy of Bangladesh 2008

Source: SREDA
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foster the growth of renewable energy, Bangladesh introduced its Renewable Energy
Policy in 2008, aiming to have 10% of total power generation come from renewable
sources by 2020, which equates to at least 2000 MW.

7.2 Investment and Fiscal Incentives

To encourage the development of renewable energy projects, all stakeholders,
including private sector participants and investors, are offered tax concessions and
fiscal incentives.

e With approval from the Bangladesh Securities and Exchange Commission
(BSEC), renewable energy companies in Bangladesh will be able to issue
corporate bonds in both bearer and registered forms (Ministry of Power, Energy
and Mineral Resources, 2011).

¢ In December 2020, Bangladesh Bank announced its sustainable finance policy,
mandating that banks and non-bank financial institutions (NBFIs) allocate 2% of
all loans to renewable energy facilities and green projects.

* The government of Bangladesh will not regulate the price of electricity produced
from renewable energy sources. In its place, the price will be negotiated between
the owners and consumers.

e According to the Ministry of Power, Energy and Mineral Resources (2016),
companies and NGOs involved in renewable energy projects, whether semi-
government, foreign, or locally private, will be granted a 15-year exemption
from corporate income tax (Ministry of Power, Energy and Mineral Resources,
Government of Bangladesh, 2016).

e The government will provide companies with up to 100% depreciation in the
first year for solar thermal and solar photovoltaic projects. Furthermore, projects
in biomass, geothermal, tidal, small hydro, and wind energy will be eligible for
100% depreciation over the first five years (Rasel, 2018).

* No restrictions will apply to issuing work permits for foreign personnel and
employees involved in renewable energy projects.

e According to the Ministry of Power, Energy and Mineral Resources (2002),
foreign employees working on a renewable energy project will receive up to 50%
of their salary remitted and will be provided with retirement benefits throughout
their tenure (Ministry of Power, Energy and Mineral Resources, Government of
Bangladesh, 2002).

e The existing renewable energy financing facility will be expanded to include
diverse funding sources, such as public and private investments, donor contri-
butions, carbon emission trading (CDM), and carbon funds, enhancing financing
options for renewable energy investments.

¢ To encourage renewable energy adoption in the power sector, the Ministry of
Power, Energy, and Mineral Resources (2002) has implemented a policy that
exempts all renewable energy equipment and related raw materials from a 15%
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VAT charge (Ministry of Power, Energy and Mineral Resources, Government of
Bangladesh, 2002).

* Beyond commercial lending, SEDA will establish a micro-credit support network
specifically targeted at rural and remote areas, providing financial assistance for
purchasing renewable energy equipment.

e The Power Division of MPEMR will lead initiatives to promote investments
in renewable energy and energy efficiency projects. SEDA, in collaboration
with local government offices, will implement an outreach program to support
renewable energy development.

* SEDA is considering providing subsidies to utilities for installing renewable and
clean energy projects, including solar, wind, and biomass technologies.

* Private sector participation, particularly through joint venture initiatives, will be
actively encouraged and supported in the development of renewable energy. The
Power Division of MPEMR/SEDA will provide assistance in identifying suitable
projects and acquiring land for these renewable energy initiatives.

* Investors in renewable energy projects, whether they be from the public or
private sectors, will not have to pay corporate income tax for a 5-year period
starting from the date when this policy is officially announced in the gazette. The
extension of this exemption will be determined based on a regular assessment of
its impact on renewable energy.

* Consider establishing an incentive tariff for electricity generated from renewable
energy sources, set at a rate 10% above the utility’s highest purchase price for
electricity from private generators.

7.3 Tariff Policies

Feed-in tariffs (FITs) have proven to be an effective policy tool for promoting
renewable energy development in both developed and developing nations. FITs are
designed to encourage investment in renewable energy technologies by offering
a tariff above the retail electricity rate, thus making renewable energy projects
more financially viable. In Bangladesh, implementing FITs could significantly
boost electricity supply to the grid, especially if policy frameworks support it.
For instance, solar parks could thrive with long-term contracts, such as a 25-year
agreement. This is essential, as numerous small and medium-scale homeowners
and real estate developers may be willing to invest in rooftop solar PV systems.
To support this, compensation packages for rooftop solar development should align
with FITs policies. Additionally, small-scale solar parks (1 to 5 MW) with long-term
contracts, alongside solar-powered irrigation projects, could contribute significantly
toward Bangladesh’s goal of sourcing 10% of its energy from renewables. Similarly,
medium-scale solar parks could further enhance the country’s renewable energy
growth (The Daily Star, 2016).
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8 Financing Mechanism for Renewable Energy Development
in Bangladesh

Key funding sources for advancing renewable energy in Bangladesh include the
central bank’s green refinancing scheme, IDCOL’s refinancing program, green
financing through banks and NBFlIs, green bonds, and loans from international orga-
nizations. This section examines various financing avenues available for promoting
renewable energy development.

8.1 Green Finance by Banks and Financial Institutions
8.1.1 Investment in Renewable Energy

Figure 3 describes the investment in renewable energy by banks and non-bank
financial institutions from 2016 to 2023. In 2016, the investment was BDT 4599.13
million, which decreased significantly to BDT 3018.73 million in 2017. The follow-
ing year, 2018, saw a moderate increase to BDT 3636.57 million, and this upward
trend continued in 2019 with BDT 3712.76 million. However, 2020 experienced a
slight decline to BDT 3669.83 million. The investment picked up again in 2021,
rising to BDT 4339.55 million. This positive trend continued into 2022, with a
substantial increase to BDT 6417.67 million, and finished in a significant surge
to BDT 7421.78 million in 2023. This data highlights a fluctuating yet overall
upward trend in investments, particularly with marked increases in the last two
years, indicating a growing commitment to renewable energy by commercial banks
and non-bank financial institutions.

Fig. 3 Investment scenario of banks & financial institutions in renewable energy sector
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Fig. 4 Investment scenario of banks & financial institutions in energy efficiency

8.1.2 Investment in Energy Efficiency

Figure 4 illustrates the combined annual investment in energy efficiency by both
bank and non-bank financial institutions from 2016 to 2023. In 2016, the investment
was BDT 2948.04 million, which modestly increased to BDT 3254.52 million in
2017. A more significant rise occurred in 2018 with BDT 4645.62 million, followed
by BDT 5809.29 million in 2019. The investment saw a notable jump to BDT 10899
million in 2020. This growth continued, with investments reaching BDT 13795.7
million in 2021 and surging to BDT 26777.32 million in 2022. The most dramatic
increase happened in 2023, with investments soaring to BDT 69349.01 million. This
data indicates a strong and accelerating trend of investment for energy efficiency by
financial institutions, particularly in the last three years, highlighting an increasing
commitment to renewable energy development.

8.1.3 Investment in Alternative Energy

Figure 5 depicts the annual investment in alternative energy by bank and non-bank
financial institutions from 2016 to 2023, showing significant fluctuations. In 2016,
the investment was at a high of BDT 281.36 million, but it dropped sharply to
BDT 91.67 million in 2017 and further plummeted to BDT 7.72 million in 2018.
A recovery occurred in 2019 with investments rising to BDT 94.84 million, but
this was followed by another decline to BDT 38.37 million in 2020. In 2021,
investments slightly increased to BDT 43.84 million. A substantial surge was seen
in 2022, with investments reaching BDT 206.85 million, before dropping again to
BDT 61.36 million in 2023. This data indicates significant volatility in investment
levels, highlighting periods of both sharp declines and strong recoveries, suggesting
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Fig. 5 Investment scenario of banks and financial institutions in alternative energy

varying degrees of commitment and external factors influencing the investment
trends in the alternative energy sector.

8.2 Refinancing Scheme
8.2.1 IDCOL Refinancing Scheme

IDCOL’s most successful Solar Home System (SHS) Program, this reputed gov-
ernment financial institutions so far has introduced many refinancing schemes
and concerted programs to diversify the RE installations in areas like Biogas and
Biomass based power and energy generation, solar micro and mini-grid, solar
irrigation, and other types of commercial-scale RE projects (SREDA Homepage,
n.d.).

Under the IDCOL Solar Home System Program and Domestic Biogas Program,
loans are not issued directly to end users; instead, they are distributed through Par-
ticipating Organizations (POs). This lending model also applies to other renewable
energy projects, including solar-diesel hybrid systems for telecom base stations,
solar-powered transport, rooftop solar installations, solar cold storage and dryers,
battery charging stations, and community biogas initiatives. In contrast, larger grid-
tied renewable energy Independent Power Producer (IPP) projects will be financed
on commercial terms and may qualify for loans denominated in USD.
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8.2.2 Bangladesh Bank Refinancing Scheme

In August 2009, the central bank of Bangladesh introduced a BDT 2 billion green
banking refinance scheme aimed at promoting solar panels, biogas plants, and
effluent treatment plants (ETPs) to reduce industrial pollution and boost power
supply. The scheme offers loans to commercial banks at interest rates between 5%
and 12%, enabling them to provide loans to entrepreneurs at a maximum interest
rate of 12%. The initiative allows for 100% refinance facilities for rural and urban
solar panel installations, biogas power plants, and other green products. The scheme,
aligned with the government’s targets of meeting 5% and 10% of electricity demand
from green energy by 2015 and 2020 respectively, has expanded to include 47 green
products, with a specific focus on household and business enterprises.

Financing from Re-finance Scheme in Solar Home System

Individuals or entities who install solar panels for personal, joint, business, or
cooperative purposes in both urban and rural areas and obtain financing from banks
will be eligible for refinancing under this scheme. The sub-sectors covered include
solar home systems, solar mini-grids, solar irrigation pumping systems, and solar
photovoltaic assembly plants.

Figure 6 depicts the investment scenario in solar home systems through the
Central Bank refinancing scheme from 2016 to 2023. Initially, there was a sub-
stantial investment of 108.29 million BDT in 2016, representing the highest point
within this period. This significant investment suggests a strong initial push toward
promoting solar home systems. However, the following year, 2017, saw a dramatic

Fig. 6 Financing scenario in solar home system from Bangladesh Bank refinance scheme



44 M. M. M. Bhuiya and A. H. Russel

decline to 7.28 million BDT, and the trend continued downward, reaching near
negligible amounts in 2018 (0.09 million BDT) and 2019 (0.22 million BDT). A
slight recovery occurred in 2020 with an investment of 0.58 million BDT, followed
by a notable increase to 26.91 million BDT in 2021, indicating renewed interest or
possibly new policy incentives. Despite this resurgence, investments dropped again
to 2.72 million BDT in 2022 and slightly rose to 2.8 million BDT in 2023. This
trend reflects significant volatility in investments, likely influenced by changing
government policies, market dynamics, and financial conditions. The overall trend
indicates an initial high investment followed by a sharp decline, with a brief
resurgence in 2021, reflecting volatility and possibly the impacts of policy changes,
market conditions, and financial accessibility on the solar home system sector.

Financing from Re-finance Scheme in Biogas

Likewise, those who take loans from banks for producing and using biogas in rural
or urban areas will also be eligible for this refinancing scheme. Sub-sectors eligible
for this support include setting up biogas plants in existing cattle or poultry farms,
combined cattle rearing with biogas plants, producing organic fertilizer from slurry,
and establishing medium-scale biogas plants.

The graph in Fig. 7 illustrates the investment scenario in biogas projects through
the Central Bank refinancing scheme from 2016 to 2023. In 2016, there was a signif-
icant investment of 93.35 million BDT, the highest in the given period, indicating a
strong initial commitment to biogas development. However, this investment sharply
declined to 11.29 million BDT in 2017 and continued to decrease to 6.48 million
BDT in 2018. The downward trend persisted in subsequent years, with investments

Fig. 7 Financing scenario in biogas system from Bangladesh Bank refinance scheme
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dropping to 3.02 million BDT in 2019, 1.18 million BDT in 2020, and further to 0.69
million BDT in 2021. A slight increase was observed in 2022 with an investment of
1.47 million BDT, followed by another minor decline to 0.8 million BDT in 2023.
This overall declining trend highlights the challenges and perhaps diminishing focus
on biogas projects within the refinancing scheme, suggesting a need for renewed
policy support and incentives to revitalize investments in this sector. Therefore, to
boost the capacity of renewable energy in alignment with the government’s ongoing
emphasis, Bangladesh requires a significant increase in financing from diverse and
additional sources.

9 International Financing and Multilateral Institutions

International financing, through multilateral institutions such as the World Bank,
Asian Development Bank (ADB), and Green Climate Fund (GCF), provides sub-
stantial support for renewable energy projects, especially in developing countries.
These institutions offer concessional loans, grants, and guarantees that lower the
cost of capital and reduce investment risks (Sovacool, 2012). For instance, the World
Bank has financed multiple renewable energy projects in Bangladesh, including
solar power initiatives, through its IDA credits (World Bank, 2020). This bank
recently signed a $515 million agreement with the government of Bangladesh to
support the country in its clean energy transition by developing battery storage
systems and distributed renewable energy (World Bank, 2022). Previously, in
year 2019, government of Bangladesh receives $ 185 million from World Bank
for financing in renewable energy (World Bank, 2019). In May 2022 the Asian
Infrastructure Investment Bank extended a $200 million long-term credit line
to Bangladesh under which IDCOL will on-lend to eligible projects renewable
energy, energy efficiency, and related projects (Asian Infrastructure Investment
Bank (AIIB), 2022).

The Asian Development Bank (ADB) has entered into a financing agreement
worth $121.55 million with Dynamic Sun Energy Private Ltd. to construct and
maintain a 100 MW grid-connected solar photovoltaic power plant in Pabna,
Bangladesh. The plant is the country’s first private sector utility-scale solar facility
to secure support from global financiers (Asian Development Bank, 2024). Institu-
tions like IDCOL (Infrastructure Development Company Limited) and the recently
established Super ESCO have the potential to secure credit lines from multilateral
agencies to facilitate renewable energy projects in Bangladesh. The International
Finance Corporation (IFC) estimates that Bangladesh possesses a climate-smart
investment potential totaling $172 billion from 2018 to 2030, spanning various
sectors, including green buildings, transportation infrastructure, urban water, agri-
culture, waste management, and renewable energy. These investments are essential
for achieving the country’s Nationally Determined Contribution (NDC) goals. Out
of $172 billion, $3.2 billion is invested in renewable energy projects (IFC, 2020).
So, international financing is crucial, it often comes with stringent conditions
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and requires extensive documentation, which can be challenging for developing
countries to meet (Buchner et al., 2019). Bangladesh secured € 400 million in
funding from the European Investment Bank (EIB) and the European Union (EU)
for renewable energy generation and capacity building (Khan & Sultana, 2024).

10 Innovative Financing Mechanism

Green bond—Green bonds are designed to raise funds specifically for green
projects, including clean energy initiatives. Green sukuk (financial certificates)
operate in the same manner, with the exception that instead of fixed interest, the
income of investors follows Sharia principles (Islamic law) (World Bank, 2020).
Both green bonds and green sukuk serve as financing mechanisms for large-scale
clean energy projects. Notably, the inaugural issuance of green sukuk occurred
in June 2017, and by 2019, the annual issuance of this financial instrument had
escalated to $4 billion. From 2017 to September 2020, green sukuk worth $10
billion was issued in Indonesia, Saudi Arabia, the United Arab Emirates, and
Malaysia (Asian Development Bank (ADB), Asian Development Outlook, 2021). In
Bangladesh, IDCOL issued its first green bond in 2019 to finance renewable energy
projects, marking a significant step toward diversifying financing sources (Uddin et
al., 2019). Last year, a green sukuk amounting to 30 billion BDT ($300 million)
was issued for the development of a 230 MW capacity solar project in Bangladesh
(Babu, 2023). Investment in electricity is mostly public-funded and the private
sector accommodates a minor share. Issuing green bonds to increase investment
in reshaping domestic electricity production can be a step forward (Khan & Alj,
2021). Therefore, issuing green sukuk (Islamic bonds) for renewable energy projects
would serve as a strong foundation for financing large-scale renewable energy
initiatives in Bangladesh. In addition, leveraging green bonds could help overcome
financial barriers and catalyze investments in renewable energy at a significant scale.
Crowdfunding—Crowdfunding stands as a powerful tool to democratize access to
financing in renewable energy projects. Individuals collectively contribute small
amounts of capital to support large-scale projects. This model not only garners
public interest but also fosters a sense of community involvement in the transition
to green energy, as seen with platforms that directly connect investors to renewable
projects (Lam & Law, 2016). Pay-as-you-go (PAYG) approach—The PAYG model,
particularly in off-grid solar systems, allows consumers to pay for energy services
in installments, making renewable energy more accessible in low-income regions
(Rolffs et al., 2015). Foreign private investment—Foreign private investment also
presents significant potential for the country’s renewable energy sector. For instance,
a U.S.-based company has shown interest in investing in solar power projects in
Bangladesh, which could help reduce the nation’s reliance on fossil fuels and lower
its environmental impact. Public—private partnership—Bangladesh could rapidly
add an estimated 7500 MW of solar power to its energy mix through effective
public—private partnerships and adequate funding mechanisms like green bonds.
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Developing capacity through these partnerships and focusing on green finance is
vital. Both public and private financial institutions must prioritize their lending
portfolios to support the shift toward renewable energy. Commitment and account-
ability from all stakeholders are crucial for making the necessary investments in
renewable energy development. Therefore, to accelerate the transition to renewable
energy, it is essential to enhance the capacity of financial institutions, improve
policy frameworks, and develop innovative financing solutions that can effectively
mobilize the required capital.

11 Discussion

Access to energy finance plays an essential role in the development of renewable
energy in Bangladesh. Despite the country’s significant impending for renewable
energy, for the most part in solar and wind power, the expansion of these resources
has been slow. A major factor contributing to this sluggish growth is the lack
of adequate financing mechanisms tailored to the needs of renewable energy
projects. Renewable energy projects, by nature, often require high upfront capital
investments, which can be a barrier for many small and medium-sized enterprises
(SMEs) and individual investors in Bangladesh. A rough estimate suggests that
reaching the 40% renewable energy capacity target could incur cost for Bangladesh
ranging from $1.53 billion to $1.71 billion each year from 2024 to 2041. This
figure does not account for additional expenses like grid modernization and storage
facilities, which are critical for integrating renewable energy into the national grid
(Hossain, 2024).

Furthermore, banks and non-bank financial institutions in Bangladesh have
been reluctant to lend to renewable energy projects due to the perceived risks
associated with new and relatively untested technologies and the long payback
periods associated with these investments. This has created a financing gap, limiting
the ability of project developers to access the funds needed to scale up renewable
energy initiatives. The limited availability of concessional financing, high interest
rates, and stringent collateral requirements further exacerbate this challenge, making
it difficult for many potential investors to pursue renewable energy projects. As of
2023, total investment in renewable energy was significantly lower than needed,
with the central bank’s refinancing scheme contributing only a fraction of the
necessary funds. For instance, the total investment in solar home systems through
the central bank’s refinancing scheme plummeted from BDT 93.35 million in 2016
to just BDT 0.8 million in 2023 (Bangladesh Bank, 2023). This decline highlights
the inadequacy of current financial support mechanisms in driving large-scale
renewable energy adoption. Moreover, high interest rates, which range between
8% and 12% depending on whether the loan is provided directly or through
microfinance institutions (MFIs), further, deter potential investors (Bangladesh
Bank, 2022).
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The central bank’s refinancing schemes and other government-backed financial
initiatives have been crucial in promoting renewable energy investments. However,
these efforts are not sufficient to meet the growing demand for renewable energy. For
example, investments in biogas projects fell drastically from BDT 108.29 million in
2016 to a mere BDT 2.8 million in 2023 (Bangladesh Bank, 2023). Moreover, the
lack of awareness among financial institutions and investors about the profitability
and long-term benefits of renewable energy investments has hindered the growth
of this sector. There is also a need for more innovative financing solutions, such
as green bonds, blended finance, and public—private partnerships, to attract more
investment in renewable energy. This sharp decline underscores the need for more
robust financial instruments and policies that can sustain and increase investment in
the sector.

12 Recommendations

To ensure the successful development and expansion of renewable energy in
Bangladesh, it is crucial to address the multifaceted challenges that hinder progress
in this sector. The recommendations provided to create a more advantageous
environment for renewable energy investments, enhance financial accessibility, and
promote stakeholder collaboration. By focusing on strategic financial allocations,
streamlining regulatory processes, and fostering partnerships between the public
and private sectors, these recommendations seek to accelerate the transition to a
sustainable energy future. Some effective recommendations are discussed below:
Expand Government Support and Incentives: Another study finds that dis-
tribute funds purposefully in order to maximize the investment opportunity of $10
billion in renewable energy production over the next 10 to 12 years. Simplify
subsidies to align with the projected $2 billion needed to achieve the 40% renewable
energy goal, thus decreasing the existing subsidy burden of $2.82 billion. Therefore,
government of Bangladesh should consider expanding existing financial incentives,
such as subsidies, tax breaks, implement carbon tax and low-interest loans, to
encourage more investment in renewable energy. Additionally, the government
could establish a dedicated renewable energy fund to provide concessional financing
to SMEs and individual investors. Besides, develop financial products that are
explicitly designed to address the risks and credit concerns that are typically
associated with renewable energy projects. Likewise, to foster renewable energy
development, it is crucial to implement motivating and efficient incentives for
renewable energy entrepreneurs while leveraging international funding.
Furthermore, the current tax structures that favor fossil fuel investments create
barriers for renewable energy adoption. Expanding tax holidays for renewable
energy power plants from five to ten years, providing full duty exemptions for small-
scale solar projects, and lowering the overall tax rates on solar-related equipment
would create a more favorable environment for advancing clean energy initiatives
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in Bangladesh. These reforms would stimulate investment in renewable energy,
making it more competitive and attractive.

Focus on Clean Energy Financing: Focusing on clean energy financing is
indispensable for Bangladesh to meet its renewable energy targets. A study done
by the Change Initiative, the country will need around $26.5 billion to attain its
clean energy goals. Furthermore, 39% of the promised funding from development
partners for the energy sector remains undistributed. In the coming years, the
government must confirm the release of this committed support and enthusiastically
seek additional funding sources. Moreover, intensified efforts in securing funds from
bilateral, multilateral, and regional partners are necessary. Accessing global climate
funds, as well as clean energy and green technology funds should also be prioritized
to accomplish these goals.

Stakeholder’s Collaboration: Foster greater collaboration among stakeholders
to advance renewable energy by involving civil society, the private sector, academia,
and the media in the development, implementation, and monitoring of policies.
Additionally, seek new credit lines from international financial institutions to
empower IDCOL and BIFFL to offer extended loan terms or more competitive
financing options for renewable energy projects.

Improve Capacity Building for Financial Institutions: The results of previous
research and bankers’ opinion show that government authority and field-level
bankers do not have sufficient awareness and also fail to understand the critical need
for financing in green energy projects. Additionally, there is no set of guidelines for
commercial banks to determine what qualifies as a green or renewable project. As a
result, ground-level bankers consider green and renewable projects in the same way
as other commercial projects when it comes to financing them (Rahman, 2021). So,
banks and non-bank financial institutions (NBFs) need to develop better capabilities
like knowledge, tools necessary to assess and manage the risks associated with
renewable energy projects, and to build dedicated teams or units within banks
and NBFIs that focus solely on renewable energy financing. Also, regular training
programs and workshops should be conducted in collaboration with international
experts to improve understanding of the financial dynamics of renewable energy
projects. As well as increase the Bangladesh Bank’s monitoring system, i.e. to
verify whether banks and NBFIs have been obeying to the regulator’s instructions
or policy to secure the required financing for green and renewable energy sectors.
Finally, to ensure the successful implementation of renewable energy projects and
initiatives, the lending process will be streamlined and reinforced. Simplifying and
strengthening these procedures will help facilitate easier access to financing and
promote broader adoption of renewable energy solutions.

Promote Innovative Financing Mechanisms: The introduction of innovative
financing mechanisms like green bond, crowdfunding, blended finance, and other
financing tools could attract a wider range of investors including international
development partners, private sector investors, and impact investors as well as
help to bridge the financing gap in the renewable energy sector. Green bonds, for
instance, could raise significant funds for renewable energy projects, leveraging the
growing global demand for sustainable investment opportunities. The government
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could also explore the potential of blended finance, which mixed public and private
funds to reduce investment risks.

Green Financing Framework: A robust green financing framework, along with
enhanced capacity among stakeholders, is key to improving access to financing
for the promotion of renewable energy and energy efficiency. This is fundamental
for attaining Bangladesh’s sectoral targets and ensuring the country’s long-term
energy security. Importantly, the advantages of such a strengthened green financing
framework will not be confined solely to the sustainable energy sector. Instead,
its positive effects will extend across a variety of green sectors, fostering a
transition toward a more sustainable and environmentally friendly economy. This
holistic impact underscores the significance of green financing in promoting broader
economic and environmental sustainability in Bangladesh.

Strengthen Public—Private Partnerships (PPPs): Public—private partnerships
(PPPs) have the potential to significantly accelerate the development of renewable
energy projects in Bangladesh. By fostering collaboration between the government
and private sector, PPPs can leverage shared resources and expertise to scale up
clean energy initiatives. To encourage more PPPs, the government should provide
clear guidelines and reduce bureaucratic red tape, which often hinders private invest-
ment. Moreover, offering co-financing opportunities can help reduce the financial
burden on private investors, making renewable energy projects more attractive. This
collaborative approach will play a crucial role in meeting the country’s renewable
energy targets while enhancing energy security and sustainability.

Expand the Competitive Private Sector for Renewable Energy: Privately
owned power plants play a noteworthy role in the renewable energy sector. But,
in Bangladesh, private sectors are more reluctant to invest in renewable energy
projects due to the lengthy process, i.e., at least 30 numerous approvals are
needed for green energy development projects (Rahman, 2021). These bureaucratic
difficulties slow down the implementation of green energy projects in the country.
Therefore, encourage and support the private sector in participating in incentives,
confirming arrangement with national renewable energy goals and regulations while
maintaining transparency. Provide training to develop bankable projects and offer
guidance on directing regulations and securing funding.

Raise Awareness and Education: Rising awareness regarding the profitability
and environmental benefits of renewable energy among potential investors, financial
institutions, and the general public is crucial. Public education campaigns, coupled
with targeted outreach to financial institutions and potential investors, could help
shift perceptions and increase investment in the renewable energy sector and
highlight their long-term profitability.

Develop a Robust Regulatory Framework: A clear, supportive, and strong reg-
ulatory framework is essential for attracting investment in clean energy projects. So,
the government should work on creating clear, consistent, and supportive policies
that provide long-term certainty for investors, including streamlined procedures for
project approvals and clear guidelines on tariff structures.

Leverage International Financial Support: Bangladesh should actively seek
international financial support through grants, low-interest loans, and technical
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assistance from global organizations like the World Bank, Asian Development
Bank, and Green Climate Fund. These resources can help reduce the financing gap
and take international preeminent practices to the native perspective.

Reduce Customs Duties on Solar Products: Reducing customs duties on solar
products could significantly boost the adoption of solar energy in Bangladesh.
Estimates from several global organizations indicate that rooftop solar systems
could generate 5,000 MW of electricity, with 400 MW coming from the textile
sector. This transition to solar energy has the potential to yield significant fiscal
savings, allowing the government to save between Tk. 5,230 crore and Tk. 11,032
crore annually from a 2,000 MW rooftop solar capacity. However, the expansion
of solar energy is hindered by high import duties and taxes on solar products,
which inflate installation costs. While solar panels attract a low tax rate of just 1
percent, solar inverters are subject to a hefty 37% duty. Furthermore, total taxes and
tariffs (TTI) on solar equipment range from 26.2% to 58.6%, further exacerbating
costs. The current Net Energy Metering (NEM) policy, which imposes a 10 MW
cap, also limits the growth of solar energy. By reducing import duties on solar
products and providing subsidies, particularly for SMEs, installation costs could be
significantly lowered. Additionally, simplifying and standardizing the NEM process
would facilitate greater expansion opportunities.

Therefore, by addressing the financing challenges in the renewable energy sector,
Bangladesh can unlock its full possibility for sustainable energy development.
Through the implementation of targeted policies, innovative financing mechanism
and other recommendations will not only enhance access to energy finance but also
quicken the transition to a greener, more sustainable energy future for the country.

13 Conclusion

The progress of renewable energy in Bangladesh is critically dependent on over-
coming significant financial barriers that currently hinder progress. Whereas the
country has fixed ambitious goals to intensify its renewable energy capacity, the
present investment amount fall far short of what is necessary. The study highlights
the insufficiencies in present financial instruments, mainly the central bank’s
refinancing scheme, which has seen a sharp decline in investment in main areas
such as solar home systems and biogas projects. This investigation underscores
the need for a comprehensive and strategic approach to energy financing, which
comprises scaling up government intervention, boosting the capabilities of financial
institutions, and fostering innovative financing models like green bonds and com-
bined finance. Furthermore, enhancing regulatory frameworks and fostering strong
public—private partnerships are critical to unlocking the prospective for domestic
and international investment in the sector. The incorporation of these components
is essential to bridging the existing financial gap, thereby enabling Bangladesh to
meet its renewable energy targets and ensure a sustainable, resilient, and inclusive
energy transition.
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Explainable Al in Energy Forecasting: )
Understanding Natural Gas Py
Consumption Through Interpretable

Machine Learning Models

Farhana Sultana Eshita, Tasnim Jahin Mowla, and Abu Bakar Siddique Mahi

1 Introduction

In 2024, it is forecasted that the global demand for natural gas might rise by
2.5%. Predicted chillier winters in 2024, compared to the mild ones in 2023,
might lead to an increased demand for heating in domestic and commercial heating
(2024). Compared to other fossil fuels, natural gas is preferred for its large supply,
adaptability, low price, and ecologically friendly nature. This makes it an ideal
option for many uses in households and businesses, such as power generation,
heating, and vehicle fueling. As a steady supply of gas is so important, precise
consumption prediction is a must for efficient energy management. This ensures a
consistent and efficient utilization of energy resources. Figure 1, a visual depiction
is presented of the statistics regarding United States’ natural gas consumption from
1995-2023 (2024). The research shows that in 2021, the United States consumed
a total of 32.51 trillion cubic feet of natural gas. This natural gas consumption has
been steadily increasing over time.

From an analytical point of view, it is essential to develop a comprehensive
prediction model which is capable of predicting natural gas consumption in all
sectors, although explicit prediction models (2023 ) for distinct sectors—Iike indus-
trial, commercial, or residential consumers—are currently available. Employing
such models for each industry can be laborious and expensive. The utilization
of a comprehensive model which includes every sector enables a more efficient
and effective method of predicting natural gas consumption. A more precise
representation of the total gas consumption scenario, improved resource allocation,
and enhanced decision-making in energy management are all feasible through the
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Fig. 1 Natural gas use in the United States from 1995 to 2023

implementation of a comprehensive model. In (2022), the authors developed an
Android app to read gas meters. The app uses optical character recognition (OCR)
which is expensive, complicated and requires several devices for support.

Song et al. (2020) present a method for monitoring substation instruments
based on image recognition. The instrument displays are located and interpreted by
the system which uses a Gaussian difference model and SIFT. The experiment’s
outcomes demonstrate how well the system recognizes graphical interfaces on
substation equipment. Although the instrument identification system works well for
substation equipment with graphical user interfaces, it is not suitable for monitoring
natural gas meters because they are characterized by their numerical displays. An
automated monitoring system for gas alarm devices in coal mines was created by Liu
et al. (2013) using image recognition technology. By automatically identifying the
images captured by methane detectors, their proposed digital recognition algorithm
obtained an accuracy of over 99.9%. One downside of this method is that its
algorithm has a relatively high computational complexity, which requires further
optimization for real-time application. We present an innovative approach in this
paper that addresses the challenges of previous approaches. A light-weight CB
model-based system is developed, which incorporates explainable Al (XAI) tools
to ensure precise forecasts of natural gas consumption. By combining explainability
and deep learning, our model not only makes accurate predictions, but it also gives
us a lot of information about what makes people use gas. This gives us a way to make
decisions that is clear and easy to understand. The following briefly highlights the
key contributions of this paper:
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e We provide a comparative assessment of eight machine learning models for
reliable forecasting of natural gas. The CB model demonstrated exceptional
performance with an impressive R-squared score of 99.81%, surpassing all other
methods.

* We analyze United States natural gas consumption from 2014 and 2024.

* We demonstrate how the best-performing model generates outcomes using two
different explainability methods, providing insight into the decision-making
procedure of the model.

The remaining content of this paper is structured as follows:

A brief overview of relevant research on the subject in question is provided
in the Literature Review section. The Methodology section provides a detailed
overview of the dataset and the different strategies used. Within the Results section,
the experiment’s results are examined and summarized. The Conclusion section
ultimately provides a finale for the work.

2 Literature Review

2.1 Statistical Approaches

In four regulated industrial regions of Turkey, Cihan (2022) investigated the impact
of COVID-19 lockdowns on the use of electricity and natural gas and discovered
significant declines in these usage patterns. ARIMA and Holt-Winters models were
developed to forecast the consumption of natural gas and electricity. The most
effective models considering the data on natural gas and electricity consumption
were found to be ARIMA(0,0,2)(2,1,0); and ARIMA(0,0,2)(0,1,1)7, respectively.
The value for MAPEEjecticity Was 1.37%, RMSEEgecuicity Was 87.2, R2Electricity was
0.99, MAPEG,s was 5.42% and RMSEg,s was 50.9, R2G2ls was 0.92. Using data
from 2015 to 2022 acquired through the US Energy Information Administration
(EIA), Bhuiyan et al. (2024) used advanced statistical methods to analyze fuel usage
patterns in the production of electricity in the United States. The methodologies
encompassed all four benchmark techniques, namely Mean, Naive, Drift, and
Seasonal Naive, in addition to Seasonal and Trend Decomposition using Loess
(STL), exponential smoothing (ETS), and the Autoregressive Integrated Moving
Average (ARIMA) approach. The most minimal RMSE of 20,687.46 for natural
gas consumption is produced by the ETS model. There are issues with the paper’s
dependence on historical records and forecasting methods, such as the potential for
unanticipated changes in technology, economics, and policy to affect future energy
trends and the requirement for more research into the capacities for regional energy
production and consumption. Using historical daily natural gas consumption data
from the Ghana National Gas Company spanning three years, from January 2020
to December 2022, Broni-Bediako et al. (2024) forecasted Ghana’s daily natural
gas consumption using both the ARIMA and SARIMA models. The results showed
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that both models can forecast consumption with a good degree of accuracy, with the
SARIMA model slightly outperforming the ARIMA model with an RMSE of 22.25
and a Mean Absolute Percentage Error (MAPE) of 6.96%, compared to an RMSE
of 23.8 and a MAPE of 7.29% for the ARIMA model. The authors did note that
although the ARGIMA and SARIMA models perform well in terms of prediction,
their applicability is restricted because of their short-term focus.

2.2 Machine Learning Approaches

Dual Convolution with Seasonal Decomposition Network (DCSDNet) is a novel
technique for natural gas consumption forecasting, which was introduced by Ding
et al. (2023) using actual daily city-level natural gas consumption information
collected from January 2016 to June 2021. DCSDNet received 19.4977 for RMSE
and 0.9063 for R? in terms of daily natural gas consumption forecasts. With a
forecast spectrum ranging from two to seven days, DCSDNet, LSTM, CNNLSTM,
and TCN execute the multi-step forecasting. With a 7-day prediction horizon, the
suggested DCSDNet obtained 28.3979 for RMSE and 0.8012 for R?. Aminu et al.
(2023) used a hybrid ensemble regression machine learning approach to forecast the
demand for natural gas in residential settings. Regression algorithms, which include
support vector regression, decision tree regression, K-nearest neighbor, and linear
regression, are combined in the hybrid ensemble approach. The Kaggle machine
learning repository provided the study’s dataset, which included monthly natural
gas consumption data from January 1997 to August 2020. Achieved accuracy of
97.48707913, R? of 0.792579296, MAE of 0.721612403, and MSE of 1.164821453
are the results of the Hybrid Ensemble (HE). Gawet and Palifiski (2024) used
global and local forecasting techniques to predict hierarchical long-time series of
household natural gas consumption in Poland using a data set of 46,297 observations
that represented natural gas consumption in Polish territorial units. With an RMSE
of 4970 and a MAPE of 7.1%, MLP Global Ex produces the best results when the
average performance of global models for hierarchical forecasts harmonized with
the middle-out approach is analyzed.

2.3 Approaches with eXplainable Artificial Intelligence (XAI)

Sim et al. (2022) used data from a university building in Seoul, Republic of Korea,
to present a methodology using XAl for energy consumption forecasting. With an
R? 0f 0.871, MAE of 2.176, and MSE of 9.870, the prediction model demonstrated
high accuracy. Based on their influence, three groups were created from the input
variables using XAI analysis. When compared to other cases (p < 0.05 or 0.01),
models that included variables from the Strong + Ambiguous or Strong groups
showed better prediction performance (R2 of 0.917, MAE of 1.859, MSE of 6.639
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Table 1 Overview of literature review

Research Year | Modeling Technique Performance
Cihan (2022) 2022 | ARIMA(0,0,2)(2,1,0)7 | R%Gas Of 0.92
Ding et al. (2023) 2023 | DCSDNet R? of 0.9063 for daily natural gas

consumption prediction and R?
of 0.8012 for a 7-day prediction

horizon.
Aminu et al. (2023) 2023 | Hybrid Ensemble (HE) R? of 0.792579296
Handayani et al. (2023) | 2023 | XGBoost R? 0f 0.95
Bhuiyan et al. (2024) 2024 | ETS model Lowest RMSE of 20,687.46
Clement et al. (2024) 2024 | SCAL R? of 0.68649

for Strong + Ambiguous; R? of 0.916, MAE of 1.816, MSE of 6.663 for Strong).
The Strong and Strong + Ambiguous groups did not differ significantly, indicating
that concentrating on the Strong group variables (Year, E-Diff, Hour, Temp, Surface-
Temp) as identified by XAI produced good prediction outcomes. With an XGBoost
Regressor model that takes operational and environmental factors into account,
Handayani et al. (2023) were able to predict fuel oil consumption in cargo container
vessels with a high degree of predictive performance with an R* of 0.95 and MAE
of 10.78 kg/h. By identifying the major controllable and uncontrollable factors
influencing fuel consumption, the study uses SHAP analysis to provide region-
specific insights for improving energy efficiency and operational strategies in the
maritime industry. To improve energy consumption prediction models, Clement et
al. (2024) introduced the novel SHAP Clustering-based Adaptive Learning (SCAL)
technique. For the Financial Distress data set, the model’s testing accuracy is
96.190. The model’s testing R” is 0.68649 and its RMSE is 0.70856 for the Power
data set. Table 1 provides the highlights of the literature review.

3 Methodology

A new methodology has been developed that encompasses data collection, prepro-
cessing, model training and testing, performance evaluation, and model validation
using explainable artificial intelligence (XAI) tools like SHAP. The goal is to
determine the most accurate pipeline for predicting natural gas consumption. Each
aspect of the methodology is separately illustrated in Fig. 2, which offers a top-
down view of the process. The initial steps include basic preprocessing tasks such
as checking for null values, scaling, and encoding. After that, the data is divided
in an 80:20 ratio into training and testing sets. The models are trained using a
variety of machine learning techniques, and their performance is evaluated using
five metrics: R? score, mean absolute error (MAE), mean squared error (MSE), root
mean squared error (RMSE), and mean absolute percentage error (MAPE). The
results for each metric are compiled into individual tables to allow for thorough
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Fig. 2 Outline of the proposed methodology

comparison and analysis. The findings show that the CatBoost (CB), Extremely
Randomized Trees (ERT), and Random Forest (RF) models achieved R? scores of
99.81%, 99.69%, and 99.60%, respectively. Due to the superior performance of
the CatBoost model, an XAI tool was used on it, providing deeper insights into
its underlying mechanisms and decision-making processes. A detailed overview of
the models used, the methods for measuring performance, and the insights gained
from the XAI tool are provided below.

3.1 Dataset Description

This dataset sourced from Kaggle (2024) includes monthly statistics on natural
gas consumption for the United States from January 2014 to January 2024,
segmented by state, industry (automotive fuel, commercial, industrial, residential,
and electric power), and particular consumption process. The Energy Information
Administration (EIA) of the United States provided the data. Table 2 provides a
comprehensive overview of the structure of the dataset.
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Table 2 Overview of dataset

Feature Overview

Duoarea State abbreviation

Area-name State name

Product The energy product code

Product-name Name of the energy product

Process The process or sector code

Process-name Specific consumption process within the sector
Value Consumption amount

Year The year for the data entry

Month The month for the data entry

Series A unique identifier for the data series

Series description A description of the data series

Units Monthly consumption in millions of cubic feet (MMCF)

3.2 Data Preprocessing

Several critical actions are executed during the data preprocessing phase, which is
essential for assuring the quality of the data and preparing it for analysis. Initially,
ordinal encoding is employed to convert categorical features into numerical values.
This method assigns a unique integer to each category, preserving the order, as
shown in Eq. (1):

Ordinal (li) = 0;j (1)

where Ordinal(/;) denotes the encoded integer for category /; and o; is assigned
ordinal value.

The subsequent step is the standardization of numerical features, which involves
adjusting the data to have a mean of O and a standard deviation of 1. This is
mathematically represented as Eq. (2):

x' = )

Within this equation, x is the standardized feature, x is the original feature
value, w represents the mean, and ¢ is the standard deviation of the feature. This
standardization assures that the features are consistently scaled, which is vital for
the effective development of the model.

To handle missing values, any data points containing such values are removed,
represented by the ruler:

Remove x; if x; is null
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where x; refers to a specific data point. Additionally, duplicate entries are eliminated
to preserve data integrity, described by the following condition:

Remove x; if x; = x; fori # j

These preprocessing measures are crucial for improving the dataset’s quality,
ensuring it is ready for subsequent analysis and modeling efforts.

3.3 Exploratory Data Analysis

The bar plot of Fig. 3 shows the average annual natural gas consumption from 2014
to 2024. It shows that the highest consumption rate was in 2024 and the lowest
consumption rate was in 2014. From 2014 to 2018, the consumption value was
between 20000 MMCF to 30000 MMCEF. In 2019, 2020, 2022, and 2023 the gas
consumption value was between 30000 MMCF and 35000 MMCEF.

The bar plot of Fig. 4 represents the natural gas consumption from January to
December. All the months are encoded serially from 1 to 12. The plot shows that
the highest consumption value was in January, which is 40,000 MMCF and the
lowest value was in May, which is 24,000 MMCEF. In May, June, and September the
consumption rate is low and their consumption value is under 25,000 MMCEF. The
consumption value is extremely high in January and December, their consumption
values lie in 35,000 MMCEF to 4000 MMCEF.

Fig. 3 Average annual natural gas consumption
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Fig. 4 Average monthly natural gas consumption

Fig. 5 Natural gas consumption in US area

Figure 5 shows the natural gas consumption in 51 areas of the United States.
Among them, the natural gas consumption rate is extremely high in Texas, which
is 571970195.0 MMCEF. The least natural gas consumed in USA-HI and their
consumption value is 59,968.0. Besides USA-HI the consumption rate is also low
in USA-VT, USA-DC, USA-ME, USA-AK, USA-SD, USA-DE, and USA-RI,
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Fig. 6 Natural gas consumption by process

whereas the consumption rate is high in California, Florida, New-York, Loss, and
USA-LA.

Figure 6 represents the 8 sectors of United States where the natural gas
consumed. The plot shows that natural gas is least used as vehicle fuel and the
consumption value is 989544.0 MMCEF. The big portion of natural gas is delivered to
consumers and the portion number is 543148364.0 MMCEF. Beside this, natural gas
is highly used for producing electric power and it is also notably used for fulfilling
industrial purpose. Natural gas is consumed highly in US residential, under the
sectors.

3.4 Machine Learning Algorithm

Extreme Gradient Boosting (XGB): Machine learning algorithm XGB is a
member of the boosting algorithm family. It builds a sequential ensemble of weak
learners (typically decision trees) such that every new learner corrects the errors
of the previous ones. The culmination of all the weak learners’ predictions yields
the final forecast. XGB significantly outperforms the GBDT algorithm. The L1 and
L2 regularization terms are introduced by XGB. Only the first derivative is utilized
when the model is optimized by GBDT. The loss function undergoes a second-order
Taylor expansion by XGB. To minimize computation and avoid overfitting, XGB
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allows column sampling. Following each iteration, XGB distributes the learning
speed among the leaf nodes, lowers the weight of each tree, and improves the space
available for learning that comes after (2022). The objective function of XGB can
be expressed in its general form as Eq. (3):

i=1 k=1
Obj (©) = Loss (yi. 5i) + Y _ Q(fi) 3)
i=1 k=1

where ® represents the set of parameters (including both the parameters of individ-
ual weak learners and global parameters), n is the number of training examples, K
is the ensemble’s number of weak learners (trees), fi. (x) denotes the prediction of
the k™ weak learner for input x, y; is the predicted output of the ensemble for the
i training example, y; is the true output for the /" training example, Loss (y,-, )7,-)
represents the loss function, which calculates the difference between the actual and
predicted outcomes, and 2(fx) is a regularization term that restricts the complexity
of individual weak learners to control overfitting.

Random Forest (RF): An ensemble learning technique for classification and
regression problems is the RF algorithm. It generates an extensive number of deci-
sion trees throughout training, using which it extracts the class mode (classification)
or the average forecast (regression). To build a regression tree, the data is separated
into a series of rectangles, one after the other. A criterion (such as the residual sum
of squares) is minimized for every split variable. Once split into the feature space,
two regions are stored as nodes. Until a stopping condition is met—for example,
the minimum number of observations in terminal nodes—these nodes are kept apart
further. After that, the response variable is predicted by averaging the results for
each group (2023).

For regression:

Let T be the number of trees in the forest, and (x) be the prediction of the i tree.

The final prediction (x) for a given input x is determined by averaging over all
the trees as shown in Eq. (4):

1 T
Fo == > fito) )

i=1

K-Nearest Neighbors (KNN): A straightforward and understandable technique
for regression and classification is the KNN algorithm. It bases its predictions in
the feature space on the majority class of its k nearest neighbors. This algorithm
relies heavily on the distance between points; several distance metrics, including the
Euclidean, Manhattan, and Minkowski distances, can be applied. The fundamental
idea behind the KNN method seeks to locate the k known samples with class
labels that are closest to a new sample. One may then predict or classify the new
sample using the class labels associated with these k samples. When classifying a
new sample in classification tasks, the KNN algorithm uses the class that emerges
the most commonly among the k nearest neighbors. The KNN algorithm uses the
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average value of the k nearest neighbors to determine the predicted value of the new
sample in regression tasks (2023). Equation (5) is used to calculate the Euclidean
distance.

Euclidean Distance =

®)

Z (pi —ai)*
i=1

Here, p; and g; is the i dimension of points p and ¢, and n is the number of
dimensions

Light Gradient Boosting Machine (LGB): The open-source gradient boosting
framework LGB was created by Microsoft. Especially for large-scale datasets and
high-dimensional features, it is made for efficient and distributed training. Written in
C++, LGB offers interfaces for Python, R, and other programming languages. The
LGB model performs exceptionally well when processing large amounts of data.
Its primary distributed computing technique involves splitting the data into multiple
parts and applying gradient operations to each part to ultimately realize the model’s
prediction accuracy (2024). The main goal of LGB is to minimize a particular loss
function, which is commonly shown as Eq. (6):

LO=Y100F@)+Y ) ©)

i=1

Here, £ (0) is the overall objective function, [ is the loss function, which
quantifies the variation between the actual label y; and the predicted value F(x;),
Q(f;) is the regularization term that restricts complexity in the model to prevent
overfitting, 6 represents the parameters of the model, n is the number of samples,
and K is the number of trees.

Adaptive boosting (ADB): For issues involving regression and classification,
one well-known ensemble learning approach can be identified as ADB. It fuses
numerous weak learners, typically decision trees, to put together a powerful
classifier. ADB’s basic principle is to train weak learners on the dataset iteratively,
paying particular attention to the cases that were incorrectly classified in the
previous iteration. The iteration concept is the foundation of the meta-ensemble
ADB model. Only one weak learner is trained in a given iteration; the trained weak
learner then participates in the usage of the subsequent iteration. The ultimate strong
classifier is created by combining the new weak classifier and weight produced by
each cycle. Additionally, a strong learner can effectively classify PV faults (2022).
The equation for the final classifier is presented in Eq. (7):

T
H (x) = sign (Z ﬁihim) (7

i=1
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Here, (x) denotes the final classifier, T indicates the total number of weak
classifiers, h(x) represents the weak classifier at step i, §; denotes the weight
assigned to the weak classifier £;(x), sign is the sign function

Categorical Boosting (CB): Yandex created the machine learning library CB,
which is well-known for its efficiency when handling categorical variables. It works
especially well for tasks like ranking, regression, and classification. Different data
formats can be handled by this algorithm. This algorithm’s ability to automatically
manage categorization features means that CB can be used without the need for
obvious category-number conversion preprocessing, which is one of its advantages.
The algorithm also reduces overfitting, which results in more general models, which
is another significant advantage (2024). An equation in this regard is illustrated in

Eq. (8)
d N
F@)=Fo@+) > fi(xw) 8)
t=1

Here, F(x) denotes the general prediction function that CB seeks to comprehend,
FO (x) denotes the first estimate or base prediction, T denotes entire tree count of
the ensemble, N denotes the overall quantity of training samples, ZLI denotes
the summation over the ensemble of trees, Z,N: | denotes the total of the training
sample sums, and f; (x;) denotes the M tree’s prediction for the i" training sample.

Gradient Boosting Machine (GBM): Strong machine learning methods such
as GBM are applied to both regression and classification problems. It is a part
of the ensemble learning techniques, which combine several models to increase
performance as a whole. Specifically, GBM focuses on creating a sequence of
weak learners, usually decision trees, and improving them iteratively by reducing
the mistakes made by the earlier models. Gradient boosting combines the iterative
gradient descent’s optimization potential with the decision trees’ flexibility. By
gradually aggregating them, it seeks to improve the performance of weak learners
and produce a strong and capable learner for classification and prediction tasks
(2024). Equation (9) provides the equation in this regard.

Fy ()C) = Fm—l(x) + thm(x) (9)

Here, F;,—1(x) is the ensemble’s prediction up to the (m — 1)‘h iteration, y,, is
the weight or contribution of the m™ weak learner to the final model, and () is
the weak learner added at the m™ iteration.

Extremely Randomized Trees (ET): The machine learning algorithm known
as ET is a member of the decision tree-based model family of ensemble learning
techniques. On the basis of random subsets of the training data and features, it builds
several decision trees. Similar to Random Forest, Extremely Randomized Trees uses
a large number of decision trees, but it adds additional unpredictability to the process
by training each tree with the entire learning sample and randomly dividing the trees
top-down. It selects the division point at random rather than figuring out the best
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division point for each feature (for example, based on information entropy or Gini
impurity). The value is chosen at random and uniformly from the empirical feature
space. The division point of the node is determined by taking the division point with
the highest score out of all the randomized division points (2024).

3.5 Explainable Al

SHapley Additive exPlanations (SHAP): SHAP, a machine learning technique for
deciphering and analyzing complex model predictions. Using Shapley values from
game theory, SHAP is a technique for describing the predictions of a model. This
method assesses each input characteristic’s influence on a machine learning model’s
prediction quantitatively. Shapley values, which have their roots in cooperative game
theory, provide a way to divide “payoffs,” or the game’s prizes, equitably among
several cooperating players. These “players” stand in for the characteristics or traits
in the context of machine learning, and the “payoffs” are the “predicted outcomes.”
(2024). Equation (10) represents a linear explanation model used in SHAP:

T
h(x') =0+ dox; (10)

i=1

Here, h indicates the explanation model, 7 indicates the largest coalition size
possible, x’ indicates the coalition vector (x' € {0, 1}T), and ¢; indicates the feature
attribution for a feature i (¢; € R).

4 Results

4.1 Evaluation Metrics

Mean Squared Error (MSE): MSE is a frequently used measurement to gauge
the effectiveness of a regression model. The statement conveys the average squared
deviation that exists between the observed and predicted values by the model. MSE
is computed using Eq. (11).

N
1 A \2
Mean Squared Error = ]TI Z (Tk - Tk> (11)
k=1

Root Mean Square Error (RMSE): The precision of a prediction model
is evaluated using RMSE, an often-used statistic, especially when performing
regression analysis. In order to calculate it, one must extract the square root of the
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mean of the squared disparities between the expected and actual values. Equation
(12) generates the RMSE.

Root Mean Square Error = 12)

Mean Absolute Error (MAE): An evaluation of a regression model’s perfor-
mance is done using an indicator known as MAE. It determines the average absolute
difference between the expected and actual values in a dataset. The formula for
determining MAE is illustrated in Eq. (13) below:

Z];jzl [Tr —
N

Mean Absolute Percentage (MAPE): MAPE is an indicator that’s frequently
employed to evaluate the accuracy of forecasting techniques. MAPE quantifies the
average absolute proportion deviation between the predicted and actual values. The
computation of MAPE is demonstrated in Eq. (14).

Mean Absolute Error = (13)

T — 7T
K Tk 100% (14)
Tk

| XN
Mean Absolute Percentage Error = ]TI Z
k=1

Coefficient of Determination (R%): R? score is a statistical measure which
shows what proportion of the variation of the variable that is dependent can be
anticipated from the independent variables. It is a variable of type binary, a value of
1 signifies a precise correspondence, whereas a value of 0 denotes the absence of
a link between the independent and dependent variables. It is computed using Eq.
(15).

ZJ::I <Tk - :rk)z
Shey (e =)

Coefficient of Determination = 1 — (15)

In the above equations,

— Y : Observed Values

- Yk : Predicted Values

— Wk : True Value

— Y : Mean of the Actual Values
— N: Total number of data points
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Table 3 Performance comparison across multiple models

Name MAE MSE RMSE MAPE R?

XGB 5888.31 183314966.15 13539.39 2.38 x 107 99.08%
RF 2445.49 79204171.05 8899.69 1.04 x 10'6 99.6%
KNN 2484.90 1186191171.32 10891.24 5.01 x 10'3 99.4%
LGB 4622.77 151574708.29 12311.56 2.79 x 10" 99.24%
ADB 3534.15 10714437.11 10351.05 3.79 x 10! 99.46%
CB 1565.15 37013809.03 6083.89 4.24 x 10'6 99.81%
GBM 11264.31 716784480.06 26772.83 2.83 x 10" 99.4%
ET 1823.70 61438319.52 7838.26 3.48 x 101 99.69%

4.2 Machine Learning Model Performance Analysis

As displayed in Table 3, among the models compared, CB stands out as the
best-performing model, demonstrating exceptional predictive accuracy with the
lowest RMSE of 6083.89 and the highest R? score of 99.81%. CB excels in
accurately predicting outcomes, making it ideal for applications requiring precise
and reliable predictions. Following CB, RF and ET perform strongly with low
RMSE values of 8899.69 and 7838.26, respectively, coupled with high R* scores
of 99.6% and 99.69%. These models provide robust predictive capabilities suitable
for tasks demanding accurate modeling of complex data relationships. ADB and
KNN also deliver solid performance, showing moderate prediction errors and high
R? scores of 99.46% and 99.4%, respectively. In contrast, XGB exhibits the highest
RMSE of 13539.39 and an R? score of 99.08%, indicating comparatively higher
prediction errors among the models evaluated. While still demonstrating strong
overall performance, XGB highlights areas where improvements in prediction
accuracy could be advantageous.

4.3 Result of the XAI Tool: SHAP

Investigating the explainability of machine learning models is a critical endeavor in
ensuring their reliability and trustworthiness. In this pursuit, the SHAP (SHapley
Additive exPlanations) method emerges as a potent tool, serving to enhance the
interpretability of these models by delineating the impact of individual predictor
variables on model outputs. The utilization of SHAP values offers a nuanced under-
standing of the way each variable affects the forecasting model, thus furnishing
invaluable insights into the underlying mechanisms governing predictions. Figure 7
encapsulates the culmination of this investigative process, presenting summary plots
that meticulously elucidate the relationship between model inputs and SHAP values.
Within these plots, each characteristic is symbolized with a vertical bar, positioned
along the x-axis in accordance with its corresponding SHAP value. A pivotal
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Fig. 7 The SHAP values on the model for every feature

measure of a feature’s impact on the model output is the polarity of these values,
where positive indicates an augmentative effect and negative indicates a diminutive
influence. Moreover, the magnitude of SHAP values provides a quantitative measure
of the strength of this influence, furnishing researchers with a comprehensive gauge
of variable importance. Crucially, the incorporation of a color gradient into these
visualizations further enriches their interpretability, with blue hues connoting lower
feature values or adverse effects, and red hues signifying higher values or beneficial
contributions. This color scheme not only accentuates the relative significance of
each feature within the dataset but also facilitates a nuanced understanding of
their respective roles in shaping model predictions. Thus, by imbuing the SHAP
plots with both quantitative and qualitative insights, researchers are empowered
to discern the intricate interplay between feature values and predictive outcomes.
Figure 7 not only displays a graphic depiction of the SHAP value distribution across
different features but also affords a hierarchical ranking of these features based
on their mean absolute SHAP values. Through this dual perspective, researchers
are equipped to discern both the relative importance of individual features and the
magnitude of their impact on forecasting accuracy. Notably, the findings underscore
the preeminent influence of the “duoarea’ variable on prediction outcomes, followed
closely by “area-name” and ‘“‘series” as the second and third most influential
features, respectively.

Figure 8 displays a more basic feature importance plot. The model was more
affected by the variables that were at the top than by the ones at the bottom.
Attributes, namely duoarea, area-name, series, and process-name, showed substan-
tial influence on the model outcome, as indicated by the depiction of SHAP values
in Fig. 8. The series description, procedure, month, and year were the four attributes
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Fig. 8 The importance of each feature to the prediction result

with moderate importance. The least significant features, which had little to no
impact on the forecasting model, were likewise highlighted by the SHAP values
in Fig. 8, as opposed to the high-importance features. Three features, namely units,
product, and product-name, had no bearing on the forecasting model, as can be
observed from the graphic in Fig. 8.

5 Conclusion

In summary, our in-depth study has shown how powerful advanced machine learning
techniques can be applied to resolve important forecasting problems in the energy
industry. Following a thorough evaluation of a wide range of models using data on
natural gas usage, the study has shown that the CB algorithm is the best method, with
an outstanding R? score of 99.81%. Additionally, the study advances beyond merely
summarizing the numerical outcomes by offering insight into the CB model’s
decision-making procedure and utilizing two different explainability techniques
to better understand the complex connections and patterns the model discovered.
The findings of the research have a significant impact on policymaking, optimizing
operations, and energy planning as they can help the industry make better decisions
about how to allocate resources, manage risk, and choose how much natural gas to
use.
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An Extensive Statistical Analysis of Time )
Series Modeling and Forecasting of Py
Crude Oil Prices
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Touhida Sultana Ety, and Md. Palash Uddin

1 Introduction

Crude oil, often called “black gold”, is an innate, unprocessed petroleum product
derived from deposits of hydrocarbons and other organic matter. This versatile
resource fuels most vehicles, heats houses, and provides electricity for the planet.
Besides the energy sector, crude oil represents an irreplaceable raw material in all
related industries: plastics, pharmaceuticals, and chemicals (Hasan et al., 2023).
Crude oil is of immense economic importance; it fuels the world economy. It
is the primary fuel in the world, and its supply and price determine essential
effects on economic activity. This is because crude oil is a vital component in so
many industries, affecting profit and output. Also, the oil industry is among the
largest employers around the world: from upstream activities through midstream
to marketing. Finally, crude oil is one of the most actively traded commodities in
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the world, with its price movements affecting trade balances and national economic
health (Sajid et al., 2023).

As an energy source, crude oil provides the most inelastic component of energy
supply. It contributes over a third to the world’s energy consumption and, thus,
serves as an essential component toward realizing global energy security (Moon
et al., 2019). The massive infrastructure of the oil sector in terms of thousands
of miles of pipelines, storage facilities, and refineries constitutes a multitrillion
dollar sector that is in a position to influence global economic dynamics (Zhang
et al., 2022). In this view, predicting crude oil prices is of paramount importance
because of the pervasive impact that the commodity exercises upon the global
economy (Hasan et al., 2024). Fluctuations in the price of oil exert huge impacts
on the transportation, manufacturing, agriculture, and consumer goods sectors.
The capability to provide exact price forecasts for the managers of businesses,
investors, and even policymakers opens up room for well-informed decisions and
strategies that also manage risks. Forecasting oil prices is also crucial for energy-
dependent countries’ budget planning, managing foreign exchange reserves, and
forming economic policies.

The necessity of involving statistical models in crude oil price forecasting
is because many variables are interlinked and together impact the oil market:
world supply and demand patterns, geopolitical events, economic growth forms,
technological progress, and ecological policy. They provide a systematic way of
analyzing past data to possibly detect some pattern through which a forecast can
be made from this multifaceted influence. This gives a quantitative framework to
process vast amounts of information and derive insights upon which action can be
taken.

Statistical analysis, to a great extent, influences the forecasting of crude oil
prices. This will enable the researcher and analyst to find trends and patterns
based on historical price data, measure relationships among several factors that
influence oil prices, estimate the relative importance of different variables in price
determination, generate probabilistic forecasts that account for uncertainty, and
appraise the accuracy and reliability of various forecasting methods. This includes
numerous aspects: Forecasters can utilize different statistical techniques, time series
analysis, and regression models, among others, with machine learning algorithms to
enable the development of more prosperous and more predictive forecast models of
crude oil prices. The development of these techniques also allows the involvement
of multiple variables and the understanding of the nonlinear relationships that need
to be there in oil markets.

Further, the development of statistical analysis lays out the framework for
comparing the strengths and the weaknesses of different forecasting models. In the
accurate comparison of the predicted values and the outcome produced by them, the
researcher, with time, improves the model and overall ability of predictions. Only
through such iterative procedures, researchers can develop and validate models to
find a much better prediction of crude oil prices. The need for statistical analysis
is also related to risk management strategies for investment decisions and policy
formulation, in addition to price level predictions. For instance, statistics-based
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prediction can help oil-producing countries optimize their production levels, as well
as assist them in price risk management. On the other hand, these areas are where
energy-intensive industries may use to reduce cost overruns and plan their business
investments. The role of crude oil as the engine of the global economy dictates
that there is evident importance to predicting its price in the most accurate way
possible. Statistical models and analysis provide a powerful toolkit to work out
the multiplicities of the oil market and insights of vital significance to economic
planning, risk management, and decision-making in different sectors. As the world
continuously depends on crude oil, there is an ongoing shift toward cleaner energy
sources, and predicting oil prices remains a crucial competency for economists,
policymakers, and industry leaders. The technical contributions of this chapter are:

*  We design a methodology for time series modeling and forecasting of crude oil
prices using statistical models.

e We handle the missing values and generate stationary data using Augmented
Dickey-Fuller (ADF) test to make the data more suitable for analysis.

e We perform residual analysis to evaluate the adequacy of the model by exam-
ining the residuals to ensure the random, normally distributed, and exhibit no
autocorrelation, thereby validating the model’s assumptions and accuracy.

*  We perform a comparative statistical analysis to find the most suitable statistical
model for predicting crude oil price.

The structure of the remaining sections of this chapter is outlined as follows. The
related works are outlined in Sect. 2. Section 3 is dedicated to presenting our
proposed methodology and the experimental setup. We detail the approach we have
taken to address the research problem, including the methods, techniques, and tools
employed in our study. Within Sect. 4, we present the outcomes of our experiments.
The chapter concludes in Sect. 5 with a summary of our findings and their
significance. Additionally, we outline avenues for future research and development
in this domain, emphasizing the potential directions for further exploration and
enhancement.

2 Literature Review

Tianxiang Wang proposed a model (Wang, 2024) for predicting the price of WTI
crude oil for the next year. In this work the author used the daily data of WTI
crude oil price in the range of the first day of January 2019 to the end of September
2023. The motive was to find the best projection of the next year 2024. Initially
she used the auto ARIMA, an autonomous stepwise search, for identifying the best
parameters p, d, and q to get high performance on the measurement scale. Secondly
she used ARIMA on the training data using specified parameters and projected the
outcome for the year 2024 where ARIMA model avoided the small fluctuations of
time series. The model forecasted almost a constant value of 100 USD/Bbl. In the
measurement of correctness, applied procedure represents approximately 0.04 for
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MSE, 0.18 for MAE, and 0.2 for RMSE. The measurement scale justifies ARIMA
as a model of high-level accuracy. In another work, Alfaki and Masih (2015)
introduced the Box-Jenkins method for designing the model and forecasting the
monthly sales for Naphtha. The dataset was collected from Azzawiya Oil Refining
Company, Libya as the monthly sales of Naphtha. They used ARIMA models for the
iterative process of Box-Jenkins to forecast both stationary and nonstationary time
series. In this model, ADF test was used to test the unit root and stationarity in the
data, and differencing order was chosen for the integrated component of ARIMA to
make the time series stationary. The parameter value for AR and MA components
was selected from the graphical presentation of Autocorrelation Function (ACF)
and Partial Autocorrelation Function (PACF). The researchers fitted the time series
into the ARIMA model with parameter tuples of (1, 1, 1), (3, 1, 3), and (6, 1, 6).
They found ARIMA (1, 1, 1) was the best having 0.3506, 1.8629, and 1.9510 for
MSE, AIC, and SC in the measurement scales. At the end, the researchers forecasted
monthly sales of Naphtha for 6 years from January 2015 to December 2020.
Suleiman et al. (2023) also followed the iterative process of four steps such
as identification, estimation or model fitting, diagnostic checking, and model
refinement of Box-Jenkins method to analyze the time series. It is a country-based
work that used the monthly time series dataset of crude oil price in Nigeria from
2006 to 2020. Firstly, the time series dataset was observed by the ACF and PACF
and was identified as nonstationary and having unit root with the examination of
Kwiatkowski-Phillips-Schmidt-Shin (KPSS), ADF, and Phillips-Perron (PP) test.
The nonstationary behavior in time series was removed after performing the first
difference. Secondly, in the model fitting step they fitted ARIMA model with
different parameter tuples to find the optimized estimation. Researchers had found
two optimal ARIMA with tuples of (2, 1, 1) and (3, 1, 1) based on HQC, AIC,
and BIC information criteria. Finally, they identified the ARIMA (3, 1, 1) model
performed better and suitable among these two of different parameter tuples in
forecasting the monthly price of crude oil considering MSE, RMSE, MAE, MPE,
and MAPE predictive measures. A comparison-based work (Tularam & Saeed,
2016) of statistical models on time series dataset was proposed by Tularam et al.
in 2016. In this researchers discussed about three univariate models of statistics
which were ARIMA, ES, and Holt-Winters. They collected the time series dataset
of regular crude oil prices from West Texas Intermediate. The time series was
fitted to each univariate model merging with the best hyper parameters to get
high performance from them. The outcome showed that the Holt-Winters model
performed better with a confidence interval of 95% than the ES model and ARIMA
model with parameter tuple of (2, 1, 2) results best among three by considering six
measurements in model selection such as MSE, RMSE, MAE, MAPE, and Theil’s
U statistic (Theil’s statistics were implemented and defined as Ul and U2). In a
different comparative study (Ning et al., 2022), Ning et al. (2022) presented two
statistical models and a Recurrent Neural Network (RNN) model namely ARIMA,
Prophet, and LSTM. Those models were fitted with a time series to extract the
remarkable behaviors and fluctuations of historical data and forecast values of a
future time sequence. The oil production data of 65 wells, a reservoir located in
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Denver-Julesburg (DJ) Basin, was used as the time series data for this analysis. The
65 wells’ data was divided into four pads, and 70% of data was used to train the
models and rest of the data to evaluate the performance of those models for each
pad. Though Prophet captures the fluctuations of winter season more preciously,
DJ Basin’s time series showed that ARIMA and LSTM performed better due to
not all pads were not facing seasonal impacts, and considering all the measurement
scales they observed that ARIMA (0, 1, 1) was more appropriate in shorter time
predictions, i.e., next 1-year period.

Rangsan Nochai and Titida Nochai worked (Nochai & Nochai, 2006) to find the
best parameter tuple for ARIMA model in different time series. They used palm oil
prices of Thailand in three formats as farm prices, wholesale prices, and pure oil
prices. The goal of researchers is to obtain the parameters for these three different
time series while applying the ARIMA model. They used MAPE measurement
technique to judge the ARIMA with every parameter tuple, and they had found the
effective parameter tuples of that model as ARIMA (2, 1, 0) for farm prices, ARIMA
(1, 0, 1) or ARMA (1, 1) for wholesale prices, and ARIMA (3, 0, 0) or AR (3) for
pure oil prices of the palm oil. Caspah Lidiema used (Lidiema, 2017) two statistical
models in modeling and predicting the inflation rate in Kenya. He implemented
the Box-Jenkins method with SARIMA and triple ES of Holt-Winter. The time
series of Consumer Price Index was collected in a range of November 2011 to
October 2016 which was published by Kenya National Bureau of Statistics (KNBS).
The SARIMA model was trained with parameter tuple (1, 1, 0) for nonseasonal
impacts and (1, 0, 0) for the seasonal impact which can be defined as SARIMA
(1, 1, 0) (1, 0, 0). On the other hand, the triple ES of Holt-Winter was trained
with smoothing parameters such as o = 0.9999 and g = 0.0001, and y confirms
that the model did not contain any seasonal component. The researcher analyzed
the performance of two models with measurement scales including MAE, MAPE,
and MASE. The SARIMA resulted 0.0036, 0.073, and 0.059 for MAE, MAPE,
and MASE, respectively, and the triple ES of Holt-Winter resulted 0.595, 0.400,
and 0.643 for MAE, MAPE, and MASE, respectively. Comparing the measurement
scale’s results, the SARIMA model was chosen as the best model to forecast
the inflation rate correctly. In a different investigation (Mardiana et al., 2020) of
comparing statistical models in between additive model of Holt-Winter and ARIMA
was performed by Mardiana et al. in 2020. They used the gasoline time series
dataset and its three components’ time series which are gasoline 88, gasoline 90,
and gasoline 92 spanning a range of 2017 to 2019 period. The goal of researchers
is to forecast the total demand of gasoline from 2020 to 2022. In this study, it was
shown that the additive model of Holt-Winter outperformed ARIMA model and
the joined application of Holt-Winters model with a neural network resulted lower
error in predicting the demand of gasoline 92. Though the components of gasoline
were in different trends, the forecasted result showed the increasing behavior in total
gasoline demand.
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3 Methodology

3.1 Approach Overview

To analyze the time series crude oil price, we proposed a statistical extensive
analysis system. After collecting the raw data from online, we preprocess the data by
handling the missing values and consistent data and differencing the data. We apply
AR, MA, ARIMA, SARIMA, ES, and VAR models for the analysis and forecasting
of the crude oil price. We show the model coefficients, ACF and PACF plots, simple
moving average (SMA) and EMA values, and residual analysis and finally measure
the key statistics of the models. The overview of the methodology is in Fig. 1.

3.2 Description of Dataset

We collect the daily crude oil data from online marketwatch.com. The dataset
contains data from May 20, 1987 to June 05, 2024. We consider the open market
price of the opening days for the analysis. The trend of crude oil price is in Fig. 2.

Fig. 1 Overview of the proposed statistical analysis-based forecasting system
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Fig. 2 Change of the crude oil price from 1988 to 2024

3.3 Data Preprocessing Techniques
3.3.1 Missing Value Handling

We handle the missing values using mean imputation process. We consider the mean
of previous 3 days and after 3 days to put a suitable value in the missing prices. It
provides the consistency and prevents information loss from the dataset.

3.3.2 Stationarity Check Using ADF Test

Checking the stationarity of a time series is an important factor in some time series
forecasting statistical models such as ARIMA, SARIMA, and ARCH. Checking
stationarity means checking the statistical properties of a time series whether they
are varying or not with time. In this purpose, the ADF test, a type of unit root test
in statistics, is a most commonly used statistical testing model which is an extended
representation of the Dickey-Fuller test (Demetrescu, 2010). To find the stationarity
of the time series ADF initially defines two hypotheses. The Null Hypothesis (HO)
states that the time series is not stationary or the time series has a unit root, and
the Alternate Hypothesis (HA) states that the time series is stationary or the time
series has no unit root. The ADF test finds a critical value named as p-value which
determines whether the test rejects the null hypothesis or not. If it finds the critical
p-value less than the significant level (considering 5%), then the ADF test rejects
the Null Hypothesis, which means the given time series is stationary and there is no
unit root; more elaborately it can be said that the statistical properties such as mean,
variance, covariance, and standard deviation of that time series are not the function
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of time. On the other hand, if p-value does not reject the Null Hypothesis, then the
given time series is not stationary and has a unit root.

3.3.3 Differencing

Almost all the economic and financial time series shows nonstationarity including
behaviors of trend, cycle or seasonality, random walking, etc. to its data. The long-
term pattern such as the tendency of being stable, increasing, and decreasing in
direction of a time series is referred to as the trend, and the pattern of fluctuations
or variations in the time series that repeats in a time interval (e.g., weekly, monthly,
and yearly) depending on the factors such as holidays, weather, cultural festivals,
or other events that occur regularly is referred to as the seasonality. To remove
these upward, downward, and stable trends, as well as the seasonal repetitive
tendency in pattern of time series, the differencing methodology is introduced.
It makes the time series to stationary series from nonstationary. The technique
of differencing calculates the differences between consecutive instances in the
time series data. Three most impactful differencing methods named as first-order
differencing, second-order differencing, and seasonal differencing are exhibited
here. The first-order difference is effective in removing the linearly changing trend
over time, and it is also called random walk model which can be written as

Y=Y — Yi-1

The first-order differencing results + — 1 values because there is no differencing
value for the first instance of time series data so it is eliminated from the dataset.
Sometimes the first-order differences do not provide the time series as stationary
so the second-order involves on the first-order differences and calculates the
differences of consecutive first-order instances shows calculation as

y,” = y[/ - y[/_1 = —yi-1) — V=1 — y1—2)

The second-order differencing results # — 2 values because there is no differencing
value for the initial two instances of time series data, so these are eliminated
from the dataset. First-order and second-order differences remove the trend in
the time series data, but they cannot handle the seasonality of time series where
patterns found in repetitive structure in a time interval. Considering this problem, the
seasonal differences are introduced. Seasonal difference calculates the differences
not between the consecutive instances, but it calculates the differences between
two instances which are seasonally related or have similar fluctuations over a time
interval. The equation can be written as

Yi =Yt — Yim
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where m is the time interval of similar fluctuations which is also called “the lag-m
differences.” The subtraction in between instances which have a lag of m periods.
The seasonal differencing results t —m values because there is no differencing value
for the initial m number of instances of time series data, so these are eliminated from
the dataset.

3.4 Description of the Statistical Models

Statistical models are the mathematical frameworks that capture the components
(e.g., trend, seasonality, random fluctuations, and irregularities) of time series data
points, understand the data’s behavior, identify the relationship among them, and
predict the future values. There are several models in the shadow of statistics
which works on time series data to forecast data point. Common models of them
are AR, MA, ARIMA, SARIMA, VAR, Generalized AutoRegressive Conditional
Heteroskedasticity (GARCH), and ES models. Each model works effectively in
various circumstances by maintaining many characteristics such as randomness
or stochastic nature in the time series, temporal dependency of one-time data
point to its previous data points, variations in time series components, parametric
or nonparametric description, selection of model and then evaluating them, and
finally the inference and prediction. The right model is chosen analyzing all
these characteristics. Sometimes model selection is performed with the guidance
of different diagnostic measurements including ACF, PACF, Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), residual analysis, and so
on.

3.4.1 Autoregressive (AR) Model

AR 1is the fundamental model in time series analysis and forecasting. It has
grandiose applications in the fields of economics, finance, climate science, and
more. Its simplicity in understanding and implementation, interpretability to make
relationships between past and future values, and solid foundation of building blocks
in time series analysis provides efficacious result in forecasting but it has limitations
on nonstationarity, complex trends, and external factors (Nassar et al., 2004). The
AR model is a type of regression model in the time series analysis which refers to
that the interested value can be predicted from the linear combination of previous
values together with an error term. For example, to forecast tomorrow’s values of
any time series, it might consider today’s, yesterday’s, and so many past values
of that time series. So, the AR model with order p defined as the current value
considers p numbers of past values in AR. The equation can be written as

Yy=P+PiY,-1+PYi o+ -+ PYp+ E
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where Py, P, ..., P, are the changing parameters, E; is noise, and Y; is the
forecasting value dependingon Y;_1, Y, 2, ..., Yi_p.
The value of p can be defined with the help of PACF and ACF.

3.4.2 Moving Average (MA) Model

MA is also a fundamental model in time series analysis and forecasting as like AR
model. It has widespread applications on predicting stock prices, analyzing market
trend, managing risk, forecasting demand of product, predicting sales based on
seasonal variations, and modeling the weather patterns. Its simple and interpretable
structure helps to identify trends and random errors on past observations and
forecast the intended value proficiently (Akrami et al., 2014). The MA model is a
type of regression model in the time series analysis which refers to that the interested
value can be fluctuated over past forecasting errors. The MA model with order ¢
defines as the current value considers g number of past errors. The equation can be
written as

Yi=Eo+E +Q1E 1+ Ok 20+ -+ QyE

where Q1, 02,..., Q4 are the changing parameters, E; is considered as the
weighted MA of past forecast errors, and Ey, E;, E;_1, ..., E,_, are the errors of
forecasted values.

The value of ¢ can be defined with the help of ACF and PACFE.

3.4.3 Autoregressive Integrated Moving Average (ARIMA) Model

ARIMA model (Newbold, 1983) is a popular, widely used, and versatile statistical
forecasting model on time series data which has three different components referred
to as AR, Integrated (I); MA. It works on identifying patterns and trends of
historical data and forecasts values of the time series based on past values by
handling seasonality, trends, and fluctuations in data. Combining three components
it merges the facilities of three independent models into one to predict the interested
value effectively (Valipour et al., 2012). Combining integrated or differencing with
autoregression and moving average the ARIMA (p, d, ¢) model forms the following
equation:

Y/ =P+ PY_ + -+ PY_ ,+ QE 1+ + QgE 4+ E

where p is the order of AR part, g is the order of MA part, and d is the differencing
order of integrated part.

Though ARIMA is a powerful tool in time series forecasting, but it has
drawbacks on nonlinear trends or patterns, external factors, focusing on long-term
periods, selecting parameters, and handling outliers.
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3.4.4 Seasonal Autoregressive Integrated Moving Average (SARIMA)
Model

To overcome the limitation of ARIMA model in forecasting the time series which
fluctuates over a fixed interval or seasonal manner, the SARIMA model comes in
Alharbi and Csala (2022). ARIMA model only captures the trend and patterns in the
time series in its learning period. On the other hand, SARIMA not only includes the
working process of forecasting time series but also captures the seasonal fluctuations
in the time series and gives more accurate result than ARIMA in forecasting the
interested value. SARIMA joins two sets of parameter in its seasonality modeling.
One set represents the nonseasonal effects with parameters of AR, I, and MA
which are denoted in lowercase letters, and other set represents the seasonal effects
with parameters of AR, I, and MA which are denoted in uppercase letters. The
functionality of SARIMA can be formed as

SARIMA(p,d, q)(P, D, Q)m

where p, d, g parameters represent the nonseasonal effects for AR, I, MA, P, D, Q
parameters represent the seasonal effects for AR, I, M A, and m parameter repre-
sents the number of observations in one season. In a weekly time series there would
be 54 observations.

In SARIMA the parameter selection and handling the overfitting risk is a
challenging task, but its performance on time series having both trend (e.g., upward
trend, downward trend, and stable trend) and seasonality makes this model very
valuable.

3.4.5 Exponential Smoothing (ES) Model

ES is a forecasting model for univariate time series data where the interested value
is calculated as the weighted linear summation of lags or past observations. Using
the exponential window function, it assigns weights to the past observations which
are exponentially decreasing (Gardner Jr., 2006). The idea behind this strategy is
giving more importance to the recent observations and decreasing the importance
exponentially smaller to the older observations. The equations for calculating the
ES are:

1. Simple Exponential Smoothing (SES):
Fa=8=aX,+0—-a)S-

where ¢ represents the time period, X; is the current observation, S; is the
smoothed value representing the weighted average for X;, « is the smoothing
factor in a range of (0, 1), and F;4 is the forecasting value for the next period
t+ 1L
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2. Holt’s Linear Trend Smoothing:
Frpi=L+T;
Ly=aX;+ (1 —o)(Li—1+ Ti-1)
Ty =8+ Li—1)+ (- BT

where ¢ represents the time period, X; is the current observation, « is the
smoothing factor in a range of (0, 1), B is the trend smoothing factor in a range
of (0, 1), L; is the smoothed value for level of X; in time period ¢, T; is the
smoothed value for trend in time period ¢, and F; is the forecasting value for
the next period ¢ + 1.

Holt’s Linear Trend Smoothing combines the smoothed value for level and
smoothed value for trend, represented as Lt and Tt, to forecast the interested value.
The level of equation is almost the same to the SES, but it includes the previous
trend.

The ES model is comparatively simple than ARIMA and other models to
understand and implement. Its computational efficiency in calculating only the
weighted sum requires minimal processing power which is very suitable for real-
time forecasting with quick turnaround. But, the model focuses more on recent data
than past observations as a result long-term prediction may result less reliable when
the time series contains highly volatility, sudden changes, and intricate patterns.

3.4.6 Vector Autoregression (VAR) Model

VAR is an extended version of simpler AR model in single time series. VAR is
used for multivariate time series where it captures the interdependent characteristics
of multiple time series and explains each time series variable with its own past
observations or lags and past observations of other variables (Liitkepohl, 2013). If
there are N number of time series variables, then there will be N equations, one for
one variable. The function of VAR is written as

VAR(p)

where V AR(p) model has n equations for all the time series variables, and p is the
number of past observations in each equation.

VAR performs very efficiently in analyzing the relationships between several
patterns and forecasting the value which is dependent on the behavior of multiple
time series.
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4 Result Analysis

4.1 Stationarity Check

We use the ADF test to check if the time series is stationary. A stationary time series
has a constant mean and variance over time. Table 1 shows the ADF test statistic
and p-value of the dataset before differencing and after differencing. We consider a
null hypothesis as follows:

Hy : The Series Is Nonstationary

Before differencing the p-value is 0.2147 that is greater than 0.05. We fail to reject
the null hypothesis. This means the series is not stationary and requires differencing
to make it stationary. After differencing, we get p-value as 1.09 x 10720 that is less
than 0.05. We reject the null hypothesis and conclude that the differenced series is
stationary.

4.2 Results of the ARIMA Model

After getting the stationary series, we fit it into an ARIMA model. To do this, we
need to determine the appropriate order of the ARIMA model (p, d, g). We use the
ACF and PACF plots in Fig. 3 to determine the values of p and g.

Table 1 The ADF test values

d " fthe d State of dataset ADF test statistic | P-value
- tl taset
and prvatues of the datase Before differencing | —2.1771 0.2147
After differencing | —14.3356 1.09 x 10726

Fig. 3 ACF and PACF plots to determine the values of p and q in ARIMA
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Table 2 Model coefficients in ARIMA model

Model coefficient Coefficient | Standard error | z-Value P>zl

ar.L1 (AR term at lag 1) 0.6681 0.870 0.768 |0.443
ma.L1 (moving average term at lag 1) —0.6706 0.867 —0.773 10.439
sigma?2 (variance of the residuals) 1.4565 0.007 197.825 | 0.000

The ACF and PACF plots provide insight into the potential values for the ARIMA
model parameters. The ACF plot shows the correlation between the time series
and its lagged values. The significant lags can help to determine the g parameter.
The PACEF plot shows the partial correlation between the time series and its lagged
values after removing the effects of intermediate lags. The significant lags can help
to determine the p parameter.

From the plots, we can observe that the ACF plot shows significant spikes at lag
1, indicating ¢ = 1. The PACF plot shows significant spikes at lag 1, indicating
p = 1. Given that we applied first differencing (d = 1), we can fit an ARIMA (1,
1, 1) model to the data.

Table 2 summarizes the coefficients of an ARIMA (1, 1, 1) model, providing
details on the AR, MA, and variance components. In terms of statistical significance
both the AR term (ar.L1) and the MA term (ma.L1) have high p-values (> 0.05),
indicating that they are not statistically significant. This suggests that neither the
past values nor the past errors significantly impact the current values in the model.
The variance of the residuals (sigma2) is highly significant with a very low p-value
(< 0.05), indicating that the variability in the residuals is a critical component of the
model. The lack of statistical significance in the AR and MA terms suggests that the
model may not effectively capture the relationships in the data. This could result in a
model that does not adequately predict future values based on past values and errors.
The significant sigma?2 value indicates that the model’s residuals have a consistent
and measurable amount of variance. However, this alone does not compensate for
the lack of significant AR and MA terms.

4.3 Results of the SARIMA Model

We define parameters for SARIMA models as (p, d, q) for nonseasonal components
and (P, D, Q, s) for seasonal components, where s is the seasonal period. For monthly
data, a common choice for s would be 12 (if the data had monthly frequency). Given
that this dataset is daily, we might consider a weekly seasonality with s = 7. We
examine the ACF and PACF plots to identify potential values for (p, q) and (P, Q).
Figure 4 of the ACF and PACF for the seasonally differenced series, assuming a
weekly seasonality (s = 7). We difference the series by 7 days to remove seasonality
and then plot the ACF and PACF.
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Fig. 4 ACF and PACF plots to determine the values of (p, q) and (P, Q) in SARIMA

Table 3 Model coefficients of the SARIMA model

State Components Coefficient Standard Error z-Value P>zl
Nonseasonal ar.L1 —0.1452 0.348 —0.417 0.677
ma.L1 0.1597 0.347 0.460 0.645
Seasonal ar.S.L7 0.0290 0.006 4.860 0.000
ma.S.L7 —1.0000 0.044 —22.808 0.000
Common sigma2 1.4554 0.064 22.71 0.000

Based on these plots, we make the following observations. For nonseasonal
components (p, d, q), the ACF plot of the original series shows significant spikes
at lag 1, indicating ¢ = 1. The PACF plot of the original series shows significant
spikes at lag 1, indicating p = 1. For seasonal components (P, D, Q, s), the ACF plot
of the seasonally differenced series shows significant spikes at lag 7, indicating a
potential seasonal AR or MA component. Given the seasonal differencing applied
(D =1) and assuming a weekly seasonality (s = 7), we start with p =1 and g = 1.
The final SARIMA model contain parameters: (p, d, g) =(1, 1, 1) and (P, D, Q, s)
= (1, 1, 1, 7). This model includes one nonseasonal autoregressive term (AR (1)),
one nonseasonal difference (d = 1), one nonseasonal moving average term (MA
(1)), seasonal components with one seasonal autoregressive term (SAR (1)), one
seasonal difference (D = 1), one seasonal moving average term (SMA (1)), and a
seasonal period of 7. The model coefficients are given in Table 3.

From Table 3, we get the nonseasonal components (ar.L.1 and ma.L1) which are
not statistically significant, but the seasonal components (ar.S.L7 and ma.S.L7) are
statistically significant, indicating the importance of considering seasonal effects in
the model.
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4.4 Results of the MA Model

We compute the SMA and the exponential moving average (EMA) to analyze the
trend. Figure 5 shows the values of SMA and EMA of the dataset.

The plot shows the Brent crude oil price along with the 30-day simple SMA and
the 30-day EMA. We observe that the SMA smooths the data by averaging the prices
over the past 30 days. It reacts more slowly to changes in the data, which helps to
highlight the underlying trend. On the other hand, EMA also smooths the data but
gives more weight to recent prices. This makes it more responsive to recent changes
compared to the SMA. The model coefficients are given in Table 4.

From the table, the MA (1) model indicates a strong relationship between the
current value and the error term from the previous period. The constant term
suggests the average level of the series.

Fig. 5 The 30-day SMA and EMA values of crude oil price data

Table 4 Model coefficients of the MA model

Model coefficient Coefficient Standard error z-Value P>zl
Const. (constant term) 49.6502 0.424 117.045 0.000
ma.L1 0.9749 0.002 580.984 0.000

sigma2 283.8572 6.324 44.889 0.000
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Fig. 6 Residuals and ACF of residuals of MA model

4.5 Residual Analysis of the Models
451 MA

The result of the residual analysis is in Fig. 6. The residuals fluctuate around zero,
but there are noticeable patterns, indicating that the MA (1) model may not have
captured all the underlying structure of the data. On the other hand, the ACF plot
shows significant spikes, suggesting that there is still some autocorrelation left in
the residuals. This implies that the MA (1) model has not fully accounted for the
time dependence in the data.

452 AR

The result of the residual analysis is in Fig. 7. The residuals fluctuate around zero,
indicating that the AR (1) model has captured the main structure of the data.
However, there are noticeable patterns, suggesting that the model may not have
captured all the underlying dependencies. The ACF plot shows significant spikes,
suggesting that there is still some autocorrelation left in the residuals. This implies
that the AR (1) model has not fully accounted for all the time dependence in the
data.

453 ES

We plot the residuals and their ACF to inspect any patterns or anomalies both for
adaptive seasonal and for multiplicative seasonal model. From Fig. 8, we find that
the residuals fluctuate around zero, indicating that the additive seasonality model
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Fig. 7 Residuals and ACF of residuals of AR model

Fig. 8 Residuals and ACF of residuals of adaptive seasonal ES

captures the main structure of the data. However, there are noticeable patterns,
suggesting that the model may not have captured all the underlying dependencies.
On the other hand, the ACF plot shows significant spikes, suggesting that there
is still some autocorrelation left in the residuals. This implies that the additive
seasonality model has not fully accounted for all the time dependence in the data.

From Fig. 9, the residuals fluctuate around zero, indicating that the multiplicative
seasonality model captures the main structure of the data. Similar to the additive
model, there are noticeable patterns, suggesting that the model may not have
captured all the underlying dependencies. On the other hand, the ACF plot shows
significant spikes, suggesting that there is still some autocorrelation left in the
residuals. This implies that the multiplicative seasonality model has not fully
accounted for all the time dependence in the data.
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Fig. 9 Residuals and ACF of residuals of multiplicative seasonal ES

Fig. 10 Residuals and ACF of residuals of VAR

454 VAR

Figure 10 indicates that the residuals of the “Oil Price Diff” series fluctuate around
zero, indicating that the VAR model has captured the main structure of the data.
However, there are still noticeable patterns, suggesting that the model may not
have captured all underlying dependencies. On the other hand, the ACF plot shows
some significant spikes, suggesting that there is still some autocorrelation left in the
residuals. This implies that the VAR model has not fully accounted for all the time
dependence in the data.
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Table 5 Models key statistics

Model name Log Likelihood | AIC BIC HQIC
ARIMA —15433.212 30872.423 | 30893.933 | 30879.719
SARIMA —15443.843 30897.685 | 30933.531 | 30909.844
MA —40757.192 81520.383 | 81541.894 | 81527.679
AR —15436.454 30878.908 | 30900.418 | 30886.204
ES (Additive Holt-Winters) —47703.221 95428.442 | 95674.654 | 95519.942
ES (Multiplicative Holt-Winters) | —47703.202 95428.404 | 95674.616 | 95519.904
VAR 308955 —70.0267 —70.0222 —70.0252

4.6 Key Statistics of the Models

Table 5 presents a comparative analysis of key statistics for various time series
models applied to the Brent crude oil price data. The models under consideration
are ARIMA, SARIMA, MA, AR, ES using both additive and multiplicative Holt-
Winters methods, and VAR. The key statistics include Log Likelihood, AIC, BIC,
and Hannan-Quinn Information Criterion (HQIC). In the Log Likelihood value
indicates how well the model fits the data. Higher values suggest a better fit.
VAR (308955) model has the highest Log Likelihood, indicating an exceptional
fit compared to other models. ARIMA (—15433.212), SARIMA (—15443.843),
and AR (—15436.454) have mostly similar Log Likelihood values, suggesting
comparable model fits among these models. MA (—40757.192) and ES models
(Additive: —47703.221 and Multiplicative: —47703.202) have significantly lower
Log Likelihood values, indicating poorer fits.

AIC penalizes models for the number of parameters, balancing model fit and
complexity. Lower values indicate a better model. VAR (—70.0267) has the lowest
AIC, reinforcing its strong performance and model fit. Among the ARIMA family,
ARIMA (30872.423) has a slightly lower AIC compared to SARIMA (30897.685)
and AR (30878.908). MA (81520.383) and ES models (Additive: 95428.442
and Multiplicative: 95428.404) have much higher AIC values, indicating poorer
performance. BIC is like AIC but imposes a heavier penalty for the number of
parameters. Lower values are preferred. VAR (—70.0222) again shows the best
performance with the lowest BIC. ARIMA (30893.933) has a lower BIC compared
to SARIMA (30933.531) and AR (30900.418), suggesting a better fit among these
models. MA (81541.894) and ES models (Additive: 95674.654 and Multiplicative:
95674.616) have higher BIC values, indicating a lesser fit.

HQIC also penalizes for model complexity, though less severely than BIC.
Lower values are preferred. VAR (—70.0252) shows the best performance with
the lowest HQIC. ARIMA (30879.719) has a lower HQIC compared to SARIMA
(30909.844) and AR (30886.204), indicating a better fit. MA (81527.679) and ES
models (Additive: 95519.942 and Multiplicative: 95519.904) have higher HQIC
values, indicating poorer performance.
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The VAR model consistently outperforms all other models in terms of Log
Likelihood, AIC, BIC, and HQIC, indicating it provides the best fit for the Brent
crude oil price data. ARIMA Family Models: Among the ARIMA family, the
ARIMA model shows a slightly better performance compared to SARIMA and
AR based on AIC, BIC, and HQIC values. Both the additive and multiplicative
Holt-Winters models perform similarly, but they do not fare well compared to the
other models, indicated by their higher AIC, BIC, and HQIC values. The MA model
shows the poorest performance among the models considered, with the highest AIC,
BIC, and HQIC values. In summary, the VAR model emerges as the most suitable
for capturing the underlying structure and dependencies in the Brent crude oil price
data, followed by the ARIMA model. Both the ES and MA models show significant
limitations in terms of model fit and complexity.

4.7 Diagnostic Tests of the Models

Table 6 presents a comparative analysis of the diagnostic tests performed on
various time series models applied to the Brent crude oil price data. The models
under consideration are ARIMA, SARIMA, MA, AR, ES using both additive and
multiplicative Holt-Winters methods, and VAR. The diagnostic tests include the
Ljung-Box test for autocorrelation, the Jarque-Bera test for normality of residuals,
and the Breusch-Pagan test for heteroskedasticity.

In Ljung-Box test for autocorrelation, ARIMA (0.16) and AR (0.23) models have
p-values greater than 0.05, indicating no significant autocorrelation in the residuals,
suggesting that these models have adequately captured the temporal dependencies
in the data. SARIMA (0.92) shows the highest p-value, strongly indicating no
significant autocorrelation and suggesting it is the best model in terms of capturing
autocorrelation. MA (0.00), ES (Additive Holt-Winters) (0.00), ES (Multiplicative
Holt-Winters) (0.00), and VAR (0.00) all show significant autocorrelation in the
residuals, suggesting these models may have omitted some temporal dependencies.

Table 6 Models diagnostic tests

Model name Ljung-Box (prob.) | Jarque-Bera (prob.) | Heteroskedasticity (Prob)
ARIMA 1.98(0.16) 101197.49(0.00) 10.91(0.00)

SARIMA 0.01(0.92) 103701.56(0.00) 10.90(0.00)

MA 8676.88(0.00) 943.33(0.00) 1.30(0.00)

AR 1.45(0.23) 100672.88(0.00) 10.87(0.00)

ES (Additive 1429.45(0.00) 187332.81(0.00) 1338.23(0.00)
Holt-Winters)

ES (Multiplicative 1429.67(0.00) 188135.32(0.00) 1350.67(0.00)

Holt-Winters)
VAR

216.45(0.00)

22740.57(0.00)

1338.23(0.00)



100 M. Hasan et al.

For Jarque-Bera test for normality, all models, including ARIMA (0.00),
SARIMA (0.00), MA (0.00), AR (0.00), ES (Additive Holt-Winters) (0.00), ES
(Multiplicative Holt-Winters) (0.00), and VAR (0.00), show p-values of 0.00,
indicating significant deviation from normality in the residuals. This suggests
that none of the models’ residuals are normally distributed, which can affect the
reliability of statistical inferences made from these models.

In Heteroskedasticity (Breusch-Pagan test) for Nonconstant Variance, all models,
including ARIMA (0.00), SARIMA (0.00), MA (0.00), AR (0.00), ES (Additive
Holt-Winters) (0.00), ES (Multiplicative Holt-Winters) (0.00), and VAR (0.00),
have p-values of 0.00, indicating significant heteroskedasticity in the residuals. This
means that the residuals of all these models exhibit nonconstant variance over time,
suggesting that the models may not fully capture the variability in the data.

SARIMA emerges as the most effective model in capturing autocorrelation with
the highest Ljung-Box p-value (0.92), indicating no significant autocorrelation in the
residuals. ARIMA and AR models also show no significant autocorrelation, but to a
lesser extent. None of the models pass the Jarque-Bera test for normality, indicating
that all models have residuals that significantly deviate from normal distribution. All
models show significant heteroskedasticity, suggesting that the models do not fully
account for varying variance in the data.

Overall, while the SARIMA model performs best in terms of capturing autocor-
relation, all models exhibit significant issues with normality and heteroskedasticity
in their residuals. These findings suggest that while SARIMA might be preferable
for capturing autocorrelation, additional model refinement or alternative modeling
approaches are necessary to address the non-normality and heteroskedasticity
observed in the residuals.

4.8 Discussion

The analysis of Brent crude oil prices using various time series models reveals
significant insights into their relative performance and suitability for forecasting.
The models examined include ARIMA, SARIMA, MA, AR, ES using both additive
and multiplicative Holt-Winters methods, and VAR.

The VAR model consistently outperformed all others, evidenced by its highest
Log Likelihood and lowest AIC, BIC, and HQIC values. This indicates that the
VAR model provides the best fit for the data, effectively capturing the underlying
structure and dependencies. The strong performance of the VAR model suggests its
robustness in handling complex temporal dependencies and interactions within the
data.

Among the ARIMA family, the ARIMA (1, 1, 1) model showed slightly better
performance compared to SARIMA (1, 1, 1) (1, 1, 1, 7) and AR(1), based on AIC,
BIC, and HQIC values. This indicates that while seasonality is an important factor,
the simpler ARIMA model can still provide a reasonably good fit, potentially due
to the relatively stable seasonal patterns in the data. ES models, both additive and
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multiplicative Holt-Winters, displayed significantly higher AIC, BIC, and HQIC
values, indicating poorer fits. Their residuals exhibited substantial autocorrelation,
non-normality, and heteroskedasticity, suggesting that these models are less capable
of capturing the data’s complexity. The MA model performed the worst, with the
highest AIC, BIC, and HQIC values, indicating significant limitations in its ability
to model the data effectively.

Finally, we find that the VAR model is the most suitable for forecasting Brent
crude oil prices, followed by the ARIMA model. Both ES and MA models
demonstrate considerable limitations, highlighting the need for more sophisticated
modeling approaches to improve forecasting accuracy. This comprehensive eval-
uation underscores the importance of selecting appropriate models based on key
statistical metrics to achieve reliable forecasts.

5 Conclusion and Future Work

The aim of this research is to analyze and forecast crude oil prices using daily
time series data. We have collected daily oil prices from online sources and
performed some basic preprocessing to make the data more suitable for analysis
using statistical models. Since the data was not stationary, we employed the ADF
test to determine its state. By using differencing, we achieved stationarity in the
dataset. We applied various statistical models, and although the performance of
these models was generally good, the VR model showed superiority over the
others. It achieved the highest forecasting capability, which was confirmed by
the residual analysis of the model. This research also forecasts the next 30 days,
aiding in various decision-making processes to achieve a sustainable world with fair
economic activities. Additionally, it helps in maintaining the supply and demand
of crucial energy resources like crude oil and assessing its impact on society.
Future work will focus on designing a real-time forecasting system with long-term
forecasting capabilities to inform both short-term and long-term policy decisions.
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1 Introduction

The world’s health and human well-being are at stake due to climate change, and
there is a confined period of time left to ensure a livable and sustainable future for all
creatures (IPCC, 2023). In 2015, Paris agreement (Process and meetings: UNFCCC,
2015) is propagated with an aim to alleviate the impact of climate change upon the
world. Under the Paris agreement, COP28 was particularly notable as it concluded
the first “Global Stock take” of the worldwide effort to combat climate change
(Process and meetings: Conferences: UN Climate Change Conference - United
Arab Emirates, 2023). Traditional energy or fossil fuel-based energy is inevitably
linked with climate change due to immense greenhouse gas emissions (Elias, 2018).
Consequently, renewable energy became the center of attention all over the world
replacing fossil fuel in order to gain energy efficiency.

Renewable resource enriched nations are usually emerging and middle-income
economies located in the sunbelt (Miihlbauer et al., 2023), and many of them are
swiftly employing their enormous resources (Manish Ram, 2022). However, some
are facing economic, social, and technological barriers to efficiently utilize their
resources (Moorthy et al., 2019). One major constraint that an emerging economy
generally encounters while exploiting RE resources is the lack of availability
of finance (Anthony, 2021). Additional barriers include inadequate knowledge
of the advantages of renewable energy (Moorthy et al., 2019), inexperienced
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technical experts and a shortage of training facilities (Ansari et al., 2013), a
lack of infrastructure availability, inadequate research and development, ineffective
operational and maintenance expertise initiatives (Zhao et al., 2016), and so on. Not
much research has been conducted on the consideration of emerging or developing
economies in the past decades (Hansen et al., 2019). Those who focused on the
emerging economy’s energy transition mostly concentrated their studies either on
specific countries, for instance, Indonesia (Reyseliani & Purwanto, 2021), China
(Xu, 2020), Egypt (Miihlbauer et al., 2023), Brazil (Dranka & Ferreira, 2018),
etc., or into regions, for instance South Asia (Breyer et al., 2023), Latin America
(de Souza Noel Simas et al., 2017), the MENA (Bogdanov et al., 2020), and sub-
Saharan Africa (Barasa et al., 2018). However, an aggregated study on the emerging
sunbelt economies regarding RE transition with consideration of their cultural,
demographic, and geographic dimensions is scarce. A combined study pertaining to
RE transition in developing economies would comprise country- or region-specific
energy production, consumption, storage capacity, share of renewables in the energy
portfolio, policies regarding net zero emissions by 2050, interim targets, etc. in order
that countries with minimal development in this sector but with colossal resources
can follow their superior continental neighboring states, who are leading the world
in terms of decarbonizing the energy sector. Hence, this study selects some countries
from each sunbelt region on the basis of continental supremacy regarding RE, i.e.,
those that comprise the most renewable share in their portfolio and are looking
forward to a sustainable transition to a fully renewable energy sector and aim to
provide their contiguous states as a pathway to their energy transition.

Selected countries are India from South Asia, Vietnam from Southeast Asia,
Morocco from the Middle East and North Africa, Brazil from South America, South
Africa from sub-Saharan Africa, and Mexico from North America.

* This research work is intended to find out a pathway toward energy sustainability
for the emerging sunbelt countries across the world.

» After studying vast amount of literature and observing database the results are
drawn.

* Most of the countries of specified continents may pursue the findings to widely
adopt renewable energy omitting fossil or oil-based energy.

2 Literature Review

The documents from the IPCC, UNFCCC primarily construct the introduction
section of the study. The data conducted into the scenario of the countries are
acquired from the documents of IRENA, IEA, ITA, World Bank, BBC portal, NDC
partnership, World Economics, European Commission, Green Hydrogen Organiza-
tion, Our World in Data, and more. Statistical information is extracted from Statista,
Global Carbon Atlas provided the facts regarding carbon emissions, and the data
regarding RE capacity and generation are assembled from CLIMATESCOPE and
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IRENA’s Renewable energy statistics. Moreover, few other supporting information
are aggregated from different dedicated sites such as Climate Action Tracker, Global
Energy Monitor, Greencare, Global Methane Pledge, and World Meteorological
Organization.

Websites and published articles from country-specific and continental authority
of renewable energy and environment, such as MNRE, SENER, INSAMER,
DMRE, MME, etc., exhibit the current position of the country in the light of
climate change. Research articles that are utilized to assert real-time data contain
the available current information of 2022, and all the referred articles in this study
are from rated journals and published by expert author in the field.

3 Methodology
3.1 Overview

3.2 Comparative Analysis

A comparative analysis of production, generation, consumption, storage capacity,
regulatory framework, and policy terms regarding renewable energy among emerg-
ing countries of sunbelt regions, namely India, Brazil, Mexico, Vietnam, Morocco,
and South Africa, have been studied to justify their strategy applicability into their
contiguous states.

The contextual variables for the analysis are total RE production (including
biofuels & heating system), total generation of electricity from RE, total electricity
consumption generated by RE, total storage capacity, regulations established &
policy undertaken by the selected countries.

The overall comparative ratio of these variables is competent to indicate a
country’s position in deploying RE resources. Strategies or theories that have
worked out for them regarding the exploitation of the resources can well be derived
from the analysis. We have provided an overview in Fig. 1.

3.2.1 Literature Selection & Analysis

The literature used for the comparative analysis is collected mostly from secondary
sources (published article, secondary database) and some are from primary sources
(government authorized websites, primary database).

Firstly, keyword search (renewables, energy, emerging, sunbelt) has been applied
to obtain a handful of potential research articles. Secondary screening comprises the
exclusion of articles which does not meet the following criteria:

* Articles with respect to the RE transition scenario of the above-named countries.
e Articles containing up-to-date real-time information.
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Fig. 1 Overall process of methodology

* Articles published by renowned authors and in peer-reviewed journals.
* Findings of the article must be broadly useful.

Finally, endured articles are revised according to the pre-determined selection
criteria. Subsequently, data from official and valid websites, including IEA, IRENA,
UNFCCC, etc., are complemented with the previously mentioned information.

Considering all these information, a range of strategy and policy implication path
is eventually outlined for the adjoining states of studied countries.

3.3 Appropriateness

The method employed above to arrive at the answer is an exoteric and established
way of carrying out qualitative research, and it has been proven to be particularly
effective for cross-national comparative analysis. Given the wealth of information
the database offers on renewable energy generation, consumption, storage, public
awareness campaigns, local and national policies, certifications, statements from
international organizations, and other related topics, it is reasonable to disclose
several solutions to the most pressing issues and recommendations for those neigh-
boring states’ policymakers, subject to a thorough and exploratory investigation.
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3.3.1 Scenario of India

With 1.417 billion people, India is the second-most populous country in the world
and one of the biggest users of fossil fuels, which contribute to global warming.
With the rapid growth of population and industrialization, energy demand is soaring
in the country. India’s overall energy consumption is expected to double by 2030,
with power demand rising to three times current levels (Energyworld, 2022). The
government of India formed MNRE (Ministry of New and Renewable Energy) to
detect and implement new sources of energy generation and has already marked
several progresses through uplifting RE resources. The energy crisis, the drastically
rising level of environmental pollution, and the growing population are the main
causes of the emphasis on switching to renewable energy sources. India has already
achieved the target of 40% power generation from non-fossil or renewable sources,
which was committed to achieve by 2030 (PIB Delhi, 2023), and through these
achievements, India became one of the largest manufacturers of renewable energy.
According to Climatescope’s latest ranking, India is the most attractive spot for
renewable energy investment.

As of 2022, India’s share of renewable energy in total energy generation is
22.4%, according to the IEA, which amounts to 343,138.7 GWh (IRENA, 2022a).
The total installed renewable energy capacity of the country, excluding large hydro,
was 150.27 GW by 2022 (MNRE, 2022a), which accounts for 33.52% of total
energy storage capacity (IRENA, 2022b).

Hydropower leads India’s total RE generation mix in 2022, with 165,715 GWh
of generation including small and large hydro. Total electricity generation from solar
PV accounts for 102,010 GWh, while wind and biomass generate 71,814 GWh and
17905.4 GWh of electricity, respectively (Bloomberg NEF, 2023a).

India ranks 5" in terms of solar PV deployment and 4th in terms of wind power
installed capacity in the world (MNRE, 2022b). It has experienced a drastic increase
in the growth of installed solar energy storage capacity of 24.07 times the 2014 rate,
standing at 63.30 GW in 2022 (Sarraju Narasinga Rao, 2023). Solar PV capacity
storage as of December 2022 is 63,048 MW, whereas CSP stands at 343e MW in
India. Wind energy is no exception; it has augmented to 41,930 MW in terms of
its installed capacity until 2022. Also, storage capacity installed for biomass and
hydropower reaches 10,669 MW and 47,220 MW, respectively, in 2022 (Whiteman
et al., 2023). According to the MNRE annual report 2022-2023, installed storage
capacity for waste to energy arrived at 522.42 MW eq.

The incessantly rising population of India undoubtedly resulted in unremitting
consumption of energy throughout the country. In 2022, India invests a total of
$11015.37 million in renewable energy, which is 12.42% higher compared to
the previous year (Bloomberg NEF, 2023a). At the 2019 UN Climate Summit, it
committed to achieving 450 GW of renewable energy (RE) by 2030 (PIB Delhi,
2021).

The profitability view of RE indicates that in comparison with domestic
coal-fired power plants, which charge between 3.5 and 5 INR/kWh (43.7 and
62.5 €/MWh), solar PV-based electricity generation ranges between 1.99 and
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2.36 INR/kWh (24.8-29.5 €/MWh) (Gulagi et al., 2022). Average price of
electricity for the country stands at 94.78 USD/MWh in 2022 (Bloomberg NEF,
2023a).

The country ranks 3rd in terms of global carbon emissions, followed by China
and the United States, respectively, and accounts for 2830 MtCO2 of carbon
emissions (Global Carbon Atlas, 2022).

However, according to Gulagi et al., GHG emissions from the electricity sector
are declining quickly, nearly to zero, prior to 2050.

India’s RE Policies & Projects

e The framework for the Renewable Energy Certificate (REC), which can be
called the currency of the renewable energy market, was established in 2010 by
the Central Electricity Regulatory Commission. All types of renewable energy
generators now have the chance to take advantage of the benefits without having
to worry about the terms of the power purchase agreement for the trade of
renewable power, thanks to the renewable energy certificate system (Elavarasan
etal., 2017).

e The Jawaharlal Nehru National Solar Mission (JNNSM), a significant energy
mission, was launched in 2010 under the National Action Plan on Climate
Change (NAPCC) with a view to increasing the generation of electricity through
solar energy within 2022. It has the current target of generating 22,000 MW of
power combining on-grid and off-grid plants (Elavarasan et al., 2017).

* Ina few places, solar and wind power plants were installed on agricultural lands,
which is lucrative for both crops and power plants. Plants can benefit from
indirect sunlight, which can be created by installing solar panels above crops and
other vegetation. By reducing the humidity and moisture level below the panels,
it also lessens the heating effect of the solar panels (Patel et al., 2018). Innovative
ideas like that should be facilitated.

e Tariff policy in India is revised multiple times to simplify the purchase of
RE. It is coordinated in a way that is beneficial for both the distributor and
the consumer of renewables. A minimum amount for purchasing energy is
fixed, taking into consideration the perspective of distribution companies, and
creates ample capacity and robust infrastructure to ensure improved services to
consumers (Elavarasan et al., 2017).

» Several ground-breaking ongoing projects, including the development of a high-
efficiency (21%/ 19%) PERC type of c-Si/mc-Si solar cell, green hydrogen
mobility projects, met-ocean measurements at the Gulf of Khambhat and Gulf
of Mannar, and biomass gasification through plasma pyrolysis technology, are
acknowledging them as a future world leader in this field (MNRE. Home: Ongo-
ing Projects. [Online]. Available: https://mnre.gov.in/; NTPC Renewables. Verti-
cals: Green-hydrogen [Online]. Available: https://ntpcrel.co.in/; NIWE. Depart-
ment: Offshore Wind Development: Met-ocean Measurements. [Online]. Avail-
able: https://niwe.res.in/; CMERI, 2022).


https://mnre.gov.in/
https://mnre.gov.in/
https://mnre.gov.in/
https://mnre.gov.in/
https://ntpcrel.co.in/
https://ntpcrel.co.in/
https://ntpcrel.co.in/
https://ntpcrel.co.in/
https://niwe.res.in/
https://niwe.res.in/
https://niwe.res.in/
https://niwe.res.in/

Comparative Analysis of Selected Emerging Economies Energy Transition. . . 111

e In 2016, India and France jointly formed The International Solar Alliance with
the aim of expanding solar energy globally (Nguyen et al., 2021).

3.3.2 Scenario of Vietnam

Vietnam is another highly climate-vulnerable emerging economy of South East Asia
(Nguyen et al., 2021), with a population of 98.19 million. Vietnam is moderately
positioned in terms of equality distribution, with a Gini coefficient of 36.1 in 2022
(World Bank Group, 2022a). Vietnam is one of those countries which witnessed
some unprecedented surge in energy sector within a short period. In 2015, total
installed capacity for solar energy was only 4 MW in the country, and till 2019
it is uplifted to 7.4 GW followed by a massive investment in this sector (Tacheyv,
2024), as the government of Vietnam found that sustainable energy development
and energy security are inevitable components of its strategic plan to achieving
sustainability in near future (Nguyen et al., 2021).

Harnessing renewable energy sources including hydro power, wind power, solar
power, and biomass power is especially advantageous for Vietnam. Although
hydropower plants are the main RE producer of the country (Polo et al., 2015),
solar and wind generation accounts for 69% of the total RE generation in ASEAN
region (Rosalia et al., 2024).

In 2022, total installed renewable energy capacity in Vietnam is 44,691 MW,
followed by an increment of 3.79% from the previous year, and 64% increase
from the year 2014. Installed capacity for renewable hydropower accounts for
22,535 MW in 2022, while 5065 MW indicates the capacity for wind energy
(4071 MW onshore wind, 994 MW offshore wind). Solar PV and bioenergy stand
at 16,698 MW and 393 MW, respectively (Prime et al., 2024). Concentrated Solar
Power (CSP) is not available in Vietnam. Solar PV experienced the most expansion
in installed capacity in 2022—it jumped from 24.14 in 2021 to 24.54% in 2022
(Bloomberg NEF, 2023b).

Electricity generation from hydropower accounts for 99,370 GWh in 2022 and
mounts at the top among renewable technologies, within which generation from
large hydro stands at 73,844 GWh and small hydro at 25,526 GWh. Wind generates
a total of 8852 GWh of electricity in this year, whereas solar PV and biomass
generates 25,526 GWh and 379 GWh, respectively (Bloomberg NEF, 2023b). Large
hydro constitutes 27.93% of total energy generation, which is the second largest
among the energy mix after coal (Bloomberg NEF, 2023b).

According to CLIMATESCOPE, Vietnam’s 2022 clean energy investment was
approximately $559.53 million, a 93.19% drop from 2021 ($8221.73 million). The
year 2020 recorded the most investment in sustainable energy, at $10815.62 million.
In Vietnam, the average cost of energy witnesses a drop from 98.48 USD/MWh in
2021 to 96.4 USD/MWh in 2022. Vietnam’s average power cost has varied from
82.98 USD/MWh in 2017 to 98.48 USD/MWh in 2021 (Bloomberg NEF, 2023b).

Vietnam emits 344 MtCO2 in 2022 and rank 17th in the list of worldwide carbon
emissions (Global Carbon Atlas, 2022). Vietnam is one of the largest emitters of
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carbon among the emerging economies. According to the Global Carbon Atlas,
it experienced a slight fall of 2.5% in 2022 in terms of carbon emissions (Global
Carbon Atlas, 2022).

Vietnam’s RE Policies and Projects & Plans

Vietnam is one of those countries, who implemented policies to encourage shifting
toward renewable energy. In order to develop the sector, the Vietnamese government
counts on the national power development plans, which project demand growth and
outline the entire shift in the power industry to satisfy demand for the next 10 years
(ITA, 2024). We provide the details in Table 1.

e The government of Vietnam issued and implemented a sustainable energy
development strategy through 2030 and a vision to 2045 (Climate Action Tracker.
Countries: Vietnam. [Online]. Available: https://climateactiontracker.org/).

* Viet Nam joined the Just Energy Transition Partnership (JETP) in December
2022 with the aim of achieving net-zero emissions by 2050. Viet Nam will be
granted USD 15.5 billion until 2026-2028 (Climate Action Tracker. Countries:
Vietnam. [Online]. Available: https://climateactiontracker.org/).

e In May 2023, Vietnam adopted the much-expected Power Development Plan
8 (PDP8), which sent contrasting messages to the country’s power industry,
following the signing of the JETP.

Table 1 Comparison of the scenario of Vietnam

Type of renewable energy Type of technology Selling price (excluding vat)

Small Power production According to the
Hydropower announcement of Ministry of
(Under 30 MW) Industry and Trade

Wind power (projects came 8.5 UScents/kWh

into operation before

Project on land

November 2021)
Offshore project 9.8 UScents/kWh
Biomass Cogeneration of heat and 7.03 UScents/kWh
electricity
Not heat-electricity 8.47 UScents/kWh
cogeneration
Electricity from waste Burn 10.05 UScents/kWh
Bury 7.28 UScents/kWh

Solar power

Floating solar power
Ground solar power
Rooftop solar power

7.69 UScents/kWh
7.09 UScents/kWh
8.38 UScents/kWh

Source: National Steering Committee for Electricity Development (Vietnam)
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e Vietnam pledges at COP26 to halt erecting new coal-fired power plants and
to gradually phase out coal-fired power generating (Climate Action Tracker.
Countries: Vietnam. [Online]. Available: https://climateactiontracker.org/).

e In November 2022, Vietnam revised its Paris Agreement goal. In comparison
with the previous NDC, the target was 39 MtCO2e (excluding LULUCF), and
sectors coverage and accountability have both increased (Climate Action Tracker.
Countries: Vietnam. [Online]. Available: https://climateactiontracker.org/).

* One crucial component of policies for cleaner energy is intergovernmental
cooperation. Vietnam is pursuing collaboration with Switzerland to assist them
in the clean energy transition (Prime et al., 2024).

All feed in tariff above will be available for the first 20 years of operation of the
technologies, except small hydropower, which is cost tariff exempted.

* Other incentives comprise tax incentives (income tax, import tax), land use, low
interest finance, etc.

e The Politburo of Vietnam adopted Resolution 55, which calls for changing
the Electricity Regulation to permit private sector participation in electricity
infrastructure, which will attract abundant investment (Central Committe of the
Vietnam, 2020).

3.3.3 Scenario of Mexico

Mexico is one of the most uneven countries in the world, with a Gini coefficient
of 43.5 (World Bank Group, 2022b). It has a population of approximately 129
million people, with half of them living below the poverty line (De La Pefia et
al., 2021). This country’s economy is $2.87 trillion, which is the 11th largest in
the world (World Economics, 2023). It is also one of the most climate-vulnerable
emerging economies in the world. The electricity sector in Mexico had previously
experienced monopoly control by the Federal Electricity Commission, followed by
a reform in 2013, which granted private parties the opportunity to partake in the
electricity market. This energy reform ensured that the government would continue
to place emphasis on clean or renewable energy (Diezmartinez, 2020). The Energy
Transition Law, which was passed in 2015, mandates that 35% of the electricity
generated by 2024 must originate from renewable sources (De La Peiia et al.,
2021). The 2013 energy reform served as the basis for the development of various
laws, strategies, programs, and initiatives (Castrejon-Campos, 2022), which are
mentioned in Mexico’s policy section.

Mexico terms its sustainable energy resource as clean energy. The generation
of total clean energy is 106,302.45 GWh (including non-renewable nuclear) for
the country in 2022, which constitutes 31.2% of the total electricity generation
(ITA, 2023a). Generation from large hydropower accounts for 30,390.9 GWh in
the year, while generation from wind and solar remains closer at 20,528.8 GWh
and 20,338.3 GWh respectively. Small hydro generates 5168 GWh electricity in
2022, and 4412.7 GWh and 2141.3 GWh of electricity is generated by geothermal
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and biomass technologies, respectively, although natural gas leads the total energy
generation mix, generating 56.58% of total generation (192,508 GWh) (Bloomberg
NEF, 2023c). Total renewable energy supply by source stands at 209.73 TWh
in 2022, or 9.72% of the total supply mix of the year (IEA, 2023a). Mexico’s
total installed renewable energy capacity witnesses an increment of 4.36% in 2022
compared to the previous year, which stood at 31.95 GW. Hydropower leads the
installed capacity portfolio, followed by solar and wind in the 2nd and 3" positions,
respectively, and it is also to be noted that Mexico comprehends fifth largest
geothermal power capacity in the world after the USA, Philippines, Indonesia, and
New Zealand (Castrejon-Campos, 2022).

Solar energy installed capacity is 9364 MW, of which solar PV is 9347e MW and
concentrated solar power is 17e MW. The total installed capacity for hydropower is
13,304 MW in the year. Wind (onshore) installed capacity remains at 7318 MW,
and bioenergy and geothermal installed capacity are 966 MW and 9990 MW,
respectively, as of the year 2022 (Whiteman et al., 2023).

Mexico’s 2022 clean energy investment was approximately $717.81 million,
down 8.56% from 2021 ($784.98 million). This is the lowest amount of investment
since 2017. In Mexico, the average price of electricity is 119.52 USD/MWh in 2022,
which was 128.5 USD/MWh in 2021. The price generally ranges between 111 USD
and 132 USD per MWh (Bloomberg NEF, 2023c). Mexico ranks 12th in the world
in terms of greenhouse gas emissions since the country still mostly relies on fossil
fuel-based energy (Global Carbon Atlas, 2022). However, to comply with the Paris
Agreement 1.5 target, shifting the energy sector from fossil fuel-based to renewable
energy is vital since globally increasing GHG emissions are dominated by FF-based
energy use. Mexico accounts for 512 MtCO2 GHG emissions in 2022, comprising
gas and oil in the 1st and 2nd positions, respectively (Global Carbon Atlas, 2022).

Mexico’s RE Policies and Projects

* The energy reform of 2013 simultaneously focuses on reducing GHG emissions
by boosting the proportion of clean energy sources to achieve climate sustain-
ability and opening the formerly closed oil, gas, and power sectors in the country
(IEA, 2017).

* Some policies and programs predominantly devised from the reform are: laws
include: Energy Transition Law 2015, Geothermal Energy Law 2014, etc., strate-
gies include: Transition Strategy to Promote the Use of Cleaner Technologies
and Fuels 2016 & others, programs include: National Program for Sustainable
Use of Energy (2014-2018), Special Program for the Energy Transition (2017-
2018), and so on, and initiatives include: Energy Transition Fund, and Energy
Sustainability Fund (Castrejon-Campos, 2022).

* In order to strengthening the innovation capability, Mexico formed a fund called
“Energy Sustainability Fund” in 2008. It generally seeks to facilitate research &
development, sustainable energy development, technological advancement, etc.
(OECD/IEA, 2017).
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¢ The Sonora Plan, which is unveiled at the COP27 climate summit, consists of
several green infrastructure projects in the state’s northern region with the goal of
increasing the nation’s capacity for manufacturing and renewable energy (Godoy,
2022).

* President of Mexico announced an ongoing project concerning generation of
green hydrogen through water electrolysis (Parkes, 2024).

* Inorder to electrify whole territory, including remote parts, new generation plants
are erected, new dams are restored, transmission channels are dilated, and also
solar panels are installed.

3.3.4 Scenario of Brazil

Brazil is the country, who is effectively transiting its energy sector to renewable
based system among the sunbelt countries. It is a country with 215.3 million of
people and a significant amount of disparity in income with a Gini coefficient of
52 in 2022 (World Bank Group, 2022c). Brazil has been moving forward with its
shift to a low-carbon and more sustainable energy system. The nation has adopted
renewable energy sources including hydropower, solar electricity, and wind power
in an effort to minimize its reliance on fossil fuels. Through the rapid adoption of
off-grid solar technology, Brazil is making progress in solar and wind energy.

Brazil boasts the seventh-largest power generation capacity in the world and the
sixth-largest consumer electricity market worldwide (ITA, 2023b). It ranks second
in terms of hydropower as well as bioenergy generation in the world. It also held
7% of global renewable energy generation. In Brazil, hydroelectric electricity is the
second most often utilized primary energy fuel after oil.

Renewable energy comprises 84% of Brazil’s total capacity mix and 87% of
total generation mix (Bloomberg NEF, 2023d). Its total installed renewable energy
capacity is 176,709 MW as of 2022, among which hydropower accounts for
109,802 MW, solar stands at 25,520 MW. Wind and Bioenergy held 24,165 MW
and 17,224 MW of installed capacity, respectively, in 2022 (Whiteman et al., 2023).
According to ITA, over 44 GW of installed wind generating capacity is anticipated
in Brazil by 2028, making up 13.2% of the country’s total electricity mix.

Hydropower also dominates the generation mix of Brazil with 409,890 GWh
in 2022, while wind generates 81,631 GWh of electricity in the year. Solar and
bioenergy accounts for 64,235 GWh and 52,046 GWh of electricity generation,
respectively, as of December 2022 (Bloomberg NEF, 2023d).

Brazil’s average price per MWh of electricity rose from 151.1 USD in 2021 to
159.95 USD in 2022. It is fluctuating from 138.62 USD/MWh to 183.34 USD/MWh
within the period of 2017-2022. Investment in clean energy for Brazil amounts
$11502.35 million in 2022, an increase of 52.92% compared to the previous year
($7521.92 million) (Bloomberg NEF, 2023d). By 2029, projected investment in the
Brazilian energy sector would be around $100 billion, encompassing transmission,
distributed generation, and utility-scale generation projects (ITA, 2023b).
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Brazil’s energy sector is among the least carbon-intensive in the world, although
it emits 484 MtCO2 of carbon and ranks 13™ globally in terms of emissions in
2022 (Global Carbon Atlas, 2022). 320 MtCO2 of it accounts for oil emissions.
Deforestation in Brazil expanded in 2020 and 2021 and expected to increase as well
in the coming years due to cattle rearing and illegal mining. That might cause the
recent unexpected surge in carbon emissions of the country (Climate Action Tracker,
2023a).

Brazil’s RE Policies, Programs, and Plans

Brazil has been paving the way in renewable energy, enacting laws, and programs
to support sustainable energy sources. Brazil is determined to a sustainable energy
future that benefits its people and the planet globally, as seen by its regulations and
investment.

» Law 9478 of 1997 established Brazil’s national energy policy, with a focus on the
exploitation of renewable energy sources as a fundamental element (Ministerio
De Minas Energia, 1997).

¢ The New Legislative Framework for Solar Energy encourages photovoltaic
development by exempting individuals who commence producing solar energy
from paying taxes until 2045 (Government of Brazil, 2022a).

e The Program of Incentives for Alternative Electricity Sources supported in
the development of local manufacturing abilities for wind turbines and their
components (IEA, 2015).

¢ Implemented in 2020, the “RenovaBio” policy establishes emission targets for
transportation and promotes the production of biofuel by means of decarboniza-
tion credits (MME, 2021).

¢ Brazil is pursuing new frontiers in energy innovation, one of which is hydrogen.
Recent initiatives in the National Hydrogen program are focused on research and
development (R&D) (Government of Brazil, 2022b).

¢ Aninitiative named “The Fuel of the Future,” which prioritizes R & D to advance
low-emission technologies (Fick, 2023).

¢ To establish guidelines for businesses interested in establishing offshore wind
farms in Brazil, the Brazilian government established a working group (Enerdata,
2022).

¢ Brazil has tremendous capability of producing off shore wind energy due to
its vast coastline of 7400 K.M, steady wind, and relatively shallow ocean
(Government of Brazil, 2022c).

e Ministry of Mines and Energy formed The Ten-Year Energy Expansion Plan,
named PDE 2019-2029, followed by due consultation with stakeholders (Min-
isterio De Minas Energia. Ten-Year Energy Expansion Plan 2029. [Online].
Auwailable: https://www.epe.gov.br/).

According to the former president of Brazil Fernando Henrique Cardoso,
consolidation of a low-carbon matrix is a requirement of the twenty-first century,
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and Brazil has all the necessary resources to progress in this direction, given its
abundance of renewable energy. Nonetheless, the nation must constantly innovate
and foresee what is going on in the rest of the world (Fundacao, 2019).

3.3.5 Scenario of Morocco

Morocco is a developing country with high growth rate of population and soaring
demand of energy consumption. It has a population of 37,457,971 crores in 2022,
and a Gini coefficient of 50.6 in 2019 (most recently measured) (World Economics,
London, 2019). 11.9% of active people of the country are unemployed, which is
approximately 6.8% higher than the regional average (Focus Economics, 2022).

Morocco started to develop renewable energy in the 2010s, followed by a
slowdown in the later period, because of price volatility, environmental issues,
and scarcity of resources (Bloomberg NEF, 2023e). Given the national policy and
the locally acquired expertise of the national and international operators, presently
Morocco is actively participating in the renewable energy sector (El Ghazi et al.,
2021). According to World Bank 2018, Morocco has the commanding position in
its region in terms of incorporating renewables in its energy mix. It aims to boost
its dependence on renewable energy sources from about 20% of its current power
generation to 52% by 2030 (Roscoe, 2017), and further 80% in 2050 (Bloomberg
NEF, 2023e).

Morocco has a total renewable capacity of 3725 MW for renewables in 2022,
which is 2.34% higher compared to the previous year (Whiteman et al., 2023). Solar
PV capacity witnessed biggest leapfrog in that year from 7.14% in 2021 to 10.24%
in 2022.

Capacity installed for hydropower, wind energy, and bioenergy in Morocco
stands at 1306 MW, 1558 MW, 7 MW, respectively, in 2022. Solar PV accounts
for 854 MW of capacity installed, in which 314 MW implies solar PV and 540 MW
indicates CSP capacity in 2022 (Whiteman et al., 2023). Morocco’s dependency on
coal is diminishing gradually which stands at 35.81% of total capacity installed in
2022.

Morocco’s total electricity generation from renewables is led by wind energy
with 6504 GWh of electricity generation, followed by large hydro and solar PV with
1432 GWh and 1300 GWh of electricity generation, respectively, in 2022. Its largest
annual increase in generation in 2022 also comes with wind energy at 14.86% up
from 13.92% in 2021. Generation from solar thermal reaches at 1252.8 GWh at the
end of 2022. In the meantime, generation from small hydro mounts at 540 GWh.
(Bloomberg NEF, 2023e). According to BBC, Morocco has tremendous natural
resources to produce solar, wind, and hydropower, comprehending that the country
is heading toward sustainable energy sector and dilating as an energy investment
hub of Northern Africa (Alami, 2021).

Morocco’s clean energy investment amounts $553.12 million in 2022, up 12.72%
from $490.73 million in 2021. In the recent periods, Morocco makes its largest
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renewable energy investment in 2018, which was $2930.38 million (Bloomberg
NEF, 2023e).

The average price of residential, industrial, and commercial use electricity in
Morocco decreased from 108.48 USD/MWh in 2021 to 97.54 USD/MWh in 2022
(Bloomberg NEF, 2023e).

Morocco is one of the most climate-vulnerable countries in the region, where the
average temperature is thriving despite not being a large emitter of carbon. In 2022,
Morocco emits 68 MtCO?2 of carbon and ranks 49 as a country in terms of carbon
emission, constituting only 0.183% of global carbon emission. Per capita emission
of the country in 2022 stands at 1.8 ton (M. R. a. P. R. Hannah Ritchie, 2022).

Morocco’s Policies and Projects

According to INSAMER, Morocco has undergone an enormous transition to
renewable energy and energy efficiency, placing it at the forefront of this industry in
various aspects for the continent of Africa. However, there are still difficulties with
putting policies into practice (Mhamed, 2022).

¢ During COP26, Morocco signed the methane agreement. Methane is mostly
found in the waste and agriculture sectors and accounted for 17% of global
GHG emissions. (Europian Commission, 2023). Overall methane emissions are
anticipated to be impacted by mitigation strategies in the agriculture sector.

e Morocco committed to halt issuing permits and building new coal-fired plants
when it approved clauses 1, 3, and 4 of the coal exits at the UN Climate Change
Conference (COP26), 2021 (Climate Action Tracker, 2023b).

¢ Morocco committed to expediting the spread and uptake of electric zero-emission
vehicles (Nabil Samir, 2022).

¢ The Moroccan government pledged to raise the proportion of renewable energy
in the country’s electricity mix to 80% by 2050 in its long-term strategy, which
was released on December 21, 2021 (Climate Action Tracker, 2023b).

e The 2021 NDC incorporates the 2030 National Solar Plan, which sets a new goal
of achieving a 4 GW total capacity by 2030. Also, Morocco currently plans to
reach a total wind power capacity of 2.2 GW by 2030 as part of the 2030 National
Wind Plan. Further, the government stated in its revised NDC that it intended to
add 1.1 GW of hydropower capacity by 2030 (Climate Action Tracker, 2023b).

e Morocco’s green hydrogen sector and its derivatives are predicted to be able
to satisfy the country’s demand between 13.9 TWh and 30.1 TWh in 2030,
and between 153.9 TWh and 307.1 TWh in 2050, according to the country’s
roadmap, and it aspires to become a global leader of green hydrogen (Moroccan
Ministry of Energy, Mines and Environment and IRESEN. Countries: Morocco.
[Online]. Available: https://gh2.org).

¢ The Noor-Ouarzazate complex, located in Morocco, is the largest concentrated
solar power plant in the world. It is made up of a massive network of curved
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mirrors that cover 3000 hectares (11.6 square miles), concentrating sunlight onto
tubes of fluid that are then heated to generate electricity (Josephs, 2023).

e Moroccan Youth Center for Sustainable Energy founded by Rachid Ennassiri, a
Moroccan environmentalist, works on several climate change projects, i.e. project
of making sustainable mosques using solar panel (Alami, 2021).

3.3.6 Scenario of South Africa

South Africa is yet another unequal country with a Gini coefficient of 63 and with
a population of 59.89 million people (Dyvik, 2024). 86% of country’s total wealth
is held by the richest 10% people of the country (Anekwe et al., 2024). 40% of
the youth are unemployed in the country. Since 2021, the country’s electrification
rate is 89.30%, followed by a national electrification campaign. The coal industry
has been the backbone of South Africa’s energy supply for the past few decades,
offering relatively well-paid jobs for workers with lower skill levels as well as a
local fossil fuel that serves as the country’s main source of electricity (Hanto et al.,
2022). Coal industry utterly dominates the share of installed capacity and electricity
generation with 72.19% of total installed capacity and 84.54% of total electricity
generation in 2022 (Bloomberg NEF, 2023f).

The Renewable Energy Independent Power Producer Procurement Program
(REIPPPP), which has so far secured approximately 10 GW capacity in six bidding
windows, is crucial in obtaining RES through its bidding process. REIPPPP is
introduced by the South African government in 2011 for the sake of attracting
private investment in the renewable energy sector (Anton Eberhard, 2016). Solar
photovoltaic and onshore wind are to be considered as qualifying technology at the
7th bid submission phase of the REIPP procurement program 2024 (DMRE, 2023a).
Now the government is targeting widespread phase out of coal and deployment of
RE to reduce GHG emissions and achieve carbon neutrality within 2050. It is worth
to be mentioned that South Africa is the 14th largest GHG emitter of the world
(Robert McSweeney, 2018).

South Africa’s total installed renewable energy capacity accounts for 10,505 MW
in 2022, which is 7% higher compared to the previous year, also the largest
capacity among sub-Saharan Africa region (Cowling, 2024). However, the country
seeks to uptake its renewable energy capacity to 19 GW within 2030 (NDC
Partnership. Making renewable energy affordable: The South African Renewables
Initiative. [Online]. Available: https://ndcpartnership.org/). It comprises 17.69% of
total energy installed capacity. Among all the renewable energy sector capacity,
hydropower remained steady over the years and accounts for 752 MW in 2022. Wind
energy (Onshore) stands at 3163u MW in 2022, after witnessing a slight decrease
in the previous year. A total of 6326 MW of installed capacity for solar energy is
available at the country in 2022, in which 5826 MW stands for solar PV and the rest
indicates CSP. Installed capacity regarding bioenergy 265 MW, solid biofuel and
renewable waste is 242e and biogas 23e MW (Whiteman et al., 2023). South Africa
is not a country with geothermal resource available. The highest increase in terms
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of capacity installed is 9.46% for solar PV in 2022, up from 8.05% in the previous
year (Bloomberg NEF, 2023f).

Wind energy is the mainstay of renewable’s share in electricity generation with
9640.9 GWh, followed by solar PV and large hydro, which amounts 4962.7 GWh
and 3022.7 GWh, respectively, in 2022. Solar thermal generation for the year is
1589.5 GWh, whereas small hydro and biomass waste stand at 280.4 GWh and
201.4 GWh, respectively (Bloomberg NEF, 2023f).

According to Statista, SA’s renewable energy held 18.26% share in the total final
energy consumption (TFEC) in 2022 (Degenhard, 2024). Country’s average Price
of energy decreased from 101.25 USD/MWh in 2021 to 99.94 USD/MWh in 2022.
Total investment in renewable energy in the year is $4787.14 million, a threefold
increment from $1576.62 million in 2021 (Bloomberg NEF, 2023f). As previously
mentioned, South Africa is the 14th largest GHG emitter, alongside it ranks 15t
in terms of emitting CO2. In 2022, it emits 404 MtCO2 carbon, 338 MtCO2 came
from coal sector therein. 38 MtCO?2 of carbon is released from the oil sector this
year, which stands for the second largest carbon emitting sector in South Africa
(Global Carbon Atlas, 2022).

SA’s Policies and Programs

* One of the policy papers that established the ground work for the development of
renewable energy technologies, including solar, hydro, biomass, and wind, was
the White Paper on Renewable Energy, 2003 (DMRE, 2003).

» Integrated Resource Plan (IRP) 2019 is the national electricity strategy by the
country’s government from 2018 to 2030, which indicates how the specific
demand will be supplied (Hanto et al., 2022).

* Renewable Energy Independent Power Producer Procurement Program
(REIPPPP) is a unique initiative by the country’s government to entice the
private sector investment to the several renewable energy sectors like solar PV,
CSP, wind, etc.

» Climate change mitigation is the explicit focus of legislative measures and policy
instruments including the Climate Change Bill, the Carbon Tax, and offsetting
schemes (Hanto et al., 2022).

* DMRE is carrying out an initiative to connect the youth and women of their
country to the energy sector to make them vigilant about the gradual coal phase-
out and decarbonization of the sector (DMRE. Energy Resources: Programmes
and Projects: Programmes and Projects Management Office: Women Empower-
ment [Online]. Available: https://www.dmre.gov.za; DMRE. Energy Resources:
Programmes and Projects: Programmes and Projects Management Olffice: Youth
Empowerment [Online]. Available: https://www.dmre.gov.za).

» Integrated Energy Center (IEC), an initiative undertaken by the government,
seeks to improve rural enterprise development, reduce poverty, and increase
access to energy (DMRE. Energy Resources: Programmes and Projects: Pro-
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grammes and Projects Management Office: Integrated Energy Centre [Online].
Available: https://www.dmre.gov.za).

* Request for proposal (RFP) from municipalities in preparation for the 2024/25—
2027/28 is a project that is underway by the Department of Minerals and Energy,
South Africa (DMRE, 2023b).

e The DMRE’s new licensing regulations for plants <100 MW are another
significant recent policy change that is anticipated to promote the uptake of RES.
These regulations are expected to release approximately 5 GW of additional
industrial and mining capacity in the coming years (Hanto et al., 2022).

* South Africa launched an initiative called South African Renewable initiative
(SARI) to push the electricity generation from renewable technologies (NDC
Partnership. Making renewable energy affordable: The South African Renew-
ables Initiative. [Online]. Available: https://ndcpartnership.org/).

Regulation and legislative changes are gradually fostering a policy environment
that is more RES-friendly (Hanto et al., 2022).

4 Comparative Analysis

4.1 Discussion

Among the emerging economies of the sunbelt considered in the study, Brazil
peaked in respect of renewable energy capacity and generation, as well as the
respective mix percentage, setting a benchmark for many other developing and
developed nations. India is also pursuing through the way and on the verge of
stretching the Paris agreement target as well. India has the lowest per kWh price of
electricity and the 2nd highest annual investment in RE followed by Brazil among
the countries by which it devised as one of the RE hubs of the world. Morocco, one
of the least carbon-intensive economies in the world, stands as the lowest carbon
emitter in the study and is projected to attain the net-zero emission target soon.
Vietnam has one of the fastest growing renewable energy sectors in the world. The
surge in Vietnam’s renewables is the transcendent among the studied economies.
South Africa and Mexico are also competitively utilizing their RE resources and
minimizing their reliance on fossil fuels and carbon-intensive technologies. A
comparative analysis is in Table 2.
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5 Implications

5.1 India (South Asia)

India is superiorly positioned among the South Asian region concerning renewable
resource deployment. Various factors guided the country to attain the position
including economy, geography and certainly policies, projects and plans following
their implications. India’s neighboring states, who are geographically and most
often economically similar can replicate its policies and strategies and implement
it in their respective country to emerge as a renewable intensive country and
decarbonize the energy sector sooner.

Sri Lanka, Pakistan, Nepal, and Bangladesh are India’s neighboring subordinates
with regard to the utilization of RE technologies. In India, the diffusion of REC
has been propagated, especially since 2017, following a lackluster demand for
it (Sawhney, 2022). REC has been contributing to the development of RE and
raising awareness throughout the country. Other countries of the region, including
Nepal, Pakistan also have introduced REC but not propagated that much yet.
Remarkable diffusion of REC can result in improved awareness and eventually in
accomplishment of sustainability goals.

Moreover, as a result of being Agri-based country, India is widely spreading its
strategy to install solar panels on crop fields. Adjoining states of India can certainly
imitate this exercise as most of them rely on agriculture.

India simplified its feed in tariff policy followed by multiple time revision to
facilitate renewables purchase. Some other countries of South Asia, including Nepal
and Sri Lanka also captivatingly implemented FIT policy (Elavarasan et al., 2017).
Other SA countries except Nepal and Sri Lanka might naturalize their renewable
tariff policy to sustain their energy transition and fulfill their drastic energy demand
through renewables, i.e. in Bangladesh for electricity produced by renewable energy
sources, an incentive tariff that is 10% greater than the utility’s maximum purchase
price from private producers may be taken into consideration (Dastagir, 2018).
While India undertakes strategically different approach, India’s MoP has made it
clear that, in order to encourage the use of renewable energy, the green tariff cannot,
under any circumstances, be greater than the total of the average power purchase
costs of renewable energy, plus a surcharge equal to 20% of the average cost of
supply (Ministry of Power, 2023).

Most of the South Asian countries except Nepal and Bhutan are surrounded by
waterbody like Bay of Bengal, Indian Ocean, and Arabian Sea. Hence, they possess
a great advantage of producing offshore wind energy. India is already working on
offshore wind project at the gulf of Khambhat and the gulf of Mannar.

Further, international collaboration (regional and outside of the region) pertain-
ing to renewable technologies with resourceful countries would be beneficial for
South Asian countries, such as India.



124 D. B. Bhattachergee et al.
5.2 Brazil (South America)

South America is one of the cleanest regions in the world regarding electricity
sectors. Apart from Brazil, Chile, Argentina, Colombia also is rapidly proceeding
toward a carbon-free energy sector (IEA, 2023b). Other countries are also initiating
plans and policies for the sake of impact of climate change.

Brazil is one of the renewable superpowers of the world, hence, would pursue
by all over the world. According to Brazil’s Solar Energy legislation, tax would be
exempted for those, producing solar energy newly until 2045. Such tax exemption
of 15-20 years on RE, according to the state’s economic convenience, greatly
instigates private investor and producer to commence producing renewables.

Another Brazil’s masterstroke is RenovaBio policy. Its objective is to lower the
carbon intensity of Brazil’s transportation system by increasing the use of biofuels
and developing a market for carbon credits to offset greenhouse gas emissions from
the burning of fossil fuels, and to be included into the country’s NDC. In this policy,
producers of biofuel proactively verify their output, earning them points for energy-
environmental sufficiency, which results in the decarbonization credit, that can be
commercialized (MME, 2021).

Thus, not only other country of the continent but also countries all over the world,
infested with bioenergy resources may replicate the strategy to decarbonize their
transportation sector.

In Brazil, a bill called Fuel of the Future, which promotes the manufacture of
sustainable fuels like biodiesel, biomethane, and sustainable aviation fuel (SAF),
was approved by Parliament in 2024. Such policies are crucial for carbon-intensive
countries, whose energy sector are mostly relying on fossil fuel. Countries including
Argentina, Peru, and Ecuador heavily rely on diesel and natural gas, therefore,
these countries may reduce their dependability on fossil fuels and increase the
number of renewables in their energy mix by imitating the law, since the law
establishes initiatives for the decarbonization of natural gas and the manufacturing
of sustainable aviation fuel, as well as a 20% increase in the blend content of
biodiesel in diesel. Moreover, annual, or multiyear plan concerning RE exploitation
in accordance with respective NDC of the countries will also provide pathway
toward sustainable energy.

5.3 Vietnam (South East Asia)

South East Asia is one of the world’s renewable-intensive regions, consisting of
countries that are more or less equally charged with renewable resources. Apart
from Vietnam, Indonesia, Philippines, Thailand are also similarly concentrated on
producing renewable energy. Because of Vietnam’s rapidly growing RE sector, it is
taken into consideration for the study. Now focusing on the Vietnam-related issues
that can be pursuit by its neighbors.
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A Just Energy Transition Partnership (JETP) between Vietnam and the Inter-
national Partners Group (IPG) was announced with the goal of securing funding
to assist Vietnam in implementing a fair and sustainable energy transition in 2022
(Eurpean Union, 2023). Indonesia also entered into this partnership on the same
year (UNDP). This partnership program helps a country with resource mobilization,
policy frameworks and implementation, financial incentives, and so on. Therefore,
all the other countries of the region who seek a swift transition of energy sector
would pursue this partnership strategy. Moreover, international collaboration with
the countries with similar contemplation of renewables enhances the capacity,
generation, and policy of renewables.

Vietnam also halted the erection of new coal-fired power plants to reduce the
emission of carbon and achieve sustainability, Philippines and Indonesia also did
the same. Philippines announced a moratorium on the permit of new coal plant,
and Indonesia postponed its scheduled power facilities up to 15 GW (Global Eergy
Monitor, 2020). Other SEA countries may also exert the same to expand the usage
of renewables and alleviate reliance on fossil fuels.

Remediation of greenhouse gas is not possible overnight. It requires long-term
provident planning and roadmap along with proper execution. Considering this,
Vietnam conferred a much-anticipated roadmap to implement National Electricity
Development Plan also known as Power Development Plan 8 (PDPS) in May 2023.

It includes an aggregate depiction of a country’s energy sector, therefore,
comparatively backward countries of SEA, such as Cambodia, Myanmar, and
Malaysia may adopt this type of roadmap and can imitate Vietnam’s to a great
extent, since they are geographically, economically, and culturally similar. With
some changes according to their energy targets, financial allocations, preferences,
and positions, these countries may effectively adopt this type of programs.

Other lucrative initiatives by Vietnam government, including, alluring tariff
policy, import tax exemption, incentivize investor and most importantly allowing
private sector participation in energy industry to attract large investment. Simulation
of these actions may certainly support other countries to further approach toward
sustainability.

5.4 South Africa (Sub-Saharan Africa)

South Africa is the country with maximum renewable energy in sub-Saharan Africa
region, although its economy is greatly dependent on coal. All the countries of the
region contain numerous RE resources, while some are lagging behind in terms of
utilization of these resources. South Africa is rapidly implementing policies and
procedures to utilize its RE resources and reducing reliance on coal and other
carbon-intensive technologies. Hence, it is needless to say that replicating South
Africa’s resource utilization policy and strategy must facilitate its neighboring
countries’ energy sustainability actions.
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Now focus on how other sub-Saharan countries can emulate SA’s environmental
sustainability strategies and policies. South Africa’s latest Integrated Resource Plan
(IRP) 2019, under its National Development Program (NDP) is a comprehensive
plan that outlines the country’s electricity infrastructure development goals, includ-
ing integrated renewable energy generation and capacity target, electricity tariff,
investment trends, R&D, regional integration, technology usage, plan performance,
and so on (DMRE, 2019). Economically competitive neighbors of South Africa,
such as Nigeria, Botswana, Namibia, Zimbabwe may easily replicate such compre-
hensive plan with some changes according to their recent positions in utilization and
preference.

South Africa’s most vital effort to diversify its energy mix and reduce reliance
on fossil fuel is the Renewable Energy Independent Power Producer Procurement
Program (REIPPPP), which is designed to procure RE generation capacity from
private companies followed by tendering and bid submission.

This idiosyncratic strategy of the country is highly suggested to pursue by other
countries of the region. A country operating under this strategy can invite IPP’s to
submit bids to develop RE project in accordance with their requirement, evaluate
the bids under the light of different criteria, enter into negotiations with the bidders,
control and maintain the overall project. Thus, devices like REIPPPP may stimulate
a country’s overall economic growth, job creation, and environmental sustainability.

Everyone is aware of the fact that youth are the major changemaker of a nation,
and no nation can progress without the advancement of their women. Keeping this
in mind, Department of Mineral and Renewable Energy is connecting the nation’s
youth and women to their energy sector to make them concern about climate and
need of decarbonization of the sector. This is also such an initiative that other
country may contemplate to imply.

Another considerable program is the South African Renewables initiative
(SARI), established by SA government to help accelerate and aggressively scale up
renewable energy in South Africa in a way that will benefit the country’s economy,
society, and environment (SARi, 2011). Pursuing this initiative may help a country
to channelize or mobilize its public finance to its green energy activities.

5.5 Mexico (North America)

Mexico is often considered as a country of North America along with the USA and
Canada. Other two countries are developed and not located in sunbelt completely,
since some parts of the USA included in the sunbelt region. Therefore, if not the
country’s regional neighbors, then its geographically adjoining countries can pursue
its energy sustainability strategy to a great extent, such as Panama and Costa Rica.
Mexico’s root to the energy transition and climate sustainability is its energy
reform program in 2013, which prioritizes reduction of GHG emissions and
boosting the proportion of clean energy sources into their energy mix in order to
achieve climate sustainability (IEA, 2017). Prior to 2013, Mexico’s energy sector
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completely relied on fossil fuels, such as coal, natural gas, and diesel. The impact of
climate change made the country concern regarding the climate sustainability and
forced it to reform the energy policy. Hence, all the countries that are adversely
impacted due to climate change, but still have not taken any progressive measure
to deploy renewable energy, may find such reform policy beneficial for its future.
Some specific programs, policies, and initiatives devised from this energy reform,
such as Energy Transition Law 2015, Geothermal Energy Law 2014, Strategy to
Use Cleaner Technologies and Fuels, and National Program for Sustainable Use of
Energy, are noteworthy to depict its potential significance to the countries.

One of the Mexico’s presidential initiatives named, Sonora Sustainable Energy
Plan, which aims to create a sustainable ecosystem, encouraging the expansion of
vital sectors includes semiconductor, automation, and electromobility (NDC Part-
nership, 2023). The four primary foundations of this ecosystem are the development
of human skills, clean energy generation, key minerals, and strategic infrastructure.

Sonora’s renewable energy plan aims to receive an investment of US$1.64 billion
for its photovoltaic plant to generate 1000 MW of electricity and to facilitate 1.6
million consumers. Consequently, it goes without saying that such a city-based plan
or turning a city into an energy hub on the basis of the infrastructure, transportation,
onshore and offshore access of the city is conducive to a country’s energy transition.

The effectiveness of hydrogen in electricity and transportation sector is immense,
which includes fueling vehicles and aircrafts, power plant fuel, fuel cell power
generation, etc. Therefore, use of green hydrogen is benignant solution in terms of
climate impact. The president of Mexico announced a project regarding generation
of green hydrogen through water electrolysis. Countries with abundant water
resources may imitate this technique as well to reduce reliance on conventional
hydrogen and enhance clean energy.

5.6 Morocco (MENA)

Morocco is one of the most carbon-intensive countries in Middle East and North
Africa region. There are some other countries that are competitive to Morocco in
terms of RE generation and capacity. But, the primary reason behind considering
Morocco is its overall profile including carbon emissions flexibility. Along with
Morocco’s regional neighbors, other countries with higher carbon emission ratio
may pursue its strategy and replicate its carbon lowering initiatives.

The impact of climate change by drastic increase in worldwide greenhouse gas
emissions forced Morocco to decarbonize all the sectors possible, as it is one of the
world most adversely affected countries by GHG.

In COP26, an agreement regarding Methane is signed by Morocco, which aims
to reduce the emission methane mostly from waste and agricultural sector. Morocco
also ceased the issuance of permits for building new coal-based power plant to
reduce the use of coal in energy. These are the primary actions to pursue by a nation
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who anticipates decarbonization, although many MENA nations also have joined
the methane pledge except Iran, Syria, and Algeria.

Morocco is also determined to disseminate the purchasing and operation of zero-
emission vehicles, which further demonstrates their resolve to create a carbon free
nation, and yet again fosters other country to contemplate the same by indicating
appropriate pathways.

Moreover, country’s renewable energy strategies and targets are tempting.
Morocco seeks to enhance its RE proportion to 80% in its electricity mix within
2050. According to Morocco’s 2021 NDC, it aims to achieve 4 GW of solar capacity
and 2.2 GW of wind capacity within 2030. In the meantime, the country is targeting
to generate 14-30 GW of green hydrogen.

Individual initiatives from the people of Morocco further exhibit public respon-
sibilities toward sustainability. Rachid Ennassiri, a Moroccan environmentalist
established an organization named Youth Center for Sustainable Energy, currently
working on building sustainable mosques by installing solar panel. Other countries
can exemplify these initiatives to enhance public integrity to climate and sustain-
ability.

6 Conclusion

In this era of constantly deteriorating climate, energy sustainability is the key to
frame a protest to the impact of it. Hence, this study aims to suggest several
pathways, experienced from regionally supreme countries for reducing the reliance
on fossil fuels and gain energy sustainability of EMMIE’s of those regions. These
formulas are proved to be effective and vary according to the geography, economy,
impact, and preferences. This study verdicts that most of the policies, plans, and
programs implemented by studied countries are pursuable by their neighboring
states. It pinpoints a number of experiences that are shared across countries,
especially those dealing with how such renewable energy initiatives are structured,
which may be adopted with minimum modifications to different national contexts.
Shared geographical characteristics include a rich resource base in terms of solar
potential, an important predisposing advantage. The immediate neighbors will have
to factor into their peculiar economic capacity and governance system a manner
of adopting the strategies. Success will come with regional cooperation, sharing
resources, and a commitment to investing in renewable energy infrastructure. This
study is the first to cover entire sunbelt regions to support them achieving renewable
based energy sector on the basis of their geographical location. Economic conditions
of the neighboring countries are a limitation of the study, although economic
condition was never considered as a factor under climate change setting and its
impacts. As it still emerges as a vital factor in a viable way, further conducting
of research is suggested to investigate countries’ RE adoption opportunities in
accordance with their economic conditions and preferences.
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1 Introduction

Energy economics and finance play a vital role in the development and sustainability
of the energy sector. Accurate forecasting of energy prices is essential for effective
decision-making, as it enables policymakers, financial managers, and stakeholders
to anticipate market trends, allocate resources efficiently, and develop strategies
for long-term growth (Weron, 2014). However, energy markets are complex and
dynamic, influenced by a wide range of factors such as market structures, regulatory
frameworks, environmental impacts, and global economic conditions (Kilian, 2009).

Traditional forecasting methods, such as time series models and econometric
techniques, often struggle to capture the nonlinear and nonstationary nature of
energy prices (Wang et al., 2016). In recent years, machine learning algorithms have
emerged as a promising alternative for forecasting energy prices, due to their ability
to learn from large and complex datasets, identify hidden patterns, and adapt to
changing market conditions (Lago et al., 2018).

This chapter explores the application of machine learning algorithms for fore-
casting energy prices, with a focus on crude oil, electricity, natural gas, and solar
prices. We conduct a comparative analysis of various machine learning techniques,
including artificial neural networks (ANNs), support vector machines (SVMs), and
random forests (RFs), to determine their effectiveness in predicting energy prices.
Our research aims to address the following questions:
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1. How do machine learning algorithms perform compared to traditional forecasting
methods in predicting energy prices?

2. Which machine learning techniques are most effective for forecasting different
types of energy prices (e.g., crude oil, electricity, natural gas, and solar)?

3. What are the key factors influencing the accuracy of machine learning-based
energy price forecasts?

4. How can machine learning-based energy price forecasts inform decision-making
in the energy sector and contribute to the development of sustainable energy
systems?

In addition to exploring the application of machine learning algorithms for energy
price forecasting, we also discuss the role of renewable energy technologies
(RETs) in shaping energy economics and finance. RETs, such as solar, wind,
and hydropower, offer a clean and sustainable alternative to fossil fuels, and their
increasing adoption has significant implications for energy markets and economic
growth (Inglesi-Lotz, 2016).

This chapter contributes to the literature on energy economics and finance
by providing a comprehensive analysis of machine learning-based energy price
forecasting and highlighting the potential of RETs to transform the energy sector.
Our findings have important implications for policymakers, financial managers, and
stakeholders, as they seek to develop strategies for sustainable energy development
and economic growth.

2 Literature Review

The application of machine learning algorithms for forecasting energy prices
has gained significant attention in recent years. Numerous studies have explored
the effectiveness of various machine learning techniques in predicting prices for
different types of energy commodities, such as crude oil, electricity, natural gas,
and renewable energy.

In the context of crude oil price forecasting, Xie et al. (2006) were among the
first to apply SVMs to predict monthly West Texas Intermediate (WTI) crude oil
prices. They found that SVM outperformed traditional time series models, such as
autoregressive integrated moving average (ARIMA) and back-propagation neural
networks (BPNNs). Yu et al. (2008) extended this research by comparing the
performance of SVM with other machine learning techniques, including ANNs and
genetic algorithms (GAs), and found that SVM yielded the most accurate forecasts.

Electricity price forecasting has also been a focus of machine learning appli-
cations. Conejo et al. (2005) proposed an ANN-based approach for day-ahead
electricity price forecasting in the Spanish market, demonstrating its superiority
over traditional time series models. Amjady (2006) combined fuzzy neural networks
(FNNs) with evolutionary algorithms to forecast day-ahead electricity prices in
the Ontario market, achieving high accuracy. More recently, Lago et al. (2018)
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conducted a comprehensive review of machine learning techniques for electricity
price forecasting, highlighting the potential of deep learning methods, such as
convolutional neural networks (CNNs) and long short-term memory (LSTM)
networks.

Machine learning algorithms have also been applied to forecast natural gas
prices. Busse et al. (2010) used SVM to predict daily natural gas prices in the
German market, finding that it outperformed traditional time series models. Wang
et al. (2016) proposed a hybrid model combining wavelet transform, SVM, and
particle swarm optimization (PSO) for forecasting natural gas prices, demonstrating
its effectiveness in capturing the nonlinear and nonstationary characteristics of the
price series.

In the context of renewable energy, machine learning techniques have been
employed to forecast prices and production. Mellit and Kalogirou (2009) used
ANN to predict solar radiation, a key factor influencing solar energy production
and pricing. Abuella and Chowdhury (2017) applied RFs to forecast short-term
solar power production, achieving high accuracy. Feng et al. (2019) proposed a
deep learning-based approach for forecasting wind power production and prices,
demonstrating its potential to inform decision-making in renewable energy markets.

The role of RETs in shaping energy economics and finance has also been a
subject of extensive research. Sadorsky (2012) investigated the relationship between
renewable energy consumption and economic growth, finding a positive and signif-
icant impact of renewable energy on GDP growth. Inglesi-Lotz (2016) analyzed
the impact of renewable energy consumption on economic welfare, highlighting
its potential to reduce energy costs and increase energy security. Edenhofer et al.
(2013) provided a comprehensive overview of the economics of renewable energy,
discussing the challenges and opportunities associated with the transition to a low-
carbon energy system. Table 1 summarizes the key studies and findings in the
literature on machine learning-based energy price forecasting and the role of RETs
in energy economics and finance. This literature review highlights the growing
application of machine learning algorithms for energy price forecasting and the
importance of RETs in shaping energy economics and finance. Our research builds
upon these findings by conducting a comparative analysis of various machine
learning techniques for forecasting energy prices and discussing the implications
of RETs for sustainable energy development and economic growth.

3 Methodology

3.1 Data

We collect historical price data for four key energy commodities: crude oil,
electricity, natural gas, and solar. The data spans a period of 10 years, from January
2010 to December 2019, and is obtained from reliable sources such as the U.S.
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Table 1 Summary of key studies in machine learning-based energy price forecasting and the role
of RETs in energy economics and finance

Study
Xie et al. (2006)

Yu et al. (2008)
Conejo et al. (2005)

Amjady (2006)

Lago et al. (2018)

Busse et al. (2010)

Wang et al. (2016)

Mellit and
Kalogirou (2009)

Abuella and
Chowdhury (2017)

Feng et al. (2019)

Sadorsky (2012)

Inglesi-Lotz (2016)

Edenhofer et al.
(2013)

Focus

Crude oil price forecasting using
SVM

Comparison of SVM, ANN, and
GA for crude oil price forecasting
Day-ahead electricity price
forecasting using ANN
Day-ahead electricity price
forecasting using FNN and
evolutionary algorithms

Review of machine learning
techniques for electricity price
forecasting

Natural gas price forecasting
using SVM

Hybrid model for natural gas
price forecasting using wavelet
transform, SVM, and PSO

Solar radiation forecasting using
ANN

Short-term solar power
production forecasting using RF
‘Wind power production and price
forecasting using deep learning

Relationship between renewable
energy consumption and
economic growth

Impact of renewable energy
consumption on economic
welfare

Overview of the economics of
renewable energy

Key findings
SVM outperforms ARIMA and
BPNN

SVM yields the most accurate
forecasts

ANN outperforms traditional time
series models

High accuracy achieved by
combining FNN and evolutionary
algorithms

Deep learning methods show
potential for accurate forecasting

SVM outperforms traditional time
series models

Effective in capturing nonlinear
and nonstationary characteristics
of price series

ANN demonstrates high accuracy
in predicting solar radiation

RF achieves high accuracy in
forecasting solar power production
Deep learning-based approach
informs decision-making in
renewable energy markets
Positive and significant impact of
renewable energy on GDP growth

Potential to reduce energy costs
and increase energy security

Discusses challenges and
opportunities associated with the
transition to a low-carbon energy
system

Energy Information Administration (EIA), the European Energy Exchange (EEX),
and the International Renewable Energy Agency (IRENA). The dataset includes
daily prices for each commodity, along with relevant explanatory variables such as
production levels, consumption patterns, and macroeconomic indicators.
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3.2 Machine Learning Algorithms

We employ three widely used machine learning algorithms for energy price
forecasting: ANNs, SVMs, and RFs. These algorithms are selected based on their
proven performance in previous studies and their ability to capture nonlinear and
complex relationships in the data.

3.2.1 ANNs

ANN is a powerful machine learning technique inspired by the structure and
function of the human brain. It consists of interconnected nodes (neurons) organized
in layers, which process and transmit information through weighted connections.
ANN can learn from data by adjusting the weights of the connections to minimize
the difference between predicted and actual values. In this study, we employ a
feedforward ANN with one hidden layer and use the back-propagation algorithm
for training.

3.2.2 SVMs

SVM is a supervised learning algorithm that aims to find the optimal hyperplane
separating different classes of data points in a high-dimensional space. In the context
of regression, SVM seeks to find a function that minimizes the prediction error
while maintaining a certain level of flatness. We use the radial basis function (RBF)
kernel for SVM, which allows for nonlinear mapping of the input data into a higher
dimensional feature space.

3.2.3 RFs

RF is an ensemble learning method that combines multiple decision trees to improve
prediction accuracy and reduce overfitting. Each decision tree in the forest is trained
on a random subset of the input features and a random subset of the training data,
using a technique called bootstrap aggregating (bagging). The final prediction is
obtained by averaging the predictions of all the trees in the forest. RF is known for
its robustness, ability to handle high-dimensional data, and resistance to overfitting.

3.3 Model Evaluation

We evaluate the performance of the machine learning algorithms using two widely
used metrics: mean absolute error (MAE) and root mean squared error (RMSE).
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MAE measures the average absolute difference between the predicted and actual
values, while RMSE measures the average squared difference, giving more weight
to large errors. Lower values of MAE and RMSE indicate better forecasting
performance.

1 .
MAE:;ZIyi—in (1)

i=1

1 n
_ _ 52
RMSE = " E i —yi) ()

i=1

where n is the number of observations, y; is the actual value, and J; is the predicted
value. We also compare the performance of the machine learning algorithms with
traditional forecasting methods, such as ARIMA and exponential smoothing (ES),
to assess the relative effectiveness of machine learning techniques in energy price
forecasting.

4 Results and Discussion

4.1 Comparative Analysis of Machine Learning Algorithms

The performance of the three machine learning algorithms (ANN, SVM, and RF)
in forecasting energy prices is summarized in Table 2. The results indicate that
machine learning algorithms generally outperform traditional forecasting methods
(ARIMA and ES) across all four energy commodities, with lower MAE and RMSE
values.

Table 2 Performance of machine learning and traditional forecasting methods

ANN SVM RF
Commodity MAE RMSE MAE RMSE MAE RMSE
Crude oil 1.23 1.56 1.18 1.49 1.35 1.68
Electricity 2.45 3.12 2.37 3.01 2.58 3.27
Natural gas 0.15 0.19 0.14 0.18 0.17 0.21
Solar 0.08 0.11 0.07 0.10 0.09 0.12
ARIMA ES
Crude oil 1.42 1.79 1.39 1.75
Electricity 2.71 3.45 2.68 3.39
Natural gas 0.19 0.24 0.18 0.23

Solar 0.11 0.14 0.10 0.13
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Among the machine learning algorithms, SVM consistently outperforms ANN
and RF across all four energy commodities, exhibiting the lowest MAE and RMSE
values. This finding is in line with previous studies that have highlighted the superior
performance of SVM in energy price forecasting (Xie et al., 2006; Yu et al., 2008).
The strong performance of SVM can be attributed to its ability to handle nonlinear
relationships and its robustness to outliers, which are common in energy price data.

ANN and RF also demonstrate competitive performance, with ANN slightly
outperforming RF in most cases. The ability of ANN to learn complex patterns and
relationships in the data makes it well-suited for energy price forecasting (Conejo
et al., 2005; Amjady, 2006). RF, on the other hand, benefits from its ensemble
learning approach, which helps to reduce overfitting and improve generalization
performance (Abuella & Chowdhury, 2017).

The relative performance of the machine learning algorithms varies across the
different energy commodities. For crude oil and electricity prices, the performance
gap between the machine learning algorithms and traditional methods is more
pronounced, indicating the potential for machine learning techniques to provide
significant improvements in forecasting accuracy. In the case of natural gas and solar
prices, the performance gap is smaller, suggesting that traditional methods may still
provide reasonable forecasts for these commodities.

Figure 1 provides a visual comparison of the performance of the machine
learning algorithms and traditional forecasting methods for each energy commodity.
The figure clearly illustrates the superior performance of machine learning algo-
rithms, particularly SVM, across all four energy commodities. The performance
gap between machine learning algorithms and traditional methods is most evident
for crude oil and electricity prices, while the gap is smaller for natural gas and solar
prices.

4.2 Key Factors Influencing Forecast Accuracy

To identify the key factors influencing the accuracy of machine learning-based
energy price forecasts, we conduct a sensitivity analysis by varying the input
features, hyperparameters, and training data characteristics. The results of the
sensitivity analysis are summarized in Table 3.

The sensitivity analysis reveals that the choice of input features has a high
impact on the forecast accuracy of ANN and a medium impact on SVM and

Table 3 Sensitivity analysis Factor ANN SVM RF
of key factors influencing

forecast accuracy Input features High Medium | Medium

Hyperparameters | High Medium | Low
Training data size | Medium | Low Medium
Data frequency Low Low Low
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RF. This finding highlights the importance of selecting relevant and informative
features when developing machine learning-based energy price forecasting models.
The inclusion of features such as production levels, consumption patterns, and
macroeconomic indicators can significantly improve the accuracy of the forecasts.

Hyperparameter tuning also plays a crucial role in the performance of machine
learning algorithms, particularly for ANN and SVM. The sensitivity analysis
indicates that the forecast accuracy of ANN is highly sensitive to hyperparameter
settings, while SVM exhibits medium sensitivity. RF, on the other hand, is relatively
robust to hyperparameter variations, which can be attributed to its ensemble learning
approach.

The size of the training dataset has a medium impact on the forecast accuracy
of ANN and RF, while SVM is less sensitive to training data size. This finding
suggests that ANN and RF may require larger training datasets to achieve optimal
performance, while SVM can provide accurate forecasts even with smaller training
sets.

Interestingly, the frequency of the data (e.g., daily, weekly, and monthly) has a
low impact on the forecast accuracy across all three machine learning algorithms.
This result implies that the choice of data frequency should be based on the specific
requirements of the forecasting task and the availability of data, rather than the
inherent limitations of the machine learning algorithms.

345
3.272
32—
3 3.01—
g 2 | L68LTO
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~ 1.49
1
0.21
1019 024 0.12
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Fig. 1 Performance comparison of machine learning algorithms and traditional forecasting
methods for each energy commodity
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4.3 Implications for Decision-Making in the Energy Sector

The superior performance of machine learning algorithms in energy price forecast-
ing has significant implications for decision-making in the energy sector. Accurate
price forecasts are essential for various stakeholders, including policymakers,
investors, and energy companies, as they inform strategic planning, risk manage-
ment, and investment decisions.

For policymakers, machine learning-based energy price forecasts can provide
valuable insights into future market trends and help to design effective energy
policies. By anticipating price fluctuations and understanding the factors driving
these changes, policymakers can develop strategies to ensure energy security,
promote sustainable energy development, and mitigate the impact of price volatility
on the economy.

Investors and energy companies can leverage machine learning-based price
forecasts to make informed investment decisions and optimize their portfolios.
Accurate forecasts can help investors to identify profitable opportunities in the
energy market and manage their risk exposure. Energy companies can use price
forecasts to plan their production and trading activities, hedge against price risks,
and make strategic decisions regarding capacity expansion and technology adoption.

Moreover, machine learning-based energy price forecasts can contribute to
the development of sustainable energy systems by facilitating the integration of
renewable energy sources. Accurate price forecasts for solar and wind energy can
help grid operators to manage the intermittency of these sources and ensure the
stability of the power system. By providing reliable price signals, machine learning-
based forecasts can also encourage investment in renewable energy technologies
and support the transition to a low-carbon energy future.

5 Conclusion

This chapter explores the application of machine learning algorithms for forecasting
energy prices, focusing on crude oil, electricity, natural gas, and solar prices.
Through a comparative analysis of ANN, SVM, and RF, we demonstrate the
superior performance of machine learning algorithms over traditional forecasting
methods, with SVM exhibiting the highest accuracy across all four energy com-
modities.

Our findings highlight the potential of machine learning techniques to improve
the accuracy of energy price forecasts and inform decision-making in the energy
sector. The sensitivity analysis reveals the importance of selecting relevant input fea-
tures, tuning hyperparameters, and ensuring sufficient training data size for optimal
performance. The study also discusses the implications of machine learning-
based energy price forecasts for policymakers, investors, and energy companies,
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emphasizing their role in promoting sustainable energy development and supporting
the transition to a low-carbon future.

The integration of machine learning algorithms into energy price forecasting
practices can be modeled using the following equation:

P = f(X:,0)+ & 3

where P; represents the energy price at time ¢, X; denotes the input features, 6
represents the model parameters, and &, is the error term. The function f represents
the machine learning algorithm, which learns the relationship between the input
features and the energy prices from historical data. This research contributes to
the growing body of literature on the application of machine learning in energy
economics and finance. Future research could explore the integration of deep
learning techniques, such as CNNs and LSTM networks, to capture more complex
patterns and dependencies in energy price data. Additionally, the incorporation
of sentiment analysis and text mining techniques could provide valuable insights
into the impact of news and social media on energy prices. As the energy sector
continues to evolve and face new challenges, the adoption of machine learning
techniques for energy price forecasting will become increasingly important. By
harnessing the power of these advanced algorithms, stakeholders in the energy
sector can make more informed decisions, manage risks effectively, and contribute
to the development of sustainable energy systems.
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1 Introduction

The COVID-19 pandemic has caused a profound disturbance in the world economy
and precipitated the most extensive global economic crisis in over a century. The
crisis led to a dramatic increase in inequality within and across countries. According
to the annual report of the Department of Economic and Social Affairs, United
Nations, the COVID-19 pandemic resulted in a negative shift of approximately
$8.5 trillion over the 2019-2020 period which is sharply a 3.2% contraction of
the world’s Gross Domestic Product (GDP) (United Nations, 2024). This further
imposed challenges to the world in meeting United Nations Sustainable Devel-
opment Goals (SDGs) while minimizing harmful emissions as SDGs are closely
related to the emission rates. The emission of carbon dioxide (C O3) is one of the
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primary factors driving the overall rise in global emission rates (Boamah et al.,
2017). C O, emission, often referred to as carbon emission, denotes the release
of carbon dioxide and other greenhouse gases into outer space. Global carbon
dioxide emissions in the year 2020, as reported by the International Energy Agency
(IEA), amounted to 34 billion tons (CO2 emissions, 2021). It is worth noting that
the world’s largest economies such as China, the United States, and India are the
leading contributors in terms of emissions on a global scale. The monthly mean
atmospheric CO, concentrations have recently been reported to have reached a
noteworthy milestone. In April 2024, these concentrations reached a record high of
427 parts per million (ppm) (Tiseo, 2024). This measurement indicates a significant
increase of approximately 20% when compared to the corresponding month in the
year 1990.

The SDGs acknowledge the intricate link between C O, emissions and economic
factors like GDP per capita. SDG 7, “Affordable and Clean Energy,” prioritizes
ensuring everyone has access to reliable, affordable, and sustainable energy by 2030.
This goal’s core objective is to transition to renewable energy sources, effectively
lowering carbon emissions while promoting continuous economic growth world-
wide. Additionally, SDGs 12 and 13 focus on tackling climate change through
sustainable consumption and production patterns. This includes reducing waste
and promoting renewable energy use to minimize carbon emissions. The road
to recovering from the escalating emission rates will undoubtedly be long and
challenging. It calls for resilient leaders and scholars worldwide to seek innovative
solutions while assessing the actual impact of C O, emissions on GDP per capita.
Unfortunately, despite considerable efforts to investigate the link between industrial
energy consumption and economic growth, the current body of research regarding
the impact of C O, emissions on the shift of GDP per capita is considerably narrow
in focus (Lee et al., 2022; McGinley et al., 2022). The authors have observed the
role of green technology implementation decisions (GTIDs) in reducing overall
carbon emissions. However, they failed to establish a direct relation between
emissions and GDP per capita, which serves as a determinant of the prosperity
of countries based on their economic growth. This further necessitates future
research to thoroughly examine the complex relationship between CO, emissions,
green technology implementation, and GDP per capita. Realizing the key factors
influencing GDP per capita is crucial for governments and policymakers to make
well-informed decisions that prioritize both economic growth and environmental
sustainability.

Traditional econometric models have provided initial insights into the dynamics
between different types of emissions and economic growth. However, these models
cannot often capture complex, nonlinear relationships inherent in large datasets,
especially datasets with a larger number of null and missing values. Despite poten-
tial loopholes, in recent years, deep learning has emerged as a widely acclaimed
methodology for energy forecasting tasks and energy demand predictions (Kim
& Cho, 2021). Additionally, integrating eXplainble Artificial Intelligence (XAI)
tools such as SHAP (SHapley Additive exPlanations), ELI5 (Explain Like I'm
5), and LIME (Local Interpretable Model-agnostic Explanations) with traditional
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forecasting have paved the way to a more transparent and reliable automated
decision-making system (Shajalal et al., 2022). These XAl tools provide insights
into how complex intelligent models arrive at their predictions, allowing researchers
to understand the underlying factors and potential biases in the decision-making
process (Roy & Tipu, 2024). Therefore, this study aims to examine the relationship
between CO, emissions considered an economic indicator and evaluate its actual
impact on GDP per capita. The main contributions of our research are as follows:

* This study employs a comprehensive and robust data preprocessing technique
designed to address complex datasets with significant numbers of missing and
null values.

* We analyze the performance of different advanced deep learning algorithms to
identify the optimal predictive model for GDP analysis.

* This study proposes a novel stacked deep learning model to effectively make
predictions on GDP per capita using a wide range of socioeconomic and
environmental variables.

* We aim to analyze the intricate correlation between emissions and sustainable
economic advancement using an XAI framework. Additionally, our objective
is to determine whether the economic well-being and progress of a nation
are indeed dependent on the unintentional emission of harmful gases into the
atmosphere.

The remaining part of this research is organized as Sect. 2 highlights the recent
endeavors in the realm of ensuring a sustainable economy while minimizing carbon
emissions. Section 3 briefly mentions the proposed methods and materials utilized
in this study. Section 5 wraps up the study by summarizing the overall impact of our
research followed by Sect. 4 which is designed to record and discuss the findings to
be identified during the research process.

2 Literature Review

The significance of ensuring the sustainability of environmental well-being has
emerged as a critical policy priority on a global scale. As a result, policymakers
are recognizing the urgent need for coordinated efforts to protect the planet for
future generations. S. Li et al. investigated the driving factors of CO; emission
with machine learning (ML) (Li et al., 2021). They utilized various linear, nonlinear
ensemble ML models to find the superiority of K-Nearest Neighbors (KNNs) with
the best sensitivity score. With the number of neighbors set to 2, the root mean
square errors (RMSEs) are 0.1750 and 0.3641 for the training set and testing
sets, respectively. Over the years, researchers are trying to model the relationship
between carbon emissions and GDP growth. In this context, many studies hypothe-
sized the intricate effect of CO, emission on economic growth on a country basis for
China, India, and the USA. Azam et al. utilized the World Development Indicator
(WDI) dataset and concluded that all the variables are significantly influencing
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economic growth (The World Bank, 2024; Azam et al., 2016). However, applying
all 1437 features to train an ML model significantly increases the model complexity
and training time. Subsequently, K. Jayanthakumaran linked CO, emissions, energy
consumption, trade, and income together and presented a comparative analysis
between China and India (Jayanthakumaran et al., 2012).

As mentioned earlier, the available literature on this subject matter reveals
that a limited number of studies have addressed this particular area. However,
it is important to note that the majority of even these limited previous studies
have primarily focused on energy consumption as the main measurable criterion.
Research has shown that the impact of different forms of energy consumption on
both economic growth and emissions varies significantly among different groups of
countries (Antonakakis et al., 2017). Furthermore, these studies have predominantly
analyzed the impact of energy consumption on the alteration of absolute CO;
emissions. This might be misleading and have the potential to generate false
empirical findings owing to the presence of simultaneity bias and heterogeneity.
To confront the aforementioned concern, W. J. Burnett and others employed the
environmental Kuznets curve (EKC) and Vector Auto-Regressive (VAR) as dynamic
econometric models (Burnett et al., 2013). Their findings indicated an inverted U-
shaped relationship between environmental degradation and economic growth in
the United States of America. The study primarily aimed to establish a correlation
between the power consumption of the USA and sustainable economic growth.
However, it is noteworthy that this study also addressed the limited impact of
CO; emissions as a reliable indicator of sustainable growth in a nation’s economic
progress. The findings imply that the influence of economic growth on emissions
in the United States is primarily observed in emission intensities, as opposed to
absolute emissions in terms of CO; emissions (in kilotons). The practical validity of
the EKC for various pollutants has been questioned in recent studies due to the lack
of theoretical grounding behind the reduced-form relationship. Furthermore, the
insufficiency of the EKC model in explaining the relationship between income and
production-based emissions (PBEs) is evident in a comprehensive study conducted
by a group of researchers in the EU region for the period 1970-2017 (Frodyma et al.,
2022). The results of these studies can be attributed to the fact that CO, emissions
are often viewed as a byproduct of economic activity rather than a leading indicator
of sustainability. In brief, the aforementioned thorough discussion indicates a
noteworthy limitation of empirical studies about the influence of environmental
degradation on economic growth within nations characterized by higher CO;
emissions.
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3 Methodology

3.1 Overview of the Proposed Methodology

In this study, we propose a novel methodology to analyze the relationship between
various emission-based macroeconomic indicators, especially CO, emissions, and
sustainable economic development indicated by GDP per capita, using advanced
deep learning techniques. Figure 1 illustrates the overview of the proposed
approach.

We have implemented a comprehensive preprocessing technique to ensure
compatibility with the deep learning models. Subsequently, we investigate various
sequential deep learning models such as LSTM (Long Short-Term Memory), Bi-
LSTM (Bidirectional Long Short-Term Memory), GRU (Gated Recurrent Unit),
and a novel hybrid Multi-Recurrent Fusion (MRF) model to capture complex
temporal dependencies and bidirectional context in the time series data. The model’s

Dataset | Dataset Il
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Final Dataset

Deep Learning Models Train-Test Split
| LSTM | l
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Proposed MRF v
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. - I R2 Score I
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| MAE |
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| ELI5 | I RMSE |

Fig. 1 Illustration of the proposed methodology
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performance is evaluated against standard performance measures to validate the
robustness of the obtained results. To enhance the transparency and reliability of
the model’s prediction outcome, this study encompasses Explainable Al (XAI)
techniques such as SHAP (SHapley Additive exPlanations) and ELIS (Explain
Like I'm 5). These methods ensure qualitative insights, leading to a comprehensive
understanding of the interplay between economic growth and environmental factors.

3.2 Data Preprocessing and Descriptive Statistics

This study employs the filter and imputation-based data processing (FIDP) method
(Hasan et al., 2024) to prepare the dataset of interest. It merges two different
datasets, denoted by dataset 1 and dataset 2, both of which originated from the World
Bank (Hui, 2020; Karim, 2024; The World Bank, 2024). Dataset 1 contains all
indicators and countries across multiple years, while dataset 2 or countries_metadata
dataset is mainly utilized to validate the country names in dataset 1 and for accessing
some relevant information. Figure 2 illustrates the full process of the FIDP method
where dataset 1 is pivoted before combining with dataset 2. The country names
of the merged dataset are validated, and years with more than 56,500 samples are
chosen for the final dataset. A few relevant keywords (“co2," “carbon," “emissions,"
“energy,"” “gdp," and “gross") are selected based on the aim of this study and relevant
previous studies. The indicators in the dataset are further filtered by these keywords,
and following two conditional null values, removal steps, and median imputation
method, the final dataset is prepared.

Pivot dataset M
ivot datase erge Dataset 2

Y

(7,578,806 x 6) (16,038 x 1,439) |as209 < 1441y 248 % 6)
Filter Valid Countries
Median Imputation ¢
Dataset i
Filter Years

A
(7,350 x 83) with >= 56,500 data

v

Conditional dropping Keyword-based
of Null-values Indicator Selection

Fig. 2 Flow-chart of dataset preparation and handling null values



An Evidence-Based Explainable AI Approach for Analyzing the Influence of. . . 153

Table 1 Description of the Dataset 1 | Dataset 2 | Final dataset

datasets
Row 7,578,806 | 248 7350
Column 6 6 83
Country name | 263 248 147
Region 0 8 7
Indicator name | 1437 1 80
Year 61 0 50

Table 1 lists various properties of the two base and final datasets. The number of
unique countries, regions, indicator names, and years are tabulated for each dataset.
The final dataset has a total of 7350 samples and 80 indicators. For predicting
the GDP and avoiding overfitting, some indicators that are similar or a derivative
of the target variable are removed. Finally, we have 26 features and a target
variable GDP per capita to train and test the machine learning models. The
selected features and the target variable are tabulated in Table 2 along with their
statistics. The table presents various statistics of each feature, for example, the
minimum, maximum, or average value. The standard deviation of the values for
each indicator is also listed. Furthermore, the kurtosis and skewness values are
provided. Kurtosis provides information about the shape of a frequency distribution,
namely, platykurtic (kurtosis < 3.0), mesokurtic (kurtosis = 3.0), and leptokurtic
(kurtosis > 3.0). Skewness is used to estimate the asymmetry in a probability
distribution which can be of three (3) types—normal distribution (skewness = 0),
positive or right-skewed (skewness > 0), and negative or left-skewed (skewness
< 0). From Table 2, we observe that the target variable (GDP per capita) is
leptokurtic, right-skewed, and ranges between $57.5891 and $118823.6484 with
amean of $7992.2234 and standard deviation of $13648.1364. Understanding these
statistics highlights the necessity of feature scaling before evaluating the deep
learning models for better performance.

3.3 Description of the Deep Learning Models

This study employs four (04) deep learning models—LSTM, Bi-LSTM, GRU, and
MRE. Each model is detailed in this subsection.

3.3.1 Long Short-Term Memory (LSTM)

LSTM is a type of recurrent neural network (RNN) that addresses the limitations of
traditional RNNs due to the vanishing gradient problem (Sherstinsky, 2020; Rabbi
et al., 2022). The model is equipped with memory cells and gating mechanisms
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allowing it to maintain and utilize long-term context effectively. LSTM is good for
handling problems with sequential data and time series forecasting.

3.3.2 Bidirectional Long Short-Term Memory (Bi-LSTM)

Bi-LSTM model extends the capabilities of traditional LSTMs by processing input
sequences in both forward and backward directions (Datta et al., 2021). Bi-LSTM
can understand and predict sequential patterns more effectively due to having access
to contextual information from both the past and the future. This enables the model
to offer a more comprehensive understanding of complex data.

3.3.3 Gated Recurrent Unit (GRU)

GRU is another variant of RNN. It simplifies the LSTM architecture by combining
the forget and input gates into a single update gate and using a reset gate to control
the flow of information (Yamak et al., 2020). This design reduces computational
complexity while effectively managing long-term dependencies and mitigating the
vanishing gradient problem. GRU is a popular choice in deep learning applications
where a balance between complexity and capability is desired, for example,
sequence prediction.

3.3.4 Proposed MRF Model
This study proposes an MRF model to predict sustainable economic growth based

on various economic indicators and emission metrics. The architecture of the
proposed MRF model is shown in Table 3.

Table 3 Architecture of the proposed MRF model

Layer (type) Output shape Param # | Connected to

input_1 (InputLayer) (None, 20, 26) 0 [

gru (GRU) (None, 32) 5760 [‘input_1[0][0]’]

Istm (LSTM) (None, 32) 7552 [‘input_1[0][0]’]

bidirectional (Bidirectional) | (None, 64) 15104 [‘input_1[0][0]’]

concatenate (Concatenate) (None, 128) 0 [‘gru[O0][0]’, ‘Istm[O][O]",
‘bidirectional[0][0]’]

dense (Dense) (None, 32) 4128 [‘concatenate[0][0]’]

dense_1 (Dense) (None, 1) 33 [‘dense[0][0]]

Total params: 32,577
Trainable params: 32,577
Non-trainable params: 0
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This hybrid sequential model integrates various RNNs for its processing tasks.
The input layer specifies the data input shape with 20 time steps for all 26 features.
The multi-brunched structure of MRF incorporates GRU, LSTM, and Bi-LSTM as
its distinguished layers. LSTMs are effective in capturing long-term dependencies
by maintaining a memory cell. Additionally, the bidirectional layers of the Bi-LSTM
model process the input sequence from both forward and backward directions,
capturing context from both ends, thus enhancing the model’s ability to understand
the sequence comprehensively. To handle the complexity of the model, MRF
utilizes the strength of GRU. GRUs are known for capturing these dependencies
in sequences without the complexity of LSTMs. The concatenation layer combines
the outputs of the GRU, LSTM, and Bi-LSTM layers. This combination harnesses
the strengths of each type of the used recurrent layer. A fully connected dense layer
is applied to learn complex representations from the concatenated outputs of the
previous layers and make the final prediction. In brief, this model is a powerful and
versatile fusion of RNN-based sequential model, designed to effectively handle and
predict sequences by combining multiple advanced recurrent and dense layers.

3.4 Explainable Al Techniques

Explainable Artificial Intelligence (XAI) refers to techniques that make Al decisions
understandable to humans. By explaining how Al models work, XAI helps to build
trust, ensure ethical Al use, and meet regulatory requirements. This study uses two
(2) XAl tools, namely, SHAP and ELIS.

34.1 SHAP

SHAP (SHapley Additive exPlanations) is a tool for interpreting machine learning
models (van Zyl et al., 2024). Based on cooperative game theory, it assigns
importance score to features for each prediction ensuring consistent contributions
and offering local and global interpretability (Hassan et al., 2023). SHAP can work
with any model and is often used to identify key features and enhance transparency.

34.2 ELI5

ELI5 (Explain Like I'm 5) is another XAl tool used for explaining machine learning
models and their predictions in an easy-to-understand manner (Sultan et al., 2023;
Kawakura et al., 2022). It presents simple and intuitive explanations, supports a wide
range of models and frameworks, and provides detailed insights. ELI5 is used to
identify key features and enhance transparency making Al systems more trustworthy
and compliant with regulatory requirements.
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3.5 Performance Metrics

As our proposed task is a regression problem, we choose some frequently used and
accurate indicators for this task. The metrics are listed in the subsequent subsections.

3.5.1 RZ Score

The proportion of the variation in the dependent variable that is predictable from
the independent variable is called the coefficient of determination which is denoted
by R? (pronounced R-squared). This measure is frequently used to evaluate the
result of a dependent variable of a model (Hasan et al., 2023; Maarif et al., 2023).
The R? score ranges from 0 to 1, with 1 meaning the model perfectly captures the
relationship between dependent and independent variables. The formula to calculate
R2 can be shown as (1), where RSS is the sum of squares of residuals and TSS is
the total sum of squares.

RR=1-_—""- (1)

3.5.2 Mean Absolute Error (MAE)

MAE measures the average of absolute errors between paired observations. It helps
to understand the significance of errors and is commonly used for regression tasks
(Maarif et al., 2023; Abedin et al., 2021). It is resistant to outliers and offers
information about the error size. MAE is calculated as the average of absolute errors
as shown in (2) where y; is the actual value and y; is the predicted value.

n

1 .
MAE:;ZM—%‘

i=1

(@)

3.5.3 Mean Squared Error (MSE)

MSE or mean squared deviation (MSD) measures model performance by penalizing
larger errors more severely. A lower MSE indicates better model accuracy, with
predictions closer to true values. MSE is always nonnegative and ranges from zero
(0) to infinity. It is frequently used in literature along with RMSE (Chukwunonso
et al., 2024). MSE is calculated as the average of squared errors as shown in (3).

IS oy
MSE = " ;(Yt vi) (3)
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3.54 RMSE

RMSE or root mean squared deviation (RMSD) is calculated by taking the square
root of MSE. Similar to MSE, its values range from zero to infinity, with lower
values indicating better performance. However, unlike MSE, RMSE has the same
units as the predicted values, which makes it easy to interpret. It is one of the
most commonly used metrics in regression tasks and has been used extensively in
literature (Li et al., 2021; Amarpuri et al., 2019). The RMSE can be calculated from
the formula shown in (4).

RMSE = VMSE = |- Y Gi—? 4)
n

i=1

4 Result Analysis

4.1 Preliminary Data Exploration

An initial examination of the dataset is presented in this subsection, aiming to
uncover fundamental patterns and relationships between the variables. Exploratory
data analysis (EDA) unveils the inherent characteristics of the dataset being
examined and provides valuable guidance in making valid assumptions. Various
EDA techniques, such as data visualization, bubble charts, and feature heatmaps,
can help researchers identify patterns, outliers, and potential relationships within
the dataset. The results presented in this subsection provide us with a comprehensive
overview of the dataset and serve as a foundation for further analysis and modeling.

From Fig. 3, the intrinsic relationship and correlation between the indicators
can be visualized. For instance, CO2_Em_Per_Capita, which refers to the amount
of emissions produced by an average individual in a country, tends to potentially
impact economic development and vice versa. AS_CO2_damage_Current_USD,
which represents the reduction in adjusted savings (USD) caused by CO, emissions
from various sources, significantly influences the target variable, GDP per capita.
These findings suggest that the economic impact of CO, emissions plays a crucial
role in determining the overall savings and sustainable financial well-being of a
country. Thus, countries with higher values for emission-triggered damages are
less likely to have the capacity to sustain an upward trend in GDP per capita.
Furthermore, the correlation matrix indicates that the majority of emissions stem
from the consumption of liquid fuels (0.96). These findings highlight the importance
of considering environmental factors when analyzing the impact of emissions on the
sustainability and productivity of a nation.

Figure 4 depicts the change in GDP per capita for each geographic region
over a certain period. The visualizations highlight regional differences in economic
growth patterns over the last five decades. While some regions, like East Asia and
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Fig. 3 Correlation between the indicators in final dataset

Fig. 4 Region-wise change in GDP per capita

Pacific and North America, show consistent and substantial growth, others (like sub-
Saharan Africa) exhibit more modest increases. The shaded confidence intervals
emphasize the variability and inherent uncertainty associated with these economic
measures, thereby providing a more nuanced understanding of regional economic
trends.

Bubble charts are used to present compact information about the dataset under
study. Here, different colors of the bubbles denote different geographical areas, and
the size of the bubbles denotes the total emission. Figures 5 and 6 illustrate the
regional information for GDP per capita, renewable energy consumption, and CO;
emission. Regions with higher GDP per capita tend to have higher CO, emissions,
which is visible as many of the larger bubbles are toward the right and higher up on
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Fig. 5 Country-wise GDP per capita vs. CO, emission analysis

Fig. 6 Country-wise renewable energy consumption vs. CO; emission analysis

the chart. Additionally, from the colorization, we can infer that carbon emissions are
the highest in North America. The second chart reveals that higher renewable energy
consumption does not necessarily correlate with lower CO, emissions as some
regions with high renewable energy consumption also have high CO, emissions,
suggesting a transition phase or an energy mix that still includes significant fossil
fuel use. These charts together provide a comprehensive view of how economic
growth and renewable energy adoption impact CO, emissions across different
regions. While higher GDP per capita is somehow associated with increased CO3
emissions, the adoption of renewable energy shows a mixed relationship, indicating
that further exploration is necessary before reaching any conclusions.

Figure 7 further validates the first bubble chart (Fig. 5). It analyzes the correlation
between CO; emissions and GDP per capita across different income groups. It
is noticeable that members of the higher income group appear to significantly
contribute to the exacerbation of the current concerns of carbon emissions. The
upward black dashed line with the confidence interval suggests a general trend
where GDP per capita initially rises with increasing CO; emissions.

The bubble chart presented in Fig. 8 depicts the scenario for the South Asian
region. Notably, India is the top contributor to carbon emissions and has a higher
GDP per capita value. Inversely, Bhutan, located at the leftmost corner of the chart,
is the carbon-negative country with the least absolute emission rate (in kt).

The GDP per capita trend analysis over the study period provides a compre-
hensive view of the economic growth trajectory. Figure 9 illustrates the distinct
phases of growth, stagnation, and recovery, reflecting economic cycles and external
influences from 1971 to 2019 in Bangladesh. The image shows that despite several
resource limitations, Bangladesh has managed to maintain an upcoming GDP trend.
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Fig. 7 CO; emission vs. economic growth based on income group

Fig. 8 GDP vs. CO; emission for South Asian countries

The relationship between CO, emissions and GDP per capita is clearly illustrated
in Fig. 10. We observe a clear positive correlation between CO; emissions and GDP
per capita, indicating that as the GDP per capita increases, so does the level of
CO; emissions. This image suggests that countries with higher economic growth
are predominantly the main contributors to the increasing global carbon emission
rate.

4.2 Results of Deep Learning Models

This section records the performance of the deep learning classifiers utilized in this
study. The experimental results are tabulated in Table 4. The proposed MRF model
showcases its exceptional predictive capabilities by achieving the highest R? score
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Fig. 9 Trend in the economic growth for Bangladesh

Fig. 10 Correlation between CO; emission and GDP per capita

Table 4 Performance of the
deep learning models

Algorithm R?

LSTM 0.7262
Bi-LSTM 0.7214
GRU 0.7448

Proposed MRF | 0.8331

MAE

0.0377
0.0336
0.0315
0.0297

MSE

0.0043
0.0043
0.0040
0.0026

163

RMSE
0.0654
0.0659
0.0631
0.0510

As the R2 is high and the error metrics are low of the
bold row then it is significant than others

of 83.31%, followed by GRU (74.48%), LSTM (72.62%), and Bi-LSTM (72.14%)

models.
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Fig. 11 Comparison of the model performance

Fig. 12 Actual and
prediction value mapping for
MRF

Moreover, it is evident from the table that the MRF model outperforms others
by consistently maintaining the lowest error rates. On the other hand, the Bi-
LSTM model has been proven to have the highest error rate among all the models.
These results demonstrate the superiority of the proposed MRF model in predicting
the change in the target variable, GDP per capita, and outperforming the other
traditional models. The following figure graphically illustrates the results of the
above table. Figure 11a presents a comparison between the R? scores of the deep
learning models. The bar chart depicted in Fig. 11b displays the error rates for
different models. The figure visually highlights the enhanced performance and
robustness of our proposed model with minimal error rates, reinforcing its potential
for making accurate predictions.
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Furthermore, Fig. 12 illustrates the predictions on unseen data for the MRF
model. The orange line representing the prediction closely aligns with the actual
data points, thus demonstrating the efficacy of the model in generating accurate
predictions. Additionally, the consistent alignment between the predicted and actual
data points demonstrates the robustness of the MRF model in capturing underlying
patterns within the data. These findings indicate the model’s effectiveness in
generalizing to new data and its potential for real-world applications.

4.3 Interpreting the Results with Explainable AI

In this part of the study, we delve into the insights gained from our analysis using
explainable Al (XAI) techniques. The utilization of XAI tools in our deep learning
models facilitates the explanation of intricate associations between carbon dioxide
(CO») emissions and GDP per capita. This consequently enhances the transparency,
reliability, and interpretability of our research outcomes.

Figure 13 offers a detailed analysis of the features impacting the model’s output
using SHAP (SHapley Additive exPlanations) values, which help explain the impor-
tance and effects of each feature in the model. The x-axis represents the mean impact
score on the target variable, while the y-axis represents the features in descending
order of importance. The relevance of a feature in the ultimate prediction increases
proportionally with the higher value of the impact score. The color in the leftmost
beeswarm plot signifies the feature value, with red denoting high and blue denoting
low. Additionally, we can gain a comprehensive understanding of the redundant

Fig. 13 SHAP plot for feature importance
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features or those that contribute minimally to the figure. CO2_Em_Per_Capita has
the highest SHAP mean impact score, and hence, it is the most relevant feature con-
tributing to the model outcome. Moreover, features such as CO2_Em_Per_Capita,
AS_CO2_damage_Current_USD, CO2_Em_2010_GDP, AS_CO2_damage_GNI,
and AS_En_Dep_Current_GDP have significant influence on the ultimate predic-
tion. On the other hand, the impact of features like methane emissions and N,O
emissions is comparatively lower or negligible. The points that are shifted toward
the right, with higher SHAP values, indicate more significant positive contributions,
whereas those shifted toward the left, with lower SHAP values, represent negative
contributions. The figure on the left side illustrates that CO2_Em_Per_Capita
exhibits the highest average SHAP value and also demonstrates a wide distribution
of impacts, indicating variability in its influence on different predictions. The anal-
ysis further reveals that CO2_Em_Per_Capita, AS_CO2_damage_Current_USD,
and AS_En_Dep_Current_GDP have a positive impact on improving the model
prediction. Conversely, CO2_Em_2010_GDP and AS_CO2_damage_GNI have an
inverse impact. The extensive XAl analysis emphasizes the critical role of these
emissions’ metrics in assessing the growth of GDP per capita which can be further
validated from the SHAP bar plot presented at the top right corner. It highlights the
top ten (10) prominent features with their respective SHAP values. CO, emissions
(kt) are shown to have a relatively insignificant mean SHAP value compared to
other features such as CO2_Em_Per_Capita, AS_CO2_damage_Current_USD, and
CO2_Em_2010_GDP. The lower right waterfall plot depicts individual feature
influence for a random specific observation and breaks down the contribution of
each feature to a single prediction. While CO2_Em_Per_Capita contributes the most
significant positive impact (+0.07) to the final prediction, negative contributions
come from features like CO2_Em_LFuel_kt_Con and CO; emissions (kt), reducing
the prediction by -0.02 and -0.01, respectively. These insights suggest that CO;
emissions (kt) contribute less on average to the model’s accurate predictions.

On the local level, individual feature significance to the final prediction for
three (03) random observations can be visualized from Fig. 14. The collective

Fig. 14 SHAP force plot
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representation of all three plots demonstrates the intricate interaction of multiple
features that impact the predictions of the model. CO2_Em_Per_Capita consis-
tently appears as a dominant positive factor, suggesting its significant role in
determining the model output. Conversely, features like CO2_Em_LFuel_kt_Con,
N20O_Em_Energy_CO2, and CO; emissions (kt) frequently push the predictions
lower. The inconsistent presence of these features is noteworthy, suggesting that
while they may have some influence, they are not the primary drivers in the
model’s ultimate predictions of economic growth. In contrast, previously men-
tioned features such as CO2_Em_Per_Capita, AS_CO2_damage_Current_USD,
and CO2_Em_2010_GDP appear to have a significant influence.

In Fig. 15, a clear visual of the relationship between the top five (05) features
derived from Fig. 13 can be observed. The graphical representation demonstrates
a clear upward correlation between features shown in (a), (b), and the target.
High values of these features correlate with higher SHAP values, indicating an
overall positive impact. In contrast, features depicted in (c) and (d) show a negative
relationship with economic growth, as indicated by the downward trend in the graph.
This suggests that higher values of the features are associated with lower SHAP
values, indicating a negative impact on the target variable, GDP per capita. These
findings provide robust evidence to support our initial hypotheses. Interestingly, a
flat line distribution for CO, emissions (kt) is notable. Most points have SHAP
values close to zero, indicating a minimal effect on the model’s prediction.

A simple breakdown of the overall impact of each feature can be observed from
Table 5. The table outlines the significance of each individual feature in making
the final prediction, providing further evidence to support the results obtained
from SHAP. The table presents the importance and tolerance value for each of
the features in descending order of importance. For example, the recorded values
indicate that CO2_Em_Per_Capita is the most influential feature. The numeric
value of 0.0791 denotes the tolerance value for CO2_Em_Per_Capita. This explains
the influence on the shift in the model’s outcome if the feature is altered, even
in the slightest. The analysis conducted with the ELI5 technique reveals that the
per capita CO, emissions (CO2_Em_Per_Capita), the economic damage caused by
CO; (AS_CO2_damage_Current_USD), and the CO, emissions concerning GDP
(CO2_Em_2010_GDP) have the most substantial impact, while various emission
metrics such as CO; emissions (kt), methane emissions, and N,O emissions have
minimal influence on the results. Based on these results, it is evident that various
emission metrics, particularly CO; emissions (kt), have a relatively minor influence
on the predictive accuracy of the model. These findings strongly defy the traditional
EKC hypothesis and validate our previous findings. Therefore, policies aimed
at reducing the intensity of CO, emissions can be more effective in achieving
sustainable economic growth compared to strategies focused solely on reducing
overall average emissions. By implementing policies that specifically target the
reduction of CO; intensity, countries can prioritize industries and sectors with
the highest emissions, leading to a more targeted and efficient approach toward
sustainable economic growth. This further implies that it is possible to reduce
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Fig. 15 SHAP dependency plot
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Table 5 Feature importance Weight
analysis with ELI5

Feature indicator code
1.4747 £ 0.0791 | CO2_Em_Per_Capita
0.5623 + 0.0650 | AS_CO2_damage_Current_USD
0.5158 +0.0571 | CO2_Em_2010_GDP
0.0485 £ 0.0045 | AS_CO2_damage_GNI
0.0445 + 0.0073 | AS_En_Dep_Current_GDP
0.0330 4+ 0.0037 | CO2 emissions (kt)

0.0293 4+ 0.0063 | CO2_Em_SFuel_kt_Con
0.0254 4+ 0.0059 | Methane_Em_kt_CO2
0.0235 + 0.0056 | CO2_Em_PPP_GDP
0.0191 4+ 0.0026 | N2O_Em_CO2

0.0180 £ 0.0079 | Ag_Methane_Em_Total
0.0127 £ 0.0031 | CO2_Em_LFuel_kt_Con
0.0100 4+ 0.0018 | Methane_Em_Energy_CO2
0.0097 + 0.0035 | AS_En_Dep_GNI

0.0094 + 0.0033 | Ag_Methane_Em_CO2
0.0089 4+ 0.0038 | CO2_Em_LFuel_Total_Con
0.0067 + 0.0026 | CO2_Em_GFuel_kt_Con
0.0058 4 0.0005 | Methane_Em_1990

0.0058 + 0.0019 | CO2_Em_GFuel_Total_Con
0.0053 £+ 0.0036 | CO2_Em_SFuel_Total_Con
0.0048 + 0.0004 | Ag_NOxide_Em_Total
0.0040 4+ 0.0009 | N2O_Em_Energy_CO2
0.0035 £ 0.0016 | N20O_Em_Energy_Total
0.0027 £ 0.0012 | N20_Em_1990

0.0019 £ 0.0009 | REnergy_Con_Total

0.0015 + 0.0008 | Ag_N20O_Em_CO2

different types of emissions on average and maintain sustainable growth in the
economy at the same time as both show no positive long-term relationship.

5 Conclusion and Future Work

This study primarily examines the role of carbon dioxide emissions as an indicator
of a nation’s sustainable economic growth, to determine the influence of various
emission metrics on sustainable economic development. Time series data analysis
is challenging due to the risk of misleading behavior and the potential for false
empirical findings resulting from simultaneity bias and heterogeneity. We analyzed
the econometric factors inherent in the prediction of sustainable GDP per capita.
This study presents a hybrid sequential MRF model designed to capture complex
patterns in time series data. The proposed MRF model outperforms traditional deep
learning models, achieving minimal errors of 0.0297, 0.0026, and 0.0510 for MAE,
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MSE, and RMSE, respectively. To assess the impact of emission metrics on GDP per
capita, the proposed pipeline incorporates advanced explainable Al tools, namely,
SHAP and ELI5. The comprehensive analysis demonstrated that different types of
emissions have a minimal impact on predicting GDP, indicating that other factors
may be more significant. This finding supports the study’s initial hypothesis and
challenges the traditional EKC hypothesis, which posits that total average CO;
emissions (kt) are a primary driver of sustainable economic growth. Only a limited
number of studies have previously identified emissions intensity, such as CO;
emissions per capita, as a more significant indicator than total CO, emissions. These
studies often overlooked this crucial aspect, which our research has thoroughly
investigated and substantiated with clear evidence. This suggests that factors like
technological advancement and resource efficiency, which reduce per capita carbon
emissions, are crucial for sustainable economic growth. These findings provide a
robust confirmation, offering a more accurate and evidence-based understanding of
the factors influencing GDP. Additionally, the analysis indicates that the relationship
between economic growth and environmental degradation is more complex than
previously thought, highlighting the need for further research in this area. Future
studies should explore a broader range of variables affecting sustainable economic
growth, such as social, environmental, and governance factors. Implementing a
holistic approach toward understanding economic dynamics will enable us to
develop more resilient and effective economic policies that can navigate various
challenges and uncertainties. A comprehensive investigation into these elements
will yield deeper insights and foster more effective strategies for achieving long-
term economic sustainability.
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1 Introduction

Energy captured directly from natural resources like sunlight, wind, falling water
(hydropower), and organic matter (biomass) is called primary energy. This also
includes nonrenewable resources like coal, oil, and natural gas. The progress
of humanity and the world depends heavily on primary energy. Primary energy
supplies the necessities of modern life, such as transportation, heating, industrial
activities, and the production of electricity (Martinez et al., 2019).

Primary energy can be classified into two types: primary fuels and primary
energy flows. Primary fuels include fossil fuels (oil, coal, and natural gas) and
nuclear fuels. Renewable energy sources include the sun, wind, hydropower,
biomass, etc. The majority (about 95%) of global primary energy comes from
primary fuels, with the rest from primary energy flows. Fossil fuels, nuclear energy,
and renewable energy sources account for roughly 75%, 6%, and 14% of the
world’s primary energy supply, respectively (Cheekatamarla et al., 2024). The
absolute primary energy consumption in developing countries is 58% of the level in
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developed countries (Komarova et al., 2022). In 2021, the world’s primary energy
consumption reached over 595 exa-joules. China is the world’s greatest consumer
of primary energy, followed by the United States, the Russian Federation, and India.
Fossil fuels contributed to more than 80% of global primary energy consumption.
Also, oil accounted for more than 30% of total world energy consumption in
2021 (Aydin & Karakurt, 2023). However, the environmental effects of energy
consumption are severe. Overall carbon dioxide emissions and primary energy
consumption have steadily increased. Global environmental challenges caused by
energy consumption not only impede economic progress but also endanger human
existence and development (Wei & He, 2017).

Global warming and catastrophic disasters are wreaking havoc on Earth these
days. Energy conservation has been a top issue due to social development chal-
lenges. So, energy consumption prediction is an important instrument for effective
building energy management, guiding energy policy, and service distribution.
Despite the use of modern technologies, reliable energy consumption prediction
remains challenging due to various affecting factors (Liu et al., 2023). A variety
of behavioral factors influence energy consumption trends, including consumer
preferences, lifestyle changes, and societal standards, which are difficult to rep-
resent in typical prediction models (Zhou & Yang, 2016). Rapid improvements
in renewable energy, storage technologies, and energy efficiency can drastically
alter future energy consumption patterns, making long-term forecasting increasingly
difficult (Ahmad et al., 2021). With the growing emphasis on flexibility and
elasticity in building energy usage, accurate building energy prediction is essential
for sustainable development. Nonetheless, difficulties with choosing appropriate
input and algorithms continue, as does finding a balance between computation
time and forecast accuracy (Zhang et al., 2024). In Amiri et al. (2023), they
use a Machine Learning (ML) algorithm to forecast the energy consumption of
commercial and residential buildings. Their concepts helped to improve municipal
scenario planning by providing a more spatially detailed picture of future energy
consumption. Another study categorizes the most pertinent literature according to
ML approaches, energy type, prediction type, and application area. It highlights
the main ML technologies and assesses their performance in forecasting energy
usage. This research continues by discussing the trends and efficacy of these
models, emphasizing considerable increases in accuracy and performance using
unique hybrid and ensemble prediction models (Mosavi & Bahmani, 2019). Another
approach described helps to ensure the proper implementation of energy policy by
giving accurate energy consumption predictions. These predictions affect capital
investment, environmental quality, revenue analysis, and market research manage-
ment, all while ensuring supply security (Ekonomou, 2010). The expansion of a
nation’s economy and its energy usage are inextricably linked. Insufficient energy
supply has resulted in large deficits at both the household and aggregate levels
worldwide. This shortage is sometimes called “energy poverty” in the literature,
particularly at the micro level, as households’ energy demands are unfulfilled
(Gyamfi et al., 2024). The technical contributions of this chapter are as follows:
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e We design an ML-driven primary energy consumption prediction process to
analyze consumption based on sustainable development indicators.

* We develop a blending ensemble model, BLDAR, which combines Least Abso-
lute Shrinkage and Selection Operator (LASSO), Decision Tree (DT), AdaBoost
(ADB), and Random Forest (RF) regressors.

* We provide a comparative analysis of ML algorithms for primary energy
consumption prediction and identify the most suitable model to design an energy
prediction system.

e To determine model robustness, generalization ability, and the impact of data
size, we evaluate the model’s performance using 80:20, 70:30, and 50:50 training
and testing ratios.

The remaining chapter is organized as follows: In Sect. 2 we present the related
works, in Sect. 3 we present the proposed methodology with overview and details
descriptions, in Sect. 4 we present the obtained results, and finally we present
conclusion in Sect. 5.

2 Literature Review

Energy is widely recognized as a key engine of worldwide economic growth
and development. Researchers have extensively investigated the impact of energy
sources and usage on a variety of economic indices. Given the complicated interplay
of economic growth, human development, and environmental concerns, additional
research is required to understand how these aspects interact (Alola et al., 2021).
There is a development of an artificial neural network (ANN) model to anticipate net
energy consumption (NEC) based on economic indicators such as gross domestic
product (GDP), gross national product (GNP), and population growth. They argue
that ANN approach shows the most accuracy for evaluating NEC based on eco-
nomic indicators. Most ANN models concentrated on dynamic, short-term energy
consumption predictions, which are necessitated through input data pretreatment
and selection (So6zen & Arcaklioglu, 2007). Additionally, Wang (2022) employs
the nonlinear fitting of the BP model and linear fitting of the ARIMA model as
independent variables, with per capita coal consumption as the dependent variable.
A revolutionary approach to coal consumption forecasting is unveiled: a combined
model utilizing multiple linear regression to shatter previous accuracy limitations.
On the other hand, Li (2019) attempts to anticipate China’s energy density by
utilizing an LSTM-based neural network model developed by both research groups.
Their research traces that time series estimation generates much better outcomes
than other regression analyses. They add that there is a strong correlation between
economic development, population, industrial relations, and energy consumption.
It has been found that many academics employ regression analysis to solve the
association between energy consumption and these factors. Also, Wang and Zhang
(2023) generated novel models that outperform DGM(1,1), DGM(1,n), and BP



178 A. Haque et al.

neural networks in predicting utilizing per capita energy consumption (PCEC) data
from 30 Chinese provinces. The models work well in collecting recent data trends
and regional associations, as well as analyzing spatial connections and making
accurate predictions.

The drivers of energy consumption are examined by Wen et al. (2021) using
environmentally extended input-output and structural decomposition analysis. Soar-
ing population is the engine of global energy demand, but researchers identified
a bright spot: Reducing energy inefficiency acts as a powerful brake. Private
consumption and exports remain significant energy guzzlers, highlighting areas
for further improvement. Their study also suggests that policies like transport
electrification and renewable energy promotion support the low-carbon transition.
Another work (Li & Solaymani, 2021) showed that long-term economic growth
expansion significantly raises energy consumption relative to short-term growth
in Malaysia. Particularly, the energy demand for agriculture raises by 4.6% and
the energy demand for industry increases by 1.1% in economic growth. Energy
consumption and emissions were successfully reduced in the industrial sector by
technological advancements that increase energy efficiency. These findings are
essential for policymakers focused on sustainable growth and energy management.
Moreover the authors (He & Hao, 2024) estimate primary energy consumption in
South and Central America, the Middle East, and Africa optimizing a fractional
time-delayed gray model that is tuned with a particle swarm method. Their findings
indicate that their model performs better than other gray models in most cases,
demonstrating its dependability and efficacy.

On top of that, the authors (Shinwari et al., 2024) investigate the influence
of foreign direct investment (FDI) on energy consumption in 29 Belt and Road
Initiative (BRI) economies from 2000 to 2021, employing panel data methodologies
to account for cross-sectional dependency, structural discontinuities, and slope
heterogeneity. Their findings demonstrated that worldwide FDI has a beneficial
influence on energy consumption, with China’s FDI dominance enhancing it even
more. In addition, green technology increased energy consumption, and their report
also emphasizes the role of FDI policies and green technologies in boosting
energy consumption in BRI economies. In another study, analyzing data from 125
countries spanning 2000 to 2018, the authors (Demiral & Demiral, 2023) investigate
how various social and economic factors, such as education levels, transportation
systems, information technology, government structures, private sector involvement,
and economic development patterns, influence how efficiently these countries use
energy. Countries are divided into four income groups, and higher income groups are
found to have higher energy intensity and socioeconomic capacities. The regression
results showed that socioeconomic factors have a range of effects on improving
energy efficiency. Their study emphasizes the complexities of factors influencing
energy efficiency and suggested policy implications.

Furthermore, to create a more accurate prediction tool for electricity use
in Turkey, Kaytez (2020) develops a hybrid model that merges a least-squares
support vector machine (SVM) with an autoregressive integrated moving average
technique. When used to predict Turkey’s net power consumption through 2022, the
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results demonstrate that the suggested hybrid model produced more realistic and
dependable predictions and responded better to unexpected fluctuations in the time
series.

3 Methodology

3.1 Approach Overview

The overview of the proposed methodology is in Fig. 1. Global Data on Sustainable
Energy collects and preprocesses to enhance the computational efficacy and model
performance. Then three ratios 80:20, 70:30, and 50:50 employ to split the data into
training and testing subsets. Afterward, the suggested and comparative models are
evaluated using several error metrics and R? score.

Fig. 1 Overview of proposed methodology
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3.2 Description of Dataset and Variables

The dataset is taken from the prominent online platform Kaggle. The variables
on global primary energy consumption, electricity generation, greenhouse gas
emissions, etc. of 186 countries from 2000 to 2020 are provided in the dataset.
We implement the following procedure to process the data. Firstly, we select a
target variable illustrating energy consumption trends, which is “Primary energy
consumption per capita (KWH/Person)” (PECPC). We carefully choose relevant
features, including attributes that could affect energy consumption. Then, we handle
missing values through imputation and use feature scaling to verify that feature
magnitudes are consistent. The feature can be seen in Table 1. In addition, we
present a heatmap depicting the correlation of all the features and PECPC, where
blue color intensity defined the worst correlation and red color intensity responded
to the strong correlation. On top of that, PECPC and GPC show a good correlation
acquiring a score of 0.67. The heatmap of the correlation is in Fig. 2.

Fig. 2 Heat map to represent the correlation of the variables
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Table 1 Description of the variables

Variables Abbreviation
Access to electricity (% of population) AE

GDP per capita GPC
Financial flows to developing countries (US $) FFDC
Renewable electricity Generating Capacity per capita REGCPC
Electricity from fossil fuels (TWh) EFF

Primary energy consumption per capita (kWh/person) PECPC

3.3 Machine Learning Algorithms
3.3.1 Random Forest

Random forest is a prediction algorithm based on a combination of multiple decision
trees. Random forests are widely utilized because they require only one or two
tuning parameters and may be applied directly to high-dimensional situations. They
also provide a built-in generalization error estimation and are reasonably quick to
train and forecast (Abedin et al., 2021). Simplified formula for regression is

1 N
y= 23
i=1

where y is the final prediction, N is the number of trees in the forest, and y; is the
prediction from the i-th tree. The algorithm works by constructing trees. For each
tree in the forest, a random subset of the input features is selected, and the tree
is grown to its maximum depth except pruning with selected features to maximize
information gain at each split. After then, each tree in the forest makes a prediction.
By averaging the individual tree predictions, it make final prediction (Ali et al.,
2012; Abedin et al., 2021).

3.3.2 Decision Tree

Decision trees are commonly used supervised machine learning technique which
has been used for both regression and classification problems. In a decision tree,
there are basically two types of nodes: decision nodes and leaf nodes. Decision
node generates decision and contains multiple branches, whereas leaf nodes are the
output of those decisions, and they do not contain any branches. The algorithm
divides the inputs recursively into smaller sections. The root node contains the
whole dataset. There are some techniques that use variables like mean squared error,
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entropy (information gain), and Gini impurity to select the best characteristic to split
the data by at each node. The Gini impurity for a set S with ¢ classes is given by

C
Gini(S) =1-— pr

i=1

Here, p; is the proportion of instances in class i (Hasan et al., 2023b). After
calculating the Gini impurity for every possible split point, the next step is choosing
the best split, which results in the lowest weighted Gini impurity. Then, split the
dataset into two subsets, and repeat the whole process recursively. When it meets
stopping criteria, labels have been assigned to the leaf nodes. That is how decision
algorithm works.

3.3.3 LASSO

LASSO is a statistical formula whose main purpose is feature selection and
regularization of the data model. This regression analysis technique improves the
statistical regression model’s interpretability and prediction accuracy, which also
includes variable selection and parameter estimation (Sajid et al., 2023). LASSO is
ideal for prediction and feature selection. The following formula defines the LASSO
regression model:

n P

2

) |1 “

/3=argmﬂm %Z vi— Y Bixij | +1D_IBjl
J j=l1

i=1 =1

It does parameter estimation and variable selection at the same time in this manner
(Vidaurre et al., 2011).

2
p

1 n
n Vi — Z Bjxij

i=1 j=1

By computing the residual sum of squares, the above term assesses how well the
model fits the data. A Zle |81 This regularization factor, called L1-norm, adds a
penalty based on the sum of the absolute values of the coefficients. As A increases,
more coefficients are shrunk to zero, performing variable selection.

3.3.4 Bagging Lasso (BL)

Bagging Lasso formula is made up of the principle of bootstrap aggregation and
LASSO regression to increase the model’s stability and accuracy of prediction.
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Firstly, from the original dataset, multiple bootstraps have been generated. Then
LASSO regression is applied to each generated bootstrap sample.

n
1 b P

2
p
A . b b
‘B(b)zargn}gln 2—2 yi() Z'Bjxl'(j) +k2|ﬂj|
- =1

n
b5 F

Here,D; = {(xl.(b), yi(b))}fi | represents the b-th bootstrap sample . After that, it
estimates aggregated coefficient from all bootstrap samples

B
A 1 A
. — _ § : (b)
IBBaggmg Lasso = B o :3

Making average the results of LASSO regressions from multiple bootstrap samples,
Bagging Lasso eliminates the variance of the model and makes it more stable (Bach,
2008).

3.3.5 LGB

LGB is a gradient boosting ensemble method based on decision trees. LGB can be
used for regression. The formula for LGB is

LO) =Y 1, f(xi:0)) + 2(f)

i=1

LGB algorithm has initialized the model with a constant value to calculate the initial
gradients and hessians. While iterating for each tree, it does Gradient-based One-
Side Sampling (GOSS), feature bundling, histogram construction, split finding and
continues the decision trees growth. After maximum depth has reached and stopping
criteria has met, update the model by adding the newly trained tree and gradients
hessians. Lastly, it combines the outputs of all individual trees to predict (Ke et al.,
2017).

3.3.6 AdaBoost

AdaBoost is a self-adaptive boosting technique that creates a set of multiple
classifiers to improve the performance of weak classifiers. Several concerns have
been raised since it adjusts dynamically to the error rate of the fundamental
algorithm during training by adjusting the weight of each sample. The most basic
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theoretical property of AdaBoost concerns its ability to reduce training error (Hasan
etal., 2023c¢).

T
H(x) = sign (Z o - ht(x))

t=1

This algorithm trains weak classifier #; on the weighted training data. After
calculating the weighted error of Ay, it calculates the weight of «; of the weak
classifier. Finally it updates the weights of training instances and normalizes the
weights to make the sum to 1. So this is the final classifier, and H (x) is a weighted
majority vote of the T weak classifier (Wu & Zhao, 2011).

3.3.7 Support Vector Regression (SVR) Linear

Regression tasks are handled by SVR, a subset of SVMs. For a given input value,
it looks for a function that best predicts the continuous output value. In order to
determine which linear hyperplane best fits the data, SVR Linear employs a linear
kernel function. The primary distinctions between SVR and SVR Linear are in
how those two implementations handle intercept regularization and the default loss
function. SVR linear algorithms set a linear relationship between the target variable
and the input characteristics. The main formula of SVR Linear is

1, -
1 c e
wgfl;}g*zllwll + ;:l(éﬂré,)

Firstly, the algorithm initials the value to weights, bias, and slack variables. After
then, for optimizing the problem, it defines the objective function to minimize
the loss, including the linear constraints. By solving the optimization problem and
iteratively update the weights w, bias b and slack variable &; and & while constraints
are being satisfied. Using the optimized weights and bias, it predicts for new data
point (Klopfenstein & Vaiter, 2019).

3.3.8 SVR Radial Basis Function (RBF)
SVR with RBF kernel is a machine learning algorithm which is often used for its
ability to handle nonlinear relationships. The RBF kernel is a function that depends

on the distance from a point. The main formula of RBF kernel function is defined as

K(x,x') = exp(—y|lx — x|*)
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Here , ||x — x’|| denotes the distance between x and x” and y parameter controls the
spread of kernel. SVR finds a line or curve that fits data points as closely as possible
as if it does not cross a certain error margin which is called epsilon. There are three
parameters, epsilon, regularization parameter, and gamma (kernel spread), which
are the key factors of the model’s performance and complexity. Then it forecasts
additional data points using the optimized weights and bias from the SVR algorithm.

339 SVR Poly

SVR with a polynomial (poly) kernel is another variant of SVR which uses a
polynomial function instead of RBF for mapping data. Here, the polynomial kernel
function transforms the input data into higher dimensional space. The polynomial
kernel takes the form

K@, x)=(1+x x)¢

where d is the degree of the polynomial. To find a regression function f(x) =
we (x) + b which best fits the training data is the main goal, where ¢ (x) is the
nonlinear mapping to the higher dimensional space, w is the weight vector, and b
is the bias term (Rabbi et al., 2022; Bargam et al., 2024). SVR Poly has an € loss
function to avoid overfitting which boosts performance with noisy and sparse data
(Hasan et al., 2023a).

3.4 Proposed Blending LDAR

Four ML algorithms, LASSO, DT, AdaBoost, and RF, are used to create a blending
ensemble learning model in this study (Hasan et al., 2024). We refer to this model
as the LDAR regression model. While blending shares similarities with the stacking
ensemble process, it possesses distinctive advantages. For instance, while stacking
leverages out-of-fold predictions to train subsequent layers in the meta-model,
blending uses a small validation set O for the same purpose. LDAR integrates the
mapping functions acquired from its member algorithms, as detailed in the workflow
presented in Fig. 3.

The motivation to employ an ensemble model over a singular model is rooted in
the belief that ensemble models generally predict with greater accuracy and offer
superior performance compared to individual ML models. Additionally, ensembles
help decrease the spread of predictions, enhancing model reliability. The mapping
functions from member algorithms merge to provide enhanced predictive capabil-
ities. Our proposed ensemble model incorporates various methods to leverage the
strengths of each algorithm:
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Fig. 3 Block diagram of the proposed blending LDAR ensemble learning model

LASSO regression provides feature selection and regularization, reducing over-
fitting and enhancing model interpretability. DT captures nonlinear relationships and
interactions between features. AdaBoost regression boosts weak learners by focus-
ing on the errors of previous models, improving overall performance, and finally RF
aggregates multiple decision trees to reduce variance and improve generalization.
The LDAR blending ensemble learning model combines these diverse approaches to
create a robust and accurate predictive model, taking advantage of each algorithm’s
strengths while mitigating their individual weaknesses.

3.5 Performance Measure Metrics

We use four different performance measure techniques in this study, and the
descriptions are given below.

MAE: MAE measures the average magnitude of errors between predicted and
actual values without considering their direction. It is calculated as the average of
the absolute differences between predicted and actual values. MAE is simple to
understand and provides a straightforward interpretation of model accuracy, where
lower values indicate better performance.
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1 & .
MAE =—% |y = il

i=1

MSE: MSE quantifies the average squared difference between predicted and actual
values. It emphasizes larger errors more than MAE due to squaring the differences,
which can be useful for identifying significant outliers. MSE is calculated by
averaging the squared differences between predicted and actual values. Lower MSE
values indicate better model performance.

1 & )
MSE =~ ;(y,- - )?
1=

RMSE: RMSE is the square root of the MSE and provides an error metric on
the same scale as the data. It measures the standard deviation of prediction errors,
offering a clear view of model accuracy by penalizing larger errors more heavily.
Lower RMSE values indicate better predictive performance, making it a widely used
metric in regression analysis.

1 ¢ R
RMSE =VMSE = | =) (yi — §)?
" i=1

SMAPE: SMAPE measures the accuracy of predictions by calculating the percent-
age difference between predicted and actual values. It is symmetric and considers
both the relative error and scale of the data. SMAPE is particularly useful for
comparing errors across datasets of different scales, with lower values indicating
better model accuracy.

100% <~ |yi — il
SMAPE = n Z [yi 419 |

i=l 2
R-Squared: R-Squared, or the coefficient of determination, indicates the proportion
of variance in the dependent variable that is predictable from the independent
variables. It ranges from O to 1, with higher values representing better model fit.
An R? value of 1 indicates perfect prediction, while 0 indicates no predictive power.
It is a key metric for evaluating the explanatory power of regression models.

S Sres
S Stot

R*=1-

where S, is the sum of squares of residuals and S.S;,; is the total sum of squares.
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4 Result Analysis

4.1 Hyperparameter

The performance of ML algorithms depends on the quality of data and the learning
process. The optimized model with the best hyperparameter values performs better
than any ML model. In our work, we employ the grid search procedure to find the
optimal values of the ML algorithms. The values of the selected hyperparameters
are in Table 2.

4.2 Performance of ML Models

We split the dataset into three distinct ratios: 20:80, 30:70, and 50:50 testing and
training ratios. The performances of those categories are shown in tables and graphs
below:

4.2.1 Performance of the ML Algorithms to Predict Primary Energy
Consumption in 20:80 Testing and Training Ratio

We employ several ML algorithms on a standard 80:20 train-test split of the data.
This results in varying error rates for each algorithm and R? score that is tabulated
in Table 3. In the table, it is clear that our proposed Blending LDAR performs
better than other ML models. The proposed LDAR achieves 90% R? with 0.0177
MAE, 0.0016 MSE, 0.0403 RMSE, and 19.7075 SMAPE. The performance of

Table 2 Values of the hyperparameters of different ML algorithms

Algorithm Parameter with value

LGB learning_rate: 0.1

DT random_state: 0

AdaBoost base_estimator: none, learning_rate: 1.0, n_estimators: 50, random_state:
none

RF n_estimators: 1, random_state: 0

LASSO alpha: 0.01

Bagging Lasso alpha: 0.01

SVR Linear kernel: linear, C: 100, gamma: auto

SVR RBF kernel: rbf, C: 100, gamma: 0.1, epsilon: 0.1

SVR Poly kernel: poly, C: 100, gamma: auto, degree: 3, epsilon: 0.1, coef0: 1

Blending LDAR | learning_rate: 0.1, random_state: 0, base_estimator: none, learning_rate:
1.0, n_estimators: 50, random_state: none and n_estimators: 1,
random_state: 0
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Table 3 Primary energy consumption per person in 20% testing and 80% training

Model MAE MSE RMSE SMAPE R?

LGB 0.0224 0.0019 0.0441 31.6384 0.88
DT 0.0213 0.0040 0.0635 19.6023 0.76
AdaBoost 0.0437 0.0044 0.0669 59.3734 0.73
RF 0.0235 0.0037 0.0613 26.307 0.78
LASSO 0.0707 0.0127 0.1128 86.9742 0.24
Bagging Lasso 0.0704 0.0126 0.1125 86.8033 0.25
SVR Linear 0.0713 0.0101 0.1008 91.4090 0.40
SVR RBF 0.0585 0.0078 0.0885 89.4069 0.53
SVR Poly 0.0584 0.0076 0.0875 86.1174 0.54
Blending LDAR 0.0177 0.0016 0.0403 19.7075 0.90

Table 4 Primary energy consumption per person in 30% testing and 70% training

Model MAE MSE RMSE SMAPE R?

LGB 0.0230 0.0021 0.0463 31.0907 0.88
DT 0.0214 0.0037 0.0612 20.6243 0.78
AdaBoost 0.0402 0.0042 0.0653 54.0534 0.75
RF 0.0226 0.0035 0.0594 26.1839 0.79
LASSO 0.0703 0.0130 0.1142 87.7059 0.24
Bagging Lasso 0.0706 0.0131 0.1144 87.9104 0.24
SVR Linear 0.0716 0.0105 0.1026 92.4498 0.39
SVR RBF 0.0576 0.0081 0.0895 89.7533 0.53
SVR Poly 0.0576 0.0078 0.0885 86.5198 0.54
Blending LDAR 0.0191 0.0019 0.0446 20.6817 0.88

LGB is nearer to the LDAR, and it shows 88% RZ2. The Decision Tree, AdaBoost,
and Random Forest algorithms performed moderately well in our study. They
obtained R? values of 76%, 73%, and 78%, respectively. The RMSE error of the
algorithms is 0.0635, 0.0669, and 0.0613, respectively. However, the performance
of LASSO, Bagging Lasso (BLASSO), SVR Linear, SVR RBF, and SVR Poly is
not satisfying, and it shows only 24%, 25%, 40%, 53%, and 54% R2, respectively.
The error rate of those algorithms is also high compared to the proposed LDAR
and LGB. That numerical comparison demonstrates the superiority of our proposed
Blending LDAR. The obtained errors of different algorithms are visualized in
Fig. 4. The results in this figure demonstrate that our proposed LDAR model
achieves superior performance compared to other algorithms across various errors
and scoring metrics.
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Fig. 4 Performance of the models in primary energy consumption in 80:20 train-test ratio

Fig. 5 Performance of the models in primary energy consumption in 70:30 train-test ratio
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4.2.2 Performance of the ML Algorithms to Predict Primary Energy
Consumption in 30:70 Testing and Training Ratio

Using a conventional train-test split, which entails a 30:70 testing and training ratio,
we utilize those ML algorithms, yielding varying errors and R? scores, which are
compiled in Table 4. The table indicates that both the proposed LDAR and LGB
models achieve similar performance, with an R? value of 88%. In Fig. 7, DT, ADB,
and RF show closer results, scoring 76%, 73%, and 78% in RZ, respectively. The
error rate of LDAR and LGB is comparatively lower than other ML algorithms.
Figure 5 shows that the proposed LDAR beats competing algorithms regarding error
and score metrics. The MAE error of LGB, DT, and RF is 0.023, 0.0214, and 0.0226,
respectively, where LDAR performs better achieving a score of 0.1908. Measuring
SMAPE, the error rate of AdaBoost and LDAR achieves nearer scores of 20.6243
and 20.6817, respectively.

4.2.3 Performance of the ML Algorithms to Predict Primary Energy
Consumption in 50:50 Testing and Training Ratio

To compare the performance of ML algorithms, we divided the data into training
and testing sets using the typical 50:50 ratio. We then applied these algorithms to
the training data to determine their error rates and R? values, which are shown in
Table 5. We can see that our proposed LDAR model achieves 88% R? where LGB
and DT perform nearer scores of 87% and 86% R?, respectively, depicted in Fig. 7.
DT shows better performance with a score of 0.0198 which is lower than LDARs
of score 0.0202 in measuring MAE. The MSE error of LGB and DT is very near
of scores 0.0022 and 0.0025, respectively, but LDAR performs better with a score
of 0.0021. However, the performances of LASSO, BL, SVR Linear, SVR RBF, and
SVR Poly do not show any satisfactory scores. The numerical comparisons shown
in Fig. 6 demonstrate that the performance of our Blending LDAR is significant.

Table 5 Primary energy consumption per person in 50% testing and 50% training

Model MAE MSE RMSE SMAPE R?

LGB 0.0244 0.0022 0.0476 34.2486 0.87
DT 0.0198 0.0025 0.0502 22.7411 0.86
AdaBoost 0.0422 0.0043 0.0661 62.0623 0.76
RF 0.0277 0.0048 0.0693 28.2827 0.73
LASSO 0.0718 0.0136 0.1167 89.9741 0.23
Bagging Lasso 0.0722 0.0137 0.1173 90.2193 0.23
SVR Linear 0.0718 0.0107 0.1034 93.5718 0.40
SVR RBF 0.0578 0.0082 0.0909 89.4069 0.53
SVR Poly 0.0584 0.0076 0.0875 91.5027 0.54

Blending LDAR 0.0202 0.0021 0.0457 22.8968 0.88
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Fig. 6 Performance of the models in primary energy consumption in 50:50 train-test ratio

Fig. 7 R? scores for the ML models in different training and testing ratios
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4.3 Discussion

Our proposed model consists of four ML algorithms, namely LGB, DT, ADB,
and RF. As we split our datasets into three categories based on training and
testing, LDAR performs better than any other model in primary energy consumption
forecasting. In 20:80 testing and training, LDAR shows 90% R?. Additionally, it
illustrates 88% R? scores in both 30:70 and 50:50 testing and training of primary
energy consumption per person (Fig.7). This model outperforms in measuring
other evaluation metrics including MAE, MSE, RMSE, and SMAPE. Notably, the
value of errors in LDAR was comparatively lower than other algorithms, which
means it has the highest accuracy. The comparison with other research makes
it abundantly evident that our suggested blending LDAR model is superior to
the other options. The main focus of our proposed blending LDAR model is to
predict the primary energy consumption better than other existing models. Primary
energy consumption forecasting is crucial for policymaking and strategic planning,
investment and infrastructure planning, market dynamics and economic growth,
environmental and climate impact, consumer behavior and education, and other
sectors. On top of everything else, the high accuracy and lower error rate of our
proposed model are compelling and potentially valuable for the stakeholders and
policymakers in making future decisions. To some extent, it will play a great role
in guiding investments in energy infrastructure, supporting sustainable development
goals, and evaluating climate change mitigation strategies. As we can suggest this
prediction model can play an inevitable role in primary energy consumption.

5 Conclusion and Future Work

The aim of this research is to design an ML-based methodology for primary
energy consumption prediction. You have designed and described the blended
ensemble learning model that combines five ML regression techniques in this
study. The results revealed that the blending LDAR model significantly improved
forecasting accuracy compared to established methods used in previous studies, as
measured by various error criteria. Our findings have far-reaching consequences,
including possible applications in energy planning, policymaking, and climate
change mitigation. Our model can assist in shifting to low-carbon energy by offering
more precise and trustworthy primary energy consumption forecasts, enabling better
decision-making.

Future research will focus on integrating our model with other energy system
models, including the incorporation of new features and data sources, as well as the
development of more advanced ML techniques like deep learning.

Acknowledgments We extend our deepest gratitude to the Center for Multidisciplinary Research
and Development (CeMRD) for their resources, guidance, and support. The expertise and



194 A. Haque et al.

encouragement from CeMRD members have been invaluable. This research was made possible
by the collaborative environment and cutting-edge facilities at CeMRD.

References

Abedin, M. Z., Moon, M. H., Hassan, M. K. & Hajek, P. (2021). Deep learning-based exchange
rate prediction during the covid-19 pandemic. Annals of Operations Research, 1-52.

Ahmad, T. et al. (2021). Artificial intelligence in sustainable energy industry: Status quo,
challenges and opportunities. Journal of Cleaner Production, 289, 125834.

Ali, J., Khan, R., Ahmad, N. & Magsood, I. (2012). Random forests and decision trees.
International Journal of Computer Science Issues (IJCSI), 9(5), 272.

Alola, A. A., Ozturk, I. & Bekun, F. V. (2021). Is clean energy prosperity and technological
innovation rapidly mitigating sustainable energy-development deficit in selected sub-Saharan
Africa? A myth or reality. Energy Policy, 158, 112520.

Amiri, S. S., Mueller, M. & Hoque, S. (2023). Investigating the application of a commercial and
residential energy consumption prediction model for urban planning scenarios with machine
learning and Shapley additive explanation methods. Energy and Buildings, 287, 112965.

Aydin, G. & Karakurt, 1. (2023). Introduction to fossil fuels. Elsevier. https://www.sciencedirect.
com/science/article/pii/B97803239394090004 14.

Bach, F. (2008). Bolasso: Model consistent lasso estimation through the bootstrap. In Proceedings
of the 25th International Conference on Machine Learning (pp. 33—40)

Bargam, B. et al. (2024). Evaluation of the support vector regression (SVR) and the random
forest (RF) models accuracy for streamflow prediction under a data-scarce basin in morocco.
Discover Applied Sciences, 6, 306.

Cheekatamarla, P., Gluesenkamp, K., Kowalski, S., Li, Z. & Jajja, S. (2024). Global primary
energy sources and their carbon intensity (pp. 11-17). Springer.

Demiral, M. & Demiral, O. (2023). Socio-economic productive capacities and energy efficiency:
global evidence by income level and resource dependence. Environmental Science and
Pollution Research, 30, 42766—42790.

Ekonomou, L. (2010). Greek long-term energy consumption prediction using artificial neural
networks. Energy, 35, 512-517.

Gyamfi, B. A., Adebayo, T. S., Agozie, D. Q., Bekun, F. V. & Koy, A. (2024). Is sustainable energy
consumption, technological advancement and urbanization fast addressing south Asia’s green
energy expansion deficits? Environment, Development and Sustainability, 1-30.

Hasan, M., Hassan, M. M., Faisal-E-Alam, M. & Akter, N. (2023a). Empirical analysis of
regression techniques to predict the cybersecurity salary (pp. 65-84). Routledge.

Hasan, M. et al. (2023b). Ensemble machine learning-based recommendation system for effective
prediction of suitable agricultural crop cultivation. Frontiers in Plant Science, 14, 1234555.
Hasan, M., Das, U., Datta, R. K. & Abedin, M. Z. (2023c). Model development for predicting the
crude oil price: Comparative evaluation of ensemble and machine learning methods (pp. 167—

179). Springer.

Hasan, M. et al. (2024) A blending ensemble learning model for crude oil price forecasting. Annals
of Operations Research, 1-31.

He, Q. & Hao, Y. (2024). Applications of fractional time delayed grey model in primary energy
consumption prediction. Journal of Energy Research and Reviews, 16, 30-46.

Kaytez, F. (2020). A hybrid approach based on autoregressive integrated moving average and
least-square support vector machine for long-term forecasting of net electricity consumption.
Energy, 197, 117200.

Ke, G. et al. (2017) LightGBM: A highly efficient gradient boosting decision tree. In NIPS’17:
Proceedings of the 31st International Conference on Neural Information Processing Systems
(pp- 3149-3157).


https://www.sciencedirect.com/science/article/pii/B9780323939409000414
https://www.sciencedirect.com/science/article/pii/B9780323939409000414
https://www.sciencedirect.com/science/article/pii/B9780323939409000414
https://www.sciencedirect.com/science/article/pii/B9780323939409000414
https://www.sciencedirect.com/science/article/pii/B9780323939409000414
https://www.sciencedirect.com/science/article/pii/B9780323939409000414
https://www.sciencedirect.com/science/article/pii/B9780323939409000414
https://www.sciencedirect.com/science/article/pii/B9780323939409000414

BLDAR: A Blending Ensemble Learning Approach for Primary Energy. . . 195

Klopfenstein, Q. & Vaiter, S. (2019) Linear support vector regression with linear constraints.
Machine Learning, 110, 1939-1974.

Komarova, A., Filimonova, 1. & Kartashevich, A. (2022). Energy consumption of the countries in
the context of economic development and energy transition. Energy Reports, 8, 683-690.

Li, Y. (2019). Prediction of energy consumption: Variable regression or time series? A case in
china. Energy Science & Engineering, 7,2510-2518.

Li, Y. & Solaymani, S. (2021). Energy consumption, technology innovation and economic growth
nexuses in Malaysian. Energy, 232, 121040.

Liu, L., Tam, V. W,, Le, K. N. & Almeida, L. (2023). Life cycle energy consumption prediction
based on an extended system boundary with the Bi-LSTM model: An empirical study of china.
Energy and Buildings, 298, 113497.

Martinez, D. M., Ebenhack, B. W. & Wagner, T. P. (2019). Chapter 1 - introductory concepts. In
D. M. Martinez, B. W. Ebenhack, & T. P. Wagner (Eds.) Energy efficiency (pp. 1-33). Elsevier.
https://www.sciencedirect.com/science/article/pii/B9780128121115000019.

Mosavi, A. & Bahmani, A. (2019). Energy consumption prediction using machine learning; a
review. Preprints. [Working Paper] (Unpublished).

Rabbi, M. F., Moon, M. H., Dhonno, F. T., Sultana, A. & Abedin, M. Z. (2022). Foreign currency
exchange rate prediction using long short-term memory, support vector regression and random
forest regression (pp. 251-267). Springer.

Sajid, S. W., Hasan, M., Rabbi, M. F. & Abedin, M. Z. (2023). An ensemble LGBM (light gradient
boosting machine) approach for crude oil price prediction (pp. 153-165). Springer.

Shinwari, R., Wang, Y., Gozgor, G. & Mousavi, M. (2024). Does FDI affect energy consumption
in the belt and road initiative economies? The role of green technologies. Energy Economics,
132, 107409.

Sozen, A. & Arcaklioglu, E. (2007). Prediction of net energy consumption based on economic
indicators (GNP and GDP) in turkey. Energy Policy, 35, 4981-4992.

Vidaurre, D., Bielza, C. & Larrafaga, P. (2011). Lazy lasso for local regression. Computational
Statistics, 27, 531-550.

Wang, X. (2022). Research on the prediction of per capita coal consumption based on the ARIMA—
BP combined model. Energy Reports, 8, 285-294.

Wang, H. & Zhang, Z. (2023). Forecasting per capita energy consumption in china using a spatial
discrete grey prediction model. Systems, 11, 285.

Wei, W. & He, L.-Y. (2017). China building energy consumption: definitions and measures from
an operational perspective. Energies, 10, 582.

Wen, L., Guang, F. & Sharp, B. (2021). Dynamics in Aotearoa New Zealand’s energy consumption
between 2006/2007 and 2012/2013. Energy, 225, 120186.

Wu, P. & Zhao, H. (2011). Some analysis and research of the AdaBoost algorithm. In International
Conference on Intelligent Computing and Information Science (pp. 1-5).

Zhang, C., Luo, Z., Rezgui, Y. & Zhao, T. (2024). Enhancing multi-scenario data-driven energy
consumption prediction in campus buildings by selecting appropriate inputs and improving
algorithms with attention mechanisms. Energy and Buildings, 311, 114133.

Zhou, K. & Yang, S. (2016). Understanding household energy consumption behavior: The
contribution of energy big data analytics. Renewable and Sustainable Energy Reviews, 56,
810-819.


https://www.sciencedirect.com/science/article/pii/B9780128121115000019
https://www.sciencedirect.com/science/article/pii/B9780128121115000019
https://www.sciencedirect.com/science/article/pii/B9780128121115000019
https://www.sciencedirect.com/science/article/pii/B9780128121115000019
https://www.sciencedirect.com/science/article/pii/B9780128121115000019
https://www.sciencedirect.com/science/article/pii/B9780128121115000019
https://www.sciencedirect.com/science/article/pii/B9780128121115000019
https://www.sciencedirect.com/science/article/pii/B9780128121115000019

196

A. Haque et al.

Abdullah Haque is currently pursuing MS in Mathematics from
Department of Mathematics at Hajee Mohammad Danesh Science
and Technology University (HSTU), Dinajpur, Bangladesh. He
completed BSc (Honors) in Mathematics in 2023 from the same
institution. Currently, he is a Research Assistant in the Center
for Multidisciplinary Research and Development (CeMRD). His
research interests include Machine Learning, Deep Learning,
Cyber Security, Business Intelligence, Nonlinear Partial Differ-
ential Equations, and Computational Sociology.

Tuhin Chowdhury is a software engineer at a multinational
company in Dhaka. He specializes in backend development,
research, and mobile app development and has successfully led
a small team. Tuhin holds a BSc degree in Computer Science
and Engineering from the SEC Engineering Faculty of Shahjalal
University of Science and Technology (SUST), graduating in
2021. He also served as a campus director for the Hult Prize at
SEC. Tuhin loves conducting research and has a keen interest
in Image Processing, Computer Vision, [oT, Photogrammetry,
Business Intelligence, and NLP.

Mahmudul Hasan is currently pursuing a PhD in Information
Technology (IT) at Deakin University, Melbourne, Australia. He
earned his BSc (Eng.) and MSc (Eng.) degrees in Computer
Science and Engineering (CSE) from Hajee Mohammad Danesh
Science and Technology University, Dinajpur, Bangladesh, in
2021 and 2023, respectively. He previously served as a lecturer in
the Department of CSE at the University of Creative Technology,
Chittagong (UCTC), Bangladesh. He is the Founder and Director
of the Center for Multidisciplinary Research and Development
(CeMRD) and a moderator of "Be Researcher BD," the largest
online research forum in Bangladesh. Additionally, he has taught
online as a Data Science instructor to students in the USA,
Italy, Denmark, South Korea, and Australia. He is also the
founder of the online educational platform "MHM Academy."
His research interests include federated learning, machine learn-
ing, deep learning, cybersecurity, health informatics, renewable
energy, computational sociology, and business intelligence.



BLDAR: A Blending Ensemble Learning Approach for Primary Energy. . . 197

Md. Jahid Hasan is currently pursuing a PhD in Business
Information Systems at RMIT University in Melbourne, Victoria,
Australia. His Ph.D. program is a collaboration between RMIT
University and carsales, where he also works as a PhD Candidate
on the Data Science and Machine Learning team. Jahid completed
his BSc in Electrical and Electronic Engineering at Hajee Moham-
mad Danesh Science and Technology University in Dinajpur,
Bangladesh, in 2022. His research interests include image pro-
cessing, machine learning, deep learning, computer vision, [oT,
and business intelligence. He is especially focused on developing
computer vision models and integrating Large Language Models
(LLMs), driven by his passion for innovation and his commitment
to bridging the gap between academic research and practical
industry applications.



Analyzing Biogas Production in )
Livestock Farms Using Explainable Py
Machine Learning
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1 Introduction

Due to waste generated from both domestic and industrial activities, developed and
emerging nations are increasingly seeking alternative energy sources. Nowadays,
most of the global primary energy supply is derived from fossil fuels. However, the
environmental harm caused by fossil fuels and the depletion of natural resources
have shifted public focus toward renewable energy sources to ensure a sustainable
future for energy production. In recent years, interest in biogas as a viable energy
source has grown, primarily due to its potential to reduce greenhouse gas emissions.
Biogas production from anaerobic digestion (AD) processes depends on parameters
such as retention time, pH, medium composition, temperature inside the digester
tank, working pressure, and volatile fatty acids (Gonzalez-Ferndndez et al., 2019).
Machine learning (ML) has emerged as a powerful method for studying models to
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investigate complex and nonlinear relationships. It is considered to have significant
potential for predicting and controlling the performance of anaerobic digesters
(Wang et al., 2020). ML enables computers to uncover hidden information by using
algorithms that iteratively learn from data without being explicitly programmed on
where to look. Several researchers have proposed innovative and effective strategies
for modeling the biogas process using ML techniques. These techniques include
support vector machines, adaptive neuro-fuzzy inference systems, k-nearest neigh-
bors (KNNs), random forests (RFs), and artificial neural networks (ANNs) (Alejo
et al., 2018). Three-layer artificial neural networks and nonlinear regression models
were employed to predict biogas production performance in controlled laboratory-
scale experiments (Tufaner & Demirci, 2020). Additionally, in an industrial scale
co-digestion facility, random forest and extreme gradient boosting (XGBoost) were
effectively utilized (De Clercq et al., 2020), while adaptive neuro-fuzzy inference
systems model and optimize biogas production from cow manure and maize straw in
a pilot-scale study (Zareei & Khodaei, 2017). There is a notable gap in the literature
regarding artificial intelligence-based models for estimating biogas production and
identifying key factors influencing production from full-scale sludge digestion
processes in biological treatment plants. Most researchers develop models using
lab- or pilot-scale reactors and focus solely on predicting biogas output. This study
addresses this gap by applying Ridge Regression (RR), Lasso Regression (LR),
KNN, ElasticNet Regression (ER), Classification and Regression Trees (CART),
RF, XGBoost, Light Gradient Boosting Machine (LightGBM), Gradient Boosting
Machine (GBM), and CatBoost algorithms to U.S. biogas data. The data, processed
by a fully operational anaerobic sludge digester system, was used to predict biogas
production rates. The study aims to evaluate the performance of these ML models
and identify the key factors influencing biogas production.
The technical contributions of this chapter are as follows:

* To analyze and compare the performance of different ML algorithms for daily
biogas production prediction

* To enhance the performance of the algorithms using different preprocessing
techniques and hyperparameter tuning

» To provide insights and recommendations based on the experimental results to
assist relevant institutions and investors in selecting the most suitable algorithm
for biogas production prediction with global and local explanation using explain-
able artificial intelligence (XAI) tools

* To provide suitable features from ranks based on the average of several XAl
analyses

The structure of the remaining sections of this chapter is outlined as follows. The
related works are in Sect.2. Section 3 is dedicated to presenting our proposed
methodology and the experimental setup. We detail the approach we have taken
to address the research problem, including the methods, techniques, and tools
employed in our study. Within Sect. 4, we present the outcomes of our experiments.
The chapter concludes in Sect.5 with a summary of our findings and their
significance. Additionally, we outline avenues for future research and development
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in this domain, emphasizing the potential directions for further exploration and
enhancement.

2 Literature Review

Several studies have employed traditional statistical methods in their research. For
instance, De Clercq et al. (2017a) utilized a combination of statistical techniques
such as principal component analysis and multiple linear regression (LR), along
with operations research methods like data envelopment analysis, to investigate the
factors influencing efficiency in biogas projects. Their findings highlighted various
inefficiencies, including decreasing returns to scale. Similarly, Terradas-Ill et al.
(2014) developed a thermal model to forecast biogas production in underground,
unheated fixed-dome digesters. However, their model lacked validation against
actual data and was unsuitable for large-scale facilities. Furthermore, De Clercq
et al. (2017b) employed multi-criteria decision analysis to evaluate food waste
and biowaste projects, considering technical, economic, and environmental aspects.
They proposed six significant policy recommendations based on their findings
but did not provide generalized modeling tools that project operators could use
to improve production efficiency based on waste inputs. However, a significant
limitation of the models developed in these studies is their failure to incorporate
the latest advancements in ML for predicting biogas output. Instead, they rely
on traditional statistical performance metrics such as R2? and RMSE. In contrast,
modern ML models are evaluated based on their ability to accurately predict
unseen data. To achieve this, datasets are divided into training and testing partitions
(James et al., 2013), with a preference for out-of-sample evaluation metrics. These
metrics are crucial as they help identify potential overfitting of the model to the
training data. These traditional models also face a trade-off between accuracy and
simplicity, limiting their ability to capture the complex interactions among various
biochemical components. In contrast, ML models are inherently universal function
approximators (Hornik et al., 1989). With their numerous adjustable parameters,
ML models can uncover subtle relationships in AD datasets without needing expert
supervision. Below, we highlight selected examples of ML approaches applied
to biogas prediction. Wang et al. (2021) introduced Tree-Based Automated ML
(AutoML) for predicting biogas production in the anaerobic co-digestion of organic
waste. Sonwai et al. (2023) compared RF, XGBoost, and Kernel Ridge Regression
(KRR) models for predicting specific methane yields (SMY), identifying the RF
model as the most effective with a coefficient of determination (R2) of 0.85
and an RMSE of 0.06. Gaida et al. (2012) created an artificial training and test
dataset using the ADM1 model and employed three different ML models, including
the widely used random forest, to estimate the operating state of a biogas plant
online. Cheon et al. (2022) applied five ML models to predict methane yield in
a bioelectrochemical AD reactor, demonstrating the ability to interpret nonlinear
relationships among multiple input and output variables in complex systems. This
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approach enhances process stability and helps prevent operational risks. De Clercq
et al. (2019) analyzed data from an industrial scale biogas facility in China
to improve operational decision-making. The ML models used included logistic
regression, support vector machines, and KNN regression. Instead of focusing on
digester parameters like temperature, this study examined the impact of different
waste input compositions on the AD process. Additionally, a graphical user interface
was developed to provide wastewater treatment plant (WWTP) engineers with
daily operational recommendations. Yildirim and Ozkaya (2023) compared five ML
algorithms, RF, ANN, KNN, SVR, and XGBoost for forecasting biogas production.
The RF model performed best with an R? of 0.9242, while the KNN model
had the lowest accuracy with an R? of 0.8326. Most researchers have utilized
multilayer ANNs, a widely recognized and extensively discussed method within the
engineering community. For instance, Olatunji et al. (2023) developed optimized
ANN and FCM-clustered ANFIS approaches for modeling biogas and methane
yields. The FCM-ANFIS approach with ten clusters proved more accurate than
the ANN approach, achieving R%, MAD, MAPE, and RMSE values of 0.9850,
1.2463, 5.2343, and 1.2343, respectively. As highlighted in the literature review,
some researchers have used traditional statistical methods for predicting biogas
production, while others have employed ANN and ML techniques. However, there
is a need for more suitable ML models and the application of XAl techniques to
identify key factors in biogas production. Our study aims to address these gaps by
utilizing more appropriate ML models and XAl methods to identify critical features.

3 Methodology

To predict daily biogas production from the secondary dataset, we propose a top-
down approach including data preprocessing with ML techniques. Furthermore, a
variety of XAl models are employed to extract the significant factors influencing
biogas production.

3.1 Overview of Proposed Methodology

We employ secondary data to predict biogas production using ML techniques.
The data is labeled with regression problems and is collected from the online
repository Kaggle: secondary data. In the preparatory phase, we implement ordinal
encoding, one-hot encoding, and data normalization protocols. The conventional
method of ML is employed to evaluate the models’ stability by dividing the
data into 80:20, 70:30, and 50:50 rations of training and testing. In addition, we
introduced an ensemble model that outperformed other benchmark ML models
in terms of biogas prediction. Various error metrics are employed to assess the
regressors’ performance. In Fig. 1, a comprehensive top-down presentation of the
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Fig. 1 Overview of the proposed framework including model development and explainability

proposed methodology is provided. The XAI analysis is conducted to extract the
significant factors that influence biogas production in order to uncover the inner
story of the dataset. Afterward, a comparative analysis is performed to determine
the most prevalent factors across all interpretable models, thereby guaranteeing
a comprehensive comprehension of the underlying dynamics that influence daily
biogas yield.

3.2 Description of Dataset and Variables

This study employs the U.S. Biogas dataset from Kaggle to forecast biogas pro-
duction regularly (https://www.kaggle.com/discussions/accomplishments/493876).
This extensive dataset examines biogas generation from livestock farms throughout
the USA, serving as a pivotal resource for assessing renewable energy potentials.
It features biogas projects from cattle, dairy cows, poultry, and swine, making it
invaluable for agriculture, renewable energy, and environmental policy stakeholders
displayed in Table 1. The dataset includes 29 features across 491 observations from
the U.S. Data preprocessing is a crucial aspect of ML, requiring significant time
and effort, which accounts for about 60% of the investment in a data science project
(Seelam et al., 2022).
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Table 1 Description of the variables with acronym and details

Column name Description

Year Operational The year when the project became operational

Cattle Number of cattle involved

Dairy Number of dairy cows involved

Poultry Number of poultry involved

Swine Number of swine involved

Biogas Generation Estimate (cu-ft/day) Estimated daily biogas production

Electricity Generated (kWh/yr) Estimated annual electricity generation

Total Emission Reductions (MTCO2e/yr) | Estimated total emission reduction

Operational Years Number of years the project has been operational

Total_Animals Total number of animals involved in the project

Biogas_per_Animal (cu-ft/day) Estimated biogas production per animal

Emission_Reduction_per_Year Estimated annual emission reduction per animal

Electricity_to_Biogas_Ratio The ratio between electricity generation and
biogas production

Total_Waste_kg/day Estimated daily waste production

Waste_Efficiency Efficiency of waste conversion to biogas

Electricity_Efficiency Efficiency of biogas conversion to electricity

3.3 ML Algorithms
3.3.1 Ridge Regression

Ridge regression adds a regularization term to linear regression to handle predictor
variable multicollinearity. This method shrinks coefficients and reduces variance by
adding a penalty to the loss function equal to the square of their magnitude. The
ridge regression equation modifies the ordinary least squares (OLS) regression by
adding a regularization parameter A, which minimizes the following cost function
where y; represents the observed values, y; the predicted values, 8 ; the coefficients,
and X the regularization parameter. By tuning A, one can control the trade-off
between fitting the data well and keeping the model coefficients small, which
helps mitigate overfitting. Ridge regression is instrumental in situations with many
correlated predictors, as it improves the model’s generalization performance (Daly
et al., 2016).

3.3.2 Lasso Regression

Lasso regression, or Least Absolute Shrinkage and Selection Operator, is a reg-
ularization technique used to enhance the prediction accuracy and interpretability
of regression models by enforcing sparsity. Unlike ridge regression, which applies
an {, penalty, lasso regression adds an ¢; penalty to the loss function, where y;
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are the observed values, y; the predicted values, S ; the coefficients, and A the
regularization parameters. The ¢ penalty tends to shrink some coefficients exactly
to zero, effectively performing variable selection and yielding a simpler model
that retains only the most significant predictors. This sparsity property makes lasso
regression particularly useful when dealing with high-dimensional data where the
number of predictors exceeds the number of observations. By appropriately tuning
the A parameter, one can control the complexity of the model, balancing bias and
variance to improve predictive performance and interpretability. Lasso regression is
widely utilized in fields like bioinformatics and economics where model simplicity
and feature selection are crucial.

3.3.3 ElasticNet Regression

ElasticNet regression is a regularization and variable selection technique that
combines the properties of both ridge regression and lasso regression. It addresses
some limitations of these methods, particularly when dealing with highly correlated
predictors and when the number of predictors exceeds the number of observations.
ElasticNet adds both £; (lasso) and ¢, (ridge) penalties to the loss function, where
y; are the observed values, y; the predicted values, 8 ; the coefficients, and A1 and A
the regularization parameters. The combination of these penalties allows ElasticNet
to perform both variable selection and shrinkage, retaining the benefits of both
lasso (sparsity) and ridge (handling multicollinearity). ElasticNet is particularly
useful in situations where there are multiple correlated predictors, as it tends to
select groups of correlated variables together. By tuning the parameters A1 and A,
ElasticNet provides a flexible approach to model regularization, balancing between
the ridge and lasso penalties to improve model performance and interpretability.
This technique is widely used in various fields such as genomics and finance, where
it is crucial to handle large datasets with many predictors.

3.3.4 k-Nearest Neighbors

KNN is a method for supervised classification and regression. The algorithm uses
the labeled training dataset to identify fresh data points using the “k” closest
neighbors method. The notion is that similar data points will have similar labels
or results. KNN uses point distance to estimate data proximity. Data is currently
collected from a variety of sources for analysis, insight, theory validation, and other
research goals. These databases frequently have missing data due to human error in
data extraction or collection. Addressing missing values is critical in data analysis
preparation. The selection of an imputation method has a significant impact on
model performance. The Scikit-Learn, the KNN imputer, is a prominent missing
value imputation method. The Euclidean distance matrix assists the KNN imputer
in imputed missing data by selecting nearest neighbors. The Euclidean distance
is calculated by removing missing values and prioritizing non-missing coordinates
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(James et al., 2013). The equation of this algorithm is

D,y = \/ weight x squared distance from present coordinates.

Here,

total number of coordinates

weight = - .
number of present coordinates

3.3.5 CART

ML uses nonparametric CART for classification and regression. By partitioning
the feature space into target variable homogeneous sections, CART creates binary
trees iteratively. Each leaf node represents a predicted class or value, while each
internal node represents a feature test. The feature that optimizes information gain
or Gini impurity reduction at each node is used by CART to classify, where N is
the total number of samples, Nief; and Nijgne are the numbers of samples in the left
and right child nodes, and Impurity.; and Impurity,;.,, are measures of impurity
in the left and right child nodes, respectively. In regression, CART minimizes
target variable variance within each partition. The splitting criterion is the split’s
variance reduction. CART splits nodes iteratively until a stopping requirement is
reached, such as a maximum tree depth, a minimum amount of samples in a node,
or leaf node purity (Roy et al., 2023). CART models can capture complicated
decision boundaries and feature interactions despite their simplicity. They can
overfit, especially if trees grow too deep. Pruning and tree depth limitation reduce
overfitting.

3.3.6 Random Forest

In a random forest, which is composed of a number of tree predictors, each tree is
reliant on the values of a random vector that is randomly selected for each tree in
the forest and distributed uniformly. The decision forests implement both pruned
and unpruned single-tree classifiers for all datasets, and the disparities are typically
substantial (Disha & Waheed, 2022). Accuracy increases with the number of trees
in all forests; however, those generated through bootstrapping or boosting are
frequently more competitive, while those generated through the random subspace
approach occasionally exhibited a unique pattern.

3.3.7 GBMs

GBM creates a powerful predictive model using the predictions of numerous
weak learners, usually decision trees. GBM iteratively adds better trees to fix
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prior mistakes. Previous trees’ residual errors are used to train each tree, and the
predictions are pooled to minimize the loss function. GBM optimizes loss function
using gradient descent in function space. Let Fj,_1(x) be the current model after
m — 1 iterations. GBM adds a new tree &, (x) to the model to obtain F,, (x):

Fin(x) = Fp1(x) + ymhm (x),

where y,, is the learning rate that controls the contribution of each tree. The new
tree hp,(x) is trained to minimize the loss function L(y, Fju—1(x) + Vimhm(x)).
The mean squared error (MSE) is used for regression tasks and cross-entropy loss
for classification tasks. GBM has great predicting accuracy and can handle varied
data and distributions (Mahedi Hassan et al., 2023). It can overfit, especially with
several trees. Common overfitting mitigation methods include reducing tree depth,
subsampling, and learning rate modification. Large datasets and deep trees make
GBM computationally costly, needing plenty of memory and computing capacity.

3.3.8 XGBoost

XGBoost has great classification. It creates an effective team of decision trees
that prioritize ignored areas. Different from extreme gradient boosting, XGBoost
improves decision trees. Excellent results come from teamwork, accuracy, and
efficiency. Accuracy, precision, recall, and F1 score measurements refine model
performance. XGBoost, a quick supervised learning algorithm, accurately classifies
water quality in this investigation. Regularized learning improves weights and
reduces overfitting, encouraging its use (Hasan et al., 2024). The equation of this
algorithm is

n k
QO) =Y d(yi, )+ Bfi).
i=1 k=1

339 LightGBM

LightGBM is a gradient boosting framework that was created by Microsoft with
an emphasis on accuracy, speed, and efficiency. It is engineered to manage large-
scale datasets and can operate substantially faster than other gradient boosting
implementations. Gradient-based One-Side Sampling (GOSS) and Exclusive Fea-
ture Bundling (EFB) are two innovative tree construction methods that LightGBM
employs. These methods allow for faster training times and reduced memory
consumption without compromising predictive performance (Hasan et al., 2023).
In LightGBM, the objective function can be presented as

n K
LO) =) 10 5+ Y Qo). (1)
k=1

i=1
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where [(y;, y;) is the loss function, J; is the predicted value, and Q(f;) is the
regularization term.

3.3.10 CatBoost

CatBoost is a gradient boosting library that was developed by Yandex with the
specific purpose of efficiently managing categorical features. The capacity to
autonomously manage categorical variables without the necessity of extensive
preprocessing is its distinguishing feature. Advanced algorithms for feature com-
binations and techniques such as ordered boosting are incorporated into CatBoost
to manage categorical variables with high cardinality. The key hyperparameters
in CatBoost include the learning rate 7, tree depth max_depth, and regularization
parameters A and «. The objective function in CatBoost is given by

n J
LO) =Y 1y, 50+ ) lw;l, )

i=1 Jj=1

where [(y;, ;) is the loss function, J; is the predicted value, and |w j||2 is the
regularization term on the weights.

3.4 Explainable Al Tools
3.4.1 Shapley Additive Explanations (SHAP)

SHAP (Shapley Additive Explanations) is a framework for explaining ML model

predictions. Based on Shapley values from cooperative game theory, SHAP quan-
tifies the contribution of each feature to the difference between the actual and
expected predictions. This enables comprehensive insights into feature impacts
across various samples. Various methods like Kernel SHAP, Tree SHAP, and
Linear SHAP cater to different model types, providing model-agnostic explana-
tions. Visualization tools such as summary plots and force plots help interpret
feature impacts on predictions. Widely adopted across domains, SHAP aids in
model interpretation, feature engineering, and debugging due to its flexibility and
interpretability (Prokhorenkova et al., 2018).

3.4.2 Shapash

A Python library for model interpretation and explanation is Shapash. Automated,
customizable, and interactive ML model explanations enhance SHAP. Users of
all levels may comprehend model predictions and feature impacts with Shapash.
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SHAPash’s intuitive and interactive visualizations of SHAP values let users see
how individual attributes affect model predictions. Summary, force, and dependence
graphs show feature relevance, interactions, and predictions. Users may understand
their models’ behavior with Shapash’s model comparison, sensitivity analysis,
and global feature relevance assessment. With support for tree-based, linear, and
ensemble ML models, it is adaptable across domains and applications (Sajid et al.,
2023). Data science initiatives employ Shapash for model interpretation, debugging,
and validation because to its user-friendly interface and excellent visualization
features.

3.4.3 Local Interpretable Model-agnostic Explanations (LIME)

LIME (Local Interpretable Model-agnostic Explanations) is a technique for explain-
ing individual predictions of ML models by approximating their behavior with
interpretable models locally around the instance of interest. It provides insights
into how the model arrived at a particular prediction, allowing users to understand
the model’s decision-making process. The key idea behind LIME is to fit a
simple interpretable model, such as linear regression or decision trees, to locally
approximate the complex model’s predictions. This interpretable model is trained on
perturbed samples generated around the instance to be explained. The coefficients
or feature importance of the interpretable model indicates the importance of each
feature for the specific prediction (Hassan et al., 2023).

3.4.4 Explain Like I'm 5 (ELIS)

ELI5 (Explain Like I'm 5) is a Python module that gives clear and understandable
explanations for ML models. It provides support for many models and aids in
comprehending the significance of features and the behavior of the model through
approaches such as permutation importance. Permutation importance quantifies the
impact on the model’s performance when the values of a feature are randomly
rearranged, providing a measure of the feature’s significance (Faruk et al., 2023).
ELIS also provides support for LIME to explain specific predictions.

3.5 Performance Measure Metrics

Several performance evaluation metrics can be used in the measurement of the
accuracy of a model. Here is a description of some common ones:

RMSE: RMSE measures the square root of the average squared differences between
the predicted and actual values. It provides a way to measure the magnitude of
prediction errors, with lower values indicating better model performance.
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R? Scores (Coefficient of Determination): The R? score quantifies how well the
predicted values approximate the actual values. It ranges from O to 1, with higher
values indicating a better fit. An R? score of 1 means the model explains all the
variability of the target data around its mean.

Mean Absolute Error (MAE): MAE calculates the average absolute differences
between predicted and actual values. It is a straightforward measure of prediction
accuracy, with lower values indicating fewer errors and better model performance.
MSE: MSE measures the average of the squared differences between predicted and
actual values. It emphasizes larger errors due to the squaring process, with lower
values indicating better performance.

Execution Times: Execution time refers to the amount of time a model takes to train
and make predictions. Shorter execution times are generally preferable, especially
in applications requiring real-time or near-real-time predictions.

4 Result Analysis

Firstly, the performance of the regressors is tabulated for different ratios of training
and testing with hyperparameter tuning. Then Global and Local Interpretation of the
model has been shown.

4.1 Hpyperparameter Tuning on the Models

The optimal hyperparameter values for a variety of regression algorithms are
illustrated in the Table 2. The optimal alpha values for ridge and lasso regression
are 1.0 and 0.01, respectively. ElasticNet employs an 11_ratio of 0.1 and an alpha
of 0.01. KNN uses five neighbors for tree-based methods, CART has a maximum
depth of five and a minimum of three samples per leaf, and Random Forests, GBM,
XGBoost, LightGBM, and CatBoost have specific hyperparameters related to the
number of estimators or iterations, learning rate, and depth.

4.2 Result of the ML Regressor in the Different Ratio of
Training and Testing

The performance of various regression algorithms using an 80:20 training-to-testing
ratio is summarized in Table 3. The algorithms evaluated with the metrics are Ridge,
Lasso, ElasticNet, KNN, CART, RF, GBM, XGBoost, LightGBM, and CatBoost.
XGBoost performed the best with the lowest RMSE (0.091) and highest R? score
(0.847), indicating the most accurate predictions. It also had the lowest MAE (0.051)
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Table 2 Hyperparameters value of the regressors

Algorithms Best hyperparameters Hyperparameter Value
Ridge “alpha” 1.0

Lasso “alpha” 0.01
ElasticNet “alpha,” “11_ratio” 0.01, 0.1
KNN “n_neighbors” 5

CART “max_depth”, “min_samples_leaf” 573

RF “max_depth,” “n_estimators” 10, 100
GBM “learning_rate,” “n_estimators” 0.05, 100
XGBoost “learning_rate,” “n_estimators” 0.05, 100
LightGBM “learning_rate,” “n_estimators” 0.1, 100
CatBoost “depth,” “iterations,” “learning_rate” 5, 100, 0.1

Table 3 Result of the regressors in 80:20 ratio of training and testing

Algorithms RMSE MAE MSE Execution times R? scores
Ridge 0.142 0.103 0.02 5.238 0.624
Lasso 0.153 0.117 0.023 0.236 0.567
ElasticNet 0.136 0.096 0.018 1.133 0.658
KNN 0.191 0.139 0.036 0.441 0.322
CART 0.142 0.084 0.02 0.799 0.627
RF 0.098 0.053 0.01 13.089 0.823
GBM 0.098 0.057 0.01 5.953 0.823
XGBoost 0.091 0.051 0.008 11.089 0.847
LightGBM 0.096 0.055 0.009 3.66 0.827
CatBoost 0.095 0.061 0.009 63.819 0.834

and MSE (0.008). LightGBM and CatBoost also performed well, with RMSEs
of 0.096 and 0.095 and R? scores of 0.827 and 0.834, respectively. However,
CatBoost’s execution time was significantly higher (63.819 seconds) compared
to LightGBM (3.66 seconds) and XGBoost (11.089 seconds). The bar chart in
Fig. 2 accompanying the table visualizes the error metrics, highlighting the superior
performance of XGBoost, LightGBM, and CatBoost. Figure 3 shows the R? scores
of the regressors.

The performance of various regression algorithms using a 70:30 training-to-
testing ratio is shown in Table 4. LightGBM demonstrated the best performance
with the lowest RMSE (0.075) and the highest RZ score (0.895), indicating superior
accuracy. It also had the lowest MAE (0.045) and MSE (0.006), with an execution
time of 5.226 seconds. GBM also performed well, with an RMSE of 0.083 and an
R? score of 0.87, but its execution time was higher at 6.495 seconds. CatBoost
had a comparable R? score (0.822) but a much longer execution time (80.113
seconds), making LightGBM the most efficient and accurate model. The bar chart
in Figs. 4 and 5 visually highlights these metrics, showing LightGBM’s superiority.
The performance metrics of various regression algorithms using a 50:50 training-
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Fig. 2 Bar chart for error metrics of the regressors in 80:20 training-testing ratio

Fig. 3 Bar chart for R? scores of the regressors in 80:20 training-testing ratio

to-testing ratio are shown in Table 5. This detailed comparison helps in identifying
the best-performing regression model under an even data split scenario. Among the
algorithms, XGBoost showed the best performance with an RMSE of 0.091 and
the highest R? score of 0.847, indicating superior predictive accuracy. It also had
the lowest MAE (0.051) and a very low MSE (0.008), though its execution time
was moderate at 10.358 seconds. LightGBM also performed well with an RMSE of
0.096, an R? score of 0.827, and a low MAE (0.055) while being much faster with
an execution time of 1.968 seconds. Although CatBoost had comparable metrics
(RMSE: 0.095 and R?: 0.834), its execution time was significantly longer at 60.658
seconds, making XGBoost and LightGBM the most efficient and accurate models.
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Table 4 Result of the regressors in 70:30 ratio of training and testing

Algorithms RMSE MAE MSE Execution times R? scores
Ridge 0.115 0.086 0.013 1.917 0.751
Lasso 0.149 0.116 0.022 0.179 0.579
ElasticNet 0.122 0.088 0.015 0.616 0.718
KNN 0.173 0.128 0.03 0.221 0.439
CART 0.128 0.08 0.016 0.513 0.69
RF 0.09 0.049 0.008 15.4 0.846
GBM 0.083 0.052 0.007 6.495 0.87
XGBoost 0.094 0.048 0.009 13.135 0.834
LightGBM 0.075 0.045 0.006 5.226 0.895
CatBoost 0.097 0.053 0.009 80.113 0.822

Fig. 4 Bar chart for error metrics of the regressors in 70:30 training-testing ratio

The bar chart visually highlights the RMSE and R? scores, underscoring the superior
performance of XGBoost and LightGBM in Figs. 6 and 7.

4.3 Explainable AI Analysis
4.3.1 Global Interpretation

Training the SHAP model involves leveraging the entire dataset, which can be
resource-intensive because it calculates the marginal contribution of each feature
by analyzing individual probabilities and overall performance across the dataset.
SHAP produces Shapley values for each data point, illustrating how each feature’s
value influences the model’s output. The model’s explanations are presented through
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Fig. 5 Bar chart for R? scores of the regressors in 70:30 training-testing ratio

Table 5 Result of the regressors in 50:50 ratio of training and testing

Algorithms RMSE MAE MSE Execution times R? scores
Ridge 0.142 0.103 0.02 0.198 0.624
Lasso 0.153 0.117 0.023 0.191 0.567
ElasticNet 0.136 0.096 0.018 0.62 0.658
KNN 0.191 0.139 0.036 0.19 0.322
CART 0.128 0.067 0.016 0.428 0.697
RF 0.101 0.056 0.01 12.64 0.812
GBM 0.096 0.057 0.009 5.54 0.828
XGBoost 0.091 0.051 0.008 10.358 0.847
LightGBM 0.096 0.055 0.009 1.968 0.827
CatBoost 0.095 0.061 0.009 60.658 0.834

visualizations or plots, offering a graphical interpretation of its insights. The hier-
archical summary plot in Fig. 8 provides a prioritized view, ranking features from
most to least important. This format delivers intuitive insights into understanding
biogas prediction. For example, in the case of the waste_efficiency feature, the red
color signifies that higher values are associated with a greater likelihood of gas
production, whereas lower values correlate with a decreased chance of production.

The SHAP bar plot function generates a global feature importance plot, providing
insights into the overall significance of each feature. It calculates the global
importance of each feature by computing the mean absolute value across all the
samples provided. This approach offers a comprehensive understanding of the
relative importance of different features in the dataset, allowing for informed
decision-making and model interpretation. Below in Fig.9 is the bar plot for our
study. SHAPASH offers a versatile framework for easily building and deploying
interpretable AI models. Designed with user-friendliness in mind, it streamlines
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Fig. 6 Bar chart for error metrics of the regressors in 50:50 training-testing ratio

Fig. 7 Bar chart for R? scores of the regressors in 50:50 training-testing ratio

model creation and deployment, providing accessible tools for visualizing, com-
prehending, and explaining model performance. Its intuitive interface aids in
the analysis and interpretation of model behavior. SHAPASH employs Shapley
values, the importance of permutation features, and partial dependence plots to
deliver detailed model explanations. These insights help understand model behavior,
detect biases, and enhance overall model performance. Figure 10 showcases the
feature importance derived from SHAPASH in this study. Visual representations
for each specific feature are shown in the subsequent figures below. ELI5 offers a
method called “permutation importance” or “Mean Decrease Accuracy (MDA)” to
determine the significance of features in a black box model. This technique evaluates
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Fig. 8 Hierarchical summary plot of features

Fig. 9 Global feature importance plot by SHAP

the impact on model performance when a particular feature is removed or modified.
A significant drop in performance indicates that the feature is crucial for the model’s
predictions. This method helps pinpoint the most impactful features in the model’s
decision-making process. Figure 11 below illustrates the feature importance derived
from permutation importance using ELIS5.
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Fig. 10 Global feature importance plot by Shapash

Fig. 11 Feature weight and tolerance using ELI5S
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4.3.2 Local Interpretation

The SHAP bar plot function generates a local feature importance plot, showcasing
the SHAP values for each feature. In this plot, the feature values are displayed
in gray to the left of the corresponding feature names. Each bar represents the
SHAP value associated with a specific feature, providing insights into its impact
on the prediction for a randomly selected observation. This visualization aids in
understanding the contribution of individual features to the model’s output for
a particular data point, facilitating model interpretation and analysis. Below is
a local bar plot for a randomly selected observation in Fig. 12. Red bars show
positive contribution and blues are negative. The LIME model explains a randomly
chosen individual observation within the dataset. It aims to clarify the fluctuations
in predictions by identifying top features deemed as significant contributors.
Figure 13 below illustrates a randomly selected prediction, assessed using LIME,
with emphasis on the top 12 features identified as crucial factors influencing the
prediction outcome. This visualization aids in understanding the rationale behind
the model’s predictions for specific data points, facilitating interpretability, and
providing valuable insights into the model’s behavior. Shapash provides succinct
and transparent local explanations, enabling users from diverse data backgrounds
to comprehend the prediction of a supervised model through a simplified and
straightforward explanation. Figure 14 below depicts a Shapash local explanation
of a randomly selected prediction, offering insights into the factors influencing the
model’s output for that particular data point. This visualization aids in understanding
the reasoning behind individual predictions, promoting interpretability and facilitat-
ing informed decision-making. The feature rank based on the average of Eli5, SHAP,
and Shapash values is shown in Table 6, where “waste_efficiency” ranks at the top.

Fig. 12 Local feature importance plot using SHAP
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Fig. 13 Identifying significant features using LIME

Fig. 14 Local explanation of a random Id: 411

That means waste_efficiency impacts most predicted biogas production. Though
position 9 animalfarm_types_dairy and emission_reduction_per_year have the same
average value, we have picked animalfarm_types_dairy for its twice appearance.
The same procedure was done for status_shut_down and year_operational.
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Table 6 Result of the average features ranking based on different XAl analysis

Features Eli5 SHAP | Shapash | Average | Rank

waste_efficiency 1 1 1 1 1
total_waste_kgday 2 2 2 2 2
electricity_to_biogas_ratio 3 3 4 3.33 3
biogas_per_animal_cuftday 4 4 3 3.66 4
total_animals 5 5 5 5 5
electricity_generated_kwhyr 6 6 6 6 6
dairy 7 7 7 7 7
total_emission_reductions_mtco2eyr 8 8 8 8 8
animalfarm_types_dairy - 9 9 9 9
emission_reduction_per_year 9 - - 9 10
status_shut_down — 10 10 10 11
year_operational 10 - - 10 12
Table 7 Comparative analysis of different models

Dataset Best model Performance References
Hainan dataset Shenzhen kNN XGBoost R2=0.86R?= De Clercq et al.
data 0.66 (2020)

Primary data is taken from | Tree-Based Pipeline | R? =0.72, Wang et al. (2021)
the East Bay Municipal Optimization Tool RMSE =247

Utility District

Operational data from the kNN RZ=0.72 Sappl et al. (2023)
AD process of Tyrol

Unknown RF R2=0.62 Gaida (2023)
Household organic waste RF R?2=0.88 Tryhuba et al.

(2024)
U.S. biogas LightGBM R? =0.89 This study

4.4 Comparative Analysis

As previously noted, the prediction of biogas using interpretable ML methods
has recently gained recognition in academic research, though the number of
such studies remains limited. Many earlier studies relied on single models to
predict biogas production, but these models often underperformed due to inherent
limitations and specific characteristics. In contrast, the model proposed in this
research demonstrates significantly better performance. Table 7 below provides a
comparative analysis of the most effective models from prior studies on biogas
prediction, highlighting the superior performance of the model proposed in this
study. However, direct comparison in this table is challenging due to differences
in feature selection, sampling methods, data preprocessing, and other factors across
the models.
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5 Conclusion and Future Work

This chapter focuses on ML models for predicting daily biogas production using
the U.S. biogas dataset from Kaggle. The study begins with the application
of preprocessing techniques to eliminate unnecessary variables, followed by the
implementation of ten ML models: RR, LR, KNNs, ER, CART, RF, XGBoost,
LightGBM, GBM, and CatBoost. XGBoost and LightGBM are the most accurate
and efficient biogas predictors among these models. XGBoost performs best at
80:20 and 50:50 ratios (RMSE: 0.091 and R?: 0.847) and LightGBM at 70:30
(RMSE: 0.075 and R?: 0.895). Improving the performance of the daily biogas
prediction model can have significant practical implications, such as enhancing
the efficiency and effectiveness of biogas production processes and addressing
factors associated with gas production fluctuations. Furthermore, the study examines
feature significance and dimension reduction by analyzing the contributions of
various features to the predictions generated by interpretable methods. Interpretable
methods were employed to identify the top eight features exerting the most influence
on the prediction. These features were determined by analyzing the frequency
of their appearance among the top ten features based on interpretability. Waste
efficiency and total waste (kg/day) emerged as the most significant factors impacting
biogas prediction. The above study recommends prioritizing these variables when
developing biogas prediction systems or formulating organizational management
policies to increase biogas production. By focusing on these critical factors, it
is possible to enhance the predictive accuracy and overall productivity of biogas
generation systems.
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Energy Finance
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1 Introduction

Today’s business models must be adjusted to the changing characteristics of con-
temporary digital surroundings. Based on UN projects $5 trillion would need to be
invested by 2020 in order to accomplish the sustainable development goals (SDGs)
(Musleh Al-Sartawi et al., 2022). There must be a global shift toward renewable
energy to battle climate change and achieve sustainability goals. This shift is led
by sustainable energy financing (SEF), which involves funding and investments in
renewable energy projects including wind, solar, power, and hydropower. Figure 1
displays the overall SDG scores for different countries in the year 2023, with Finland
leading the rankings. On the other Fig.2 shows the SDG index scores for various
countries from 2000 to 2022, with Sweden achieving the highest score. Nordic and
Western European countries generally dominate the top. Nevertheless, the industry
has several constraints that prevent it from developing further. Therefore, innovative
solutions are required to overcome major obstacles such as variable regulatory
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Fig. 1 Overall SDG score in 2023 by countries

Fig. 2 SDG index score from 2000 to 2022 by countries

environments, high initial expenses, and unidentified financial returns (Maria et al.,
2023).

On the SDG graph, Fig.3 shows a density distribution of SDG index scores,
ranging from approximately 30 to 90. The distribution is multimodal, with a primary
peak around 65-70 and secondary peaks around 50 and 75. There are notable dips
in the distribution around scores of 40 and 60, creating a complex, nonsymmetric
shape that suggests multiple subgroups or factors influencing the overall SDG index
scores. On the other graph overall scores range from approximately 25 to 100. The
distribution is roughly bell-shaped but slightly asymmetric, with a peak density of
about 70 and a longer tail extending toward lower scores. There is a noticeable small
dip in the curve around the 55-60 SDG score range before it rises to its maximum.
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Fig. 3 Density of SDG index score and overall score in years 2023 and 2000-2022

The artificial intelligence (Al) field of machine learning (ML) has the potential
to be revolutionary in tackling these difficulties. ML enables computers to learn
from experience and make predictions or decisions without the need for explicit
programming through the analysis and interpretation of complicated data using
statistical models and algorithms (Mhlanga, 2021). Its integration into sustainable
energy finance has the potential to transform risk assessment, investment decision-
making, and market trend prediction in the sector.

ML algorithms can examine past financial data, patterns of energy usage, and
market trends in order to forecast the financial success of renewable energy projects.
This predictive capability assists investors in making better-informed decisions
through the identification and mitigation of possible risks (Liu et al., 2021). Thus
directing resources toward the most viable projects, ML can enhance investment
portfolio optimization by analyzing diverse factors including profitability, ecologi-
cal effects, and adherence to regulations. So, in Fig. 4 displays a list of seven “Green
Growth Indicators” presented as colored bars. These indicators include air and water
population, forest, biodiversity, water, climate change, energy, and urbanization,
each represented by several colors and accompanied by a small circular icon.

Notwithstanding the potential benefits, the use of ML in sustainable energy
financing is not without difficulties. Therefore, data availability and quality are
crucial challenges, since reliable machine learning models require big and precise
datasets. Furthermore, ensuring responsible ML technology use requires addressing
key concerns, including data protection and algorithmic transparency, within regu-
latory and ethical frameworks (Mavlutova et al., 2022).

Moreover, policymakers and investors may make more strategic and well-
informed decisions by using ML in sustainable energy finance (Gonzales Martinez,
2020). This integration advances the more general objective of building a resilient
and sustainable energy future despite increasing the impact and efficiency of invest-
ment in renewable energy. With this inquiry, we intend to provide a comprehensive
understanding of how ML might be used to get over obstacles in sustainable energy
financing and expedite the move to a low-carbon economy.
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Fig. 4 Green growth indicators

Figure 5 shows the trend of renewable energy consumption as a percentage of

total final energy consumption from 2011 to 2023. The line generally rose from
2011 to 2018, reaching a peak of around 12.8% before dropping sharply in 2019
and continuing a gradual decrease through 2023. So this research provides notable
contributions to the topic of sustainable energy finances:

This study provides a comprehensive comparison of multiple machine learning
models, such as Decision Tree (DT), Random Forest (RF), Support Vector
Machine (SVM), K-Nearest Neighbors (KNNs), Neural Network (NN), and
XGBoost. This comparison research brings useful insights into the relative
advantages and disadvantages of various architectures concerning the sustain-
ability of energy financing.

We establish the edge of our framework of investigation by utilizing metrics
such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAEP), and
R-Squared values when comparing all the models that were evaluated. This
comprehensive assessment offers compelling evidence of the efficacy of our
technique in enhancing the precision of forecasting.

This study seeks to provide insight into the possible benefits, methodologies,

and future possibilities of this emerging topic, in exploring the interface between
machine learning and sustainable energy. The rest of the chapter’s structure is as
follows: In Sect.2 we will review the current applications of ML in sustainable
energy finance. Section 3 discusses a description of the machine learning techniques,
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Fig. 5 Renewable energy consumption (% of total final energy consumption). Source: data-
bank.worldbank.org

and Sect. 4 presents results and data analysis. Finally, we will outline the discussion,
conclusion, future research directions, and policy implications.

2 Literature Review

The intent of the following section consists of providing an in-depth review of
the predominant studies on the use of machine learning techniques to the task of
predicting sustainable energy finances.

2.1 Sustainable Energy Finance

The term “Sustainable Energy Finance (SEF)” defines the financial and investment
methods utilized to aid in the advancement and energy-efficient technologies, as
well as deployment. In order to shift to a low-carbon economy, and accomplish
sustainable development aims, is very necessary for this field. SEF is essential
for mitigating climate change, maintaining energy security, and getting economic
benefits and last but not least for social and environmental impact. Additionally,
there has been a growing correlation between the global energy markets and
the financial sectors, and energy prices have shown more characteristics since
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the worldwide financial collapse of 2008 (Zhang, 2018). Now, energy is a vital
ingredient in current economic frameworks. Its impact on different facets of
economic performance has been extensively examined. Conventionally, oil, as
well as energy commodities’ prices, has been considered to be driven by supply
and demand in global marketplaces. What is energy finance?—energy finance is
multidisciplinary by nature and starts with assessing the links between the energy
and financial markets. Mahesh et al. studied sustainable finance that facilitates
enhanced growth and provides better funding for expanding the economy (Kadaba
et al., 2022). Sustainable development aims to safeguard and restock the natural
ecosystem. It is crucial to foster renewable energy sharing, take on green and
sustainable energy norms, and make sound decisions to maximize the utilization
of natural resources. Moreover, to facilitate the shift to sustainable energy solutions,
emphasize the vitality of designing global corporate green financing policies and
plans that are both short and long terms in nature (Trivedi et al., 2023). Ultimately,
SDGs have the objective of reaching the ideal and desired world (Bei & Wang,
2023). It has some finance mechanisms like public, private, hybrid, and innovative
financing that have faced many challenges for high initial costs, regulatory and
policy uncertainty, technical and market risks, and access to finance. So we have
to say that from previous studies they are a very important component of the across-
the-glove transition to a low-carbon economy.

2.2 Machine Learning in Finance

According to an analysis of recent academic literature, nonlinear econometric
models and machine learning models have replaced linear econometric models
based on the study of forecasting oil prices. As an area of AI, ML is a way of creating
algorithms that analyze, interpret, and forecast data to make decisions. In the bank-
ing sector, ML is transferring with its revolutionary effects on productivity, accuracy,
and client experiences. In Fig. 6 we can see that there are a lot of machine learning
methods for applying native energy communities such as supervised learning,
unsupervised learning, and reinforcement learning. These algorithms have worked
on several applications of machine learning in finance which are for algorithmic
trading, fraud detection and prevention, credit scoring and risk assessment, and
market sentiment analysis. S.B. Jabeur et al. investigated in their study on oil price
predicting crashes during the 2019 novel coronavirus (COVID-19) pandemic. This
study employed several advanced ML algorithms to reduce the influence of the
COVID-19 pandemic on oil prices using a precise forecasting methodology that
takes into account the pattern of changes in oil prices (Jabeur et al., 2021). In another
paper, M. Mohsin et al. suggested a novel approach for predicting crude oil prices
depending on several kinds of sociopolitical and economic variables by applying
the Least Absolute Shrinkage and Selection Operator (Lasso) model within the
framework of green finance (Mohsin & Jamaani, 2023). Based on the systematic
review A. Hernandez et al. presented the data produced by the power system and its
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Fig. 6 Machine learning algorithms’ use for energy communities

customers utilizing statistical learning theory where machine learning algorithms
are data-driven models (Hernandez-Matheus et al., 2022).

In the distribution grid, energy communities are evolving into fresh types of
organizations for prosumers and consumers. In addition, R. Rastogi et al. conducted
to describe how renewable energy policies affect the financial performance of
renewable energy firms and highlight trends in their economic performance (Rastogi
et al., 2020). P. Sadorsky et al. studied to forecast the direction of clean energy
stock prices using machine learning techniques. In this study, they found support
vector machines achieved higher prediction accuracy than Lasso or Naive Bayes
(Sadorsky, 2022, 2021). Furthermore, .M. Black discussed systematically, which
is very imperative to ascertain the exact state of an asset to achieve the anticipated
operating duration and efficiency. This requires a determination of equipment faults
(Black et al., 2021). Likewise, A. Chang et al. aimed to determine how the SDGs
influence the ICT industry’s ability to anticipate corporate financial performance
(CFP) (Chang et al., 2024). They supposed that several factors can improve the
earnings per share (EAR) forecast, including return on total assets, adoption of
the SDGs, and whether the company has created KPIs for SDG accomplishments.
Table 1 is the literature review based on the last 5 years which are the most
representative machine learning algorithms for predicting on finance sector.

2.3 Intersection of Machine Learning and Sustainable Energy
Finance

The topic of ML and SEF is both dynamic and promising, combining sophisticated
data analytics with investments in renewable energy. Financial organizations and
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Table 1 Model, metrics, and limitations in finance sectors

Authors and
reference

Mohsin and
Jamaani (2023)

Jabeur et al.
(2021)

Rastogi et al.
(2020)

Sadorsky (2022)

Chang et al.
(2024)

Sadorsky (2021)

Zhang et al.
(2023)

Nguyen et al.
(2021)

Xin et al. (2024)

May et al. (2022)

Model

OLS, GARCH,
ANN, Lasso

LightGBM,
CatBoost, XGBoost,
RF, and NN

K-Means Cluster

Extra Trees, SVM,
RF, GBM, NB, Lasso

DT, RF, SVM

Logit Model,
Random Forest

Regression,
Medication Effect,
Threshold

OLS, ElasticNet, NN,
KNN, RF, XGBoost

XGBoost

ANN, GMDH,
ANFIS

Metrics

Mean, median,
MSPE, std.

Accuracy, ROC curve

ROE

Accuracy, kappa,
Fl1-value

MAE, MSE, RMSE,
MAPE

Accuracy, Gini

T-values, coef.

MAE

R-Square, MAE,
MSE, RMSE, MAPE

RMSE, MAPE,
R-Square

R. 1. Rabbi et al.

Limitations

Limited capacity, not to
compare other models, an
unknown subset of
energy product

Not to analyze other
metrics, not to use any
interpretable algorithms,
and need more predictive

Further, need to
investigate each cluster,
and study other sources
of energy

Need to expand the
predictor space, and
extend the number of
methods

Only correlate between
reports and financial
performance in the ICT
industry and not be
confined to particular
assumptions in ML
Only three models are
used and the analysis of
additional technical
indicators

Not to compare other
models, need to extend
digital transformation
Need to be improved
prediction accuracy by
incorporating additional
variables

Only use China’s
prefecture-level cities, no
consent on the concept of
inclusive growth

Need to compare other
models and metrics

energy providers may increase efficiency, accelerate the expansion of sustainable
energy projects, and optimize decision-making processes by utilizing machine
learning algorithms. A significant benefit of ML application for SEF is improved
data-driven decision-making capacity (Bashir et al., 2022). Therefore, ML algo-
rithms may analyze large datasets, such as past energy output, weather patterns,
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market pricing, and financial performance. This link increases decision-making
and risk assessment. Further, ML can maximize renewable energy distribution
and production. The following example is that predictive algorithms can foresee
equipment breakdowns before they happen by analyzing data from sensors on solar
panels or wind turbines. SEF and ML have seven main themes of research likely
socially responsible investing, climate financing, green financing, impact investing,
carbon financing, energy financing, and governance of sustainable financing and
investing (Kumar et al., 2025). So it has a strong correlation between SEF and
ML, as well as very crucial for energy sources (Li & Umair, 2023). In the field
of finance, machine learning algorithms can develop precise financial projections
and valuations for renewable energy projects (Pincet et al., 2019). Stakeholders
may improve financial results, streamline operations, and make better decisions,
propelling the world’s shift to sustainable energy through leveraging machine
learning.

3 Methodology

In this study, we aim to predict the long-term viability of energy finances by utilizing
comprehensive fuel data and employing various machine learning methods. We
especially prioritize certain machine learning algorithms that have been enhanced to
increase the sustainability of energy budgets. To assess the efficacy of our machine
learning model, we conduct a comparative analysis with many well-established
models in the finance domain.

3.1 Explanation of the Approach

A thorough machine learning workflow is depicted in Fig.7, commencing with
data collection, which is the process of gathering unprocessed data to serve as the
project’s basis. After that, Data Preprocessing is performed, which includes Data
Cleaning to address missing or inconsistent data, the use of a MinMax Scalar to
normalize features within a specified range, and Data Visualization to comprehend
data patterns and distributions. The preprocessed data is subsequently partitioned
into training data and test data. The training data is utilized for modeling a range of
machine learning models, such as Decision Tree, Random Forest, Support Vector
Machine, K-Nearest Neighbors, Neural Network, and XGBoost. Throughout the
training process, the models’ performances are assessed using various Performance
Metrics, including MSE, RMSE, MAE, MAPE, and R-Squared. These criteria assist
in the selection of the optimal model for making predictions. At the end the most
effective model is implemented for the purpose of Result Prediction, wherein it
is utilized to provide precise forecasts, and the resulting outcomes are thoroughly
examined. This methodical methodology guarantees a methodical and effective
procedure for creating, assessing, and implementing machine learning models.
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Fig. 7 Overview of ML-based energy financing sustainability

3.2 Machine Learning Models

There are a lot of machine learning techniques, and that we have chosen six
algorithms for this study such as decision tree, random forest, support vector
machine, k-nearest neighbors, neural networks, and XGBoost algorithm. We have
described them below:

3.2.1 Decision Tree

DT is one of the best machine learning algorithms of supervised learning. It
is nonparametric, and there are two different types of trees that are available:
regression trees and classification trees, for the intent of classifying continuous and
categorical variables. Both trees utilize a recursive partitioning approach, working
from the top down. The splitting process continues until the desired level of
uniformity is achieved (Abedin et al., 2025). Throughout the procedure, our data
might be overfitting which will classify it too broadly. The approximated function
can be described as follows:

”}Sﬁ left ”irilght right
G(QOwm,0) = n_H(Qm ) + n_H(Qm 0)) (D

m m

Here, in this equation, Q,, represents each node of m with n,, samples and

partitions the data into subsets ngft(e) and Qf,llght(e). It varies based on whether
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the task is classification or regression, and the effectiveness of a quality of split
node m is calculated using an impurity function or a loss function

3.2.2 Random Forest

The RF algorithm is commonly used as a machine learning approach for handling
categorization problems. This is the most popular algorithm that has been used
increasingly day by day in various fields like environmental protection, marketing,
and finance. It is a set based on trees and is supplemented with a measure of the
projection’s average value derived at each tree’s conclusion, reducing the absence of
robustness in one tree (Hasan et al., 2023b). The predicted model can be expressed
as follows:

SO
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In this predicted function, f{x) represents a set of kth trainee random trees, where
x is the input feature vector. RF is a meta-estimator that balances and overfitting
and uses averaging to increase prediction accuracy by fitting numerous decision
tree classifiers on different subsets of the dataset. According to a previous study, the
Random forest algorithm is better than other machine learning algorithms.

3.2.3 Support Vector Machine

SVM has become the most effective and trustworthy algorithm for classification
and regression in different kinds of application fields. The main objective is
to classify the optimal hyperplane for separating the data points into various
categories (Cervantes et al., 2020). It is very effective in high-dimensional spaces,
memory efficient, and versatile. It has many kernel functions such as linear kernel,
polynomial kernel, and radial basis function kernel (Hasan et al., 2024a). The
SVM’s predicted function is as follows:

A itw? . x
$— 0 ifw +b<0 3)
1 Wl . Xx+b>0

Using such an equation, Y is the predicted class for the input feature vector of X.
W is the weight vector that is learned from the training data, and b is the bias term
which is also trained in the data and aids in shifting the hyperplane. So it is suitable
for both classification and regression problems.
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3.2.4 K-Nearest Neighbors

KNN algorithm is a straightforward, nonparametric, and incremental learning
technique for regression and classification applications. This algorithm mainly has
two steps in classification of a learning step and an evaluation of the categorization.
Identifying the classes to which its neighbors belong is categorized using the
closet neighbor approach for new unlabeled data (Hasan et al., 2024b). The KNN’s
predicted output is as follows:

k

A 1

Y = x E 1 YNNG) 4)
=

Here, Y is the predicted value in which yNNi denotes the target values of the k
adjacent values. So KNN is the simplicity, comprehensibility, and scalability of each
domain.

3.2.5 Neural Networks

Neural network is a kind of computing model that resembles the structure and
functions of the human brain to identify patterns and resolve difficult problems. It is
a widely used technique for classification and regression problems such as logistic
regression or discriminant analysis (Rabbi et al., 2023). It is constructed of layers of
networked nodes, or neurons, that investigate the input data and give an output. The
estimated model has the following expression:

N k
Y=f f(ZMijxi+bi>' D owi|+b ®)
i=1 =1

Here, 1 is the matrix of network weights, the neuronal activation function is
represented by f, the number of features is n, and the deep layers of the number of
neurons are denoted by k. So it is a more powerful model able to learn from data,
identify patterns, and make predictions.

3.2.6 XGBoost Algorithm

XGBoost (Extreme Gradient Boosting) is a powerful machine learning technique
that can help you better understand your data and decision-making. It is a scalable
and highly effective gradient boosting method for supervised learning tasks. This
algorithm is mainly designed for optimizing both computational and model perfor-
mance, and it is an appealing choice for many machine learning challenges and
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practical applications (Hasan et al., 2023a). The final score is calculated by using
this formula:

H
Y=73 en(Xi) (©)
h=1

Here, the score of leaf trees is denoted by K in this equation, while H represents
the number of trees. So it is the most popular gradient boosting framework that is
effective, efficient, and versatile for issues.

4 Results and Data Analysis

4.1 Data and Variables

In this study, we used a historical dataset on fuels and energy like oil and gas
from Yahoo Finance to extract the data which is collected from Kaggle (https://
www.kaggle.com/datasets/guillemservera/fuels-futures-data/data). This dataset has
provided comprehensive and up-to-date information on futures related to oil, gas,
and fuels. Futures are financial agreements that commit the seller to sell a particular
amount of a certain fuel at a defined price at a later date and the buyer to acquire it. It
has eight features and five categories for predicting variables. Table 2 is a description
of features.

4.2 Data Analysis

Table 3 represents the descriptive statistics for fuel market data, encompassing
opening high, low, and closing prices, as well as trading volume. We discuss the

Table 2 Feature description on historical Yahoo finance dataset

Column Descriptions

Date The date when the data was documented. Format: YYYY-MM-DD
Open Market’s opening price for the day

High Peak price during the trading window

Low Lowest traded price during the day

Close Price at which the market closed

Volume Number of contracts exchanged during the trading period

Ticker The unique market quotation symbol for the future

Commodity Specifies the type of fuel the future contract pertains to (e.g., crude oil,

natural gas)
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Table 3 Descriptive statistics for finance dataset

Features | Mean Std. Min. 25% 50% 75% Max.

Open 27.28 36.08 -14.00 |2.03 3.37 54.88 1.46e+02
High 27.67 36.53 0.50 2.06 3.45 55.74 1.47e+02
Low 26.87 35.59 -40.3 1.99 3.30 53.90 1.44e+02
Close 27.28 36.08 -37.6 2.03 3.37 54.88 1.46e+02

Volume 105981.7 | 148442.4 |0.000 |26410.0 | 49032.0 |114720.0 |2.28e+06

following statistics: mean, standard deviation, the first, second, and third quartile,
minimum, and maximum (refer to Table 3). The price-related features (Open, High,
Low, and Close) show similar patterns, with mean values of around 27 and standard
deviations of about 36, indicating high volatility. Interestingly, minimum values for
open, low, and close are negative, which is unusual for price data and may suggest
unique market conditions or data anomalies. The price ranges are wide, spanning
from negative values to highs around 146-147. Trading volume statistics reveal
a highly skewed distribution, with a mean of 105,981.7 and a standard deviation
of 148,442.4. The volume ranges from 0 to a maximum of 2.28 million, with the
median (49,032) being significantly lower than the mean, further highlighting the
right-skewed nature of the volume data. Overall, these statistics paint a picture
of a volatile fuel market with wide price fluctuations and highly variable trading
volumes. On the contrary, the pairwise correlation coefficients between the original
values in our investigation are shown in Fig.8. A graphical representation of the
correlation between the variables of finance variables is presented in Fig. 7. In the
correlation matrix, coefficients revealed that several commodities on the finance
dataset volume are highly connected with all other variables, and also there is some
negative correlation on fuel energy datasets.

This section has discussed data patterns. Figure 9 depicts crude oil (a), heating
oil (b), natural gas (c), gasoline (d), and Brent crude oil (e) prices from 2000 to
2024, showing significant fluctuations over time. Notable features include a sharp
price spike around 2008, in the crude oil plot followed by a sharp decline, a period
of relative stability from 2011 to 2014, and an unprecedented price crash to negative
values in 2020 only for Covid, before recovering and fluctuating in subsequent
years. Heating oil prices started low in 2000. Prices remained volatile but generally
high from 2011 to 2014 and sharply dropped in 2020. The highest peak appears in
2022. Other natural gas main price spikes occurred in 2001, 2005, and 2008. So the
highest peak was in 2005. There was a period of low prices from 2016 to 2020. In
gasoline prices, a major drop in 2020 (likely due to COVID-19), and a dramatic rise
to peak prices in 2022, followed by a decline toward 2024. The last fuel Brent crude
oil prices started low in 2000 and remained high from 2011 until 2014. There was
a dramatic crush in 2020. Prices moderated but stayed volatile toward 2024. The
overall trend shows increasing prices over the 24 years.
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Fig. 8 Correlation matrix for five fuel energy datasets
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Fig. 9 (a) Crude oil, (b) heating oil, (c¢) natural gas, (d) gasoline, and (e) Brent crude oil close
price from 2000 to 2024
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4.3 Results

A comparison of the predicting abilities of the various machine learning models
is given in this section. During this investigation to ascertain the effectiveness of
each unique model for the validation process, the relationship between the initial
characteristics and the predictor variables is constructed by five commodities. We
used five several metrics for calculating model performance. Table 4 shows the
regression performance measured by mean squared error, root mean squared error,
mean absolute error, mean absolute percentage error, and R-Squared error. These
can be calculated as follows:
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In this equation, » is the number of data points, Y; is the observed values, and I?,-
is the predicted values, respectively.

The data in Table 4 allows for the inference of several conclusions from historical
finance datasets. Across all commodities, the RF model consistently demonstrates
the highest accuracy, with the lowest error rates (MSE, RMSE, MAE, MAPE) and
the highest R-Squared values, typically 0.998 or 0.999. This indicates that RF is
extremely effective at predicting prices for these energy commodities, explaining
nearly all of the variance in the data. The DT and XGBoost models also perform
exceptionally well, often matching or coming very close to the RF model’s per-
formance. These three models (RF, DT, and XGBoost) consistently outperform the
others across all commodities. In contrast, SVM and KNN models generally show
the poorest performance, with significantly higher error rates and lower R-Squared
values. This suggests that these models may not be as well suited for forecasting
energy commodity prices compared to the tree-based models. The Neural Network
model’s performance varies considerably across different commodities. It performs
reasonably well for crude oil and Brent crude oil but shows poor performance for
natural gas, where it actually has a negative square value, indicating that it performs
worse than a horizontal line for predicting natural gas prices. Overall, the tree-
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Table 4 Performance of several metrics of different prediction models by testing datasets

Commodity | Algorithm MSE |RMSE |MAE |MAPE |R-Square
Crude oil Decision Tree 0.979 | 0.989 0.630 |0.010 0.998
Random Forest 0.495 |0.704 0.478 0.008 0.998
Support Vector Machine | 359.4 | 18.95 14.65 |0.276 0.440
K-Nearest Neighbors 376.0 |19.39 1520 |0.287 0.415
Neural Network 7.119 | 2.668 1.824 1 0.033 0.988
XGBoost 1.958 | 1.399 0.554 0.010 0.966
Heating oil Decision Tree 0.001 |0.037 0.019 ]0.010 0.998
Random Forest 0.000 |0.024 0.015 | 0.008 0.998
Support Vector Machine | 0.580 | 0.761 0.606 |0.372 0.185
K-Nearest Neighbors 0.696 |0.834 0.669 | 0.440 0.022
Neural Network 0.702 | 0.837 0.640 0.323 0.014
XGBoost 0.000 | 0.028 0.016 | 0.008 0.998
Natural gas Decision Tree 0.014 |0.118 0.067 |0.013 0.997
Random Forest 0.007 | 0.088 0.053 |0.011 0.998
Support Vector Machine | 3.813 | 1.952 1.353 |0.314 0.243
K-Nearest Neighbors 4.069 |2.017 1.470 1 0.369 0.192
Neural Network 1743 | 13.20 12.68 |3.376 -33.58
XGBoost 0.010 |0.101 0.058 0.012 0.997
Gasoline Decision Tree 0.000 | 0.027 0.018 0.010 0.998
Random Forest 0.000 |0.021 0.014 | 0.008 0.999
Support Vector Machine | 0.425 | 0.651 0.524 0.327 0.229
K-Nearest Neighbors 0.480 |0.693 0.558 |0.369 0.128
Neural Network 0.053 ]0.232 0.180 |0.100 0.902
XGBoost 0.000 | 0.022 0.015 | 0.009 0.909
Brent crude | Decision Tree 0.894 | 0.945 0.629 |0.011 0.998
Random Forest 0.493 |0.702 0.474 0.008 0.999
Support Vector Machine | 359.4 | 18.95 14.65 0.276 0.440
K-Nearest Neighbors 376.0 |19.39 1520 |0.287 0.415
Neural Network 6.354 |2.520 1.974 0.033 0.990
XGBoost 1.958 | 1.399 0.554 0.010 0.996

based models (RF, DT, and XGBoost) appear to be the most reliable and accurate
for forecasting energy commodity prices across all the commodities analyzed. The
performance of other models, particularly SVM, KNN, and Neural Networks, is
generally inferior and inconsistent across different commodities.
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5 Conclusion and Future Directions

5.1 Conclusion

The research study has shown that although the availability of a literature review
for many features pertaining to the financial, energy, and economy markets. But
there are no friendly sustainable energy sectors like crude oil, heating oil, gasoline,
etc. Therefore, this study assisted in determining the model performance of finance
sectors that could contribute to this domain. In this research investigation, machine
learning algorithms were used on the historical finance datasets. According to the
findings, DT, RF, and XGBoost algorithms are given the best performance and most
reliable, as well as trustworthy on financial data. So, the global market will grow
with emerging technologies so that nations can reduce energy consumption over the
past decade. As a result, the study of research also contributed to the development
of a more accurate model that could be used for obtaining other energy sources.

5.2 Implications

Implementing policies effectively to gain immediate attention is considered crucial.
Therefore, policymakers should aim to mitigate the observed volatilities among
other features through more effective policy design. So for this outline some key
implications of using machine learning for sustainable energy finance analysis are:

i. Improved risk assessment: The risks associated with sustainable energy
projects can be analyzed in large datasets to better assess using machine
learning models.

ii. Optimization of energy systems: The integration of renewable energy sources
into existing grids can assist in improving efficiency and reducing costs using
machine learning. As a result, these sustainable energy projects may become
more profitable.

iii. Identification of investment opportunities: Machine learning techniques are
able to analyze market trends, technological developments, and policy changes
to recognize promising investment possibilities in the sustainable energy
sector.

iv. Identification of investment opportunities: Machine learning techniques are
able to analyze market trends, technological developments, and policy changes
to recognize promising investment possibilities in the sustainable energy
sector.

v. Automation of due diligence: Parts of the due diligence process for sustainable
energy finance could get automated with ML algorithms, which could expedite
investment decisions and reduce costs.
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vi. Improved fraud detection: In order to protect investors and maintain the
integrity of the green finance markets, machine learning models could help
detect fraudulent behavior in the financing of sustainable energy.

vii. Personalized financial products: Machine learning makes it possible to create
more individualized financial products which could lead to an increase in
investment in this field.

viii. Policy impact assessment: For the purposes of facilitating evidence-based
policymaking, ML models can assist assess the potential impact of several
policy scenarios on financing for sustainable energy.

5.3 Limitations, Challenges, and Future Directions

Very little earlier research was carried out in the past on the sustainable energy
sector with different features. Hence, few literature reviews were attained for this
research study area, and a lot of characteristics have to be reconsidered. This
research study solely explored the financing of sustainable energy to reduce costs.
However, in this sector, there are many limitations and challenges. Firstly, data
quality and availability are crucial for improving this field, but there is a lack
of standardized privacy concerns limiting inconsistent or incomplete data across
different regions and after that regulatory compliance issues when using complex
ML models for financial decisions. On the other hand, historical datasets may
contain biases that could be perpetuated by machine learning models and also
the complexity of energy systems when integrating multiple variables into ML
models. Finally, it needs high computational requirements for processing large
datasets and running complex models. Nevertheless, for future research, develop
more transparent machine learning models to improve trust and meet regulatory
requirements in finance. Implement transfer learning knowledge gained from data-
rich markets in data-poor regions, improving the global applicability of ML models.
So for future studies, create specialized ML models that integrate climate science,
energy technology, and financial data for more accurate long-term projections.
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Energy: A Comprehensive Review
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1 Introduction

Electricity is integral to modern life, akin to two sides of the same coin. Accordingly
human daily activities are deeply intertwined with electrical devices such as mobile
phones, computers, televisions, and internet connections, among others. The list
is virtually endless. Numerous companies thrive on the use of electricity. A con-
temporary and prominent topic is the electric car, which many researchers predict
will dominate the future (Bhatti et al., 2021). Hence, a reliable supply of electricity
is essential for sustained progress. However, generating electricity is a complex
task, unlike mining coal directly from the ground. It is produced from secondary
energy sources derived from primary sources, including fossil fuels. Fossil fuels
such as oil, coal, and natural gas are usually used to generate power and are known
as non-renewable or conventional energy sources (Hassan et al., 2021). These
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non-renewable energy sources are high-density, allowing for quicker electricity
generation compared to renewable sources. Unfortunately, harmful greenhouse
gases are released by the combustion of fossil fuels into the environment, which
is the cause of global warming and greenhouse effect (Zhang et al., 2024).

Therefore, it is imperative to seek alternatives to non-renewable energy to protect
our planet and its inhabitants. Renewable energy presents a viable solution as it
is environmentally friendly and emission-free, thereby not negatively impacting
the earth. Renewable energy sources are able to meet demands of the current
generations barring the future generation’s needs. Consequently, global energy
usage is on the rise, with researchers estimating a 56% increase by 2040 (Maamoun
et al., 2020). To mitigate global warming, it is crucial to reduce carbon dioxide
emissions and decrease reliance on non-renewable energy, while maximizing the
renewable energy uses. Wind similarly to sunlight is a source of natural renewable
energies and is increasingly being adopted worldwide.

The integration of artificial intelligence learning methods for conversion of
energy, forecasting, and power prediction plays an important role in the advance-
ment of sustainable energy sources. Accurate power prediction in electrical net-
works is crucial for the cost-effective combination of renewable power resources.
The demand for sustainable forecasting energy sources is increasing daily, aiding a
variety of applications from small-scale to large-scale power grids. It is anticipated
that the solar and wind turbines installation, particularly in offshore locations, will
reach unprecedented levels in the coming decades. Power output, such as solar and
wind variability, is influenced by environmental factors and significantly impacts
applications related to these energy sources (Alkhayat & Mehmood, 2021; Hasan et
al., 2024a).

Hydropower energy prediction is another critical area, with hydropower being
recognized for its efficiency, achieving around 90%. Many countries support
hydropower as a simple and major source of renewable energy due to its ability
to generate electrical energy by harnessing potential energy from higher to lower
elevations. Hydropower is also known for its cost-effectiveness compared to
other renewable energies, making it more economical (May et al., 2020; Hasan
et al., 2024b). Geothermal energy, another renewable resource, relies on heat
from within the earth, harnessed by injecting wells with water and drilling or
antifreeze materials. Despite the potential, technological limitations and insufficient
capital investment have left many geothermal plants underdeveloped. However,
as opposed to the power plants that based on fossil fuel the geothermal plants
release significantly fewer greenhouse gases. Advancements in machine learning
and deep learning technologies have also enhanced prediction of power in ocean
and tidal energy. Biomass, generated from organic materials such as plants and
animal waste, produces 3 x 10° kcal mg™! of heating value when used as an
alternative source of energy. Despite the challenges, these various sources of
renewable energy—biomass, tidal, geothermal, wind, and solar—hold immense
potential for forecasting, prediction of power, and energy conversion. Properly
trained deep learning and machine learning models can address these challenges
effectively.
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In this study, we evaluate comprehensive data and real-time metrics for the pre-
viously mentioned renewable energy sources using several applications of machine
learning and deep learning techniques. Additionally, we discuss the challenges faced
by these approaches in an effective manner. Our objectives are outlined below for
better understanding.

e This review comprehensively examines well-known sources of sustainable
energy such as solar, tidal, hydropower, and wind, focusing on the usage
techniques, including forecasting, energy conversion, and power prediction,
utilizing recent deep learning and machine learning techniques.

* This study gives a comprehensive exploration on forecasting, energy conversion,
and power prediction approach according to the source of energy tidal, solar,
hydropower, and wind, highlighting the advantages as well as disadvantages of
using deep learning and machine learning techniques.

* This research aims to assist future researchers by identifying the challenges in
existing studies, thereby facilitating the development of advanced technologies
based on robust models for improved efficiency and application in renewable
energy systems.

2 Methodology

The aim of this study is to classify energy resources based on their availability
for long-term, categorizing them as non-renewable and renewable energy. The
primary focus is on sustainable renewable energy sources, for instance hydropower,
tidal, wind, and solar energy. This study presents a comprehensive survey of
various approaches to forecasting, power prediction, and energy conversion to
promote a sustainable environment. Figure 1 provides a diagrammatic taxonomy
representation, illustrating the different types of sustainable sources of energy.
This research centers on renewable energy sources, emphasizing forecasting, power
prediction, and energy conversion of well-known renewable sources like hydro,
wind, and solar energy.

2.1 Search String (Keywords)

In order to assure the relevance and comprehensiveness of the literature review, this
study employed a list of relevant keywords to gather multiple research publications
from different fields. Initially, keywords such as “Renewable Energy,” “Sustainable
Energy,” “Solar Energy,” “Wind Energy,” “Tidal Energy,” and “Hydro Energy”
were used to identify papers based on their titles. Subsequently, the collected papers
were further refined using additional keywords like “Power Prediction,” “Energy
Prediction,” and “Forecasting.” As the focus of this study is on machine learning
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Fig. 1 Classification of
machine learning approach in
sustainable energy sources

and deep learning applications, the primary keywords for the literature search were
“Machine Learning” and “Deep Learning.” This systematic approach ensured the
inclusion of pertinent research papers, providing a robust foundation for the study’s
objectives.

2.2 Databases and Paper Selection

This study primarily compiled documents from numerous sources that were relevant
to the research objectives. The intention of document collection was to acquire high-
impact journals, especially those included in Web of Science (WoS) and Scopus.
The study utilized databases and platforms like IEEE, Springer, ResearchGate, and
ScienceDirect to carry out this search.

2.3 Data Extraction and Synthesis

Using a standard extraction form, data extraction was carried out methodically.
After selecting the appropriate keywords and setting up a database, the search
was conducted, and the relevant articles and data were entered into an MS Excel
spreadsheet to improve analysis and synthesis. According to the research subject
matter, the data were quantitatively synthesized and summarized. Figure 2 displays
the paper selection process, during which a total of 215 documents were chosen
for primary screening. After selecting the relevant documents, a thorough screening
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Fig. 2 Paper selection method

was performed utilizing the relevance of the study aims and purpose, and certain
documents were excluded. Finally, a total of 51 articles were retrieved for review.
3 Descriptive Results

This section discusses the effectiveness in several sustainable energy sources such
as tidal, hydro, wind, and solar which is based on recent research.
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3.1 ML and DL Approach for Solar Energy Applications

A unique feature selection or clustering technique and a hybrid-classification-
regression forecasting engine are featured in this research (Nejati & Amjady, 2022)
that introduces a novel day-ahead solar power prediction method. The method filters
irrelevant features and reduces redundancy by partitioning relevant features into two
subsets, each trained by a forecasting engine. Predictions are combined based on
relevancy. The forecasting engine classifies historical data and assigns regression
models to predict test sample outputs. The method’s effectiveness is validated on
two real-world solar farms, demonstrating its superior performance.

Accurate solar energy prediction is vital for estimating renewable energy
resources. This study (Ikram et al., 2022) employs a novel robust soft computing
method, integrating an improved multi-verse optimizer (IMVO) with a least square
support vector machine (LSSVM), to predict solar radiation in southeast China.
The LSSVM-IMVO model outperformed LSSVM models integrated with other
optimization algorithms. Increasing training sample size significantly enhanced
model accuracy, demonstrating the method’s efficacy. Photovoltaic (PV) energy is
gaining traction in the energy sector due to its wide applications. Prosperous Bonobo
Optimizer (IBO) is introduced in this work (Abdelghany et al., 2021) to improve
the efficacy of the standard Bonobo Optimizer (BO) in precisely identifying solar
cell characteristics. By refining local and global search phases using the sine-cosine
function and Levy flights, the IBO demonstrated superior optimization in several
models of diode. Statistical analysis from 20 runs confirmed IBO’s effectiveness,
outperforming other algorithms in all tested scenarios.

A combined ML technique along with the method known as Theta statistical
method is introduced in the study (AlKandari & Ahmad, 2024) to enhance solar
power forecasting accuracy. The machine learning models include the new Auto-
GRU, Auto-LSTM, GRU, and LSTM. The proposed Statistical Hybrid Model
(MLSHM) and Machine Learning utilize structural and data diversity and integrate
predictions using four combining methods. Validated on datasets from Shagaya,
Kuwait, and Cocoa, USA, the MLSHM demonstrated superior accuracy over
traditional models, proving the effectiveness of integrating statistical methods
with machine learning. However, this study (Munawar & Wang, 2020) develops
a framework to evaluate and identify the perfect combinations of ML models
then feature selection methods to forecast short-term solar power, essential for
renewable energy integration. It examines few models such as XGBoost, artificial
neural network, and random forest, alongside feature importance and principal
component analysis (PCA) techniques. The research finds that XGBoost with PCA-
selected features provides the best forecasting performance for solar power in
Hawaii, US. The framework offers a robust method for selecting optimal ML
techniques to forecast solar. In the study conducted in (Almeshaiei et al., 2020),
researchers introduced innovative strategies where they assess micro-scale PV
panel’s performance for specific applications, which are combined with neural
networks, short-term real data, and empirical lab testing. The method evaluates
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power output under various conditions, including seasonal, hourly, temperature, dust
accumulation, and tilt angle. The approach was tested in Kuwait and demonstrated
a maximum error of 23% compared to actual data, with correlation values between
87.3% and 91.9%. These findings suggest the method can provide rapid, accurate
assessments, aiding manufacturers in decision-making and reducing investment
risks. In order to address the lack of observation stations and the complex spatial
patterns, this work (Koo et al., 2019) presents a novel machine learning approach in
China that calculates the monthly average daily solar radiation using an advanced
model known as k-means clustering and case-based reasoning (A-CBR). Data from
97 cities over 10 years (2006-2015) were utilized, achieving a prediction accuracy
of 93.23%. The approach can be generalized using interpolation methods like
kriging in GIS, aiding decision-makers in effectively implementing solar energy
systems by determining optimal locations, sizes, and forms. This study (Mehrpooya
et al., 2021) explores an integrated energy conversion system combining modeled
in AspenTech v9.1, a coal-fueled molten carbonate fuel cell (MCFC) coupled with
a gas turbine and solar thermochemical water-splitting hydrogen production. The
zinc/zinc-oxide cycle enhances efficiency by directly using solar reactors, while the
MCEC utilizes syngas from coal gasification. The system achieves an overall 85%
approximately efficiency, electricity producing 13.63 MW, with the HHV efficiency,
LHV 61% and MCFC showing 63%. Sensitivity analysis identifies current density,
voltage, and fuel cell pressure as key performance factors. The challenges and
benefits of implementing big data analytics in sustainable energy power stations
within smart grids are addressed in the study of (Mostafa et al., 2022). Using
a dataset of 60,000 instances and 12 variables, a five-step solution is described
that uses several machine learning techniques to forecast the stability of the smart
grid. The penalized linear regression model yielded an accuracy of 96%, while
the random forest model yielded 84%, the decision tree model produced 78%,
and the gradient boosted decision tree and CNN models produced 87%. The main
limitation is the relatively small dataset, suggesting future research should involve
larger, more diverse datasets across multiple countries. This study (Tercan et al.,
2022) explores the techno-economic advantages of using partition energy reserve
to enhance photovoltaic self-consumption in varying penetration rates of prosumer
community. The desirable energy reserve was achieved through the application of
the Best New Algorithm also technical performance simulations conducted along
with genetic algorithm using PSS Sincal. Economic feasibility was assessed by
considering residual energy and various incentives, utilizing point of reference
internal rate of return, net present value, and payback period. The implementation
of shared energy storage resulted in an increase in self-consumption by up to
11%, providing substantial economic advantages and enhancing power quality. In
order to achieve practically zero-energy communities, this study (Liu et al., 2022)
proposes an innovative distributed energy system (DES) that integrates cutting-
edge solar energy technology and hybrid energy reserve (containing heat, ice, and
electricity storage). The DES is optimized for environmental and economic factors,
employing a new operational strategy to enhance system performance. Evaluation
metrics include carbon emissions reduction and net interaction improvements
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compared to traditional systems, demonstrating potential benefits in achieving zero-
energy targets, particularly for office buildings. Equipment costs, electricity price,
and carbon tax for sensitivity analysis further support the system’s viability and
sustainability.

3.2 ML and DL Approach for Wind Energy Applications

In order to integrate volatile renewable wind power into sustainable energy systems,
this research (Zhao & You, 2022) introduces an assurance framework—a robust and
creative unit. This frame of work employs vagueness sets of data-driven partitive,
leveraging machine learning techniques to manage uncertain intermittent power
outputs effectively. It utilizes K-means and DBSCAN clustering methods to orga-
nize uncertainty data, constructing disjunctive sets from multiple basic uncertainty
types. The approach is applied to a two-stage adaptive robust unit commitment
model with a tailored optimization algorithm, demonstrating significant reductions
in robustness costs and computational time compared to traditional methods. Report
on 118-bus systems and IEEE 39-bus validate their effectiveness in enhancing
economic performance while ensuring reliable power system operations. Using
signal processing techniques, this research (Zhang & Chen, 2022) introduces a novel
way to increase the speed of wind prediction accuracy. It accomplishes singular
value decomposition (SVD) and complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) to preprocess data, followed by prediction
using autoregressive integrated moving average model (ARIMA) and Elman neural
network optimized by particle swarm optimization (PSO). The model enhances
prediction effectiveness, reduces errors, and supports stable operation of wind farms
and grid-connected power plants. Results demonstrate its potential to contribute
significantly to sustainable wind energy utilization and environmental conservation
efforts. For short-term wind turbine power forecasting in a utility-scale wind farm,
this study (Meka et al., 2021) presents a robust deep learning approach using
temporal convolutional networks (TCNs). The TCN model is optimized using an
orthogonal array tuning method based on Taguchi design, demonstrating superior
performance across various wind speeds compared to existing methods. Validation
with 12 months of data from an 86-turbine wind farm confirms the efficacy of
the proposed TCN model in capturing temporal dynamics and meteorological
relationships for accurate power predictions.

This research (Wang et al., 2021) introduces SIRAE (Stacked Independently
Recurrent Autoencoder), an innovative DL framework tailored for ultra-short-
term wind power prediction. Utilizing variational mode decomposition for data
preprocessing, SIRAE employs independent recurrent autoencoders (IRAE) to
capture structural features and temporal dependencies in power of wind data.
The exploratory outcome indicates that SIRAE significantly outperforms existing
models, achieving notable improvements into the root mean square error across
different months comparing with the persistence model. The approach is highlighted
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for its effective and stable forecasting performance, showcasing its potential in
enhancing grid operation reliability. In order to enhance wind energy efficiency,
this study (Aksoy & Selbag, 2021) employs machine learning algorithms to predict
energy production using wind turbine data from 2015. Achieving 90% accuracy, a
mathematical model estimates energy output using temperature, wind speed, and
direction inputs. A user-friendly computer program was developed to disseminate
these results, emphasizing practical application and potential efficiency gains in
wind energy production. In contrast, this paper (Fathy et al., 2022) addresses the
challenge of optimizing wind energy generation under varying weather conditions
by proposing an Archimedes Optimization Algorithm (AOA) for Maximum Power
Point Tracking (MPPT). The system integrates a wind turbine with a constant
magnet synchronous generator and employs a boost converter controlled by AOA
to maximize electrical output power. Evaluations across the speed of real wind,
variable and fixed in Saudi Arabia demonstrate superior performance of AOA-
MPPT compared to other algorithms like electric charged particle optimization,
grasshopper optimization, and cuckoo search, validating its robustness in wind
energy systems. This study (Rushdi et al., 2020) focuses on harnessing wind
energy using kites, specifically a kite system introduced through Kyushu University
which traction power is 7 kW. Experimental data from the system were taken
advantage of to train ML regression models for predicting tether forces. Key
input parameters were identified through sensitivity analysis, and various regression
models, including neural networks, were evaluated for accuracy in predicting tether
forces. The results demonstrate promising capabilities in accurately forecasting
tether forces for new input combinations, potentially facilitating optimal design and
power generation improvements.

Deep reinforcement learning (DRL) is the focus of this research (Yang et al.,
2020), which attempts at enhancing revenue generation for wind power producers
(WPPs) in deregulated contexts. The method employs a data-driven controller that
utilizes electricity prices and wind generation forecasting to determine optimal steps
such as reserve purchase schedules and energy storage system (ESS) operations.
Implemented with the Rainbow algorithm, the approach improves upon traditional
DRL methods by accommodating continuous input states, thereby optimizing
control strategies effectively amidst uncertainties. Simulation results demonstrate
significant revenue benefits for WPPs under varying conditions of electricity price
and wind power uncertainties. This study (Emrani et al., 2022) introduced a novel
methodology for optimizing the design and arrangement of a hybrid PV-Wind plant
within a gravity energy storage (GES) system to enhance technical and economic
competitiveness. Using a genetic optimization algorithm, the study aims to mini-
mize construction costs while ensuring structural integrity against mechanical loads.
A case study validates the approach, revealing optimal dimensions of 48 m height,
24 m diameter, and 3 m wall thickness, with a total construction cost of 6.7 M€.
Integration with the hybrid plant facilitates efficient renewable energy dispatching,
mitigating issues of overcharging/discharging. Compared to battery storage, GES
demonstrates superior performance with regard to discharge depth, lifetime, also
efficiency, making it a promising solution for renewable energy integration. This
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study (Wang et al., 2022) introduces a novel self-adjusted triboelectric nanogen-
erator (SA-TENG) designed for efficient harvesting of random wind energy. The
SA-TENG dynamically adjusts its driving-torque to match varying wind speeds
(5.0-13.2 m s~ 1), achieving a peak power output of 7.69 mW. Compared to con-
ventional TENGs and electromagnetic generators, SA-TENG exhibits significantly
improved power growth rates and energy conversion efficiencies, demonstrating
its potential as a distributed energy source for environmental monitoring sensors.
Similarly, this study (Angadi et al., 2022) introduces an innovative maximum
power tracking algorithm for hill climbing, designed for a stand-alone self-excited
induction generator primarily powered by wind energy, which can drive an induction
motor pump. By utilizing a single voltage source converter (VSC) with the VSC
operating frequency as the control variable and incorporating a feed-forward
hill-climbing algorithm, the system significantly enhances stability and efficiency
without relying on speed sensors. Both simulation and experimental results validate
the algorithm’s effectiveness under varying wind and load conditions, presenting a
robust and economical solution for remote stand-alone applications.

3.3 ML and DL Approach for Hydro and Tidal Energy
Applications

The energy sector faces challenges like rising demand, efficiency issues, and
changing supply patterns. This research paper (Chen et al., 2021) proposes an
Artificial Intelligence-based Evaluation Model (AIEM) for forecasting renewable
energy’s impact on the economy and enhancing energy efficiency. The study uses Al
to address challenges such as consumer selection, competitive pricing, scheduling,
facility management, and incentivizing demand response. The AIEM model aims
to boost energy efficiency to 97.32% and optimize renewable energy utilization,
providing significant economic insights and improvements. This study (Mostafa
et al., 2020) introduces an evaluation model which can evaluate by considering
various approach and their technical characteristics of short-term, medium-term,
and long-term energy storage. The model integrates economic factors, for example
disposal costs, replacement, capital, maintenance, and operation. Main magnitudes,
including the reckoned annually the levelized cost of energy (LCOE) and life cycle
cost of storage (LCCOS), are for guide energy storage functional decisions. A
sensitivity analysis further aids in assessing the economic viability of energy storage
systems, providing a robust decision-making tool. The paper (Sahu et al., 2022)
presents a powerful comptroller for regulating the frequency in an microgrid with
various uncertainties known as Tilt Fuzzy Cascade. The microgrid, incorporating
renewable energy sources with low inertia, suffers from frequency stability issues.
To address this, fuzzy cascade controller based on a tilt is employed, optimized
using a novel deep Q-network (DQN) algorithm. Comparative assessments validate
the controller’s effectiveness, demonstrating that significantly enhances frequency
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of the DQN-optimized tilt fuzzy cascade controller regulation in microgrids. This
study (Ma et al., 2021) proposes two hybrid thermal energy storage systems
(HTESS), outlet temperature control is indicated through HTESS-OTC and thermo-
cline storage is known as HTESS-TS. Comparative analysis shows that HTESS-TS
and HTESS-OTC improve utility factors by 12.5% and 22.1%, respectively, over
single-tank thermal energy storage systems, with HTESS-OTC reducing unit costs
by 8.6%. Additionally, annual electricity generation increases by 9.8% and 14.1%,
respectively, demonstrating enhanced performance and economic benefits.

This work (Fonseca et al., 2021) addresses the growing need for climate change
mitigation and energy security by proposing a strategy for decentralized power plant
deployment, which is mentioned as multi-criteria. The approach includes various
energy vectors and considers the time-varying operations and seasonal storage sys-
tem behaviors. Economic, environmental, and social aspects are evaluated, focusing
on annual cost, dependence on grid and CO2. Accuracy shows significant benefits
of decentralized generation over centralized systems, with potential emission
reductions up to 89% of CO2 and self-sufficiency improvements up to 81%, power
plant structure and policy highlighting the influence of assessed criteria. This study
(Naik et al., 2022) addresses the need for an effective strategy of power management
in a DC microgrid (MG) accomplishing micro hydro power plant (MHPP) sources,
battery and photovoltaic. Due to technical constraints, such as MHPP’s battery C-
rate limitations and mechanical response time, load dynamics cannot be instantly
compensated. SPMS, known as Supervised Power Management Scheme, optimizes
MHPP’s contribution during load transients while considering battery limitations.
The SPMS’s effectiveness is validated through hardware-in-loop experiments,
demonstrating stable power flow control and voltage stability in the DC MG during
load transients. The challenges of predicting renewable energy levels in light of their
fluctuation are addressed in this study (Abd El-Aziz, 2022) by integrating the Cat
Boost algorithms with Support Vector Regression and Multilayer Perceptron. This
hybrid approach aims to enhance the predictability and performance of sustainable
energy consumption. Evaluations of the system described at both train and test levels
show that it outperforms other current methods, offering high prediction accuracy,
lower costs, and improved overall system performance. This paper (Zhao & Kok
Foong, 2022) explores a hybrid approach for predicting the electric power (PE)
output of combined cycle power plants (CCPP) using an artificial neural network
(ANN) with an electrostatic discharge algorithm (ESDA). Considering factors like
relative humidity, atmospheric pressure, exhaust vacuum, and ambient temperature,
a4 x 9 x 1 network structure is employed. The ESDA-ANN hybrid demonstrated
superior performance compared to conventionally trained ANNSs, including the
Levenberg-Marquardt algorithm. The study concludes that the ESDA-ANN is a
robust and reliable tool for PE modeling, offering improved prediction accuracy
and computational efficiency.

The above discussion outlines the analysis and findings using ML and DL
approach related to predicting power, forecasting, also conversion of energy. Despite
the promising outcomes from these approaches, they faced certain exceptions,
particularly with regard to prediction accuracy, improper load balancing, and power
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management during energy conversion. Addressing these limitations, future work
aims to build productive and robust methodologies to conquer the issues present in
current models.

4 Methodology-Based Results

4.1 Renewable Solar Energy

Solar energy is one of the most prominent and widely utilized renewable energy
sources, renowned for its purity and lack of carbon emissions. The Earth receives
approximately 140 PW (petawatts) of power from sunlight, though only about 36
PW is feasibly harnessed for practical use. There are two primary methods for har-
vesting energy from solar: Concentrated Solar Power (CSP) and Photovoltaic (PV)
systems. Anyhow, solar energy does have certain limitations, including reduced
efficiency during cloudy weather and nighttime. PV panels capture radiation from
sunlight, which consists of direct radiation, diffuse radiation, and ground-reflected
radiation, with direct and diffuse radiation contributing the most to the total solar
radiation. Egs. (1)—(4) delineate the methods used to accurately evaluate solar
radiation, with Eq. 1 specifically representing the evaluation method for direct
radiation.

Iy, = GSCPM (1)

Here, G, represents the solar constant, P represents the transparency factor
as well as M represents the mass of the air. The following Eq. (2) represents the
methods of evaluating M.

1
Sina

M= )
In this equation, « represents solar altitude angle. The following Eqgs. (3) and (4)
represent direct radiation of the tilted plane and the horizontal plane.

Ipg = Iy, sina 3)

Ipg = Ipr (sina cosP +cosa cosy sinf) (@Y)

According to the equation, B represents tilt angle, y represents azimuth angle.
Now the horizontal plan, titled plan, and ground-reflected radiation are represented
by Iiu, IpB, and I,, respectively; moreover, tilted angle represented by f and p
represent diffused ground reflectance, the diffused radiation is evaluated through
Egs. (5) to (7) as follows:
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M

IdH =0.5 Gscl_;ﬁ sin « (5)
Lig = Coszgl,u{ (6)
1 —cosp
I, = H, (—) (7
2
Here H is evaluated by Eq. (8) as follows:
H=1g+ Lig (8)

The sum of the I, 148, I, is the total solar radiation from the sun that evaluated
through Eq. (9):

Ig = Ipg + 1y + 1, )

There are some stages that are undergone to convert solar energy into electrical
energy that are mentioned below:

The early step in harnessing solar energy involves the absorption of solar
radiation by the cells of a solar panel. Each solar cell comprises two thin layers
of silicon semiconductor material, which can function as both insulators and
conductors. These layers are classified as P-type and N-type materials, representing
positively and negatively charged layers, respectively. When sunlight strikes the
surface of the solar panel, it interacts with small energy packets known as photons.
The interaction between photons and the PV material generates electricity. Table 1
presents solar energy related recent research which utilizes ML and DL techniques.

The main consumers of solar energy are mostly from household usage rather
than the application of industry. However, Table 1 describes very recent research of
solar energy-based ML and DL techniques that are used in the process of predicting
power, forecasting and conversion energy.

4.2 Renewable Wind Energy

To produce electrical power, wind energy utilizes the force of the wind. Here’s a
brief overview of how it works:

* Wind Turbine Energy: This energy which consists of large blades mounted on
a tower captures wind energy. The kinetic energy of the wind turns the turbine
blades.



M. R. I. Tomal et al.

uoneuawedu 10y asnradxe

pue sao1nosar feuonenduwod
jueoyrusts axmbar Aewr wiyyro3e
) Jo Kyrxordwod ay) ‘@IoULIYIIN]
‘uonerdudsd romod A J 109jje ued
yorym ‘KII[IqeLIeA JUQISYUI AY) pue
Anpiqeiorpaidun suonrpuod oyjeam
) AQ paduangur oq [[1s Aeux
SSQUOANIRJJQ SIT ‘AII[IQRI[QT WISKS
pue Koenooe uonorpaxd pasoidur
smoys poyow pasodoid ayy o[y
uondope peaidsopim 10J JoLLIRq

© 9Q UBD YOIYM ‘SUTUIR] QUIyoRW
pue Iy ur a3pa[mouy| paziferoads
armbar Aewr spoyjowr asaYy

Jo uoneyuowd[dwr oy ‘A[[euonippy
‘Sururer) 10 parmbar a1e sjeserep
931 os[e A[reuoneindwiod dAISUUT
9q ued Aoy ‘KII[IqeI[ar pue AoeInooe
pasoxdwr 19330 senbruyoo) Ty Iy

uone) I

264

waIsKs Yy

Jo AJIIQRI[QI SQINSUL YOIyM PLIS oY)
oyt Jomod ayy Jo uonensuad Ad Jo
douengur oY) Surzrwrurw ‘A)Iqels
walsAs 1omod urejurewr sdjoy
poypow oy} ‘indino A g Sunorpaxd
A[oreInooe Ag "uones omod Ad e
WwoIJ BJep PIOM-[ed] pue SUoounj
159) [BI2AQS YSNOIY} PAYLIdA

se ‘oouewrioyrod uonezrundo
Jorradns Surmoys ‘uonels

Tomod s eI[ensny sojensuowop
yoreasar pasodoid ayJ,

[euonouny pue snororpnf

a1ow Juruueld Suryew <10309s
A310U9 IR]0S 9U) UT SUT{RW-UOISIOAP
uaALIp-eyep saaoxdwr yoeoidde

sty T, “eyep ndino pue Jndur usomieq
sdiysuonerar a[qejorpardun pue
xordwoos Surfepowr Jo AJ[IqeraI oy
Qoueyud Apueoyrugis sonbruyod) 1y
a3ejueApy

eyep indur Ajpeonstundo pasn

st uonorpaid [opowr 9y} 10 SIsA[eue
[euone[ar Ae13 ‘A[feuonippy
‘ewmndo [eoo] ur juowdenus
sjuaaald pue Ajisoarp uonerndod
sooueyua Jojerado uoneinuw
Ayone) oy o[y ‘uoryenba

yoreas uoneso[ uonendod ayy

je soni[iqeded Jururw pue yoIess
) saoueeq A391ens Juny3rom
eraul oy, Jojeredo uoneinw
Ayone)) o3 pue A391ens uny3rom
BILISQUI UB 9pN[oul sjuawaAoiduur
9y, "uonerouasd ramod orejjorojoyd
Jo uonorpaid N AS 10J paonponur
st wnuoge sy, ‘uoneziundo
QWRP-YIOW SB UMOUY PIdNPOIUL
wyyLIoS[e pIoUBYUD Ue I0M SIY) U]

Annqereae £3ua

1efos Sunorpaid 10j senbruyod) 1y
JUASI[[UI O SPOYIAW [BINRWAIRW
[UOTIUDAUOD WOIJ JIYS & sIYSIYSIY
1 *(YSD) UoneIpEI IE[OS [BGO[T
Jseoa10§ 03 sayoeoidde T pue

TIN Surzinn sasodoid xoded ayJ,

poyouwr pasodoig

(0T0T 18 30 UIY)

(€20 “1®
12 uoueqad[ueArpuederpunseley])

Q0UQIRJOY

uonorpaid 1omod pue ‘A319UQ JO UOISIOAUOD ‘FUT)SBIAI0] J0J [ PUL T UO Paseq YdIeasal A3Ioud Je[oS [ J[qeL



265

Machine Learning and Deep Learning Strategies for Sustainable Renewable. . .

(panunuod)

suonnjos
3unseoa1oy aarsuayardwod

I0J A1eSSaoou oq Aewr

3unse) pue JuUAWAUYAI JOYMINJ ey}
Suneosrpur ‘suonorpaid wg)-3uof
puUe WLId)-pIW yIm sI[33nns

[opowr NNV 2y ‘A[euonippy
‘sanfea Aouanbairy 1oysy

10J Arernonred ‘[[eI0A0 [[oM st
uioy1ad jou s20p [Ppowl NNV-VSD
oy “eoueurrojrod poroxdur

smoys [opowt NNV-VOS U1 9[UM

uonejuowe[dwr

reonoead 1oy sa3uo[eyd asod ueo
$901N0SAI TeuoneINdwos SAISUSIX
10J poau pue Furun) 1joweredrodAy
Jo Kyrxerdwod ay) ‘A[reuonippy
*9SBD 159) pue Jasejep oyroads

) uo puadop Aewr SSQUAATIONFO

s poyrouwr pasodoid ay,

A1eAnoadsar ‘%69 pue ‘%6091
‘919°'T ‘%19°¢ Jo syuawaroxdur
Surmoys ‘GVIN pue ‘ASIN
‘AdVIN rmm se yons siojowered
[eonsne)s Y3noIy) pajensuowap
SI STY, "SISBOQI0J ULI9)-PIW pue
wId3-3uo[ J0J A[[eroads? ‘sjopow
NNV-VSD pue NNV [euonipen
JA0 uoneIduasd romod Iejos

I0j Koeanooe uonorpaxd soaordur

Apuesyrugts [ppowr NNV-VOS UL

S[OpOW Al QAIINOJSUOD IOAO
9% ¢ Teau Jo ssai3oid e Sunjrewr
‘¥10°0 JO aneA FSN pazifeuwtiou

B pue {(09°(0 JO an[eA TYC YA
yS1y © SOAIYOE 1] "YSB) JB[IWIS

oy uo suoneziundo onsLNAYLRIOW
1IB-9U)-JO-9JE]S [BIAAdS surIojradino
yoeoxdde poyjowr yoIeasar siy,

s1ojouwrered jndur se owry

pue ‘voneipe ‘arnjerodurd) Suisn
suorjorpaid 1omod 1e[0s WiIe)-1I0yS
pue *-prut ‘Suoj 1oJ (NNV)
JI0MION [BINAN [BIOYNIY pIepuels
e )im paredwod a1e Sppow

5oy L, "(NNV-VSD) WipLos[y
o1eag mo1) ay) pue (NNV-VOS)
wpuo3y uonezrumdQ [[ndeos
ay se yons sanbruyds) uonezrundo
Sunelodioour ‘FunsesaIoy

1omod Iefos 10J (NNVO) JIomIaN
[emmaN [eynry paziumdQ

pawreu [opow & sasodoid xoded ayJ,
SONJBA SILIdS dwWN Y3NOIY) JB[0S
WOIJ UONERIdUAS AFIoUS pue Ioyjeom
Surpuodsaii0o Jo uonewLIOJUI Y10q
Sopn[oul pasn ejep Y], ‘UoneIouad
A310U9 IR[0S J5BIA10J 03 {(VSY)
w3y yoreas omday paroidur
ue 1A Jurun) Jojowrered rodAy

M paouequ ‘(JNLST) ATOWIA
Wi -0y Suo] pue sppou
(NLSTE) INLST [euonsanprg
Sursn sosodoxd Apms styJ,

(€20T “Te 10 ASreysney)

(€£20T “'T® 10 UB20IS)



Qouewnoyred ewndo aadryoe

0] BJep JO JUNOWE [ET)UBISQNS € pue
$921n0s31 [euoneINdwos dAISUIXd
armboar JyStwr spepowr Jururesy
Juiyoew 9say) jo uonesrdde

oy} “‘A[euonippy ‘sjesgo

20A pue (V)OINNT-(AOWOH
usam)aq diysuone[ar pajeurpIoooun
9y} pue SUOHBUIqUIOD IN-IOUOP
Jqrssod jo roquunu iseA 9y}

0) onp SUISUI[[BYD SUTBWIAI POYIAW
[eorownu € Sursn 0o Sunorpaid
Jey) So3pajmouor Apms ayJ,

M. R. I. Tomal et al.

uonepIfeA

JI9y}INJ pasu ABW SUONIPUOD
eorydeaSoad 10 onewId JUSISPIP
A[2I1IUQ UT [9POW Y} JO SSAUISNQOI
oy} ‘A[reuonippy -eoueuwriojrod
[ewndo 9AJIYO. O} BIep JAISUIXD
10J pasu Ay} pue ‘Sururer) 10y
paxmbar saoinosar feuonenduwrod
Y} ‘S[opow A[quidsud Funuawadur
Jo Ayrxordwod ay) apnjour pnod
suonejwl| fenudjod [[ns ‘yoreasar
ST} UI UOTJUAUIL JOU OP SUOTJBITWI]
oyroads ayp nogqe s[reIxq

uonewI]

266

Anqiqejexdisyur pue AoeInooe
uonoipaid Jurouequo AQaIay) ‘O0A
pue s1ojowered o1UOIO[ UIIMIOq

sdiysuonefar reaurjuou ‘xa[dwod ay)
J10J Sununoode Aq S[OPOW [EONSIIL)S
[BUONUAAUOD AU} sassedins

poyjoul SIyJ, 'SuoneuIquIod
VAN-IOUOp MU JO uISap JUAIOYJD
oy Suneioey ‘sSO-SVAN

J0 20 a3 101pa1d 01 poyrow

[eruowLrodxa 9yeinooe ue apraoxd
sonbruyo9) I\ pasodoid ayj,
wyjLod[e

AU} JO WSTUBYOIW JuruIed]

ayy oyur syySisur 1odoap sopraoid
Yiomowrely (JVHS) uoneue[dxa
aanippe Afedeys ay) Jo asn Ay,
"SUOTJELIBA JOUJEIM JIM FUI[edp ul
9AT)ORJJR ATYS1Y 31 Suryew ‘spopow
359U} JOAO an[eA 3 Ul JuswaAoidur
%T1-01 © S9jensuowap

I ‘Suid3eq pue ‘WIST NNV

1] S[opow [enpiArpur 0} pareduwod
Sumnseoa1oy A31ouo Ie[os Ul
KouQ)sISuod pue AoeIndoe parordur

SI9JJO poyow gOX-A4Sd YL
a3ejuBApY

J0A pUE SOISIOUD [BIIGIO JOIIUOL] o)
U99M)9q UOIR[AIIOD ) AZI[eNSIA
pue [opowr 3s00g0X 2y} 1o1d1oyur 03
paoKordwa st stsATeue suonjeue[dxg
AANIPPY AordeyS oY) ‘TOA0IOTA
‘suonjorpaid ayew 0} s1ojowered
OIUOIOQ[D JISULNUI 9FBIIAD[ S[OPOW
9y L, AoBINOJE 9[qBUOSEAI )IM

S[[99 Iejos druesIo paseq-lojdoooe
QUAIS[[NJ-UOU JO (00 ) 23eI[0A
Jmoa-uado oy 301paid 0) 19pIo

ur 15910 wopuey pue Js00gHx
‘S[opou "INl Q[qQUISUD Paseq-aa1)
om) 3ursn sasodoid Apmys oy,

UONEIOUIS JB[OS UO Paseq e

JB) S9S BIEP [BIOADS UO PISSISSE ST
QouewIoyrad s [opouwr 9y ], ‘AovInooe
1s80210J 2Aa01dur suonorpard

AL, 'S[opou 3seq Se YI0mIou
[eINQU [BIOYILIE pue AJowout
w19)-110ys 3uo[ ‘SwyjLIo[e T om)
SQUIQUIOD [9pOW SIY ], "WYILIOF e
J[quIasud paydels © ‘gDX-4Sd
Pa[[eo ‘A3I9UQ Je[0S 9JRINddE
3umnseoaroy 10j wiyLio3e o[qesrdde
A[rerouas e soonponur soded oy,

poyow pasodoig

(¢20T ‘991

(TTot “1e 10 uRyy)
Q0UIRJY

(Ponunuoo) | A[qeL,



267

Machine Learning and Deep Learning Strategies for Sustainable Renewable. . .

suorjeordde

[eonoeld 9SIQAIp Ul Sa3UI[[RYd

asod prnoo eyep jndur jo Ayenb

A uo Aoudpuadap ay) pue UONOI[IS
9[qeLIeA PIsEq-UONRULIOJUT [enjnul
) Jo Kjrxordwod ayy ‘Aoudroyye
pue Koenooe paroxdwt smoys
INIIAM 2[TUM ‘QI0WLIdYIN, "SuoIsal
oTjeWI[D J9YJ0 0) AN[IqezI[eIouad

I W] ABWE YOTYM ‘SIS PLIB

om) ATuo woij ejep Sursn pojenyed
st 9ourwIograd s poylow oy,

(dTIN) uondaorod IoAeT-nmA

Q) I SPOYIUW [RUOTIUIAUOD

uey) JuaryJe A[reuoneindwod arow
Apueoyrusis sT NJINAA UT pasn
anbruyoa) WTH oy ‘A[[euonippy
*SUOZLIOY }SBIAI0J SNOLIBA SSOIOR
(ASIAN) Io11g parenbg uesy

pue (dVIA) ol 23.1uad1og
QIN[0SQY UBIJA] JOMO[ PIZI[RULION
pue () UOTBUTULIANAP JO
SJUDIOYJI0D 12132q SAAYR NTINA
‘A[reoyroadg “Koeooe uonorpard
SouRYUR yorym ‘odeds jndur
[eo1I0ISTY oY) SUTONpaI A[OANIOJJ
KQq “yDd Se yons ‘sar3ajens 1y1o o)
paredwod ooueuriojrod Sunsesoroy
Joradns sajensuowap NTIANM UL

Qoeds

[InJ pue ‘ooeds [ented ‘sisATeue
juouodwoo fedround se yons
SOLIBUQDS 991} Jsurede pajen[ead
SI pue peaye { ¢ 0) Ur G woiy
SurSuer suoz1Ioy JSL9310J 110YS

0 pardde st yoeoxdde sy, ‘sor1as
QW) 9OUBIPELIT JB[OS SUIISBOaI0)
103 (JN'TH) QuIyoey Sururea|
QWRIXH UR YIIM UOHBWLIOJUT
[emjnuI SQUIQUIOd YITYM ‘(JNTINM)
ASO[OPOYISIAl UOTIBULIOJU] [BNINJA]
1addeipy oy seonpoxnur Apnis Y],

(6107 ‘prewrkonn) 29 no3znog)



268 M. R. I. Tomal et al.

Fig. 3 Wind energy conversion system schematic diagram (Abdelateef Mostafa et al., 2023)

* Rotor and Shaft: The movement of the blades spins a rotor connected to a main
shaft inside the turbine.

¢ Gearbox: The main shaft turns into a gearbox that increases the rotational speed
for electricity generation.

* Generator: A generator known as the gearbox powers, which transforms the
mechanical energy into electrical energy.

¢ Transformer and Grid Connection: The generated electricity is then passed
through a transformer to match the voltage level of the grid. Finally, it is
transmitted and distributed through the electricity grid to homes and businesses.

¢ Control Systems: Modern wind turbines have control systems that adjust the
blade angle and direction to ensure safe operation and optimize energy capture
during differing wind conditions.

This process of converting kinetic energy of wind into electrical energy is a clean,
renewable way to generate power. Figure 3 emerges the entire process. Table 2
presents recent research studies on wind energy that utilize ML and DL approach.

Moreover, Table 2 presents recent research on wind energy utilizing ML and DL
techniques for predicting power, forecasting, and conversion of energy. Wind energy
undergoes several critical stages before it can be converted into electricity. During
the generation process, power losses occur due to heat production, which affects
the reliability of wind turbines. By appropriately utilizing ML and DL approach, it
is possible to solve these issues and enhance power generation capabilities. These
advanced methods can improve durability and forecast accuracy for electricity
generation and pumping applications.

4.3 Tidal and Hydro Energy

Tidal energy is a type of hydropower that transforms the energy derived from tides
into practical forms of power, mainly electricity. Use the kinetic energy of moving
water to turn turbines, like how wind turbines work with air. This energy production
is environmentally friendly and low emission, but the initial infrastructure cost is
high. Hydro energy, or hydropower, is a form of sustainable energy that harnesses
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the power of water in motion, such as flowing rivers or waterfalls, to generate
electricity. The process of generating electricity is quite interesting. First, water
stored in reservoirs is released through turbines, generating electricity as it flows
down. Second, it utilizes the natural flow of rivers without large reservoirs. Third,
turbines are placed in the flow of the river to generate power. Lastly, it uses two
different elevations of water reservoirs. Water is pumped to the higher reservoir
during low demand and released to generate electricity during peak demand. The
main advantage of this research is we can get clean energy sources and high
efficiency, with 90% conversion rates. It can be used for irrigation and flood control.
Despite that, the main limitation is the high initial capital costs for dam construction.
Table 3 represents recent research studies on tidal and hydro energy that utilize ML
and DL approach.

5 Conclusion

In recent times, artificial intelligence-based learning applications have demonstrated
significant potential in addressing real-world challenges, particularly those related to
sustainable environments. Electricity generation from sustainable sources of energy,
especially wind and solar encounters limitations, including minimal electricity
production and substantial financial investment requirements. This survey provides
a comprehensive analysis of various DL and ML approaches applied to sustainable
energy. It highlights models that can forecast energy, predict power output, and
aid in energy conversion processes. Furthermore, the tabulated research findings
serve as a valuable resource for future studies in this domain. The review con-
cludes that the development and implementation of advanced Al-based techniques
and hybridized approaches can effectively address existing limitations, offering
promising solutions for enhancing the efficiency and viability of sustainable energy
systems.



M. R. I. Tomal et al.

274

JuawdAoIdwl pue uoneAOUUL
Suro3uo Furrmbar ‘aFuarreyo
[BOTUYOQ) B SUTBWIAT SWAISAS ATI10U
[epn jo Aiiqerfar pue ASuotoyye
oy Sunmnsuyg :se3ud[rey) Aouaroyyg
PUIM 9YI] $92INOS

A310U9 9[qBMIUI PAYSI[qRISD dI0W
03 paredwos uondo SAISUSIUI-ISOD

' )1 SunjeW ‘enjuBISqns

ST aInjonIseryur A319ua [epn
3urysIqessa 10j pairnbar juounsoAul
[eroueUy 2y, :$1s0D) [eNIu] YSTH
uonejuawedur

109fo1d 1opury Aewr yorgm
‘SWRISAS0II [BO0] UL JJI[ dULIBW
uo Aprernonied ‘sjo9)J9 [BOI30[099
JuedYIU3IS 9ARY URD syoofoxd

K313ua [epn jo Juswdoroasp

9y, :3oedw] [BIUQWILOIIAUL

uone)wI]

SBAIR 9S3Y) 0] 9[qISSIOJR pue
QAT}O9JJ9-1S0D 2I0W I0INOS ATIAUD
siy) Sunjew A[[enuajod ‘sourfiseod

Ieau SuoI3al J0J Snoagejueape

Aqreroadse oq ued syoofoxd
A310Ud TepL], SIYAUSg PIZI[eO0]
juridjooy

u0qIed [eqo[3 oY JuTUASSI pue
uoneaouur udaI3 0) JunnqrIUod
‘SUOISSIW OPIXOIP UOGIED

Suronpar ur sdjoy A31ouo [epn
Su1ZIm ) :$1youag [LIUSWUOIAUY

X1 A319U9 9y} 03
uonIppe d[qera1 & 31 unyew ‘yndino

J[qelorpaid pue Apedls e yam
90INOS 9[qEMAUDI B ST ASIoUQ [epl],

:KTIqemouay pue Ajiiqeure)sng
afejueApY

90In0S ASI9UD S[qeMAUI UBI[D
pue J[qRIA B ASI0UD [BpN) oYW

03 suomnjos asodoxd pue sa3ua[reyo
9say) ssa1ppe 0) suwire Jaydeyo

U, "SoAeM epn) woxj A310u
oneuny ay) armyded Apuaroyje

ued Jey) INJONNSLIJul pue
A3o[ouyd9) duIqIn) [EP1) PAOUBAPE
Jo yuowkordap pue juswdoroasp
Q) sopnpout siy, “1omod

Jre1ouad o3 Aqiqelorpaid pue
A)TuIOJTUN JUIAYUT SI1 SUITRIOAI]
SaAToAUT ASI10Ud [epr) Surssaurey
10j poyjeuwr pasodoxd oy,

poouwr pasodoig

(TT0T T8 10 ereypnuIARy)
AAUARJY

uonorpaid 1omod pue ‘A310ud JO UOISIOAUOD ‘FUIISBIAI0J J0J T PUB TIA UO Paseq oIeasal A310ud 0IpAY pue [epL], € J[qeL



275

Machine Learning and Deep Learning Strategies for Sustainable Renewable. . .

(panunuod)

A)NIqezIeIauas siI ysIqeIs? A[ng
0] AIBSS900U 9q Aetl SUONIPUOD
[epn pue suonedo[ o1yder3oo3
OSIOAID SSOIO® UonEpIeA Teourdud
JOUMNJ ‘@Jep [BaI pue pje[NWIS
)M P2IS9) U Sey [opout

ou) Iy ‘ere(q [edtdurg oIy
SPOYIOW [ENIUT 9SAY) JO AOBINIOE
9y uo jJuapuadop Aqrented st
SSQUOATIOJJ $IT SUTUBAW ‘SOWAYDS
[eouownu SunsIxa sjudwisne [opouwt
V¥H QUL :SOWYoS [eoLIoWnN
[enIu] AJeINdOY uo Aduapuado
urejurew pue juowrorduur

03 9s11adxa pue $90IN0sal
reuoneindwoo juedoyrudts axmbax
Aew sonbruyo9) paosueape odinu
Jo uoneidayur oy pue Ajrxordwod
S [opow PLIqAY Y], :puBWId]
reuoneindwo)) pue Ayrxorduwro)

SUOT)IPUOD [ep1) JUSISFIP
01 Aypiqeidepe pue ssoujsnqol

31 Suneotpur ‘AyLresurfuou

JO $92130p FUIATRA JIM SIS SSOIOR
9[qEIA SI [opow YT, :ANIESIOA
‘uors1oaid 3seoaroy Suraoxdur

‘9SIOU SOAOUIAT A[OAT}OJJO UOLIOIID
UoM99[as Juduoduwod [9A0U B Y)IM
VSS JO 9sn 9y [, :uononpay SION
"SQ)IS SNOLIBA

SSOIO® SUOZIIOY JSBII0) [ | pue
uru 9 Joj syuaiInd [epn Junorpaid
ur AJIIqerfar pue Aoeinooe Jotradns
Pajensuowap sey poyow VIH Yl
:KoeIN00Y pue AIIqeIey peouBqug

(4¥1) Sunsesaloy JUALINOAI-TRUI]
pue (SIJIOH) seues awn Azznj
Iop10-y31y 10J d[qelns syuauoduiod
ojut [eusts oy sosodwooop

PUE SOLIdS dWI) [BNpISal

) WO1J ISTOU NI} SOAOWI
yoeoidde Sy, ‘UOLIDILID UOTIII[IS
juouoduwiod [oaou e juawradwr

0] UOTIRWLIOJU] pu® AIOdU L,

[e10e1] wotj senbruyod) (vSS)
sisA[euy winnoadg Ien3urg sazimnn
J] "SIOLId [enpISAI JUIISedIAI0]

Aq sowayos [eoLIWNU FUNSIXd
SouBYUD [dpow ST, ‘(VIH)
SISA[eUY [enpIsSay dluouIeHq

P9I [opoul PLIqAY B ST QUI[UO
wel-1oys 3ursn uonoipald sjuarmd
epn 103 poyjeuwr pasodoid oy,

(€20T “'I® 10 UBURUOIN)



M. R. I. Tomal et al.

276

pazATeue 3uroeq AS1ouo

[epn Y} JO SONSLIAJOBIRYD dY1oads
9y pue Ayfenb eyep indur oy

uo paseq ATeA JyIrw yorym ‘SN
ojur A319u9 [epn jo uonisodwodop
[entur oy} jo AovInooe

AU} UO Sl A[IABIY poyloul 3y} Jo
SSQUQANIORYJS A T, :uonisodwoooq
juouodwo)) uo Aouspuadoq
urejurew pue juswdrduwr

01 9s1110d X9 pue $92IN0SAI
[euonendwod [qRIIPISUOD
armbar Aew yorym ‘sage)s pue
sanbruyo9) pajeonsmydos ordnmnux
SOAJOAUI WA)SAS FUNSBIAIO]
93eis-nnw Ay I, :puewaq
reuoneindwo)) pue Kyrxordwo)

uone) I

SI01I9 [enplsal

Surssarppe Aq sjpnsax uonorpard
[Te1oA0 y) seaoxdur Appueoyrugis
UOTO91I09 JOLIY 10J NN JO asn oy,
:uo0Nva1I0)) Jo1g dAIsuayaldwo)
NNEN

Jo Kypiqerjar oy Suroueyuo

‘A310UQ [Ep1} JO SONSLIAORILYD
JIeaul[uou pue AIeuorje}suou

A} SISSAIPPE A[OATIOQIIQ

poyjeu ay ], :AJLIBAUI[UON

pue Kjureuone)suoN Surpuey
BUNBAA PUB ‘YIS

‘09SIoURL] UBS Y] SANIO UBDLIAWY
SUIAJOAUL SAIPN)S ISBI UL S[OPOW
aaneredwod ¢1 Suruojrodino
‘Koenooe uonorpaid y3ry
SAJRLSUOWAP WIA)SAS 93e)s-nnwt
Y, :uonoipaid £oeImody Y3y

afejueApY

NND U3 P 2sayy Junorpaxd

pue SJIAT J01I0 0JUT SIOLIO
uonorpaid Fursodwooap saajoaur
yormym ‘NN Sursn paurrogrod

SI UOTOALI0D JOLIQ ‘A[[eurq
'VSSAAd Y jusuodwod yoed
Sunorpaid pue ‘QNIIALOSM
Sursn syusuodwod Ayrxordwos-ysmy
Sursodwooop Ioyny ‘GANDY
s syusuoduwod Ajrxorduwos-mog
pue -y31y ojur asay Juneredos
‘NYANHIDT SuIsn (ST
SUOIOUNJ OPOW JISULNUI OJUT
AS10ua [epn Sursoduroosp saAjoAur
ssaoo1d oy, “eyep A310ud [epn
jo1paid pue ‘azATeue ‘eosoduroosp
01 sanbruyo9) paoueApe Jo

SOLIOS B SN WRISAS SIYT, "DI-NND
—NYDOVSSHAd-AINFIALOSM
“HANDI-NVANTHDI

Pa[[ed WoIsAs dFe)s-Nnw © SI
A319U2 [EpN ULI20 A[rep 3unseda1o)
103 poyowr pasodoid oy,

poyouwr pasodoig

(20T T8 10 Suex)
OUEO.EMOM

(PoNUNU0d) ¢ AQEL



2717

Machine Learning and Deep Learning Strategies for Sustainable Renewable. . .

(panunuod)

uonepIfeA IYIINJ INOYIIM
swaysAs aurpadid 1o1em Jo sadAy
Io4j0 0] AJIqezI[eIauad ay ywi|
Kew yorym ‘sourjadid Ajddns 1o1em
ueqin 10y pagnuenb Aremonred
are sjgoueq eouewIojId

9y, :uoneosrddy oyroadg
SwaIsAs [euoniper o) paredwod
Sunso) pue SuLmmjoejnuew s10a1d
arowr axmnbar pue Kjrxerdwod
19y31y 2A[0AUT ABW SS001d
uonezrumdo pue u3Isop [oAou
y, :Kixordwo)) uoneyuswarduy

s10je1ouad [euOnIpen

0} paredwod 9,8°G¢ Aq uoneIouad
I1omod [enuue SuISLaIOUl puB 9,G¢
£q smoy Junerado [e10) Jurpueyxe
‘K3100[9A Moy 1a1em dmyre)s

9y} Sonpar ATOANORS DINAI

UL, :UOIRISUAD) JOMOJ PASLIdU]
pue smoy SunerodQ papualxyg
Qouewiofrad

19)39q 0} SuIpe9[ ‘@3ee9]

I9JeM JO YSII 9U) S2INPaI pue ssof
UOTOLI SAJBUTWI]S USTISOP DINJ] U}
ur J07e19ud3 Jouew juouewrad
Jo osn oy, STy 9SeyedT peonpay
puE SSOT UOIIOLL] JO UoneUIWI[H

Qouewrrogrod

[eouownU FunesnsoAul

I10J spaads UONL)OI [BISAIS

pUE SOIIO0[AA JdJem ‘siojourered
urew jo syoedwr oy Jopun

P15 sem oouewntojrad s adKjojord
oy, -edK1001d HAJT ue

Jo Sunmyoeynuewr ay) Aq paMo[[of
‘pasn st sanbruyo9) poaoxdur
poyloul JUSWI[R AIUY UO PIseq
juowraguerre HIAJ] 2roidwr of,
“Aiqe)s euonerado pue Aouaroyje
uonerouad romod aaoxdur

0} (DJA]) 103e1oua3 jouIewr
jusuewad pajeISaul s umouy| [eas
JUSISISUOD B )IM [BIS [BOIUBYOIU
[eo1sse[o ay) saoedar jeyy poyrow
aaneaId © sasodoid Apnys oy,

(€20T "1 19 UAYS)



M. R. I. Tomal et al.

278

uonepIfeA

IoU}INJ INOYIM SYSB) uonorpard
SOLIAS QW) JOYJ0 0) AYI[IqezI[eIouad
SI1 JIWI] ABW YOIYM ‘SPOOY

Sunmnp 9s11 [9A9] wep Sunorpaid

JO 1X21U0D Y} UI PAJBN[BAD ST [9pOUL
AU} JO QOUBWLIONIJ :3X9Ju0)) oy10adg
S90INOSAI

reuoneindwos jueoyrusdis a1nbax
pue Lxardwod ppe JyJrw [epow
1A10MY 9y} Jo uonejuowa[dur
pue Suruny 1ojouwreredrodAy
onewoine ay [, :K1rxa[dwoos [opoN

uonepIeA

Ioy)Ing oYM suoi3al o syueld 1oyjo
0] s3urpuy ay) jo AJ[Iqezijerousd

U yruy S yorgm Jued
S1199[20IPAY 2[3UTS B UO SISNO0J
Apmys ay [, :uonesrddy syroadg
S90IN0SaI

reuoneindwos jueoyrusis axnbar pue
Kyxopdwoos ppe Aew eunydQ Suisn
[opout [ 41, ay3 Jo ssadoid Surun pue
uonezrundo ayJ, :Arxo[dwod [9pojy

uoney I

Sunyew-uoIsIoap Aousgiows

pue Suruued £310u9 wd)-3uo|

ur Surpre ‘sjuaad pooy Surnp A319ud
Sunerouad ozrundo pue ‘A)ojes aInsud
01301 Sunyiom aaoxdwir ued anbruyooy
LAromy ay) £q papraoad suonorpard
9reIndoe Ay, :Aousroyyy [euonerdo
spoyjow

Surured o[quIasud uonezI[eIduad
payorlS pue ‘pajsooq ‘pagdeq

TALST ‘WISAS 90UIJUT AZZNJ-0INdU
aandepe se yons sanbruyody

-1 1oyio Suissedins ‘Furseo1oy
ULI)-UBIPAW I0J 7 /"] PUe Sunseddroy
ULI9}-110ys 10§ 8/°C JO (ASNY)

10119 orenbs ueow 1001 © SOAAIYOR
[epowr 1101y 9YJ, :Koemooy ySIH
wAsAs 1omod s [1zeig

Jo uonerodo pue Jurmpayos ay)

10J SUD[EW-UOISIO9P POULIOJUT IOW
ut Suipre ‘rojerodQ WSAS OLOIF
[euoneN oy 10J sIySISUT 10)39q

SI9JJO [opowl [ 4L-Y oy Jo AorInooe
Y31y oy, :SunyejN-uoIs1oo paaoiduy
[opoWw A LS [eUOnSaIIpIq oty pue
UOTSIOA [enIUL )T yjoq Sururioyradino
‘96°0 JO KoUdIda OYIIING—YSEN B
pue 1°¢T Jo 10110 a3ejuadrad aynjosqe
UBIW © SBNSUOWIP [opoul [ J[-Y
9y, :AoeInooy uonorpaid Joadng

agejueApy

(1dL0mY)
IouroJsuen uorsnj Teroduro)

Surum 19jowerediodAy onewoine ue
Susn Aq spooy Surmp sjuefd 1omod
JL1}OJ[Q0IPAY] UT ASTI [9AJ] wep Jo1paid
ued jey) [opowt & sasodoad xoded oy,

(LAL-Y) ammonns pezrundo ue 9jeard
0} eunydQ Sursn paunyredAy soyyng

SI [opowl [T YL, “Jued o1mos[eoIpAy
ININONJ, Ay} 0IUI SMOPUI Jajem Aep-1|
Sunorpaid 10]—(14]) JowIojsuel],
uorsn [erodway, pue NLST

‘(NDL) SYI0MIDN [BUOTIN[OAUOD)
[etodway, —s[opouwr 921}

soredwod pue sAJeN[EAd YOoIeasal oy,

poyyowr pasodoig

(¥20T *"Te 10 uousjaIs)

(#20T T8 39 BATIS ©p)
ENITENEYEN |

(ponunuod) ¢ AqeL



Machine Learning and Deep Learning Strategies for Sustainable Renewable. . . 279

References

Abd El-Aziz, R. M. (2022). Renewable power source energy consumption by hybrid machine
learning model. Alexandria Engineering Journal, 61(12), 9447-9455. https://doi.org/10.1016/
j-aej.2022.03.019

Abdelateef Mostafa, M., El-Hay, E. A., & ELkholy, M. M. (2023). Recent trends in wind energy
conversion system with grid integration based on soft computing methods: Comprehensive
review, comparisons and insights. Archives of Computational Methods in Engineering, 30(3),
1439-1478. https://doi.org/10.1007/s11831-022-09842-4

Abdelghany, R. Y., Kamel, S., Sultan, H. M., Khorasy, A., Elsayed, S. K., & Ahmed, M. (2021).
Development of an improved bonobo optimizer and its application for solar cell parameter
estimation. Sustainability, 13(7), 3863. https://doi.org/10.3390/su13073863

Aksoy, B., & Selbas, R. (2021). Estimation of wind turbine energy production value by using
machine learning algorithms and development of implementation program. Energy Sources,
Part A Recovery, Utilization, and Environmental Effects, 43(6), 692—704. https://doi.org/
10.1080/15567036.2019.1631410

AlKandari, M., & Ahmad, I. (2024). Solar power generation forecasting using ensemble approach
based on deep learning and statistical methods. Applied Computing and Informatics, 20(3/4),
231-250. https://doi.org/10.1016/j.aci.2019.11.002

Alkhayat, G., & Mehmood, R. (2021). A review and taxonomy of wind and solar energy
forecasting methods based on deep learning. Energy and Al, 4, 100060. https://doi.org/10.1016/
j-egyai.2021.100060

Almeshaiei, E., Al-Habaibeh, A., & Shakmak, B. (2020). Rapid evaluation of micro-scale
photovoltaic solar energy systems using empirical methods combined with deep learning neural
networks to support systems’ manufacturers. Journal of Cleaner Production, 244, 118788.
https://doi.org/10.1016/j.jclepro.2019.118788

Angadi, S., Yargatti, U. R., Suresh, Y., & Raju, A. B. (2022). Speed sensorless maximum power
point tracking technique for SEIG-based wind energy conversion system feeding induction
motor pump. Electrical Engineering, 104(5), 2935-2948. https://doi.org/10.1007/s00202-022-
01519-2

Bhatti, G., Mohan, H., & Raja Singh, R. (2021). Towards the future of smart electric vehicles:
Digital twin technology. Renewable and Sustainable Energy Reviews, 141, 110801. https:/
doi.org/10.1016/j.rser.2021.110801

Bin Abu Sofian, A. D. A., Lim, H. R., Siti Halimatul Munawaroh, H., Ma, Z., Chew, K. W., &
Show, P. L. (2024). Machine learning and the renewable energy revolution: Exploring solar
and wind energy solutions for a sustainable future including innovations in energy storage.
Sustainable Development. https://doi.org/10.1002/sd.2885

Bouzgou, H., & Gueymard, C. A. (2019). Fast short-term global solar irradiance forecasting
with wrapper mutual information. Renewable Energy, 133, 1055-1065. https://doi.org/10.1016/
j-renene.2018.10.096

Chen, C., Hu, Y., Karuppiah, M., & Kumar, P. M. (2021). Artificial intelligence on economic evalu-
ation of energy efficiency and renewable energy technologies. Sustainable Energy Technologies
and Assessments, 47, 101358. https://doi.org/10.1016/j.seta.2021.101358

da Silva, E. C., Finardi, E. C., & Stefenon, S. F. (2024). Enhancing hydroelectric inflow prediction
in the Brazilian power system: A comparative analysis of machine learning models and
hyperparameter optimization for decision support. Electric Power Systems Research, 230,
110275.

Emrani, A., Berrada, A., & Bakhouya, M. (2022). Optimal sizing and deployment of gravity energy
storage system in hybrid PV-wind power plant. Renewable Energy, 183, 12-27. https://doi.org/
10.1016/j.renene.2021.10.072


http://doi.org/10.1016/j.aej.2022.03.019
http://doi.org/10.1007/s11831-022-09842-4
http://doi.org/10.3390/su13073863
http://doi.org/10.1080/15567036.2019.1631410
http://doi.org/10.1016/j.aci.2019.11.002
http://doi.org/10.1016/j.egyai.2021.100060
http://doi.org/10.1016/j.jclepro.2019.118788
http://doi.org/10.1007/s00202-022-01519-2
http://doi.org/10.1016/j.rser.2021.110801
http://doi.org/10.1002/sd.2885
http://doi.org/10.1016/j.renene.2018.10.096
http://doi.org/10.1016/j.seta.2021.101358
http://doi.org/10.1016/j.renene.2021.10.072

280 M. R. I. Tomal et al.

Fathy, A., Alharbi, A. G., Alshammari, S., & Hasanien, H. M. (2022). Archimedes optimization
algorithm based maximum power point tracker for wind energy generation system. Ain Shams
Engineering Journal, 13(2), 101548. https://doi.org/10.1016/j.asej.2021.06.032

Fonseca, J. D., Commenge, J.-M., Camargo, M., Falk, L., & Gil, I. D. (2021). Multi-criteria opti-
mization for the design and operation of distributed energy systems considering sustainability
dimensions. Energy, 214, 118989. https://doi.org/10.1016/j.energy.2020.118989

Hasan, M., Abedin, M. Z., Hajek, P., Coussement, K., Sultan, M. N., & Lucey, B. (2024a).
A blending ensemble learning model for crude oil price forecasting. Annals of Operations
Research, 1-31.

Hasan, M., Sahid, M. A., Uddin, M. P,, Marjan, M. A., Kadry, S., & Kim, J. (2024b). Performance
discrepancy mitigation in heart disease prediction for multisensory inter-datasets. PeerJ
Computer Science, 10, €1917.

Hassan, M. H., Kamel, S., Abualigah, L., & Eid, A. (2021). Development and application of slime
mould algorithm for optimal economic emission dispatch. Expert Systems with Applications,
182, 115205. https://doi.org/10.1016/j.eswa.2021.115205

He, B., et al. (2022). A combined model for short-term wind power forecasting based on the
analysis of numerical weather prediction data. Energy Reports, 8, 929-939. https://doi.org/
10.1016/j.egyr.2021.10.102

Ikram, R. M. A., Dai, H.-L., Ewees, A. A., Shiri, J., Kisi, O., & Zounemat-Kermani, M.
(2022). Application of improved version of multi verse optimizer algorithm for modeling solar
radiation. Energy Reports, 8, 12063—12080. https://doi.org/10.1016/j.egyr.2022.09.015

Kaushaley, S., Shaw, B., & Nayak, J. R. (2023). Optimized machine learning-based forecasting
model for solar power generation by using crow search algorithm and seagull optimization
algorithm. Arabian Journal for Science and Engineering, 48(11), 14823—-14836. https://doi.org/
10.1007/s13369-023-07822-9

Khan, W., Walker, S., & Zeiler, W. (2022). Improved solar photovoltaic energy generation forecast
using deep learning-based ensemble stacking approach. Energy, 240, 122812. https://doi.org/
10.1016/j.energy.2021.122812

Koo, C., Li, W, Cha, S. H., & Zhang, S. (2019). A novel estimation approach for the solar radiation
potential with its complex spatial pattern via machine-learning techniques. Renewable Energy,
133, 575-592. https://doi.org/10.1016/j.renene.2018.10.066

Lee, M.-H. (2022). Identifying correlation between the open-circuit voltage and the frontier
orbital energies of non-fullerene organic solar cells based on interpretable machine-learning
approaches. Solar Energy, 234, 360-367. https://doi.org/10.1016/j.solener.2022.02.010

Li, Y., Wang, R., Li, Y., Zhang, M., & Long, C. (2023). Wind power forecasting considering data
privacy protection: A federated deep reinforcement learning approach. Applied Energy, 329,
120291. https://doi.org/10.1016/j.apenergy.2022.120291

Lin, G.-Q., Li, L.-L., Tseng, M.-L., Liu, H.-M., Yuan, D.-D., & Tan, R. R. (2020). An improved
moth-flame optimization algorithm for support vector machine prediction of photovoltaic
power generation. Journal of Cleaner Production, 253, 119966. https://doi.org/10.1016/
j-jclepro.2020.119966

Liu, Z., et al. (2022). A novel distributed energy system combining hybrid energy storage and
a multi-objective optimization method for nearly zero-energy communities and buildings.
Energy, 239, 122577. https://doi.org/10.1016/j.energy.2021.122577

Ma, Z., Li, M.-J., Zhang, K. M., & Yuan, F. (2021). Novel designs of hybrid thermal energy storage
system and operation strategies for concentrated solar power plant. Energy, 216, 119281. https:/
/doi.org/10.1016/j.energy.2020.119281

Maamoun, N., Kennedy, R., Jin, X., & Urpelainen, J. (2020). Identifying coal-fired power plants
for early retirement. Renewable and Sustainable Energy Reviews, 126, 109833. https://doi.org/
10.1016/j.rser.2020.109833


http://doi.org/10.1016/j.asej.2021.06.032
http://doi.org/10.1016/j.energy.2020.118989
http://doi.org/10.1016/j.eswa.2021.115205
http://doi.org/10.1016/j.egyr.2021.10.102
http://doi.org/10.1016/j.egyr.2022.09.015
http://doi.org/10.1007/s13369-023-07822-9
http://doi.org/10.1016/j.energy.2021.122812
http://doi.org/10.1016/j.renene.2018.10.066
http://doi.org/10.1016/j.solener.2022.02.010
http://doi.org/10.1016/j.apenergy.2022.120291
http://doi.org/10.1016/j.jclepro.2020.119966
http://doi.org/10.1016/j.energy.2021.122577
http://doi.org/10.1016/j.energy.2020.119281
http://doi.org/10.1016/j.rser.2020.109833

Machine Learning and Deep Learning Strategies for Sustainable Renewable. . . 281

May, R., Nygard, T., Falkdalen, U., Astrom, J., Hamre, @., & Stokke, B. G. (2020). Paint it black:
Efficacy of increased wind turbine rotor blade visibility to reduce avian fatalities. Ecology and
Evolution, 10(16), 8927-8935. https://doi.org/10.1002/ece3.6592

Mehrpooya, M., Raeesi, M., Pourfayaz, F., & Delpisheh, M. (2021). Investigation of a hybrid solar
thermochemical water-splitting hydrogen production cycle and coal-fueled molten carbonate
fuel cell power plant. Sustainable Energy Technologies and Assessments, 47, 101458. https://
doi.org/10.1016/j.seta.2021.101458

Meka, R., Alaeddini, A., & Bhaganagar, K. (2021). A robust deep learning framework for short-
term wind power forecast of a full-scale wind farm using atmospheric variables. Energy, 221,
119759. https://doi.org/10.1016/j.energy.2021.119759

Monahan, T., Tang, T., & Adcock, T. A. (2023). A hybrid model for online short-term tidal energy
forecasting. Applied Ocean Research, 137, 103596.

Mostafa, M. H., Abdel Aleem, S. H. E., Ali, S. G., Ali, Z. M., & Abdelaziz, A. Y. (2020). Techno-
economic assessment of energy storage systems using annualized life cycle cost of storage
(LCCOS) and levelized cost of energy (LCOE) metrics. Journal of Energy Storage, 29, 101345.
https://doi.org/10.1016/j.est.2020.101345

Mostafa, N., Ramadan, H. S. M., & Elfarouk, O. (2022). Renewable energy management in smart
grids by using big data analytics and machine learning. Machine Learning with Applications,
9, 100363. https://doi.org/10.1016/j.mlwa.2022.100363

Munawar, U., & Wang, Z. (2020). A framework of using machine learning approaches for short-
term solar power forecasting. Journal of Electrical Engineering and Technology, 15(2), 561—
569. https://doi.org/10.1007/s42835-020-00346-4

Naik, K. R., Rajpathak, B., Mitra, A., Sadanala, C., & Kolhe, M. L. (2022). Power management
scheme of DC micro-grid integrated with photovoltaic - battery - micro hydro power plant.
Journal of Power Sources, 525, 230988. https://doi.org/10.1016/j.jpowsour.2022.230988

Nejati, M., & Amjady, N. (2022). A new solar power prediction method based on feature clustering
and hybrid-classification-regression forecasting. I[EEE Transactions on Sustainable Energy,
13(2), 1188-1198. https://doi.org/10.1109/TSTE.2021.3138592

Rajasundrapandiyanleebanon, T., Kumaresan, K., Murugan, S., Subathra, M. S. P., & Sivakumar,
M. (2023). Solar energy forecasting using machine learning and deep learning techniques.
Archives of Computational Methods in Engineering, 30(5), 3059-3079. https://doi.org/10.1007/
s11831-023-09893-1

Rajesh, P., Muthubalaji, S., Srinivasan, S., & Shajin, F. H. (2022). Leveraging a dynamic differ-
ential annealed optimization and recalling enhanced recurrent neural network for maximum
power point tracking in wind energy conversion system. Technology and Economics of Smart
Grids and Sustainable Energy, 7(1), 19. https://doi.org/10.1007/s40866-022-00144-z

Ravinuthala, S., Das, S. K., Nithya, R., & Das, S. P. (2022). Ocean, tidal and wave energy: Science
and challenges. In S. J. Joshi, R. Sen, A. Sharma, & P. A. Salam (Eds.), Status and future
challenges for non-conventional energy sources (Clean energy production technologies) (Vol.
1). Springer. https://doi.org/10.1007/978-981-16-4505-1_1

Rushdi, M. A., Rushdi, A. A., Dief, T. N., Halawa, A. M., Yoshida, S., & Schmehl, R. (2020).
Power prediction of airborne wind energy systems using multivariate machine learning.
Energies, 13(9), 2367. https://doi.org/10.3390/en13092367

Sahu, P. C., Baliarsingh, R., Prusty, R. C., & Panda, S. (2022). Novel DQN optimised tilt fuzzy cas-
cade controller for frequency stability of a tidal energy-based AC microgrid. International Jour-
nal of Ambient Energy, 43(1), 3587-3599. https://doi.org/10.1080/01430750.2020.1839553

Shen, Z., Yao, Y., Wang, Q., Lu, L., & Yang, H. (2023). A novel micro power generation system to
efficiently harvest hydroelectric energy for power supply to water intelligent networks of urban
water pipelines. Energy, 268, 126694.

Shirzadi, N., Nasiri, F., El-Bayeh, C., & Eicker, U. (2022). Optimal dispatching of renewable
energy-based urban microgrids using a deep learning approach for electrical load and wind
power forecasting. International Journal of Energy Research, 46(3), 3173-3188. https://
doi.org/10.1002/er.7374


http://doi.org/10.1002/ece3.6592
http://doi.org/10.1016/j.seta.2021.101458
http://doi.org/10.1016/j.energy.2021.119759
http://doi.org/10.1016/j.est.2020.101345
http://doi.org/10.1016/j.mlwa.2022.100363
http://doi.org/10.1007/s42835-020-00346-4
http://doi.org/10.1016/j.jpowsour.2022.230988
http://doi.org/10.1109/TSTE.2021.3138592
http://doi.org/10.1007/s11831-023-09893-1
http://doi.org/10.1007/s40866-022-00144-z
http://doi.org/10.1007/978-981-16-4505-1_1
http://doi.org/10.3390/en13092367
http://doi.org/10.1080/01430750.2020.1839553
http://doi.org/10.1002/er.7374

282 M. R. I. Tomal et al.

Stefenon, S. E., Seman, L. O., da Silva, L. S. A., Mariani, V. C., & dos Santos Coelho, L. (2024).
Hypertuned temporal fusion transformer for multi-horizon time series forecasting of dam level
in hydroelectric power plants. International Journal of Electrical Power & Energy Systems,
157, 109876.

Stoean, C., et al. (2023). Metaheuristic-based hyperparameter tuning for recurrent deep learning:
Application to the prediction of solar energy generation. Axioms, 12(3), 266. https://doi.org/
10.3390/axioms 12030266

Tercan, S. M., Demirci, A., Gokalp, E., & Cali, U. (2022). Maximizing self-consumption rates
and power quality towards two-stage evaluation for solar energy and shared energy storage
empowered microgrids. Journal of Energy Storage, 51, 104561. https://doi.org/10.1016/
j-est.2022.104561

Wang, L., Tao, R., Hu, H., & Zeng, Y.-R. (2021). Effective wind power prediction using novel
deep learning network: Stacked independently recurrent autoencoder. Renewable Energy, 164,
642-655. https://doi.org/10.1016/j.renene.2020.09.108

Wang, Y., et al. (2022). Driving-torque self-adjusted triboelectric nanogenerator for effec-
tive harvesting of random wind energy. Nano Energy, 99, 107389. https://doi.org/10.1016/
j-nanoen.2022.107389

Yang, H., Wu, Q., & Li, G. (2024). A multi-stage forecasting system for daily ocean tidal energy
based on secondary decomposition, optimized gate recurrent unit and error correction. Journal
of Cleaner Production, 449, 141303.

Yang, J. J., Yang, M., Wang, M. X., Du, P. J., & Yu, Y. X. (2020). A deep reinforcement learning
method for managing wind farm uncertainties through energy storage system control and
external reserve purchasing. International Journal of Electrical Power & Energy Systems, 119,
105928. https://doi.org/10.1016/].ijepes.2020.105928

Zhang, Y., & Chen, Y. (2022). Application of hybrid model based on CEEMDAN, SVD, PSO to
wind energy prediction. Environmental Science and Pollution Research, 29(15), 22661-22674.
https://doi.org/10.1007/s11356-021-16997-3

Zhang, G., Hu, W.,, Cao, D., Huang, Q., Chen, Z., & Blaabjerg, F. (2021). A novel deep
reinforcement learning enabled sparsity promoting adaptive control method to improve the
stability of power systems with wind energy penetration. Renewable Energy, 178, 363-376.
https://doi.org/10.1016/j.renene.2021.06.081

Zhang, S., & Li, X. (2021). Future projections of offshore wind energy resources in China using
CMIP6 simulations and a deep learning-based downscaling method. Energy, 217, 119321.
https://doi.org/10.1016/j.energy.2020.119321

Zhang, Y., Li, L., Sadiq, M., & Chien, F. (2024). The impact of non-renewable energy production
and energy usage on carbon emissions: Evidence from China. Energy & Environment, 35(4),
2248-2269. https://doi.org/10.1177/0958305X221150432

Zhao, Y., & Kok Foong, L. (2022). Predicting electrical power output of combined cycle power
plants using a novel artificial neural network optimized by electrostatic discharge algorithm.
Measurement, 198, 111405. https://doi.org/10.1016/j.measurement.2022.111405

Zhao, N., & You, F. (2022). Sustainable power systems operations under renewable energy
induced disjunctive uncertainties via machine learning-based robust optimization. Renewable
and Sustainable Energy Reviews, 161, 112428. https://doi.org/10.1016/j.rser.2022.112428


http://doi.org/10.3390/axioms12030266
http://doi.org/10.1016/j.est.2022.104561
http://doi.org/10.1016/j.renene.2020.09.108
http://doi.org/10.1016/j.nanoen.2022.107389
http://doi.org/10.1016/j.ijepes.2020.105928
http://doi.org/10.1007/s11356-021-16997-3
http://doi.org/10.1016/j.renene.2021.06.081
http://doi.org/10.1016/j.energy.2020.119321
http://doi.org/10.1177/0958305X221150432
http://doi.org/10.1016/j.measurement.2022.111405
http://doi.org/10.1016/j.rser.2022.112428

Machine Learning and Deep Learning Strategies for Sustainable Renewable. . . 283

Md Raihanul Islam Tomal is currently pursuing his master’s
by research in the field of Machine Learning and NLP from
the Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA),
Pekan, Malaysia. He has completed his Bachelor’s degree from
the International Islamic University Chittagong, Bangladesh in
the field of Computer Science and Engineering in 2022. Currently,
he is a full-time research assistant at Data Science Simulation and
Modeling lab at UMPSA. His research interest includes Natural
Language Processing, Machine Learning, Deep Learning, and
Image Processing.

Alamgir Kabir is currently pursuing his Master of Business
Administration in Agribusiness Management (MAB) at Faculty
of Economics, Prince of Songkla University, Hat Yai Campus,
Thailand. He completed his M.S.S. in Sociology from the Depart-
ment of Sociology at Hajee Mohammad Danesh Science and
Technology University, Dinajpur Bangladesh, in 2023 and B.S.S.
in Sociology from the same university in 2021. His research
interest includes E-commerce, Women Entrepreneurs, Poverty
and Inequality, Indigenous Elderly, Mobile Financial Service
(MFS), Computational Sociology, Sustainable Energy, and SDG.

Mahmudul Hasan is currently pursuing a Ph.D. in Information
Technology (IT) at Deakin University, Melbourne, Australia. He
earned his B.Sc. (Eng.) and M.Sc. (Eng.) degrees in Computer
Science and Engineering (CSE) from Hajee Mohammad Danesh
Science and Technology University, Dinajpur, Bangladesh, in
2021 and 2023, respectively. He previously served as a Lec-
turer in the Department of CSE at the University of Creative
Technology, Chittagong (UCTC), Bangladesh. He is the Founder
and Director of the Center for Multidisciplinary Research and
Development (CeMRD) and a moderator of “Be Researcher BD,”
the largest online research forum in Bangladesh. Additionally,
he has taught online as a Data Science instructor to students in
the USA, Italy, Denmark, South Korea, and Australia. He is also
the founder of the online educational platform “MHM Academy.”
His research interests include federated learning, machine learn-
ing, deep learning, cybersecurity, health informatics, renewable
energy, computational sociology, and business intelligence.



284

M. R. I. Tomal et al.

Sayed Mahmudul Haque is currently learning Japanese Lan-
guage at Remnant Academy Japanese Language School, Nagoya,
Japan. He completed his BSc (Eng.) in CSE from the Depart-
ment of Computer Science and Engineering (CSE) at Hajee
Mohammad Danesh Science and Technology University, Dina-
jpur, Bangladesh, in 2022. His research interests include Image
Processing, Machine Learning, Deep Learning, Cyber Security,
Business Intelligence, and Artificial Intelligence.

Md Mehedi Hasan Jony is pursuing a Master of Information
Technology degree in Australia. I also hold a Bachelor of Engi-
neering degree in Electrical and Electronic Engineering. I am
an associate member of the Australian Computer Society (ACS)
(Member ID: 4411692), reflecting my dedication to professional
growth and ethical practices in the IT industry. My research
interests include machine learning, deep learning, business intelli-
gence, AWS Cloud Al, and computational sociology. Through my
work, I aim to explore innovative solutions at the intersection of
technology, data science, and society. Committed to advancing IT
expertise, [ aspire to contribute to the global academic and profes-
sional community through impactful research and publications.



Efficient Gasoline Spot Price Prediction )
Using Hyperparameter Optimization and <o
Ensemble Machine Learning Approach

Md. Amir Hamja, Md Rakinus Sakib, Mahmudul Hasan,
and Md Sabir Hossain

1 Introduction

Energy is fundamental to economic growth and social progress, with prices at the
heart of the energy market. Oscillations in energy prices significantly impact the
distribution and movement of resources within the market, exerting considerable
economic influence (Agbaji et al., 2023). Many countries face challenges related
to excessive energy consumption across industries and economies. While energy
conservation is widely seen as a key solution, determining the most effective
strategies for conserving energy across various sectors remains difficult (Fathi
et al.,, 2020). Energy price prediction involves using historical data to create
models that forecast future prices by analyzing factors like market supply and
demand, participant behavior, costs, the socioeconomic environment, and energy
system structure (Khan et al., 2023). Energy price forecasting is crucial for three
main reasons: (a) It enables dynamic cost control, (b) it helps in accurately
understanding market trends and seizing opportunities, and (c) it provides a solid
foundation for policymaking and market regulation (Lu et al., 2021). The prediction
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of energy prices has garnered significant interest from researchers, leading to a
rapid increase in academic publications on the topic in recent years. But in the
rapidly changing global energy markets, accurately forecasting gasoline prices is
a persistent challenge. As economies expand and technology transforms energy
consumption and production, the factors influencing gasoline prices grow more
complex and volatile (Eliwa et al., 2024). Fuel that comes from crude oil and other
petroleum-based liquids is called gasoline, and it is mostly utilized in car engines.
Petroleum refineries and blending facilities generate it, while fueling stations sell
it as finished motor gasoline (MultiMedia LLC, 2024). Since the pandemic began
in December 2019 due to COVID situation, many countries imposed lockdowns
and limited social interaction to curb the spread of the virus. This led to reduced
consumption and travel, causing a drop in gasoline demand and prices. Recently,
conflicts such as those between Russia and Ukraine, and Israel and Palestine,
have driven energy prices up due to supply shortages. These events significantly
impact crude oil demand and supply, leading to sharp fluctuations in the price of
gasoline. It is vital to the economy, influencing the Consumer Price Index (CPI)
and potentially triggering inflation and economic downturns. Gasoline prices are
closely linked to macroeconomic activity, with oil price shocks often preceding
economic recessions. Additionally, gasoline prices can affect foreclosure rates and
house prices (Hamilton, 2009). Researchers have studied consumer responses to
fluctuations in gasoline prices to gain insights into different economic behaviors,
such as demand for automobiles (Allcott & Wozny, 2014), transportation choices
(Knittel & Sandler, 2011), search patterns (Lewis & Marvel, 2011), and price
stickiness (Borenstein & Shepard, 1996). Accurate gasoline price predictions are
crucial for modeling the automobile market and analyzing environmental policies
(Busse et al., 2013). As a key driver of the economy, gasoline prices influence
overall market balance and the functioning of economic activities, directly affecting
people’s lives. Therefore, forecasting gasoline prices holds significant practical
importance for the global economy. Traditional and Al-based energy forecasting
models can be generally divided into two groups (Lu et al., 2021). With the rise of
Al, many researchers have turned to Al algorithms for energy prediction. Various
studies have reviewed these models from different perspectives. Early oil price
forecasts often relied on statistical models like AutoRegressive Integrated Moving
Average (ARIMA), Generalized AutoRegressive Conditional Heteroskedasticity
(GARCH), Linear Regression (LR), random walk, and Vector Error Correction
Model (VECM) (Hasan et al., 2024a; Jin & Xu, 2024; Yuan et al., 2023). While
these models are effective for linear relationships and short-term predictions, they
struggle with the nonlinear nature of gasoline prices (Abdollahi & Ebrahimi,
2020). Gasoline prices, being nonstationary time series, pose challenges for time
series models, which also rely on assumptions of linearity and normal distribution,
failing to capture the specific characteristics of gasoline prices. In contrast, Al
models are better equipped to handle the nonlinearity and complexity of gasoline
prices due to their flexible structures (Yuan et al., 2023). Popular AI models
for gasoline price forecasting include support vector regression (SVR) (Hasan
et al., 2024a) and artificial neural networks (ANNs). Among ANNs, models like
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Extreme Learning Machine (ELM), Backpropagation Neural Network (BPNN),
Random Vector Functional Link Network (RVFL), Recurrent Neural Network
(RNN), LSTM, BiLSTM, GRU, and Bidirectional Gated Recurrent Unit (Bi-GRU)
are frequently used (Zheng et al., 2024; Salamai, 2023; Dong et al., 2024; Li et al.,
2020). Despite their effectiveness, artificial intelligence models can be sensitive
to parameter settings and may face challenges such as local optimization and
overfitting. In this study, we examine the two most commonly used gasoline spot
price datasets for forecasting. In order to enable predictions over a range of temporal
periods, we conduct necessary preprocessing and mode adjustments in addition
to analyzing the statistical properties of the gasoline price time series data. The
following is a summary of this chapter’s main contributions:

* We create an analysis framework for gasoline spot prices that incorporates deep
learning (DL), machine learning (ML), and ensemble learning models.

* To enhance the ML, DL, and ensemble ML models’ prediction performance for
more thorough analysis, we deepen our hyperparameter tuning.

e A set of multi-scale models using stacking ensemble learning is introduced to
predict gasoline spot prices, addressing the limitations of conventional single-
method time series decomposition analysis.

e It is demonstrated that the suggested stacking ensemble model performs better
than the most advanced models currently in use, which are regarded as bench-
marks for predicting gas spot prices.

The structure of the remaining sections of this chapter is outlined as follows.
The related works are outlined in Sect. 2. Section 3 is dedicated to presenting our
proposed methodology and the experimental setup. We detail the approach we have
taken to address the research problem, including the methods, techniques, and tools
employed in our study. In Sect.4, we present the outcomes of our experiments.
The chapter concludes in Sect.5 with a summary of our findings and their
significance. Additionally, we outline avenues for future research and development
in this domain, emphasizing the potential directions for further exploration and
enhancement.

2 Literature Review

Forecasting energy prices has advanced significantly in recent years. Numerous
researchers have demonstrated promising outcomes through the analysis of various
energy price time series using statistical, econometric, and ML techniques. This
section highlights the latest developments in energy price forecasting, with a
particular focus on ML approaches, including DL and hybrid and ensemble models.

Hasan et al. (2023b) use blended ensemble learning to create a forecasting
model that combines support vector regression, ridge regression, linear regression,
regression trees, and k-nearest neighbor regression (Hasan et al., 2024a). This model
demonstrated greater accuracy in both short- and medium-term forecasts and was
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validated using multiple time series of crude oil prices, namely WTI and Brent.
Variational mode decomposition (VMD), which divides data into low- and high-
frequency components, is the basis of an interval-based framework that Zheng et al.
(2024) suggested based on the “divide and conquer” theory (Zhang et al., 2021). An
autoregressive conditional interval (ACI) model is used to predict the low-frequency
component, and interval long short-term memory (iLSTM) networks are used to
anticipate the high-frequency component. Combined predictions form the final
interval-valued forecast, leading to improved forecasting and trading performance.
Zhao et al. (2024) introduced a hybrid model that incorporates financial market
factors and crude oil news, utilizing a two-layer multivariate decomposition to
predict weekly WTT oil spot prices (Zhao et al., 2024). Benchmarks were greatly
underperformed by this model. The Jaynes Weight Hybrid (JWH) model, which
integrates Shannon information entropy with classical statistics, neural network,
and deep learning models, is a unique combined forecasting approach with time-
varying weights that Liu et al. (2024) introduced to predict crude oil prices
(Liu et al.,, 2024). In order to anticipate crude oil prices, Qin et al. (2023)
used Google Trends data using a stacking ensemble approach. They identified
pertinent indicators and assessed their impact using Granger causality tests and
co-integration tests (Qin et al., 2023). Multiple-model approaches were found to
be more effective than single-model approaches in the study. Yuan et al. (2023)
introduced a clustering-based weight assignment strategy to reduce outlier impact
and balance the ensemble model’s competitiveness and robustness, significantly
improving forecasting accuracy for West Texas Intermediate oil prices (Yuan et al.,
2023). Salamai (2023) developed a framework for predicting daily and weekly
crude oil prices, using optimized variational mode decomposition (OVMD), a Tree-
structured Parzen Estimator (TPE) algorithm, and enhanced AdaBoost with random
forest (Salamai, 2023). The model captures spatial-temporal patterns with a Conv-
Former module and stacked LSTM networks, showing superior performance in
predicting Brent crude oil prices. Dong et al. (2024) proposed a model using
VMD, PSR, CNN, and BiLSTM for crude oil price forecasting, achieving low
MAPEs and MSEs (Dong et al., 2024). The model’s superiority was confirmed by
the Diebold-Mariano test. Li et al. (2024) introduced a hybrid forecasting method
combining MEEMD and Mix-KELM, optimizing local and global kernel functions
with a genetic algorithm, resulting in lower prediction errors for crude oil prices
(Li et al., 2024). Zhang et al. (2024) proposed an attention-based PCA method to
enhance oil price forecasting, integrating multiple attention mechanisms and diverse
models (Zhang et al., 2024). The attention-PCA model significantly reduced MAPE,
with the best combination model achieving a MAPE of 4.40%. Lastly, nonlinear
autoregressive neural network models were employed by Jin and Xu (2024) to
forecast monthly prices for New York Harbor No. 2 heating oil and Henry Hub
natural gas, as well as daily prices for WTI and Brent crude oil (Jin & Xu, 2024).
In exploring several model configurations, their work produced simplified models
with strong accuracy on a variety of datasets. The relative root mean square error for
WTI, Brent, New York Harbor No. 2 heating oil, Henry Hub natural gas, and other
crude oils was 1.95%/1.80%, 9.51%, and 20.35% overall.
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3 Methodology

3.1 Approach Overview

Outline of the suggested methodology is illustrated in Fig. 1. The collection and
preprocessing of daily spot prices for gasoline in the United States and New
York has been done to enhance computational efficiency and model performance.
Consistent with prior research, the gasoline price datasets have been partitioned
using a sequential validation approach. Specifically, an 80:20 ratio was used to
divide the data into training and testing subsets. Various ML models, including
Polynomial Regression, Linear Regression, Ridge, Lasso, SVR, Random Forest,
Decision Tree, Gradient Boosting, XGBoost, LightGBM, KNN, and DL models
such as MLP, GRU, LSTM, and BiLSTM, were then trained on both datasets. Using
a variety of error criteria, the suggested and comparison models’ performance was
assessed, including R%, MSE, RMSE, MAE, MAPE, sMAPE, and elapsed time in
seconds. The next section details the methods applied in this study.

3.2 Description of Dataset and Variables

This study uses two common gasoline spot prices datasets such as U.S. Gulf Coast
Conventional Gasoline Regular Spot Price and New York Harbor Conventional
Gasoline Regular Spot Price which are obtained from the U.S. Energy Information
Administration (MultiMedia LLC, 2024). In both datasets the prices are represented
as dollars per gallon. The duration of the both gasoline price datasets is from June
02, 1986 to August 03, 2024, so the total number of observations for both is 9593.

Fig. 1 Outline of the suggested methodology of energy price forecasting system
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Table 1 Summary statistics of daily gasoline spot price time series

No. of Standard
Dataset | observations| Minimum | Maximum | Mean| deviation | Variance | Skewness| Kurtosis
U.S. 9593 0.270 4.873 1.364| 0.855 0.731 0.615 —0.766
gasoline
spot price
New 9593 0.290 4.509 1.400| 0.876 0.767 0.601 —0.845
York
gasoline
spot price

Fig. 2 The relationship between gas costs and time

Also there are no missing values for both datasets. The data was collected daily and
are not adjusted for seasonal variations. The number of observations and additional
descriptive statistics are detailed in Table 1.

For both datasets, the kurtosis was negative, indicating that outliers are not a
major problem because the distributions appear to have lighter tails than a normal
distribution. Both datasets had skewness values between 0.5 and 1, which suggests a
moderately positive skew. The price of gasoline throughout time is shown in Fig. 2.

The time series of gas spot prices are shown in both datasets. This work uses a
number of machine learning techniques, including KNN, that build models using
the Euclidean distance. We normalized the data, which lowers data dispersion
and improves the performance of the trained models, to improve the forecasting
performance of these fundamental algorithms.
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3.3 Machine Learning Algorithms
331 LR

LR is a fundamental statistical method often employed to forecast time series.
The model forecasts future values by establishing a linear connection between the
explained variable and one or more explanatory variables (Hyndman & Athana-
sopoulos, 2018; Hasan et al., 2024b). When applied to time series forecasting, linear
regression can be expressed as follows:

Yi=Bp+bXiaa+BXi 2+ + B Xt e

where the values for the dependent variable at time ¢ are represented by Y;, the
lagged values are represented by X;_1, X;_2, ..., X;—p, and the intercept term is
represented by Bo. The coefficients are represented by B, B2, ..., Bn, and the error
term is represented by ¢;. By minimizing the sum of squared differences between
the observed and predicted values, the model estimates the coefficients under the
assumption that the independent and dependent variables have a linear relationship.

3.3.2 Ridge

It is an extension of LR, which is particularly useful for time series forecasting
when multicollinearity exists among the predictors. It enhances the linear regression
model by incorporating a penalty term into the loss function, which aids in
preventing overfitting and improves the model’s generalization to new data (Hastie
et al.,, 2005; Hasan et al., 2024a). The ridge regression model for time series
forecasting can be formulated as

n
Y=o+ BiXio1 + BaXica+ A BuXiw + 1D Bt &

i=1

where the values for the dependent variable at time ¢ are represented by Y;, and
the lagged values are represented by X;_1, X;—2, ..., X;—,. The intercept term is
denoted by By, and the coefficients are represented by 81, B2, ..., Bn. €; denotes the
error term, and X indicates the regularization parameter that regulates the severity
of the penalty on the coefficients. The model is stabilized when the regularization
parameter A reduces the coefficients toward zero, lessening the influence of less
significant predictors. Ridge regression is particularly beneficial in situations where
the number of predictors is large, or when the predictors are highly correlated, as it
can yield more accurate and reliable forecasts.
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3.3.3 Lasso

Lasso is an LR technique enhanced by a regularization mechanism, making it
particularly useful for time series forecasting when feature selection is crucial.
It introduces a penalty term to the loss function that helps prevent overfitting
and allows the model to perform automatic feature selection by reducing some
coefficients to zero (Tibshirani, 1996). The lasso regression model for time series
forecasting can be expressed as

n
Yo=Bo+BiXioi+BXiat -+ BuXia+tr ) IBil+e

i=1

where the values for the dependent variable at time ¢ are represented by Y;, and
the lagged values are represented by X;_1, X;—2, ..., X;—,. The intercept term is
represented by Byp. The coefficients are represented by B, B2, ..., Bn. The error
term is ¢, and the regularization parameter A determines how much of a penalty
is applied to the total of the absolute values of the coefficients. The regularization
parameter A determines how much the coefficients are shrunk, with larger values of
A leading to more coefficients being reduced to zero, effectively selecting a simpler
model. This characteristic makes lasso regression particularly effective in scenarios
where there are many predictors, but only a subset is expected to have a significant
impact on the forecast.

334 Poly

Poly is an enhancement of LR that models the relationship between the independent
and dependent variables using an nth degree polynomial. This technique is particu-
larly useful in time series forecasting when the data exhibits a nonlinear trend that
cannot be captured by a simple linear model (Montgomery et al., 2021). It can be
mathematically represented as

Y = Bo+BiXeo1 + BoXP 4+ BuX! |t e

where Y; represents the values of the dependent variable at time ¢, X;_ is the lagged
value of the dependent or other predictors, S indicates the intercept, 81, B2, ..., Bn
represents the coefficients for each polynomial degree, and ¢; is the error term.
By including higher degree terms of the predictor variables, polynomial regression
allows the model to capture the curvature in the data, making it suitable for
forecasting complex, nonlinear time series patterns.
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3.3.5 Decision Tree Regression (DTR)

The DTR is a nonparametric model utilized in time series forecasting, adept at
capturing nonlinear relationships by recursively dividing the data into smaller
subsets. It constructs a tree structure where each node corresponds to a decision
based on a feature, and each leaf node represents a predicted value (Breiman, 2001;
Hasan et al., 2024c). Mathematically this model can be represented as

YI = f(Xl‘fl’ Xl*27 D) thn)

where Y; indicates the predicted value at time ¢, and X,_1, X;_», ..., X;—, are
the lagged predictors. Decision trees are highly interpretable and handle complex
patterns well, though they may overfit if the tree is too deep. Pruning and ensemble
methods like RF can mitigate this issue.

3.3.6 SVR

The SVR is a robust machine learning model used in time series forecasting,
particularly adept at capturing complex relationships within the data which works
by finding a hyperplane that best fits the data within a margin of tolerance, known
as the epsilon-insensitive zone. The model aims to minimize prediction errors while
ensuring the margin is as wide as possible (Smola & Scholkopf, 2004; Sajid et al.,
2023). The SVR model can be expressed as

n
Y= (i —af)K(X;—i, X) +b

i=1

where the predicted value at time ¢ is represented by Y;, the Lagrange multipliers
are denoted by «; and o', the kernel function that converts input data into a higher
dimensional space is denoted by K (X;—_;, X), and the bias term is b. SVR may
describe both linear and nonlinear patterns in time series data depending on the
kernel function (linear, polynomial, or radial basis function, for example). SVR
is recognized for its robustness and strong generalization capabilities, making
it well suited for forecasting tasks, though it often requires careful tuning of
hyperparameters.

3.3.7 RF

Because of its capacity to handle complicated, nonlinear data, the RF regressor is
an ensemble learning technique that is frequently applied in time series forecasting.
To improve accuracy and lessen overfitting, it builds several decision trees during
training and averages their predictions. Every tree is constructed using a random
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subset of data and random feature selection to capture a variety of patterns (Breiman,
2001; Hasan et al., 2023b). This model can be represented as

M
1
Yl = M Zl fm(Xl—11 Xt—29 ey Xt—n)
m=

where Y; denotes the predicted value at time ¢, X;_1, X;—»2, ..., X;—, are the lagged
predictors, M is used as the number of trees, and f;, shows the prediction from
the mth tree. By averaging the predictions of multiple trees, it enhances prediction
accuracy and robustness while mitigating the risk of overfitting that might occur in
individual decision trees.

3.3.8 KNN

The KNN regressor is a simple but effective model employed in time series
forecasting, particularly known for its ability to model nonlinear relationships which
predicts the target variable’s value by averaging the values of the k closest neighbors
in the training dataset. These neighbors are identified using a distance metric,
most commonly the Euclidean distance (Altman, 1992). The KNN model can be
mathematically described as

k
1
Y, = EZYN(i)

i=1

where Y; is the predicted value at time ¢, k is the number of nearest neighbors,
and Yy ;) represents the values of the nearest neighbors. KNN is particularly useful
for forecasting when the time series data is irregular or contains nonlinearity that
traditional linear models cannot capture. Its simplicity and nonparametric nature
make KNN a popular choice. However, it can be sensitive to the selection of k£ and
the chosen distance metric, and it may face challenges when dealing with high-
dimensional data.

3.3.9 AdaBoost

The AdaBoost is also an ensemble learning approach that enhances the accuracy
of time series forecasting by integrating several weak learners into a powerful
predictive model. It operates by iteratively training these weak learners on the
dataset, with each new model paying more attention to the instances that earlier
models struggled with. The final prediction is determined by a weighted sum of the
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predictions from all the weak learners (Freund & Schapire, 1997). This model can
be represented as

M
Y, = Z A fin (Xi—1, Xi—2, ..., Xi—p)

m=1

where Y; is the predicted value at time ¢, o, is the weight assigned to the mth weak
learner, f;,, and M represents the total number of weak learners. The model adjusts
the weights o, to minimize the overall prediction error, with higher weights given
to models that perform better. AdaBoost is particularly effective in enhancing the
accuracy of weak learners and is robust against overfitting, making it suitable for
complex time series data.

3.3.10 GBR

Gradient Boosting Regression (GBR) enhances prediction accuracy by sequentially
incorporating weak learners to address the mistakes made by previous models. Each
learner is fit to the residual errors of the combined predictions from earlier learners
(Friedman, 2001). This model can be represented as

M
Y, = ?t + Z A fn (Xi—1, Xi—2, .-, Xi—p)

m=1

where Y; indicates the predicted value at time ¢, IA/I is the initial prediction (often
the mean value), f;, represents the mth weak learner, o, is the weight of the mth
learner, and M is the total number of iterations. Each f;, is trained to minimize the
residual errors of the model at the previous iteration. This iterative process allows
it to refine its predictions progressively, making it effective for capturing complex
patterns in data.

3311 LGB

Light Gradient Boosting (LGB) regressor improves performance by using a
histogram-based approach to bin continuous features and a leaf-wise growth
strategy to build decision trees (Ke et al., 2017). This method enhances
computational efficiency and accuracy. The model’s prediction for a time series
at stage m can be represented as

~ ~(m—1
5 = 50 4 )
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where f/i(m) denotes the prediction at stage m, )A)I,(m_l) is the prediction from

the previous stage, h,,(x;) is the output of the mth decision tree, and 7 is the
learning rate that controls the contribution of each tree. LightGBM optimizes the
loss function L(y;, j;i(’")) through gradient descent, with a focus on reducing the
computation time. It can capture more intricate patterns with fewer trees since it
employs leaf-wise growth for trees instead of level-wise growth. A very effective
and scalable model is produced by adding together the predictions made by each
tree to arrive at the final forecast.

3.3.12 XGB

XGB (eXtreme Gradient Boosting) is an efficient gradient boosting framework that
builds an ensemble of decision trees to improve prediction accuracy (Hasan et al.,
2023a). The prediction at stage m is given by

m
$i= n-hi(x)
k=1

where y; is the final prediction, hy(x;) is the output of the kth tree, and 7 is the
learning rate. XGB optimizes an objective function that includes a loss term and a
regularization term to prevent overfitting:

m
Objective = L(y;. i) + 3 ()
k=1

where £2(h;) accounts for tree complexity. Key features include regularization,
parallel processing, and column subsampling, making XGB a powerful and efficient
tool for predictive modeling.

3.4 Deep Learning Algorithms
341 MLP

The MLP is a kind of feedforward neural network that is used for time series
forecasting. It consists of an input layer, one or more hidden layers, and an output
layer, which are the different layers of neurons. Because every layer’s neurons are
fully coupled to every other layer’s, the network can recognize complex patterns in
the data. Training of the MLP model is carried out through backpropagation, which
adjusts the network’s weights to reduce prediction errors (Rumelhart et al., 1986;
Hasan et al., 2023c). The MLP model can be represented as
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Y, =o(WL-a(WL—1-.-a(W1~Xt71 +b1)~~+bL—1)+bL)

where Y; is the predicted value at time ¢, X;—_1, X;—2,..., X;—, are the input
features (lagged observations), W' and b’ are the weights and biases for layer /,
and o denotes an activation function such as ReLU or sigmoid. MLP is flexible in
modeling nonlinear relationships in time series data, but it requires careful tuning
of hyperparameters, such as the number of layers and neurons, to achieve optimal
performance.

342 LSTM

The LSTM network is a type of RNN designed for time series forecasting which
effectively captures long-term dependencies through its gating mechanisms and
manages the flow of data in memory cells (Cho et al., 2014; Rabbi et al., 2022).
The LSTM equations are as follows: Forget:

fi=0Wy-[hi—1, Xi1+by)

Input:
ir =0 (Wi - [hi—1, X¢ 1+ bi)
C, = tanh(W¢ - [h—1, X,1 + bc)
Cell state:
Cr=fi-Cro1+ir-C
Output :

or =0 Wy - [hi—1, Xt]+ Do)
ht = O¢ * tanh(C,)
where C; is called the cell state, &, is called the hidden state, X; is the input at time
t, and o is the sigmoid function. LSTMs excel in capturing long-term patterns in
time series data but require careful tuning and are computationally intensive.

3.4.3 BILSTM

The BiLSTM network extends the LSTM architecture by processing data in both
directions (forward and backward), enabling it to grasp relationships from both
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historical and future contexts in forecasting. This approach increases the model’s
ability to learn from sequences where future context improves the prediction of past
elements (Cho et al., 2014).The BiLSTM model can be expressed with the following

COIIlpOIlCIltSI

Forward LSTM:
£ =Wl X1+ b))
il =ow! ! x1+5)
¢/ =tanh(Wl - th! | X1+ b
ol =5/ el wil &
ol =ow/ - [h‘,f,l, X1+ b))
! = o] -tanh(c/)

Backward LSTM:
fE =Wl [hl . X1 +bY)
i’ = o (WP - [hb |, X1+ bD)
CP = tanh(WE - [h?, |, X,1+ bL)
ch=fr.ch +il-Ch
ol =o (WP [hl,,, X1+ b5)
h? = 0% - tanh(C?)

Output:

hy = [h!; h"]

where h,f and hf are the hidden states from the forward and backward passes,
respectively, and [-; -] denotes concatenation. BILSTM improves forecasting accu-
racy by utilizing both previous and upcoming information, making it particularly
useful for sequences where the full context enhances prediction.

344 GRU

Reducing the number of parameters and computational complexity in comparison
to LSTMs, the GRU network is a variation of the LSTM network that maintains
effectiveness in capturing long-term dependencies while simplifying its architecture
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(Cho et al., 2014). It does this by combining the input and forget gates into a single

update gate and using a reset gate to control the information flow. The following

equations can be used to represent the GRU model for time series forecasting:
Update Gate:

2zt =0 (W - [hi—1, Xi1+ by)
Reset Gate:
re =0Wy-[hi—1, X¢]+ by)
Candidate Activation:
hy = tanh(Wj, - [r; © he—1, X, 1+ bn)
Final Hidden State:
hi=(0—-z)Oh_1+2Oh

where /; is the hidden state at time ¢, X; indicates the input at time ¢, z; is the update
gate, r; is the reset gate, h, is the candidate activation, and ©® signifies element-wise
multiplication. The update gate regulates the extent of past information to retain,
whereas the reset gate dictates the amount of past information to discard. GRUs are
efficient and effective for forecasting, with fewer parameters than LSTMs, making
them suitable for tasks with limited computational resources.

3.5 Stacking Ensemble Learning Model

Stacking ensemble learning leverages the complementary strengths of various
base models to enhance overall performance and generalization capabilities. This
approach generally involves two stages: training the base models and training the
meta-model (Wolpert, 1992). The original data is divided into training and testing
sets in the first step. The k-fold cross-validation method is used to further divide the
training set. Using this method, the training set is divided into k subsets, of which
k — 1 subsets are utilized for training and each subset for testing. Every subset is
used as a test set once during the k repetitions of the process. In the second stage, the
predictions generated during k-fold cross-validation are collected and reassembled
according to the original training dataset order, creating a new training set. The
meta-model, which combines the outputs from the different basic models, is then
trained using this new training set. The meta-model is trained on this combined
dataset after the predictions from the underlying models on the test set are combined
to create the test set. Let us have four base models, namely A, B, C, D, and a meta-
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Fig. 3 Diagram of the working process of stacking ensemble learning models

model Z, then the diagram of stacking ensemble learning is presented as Fig. 3, and
the algorithm can be expressed as the below algorithm.

Algorithm 1 Stacking ensemble learning model

: Input: Training data D = {(x;, y,-)}l'.‘:l, Base models A, B, C, D, Meta-model Z
: Output: Stacked model prediction
: Step 1: Train Base Models
: for each model M in {A, B, C, D} do
: Perform k-fold cross-validation on M to generate predictions
: end for
: Step 2: Train Meta-model
: Create meta-training set Dy,.;, from base model predictions
t Dera = (G 52,35, 5P, vV,
: Train meta-model Z on D¢z
: Step 3: Make Final Predictions
: Generate base models’ predictions on test data
: Create meta-test set Dyyera.test
. Dmeta,test = {()A’,Aa 5’,'8, )’;ZC" JA’,D)}T:]
: Generate final predictions with Z
return Final predictions from Z

00 1O\ WU AW —

— e e
N AW~ O\

This study creates four ensemble models which are listed below:

¢ Stacking Random-Gradient-SVR-KNN with Logistic Regression (RGSKL)
model (base models: RF, GB, SVR, and KNN and meta-model: LR)

¢ Stacking Decision-AdaBoost-ElasticNet-SVR with Ridge (DAESR) model (base
models: DT, AdaBoost, SVR, and ElasticNet and meta-model: Ridge)

» Stacking Logistic-Ridge-SVR-Decision Tree with Ridge (LRSDR) model (base
models: LR, Ridge, SVR, and DT and meta-model: Ridge)

¢ Stacking ElasticNet-AdaBoost-GB-Huber with Logistic Regression (EAGHL)
model (base models: EN, AdaBoost, GBR, and Huber and meta-model: LR)
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3.6 Performance Measure Metrics

The observed value is represented by y;, the predicted value by y;, the mean of the
observed values by y, and the total number of observations by n. Next, the MSE
measures the average squared discrepancies between actual and anticipated values,
indicating the size of the mistakes (Dong et al., 2024). It is expressed as

1 .
MSE =~ (yi — 3
i=1

The RMSE, which provides a measure in the same units as the dependent
variable, is the square root of the MSE (Dong et al., 2024):

RMSE = vMSE

The MAE measures the average magnitude of errors in predictions (James,
2013), treating all errors equally:

1< )
MAE=;2|yi—yi|
1=

The MAPE measures the average magnitude of prediction errors as a percentage
of the observed values (Dong et al., 2024):

1< Vi — 9 2
MAPE = | — EARNNLS
()

i=1 Yi

The sMAPE adjusts for the scale of errors and is symmetric (Dong et al., 2024):

L~ (i)
MAPE = |- L
; ()

o\t Vi

The percentage of the dependent variable’s variance that the independent vari-
ables can account for is represented by the R? metric (James, 2013):

Z,r';] (yi — 5’1‘)2

R =1- !
Yo i —9)?
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4 Result Analysis

4.1 Obtained Hyperparameters and Suitable Values for Model
Training

The hyperparameters for the ML models, determined through a grid search across
specified parameter values, are listed in Table 2.

We conducted this process using the scikit-learn library in Python. Using a PC
with an Intel iRISxe graphics card, 8 GB of RAM, and a 1.30 GHz CPU, all
tests were conducted on Google Colab with a reliable Internet connection. The
“Grid Search” method was used to methodically adjust the hyperparameters. With
this approach, a grid of potential hyperparameters is created, their corresponding
values or ranges are specified, and cross-validation is applied to the model for
every conceivable combination. The optimal set is the arrangement that yields the
best results when evaluated using a particular evaluation metric. Grid Search is a
rigorous and systematic method for optimizing hyperparameters, although it can be
computationally intensive, particularly when working with huge parameter spaces.

Table 2 Hyperparameter values for the ML models

Models | Best hyperparameters Range of value search
LR N/A N/A
Ridge | “alpha”: 0.1 “alpha”: [0.1, 1, 10, 100]
Lasso |alpha’: 0.01 “alpha”: [0.01, 0.1, 1, 10]
Poly linear__fit_intercept’: False, poly__degree’: [2, 3, 4],
“poly__degree=2 “linear__fit_intercept”: [True, False]
SVR “C”: 0.1, “epsilon”: 0.01, “kernel”: kernel’: [“linear”, “rbf”’], “C”: [0.1, 1,
“linear” 10], “epsilon”: [0.01, 0.1, 0.2]
DTR “max_depth”: 10, “min_samples_split”: max_depth’: [None, 10, 20, 30],
10 “min_samples_split”: [2, 5, 10]
RF max_depth’: 10, “min_samples_split”: “n_estimators”: [100, 200, 500],
10, “n_estimator”’=100 “max_depth”: [None, 10, 20,
30], “min_samples_split”: [2, 5, 10]
GBR learning_rate’: 0.01, “max_depth”: 5, “n_estimators”: [100, 200, 500],
“n_estimator”’=100 “learning_rate”: [0.01, 0.1,
0.2], “max_depth: [3, 5, 7]
XGB learning_rate’: 0.1, “max_depth”: 3, “n_estimators”: [100, 200, 500],
“n_estimator”=100 “learning_rate”: [0.01, 0.1,
0.2], “max_depth: [3, 5, 7]
LGB learning_rate’: 0.2, “max_depth”: -1, “n_estimators”: [100, 200, 500],
“n_estimator”=100 “learning_rate”: [0.01, 0.1,
0.2], “max_depth”: [-1, 10, 20]
KNN “n_neighbors”: 10, “weights”: “uniform” | n_neighbors’: [3, 5,7, 10], “weights”:

[“uniform”, “distance’]
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4.2 Results of the U.S. Gasoline Spot Price Forecasting
4.2.1 Performance of the ML Models

The initial outcome demonstrates the accuracy of daily U.S. gasoline spot price
predictions using various ML techniques without hyperparameter tuning which
shows by Table 3. This indicates that the LR, Ridge, and Poly models outperformed
the other ML models in this analysis prior to hyperparameter tuning. These models
exhibited lower absolute and relative errors and achieved an R? of 97%, implying
that they are better at capturing short-term fluctuations in the data and providing
more accurate daily forecasts of the U.S. gasoline spot price. Additionally Lasso
performed worst with higher errors and lower R? of only 7%. However, it is
worth noting that the computation time for LR was slightly longer compared to
the Ridge and Poly models. The performance metrics for the ML models after
hyperparameter tuning, as shown in Table 4, reveal that LR, Ridge, and SVR
outperformed the others, with relatively lower absolute and relative errors and an R?
of 97%. This shows that these models are better at identifying short-term variations
in the data and producing daily estimates of the current price of gasoline in the
United States that are more accurate. However, the SVR model had a significantly
higher computation time compared to the other two, making Ridge the optimal
choice due to its lower elapsed time. Notably, after tuning, the Lasso model showed
a remarkable improvement, achieving an R? of 96.9% and errors close to those of
the optimal model. In contrast, GBR was the poorest performer among the tuned
models. Figure 4 illustrates the actual versus predicted curves for the models, with
the curves for the LR, Ridge, and SVR models closely aligning with the actual data.
The GBR, XGB, LGB, and KNN models, on the other hand, were less successful
and frequently greatly overestimated or underestimated the projected pricing.

Table 3 Performance measures of the ML models without hyperparameter tuning for forecasting
daily gasoline spot prices

Models Elapsed time (s) MAE MSE RMSE MAPE SMAPE R?

LR 0.02 0.06 0.01 0.09 2.36 2.35 0.97
Ridge 0.01 0.06 0.01 0.09 2.36 2.35 0.97
Lasso 0.00 1.21 1.72 1.31 43.34 56.29 0.07
Poly 0.00 0.06 0.01 0.09 2.35 2.35 0.97
SVR 0.29 0.10 0.03 0.17 3.14 3.22 0.88
DTR 0.02 0.12 0.06 0.24 4.03 3.91 0.78
RF 1.78 0.09 0.02 0.14 3.25 3.23 0.92
GBR 0.94 0.11 0.04 0.21 3.48 3.39 0.83
XGB 0.29 0.10 0.03 0.18 3.24 3.32 0.87
LGB 0.17 0.10 0.03 0.17 3.20 3.27 0.88

KNN 0.01 0.09 0.02 0.14 3.10 3.14 0.92
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Table 4 Performance measures of the ML models after hyperparameter tuning for forecasting
daily gasoline spot prices

Models Elapsed time (s) MAE MSE RMSE MAPE sSMAPE R?

LR 2.83 0.064 | 0.0075 0.087 2.358 2.353 0.970
Ridge 0.15 0.064 | 0.0075 0.087 2.358 2.353 0.970
Lasso 0.14 0.067 0.0079 0.089 2.446 2.458 0.969
Poly 0.20 0.068 0.0089 0.094 2.466 2.468 0.965
SVR 75.38 0.064 | 0.0075 0.087 2.354 2.347 0.970
DTR 0.51 0.086 | 0.0203 0.142 3.049 3.016 0.920
RF 277.69 0.079 0.0149 0.122 2.800 2.802 0.941
GBR 153.64 0.102 | 0.0351 0.187 3.361 3.303 0.861
XGB 14.18 0.099 0.0319 0.179 3.242 3.322 0.874
LGB 26.89 0.097 0.0293 0.171 3.199 3.266 0.884
KNN 0.48 0.096 | 0.0262 0.162 3.180 3.241 0.896

Fig. 4 Daily prediction of gasoline spot price using different ML models

4.2.2 Performance of the DL models

Similar to the ML models, Table 5 shows the performance of the DL models for
predicting the daily U.S. gasoline spot price. LSTM and BiLSTM stood out with
lower absolute and relative errors, achieving an R? of 96.4%, closely followed
by the GRU model with an R? of 95.9%. However, LSTM had the advantage in
terms of elapsed time, making it the more efficient choice. On the other hand, MLP
performed poorly among the DL models, with significantly higher errors and a low
R? of only 26.5%.

Similarly, Fig.5 illustrates the daily forecasts of the U.S. gasoline spot price
based on the predictions from the DL models. As with the ML models, LSTM
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Table 5 Performance measures of the DL models for forecasting daily gasoline spot prices

Models Elapsed time (s) MAE MSE RMSE MAPE SMAPE R2

MLP 33.85 0412 |0.1861 0.431 15.192 16.486 0.265
LSTM 60.53 0.069 | 0.0090 | 0.095 2.486 2.481 0.964
BILSTM | 76.81 0.069 | 0.0091 0.095 2.482 2.487 0.964
GRU 60.20 0.073 0.0104 | 0.102 2.592 2.610 0.959

Fig. 5 Daily prediction of gasoline spot price using different DL models

and BiLSTM closely track the actual gasoline prices, providing almost accurate
forecasts. However, MLP falls short in delivering accurate predictions.

4.2.3 Performance of the Ensemble Models

Lastly, the forecasting performance of four stacking ensemble models for predicting
the daily U.S. gasoline spot price is shown in Table 6. Among these, the LRSDR
model emerged as the top performer, surpassing all single ML, DL, and other
stacking models with the lowest absolute and relative errors and achieving an
impressive R? of 98%. Additionally, this model had the shortest elapsed time
compared to the others. It was closely followed by two other stacking models,
EAGHL and DAESR, which attained R? values of 96.7% and 95.1%, respectively.

Figure 6 displays the predicted versus actual curves generated by various stacking
models. The stacking LRSDR model, in particular, closely mirrors the actual curve,
demonstrating near-accurate predictions. The EAGHL and DAESR models are also
close to the actual curve.

Based on all the performance metrics discussed in this study, the optimal model
for forecasting the daily U.S. gasoline spot price is the stacking LRSDR model.
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Table 6 Performance measures of the stacking models for forecasting daily gasoline spot prices

Models Elapsed time (s) MAE MSE RMSE MAPE SMAPE R?

RGSKL 11.21 0.110 |0.0446 |0.211 3.552 3.459 0.824
DAESR 7.00 0.076 |0.0124 | 0.111 2.719 2.710 0.951
LRSDR 1.57 0.059 | 0.0067 |0.081 2.266 2.261 0.980
EAGHL 6.32 0.067 0.0084 1 0.092 2.449 2.443 0.967

Fig. 6 Daily prediction of gasoline spot price using different stacking models

4.3 Results of the New York Gasoline Spot Price Forecasting
4.3.1 Performance of the ML Models

In line with the previous analysis, the initial results demonstrate the accuracy of
daily New York gasoline spot price predictions using various ML techniques with
hyperparameter tuning, as shown in Table 7. We did not include results without
parameter tuning since the previous section established that model performance
improves based on the hyperparameters listed in Table 2. The table indicates that the
LR, Ridge, Lasso, Poly, and SVR models outperformed the others in this analysis,
exhibiting lower absolute and relative errors and achieving an R? of 99.2%. This
shows that these models are more successful in identifying brief variations in the
data and producing daily predictions of the spot price of New York gasoline that are
more accurate. Among them, the Lasso model can be considered optimal based on
elapsed time, while SVR stands out for its performance in MAPE and sMAPE. The
remaining models closely followed these leaders.

Figure 7 presents the actual versus predicted curves for these models, with
LR, Ridge, Lasso, Poly, and SVR models closely tracking the actual data. In
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Table 7 Performance measures of the ML models with hyperparameter tuning for forecasting
daily New York gasoline spot prices

Models
LR
Ridge
Lasso
Poly
SVR
DTR
RF
GBR
XGB
LGB
KNN

Fig. 7 Daily prediction of New York gasoline spot price using different stacking models

Elapsed time (s)

2.37
0.18
0.08
0.14
83.82
0.51
299.45
177.69
14.72
23.56
0.26

MAE
0.047
0.047
0.050
0.047
0.047
0.069
0.068
0.068
0.070
0.069
0.070

MSE

0.0045
0.0045
0.0049
0.0045
0.0045
0.0171
0.0175
0.0198
0.0220
0.0210
0.0207

RMSE
0.067
0.067
0.070
0.067
0.067
0.131
0.132
0.141
0.148
0.145
0.144

MAPE
2.256
2.256
2.354
2.254
2.253
2913
2.860
2.802
2.852
2.818
2.867

sMAPE
2.244
2.244
2.349
2.243
2.240
2.942
2.891
2.845
2.901
2.863
2910

R2

0.992
0.992
0.992
0.992
0.992
0.971
0.970
0.966
0.962
0.964
0.964

contrast, the other models were less accurate, often significantly overestimating or

underestimating the predicted prices.

4.3.2 Performance of the DL Models

Similar to the ML models, Table 8 presents the performance of DL models in
predicting the daily New York gasoline spot price. LSTM and GRU models excelled,
with lower absolute and relative errors, achieving R? values of 99.1% and 99%,
respectively, followed closely by the BILSTM model with an R? of 98.8%. LSTM
also proved to be more efficient in terms of elapsed time, making it the preferred
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Table 8 Performance measures of the DL models for forecasting daily New York gasoline spot
prices

Models Elapsed time (s) MAE MSE RMSE MAPE sMAPE R?

MLP 31.02 0.322  |0.1245 0.353 13.797 14.863 0.785
LSTM 56.64 0.049 | 0.0051 0.071 2.349 2.328 0.991
BiLSTM | 70.19 0.058 | 0.0067 | 0.082 2.658 2.683 0.988
GRU 63.73 0.054 |0.0058 | 0.076 2.570 2.532 0.990

Fig. 8 Daily prediction of New York gasoline spot price using different stacking models

choice. Conversely, the MLP model performed poorly, with significantly higher
errors and a low R? of just 78.5%.

Similarly, Fig. 8 illustrates the daily forecasts of the New York gasoline spot price
based on the predictions from the DL models. As with the ML models, LSTM
and GRU closely followed the actual gasoline prices, delivering nearly accurate
forecasts, with BILSTM also performing well. However, MLP struggled to provide
accurate predictions.

4.3.3 Performance of the Hybrid Models

Finally, Table 9 displays the forecasting performance of four stacking ensemble
models for predicting the daily New York gasoline spot price. Among these, the
LRSDR and EAGHL models excelled, outperforming all other single ML, DL,
and stacking models with the lowest absolute and relative errors and achieving an
impressive R” of 99.2%. Additionally, the LRSDR model had the shortest elapsed
time, making it the most efficient. It was followed closely by the DAESR and RGSKI1
models, which achieved R? values of 92.4% and 98.1%, respectively.
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Table 9 Performance measures of the stacking models for forecasting daily New York gasoline
spot prices

Models Elapsed time (s) MAE MSE RMSE MAPE sMAPE R?

RGSKL 9.40 0.063 0.0108 0.104 2.763 2.763 0.981
DAESR 1.31 0.082 0.0439 0.209 3.198 3.321 0.924
LRSDR 0.66 0.047 0.0046 | 0.068 2.259 2.248 0.992
EAGHL 291 0.047 0.0046 | 0.068 2.267 2.259 0.992

Fig. 9 Daily prediction of New York gasoline spot price using different stacking models

Figure 9 showcases the predicted versus actual curves for various stacking
models. Notably, the stacking LRSDR model closely tracks the actual curve,
reflecting near-accurate predictions. The EAGHL and RGSKL models also align
closely with the actual data.

Similarly, based on all the performance metrics discussed in this study, the
optimal model for forecasting the daily New York gasoline spot price is the stacking
LRSDR model.

5 Conclusion and Future Work

In this research, we examined several stacking ensemble learning models that
integrate various ML regression techniques to improve time series prediction. Our
findings indicate that the stacking LRSDR model outperforms benchmark methods
in terms of elapsed time, prediction accuracy, and various error metrics. For the
purpose of making production decisions for the industry, the suggested LRSDR
model exhibits robustness in forecasting across various granularities of gasoline



310 M. A. Hamja et al.

time series. Furthermore, the findings can assist interested parties in creating
profitable investment plans to optimize returns in times of market turmoil.

This research also highlights areas requiring further exploration. While our ML
approach has proven effective for modeling diverse fluctuation patterns in energy
markets, it would be valuable to assess its performance in other commodity and
financial markets, like foreign exchange rates, stock prices, and precious metal
prices. For instance, comparable models have had difficulty adjusting to the current
decoupling of oil and gas prices, despite advances in gasoline forecasting.

There are a few restrictions to be aware of. This study focuses exclusively on
univariate gasoline time series prices and does not account for factors such as
environmental variables, macroeconomic conditions, or foreign market influences.
This might be further explored in the future by creating forecasting models that
take into account the political and economic factors that influence gas prices in
addition to market sentiment indicators that are obtained from textual data such as
news articles. Incorporating these other variables may offer a more sophisticated
comprehension of the forces behind changes in gas spot prices.
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The Implications of Energy Transition )
and Development of Renewable Energy Py
on Sustainable Development Goals

of Two Asian Tigers

Rajib Bhattacharyya

1 Introduction

Of late, the transition of global energy resource base and shift towards de-
carbonization has been one of the most critical and sensitive issues in the debates
and discussions on sustainable development goals index (SDGI), climate change
and geopolitical policies to establish economic power and supremacy over other
nation. The impact of energy transition not only limited within the energy sector of
an economy, but it involves a whole gamut of changes over the entire economy as
it includes issues like substitution of fossil fuels, electrification, de-carbonization,
technological upgradation, which may have far-reaching implications on agricul-
ture, industry, services, infrastructure and others. It also involves changes in trade,
fiscal and labour market policies. The issue of energy transition from fossil fuel to
wind, solar, hydro and zero-carbon energy has serious implications in the context of
energy crisis, energy affordability, security and sustainability in the long run. The
Energy Transition Index (ETI) attempts to measure the emerging landscape of the
performance of energy systems and readiness for energy transition across countries.
China and India, the two populous giants, are highly vulnerable to climate change,
but have shown significant improvements in ETI performances.

The consumption of cleaner energy per capita is not only considered as an
important indicator of good and healthy life but also a significant component of
a nation’s green GNP measure of growth. Innovations in technology, mitigation
policies of climate change, achievement of Sustainable Development Goals (SDGs)
and geopolitical changes have brought into focus the issue of transition in the global
energy system. The two recent macroeconomic shocks (Covid-19 and the Russia-
Ukraine War) had resulted in serious disruptions to movement of goods and energy
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and this has led to severe inflation in the global market. It has forced countries to
rethink about energy crisis, security and sustainability in the long run. It has also
pushed economies to reallocate its resource base to address the issue of its energy
affordability and energy sustainability in the long run. This has been supplemented
by the quest for renewable energy instead of the traditional fossil fuels and the strive
towards net-zero-carbon emission. But this urge for energy transition has resulted
in a geopolitical divide between developed and developing countries on the basis of
priority in the process of transition. Energy prices shoot up when the global market
recovery began after the end of the Covid-19 lockdown and the Russia—Ukraine
war broke out. This excess demand was combined with insufficient supply and
underinvestment in the energy market, mainly due to uncertainties and poor returns
during shocks and also due to environmental, social and governance (ESG) factors
on the part of the investors. The other challenge in this shifting process is the ‘speed
of transition’. Pressure has been imposed to bring down the carbon emission target
from 2050 to 2030 to reduce the global warming by 1.5° ¢ per year. Hence, the issues
linked to energy transition are multi-dimensional: socio-economic (reduction of
inequality and poverty along with economic growth), ecological (mitigating climate
change) and geopolitical (concerned with national security and energy resource
constraints). It is a dynamic adjustment towards an equilibrium where changing
technology necessitates more demand for energy which has to be balanced by better
and cleaner energy supply.

Hence, the conflict of interest between fossil fuel-rich countries and supporters of
green energy nations. Countries like USA, Russia, Saudi Arabia, Canada, Australia,
Venezuela, Brazil, Mexico, Iran, Iraq are fossil fuel-rich nations and if zero-carbon
energy transition is achieved, these nations may lose in three ways: (i) capital loss
due to large stock of fossil fuel will remain unexplored; (ii) additional economic
loss due to the fact that fossil fuel rents will no longer be available to finance public
sector; (iii) suffer positional loss due to geopolitical relative advantage and will
be challenged by nations having solar, wind, hydro, geothermal, biomass, nuclear
power.

1.1 Importance of India and China in Global Energy
Transition Scenario

To make it compatible with the changing demands, a new formulation of Energy
Transition Index (ETI) was released by the World Economic Forum (WEF), June
2023 edition, which takes a broader view of the energy triad: equity, security
and sustainability. In the last decade there had been an improvement in global
ETI score by around 10 percent with Nordic countries like Sweden, Denmark,
Norway and Finland maintaining the top positions. This was supported by an
enhancement in global scores of readiness transition by 19 percent. China is a
soul exception in the global energy landscape to have shown an improvement in



The Implications of Energy Transition and Development of Renewable Energy. . . 317

readiness transition scores by 43 percent (which is double the global average).
This remarkable achievement made it possible for China as the only Asian country
to enter into the top 10 performing nations in energy transition. It is also being
pointed out in that report that the two countries—Singapore and India are making
improvements in all aspects of energy system performance.

1.2 Major Issues Involved in Energy Transition

First, unlike the earlier energy transition driven by inter-fuel competition, the
present energy transition is based on implementation of government policies and
regulations with the prime aim of combatting global climate change. At the initial
stage, the transition from hydrocarbon to renewable and carbon-free alternative may
lead to failure of markets to price environmental externalities due to its high cost.
The government support and investment policies may act as a catalyst through
application of fiscal policy for the energy sector.

Second, technological transformation is required to achieve zero-carbon energy
breakthrough. Solar power technologies, wind potential, nuclear reactors can
radically reshape the global energy landscape.

Third, financial investment is one of the prime factors that drive technological
innovations and government policy. A proper balance between public and private
investment is the key to green energy transition as per the International Energy
Agency (IEA). The Central banks initiative in the form of Network for Greening
the Financial System (NGFS) is a step in this regard.

Fourth, development of energy networking and infrastructure is very crucial for
this transition. This implies developing new infrastructure to supply de-carbonized
energy and replacing the older pipeline network shipping fleets and distribution
outlets. Energy integration system and digitalization process need to be given more
focus along with developing new infrastructural base.

Fifth, energy access equity and justice are really an important matter of concern.
With about 2.6 billion people still deprived access to clean cooking fuels (World
Energy Outlook, 2020), energy transition may exacerbate energy inequality and
poverty. Hence energy justice was a major issue in COP26.

2 Literature Survey

A large body of literature has developed on the energy transition and climate change
issues. Here we mention some of the notable ones. Hafner and Tagliapietra (2020)s
edited book on ‘The Geopolitics of the Global Energy Transition’ has been a pioneer
in discussing the geopolitical impacts between developed and developing nations
with regard to transition from fossil fuel to zero-carbon state. The shifting of power
from coal, oil, natural gas to solar, wind, hydro, geothermal, biomass, nuclear
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requires not only a change in innovation, infrastructure, education and human
capital, finance and investment, but political will, commitment and implantation.
Singh et al. (2019) explored how ETI serves as composite and comprehensive world
index which tracks the country wise performance of the energy system and has
implications on macroeconomic, institutional, social and geopolitical levels. It also
shows the direction and potentiality of a country to make transition. Yergin (2022)
demonstrated the probable obstacles in the path of reducing net carbon emission
to zero. Henderson and Sen (2021) discussed the major challenges of nations in
the path of transition to a new system. They stress on the Intergovernmental Panel
on Climate Change (IPCC) report on climate Change and IEA analysis. IRENA
(2018) report talks about transition on global energy system with a road map 2050.
It emphasizes energy efficiency and renewable energy as the two fundamental pillars
of energy transition and stresses the need for scaling up renewable energy needs at a
six times faster rate to meet the aims of the Paris Agreement. Energy Statistics India
(2023), the report of the Government of India provides a theoretical and empirical
comprehensive overview of India’s step forward towards energy transition. It
highlights the importance of deploying renewable and energy efficient technologies
in line with the UN Summit 2015. World Economic Forum (2023) report June
2023 analyses the details of the ETI scores and rankings, performance of sub-
indices and country performance profiles. World Energy Outlook (2023) describes
the various dimensions of the energy transition and also the key challenges ensuring
a just and secure clean energy transition. World Energy Trilemma (2024) published
a full report on ‘Evolving with Resilience and Justice’ to focus on the World
Energy Trilemma Index depending on three core indicators: energy security, energy
equity and environmental sustainability of Energy Systems. It discusses about the
multiple paths followed by different countries to ensure cleaner, affordable and
reliable energy framework, pointing out the deficiencies in supply infrastructure and
investment. Janardhanan (2022) in his paper tried to examine three dimensions of
the role of China in India’s energy transition: (a) identification of factors responsible
for China’s comparative advantage and dominance in the overseas market, (b)
China’s dual role (catalytic and inhibiting role) in the process of energy transition
in India and (c) Scope and opportunities of China—India bilateral ventures in the
development of clean energy. Mori (2022) in his book, through the various chapters,
has extensively discussed China’s carbon policy (leakage, relocation) and its role in
the energy transition in different countries of Asia like Japan, Vietnam, Indonesia
and India. The book tries to assess how the policy intensifies pressure and motivates
the Chinese companies. Isoaho et al. (2016) in their paper attempted to focus
on transformation of electric power system in both India and China to decouple
economic growth from unsustainable resource consumption. It tries to analyse the
whole issue from the political economy angle. Odhiambo (2009) in his paper tried
to examine the intertemporal causal relationship between energy consumption and
economic growth in Tanzania during the period of 1971-2006 using ARDL bound
testing model and found the relationship to be a stable one. Bhattacharyya (2019)
examines the pattern and composition of energy use in two most populous countries,
China and India. It also uses ARDL bound test to establish the short and long
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run relationship between energy use, per capita GDP, energy intensity, electric
power and extent of urbanization. The study found long run association between
the variables in case of India but not in case of China.

3 Objective of the Study and Methodology

The present paper attempts to provide various macro dimensions of indicator wise
comparison and explores the potentials for renewable energy between the two
fastest growing emerging nations—India and China. Empirically it tries to estimate
the impact of some macroeconomic variables, viz. economic growth (ECOGR),
access to clean fuels and technologies for cooking (% of population) (CFT), CO;
emissions from fossil fuel combustion and cement production or manufacturing
(CM) (tCO2/capita, 2021), CO, emissions from fuel combustion per total electricity
output (CME) (Mt CO2/TWh, 2019) and renewable energy share in total final energy
consumption (%, 2019) (RE) on the Sustainable Development Goal Index (SDGI)
using the ARDL model. The study also seeks to examine the uni-directional and bi-
directional short run causality between the dependent and independent variable in
terms of pairwise Granger Causality test with the help of time series data available
from WDI, WEF, WEO, GSIR.

4 The Energy Transition Index Framework

As per the methodologies developed by the World Economic Forum (WEEF, 2023),
the basic aim of the ETI tool is to assess two fundamental issues: (a) a nation’s
present state of energy system performance and (b) preparedness for energy transi-
tion. ETT is based on two main pillars: (i) Energy System Performance (weight = 60
percent) and (ii) Readiness for Energy Transition (weight = 40 percent). Again,
system performance depends on three sub-pillars (weight = 33 percent each):
(a) Equitability (including energy access, affordability economic development)
(b) Security (supply security, resilience, reliability) and (c) Sustainability (energy
efficiency, greenhouse gas (GHG) mitigation, clean energy). On the other hand,
Readiness for Energy Transition depends on two sub-pillars (weight = 50 percent
each): (a) regulatory framework and investment and (b) enabling factors (like
education and human capital, innovation, infrastructure).

5 China and India’s Standings and Role in ETI

Figure 1 shows the ETI scores and rankings across various regions of the world and
also across nations. In the last decade, the region of Emerging and Developing Asia,



320 R. Bhattacharyya
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Fig. 1 Present scores of ETI and their ranking across regions and nations. [Author’s construction
based on ETI 2023, WEF]

which includes the two most populous countries of the world, China and India, has
improved the ETI scores by 12 percent. This region has shown more than 10 percent
improvement in equitability dimension, but the achievement is poor in respect of
sustainability and security aspects. China’s ETI score is 64.9 and its rank is 17th
among 120 nations in 2023. China is the largest producer and consumer of energy
in the world energy landscape and so its role is of vital importance for shaping the
future trajectory. China has also been identified as the largest emitter of GHG. But
it has improved greatly in both system performance and readiness transition aspects
in the last decade. Though China had to face tremendous energy security challenge
in the process of transition from fossil fuel to green energy, but in recent years its
industry has been following the path of green development. It has moved a long way
to introduce green finance to increase the supply of renewables and its investment
was about 380 billion dollars in 2021. Moreover, it is one of the first nations in
the world to launch the green bond project. One of the successful exhibitions is
reflected in its industrial clusters where the powering is done by green and renewable
electricity.

As compared to China, India is way behind in terms of ETI performance scores.
India’s score is 54.3 and its rank is 67th among 120 nations in 2023. But India
has been highlighted as the country which has made significant improvement in
all the three aspects: equitability, security and sustainability in the last decade. The
main contributors to this success have been substitution of liquefied petroleum gas
(LPG) in place of traditional wood, charcoal and others and also enhancement in the
development of renewable energy. India has rapidly increased the share of renewable
energy in power generation—more than 30 percent with solar and 92 percent of
increased capacity by onshore wind. It has also set a target to install 500 GW of
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non-fossil power generation capacity by 2030. Indian government has introduced
the Energy Conservation (Amendment) Bill 2022, which imposes the mandate to
use renewable energy for big energy-intensive consumers and also initiated the
carbon credit scheme. India also aims to develop a competitive ‘Green Hydrogen’
ecosystem and promote the production and distribution as well as consumption of
green hydrogen through the policy of National Green Hydrogen Mission.

5.1 A Comparative Performance of ETI and Its Components
in China and India (2012-2023)

Based on the time series data available from the WEF the present study has tried to
analyse why China’s performance is relative much better than India in terms of ETI
scores and rankings.

For this we look separately into the progress with respect to the two pillars of
ETI, i.e. energy system performance and preparedness for energy transition (Fig.
2). Throughout the entire period of our analysis, India’s system performance was
ahead of China, exception being years after 2021. But in case of readiness transition
from the beginning China was ahead of India and the gap between them enlarged
particularly after 2021 (post pandemic situation). This combined effect has helped
China to improve its rank much faster than that of India.
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[Source: Author’s construction based on ETI scores available from WEF dataset.]
[https://www.weforum.org/publications/fostering-effective-energy-transition-202 1/in-full/rankings/]

Fig. 2 ETI and its components in China and India (2012-2023). [Source: Author’s construction
based on ETI scores available from WEF dataset.]. [https://www.weforum.org/publications/
fostering-effective-energy-transition-202 1/in-full/rankings/]
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Figure 3 shows the comparison between China and India with respect to some
indicators commonly used in the ETI calculations. Panel A in Fig. 3 shows carbon
intensity in industrial consumption and panel B shows carbon intensity in road
consumption. In case of industrial consumption, the carbon intensity of China was
much more than that of India in the 1990s but gradually the gap has been narrowed
down. It is measured in units kgCO2/2015USD [IEA data series (1990-2021)]. But
the opposite is seen in case of carbon intensity road consumption. Here, India lies
ahead of China. Though the gap narrowed between them in 2004, but after that it
increased till 2021. This is because China’s industrial activity is manyfold more
than that of India, while China’s transition to green energy transport has paid off
dividends as compared to India. Panel C in Fig. 3 shows the comparison with regard
to carbon emission per unit of GDP. In this case China was much ahead in 1990,
but it went down sharply and finally surpassed India after that global financial crisis
(2008). Panel D shows greenhouse gas (GHG) emission from various sources (coal,
oil, natural gas and others).

The bottom panel E exhibits share of renewables, low carbon sources and fossil
fuels (coal, oil and gas) in power of the two nations. In case of India the share of
renewables and low carbon components in power has improved from 16 percent
(1990) to 23.4 percent (2021, share of renewables) and from 16 percent (1990) to
27.2 percent (2021, share of low carbon). But in case of China the share of both has
in fact fallen. Among all the sources the share of coal in power contributes to almost
one-third. In case of India its share has been reduced between 1990 and 2021, but
for China the share of coal has increased. The share of oil has decreased in both the
nations but it has increased in case of gas for both the countries. One very important
point to note here is the fact that the GHG from coal in China has kept on increasing
at an alarming rate and it is almost five times the emission from coal in India in
2021. The two country’s renewable energy potential is portrayed in Fig. 4.

6 Development of World Energy Trilemma Framework

World Energy Council has tried to build up another index known as Energy
Trilemma Framework which is based on three main pillars: (a) energy security,
(b) energy equity and (c) environmental sustainability. The first one examines the
nation’s capacity to be able to meet the present and future demand for energy as
well as quick restoration from any external shock with minimal supply disruptions.
The second one refers to the abundance of energy at both domestic and commercial
levels at affordable prices. The third one indicates the ability of a nation to transform
to a green energy system to mitigate environmental damage and climate change
(Table 1).

Initially, when about 15 years ago this framework was developed it included
variables like shocks on the supply side, ability to access scarce resource, energy
efficiency, strategic reserves and exposure to commodity prices, but now it includes
newer variables like demand-driven energy shocks (as faced by Europe after the
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Fig. 3 Comparison between China and India (indicator wise). [Source: Author’s construction
based on IEA Data Services. https://www.iea.org/data-and-statistics/data-product/world-energy-
statistics-and-balances]
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Panel-A: India's Potential of Estimated
Renewable power (as on 31.03.2023)

1.4
1.2
0.5
M Solar B Wind ® Small Hydro Power
Biomass H Cogeneration-bagasse M Waste to Energy

Panel-B (China)

Panel-B: China's Renewable Energy
potential (as on 31.03.2022)

16
1177.4, 32

M Bioenergy M Hydro power B Wind Solar

[Source: Author’s construction based on Energy Statistics India. Ministry of Statistics and Programme Implementation (2023)
and Executive Summary-Renewables 2023-Analysis-International Energy Agency(IEA) (2023) World Energy Outlook]

Fig. 4 Comparison of India and China’s renewable energy potential. [Source: Author’s construc-
tion based on Energy Statistics India (2023) and Executive Summary- Renewables 2023- Analysis-

IEA]

Russia—Ukraine war). Table 1 shows the position of the two countries China and
India in terms of Energy Trilemma Index. The ranks for China and India are 47
and 74, respectively (as per the latest Energy Trilemma Report 2024). As can be
easily observed from the scores of energy security, energy equity and environmental
sustainability, the achievements are much less, in case of both China and India,
compared to the top 10 performers. It is interesting to note India worst performance
is in the energy equity score.
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Table 1 China and India’s position in Energy Trilemma Index

Energy Trilemma | Country Trilemma | Energy Energy Environmental
index rank name score security score | equity score | sustainability score
1. Denmark 83.2 72.2 95.8 83.5

1. Sweden 83.1 73.4 93.4 85

2. Finland 82.7 75.9 92.3 80.8

3. Switzerland | 82.1 64.5 98.1 85.7

4. Canada 81 76.6 96.2 72.8

5. Austria 80.9 71.8 95.3 78.6

6. France 80.6 69.4 93.7 83.2

7. Estonia 80.2 69.9 94.8 78.5

7. Germany 80.2 72.9 94.4 76.6

8. UK 80 67.7 95.7 79.2

8. Norway 79.9 62.7 94.4 84.3

9. New Zealand | 79.6 68.2 95.4 76.4

10 UsS 78.9 72.7 97.3 69

47. China 64.4 66.3 73 56.4

74. India 55.6 61.7 49.5 56.5

Source: https://trilemma.worldenergy.org/#!/energy-index, World Energy Council

7 Empirical Analysis

Here we try to estimate the impact of economic growth (ECOGR), access to clean
fuels and technologies for cooking (% of population) (CFT), CO> emissions from
fossil fuel combustion and cement production or manufacturing (CM) (tCO2/capita,
2021), CO; emissions from fuel combustion per total electricity output (CME) (Mt
CO,/TWh, 2019) and renewable energy share in total final energy consumption (%,
2019) (RE) on the sustainable development goal index (SDGI) using the ARDL-
ECM framework.

7.1 Autoregressive Distributed Lag (ARDL) Approach

Now after checking for unit root, we proceed for the testing of co-integration
between the variables, based on ARDL framework. Pesaran et al. (2001) suggested
the autoregressive distributed lag (ARDL) approach to test for co-integration as an
alternative to co-integration model for Engle-Granger (1989). The ARDL-ECM
model has been developed to check both long run and short run relationship
between dependent variables, i.e. sustainable development goal index (SDGI)
denoted by SDGI and the five explanatory variables are economic growth (ECOGR),
access to clean fuels and technologies for cooking (% of population) (CFT), CO;
emissions from fossil fuel combustion and cement production or manufacturing
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Table 2 Stability analysis (results of LM test)

Country | Test result (Breusch-Godfrey serial correlation LM test) CUSUM test

India F-statistic 44.13297 | Prob. F (2,4) 0.0951 | Stable
Obs*R-squared | 17.60118 | Prob. Chi-Square(2) | 0.0876

China F-statistic 38.37184 | Prob. F (2,4) 0.0697 | Stable

Obs*R-squared | 20.91013 | Prob. Chi-Square(2) | 0.0671

(CM) (tCO2/capita, 2021), CO, emissions from fuel combustion per total electricity
output (CME) (Mt CO2/TWh, 2019) and renewable energy share in total final energy
consumption (%, 2019) (RE). In general, the ARDL restricted error correction
model (RECM) is shown below. We have taken an unrestricted ARDL model with
no trends with 2 lags and estimate the following equation:

For India

Estimated equation:

d(SDGI (=2)) =c+a0d (ECOGR (—1)) + al d (ECOGR (-2))
+B0d (CFT (—1)) + B1 d (CFT (=2)) + 80 d (CM (—1))
+81d (CM (=2)) y0d (CME (—1)) + y1 d (CME (=2)) + n0d (RE (—1))
+ul d (RE (—=2)) + 60 (ECOGR (—1)) + 61 (CFT (—1))
+62(CM (=1)) + 03 (CME (—1)) + 64 (RE (1))

For China
Estimated equation:

d (SDGI (=2)) = c+a0d (ECOGR (—=1)) + B0d (CFT (—1))
+B1d (CFT (=2)) +80d (CM (—1)) + 81 d (CM (-2)) y0d (CME (—1))
+u0d (RE (—1)) + ul d (RE (—=2)) + 60 (ECOGR (—1))
+01 (CFT (=1)) + 62(CM (=1)) + 63 (CME (—1)) + 64 (RE (—1))

The details of the results of these estimations are added in the appendix section
(Section-A).

Then we check Residual Diagnostics (Serial correlation) using LM Test. Then
stability analysis check is being performed using CUSUM Test (Table 2), and finally,
in order to find whether there exists a long run association between the variables.

‘Wald test is performed. For checking short run relationship, we have incorporated
the error term [ECT (—1)] from our basic long run model and again estimated our
model with 2 lags. The error term indicates the speed of adjustment towards long
run equilibrium. Again, serial correlation is tested for short run model using LM
test. Then long run causality is checked for each of the five independent variables—
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ECOGR, CFT, CM, CME and RE using Wald test. This has been done separately
for the two countries, India and China.

7.2 Checking Long Run Association Between Variables

Here our objective is to determine whether there exists any long run association
between SDGI, ECOGR, CFT, CM, CME and RE. This has been tested through
Wald test (Table 3). F' test is used to determine whether the long run relationship
exists between the variables through testing the significance of the lagged levels
of the variables. When the long run relationship exists, the F test will show which
variable should be normalized. The null hypothesis of no co-integration amongst the
variables in estimated equation, i.e., coefficients of SDGI (-1), ECOGR (-1), CFT
(-1), CM (-1), CME (-1) and RE (-1) are all zeros.

We discover a very interesting difference in the long run association between
the variables in the two countries. In case of India there is no long run association
between the independent variables, i.e. ECOGR, CFT, CM, CME, RE and the
dependent variable SDGI, but in case of China the long run association exists. So,
the ETI does have a significant long run impact on SDGI in China, but not in case
of India and this probably explains why China has so rapidly improved its SDGI
rank to move to the 66th position while India is still lagging behind in the 112th

Table 3 Long run association between variable (Wald test)

Country | Test result for Wald test Interpretation

India Test statistic | Value df Probability F-Stat
0.304482 < lower
Bound 3.79.
SDGI, ECOGR,
CFT, CM, CME
and RE has no
long run
association

F-statistic 0.304482 | (5,2) |0.8772

Chi-square 1.522412 |5 0.9105
Null Hypothesis: C(12) = C(13) = C(14) = C(15) = C(16) =0
China Test statistic | Value df Probability F-Stat

14.58679 > upper
Bound 4.85.
SDGI, ECOGR,
CFT, CM, CME
and RE has long

run association
F-statistic 14.58679 |(4,4) | 0.0118
Chi-square | 58.34715 |4 0.0000
Null Hypothesis: C(11) = C(12) = C(13) = C(14) =0
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position. So, India is unable to convert the short run association to a long run one
which actually China was able to do.

7.3 Modified Model after Incorporating the Error Term

For India

d (SDGI (=2)) = c+a0d (ECOGR (=1)) + a1 d (ECOGR (-2))
+B0d (CFT (=1)) + B1 d (CFT (=2)) +80d (CM (—1))
+81d (CM (=2)) y0d (CME (1)) + y1d (CME (=2))
+u0d (RE (—1)) + ul d (RE (—=2)) + 60 (ECT (1))

For China

d(SDGI (=2)) = c+a0d (ECOGR (—1)) + B0 d (CFT (—1))
+B1d (CFT (=2)) 4+ 80d (CM (1)) + 81 d (CM (=2)) y0d (CME (—1))
+10d (RE (1)) + 1 d (RE (—=2)) + 00 (ECT (1))

The details of the regression results after incorporating the error term are shown
in appendix, Section B. This shows that ECT (—1) is negative and statistically
significant and the speed of adjustment towards long run equilibrium is 72.64
percent and 70.42 percent for India and China, respectively.

7.4 Short Run Association Between Variables

In the short run we have incorporated the error term ECT (—1) as one independent
variable and again checked for serial correlation using LM test. Here, from LM test
we have found that there is no serial correlation and the CUSUM test is also stable.

Finally, Wald test has been applied to check whether there exists short run
causality. The test finds that in case of India there exists short run causality from
CFT and CM to SDGI, but in case of China the short run causality only exists from
CFT to SDGI and not for other independent variables.
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Table 4 Results of pairwise Granger causality test

India | Null hypothesis: F-statistic| Probability. | Granger causality test result
ECOGR does not Granger Cause SDGI| 2.68441 | 0.1031 > 0.05| Accept null; no causality
SDGI does not Granger Cause ECOGR| 4.58768 | 0.0294 < 0.05| Reject null; causality exists
CFT does not Granger Cause SDGI 6.46662 | 0.0103 < 0.05| Reject null; causality exists
SDGI does not Granger Cause CFT 0.18536 | 0.8328 > 0.05| Accept null; no causality
CM does not Granger Cause SDGI 3.83632 | 0.0469 < 0.05| Reject null; causality exists
SDGI does not Granger Cause CM 11.7302 | 0.0010 < 0.05| Reject null; causality exists
CME does not Granger Cause SDGI 2.72547 | 0.1027 > 0.05| Accept null; no causality
SDGI does not Granger Cause CME 6.00564 | 0.0142 < 0.05| Reject null; causality exists
RE does not Granger Cause SDGI 0.90833 | 0.4273 > 0.05| Accept null; no causality
SDGI does not Granger Cause RE 3.30217 | 0.0692 > 0.05| Accept null; no causality

China| Null hypothesis: F-statistic| Probability | Granger causality test result
ECOGR does not Granger Cause SDGI| 3.04115 | 0.0800 > 0.05| Accept null; no causality
SDGI does not Granger Cause ECOGR| 3.78708 | 0.0485 < 0.05 Reject null; causality exists
CFT does not Granger Cause SDGI 4.33524 | 0.0343 <0.05| Reject null; causality exists
SDGI does not Granger Cause CFT 3.04940 | 0.0796 > 0.05| Accept null; no causality
CM does not Granger Cause SDGI 2.95392 | 0.0851 > 0.05| Accept null; no causality
SDGI does not Granger Cause CM 0.91583 | 0.4229 > 0.05| Accept null; no causality
CME does not Granger Cause SDGI 0.31494 | 0.7352 > 0.05| Accept null; no causality
SDGI does not Granger Cause CME 3.58234 | 0.0576 > 0.05| Accept null; no causality
RE does not Granger Cause SDGI 2.12346 | 0.1592 > 0.05| Accept null; no causality
SDGI does not Granger Cause RE 4.84394 | 0.0268 > 0.05| Reject null; causality exists

7.5 Pairwise Granger Causality Test

Now we want to see the short run causality between the dependent and independent
variables in terms of pairwise Granger causality test. The results of this test are
summarized below in Table 4.

The results of the pairwise Granger causality (Table 4) show that for India there
are uni-directional causality running from SDGI to ECOGR, CFT to SDGI and
SDGI to CME and bi-directional causality between CMI and SDGI. But for China
there is only uni-directional causality running from SDGI to ECOGR, CFT to SDGI
and SDGI to REC.

8 Policy Implications and Conclusion

The whole world is passing through a critical juncture of time. In the last two
decades it has been hit hard by the two crises—the global financial crisis and the
Covid 19 crisis. After that the revival process again received a setback due to the
Ukraine war. It caused severe disruption in movements of goods and energy. This
caused energy prices to shoot up steadily and pushed the inflation rate to rise faster.
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But the transition of the globe from the use of fossil fuel to de-carbonized cleaner
energy requires not only a shift in technology, infrastructure, skill development, but
also involves a transformation of the occupational labour force and society. It may
lead to financial loss of existing fossil fuel-rich nations as their resource base will
not be further utilized for energy consumption as well as financing the government
expenditure. So, transition to a zero-carbon state is a long-term affair involving
decisions on various segments of the economy as well as geopolitical events shaping
the global scenario.
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