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Preface 

The global energy landscape is undergoing a transformative shift, driven by the 
twin imperatives of economic growth and sustainability. The rapidly evolving 
energy sector needs appropriate implementation of Machine Learning (ML) along 
with data analytics and energy economics at present. Price predictions together 
with demand-side management and rational decision-making processes for com-
plex energy systems result from these data-driven approaches because of market 
volatility and weather pattern modifications and technology advancements. This 
book “Machine Learning Technologies on Energy Economics and Finance—Energy 
and Sustainable Analytics” aims to solve this essential need through combined 
advanced ML applications with energy economics and finance which establish a 
whole framework to enhance global energy systems. 

This book demonstrates its purpose to address vital issues in the energy field 
because of unstable fossil fuel costs along with funding issues in renewable 
endeavors and essential Sustainable Development Goals (SDGs) requirements. 
Energy markets exhibit complex non-linear patterns which traditional economic and 
financial models usually fail to understand properly. The text enables the connection 
between machine learning and deep learning technologies to establish predictive 
models which support better energy domain decision-making. The integration of 
explainable AI (XAI) in predictive models guarantees transparent and interpretable 
energy-related forecasts which strengthens belief in artificial intelligence solutions 
for making decisions. 

The primary audience of this book consists of researchers, academicians, 
business professionals, policymakers, data scientists, engineers, and students who 
want to investigate innovative ML approaches in energy economics and finance. The 
book connects theoretical expertise with operational expertise to deliver meaningful 
knowledge for those who want to use AI and ML technologies to develop energy 
economics and finance. 

This book distinguishes itself from others by devoting its focus to real-time 
investigation outcomes with both industry expertise and state-of-the-art ML imple-
mentations for energy systems. This work exceeds traditional energy economics 
books through its incorporation of hands-on coding experiences alongside real-
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vi Preface

world case studies and predictive analytics for practical insights. Advanced ML 
techniques represent a substantial part of this book’s content alongside explainable 
systems, practical applications, sustainable energy analytics, and the integration of 
machine learning with various disciplines which include energy economics, finance, 
and sustainability. 

The book comprises thirteen chapters that group important thematic content 
areas. The initial part introduces ML for Global Energy Analysis and Forecasting 
through studies which analyze SDGs through clustering and trend prediction 
and examine explainable AI for natural gas consumption and develop methods 
for forecasting energy prices and predicting efficient gasoline spot prices. The 
second portion investigates Energy Economics and Financial Modeling through its 
exploration of energy finance and analysis of crude oil price forecasting together 
with sustainable energy applications of ML. Renewable Energy and Sustainability 
Analytics comprises three components which include energy transition assessment 
of emerging economies and CO2 emissions and economic growth as well as 
blending ensemble learning for energy consumption and biogas production analysis 
and ML strategies for renewable energy and energy transition case studies. 

Section 1: Machine Learning for Energy Forecasting 
and Market Analysis 

Energy forecasting and market analysis are crucial in making informed decisions 
in the energy sector. In the energy market context, ML transforms the forecasting 
skill of people when compared to traditional statistics in terms of optimization 
and modeling. The category consists of chapters that implement ML techniques 
to anticipate energy consumption along with crude oil market prices and natural gas 
utilization through explainable approaches for transparent modeling. 

Chapter 1 develops a machine learning system which studies worldwide energy 
behavior and performs country SDG achievement clustering in addition to pro-
jecting essential energy measurements. Chapter 3 demonstrates how Categorical 
Boosting enables better natural gas consumption prediction accuracy through 
advanced ML modeling while demonstrating clear model decision logic. Chapter 4 
describes the time-series modeling of crude oil price forecasting through analysis of 
ARIMA, SARIMA, and VAR alongside statistical approaches. Chapter 6 compares 
ML algorithms against traditional forecasting techniques by demonstrating superior 
performance in predicting crude oil and solar prices and electricity and natural gas 
values. Chapter 4 details an ensemble learning system optimized via hyperparameter 
optimization for gasoline spot price prediction as it demonstrates the value of ML 
in energy price modeling. 

Collectively, these chapters showcase the role of ML in enhancing predictive 
capabilities, optimizing resource allocation, and improving decision-making in 
energy markets. By leveraging advanced algorithms and XAI tools, these studies 
offer more interpretable, efficient, and scalable forecasting solutions.

http://doi.org/10.1007/978-3-031-94862-6_1
http://doi.org/10.1007/978-3-031-94862-6_3
http://doi.org/10.1007/978-3-031-94862-6_4
http://doi.org/10.1007/978-3-031-94862-6_6
http://doi.org/10.1007/978-3-031-94862-6_4
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Section 2: Renewable Energy Transition, Sustainability, 
and Economic Impact 

The world faces an extreme challenge to move toward renewable energy systems 
instead of maintaining dependence on fossil fuels for sustainable operations. Energy 
technologies built from renewable sources serve three essential functions: they 
decrease emissions of greenhouses gases, maintain stable energy costs, and protect 
future energy availability. The adoption of renewable energy depends on economic 
elements together with policy frameworks, regulatory conditions, and technology 
options and their economic and environmental impacts. 

Financial limitations for developing renewable energy in Bangladesh receive 
detailed analysis in Chap. 2 to identify three alternative funding approaches 
through green bonds together with public–private partnerships and crowdfunding 
for breaking through investment obstacles. Chapter 5 examines developing sunbelt 
countries through an energy transition comparison which reveals policy strategies 
needed to reach sustainability goals. Chapter 11 explores ML and deep learning 
(DL) techniques used in renewable energy applications through a detailed analysis 
of advantages and drawbacks while introducing effective solutions to optimize 
renewable energy forecasting efficiency. Chapter 13 explores how China and India 
are handling their energy transition into sustainable models by analyzing both 
positive and negative aspects on their macroeconomies. The chapters demonstrate 
how implementing policies with financial strategies and ML solutions speeds up the 
transition toward improved energy systems that are clean and efficient. 

The section demonstrates how policy frameworks intersect with financial inno-
vations and AI-driven solutions to resolve obstacles in renewable energy implemen-
tation. The implementation of ML and XAI systems within sustainability analytics 
gives researchers data-based knowledge about energy transition methods as well as 
their sustained economic effects and environmental impact. 

Section 3: Environmental and Financial Impact of Energy 
Consumption 

The consumption of energy manifests effective outcomes for environment sustain-
ability alongside financial market systems. The development of sustainable policies 
demands proper knowledge about the relationships between energy consumption 
and CO2 emissions together with economic stability and financial choices. The 
combination of ML and economic modeling works to study CO2 emissions together 
with financial stability along with primary energy production impacts. 

The analysis in Chap. 7 uses an Explainable AI-driven model to study how CO2 
emissions relate to economic growth through macroeconomic indicator assessments 
of SDGs. The conventional econometric models receive new insights through 
deep learning frameworks that include GRU, LSTM, and Bi-LSTM which analyze

http://doi.org/10.1007/978-3-031-94862-6_2
http://doi.org/10.1007/978-3-031-94862-6_5
http://doi.org/10.1007/978-3-031-94862-6_11
http://doi.org/10.1007/978-3-031-94862-6_13
http://doi.org/10.1007/978-3-031-94862-6_7
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economic-environmental interactions differently. The authors introduce a primary 
energy consumption forecasting solution in Chap. 8 using ML techniques while 
showing its impact on national security alongside environmental sustainability and 
economic development. The analysis of biogas production through explainable ML 
models appears in Chap. 9 that delivers sustainable energy alternatives to waste-
to-energy investment barriers. The application of ML within sustainable energy 
finance becomes the subject of Chap. 10 which displays how AI-powered financial 
forecasting tools boost investment choices for petroleum resources as well as natural 
gas and renewable energy. 

This segment presents examples of how energy consumption optimization and 
environmental reduction combined with financial decision enhancement are made 
possible by ML and AI technologies in the energy industry. These studies turn 
sustainability analytics into an AI-driven comprehensive approach to sustainable 
development in decision-making toward securing a financial and environmental 
balance. 

One of the primary challenges in developing this book was the integration of 
diverse ML methodologies while ensuring their applicability in energy economics 
and finance. Energy systems are influenced by dynamic factors such as global 
markets, geopolitical conflicts, climate policies, and technological disruptions. We 
have proven by utilizing sophisticated ML techniques that predictions concerning 
energy markets can be scientifically based yet both exact and simple to comprehend. 
The book highlights the significance of XAI for energy decision-making and solves 
AI interpretability issues by utilizing SHAP and ELI5 interpretability tools and 
others. The authors of this research book collected extensive information through 
collaborations with professionals from three fields: ML, Energy Economics, and 
Data Analytics. We profoundly thank the authors together with universities and 
research institutions which provide us with their endless backing and enriching 
knowledge. We extend our highest admiration to our families for staying sup-
portive during this entire journey thus enabling us to complete our work. AI and 
ML together with Energy Economics will gain more importance for developing 
sustainable energy market strategies and policies since the energy sector continues 
its development. The publication provides researchers alongside professionals and 
policymakers with directions to implement AI-driven choice-based systems in 
resolving worldwide energy problems. The studied area requires sustained academic 
effort to create an operational system which ensures both economic sustainability 
and energy infrastructure effectiveness. Through this invitation we guide readers 
to investigate ML Technologies in Energy Economics and Finance to discover 
revolutionary opportunities in Energy and Sustainable Analytics. 

Swansea, UK Mohammad Zoynul Abedin 
Dalian, China Wang Yong

http://doi.org/10.1007/978-3-031-94862-6_8
http://doi.org/10.1007/978-3-031-94862-6_9
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Analyzing Global Energy Patterns: 
Clustering Countries and Predicting 
Trends Toward Achieving Sustainable 
Development Goals 

Mahmudul Hasan, Nusrat Afrin Shilpa, Ashrafuzzaman Sohag, 
Md. Mahedi Hassan, and Md. Jahangir Alam Siddikee 

1 Introduction 

Sustainability has become a prominent planning concept since its inception in 
the realm of economics and ecological thought (Nguyen et al., 2023). Described 
as the endeavor to satisfy current needs without comprising the ability of future 
generations to do the same, sustainability is multifaceted. The notion of energy 
sustainability essentially applies the fundamental principles of sustainability to the 
realm of energy (Khan et al., 2022). However, the concept of energy sustainability is 
intricate and multifaceted. It encompasses ensuring the delivery of energy services 
in a sustainable manner, thereby necessitating the provision of energy services 
that are adequate, affordable, environmentally friendly, and socially acceptable 
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for all individuals both presently and in the future (Achuo et al., 2022). Energy 
sustainability mandates the sustainable utilization of energy within energy systems, 
encompasses various processes from sourcing energy to its conversion into usable 
forms, transportation, storage, and eventual consumption (Jiang et al., 2020). Energy 
is primarily utilized to deliver energy services like heating, transportation, lighting, 
and communication. Consequently, the promotion of energy sustainability hinges 
on the establishment and utilization of sustainable energy systems and practices 
(Zaharia et al., 2019). Energy sustainability is a vital component of the broader 
concept of sustainability. Numerous nations, regions, and urban areas are striving 
toward sustainability, promoting a reassessment of their current unsustainable 
energy practices (Qudrat-Ullah & Nevo, 2021). Simply put, sustainability is char-
acterized by environmental, social, and economic dimensions, all of which are 
intricately linked to energy. Energy, being essential for various activities, plays 
a crucial role in achieving sustainability. The pursuit of energy sustainability is 
impeded by significant environmental, social, and economic obstacles, includ-
ing climate change, escalating emissions, rapid resource depletion, affordability 
concerns, and social disparities (Bibi et al., 2021). Addressing these challenges 
effectively is imperative for the attainment of energy sustainability, yet it remains a 
daunting and intricate task. Factors like artificial energy prices influenced by taxes, 
incentives, economic, and political fluctuations further complicate the landscape 
of energy sustainability and consumption (Ozcan et al., 2019). The sustainable 
development goals (SDGs), which were endorsed by the United Nations General 
Assembly (UNGA) in 2015, present a robust framework for fostering international 
collaboration aimed at realizing a sustainable future for the globe. In 17 goals 
of SDGs, along with their 169 targets encapsulated in “Agenda 2030,” lay out a 
trajectory toward eradicating extreme poverty, combating inequality and injustice, 
and safeguarding the environment. The success of agenda 2030 hinges significantly 
on sustainable energy. SDG 7, the global energy objective, comprises three pivotal 
targets: ensuring accessible, dependable, and widespread modern energy services, 
substantially boosting the proportion of renewable energy in the global energy 
mix, and doubling the worldwide rate of enhancement in energy efficiency. The 
diverse targets within SDG 7 play a role in advancing other SDG objectives, 
a subject that has gained heightened research attention recently (Allen et al., 
2016). Previous examinations of prospective energy trajectories demonstrate the 
technical feasibility of achieving enhanced energy accessibility, air quality, and 
energy reliability concurrently, while averting hazardous climate alterations. Indeed, 
various alternative technologies and strategies have been identified as capable of 
attaining these aims (Asmelash et al., 2020). During the twentieth century, mankind 
extended its endeavors by harnessing the power of scientific advancements and 
technological innovations. The outcomes are evident in the swift escalation of 
the global populace and the attainment of elevated living standards in developed 
nations. As societies embracing mass production and consumption patterns become 
customary in these regions, the excessive utilization of resources and energy has 
evolved into a persistent issue. The repercussions of these patterns are not confined 
solely to these nations; they have also exerted notable impacts on developing
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countries. The worldwide population has grown reliant on a plentiful energy supply. 
The necessity for a substantial energy reservoir has consequently led to a heavy 
reliance on fossil fuels, notorious for their emission of carbon dioxide. The looming 
threat of global warming triggered by the accumulation of carbon dioxide in the 
atmosphere has hence become a pressing subject of contention (Helten, 2013). The 
primary trigger of the fluctuation in supply and demand can be directly ascribed to 
the system of segregation. In the year 2019, China represented 24% of the total 
global energy consumption, positioning itself as the foremost importer of crude 
oil and natural gas worldwide (Guo et al., 2021). Nevertheless, stringent measures 
implemented in early 2020 brought numerous sectors to a near halt. Furthermore, 
various European nations, the United States, and India jointly responsible for almost 
one-third of the global energy consumption have enforced a series of isolation 
protocols (Verhoef et al., 2023). Within this context, the global energy demand 
has encountered an unparalleled downturn. Consequently, the outlook of the market 
has turned increasingly delicate. While a gradual easing of restrictions and a slow 
resurgence from isolation appears inevitable in due course, the substantial setback 
in economic activities may endure permanently. All these elements contribute to 
a crucial argument: the ambiguity stemming from the crisis and the necessity 
for a seamless evolution of the energy sector (Biazzi, 2022). The proliferation of 
renewable energy sources has initiated a global energy revolution with significant 
geopolitical ramifications. The emergence of a novel era in energy will revolutionize 
the interactions among nations and societies, ushering in a new era of energy 
security, independence, and prosperity for humanity. In contrast to fossil fuels, 
which are predominantly found in specific geographical areas, renewable energy 
sources (RESs) can be harnessed in any country. Due to its ability to be generated 
in various locations, renewable energy has the capacity to reshape the dynamics 
of energy trading (Vagiona & Kamilakis, 2018). Earlier, Vagiona and Kamilakis 
(2018) propose an integrated approach for the assessment and prioritization of 
appropriate sites for the establishment of sustainable offshore wind farms. Through 
the utilization of a combination of geographic information systems and multi-
criteria decision-making techniques, the generated outcomes guarantee the spatial 
sustainability of these wind farms. Some researchers investigate the idea of hydro-
gen cities through the suggestion of hydrogen generation within urban areas. By 
employing Geographic Information System (GIS) tools, the monthly capacity for 
solar hydrogen production in urban regions of Mexico is evaluated (Juárez-Casildo 
et al., 2022). The study’s findings reveal that the total annual hydrogen demand of 
the country could be met by the production from specific urban areas for just 1 
month at a relatively economical expense. Furthermore, additional findings support 
earlier assertions regarding the minimal water demands and infrastructure footprint 
associated with metropolitan production. The list of objectives of this research is 
below: 

The technical contributions of this chapter are as follows.

• We design an ML-driven framework to find the pattern and predicting trends 
toward achieving sustainable development goals.
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• We employ unsupervised ML method to cluster the countries based on electricity 
access and renewable consumption for SDG.

• We design an ensemble ML model to predict the SDGs that outperforms existing 
ML models. 

The structure of the remaining sections of this chapter is outlined as follows. 
The related works are outlined in Sect. 2. Section 3 is dedicated to presenting our 
proposed methodology and the experimental setup. We detail the approach we have 
taken to address the research problem, including the methods, techniques, and tools 
employed in our study. Within Sect. 4, we present the outcomes of our experiments. 
The chapter concludes in Sect. 5 with a summary of our findings and their 
significance. Additionally, we outline avenues for future research and development 
in this domain, emphasizing the potential directions for further exploration and 
enhancement. 

2 Literature Review 

The set of SDGs outlined by the United Nations serves as a strategic plan 
which aimed at enhancing global sustainability by the target year of 2030. These 
goals encompass various objectives such as combatting climate change, attaining 
gender parity, ensuring universal access to quality education, and promoting quality 
healthcare, among others, as part of the 17 specified targets (Sachs et al., 2019). 
As the global community progresses toward achieving the aspirations of the 2030 
agenda, there is a growing interest among governments and societies in exploring 
strategies for attaining sustainable development. The advancement of technol-
ogy has brought about significant transformations in our lifestyles and business 
practices (Stafford-Smith et al., 2017). Numerous nations have been promoting 
the sharing of building energy data for the development of innovative models, 
such as building energy benchmarks, across various building typologies. These 
initiatives are designed to stimulate investments in energy efficiency and mitigate 
building energy usage. The methodologies of benchmarking can be categorized as 
white-box, black-box, or gray-box, based on the classification of models utilized 
to forecast building energy efficiency (Papadopoulos et al., 2018). Information 
on building energy consumption and its characteristics is crucial for conducting 
benchmarking procedures. Nevertheless, the current absence of data presents a 
significant obstacle in this context. In order to tackle this issue, Juárez-Casildo 
et al. (2022) focused on exploring the utilization of machine learning to predict 
the energy use intensities of bank branches situated at Brazil (Veiga et al., 2021). 
The methodology applied in this research encompassed the acquisition of data 
pertaining to the typology of bank branches and the archetype model along with its 
fixed and variable inputs were identified to produce 48,000 samples that underwent 
simulation using EnergyPlus software. The result of this study revealed that the 
lighting power density and the weather parameter emerged as the most impactful



Analyzing Global Energy Patterns: Clustering Countries and Predicting Trends. . . 5

variables in the estimation of energy consumption in bank branches. Previously, 
Veiga et al. (2021) examined the progression of the global energy consumption 
framework through the utilization of an evolutionary tree model (Hu et al., 2018). 
Initially, a total of 144 countries and regions were segmented into four distinct 
categories utilizing the k-means clustering technique. Nations and regions falling 
within the same category typically exhibit comparable evolutionary trajectories. 
Furthermore, nations classified as type IV, predominantly encompassing developed 
nations, showcase the most varied energy consumption frameworks. Countries 
can be positioned within the evolutionary tree of the global energy consumption 
framework, and such placements can serve as a foundation for elevating a country’s 
energy consumption framework based on analogous countries with greater diversity. 
The analysis of smart meter data contributes significantly to enhancing the planning 
and operations of power system. This research endeavor of Tang et al. (2022) made 
investigation on identifying the determinants of residential energy consumption 
behaviors through a socioeconomic lens, utilizing machine learning techniques 
on consumption and demographic data. The study delves into the examination 
of real-world smart meter data, extracting load patterns through robust clustering 
methods. The correlation between consumer’s load patterns and specific socioe-
conomic indicators was delineated through the application of machine learning 
algorithms. The proposed analytical framework, integrating feature selection and 
machine learning techniques, demonstrated superior effectiveness compared to 
XGBoost and traditional neural network models in capturing the relationship 
between load patterns and socioeconomic indicators. It is also noted that with the 
rise in population, urbanization, and standards of living, unprocessed wet waste 
presents a notable obstacle and offers unexplored possibilities. So, Zhu et al. (2023) 
concerned on this issue and presented an innovative framework that mobilized 
advance machine learning methodologies such as deep neural networks, random 
forest (RF), and extreme gradient boosting) with dual-objective optimization. This 
strategy facilitates a comparative evaluation of the solid byproducts generated from 
HTC and pyrolysis, with a focus on their Carbon Stability Index (CSI) and Return 
on Energy Investment (REI) metric (Zhu et al., 2023). The evaluation allowed for 
customizing char production for specific uses, resulting in optimal conditions for 
both high energy efficiency and stable carbon storage. A case study involving wet 
food waste revealed a substantial improvement from 4.83 to 14.43 in REI and an 
elevation from 47.4 to 57.98 in CSI when compared to traditional HTC methods. 
Lawrence et al. (2013) conducted a study on the worldwide distribution of energy 
consumption per capita. Their research revealed a decline in the Gini coefficient, 
G, from 0.66 in 1980 to 0.55 in 2010, indicating a reduction in inequality. The 
distribution of energy consumption per capita globally in 2010 closely resembled 
an exponential distribution, with a G value of 0.5, suggesting that the top third of 
the global population utilizes two-thirds of the energy produced. Chen and Chen 
(2011) undertook an analysis of the global energy landscape through a systematic 
input-output simulation which identified the United States as the largest importer 
of embodied energy but faced a deficit in energy reception. Fujimori et al. (2016) 
executed a hindcasting a global energy model using an integrated assessment model.
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Their findings indicated a high level of reproducibility in global aggregated primary 
energy, with wealthier nations displaying greater reproducibility compared to lower-
income nations. Through an analysis of entropy Information, Zhang et al. (2011) 
assessed the transformation of China’s energy consumption pattern, highlighting a 
gradual enhancement in Chinese energy utilization. Nevertheless, past studies have 
neglected to explore the interconnections among energy consumption patterns in 
various nations, indicating a necessity for further investigation into the evolution of 
the global energy consumption structure. 

3 Methodology 

3.1 Approach Overview 

The goal of this project is to explore the dataset and derive interesting insights from 
it. Throughout the work on it, I decided to focus on (1) clustering the countries 
and (2) generating predictions for the time until 2030, as 2030 is the target year for 
completion of many of the SDG targets. We have used some ML algorithm and an 
ensemble algorithm for better prediction and finally evaluate the performance of the 
models by some performance measure techniques. 

3.2 Machine Learning Algorithms 

3.2.1 K-Means Clustering 

K-Means clustering is an unsupervised ML algorithm utilized to partition a dataset 
into K distinct clusters based on feature similarity. It is conducted by iteratively 
assigning data points to the nearest cluster centroid, recalculating the centroids until 
a stable solution is reached (Yang et al., 2024). This algorithm clusters objects 
such that those within the same cluster share similar characteristics, while objects 
in different clusters exhibit distinct characteristics. The function is as follows: 
minimize J == C‖x − ‖2

., where k is the number of clusters, Ci . is the set of points 
in cluster i, x is a data point, and μi . is the centroid of cluster i. 

3.2.2 Linear Regression (LR) 

LR is a statistical approach which attempts to determine the relationship between 
two variables by fitting a linear equation to observed data. In LR, one variable is an 
explanatory variable and the other is a dependent variable (Hasan et al., 2024a). The



Analyzing Global Energy Patterns: Clustering Countries and Predicting Trends. . . 7

basic form of the linear regression equation is Y = +X+., where Y. is a dependent 
variable (the variable being predicted or explained), X. an independent variable (the 
predictor variable) : intercept (the value of Y. when X. is 0), : the slope (the change in 
Y. for a one-unit change in X.) : the error term (the difference between the observed 
and predicted values of Y.). RF is a widely used algorithm for ensemble learning 
that utilizes multiple decision trees (DTs) for classification and regression tasks. 
The algorithm builds a forest of numerous decision trees, each of which is trained 
employing different samples of training data and the input attributes. The average 
predictions of all the trees are considered (Mamun et al., 2024). 

3.2.3 Light Gradient Boosting (LGB) 

The LGB machine regressor is a breakthrough tree-based ensemble learning method 
which helps to overcome the efficiency and scalability limitations of XGBoost in 
massive dataset and high-dimensional input feature (Sajid et al., 2023). LGB is 
an updated gradient boosting framework that utilizes the prediction results from 
several DTs to make the final prediction. The LGB algorithm is comprised of two 
main approaches: gradient-based one-side sampling (GOSS) and exclusive feature 
bundling (EFB). 

3.2.4 Decision Tree 

A DT algorithm is a classic supervised learning model used for both classification 
and regression. DT demonstrates a diagram depicts like as tree. It makes sequential 
decisions based on attribute tests to classify data into different classes. DT is 
commonly used for decision-making and classification tasks in data science (Hasan 
et al., 2024b). 

3.2.5 AdaBoost 

AdaBoost (Adaptive Boosting) combines several weaker prediction algorithms into 
a robust regression model (Hasan et al., 2023a). Initially, equal weights are assigned 
to all data points. The model then processes the data, identifying misclassified 
instances. The weights of these misclassified points are increased to improve the 
model’s accuracy. The final prediction for binary classification is mathematically 
represented as follows:
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3.2.6 CatBoost 

CatBoost is one of the newest boosting ensemble machine learning models. 
CatBoost utilizes ordered boosting and is an efficient enhancement of gradient 
boosting in addressing the issue of target leakage (Prokhorenkova et al., 2018). This 
is even effective in handling small datasets and categorical features. 

3.2.7 B_DRRC 

The B_DRRC model is a thoughtfully crafted blending ensemble that brings 
together four well-known algorithms—DT, RF, Ridge, and CatBoost—each con-
tributing its unique strengths to improve predictions. Think of it as a team where 
each member has different expertise: The DT offers a straightforward and easy-to-
understand structure, while RF adds reliability by averaging multiple trees to avoid 
overfitting. Ridge acts as a stabilizer, handling tricky correlations in the data, and 
CatBoost shines by efficiently processing complex categorical features (Hasan et al., 
2023c). 

By blending these models, the B_DRRC approach ensures that no single model’s 
weaknesses hold back performance. It is like getting different perspectives to make 
the best possible decision, as one model might spot patterns that another misses, 
leading to more balanced and accurate predictions. This combination helps the 
B_DRRC model handle challenging datasets where simpler models might struggle, 
making it a versatile and powerful tool for solving real-world problems with more 
confidence and less bias. 

3.3 Performance Measure Metrics 

3.3.1 Mean Absolute Error (MAE) 

MAE characterizes the alteration among the original and predictable values and is 
mined as the dataset’s total alteration mean (Hasan et al., 2023d). 

3.3.2 Mean Square Error (MSE) 

The MSE is calculated to ensure that the original and decrypted images are in 
variations or not.
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3.3.3 Root Mean Square Error (RMSE) 

RMSE is defined as the measure of the differences between values that are predicted 
by a model and values that are observed. 

3.3.4 Mean Absolute Percentage Error (MAPE) 

MAPE is a widely used metric for assessing forecast accuracy. It is calculated as 
the average of absolute percentage errors (APEs). MAPE represents the actual and 
forecasted values at a given data point, respectively. 

3.3.5 R-Squared 

R-Squared is a statistical measure that represents the proportion of the variance for 
a dependent variable that is explained by an independent variable or variables in a 
regression model (Hasan et al., 2023b). It is often used to assess the goodness of fit 
of a model (0,1), indicating how well the model’s predictions match the actual data. 

4 Result Analysis 

4.1 Descriptive Analysis 

Table 1 deals with the descriptive statistics of variables where the access to 
electricity is 78.93% in average and the Skewness shows −.1.2058, suggesting a 

Table 1 Statistical characteristics of the variables of the SDG indicators 

Variables Mean Std. Variance Skewness Kurtosis 

Access to electricity (% of 
population) 

78.9337 30.2755 916.605 −1.2058 −0.0358 

Access to clean fuels for 
cooking 

63.2553 39.0437 1524.41 −0.5081 −1.4192 

Renewable energy share in the 
total final energy 
consumption (%) 

32.6381 29.8949 893.705 0.6709 −0.9058 

Energy intensity level of 
primary energy (MJ/$2017 PPP 
GDP) 

5.3073 3.5320 12.4750 2.5890 9.5037 

Financial flows to developing 
countries (US $) 

9.42e+07 2.98e+08 8.8804 8.3882 102.3670 

Renewable electricity 
generating capacity per capita 

113.137 244.167 59617.52 5.3669 40.4502
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left skew in the distribution. This means that most countries have electricity access 
percentages higher than the mean, with a few having significantly lower access. 
Table 1 also informs that about 63.25% of population has the access to clean 
fuels for cooking while the variance is 1524.41, indicating a wide variance in 
population of getting access. Notably, in average, only 32.64% of total population 
gets renewable energy. However, there exists a positive skewness of 0.6709 that 
indicates while most regions have renewable energy shares lower than the mean, 
there exist a few with exceptionally high contributions. In average 94.3 million USD 
is allocated in developing countries, while the variance is 8.88 which indicates a 
wide disparity in financial flows among developing countries. A positive skewness 
of 8.39 demonstrates the mismatch in the allocation and indicates that a few 
countries get the most funds. Lastly, in average, the renewable energy generating 
capacity per capita is 113.137 where the standard deviation is 244.167, indicating 
significant variation among the different regions or countries. 

Figure 1 illustrates the correlation matrix of variables. The correlation matrix 
depicts that access to clean fuels for cooking has high positive correlation with 

Fig. 1 Heatmap to represent the correlation among the variables
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access to electricity (% of population) by 87%. That means the higher the portion 
of getting access to electricity, the higher to access to clean fuels for cooking. On 
the contrary, renewable energy share in the total final energy consumption (%) 
has a significantly negative correlation with access to clean fuels for cooking and 
access to electricity (% of population) by ( −.79%) and ( −.78%), respectively. The 
correlation reveals that countries with high share with electricity access and having 
clean fuel to cook are usually the lowest share of renewable energy as share of 
final energy consumption and vice versa. Notably, renewable energy share in the 
total final energy consumption (%) has a minimal positive (0.0037%) with financial 
flows to developing countries (US $). That indicates that financial allocation has a 
minor impact on renewable energy consumption percentage. 

4.2 Results of the Clustering 

Based on energy consumption, this study has clustered the dataset using K-
means clustering. Analyzing the dataset, the elbow method suggests the number 
of countries that suite for the study. Figure 2 depicts that elbow three (3) is mostly 
curved. Therefore, this study considers three clusters (countries). The clusters are 
less, medium, and high energy consumed countries. 

Figure 3 displays the scatter diagram of data points of three clusters (low, 
medium, and high) energy consumed nations derived from the elbow method K-

Fig. 2 Elbow method to determine the number of clusters
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Fig. 3 Results of the clustered countries 

Table 2 The value SDG indicators of three different clusters 

Variables Cluster 1 Cluster 2 Cluster 3 

Access to electricity (% of population) 99.2806 39.6755 81.4477 

Access to clean fuels for cooking 94.4446 7.2666 39.7324 

Renewable energy share in the total final energy 
consumption (%) 

15.1447 79.0230 50.0296 

Energy intensity level of primary energy (MJ/$2017 PPP 
GDP) 

4.8234 7.1969 4.4819 

mean cluster. Countries that are in color green are low energy consuming, while 
the purple denotes the high energy demanding nations, and finally, the yellow color 
countries are in the medium position. 

One of the most interesting findings is related to the outcome of clustering the 
countries along the four indicators selected for the project. The clusters reveal that 
countries with high share with electricity access are usually among the countries 
with the lowest share of renewable energy as share of final energy consumption. 
The opposite is true for countries with low electricity access, whereby their share 
of renewables is among the highest. Table 2 informs that in cluster 1, above 99% 
of total population of these countries has electricity access, while about 15% of 
these electricity comes from renewable sources. On the other hand, around 40% of 
population from Cluster 2 has the access of electricity. Most importantly, almost 
80% of the total energy comes from renewable sources of this 40%. From Cluster 
3, it is crystal that 81.46% has energy access, and from them 50.03% comes from 
renewable energy sources.
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Table 3 Performance of the ML model to predict energy intensity level of primary energy 

Model MAE MSE RMSE SMAPE R-Squared 

LR 0.0674 0.0119 0.1093 39.1958 0.33 

RF 0.0439 0.0074 0.0862 25.1477 0.40 

LGB 0.0401 0.0045 0.0670 24.2634 0.64 

DT 0.0345 0.0037 0.0606 21.2577 0.70 

AdaBoost 0.0787 0.0097 0.0989 45.0591 0.21 

CatBoost 0.0361 0.0031 0.0560 22.6648 0.75 

B_DRRC 0.0301 0.0028 0.0456 18.6472 0.84 

4.3 Prediction of the SDG Indicators Using ML 

This study has predicted the SDG based on different indicators such as energy 
intensity level of primary energy, access to electricity (% of population), and access 
to clean fuels for cooking. 

Table 3 displays the performance matrix of prediction result of ML algorithms on 
energy intensity level of primary energy. The table shows that the novel algorithm 
blending decision tree, random forest, and ridge regression (B_DRRC) performs far 
better than the other ML algorithms. While the MAE, MSE, RMSE, and SMAPE 
are the lowest for B_DRRC than the others by 0.0301, 0.0028, 0.0456, and 18.6472 
respectively, the value of R2 is considerably better than other by 84%. That means 
B_DRRC fits 84% with the dataset in predicting energy intensity level of primary 
energy which is impressive for an ML algorithm. MAE is high of AdaBoost (0.0787) 
followed by LR (0.0674). MSE and RMSE are comparably higher of LR by 0.0119 
and 0.1093, respectively. After B_DRRC, CatBoost fits most with the prediction 
model by 75% followed by DT (70%). Notably, the R-Square of AdaBoost is 21% 
only which is too bad for this prediction model on this dataset. 

The result of the prediction of energy intensity level of primary energy is 
demonstrated in Fig. 4 as well. In this graphical representation, it is crystal that 
all types of errors (MSE, MAE, and RMSE) are considerably lower than all other 
algorithms, while the closest one is CatBoost. Notably, LR has the highest MSE and 
RMSE, while AdaBoost has the highest MAE. 

Table 4 displays the performance matrix of ML algorithms in predicting access 
to electricity (% of population). The table informs those errors (MAE, MSE, RMSE, 
and SMAPE) are minimal for B_DRRC in predicting electricity access populations 
by 3.65%, 0.68%, 0.642%, and 10.6731, while the model fits the most as the R2 is 
95%. In terms of MAE, MSE, and RMSE, Linear Regression results out the highest 
error rate by 10.66%, 2.10%, and 21.4753 followed by AdaBoost 7.76%, 1.52%, and 
18.1394, respectively. Considering RMSE, AdaBoost has the highest error rate than 
others by 12.33%. Though LR has the lowest R-square (77%) out of all algorithms, 
the model fits well as an ML algorithm. After B_DRRC, CatBoost performs well by 
having minimal errors (MAE: 4.64%, MSE: 0.71%, RMSE: 8.42%, and SMAPE: 
11.3367) and also the second highest R2: 92%.
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Fig. 4 Errors of the models to predict energy intensity level of primary energy 

Table 4 Performance of the ML model to predict access to electricity (% of population) 

Model MAE MSE RMSE SMAPE R-Squared 

LR 0.1066 0.0210 0.1149 21.4753 0.77 

RF 0.0519 0.0138 0.1177 12.1570 0.85 

LGB 0.0472 0.0072 0.0847 11.7098 0.90 

DT 0.0421 0.0104 0.1019 10.5901 0.89 

AdaBoost 0.0776 0.0152 0.1233 18.1394 0.84 

CatBoost 0.0464 0.0071 0.0842 11.3367 0.92 

B_DRRC 0.0365 0.0068 0.0642 10.6731 0.95 

Figure 5 illustrates the errors of the models to predict access to electricity. The 
figure shows that LR has the most MSE and MAE followed by AdaBoost, while 
B_DRRC has the lowest. However, AdaBoost is containing the highest RMSE by 
above 12%, and B_DRRC has the lowest by around 6%. Overall, B_DRRC has the 
minimal error rate than other algorithms. 

The performance of the ML model to predict “access to clean fuels for cooking” 
is tabulated in Table 5. Table shows that LR experienced most errors such as 
MAE 14.51%, MSE 3.21%, RMSE 17.91%, and SMAPE 48.4913 followed by 
AdaBoost (MAE:13.52%, MSE: 2.47%, RMSE: 15.73%, and SMAPE: 42.7043). 
Consequently, LR’s goodness of fit for this model is the lowest by 78%. The table 
also depicts that B_DRRC has the minimal error rate by 5.10% of MAE, 1.01% of 
MSE, 9.85% of RMSE, and 25.6521 of SMAPE, while the R2 is 95%. That means 
the model 95% reads the dataset. Overall, this proposed model performs far better 
than other models.
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Fig. 5 Errors of the models to predict access to electricity 

Table 5 Performance of the ML model to predict access to clean fuels for cooking 

Model MAE MSE RMSE SMAPE R-Squared 

LR 0.1451 0.0321 0.1791 48.4913 0.78 

RF 0.0758 0.0236 0.1536 27.2433 0.84 

LGB 0.0711 0.0114 0.1067 30.2276 0.92 

DT 0.0674 0.0196 0.1399 23.8521 0.87 

AdaBoost 0.1352 0.0247 0.1573 42.7043 0.83 

CatBoost 0.0707 0.0111 0.1054 29.5615 0.92 

B_DRRC 0.0510 0.0101 0.0985 25.6521 0.95 

To support Fig. 6 and visually illustrate the performance of selected models in 
predicting access to clean fuel, Fig. 7 is presented. From the figure, it is visualized 
that Linear Regression has experienced most error in all three performance measures 
(MSE, MAE, and RMSE). Following LR, AdaBoost and Random Forest are posi-
tioning second and third, respectively. Most importantly, B_DRRC, the proposed 
model, outperforms other algorithms that this has the lowest errors in all three 
parameters. 

Figure 8 represents the R2 values of all ML algorithms in three different 
conditions such as energy intensity level, access to electricity, and access to fuels. 
In all three categories, B_DRRC outperforms all other algorithms significantly. In 
terms of energy intensity level, B_DRRC can read the dataset more than 80%, 
while AdaBoost can read the dataset only by around 20%. The second-best model is 
CatBoost which fits for the dataset by around 75%. Considering access to electricity,
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Fig. 6 Errors of the models to predict access to clean fuel 

Fig. 7 R-Squared values of all
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Fig. 8 Predicted trend in energy intensity level of primary energy 

all the algorithms performed well, but the B_DRRC is better here again by more 
than 93%. The same happens for the access to clean fuel data that all the models 
experienced satisfactory performance but B_DRRC outperformed all. 

4.4 Predictive Trend up to 2030 of Different variables 

Figure 8 shows the prediction result of primary energy intensity level using 
B_DRRC, proposed model. In the Y axis, energy intensity level of primary energy 
is given, while X axis deals with consecutive years from 2000 to 2030. The figure 
informs that there remained a gradual decrease in energy intensity level from above 
6 in 2000 to below 5 in 2019. However, the trend experienced a steep increase in 
2020 to about ten levels. Most importantly, the prediction suggests that though there 
was a sudden raise in intensity level in the early 2020, it will fall to around the same 
level at the end of 2020. Then, the intensity level will continue decreasing gradually 
in the preceding years and expected to reach below four (4) by 2030. 

Figure 9 displays the prediction result of B_DRRC model on access to electricity. 
Utilizing dataset from 2000 to 2020, this novel algorithm predicts the probable 
average access to electricity till 2030. Average access to electricity experienced 
a continuous increase over the entire span of 2000–2020. The average access to 
electricity was around 73% of total population at the beginning which touched 85% 
by 2020. Moreover, from 2012 to 2013, the access to electricity remained constant 
by around 80.1%. Notably, it is expected to increase in the same pace in the next 10
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Fig. 9 Predicted trend in access to electricity 

Fig. 10 Predicted trend in renewable energy share 

years as well. The prediction result of this novel algorithm informs that the average 
can be up to 92% within 2030. 

Figure 10 shows the prediction result of renewable energy share in the total 
energy consumption utilizing B_DRRC, a novel model. The figure illustrates that 
the renewable energy usages experienced a gradual decrease in against total energy
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Fig. 11 Predicted trend in clean fuels for cooking access 

consumption percentage. While the proportion was around 35% in 2020, the actual 
condition after 19 years was more severe by around 31% in 2019. However, the 
trend experienced a steep increase in 2020 to around 83%. Most importantly, the 
prediction informs that though there was a sudden raise in renewable energy use 
in the early 2020, it will fall to around the same level at the end of 2020. Then, 
the consumption of renewable energy will experience a gradual downfall in the 
preceding years and expected to reach around 30% in 2030 and expected to be 
lowest of these three decades. 

Figure 11 demonstrates the prediction result of B_DRRC model on access to 
clean fuel for cooking. Employing dataset from 2000 to 2020, this novel algorithm 
predicts the probable access to clean fuels for cooking till 2030. Average access to 
electricity experienced a considerable increase over the years from 2000 to 2020. 
The average access to clean fuel for cooking was about 58% of total population in 
2000 which reached around 68% by 2020. Notably, the trend remained constant for 
1 year (2012–2013) by around 65%. The proposed algorithm suggests that there 
will be an increase in next 10 years as the same pace. The prediction of this novel 
algorithm results out that the average will reach above 72% in 2030.
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5 Conclusion and Future Work 

The main objective of this work was analyzing global energy pattern. To achieve 
this, we have employed ML algorithms both supervised and unsupervised and 
ensemble ML algorithm to predict the different variables of SDGs. We have selected 
the SDGs-related variables for our study and predicted each if the variables with 
considering the others as dependent variables. We have designed an ensemble 
algorithm to get the better performance to predict the SDG variables. Besides the 
model building, we also show the predictive trend of “energy intensity level of 
primary energy,” “access to electricity (% of population),” and “access to clean 
fuels for cooking” up to 2030 by our developed model. Accurate energy prediction 
helps us make smarter choices about how we use and distribute energy. By cutting 
waste and focusing on renewable sources, it supports affordable and reliable access 
for everyone, helps fight climate change, and builds stronger infrastructure. This 
approach drives sustainable growth and a better future for communities worldwide. 
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Access to Energy Finance: Development 
of Renewable Energy in Bangladesh 

Mohammad Monzur Morshed Bhuiya and Aminul Haque Russel 

1 Introduction 

This is universally accepted that energy is central to development. It enables invest-
ments, innovations, and the emergence of new industries that create employment 
opportunities, vital to alleviating extreme poverty, foster inclusive growth and 
promote shared prosperity on a more sustainable world. However, it is disheartening 
that there are still 685 million people live without electricity globally, and approxi-
mately 2.1 billion people depend on traditional polluting fuels and technologies for 
cooking their meals. Thus, keep energy access affordable, reliable, and sustainable 
(The World Bank, 2018). On the other side, global warming has become one of the 
most pressing challenges of our time, with human activities like burning fossil fuels 
and deforestation exacerbating climate change through increased greenhouse gas 
(GHG) emissions. Scaling up renewable energy and energy efficiency can help to 
mitigate the adverse effects of climate change and environmental pollution (Lam 
&  Law  , 2016). Renewable energy resources are natural resources which have a 
vital role to meet up the energy demand (Islam et al., 2006; Ahmed et al., 2014). 
Bangladesh’s renewable energy journey began in 2008, when the Ministry of Power, 
Energy and Mineral Resources published their policy guidelines. Bangladesh has 
set a clean energy or renewable target of 40 percent by 2041. Since then, up 
until 2024, the sustainable energy niche in Bangladesh has been making sluggish 
progress compared to other countries. According to SREDA (2020), in Bangladesh, 
renewable energy sources make up only 3.1% of the national energy mix. Solar is 
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responsible for the lion’s share of current renewable energy capacity, with 1080.36 
MW. The country generates less than 1% of its electricity from hydropower. These 
levels are far below the 13% global average (SREDA Homepage, n.d.; Tachev, 
2024). 

In contrast, developing countries have taken the lead in the global shift toward 
renewable energy, with China adding the top annual solar power capacity, and India 
and Brazil ranking among the top five. India, in particular, has made significant 
strides toward renewable energy, targeting 50% of its energy mix from renewable 
sources by 2030. By early 2023, India had already achieved an installed solar 
capacity of 64 GW. The world is headed toward renewables, e.g. Iceland and 
Norway generate nearly all their energy needs from renewable sources. Inspired 
by these countries’ advancements, Denmark has set a goal to transition its entire 
energy supply to renewable energy by 2050 (Chowdhury, 2024). 

However, existing studies evidence that the lethargic progression of renewable 
energy in Bangladesh may be due to various factors, ranging from government 
policies to household awareness and reactions. It has been identified that knowledge 
and information, regulatory frameworks, financial-economic conditions, market 
dynamics, lack of adequate financing, technological issues, institutional challenges, 
and behavioral aspects are barriers to the expansion of renewable energy such as 
solar and wind energy (Mahmud & Roy, 2021a). On the other hand, the energy 
sector’s dependence on large-scale projects, advanced technologies, and complex 
infrastructure underscores its dependency on project finance and significant invest-
ments. Globally, the average annual investment in energy is approximately $413 
billion, a figure that is growing, particularly in the developing world. Developing 
countries will need an estimated $165 billion annually in electricity investments 
through 2010, with this figure expected to rise by around 3% per year through 2030. 
Because of the magnitude of their investments in the energy sector, international 
financial institutions (IFIs) have the potential to profoundly affect future energy 
paths (World Bank Group, 2007). 

Furthermore, renewable energy sector are still relatively new, the research 
and development efforts aimed at their further exploitation require significant 
investments (Gielen et al., 2019; Strielkowski et al., 2021). However, due to high 
upfront costs and the risk of commercializing renewable energy initiatives compared 
with conventional energy like fossil fuel, a barrier exists in securing financing 
of renewable energy projects (Warren, 2013). Also, the cost of solar cells in 
Bangladesh is decreasing every day. This offers an opportunity for the Bangladesh 
to invest in renewable energy sectors, thereby reducing overall infrastructure costs 
and enhancing energy security systems (Bhuiyan et al., 2021). 

Moreover, previous studies mainly focus on prospects, challenges of renewable 
energy in Bangladesh and policy related to renewable energy (Bhuiyan et al., 2021; 
Hossain et al., 2023; Uddin & Park, 2021; Abdullah-Al-Mahbub, & Islam, A. 
R. M. T., 2023). But, few researches are conducted on energy finance. On the 
other hand, existing research recommended that investment in renewable energy is 
immediately needed to address the rising energy demand, mitigate climate change, 
and foster sustainable development. Such investments bring about substantial socio-
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economic, environmental, and health benefits. Although falling renewable energy 
technology costs have significantly lowered the upfront capital needed, financing 
renewable energy projects remains difficult (Zhang & Wang, 2019; Michaelowa 
et al., 2020). Therefore, the current study emphasizes on access to energy finance 
for the development of renewable energy sector in Bangladesh because access to 
finance is a critical component in the global effort to ensure that all individuals and 
communities have reliable and sustainable energy sources. 

This study is organized in the following manner. In the introduction section, 
the background, problem, and aim of the study are presented; the following 
section provides a comprehensive literature review, covering prior relevant studies 
and key concepts that are essential for this research. This review establishes the 
foundation for understanding the theoretical and empirical insights related to the 
study’s focus. Afterward, we discuss the methodological framework, including 
the strategies for data collection and an outline of the data analysis process. 
The subsequent section is structured into two parts: the first part addresses the 
orientation on current scenario of renewable energy, rationality of renewable energy 
development, barriers to renewable financing as well as others obstacle for the 
development of renewable energy sector in Bangladesh and the second section 
shows policy related to renewable energy, green energy finance mechanism, and 
data related to financing in renewable energy sector including refinancing scheme 
by IDCOL, Bangladesh Banks, and loan from different international development 
partners. The concluding section offers recommendations for the government and 
key stakeholders, highlighting the need for strategic initiatives to improvement 
in renewable energy finance. Furthermore, it highlights areas of improvement for 
fostering investments in renewable energy projects. 

2 Literature Review 

2.1 Concept of Renewable Energy 

Renewable energy refers to energy sources that are naturally replenished and 
can be sustainably recovered from the environment. These include solar, wind, 
hydropower, biomass, waves, tidal, and geothermal energy, all of which offer cleaner 
alternatives to traditional fossil fuels. With the characteristics of sustainability and 
low environmental pollution, the issue of renewable energy has received huge 
attention (Lai et al., 2020). Renewable energy technologies like solar, mini/micro 
hydro, wind, and biomass systems offer modern, sustainable solutions for rural 
electrification. These systems are cost-effective, environmentally friendly, and can 
be easily operated and managed by local communities, making them ideal for 
expanding access to clean energy in remote areas. The development of rural 
renewable energy is an effective way of reducing poverty and promoting sustain-
able development (Sapkota et al., 2013). Islam et al. (2008) conducted a study



28 M. M. M. Bhuiya and A. H. Russel

on sustainable energy resources and technologies for development activities in 
Bangladesh, focusing on the electricity challenges faced in rural areas. The authors 
concluded that renewable energy could serve as the primary energy source to 
address the electricity issues in these regions (Islam et al., 2008). Islam et al. 
(2011) discussed renewable energy technologies that can reduce energy shortage, 
environmental degradation, and climate change effects in Bangladesh (Islam et al., 
2011). Therefore, as previous studies highlighted, renewable energy, branded by 
sustainability and low environmental impact, is important for modern, sustainable 
electrification and development. Technologies like solar, wind, and biomass are 
effective in addressing electricity shortages and promoting sustainable development 
particularly in Bangladesh’s rural areas. 

2.2 Key Renewable Energy Sources in Bangladesh 

The key renewable energy sources include solar energy from the sun, biomass, wind, 
tidal, geothermal, and hydro. The availability of these resources determines the 
extent to which each type of renewable energy can be utilized in a country. But, 
Bangladesh lacks geothermal potential and has limited hydro potential, particularly 
those reliant on elevation. Tidal energy is still in its early stages and has not yet 
been commercialized. As a result, solar, wind, and biomass remain the only viable 
alternatives. However, a significant challenge with biomass is the high demand for 
agricultural and animal waste as fuel for cooking in rural areas. Solar energy is 
the most reliable renewable energy resource that can be utilized on a large scale. 
In contrast, wind has consistently been a challenging resource to assess within 
the context of Bangladesh. From Bangladesh perspectives, the core barriers with 
biomass are: the price is high, and accumulating huge quantities is tough, hence 
costly. However, there is considerable potential through the bio gasification process, 
although it would necessitate careful planning and effective management of bio-
resources. Therefore, this expectation is turning out to be true with local and foreign 
investments occurring in grid-tied utility-scale solar parks and industrial rooftop 
projects (Hossain & Chisti, 2022). A block diagram in Fig. 1 shows the list of 
renewable energy sources in Bangladesh. 

2.3 Concept of Energy Finance 

Energy finance is an emerging interdisciplinary area that primarily focuses on the 
connections between energy markets and financial markets. However, it is also 
exploring energy products and markets through a financial lens. Zhang (2018) 
explain that energy finance is the combination of six broad themes such as 
energy and financial markets, pricing mechanisms, energy corporate finance, green 
finance and investment, energy derivative markets, and energy risk management
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Fig. 1 Major renewable energy sources in Bangladesh 

(Zhang, 2018). According to Friebe et al. (2013), sustainable energy finance is the 
structuring of financial instruments and the mobilization of capital specifically for 
the development and expansion of renewable energy sources and energy efficient 
technologies, considering both environmental and economic objectives. In this study 
energy finance is interchangeably used to mainly focus on financing in renewable 
energy or the sustainable finance (Friebe et al., 2013). 

Therefore, access to renewable energy finance refers to the ability of individ-
uals, businesses, and government to obtain financial resources necessary for the 
development, deployment, and maintenance of renewable energy technologies such 
as solar, wind, hydro, and biomass etc. Since supply of finance is crucial for the 
development, deployment, and scaling of energy solutions that are both affordable 
and sustainable, this study highlights the various ways of financing in renewable 
energy sector in Bangladesh such as green finance by commercial banks and non-
bank financial institutions, IDCOL and Bangladesh Bank refinancing scheme, loan 
and grants international development partners, green bond and different subsidies, 
tailored to meet the specific needs of clean energy projects. 

2.4 Financing in Renewable Energy Sector 

Financing plays a vital role in the development of renewable energy projects. As 
global concerns over climate change and environmental sustainability intensify, the 
transition from fossil fuels to renewable energy sources has become more urgent. 
However, this transition is heavily dependent on the availability and accessibility 
of finance, which remains a significant barrier in many parts of the world. In the 
early 2000s, renewable energy investments were seen as high risk due to the nascent 
state of the technologies and the uncertainty of returns (International Energy Agency 
(IEA), 2003). Conventional, financial institutions were often unwilling to invest in 
renewable energy projects because of these perceived risks, comprising technology 
performance risks, market risks, and policy-related risks (Beck & Martinot, 2004). 
These barriers were compounded by the higher upfront capital costs related to
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renewable energy projects compared to conventional energy sources (Cochran et 
al., 2014). 

In spite of these challenges, various innovative financing mechanisms have 
emerged over the years to address the specific needs of the renewable energy 
sector. According to the World Bank (2018), green bonds, feed-in tariffs, power 
purchase agreements (PPAs), and concessional loans have become increasingly 
significant in mobilizing capital for renewable energy projects. Green bonds, in 
particular, have gained popularity as they allow investors to fund environmental 
projects while making returns on their investments (The World Bank, 2018). The 
issuance of green bonds reached a record $269.5 billion in 2020 and built investors’ 
confidence in the renewable energy sector (Climate Bonds Initiative, 2021). Public 
sector participation has also been critical in sinking the perceived risks and attracting 
private investment in renewable energy. Government-backed financial instruments, 
such as guarantees and subsidies, have been instrumental in creating a conducive 
environment for renewable energy financing (Polzin et al., 2015). Feed-in tariffs 
have been successfully implemented in countries like Germany and China to provide 
long-term price guarantees for renewable energy producers, thus ensuring stable 
revenues and attracting investments (Zhang et al., 2013). Similarly, public–private 
partnerships (PPPs) have emerged as a viable model for financing large-scale 
renewable energy projects, with governments sharing the financial risks with private 
entities (Reiche & Bechberger, 2004). On the other side, in developing nations, 
access to financing for renewable energy remains a significant challenge due to 
fragile financial systems and lower investor confidence (Bhattacharya et al., 2019). 
Microfinance institutions and development banks have started to play a more 
prominent role in financing small-scale renewable energy projects, particularly in 
rural areas where traditional banking services are limited. These institutions often 
provide loans at concessional rates, enabling households and small businesses to 
invest in renewable energy technologies like solar home systems (Dib et al., 2013). 
However, the existing studies also highlight ongoing challenges in financing the 
renewable energy sector. One major issue is the lack of identical metrics and 
benchmarks for measuring the financial performance of renewable energy projects, 
which disguises the investment decision-making (Inderst et al., 2012). Likewise, the 
regulatory environment in many countries is still not fully supportive of renewable 
energy financing, with inconsistent policies and bureaucratic difficulties preventing 
potential investors (REN21, 2020). In the context of Bangladesh’s ambitious 
renewable energy goals, achieving a 40 percent renewable energy capacity by 2041 
presents significant financial challenges. Estimates suggest that the country would 
need to invest between $1.53 billion and $1.71 billion annually from 2024 to 2041 
to meet this target. 

However, this amount does not account for the extra costs related to grid 
modernization and the development of storage facilities, both of which are crucial 
for the incorporation of renewable energy into the national grid. Current funding 
available for sustainable energy projects is substantially lower than what is required, 
indicating a significant financing gap. This shortfall underscores the need for inno-
vative financing mechanisms and greater international financial support to bridge the
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gap and ensure the successful transition to a sustainable energy future in Bangladesh 
(Hossain, 2024). While significant progress has been made in developing innovative 
financing mechanisms for the renewable energy sector, challenges remain. The 
literature suggests that overcoming these challenges will require continued public 
sector support, further development of financial instruments tailored to the unique 
needs of renewable energy projects, and stronger regulatory frameworks to ensure 
investor confidence. As the world transitions toward a low-carbon future, effective 
financing strategies will be critical in scaling up renewable energy deployment 
globally. 

3 Methodology 

The current study is going to investigate the access to energy finance for the 
development of the renewable energy sector in Bangladesh, following the following 
analytical framework along with the method and tools for data collection. Both 
primary and secondary data were collected to conduct this research. For secondary 
information, particularly on the policy and legal regime, a comprehensive review 
of policies, articles, and reports linked to renewable energy and its finance was 
explored, e.g. Power System Master Plan, Renewable Energy Policy, SREDA-
produced analysis, NDC, ADB reports, Bangladesh Bank’s Sustainable Finance 
Policy, Private Sector Power Generation Policy of Bangladesh, Perspective Plan of 
Bangladesh, 2021–2041, etc. Qualitative data are obtained from unstructured dis-
cussion with three banks personnel and one government official. We discussed with 
them the barriers of renewable energy financing, existing financing mechanisms, 
new financing methods and then interpreted the discussion. At the beginning of the 
study, we discussed the renewable energy concept, classification of major renewable 
energy products, existing renewable energy finance mechanism as well as reviewing 
the why renewable energy from a theoretical perspective through a literature review. 
Also, in order to understand the barriers of access to energy finance implementation 
toward development of renewable energy sector in Bangladesh, we took the views of 
key personnel of banks through unstructured discussion and attach with the findings 
of previous studies. For measuring the trend of renewable financing in Bangladesh, 
we used quantitative data and followed Johnson’s et al. (2011)’s research lineup, 
i.e., Bangladesh Bank’s sustainable finance report, policy documents, and renewable 
energy-related organization’s reports were reviewed for the investigation (Johnson 
et al., 2011). 

4 Current Scenario of Renewable Energy in Bangladesh 

Bangladesh has great prospects for accelerating renewable energy deployment, 
current targets remain weak. In Bangladesh, renewable energy sources make up
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Table 1 Renewable energy scenario in Bangladesh 

Technology Off-grid (MW) On-grid (MW) Total (MW) Technology Off-grid (MW) 

Solar 373.84 706.52 1080.36 
Wind 2 60.9 62.9 
Hydro 0 230 230 
Biogas electricity 0.69 0 0.69 
Biomass electricity 0.40 0 0.40 
Total 376.93 997.42 1374.35 

Source: SREDA 

only 3.1% of the national energy mix. Within this percentage, solar energy accounts 
for 63.7%, followed by hydro at 35.7%, wind at 0.4%, and biogas at 1.4%, of the 
installed capacity. In this situation, small-scale renewables, particularly Solar Home 
Systems (SHS), offer greater promise. In 2018, the number of green energy users 
reached 18 million (SREDA, 2024). For example, up to year 2018, Grameen Shakti 
alone had installed over 4.13 million SHS, making it a leading player in the sector 
(Mahmud & Roy, 2021b). Overall, the company experienced a 40% increase (1.6 
million). But, in recent years, this sector has faced challenges for causing sluggish 
growth. This decline signals a worrying trend for the clean energy industry as a 
whole (Masukujjaman et al., 2021). 

Table 1 presents the current scenario of renewable energy in Bangladesh which 
shows both on-grid and off-grid renewable energy application. Solar energy has the 
most substantial contribution, with 373.84 MW from off-grid and 706.52 MW from 
on-grid installations, totaling 1,080.36 MW. It’s essential to note that due to the 
expansion of rural electrification through grid extension, a significant number of 
Solar PV Home Systems, which once carried great recognition to Bangladesh, are 
now unused. Wind energy follows, predominantly in on-grid systems, contributing 
60.9 MW on-grid and only 2 MW off-grid. Hydropower is solely on-grid, providing 
230 MW. Biogas and biomass electricity contribute minimally, both in off-grid 
setups. Overall, the total installed capacity for renewable energy in Bangladesh 
amounts to 1,374.35 MW, with on-grid systems making up 997.42 MW and off-
grid systems contributing 376.93 MW. 

5 Rationality to Development of Renewable Energy Sector 

Renewable energy brings numerous benefits that extend beyond environmental 
sustainability, positively impacting public health, agriculture, women’s empower-
ment, and employment generation. In addition, renewable energy sources (RES) 
offer several advantages, including a reduction in energy dependence on foreign 
countries, and the potential for cost savings (Gielen et al., 2019;  Benti  et  a  l., 2023). 
These benefits contribute to the holistic development of societies, environmental 
and economies, particularly in developing countries like Bangladesh.
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Environmental benefits—Transitioning to green energy sources, such as solar, 
wind, hydroelectric, and geothermal power, is a crucial component of climate 
mitigation strategies. Unlike fossil fuels, renewable energy technologies offer clean, 
abundant, and sustainable alternatives that can significantly reduce carbon emissions 
and mitigate the impacts of climate change (Tiruye et al., 2021). In response to 
the questions of—what is rationality to behind development renewable energy in 
Bangladesh, Government officials who said 

In think in Bangladesh, where air pollution is a critical problem, transitioning to renewable 
energy can significantly improve air quality. The Renewable Energy Policy of Bangladesh 
aims to generate 40% of total electricity from renewable sources by 2041, a goal that has 
pushed significant investment in solar and wind energy projects. Achieving this target is 
expected to reduce the carbon footprint and help mitigate the adverse effects of climate 
change. 

Health benefits—The adoption of renewable energy significantly improves pub-
lic health by reducing air pollution and associated health problems. Conventional 
energy sources, such as coal and oil, emit pollutants that contribute to respiratory 
diseases, cardiovascular conditions, and other health issues. According to a study, 
air pollution from fossil fuels is responsible for an estimated 8.7 million premature 
deaths annually worldwide (Vohra et al., 2021). Government officials and bankers 
who said that 

In Bangladesh, a transition to cleaner energy sources can substantially reduce the health 
burden caused by air pollution. For example, the widespread use of solar energy can cut 
down the reliance on biomass and kerosene, which are significant sources of indoor air 
pollution and related health issues. 

Agricultural benefits—Renewable energy can enhance agricultural productivity 
and sustainability. For instance, solar-powered irrigation systems provide a reli-
able and cost-effective water supply for farming, reducing dependency on erratic 
electricity supply and expensive diesel pumps. A study shows that solar irrigation 
can increase crop yields by up to 20% and reduce water usage by 30% (Burney & 
Naylor, 2012). Government officials given opinion 

The adoption of solar irrigation has the potential to significantly improve agricultural 
outcomes, given the country’s reliance on agriculture for livelihood. The government has 
already installed over 1,500 solar irrigation pumps, benefiting thousands of farmers by 
providing a sustainable and cost-effective water supply. 

Women empowerment—Renewable energy projects can empower women by 
providing them with new opportunities for economic participation and reducing 
the time and labor burden associated with traditional energy collection methods. 
For instance, access to clean and efficient energy sources can free up time spent on 
collecting firewood, allowing women to engage in educational and entrepreneurial 
activities (Clancy & Skutsch, 2013). The entire four experts given the opinion 

Renewable energy particularly solar home systems program helps to women’s bring 
empowered, if it connect with micro-credit program.
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Also existing study evidence that in Bangladesh, renewable energy initiatives 
such as the Solar Home System (SHS) program have empowered over 4 million 
households, many of which are led by women, by providing access to clean and 
reliable energy (Khandker et al., 2014). 

Employment generation—The renewable energy sector is a significant source 
of job creation. It generates employment opportunities in various stages of the 
value chain, including manufacturing, installation, maintenance, and operations. 
According to the International Renewable Energy Agency (IRENA), renewable 
energy jobs worldwide reached 11.5 million in 2019, with solar photovoltaic being 
the largest employer (IRENA (International Renewable Energy Agency), 2020). 
Bankers and govt. officials opined that 

The renewable energy sector has created thousands of jobs, particularly in the solar energy 
industry. The SHS program alone has generated employment for over 100,000 people in 
manufacturing, sales, installation, and maintenance roles. 

Therefore, the transition to renewable energy presents numerous benefits across 
different sectors. By improving public health, enhancing agricultural productivity, 
empowering women, and generating employment, renewable energy can play a 
pivotal role in fostering sustainable and inclusive development. Addressing the 
barriers to renewable energy adoption and leveraging these benefits is essential for 
achieving a greener and more equitable future. 

6 Barriers to Renewable Energy Development in Bangladesh 

There are several barriers that have been underlined as the causes of slow develop-
ment of renewable energy in Bangladesh including policy and legal factors, finan-
cial, technological, infrastructural, social, and environmental. These constraints 
prevent the expansion and successful execution of renewable energy projects even 
though the country has massive prospects for solar, wind, and biomass resources, 
i.e. overall renewable energy sector. The following sections outline the significant 
barriers to renewable energy development in Bangladesh. These barriers are found 
from the literature review and discussion with government officials and bankers who 
are working with project financing and renewable energy project. 

Predominantly, financial challenges for renewable energy investments include 
weak local financial markets and unfavorable project scales. Limited access to 
private sector equity funding exacerbates this issue, forcing projects to rely heavily 
on bank credit, which can restrict necessary financial resources. But in countries 
where there is a lack of bank credit, the high costs of debt and limited length 
of loan tenure can be issues (IRENA (International Renewable Energy Agency), 
2018). Unfavorable project scale also impacts renewable energy finance, as the 
scale of investment in these projects is usually small and transaction costs are high, 
which makes these projects particularly undesirable for bankers (Rahman, 2021). 
Furthermore, there is a lack of innovative financial instruments and products tailored
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to the needs of renewable energy developers. Conventional financing mechanisms 
are not always suitable for the unique characteristics of renewable energy projects, 
which require different risk assessment and management approaches. One of the 
primary barriers to renewable energy development in Bangladesh is the lack of 
a comprehensive and consistent policy framework. While there are policies in 
place to promote renewable energy, they are often fragmented and not effectively 
enforced. Additionally, regulatory uncertainties and bureaucratic delays can impede 
the approval and implementation of renewable energy projects (Mahmud & Roy, 
2021b). Regulatory challenges that are hindrances in renewable energy projects 
include unclear legal and regulatory frameworks including weak feed-in-tariff 
pricing and non-bankable public–private agreements are major barriers (IRENA 
(International Renewable Energy Agency), 2018; Moazzem & Hridoy, 2023). 

The growth and deployment of renewable energy technologies in Bangladesh 
are hampered by a lack of technical expertise and infrastructure. Limited research 
and development (R&D) capabilities and the absence of local manufacturing facil-
ities for renewable energy equipment further obstruct technological advancement 
(Chowdhuri et al., 2023). The dominance of conventional energy sources, such as 
natural gas and coal, which are often subsidized and thus more economically attrac-
tive. The lack of a competitive market structure for renewable energy, coupled with 
insufficient market incentives, also poses significant challenges. The development 
of renewable energy infrastructure, such as grid connections and storage facilities, 
is often lacking in Bangladesh. Many renewable energy projects, especially those in 
remote or rural areas, face significant challenges in connecting to the national grid. 
The absence of adequate energy storage solutions further complicates the integration 
of intermittent renewable energy sources like solar and wind. There is a shortage of 
skilled professionals and technicians required to design, install, operate, and main-
tain renewable energy systems (Hossain et al., 2023; Tarik-ul-Islam & Ferdousi, 
2007). The economic sustainability of renewable energy projects can be hindered by 
the higher initial costs compared to conventional energy sources. Additionally, the 
absence of adequate incentives, such as feed-in tariffs or tax breaks for renewable 
energy investments, can reduce the attractiveness of renewable energy projects to 
investors. Renewable energy projects, particularly large-scale installations, can face 
environmental challenges such as land use conflicts, biodiversity impacts, and water 
resource management issues. These environmental considerations can slow down 
project approvals and lead to public opposition (Karim et al., 2023). We summarize 
the barriers in Fig. 2. 

Therefore, addressing the barriers to renewable energy development in 
Bangladesh requires a multifaceted approach that involves policy reforms, financial 
innovations, technological advancements, and capacity building. By tackling 
these challenges, Bangladesh can unlock its renewable energy potential, promote 
sustainable development, and reduce its reliance on fossil fuels.
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Fig. 2 Renewable energy development barriers in Bangladesh 

7 Renewable Energy Policy, Legal Framework, 
and Financial Incentives for RE Development 

In Bangladesh, both GDP and population have been increasing steadily. Subse-
quently, the demand for electricity is projected to reach 34,000 MW by 2030. 
To address this rising demand, which outpaces the electricity generation capacity, 
the government has executed many initiatives through policy-making, rigid reg-
ulation, and extensive investments in the sector. The government of Bangladesh 
has committed to investing USD 70 billion over the next 15 years to create a 
sustainable and green energy future for the country (Masud et al., 2019). Regulatory 
measures and government policies greatly influence renewable energy finance, i.e. 
it’s also called indirect financing or public financing mechanism. Public financing 
mechanisms, including government grants, subsidies, and tax incentives, play a 
pivotal role in catalyzing renewable energy projects. These mechanisms reduce the 
financial burden on developers and investors, making renewable energy projects 
more attractive. In addition, policies that stabilize the market for RECs offer legal 
rights to the “renewable-ness” of electricity, making green energy projects more
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appealing financially. For example, in Bangladesh, the government has executed 
numerous financial incentives to support renewable energy development, such as 
the Sustainable and Renewable Energy Development Authority (SREDA) and the 
Infrastructure Development Company Limited (IDCOL), which provide financing 
and technical support for solar home systems and other renewable projects (Khan 
et al., 2014). However, public financing alone is often insufficient to meet the large-
scale capital needs of renewable energy projects, especially in developing countries 
where government budgets are limited (Zhang & Wang, 2019). Besides, policies 
aim to reduce the risk associated with renewable energy investments and guide the 
direction of finance flows. Here are number of distinguished policies and regulatory 
measures take on by the government for its renewable energy infrastructure: 

7.1 Policies and Legal Framework for Renewable Energy 
Development 

Government policies play a crucial role in shaping the pace and direction of 
economic development. By establishing an enabling environment, these policies 
can encourage private sector participation and attract private investments into 
various economic activities. In accordance with the vision of the Article 16 of 
“The Constitution of the People’s Republic of Bangladesh,” which is to eradicate 
discrepancies in the living condition of living between urban and rural areas 
through electrification and development, the government of Bangladesh has ratified 
numerous policies and legal framework over the past few decades (Masud et al., 
2019). To achieve the aims of electrification through the development of both 
conventional and alternative energy sources, several policies and legislations have 
been established. These outlines are designed to facilitate the growth of energy 
infrastructure, promote the use of renewable energy, and ensure energy security and 
sustainability for the future. They provide guidelines for private sector involvement, 
incentives for clean energy projects, and regulatory mechanisms to support the 
development of a diversified energy portfolio. Table 2 shows the related policies. 

In Bangladesh, the Sustainable and Renewable Energy Development Authority 
(SREDA) was established as the government’s central body to promote renewable 
energy and energy efficiency initiatives in both the public and private sectors. To 

Table 2 Renewable energy related policies 

Name of plan/Regulations Issued on 

Renewable Energy Policy of Bangladesh (draft) 2022 
Mujib Climate Prosperity Plan 2021 
Nationally Determined Contributions 2020 
Energy Efficiency and Conservation Rules 2015 
The Sustainable and Renewable Energy Development Authority Act 2012 
Renewable Energy Policy of Bangladesh 2008 

Source: SREDA
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foster the growth of renewable energy, Bangladesh introduced its Renewable Energy 
Policy in 2008, aiming to have 10% of total power generation come from renewable 
sources by 2020, which equates to at least 2000 MW. 

7.2 Investment and Fiscal Incentives 

To encourage the development of renewable energy projects, all stakeholders, 
including private sector participants and investors, are offered tax concessions and 
fiscal incentives. 

• With approval from the Bangladesh Securities and Exchange Commission 
(BSEC), renewable energy companies in Bangladesh will be able to issue 
corporate bonds in both bearer and registered forms (Ministry of Power, Energy 
and Mineral Resources, 2011). 

• In December 2020, Bangladesh Bank announced its sustainable finance policy, 
mandating that banks and non-bank financial institutions (NBFIs) allocate 2% of 
all loans to renewable energy facilities and green projects. 

• The government of Bangladesh will not regulate the price of electricity produced 
from renewable energy sources. In its place, the price will be negotiated between 
the owners and consumers. 

• According to the Ministry of Power, Energy and Mineral Resources (2016), 
companies and NGOs involved in renewable energy projects, whether semi-
government, foreign, or locally private, will be granted a 15-year exemption 
from corporate income tax (Ministry of Power, Energy and Mineral Resources, 
Government of Bangladesh, 2016). 

• The government will provide companies with up to 100% depreciation in the 
first year for solar thermal and solar photovoltaic projects. Furthermore, projects 
in biomass, geothermal, tidal, small hydro, and wind energy will be eligible for 
100% depreciation over the first five years (Rasel, 2018). 

• No restrictions will apply to issuing work permits for foreign personnel and 
employees involved in renewable energy projects. 

• According to the Ministry of Power, Energy and Mineral Resources (2002), 
foreign employees working on a renewable energy project will receive up to 50% 
of their salary remitted and will be provided with retirement benefits throughout 
their tenure (Ministry of Power, Energy and Mineral Resources, Government of 
Bangladesh, 2002). 

• The existing renewable energy financing facility will be expanded to include 
diverse funding sources, such as public and private investments, donor contri-
butions, carbon emission trading (CDM), and carbon funds, enhancing financing 
options for renewable energy investments. 

• To encourage renewable energy adoption in the power sector, the Ministry of 
Power, Energy, and Mineral Resources (2002) has implemented a policy that 
exempts all renewable energy equipment and related raw materials from a 15%
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VAT charge (Ministry of Power, Energy and Mineral Resources, Government of 
Bangladesh, 2002). 

• Beyond commercial lending, SEDA will establish a micro-credit support network 
specifically targeted at rural and remote areas, providing financial assistance for 
purchasing renewable energy equipment. 

• The Power Division of MPEMR will lead initiatives to promote investments 
in renewable energy and energy efficiency projects. SEDA, in collaboration 
with local government offices, will implement an outreach program to support 
renewable energy development. 

• SEDA is considering providing subsidies to utilities for installing renewable and 
clean energy projects, including solar, wind, and biomass technologies. 

• Private sector participation, particularly through joint venture initiatives, will be 
actively encouraged and supported in the development of renewable energy. The 
Power Division of MPEMR/SEDA will provide assistance in identifying suitable 
projects and acquiring land for these renewable energy initiatives. 

• Investors in renewable energy projects, whether they be from the public or 
private sectors, will not have to pay corporate income tax for a 5-year period 
starting from the date when this policy is officially announced in the gazette. The 
extension of this exemption will be determined based on a regular assessment of 
its impact on renewable energy. 

• Consider establishing an incentive tariff for electricity generated from renewable 
energy sources, set at a rate 10% above the utility’s highest purchase price for 
electricity from private generators. 

7.3 Tariff Policies 

Feed-in tariffs (FITs) have proven to be an effective policy tool for promoting 
renewable energy development in both developed and developing nations. FITs are 
designed to encourage investment in renewable energy technologies by offering 
a tariff above the retail electricity rate, thus making renewable energy projects 
more financially viable. In Bangladesh, implementing FITs could significantly 
boost electricity supply to the grid, especially if policy frameworks support it. 
For instance, solar parks could thrive with long-term contracts, such as a 25-year 
agreement. This is essential, as numerous small and medium-scale homeowners 
and real estate developers may be willing to invest in rooftop solar PV systems. 
To support this, compensation packages for rooftop solar development should align 
with FITs policies. Additionally, small-scale solar parks (1 to 5 MW) with long-term 
contracts, alongside solar-powered irrigation projects, could contribute significantly 
toward Bangladesh’s goal of sourcing 10% of its energy from renewables. Similarly, 
medium-scale solar parks could further enhance the country’s renewable energy 
growth (The Daily Star, 2016).
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8 Financing Mechanism for Renewable Energy Development 
in Bangladesh 

Key funding sources for advancing renewable energy in Bangladesh include the 
central bank’s green refinancing scheme, IDCOL’s refinancing program, green 
financing through banks and NBFIs, green bonds, and loans from international orga-
nizations. This section examines various financing avenues available for promoting 
renewable energy development. 

8.1 Green Finance by Banks and Financial Institutions 

8.1.1 Investment in Renewable Energy 

Figure 3 describes the investment in renewable energy by banks and non-bank 
financial institutions from 2016 to 2023. In 2016, the investment was BDT 4599.13 
million, which decreased significantly to BDT 3018.73 million in 2017. The follow-
ing year, 2018, saw a moderate increase to BDT 3636.57 million, and this upward 
trend continued in 2019 with BDT 3712.76 million. However, 2020 experienced a 
slight decline to BDT 3669.83 million. The investment picked up again in 2021, 
rising to BDT 4339.55 million. This positive trend continued into 2022, with a 
substantial increase to BDT 6417.67 million, and finished in a significant surge 
to BDT 7421.78 million in 2023. This data highlights a fluctuating yet overall 
upward trend in investments, particularly with marked increases in the last two 
years, indicating a growing commitment to renewable energy by commercial banks 
and non-bank financial institutions. 

Fig. 3 Investment scenario of banks & financial institutions in renewable energy sector
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Fig. 4 Investment scenario of banks & financial institutions in energy efficiency 

8.1.2 Investment in Energy Efficiency 

Figure 4 illustrates the combined annual investment in energy efficiency by both 
bank and non-bank financial institutions from 2016 to 2023. In 2016, the investment 
was BDT 2948.04 million, which modestly increased to BDT 3254.52 million in 
2017. A more significant rise occurred in 2018 with BDT 4645.62 million, followed 
by BDT 5809.29 million in 2019. The investment saw a notable jump to BDT 10899 
million in 2020. This growth continued, with investments reaching BDT 13795.7 
million in 2021 and surging to BDT 26777.32 million in 2022. The most dramatic 
increase happened in 2023, with investments soaring to BDT 69349.01 million. This 
data indicates a strong and accelerating trend of investment for energy efficiency by 
financial institutions, particularly in the last three years, highlighting an increasing 
commitment to renewable energy development. 

8.1.3 Investment in Alternative Energy 

Figure 5 depicts the annual investment in alternative energy by bank and non-bank 
financial institutions from 2016 to 2023, showing significant fluctuations. In 2016, 
the investment was at a high of BDT 281.36 million, but it dropped sharply to 
BDT 91.67 million in 2017 and further plummeted to BDT 7.72 million in 2018. 
A recovery occurred in 2019 with investments rising to BDT 94.84 million, but 
this was followed by another decline to BDT 38.37 million in 2020. In 2021, 
investments slightly increased to BDT 43.84 million. A substantial surge was seen 
in 2022, with investments reaching BDT 206.85 million, before dropping again to 
BDT 61.36 million in 2023. This data indicates significant volatility in investment 
levels, highlighting periods of both sharp declines and strong recoveries, suggesting
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Fig. 5 Investment scenario of banks and financial institutions in alternative energy 

varying degrees of commitment and external factors influencing the investment 
trends in the alternative energy sector. 

8.2 Refinancing Scheme 

8.2.1 IDCOL Refinancing Scheme 

IDCOL’s most successful Solar Home System (SHS) Program, this reputed gov-
ernment financial institutions so far has introduced many refinancing schemes 
and concerted programs to diversify the RE installations in areas like Biogas and 
Biomass based power and energy generation, solar micro and mini-grid, solar 
irrigation, and other types of commercial-scale RE projects (SREDA Homepage, 
n.d.). 

Under the IDCOL Solar Home System Program and Domestic Biogas Program, 
loans are not issued directly to end users; instead, they are distributed through Par-
ticipating Organizations (POs). This lending model also applies to other renewable 
energy projects, including solar-diesel hybrid systems for telecom base stations, 
solar-powered transport, rooftop solar installations, solar cold storage and dryers, 
battery charging stations, and community biogas initiatives. In contrast, larger grid-
tied renewable energy Independent Power Producer (IPP) projects will be financed 
on commercial terms and may qualify for loans denominated in USD.
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8.2.2 Bangladesh Bank Refinancing Scheme 

In August 2009, the central bank of Bangladesh introduced a BDT 2 billion green 
banking refinance scheme aimed at promoting solar panels, biogas plants, and 
effluent treatment plants (ETPs) to reduce industrial pollution and boost power 
supply. The scheme offers loans to commercial banks at interest rates between 5% 
and 12%, enabling them to provide loans to entrepreneurs at a maximum interest 
rate of 12%. The initiative allows for 100% refinance facilities for rural and urban 
solar panel installations, biogas power plants, and other green products. The scheme, 
aligned with the government’s targets of meeting 5% and 10% of electricity demand 
from green energy by 2015 and 2020 respectively, has expanded to include 47 green 
products, with a specific focus on household and business enterprises. 

Financing from Re-finance Scheme in Solar Home System 

Individuals or entities who install solar panels for personal, joint, business, or 
cooperative purposes in both urban and rural areas and obtain financing from banks 
will be eligible for refinancing under this scheme. The sub-sectors covered include 
solar home systems, solar mini-grids, solar irrigation pumping systems, and solar 
photovoltaic assembly plants. 

Figure 6 depicts the investment scenario in solar home systems through the 
Central Bank refinancing scheme from 2016 to 2023. Initially, there was a sub-
stantial investment of 108.29 million BDT in 2016, representing the highest point 
within this period. This significant investment suggests a strong initial push toward 
promoting solar home systems. However, the following year, 2017, saw a dramatic 

Fig. 6 Financing scenario in solar home system from Bangladesh Bank refinance scheme
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decline to 7.28 million BDT, and the trend continued downward, reaching near 
negligible amounts in 2018 (0.09 million BDT) and 2019 (0.22 million BDT). A 
slight recovery occurred in 2020 with an investment of 0.58 million BDT, followed 
by a notable increase to 26.91 million BDT in 2021, indicating renewed interest or 
possibly new policy incentives. Despite this resurgence, investments dropped again 
to 2.72 million BDT in 2022 and slightly rose to 2.8 million BDT in 2023. This 
trend reflects significant volatility in investments, likely influenced by changing 
government policies, market dynamics, and financial conditions. The overall trend 
indicates an initial high investment followed by a sharp decline, with a brief 
resurgence in 2021, reflecting volatility and possibly the impacts of policy changes, 
market conditions, and financial accessibility on the solar home system sector. 

Financing from Re-finance Scheme in Biogas 

Likewise, those who take loans from banks for producing and using biogas in rural 
or urban areas will also be eligible for this refinancing scheme. Sub-sectors eligible 
for this support include setting up biogas plants in existing cattle or poultry farms, 
combined cattle rearing with biogas plants, producing organic fertilizer from slurry, 
and establishing medium-scale biogas plants. 

The graph in Fig. 7 illustrates the investment scenario in biogas projects through 
the Central Bank refinancing scheme from 2016 to 2023. In 2016, there was a signif-
icant investment of 93.35 million BDT, the highest in the given period, indicating a 
strong initial commitment to biogas development. However, this investment sharply 
declined to 11.29 million BDT in 2017 and continued to decrease to 6.48 million 
BDT in 2018. The downward trend persisted in subsequent years, with investments 

Fig. 7 Financing scenario in biogas system from Bangladesh Bank refinance scheme
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dropping to 3.02 million BDT in 2019, 1.18 million BDT in 2020, and further to 0.69 
million BDT in 2021. A slight increase was observed in 2022 with an investment of 
1.47 million BDT, followed by another minor decline to 0.8 million BDT in 2023. 
This overall declining trend highlights the challenges and perhaps diminishing focus 
on biogas projects within the refinancing scheme, suggesting a need for renewed 
policy support and incentives to revitalize investments in this sector. Therefore, to 
boost the capacity of renewable energy in alignment with the government’s ongoing 
emphasis, Bangladesh requires a significant increase in financing from diverse and 
additional sources. 

9 International Financing and Multilateral Institutions 

International financing, through multilateral institutions such as the World Bank, 
Asian Development Bank (ADB), and Green Climate Fund (GCF), provides sub-
stantial support for renewable energy projects, especially in developing countries. 
These institutions offer concessional loans, grants, and guarantees that lower the 
cost of capital and reduce investment risks (Sovacool, 2012). For instance, the World 
Bank has financed multiple renewable energy projects in Bangladesh, including 
solar power initiatives, through its IDA credits (World Bank, 2020). This bank 
recently signed a $515 million agreement with the government of Bangladesh to 
support the country in its clean energy transition by developing battery storage 
systems and distributed renewable energy (World Bank, 2022). Previously, in 
year 2019, government of Bangladesh receives $ 185 million from World Bank 
for financing in renewable energy (World Bank, 2019). In May 2022 the Asian 
Infrastructure Investment Bank extended a $200 million long-term credit line 
to Bangladesh under which IDCOL will on-lend to eligible projects renewable 
energy, energy efficiency, and related projects (Asian Infrastructure Investment 
Bank (AIIB), 2022). 

The Asian Development Bank (ADB) has entered into a financing agreement 
worth $121.55 million with Dynamic Sun Energy Private Ltd. to construct and 
maintain a 100 MW grid-connected solar photovoltaic power plant in Pabna, 
Bangladesh. The plant is the country’s first private sector utility-scale solar facility 
to secure support from global financiers (Asian Development Bank, 2024). Institu-
tions like IDCOL (Infrastructure Development Company Limited) and the recently 
established Super ESCO have the potential to secure credit lines from multilateral 
agencies to facilitate renewable energy projects in Bangladesh. The International 
Finance Corporation (IFC) estimates that Bangladesh possesses a climate-smart 
investment potential totaling $172 billion from 2018 to 2030, spanning various 
sectors, including green buildings, transportation infrastructure, urban water, agri-
culture, waste management, and renewable energy. These investments are essential 
for achieving the country’s Nationally Determined Contribution (NDC) goals. Out 
of $172 billion, $3.2 billion is invested in renewable energy projects (IFC, 2020). 
So, international financing is crucial, it often comes with stringent conditions
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and requires extensive documentation, which can be challenging for developing 
countries to meet (Buchner et al., 2019). Bangladesh secured AC 400 million in 
funding from the European Investment Bank (EIB) and the European Union (EU) 
for renewable energy generation and capacity building (Khan & Sultana, 2024). 

10 Innovative Financing Mechanism 

Green bond—Green bonds are designed to raise funds specifically for green 
projects, including clean energy initiatives. Green sukuk (financial certificates) 
operate in the same manner, with the exception that instead of fixed interest, the 
income of investors follows Sharia principles (Islamic law) (World Bank, 2020). 
Both green bonds and green sukuk serve as financing mechanisms for large-scale 
clean energy projects. Notably, the inaugural issuance of green sukuk occurred 
in June 2017, and by 2019, the annual issuance of this financial instrument had 
escalated to $4 billion. From 2017 to September 2020, green sukuk worth $10 
billion was issued in Indonesia, Saudi Arabia, the United Arab Emirates, and 
Malaysia (Asian Development Bank (ADB), Asian Development Outlook, 2021). In 
Bangladesh, IDCOL issued its first green bond in 2019 to finance renewable energy 
projects, marking a significant step toward diversifying financing sources (Uddin et 
al., 2019). Last year, a green sukuk amounting to 30 billion BDT ($300 million) 
was issued for the development of a 230 MW capacity solar project in Bangladesh 
(Babu, 2023). Investment in electricity is mostly public-funded and the private 
sector accommodates a minor share. Issuing green bonds to increase investment 
in reshaping domestic electricity production can be a step forward (Khan & Ali, 
2021). Therefore, issuing green sukuk (Islamic bonds) for renewable energy projects 
would serve as a strong foundation for financing large-scale renewable energy 
initiatives in Bangladesh. In addition, leveraging green bonds could help overcome 
financial barriers and catalyze investments in renewable energy at a significant scale. 
Crowdfunding—Crowdfunding stands as a powerful tool to democratize access to 
financing in renewable energy projects. Individuals collectively contribute small 
amounts of capital to support large-scale projects. This model not only garners 
public interest but also fosters a sense of community involvement in the transition 
to green energy, as seen with platforms that directly connect investors to renewable 
projects (Lam & Law, 2016). Pay-as-you-go (PAYG) approach—The PAYG model, 
particularly in off-grid solar systems, allows consumers to pay for energy services 
in installments, making renewable energy more accessible in low-income regions 
(Rolffs et al., 2015). Foreign private investment—Foreign private investment also 
presents significant potential for the country’s renewable energy sector. For instance, 
a U.S.-based company has shown interest in investing in solar power projects in 
Bangladesh, which could help reduce the nation’s reliance on fossil fuels and lower 
its environmental impact. Public–private partnership—Bangladesh could rapidly 
add an estimated 7500 MW of solar power to its energy mix through effective 
public–private partnerships and adequate funding mechanisms like green bonds.
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Developing capacity through these partnerships and focusing on green finance is 
vital. Both public and private financial institutions must prioritize their lending 
portfolios to support the shift toward renewable energy. Commitment and account-
ability from all stakeholders are crucial for making the necessary investments in 
renewable energy development. Therefore, to accelerate the transition to renewable 
energy, it is essential to enhance the capacity of financial institutions, improve 
policy frameworks, and develop innovative financing solutions that can effectively 
mobilize the required capital. 

11 Discussion 

Access to energy finance plays an essential role in the development of renewable 
energy in Bangladesh. Despite the country’s significant impending for renewable 
energy, for the most part in solar and wind power, the expansion of these resources 
has been slow. A major factor contributing to this sluggish growth is the lack 
of adequate financing mechanisms tailored to the needs of renewable energy 
projects. Renewable energy projects, by nature, often require high upfront capital 
investments, which can be a barrier for many small and medium-sized enterprises 
(SMEs) and individual investors in Bangladesh. A rough estimate suggests that 
reaching the 40% renewable energy capacity target could incur cost for Bangladesh 
ranging from $1.53 billion to $1.71 billion each year from 2024 to 2041. This 
figure does not account for additional expenses like grid modernization and storage 
facilities, which are critical for integrating renewable energy into the national grid 
(Hossain, 2024). 

Furthermore, banks and non-bank financial institutions in Bangladesh have 
been reluctant to lend to renewable energy projects due to the perceived risks 
associated with new and relatively untested technologies and the long payback 
periods associated with these investments. This has created a financing gap, limiting 
the ability of project developers to access the funds needed to scale up renewable 
energy initiatives. The limited availability of concessional financing, high interest 
rates, and stringent collateral requirements further exacerbate this challenge, making 
it difficult for many potential investors to pursue renewable energy projects. As of 
2023, total investment in renewable energy was significantly lower than needed, 
with the central bank’s refinancing scheme contributing only a fraction of the 
necessary funds. For instance, the total investment in solar home systems through 
the central bank’s refinancing scheme plummeted from BDT 93.35 million in 2016 
to just BDT 0.8 million in 2023 (Bangladesh Bank, 2023). This decline highlights 
the inadequacy of current financial support mechanisms in driving large-scale 
renewable energy adoption. Moreover, high interest rates, which range between 
8% and 12% depending on whether the loan is provided directly or through 
microfinance institutions (MFIs), further, deter potential investors (Bangladesh 
Bank, 2022).
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The central bank’s refinancing schemes and other government-backed financial 
initiatives have been crucial in promoting renewable energy investments. However, 
these efforts are not sufficient to meet the growing demand for renewable energy. For 
example, investments in biogas projects fell drastically from BDT 108.29 million in 
2016 to a mere BDT 2.8 million in 2023 (Bangladesh Bank, 2023). Moreover, the 
lack of awareness among financial institutions and investors about the profitability 
and long-term benefits of renewable energy investments has hindered the growth 
of this sector. There is also a need for more innovative financing solutions, such 
as green bonds, blended finance, and public–private partnerships, to attract more 
investment in renewable energy. This sharp decline underscores the need for more 
robust financial instruments and policies that can sustain and increase investment in 
the sector. 

12 Recommendations 

To ensure the successful development and expansion of renewable energy in 
Bangladesh, it is crucial to address the multifaceted challenges that hinder progress 
in this sector. The recommendations provided to create a more advantageous 
environment for renewable energy investments, enhance financial accessibility, and 
promote stakeholder collaboration. By focusing on strategic financial allocations, 
streamlining regulatory processes, and fostering partnerships between the public 
and private sectors, these recommendations seek to accelerate the transition to a 
sustainable energy future. Some effective recommendations are discussed below: 

Expand Government Support and Incentives: Another study finds that dis-
tribute funds purposefully in order to maximize the investment opportunity of $10 
billion in renewable energy production over the next 10 to 12 years. Simplify 
subsidies to align with the projected $2 billion needed to achieve the 40% renewable 
energy goal, thus decreasing the existing subsidy burden of $2.82 billion. Therefore, 
government of Bangladesh should consider expanding existing financial incentives, 
such as subsidies, tax breaks, implement carbon tax and low-interest loans, to 
encourage more investment in renewable energy. Additionally, the government 
could establish a dedicated renewable energy fund to provide concessional financing 
to SMEs and individual investors. Besides, develop financial products that are 
explicitly designed to address the risks and credit concerns that are typically 
associated with renewable energy projects. Likewise, to foster renewable energy 
development, it is crucial to implement motivating and efficient incentives for 
renewable energy entrepreneurs while leveraging international funding. 

Furthermore, the current tax structures that favor fossil fuel investments create 
barriers for renewable energy adoption. Expanding tax holidays for renewable 
energy power plants from five to ten years, providing full duty exemptions for small-
scale solar projects, and lowering the overall tax rates on solar-related equipment 
would create a more favorable environment for advancing clean energy initiatives
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in Bangladesh. These reforms would stimulate investment in renewable energy, 
making it more competitive and attractive. 

Focus on Clean Energy Financing: Focusing on clean energy financing is 
indispensable for Bangladesh to meet its renewable energy targets. A study done 
by the Change Initiative, the country will need around $26.5 billion to attain its 
clean energy goals. Furthermore, 39% of the promised funding from development 
partners for the energy sector remains undistributed. In the coming years, the 
government must confirm the release of this committed support and enthusiastically 
seek additional funding sources. Moreover, intensified efforts in securing funds from 
bilateral, multilateral, and regional partners are necessary. Accessing global climate 
funds, as well as clean energy and green technology funds should also be prioritized 
to accomplish these goals. 

Stakeholder’s Collaboration: Foster greater collaboration among stakeholders 
to advance renewable energy by involving civil society, the private sector, academia, 
and the media in the development, implementation, and monitoring of policies. 
Additionally, seek new credit lines from international financial institutions to 
empower IDCOL and BIFFL to offer extended loan terms or more competitive 
financing options for renewable energy projects. 

Improve Capacity Building for Financial Institutions: The results of previous 
research and bankers’ opinion show that government authority and field-level 
bankers do not have sufficient awareness and also fail to understand the critical need 
for financing in green energy projects. Additionally, there is no set of guidelines for 
commercial banks to determine what qualifies as a green or renewable project. As a 
result, ground-level bankers consider green and renewable projects in the same way 
as other commercial projects when it comes to financing them (Rahman, 2021). So, 
banks and non-bank financial institutions (NBFs) need to develop better capabilities 
like knowledge, tools necessary to assess and manage the risks associated with 
renewable energy projects, and to build dedicated teams or units within banks 
and NBFIs that focus solely on renewable energy financing. Also, regular training 
programs and workshops should be conducted in collaboration with international 
experts to improve understanding of the financial dynamics of renewable energy 
projects. As well as increase the Bangladesh Bank’s monitoring system, i.e. to 
verify whether banks and NBFIs have been obeying to the regulator’s instructions 
or policy to secure the required financing for green and renewable energy sectors. 
Finally, to ensure the successful implementation of renewable energy projects and 
initiatives, the lending process will be streamlined and reinforced. Simplifying and 
strengthening these procedures will help facilitate easier access to financing and 
promote broader adoption of renewable energy solutions. 

Promote Innovative Financing Mechanisms: The introduction of innovative 
financing mechanisms like green bond, crowdfunding, blended finance, and other 
financing tools could attract a wider range of investors including international 
development partners, private sector investors, and impact investors as well as 
help to bridge the financing gap in the renewable energy sector. Green bonds, for 
instance, could raise significant funds for renewable energy projects, leveraging the 
growing global demand for sustainable investment opportunities. The government
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could also explore the potential of blended finance, which mixed public and private 
funds to reduce investment risks. 

Green Financing Framework: A robust green financing framework, along with 
enhanced capacity among stakeholders, is key to improving access to financing 
for the promotion of renewable energy and energy efficiency. This is fundamental 
for attaining Bangladesh’s sectoral targets and ensuring the country’s long-term 
energy security. Importantly, the advantages of such a strengthened green financing 
framework will not be confined solely to the sustainable energy sector. Instead, 
its positive effects will extend across a variety of green sectors, fostering a 
transition toward a more sustainable and environmentally friendly economy. This 
holistic impact underscores the significance of green financing in promoting broader 
economic and environmental sustainability in Bangladesh. 

Strengthen Public–Private Partnerships (PPPs): Public–private partnerships 
(PPPs) have the potential to significantly accelerate the development of renewable 
energy projects in Bangladesh. By fostering collaboration between the government 
and private sector, PPPs can leverage shared resources and expertise to scale up 
clean energy initiatives. To encourage more PPPs, the government should provide 
clear guidelines and reduce bureaucratic red tape, which often hinders private invest-
ment. Moreover, offering co-financing opportunities can help reduce the financial 
burden on private investors, making renewable energy projects more attractive. This 
collaborative approach will play a crucial role in meeting the country’s renewable 
energy targets while enhancing energy security and sustainability. 

Expand the Competitive Private Sector for Renewable Energy: Privately 
owned power plants play a noteworthy role in the renewable energy sector. But, 
in Bangladesh, private sectors are more reluctant to invest in renewable energy 
projects due to the lengthy process, i.e., at least 30 numerous approvals are 
needed for green energy development projects (Rahman, 2021). These bureaucratic 
difficulties slow down the implementation of green energy projects in the country. 
Therefore, encourage and support the private sector in participating in incentives, 
confirming arrangement with national renewable energy goals and regulations while 
maintaining transparency. Provide training to develop bankable projects and offer 
guidance on directing regulations and securing funding. 

Raise Awareness and Education: Rising awareness regarding the profitability 
and environmental benefits of renewable energy among potential investors, financial 
institutions, and the general public is crucial. Public education campaigns, coupled 
with targeted outreach to financial institutions and potential investors, could help 
shift perceptions and increase investment in the renewable energy sector and 
highlight their long-term profitability. 

Develop a Robust Regulatory Framework: A clear, supportive, and strong reg-
ulatory framework is essential for attracting investment in clean energy projects. So, 
the government should work on creating clear, consistent, and supportive policies 
that provide long-term certainty for investors, including streamlined procedures for 
project approvals and clear guidelines on tariff structures. 

Leverage International Financial Support: Bangladesh should actively seek 
international financial support through grants, low-interest loans, and technical
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assistance from global organizations like the World Bank, Asian Development 
Bank, and Green Climate Fund. These resources can help reduce the financing gap 
and take international preeminent practices to the native perspective. 

Reduce Customs Duties on Solar Products: Reducing customs duties on solar 
products could significantly boost the adoption of solar energy in Bangladesh. 
Estimates from several global organizations indicate that rooftop solar systems 
could generate 5,000 MW of electricity, with 400 MW coming from the textile 
sector. This transition to solar energy has the potential to yield significant fiscal 
savings, allowing the government to save between Tk. 5,230 crore and Tk. 11,032 
crore annually from a 2,000 MW rooftop solar capacity. However, the expansion 
of solar energy is hindered by high import duties and taxes on solar products, 
which inflate installation costs. While solar panels attract a low tax rate of just 1 
percent, solar inverters are subject to a hefty 37% duty. Furthermore, total taxes and 
tariffs (TTI) on solar equipment range from 26.2% to 58.6%, further exacerbating 
costs. The current Net Energy Metering (NEM) policy, which imposes a 10 MW 
cap, also limits the growth of solar energy. By reducing import duties on solar 
products and providing subsidies, particularly for SMEs, installation costs could be 
significantly lowered. Additionally, simplifying and standardizing the NEM process 
would facilitate greater expansion opportunities. 

Therefore, by addressing the financing challenges in the renewable energy sector, 
Bangladesh can unlock its full possibility for sustainable energy development. 
Through the implementation of targeted policies, innovative financing mechanism 
and other recommendations will not only enhance access to energy finance but also 
quicken the transition to a greener, more sustainable energy future for the country. 

13 Conclusion 

The progress of renewable energy in Bangladesh is critically dependent on over-
coming significant financial barriers that currently hinder progress. Whereas the 
country has fixed ambitious goals to intensify its renewable energy capacity, the 
present investment amount fall far short of what is necessary. The study highlights 
the insufficiencies in present financial instruments, mainly the central bank’s 
refinancing scheme, which has seen a sharp decline in investment in main areas 
such as solar home systems and biogas projects. This investigation underscores 
the need for a comprehensive and strategic approach to energy financing, which 
comprises scaling up government intervention, boosting the capabilities of financial 
institutions, and fostering innovative financing models like green bonds and com-
bined finance. Furthermore, enhancing regulatory frameworks and fostering strong 
public–private partnerships are critical to unlocking the prospective for domestic 
and international investment in the sector. The incorporation of these components 
is essential to bridging the existing financial gap, thereby enabling Bangladesh to 
meet its renewable energy targets and ensure a sustainable, resilient, and inclusive 
energy transition.
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Explainable AI in Energy Forecasting: 
Understanding Natural Gas 
Consumption Through Interpretable 
Machine Learning Models 

Farhana Sultana Eshita, Tasnim Jahin Mowla, and Abu Bakar Siddique Mahi 

1 Introduction 

In 2024, it is forecasted that the global demand for natural gas might rise by 
2.5%. Predicted chillier winters in 2024, compared to the mild ones in 2023, 
might lead to an increased demand for heating in domestic and commercial heating 
(2024). Compared to other fossil fuels, natural gas is preferred for its large supply, 
adaptability, low price, and ecologically friendly nature. This makes it an ideal 
option for many uses in households and businesses, such as power generation, 
heating, and vehicle fueling. As a steady supply of gas is so important, precise 
consumption prediction is a must for efficient energy management. This ensures a 
consistent and efficient utilization of energy resources. Figure 1, a visual depiction 
is presented of the statistics regarding United States’ natural gas consumption from 
1995–2023 (2024). The research shows that in 2021, the United States consumed 
a total of 32.51 trillion cubic feet of natural gas. This natural gas consumption has 
been steadily increasing over time. 

From an analytical point of view, it is essential to develop a comprehensive 
prediction model which is capable of predicting natural gas consumption in all 
sectors, although explicit prediction models (2023 ) for distinct sectors—like indus-
trial, commercial, or residential consumers—are currently available. Employing 
such models for each industry can be laborious and expensive. The utilization 
of a comprehensive model which includes every sector enables a more efficient 
and effective method of predicting natural gas consumption. A more precise 
representation of the total gas consumption scenario, improved resource allocation, 
and enhanced decision-making in energy management are all feasible through the 
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Fig. 1 Natural gas use in the United States from 1995 to 2023 

implementation of a comprehensive model. In (2022), the authors developed an 
Android app to read gas meters. The app uses optical character recognition (OCR) 
which is expensive, complicated and requires several devices for support. 

Song et al. (2020) present a method for monitoring substation instruments 
based on image recognition. The instrument displays are located and interpreted by 
the system which uses a Gaussian difference model and SIFT. The experiment’s 
outcomes demonstrate how well the system recognizes graphical interfaces on 
substation equipment. Although the instrument identification system works well for 
substation equipment with graphical user interfaces, it is not suitable for monitoring 
natural gas meters because they are characterized by their numerical displays. An 
automated monitoring system for gas alarm devices in coal mines was created by Liu 
et al. (2013) using image recognition technology. By automatically identifying the 
images captured by methane detectors, their proposed digital recognition algorithm 
obtained an accuracy of over 99.9%. One downside of this method is that its 
algorithm has a relatively high computational complexity, which requires further 
optimization for real-time application. We present an innovative approach in this 
paper that addresses the challenges of previous approaches. A light-weight CB 
model-based system is developed, which incorporates explainable AI (XAI) tools 
to ensure precise forecasts of natural gas consumption. By combining explainability 
and deep learning, our model not only makes accurate predictions, but it also gives 
us a lot of information about what makes people use gas. This gives us a way to make 
decisions that is clear and easy to understand. The following briefly highlights the 
key contributions of this paper:
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• We provide a comparative assessment of eight machine learning models for 
reliable forecasting of natural gas. The CB model demonstrated exceptional 
performance with an impressive R-squared score of 99.81%, surpassing all other 
methods. 

• We analyze United States natural gas consumption from 2014 and 2024. 
• We demonstrate how the best-performing model generates outcomes using two 

different explainability methods, providing insight into the decision-making 
procedure of the model. 

The remaining content of this paper is structured as follows: 
A brief overview of relevant research on the subject in question is provided 

in the Literature Review section. The Methodology section provides a detailed 
overview of the dataset and the different strategies used. Within the Results section, 
the experiment’s results are examined and summarized. The Conclusion section 
ultimately provides a finale for the work. 

2 Literature Review 

2.1 Statistical Approaches 

In four regulated industrial regions of Turkey, Cihan (2022) investigated the impact 
of COVID-19 lockdowns on the use of electricity and natural gas and discovered 
significant declines in these usage patterns. ARIMA and Holt-Winters models were 
developed to forecast the consumption of natural gas and electricity. The most 
effective models considering the data on natural gas and electricity consumption 
were found to be ARIMA(0,0,2)(2,1,0)7 and ARIMA(0,0,2)(0,1,1)7, respectively. 
The value for MAPEElectricity was 1.37%, RMSEElectricity was 87.2, R2 

Electricity was 
0.99, MAPEGas was 5.42% and RMSEGas was 50.9, R2 

Gas was 0.92. Using data 
from 2015 to 2022 acquired through the US Energy Information Administration 
(EIA), Bhuiyan et al. (2024) used advanced statistical methods to analyze fuel usage 
patterns in the production of electricity in the United States. The methodologies 
encompassed all four benchmark techniques, namely Mean, Naïve, Drift, and 
Seasonal Naïve, in addition to Seasonal and Trend Decomposition using Loess 
(STL), exponential smoothing (ETS), and the Autoregressive Integrated Moving 
Average (ARIMA) approach. The most minimal RMSE of 20,687.46 for natural 
gas consumption is produced by the ETS model. There are issues with the paper’s 
dependence on historical records and forecasting methods, such as the potential for 
unanticipated changes in technology, economics, and policy to affect future energy 
trends and the requirement for more research into the capacities for regional energy 
production and consumption. Using historical daily natural gas consumption data 
from the Ghana National Gas Company spanning three years, from January 2020 
to December 2022, Broni-Bediako et al. (2024) forecasted Ghana’s daily natural 
gas consumption using both the ARIMA and SARIMA models. The results showed
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that both models can forecast consumption with a good degree of accuracy, with the 
SARIMA model slightly outperforming the ARIMA model with an RMSE of 22.25 
and a Mean Absolute Percentage Error (MAPE) of 6.96%, compared to an RMSE 
of 23.8 and a MAPE of 7.29% for the ARIMA model. The authors did note that 
although the ARGIMA and SARIMA models perform well in terms of prediction, 
their applicability is restricted because of their short-term focus. 

2.2 Machine Learning Approaches 

Dual Convolution with Seasonal Decomposition Network (DCSDNet) is a novel 
technique for natural gas consumption forecasting, which was introduced by Ding 
et al. (2023) using actual daily city-level natural gas consumption information 
collected from January 2016 to June 2021. DCSDNet received 19.4977 for RMSE 
and 0.9063 for R2 in terms of daily natural gas consumption forecasts. With a 
forecast spectrum ranging from two to seven days, DCSDNet, LSTM, CNNLSTM, 
and TCN execute the multi-step forecasting. With a 7-day prediction horizon, the 
suggested DCSDNet obtained 28.3979 for RMSE and 0.8012 for R2. Aminu et al. 
(2023) used a hybrid ensemble regression machine learning approach to forecast the 
demand for natural gas in residential settings. Regression algorithms, which include 
support vector regression, decision tree regression, K-nearest neighbor, and linear 
regression, are combined in the hybrid ensemble approach. The Kaggle machine 
learning repository provided the study’s dataset, which included monthly natural 
gas consumption data from January 1997 to August 2020. Achieved accuracy of 
97.48707913, R2 of 0.792579296, MAE of 0.721612403, and MSE of 1.164821453 
are the results of the Hybrid Ensemble (HE). Gaweł and Paliński (2024) used  
global and local forecasting techniques to predict hierarchical long-time series of 
household natural gas consumption in Poland using a data set of 46,297 observations 
that represented natural gas consumption in Polish territorial units. With an RMSE 
of 4970 and a MAPE of 7.1%, MLP Global Ex produces the best results when the 
average performance of global models for hierarchical forecasts harmonized with 
the middle-out approach is analyzed. 

2.3 Approaches with eXplainable Artificial Intelligence (XAI) 

Sim et al. (2022) used data from a university building in Seoul, Republic of Korea, 
to present a methodology using XAI for energy consumption forecasting. With an 
R2 of 0.871, MAE of 2.176, and MSE of 9.870, the prediction model demonstrated 
high accuracy. Based on their influence, three groups were created from the input 
variables using XAI analysis. When compared to other cases (p < 0.05 or 0.01), 
models that included variables from the Strong + Ambiguous or Strong groups 
showed better prediction performance (R2 of 0.917, MAE of 1.859, MSE of 6.639
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Table 1 Overview of literature review 

Research Year Modeling Technique Performance 

Cihan (2022) 2022 ARIMA(0,0,2)(2,1,0)7 R2 
Gas of 0.92 

Ding et al. (2023) 2023 DCSDNet R2 of 0.9063 for daily natural gas 
consumption prediction and R2 

of 0.8012 for a 7-day prediction 
horizon. 

Aminu et al. (2023) 2023 Hybrid Ensemble (HE) R2 of 0.792579296 
Handayani et al. (2023) 2023 XGBoost R2 of 0.95 
Bhuiyan et al. (2024) 2024 ETS model Lowest RMSE of 20,687.46 
Clement et al. (2024) 2024 SCAL R2 of 0.68649 

for Strong + Ambiguous; R2 of 0.916, MAE of 1.816, MSE of 6.663 for Strong). 
The Strong and Strong + Ambiguous groups did not differ significantly, indicating 
that concentrating on the Strong group variables (Year, E-Diff, Hour, Temp, Surface-
Temp) as identified by XAI produced good prediction outcomes. With an XGBoost 
Regressor model that takes operational and environmental factors into account, 
Handayani et al. (2023) were able to predict fuel oil consumption in cargo container 
vessels with a high degree of predictive performance with an R2 of 0.95 and MAE 
of 10.78 kg/h. By identifying the major controllable and uncontrollable factors 
influencing fuel consumption, the study uses SHAP analysis to provide region-
specific insights for improving energy efficiency and operational strategies in the 
maritime industry. To improve energy consumption prediction models, Clement et 
al. (2024) introduced the novel SHAP Clustering-based Adaptive Learning (SCAL) 
technique. For the Financial Distress data set, the model’s testing accuracy is 
96.190. The model’s testing R2 is 0.68649 and its RMSE is 0.70856 for the Power 
data set. Table 1 provides the highlights of the literature review. 

3 Methodology 

A new methodology has been developed that encompasses data collection, prepro-
cessing, model training and testing, performance evaluation, and model validation 
using explainable artificial intelligence (XAI) tools like SHAP. The goal is to 
determine the most accurate pipeline for predicting natural gas consumption. Each 
aspect of the methodology is separately illustrated in Fig. 2, which offers a top-
down view of the process. The initial steps include basic preprocessing tasks such 
as checking for null values, scaling, and encoding. After that, the data is divided 
in an 80:20 ratio into training and testing sets. The models are trained using a 
variety of machine learning techniques, and their performance is evaluated using 
five metrics: R2 score, mean absolute error (MAE), mean squared error (MSE), root 
mean squared error (RMSE), and mean absolute percentage error (MAPE). The 
results for each metric are compiled into individual tables to allow for thorough
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Fig. 2 Outline of the proposed methodology 

comparison and analysis. The findings show that the CatBoost (CB), Extremely 
Randomized Trees (ERT), and Random Forest (RF) models achieved R2 scores of 
99.81%, 99.69%, and 99.60%, respectively. Due to the superior performance of 
the CatBoost model, an XAI tool was used on it, providing deeper insights into 
its underlying mechanisms and decision-making processes. A detailed overview of 
the models used, the methods for measuring performance, and the insights gained 
from the XAI tool are provided below. 

3.1 Dataset Description 

This dataset sourced from Kaggle (2024) includes monthly statistics on natural 
gas consumption for the United States from January 2014 to January 2024, 
segmented by state, industry (automotive fuel, commercial, industrial, residential, 
and electric power), and particular consumption process. The Energy Information 
Administration (EIA) of the United States provided the data. Table 2 provides a 
comprehensive overview of the structure of the dataset.
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Table 2 Overview of dataset 

Feature Overview 

Duoarea State abbreviation 
Area-name State name 
Product The energy product code 
Product-name Name of the energy product 
Process The process or sector code 
Process-name Specific consumption process within the sector 
Value Consumption amount 
Year The year for the data entry 
Month The month for the data entry 
Series A unique identifier for the data series 
Series description A description of the data series 
Units Monthly consumption in millions of cubic feet (MMCF) 

3.2 Data Preprocessing 

Several critical actions are executed during the data preprocessing phase, which is 
essential for assuring the quality of the data and preparing it for analysis. Initially, 
ordinal encoding is employed to convert categorical features into numerical values. 
This method assigns a unique integer to each category, preserving the order, as 
shown in Eq. (1): 

.Ordinal (li) = oi (1) 

where Ordinal(li) denotes the encoded integer for category li and oi is assigned 
ordinal value. 

The subsequent step is the standardization of numerical features, which involves 
adjusting the data to have a mean of 0 and a standard deviation of 1. This is 
mathematically represented as Eq. (2): 

.x′ = x − ω

ϕ
(2) 

Within this equation, x
′

is the standardized feature, x is the original feature 
value, ω represents the mean, and ϕ is the standard deviation of the feature. This 
standardization assures that the features are consistently scaled, which is vital for 
the effective development of the model.

To handle missing values, any data points containing such values are removed, 
represented by the ruler: 

.Remove xi if xi is null
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where xi refers to a specific data point. Additionally, duplicate entries are eliminated 
to preserve data integrity, described by the following condition: 

. Remove xi if xi = xj for i �= j

These preprocessing measures are crucial for improving the dataset’s quality, 
ensuring it is ready for subsequent analysis and modeling efforts. 

3.3 Exploratory Data Analysis 

The bar plot of Fig. 3 shows the average annual natural gas consumption from 2014 
to 2024. It shows that the highest consumption rate was in 2024 and the lowest 
consumption rate was in 2014. From 2014 to 2018, the consumption value was 
between 20000 MMCF to 30000 MMCF. In 2019, 2020, 2022, and 2023 the gas 
consumption value was between 30000 MMCF and 35000 MMCF. 

The bar plot of Fig. 4 represents the natural gas consumption from January to 
December. All the months are encoded serially from 1 to 12. The plot shows that 
the highest consumption value was in January, which is 40,000 MMCF and the 
lowest value was in May, which is 24,000 MMCF. In May, June, and September the 
consumption rate is low and their consumption value is under 25,000 MMCF. The 
consumption value is extremely high in January and December, their consumption 
values lie in 35,000 MMCF to 4000 MMCF. 

Fig. 3 Average annual natural gas consumption
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Fig. 4 Average monthly natural gas consumption 

Fig. 5 Natural gas consumption in US area 

Figure 5 shows the natural gas consumption in 51 areas of the United States. 
Among them, the natural gas consumption rate is extremely high in Texas, which 
is 571970195.0 MMCF. The least natural gas consumed in USA-HI and their 
consumption value is 59,968.0. Besides USA-HI the consumption rate is also low 
in USA-VT, USA-DC, USA-ME, USA-AK, USA-SD, USA-DE, and USA-RI,
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Fig. 6 Natural gas consumption by process 

whereas the consumption rate is high in California, Florida, New-York, Loss, and 
USA-LA. 

Figure 6 represents the 8 sectors of United States where the natural gas 
consumed. The plot shows that natural gas is least used as vehicle fuel and the 
consumption value is 989544.0 MMCF. The big portion of natural gas is delivered to 
consumers and the portion number is 543148364.0 MMCF. Beside this, natural gas 
is highly used for producing electric power and it is also notably used for fulfilling 
industrial purpose. Natural gas is consumed highly in US residential, under the 
sectors. 

3.4 Machine Learning Algorithm 

Extreme Gradient Boosting (XGB): Machine learning algorithm XGB is a 
member of the boosting algorithm family. It builds a sequential ensemble of weak 
learners (typically decision trees) such that every new learner corrects the errors 
of the previous ones. The culmination of all the weak learners’ predictions yields 
the final forecast. XGB significantly outperforms the GBDT algorithm. The L1 and 
L2 regularization terms are introduced by XGB. Only the first derivative is utilized 
when the model is optimized by GBDT. The loss function undergoes a second-order 
Taylor expansion by XGB. To minimize computation and avoid overfitting, XGB
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allows column sampling. Following each iteration, XGB distributes the learning 
speed among the leaf nodes, lowers the weight of each tree, and improves the space 
available for learning that comes after (2022). The objective function of XGB can 
be expressed in its general form as Eq. (3): 

.Obj (�) =
i=1∑

i=1

Loss
(
yi, ŷi

) +
k=1∑

k=1

�(fk) (3) 

where � represents the set of parameters (including both the parameters of individ-
ual weak learners and global parameters), n is the number of training examples, K 
is the ensemble’s number of weak learners (trees), fk (x) denotes the prediction of 
the kth weak learner for input x, ŷi . is the predicted output of the ensemble for the 
ith training example, yi is the true output for the ith training example, Loss

(
yi, ŷi

)
. 

represents the loss function, which calculates the difference between the actual and 
predicted outcomes, and �(fk) is a regularization term that restricts the complexity 
of individual weak learners to control overfitting. 

Random Forest (RF): An ensemble learning technique for classification and 
regression problems is the RF algorithm. It generates an extensive number of deci-
sion trees throughout training, using which it extracts the class mode (classification) 
or the average forecast (regression). To build a regression tree, the data is separated 
into a series of rectangles, one after the other. A criterion (such as the residual sum 
of squares) is minimized for every split variable. Once split into the feature space, 
two regions are stored as nodes. Until a stopping condition is met—for example, 
the minimum number of observations in terminal nodes—these nodes are kept apart 
further. After that, the response variable is predicted by averaging the results for 
each group (2023). 

For regression: 
Let T be the number of trees in the forest, and (x) be the prediction of the ith tree. 
The final prediction (x) for a given input x is determined by averaging over all 

the trees as shown in Eq. (4): 

.F(x) = 1

T

T∑

i=1

fi(x) (4) 

K-Nearest Neighbors (KNN): A straightforward and understandable technique 
for regression and classification is the KNN algorithm. It bases its predictions in 
the feature space on the majority class of its k nearest neighbors. This algorithm 
relies heavily on the distance between points; several distance metrics, including the 
Euclidean, Manhattan, and Minkowski distances, can be applied. The fundamental 
idea behind the KNN method seeks to locate the k known samples with class 
labels that are closest to a new sample. One may then predict or classify the new 
sample using the class labels associated with these k samples. When classifying a 
new sample in classification tasks, the KNN algorithm uses the class that emerges 
the most commonly among the k nearest neighbors. The KNN algorithm uses the
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average value of the k nearest neighbors to determine the predicted value of the new 
sample in regression tasks (2023). Equation (5) is used to calculate the Euclidean 
distance. 

.Euclidean Distance =
√√√√

n∑

i=1

(pi − qi)
2 (5) 

Here, pi and qi is the ith dimension of points p and q, and n is the number of 
dimensions 

Light Gradient Boosting Machine (LGB): The open-source gradient boosting 
framework LGB was created by Microsoft. Especially for large-scale datasets and 
high-dimensional features, it is made for efficient and distributed training. Written in 
C++, LGB offers interfaces for Python, R, and other programming languages. The 
LGB model performs exceptionally well when processing large amounts of data. 
Its primary distributed computing technique involves splitting the data into multiple 
parts and applying gradient operations to each part to ultimately realize the model’s 
prediction accuracy (2024). The main goal of LGB is to minimize a particular loss 
function, which is commonly shown as Eq. (6): 

.L (θ) =
n∑

i=1

l (yi, F (xi)) +
∑K

i=1
�(fi) (6) 

Here, L (θ). is the overall objective function, l is the loss function, which 
quantifies the variation between the actual label yi and the predicted value F(xi),
�(fi) is the regularization term that restricts complexity in the model to prevent 
overfitting, θ represents the parameters of the model, n is the number of samples, 
and K is the number of trees.

Adaptive boosting (ADB): For issues involving regression and classification, 
one well-known ensemble learning approach can be identified as ADB. It fuses 
numerous weak learners, typically decision trees, to put together a powerful 
classifier. ADB’s basic principle is to train weak learners on the dataset iteratively, 
paying particular attention to the cases that were incorrectly classified in the 
previous iteration. The iteration concept is the foundation of the meta-ensemble 
ADB model. Only one weak learner is trained in a given iteration; the trained weak 
learner then participates in the usage of the subsequent iteration. The ultimate strong 
classifier is created by combining the new weak classifier and weight produced by 
each cycle. Additionally, a strong learner can effectively classify PV faults (2022). 
The equation for the final classifier is presented in Eq. (7): 

.H(x) = sign

(
T∑

i=1

βihi(x)

)
(7)
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Here, (x) denotes the final classifier, T indicates the total number of weak 
classifiers, h(x) represents the weak classifier at step i, β i denotes the weight 
assigned to the weak classifier hi(x), sign is the sign function 

Categorical Boosting (CB): Yandex created the machine learning library CB, 
which is well-known for its efficiency when handling categorical variables. It works 
especially well for tasks like ranking, regression, and classification. Different data 
formats can be handled by this algorithm. This algorithm’s ability to automatically 
manage categorization features means that CB can be used without the need for 
obvious category-number conversion preprocessing, which is one of its advantages. 
The algorithm also reduces overfitting, which results in more general models, which 
is another significant advantage (2024). An equation in this regard is illustrated in 
Eq. (8) 

.F(x) = F0(x) +
T∑

t=1

∑N

i=1
ft (xi) (8) 

Here, F(x) denotes the general prediction function that CB seeks to comprehend, 
F0 (x) denotes the first estimate or base prediction, T denotes entire tree count of 
the ensemble, N denotes the overall quantity of training samples,

∑T
t=1 . denotes 

the summation over the ensemble of trees,
∑N

i=1 . denotes the total of the training 
sample sums, and ft (xi) denotes the tth tree’s prediction for the ith training sample. 

Gradient Boosting Machine (GBM): Strong machine learning methods such 
as GBM are applied to both regression and classification problems. It is a part 
of the ensemble learning techniques, which combine several models to increase 
performance as a whole. Specifically, GBM focuses on creating a sequence of 
weak learners, usually decision trees, and improving them iteratively by reducing 
the mistakes made by the earlier models. Gradient boosting combines the iterative 
gradient descent’s optimization potential with the decision trees’ flexibility. By 
gradually aggregating them, it seeks to improve the performance of weak learners 
and produce a strong and capable learner for classification and prediction tasks 
(2024). Equation (9) provides the equation in this regard. 

.Fm(x) = Fm−1(x) + γmhm(x) (9) 

Here, Fm−1(x) is the ensemble’s prediction up to the (m − 1)th iteration, γ m is 
the weight or contribution of the mth weak learner to the final model, and hm(x) is  
the weak learner added at the m th iteration.

Extremely Randomized Trees (ET): The machine learning algorithm known 
as ET is a member of the decision tree-based model family of ensemble learning 
techniques. On the basis of random subsets of the training data and features, it builds 
several decision trees. Similar to Random Forest, Extremely Randomized Trees uses 
a large number of decision trees, but it adds additional unpredictability to the process 
by training each tree with the entire learning sample and randomly dividing the trees 
top-down. It selects the division point at random rather than figuring out the best
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division point for each feature (for example, based on information entropy or Gini 
impurity). The value is chosen at random and uniformly from the empirical feature 
space. The division point of the node is determined by taking the division point with 
the highest score out of all the randomized division points (2024). 

3.5 Explainable AI 

SHapley Additive exPlanations (SHAP): SHAP, a machine learning technique for 
deciphering and analyzing complex model predictions. Using Shapley values from 
game theory, SHAP is a technique for describing the predictions of a model. This 
method assesses each input characteristic’s influence on a machine learning model’s 
prediction quantitatively. Shapley values, which have their roots in cooperative game 
theory, provide a way to divide “payoffs,” or the game’s prizes, equitably among 
several cooperating players. These “players” stand in for the characteristics or traits 
in the context of machine learning, and the “payoffs” are the “predicted outcomes.” 
(2024). Equation (10) represents a linear explanation model used in SHAP: 

.h
(
x′) = φ0 +

T∑

i=1

φ0x
′
i (10) 

Here, h indicates the explanation model, T indicates the largest coalition size 
possible, x′ indicates the coalition vector (x′ ∈ {0, 1}T ), and φi indicates the feature 
attribution for a feature i (φi ∈ R). 

4 Results 

4.1 Evaluation Metrics 

Mean Squared Error (MSE): MSE is a frequently used measurement to gauge 
the effectiveness of a regression model. The statement conveys the average squared 
deviation that exists between the observed and predicted values by the model. MSE 
is computed using Eq. (11). 

. Mean Squared Error = 1

Ɲ

Ɲ∑

k=1

(
ϒk − ϒ̂k

)2
(11) 

Root Mean Square Error (RMSE): The precision of a prediction model 
is evaluated using RMSE, an often-used statistic, especially when performing 
regression analysis. In order to calculate it, one must extract the square root of the
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mean of the squared disparities between the expected and actual values. Equation 
(12) generates the RMSE. 

.Root Mean Square Error =

√√√√√
Ɲ∑

k=1

(
ϒ̂k − ϒk

)2

Ɲ
(12) 

Mean Absolute Error (MAE): An evaluation of a regression model’s perfor-
mance is done using an indicator known as MAE. It determines the average absolute 
difference between the expected and actual values in a dataset. The formula for 
determining MAE is illustrated in Eq. (13) below: 

.Mean Absolute Error =
∑Ɲ

k=1 |ϒk − μk|
Ɲ

(13) 

Mean Absolute Percentage (MAPE): MAPE is an indicator that’s frequently 
employed to evaluate the accuracy of forecasting techniques. MAPE quantifies the 
average absolute proportion deviation between the predicted and actual values. The 
computation of MAPE is demonstrated in Eq. (14). 

. Mean Absolute Percentage Error = 1

Ɲ

Ɲ∑

k=1

∣∣∣∣∣
ϒk − ϒ̂k

ϒk

∣∣∣∣∣ × 100% (14) 

Coefficient of Determination (R2): R2 score is a statistical measure which 
shows what proportion of the variation of the variable that is dependent can be 
anticipated from the independent variables. It is a variable of type binary, a value of 
1 signifies a precise correspondence, whereas a value of 0 denotes the absence of 
a link between the independent and dependent variables. It is computed using Eq. 
(15). 

. Coefficient of Determination = 1 −
∑Ɲ

k=1

(
ϒk − ϒ̂k

)2

∑Ɲ

k=1

(
ϒk − ϒk

)2
(15) 

In the above equations, 

– ϒk : Observed Values 
– ϒ̂k . : Predicted Values 
– μk : True Value 
– ϒk . : Mean of the Actual Values 
– Ɲ: Total number of data points
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Table 3 Performance comparison across multiple models 

Name MAE MSE RMSE MAPE R2 

XGB 5888.31 183314966.15 13539.39 2.38 × 1017 99.08% 
RF 2445.49 79204171.05 8899.69 1.04 × 1016 99.6% 
KNN 2484.90 1186191171.32 10891.24 5.01 × 1015 99.4% 
LGB 4622.77 151574708.29 12311.56 2.79 × 1017 99.24% 
ADB 3534.15 10714437.11 10351.05 3.79 × 1016 99.46% 
CB 1565.15 37013809.03 6083.89 4.24 × 1016 99.81% 
GBM 11264.31 716784480.06 26772.83 2.83 × 1017 99.4% 
ET 1823.70 61438319.52 7838.26 3.48 × 1014 99.69% 

4.2 Machine Learning Model Performance Analysis 

As displayed in Table 3, among the models compared, CB stands out as the 
best-performing model, demonstrating exceptional predictive accuracy with the 
lowest RMSE of 6083.89 and the highest R2 score of 99.81%. CB excels in 
accurately predicting outcomes, making it ideal for applications requiring precise 
and reliable predictions. Following CB, RF and ET perform strongly with low 
RMSE values of 8899.69 and 7838.26, respectively, coupled with high R2 scores 
of 99.6% and 99.69%. These models provide robust predictive capabilities suitable 
for tasks demanding accurate modeling of complex data relationships. ADB and 
KNN also deliver solid performance, showing moderate prediction errors and high 
R2 scores of 99.46% and 99.4%, respectively. In contrast, XGB exhibits the highest 
RMSE of 13539.39 and an R2 score of 99.08%, indicating comparatively higher 
prediction errors among the models evaluated. While still demonstrating strong 
overall performance, XGB highlights areas where improvements in prediction 
accuracy could be advantageous. 

4.3 Result of the XAI Tool: SHAP 

Investigating the explainability of machine learning models is a critical endeavor in 
ensuring their reliability and trustworthiness. In this pursuit, the SHAP (SHapley 
Additive exPlanations) method emerges as a potent tool, serving to enhance the 
interpretability of these models by delineating the impact of individual predictor 
variables on model outputs. The utilization of SHAP values offers a nuanced under-
standing of the way each variable affects the forecasting model, thus furnishing 
invaluable insights into the underlying mechanisms governing predictions. Figure 7 
encapsulates the culmination of this investigative process, presenting summary plots 
that meticulously elucidate the relationship between model inputs and SHAP values. 
Within these plots, each characteristic is symbolized with a vertical bar, positioned 
along the x-axis in accordance with its corresponding SHAP value. A pivotal
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Fig. 7 The SHAP values on the model for every feature 

measure of a feature’s impact on the model output is the polarity of these values, 
where positive indicates an augmentative effect and negative indicates a diminutive 
influence. Moreover, the magnitude of SHAP values provides a quantitative measure 
of the strength of this influence, furnishing researchers with a comprehensive gauge 
of variable importance. Crucially, the incorporation of a color gradient into these 
visualizations further enriches their interpretability, with blue hues connoting lower 
feature values or adverse effects, and red hues signifying higher values or beneficial 
contributions. This color scheme not only accentuates the relative significance of 
each feature within the dataset but also facilitates a nuanced understanding of 
their respective roles in shaping model predictions. Thus, by imbuing the SHAP 
plots with both quantitative and qualitative insights, researchers are empowered 
to discern the intricate interplay between feature values and predictive outcomes. 
Figure 7 not only displays a graphic depiction of the SHAP value distribution across 
different features but also affords a hierarchical ranking of these features based 
on their mean absolute SHAP values. Through this dual perspective, researchers 
are equipped to discern both the relative importance of individual features and the 
magnitude of their impact on forecasting accuracy. Notably, the findings underscore 
the preeminent influence of the “duoarea” variable on prediction outcomes, followed 
closely by “area-name” and “series” as the second and third most influential 
features, respectively. 

Figure 8 displays a more basic feature importance plot. The model was more 
affected by the variables that were at the top than by the ones at the bottom. 
Attributes, namely duoarea, area-name, series, and process-name, showed substan-
tial influence on the model outcome, as indicated by the depiction of SHAP values 
in Fig. 8. The series description, procedure, month, and year were the four attributes
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Fig. 8 The importance of each feature to the prediction result 

with moderate importance. The least significant features, which had little to no 
impact on the forecasting model, were likewise highlighted by the SHAP values 
in Fig. 8, as opposed to the high-importance features. Three features, namely units, 
product, and product-name, had no bearing on the forecasting model, as can be 
observed from the graphic in Fig. 8. 

5 Conclusion 

In summary, our in-depth study has shown how powerful advanced machine learning 
techniques can be applied to resolve important forecasting problems in the energy 
industry. Following a thorough evaluation of a wide range of models using data on 
natural gas usage, the study has shown that the CB algorithm is the best method, with 
an outstanding R2 score of 99.81%. Additionally, the study advances beyond merely 
summarizing the numerical outcomes by offering insight into the CB model’s 
decision-making procedure and utilizing two different explainability techniques 
to better understand the complex connections and patterns the model discovered. 
The findings of the research have a significant impact on policymaking, optimizing 
operations, and energy planning as they can help the industry make better decisions 
about how to allocate resources, manage risk, and choose how much natural gas to 
use.



Explainable AI in Energy Forecasting: Understanding Natural Gas. . . 75

References 

Aminu, A., Zambuk, F. U., Gital, A. Y., Lawal, M. A., Pyelshak, Y., & Yakubu, I. Z. (2023). 
Application of hybrid ensemble machine learning approach for prediction of residential natural 
gas demand and consumption. International Journal of Innovative Science and Research 
Technology (IJISRT), 8(9), 158–165. https://doi.org/10.5281/zenodo.8348415 

Bhuiyan, M. M., Hossain, A. N., Sakib, S. I., & Alawee, and Talayeh Razzaghi. (2024). Fueling 
the future: A comprehensive analysis and forecast of fuel consumption trends in US electricity 
generation. Sustainability, 16(6), 2388. 

Broni-Bediako, E., Buabeng, A., & Allotey, P. (2024). Predicting Ghana’s daily natural gas 
consumption using time series models. Petroleum Science and Engineering, 8(1), 27–37. https:/ 
/doi.org/10.11648/j.pse.20240801.14 

Cattani, G. (2023). Combining data envelopment analysis and Random Forest for selecting 
optimal locations of solar PV plants. Energy and AI, 11, 100222. https://doi.org/10.1016/ 
j.egyai.2023.100222 

Chen, D., & Liu, B. 2024. Temperature prediction for stored grain: A multi-model fusion strategy 
based on machine learning. arXiv preprint arXiv:2404.07175 

Cihan, P. (2022). Impact of the COVID-19 lockdowns on electricity and natural gas consumption 
in the different industrial zones and forecasting consumption amounts: Turkey case study. 
International Journal of Electrical Power & Energy Systems, 134, 107369. 

Clement, T., Nguyen, H. T. T., Kemmerzell, N., Abdelaal, M., & Stjelja, D. 2024. Beyond 
explaining: XAI-based adaptive learning with SHAP clustering for energy consumption 
prediction. arXiv preprint arXiv:2402.04982.https://arxiv.org/abs/2402.04982 

Ding, J., Zhao, Y., & Jin, J. (2023). Forecasting natural gas consumption with multiple seasonal 
patterns. Applied Energy, 337, 120911. 

Gadagi, A., Sivaprakash, B., Adake, C., Deshannavar, U., Hegde, P. G., Santhosh, P., Rajamo-
han, N., & Osman, A. I. (2024). Epoxy composite reinforced with jute/basalt hybrid– 
Characterisation and performance evaluation using machine learning techniques. Composites 
Part C: Open Access, 14, 100453. 

Gao, Q. (2024). Multi-temporal scale wind power forecasting based on Lasso-CNN-LSTM-
LightGBM. EAI Endorsed Transactions on Energy Web, 11. 
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An Extensive Statistical Analysis of Time 
Series Modeling and Forecasting of 
Crude Oil Prices 

Mahmudul Hasan, Md. Iftekhar Hossain Tushar, Most Mozakkera Jahan, 
Touhida Sultana Ety, and Md. Palash Uddin 

1 Introduction 

Crude oil, often called “black gold”, is an innate, unprocessed petroleum product 
derived from deposits of hydrocarbons and other organic matter. This versatile 
resource fuels most vehicles, heats houses, and provides electricity for the planet. 
Besides the energy sector, crude oil represents an irreplaceable raw material in all 
related industries: plastics, pharmaceuticals, and chemicals (Hasan et al., 2023). 
Crude oil is of immense economic importance; it fuels the world economy. It 
is the primary fuel in the world, and its supply and price determine essential 
effects on economic activity. This is because crude oil is a vital component in so 
many industries, affecting profit and output. Also, the oil industry is among the 
largest employers around the world: from upstream activities through midstream 
to marketing. Finally, crude oil is one of the most actively traded commodities in 
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the world, with its price movements affecting trade balances and national economic 
health (Sajid et al., 2023). 

As an energy source, crude oil provides the most inelastic component of energy 
supply. It contributes over a third to the world’s energy consumption and, thus, 
serves as an essential component toward realizing global energy security (Moon 
et al., 2019). The massive infrastructure of the oil sector in terms of thousands 
of miles of pipelines, storage facilities, and refineries constitutes a multitrillion 
dollar sector that is in a position to influence global economic dynamics (Zhang 
et al., 2022). In this view, predicting crude oil prices is of paramount importance 
because of the pervasive impact that the commodity exercises upon the global 
economy (Hasan et al., 2024). Fluctuations in the price of oil exert huge impacts 
on the transportation, manufacturing, agriculture, and consumer goods sectors. 
The capability to provide exact price forecasts for the managers of businesses, 
investors, and even policymakers opens up room for well-informed decisions and 
strategies that also manage risks. Forecasting oil prices is also crucial for energy-
dependent countries’ budget planning, managing foreign exchange reserves, and 
forming economic policies. 

The necessity of involving statistical models in crude oil price forecasting 
is because many variables are interlinked and together impact the oil market: 
world supply and demand patterns, geopolitical events, economic growth forms, 
technological progress, and ecological policy. They provide a systematic way of 
analyzing past data to possibly detect some pattern through which a forecast can 
be made from this multifaceted influence. This gives a quantitative framework to 
process vast amounts of information and derive insights upon which action can be 
taken. 

Statistical analysis, to a great extent, influences the forecasting of crude oil 
prices. This will enable the researcher and analyst to find trends and patterns 
based on historical price data, measure relationships among several factors that 
influence oil prices, estimate the relative importance of different variables in price 
determination, generate probabilistic forecasts that account for uncertainty, and 
appraise the accuracy and reliability of various forecasting methods. This includes 
numerous aspects: Forecasters can utilize different statistical techniques, time series 
analysis, and regression models, among others, with machine learning algorithms to 
enable the development of more prosperous and more predictive forecast models of 
crude oil prices. The development of these techniques also allows the involvement 
of multiple variables and the understanding of the nonlinear relationships that need 
to be there in oil markets. 

Further, the development of statistical analysis lays out the framework for 
comparing the strengths and the weaknesses of different forecasting models. In the 
accurate comparison of the predicted values and the outcome produced by them, the 
researcher, with time, improves the model and overall ability of predictions. Only 
through such iterative procedures, researchers can develop and validate models to 
find a much better prediction of crude oil prices. The need for statistical analysis 
is also related to risk management strategies for investment decisions and policy 
formulation, in addition to price level predictions. For instance, statistics-based
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prediction can help oil-producing countries optimize their production levels, as well 
as assist them in price risk management. On the other hand, these areas are where 
energy-intensive industries may use to reduce cost overruns and plan their business 
investments. The role of crude oil as the engine of the global economy dictates 
that there is evident importance to predicting its price in the most accurate way 
possible. Statistical models and analysis provide a powerful toolkit to work out 
the multiplicities of the oil market and insights of vital significance to economic 
planning, risk management, and decision-making in different sectors. As the world 
continuously depends on crude oil, there is an ongoing shift toward cleaner energy 
sources, and predicting oil prices remains a crucial competency for economists, 
policymakers, and industry leaders. The technical contributions of this chapter are:

• We design a methodology for time series modeling and forecasting of crude oil 
prices using statistical models.

• We handle the missing values and generate stationary data using Augmented 
Dickey-Fuller (ADF) test to make the data more suitable for analysis.

• We perform residual analysis to evaluate the adequacy of the model by exam-
ining the residuals to ensure the random, normally distributed, and exhibit no 
autocorrelation, thereby validating the model’s assumptions and accuracy.

• We perform a comparative statistical analysis to find the most suitable statistical 
model for predicting crude oil price. 

The structure of the remaining sections of this chapter is outlined as follows. The 
related works are outlined in Sect. 2. Section 3 is dedicated to presenting our 
proposed methodology and the experimental setup. We detail the approach we have 
taken to address the research problem, including the methods, techniques, and tools 
employed in our study. Within Sect. 4, we present the outcomes of our experiments. 
The chapter concludes in Sect. 5 with a summary of our findings and their 
significance. Additionally, we outline avenues for future research and development 
in this domain, emphasizing the potential directions for further exploration and 
enhancement. 

2 Literature Review 

Tianxiang Wang proposed a model (Wang, 2024) for predicting the price of WTI 
crude oil for the next year. In this work the author used the daily data of WTI 
crude oil price in the range of the first day of January 2019 to the end of September 
2023. The motive was to find the best projection of the next year 2024. Initially 
she used the auto ARIMA, an autonomous stepwise search, for identifying the best 
parameters p, d, and q to get high performance on the measurement scale. Secondly 
she used ARIMA on the training data using specified parameters and projected the 
outcome for the year 2024 where ARIMA model avoided the small fluctuations of 
time series. The model forecasted almost a constant value of 100 USD/Bbl. In the 
measurement of correctness, applied procedure represents approximately 0.04 for
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MSE, 0.18 for MAE, and 0.2 for RMSE. The measurement scale justifies ARIMA 
as a model of high-level accuracy. In another work, Alfaki and Masih (2015) 
introduced the Box-Jenkins method for designing the model and forecasting the 
monthly sales for Naphtha. The dataset was collected from Azzawiya Oil Refining 
Company, Libya as the monthly sales of Naphtha. They used ARIMA models for the 
iterative process of Box-Jenkins to forecast both stationary and nonstationary time 
series. In this model, ADF test was used to test the unit root and stationarity in the 
data, and differencing order was chosen for the integrated component of ARIMA to 
make the time series stationary. The parameter value for AR and MA components 
was selected from the graphical presentation of Autocorrelation Function (ACF) 
and Partial Autocorrelation Function (PACF). The researchers fitted the time series 
into the ARIMA model with parameter tuples of (1, 1, 1), (3, 1, 3), and (6, 1, 6). 
They found ARIMA (1, 1, 1) was the best having 0.3506, 1.8629, and 1.9510 for 
MSE, AIC, and SC in the measurement scales. At the end, the researchers forecasted 
monthly sales of Naphtha for 6 years from January 2015 to December 2020. 

Suleiman et al. (2023) also followed the iterative process of four steps such 
as identification, estimation or model fitting, diagnostic checking, and model 
refinement of Box-Jenkins method to analyze the time series. It is a country-based 
work that used the monthly time series dataset of crude oil price in Nigeria from 
2006 to 2020. Firstly, the time series dataset was observed by the ACF and PACF 
and was identified as nonstationary and having unit root with the examination of 
Kwiatkowski-Phillips-Schmidt-Shin (KPSS), ADF, and Phillips-Perron (PP) test. 
The nonstationary behavior in time series was removed after performing the first 
difference. Secondly, in the model fitting step they fitted ARIMA model with 
different parameter tuples to find the optimized estimation. Researchers had found 
two optimal ARIMA with tuples of (2, 1, 1) and (3, 1, 1) based on HQC, AIC, 
and BIC information criteria. Finally, they identified the ARIMA (3, 1, 1) model 
performed better and suitable among these two of different parameter tuples in 
forecasting the monthly price of crude oil considering MSE, RMSE, MAE, MPE, 
and MAPE predictive measures. A comparison-based work (Tularam & Saeed, 
2016) of statistical models on time series dataset was proposed by Tularam et al. 
in 2016. In this researchers discussed about three univariate models of statistics 
which were ARIMA, ES, and Holt-Winters. They collected the time series dataset 
of regular crude oil prices from West Texas Intermediate. The time series was 
fitted to each univariate model merging with the best hyper parameters to get 
high performance from them. The outcome showed that the Holt-Winters model 
performed better with a confidence interval of 95% than the ES model and ARIMA 
model with parameter tuple of (2, 1, 2) results best among three by considering six 
measurements in model selection such as MSE, RMSE, MAE, MAPE, and Theil’s 
U statistic (Theil’s statistics were implemented and defined as U1 and U2). In a 
different comparative study (Ning et al., 2022), Ning et al. (2022) presented two 
statistical models and a Recurrent Neural Network (RNN) model namely ARIMA, 
Prophet, and LSTM. Those models were fitted with a time series to extract the 
remarkable behaviors and fluctuations of historical data and forecast values of a 
future time sequence. The oil production data of 65 wells, a reservoir located in
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Denver-Julesburg (DJ) Basin, was used as the time series data for this analysis. The 
65 wells’ data was divided into four pads, and 70% of data was used to train the 
models and rest of the data to evaluate the performance of those models for each 
pad. Though Prophet captures the fluctuations of winter season more preciously, 
DJ Basin’s time series showed that ARIMA and LSTM performed better due to 
not all pads were not facing seasonal impacts, and considering all the measurement 
scales they observed that ARIMA (0, 1, 1) was more appropriate in shorter time 
predictions, i.e., next 1-year period. 

Rangsan Nochai and Titida Nochai worked (Nochai & Nochai, 2006) to find the 
best parameter tuple for ARIMA model in different time series. They used palm oil 
prices of Thailand in three formats as farm prices, wholesale prices, and pure oil 
prices. The goal of researchers is to obtain the parameters for these three different 
time series while applying the ARIMA model. They used MAPE measurement 
technique to judge the ARIMA with every parameter tuple, and they had found the 
effective parameter tuples of that model as ARIMA (2, 1, 0) for farm prices, ARIMA 
(1, 0, 1) or ARMA (1, 1) for wholesale prices, and ARIMA (3, 0, 0) or AR (3) for 
pure oil prices of the palm oil. Caspah Lidiema used (Lidiema, 2017) two statistical 
models in modeling and predicting the inflation rate in Kenya. He implemented 
the Box-Jenkins method with SARIMA and triple ES of Holt-Winter. The time 
series of Consumer Price Index was collected in a range of November 2011 to 
October 2016 which was published by Kenya National Bureau of Statistics (KNBS). 
The SARIMA model was trained with parameter tuple (1, 1, 0) for nonseasonal 
impacts and (1, 0, 0) for the seasonal impact which can be defined as SARIMA 
(1, 1, 0) (1, 0, 0). On the other hand, the triple ES of Holt-Winter was trained 
with smoothing parameters such as α . = 0.9999 and β . = 0.0001, and γ . confirms 
that the model did not contain any seasonal component. The researcher analyzed 
the performance of two models with measurement scales including MAE, MAPE, 
and MASE. The SARIMA resulted 0.0036, 0.073, and 0.059 for MAE, MAPE, 
and MASE, respectively, and the triple ES of Holt-Winter resulted 0.595, 0.400, 
and 0.643 for MAE, MAPE, and MASE, respectively. Comparing the measurement 
scale’s results, the SARIMA model was chosen as the best model to forecast 
the inflation rate correctly. In a different investigation (Mardiana et al., 2020) of  
comparing statistical models in between additive model of Holt-Winter and ARIMA 
was performed by Mardiana et al. in 2020. They used the gasoline time series 
dataset and its three components’ time series which are gasoline 88, gasoline 90, 
and gasoline 92 spanning a range of 2017 to 2019 period. The goal of researchers 
is to forecast the total demand of gasoline from 2020 to 2022. In this study, it was 
shown that the additive model of Holt-Winter outperformed ARIMA model and 
the joined application of Holt-Winters model with a neural network resulted lower 
error in predicting the demand of gasoline 92. Though the components of gasoline 
were in different trends, the forecasted result showed the increasing behavior in total 
gasoline demand.
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3 Methodology 

3.1 Approach Overview 

To analyze the time series crude oil price, we proposed a statistical extensive 
analysis system. After collecting the raw data from online, we preprocess the data by 
handling the missing values and consistent data and differencing the data. We apply 
AR, MA, ARIMA, SARIMA, ES, and VAR models for the analysis and forecasting 
of the crude oil price. We show the model coefficients, ACF and PACF plots, simple 
moving average (SMA) and EMA values, and residual analysis and finally measure 
the key statistics of the models. The overview of the methodology is in Fig. 1. 

3.2 Description of Dataset 

We collect the daily crude oil data from online marketwatch.com. The dataset 
contains data from May 20, 1987 to June 05, 2024. We consider the open market 
price of the opening days for the analysis. The trend of crude oil price is in Fig. 2. 

Fig. 1 Overview of the proposed statistical analysis-based forecasting system
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Fig. 2 Change of the crude oil price from 1988 to 2024 

3.3 Data Preprocessing Techniques 

3.3.1 Missing Value Handling 

We handle the missing values using mean imputation process. We consider the mean 
of previous 3 days and after 3 days to put a suitable value in the missing prices. It 
provides the consistency and prevents information loss from the dataset. 

3.3.2 Stationarity Check Using ADF Test 

Checking the stationarity of a time series is an important factor in some time series 
forecasting statistical models such as ARIMA, SARIMA, and ARCH. Checking 
stationarity means checking the statistical properties of a time series whether they 
are varying or not with time. In this purpose, the ADF test, a type of unit root test 
in statistics, is a most commonly used statistical testing model which is an extended 
representation of the Dickey-Fuller test (Demetrescu, 2010). To find the stationarity 
of the time series ADF initially defines two hypotheses. The Null Hypothesis (H0) 
states that the time series is not stationary or the time series has a unit root, and 
the Alternate Hypothesis (HA) states that the time series is stationary or the time 
series has no unit root. The ADF test finds a critical value named as p-value which 
determines whether the test rejects the null hypothesis or not. If it finds the critical 
p-value less than the significant level (considering 5%), then the ADF test rejects 
the Null Hypothesis, which means the given time series is stationary and there is no 
unit root; more elaborately it can be said that the statistical properties such as mean, 
variance, covariance, and standard deviation of that time series are not the function
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of time. On the other hand, if p-value does not reject the Null Hypothesis, then the 
given time series is not stationary and has a unit root. 

3.3.3 Differencing 

Almost all the economic and financial time series shows nonstationarity including 
behaviors of trend, cycle or seasonality, random walking, etc. to its data. The long-
term pattern such as the tendency of being stable, increasing, and decreasing in 
direction of a time series is referred to as the trend, and the pattern of fluctuations 
or variations in the time series that repeats in a time interval (e.g., weekly, monthly, 
and yearly) depending on the factors such as holidays, weather, cultural festivals, 
or other events that occur regularly is referred to as the seasonality. To remove 
these upward, downward, and stable trends, as well as the seasonal repetitive 
tendency in pattern of time series, the differencing methodology is introduced. 
It makes the time series to stationary series from nonstationary. The technique 
of differencing calculates the differences between consecutive instances in the 
time series data. Three most impactful differencing methods named as first-order 
differencing, second-order differencing, and seasonal differencing are exhibited 
here. The first-order difference is effective in removing the linearly changing trend 
over time, and it is also called random walk model which can be written as 

. y′
t = yt − yt−1

The first-order differencing results t − 1. values because there is no differencing 
value for the first instance of time series data so it is eliminated from the dataset. 
Sometimes the first-order differences do not provide the time series as stationary 
so the second-order involves on the first-order differences and calculates the 
differences of consecutive first-order instances shows calculation as 

. y′′
t = y′

t − y′
t−1 = (yt − yt−1) − (yt−1 − yt−2)

The second-order differencing results t − 2. values because there is no differencing 
value for the initial two instances of time series data, so these are eliminated 
from the dataset. First-order and second-order differences remove the trend in 
the time series data, but they cannot handle the seasonality of time series where 
patterns found in repetitive structure in a time interval. Considering this problem, the 
seasonal differences are introduced. Seasonal difference calculates the differences 
not between the consecutive instances, but it calculates the differences between 
two instances which are seasonally related or have similar fluctuations over a time 
interval. The equation can be written as 

.y′
t = yt − yt−m
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where m is the time interval of similar fluctuations which is also called “the lag-m 
differences.” The subtraction in between instances which have a lag of m periods. 
The seasonal differencing results t −m. values because there is no differencing value 
for the initial m number of instances of time series data, so these are eliminated from 
the dataset.

3.4 Description of the Statistical Models 

Statistical models are the mathematical frameworks that capture the components 
(e.g., trend, seasonality, random fluctuations, and irregularities) of time series data 
points, understand the data’s behavior, identify the relationship among them, and 
predict the future values. There are several models in the shadow of statistics 
which works on time series data to forecast data point. Common models of them 
are AR, MA, ARIMA, SARIMA, VAR, Generalized AutoRegressive Conditional 
Heteroskedasticity (GARCH), and ES models. Each model works effectively in 
various circumstances by maintaining many characteristics such as randomness 
or stochastic nature in the time series, temporal dependency of one-time data 
point to its previous data points, variations in time series components, parametric 
or nonparametric description, selection of model and then evaluating them, and 
finally the inference and prediction. The right model is chosen analyzing all 
these characteristics. Sometimes model selection is performed with the guidance 
of different diagnostic measurements including ACF, PACF, Akaike Information 
Criterion (AIC), Bayesian Information Criterion (BIC), residual analysis, and so 
on. 

3.4.1 Autoregressive (AR) Model 

AR is the fundamental model in time series analysis and forecasting. It has 
grandiose applications in the fields of economics, finance, climate science, and 
more. Its simplicity in understanding and implementation, interpretability to make 
relationships between past and future values, and solid foundation of building blocks 
in time series analysis provides efficacious result in forecasting but it has limitations 
on nonstationarity, complex trends, and external factors (Nassar et al., 2004). The 
AR model is a type of regression model in the time series analysis which refers to 
that the interested value can be predicted from the linear combination of previous 
values together with an error term. For example, to forecast tomorrow’s values of 
any time series, it might consider today’s, yesterday’s, and so many past values 
of that time series. So, the AR model with order p defined as the current value 
considers p numbers of past values in AR. The equation can be written as

.Yt = P0 + P1Yt−1 + P2Yt−2 + · · · + PpYt−p + Et
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where P1, P2, . . . , Pp . are the changing parameters, Et . is noise, and Yt . is the 
forecasting value depending on Yt−1, Yt−2, . . . , Yt−p .. 

The value of p can be defined with the help of PACF and ACF .

3.4.2 Moving Average (MA) Model 

MA is also a fundamental model in time series analysis and forecasting as like AR 
model. It has widespread applications on predicting stock prices, analyzing market 
trend, managing risk, forecasting demand of product, predicting sales based on 
seasonal variations, and modeling the weather patterns. Its simple and interpretable 
structure helps to identify trends and random errors on past observations and 
forecast the intended value proficiently (Akrami et al., 2014). The MA model is a 
type of regression model in the time series analysis which refers to that the interested 
value can be fluctuated over past forecasting errors. The MA model with order q 
defines as the current value considers q number of past errors. The equation can be 
written as

. Yt = E0 + Et + Q1Et−1 + Q2Et−2 + · · · + QqEt−q

where Q1,Q2, . . . ,Qq . are the changing parameters, Et . is considered as the 
weighted MA of past forecast errors, and E0, Et , Et−1, . . . , Et−q . are the errors of 
forecasted values. 

The value of q can be defined with the help of ACF and PACF .

3.4.3 Autoregressive Integrated Moving Average (ARIMA) Model 

ARIMA model (Newbold, 1983) is a popular, widely used, and versatile statistical 
forecasting model on time series data which has three different components referred 
to as AR, Integrated (I), MA. It works on identifying patterns and trends of 
historical data and forecasts values of the time series based on past values by 
handling seasonality, trends, and fluctuations in data. Combining three components 
it merges the facilities of three independent models into one to predict the interested 
value effectively (Valipour et al., 2012). Combining integrated or differencing with 
autoregression and moving average the ARIMA (p, d, q).model forms the following 
equation: 

. Y ′
t = P0 + P1Y

′
t−1 + · · · + PpY ′

t−p + Q1Et−1 + · · · + QqEt−q + Et

where p is the order of AR part, q is the order of MA part, and d is the differencing 
order of integrated part.

Though ARIMA is a powerful tool in time series forecasting, but it has 
drawbacks on nonlinear trends or patterns, external factors, focusing on long-term 
periods, selecting parameters, and handling outliers.
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3.4.4 Seasonal Autoregressive Integrated Moving Average (SARIMA) 
Model 

To overcome the limitation of ARIMA model in forecasting the time series which 
fluctuates over a fixed interval or seasonal manner, the SARIMA model comes in 
Alharbi and Csala (2022). ARIMA model only captures the trend and patterns in the 
time series in its learning period. On the other hand, SARIMA not only includes the 
working process of forecasting time series but also captures the seasonal fluctuations 
in the time series and gives more accurate result than ARIMA in forecasting the 
interested value. SARIMA joins two sets of parameter in its seasonality modeling. 
One set represents the nonseasonal effects with parameters of AR, I, and MA 
which are denoted in lowercase letters, and other set represents the seasonal effects 
with parameters of AR, I, and MA which are denoted in uppercase letters. The 
functionality of SARIMA can be formed as 

. SARIMA(p, d, q)(P,D,Q)m

where p, d, q .parameters represent the nonseasonal effects for AR, I,MA., P,D,Q. 

parameters represent the seasonal effects for AR, I,MA., and m parameter repre-
sents the number of observations in one season. In a weekly time series there would 
be 54 observa tions.

In SARIMA the parameter selection and handling the overfitting risk is a 
challenging task, but its performance on time series having both trend (e.g., upward 
trend, downward trend, and stable trend) and seasonality makes this model very 
valuable. 

3.4.5 Exponential Smoothing (ES) Model 

ES is a forecasting model for univariate time series data where the interested value 
is calculated as the weighted linear summation of lags or past observations. Using 
the exponential window function, it assigns weights to the past observations which 
are exponentially decreasing (Gardner Jr., 2006). The idea behind this strategy is 
giving more importance to the recent observations and decreasing the importance 
exponentially smaller to the older observations. The equations for calculating the 
ES are: 

1. Simple Exponential Smoothing (SES): 

. Ft+1 = St = αXt + (1 − α)St−1

where t represents the time period, Xt . is the current observation, St . is the 
smoothed value representing the weighted average for Xt ., α . is the smoothing 
factor in a range of (0, 1)., and Ft+1 . is the forecasting value for the next period 
t + 1..
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2. Holt’s Linear Trend Smoothing: 

. Ft+1 = Lt + Tt

. Lt = αXt + (1 − α)(Lt−1 + Tt−1)

. Tt = β(Lt + Lt−1) + (1 − β)Tt−1

where t represents the time period, Xt . is the current observation, α . is the 
smoothing factor in a range of (0, 1)., β . is the trend smoothing factor in a range 
of (0, 1)., Lt . is the smoothed value for level of Xt . in time period t , Tt . is the 
smoothed value for trend in time period t , and Ft+1 . is the forecasting value for 
the next period t + 1.. 

Holt’s Linear Trend Smoothing combines the smoothed value for level and 
smoothed value for trend, represented as Lt and Tt, to forecast the interested value. 
The level of equation is almost the same to the SES, but it includes the previous 
trend. 

The ES model is comparatively simple than ARIMA and other models to 
understand and implement. Its computational efficiency in calculating only the 
weighted sum requires minimal processing power which is very suitable for real-
time forecasting with quick turnaround. But, the model focuses more on recent data 
than past observations as a result long-term prediction may result less reliable when 
the time series contains highly volatility, sudden changes, and intricate patterns. 

3.4.6 Vector Autoregression (VAR) Model 

VAR is an extended version of simpler AR model in single time series. VAR is 
used for multivariate time series where it captures the interdependent characteristics 
of multiple time series and explains each time series variable with its own past 
observations or lags and past observations of other variables (Lütkepohl, 2013). If 
there are N number of time series variables, then there will be N equations, one for 
one variable. The function of VAR is written as

. V AR(p)

where V AR(p). model has n equations for all the time series variables, and p is the 
number of past observations in each equation.

VAR performs very efficiently in analyzing the relationships between several 
patterns and forecasting the value which is dependent on the behavior of multiple 
time series.
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4 Result Analysis 

4.1 Stationarity Check 

We use the ADF test to check if the time series is stationary. A stationary time series 
has a constant mean and variance over time. Table 1 shows the ADF test statistic 
and p-value of the dataset before differencing and after differencing. We consider a 
null hypothesis as follows: 

H0 :. The Series Is Nonstationary 
Before differencing the p-value is 0.2147 that is greater than 0.05. We fail to reject 
the null hypothesis. This means the series is not stationary and requires differencing 
to make it stationary. After differencing, we get p-value as 1.09 × 10−26

. that is less 
than 0.05. We reject the null hypothesis and conclude that the differenced series is 
stationary. 

4.2 Results of the ARIMA Model 

After getting the stationary series, we fit it into an ARIMA model. To do this, we 
need to determine the appropriate order of the ARIMA model (p, d, q).. We use the  
ACF and PACF plots in Fig. 3 to determine the values of p and q .

Table 1 The ADF test values 
and p-values of the dataset 

State of dataset ADF test statistic P-value 

Before differencing −2.1771 0.2147 

After differencing −14.3356 1.09 × 10−26 . 

Fig. 3 ACF and PACF plots to determine the values of p and q in ARIMA
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Table 2 Model coefficients in ARIMA model 

Model coefficient Coefficient Standard error z-Value P>|z| 

ar.L1 (AR term at lag 1) 0.6681 0.870 0.768 0.443 

ma.L1 (moving average term at lag 1) −0.6706 0.867 −0.773 0.439 

sigma2 (variance of the residuals) 1.4565 0.007 197.825 0.000 

The ACF and PACF plots provide insight into the potential values for the ARIMA 
model parameters. The ACF plot shows the correlation between the time series 
and its lagged values. The significant lags can help to determine the q parameter. 
The PACF plot shows the partial correlation between the time series and its lagged 
values after removing the effects of intermediate lags. The significant lags can help 
to determine the p parameter .

From the plots, we can observe that the ACF plot shows significant spikes at lag 
1, indicating q = 1.. The PACF plot shows significant spikes at lag 1, indicating 
p = 1.. Given that we applied first differencing (d = 1)., we can fit an ARIMA (1, 
1, 1) model to the data. 

Table 2 summarizes the coefficients of an ARIMA (1, 1, 1) model, providing 
details on the AR, MA, and variance components. In terms of statistical significance 
both the AR term (ar.L1) and the MA term (ma.L1) have high p-values (> 0.05)., 
indicating that they are not statistically significant. This suggests that neither the 
past values nor the past errors significantly impact the current values in the model. 
The variance of the residuals (sigma2) is highly significant with a very low p-value 
(< 0.05)., indicating that the variability in the residuals is a critical component of the 
model. The lack of statistical significance in the AR and MA terms suggests that the 
model may not effectively capture the relationships in the data. This could result in a 
model that does not adequately predict future values based on past values and errors. 
The significant sigma2 value indicates that the model’s residuals have a consistent 
and measurable amount of variance. However, this alone does not compensate for 
the lack of significant AR and MA terms. 

4.3 Results of the SARIMA Model 

We define parameters for SARIMA models as (p, d, q) for nonseasonal components 
and (P, D, Q, s) for seasonal components, where s is the seasonal period. For monthly 
data, a common choice for s would be 12 (if the data had monthly frequency). Given 
that this dataset is daily, we might consider a weekly seasonality with s = 7. We 
examine the ACF and PACF plots to identify potential values for (p, q) and (P, Q). 
Figure 4 of the ACF and PACF for the seasonally differenced series, assuming a 
weekly seasonality (s = 7). We difference the series by 7 days to remove seasonality 
and then plot the ACF and PACF.
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Fig. 4 ACF and PACF plots to determine the values of (p, q) and (P, Q) in SARIMA 

Table 3 Model coefficients of the SARIMA model 

State Components Coefficient Standard Error z-Value P>|z| 

Nonseasonal ar.L1 −0.1452 0.348 −0.417 0.677 

ma.L1 0.1597 0.347 0.460 0.645 

Seasonal ar.S.L7 0.0290 0.006 4.860 0.000 

ma.S.L7 −1.0000 0.044 −22.808 0.000 

Common sigma2 1.4554 0.064 22.71 0.000 

Based on these plots, we make the following observations. For nonseasonal 
components (p, d, q), the ACF plot of the original series shows significant spikes 
at lag 1, indicating q = 1.. The PACF plot of the original series shows significant 
spikes at lag 1, indicating p = 1. For seasonal components (P, D, Q, s), the ACF plot 
of the seasonally differenced series shows significant spikes at lag 7, indicating a 
potential seasonal AR or MA component. Given the seasonal differencing applied 
(D = 1) and assuming a weekly seasonality (s = 7)., we start with p = 1 and q = 1.  
The final SARIMA model contain parameters: (p, d, q). = (1, 1, 1) and (P,D,Q, s). 

= (1, 1, 1, 7). This model includes one nonseasonal autoregressive term (AR (1)), 
one nonseasonal difference (d = 1), one nonseasonal moving average term (MA 
(1)), seasonal components with one seasonal autoregressive term (SAR (1)), one 
seasonal difference (D = 1), one seasonal moving average term (SMA (1)), and a 
seasonal period of 7. The model coefficients are given in Table 3. 

From Table 3, we get the nonseasonal components (ar.L1 and ma.L1) which are 
not statistically significant, but the seasonal components (ar.S.L7 and ma.S.L7) are 
statistically significant, indicating the importance of considering seasonal effects in 
the model.
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4.4 Results of the MA Model 

We compute the SMA and the exponential moving average (EMA) to analyze the 
trend. Figure 5 shows the values of SMA and EMA of the dataset. 

The plot shows the Brent crude oil price along with the 30-day simple SMA and 
the 30-day EMA. We observe that the SMA smooths the data by averaging the prices 
over the past 30 days. It reacts more slowly to changes in the data, which helps to 
highlight the underlying trend. On the other hand, EMA also smooths the data but 
gives more weight to recent prices. This makes it more responsive to recent changes 
compared to the SMA. The model coefficients are given in Table 4. 

From the table, the MA (1) model indicates a strong relationship between the 
current value and the error term from the previous period. The constant term 
suggests the average level of the series. 

Fig. 5 The 30-day SMA and EMA values of crude oil price data 

Table 4 Model coefficients of the MA model 

Model coefficient Coefficient Standard error z-Value P>|z| 

Const. (constant term) 49.6502 0.424 117.045 0.000 

ma.L1 0.9749 0.002 580.984 0.000 

sigma2 283.8572 6.324 44.889 0.000



An Extensive Statistical Analysis of Time Series Modeling and Forecasting of. . . 95

Fig. 6 Residuals and ACF of residuals of MA model 

4.5 Residual Analysis of the Models 

4.5.1 MA 

The result of the residual analysis is in Fig. 6. The residuals fluctuate around zero, 
but there are noticeable patterns, indicating that the MA (1) model may not have 
captured all the underlying structure of the data. On the other hand, the ACF plot 
shows significant spikes, suggesting that there is still some autocorrelation left in 
the residuals. This implies that the MA (1) model has not fully accounted for the 
time dependence in the data. 

4.5.2 AR 

The result of the residual analysis is in Fig. 7. The residuals fluctuate around zero, 
indicating that the AR (1) model has captured the main structure of the data. 
However, there are noticeable patterns, suggesting that the model may not have 
captured all the underlying dependencies. The ACF plot shows significant spikes, 
suggesting that there is still some autocorrelation left in the residuals. This implies 
that the AR (1) model has not fully accounted for all the time dependence in the 
data. 

4.5.3 ES 

We plot the residuals and their ACF to inspect any patterns or anomalies both for 
adaptive seasonal and for multiplicative seasonal model. From Fig. 8, we find that 
the residuals fluctuate around zero, indicating that the additive seasonality model
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Fig. 7 Residuals and ACF of residuals of AR model 

Fig. 8 Residuals and ACF of residuals of adaptive seasonal ES 

captures the main structure of the data. However, there are noticeable patterns, 
suggesting that the model may not have captured all the underlying dependencies. 
On the other hand, the ACF plot shows significant spikes, suggesting that there 
is still some autocorrelation left in the residuals. This implies that the additive 
seasonality model has not fully accounted for all the time dependence in the data. 

From Fig. 9, the residuals fluctuate around zero, indicating that the multiplicative 
seasonality model captures the main structure of the data. Similar to the additive 
model, there are noticeable patterns, suggesting that the model may not have 
captured all the underlying dependencies. On the other hand, the ACF plot shows 
significant spikes, suggesting that there is still some autocorrelation left in the 
residuals. This implies that the multiplicative seasonality model has not fully 
accounted for all the time dependence in the data.
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Fig. 9 Residuals and ACF of residuals of multiplicative seasonal ES 

Fig. 10 Residuals and ACF of residuals of VAR 

4.5.4 VAR 

Figure 10 indicates that the residuals of the “Oil Price Diff” series fluctuate around 
zero, indicating that the VAR model has captured the main structure of the data. 
However, there are still noticeable patterns, suggesting that the model may not 
have captured all underlying dependencies. On the other hand, the ACF plot shows 
some significant spikes, suggesting that there is still some autocorrelation left in the 
residuals. This implies that the VAR model has not fully accounted for all the time 
dependence in the data.
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Table 5 Models key statistics 

Model name Log Likelihood AIC BIC HQIC 

ARIMA −.15433.212 30872.423 30893.933 30879.719 

SARIMA −.15443.843 30897.685 30933.531 30909.844 

MA −.40757.192 81520.383 81541.894 81527.679 

AR −.15436.454 30878.908 30900.418 30886.204 

ES (Additive Holt-Winters) −.47703.221 95428.442 95674.654 95519.942 

ES (Multiplicative Holt-Winters) −.47703.202 95428.404 95674.616 95519.904 

VAR 308955 −70.0267 −70.0222 −70.0252 

4.6 Key Statistics of the Models 

Table 5 presents a comparative analysis of key statistics for various time series 
models applied to the Brent crude oil price data. The models under consideration 
are ARIMA, SARIMA, MA, AR, ES using both additive and multiplicative Holt-
Winters methods, and VAR. The key statistics include Log Likelihood, AIC, BIC, 
and Hannan-Quinn Information Criterion (HQIC). In the Log Likelihood value 
indicates how well the model fits the data. Higher values suggest a better fit. 
VAR (308955) model has the highest Log Likelihood, indicating an exceptional 
fit compared to other models. ARIMA ( −.15433.212), SARIMA ( −.15443.843), 
and AR ( −.15436.454) have mostly similar Log Likelihood values, suggesting 
comparable model fits among these models. MA ( −.40757.192) and ES models 
(Additive: −.47703.221 and Multiplicative: −.47703.202) have significantly lower 
Log Likelihood values, indicating poorer fits. 

AIC penalizes models for the number of parameters, balancing model fit and 
complexity. Lower values indicate a better model. VAR ( −.70.0267) has the lowest 
AIC, reinforcing its strong performance and model fit. Among the ARIMA family, 
ARIMA (30872.423) has a slightly lower AIC compared to SARIMA (30897.685) 
and AR (30878.908). MA (81520.383) and ES models (Additive: 95428.442 
and Multiplicative: 95428.404) have much higher AIC values, indicating poorer 
performance. BIC is like AIC but imposes a heavier penalty for the number of 
parameters. Lower values are preferred. VAR ( −.70.0222) again shows the best 
performance with the lowest BIC. ARIMA (30893.933) has a lower BIC compared 
to SARIMA (30933.531) and AR (30900.418), suggesting a better fit among these 
models. MA (81541.894) and ES models (Additive: 95674.654 and Multiplicative: 
95674.616) have higher BIC values, indicating a lesser fit. 

HQIC also penalizes for model complexity, though less severely than BIC. 
Lower values are preferred. VAR ( −.70.0252) shows the best performance with 
the lowest HQIC. ARIMA (30879.719) has a lower HQIC compared to SARIMA 
(30909.844) and AR (30886.204), indicating a better fit. MA (81527.679) and ES 
models (Additive: 95519.942 and Multiplicative: 95519.904) have higher HQIC 
values, indicating poorer performance.
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The VAR model consistently outperforms all other models in terms of Log 
Likelihood, AIC, BIC, and HQIC, indicating it provides the best fit for the Brent 
crude oil price data. ARIMA Family Models: Among the ARIMA family, the 
ARIMA model shows a slightly better performance compared to SARIMA and 
AR based on AIC, BIC, and HQIC values. Both the additive and multiplicative 
Holt-Winters models perform similarly, but they do not fare well compared to the 
other models, indicated by their higher AIC, BIC, and HQIC values. The MA model 
shows the poorest performance among the models considered, with the highest AIC, 
BIC, and HQIC values. In summary, the VAR model emerges as the most suitable 
for capturing the underlying structure and dependencies in the Brent crude oil price 
data, followed by the ARIMA model. Both the ES and MA models show significant 
limitations in terms of model fit and complexity. 

4.7 Diagnostic Tests of the Models 

Table 6 presents a comparative analysis of the diagnostic tests performed on 
various time series models applied to the Brent crude oil price data. The models 
under consideration are ARIMA, SARIMA, MA, AR, ES using both additive and 
multiplicative Holt-Winters methods, and VAR. The diagnostic tests include the 
Ljung-Box test for autocorrelation, the Jarque-Bera test for normality of residuals, 
and the Breusch-Pagan test for heteroskedasticity. 

In Ljung-Box test for autocorrelation, ARIMA (0.16) and AR (0.23) models have 
p-values greater than 0.05, indicating no significant autocorrelation in the residuals, 
suggesting that these models have adequately captured the temporal dependencies 
in the data. SARIMA (0.92) shows the highest p-value, strongly indicating no 
significant autocorrelation and suggesting it is the best model in terms of capturing 
autocorrelation. MA (0.00), ES (Additive Holt-Winters) (0.00), ES (Multiplicative 
Holt-Winters) (0.00), and VAR (0.00) all show significant autocorrelation in the 
residuals, suggesting these models may have omitted some temporal dependencies. 

Table 6 Models diagnostic tests 

Model name Ljung-Box (prob.) Jarque-Bera (prob.) Heteroskedasticity (Prob) 

ARIMA 1.98(0.16) 101197.49(0.00) 10.91(0.00) 
SARIMA 0.01(0.92) 103701.56(0.00) 10.90(0.00) 
MA 8676.88(0.00) 943.33(0.00) 1.30(0.00) 
AR 1.45(0.23) 100672.88(0.00) 10.87(0.00) 
ES (Additive 
Holt-Winters) 

1429.45(0.00) 187332.81(0.00) 1338.23(0.00) 

ES (Multiplicative 
Holt-Winters) 

1429.67(0.00) 188135.32(0.00) 1350.67(0.00) 

VAR 216.45(0.00) 22740.57(0.00) 1338.23(0.00)
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For Jarque-Bera test for normality, all models, including ARIMA (0.00), 
SARIMA (0.00), MA (0.00), AR (0.00), ES (Additive Holt-Winters) (0.00), ES 
(Multiplicative Holt-Winters) (0.00), and VAR (0.00), show p-values of 0.00, 
indicating significant deviation from normality in the residuals. This suggests 
that none of the models’ residuals are normally distributed, which can affect the 
reliability of statistical inferences made from these models. 

In Heteroskedasticity (Breusch-Pagan test) for Nonconstant Variance, all models, 
including ARIMA (0.00), SARIMA (0.00), MA (0.00), AR (0.00), ES (Additive 
Holt-Winters) (0.00), ES (Multiplicative Holt-Winters) (0.00), and VAR (0.00), 
have p-values of 0.00, indicating significant heteroskedasticity in the residuals. This 
means that the residuals of all these models exhibit nonconstant variance over time, 
suggesting that the models may not fully capture the variability in the data. 

SARIMA emerges as the most effective model in capturing autocorrelation with 
the highest Ljung-Box p-value (0.92), indicating no significant autocorrelation in the 
residuals. ARIMA and AR models also show no significant autocorrelation, but to a 
lesser extent. None of the models pass the Jarque-Bera test for normality, indicating 
that all models have residuals that significantly deviate from normal distribution. All 
models show significant heteroskedasticity, suggesting that the models do not fully 
account for varying variance in the data. 

Overall, while the SARIMA model performs best in terms of capturing autocor-
relation, all models exhibit significant issues with normality and heteroskedasticity 
in their residuals. These findings suggest that while SARIMA might be preferable 
for capturing autocorrelation, additional model refinement or alternative modeling 
approaches are necessary to address the non-normality and heteroskedasticity 
observed in the residuals. 

4.8 Discussion 

The analysis of Brent crude oil prices using various time series models reveals 
significant insights into their relative performance and suitability for forecasting. 
The models examined include ARIMA, SARIMA, MA, AR, ES using both additive 
and multiplicative Holt-Winters methods, and VAR. 

The VAR model consistently outperformed all others, evidenced by its highest 
Log Likelihood and lowest AIC, BIC, and HQIC values. This indicates that the 
VAR model provides the best fit for the data, effectively capturing the underlying 
structure and dependencies. The strong performance of the VAR model suggests its 
robustness in handling complex temporal dependencies and interactions within the 
data. 

Among the ARIMA family, the ARIMA (1, 1, 1) model showed slightly better 
performance compared to SARIMA (1, 1, 1) (1, 1, 1, 7) and AR(1), based on AIC, 
BIC, and HQIC values. This indicates that while seasonality is an important factor, 
the simpler ARIMA model can still provide a reasonably good fit, potentially due 
to the relatively stable seasonal patterns in the data. ES models, both additive and
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multiplicative Holt-Winters, displayed significantly higher AIC, BIC, and HQIC 
values, indicating poorer fits. Their residuals exhibited substantial autocorrelation, 
non-normality, and heteroskedasticity, suggesting that these models are less capable 
of capturing the data’s complexity. The MA model performed the worst, with the 
highest AIC, BIC, and HQIC values, indicating significant limitations in its ability 
to model the data effectively. 

Finally, we find that the VAR model is the most suitable for forecasting Brent 
crude oil prices, followed by the ARIMA model. Both ES and MA models 
demonstrate considerable limitations, highlighting the need for more sophisticated 
modeling approaches to improve forecasting accuracy. This comprehensive eval-
uation underscores the importance of selecting appropriate models based on key 
statistical metrics to achieve reliable forecasts. 

5 Conclusion and Future Work 

The aim of this research is to analyze and forecast crude oil prices using daily 
time series data. We have collected daily oil prices from online sources and 
performed some basic preprocessing to make the data more suitable for analysis 
using statistical models. Since the data was not stationary, we employed the ADF 
test to determine its state. By using differencing, we achieved stationarity in the 
dataset. We applied various statistical models, and although the performance of 
these models was generally good, the VR model showed superiority over the 
others. It achieved the highest forecasting capability, which was confirmed by 
the residual analysis of the model. This research also forecasts the next 30 days, 
aiding in various decision-making processes to achieve a sustainable world with fair 
economic activities. Additionally, it helps in maintaining the supply and demand 
of crucial energy resources like crude oil and assessing its impact on society. 
Future work will focus on designing a real-time forecasting system with long-term 
forecasting capabilities to inform both short-term and long-term policy decisions. 
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1 Introduction 

The world’s health and human well-being are at stake due to climate change, and 
there is a confined period of time left to ensure a livable and sustainable future for all 
creatures (IPCC, 2023). In 2015, Paris agreement (Process and meetings: UNFCCC, 
2015) is propagated with an aim to alleviate the impact of climate change upon the 
world. Under the Paris agreement, COP28 was particularly notable as it concluded 
the first “Global Stock take” of the worldwide effort to combat climate change 
(Process and meetings: Conferences: UN Climate Change Conference - United 
Arab Emirates, 2023). Traditional energy or fossil fuel-based energy is inevitably 
linked with climate change due to immense greenhouse gas emissions (Elias, 2018). 
Consequently, renewable energy became the center of attention all over the world 
replacing fossil fuel in order to gain energy efficiency. 

Renewable resource enriched nations are usually emerging and middle-income 
economies located in the sunbelt (Mühlbauer et al., 2023), and many of them are 
swiftly employing their enormous resources (Manish Ram, 2022). However, some 
are facing economic, social, and technological barriers to efficiently utilize their 
resources (Moorthy et al., 2019). One major constraint that an emerging economy 
generally encounters while exploiting RE resources is the lack of availability 
of finance (Anthony, 2021). Additional barriers include inadequate knowledge 
of the advantages of renewable energy (Moorthy et al., 2019), inexperienced 
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technical experts and a shortage of training facilities (Ansari et al., 2013), a 
lack of infrastructure availability, inadequate research and development, ineffective 
operational and maintenance expertise initiatives (Zhao et al., 2016), and so on. Not 
much research has been conducted on the consideration of emerging or developing 
economies in the past decades (Hansen et al., 2019). Those who focused on the 
emerging economy’s energy transition mostly concentrated their studies either on 
specific countries, for instance, Indonesia (Reyseliani & Purwanto, 2021), China 
(Xu, 2020), Egypt (Mühlbauer et al., 2023), Brazil (Dranka & Ferreira, 2018), 
etc., or into regions, for instance South Asia (Breyer et al., 2023), Latin America 
(de Souza Noel Simas et al., 2017), the MENA (Bogdanov et al., 2020), and sub-
Saharan Africa (Barasa et al., 2018). However, an aggregated study on the emerging 
sunbelt economies regarding RE transition with consideration of their cultural, 
demographic, and geographic dimensions is scarce. A combined study pertaining to 
RE transition in developing economies would comprise country- or region-specific 
energy production, consumption, storage capacity, share of renewables in the energy 
portfolio, policies regarding net zero emissions by 2050, interim targets, etc. in order 
that countries with minimal development in this sector but with colossal resources 
can follow their superior continental neighboring states, who are leading the world 
in terms of decarbonizing the energy sector. Hence, this study selects some countries 
from each sunbelt region on the basis of continental supremacy regarding RE, i.e., 
those that comprise the most renewable share in their portfolio and are looking 
forward to a sustainable transition to a fully renewable energy sector and aim to 
provide their contiguous states as a pathway to their energy transition. 

Selected countries are India from South Asia, Vietnam from Southeast Asia, 
Morocco from the Middle East and North Africa, Brazil from South America, South 
Africa from sub-Saharan Africa, and Mexico from North America.

• This research work is intended to find out a pathway toward energy sustainability 
for the emerging sunbelt countries across the world.

• After studying vast amount of literature and observing database the results are 
drawn.

• Most of the countries of specified continents may pursue the findings to widely 
adopt renewable energy omitting fossil or oil-based energy. 

2 Literature Review 

The documents from the IPCC, UNFCCC primarily construct the introduction 
section of the study. The data conducted into the scenario of the countries are 
acquired from the documents of IRENA, IEA, ITA, World Bank, BBC portal, NDC 
partnership, World Economics, European Commission, Green Hydrogen Organiza-
tion, Our World in Data, and more. Statistical information is extracted from Statista, 
Global Carbon Atlas provided the facts regarding carbon emissions, and the data 
regarding RE capacity and generation are assembled from CLIMATESCOPE and
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IRENA’s Renewable energy statistics. Moreover, few other supporting information 
are aggregated from different dedicated sites such as Climate Action Tracker, Global 
Energy Monitor, Greencare, Global Methane Pledge, and World Meteorological 
Organization. 

Websites and published articles from country-specific and continental authority 
of renewable energy and environment, such as MNRE, SENER, INSAMER, 
DMRE, MME, etc., exhibit the current position of the country in the light of 
climate change. Research articles that are utilized to assert real-time data contain 
the available current information of 2022, and all the referred articles in this study 
are from rated journals and published by expert author in the field. 

3 Methodology 

3.1 Overview 

3.2 Comparative Analysis 

A comparative analysis of production, generation, consumption, storage capacity, 
regulatory framework, and policy terms regarding renewable energy among emerg-
ing countries of sunbelt regions, namely India, Brazil, Mexico, Vietnam, Morocco, 
and South Africa, have been studied to justify their strategy applicability into their 
contiguous states. 

The contextual variables for the analysis are total RE production (including 
biofuels & heating system), total generation of electricity from RE, total electricity 
consumption generated by RE, total storage capacity, regulations established & 
policy undertaken by the selected countries. 

The overall comparative ratio of these variables is competent to indicate a 
country’s position in deploying RE resources. Strategies or theories that have 
worked out for them regarding the exploitation of the resources can well be derived 
from the analysis. We have provided an overview in Fig. 1. 

3.2.1 Literature Selection & Analysis 

The literature used for the comparative analysis is collected mostly from secondary 
sources (published article, secondary database) and some are from primary sources 
(government authorized websites, primary database). 

Firstly, keyword search (renewables, energy, emerging, sunbelt) has been applied 
to obtain a handful of potential research articles. Secondary screening comprises the 
exclusion of articles which does not meet the following criteria:

• Articles with respect to the RE transition scenario of the above-named countries.
• Articles containing up-to-date real-time information.
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Fig. 1 Overall process of methodology

• Articles published by renowned authors and in peer-reviewed journals.
• Findings of the article must be broadly useful. 

Finally, endured articles are revised according to the pre-determined selection 
criteria. Subsequently, data from official and valid websites, including IEA, IRENA, 
UNFCCC, etc., are complemented with the previously mentioned information. 

Considering all these information, a range of strategy and policy implication path 
is eventually outlined for the adjoining states of studied countries. 

3.3 Appropriateness 

The method employed above to arrive at the answer is an exoteric and established 
way of carrying out qualitative research, and it has been proven to be particularly 
effective for cross-national comparative analysis. Given the wealth of information 
the database offers on renewable energy generation, consumption, storage, public 
awareness campaigns, local and national policies, certifications, statements from 
international organizations, and other related topics, it is reasonable to disclose 
several solutions to the most pressing issues and recommendations for those neigh-
boring states’ policymakers, subject to a thorough and exploratory investigation.



Comparative Analysis of Selected Emerging Economies Energy Transition. . . 109

3.3.1 Scenario of India 

With 1.417 billion people, India is the second-most populous country in the world 
and one of the biggest users of fossil fuels, which contribute to global warming. 
With the rapid growth of population and industrialization, energy demand is soaring 
in the country. India’s overall energy consumption is expected to double by 2030, 
with power demand rising to three times current levels (Energyworld, 2022). The 
government of India formed MNRE (Ministry of New and Renewable Energy) to 
detect and implement new sources of energy generation and has already marked 
several progresses through uplifting RE resources. The energy crisis, the drastically 
rising level of environmental pollution, and the growing population are the main 
causes of the emphasis on switching to renewable energy sources. India has already 
achieved the target of 40% power generation from non-fossil or renewable sources, 
which was committed to achieve by 2030 (PIB Delhi, 2023), and through these 
achievements, India became one of the largest manufacturers of renewable energy. 
According to Climatescope’s latest ranking, India is the most attractive spot for 
renewable energy investment. 

As of 2022, India’s share of renewable energy in total energy generation is 
22.4%, according to the IEA, which amounts to 343,138.7 GWh (IRENA, 2022a). 
The total installed renewable energy capacity of the country, excluding large hydro, 
was 150.27 GW by 2022 (MNRE, 2022a), which accounts for 33.52% of total 
energy storage capacity (IRENA, 2022b). 

Hydropower leads India’s total RE generation mix in 2022, with 165,715 GWh 
of generation including small and large hydro. Total electricity generation from solar 
PV accounts for 102,010 GWh, while wind and biomass generate 71,814 GWh and 
17905.4 GWh of electricity, respectively (Bloomberg NEF, 2023a). 

India ranks 5th in terms of solar PV deployment and 4th in terms of wind power 
installed capacity in the world (MNRE, 2022b). It has experienced a drastic increase 
in the growth of installed solar energy storage capacity of 24.07 times the 2014 rate, 
standing at 63.30 GW in 2022 (Sarraju Narasinga Rao, 2023). Solar PV capacity 
storage as of December 2022 is 63,048 MW, whereas CSP stands at 343e MW in 
India. Wind energy is no exception; it has augmented to 41,930 MW in terms of 
its installed capacity until 2022. Also, storage capacity installed for biomass and 
hydropower reaches 10,669 MW and 47,220 MW, respectively, in 2022 (Whiteman 
et al., 2023). According to the MNRE annual report 2022–2023, installed storage 
capacity for waste to energy arrived at 522.42 MW eq. 

The incessantly rising population of India undoubtedly resulted in unremitting 
consumption of energy throughout the country. In 2022, India invests a total of 
$11015.37 million in renewable energy, which is 12.42% higher compared to 
the previous year (Bloomberg NEF, 2023a). At the 2019 UN Climate Summit, it 
committed to achieving 450 GW of renewable energy (RE) by 2030 (PIB Delhi, 
2021). 

The profitability view of RE indicates that in comparison with domestic 
coal-fired power plants, which charge between 3.5 and 5 INR/kWh (43.7 and 
62.5 AC/MWh), solar PV-based electricity generation ranges between 1.99 and
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2.36 INR/kWh (24.8–29.5 AC/MWh) (Gulagi et al., 2022). Average price of 
electricity for the country stands at 94.78 USD/MWh in 2022 (Bloomberg NEF, 
2023a). 

The country ranks 3rd in terms of global carbon emissions, followed by China 
and the United States, respectively, and accounts for 2830 MtCO2 of carbon 
emissions (Global Carbon Atlas, 2022). 

However, according to Gulagi et al., GHG emissions from the electricity sector 
are declining quickly, nearly to zero, prior to 2050. 

India’s RE Policies & Projects

• The framework for the Renewable Energy Certificate (REC), which can be 
called the currency of the renewable energy market, was established in 2010 by 
the Central Electricity Regulatory Commission. All types of renewable energy 
generators now have the chance to take advantage of the benefits without having 
to worry about the terms of the power purchase agreement for the trade of 
renewable power, thanks to the renewable energy certificate system (Elavarasan 
et al., 2017).

• The Jawaharlal Nehru National Solar Mission (JNNSM), a significant energy 
mission, was launched in 2010 under the National Action Plan on Climate 
Change (NAPCC) with a view to increasing the generation of electricity through 
solar energy within 2022. It has the current target of generating 22,000 MW of 
power combining on-grid and off-grid plants (Elavarasan et al., 2017).

• In a few places, solar and wind power plants were installed on agricultural lands, 
which is lucrative for both crops and power plants. Plants can benefit from 
indirect sunlight, which can be created by installing solar panels above crops and 
other vegetation. By reducing the humidity and moisture level below the panels, 
it also lessens the heating effect of the solar panels (Patel et al., 2018). Innovative 
ideas like that should be facilitated.

• Tariff policy in India is revised multiple times to simplify the purchase of 
RE. It is coordinated in a way that is beneficial for both the distributor and 
the consumer of renewables. A minimum amount for purchasing energy is 
fixed, taking into consideration the perspective of distribution companies, and 
creates ample capacity and robust infrastructure to ensure improved services to 
consumers (Elavarasan et al., 2017).

• Several ground-breaking ongoing projects, including the development of a high-
efficiency (21%/ 19%) PERC type of c-Si/mc-Si solar cell, green hydrogen 
mobility projects, met-ocean measurements at the Gulf of Khambhat and Gulf 
of Mannar, and biomass gasification through plasma pyrolysis technology, are 
acknowledging them as a future world leader in this field (MNRE. Home: Ongo-
ing Projects. [Online]. Available: https://mnre.gov.in/; NTPC Renewables. Verti-
cals: Green-hydrogen [Online]. Available: https://ntpcrel.co.in/; NIWE.  Depart-
ment: Offshore Wind Development: Met-ocean Measurements. [Online]. Avail-
able: https://niwe.res.in/; CMERI, 2022).

https://mnre.gov.in/
https://mnre.gov.in/
https://mnre.gov.in/
https://mnre.gov.in/
https://ntpcrel.co.in/
https://ntpcrel.co.in/
https://ntpcrel.co.in/
https://ntpcrel.co.in/
https://niwe.res.in/
https://niwe.res.in/
https://niwe.res.in/
https://niwe.res.in/
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• In 2016, India and France jointly formed The International Solar Alliance with 
the aim of expanding solar energy globally (Nguyen et al., 2021). 

3.3.2 Scenario of Vietnam 

Vietnam is another highly climate-vulnerable emerging economy of South East Asia 
(Nguyen et al., 2021), with a population of 98.19 million. Vietnam is moderately 
positioned in terms of equality distribution, with a Gini coefficient of 36.1 in 2022 
(World Bank Group, 2022a). Vietnam is one of those countries which witnessed 
some unprecedented surge in energy sector within a short period. In 2015, total 
installed capacity for solar energy was only 4 MW in the country, and till 2019 
it is uplifted to 7.4 GW followed by a massive investment in this sector (Tachev, 
2024), as the government of Vietnam found that sustainable energy development 
and energy security are inevitable components of its strategic plan to achieving 
sustainability in near future (Nguyen et al., 2021). 

Harnessing renewable energy sources including hydro power, wind power, solar 
power, and biomass power is especially advantageous for Vietnam. Although 
hydropower plants are the main RE producer of the country (Polo et al., 2015), 
solar and wind generation accounts for 69% of the total RE generation in ASEAN 
region (Rosalia et al., 2024). 

In 2022, total installed renewable energy capacity in Vietnam is 44,691 MW, 
followed by an increment of 3.79% from the previous year, and 64% increase 
from the year 2014. Installed capacity for renewable hydropower accounts for 
22,535 MW in 2022, while 5065 MW indicates the capacity for wind energy 
(4071 MW onshore wind, 994 MW offshore wind). Solar PV and bioenergy stand 
at 16,698 MW and 393 MW, respectively (Prime et al., 2024). Concentrated Solar 
Power (CSP) is not available in Vietnam. Solar PV experienced the most expansion 
in installed capacity in 2022—it jumped from 24.14 in 2021 to 24.54% in 2022 
(Bloomberg NEF, 2023b). 

Electricity generation from hydropower accounts for 99,370 GWh in 2022 and 
mounts at the top among renewable technologies, within which generation from 
large hydro stands at 73,844 GWh and small hydro at 25,526 GWh. Wind generates 
a total of 8852 GWh of electricity in this year, whereas solar PV and biomass 
generates 25,526 GWh and 379 GWh, respectively (Bloomberg NEF, 2023b). Large 
hydro constitutes 27.93% of total energy generation, which is the second largest 
among the energy mix after coal (Bloomberg NEF, 2023b). 

According to CLIMATESCOPE, Vietnam’s 2022 clean energy investment was 
approximately $559.53 million, a 93.19% drop from 2021 ($8221.73 million). The 
year 2020 recorded the most investment in sustainable energy, at $10815.62 million. 
In Vietnam, the average cost of energy witnesses a drop from 98.48 USD/MWh in 
2021 to 96.4 USD/MWh in 2022. Vietnam’s average power cost has varied from 
82.98 USD/MWh in 2017 to 98.48 USD/MWh in 2021 (Bloomberg NEF, 2023b). 

Vietnam emits 344 MtCO2 in 2022 and rank 17th in the list of worldwide carbon 
emissions (Global Carbon Atlas, 2022). Vietnam is one of the largest emitters of
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carbon among the emerging economies. According to the Global Carbon Atlas, 
it experienced a slight fall of 2.5% in 2022 in terms of carbon emissions (Global 
Carbon Atlas, 2022). 

Vietnam’s RE Policies and Projects & Plans 

Vietnam is one of those countries, who implemented policies to encourage shifting 
toward renewable energy. In order to develop the sector, the Vietnamese government 
counts on the national power development plans, which project demand growth and 
outline the entire shift in the power industry to satisfy demand for the next 10 years 
(ITA, 2024). We provide the details in Table 1.

• The government of Vietnam issued and implemented a sustainable energy 
development strategy through 2030 and a vision to 2045 (Climate Action Tracker. 
Countries: Vietnam. [Online]. Available: https://climateactiontracker.org/).

• Viet Nam joined the Just Energy Transition Partnership (JETP) in December 
2022 with the aim of achieving net-zero emissions by 2050. Viet Nam will be 
granted USD 15.5 billion until 2026–2028 (Climate Action Tracker. Countries: 
Vietnam. [Online]. Available: https://climateactiontracker.org/).

• In May 2023, Vietnam adopted the much-expected Power Development Plan 
8 (PDP8), which sent contrasting messages to the country’s power industry, 
following the signing of the JETP. 

Table 1 Comparison of the scenario of Vietnam 

Type of renewable energy Type of technology Selling price (excluding vat) 

Small 
Hydropower 
(Under 30 MW) 

Power production According to the 
announcement of Ministry of 
Industry and Trade 

Wind power (projects came 
into operation before 
November 2021) 

Project on land 8.5 UScents/kWh 

Offshore project 9.8 UScents/kWh 
Biomass Cogeneration of heat and 

electricity 
7.03 UScents/kWh 

Not heat-electricity 
cogeneration 

8.47 UScents/kWh 

Electricity from waste Burn 10.05 UScents/kWh 
Bury 7.28 UScents/kWh 

Solar power Floating solar power 7.69 UScents/kWh 
Ground solar power 7.09 UScents/kWh 
Rooftop solar power 8.38 UScents/kWh 

Source: National Steering Committee for Electricity Development (Vietnam)

https://climateactiontracker.org/
https://climateactiontracker.org/
https://climateactiontracker.org/
https://climateactiontracker.org/
https://climateactiontracker.org/
https://climateactiontracker.org/
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• Vietnam pledges at COP26 to halt erecting new coal-fired power plants and 
to gradually phase out coal-fired power generating (Climate Action Tracker. 
Countries: Vietnam. [Online]. Available: https://climateactiontracker.org/).

• In November 2022, Vietnam revised its Paris Agreement goal. In comparison 
with the previous NDC, the target was 39 MtCO2e (excluding LULUCF), and 
sectors coverage and accountability have both increased (Climate Action Tracker. 
Countries: Vietnam. [Online]. Available: https://climateactiontracker.org/).

• One crucial component of policies for cleaner energy is intergovernmental 
cooperation. Vietnam is pursuing collaboration with Switzerland to assist them 
in the clean energy transition (Prime et al., 2024). 

All feed in tariff above will be available for the first 20 years of operation of the 
technologies, except small hydropower, which is cost tariff exempted.

• Other incentives comprise tax incentives (income tax, import tax), land use, low 
interest finance, etc.

• The Politburo of Vietnam adopted Resolution 55, which calls for changing 
the Electricity Regulation to permit private sector participation in electricity 
infrastructure, which will attract abundant investment (Central Committe of the 
Vietnam, 2020). 

3.3.3 Scenario of Mexico 

Mexico is one of the most uneven countries in the world, with a Gini coefficient 
of 43.5 (World Bank Group, 2022b). It has a population of approximately 129 
million people, with half of them living below the poverty line (De La Peña et 
al., 2021). This country’s economy is $2.87 trillion, which is the 11th largest in 
the world (World Economics, 2023). It is also one of the most climate-vulnerable 
emerging economies in the world. The electricity sector in Mexico had previously 
experienced monopoly control by the Federal Electricity Commission, followed by 
a reform in 2013, which granted private parties the opportunity to partake in the 
electricity market. This energy reform ensured that the government would continue 
to place emphasis on clean or renewable energy (Diezmartínez, 2020). The Energy 
Transition Law, which was passed in 2015, mandates that 35% of the electricity 
generated by 2024 must originate from renewable sources (De La Peña et al., 
2021). The 2013 energy reform served as the basis for the development of various 
laws, strategies, programs, and initiatives (Castrejon-Campos, 2022), which are 
mentioned in Mexico’s policy section. 

Mexico terms its sustainable energy resource as clean energy. The generation 
of total clean energy is 106,302.45 GWh (including non-renewable nuclear) for 
the country in 2022, which constitutes 31.2% of the total electricity generation 
(ITA, 2023a). Generation from large hydropower accounts for 30,390.9 GWh in 
the year, while generation from wind and solar remains closer at 20,528.8 GWh 
and 20,338.3 GWh respectively. Small hydro generates 5168 GWh electricity in 
2022, and 4412.7 GWh and 2141.3 GWh of electricity is generated by geothermal

https://climateactiontracker.org/
https://climateactiontracker.org/
https://climateactiontracker.org/
https://climateactiontracker.org/
https://climateactiontracker.org/
https://climateactiontracker.org/
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and biomass technologies, respectively, although natural gas leads the total energy 
generation mix, generating 56.58% of total generation (192,508 GWh) (Bloomberg 
NEF, 2023c). Total renewable energy supply by source stands at 209.73 TWh 
in 2022, or 9.72% of the total supply mix of the year (IEA, 2023a). Mexico’s 
total installed renewable energy capacity witnesses an increment of 4.36% in 2022 
compared to the previous year, which stood at 31.95 GW. Hydropower leads the 
installed capacity portfolio, followed by solar and wind in the 2nd and 3rd positions, 
respectively, and it is also to be noted that Mexico comprehends fifth largest 
geothermal power capacity in the world after the USA, Philippines, Indonesia, and 
New Zealand (Castrejon-Campos, 2022). 

Solar energy installed capacity is 9364 MW, of which solar PV is 9347e MW and 
concentrated solar power is 17e MW. The total installed capacity for hydropower is 
13,304 MW in the year. Wind (onshore) installed capacity remains at 7318 MW, 
and bioenergy and geothermal installed capacity are 966 MW and 999o MW, 
respectively, as of the year 2022 (Whiteman et al., 2023). 

Mexico’s 2022 clean energy investment was approximately $717.81 million, 
down 8.56% from 2021 ($784.98 million). This is the lowest amount of investment 
since 2017. In Mexico, the average price of electricity is 119.52 USD/MWh in 2022, 
which was 128.5 USD/MWh in 2021. The price generally ranges between 111 USD 
and 132 USD per MWh (Bloomberg NEF, 2023c). Mexico ranks 12th in the world 
in terms of greenhouse gas emissions since the country still mostly relies on fossil 
fuel-based energy (Global Carbon Atlas, 2022). However, to comply with the Paris 
Agreement 1.5 target, shifting the energy sector from fossil fuel-based to renewable 
energy is vital since globally increasing GHG emissions are dominated by FF-based 
energy use. Mexico accounts for 512 MtCO2 GHG emissions in 2022, comprising 
gas and oil in the 1st and 2nd positions, respectively (Global Carbon Atlas, 2022). 

Mexico’s RE Policies and Projects

• The energy reform of 2013 simultaneously focuses on reducing GHG emissions 
by boosting the proportion of clean energy sources to achieve climate sustain-
ability and opening the formerly closed oil, gas, and power sectors in the country 
(IEA, 2017).

• Some policies and programs predominantly devised from the reform are: laws 
include: Energy Transition Law 2015, Geothermal Energy Law 2014, etc., strate-
gies include: Transition Strategy to Promote the Use of Cleaner Technologies 
and Fuels 2016 & others, programs include: National Program for Sustainable 
Use of Energy (2014–2018), Special Program for the Energy Transition (2017– 
2018), and so on, and initiatives include: Energy Transition Fund, and Energy 
Sustainability Fund (Castrejon-Campos, 2022).

• In order to strengthening the innovation capability, Mexico formed a fund called 
“Energy Sustainability Fund” in 2008. It generally seeks to facilitate research & 
development, sustainable energy development, technological advancement, etc. 
(OECD/IEA, 2017).
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• The Sonora Plan, which is unveiled at the COP27 climate summit, consists of 
several green infrastructure projects in the state’s northern region with the goal of 
increasing the nation’s capacity for manufacturing and renewable energy (Godoy, 
2022).

• President of Mexico announced an ongoing project concerning generation of 
green hydrogen through water electrolysis (Parkes, 2024).

• In order to electrify whole territory, including remote parts, new generation plants 
are erected, new dams are restored, transmission channels are dilated, and also 
solar panels are installed. 

3.3.4 Scenario of Brazil 

Brazil is the country, who is effectively transiting its energy sector to renewable 
based system among the sunbelt countries. It is a country with 215.3 million of 
people and a significant amount of disparity in income with a Gini coefficient of 
52 in 2022 (World Bank Group, 2022c). Brazil has been moving forward with its 
shift to a low-carbon and more sustainable energy system. The nation has adopted 
renewable energy sources including hydropower, solar electricity, and wind power 
in an effort to minimize its reliance on fossil fuels. Through the rapid adoption of 
off-grid solar technology, Brazil is making progress in solar and wind energy. 

Brazil boasts the seventh-largest power generation capacity in the world and the 
sixth-largest consumer electricity market worldwide (ITA, 2023b). It ranks second 
in terms of hydropower as well as bioenergy generation in the world. It also held 
7% of global renewable energy generation. In Brazil, hydroelectric electricity is the 
second most often utilized primary energy fuel after oil. 

Renewable energy comprises 84% of Brazil’s total capacity mix and 87% of 
total generation mix (Bloomberg NEF, 2023d). Its total installed renewable energy 
capacity is 176,709 MW as of 2022, among which hydropower accounts for 
109,802 MW, solar stands at 25,520 MW. Wind and Bioenergy held 24,165 MW 
and 17,224 MW of installed capacity, respectively, in 2022 (Whiteman et al., 2023). 
According to ITA, over 44 GW of installed wind generating capacity is anticipated 
in Brazil by 2028, making up 13.2% of the country’s total electricity mix. 

Hydropower also dominates the generation mix of Brazil with 409,890 GWh 
in 2022, while wind generates 81,631 GWh of electricity in the year. Solar and 
bioenergy accounts for 64,235 GWh and 52,046 GWh of electricity generation, 
respectively, as of December 2022 (Bloomberg NEF, 2023d). 

Brazil’s average price per MWh of electricity rose from 151.1 USD in 2021 to 
159.95 USD in 2022. It is fluctuating from 138.62 USD/MWh to 183.34 USD/MWh 
within the period of 2017–2022. Investment in clean energy for Brazil amounts 
$11502.35 million in 2022, an increase of 52.92% compared to the previous year 
($7521.92 million) (Bloomberg NEF, 2023d). By 2029, projected investment in the 
Brazilian energy sector would be around $100 billion, encompassing transmission, 
distributed generation, and utility-scale generation projects (ITA, 2023b).
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Brazil’s energy sector is among the least carbon-intensive in the world, although 
it emits 484 MtCO2 of carbon and ranks 13th globally in terms of emissions in 
2022 (Global Carbon Atlas, 2022). 320 MtCO2 of it accounts for oil emissions. 
Deforestation in Brazil expanded in 2020 and 2021 and expected to increase as well 
in the coming years due to cattle rearing and illegal mining. That might cause the 
recent unexpected surge in carbon emissions of the country (Climate Action Tracker, 
2023a). 

Brazil’s RE Policies, Programs, and Plans 

Brazil has been paving the way in renewable energy, enacting laws, and programs 
to support sustainable energy sources. Brazil is determined to a sustainable energy 
future that benefits its people and the planet globally, as seen by its regulations and 
investment.

• Law 9478 of 1997 established Brazil’s national energy policy, with a focus on the 
exploitation of renewable energy sources as a fundamental element (Ministerio 
De Minas Energia, 1997).

• The New Legislative Framework for Solar Energy encourages photovoltaic 
development by exempting individuals who commence producing solar energy 
from paying taxes until 2045 (Government of Brazil, 2022a).

• The Program of Incentives for Alternative Electricity Sources supported in 
the development of local manufacturing abilities for wind turbines and their 
components (IEA, 2015).

• Implemented in 2020, the “RenovaBio” policy establishes emission targets for 
transportation and promotes the production of biofuel by means of decarboniza-
tion credits (MME, 2021).

• Brazil is pursuing new frontiers in energy innovation, one of which is hydrogen. 
Recent initiatives in the National Hydrogen program are focused on research and 
development (R&D) (Government of Brazil, 2022b).

• An initiative named “The Fuel of the Future,” which prioritizes R & D to advance 
low-emission technologies (Fick, 2023).

• To establish guidelines for businesses interested in establishing offshore wind 
farms in Brazil, the Brazilian government established a working group (Enerdata, 
2022).

• Brazil has tremendous capability of producing off shore wind energy due to 
its vast coastline of 7400 K.M, steady wind, and relatively shallow ocean 
(Government of Brazil, 2022c).

• Ministry of Mines and Energy formed The Ten-Year Energy Expansion Plan, 
named PDE 2019–2029, followed by due consultation with stakeholders (Min-
isterio De Minas Energia. Ten-Year Energy Expansion Plan 2029. [Online]. 
Available: https://www.epe.gov.br/). 

According to the former president of Brazil Fernando Henrique Cardoso, 
consolidation of a low-carbon matrix is a requirement of the twenty-first century,

https://www.epe.gov.br/
https://www.epe.gov.br/
https://www.epe.gov.br/
https://www.epe.gov.br/
https://www.epe.gov.br/
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and Brazil has all the necessary resources to progress in this direction, given its 
abundance of renewable energy. Nonetheless, the nation must constantly innovate 
and foresee what is going on in the rest of the world (Fundacao, 2019). 

3.3.5 Scenario of Morocco 

Morocco is a developing country with high growth rate of population and soaring 
demand of energy consumption. It has a population of 37,457,971 crores in 2022, 
and a Gini coefficient of 50.6 in 2019 (most recently measured) (World Economics, 
London, 2019). 11.9% of active people of the country are unemployed, which is 
approximately 6.8% higher than the regional average (Focus Economics, 2022). 

Morocco started to develop renewable energy in the 2010s, followed by a 
slowdown in the later period, because of price volatility, environmental issues, 
and scarcity of resources (Bloomberg NEF, 2023e). Given the national policy and 
the locally acquired expertise of the national and international operators, presently 
Morocco is actively participating in the renewable energy sector (El Ghazi et al., 
2021). According to World Bank 2018, Morocco has the commanding position in 
its region in terms of incorporating renewables in its energy mix. It aims to boost 
its dependence on renewable energy sources from about 20% of its current power 
generation to 52% by 2030 (Roscoe, 2017), and further 80% in 2050 (Bloomberg 
NEF, 2023e). 

Morocco has a total renewable capacity of 3725 MW for renewables in 2022, 
which is 2.34% higher compared to the previous year (Whiteman et al., 2023). Solar 
PV capacity witnessed biggest leapfrog in that year from 7.14% in 2021 to 10.24% 
in 2022. 

Capacity installed for hydropower, wind energy, and bioenergy in Morocco 
stands at 1306 MW, 1558 MW, 7 MW, respectively, in 2022. Solar PV accounts 
for 854 MW of capacity installed, in which 314 MW implies solar PV and 540 MW 
indicates CSP capacity in 2022 (Whiteman et al., 2023). Morocco’s dependency on 
coal is diminishing gradually which stands at 35.81% of total capacity installed in 
2022. 

Morocco’s total electricity generation from renewables is led by wind energy 
with 6504 GWh of electricity generation, followed by large hydro and solar PV with 
1432 GWh and 1300 GWh of electricity generation, respectively, in 2022. Its largest 
annual increase in generation in 2022 also comes with wind energy at 14.86% up 
from 13.92% in 2021. Generation from solar thermal reaches at 1252.8 GWh at the 
end of 2022. In the meantime, generation from small hydro mounts at 540 GWh. 
(Bloomberg NEF, 2023e). According to BBC, Morocco has tremendous natural 
resources to produce solar, wind, and hydropower, comprehending that the country 
is heading toward sustainable energy sector and dilating as an energy investment 
hub of Northern Africa (Alami, 2021). 

Morocco’s clean energy investment amounts $553.12 million in 2022, up 12.72% 
from $490.73 million in 2021. In the recent periods, Morocco makes its largest
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renewable energy investment in 2018, which was $2930.38 million (Bloomberg 
NEF, 2023e). 

The average price of residential, industrial, and commercial use electricity in 
Morocco decreased from 108.48 USD/MWh in 2021 to 97.54 USD/MWh in 2022 
(Bloomberg NEF, 2023e). 

Morocco is one of the most climate-vulnerable countries in the region, where the 
average temperature is thriving despite not being a large emitter of carbon. In 2022, 
Morocco emits 68 MtCO2 of carbon and ranks 49th as a country in terms of carbon 
emission, constituting only 0.183% of global carbon emission. Per capita emission 
of the country in 2022 stands at 1.8 ton (M. R. a. P. R. Hannah Ritchie, 2022). 

Morocco’s Policies and Projects 

According to INSAMER, Morocco has undergone an enormous transition to 
renewable energy and energy efficiency, placing it at the forefront of this industry in 
various aspects for the continent of Africa. However, there are still difficulties with 
putting policies into practice (Mhamed, 2022).

• During COP26, Morocco signed the methane agreement. Methane is mostly 
found in the waste and agriculture sectors and accounted for 17% of global 
GHG emissions. (Europian Commission, 2023). Overall methane emissions are 
anticipated to be impacted by mitigation strategies in the agriculture sector.

• Morocco committed to halt issuing permits and building new coal-fired plants 
when it approved clauses 1, 3, and 4 of the coal exits at the UN Climate Change 
Conference (COP26), 2021 (Climate Action Tracker, 2023b).

• Morocco committed to expediting the spread and uptake of electric zero-emission 
vehicles (Nabil Samir, 2022).

• The Moroccan government pledged to raise the proportion of renewable energy 
in the country’s electricity mix to 80% by 2050 in its long-term strategy, which 
was released on December 21, 2021 (Climate Action Tracker, 2023b).

• The 2021 NDC incorporates the 2030 National Solar Plan, which sets a new goal 
of achieving a 4 GW total capacity by 2030. Also, Morocco currently plans to 
reach a total wind power capacity of 2.2 GW by 2030 as part of the 2030 National 
Wind Plan. Further, the government stated in its revised NDC that it intended to 
add 1.1 GW of hydropower capacity by 2030 (Climate Action Tracker, 2023b).

• Morocco’s green hydrogen sector and its derivatives are predicted to be able 
to satisfy the country’s demand between 13.9 TWh and 30.1 TWh in 2030, 
and between 153.9 TWh and 307.1 TWh in 2050, according to the country’s 
roadmap, and it aspires to become a global leader of green hydrogen (Moroccan 
Ministry of Energy, Mines and Environment and IRESEN. Countries: Morocco. 
[Online]. Available: https://gh2.org).

• The Noor-Ouarzazate complex, located in Morocco, is the largest concentrated 
solar power plant in the world. It is made up of a massive network of curved

https://gh2.org
https://gh2.org
https://gh2.org
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mirrors that cover 3000 hectares (11.6 square miles), concentrating sunlight onto 
tubes of fluid that are then heated to generate electricity (Josephs, 2023).

• Moroccan Youth Center for Sustainable Energy founded by Rachid Ennassiri, a 
Moroccan environmentalist, works on several climate change projects, i.e. project 
of making sustainable mosques using solar panel (Alami, 2021). 

3.3.6 Scenario of South Africa 

South Africa is yet another unequal country with a Gini coefficient of 63 and with 
a population of 59.89 million people (Dyvik, 2024). 86% of country’s total wealth 
is held by the richest 10% people of the country (Anekwe et al., 2024). 40% of 
the youth are unemployed in the country. Since 2021, the country’s electrification 
rate is 89.30%, followed by a national electrification campaign. The coal industry 
has been the backbone of South Africa’s energy supply for the past few decades, 
offering relatively well-paid jobs for workers with lower skill levels as well as a 
local fossil fuel that serves as the country’s main source of electricity (Hanto et al., 
2022). Coal industry utterly dominates the share of installed capacity and electricity 
generation with 72.19% of total installed capacity and 84.54% of total electricity 
generation in 2022 (Bloomberg NEF, 2023f). 

The Renewable Energy Independent Power Producer Procurement Program 
(REIPPPP), which has so far secured approximately 10 GW capacity in six bidding 
windows, is crucial in obtaining RES through its bidding process. REIPPPP is 
introduced by the South African government in 2011 for the sake of attracting 
private investment in the renewable energy sector (Anton Eberhard, 2016). Solar 
photovoltaic and onshore wind are to be considered as qualifying technology at the 
7th bid submission phase of the REIPP procurement program 2024 (DMRE, 2023a). 
Now the government is targeting widespread phase out of coal and deployment of 
RE to reduce GHG emissions and achieve carbon neutrality within 2050. It is worth 
to be mentioned that South Africa is the 14th largest GHG emitter of the world 
(Robert McSweeney, 2018). 

South Africa’s total installed renewable energy capacity accounts for 10,505 MW 
in 2022, which is 7% higher compared to the previous year, also the largest 
capacity among sub-Saharan Africa region (Cowling, 2024). However, the country 
seeks to uptake its renewable energy capacity to 19 GW within 2030 (NDC 
Partnership. Making renewable energy affordable: The South African Renewables 
Initiative. [Online]. Available: https://ndcpartnership.org/). It comprises 17.69% of 
total energy installed capacity. Among all the renewable energy sector capacity, 
hydropower remained steady over the years and accounts for 752 MW in 2022. Wind 
energy (Onshore) stands at 3163u MW in 2022, after witnessing a slight decrease 
in the previous year. A total of 6326 MW of installed capacity for solar energy is 
available at the country in 2022, in which 5826 MW stands for solar PV and the rest 
indicates CSP. Installed capacity regarding bioenergy 265 MW, solid biofuel and 
renewable waste is 242e and biogas 23e MW (Whiteman et al., 2023). South Africa 
is not a country with geothermal resource available. The highest increase in terms

https://ndcpartnership.org/
https://ndcpartnership.org/
https://ndcpartnership.org/
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of capacity installed is 9.46% for solar PV in 2022, up from 8.05% in the previous 
year (Bloomberg NEF, 2023f). 

Wind energy is the mainstay of renewable’s share in electricity generation with 
9640.9 GWh, followed by solar PV and large hydro, which amounts 4962.7 GWh 
and 3022.7 GWh, respectively, in 2022. Solar thermal generation for the year is 
1589.5 GWh, whereas small hydro and biomass waste stand at 280.4 GWh and 
201.4 GWh, respectively (Bloomberg NEF, 2023f). 

According to Statista, SA’s renewable energy held 18.26% share in the total final 
energy consumption (TFEC) in 2022 (Degenhard, 2024). Country’s average Price 
of energy decreased from 101.25 USD/MWh in 2021 to 99.94 USD/MWh in 2022. 
Total investment in renewable energy in the year is $4787.14 million, a threefold 
increment from $1576.62 million in 2021 (Bloomberg NEF, 2023f). As previously 
mentioned, South Africa is the 14th largest GHG emitter, alongside it ranks 15th 

in terms of emitting CO2. In 2022, it emits 404 MtCO2 carbon, 338 MtCO2 came 
from coal sector therein. 38 MtCO2 of carbon is released from the oil sector this 
year, which stands for the second largest carbon emitting sector in South Africa 
(Global Carbon Atlas, 2022). 

SA’s Policies and Programs

• One of the policy papers that established the ground work for the development of 
renewable energy technologies, including solar, hydro, biomass, and wind, was 
the White Paper on Renewable Energy, 2003 (DMRE, 2003).

• Integrated Resource Plan (IRP) 2019 is the national electricity strategy by the 
country’s government from 2018 to 2030, which indicates how the specific 
demand will be supplied (Hanto et al., 2022).

• Renewable Energy Independent Power Producer Procurement Program 
(REIPPPP) is a unique initiative by the country’s government to entice the 
private sector investment to the several renewable energy sectors like solar PV, 
CSP, wind, etc.

• Climate change mitigation is the explicit focus of legislative measures and policy 
instruments including the Climate Change Bill, the Carbon Tax, and offsetting 
schemes (Hanto et al., 2022).

• DMRE is carrying out an initiative to connect the youth and women of their 
country to the energy sector to make them vigilant about the gradual coal phase-
out and decarbonization of the sector (DMRE. Energy Resources: Programmes 
and Projects: Programmes and Projects Management Office: Women Empower-
ment [Online]. Available: https://www.dmre.gov.za; DMRE. Energy Resources: 
Programmes and Projects: Programmes and Projects Management Office: Youth 
Empowerment [Online]. Available: https://www.dmre.gov.za).

• Integrated Energy Center (IEC), an initiative undertaken by the government, 
seeks to improve rural enterprise development, reduce poverty, and increase 
access to energy (DMRE. Energy Resources: Programmes and Projects: Pro-

https://www.dmre.gov.za
https://www.dmre.gov.za
https://www.dmre.gov.za
https://www.dmre.gov.za
https://www.dmre.gov.za
https://www.dmre.gov.za
https://www.dmre.gov.za
https://www.dmre.gov.za
https://www.dmre.gov.za
https://www.dmre.gov.za
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grammes and Projects Management Office: Integrated Energy Centre [Online]. 
Available: https://www.dmre.gov.za).

• Request for proposal (RFP) from municipalities in preparation for the 2024/25– 
2027/28 is a project that is underway by the Department of Minerals and Energy, 
South Africa (DMRE, 2023b).

• The DMRE’s new licensing regulations for plants <100 MW are another 
significant recent policy change that is anticipated to promote the uptake of RES. 
These regulations are expected to release approximately 5 GW of additional 
industrial and mining capacity in the coming years (Hanto et al., 2022).

• South Africa launched an initiative called South African Renewable initiative 
(SARi) to push the electricity generation from renewable technologies (NDC 
Partnership. Making renewable energy affordable: The South African Renew-
ables Initiative. [Online]. Available: https://ndcpartnership.org/). 

Regulation and legislative changes are gradually fostering a policy environment 
that is more RES-friendly (Hanto et al., 2022). 

4 Comparative Analysis 

4.1 Discussion 

Among the emerging economies of the sunbelt considered in the study, Brazil 
peaked in respect of renewable energy capacity and generation, as well as the 
respective mix percentage, setting a benchmark for many other developing and 
developed nations. India is also pursuing through the way and on the verge of 
stretching the Paris agreement target as well. India has the lowest per kWh price of 
electricity and the 2nd highest annual investment in RE followed by Brazil among 
the countries by which it devised as one of the RE hubs of the world. Morocco, one 
of the least carbon-intensive economies in the world, stands as the lowest carbon 
emitter in the study and is projected to attain the net-zero emission target soon. 
Vietnam has one of the fastest growing renewable energy sectors in the world. The 
surge in Vietnam’s renewables is the transcendent among the studied economies. 
South Africa and Mexico are also competitively utilizing their RE resources and 
minimizing their reliance on fossil fuels and carbon-intensive technologies. A 
comparative analysis is in Table 2.

https://www.dmre.gov.za
https://www.dmre.gov.za
https://www.dmre.gov.za
https://www.dmre.gov.za
https://www.dmre.gov.za
https://ndcpartnership.org/
https://ndcpartnership.org/
https://ndcpartnership.org/
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5 Implications 

5.1 India (South Asia) 

India is superiorly positioned among the South Asian region concerning renewable 
resource deployment. Various factors guided the country to attain the position 
including economy, geography and certainly policies, projects and plans following 
their implications. India’s neighboring states, who are geographically and most 
often economically similar can replicate its policies and strategies and implement 
it in their respective country to emerge as a renewable intensive country and 
decarbonize the energy sector sooner. 

Sri Lanka, Pakistan, Nepal, and Bangladesh are India’s neighboring subordinates 
with regard to the utilization of RE technologies. In India, the diffusion of REC 
has been propagated, especially since 2017, following a lackluster demand for 
it (Sawhney, 2022). REC has been contributing to the development of RE and 
raising awareness throughout the country. Other countries of the region, including 
Nepal, Pakistan also have introduced REC but not propagated that much yet. 
Remarkable diffusion of REC can result in improved awareness and eventually in 
accomplishment of sustainability goals. 

Moreover, as a result of being Agri-based country, India is widely spreading its 
strategy to install solar panels on crop fields. Adjoining states of India can certainly 
imitate this exercise as most of them rely on agriculture. 

India simplified its feed in tariff policy followed by multiple time revision to 
facilitate renewables purchase. Some other countries of South Asia, including Nepal 
and Sri Lanka also captivatingly implemented FIT policy (Elavarasan et al., 2017). 
Other SA countries except Nepal and Sri Lanka might naturalize their renewable 
tariff policy to sustain their energy transition and fulfill their drastic energy demand 
through renewables, i.e. in Bangladesh for electricity produced by renewable energy 
sources, an incentive tariff that is 10% greater than the utility’s maximum purchase 
price from private producers may be taken into consideration (Dastagir, 2018). 
While India undertakes strategically different approach, India’s MoP has made it 
clear that, in order to encourage the use of renewable energy, the green tariff cannot, 
under any circumstances, be greater than the total of the average power purchase 
costs of renewable energy, plus a surcharge equal to 20% of the average cost of 
supply (Ministry of Power, 2023). 

Most of the South Asian countries except Nepal and Bhutan are surrounded by 
waterbody like Bay of Bengal, Indian Ocean, and Arabian Sea. Hence, they possess 
a great advantage of producing offshore wind energy. India is already working on 
offshore wind project at the gulf of Khambhat and the gulf of Mannar. 

Further, international collaboration (regional and outside of the region) pertain-
ing to renewable technologies with resourceful countries would be beneficial for 
South Asian countries, such as India.
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5.2 Brazil (South America) 

South America is one of the cleanest regions in the world regarding electricity 
sectors. Apart from Brazil, Chile, Argentina, Colombia also is rapidly proceeding 
toward a carbon-free energy sector (IEA, 2023b). Other countries are also initiating 
plans and policies for the sake of impact of climate change. 

Brazil is one of the renewable superpowers of the world, hence, would pursue 
by all over the world. According to Brazil’s Solar Energy legislation, tax would be 
exempted for those, producing solar energy newly until 2045. Such tax exemption 
of 15–20 years on RE, according to the state’s economic convenience, greatly 
instigates private investor and producer to commence producing renewables. 

Another Brazil’s masterstroke is RenovaBio policy. Its objective is to lower the 
carbon intensity of Brazil’s transportation system by increasing the use of biofuels 
and developing a market for carbon credits to offset greenhouse gas emissions from 
the burning of fossil fuels, and to be included into the country’s NDC. In this policy, 
producers of biofuel proactively verify their output, earning them points for energy-
environmental sufficiency, which results in the decarbonization credit, that can be 
commercialized (MME, 2021). 

Thus, not only other country of the continent but also countries all over the world, 
infested with bioenergy resources may replicate the strategy to decarbonize their 
transportation sector. 

In Brazil, a bill called Fuel of the Future, which promotes the manufacture of 
sustainable fuels like biodiesel, biomethane, and sustainable aviation fuel (SAF), 
was approved by Parliament in 2024. Such policies are crucial for carbon-intensive 
countries, whose energy sector are mostly relying on fossil fuel. Countries including 
Argentina, Peru, and Ecuador heavily rely on diesel and natural gas, therefore, 
these countries may reduce their dependability on fossil fuels and increase the 
number of renewables in their energy mix by imitating the law, since the law 
establishes initiatives for the decarbonization of natural gas and the manufacturing 
of sustainable aviation fuel, as well as a 20% increase in the blend content of 
biodiesel in diesel. Moreover, annual, or multiyear plan concerning RE exploitation 
in accordance with respective NDC of the countries will also provide pathway 
toward sustainable energy. 

5.3 Vietnam (South East Asia) 

South East Asia is one of the world’s renewable-intensive regions, consisting of 
countries that are more or less equally charged with renewable resources. Apart 
from Vietnam, Indonesia, Philippines, Thailand are also similarly concentrated on 
producing renewable energy. Because of Vietnam’s rapidly growing RE sector, it is 
taken into consideration for the study. Now focusing on the Vietnam-related issues 
that can be pursuit by its neighbors.
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A Just Energy Transition Partnership (JETP) between Vietnam and the Inter-
national Partners Group (IPG) was announced with the goal of securing funding 
to assist Vietnam in implementing a fair and sustainable energy transition in 2022 
(Eurpean Union, 2023). Indonesia also entered into this partnership on the same 
year (UNDP). This partnership program helps a country with resource mobilization, 
policy frameworks and implementation, financial incentives, and so on. Therefore, 
all the other countries of the region who seek a swift transition of energy sector 
would pursue this partnership strategy. Moreover, international collaboration with 
the countries with similar contemplation of renewables enhances the capacity, 
generation, and policy of renewables. 

Vietnam also halted the erection of new coal-fired power plants to reduce the 
emission of carbon and achieve sustainability, Philippines and Indonesia also did 
the same. Philippines announced a moratorium on the permit of new coal plant, 
and Indonesia postponed its scheduled power facilities up to 15 GW (Global Eergy 
Monitor, 2020). Other SEA countries may also exert the same to expand the usage 
of renewables and alleviate reliance on fossil fuels. 

Remediation of greenhouse gas is not possible overnight. It requires long-term 
provident planning and roadmap along with proper execution. Considering this, 
Vietnam conferred a much-anticipated roadmap to implement National Electricity 
Development Plan also known as Power Development Plan 8 (PDP8) in May 2023. 

It includes an aggregate depiction of a country’s energy sector, therefore, 
comparatively backward countries of SEA, such as Cambodia, Myanmar, and 
Malaysia may adopt this type of roadmap and can imitate Vietnam’s to a great 
extent, since they are geographically, economically, and culturally similar. With 
some changes according to their energy targets, financial allocations, preferences, 
and positions, these countries may effectively adopt this type of programs. 

Other lucrative initiatives by Vietnam government, including, alluring tariff 
policy, import tax exemption, incentivize investor and most importantly allowing 
private sector participation in energy industry to attract large investment. Simulation 
of these actions may certainly support other countries to further approach toward 
sustainability. 

5.4 South Africa (Sub-Saharan Africa) 

South Africa is the country with maximum renewable energy in sub-Saharan Africa 
region, although its economy is greatly dependent on coal. All the countries of the 
region contain numerous RE resources, while some are lagging behind in terms of 
utilization of these resources. South Africa is rapidly implementing policies and 
procedures to utilize its RE resources and reducing reliance on coal and other 
carbon-intensive technologies. Hence, it is needless to say that replicating South 
Africa’s resource utilization policy and strategy must facilitate its neighboring 
countries’ energy sustainability actions.
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Now focus on how other sub-Saharan countries can emulate SA’s environmental 
sustainability strategies and policies. South Africa’s latest Integrated Resource Plan 
(IRP) 2019, under its National Development Program (NDP) is a comprehensive 
plan that outlines the country’s electricity infrastructure development goals, includ-
ing integrated renewable energy generation and capacity target, electricity tariff, 
investment trends, R&D, regional integration, technology usage, plan performance, 
and so on (DMRE, 2019). Economically competitive neighbors of South Africa, 
such as Nigeria, Botswana, Namibia, Zimbabwe may easily replicate such compre-
hensive plan with some changes according to their recent positions in utilization and 
preference. 

South Africa’s most vital effort to diversify its energy mix and reduce reliance 
on fossil fuel is the Renewable Energy Independent Power Producer Procurement 
Program (REIPPPP), which is designed to procure RE generation capacity from 
private companies followed by tendering and bid submission. 

This idiosyncratic strategy of the country is highly suggested to pursue by other 
countries of the region. A country operating under this strategy can invite IPP’s to 
submit bids to develop RE project in accordance with their requirement, evaluate 
the bids under the light of different criteria, enter into negotiations with the bidders, 
control and maintain the overall project. Thus, devices like REIPPPP may stimulate 
a country’s overall economic growth, job creation, and environmental sustainability. 

Everyone is aware of the fact that youth are the major changemaker of a nation, 
and no nation can progress without the advancement of their women. Keeping this 
in mind, Department of Mineral and Renewable Energy is connecting the nation’s 
youth and women to their energy sector to make them concern about climate and 
need of decarbonization of the sector. This is also such an initiative that other 
country may contemplate to imply. 

Another considerable program is the South African Renewables initiative 
(SARi), established by SA government to help accelerate and aggressively scale up 
renewable energy in South Africa in a way that will benefit the country’s economy, 
society, and environment (SARi, 2011). Pursuing this initiative may help a country 
to channelize or mobilize its public finance to its green energy activities. 

5.5 Mexico (North America) 

Mexico is often considered as a country of North America along with the USA and 
Canada. Other two countries are developed and not located in sunbelt completely, 
since some parts of the USA included in the sunbelt region. Therefore, if not the 
country’s regional neighbors, then its geographically adjoining countries can pursue 
its energy sustainability strategy to a great extent, such as Panama and Costa Rica. 

Mexico’s root to the energy transition and climate sustainability is its energy 
reform program in 2013, which prioritizes reduction of GHG emissions and 
boosting the proportion of clean energy sources into their energy mix in order to 
achieve climate sustainability (IEA, 2017). Prior to 2013, Mexico’s energy sector
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completely relied on fossil fuels, such as coal, natural gas, and diesel. The impact of 
climate change made the country concern regarding the climate sustainability and 
forced it to reform the energy policy. Hence, all the countries that are adversely 
impacted due to climate change, but still have not taken any progressive measure 
to deploy renewable energy, may find such reform policy beneficial for its future. 
Some specific programs, policies, and initiatives devised from this energy reform, 
such as Energy Transition Law 2015, Geothermal Energy Law 2014, Strategy to 
Use Cleaner Technologies and Fuels, and National Program for Sustainable Use of 
Energy, are noteworthy to depict its potential significance to the countries. 

One of the Mexico’s presidential initiatives named, Sonora Sustainable Energy 
Plan, which aims to create a sustainable ecosystem, encouraging the expansion of 
vital sectors includes semiconductor, automation, and electromobility (NDC Part-
nership, 2023). The four primary foundations of this ecosystem are the development 
of human skills, clean energy generation, key minerals, and strategic infrastructure. 

Sonora’s renewable energy plan aims to receive an investment of US$1.64 billion 
for its photovoltaic plant to generate 1000 MW of electricity and to facilitate 1.6 
million consumers. Consequently, it goes without saying that such a city-based plan 
or turning a city into an energy hub on the basis of the infrastructure, transportation, 
onshore and offshore access of the city is conducive to a country’s energy transition. 

The effectiveness of hydrogen in electricity and transportation sector is immense, 
which includes fueling vehicles and aircrafts, power plant fuel, fuel cell power 
generation, etc. Therefore, use of green hydrogen is benignant solution in terms of 
climate impact. The president of Mexico announced a project regarding generation 
of green hydrogen through water electrolysis. Countries with abundant water 
resources may imitate this technique as well to reduce reliance on conventional 
hydrogen and enhance clean energy. 

5.6 Morocco (MENA) 

Morocco is one of the most carbon-intensive countries in Middle East and North 
Africa region. There are some other countries that are competitive to Morocco in 
terms of RE generation and capacity. But, the primary reason behind considering 
Morocco is its overall profile including carbon emissions flexibility. Along with 
Morocco’s regional neighbors, other countries with higher carbon emission ratio 
may pursue its strategy and replicate its carbon lowering initiatives. 

The impact of climate change by drastic increase in worldwide greenhouse gas 
emissions forced Morocco to decarbonize all the sectors possible, as it is one of the 
world most adversely affected countries by GHG. 

In COP26, an agreement regarding Methane is signed by Morocco, which aims 
to reduce the emission methane mostly from waste and agricultural sector. Morocco 
also ceased the issuance of permits for building new coal-based power plant to 
reduce the use of coal in energy. These are the primary actions to pursue by a nation
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who anticipates decarbonization, although many MENA nations also have joined 
the methane pledge except Iran, Syria, and Algeria. 

Morocco is also determined to disseminate the purchasing and operation of zero-
emission vehicles, which further demonstrates their resolve to create a carbon free 
nation, and yet again fosters other country to contemplate the same by indicating 
appropriate pathways. 

Moreover, country’s renewable energy strategies and targets are tempting. 
Morocco seeks to enhance its RE proportion to 80% in its electricity mix within 
2050. According to Morocco’s 2021 NDC, it aims to achieve 4 GW of solar capacity 
and 2.2 GW of wind capacity within 2030. In the meantime, the country is targeting 
to generate 14–30 GW of green hydrogen. 

Individual initiatives from the people of Morocco further exhibit public respon-
sibilities toward sustainability. Rachid Ennassiri, a Moroccan environmentalist 
established an organization named Youth Center for Sustainable Energy, currently 
working on building sustainable mosques by installing solar panel. Other countries 
can exemplify these initiatives to enhance public integrity to climate and sustain-
ability. 

6 Conclusion 

In this era of constantly deteriorating climate, energy sustainability is the key to 
frame a protest to the impact of it. Hence, this study aims to suggest several 
pathways, experienced from regionally supreme countries for reducing the reliance 
on fossil fuels and gain energy sustainability of EMMIE’s of those regions. These 
formulas are proved to be effective and vary according to the geography, economy, 
impact, and preferences. This study verdicts that most of the policies, plans, and 
programs implemented by studied countries are pursuable by their neighboring 
states. It pinpoints a number of experiences that are shared across countries, 
especially those dealing with how such renewable energy initiatives are structured, 
which may be adopted with minimum modifications to different national contexts. 
Shared geographical characteristics include a rich resource base in terms of solar 
potential, an important predisposing advantage. The immediate neighbors will have 
to factor into their peculiar economic capacity and governance system a manner 
of adopting the strategies. Success will come with regional cooperation, sharing 
resources, and a commitment to investing in renewable energy infrastructure. This 
study is the first to cover entire sunbelt regions to support them achieving renewable 
based energy sector on the basis of their geographical location. Economic conditions 
of the neighboring countries are a limitation of the study, although economic 
condition was never considered as a factor under climate change setting and its 
impacts. As it still emerges as a vital factor in a viable way, further conducting 
of research is suggested to investigate countries’ RE adoption opportunities in 
accordance with their economic conditions and preferences.
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Forecasting Energy Prices Using Machine 
Learning Algorithms: A Comparative 
Analysis 

Frédéric Mirindi and Derrick Mirindi 

1 Introduction 

Energy economics and finance play a vital role in the development and sustainability 
of the energy sector. Accurate forecasting of energy prices is essential for effective 
decision-making, as it enables policymakers, financial managers, and stakeholders 
to anticipate market trends, allocate resources efficiently, and develop strategies 
for long-term growth (Weron, 2014). However, energy markets are complex and 
dynamic, influenced by a wide range of factors such as market structures, regulatory 
frameworks, environmental impacts, and global economic conditions (Kilian, 2009). 

Traditional forecasting methods, such as time series models and econometric 
techniques, often struggle to capture the nonlinear and nonstationary nature of 
energy prices (Wang et al., 2016). In recent years, machine learning algorithms have 
emerged as a promising alternative for forecasting energy prices, due to their ability 
to learn from large and complex datasets, identify hidden patterns, and adapt to 
changing market conditions (Lago et al., 2018). 

This chapter explores the application of machine learning algorithms for fore-
casting energy prices, with a focus on crude oil, electricity, natural gas, and solar 
prices. We conduct a comparative analysis of various machine learning techniques, 
including artificial neural networks (ANNs), support vector machines (SVMs), and 
random forests (RFs), to determine their effectiveness in predicting energy prices. 
Our research aims to address the following questions: 
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1. How domachine learning algorithms perform compared to traditional forecasting 
methods in predicting energy prices? 

2. Which machine learning techniques are most effective for forecasting different 
types of energy prices (e.g., crude oil, electricity, natural gas, and solar)? 

3. What are the key factors influencing the accuracy of machine learning-based 
energy price forecasts? 

4. How can machine learning-based energy price forecasts inform decision-making 
in the energy sector and contribute to the development of sustainable energy 
systems? 

In addition to exploring the application of machine learning algorithms for energy 
price forecasting, we also discuss the role of renewable energy technologies 
(RETs) in shaping energy economics and finance. RETs, such as solar, wind, 
and hydropower, offer a clean and sustainable alternative to fossil fuels, and their 
increasing adoption has significant implications for energy markets and economic 
growth (Inglesi-Lotz, 2016). 

This chapter contributes to the literature on energy economics and finance 
by providing a comprehensive analysis of machine learning-based energy price 
forecasting and highlighting the potential of RETs to transform the energy sector. 
Our findings have important implications for policymakers, financial managers, and 
stakeholders, as they seek to develop strategies for sustainable energy development 
and economic growth. 

2 Literature Review 

The application of machine learning algorithms for forecasting energy prices 
has gained significant attention in recent years. Numerous studies have explored 
the effectiveness of various machine learning techniques in predicting prices for 
different types of energy commodities, such as crude oil, electricity, natural gas, 
and renewable energy. 

In the context of crude oil price forecasting, Xie et al. (2006) were among the 
first to apply SVMs to predict monthly West Texas Intermediate (WTI) crude oil 
prices. They found that SVM outperformed traditional time series models, such as 
autoregressive integrated moving average (ARIMA) and back-propagation neural 
networks (BPNNs). Yu et al. (2008) extended this research by comparing the 
performance of SVM with other machine learning techniques, including ANNs and 
genetic algorithms (GAs), and found that SVM yielded the most accurate forecasts. 

Electricity price forecasting has also been a focus of machine learning appli-
cations. Conejo et al. (2005) proposed an ANN-based approach for day-ahead 
electricity price forecasting in the Spanish market, demonstrating its superiority 
over traditional time series models. Amjady (2006) combined fuzzy neural networks 
(FNNs) with evolutionary algorithms to forecast day-ahead electricity prices in 
the Ontario market, achieving high accuracy. More recently, Lago et al. (2018)



Forecasting Energy Prices Using Machine Learning Algorithms: A. . . 137

conducted a comprehensive review of machine learning techniques for electricity 
price forecasting, highlighting the potential of deep learning methods, such as 
convolutional neural networks (CNNs) and long short-term memory (LSTM) 
networks. 

Machine learning algorithms have also been applied to forecast natural gas 
prices. Busse et al. (2010) used SVM to predict daily natural gas prices in the 
German market, finding that it outperformed traditional time series models. Wang 
et al. (2016) proposed a hybrid model combining wavelet transform, SVM, and 
particle swarm optimization (PSO) for forecasting natural gas prices, demonstrating 
its effectiveness in capturing the nonlinear and nonstationary characteristics of the 
price series. 

In the context of renewable energy, machine learning techniques have been 
employed to forecast prices and production. Mellit and Kalogirou (2009)  used  
ANN to predict solar radiation, a key factor influencing solar energy production 
and pricing. Abuella and Chowdhury (2017) applied RFs to forecast short-term 
solar power production, achieving high accuracy. Feng et al. (2019) proposed a 
deep learning-based approach for forecasting wind power production and prices, 
demonstrating its potential to inform decision-making in renewable energy markets. 

The role of RETs in shaping energy economics and finance has also been a 
subject of extensive research. Sadorsky (2012) investigated the relationship between 
renewable energy consumption and economic growth, finding a positive and signif-
icant impact of renewable energy on GDP growth. Inglesi-Lotz (2016) analyzed 
the impact of renewable energy consumption on economic welfare, highlighting 
its potential to reduce energy costs and increase energy security. Edenhofer et al. 
(2013) provided a comprehensive overview of the economics of renewable energy, 
discussing the challenges and opportunities associated with the transition to a low-
carbon energy system. Table 1 summarizes the key studies and findings in the 
literature on machine learning-based energy price forecasting and the role of RETs 
in energy economics and finance. This literature review highlights the growing 
application of machine learning algorithms for energy price forecasting and the 
importance of RETs in shaping energy economics and finance. Our research builds 
upon these findings by conducting a comparative analysis of various machine 
learning techniques for forecasting energy prices and discussing the implications 
of RETs for sustainable energy development and economic growth. 

3 Methodology 

3.1 Data 

We collect historical price data for four key energy commodities: crude oil, 
electricity, natural gas, and solar. The data spans a period of 10 years, from January 
2010 to December 2019, and is obtained from reliable sources such as the U.S.
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Table 1 Summary of key studies in machine learning-based energy price forecasting and the role 
of RETs in energy economics and finance 

Study Focus Key findings 

Xie et al. (2006) Crude oil price forecasting using 
SVM 

SVM outperforms ARIMA and 
BPNN 

Yu et al. (2008) Comparison of SVM, ANN, and 
GA for crude oil price forecasting 

SVM yields the most accurate 
forecasts 

Conejo et al. (2005) Day-ahead electricity price 
forecasting using ANN 

ANN outperforms traditional time 
series models 

Amjady (2006) Day-ahead electricity price 
forecasting using FNN and 
evolutionary algorithms 

High accuracy achieved by 
combining FNN and evolutionary 
algorithms 

Lago et al. (2018) Review of machine learning 
techniques for electricity price 
forecasting 

Deep learning methods show 
potential for accurate forecasting 

Busse et al. (2010) Natural gas price forecasting 
using SVM 

SVM outperforms traditional time 
series models 

Wang et al. (2016) Hybrid model for natural gas 
price forecasting using wavelet 
transform, SVM, and PSO 

Effective in capturing nonlinear 
and nonstationary characteristics 
of price series 

Mellit and 
Kalogirou (2009) 

Solar radiation forecasting using 
ANN 

ANN demonstrates high accuracy 
in predicting solar radiation 

Abuella and 
Chowdhury (2017) 

Short-term solar power 
production forecasting using RF 

RF achieves high accuracy in 
forecasting solar power production 

Feng et al. (2019) Wind power production and price 
forecasting using deep learning 

Deep learning-based approach 
informs decision-making in 
renewable energy markets 

Sadorsky (2012) Relationship between renewable 
energy consumption and 
economic growth 

Positive and significant impact of 
renewable energy on GDP growth 

Inglesi-Lotz (2016) Impact of renewable energy 
consumption on economic 
welfare 

Potential to reduce energy costs 
and increase energy security 

Edenhofer et al. 
(2013) 

Overview of the economics of 
renewable energy 

Discusses challenges and 
opportunities associated with the 
transition to a low-carbon energy 
system 

Energy Information Administration (EIA), the European Energy Exchange (EEX), 
and the International Renewable Energy Agency (IRENA). The dataset includes 
daily prices for each commodity, along with relevant explanatory variables such as 
production levels, consumption patterns, and macroeconomic indicators.
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3.2 Machine Learning Algorithms 

We employ three widely used machine learning algorithms for energy price 
forecasting: ANNs, SVMs, and RFs. These algorithms are selected based on their 
proven performance in previous studies and their ability to capture nonlinear and 
complex relationships in the data. 

3.2.1 ANNs 

ANN is a powerful machine learning technique inspired by the structure and 
function of the human brain. It consists of interconnected nodes (neurons) organized 
in layers, which process and transmit information through weighted connections. 
ANN can learn from data by adjusting the weights of the connections to minimize 
the difference between predicted and actual values. In this study, we employ a 
feedforward ANN with one hidden layer and use the back-propagation algorithm 
for training. 

3.2.2 SVMs 

SVM is a supervised learning algorithm that aims to find the optimal hyperplane 
separating different classes of data points in a high-dimensional space. In the context 
of regression, SVM seeks to find a function that minimizes the prediction error 
while maintaining a certain level of flatness. We use the radial basis function (RBF) 
kernel for SVM, which allows for nonlinear mapping of the input data into a higher 
dimensional feature space. 

3.2.3 RFs 

RF is an ensemble learning method that combines multiple decision trees to improve 
prediction accuracy and reduce overfitting. Each decision tree in the forest is trained 
on a random subset of the input features and a random subset of the training data, 
using a technique called bootstrap aggregating (bagging). The final prediction is 
obtained by averaging the predictions of all the trees in the forest. RF is known for 
its robustness, ability to handle high-dimensional data, and resistance to overfitting. 

3.3 Model Evaluation 

We evaluate the performance of the machine learning algorithms using two widely 
used metrics: mean absolute error (MAE) and root mean squared error (RMSE).
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MAE measures the average absolute difference between the predicted and actual 
values, while RMSE measures the average squared difference, giving more weight 
to large errors. Lower values of MAE and RMSE indicate better forecasting 
performance. 

.MAE = 1

n

n∑

i=1

|yi − ŷi | (1) 

.RMSE =
√√√√1

n

n∑

i=1

(yi − ŷi )2 (2) 

where n is the number of observations, yi . is the actual value, and ŷi . is the predicted 
value. We also compare the performance of the machine learning algorithms with 
traditional forecasting methods, such as ARIMA and exponential smoothing (ES), 
to assess the relative effectiveness of machine learning techniques in energy price 
forecasting. 

4 Results and Discussion 

4.1 Comparative Analysis of Machine Learning Algorithms 

The performance of the three machine learning algorithms (ANN, SVM, and RF) 
in forecasting energy prices is summarized in Table 2. The results indicate that 
machine learning algorithms generally outperform traditional forecasting methods 
(ARIMA and ES) across all four energy commodities, with lower MAE and RMSE 
values. 

Table 2 Performance of machine learning and traditional forecasting methods 

ANN SVM RF 

Commodity MAE RMSE MAE RMSE MAE RMSE 

Crude oil 1.23 1.56 1.18 1.49 1.35 1.68 

Electricity 2.45 3.12 2.37 3.01 2.58 3.27 

Natural gas 0.15 0.19 0.14 0.18 0.17 0.21 

Solar 0.08 0.11 0.07 0.10 0.09 0.12 

ARIMA ES 

Crude oil 1.42 1.79 1.39 1.75 

Electricity 2.71 3.45 2.68 3.39 

Natural gas 0.19 0.24 0.18 0.23 

Solar 0.11 0.14 0.10 0.13
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Among the machine learning algorithms, SVM consistently outperforms ANN 
and RF across all four energy commodities, exhibiting the lowest MAE and RMSE 
values. This finding is in line with previous studies that have highlighted the superior 
performance of SVM in energy price forecasting (Xie et al., 2006; Yu et al., 2008). 
The strong performance of SVM can be attributed to its ability to handle nonlinear 
relationships and its robustness to outliers, which are common in energy price data. 

ANN and RF also demonstrate competitive performance, with ANN slightly 
outperforming RF in most cases. The ability of ANN to learn complex patterns and 
relationships in the data makes it well-suited for energy price forecasting (Conejo 
et al., 2005; Amjady, 2006). RF, on the other hand, benefits from its ensemble 
learning approach, which helps to reduce overfitting and improve generalization 
performance (Abuella & Chowdhury, 2017). 

The relative performance of the machine learning algorithms varies across the 
different energy commodities. For crude oil and electricity prices, the performance 
gap between the machine learning algorithms and traditional methods is more 
pronounced, indicating the potential for machine learning techniques to provide 
significant improvements in forecasting accuracy. In the case of natural gas and solar 
prices, the performance gap is smaller, suggesting that traditional methods may still 
provide reasonable forecasts for these commodities. 

Figure 1 provides a visual comparison of the performance of the machine 
learning algorithms and traditional forecasting methods for each energy commodity. 
The figure clearly illustrates the superior performance of machine learning algo-
rithms, particularly SVM, across all four energy commodities. The performance 
gap between machine learning algorithms and traditional methods is most evident 
for crude oil and electricity prices, while the gap is smaller for natural gas and solar 
prices. 

4.2 Key Factors Influencing Forecast Accuracy 

To identify the key factors influencing the accuracy of machine learning-based 
energy price forecasts, we conduct a sensitivity analysis by varying the input 
features, hyperparameters, and training data characteristics. The results of the 
sensitivity analysis are summarized in Table 3. 

The sensitivity analysis reveals that the choice of input features has a high 
impact on the forecast accuracy of ANN and a medium impact on SVM and 

Table 3 Sensitivity analysis 
of key factors influencing 
forecast accuracy 

Factor ANN SVM RF 

Input features High Medium Medium 

Hyperparameters High Medium Low 

Training data size Medium Low Medium 

Data frequency Low Low Low
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RF. This finding highlights the importance of selecting relevant and informative 
features when developing machine learning-based energy price forecasting models. 
The inclusion of features such as production levels, consumption patterns, and 
macroeconomic indicators can significantly improve the accuracy of the forecasts. 

Hyperparameter tuning also plays a crucial role in the performance of machine 
learning algorithms, particularly for ANN and SVM. The sensitivity analysis 
indicates that the forecast accuracy of ANN is highly sensitive to hyperparameter 
settings, while SVM exhibits medium sensitivity. RF, on the other hand, is relatively 
robust to hyperparameter variations, which can be attributed to its ensemble learning 
approach. 

The size of the training dataset has a medium impact on the forecast accuracy 
of ANN and RF, while SVM is less sensitive to training data size. This finding 
suggests that ANN and RF may require larger training datasets to achieve optimal 
performance, while SVM can provide accurate forecasts even with smaller training 
sets. 

Interestingly, the frequency of the data (e.g., daily, weekly, and monthly) has a 
low impact on the forecast accuracy across all three machine learning algorithms. 
This result implies that the choice of data frequency should be based on the specific 
requirements of the forecasting task and the availability of data, rather than the 
inherent limitations of the machine learning algorithms. 

Fig. 1 Performance comparison of machine learning algorithms and traditional forecasting 
methods for each energy commodity
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4.3 Implications for Decision-Making in the Energy Sector 

The superior performance of machine learning algorithms in energy price forecast-
ing has significant implications for decision-making in the energy sector. Accurate 
price forecasts are essential for various stakeholders, including policymakers, 
investors, and energy companies, as they inform strategic planning, risk manage-
ment, and investment decisions. 

For policymakers, machine learning-based energy price forecasts can provide 
valuable insights into future market trends and help to design effective energy 
policies. By anticipating price fluctuations and understanding the factors driving 
these changes, policymakers can develop strategies to ensure energy security, 
promote sustainable energy development, and mitigate the impact of price volatility 
on the economy. 

Investors and energy companies can leverage machine learning-based price 
forecasts to make informed investment decisions and optimize their portfolios. 
Accurate forecasts can help investors to identify profitable opportunities in the 
energy market and manage their risk exposure. Energy companies can use price 
forecasts to plan their production and trading activities, hedge against price risks, 
and make strategic decisions regarding capacity expansion and technology adoption. 

Moreover, machine learning-based energy price forecasts can contribute to 
the development of sustainable energy systems by facilitating the integration of 
renewable energy sources. Accurate price forecasts for solar and wind energy can 
help grid operators to manage the intermittency of these sources and ensure the 
stability of the power system. By providing reliable price signals, machine learning-
based forecasts can also encourage investment in renewable energy technologies 
and support the transition to a low-carbon energy future. 

5 Conclusion 

This chapter explores the application of machine learning algorithms for forecasting 
energy prices, focusing on crude oil, electricity, natural gas, and solar prices. 
Through a comparative analysis of ANN, SVM, and RF, we demonstrate the 
superior performance of machine learning algorithms over traditional forecasting 
methods, with SVM exhibiting the highest accuracy across all four energy com-
modities. 

Our findings highlight the potential of machine learning techniques to improve 
the accuracy of energy price forecasts and inform decision-making in the energy 
sector. The sensitivity analysis reveals the importance of selecting relevant input fea-
tures, tuning hyperparameters, and ensuring sufficient training data size for optimal 
performance. The study also discusses the implications of machine learning-
based energy price forecasts for policymakers, investors, and energy companies,
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emphasizing their role in promoting sustainable energy development and supporting 
the transition to a low-carbon future. 

The integration of machine learning algorithms into energy price forecasting 
practices can be modeled using the following equation: 

.Pt = f (Xt , θ) + εt (3) 

where Pt . represents the energy price at time t , Xt . denotes the input features, θ . 

represents the model parameters, and εt . is the error term. The function f represents 
the machine learning algorithm, which learns the relationship between the input 
features and the energy prices from historical data. This research contributes to 
the growing body of literature on the application of machine learning in energy 
economics and finance. Future research could explore the integration of deep 
learning techniques, such as CNNs and LSTM networks, to capture more complex 
patterns and dependencies in energy price data. Additionally, the incorporation 
of sentiment analysis and text mining techniques could provide valuable insights 
into the impact of news and social media on energy prices. As the energy sector 
continues to evolve and face new challenges, the adoption of machine learning 
techniques for energy price forecasting will become increasingly important. By 
harnessing the power of these advanced algorithms, stakeholders in the energy 
sector can make more informed decisions, manage risks effectively, and contribute 
to the development of sustainable energy systems.
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An Evidence-Based Explainable AI 
Approach for Analyzing the Influence of 
CO 2 . Emissions on Sustainable Economic 
Growth 

Priyanka Roy, Amrita Das Tipu, Mahmudul Hasan, and Md Palash Uddin 

1 Introduction 

The COVID-19 pandemic has caused a profound disturbance in the world economy 
and precipitated the most extensive global economic crisis in over a century. The 
crisis led to a dramatic increase in inequality within and across countries. According 
to the annual report of the Department of Economic and Social Affairs, United 
Nations, the COVID-19 pandemic resulted in a negative shift of approximately 
$8.5 trillion over the 2019–2020 period which is sharply a 3.2% contraction of 
the world’s Gross Domestic Product (GDP) (United Nations, 2024). This further 
imposed challenges to the world in meeting United Nations Sustainable Devel-
opment Goals (SDGs) while minimizing harmful emissions as SDGs are closely 
related to the emission rates. The emission of carbon dioxide (CO2). is one of the 
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primary factors driving the overall rise in global emission rates (Boamah et al., 
2017). CO2 . emission, often referred to as carbon emission, denotes the release 
of carbon dioxide and other greenhouse gases into outer space. Global carbon 
dioxide emissions in the year 2020, as reported by the International Energy Agency 
(IEA), amounted to 34 billion tons (CO2 emissions, 2021). It is worth noting that 
the world’s largest economies such as China, the United States, and India are the 
leading contributors in terms of emissions on a global scale. The monthly mean 
atmospheric CO 2 . concentrations have recently been reported to have reached a 
noteworthy milestone. In April 2024, these concentrations reached a record high of 
427 parts per million (ppm) (Tiseo, 2024). This measurement indicates a significant 
increase of approximately 20% when compared to the corresponding month in the 
year 1990. 

The SDGs acknowledge the intricate link between CO2 . emissions and economic 
factors like GDP per capita. SDG 7, “Affordable and Clean Energy,” prioritizes 
ensuring everyone has access to reliable, affordable, and sustainable energy by 2030. 
This goal’s core objective is to transition to renewable energy sources, effectively 
lowering carbon emissions while promoting continuous economic growth world-
wide. Additionally, SDGs 12 and 13 focus on tackling climate change through 
sustainable consumption and production patterns. This includes reducing waste 
and promoting renewable energy use to minimize carbon emissions. The road 
to recovering from the escalating emission rates will undoubtedly be long and 
challenging. It calls for resilient leaders and scholars worldwide to seek innovative 
solutions while assessing the actual impact of CO2 . emissions on GDP per capita. 
Unfortunately, despite considerable efforts to investigate the link between industrial 
energy consumption and economic growth, the current body of research regarding 
the impact of CO2 . emissions on the shift of GDP per capita is considerably narrow 
in focus (Lee et al., 2022; McGinley et al., 2022). The authors have observed the 
role of green technology implementation decisions (GTIDs) in reducing overall 
carbon emissions. However, they failed to establish a direct relation between 
emissions and GDP per capita, which serves as a determinant of the prosperity 
of countries based on their economic growth. This further necessitates future 
research to thoroughly examine the complex relationship between CO 2 . emissions, 
green technology implementation, and GDP per capita. Realizing the key factors 
influencing GDP per capita is crucial for governments and policymakers to make 
well-informed decisions that prioritize both economic growth and environmental 
sustainability. 

Traditional econometric models have provided initial insights into the dynamics 
between different types of emissions and economic growth. However, these models 
cannot often capture complex, nonlinear relationships inherent in large datasets, 
especially datasets with a larger number of null and missing values. Despite poten-
tial loopholes, in recent years, deep learning has emerged as a widely acclaimed 
methodology for energy forecasting tasks and energy demand predictions (Kim 
& Cho, 2021). Additionally, integrating eXplainble Artificial Intelligence (XAI) 
tools such as SHAP (SHapley Additive exPlanations), ELI5 (Explain Like I’m 
5), and LIME (Local Interpretable Model-agnostic Explanations) with traditional
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forecasting have paved the way to a more transparent and reliable automated 
decision-making system (Shajalal et al., 2022). These XAI tools provide insights 
into how complex intelligent models arrive at their predictions, allowing researchers 
to understand the underlying factors and potential biases in the decision-making 
process (Roy & Tipu, 2024). Therefore, this study aims to examine the relationship 
between CO 2 . emissions considered an economic indicator and evaluate its actual 
impact on GDP per capita. The main contributions of our research are as follows:

• This study employs a comprehensive and robust data preprocessing technique 
designed to address complex datasets with significant numbers of missing and 
null values.

• We analyze the performance of different advanced deep learning algorithms to 
identify the optimal predictive model for GDP analysis.

• This study proposes a novel stacked deep learning model to effectively make 
predictions on GDP per capita using a wide range of socioeconomic and 
environmental variables.

• We aim to analyze the intricate correlation between emissions and sustainable 
economic advancement using an XAI framework. Additionally, our objective 
is to determine whether the economic well-being and progress of a nation 
are indeed dependent on the unintentional emission of harmful gases into the 
atmosphere. 

The remaining part of this research is organized as Sect. 2 highlights the recent 
endeavors in the realm of ensuring a sustainable economy while minimizing carbon 
emissions. Section 3 briefly mentions the proposed methods and materials utilized 
in this study. Section 5 wraps up the study by summarizing the overall impact of our 
research followed by Sect. 4 which is designed to record and discuss the findings to 
be identified during the research process. 

2 Literature Review 

The significance of ensuring the sustainability of environmental well-being has 
emerged as a critical policy priority on a global scale. As a result, policymakers 
are recognizing the urgent need for coordinated efforts to protect the planet for 
future generations. S. Li et al. investigated the driving factors of CO 2 . emission 
with machine learning (ML) (Li et al., 2021). They utilized various linear, nonlinear 
ensemble ML models to find the superiority of K-Nearest Neighbors (KNNs) with 
the best sensitivity score. With the number of neighbors set to 2, the root mean 
square errors (RMSEs) are 0.1750 and 0.3641 for the training set and testing 
sets, respectively. Over the years, researchers are trying to model the relationship 
between carbon emissions and GDP growth. In this context, many studies hypothe-
sized the intricate effect of CO 2 . emission on economic growth on a country basis for 
China, India, and the USA. Azam et al. utilized the World Development Indicator 
(WDI) dataset and concluded that all the variables are significantly influencing
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economic growth (The World Bank, 2024; Azam et al., 2016). However, applying 
all 1437 features to train an ML model significantly increases the model complexity 
and training time. Subsequently, K. Jayanthakumaran linked CO 2 . emissions, energy 
consumption, trade, and income together and presented a comparative analysis 
between China and India (Jayanthakumaran et al., 2012). 

As mentioned earlier, the available literature on this subject matter reveals 
that a limited number of studies have addressed this particular area. However, 
it is important to note that the majority of even these limited previous studies 
have primarily focused on energy consumption as the main measurable criterion. 
Research has shown that the impact of different forms of energy consumption on 
both economic growth and emissions varies significantly among different groups of 
countries (Antonakakis et al., 2017). Furthermore, these studies have predominantly 
analyzed the impact of energy consumption on the alteration of absolute CO 2 . 

emissions. This might be misleading and have the potential to generate false 
empirical findings owing to the presence of simultaneity bias and heterogeneity. 
To confront the aforementioned concern, W. J. Burnett and others employed the 
environmental Kuznets curve (EKC) and Vector Auto-Regressive (VAR) as dynamic 
econometric models (Burnett et al., 2013). Their findings indicated an inverted U-
shaped relationship between environmental degradation and economic growth in 
the United States of America. The study primarily aimed to establish a correlation 
between the power consumption of the USA and sustainable economic growth. 
However, it is noteworthy that this study also addressed the limited impact of 
CO 2 . emissions as a reliable indicator of sustainable growth in a nation’s economic 
progress. The findings imply that the influence of economic growth on emissions 
in the United States is primarily observed in emission intensities, as opposed to 
absolute emissions in terms of CO 2 . emissions (in kilotons). The practical validity of 
the EKC for various pollutants has been questioned in recent studies due to the lack 
of theoretical grounding behind the reduced-form relationship. Furthermore, the 
insufficiency of the EKC model in explaining the relationship between income and 
production-based emissions (PBEs) is evident in a comprehensive study conducted 
by a group of researchers in the EU region for the period 1970–2017 (Frodyma et al., 
2022). The results of these studies can be attributed to the fact that CO 2 . emissions 
are often viewed as a byproduct of economic activity rather than a leading indicator 
of sustainability. In brief, the aforementioned thorough discussion indicates a 
noteworthy limitation of empirical studies about the influence of environmental 
degradation on economic growth within nations characterized by higher CO 2 . 

emissions.
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3 Methodology 

3.1 Overview of the Proposed Methodology 

In this study, we propose a novel methodology to analyze the relationship between 
various emission-based macroeconomic indicators, especially CO 2 . emissions, and 
sustainable economic development indicated by GDP per capita, using advanced 
deep learning techniques. Figure 1 illustrates the overview of the proposed 
approach. 

We have implemented a comprehensive preprocessing technique to ensure 
compatibility with the deep learning models. Subsequently, we investigate various 
sequential deep learning models such as LSTM (Long Short-Term Memory), Bi-
LSTM (Bidirectional Long Short-Term Memory), GRU (Gated Recurrent Unit), 
and a novel hybrid Multi-Recurrent Fusion (MRF) model to capture complex 
temporal dependencies and bidirectional context in the time series data. The model’s 
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MAE 

MSE 
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Fig. 1 Illustration of the proposed methodology



152 P. Roy et al.

performance is evaluated against standard performance measures to validate the 
robustness of the obtained results. To enhance the transparency and reliability of 
the model’s prediction outcome, this study encompasses Explainable AI (XAI) 
techniques such as SHAP (SHapley Additive exPlanations) and ELI5 (Explain 
Like I’m 5). These methods ensure qualitative insights, leading to a comprehensive 
understanding of the interplay between economic growth and environmental factors. 

3.2 Data Preprocessing and Descriptive Statistics 

This study employs the filter and imputation-based data processing (FIDP) method 
(Hasan et al., 2024) to prepare the dataset of interest. It merges two different 
datasets, denoted by dataset 1 and dataset 2, both of which originated from the World 
Bank (Hui, 2020; Karim,  2024; The World Bank, 2024). Dataset 1 contains all 
indicators and countries across multiple years, while dataset 2 or countries_metadata 
dataset is mainly utilized to validate the country names in dataset 1 and for accessing 
some relevant information. Figure 2 illustrates the full process of the FIDP method 
where dataset 1 is pivoted before combining with dataset 2. The country names 
of the merged dataset are validated, and years with more than 56,500 samples are 
chosen for the final dataset. A few relevant keywords (“co2," “carbon," “emissions," 
“energy," “gdp," and “gross") are selected based on the aim of this study and relevant 
previous studies. The indicators in the dataset are further filtered by these keywords, 
and following two conditional null values, removal steps, and median imputation 
method, the final dataset is prepared. 

Dataset 1 Dataset 2Pivot dataset Merge 

(7,578,806 × 6) (248 × 6)(16,038 × 1,439) 

Filter Valid Countries 

Filter Years 
with >= 56,500 data 

Keyword-based 
Indicator Selection 

(10,350 × 184) 

Conditional dropping 
of Null-values 

Median ImputationFinal 
Dataset 

(7,350 × 83) 

(14,209 × 1,441) 

(7,350 × 83) 

Fig. 2 Flow-chart of dataset preparation and handling null values
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Table 1 Description of the 
datasets 

Dataset 1 Dataset 2 Final dataset 

Row 7,578,806 248 7350 

Column 6 6 83 

Country name 263 248 147 

Region 0 8 7 

Indicator name 1437 1 80 

Year 61 0 50 

Table 1 lists various properties of the two base and final datasets. The number of 
unique countries, regions, indicator names, and years are tabulated for each dataset. 

The final dataset has a total of 7350 samples and 80 indicators. For predicting 
the GDP and avoiding overfitting, some indicators that are similar or a derivative 
of the target variable are removed. Finally, we have 26 features and a target 
variable GDP per capita to train and test the machine learning models. The 
selected features and the target variable are tabulated in Table 2 along with their 
statistics. The table presents various statistics of each feature, for example, the 
minimum, maximum, or average value. The standard deviation of the values for 
each indicator is also listed. Furthermore, the kurtosis and skewness values are 
provided. Kurtosis provides information about the shape of a frequency distribution, 
namely, platykurtic (kurtosis <. 3.0), mesokurtic (kurtosis = 3.0), and leptokurtic 
(kurtosis >. 3.0). Skewness is used to estimate the asymmetry in a probability 
distribution which can be of three (3) types—normal distribution (skewness = 0), 
positive or right-skewed (skewness >. 0), and negative or left-skewed (skewness 
<. 0). From Table 2, we observe that the target variable (GDP per capita) is 

leptokurtic, right-skewed, and ranges between $57.5891 and $118823.6484 with 
a mean of $7992.2234 and standard deviation of $13648.1364. Understanding these 
statistics highlights the necessity of feature scaling before evaluating the deep 
learning models for better performance. 

3.3 Description of the Deep Learning Models 

This study employs four (04) deep learning models—LSTM, Bi-LSTM, GRU, and 
MRF. Each model is detailed in this subsection. 

3.3.1 Long Short-Term Memory (LSTM) 

LSTM is a type of recurrent neural network (RNN) that addresses the limitations of 
traditional RNNs due to the vanishing gradient problem (Sherstinsky, 2020; Rabbi 
et al., 2022). The model is equipped with memory cells and gating mechanisms
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allowing it to maintain and utilize long-term context effectively. LSTM is good for 
handling problems with sequential data and time series forecasting. 

3.3.2 Bidirectional Long Short-Term Memory (Bi-LSTM) 

Bi-LSTM model extends the capabilities of traditional LSTMs by processing input 
sequences in both forward and backward directions (Datta et al., 2021). Bi-LSTM 
can understand and predict sequential patterns more effectively due to having access 
to contextual information from both the past and the future. This enables the model 
to offer a more comprehensive understanding of complex data. 

3.3.3 Gated Recurrent Unit (GRU) 

GRU is another variant of RNN. It simplifies the LSTM architecture by combining 
the forget and input gates into a single update gate and using a reset gate to control 
the flow of information (Yamak et al., 2020). This design reduces computational 
complexity while effectively managing long-term dependencies and mitigating the 
vanishing gradient problem. GRU is a popular choice in deep learning applications 
where a balance between complexity and capability is desired, for example, 
sequence prediction. 

3.3.4 Proposed MRF Model 

This study proposes an MRF model to predict sustainable economic growth based 
on various economic indicators and emission metrics. The architecture of the 
proposed MRF model is shown in Table 3. 

Table 3 Architecture of the proposed MRF model 

Layer (type) Output shape Param # Connected to 

input_1 (InputLayer) (None, 20, 26) 0 [] 

gru (GRU) (None, 32) 5760 [‘input_1[0][0]’] 

lstm (LSTM) (None, 32) 7552 [‘input_1[0][0]’] 

bidirectional (Bidirectional) (None, 64) 15104 [‘input_1[0][0]’] 

concatenate (Concatenate) (None, 128) 0 [‘gru[0][0]’, ‘lstm[0][0]’, 
‘bidirectional[0][0]’] 

dense (Dense) (None, 32) 4128 [‘concatenate[0][0]’] 

dense_1 (Dense) (None, 1) 33 [‘dense[0][0]’] 

Total params: 32,577 

Trainable params: 32,577 

Non-trainable params: 0
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This hybrid sequential model integrates various RNNs for its processing tasks. 
The input layer specifies the data input shape with 20 time steps for all 26 features. 
The multi-brunched structure of MRF incorporates GRU, LSTM, and Bi-LSTM as 
its distinguished layers. LSTMs are effective in capturing long-term dependencies 
by maintaining a memory cell. Additionally, the bidirectional layers of the Bi-LSTM 
model process the input sequence from both forward and backward directions, 
capturing context from both ends, thus enhancing the model’s ability to understand 
the sequence comprehensively. To handle the complexity of the model, MRF 
utilizes the strength of GRU. GRUs are known for capturing these dependencies 
in sequences without the complexity of LSTMs. The concatenation layer combines 
the outputs of the GRU, LSTM, and Bi-LSTM layers. This combination harnesses 
the strengths of each type of the used recurrent layer. A fully connected dense layer 
is applied to learn complex representations from the concatenated outputs of the 
previous layers and make the final prediction. In brief, this model is a powerful and 
versatile fusion of RNN-based sequential model, designed to effectively handle and 
predict sequences by combining multiple advanced recurrent and dense layers. 

3.4 Explainable AI Techniques 

Explainable Artificial Intelligence (XAI) refers to techniques that make AI decisions 
understandable to humans. By explaining how AI models work, XAI helps to build 
trust, ensure ethical AI use, and meet regulatory requirements. This study uses two 
(2) XAI tools, namely, SHAP and ELI5. 

3.4.1 SHAP 

SHAP (SHapley Additive exPlanations) is a tool for interpreting machine learning 
models (van Zyl et al., 2024). Based on cooperative game theory, it assigns 
importance score to features for each prediction ensuring consistent contributions 
and offering local and global interpretability (Hassan et al., 2023). SHAP can work 
with any model and is often used to identify key features and enhance transparency. 

3.4.2 ELI5 

ELI5 (Explain Like I’m 5) is another XAI tool used for explaining machine learning 
models and their predictions in an easy-to-understand manner (Sultan et al., 2023; 
Kawakura et al., 2022). It presents simple and intuitive explanations, supports a wide 
range of models and frameworks, and provides detailed insights. ELI5 is used to 
identify key features and enhance transparency making AI systems more trustworthy 
and compliant with regulatory requirements.
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3.5 Performance Metrics 

As our proposed task is a regression problem, we choose some frequently used and 
accurate indicators for this task. The metrics are listed in the subsequent subsections. 

3.5.1 R 2 . Score 

The proportion of the variation in the dependent variable that is predictable from 
the independent variable is called the coefficient of determination which is denoted 
by R 2 . (pronounced R-squared). This measure is frequently used to evaluate the 
result of a dependent variable of a model (Hasan et al., 2023; Maarif et al., 2023). 
The R 2 . score ranges from 0 to 1, with 1 meaning the model perfectly captures the 
relationship between dependent and independent variables. The formula to calculate 
R 2 . can be shown as (1), where RSS is the sum of squares of residuals and TSS is 
the total sum of squares. 

.R2 = 1 − RSS

T SS
(1) 

3.5.2 Mean Absolute Error (MAE) 

MAE measures the average of absolute errors between paired observations. It helps 
to understand the significance of errors and is commonly used for regression tasks 
(Maarif et al., 2023; Abedin et al., 2021). It is resistant to outliers and offers 
information about the error size. MAE is calculated as the average of absolute errors 
as shown in (2) where yi . is the actual value and ŷi . is the predicted value. 

.MAE = 1

n

n∑

i=1

∣∣yi − ŷi

∣∣ (2) 

3.5.3 Mean Squared Error (MSE) 

MSE or mean squared deviation (MSD) measures model performance by penalizing 
larger errors more severely. A lower MSE indicates better model accuracy, with 
predictions closer to true values. MSE is always nonnegative and ranges from zero 
(0) to infinity. It is frequently used in literature along with RMSE (Chukwunonso 
et al., 2024). MSE is calculated as the average of squared errors as shown in (3). 

.MSE = 1

n

n∑

i=1

(yi − ŷi )
2 (3)
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3.5.4 RMSE 

RMSE or root mean squared deviation (RMSD) is calculated by taking the square 
root of MSE. Similar to MSE, its values range from zero to infinity, with lower 
values indicating better performance. However, unlike MSE, RMSE has the same 
units as the predicted values, which makes it easy to interpret. It is one of the 
most commonly used metrics in regression tasks and has been used extensively in 
literature (Li et al., 2021; Amarpuri et al., 2019). The RMSE can be calculated from 
the formula shown in (4). 

.RMSE = √
MSE =

√√√√1

n

n∑

i=1

(yi − ŷi )2 (4) 

4 Result Analysis 

4.1 Preliminary Data Exploration 

An initial examination of the dataset is presented in this subsection, aiming to 
uncover fundamental patterns and relationships between the variables. Exploratory 
data analysis (EDA) unveils the inherent characteristics of the dataset being 
examined and provides valuable guidance in making valid assumptions. Various 
EDA techniques, such as data visualization, bubble charts, and feature heatmaps, 
can help researchers identify patterns, outliers, and potential relationships within 
the dataset. The results presented in this subsection provide us with a comprehensive 
overview of the dataset and serve as a foundation for further analysis and modeling. 

From Fig. 3, the intrinsic relationship and correlation between the indicators 
can be visualized. For instance, CO2_Em_Per_Capita, which refers to the amount 
of emissions produced by an average individual in a country, tends to potentially 
impact economic development and vice versa. AS_CO2_damage_Current_USD, 
which represents the reduction in adjusted savings (USD) caused by CO 2 . emissions 
from various sources, significantly influences the target variable, GDP per capita. 
These findings suggest that the economic impact of CO 2 . emissions plays a crucial 
role in determining the overall savings and sustainable financial well-being of a 
country. Thus, countries with higher values for emission-triggered damages are 
less likely to have the capacity to sustain an upward trend in GDP per capita. 
Furthermore, the correlation matrix indicates that the majority of emissions stem 
from the consumption of liquid fuels (0.96). These findings highlight the importance 
of considering environmental factors when analyzing the impact of emissions on the 
sustainability and productivity of a nation. 

Figure 4 depicts the change in GDP per capita for each geographic region 
over a certain period. The visualizations highlight regional differences in economic 
growth patterns over the last five decades. While some regions, like East Asia and
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Fig. 3 Correlation between the indicators in final dataset 

Fig. 4 Region-wise change in GDP per capita 

Pacific and North America, show consistent and substantial growth, others (like sub-
Saharan Africa) exhibit more modest increases. The shaded confidence intervals 
emphasize the variability and inherent uncertainty associated with these economic 
measures, thereby providing a more nuanced understanding of regional economic 
trends. 

Bubble charts are used to present compact information about the dataset under 
study. Here, different colors of the bubbles denote different geographical areas, and 
the size of the bubbles denotes the total emission. Figures 5 and 6 illustrate the 
regional information for GDP per capita, renewable energy consumption, and CO 2 . 

emission. Regions with higher GDP per capita tend to have higher CO 2 . emissions, 
which is visible as many of the larger bubbles are toward the right and higher up on
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Fig. 5 Country-wise GDP per capita vs. CO 2 . emission analysis 

Fig. 6 Country-wise renewable energy consumption vs. CO 2 . emission analysis 

the chart. Additionally, from the colorization, we can infer that carbon emissions are 
the highest in North America. The second chart reveals that higher renewable energy 
consumption does not necessarily correlate with lower CO 2 . emissions as some 
regions with high renewable energy consumption also have high CO 2 . emissions, 
suggesting a transition phase or an energy mix that still includes significant fossil 
fuel use. These charts together provide a comprehensive view of how economic 
growth and renewable energy adoption impact CO 2 . emissions across different 
regions. While higher GDP per capita is somehow associated with increased CO 2 . 

emissions, the adoption of renewable energy shows a mixed relationship, indicating 
that further exploration is necessary before reaching any conclusions. 

Figure 7 further validates the first bubble chart (Fig. 5). It analyzes the correlation 
between CO 2 . emissions and GDP per capita across different income groups. It 
is noticeable that members of the higher income group appear to significantly 
contribute to the exacerbation of the current concerns of carbon emissions. The 
upward black dashed line with the confidence interval suggests a general trend 
where GDP per capita initially rises with increasing CO 2 . emissions. 

The bubble chart presented in Fig. 8 depicts the scenario for the South Asian 
region. Notably, India is the top contributor to carbon emissions and has a higher 
GDP per capita value. Inversely, Bhutan, located at the leftmost corner of the chart, 
is the carbon-negative country with the least absolute emission rate (in kt). 

The GDP per capita trend analysis over the study period provides a compre-
hensive view of the economic growth trajectory. Figure 9 illustrates the distinct 
phases of growth, stagnation, and recovery, reflecting economic cycles and external 
influences from 1971 to 2019 in Bangladesh. The image shows that despite several 
resource limitations, Bangladesh has managed to maintain an upcoming GDP trend.
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Fig. 7 CO 2 . emission vs. economic growth based on income group 

Fig. 8 GDP vs. CO 2 . emission for South Asian countries 

The relationship between CO 2 . emissions and GDP per capita is clearly illustrated 
in Fig. 10. We observe a clear positive correlation between CO 2 . emissions and GDP 
per capita, indicating that as the GDP per capita increases, so does the level of 
CO 2 . emissions. This image suggests that countries with higher economic growth 
are predominantly the main contributors to the increasing global carbon emission 
rate. 

4.2 Results of Deep Learning Models 

This section records the performance of the deep learning classifiers utilized in this 
study. The experimental results are tabulated in Table 4. The proposed MRF model 
showcases its exceptional predictive capabilities by achieving the highest R 2 . score
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Fig. 9 Trend in the economic growth for Bangladesh 

Fig. 10 Correlation between CO 2 . emission and GDP per capita 

Table 4 Performance of the 
deep learning models 

Algorithm R 2 . MAE MSE RMSE 

LSTM 0.7262 0.0377 0.0043 0.0654 

Bi-LSTM 0.7214 0.0336 0.0043 0.0659 

GRU 0.7448 0.0315 0.0040 0.0631 

Proposed MRF 0.8331 0.0297 0.0026 0.0510 

As the R2 is high and the error metrics are low of the
bold row then it is significant than others

of 83.31%, followed by GRU (74.48%), LSTM (72.62%), and Bi-LSTM (72.14%) 
models.
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Fig. 11 Comparison of the model performance 

Fig. 12 Actual and 
prediction value mapping for 
MRF 

Moreover, it is evident from the table that the MRF model outperforms others 
by consistently maintaining the lowest error rates. On the other hand, the Bi-
LSTM model has been proven to have the highest error rate among all the models. 
These results demonstrate the superiority of the proposed MRF model in predicting 
the change in the target variable, GDP per capita, and outperforming the other 
traditional models. The following figure graphically illustrates the results of the 
above table. Figure 11a presents a comparison between the R 2 . scores of the deep 
learning models. The bar chart depicted in Fig. 11b displays the error rates for 
different models. The figure visually highlights the enhanced performance and 
robustness of our proposed model with minimal error rates, reinforcing its potential 
for making accurate predictions.
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Furthermore, Fig. 12 illustrates the predictions on unseen data for the MRF 
model. The orange line representing the prediction closely aligns with the actual 
data points, thus demonstrating the efficacy of the model in generating accurate 
predictions. Additionally, the consistent alignment between the predicted and actual 
data points demonstrates the robustness of the MRF model in capturing underlying 
patterns within the data. These findings indicate the model’s effectiveness in 
generalizing to new data and its potential for real-world applications. 

4.3 Interpreting the Results with Explainable AI 

In this part of the study, we delve into the insights gained from our analysis using 
explainable AI (XAI) techniques. The utilization of XAI tools in our deep learning 
models facilitates the explanation of intricate associations between carbon dioxide 
(CO 2 .) emissions and GDP per capita. This consequently enhances the transparency, 
reliability, and interpretability of our research outcomes. 

Figure 13 offers a detailed analysis of the features impacting the model’s output 
using SHAP (SHapley Additive exPlanations) values, which help explain the impor-
tance and effects of each feature in the model. The x-axis represents the mean impact 
score on the target variable, while the y-axis represents the features in descending 
order of importance. The relevance of a feature in the ultimate prediction increases 
proportionally with the higher value of the impact score. The color in the leftmost 
beeswarm plot signifies the feature value, with red denoting high and blue denoting 
low. Additionally, we can gain a comprehensive understanding of the redundant 

Fig. 13 SHAP plot for feature importance
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features or those that contribute minimally to the figure. CO2_Em_Per_Capita has 
the highest SHAP mean impact score, and hence, it is the most relevant feature con-
tributing to the model outcome. Moreover, features such as CO2_Em_Per_Capita, 
AS_CO2_damage_Current_USD, CO2_Em_2010_GDP, AS_CO2_damage_GNI, 
and AS_En_Dep_Current_GDP have significant influence on the ultimate predic-
tion. On the other hand, the impact of features like methane emissions and N 2 .O 
emissions is comparatively lower or negligible. The points that are shifted toward 
the right, with higher SHAP values, indicate more significant positive contributions, 
whereas those shifted toward the left, with lower SHAP values, represent negative 
contributions. The figure on the left side illustrates that CO2_Em_Per_Capita 
exhibits the highest average SHAP value and also demonstrates a wide distribution 
of impacts, indicating variability in its influence on different predictions. The anal-
ysis further reveals that CO2_Em_Per_Capita, AS_CO2_damage_Current_USD, 
and AS_En_Dep_Current_GDP have a positive impact on improving the model 
prediction. Conversely, CO2_Em_2010_GDP and AS_CO2_damage_GNI have an 
inverse impact. The extensive XAI analysis emphasizes the critical role of these 
emissions’ metrics in assessing the growth of GDP per capita which can be further 
validated from the SHAP bar plot presented at the top right corner. It highlights the 
top ten (10) prominent features with their respective SHAP values. CO 2 . emissions 
(kt) are shown to have a relatively insignificant mean SHAP value compared to 
other features such as CO2_Em_Per_Capita, AS_CO2_damage_Current_USD, and 
CO2_Em_2010_GDP. The lower right waterfall plot depicts individual feature 
influence for a random specific observation and breaks down the contribution of 
each feature to a single prediction. While CO2_Em_Per_Capita contributes the most 
significant positive impact (+0.07) to the final prediction, negative contributions 
come from features like CO2_Em_LFuel_kt_Con and CO 2 . emissions (kt), reducing 
the prediction by -0.02 and -0.01, respectively. These insights suggest that CO 2 . 

emissions (kt) contribute less on average to the model’s accurate predictions. 
On the local level, individual feature significance to the final prediction for 

three (03) random observations can be visualized from Fig. 14. The collective 

Fig. 14 SHAP force plot
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representation of all three plots demonstrates the intricate interaction of multiple 
features that impact the predictions of the model. CO2_Em_Per_Capita consis-
tently appears as a dominant positive factor, suggesting its significant role in 
determining the model output. Conversely, features like CO2_Em_LFuel_kt_Con, 
N2O_Em_Energy_CO2, and CO 2 . emissions (kt) frequently push the predictions 
lower. The inconsistent presence of these features is noteworthy, suggesting that 
while they may have some influence, they are not the primary drivers in the 
model’s ultimate predictions of economic growth. In contrast, previously men-
tioned features such as CO2_Em_Per_Capita, AS_CO2_damage_Current_USD, 
and CO2_Em_2010_GDP appear to have a significant influence. 

In Fig. 15, a clear visual of the relationship between the top five (05) features 
derived from Fig. 13 can be observed. The graphical representation demonstrates 
a clear upward correlation between features shown in (a), (b), and the target. 
High values of these features correlate with higher SHAP values, indicating an 
overall positive impact. In contrast, features depicted in (c) and (d) show a negative 
relationship with economic growth, as indicated by the downward trend in the graph. 
This suggests that higher values of the features are associated with lower SHAP 
values, indicating a negative impact on the target variable, GDP per capita. These 
findings provide robust evidence to support our initial hypotheses. Interestingly, a 
flat line distribution for CO 2 . emissions (kt) is notable. Most points have SHAP 
values close to zero, indicating a minimal effect on the model’s prediction. 

A simple breakdown of the overall impact of each feature can be observed from 
Table 5. The table outlines the significance of each individual feature in making 
the final prediction, providing further evidence to support the results obtained 
from SHAP. The table presents the importance and tolerance value for each of 
the features in descending order of importance. For example, the recorded values 
indicate that CO2_Em_Per_Capita is the most influential feature. The numeric 
value of 0.0791 denotes the tolerance value for CO2_Em_Per_Capita. This explains 
the influence on the shift in the model’s outcome if the feature is altered, even 
in the slightest. The analysis conducted with the ELI5 technique reveals that the 
per capita CO 2 . emissions (CO2_Em_Per_Capita), the economic damage caused by 
CO 2 . (AS_CO2_damage_Current_USD), and the CO 2 . emissions concerning GDP 
(CO2_Em_2010_GDP) have the most substantial impact, while various emission 
metrics such as CO 2 . emissions (kt), methane emissions, and N 2 .O emissions have 
minimal influence on the results. Based on these results, it is evident that various 
emission metrics, particularly CO 2 . emissions (kt), have a relatively minor influence 
on the predictive accuracy of the model. These findings strongly defy the traditional 
EKC hypothesis and validate our previous findings. Therefore, policies aimed 
at reducing the intensity of CO 2 . emissions can be more effective in achieving 
sustainable economic growth compared to strategies focused solely on reducing 
overall average emissions. By implementing policies that specifically target the 
reduction of CO 2 . intensity, countries can prioritize industries and sectors with 
the highest emissions, leading to a more targeted and efficient approach toward 
sustainable economic growth. This further implies that it is possible to reduce
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Fig. 15 SHAP dependency plot
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Table 5 Feature importance 
analysis with ELI5 

Weight Feature indicator code 

1.4747 ±. 0.0791 CO2_Em_Per_Capita 

0.5623 ±. 0.0650 AS_CO2_damage_Current_USD 

0.5158 ±. 0.0571 CO2_Em_2010_GDP 

0.0485 ±. 0.0045 AS_CO2_damage_GNI 

0.0445 ±. 0.0073 AS_En_Dep_Current_GDP 

0.0330 ±. 0.0037 CO2 emissions (kt) 

0.0293 ±. 0.0063 CO2_Em_SFuel_kt_Con 

0.0254 ±. 0.0059 Methane_Em_kt_CO2 

0.0235 ±. 0.0056 CO2_Em_PPP_GDP 

0.0191 ±. 0.0026 N2O_Em_CO2 

0.0180 ±. 0.0079 Ag_Methane_Em_Total 

0.0127 ±. 0.0031 CO2_Em_LFuel_kt_Con 

0.0100 ±. 0.0018 Methane_Em_Energy_CO2 

0.0097 ±. 0.0035 AS_En_Dep_GNI 

0.0094 ±. 0.0033 Ag_Methane_Em_CO2 

0.0089 ±. 0.0038 CO2_Em_LFuel_Total_Con 

0.0067 ±. 0.0026 CO2_Em_GFuel_kt_Con 

0.0058 ±. 0.0005 Methane_Em_1990 

0.0058 ±. 0.0019 CO2_Em_GFuel_Total_Con 

0.0053 ±. 0.0036 CO2_Em_SFuel_Total_Con 

0.0048 ±. 0.0004 Ag_NOxide_Em_Total 

0.0040 ±. 0.0009 N2O_Em_Energy_CO2 

0.0035 ±. 0.0016 N2O_Em_Energy_Total 

0.0027 ±. 0.0012 N2O_Em_1990 

0.0019 ±. 0.0009 REnergy_Con_Total 

0.0015 ±. 0.0008 Ag_N2O_Em_CO2 

different types of emissions on average and maintain sustainable growth in the 
economy at the same time as both show no positive long-term relationship. 

5 Conclusion and Future Work 

This study primarily examines the role of carbon dioxide emissions as an indicator 
of a nation’s sustainable economic growth, to determine the influence of various 
emission metrics on sustainable economic development. Time series data analysis 
is challenging due to the risk of misleading behavior and the potential for false 
empirical findings resulting from simultaneity bias and heterogeneity. We analyzed 
the econometric factors inherent in the prediction of sustainable GDP per capita. 
This study presents a hybrid sequential MRF model designed to capture complex 
patterns in time series data. The proposed MRF model outperforms traditional deep 
learning models, achieving minimal errors of 0.0297, 0.0026, and 0.0510 for MAE,



170 P. Roy et al.

MSE, and RMSE, respectively. To assess the impact of emission metrics on GDP per 
capita, the proposed pipeline incorporates advanced explainable AI tools, namely, 
SHAP and ELI5. The comprehensive analysis demonstrated that different types of 
emissions have a minimal impact on predicting GDP, indicating that other factors 
may be more significant. This finding supports the study’s initial hypothesis and 
challenges the traditional EKC hypothesis, which posits that total average CO 2 . 

emissions (kt) are a primary driver of sustainable economic growth. Only a limited 
number of studies have previously identified emissions intensity, such as CO 2 . 

emissions per capita, as a more significant indicator than total CO 2 . emissions. These 
studies often overlooked this crucial aspect, which our research has thoroughly 
investigated and substantiated with clear evidence. This suggests that factors like 
technological advancement and resource efficiency, which reduce per capita carbon 
emissions, are crucial for sustainable economic growth. These findings provide a 
robust confirmation, offering a more accurate and evidence-based understanding of 
the factors influencing GDP. Additionally, the analysis indicates that the relationship 
between economic growth and environmental degradation is more complex than 
previously thought, highlighting the need for further research in this area. Future 
studies should explore a broader range of variables affecting sustainable economic 
growth, such as social, environmental, and governance factors. Implementing a 
holistic approach toward understanding economic dynamics will enable us to 
develop more resilient and effective economic policies that can navigate various 
challenges and uncertainties. A comprehensive investigation into these elements 
will yield deeper insights and foster more effective strategies for achieving long-
term economic sustainability. 
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BLDAR: A Blending Ensemble Learning 
Approach for Primary Energy 
Consumption Analysis 

Abdullah Haque, Tuhin Chowdhury, Mahmudul Hasan, 
and Md. Jahid Hasan 

1 Introduction 

Energy captured directly from natural resources like sunlight, wind, falling water 
(hydropower), and organic matter (biomass) is called primary energy. This also 
includes nonrenewable resources like coal, oil, and natural gas. The progress 
of humanity and the world depends heavily on primary energy. Primary energy 
supplies the necessities of modern life, such as transportation, heating, industrial 
activities, and the production of electricity (Martínez et al., 2019). 

Primary energy can be classified into two types: primary fuels and primary 
energy flows. Primary fuels include fossil fuels (oil, coal, and natural gas) and 
nuclear fuels. Renewable energy sources include the sun, wind, hydropower, 
biomass, etc. The majority (about 95%) of global primary energy comes from 
primary fuels, with the rest from primary energy flows. Fossil fuels, nuclear energy, 
and renewable energy sources account for roughly 75%, 6%, and 14% of the 
world’s primary energy supply, respectively (Cheekatamarla et al., 2024). The 
absolute primary energy consumption in developing countries is 58% of the level in 
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developed countries (Komarova et al., 2022). In 2021, the world’s primary energy 
consumption reached over 595 exa-joules. China is the world’s greatest consumer 
of primary energy, followed by the United States, the Russian Federation, and India. 
Fossil fuels contributed to more than 80% of global primary energy consumption. 
Also, oil accounted for more than 30% of total world energy consumption in 
2021 (Aydin & Karakurt, 2023). However, the environmental effects of energy 
consumption are severe. Overall carbon dioxide emissions and primary energy 
consumption have steadily increased. Global environmental challenges caused by 
energy consumption not only impede economic progress but also endanger human 
existence and development (Wei & He, 2017). 

Global warming and catastrophic disasters are wreaking havoc on Earth these 
days. Energy conservation has been a top issue due to social development chal-
lenges. So, energy consumption prediction is an important instrument for effective 
building energy management, guiding energy policy, and service distribution. 
Despite the use of modern technologies, reliable energy consumption prediction 
remains challenging due to various affecting factors (Liu et al., 2023). A variety 
of behavioral factors influence energy consumption trends, including consumer 
preferences, lifestyle changes, and societal standards, which are difficult to rep-
resent in typical prediction models (Zhou & Yang, 2016). Rapid improvements 
in renewable energy, storage technologies, and energy efficiency can drastically 
alter future energy consumption patterns, making long-term forecasting increasingly 
difficult (Ahmad et al., 2021). With the growing emphasis on flexibility and 
elasticity in building energy usage, accurate building energy prediction is essential 
for sustainable development. Nonetheless, difficulties with choosing appropriate 
input and algorithms continue, as does finding a balance between computation 
time and forecast accuracy (Zhang et al., 2024). In Amiri et al. (2023), they 
use a Machine Learning (ML) algorithm to forecast the energy consumption of 
commercial and residential buildings. Their concepts helped to improve municipal 
scenario planning by providing a more spatially detailed picture of future energy 
consumption. Another study categorizes the most pertinent literature according to 
ML approaches, energy type, prediction type, and application area. It highlights 
the main ML technologies and assesses their performance in forecasting energy 
usage. This research continues by discussing the trends and efficacy of these 
models, emphasizing considerable increases in accuracy and performance using 
unique hybrid and ensemble prediction models (Mosavi & Bahmani, 2019). Another 
approach described helps to ensure the proper implementation of energy policy by 
giving accurate energy consumption predictions. These predictions affect capital 
investment, environmental quality, revenue analysis, and market research manage-
ment, all while ensuring supply security (Ekonomou, 2010). The expansion of a 
nation’s economy and its energy usage are inextricably linked. Insufficient energy 
supply has resulted in large deficits at both the household and aggregate levels 
worldwide. This shortage is sometimes called “energy poverty” in the literature, 
particularly at the micro level, as households’ energy demands are unfulfilled 
(Gyamfi et al., 2024). The technical contributions of this chapter are as follows:
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• We design an ML-driven primary energy consumption prediction process to 
analyze consumption based on sustainable development indicators.

• We develop a blending ensemble model, BLDAR, which combines Least Abso-
lute Shrinkage and Selection Operator (LASSO), Decision Tree (DT), AdaBoost 
(ADB), and Random Forest (RF) regressors.

• We provide a comparative analysis of ML algorithms for primary energy 
consumption prediction and identify the most suitable model to design an energy 
prediction system.

• To determine model robustness, generalization ability, and the impact of data 
size, we evaluate the model’s performance using 80:20, 70:30, and 50:50 training 
and testing ratios. 

The remaining chapter is organized as follows: In Sect. 2 we present the related 
works, in Sect. 3 we present the proposed methodology with overview and details 
descriptions, in Sect. 4 we present the obtained results, and finally we present 
conclusion in Sect. 5. 

2 Literature Review 

Energy is widely recognized as a key engine of worldwide economic growth 
and development. Researchers have extensively investigated the impact of energy 
sources and usage on a variety of economic indices. Given the complicated interplay 
of economic growth, human development, and environmental concerns, additional 
research is required to understand how these aspects interact (Alola et al., 2021). 
There is a development of an artificial neural network (ANN) model to anticipate net 
energy consumption (NEC) based on economic indicators such as gross domestic 
product (GDP), gross national product (GNP), and population growth. They argue 
that ANN approach shows the most accuracy for evaluating NEC based on eco-
nomic indicators. Most ANN models concentrated on dynamic, short-term energy 
consumption predictions, which are necessitated through input data pretreatment 
and selection (Sözen & Arcaklioglu, 2007). Additionally, Wang (2022) employs  
the nonlinear fitting of the BP model and linear fitting of the ARIMA model as 
independent variables, with per capita coal consumption as the dependent variable. 
A revolutionary approach to coal consumption forecasting is unveiled: a combined 
model utilizing multiple linear regression to shatter previous accuracy limitations. 
On the other hand, Li (2019) attempts to anticipate China’s energy density by 
utilizing an LSTM-based neural network model developed by both research groups. 
Their research traces that time series estimation generates much better outcomes 
than other regression analyses. They add that there is a strong correlation between 
economic development, population, industrial relations, and energy consumption. 
It has been found that many academics employ regression analysis to solve the 
association between energy consumption and these factors. Also, Wang and Zhang 
(2023) generated novel models that outperform DGM(1,1), DGM(1,n), and BP
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neural networks in predicting utilizing per capita energy consumption (PCEC) data 
from 30 Chinese provinces. The models work well in collecting recent data trends 
and regional associations, as well as analyzing spatial connections and making 
accurate predictions. 

The drivers of energy consumption are examined by Wen et al. (2021) using  
environmentally extended input-output and structural decomposition analysis. Soar-
ing population is the engine of global energy demand, but researchers identified 
a bright spot: Reducing energy inefficiency acts as a powerful brake. Private 
consumption and exports remain significant energy guzzlers, highlighting areas 
for further improvement. Their study also suggests that policies like transport 
electrification and renewable energy promotion support the low-carbon transition. 
Another work (Li & Solaymani, 2021) showed that long-term economic growth 
expansion significantly raises energy consumption relative to short-term growth 
in Malaysia. Particularly, the energy demand for agriculture raises by 4.6% and 
the energy demand for industry increases by 1.1% in economic growth. Energy 
consumption and emissions were successfully reduced in the industrial sector by 
technological advancements that increase energy efficiency. These findings are 
essential for policymakers focused on sustainable growth and energy management. 
Moreover the authors (He & Hao, 2024) estimate primary energy consumption in 
South and Central America, the Middle East, and Africa optimizing a fractional 
time-delayed gray model that is tuned with a particle swarm method. Their findings 
indicate that their model performs better than other gray models in most cases, 
demonstrating its dependability and efficacy. 

On top of that, the authors (Shinwari et al., 2024) investigate the influence 
of foreign direct investment (FDI) on energy consumption in 29 Belt and Road 
Initiative (BRI) economies from 2000 to 2021, employing panel data methodologies 
to account for cross-sectional dependency, structural discontinuities, and slope 
heterogeneity. Their findings demonstrated that worldwide FDI has a beneficial 
influence on energy consumption, with China’s FDI dominance enhancing it even 
more. In addition, green technology increased energy consumption, and their report 
also emphasizes the role of FDI policies and green technologies in boosting 
energy consumption in BRI economies. In another study, analyzing data from 125 
countries spanning 2000 to 2018, the authors (Demiral & Demiral, 2023) investigate 
how various social and economic factors, such as education levels, transportation 
systems, information technology, government structures, private sector involvement, 
and economic development patterns, influence how efficiently these countries use 
energy. Countries are divided into four income groups, and higher income groups are 
found to have higher energy intensity and socioeconomic capacities. The regression 
results showed that socioeconomic factors have a range of effects on improving 
energy efficiency. Their study emphasizes the complexities of factors influencing 
energy efficiency and suggested policy implications. 

Furthermore, to create a more accurate prediction tool for electricity use 
in Turkey, Kaytez (2020) develops a hybrid model that merges a least-squares 
support vector machine (SVM) with an autoregressive integrated moving average 
technique. When used to predict Turkey’s net power consumption through 2022, the
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results demonstrate that the suggested hybrid model produced more realistic and 
dependable predictions and responded better to unexpected fluctuations in the time 
series. 

3 Methodology 

3.1 Approach Overview 

The overview of the proposed methodology is in Fig. 1. Global Data on Sustainable 
Energy collects and preprocesses to enhance the computational efficacy and model 
performance. Then three ratios 80:20, 70:30, and 50:50 employ to split the data into 
training and testing subsets. Afterward, the suggested and comparative models are 
evaluated using several error metrics and R2

. score. 

Fig. 1 Overview of proposed methodology
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3.2 Description of Dataset and Variables 

The dataset is taken from the prominent online platform Kaggle. The variables 
on global primary energy consumption, electricity generation, greenhouse gas 
emissions, etc. of 186 countries from 2000 to 2020 are provided in the dataset. 
We implement the following procedure to process the data. Firstly, we select a 
target variable illustrating energy consumption trends, which is “Primary energy 
consumption per capita (KWH/Person)” (PECPC). We carefully choose relevant 
features, including attributes that could affect energy consumption. Then, we handle 
missing values through imputation and use feature scaling to verify that feature 
magnitudes are consistent. The feature can be seen in Table 1. In addition, we 
present a heatmap depicting the correlation of all the features and PECPC, where 
blue color intensity defined the worst correlation and red color intensity responded 
to the strong correlation. On top of that, PECPC and GPC show a good correlation 
acquiring a score of 0.67. The heatmap of the correlation is in Fig. 2. 

Fig. 2 Heat map to represent the correlation of the variables



BLDAR: A Blending Ensemble Learning Approach for Primary Energy. . . 181

Table 1 Description of the variables 

Variables Abbreviation 

Access to electricity (% of population) AE 

GDP per capita GPC 

Financial flows to developing countries (US $) FFDC 

Renewable electricity Generating Capacity per capita REGCPC 

Electricity from fossil fuels (TWh) EFF 

Primary energy consumption per capita (kWh/person) PECPC 

3.3 Machine Learning Algorithms 

3.3.1 Random Forest 

Random forest is a prediction algorithm based on a combination of multiple decision 
trees. Random forests are widely utilized because they require only one or two 
tuning parameters and may be applied directly to high-dimensional situations. They 
also provide a built-in generalization error estimation and are reasonably quick to 
train and forecast (Abedin et al., 2021). Simplified formula for regression is 

. ŷ = 1

N

N∑

i=1

ŷi

where ŷ . is the final prediction, N is the number of trees in the forest, and ŷi . is the 
prediction from the i-th tree. The algorithm works by constructing trees. For each 
tree in the forest, a random subset of the input features is selected, and the tree 
is grown to its maximum depth except pruning with selected features to maximize 
information gain at each split. After then, each tree in the forest makes a prediction. 
By averaging the individual tree predictions, it make final prediction (Ali et al., 
2012; Abedin et al., 2021). 

3.3.2 Decision Tree 

Decision trees are commonly used supervised machine learning technique which 
has been used for both regression and classification problems. In a decision tree, 
there are basically two types of nodes: decision nodes and leaf nodes. Decision 
node generates decision and contains multiple branches, whereas leaf nodes are the 
output of those decisions, and they do not contain any branches. The algorithm 
divides the inputs recursively into smaller sections. The root node contains the 
whole dataset. There are some techniques that use variables like mean squared error,
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entropy (information gain), and Gini impurity to select the best characteristic to split 
the data by at each node. The Gini impurity for a set S with c classes is giv en by

. Gini(S) = 1 −
c∑

i=1

p2
i

Here, pi . is the proportion of instances in class i (Hasan et al., 2023b). After 
calculating the Gini impurity for every possible split point, the next step is choosing 
the best split, which results in the lowest weighted Gini impurity. Then, split the 
dataset into two subsets, and repeat the whole process recursively. When it meets 
stopping criteria, labels have been assigned to the leaf nodes. That is how decision 
algorithm works. 

3.3.3 LASSO 

LASSO is a statistical formula whose main purpose is feature selection and 
regularization of the data model. This regression analysis technique improves the 
statistical regression model’s interpretability and prediction accuracy, which also 
includes variable selection and parameter estimation (Sajid et al., 2023). LASSO is 
ideal for prediction and feature selection. The following formula defines the LASSO 
regression model: 

. β̂ = arg min
β

⎧
⎪⎨

⎪⎩
1

2n

n∑

i=1

⎛

⎝yi −
p∑

j=1

βjxij

⎞

⎠
2

+ λ

p∑

j=1

|βj |

⎫
⎪⎬

⎪⎭

It does parameter estimation and variable selection at the same time in this manner 
(Vidaurre et al., 2011). 

. 
1

2n

n∑

i=1

⎛

⎝yi −
p∑

j=1

βjxij

⎞

⎠
2

By computing the residual sum of squares, the above term assesses how well the 
model fits the data. λ

∑p

j=1 |βj |. This regularization factor, called L1-norm, adds a 
penalty based on the sum of the absolute values of the coefficients. As λ. increases, 
more coefficients are shrunk to zero, performing variable selection. 

3.3.4 Bagging Lasso (BL) 

Bagging Lasso formula is made up of the principle of bootstrap aggregation and 
LASSO regression to increase the model’s stability and accuracy of prediction.
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Firstly, from the original dataset, multiple bootstraps have been generated. Then 
LASSO regression is applied to each generated bootstrap sample. 

. β̂(b) = arg min
β

⎧
⎪⎨

⎪⎩
1

2nb

nb∑

i=1

⎛

⎝y
(b)
i −

p∑

j=1

βjx
(b)
ij

⎞

⎠
2

+ λ

p∑

j=1

|βj |

⎫
⎪⎬

⎪⎭

Here,D∗
b = {(x(b)

i , y
(b)
i )}nb

i=1 . represents the b.-th bootstrap sample . After that, it 
estimates aggregated coefficient from all bootstrap samples 

. β̂Bagging Lasso = 1

B

B∑

b=1

β̂(b)

Making average the results of LASSO regressions from multiple bootstrap samples, 
Bagging Lasso eliminates the variance of the model and makes it more stable (Bach, 
2008). 

3.3.5 LGB 

LGB is a gradient boosting ensemble method based on decision trees. LGB can be 
used for regression. The formula for LGB is 

. L(θ) =
n∑

i=1

l(yi, f (xi; θ)) + Ω(f )

LGB algorithm has initialized the model with a constant value to calculate the initial 
gradients and hessians. While iterating for each tree, it does Gradient-based One-
Side Sampling (GOSS), feature bundling, histogram construction, split finding and 
continues the decision trees growth. After maximum depth has reached and stopping 
criteria has met, update the model by adding the newly trained tree and gradients 
hessians. Lastly, it combines the outputs of all individual trees to predict (Ke et al., 
2017). 

3.3.6 AdaBoost 

AdaBoost is a self-adaptive boosting technique that creates a set of multiple 
classifiers to improve the performance of weak classifiers. Several concerns have 
been raised since it adjusts dynamically to the error rate of the fundamental 
algorithm during training by adjusting the weight of each sample. The most basic
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theoretical property of AdaBoost concerns its ability to reduce training error (Hasan 
et al., 2023c). 

. H(x) = sign

(
T∑

t=1

αt · ht (x)

)

This algorithm trains weak classifier ht . on the weighted training data. After 
calculating the weighted error of ht ., it calculates the weight of αt . of the weak 
classifier. Finally it updates the weights of training instances and normalizes the 
weights to make the sum to 1. So this is the final classifier, and H(x). is a weighted 
majority vote of the T weak classifier (Wu & Zhao, 2011). 

3.3.7 Support Vector Regression (SVR) Linear 

Regression tasks are handled by SVR, a subset of SVMs. For a given input value, 
it looks for a function that best predicts the continuous output value. In order to 
determine which linear hyperplane best fits the data, SVR Linear employs a linear 
kernel function. The primary distinctions between SVR and SVR Linear are in 
how those two implementations handle intercept regularization and the default loss 
function. SVR linear algorithms set a linear relationship between the target variable 
and the input characteristics. The main formula of SVR Linear is 

. min
w,b,ξ,ξ∗

1

2
‖w‖2 + C

n∑

i=1

(ξi + ξ∗
i )

Firstly, the algorithm initials the value to weights, bias, and slack variables. After 
then, for optimizing the problem, it defines the objective function to minimize 
the loss, including the linear constraints. By solving the optimization problem and 
iteratively update the weights w, bias b and slack variable ξi .and ξ∗

i .while constraints 
are being satisfied. Using the optimized weights and bias, it predicts for new data 
point (Klopfenstein & Vaiter, 2019). 

3.3.8 SVR Radial Basis Function (RBF) 

SVR with RBF kernel is a machine learning algorithm which is often used for its 
ability to handle nonlinear relationships. The RBF kernel is a function that depends 
on the distance from a point. The main formula of RBF kernel function is defined as 

.K(x, x′) = exp(−γ ||x − x′||2)
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Here , ||x − x′||. denotes the distance between x and x′
. and γ . parameter controls the 

spread of kernel. SVR finds a line or curve that fits data points as closely as possible 
as if it does not cross a certain error margin which is called epsilon. There are three 
parameters, epsilon, regularization parameter, and gamma (kernel spread), which 
are the key factors of the model’s performance and complexity. Then it forecasts 
additional data points using the optimized weights and bias from the SVR algorithm. 

3.3.9 SVR Poly 

SVR with a polynomial (poly) kernel is another variant of SVR which uses a 
polynomial function instead of RBF for mapping data. Here, the polynomial kernel 
function transforms the input data into higher dimensional space. The polynomial 
kernel takes the form 

. K(x, x′) = (1 + x · x′)d

where d is the degree of the polynomial. To find a regression function f (x) =
wφ(x) + b. which best fits the training data is the main goal, where φ(x). is the 
nonlinear mapping to the higher dimensional space, w is the weight vector, and b 
is the bias term (Rabbi et al., 2022; Bargam et al., 2024). SVR Poly has an ε . loss 
function to avoid overfitting which boosts performance with noisy and sparse data 
(Hasan et al., 2023a). 

3.4 Proposed Blending LDAR 

Four ML algorithms, LASSO, DT, AdaBoost, and RF, are used to create a blending 
ensemble learning model in this study (Hasan et al., 2024). We refer to this model 
as the LDAR regression model. While blending shares similarities with the stacking 
ensemble process, it possesses distinctive advantages. For instance, while stacking 
leverages out-of-fold predictions to train subsequent layers in the meta-model, 
blending uses a small validation set 0 for the same purpose. LDAR integrates the 
mapping functions acquired from its member algorithms, as detailed in the workflow 
presented in Fig. 3. 

The motivation to employ an ensemble model over a singular model is rooted in 
the belief that ensemble models generally predict with greater accuracy and offer 
superior performance compared to individual ML models. Additionally, ensembles 
help decrease the spread of predictions, enhancing model reliability. The mapping 
functions from member algorithms merge to provide enhanced predictive capabil-
ities. Our proposed ensemble model incorporates various methods to leverage the 
strengths of each algorithm:
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Fig. 3 Block diagram of the proposed blending LDAR ensemble learning model 

LASSO regression provides feature selection and regularization, reducing over-
fitting and enhancing model interpretability. DT captures nonlinear relationships and 
interactions between features. AdaBoost regression boosts weak learners by focus-
ing on the errors of previous models, improving overall performance, and finally RF 
aggregates multiple decision trees to reduce variance and improve generalization. 
The LDAR blending ensemble learning model combines these diverse approaches to 
create a robust and accurate predictive model, taking advantage of each algorithm’s 
strengths while mitigating their individual weaknesses. 

3.5 Performance Measure Metrics 

We use four different performance measure techniques in this study, and the 
descriptions are given below. 

MAE: MAE measures the average magnitude of errors between predicted and 
actual values without considering their direction. It is calculated as the average of 
the absolute differences between predicted and actual values. MAE is simple to 
understand and provides a straightforward interpretation of model accuracy, where 
lower values indicate better performance.
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. MAE = 1

n

n∑

i=1

|yi − ŷi |

MSE: MSE quantifies the average squared difference between predicted and actual 
values. It emphasizes larger errors more than MAE due to squaring the differences, 
which can be useful for identifying significant outliers. MSE is calculated by 
averaging the squared differences between predicted and actual values. Lower MSE 
values indicate better model performance. 

. MSE = 1

n

n∑

i=1

(yi − ŷi )
2

RMSE: RMSE is the square root of the MSE and provides an error metric on 
the same scale as the data. It measures the standard deviation of prediction errors, 
offering a clear view of model accuracy by penalizing larger errors more heavily. 
Lower RMSE values indicate better predictive performance, making it a widely used 
metric in regression analysis. 

. RMSE = √
MSE =

√√√√1

n

n∑

i=1

(yi − ŷi )2

SMAPE: SMAPE measures the accuracy of predictions by calculating the percent-
age difference between predicted and actual values. It is symmetric and considers 
both the relative error and scale of the data. SMAPE is particularly useful for 
comparing errors across datasets of different scales, with lower values indicating 
better model accuracy. 

. SMAPE = 100%

n

n∑

i=1

|yi − ŷi |
|yi |+|ŷi |

2

R-Squared: R-Squared, or the coefficient of determination, indicates the proportion 
of variance in the dependent variable that is predictable from the independent 
variables. It ranges from 0 to 1, with higher values representing better model fit. 
An R2

. value of 1 indicates perfect prediction, while 0 indicates no predictive power. 
It is a key metric for evaluating the explanatory power of regression models. 

. R2 = 1 − SSres

SStot

where SSres . is the sum of squares of residuals and SStot . is the total sum of squares.
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4 Result Analysis 

4.1 Hyperparameter 

The performance of ML algorithms depends on the quality of data and the learning 
process. The optimized model with the best hyperparameter values performs better 
than any ML model. In our work, we employ the grid search procedure to find the 
optimal values of the ML algorithms. The values of the selected hyperparameters 
are in Table 2. 

4.2 Performance of ML Models 

We split the dataset into three distinct ratios: 20:80, 30:70, and 50:50 testing and 
training ratios. The performances of those categories are shown in tables and graphs 
below: 

4.2.1 Performance of the ML Algorithms to Predict Primary Energy 
Consumption in 20:80 Testing and Training Ratio 

We employ several ML algorithms on a standard 80:20 train-test split of the data. 
This results in varying error rates for each algorithm and R2

. score that is tabulated 
in Table 3. In the table, it is clear that our proposed Blending LDAR performs 
better than other ML models. The proposed LDAR achieves 90% R2

. with 0.0177 
MAE, 0.0016 MSE, 0.0403 RMSE, and 19.7075 SMAPE. The performance of 

Table 2 Values of the hyperparameters of different ML algorithms 

Algorithm Parameter with value 

LGB learning_rate: 0.1 

DT random_state: 0 

AdaBoost base_estimator: none, learning_rate: 1.0, n_estimators: 50, random_state: 
none 

RF n_estimators: 1, random_state: 0 

LASSO alpha: 0.01 

Bagging Lasso alpha: 0.01 

SVR Linear kernel: linear, C: 100, gamma: auto 

SVR RBF kernel: rbf, C: 100, gamma: 0.1, epsilon: 0.1 

SVR Poly kernel: poly, C: 100, gamma: auto, degree: 3, epsilon: 0.1, coef0: 1 

Blending LDAR learning_rate: 0.1, random_state: 0, base_estimator: none, learning_rate: 
1.0, n_estimators: 50, random_state: none and n_estimators: 1, 
random_state: 0
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Table 3 Primary energy consumption per person in 20% testing and 80% training 

Model MAE MSE RMSE SMAPE R2 . 

LGB 0.0224 0.0019 0.0441 31.6384 0.88 

DT 0.0213 0.0040 0.0635 19.6023 0.76 

AdaBoost 0.0437 0.0044 0.0669 59.3734 0.73 

RF 0.0235 0.0037 0.0613 26.307 0.78 

LASSO 0.0707 0.0127 0.1128 86.9742 0.24 

Bagging Lasso 0.0704 0.0126 0.1125 86.8033 0.25 

SVR Linear 0.0713 0.0101 0.1008 91.4090 0.40 

SVR RBF 0.0585 0.0078 0.0885 89.4069 0.53 

SVR Poly 0.0584 0.0076 0.0875 86.1174 0.54 

Blending LDAR 0.0177 0.0016 0.0403 19.7075 0.90 

Table 4 Primary energy consumption per person in 30% testing and 70% training 

Model MAE MSE RMSE SMAPE R2 . 

LGB 0.0230 0.0021 0.0463 31.0907 0.88 

DT 0.0214 0.0037 0.0612 20.6243 0.78 

AdaBoost 0.0402 0.0042 0.0653 54.0534 0.75 

RF 0.0226 0.0035 0.0594 26.1839 0.79 

LASSO 0.0703 0.0130 0.1142 87.7059 0.24 

Bagging Lasso 0.0706 0.0131 0.1144 87.9104 0.24 

SVR Linear 0.0716 0.0105 0.1026 92.4498 0.39 

SVR RBF 0.0576 0.0081 0.0895 89.7533 0.53 

SVR Poly 0.0576 0.0078 0.0885 86.5198 0.54 

Blending LDAR 0.0191 0.0019 0.0446 20.6817 0.88 

LGB is nearer to the LDAR, and it shows 88% R2
.. The Decision Tree, AdaBoost, 

and Random Forest algorithms performed moderately well in our study. They 
obtained R2

. values of 76%, 73%, and 78%, respectively. The RMSE error of the 
algorithms is 0.0635, 0.0669, and 0.0613, respectively. However, the performance 
of LASSO, Bagging Lasso (BLASSO), SVR Linear, SVR RBF, and SVR Poly is 
not satisfying, and it shows only 24%, 25%, 40%, 53%, and 54% R2

., respectively. 
The error rate of those algorithms is also high compared to the proposed LDAR 
and LGB. That numerical comparison demonstrates the superiority of our proposed 
Blending LDAR. The obtained errors of different algorithms are visualized in 
Fig. 4. The results in this figure demonstrate that our proposed LDAR model 
achieves superior performance compared to other algorithms across various errors 
and scoring metrics.
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Fig. 4 Performance of the models in primary energy consumption in 80:20 train-test ratio 

Fig. 5 Performance of the models in primary energy consumption in 70:30 train-test ratio
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4.2.2 Performance of the ML Algorithms to Predict Primary Energy 
Consumption in 30:70 Testing and Training Ratio 

Using a conventional train-test split, which entails a 30:70 testing and training ratio, 
we utilize those ML algorithms, yielding varying errors and R2

. scores, which are 
compiled in Table 4. The table indicates that both the proposed LDAR and LGB 
models achieve similar performance, with an R2

. value of 88%. In Fig. 7, DT, ADB, 
and RF show closer results, scoring 76%, 73%, and 78% in R2

., respectively. The 
error rate of LDAR and LGB is comparatively lower than other ML algorithms. 
Figure 5 shows that the proposed LDAR beats competing algorithms regarding error 
and score metrics. The MAE error of LGB, DT, and RF is 0.023, 0.0214, and 0.0226, 
respectively, where LDAR performs better achieving a score of 0.1908. Measuring 
SMAPE, the error rate of AdaBoost and LDAR achieves nearer scores of 20.6243 
and 20.6817, respectively. 

4.2.3 Performance of the ML Algorithms to Predict Primary Energy 
Consumption in 50:50 Testing and Training Ratio 

To compare the performance of ML algorithms, we divided the data into training 
and testing sets using the typical 50:50 ratio. We then applied these algorithms to 
the training data to determine their error rates and R2

. values, which are shown in 
Table 5. We can see that our proposed LDAR model achieves 88% R2

. where LGB 
and DT perform nearer scores of 87% and 86% R2

., respectively, depicted in Fig. 7. 
DT shows better performance with a score of 0.0198 which is lower than LDARs 
of score 0.0202 in measuring MAE. The MSE error of LGB and DT is very near 
of scores 0.0022 and 0.0025, respectively, but LDAR performs better with a score 
of 0.0021. However, the performances of LASSO, BL, SVR Linear, SVR RBF, and 
SVR Poly do not show any satisfactory scores. The numerical comparisons shown 
in Fig. 6 demonstrate that the performance of our Blending LDAR is significant. 

Table 5 Primary energy consumption per person in 50% testing and 50% training 

Model MAE MSE RMSE SMAPE R2 . 

LGB 0.0244 0.0022 0.0476 34.2486 0.87 

DT 0.0198 0.0025 0.0502 22.7411 0.86 

AdaBoost 0.0422 0.0043 0.0661 62.0623 0.76 

RF 0.0277 0.0048 0.0693 28.2827 0.73 

LASSO 0.0718 0.0136 0.1167 89.9741 0.23 

Bagging Lasso 0.0722 0.0137 0.1173 90.2193 0.23 

SVR Linear 0.0718 0.0107 0.1034 93.5718 0.40 

SVR RBF 0.0578 0.0082 0.0909 89.4069 0.53 

SVR Poly 0.0584 0.0076 0.0875 91.5027 0.54 

Blending LDAR 0.0202 0.0021 0.0457 22.8968 0.88
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Fig. 6 Performance of the models in primary energy consumption in 50:50 train-test ratio 

Fig. 7 R2 . scores for the ML models in different training and testing ratios
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4.3 Discussion 

Our proposed model consists of four ML algorithms, namely LGB, DT, ADB, 
and RF. As we split our datasets into three categories based on training and 
testing, LDAR performs better than any other model in primary energy consumption 
forecasting. In 20:80 testing and training, LDAR shows 90% R2

.. Additionally, it 
illustrates 88% R2

. scores in both 30:70 and 50:50 testing and training of primary 
energy consumption per person (Fig. 7). This model outperforms in measuring 
other evaluation metrics including MAE, MSE, RMSE, and SMAPE. Notably, the 
value of errors in LDAR was comparatively lower than other algorithms, which 
means it has the highest accuracy. The comparison with other research makes 
it abundantly evident that our suggested blending LDAR model is superior to 
the other options. The main focus of our proposed blending LDAR model is to 
predict the primary energy consumption better than other existing models. Primary 
energy consumption forecasting is crucial for policymaking and strategic planning, 
investment and infrastructure planning, market dynamics and economic growth, 
environmental and climate impact, consumer behavior and education, and other 
sectors. On top of everything else, the high accuracy and lower error rate of our 
proposed model are compelling and potentially valuable for the stakeholders and 
policymakers in making future decisions. To some extent, it will play a great role 
in guiding investments in energy infrastructure, supporting sustainable development 
goals, and evaluating climate change mitigation strategies. As we can suggest this 
prediction model can play an inevitable role in primary energy consumption. 

5 Conclusion and Future Work 

The aim of this research is to design an ML-based methodology for primary 
energy consumption prediction. You have designed and described the blended 
ensemble learning model that combines five ML regression techniques in this 
study. The results revealed that the blending LDAR model significantly improved 
forecasting accuracy compared to established methods used in previous studies, as 
measured by various error criteria. Our findings have far-reaching consequences, 
including possible applications in energy planning, policymaking, and climate 
change mitigation. Our model can assist in shifting to low-carbon energy by offering 
more precise and trustworthy primary energy consumption forecasts, enabling better 
decision-making. 

Future research will focus on integrating our model with other energy system 
models, including the incorporation of new features and data sources, as well as the 
development of more advanced ML techniques like deep learning. 
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Analyzing Biogas Production in 
Livestock Farms Using Explainable 
Machine Learning 
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Kanij Fatema, and Sudipto Roy Pritom 

1 Introduction 

Due to waste generated from both domestic and industrial activities, developed and 
emerging nations are increasingly seeking alternative energy sources. Nowadays, 
most of the global primary energy supply is derived from fossil fuels. However, the 
environmental harm caused by fossil fuels and the depletion of natural resources 
have shifted public focus toward renewable energy sources to ensure a sustainable 
future for energy production. In recent years, interest in biogas as a viable energy 
source has grown, primarily due to its potential to reduce greenhouse gas emissions. 
Biogas production from anaerobic digestion (AD) processes depends on parameters 
such as retention time, pH, medium composition, temperature inside the digester 
tank, working pressure, and volatile fatty acids (González-Fernández et al., 2019). 
Machine learning (ML) has emerged as a powerful method for studying models to 
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investigate complex and nonlinear relationships. It is considered to have significant 
potential for predicting and controlling the performance of anaerobic digesters 
(Wang et al., 2020). ML enables computers to uncover hidden information by using 
algorithms that iteratively learn from data without being explicitly programmed on 
where to look. Several researchers have proposed innovative and effective strategies 
for modeling the biogas process using ML techniques. These techniques include 
support vector machines, adaptive neuro-fuzzy inference systems, k-nearest neigh-
bors (KNNs), random forests (RFs), and artificial neural networks (ANNs) (Alejo 
et al., 2018). Three-layer artificial neural networks and nonlinear regression models 
were employed to predict biogas production performance in controlled laboratory-
scale experiments (Tufaner & Demirci, 2020). Additionally, in an industrial scale 
co-digestion facility, random forest and extreme gradient boosting (XGBoost) were 
effectively utilized (De Clercq et al., 2020), while adaptive neuro-fuzzy inference 
systems model and optimize biogas production from cow manure and maize straw in 
a pilot-scale study (Zareei & Khodaei, 2017). There is a notable gap in the literature 
regarding artificial intelligence-based models for estimating biogas production and 
identifying key factors influencing production from full-scale sludge digestion 
processes in biological treatment plants. Most researchers develop models using 
lab- or pilot-scale reactors and focus solely on predicting biogas output. This study 
addresses this gap by applying Ridge Regression (RR), Lasso Regression (LR), 
KNN, ElasticNet Regression (ER), Classification and Regression Trees (CART), 
RF, XGBoost, Light Gradient Boosting Machine (LightGBM), Gradient Boosting 
Machine (GBM), and CatBoost algorithms to U.S. biogas data. The data, processed 
by a fully operational anaerobic sludge digester system, was used to predict biogas 
production rates. The study aims to evaluate the performance of these ML models 
and identify the key factors influencing biogas production. 

The technical contributions of this chapter are as follows:

• To analyze and compare the performance of different ML algorithms for daily 
biogas production prediction

• To enhance the performance of the algorithms using different preprocessing 
techniques and hyperparameter tuning

• To provide insights and recommendations based on the experimental results to 
assist relevant institutions and investors in selecting the most suitable algorithm 
for biogas production prediction with global and local explanation using explain-
able artificial intelligence (XAI) tools

• To provide suitable features from ranks based on the average of several XAI 
analyses 

The structure of the remaining sections of this chapter is outlined as follows. The 
related works are in Sect. 2. Section 3 is dedicated to presenting our proposed 
methodology and the experimental setup. We detail the approach we have taken 
to address the research problem, including the methods, techniques, and tools 
employed in our study. Within Sect. 4, we present the outcomes of our experiments. 
The chapter concludes in Sect. 5 with a summary of our findings and their 
significance. Additionally, we outline avenues for future research and development
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in this domain, emphasizing the potential directions for further exploration and 
enhancement. 

2 Literature Review 

Several studies have employed traditional statistical methods in their research. For 
instance, De Clercq et al. (2017a) utilized a combination of statistical techniques 
such as principal component analysis and multiple linear regression (LR), along 
with operations research methods like data envelopment analysis, to investigate the 
factors influencing efficiency in biogas projects. Their findings highlighted various 
inefficiencies, including decreasing returns to scale. Similarly, Terradas-Ill et al. 
(2014) developed a thermal model to forecast biogas production in underground, 
unheated fixed-dome digesters. However, their model lacked validation against 
actual data and was unsuitable for large-scale facilities. Furthermore, De Clercq 
et al. (2017b) employed multi-criteria decision analysis to evaluate food waste 
and biowaste projects, considering technical, economic, and environmental aspects. 
They proposed six significant policy recommendations based on their findings 
but did not provide generalized modeling tools that project operators could use 
to improve production efficiency based on waste inputs. However, a significant 
limitation of the models developed in these studies is their failure to incorporate 
the latest advancements in ML for predicting biogas output. Instead, they rely 
on traditional statistical performance metrics such as R2

. and RMSE. In contrast, 
modern ML models are evaluated based on their ability to accurately predict 
unseen data. To achieve this, datasets are divided into training and testing partitions 
(James et al., 2013), with a preference for out-of-sample evaluation metrics. These 
metrics are crucial as they help identify potential overfitting of the model to the 
training data. These traditional models also face a trade-off between accuracy and 
simplicity, limiting their ability to capture the complex interactions among various 
biochemical components. In contrast, ML models are inherently universal function 
approximators (Hornik et al., 1989). With their numerous adjustable parameters, 
ML models can uncover subtle relationships in AD datasets without needing expert 
supervision. Below, we highlight selected examples of ML approaches applied 
to biogas prediction. Wang et al. (2021) introduced Tree-Based Automated ML 
(AutoML) for predicting biogas production in the anaerobic co-digestion of organic 
waste. Sonwai et al. (2023) compared RF, XGBoost, and Kernel Ridge Regression 
(KRR) models for predicting specific methane yields (SMY), identifying the RF 
model as the most effective with a coefficient of determination ( R2

.) of 0.85  
and an RMSE of 0.06. Gaida et al. (2012) created an artificial training and test 
dataset using the ADM1 model and employed three different ML models, including 
the widely used random forest, to estimate the operating state of a biogas plant 
online. Cheon et al. (2022) applied five ML models to predict methane yield in 
a bioelectrochemical AD reactor, demonstrating the ability to interpret nonlinear 
relationships among multiple input and output variables in complex systems. This
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approach enhances process stability and helps prevent operational risks. De Clercq 
et al. (2019) analyzed data from an industrial scale biogas facility in China 
to improve operational decision-making. The ML models used included logistic 
regression, support vector machines, and KNN regression. Instead of focusing on 
digester parameters like temperature, this study examined the impact of different 
waste input compositions on the AD process. Additionally, a graphical user interface 
was developed to provide wastewater treatment plant (WWTP) engineers with 
daily operational recommendations. Yildirim and Ozkaya (2023) compared five ML 
algorithms, RF, ANN, KNN, SVR, and XGBoost for forecasting biogas production. 
The RF model performed best with an R2

. of 0.9242, while the KNN model 
had the lowest accuracy with an R2

. of 0.8326. Most researchers have utilized 
multilayer ANNs, a widely recognized and extensively discussed method within the 
engineering community. For instance, Olatunji et al. (2023) developed optimized 
ANN and FCM-clustered ANFIS approaches for modeling biogas and methane 
yields. The FCM-ANFIS approach with ten clusters proved more accurate than 
the ANN approach, achieving R2

., MAD, MAPE, and RMSE values of 0.9850, 
1.2463, 5.2343, and 1.2343, respectively. As highlighted in the literature review, 
some researchers have used traditional statistical methods for predicting biogas 
production, while others have employed ANN and ML techniques. However, there 
is a need for more suitable ML models and the application of XAI techniques to 
identify key factors in biogas production. Our study aims to address these gaps by 
utilizing more appropriate ML models and XAI methods to identify critical features. 

3 Methodology 

To predict daily biogas production from the secondary dataset, we propose a top-
down approach including data preprocessing with ML techniques. Furthermore, a 
variety of XAI models are employed to extract the significant factors influencing 
biogas production. 

3.1 Overview of Proposed Methodology 

We employ secondary data to predict biogas production using ML techniques. 
The data is labeled with regression problems and is collected from the online 
repository Kaggle: secondary data. In the preparatory phase, we implement ordinal 
encoding, one-hot encoding, and data normalization protocols. The conventional 
method of ML is employed to evaluate the models’ stability by dividing the 
data into 80:20, 70:30, and 50:50 rations of training and testing. In addition, we 
introduced an ensemble model that outperformed other benchmark ML models 
in terms of biogas prediction. Various error metrics are employed to assess the 
regressors’ performance. In Fig. 1, a comprehensive top-down presentation of the
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Fig. 1 Overview of the proposed framework including model development and explainability 

proposed methodology is provided. The XAI analysis is conducted to extract the 
significant factors that influence biogas production in order to uncover the inner 
story of the dataset. Afterward, a comparative analysis is performed to determine 
the most prevalent factors across all interpretable models, thereby guaranteeing 
a comprehensive comprehension of the underlying dynamics that influence daily 
biogas yield. 

3.2 Description of Dataset and Variables 

This study employs the U.S. Biogas dataset from Kaggle to forecast biogas pro-
duction regularly (https://www.kaggle.com/discussions/accomplishments/493876). 
This extensive dataset examines biogas generation from livestock farms throughout 
the USA, serving as a pivotal resource for assessing renewable energy potentials. 
It features biogas projects from cattle, dairy cows, poultry, and swine, making it 
invaluable for agriculture, renewable energy, and environmental policy stakeholders 
displayed in Table 1. The dataset includes 29 features across 491 observations from 
the U.S. Data preprocessing is a crucial aspect of ML, requiring significant time 
and effort, which accounts for about 60% of the investment in a data science project 
(Seelam et al., 2022).

https://www.kaggle.com/discussions/accomplishments/493876
https://www.kaggle.com/discussions/accomplishments/493876
https://www.kaggle.com/discussions/accomplishments/493876
https://www.kaggle.com/discussions/accomplishments/493876
https://www.kaggle.com/discussions/accomplishments/493876
https://www.kaggle.com/discussions/accomplishments/493876
https://www.kaggle.com/discussions/accomplishments/493876
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Table 1 Description of the variables with acronym and details 

Column name Description 

Year Operational The year when the project became operational 

Cattle Number of cattle involved 

Dairy Number of dairy cows involved 

Poultry Number of poultry involved 

Swine Number of swine involved 

Biogas Generation Estimate (cu-ft/day) Estimated daily biogas production 

Electricity Generated (kWh/yr) Estimated annual electricity generation 

Total Emission Reductions (MTCO2e/yr) Estimated total emission reduction 

Operational Years Number of years the project has been operational 

Total_Animals Total number of animals involved in the project 

Biogas_per_Animal (cu-ft/day) Estimated biogas production per animal 

Emission_Reduction_per_Year Estimated annual emission reduction per animal 

Electricity_to_Biogas_Ratio The ratio between electricity generation and 
biogas production 

Total_Waste_kg/day Estimated daily waste production 

Waste_Efficiency Efficiency of waste conversion to biogas 

Electricity_Efficiency Efficiency of biogas conversion to electricity 

3.3 ML Algorithms 

3.3.1 Ridge Regression 

Ridge regression adds a regularization term to linear regression to handle predictor 
variable multicollinearity. This method shrinks coefficients and reduces variance by 
adding a penalty to the loss function equal to the square of their magnitude. The 
ridge regression equation modifies the ordinary least squares (OLS) regression by 
adding a regularization parameter λ., which minimizes the following cost function 
where yi . represents the observed values, ŷi . the predicted values, βj . the coefficients, 
and λ. the regularization parameter. By tuning λ., one can control the trade-off 
between fitting the data well and keeping the model coefficients small, which 
helps mitigate overfitting. Ridge regression is instrumental in situations with many 
correlated predictors, as it improves the model’s generalization performance (Daly 
et al., 2016). 

3.3.2 Lasso Regression 

Lasso regression, or Least Absolute Shrinkage and Selection Operator, is a reg-
ularization technique used to enhance the prediction accuracy and interpretability 
of regression models by enforcing sparsity. Unlike ridge regression, which applies 
an �2 . penalty, lasso regression adds an �1 . penalty to the loss function, where yi .
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are the observed values, ŷi . the predicted values, βj . the coefficients, and λ. the 
regularization parameters. The �1 . penalty tends to shrink some coefficients exactly 
to zero, effectively performing variable selection and yielding a simpler model 
that retains only the most significant predictors. This sparsity property makes lasso 
regression particularly useful when dealing with high-dimensional data where the 
number of predictors exceeds the number of observations. By appropriately tuning 
the λ. parameter, one can control the complexity of the model, balancing bias and 
variance to improve predictive performance and interpretability. Lasso regression is 
widely utilized in fields like bioinformatics and economics where model simplicity 
and feature selection are crucial. 

3.3.3 ElasticNet Regression 

ElasticNet regression is a regularization and variable selection technique that 
combines the properties of both ridge regression and lasso regression. It addresses 
some limitations of these methods, particularly when dealing with highly correlated 
predictors and when the number of predictors exceeds the number of observations. 
ElasticNet adds both �1 . (lasso) and �2 . (ridge) penalties to the loss function, where 
yi . are the observed values, ŷi . the predicted values, βj . the coefficients, and λ1 . and λ2 . 

the regularization parameters. The combination of these penalties allows ElasticNet 
to perform both variable selection and shrinkage, retaining the benefits of both 
lasso (sparsity) and ridge (handling multicollinearity). ElasticNet is particularly 
useful in situations where there are multiple correlated predictors, as it tends to 
select groups of correlated variables together. By tuning the parameters λ1 . and λ2 ., 
ElasticNet provides a flexible approach to model regularization, balancing between 
the ridge and lasso penalties to improve model performance and interpretability. 
This technique is widely used in various fields such as genomics and finance, where 
it is crucial to handle large datasets with many predictors. 

3.3.4 k-Nearest Neighbors 

KNN is a method for supervised classification and regression. The algorithm uses 
the labeled training dataset to identify fresh data points using the “k” closest 
neighbors method. The notion is that similar data points will have similar labels 
or results. KNN uses point distance to estimate data proximity. Data is currently 
collected from a variety of sources for analysis, insight, theory validation, and other 
research goals. These databases frequently have missing data due to human error in 
data extraction or collection. Addressing missing values is critical in data analysis 
preparation. The selection of an imputation method has a significant impact on 
model performance. The Scikit-Learn, the KNN imputer, is a prominent missing 
value imputation method. The Euclidean distance matrix assists the KNN imputer 
in imputed missing data by selecting nearest neighbors. The Euclidean distance 
is calculated by removing missing values and prioritizing non-missing coordinates
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(James et al., 2013). The equation of this algorithm is 

. Dxy = √
weight × squared distance from present coordinates.

Here, 

. weight = total number of coordinates

number of present coordinates
.

3.3.5 CART 

ML uses nonparametric CART for classification and regression. By partitioning 
the feature space into target variable homogeneous sections, CART creates binary 
trees iteratively. Each leaf node represents a predicted class or value, while each 
internal node represents a feature test. The feature that optimizes information gain 
or Gini impurity reduction at each node is used by CART to classify, where N is 
the total number of samples, Nleft . and Nright . are the numbers of samples in the left 
and right child nodes, and Impurityleft . and Impurityright . are measures of impurity 
in the left and right child nodes, respectively. In regression, CART minimizes 
target variable variance within each partition. The splitting criterion is the split’s 
variance reduction. CART splits nodes iteratively until a stopping requirement is 
reached, such as a maximum tree depth, a minimum amount of samples in a node, 
or leaf node purity (Roy et al., 2023). CART models can capture complicated 
decision boundaries and feature interactions despite their simplicity. They can 
overfit, especially if trees grow too deep. Pruning and tree depth limitation reduce 
overfitting. 

3.3.6 Random Forest 

In a random forest, which is composed of a number of tree predictors, each tree is 
reliant on the values of a random vector that is randomly selected for each tree in 
the forest and distributed uniformly. The decision forests implement both pruned 
and unpruned single-tree classifiers for all datasets, and the disparities are typically 
substantial (Disha & Waheed, 2022). Accuracy increases with the number of trees 
in all forests; however, those generated through bootstrapping or boosting are 
frequently more competitive, while those generated through the random subspace 
approach occasionally exhibited a unique pattern. 

3.3.7 GBMs 

GBM creates a powerful predictive model using the predictions of numerous 
weak learners, usually decision trees. GBM iteratively adds better trees to fix
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prior mistakes. Previous trees’ residual errors are used to train each tree, and the 
predictions are pooled to minimize the loss function. GBM optimizes loss function 
using gradient descent in function space. Let Fm−1(x). be the current model after 
m − 1. iterations. GBM adds a new tree hm(x). to the model to obtain Fm(x).: 

. Fm(x) = Fm−1(x) + γmhm(x),

where γm . is the learning rate that controls the contribution of each tree. The new 
tree hm(x). is trained to minimize the loss function L(y, Fm−1(x) + γmhm(x)).. 
The mean squared error (MSE) is used for regression tasks and cross-entropy loss 
for classification tasks. GBM has great predicting accuracy and can handle varied 
data and distributions (Mahedi Hassan et al., 2023). It can overfit, especially with 
several trees. Common overfitting mitigation methods include reducing tree depth, 
subsampling, and learning rate modification. Large datasets and deep trees make 
GBM computationally costly, needing plenty of memory and computing capacity. 

3.3.8 XGBoost 

XGBoost has great classification. It creates an effective team of decision trees 
that prioritize ignored areas. Different from extreme gradient boosting, XGBoost 
improves decision trees. Excellent results come from teamwork, accuracy, and 
efficiency. Accuracy, precision, recall, and F1 score measurements refine model 
performance. XGBoost, a quick supervised learning algorithm, accurately classifies 
water quality in this investigation. Regularized learning improves weights and 
reduces overfitting, encouraging its use (Hasan et al., 2024). The equation of this 
algorithm is 

. �(θ) =
n∑

i=1

d(yi, ŷi ) +
k∑

k=1

β(fk).

3.3.9 LightGBM 

LightGBM is a gradient boosting framework that was created by Microsoft with 
an emphasis on accuracy, speed, and efficiency. It is engineered to manage large-
scale datasets and can operate substantially faster than other gradient boosting 
implementations. Gradient-based One-Side Sampling (GOSS) and Exclusive Fea-
ture Bundling (EFB) are two innovative tree construction methods that LightGBM 
employs. These methods allow for faster training times and reduced memory 
consumption without compromising predictive performance (Hasan et al., 2023). 
In LightGBM, the objective function can be presented as 

.L(θ) =
n∑

i=1

l(yi, ŷi ) +
K∑

k=1

�(fk), (1)
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where l(yi, ŷi ). is the loss function, ŷi . is the predicted value, and �(fk). is the 
regularization term. 

3.3.10 CatBoost 

CatBoost is a gradient boosting library that was developed by Yandex with the 
specific purpose of efficiently managing categorical features. The capacity to 
autonomously manage categorical variables without the necessity of extensive 
preprocessing is its distinguishing feature. Advanced algorithms for feature com-
binations and techniques such as ordered boosting are incorporated into CatBoost 
to manage categorical variables with high cardinality. The key hyperparameters 
in CatBoost include the learning rate η ., tree depth max_depth., and regularization 
parameters λ. and α .. The objective function in CatBoost is given by 

.L(θ) =
n∑

i=1

l(yi, ŷi ) + λ

J∑

j=1

‖wj‖2, (2) 

where l(yi, ŷi ). is the loss function, ŷi . is the predicted value, and ‖wj‖2
. is the 

regularization term on the weights. 

3.4 Explainable AI Tools 

3.4.1 Shapley Additive Explanations (SHAP) 

SHAP (Shapley Additive Explanations) is a framework for explaining ML model 
predictions. Based on Shapley values from cooperative game theory, SHAP quan-
tifies the contribution of each feature to the difference between the actual and 
expected predictions. This enables comprehensive insights into feature impacts 
across various samples. Various methods like Kernel SHAP, Tree SHAP, and 
Linear SHAP cater to different model types, providing model-agnostic explana-
tions. Visualization tools such as summary plots and force plots help interpret 
feature impacts on predictions. Widely adopted across domains, SHAP aids in 
model interpretation, feature engineering, and debugging due to its flexibility and 
interpretability (Prokhorenkova et al., 2018). 

3.4.2 Shapash 

A Python library for model interpretation and explanation is Shapash. Automated, 
customizable, and interactive ML model explanations enhance SHAP. Users of 
all levels may comprehend model predictions and feature impacts with Shapash.
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SHAPash’s intuitive and interactive visualizations of SHAP values let users see 
how individual attributes affect model predictions. Summary, force, and dependence 
graphs show feature relevance, interactions, and predictions. Users may understand 
their models’ behavior with Shapash’s model comparison, sensitivity analysis, 
and global feature relevance assessment. With support for tree-based, linear, and 
ensemble ML models, it is adaptable across domains and applications (Sajid et al., 
2023). Data science initiatives employ Shapash for model interpretation, debugging, 
and validation because to its user-friendly interface and excellent visualization 
features. 

3.4.3 Local Interpretable Model-agnostic Explanations (LIME) 

LIME (Local Interpretable Model-agnostic Explanations) is a technique for explain-
ing individual predictions of ML models by approximating their behavior with 
interpretable models locally around the instance of interest. It provides insights 
into how the model arrived at a particular prediction, allowing users to understand 
the model’s decision-making process. The key idea behind LIME is to fit a 
simple interpretable model, such as linear regression or decision trees, to locally 
approximate the complex model’s predictions. This interpretable model is trained on 
perturbed samples generated around the instance to be explained. The coefficients 
or feature importance of the interpretable model indicates the importance of each 
feature for the specific prediction (Hassan et al., 2023). 

3.4.4 Explain Like I’m 5 (ELI5) 

ELI5 (Explain Like I’m 5) is a Python module that gives clear and understandable 
explanations for ML models. It provides support for many models and aids in 
comprehending the significance of features and the behavior of the model through 
approaches such as permutation importance. Permutation importance quantifies the 
impact on the model’s performance when the values of a feature are randomly 
rearranged, providing a measure of the feature’s significance (Faruk et al., 2023). 
ELI5 also provides support for LIME to explain specific predictions. 

3.5 Performance Measure Metrics 

Several performance evaluation metrics can be used in the measurement of the 
accuracy of a model. Here is a description of some common ones: 
RMSE: RMSE measures the square root of the average squared differences between 
the predicted and actual values. It provides a way to measure the magnitude of 
prediction errors, with lower values indicating better model performance.
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R2
. Scores (Coefficient of Determination): The R2

. score quantifies how well the 
predicted values approximate the actual values. It ranges from 0 to 1, with higher 
values indicating a better fit. An R2

. score of 1 means the model explains all the 
variability of the target data around its mean. 
Mean Absolute Error (MAE): MAE calculates the average absolute differences 
between predicted and actual values. It is a straightforward measure of prediction 
accuracy, with lower values indicating fewer errors and better model performance. 
MSE: MSE measures the average of the squared differences between predicted and 
actual values. It emphasizes larger errors due to the squaring process, with lower 
values indicating better performance. 
Execution Times: Execution time refers to the amount of time a model takes to train 
and make predictions. Shorter execution times are generally preferable, especially 
in applications requiring real-time or near-real-time predictions. 

4 Result Analysis 

Firstly, the performance of the regressors is tabulated for different ratios of training 
and testing with hyperparameter tuning. Then Global and Local Interpretation of the 
model has been shown. 

4.1 Hyperparameter Tuning on the Models 

The optimal hyperparameter values for a variety of regression algorithms are 
illustrated in the Table 2. The optimal alpha values for ridge and lasso regression 
are 1.0 and 0.01, respectively. ElasticNet employs an l1_ratio of 0.1 and an alpha 
of 0.01. KNN uses five neighbors for tree-based methods, CART has a maximum 
depth of five and a minimum of three samples per leaf, and Random Forests, GBM, 
XGBoost, LightGBM, and CatBoost have specific hyperparameters related to the 
number of estimators or iterations, learning rate, and depth. 

4.2 Result of the ML Regressor in the Different Ratio of 
Training and Testing 

The performance of various regression algorithms using an 80:20 training-to-testing 
ratio is summarized in Table 3. The algorithms evaluated with the metrics are Ridge, 
Lasso, ElasticNet, KNN, CART, RF, GBM, XGBoost, LightGBM, and CatBoost. 
XGBoost performed the best with the lowest RMSE (0.091) and highest R2

. score 
(0.847), indicating the most accurate predictions. It also had the lowest MAE (0.051)
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Table 2 Hyperparameters value of the regressors 

Algorithms Best hyperparameters Hyperparameter Value 

Ridge “alpha” 1.0 

Lasso “alpha” 0.01 

ElasticNet “alpha,” “l1_ratio” 0.01, 0.1 

KNN “n_neighbors” 5 

CART “max_depth”, “min_samples_leaf” 5, 3 

RF “max_depth,” “n_estimators” 10, 100 

GBM “learning_rate,” “n_estimators” 0.05, 100 

XGBoost “learning_rate,” “n_estimators” 0.05, 100 

LightGBM “learning_rate,” “n_estimators” 0.1, 100 

CatBoost “depth,” “iterations,” “learning_rate” 5, 100, 0.1 

Table 3 Result of the regressors in 80:20 ratio of training and testing 

Algorithms RMSE MAE MSE Execution times R2 . scores 

Ridge 0.142 0.103 0.02 5.238 0.624 

Lasso 0.153 0.117 0.023 0.236 0.567 

ElasticNet 0.136 0.096 0.018 1.133 0.658 

KNN 0.191 0.139 0.036 0.441 0.322 

CART 0.142 0.084 0.02 0.799 0.627 

RF 0.098 0.053 0.01 13.089 0.823 

GBM 0.098 0.057 0.01 5.953 0.823 

XGBoost 0.091 0.051 0.008 11.089 0.847 

LightGBM 0.096 0.055 0.009 3.66 0.827 

CatBoost 0.095 0.061 0.009 63.819 0.834 

and MSE (0.008). LightGBM and CatBoost also performed well, with RMSEs 
of 0.096 and 0.095 and R2

. scores of 0.827 and 0.834, respectively. However, 
CatBoost’s execution time was significantly higher (63.819 seconds) compared 
to LightGBM (3.66 seconds) and XGBoost (11.089 seconds). The bar chart in 
Fig. 2 accompanying the table visualizes the error metrics, highlighting the superior 
performance of XGBoost, LightGBM, and CatBoost. Figure 3 shows the R2

. scores 
of the regressors. 

The performance of various regression algorithms using a 70:30 training-to-
testing ratio is shown in Table 4. LightGBM demonstrated the best performance 
with the lowest RMSE (0.075) and the highest R2

. score (0.895), indicating superior 
accuracy. It also had the lowest MAE (0.045) and MSE (0.006), with an execution 
time of 5.226 seconds. GBM also performed well, with an RMSE of 0.083 and an 
R2

. score of 0.87, but its execution time was higher at 6.495 seconds. CatBoost 
had a comparable R2

. score (0.822) but a much longer execution time (80.113 
seconds), making LightGBM the most efficient and accurate model. The bar chart 
in Figs. 4 and 5 visually highlights these metrics, showing LightGBM’s superiority. 
The performance metrics of various regression algorithms using a 50:50 training-
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Fig. 2 Bar chart for error metrics of the regressors in 80:20 training-testing ratio 

Fig. 3 Bar chart for R2 . scores of the regressors in 80:20 training-testing ratio 

to-testing ratio are shown in Table 5. This detailed comparison helps in identifying 
the best-performing regression model under an even data split scenario. Among the 
algorithms, XGBoost showed the best performance with an RMSE of 0.091 and 
the highest R2

. score of 0.847, indicating superior predictive accuracy. It also had 
the lowest MAE (0.051) and a very low MSE (0.008), though its execution time 
was moderate at 10.358 seconds. LightGBM also performed well with an RMSE of 
0.096, an R2

. score of 0.827, and a low MAE (0.055) while being much faster with 
an execution time of 1.968 seconds. Although CatBoost had comparable metrics 
(RMSE: 0.095 and R2

.: 0.834), its execution time was significantly longer at 60.658 
seconds, making XGBoost and LightGBM the most efficient and accurate models.
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Table 4 Result of the regressors in 70:30 ratio of training and testing 

Algorithms RMSE MAE MSE Execution times R2 . scores 

Ridge 0.115 0.086 0.013 1.917 0.751 

Lasso 0.149 0.116 0.022 0.179 0.579 

ElasticNet 0.122 0.088 0.015 0.616 0.718 

KNN 0.173 0.128 0.03 0.221 0.439 

CART 0.128 0.08 0.016 0.513 0.69 

RF 0.09 0.049 0.008 15.4 0.846 

GBM 0.083 0.052 0.007 6.495 0.87 

XGBoost 0.094 0.048 0.009 13.135 0.834 

LightGBM 0.075 0.045 0.006 5.226 0.895 

CatBoost 0.097 0.053 0.009 80.113 0.822 

Fig. 4 Bar chart for error metrics of the regressors in 70:30 training-testing ratio 

The bar chart visually highlights the RMSE and R2
. scores, underscoring the superior 

performance of XGBoost and LightGBM in Figs. 6 and 7. 

4.3 Explainable AI Analysis 

4.3.1 Global Interpretation 

Training the SHAP model involves leveraging the entire dataset, which can be 
resource-intensive because it calculates the marginal contribution of each feature 
by analyzing individual probabilities and overall performance across the dataset. 
SHAP produces Shapley values for each data point, illustrating how each feature’s 
value influences the model’s output. The model’s explanations are presented through
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Fig. 5 Bar chart for R2 . scores of the regressors in 70:30 training-testing ratio 

Table 5 Result of the regressors in 50:50 ratio of training and testing 

Algorithms RMSE MAE MSE Execution times R2 . scores 

Ridge 0.142 0.103 0.02 0.198 0.624 

Lasso 0.153 0.117 0.023 0.191 0.567 

ElasticNet 0.136 0.096 0.018 0.62 0.658 

KNN 0.191 0.139 0.036 0.19 0.322 

CART 0.128 0.067 0.016 0.428 0.697 

RF 0.101 0.056 0.01 12.64 0.812 

GBM 0.096 0.057 0.009 5.54 0.828 

XGBoost 0.091 0.051 0.008 10.358 0.847 

LightGBM 0.096 0.055 0.009 1.968 0.827 

CatBoost 0.095 0.061 0.009 60.658 0.834 

visualizations or plots, offering a graphical interpretation of its insights. The hier-
archical summary plot in Fig. 8 provides a prioritized view, ranking features from 
most to least important. This format delivers intuitive insights into understanding 
biogas prediction. For example, in the case of the waste_efficiency feature, the red 
color signifies that higher values are associated with a greater likelihood of gas 
production, whereas lower values correlate with a decreased chance of production. 

The SHAP bar plot function generates a global feature importance plot, providing 
insights into the overall significance of each feature. It calculates the global 
importance of each feature by computing the mean absolute value across all the 
samples provided. This approach offers a comprehensive understanding of the 
relative importance of different features in the dataset, allowing for informed 
decision-making and model interpretation. Below in Fig. 9 is the bar plot for our 
study. SHAPASH offers a versatile framework for easily building and deploying 
interpretable AI models. Designed with user-friendliness in mind, it streamlines
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Fig. 6 Bar chart for error metrics of the regressors in 50:50 training-testing ratio 

Fig. 7 Bar chart for R2 . scores of the regressors in 50:50 training-testing ratio 

model creation and deployment, providing accessible tools for visualizing, com-
prehending, and explaining model performance. Its intuitive interface aids in 
the analysis and interpretation of model behavior. SHAPASH employs Shapley 
values, the importance of permutation features, and partial dependence plots to 
deliver detailed model explanations. These insights help understand model behavior, 
detect biases, and enhance overall model performance. Figure 10 showcases the 
feature importance derived from SHAPASH in this study. Visual representations 
for each specific feature are shown in the subsequent figures below. ELI5 offers a 
method called “permutation importance” or “Mean Decrease Accuracy (MDA)” to 
determine the significance of features in a black box model. This technique evaluates
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Fig. 8 Hierarchical summary plot of features 

Fig. 9 Global feature importance plot by SHAP 

the impact on model performance when a particular feature is removed or modified. 
A significant drop in performance indicates that the feature is crucial for the model’s 
predictions. This method helps pinpoint the most impactful features in the model’s 
decision-making process. Figure 11 below illustrates the feature importance derived 
from permutation importance using ELI5.
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Fig. 10 Global feature importance plot by Shapash 

Fig. 11 Feature weight and tolerance using ELI5
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4.3.2 Local Interpretation 

The SHAP bar plot function generates a local feature importance plot, showcasing 
the SHAP values for each feature. In this plot, the feature values are displayed 
in gray to the left of the corresponding feature names. Each bar represents the 
SHAP value associated with a specific feature, providing insights into its impact 
on the prediction for a randomly selected observation. This visualization aids in 
understanding the contribution of individual features to the model’s output for 
a particular data point, facilitating model interpretation and analysis. Below is 
a local bar plot for a randomly selected observation in Fig. 12. Red bars show 
positive contribution and blues are negative. The LIME model explains a randomly 
chosen individual observation within the dataset. It aims to clarify the fluctuations 
in predictions by identifying top features deemed as significant contributors. 
Figure 13 below illustrates a randomly selected prediction, assessed using LIME, 
with emphasis on the top 12 features identified as crucial factors influencing the 
prediction outcome. This visualization aids in understanding the rationale behind 
the model’s predictions for specific data points, facilitating interpretability, and 
providing valuable insights into the model’s behavior. Shapash provides succinct 
and transparent local explanations, enabling users from diverse data backgrounds 
to comprehend the prediction of a supervised model through a simplified and 
straightforward explanation. Figure 14 below depicts a Shapash local explanation 
of a randomly selected prediction, offering insights into the factors influencing the 
model’s output for that particular data point. This visualization aids in understanding 
the reasoning behind individual predictions, promoting interpretability and facilitat-
ing informed decision-making. The feature rank based on the average of Eli5, SHAP, 
and Shapash values is shown in Table 6, where “waste_efficiency” ranks at the top. 

Fig. 12 Local feature importance plot using SHAP
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Fig. 13 Identifying significant features using LIME 

Fig. 14 Local explanation of a random Id: 411 

That means waste_efficiency impacts most predicted biogas production. Though 
position 9 animalfarm_types_dairy and emission_reduction_per_year have the same 
average value, we have picked animalfarm_types_dairy for its twice appearance. 
The same procedure was done for status_shut_down and year_operational.
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Table 6 Result of the average features ranking based on different XAI analysis 

Features Eli5 SHAP Shapash Average Rank 

waste_efficiency 1 1 1 1 1 

total_waste_kgday 2 2 2 2 2 

electricity_to_biogas_ratio 3 3 4 3.33 3 

biogas_per_animal_cuftday 4 4 3 3.66 4 

total_animals 5 5 5 5 5 

electricity_generated_kwhyr 6 6 6 6 6 

dairy 7 7 7 7 7 

total_emission_reductions_mtco2eyr 8 8 8 8 8 

animalfarm_types_dairy – 9 9 9 9 

emission_reduction_per_year 9 – – 9 10 

status_shut_down – 10 10 10 11 

year_operational 10 – – 10 12 

Table 7 Comparative analysis of different models 

Dataset Best model Performance References 

Hainan dataset Shenzhen 
data 

kNN XGBoost R2 = 0.86 R2 = 
0.66 

De Clercq et al. 
(2020) 

Primary data is taken from 
the East Bay Municipal 
Utility District 

Tree-Based Pipeline 
Optimization Tool 

R2 = 0.72, 
RMSE = 247 

Wang et al. (2021) 

Operational data from the 
AD process of Tyrol 

kNN R2 = 0.72 Sappl et al. (2023) 

Unknown RF R2 = 0.62 Gaida (2023) 

Household organic waste RF R2 = 0.88 Tryhuba et al. 
(2024) 

U.S. biogas LightGBM R2 = 0.89 This study 

4.4 Comparative Analysis 

As previously noted, the prediction of biogas using interpretable ML methods 
has recently gained recognition in academic research, though the number of 
such studies remains limited. Many earlier studies relied on single models to 
predict biogas production, but these models often underperformed due to inherent 
limitations and specific characteristics. In contrast, the model proposed in this 
research demonstrates significantly better performance. Table 7 below provides a 
comparative analysis of the most effective models from prior studies on biogas 
prediction, highlighting the superior performance of the model proposed in this 
study. However, direct comparison in this table is challenging due to differences 
in feature selection, sampling methods, data preprocessing, and other factors across 
the models.
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5 Conclusion and Future Work 

This chapter focuses on ML models for predicting daily biogas production using 
the U.S. biogas dataset from Kaggle. The study begins with the application 
of preprocessing techniques to eliminate unnecessary variables, followed by the 
implementation of ten ML models: RR, LR, KNNs, ER, CART, RF, XGBoost, 
LightGBM, GBM, and CatBoost. XGBoost and LightGBM are the most accurate 
and efficient biogas predictors among these models. XGBoost performs best at 
80:20 and 50:50 ratios (RMSE: 0.091 and R2

.: 0.847) and LightGBM at 70:30 
(RMSE: 0.075 and R2

.: 0.895). Improving the performance of the daily biogas 
prediction model can have significant practical implications, such as enhancing 
the efficiency and effectiveness of biogas production processes and addressing 
factors associated with gas production fluctuations. Furthermore, the study examines 
feature significance and dimension reduction by analyzing the contributions of 
various features to the predictions generated by interpretable methods. Interpretable 
methods were employed to identify the top eight features exerting the most influence 
on the prediction. These features were determined by analyzing the frequency 
of their appearance among the top ten features based on interpretability. Waste 
efficiency and total waste (kg/day) emerged as the most significant factors impacting 
biogas prediction. The above study recommends prioritizing these variables when 
developing biogas prediction systems or formulating organizational management 
policies to increase biogas production. By focusing on these critical factors, it 
is possible to enhance the predictive accuracy and overall productivity of biogas 
generation systems. 
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Application of Machine Learning 
Techniques in the Analysis of Sustainable 
Energy Finance 

Riadul Islam Rabbi, Ekramul Haque Tusher, Mahmudul Hasan, 
and Md Rashedul Islam 

1 Introduction 

Today’s business models must be adjusted to the changing characteristics of con-
temporary digital surroundings. Based on UN projects $5 trillion would need to be 
invested by 2020 in order to accomplish the sustainable development goals (SDGs) 
(Musleh Al-Sartawi et al., 2022). There must be a global shift toward renewable 
energy to battle climate change and achieve sustainability goals. This shift is led 
by sustainable energy financing (SEF), which involves funding and investments in 
renewable energy projects including wind, solar, power, and hydropower. Figure 1 
displays the overall SDG scores for different countries in the year 2023, with Finland 
leading the rankings. On the other Fig. 2 shows the SDG index scores for various 
countries from 2000 to 2022, with Sweden achieving the highest score. Nordic and 
Western European countries generally dominate the top. Nevertheless, the industry 
has several constraints that prevent it from developing further. Therefore, innovative 
solutions are required to overcome major obstacles such as variable regulatory 
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Fig. 1 Overall SDG score in 2023 by countries 

Fig. 2 SDG index score from 2000 to 2022 by countries 

environments, high initial expenses, and unidentified financial returns (Maria et al., 
2023). 

On the SDG graph, Fig. 3 shows a density distribution of SDG index scores, 
ranging from approximately 30 to 90. The distribution is multimodal, with a primary 
peak around 65–70 and secondary peaks around 50 and 75. There are notable dips 
in the distribution around scores of 40 and 60, creating a complex, nonsymmetric 
shape that suggests multiple subgroups or factors influencing the overall SDG index 
scores. On the other graph overall scores range from approximately 25 to 100. The 
distribution is roughly bell-shaped but slightly asymmetric, with a peak density of 
about 70 and a longer tail extending toward lower scores. There is a noticeable small 
dip in the curve around the 55–60 SDG score range before it rises to its maximum.
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Fig. 3 Density of SDG index score and overall score in years 2023 and 2000–2022 

The artificial intelligence (AI) field of machine learning (ML) has the potential 
to be revolutionary in tackling these difficulties. ML enables computers to learn 
from experience and make predictions or decisions without the need for explicit 
programming through the analysis and interpretation of complicated data using 
statistical models and algorithms (Mhlanga, 2021). Its integration into sustainable 
energy finance has the potential to transform risk assessment, investment decision-
making, and market trend prediction in the sector. 

ML algorithms can examine past financial data, patterns of energy usage, and 
market trends in order to forecast the financial success of renewable energy projects. 
This predictive capability assists investors in making better-informed decisions 
through the identification and mitigation of possible risks (Liu et al., 2021). Thus 
directing resources toward the most viable projects, ML can enhance investment 
portfolio optimization by analyzing diverse factors including profitability, ecologi-
cal effects, and adherence to regulations. So, in Fig. 4 displays a list of seven “Green 
Growth Indicators” presented as colored bars. These indicators include air and water 
population, forest, biodiversity, water, climate change, energy, and urbanization, 
each represented by several colors and accompanied by a small circular icon. 

Notwithstanding the potential benefits, the use of ML in sustainable energy 
financing is not without difficulties. Therefore, data availability and quality are 
crucial challenges, since reliable machine learning models require big and precise 
datasets. Furthermore, ensuring responsible ML technology use requires addressing 
key concerns, including data protection and algorithmic transparency, within regu-
latory and ethical frameworks (Mavlutova et al., 2022). 

Moreover, policymakers and investors may make more strategic and well-
informed decisions by using ML in sustainable energy finance (Gonzales Martínez, 
2020). This integration advances the more general objective of building a resilient 
and sustainable energy future despite increasing the impact and efficiency of invest-
ment in renewable energy. With this inquiry, we intend to provide a comprehensive 
understanding of how ML might be used to get over obstacles in sustainable energy 
financing and expedite the move to a low-carbon economy.
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Fig. 4 Green growth indicators 

Figure 5 shows the trend of renewable energy consumption as a percentage of 
total final energy consumption from 2011 to 2023. The line generally rose from 
2011 to 2018, reaching a peak of around 12.8% before dropping sharply in 2019 
and continuing a gradual decrease through 2023. So this research provides notable 
contributions to the topic of sustainable energy finances:

• This study provides a comprehensive comparison of multiple machine learning 
models, such as Decision Tree (DT), Random Forest (RF), Support Vector 
Machine (SVM), K-Nearest Neighbors (KNNs), Neural Network (NN), and 
XGBoost. This comparison research brings useful insights into the relative 
advantages and disadvantages of various architectures concerning the sustain-
ability of energy financing.

• We establish the edge of our framework of investigation by utilizing metrics 
such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAEP), and 
R-Squared values when comparing all the models that were evaluated. This 
comprehensive assessment offers compelling evidence of the efficacy of our 
technique in enhancing the precision of forecasting. 

This study seeks to provide insight into the possible benefits, methodologies, 
and future possibilities of this emerging topic, in exploring the interface between 
machine learning and sustainable energy. The rest of the chapter’s structure is as 
follows: In Sect. 2 we will review the current applications of ML in sustainable 
energy finance. Section 3 discusses a description of the machine learning techniques,
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Fig. 5 Renewable energy consumption (% of total final energy consumption). Source: data-
bank.worldbank.org 

and Sect. 4 presents results and data analysis. Finally, we will outline the discussion, 
conclusion, future research directions, and policy implications. 

2 Literature Review 

The intent of the following section consists of providing an in-depth review of 
the predominant studies on the use of machine learning techniques to the task of 
predicting sustainable energy finances. 

2.1 Sustainable Energy Finance 

The term “Sustainable Energy Finance (SEF)” defines the financial and investment 
methods utilized to aid in the advancement and energy-efficient technologies, as 
well as deployment. In order to shift to a low-carbon economy, and accomplish 
sustainable development aims, is very necessary for this field. SEF is essential 
for mitigating climate change, maintaining energy security, and getting economic 
benefits and last but not least for social and environmental impact. Additionally, 
there has been a growing correlation between the global energy markets and 
the financial sectors, and energy prices have shown more characteristics since

http://databank.worldbank.org/
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the worldwide financial collapse of 2008 (Zhang, 2018). Now, energy is a vital 
ingredient in current economic frameworks. Its impact on different facets of 
economic performance has been extensively examined. Conventionally, oil, as 
well as energy commodities’ prices, has been considered to be driven by supply 
and demand in global marketplaces. What is energy finance?—energy finance is 
multidisciplinary by nature and starts with assessing the links between the energy 
and financial markets. Mahesh et al. studied sustainable finance that facilitates 
enhanced growth and provides better funding for expanding the economy (Kadaba 
et al., 2022). Sustainable development aims to safeguard and restock the natural 
ecosystem. It is crucial to foster renewable energy sharing, take on green and 
sustainable energy norms, and make sound decisions to maximize the utilization 
of natural resources. Moreover, to facilitate the shift to sustainable energy solutions, 
emphasize the vitality of designing global corporate green financing policies and 
plans that are both short and long terms in nature (Trivedi et al., 2023). Ultimately, 
SDGs have the objective of reaching the ideal and desired world (Bei & Wang, 
2023). It has some finance mechanisms like public, private, hybrid, and innovative 
financing that have faced many challenges for high initial costs, regulatory and 
policy uncertainty, technical and market risks, and access to finance. So we have 
to say that from previous studies they are a very important component of the across-
the-glove transition to a low-carbon economy. 

2.2 Machine Learning in Finance 

According to an analysis of recent academic literature, nonlinear econometric 
models and machine learning models have replaced linear econometric models 
based on the study of forecasting oil prices. As an area of AI, ML is a way of creating 
algorithms that analyze, interpret, and forecast data to make decisions. In the bank-
ing sector, ML is transferring with its revolutionary effects on productivity, accuracy, 
and client experiences. In Fig. 6 we can see that there are a lot of machine learning 
methods for applying native energy communities such as supervised learning, 
unsupervised learning, and reinforcement learning. These algorithms have worked 
on several applications of machine learning in finance which are for algorithmic 
trading, fraud detection and prevention, credit scoring and risk assessment, and 
market sentiment analysis. S.B. Jabeur et al. investigated in their study on oil price 
predicting crashes during the 2019 novel coronavirus (COVID-19) pandemic. This 
study employed several advanced ML algorithms to reduce the influence of the 
COVID-19 pandemic on oil prices using a precise forecasting methodology that 
takes into account the pattern of changes in oil prices (Jabeur et al., 2021). In another 
paper, M. Mohsin et al. suggested a novel approach for predicting crude oil prices 
depending on several kinds of sociopolitical and economic variables by applying 
the Least Absolute Shrinkage and Selection Operator (Lasso) model within the 
framework of green finance (Mohsin & Jamaani, 2023). Based on the systematic 
review A. Hernandez et al. presented the data produced by the power system and its
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Fig. 6 Machine learning algorithms’ use for energy communities 

customers utilizing statistical learning theory where machine learning algorithms 
are data-driven models (Hernandez-Matheus et al., 2022). 

In the distribution grid, energy communities are evolving into fresh types of 
organizations for prosumers and consumers. In addition, R. Rastogi et al. conducted 
to describe how renewable energy policies affect the financial performance of 
renewable energy firms and highlight trends in their economic performance (Rastogi 
et al., 2020). P. Sadorsky et al. studied to forecast the direction of clean energy 
stock prices using machine learning techniques. In this study, they found support 
vector machines achieved higher prediction accuracy than Lasso or Naïve Bayes 
(Sadorsky, 2022, 2021). Furthermore, I.M. Black discussed systematically, which 
is very imperative to ascertain the exact state of an asset to achieve the anticipated 
operating duration and efficiency. This requires a determination of equipment faults 
(Black et al., 2021). Likewise, A. Chang et al. aimed to determine how the SDGs 
influence the ICT industry’s ability to anticipate corporate financial performance 
(CFP) (Chang et al., 2024). They supposed that several factors can improve the 
earnings per share (EAR) forecast, including return on total assets, adoption of 
the SDGs, and whether the company has created KPIs for SDG accomplishments. 
Table 1 is the literature review based on the last 5 years which are the most 
representative machine learning algorithms for predicting on finance sector. 

2.3 Intersection of Machine Learning and Sustainable Energy 
Finance 

The topic of ML and SEF is both dynamic and promising, combining sophisticated 
data analytics with investments in renewable energy. Financial organizations and
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Table 1 Model, metrics, and limitations in finance sectors 

Authors and 

reference Model Metrics Limitations 

Mohsin and 
Jamaani (2023) 

OLS, GARCH, 
ANN, Lasso 

Mean, median, 
MSPE, std. 

Limited capacity, not to 
compare other models, an 
unknown subset of 
energy product 

Jabeur et al. 
(2021) 

LightGBM, 
CatBoost, XGBoost, 
RF, and NN 

Accuracy, ROC curve Not to analyze other 
metrics, not to use any 
interpretable algorithms, 
and need more predictive 

Rastogi et al. 
(2020) 

K-Means Cluster ROE Further, need to 
investigate each cluster, 
and study other sources 
of energy 

Sadorsky (2022) Extra Trees, SVM, 
RF, GBM, NB, Lasso 

Accuracy, kappa, 
F1-value 

Need to expand the 
predictor space, and 
extend the number of 
methods 

Chang et al. 
(2024) 

DT, RF, SVM MAE, MSE, RMSE, 
MAPE 

Only correlate between 
reports and financial 
performance in the ICT 
industry and not be 
confined to particular 
assumptions in ML 

Sadorsky (2021) Logit Model, 
Random Forest 

Accuracy, Gini Only three models are 
used and the analysis of 
additional technical 
indicators 

Zhang et al. 
(2023) 

Regression, 
Medication Effect, 
Threshold 

T-values, coef. Not to compare other 
models, need to extend 
digital transformation 

Nguyen et al. 
(2021) 

OLS, ElasticNet, NN, 
KNN, RF, XGBoost 

MAE Need to be improved 
prediction accuracy by 
incorporating additional 
variables 

Xin et al. (2024) XGBoost R-Square, MAE, 
MSE, RMSE, MAPE 

Only use China’s 
prefecture-level cities, no 
consent on the concept of 
inclusive growth 

May et al. (2022) ANN, GMDH, 
ANFIS 

RMSE, MAPE, 
R-Square 

Need to compare other 
models and metrics 

energy providers may increase efficiency, accelerate the expansion of sustainable 
energy projects, and optimize decision-making processes by utilizing machine 
learning algorithms. A significant benefit of ML application for SEF is improved 
data-driven decision-making capacity (Bashir et al., 2022). Therefore, ML algo-
rithms may analyze large datasets, such as past energy output, weather patterns,
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market pricing, and financial performance. This link increases decision-making 
and risk assessment. Further, ML can maximize renewable energy distribution 
and production. The following example is that predictive algorithms can foresee 
equipment breakdowns before they happen by analyzing data from sensors on solar 
panels or wind turbines. SEF and ML have seven main themes of research likely 
socially responsible investing, climate financing, green financing, impact investing, 
carbon financing, energy financing, and governance of sustainable financing and 
investing (Kumar et al., 2025). So it has a strong correlation between SEF and 
ML, as well as very crucial for energy sources (Li & Umair, 2023). In the field 
of finance, machine learning algorithms can develop precise financial projections 
and valuations for renewable energy projects (Pincet et al., 2019). Stakeholders 
may improve financial results, streamline operations, and make better decisions, 
propelling the world’s shift to sustainable energy through leveraging machine 
learning. 

3 Methodology 

In this study, we aim to predict the long-term viability of energy finances by utilizing 
comprehensive fuel data and employing various machine learning methods. We 
especially prioritize certain machine learning algorithms that have been enhanced to 
increase the sustainability of energy budgets. To assess the efficacy of our machine 
learning model, we conduct a comparative analysis with many well-established 
models in the finance domain. 

3.1 Explanation of the Approach 

A thorough machine learning workflow is depicted in Fig. 7, commencing with 
data collection, which is the process of gathering unprocessed data to serve as the 
project’s basis. After that, Data Preprocessing is performed, which includes Data 
Cleaning to address missing or inconsistent data, the use of a MinMax Scalar to 
normalize features within a specified range, and Data Visualization to comprehend 
data patterns and distributions. The preprocessed data is subsequently partitioned 
into training data and test data. The training data is utilized for modeling a range of 
machine learning models, such as Decision Tree, Random Forest, Support Vector 
Machine, K-Nearest Neighbors, Neural Network, and XGBoost. Throughout the 
training process, the models’ performances are assessed using various Performance 
Metrics, including MSE, RMSE, MAE, MAPE, and R-Squared. These criteria assist 
in the selection of the optimal model for making predictions. At the end the most 
effective model is implemented for the purpose of Result Prediction, wherein it 
is utilized to provide precise forecasts, and the resulting outcomes are thoroughly 
examined. This methodical methodology guarantees a methodical and effective 
procedure for creating, assessing, and implementing machine learning models.
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Fig. 7 Overview of ML-based energy financing sustainability 

3.2 Machine Learning Models 

There are a lot of machine learning techniques, and that we have chosen six 
algorithms for this study such as decision tree, random forest, support vector 
machine, k-nearest neighbors, neural networks, and XGBoost algorithm. We have 
described them below: 

3.2.1 Decision Tree 

DT is one of the best machine learning algorithms of supervised learning. It 
is nonparametric, and there are two different types of trees that are available: 
regression trees and classification trees, for the intent of classifying continuous and 
categorical variables. Both trees utilize a recursive partitioning approach, working 
from the top down. The splitting process continues until the desired level of 
uniformity is achieved (Abedin et al., 2025). Throughout the procedure, our data 
might be overfitting which will classify it too broadly. The approximated function 
can be described as follows: 

.G(Qm, θ) = nleft
m

nm

H(Qleft
m (θ)) + n

right
m

nm

H(Q
right
m (θ)) (1) 

Here, in this equation, Qm . represents each node of m with nm . samples and 
partitions the data into subsets Qleft

m (θ). and Q
right
m (θ).. It varies based on whether



Application of Machine Learning Techniques in the Analysis of Sustainable. . . 237

the task is classification or regression, and the effectiveness of a quality of split 
node m is calculated using an impurity function or a loss function

3.2.2 Random Forest 

The RF algorithm is commonly used as a machine learning approach for handling 
categorization problems. This is the most popular algorithm that has been used 
increasingly day by day in various fields like environmental protection, marketing, 
and finance. It is a set based on trees and is supplemented with a measure of the 
projection’s average value derived at each tree’s conclusion, reducing the absence of 
robustness in one tree (Hasan et al., 2023b). The predicted model can be expressed 
as follows: 

.Ŷ = 1

q

q∑

i=1

fx(X) (2) 

In this predicted function, f(x) represents a set of kth trainee random trees, where 
x is the input feature vector. RF is a meta-estimator that balances and overfitting 
and uses averaging to increase prediction accuracy by fitting numerous decision 
tree classifiers on different subsets of the dataset. According to a previous study, the 
Random forest algorithm is better than other machine learning algorithms. 

3.2.3 Support Vector Machine 

SVM has become the most effective and trustworthy algorithm for classification 
and regression in different kinds of application fields. The main objective is 
to classify the optimal hyperplane for separating the data points into various 
categories (Cervantes et al., 2020). It is very effective in high-dimensional spaces, 
memory efficient, and versatile. It has many kernel functions such as linear kernel, 
polynomial kernel, and radial basis function kernel (Hasan et al., 2024a). The 
SVM’s predicted function is as follows: 

.Ŷ =
{

0 if WT · X + b < 0

1 if WT · X + b ≥ 0
(3) 

Using such an equation, Ŷ . is the predicted class for the input feature vector of X. 
W is the weight vector that is learned from the training data, and b is the bias term 
which is also trained in the data and aids in shifting the hyperplane. So it is suitable 
for both classification and regression problems.
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3.2.4 K-Nearest Neighbors 

KNN algorithm is a straightforward, nonparametric, and incremental learning 
technique for regression and classification applications. This algorithm mainly has 
two steps in classification of a learning step and an evaluation of the categorization. 
Identifying the classes to which its neighbors belong is categorized using the 
closet neighbor approach for new unlabeled data (Hasan et al., 2024b). The KNN’s 
predicted output is as follows: 

.Ŷ = 1

k

k∑

i=1

yNN(i) (4) 

Here, Ŷ . is the predicted value in which yNNi denotes the target values of the k 
adjacent values. So KNN is the simplicity, comprehensibility, and scalability of each 
domain. 

3.2.5 Neural Networks 

Neural network is a kind of computing model that resembles the structure and 
functions of the human brain to identify patterns and resolve difficult problems. It is 
a widely used technique for classification and regression problems such as logistic 
regression or discriminant analysis (Rabbi et al., 2023). It is constructed of layers of 
networked nodes, or neurons, that investigate the input data and give an output. The 
estimated model has the following expression: 

.Ŷ = f

⎛

⎝f

(
N∑

i=1

μijxi + bi

)
·
⎛

⎝
k∑

j=1

μj

⎞

⎠ + b

⎞

⎠ (5) 

Here, μ. is the matrix of network weights, the neuronal activation function is 
represented by f, the number of features is n, and the deep layers of the number of 
neurons are denoted by k. So it is a more powerful model able to learn from data, 
identify patterns, and make predictions. 

3.2.6 XGBoost Algorithm 

XGBoost (Extreme Gradient Boosting) is a powerful machine learning technique 
that can help you better understand your data and decision-making. It is a scalable 
and highly effective gradient boosting method for supervised learning tasks. This 
algorithm is mainly designed for optimizing both computational and model perfor-
mance, and it is an appealing choice for many machine learning challenges and
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practical applications (Hasan et al., 2023a). The final score is calculated by using 
this formula: 

.Ŷ =
H∑

h=1

gh(Xi) (6) 

Here, the score of leaf trees is denoted by K in this equation, while H represents 
the number of trees. So it is the most popular gradient boosting framework that is 
effective, efficient, and versatile for issues.

4 Results and Data Analysis 

4.1 Data and Variables 

In this study, we used a historical dataset on fuels and energy like oil and gas 
from Yahoo Finance to extract the data which is collected from Kaggle (https:// 
www.kaggle.com/datasets/guillemservera/fuels-futures-data/data). This dataset has 
provided comprehensive and up-to-date information on futures related to oil, gas, 
and fuels. Futures are financial agreements that commit the seller to sell a particular 
amount of a certain fuel at a defined price at a later date and the buyer to acquire it. It 
has eight features and five categories for predicting variables. Table 2 is a description 
of features. 

4.2 Data Analysis 

Table 3 represents the descriptive statistics for fuel market data, encompassing 
opening high, low, and closing prices, as well as trading volume. We discuss the 

Table 2 Feature description on historical Yahoo finance dataset 

Column Descriptions 

Date The date when the data was documented. Format: YYYY-MM-DD 

Open Market’s opening price for the day 

High Peak price during the trading window 

Low Lowest traded price during the day 

Close Price at which the market closed  

Volume Number of contracts exchanged during the trading period 

Ticker The unique market quotation symbol for the future 

Commodity Specifies the type of fuel the future contract pertains to (e.g., crude oil, 
natural gas)

https://www.kaggle.com/datasets/guillemservera/fuels-futures-data/data
https://www.kaggle.com/datasets/guillemservera/fuels-futures-data/data
https://www.kaggle.com/datasets/guillemservera/fuels-futures-data/data
https://www.kaggle.com/datasets/guillemservera/fuels-futures-data/data
https://www.kaggle.com/datasets/guillemservera/fuels-futures-data/data
https://www.kaggle.com/datasets/guillemservera/fuels-futures-data/data
https://www.kaggle.com/datasets/guillemservera/fuels-futures-data/data
https://www.kaggle.com/datasets/guillemservera/fuels-futures-data/data
https://www.kaggle.com/datasets/guillemservera/fuels-futures-data/data
https://www.kaggle.com/datasets/guillemservera/fuels-futures-data/data
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Table 3 Descriptive statistics for finance dataset 

Features Mean Std. Min. 25% 50% 75% Max. 

Open 27.28 36.08 -14.00 2.03 3.37 54.88 1.46e+02 

High 27.67 36.53 0.50 2.06 3.45 55.74 1.47e+02 

Low 26.87 35.59 -40.3 1.99 3.30 53.90 1.44e+02 

Close 27.28 36.08 -37.6 2.03 3.37 54.88 1.46e+02 

Volume 105981.7 148442.4 0.000 26410.0 49032.0 114720.0 2.28e+06 

following statistics: mean, standard deviation, the first, second, and third quartile, 
minimum, and maximum (refer to Table 3). The price-related features (Open, High, 
Low, and Close) show similar patterns, with mean values of around 27 and standard 
deviations of about 36, indicating high volatility. Interestingly, minimum values for 
open, low, and close are negative, which is unusual for price data and may suggest 
unique market conditions or data anomalies. The price ranges are wide, spanning 
from negative values to highs around 146–147. Trading volume statistics reveal 
a highly skewed distribution, with a mean of 105,981.7 and a standard deviation 
of 148,442.4. The volume ranges from 0 to a maximum of 2.28 million, with the 
median (49,032) being significantly lower than the mean, further highlighting the 
right-skewed nature of the volume data. Overall, these statistics paint a picture 
of a volatile fuel market with wide price fluctuations and highly variable trading 
volumes. On the contrary, the pairwise correlation coefficients between the original 
values in our investigation are shown in Fig. 8. A graphical representation of the 
correlation between the variables of finance variables is presented in Fig. 7. In the  
correlation matrix, coefficients revealed that several commodities on the finance 
dataset volume are highly connected with all other variables, and also there is some 
negative correlation on fuel energy datasets. 

This section has discussed data patterns. Figure 9 depicts crude oil (a), heating 
oil (b), natural gas (c), gasoline (d), and Brent crude oil (e) prices from 2000 to 
2024, showing significant fluctuations over time. Notable features include a sharp 
price spike around 2008, in the crude oil plot followed by a sharp decline, a period 
of relative stability from 2011 to 2014, and an unprecedented price crash to negative 
values in 2020 only for Covid, before recovering and fluctuating in subsequent 
years. Heating oil prices started low in 2000. Prices remained volatile but generally 
high from 2011 to 2014 and sharply dropped in 2020. The highest peak appears in 
2022. Other natural gas main price spikes occurred in 2001, 2005, and 2008. So the 
highest peak was in 2005. There was a period of low prices from 2016 to 2020. In 
gasoline prices, a major drop in 2020 (likely due to COVID-19), and a dramatic rise 
to peak prices in 2022, followed by a decline toward 2024. The last fuel Brent crude 
oil prices started low in 2000 and remained high from 2011 until 2014. There was 
a dramatic crush in 2020. Prices moderated but stayed volatile toward 2024. The 
overall trend shows increasing prices over the 24 years.
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Fig. 8 Correlation matrix for five fuel energy datasets
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Fig. 9 (a) Crude oil, (b) heating oil, (c) natural gas, (d) gasoline, and (e) Brent crude oil close 
price from 2000 to 2024
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4.3 Results 

A comparison of the predicting abilities of the various machine learning models 
is given in this section. During this investigation to ascertain the effectiveness of 
each unique model for the validation process, the relationship between the initial 
characteristics and the predictor variables is constructed by five commodities. We 
used five several metrics for calculating model performance. Table 4 shows the 
regression performance measured by mean squared error, root mean squared error, 
mean absolute error, mean absolute percentage error, and R-Squared error. These 
can be calculated as follows: 

.MSE = 1

n

n∑

i=1

(Yi − Ŷi )
2 (7) 

.RMSE =
√∑n

i=1(Ŷi − Yi)2

n
(8) 

.MAE =
∑n

i=1 |Ŷi − Yi |
n

(9) 

.MAPE = 1

n

n∑

t=1

∣∣∣∣∣
Yt − Ŷt

Yt

∣∣∣∣∣ (10) 

.R2 = 1 −
∑

i (Yi − Ŷi )
2

∑
i (Yi − Ȳ )2

(11) 

In this equation, n is the number of data points, Yi . is the observed values, and Ŷi . 

is the predicted values, respectively. 
The data in Table 4 allows for the inference of several conclusions from historical 

finance datasets. Across all commodities, the RF model consistently demonstrates 
the highest accuracy, with the lowest error rates (MSE, RMSE, MAE, MAPE) and 
the highest R-Squared values, typically 0.998 or 0.999. This indicates that RF is 
extremely effective at predicting prices for these energy commodities, explaining 
nearly all of the variance in the data. The DT and XGBoost models also perform 
exceptionally well, often matching or coming very close to the RF model’s per-
formance. These three models (RF, DT, and XGBoost) consistently outperform the 
others across all commodities. In contrast, SVM and KNN models generally show 
the poorest performance, with significantly higher error rates and lower R-Squared 
values. This suggests that these models may not be as well suited for forecasting 
energy commodity prices compared to the tree-based models. The Neural Network 
model’s performance varies considerably across different commodities. It performs 
reasonably well for crude oil and Brent crude oil but shows poor performance for 
natural gas, where it actually has a negative square value, indicating that it performs 
worse than a horizontal line for predicting natural gas prices. Overall, the tree-
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Table 4 Performance of several metrics of different prediction models by testing datasets 

Commodity Algorithm MSE RMSE MAE MAPE R-Square 

Crude oil Decision Tree 0.979 0.989 0.630 0.010 0.998 

Random Forest 0.495 0.704 0.478 0.008 0.998 

Support Vector Machine 359.4 18.95 14.65 0.276 0.440 

K-Nearest Neighbors 376.0 19.39 15.20 0.287 0.415 

Neural Network 7.119 2.668 1.824 0.033 0.988 

XGBoost 1.958 1.399 0.554 0.010 0.966 

Heating oil Decision Tree 0.001 0.037 0.019 0.010 0.998 

Random Forest 0.000 0.024 0.015 0.008 0.998 

Support Vector Machine 0.580 0.761 0.606 0.372 0.185 

K-Nearest Neighbors 0.696 0.834 0.669 0.440 0.022 

Neural Network 0.702 0.837 0.640 0.323 0.014 

XGBoost 0.000 0.028 0.016 0.008 0.998 

Natural gas Decision Tree 0.014 0.118 0.067 0.013 0.997 

Random Forest 0.007 0.088 0.053 0.011 0.998 

Support Vector Machine 3.813 1.952 1.353 0.314 0.243 

K-Nearest Neighbors 4.069 2.017 1.470 0.369 0.192 

Neural Network 174.3 13.20 12.68 3.376 -33.58 

XGBoost 0.010 0.101 0.058 0.012 0.997 

Gasoline Decision Tree 0.000 0.027 0.018 0.010 0.998 

Random Forest 0.000 0.021 0.014 0.008 0.999 

Support Vector Machine 0.425 0.651 0.524 0.327 0.229 

K-Nearest Neighbors 0.480 0.693 0.558 0.369 0.128 

Neural Network 0.053 0.232 0.180 0.100 0.902 

XGBoost 0.000 0.022 0.015 0.009 0.909 

Brent crude Decision Tree 0.894 0.945 0.629 0.011 0.998 

Random Forest 0.493 0.702 0.474 0.008 0.999 

Support Vector Machine 359.4 18.95 14.65 0.276 0.440 

K-Nearest Neighbors 376.0 19.39 15.20 0.287 0.415 

Neural Network 6.354 2.520 1.974 0.033 0.990 

XGBoost 1.958 1.399 0.554 0.010 0.996 

based models (RF, DT, and XGBoost) appear to be the most reliable and accurate 
for forecasting energy commodity prices across all the commodities analyzed. The 
performance of other models, particularly SVM, KNN, and Neural Networks, is 
generally inferior and inconsistent across different commodities.
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5 Conclusion and Future Directions 

5.1 Conclusion 

The research study has shown that although the availability of a literature review 
for many features pertaining to the financial, energy, and economy markets. But 
there are no friendly sustainable energy sectors like crude oil, heating oil, gasoline, 
etc. Therefore, this study assisted in determining the model performance of finance 
sectors that could contribute to this domain. In this research investigation, machine 
learning algorithms were used on the historical finance datasets. According to the 
findings, DT, RF, and XGBoost algorithms are given the best performance and most 
reliable, as well as trustworthy on financial data. So, the global market will grow 
with emerging technologies so that nations can reduce energy consumption over the 
past decade. As a result, the study of research also contributed to the development 
of a more accurate model that could be used for obtaining other energy sources. 

5.2 Implications 

Implementing policies effectively to gain immediate attention is considered crucial. 
Therefore, policymakers should aim to mitigate the observed volatilities among 
other features through more effective policy design. So for this outline some key 
implications of using machine learning for sustainable energy finance analysis are: 

i. Improved risk assessment: The risks associated with sustainable energy 
projects can be analyzed in large datasets to better assess using machine 
learning models. 

ii. Optimization of energy systems: The integration of renewable energy sources 
into existing grids can assist in improving efficiency and reducing costs using 
machine learning. As a result, these sustainable energy projects may become 
more profitable. 

iii. Identification of investment opportunities: Machine learning techniques are 
able to analyze market trends, technological developments, and policy changes 
to recognize promising investment possibilities in the sustainable energy 
sector. 

iv. Identification of investment opportunities: Machine learning techniques are 
able to analyze market trends, technological developments, and policy changes 
to recognize promising investment possibilities in the sustainable energy 
sector. 

v. Automation of due diligence: Parts of the due diligence process for sustainable 
energy finance could get automated with ML algorithms, which could expedite 
investment decisions and reduce costs.
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vi. Improved fraud detection: In order to protect investors and maintain the 
integrity of the green finance markets, machine learning models could help 
detect fraudulent behavior in the financing of sustainable energy. 

vii. Personalized financial products: Machine learning makes it possible to create 
more individualized financial products which could lead to an increase in 
investment in this field. 

viii. Policy impact assessment: For the purposes of facilitating evidence-based 
policymaking, ML models can assist assess the potential impact of several 
policy scenarios on financing for sustainable energy. 

5.3 Limitations, Challenges, and Future Directions 

Very little earlier research was carried out in the past on the sustainable energy 
sector with different features. Hence, few literature reviews were attained for this 
research study area, and a lot of characteristics have to be reconsidered. This 
research study solely explored the financing of sustainable energy to reduce costs. 
However, in this sector, there are many limitations and challenges. Firstly, data 
quality and availability are crucial for improving this field, but there is a lack 
of standardized privacy concerns limiting inconsistent or incomplete data across 
different regions and after that regulatory compliance issues when using complex 
ML models for financial decisions. On the other hand, historical datasets may 
contain biases that could be perpetuated by machine learning models and also 
the complexity of energy systems when integrating multiple variables into ML 
models. Finally, it needs high computational requirements for processing large 
datasets and running complex models. Nevertheless, for future research, develop 
more transparent machine learning models to improve trust and meet regulatory 
requirements in finance. Implement transfer learning knowledge gained from data-
rich markets in data-poor regions, improving the global applicability of ML models. 
So for future studies, create specialized ML models that integrate climate science, 
energy technology, and financial data for more accurate long-term projections. 
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Strategies for Sustainable Renewable 
Energy: A Comprehensive Review 
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1 Introduction 

Electricity is integral to modern life, akin to two sides of the same coin. Accordingly 
human daily activities are deeply intertwined with electrical devices such as mobile 
phones, computers, televisions, and internet connections, among others. The list 
is virtually endless. Numerous companies thrive on the use of electricity. A con-
temporary and prominent topic is the electric car, which many researchers predict 
will dominate the future (Bhatti et al., 2021). Hence, a reliable supply of electricity 
is essential for sustained progress. However, generating electricity is a complex 
task, unlike mining coal directly from the ground. It is produced from secondary 
energy sources derived from primary sources, including fossil fuels. Fossil fuels 
such as oil, coal, and natural gas are usually used to generate power and are known 
as non-renewable or conventional energy sources (Hassan et al., 2021). These 
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non-renewable energy sources are high-density, allowing for quicker electricity 
generation compared to renewable sources. Unfortunately, harmful greenhouse 
gases are released by the combustion of fossil fuels into the environment, which 
is the cause of global warming and greenhouse effect (Zhang et al., 2024). 

Therefore, it is imperative to seek alternatives to non-renewable energy to protect 
our planet and its inhabitants. Renewable energy presents a viable solution as it 
is environmentally friendly and emission-free, thereby not negatively impacting 
the earth. Renewable energy sources are able to meet demands of the current 
generations barring the future generation’s needs. Consequently, global energy 
usage is on the rise, with researchers estimating a 56% increase by 2040 (Maamoun 
et al., 2020). To mitigate global warming, it is crucial to reduce carbon dioxide 
emissions and decrease reliance on non-renewable energy, while maximizing the 
renewable energy uses. Wind similarly to sunlight is a source of natural renewable 
energies and is increasingly being adopted worldwide. 

The integration of artificial intelligence learning methods for conversion of 
energy, forecasting, and power prediction plays an important role in the advance-
ment of sustainable energy sources. Accurate power prediction in electrical net-
works is crucial for the cost-effective combination of renewable power resources. 
The demand for sustainable forecasting energy sources is increasing daily, aiding a 
variety of applications from small-scale to large-scale power grids. It is anticipated 
that the solar and wind turbines installation, particularly in offshore locations, will 
reach unprecedented levels in the coming decades. Power output, such as solar and 
wind variability, is influenced by environmental factors and significantly impacts 
applications related to these energy sources (Alkhayat & Mehmood, 2021; Hasan et 
al., 2024a). 

Hydropower energy prediction is another critical area, with hydropower being 
recognized for its efficiency, achieving around 90%. Many countries support 
hydropower as a simple and major source of renewable energy due to its ability 
to generate electrical energy by harnessing potential energy from higher to lower 
elevations. Hydropower is also known for its cost-effectiveness compared to 
other renewable energies, making it more economical (May et al., 2020; Hasan 
et al., 2024b). Geothermal energy, another renewable resource, relies on heat 
from within the earth, harnessed by injecting wells with water and drilling or 
antifreeze materials. Despite the potential, technological limitations and insufficient 
capital investment have left many geothermal plants underdeveloped. However, 
as opposed to the power plants that based on fossil fuel the geothermal plants 
release significantly fewer greenhouse gases. Advancements in machine learning 
and deep learning technologies have also enhanced prediction of power in ocean 
and tidal energy. Biomass, generated from organic materials such as plants and 
animal waste, produces 3 × 106 kcal mg−1 of heating value when used as an 
alternative source of energy. Despite the challenges, these various sources of 
renewable energy—biomass, tidal, geothermal, wind, and solar—hold immense 
potential for forecasting, prediction of power, and energy conversion. Properly 
trained deep learning and machine learning models can address these challenges 
effectively.
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In this study, we evaluate comprehensive data and real-time metrics for the pre-
viously mentioned renewable energy sources using several applications of machine 
learning and deep learning techniques. Additionally, we discuss the challenges faced 
by these approaches in an effective manner. Our objectives are outlined below for 
better understanding.

• This review comprehensively examines well-known sources of sustainable 
energy such as solar, tidal, hydropower, and wind, focusing on the usage 
techniques, including forecasting, energy conversion, and power prediction, 
utilizing recent deep learning and machine learning techniques.

• This study gives a comprehensive exploration on forecasting, energy conversion, 
and power prediction approach according to the source of energy tidal, solar, 
hydropower, and wind, highlighting the advantages as well as disadvantages of 
using deep learning and machine learning techniques.

• This research aims to assist future researchers by identifying the challenges in 
existing studies, thereby facilitating the development of advanced technologies 
based on robust models for improved efficiency and application in renewable 
energy systems. 

2 Methodology 

The aim of this study is to classify energy resources based on their availability 
for long-term, categorizing them as non-renewable and renewable energy. The 
primary focus is on sustainable renewable energy sources, for instance hydropower, 
tidal, wind, and solar energy. This study presents a comprehensive survey of 
various approaches to forecasting, power prediction, and energy conversion to 
promote a sustainable environment. Figure 1 provides a diagrammatic taxonomy 
representation, illustrating the different types of sustainable sources of energy. 
This research centers on renewable energy sources, emphasizing forecasting, power 
prediction, and energy conversion of well-known renewable sources like hydro, 
wind, and solar energy. 

2.1 Search String (Keywords) 

In order to assure the relevance and comprehensiveness of the literature review, this 
study employed a list of relevant keywords to gather multiple research publications 
from different fields. Initially, keywords such as “Renewable Energy,” “Sustainable 
Energy,” “Solar Energy,” “Wind Energy,” “Tidal Energy,” and “Hydro Energy” 
were used to identify papers based on their titles. Subsequently, the collected papers 
were further refined using additional keywords like “Power Prediction,” “Energy 
Prediction,” and “Forecasting.” As the focus of this study is on machine learning
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Fig. 1 Classification of 
machine learning approach in 
sustainable energy sources 

and deep learning applications, the primary keywords for the literature search were 
“Machine Learning” and “Deep Learning.” This systematic approach ensured the 
inclusion of pertinent research papers, providing a robust foundation for the study’s 
objectives. 

2.2 Databases and Paper Selection 

This study primarily compiled documents from numerous sources that were relevant 
to the research objectives. The intention of document collection was to acquire high-
impact journals, especially those included in Web of Science (WoS) and Scopus. 
The study utilized databases and platforms like IEEE, Springer, ResearchGate, and 
ScienceDirect to carry out this search. 

2.3 Data Extraction and Synthesis 

Using a standard extraction form, data extraction was carried out methodically. 
After selecting the appropriate keywords and setting up a database, the search 
was conducted, and the relevant articles and data were entered into an MS Excel 
spreadsheet to improve analysis and synthesis. According to the research subject 
matter, the data were quantitatively synthesized and summarized. Figure 2 displays 
the paper selection process, during which a total of 215 documents were chosen 
for primary screening. After selecting the relevant documents, a thorough screening
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Fig. 2 Paper selection method 

was performed utilizing the relevance of the study aims and purpose, and certain 
documents were excluded. Finally, a total of 51 articles were retrieved for review. 

3 Descriptive Results 

This section discusses the effectiveness in several sustainable energy sources such 
as tidal, hydro, wind, and solar which is based on recent research.
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3.1 ML and DL Approach for Solar Energy Applications 

A unique feature selection or clustering technique and a hybrid-classification-
regression forecasting engine are featured in this research (Nejati & Amjady, 2022) 
that introduces a novel day-ahead solar power prediction method. The method filters 
irrelevant features and reduces redundancy by partitioning relevant features into two 
subsets, each trained by a forecasting engine. Predictions are combined based on 
relevancy. The forecasting engine classifies historical data and assigns regression 
models to predict test sample outputs. The method’s effectiveness is validated on 
two real-world solar farms, demonstrating its superior performance. 

Accurate solar energy prediction is vital for estimating renewable energy 
resources. This study (Ikram et al., 2022) employs a novel robust soft computing 
method, integrating an improved multi-verse optimizer (IMVO) with a least square 
support vector machine (LSSVM), to predict solar radiation in southeast China. 
The LSSVM-IMVO model outperformed LSSVM models integrated with other 
optimization algorithms. Increasing training sample size significantly enhanced 
model accuracy, demonstrating the method’s efficacy. Photovoltaic (PV) energy is 
gaining traction in the energy sector due to its wide applications. Prosperous Bonobo 
Optimizer (IBO) is introduced in this work (Abdelghany et al., 2021) to improve 
the efficacy of the standard Bonobo Optimizer (BO) in precisely identifying solar 
cell characteristics. By refining local and global search phases using the sine-cosine 
function and Levy flights, the IBO demonstrated superior optimization in several 
models of diode. Statistical analysis from 20 runs confirmed IBO’s effectiveness, 
outperforming other algorithms in all tested scenarios. 

A combined ML technique along with the method known as Theta statistical 
method is introduced in the study (AlKandari & Ahmad, 2024) to enhance solar 
power forecasting accuracy. The machine learning models include the new Auto-
GRU, Auto-LSTM, GRU, and LSTM. The proposed Statistical Hybrid Model 
(MLSHM) and Machine Learning utilize structural and data diversity and integrate 
predictions using four combining methods. Validated on datasets from Shagaya, 
Kuwait, and Cocoa, USA, the MLSHM demonstrated superior accuracy over 
traditional models, proving the effectiveness of integrating statistical methods 
with machine learning. However, this study (Munawar & Wang, 2020) develops 
a framework to evaluate and identify the perfect combinations of ML models 
then feature selection methods to forecast short-term solar power, essential for 
renewable energy integration. It examines few models such as XGBoost, artificial 
neural network, and random forest, alongside feature importance and principal 
component analysis (PCA) techniques. The research finds that XGBoost with PCA-
selected features provides the best forecasting performance for solar power in 
Hawaii, US. The framework offers a robust method for selecting optimal ML 
techniques to forecast solar. In the study conducted in (Almeshaiei et al., 2020), 
researchers introduced innovative strategies where they assess micro-scale PV 
panel’s performance for specific applications, which are combined with neural 
networks, short-term real data, and empirical lab testing. The method evaluates
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power output under various conditions, including seasonal, hourly, temperature, dust 
accumulation, and tilt angle. The approach was tested in Kuwait and demonstrated 
a maximum error of 23% compared to actual data, with correlation values between 
87.3% and 91.9%. These findings suggest the method can provide rapid, accurate 
assessments, aiding manufacturers in decision-making and reducing investment 
risks. In order to address the lack of observation stations and the complex spatial 
patterns, this work (Koo et al., 2019) presents a novel machine learning approach in 
China that calculates the monthly average daily solar radiation using an advanced 
model known as k-means clustering and case-based reasoning (A-CBR). Data from 
97 cities over 10 years (2006–2015) were utilized, achieving a prediction accuracy 
of 93.23%. The approach can be generalized using interpolation methods like 
kriging in GIS, aiding decision-makers in effectively implementing solar energy 
systems by determining optimal locations, sizes, and forms. This study (Mehrpooya 
et al., 2021) explores an integrated energy conversion system combining modeled 
in AspenTech v9.1, a coal-fueled molten carbonate fuel cell (MCFC) coupled with 
a gas turbine and solar thermochemical water-splitting hydrogen production. The 
zinc/zinc-oxide cycle enhances efficiency by directly using solar reactors, while the 
MCFC utilizes syngas from coal gasification. The system achieves an overall 85% 
approximately efficiency, electricity producing 13.63 MW, with the HHV efficiency, 
LHV 61% and MCFC showing 63%. Sensitivity analysis identifies current density, 
voltage, and fuel cell pressure as key performance factors. The challenges and 
benefits of implementing big data analytics in sustainable energy power stations 
within smart grids are addressed in the study of (Mostafa et al., 2022). Using 
a dataset of 60,000 instances and 12 variables, a five-step solution is described 
that uses several machine learning techniques to forecast the stability of the smart 
grid. The penalized linear regression model yielded an accuracy of 96%, while 
the random forest model yielded 84%, the decision tree model produced 78%, 
and the gradient boosted decision tree and CNN models produced 87%. The main 
limitation is the relatively small dataset, suggesting future research should involve 
larger, more diverse datasets across multiple countries. This study (Tercan et al., 
2022) explores the techno-economic advantages of using partition energy reserve 
to enhance photovoltaic self-consumption in varying penetration rates of prosumer 
community. The desirable energy reserve was achieved through the application of 
the Best New Algorithm also technical performance simulations conducted along 
with genetic algorithm using PSS Sincal. Economic feasibility was assessed by 
considering residual energy and various incentives, utilizing point of reference 
internal rate of return, net present value, and payback period. The implementation 
of shared energy storage resulted in an increase in self-consumption by up to 
11%, providing substantial economic advantages and enhancing power quality. In 
order to achieve practically zero-energy communities, this study (Liu et al., 2022) 
proposes an innovative distributed energy system (DES) that integrates cutting-
edge solar energy technology and hybrid energy reserve (containing heat, ice, and 
electricity storage). The DES is optimized for environmental and economic factors, 
employing a new operational strategy to enhance system performance. Evaluation 
metrics include carbon emissions reduction and net interaction improvements
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compared to traditional systems, demonstrating potential benefits in achieving zero-
energy targets, particularly for office buildings. Equipment costs, electricity price, 
and carbon tax for sensitivity analysis further support the system’s viability and 
sustainability. 

3.2 ML and DL Approach for Wind Energy Applications 

In order to integrate volatile renewable wind power into sustainable energy systems, 
this research (Zhao & You, 2022) introduces an assurance framework—a robust and 
creative unit. This frame of work employs vagueness sets of data-driven partitive, 
leveraging machine learning techniques to manage uncertain intermittent power 
outputs effectively. It utilizes K-means and DBSCAN clustering methods to orga-
nize uncertainty data, constructing disjunctive sets from multiple basic uncertainty 
types. The approach is applied to a two-stage adaptive robust unit commitment 
model with a tailored optimization algorithm, demonstrating significant reductions 
in robustness costs and computational time compared to traditional methods. Report 
on 118-bus systems and IEEE 39-bus validate their effectiveness in enhancing 
economic performance while ensuring reliable power system operations. Using 
signal processing techniques, this research (Zhang & Chen, 2022) introduces a novel 
way to increase the speed of wind prediction accuracy. It accomplishes singular 
value decomposition (SVD) and complete ensemble empirical mode decomposition 
with adaptive noise (CEEMDAN) to preprocess data, followed by prediction 
using autoregressive integrated moving average model (ARIMA) and Elman neural 
network optimized by particle swarm optimization (PSO). The model enhances 
prediction effectiveness, reduces errors, and supports stable operation of wind farms 
and grid-connected power plants. Results demonstrate its potential to contribute 
significantly to sustainable wind energy utilization and environmental conservation 
efforts. For short-term wind turbine power forecasting in a utility-scale wind farm, 
this study (Meka et al., 2021) presents a robust deep learning approach using 
temporal convolutional networks (TCNs). The TCN model is optimized using an 
orthogonal array tuning method based on Taguchi design, demonstrating superior 
performance across various wind speeds compared to existing methods. Validation 
with 12 months of data from an 86-turbine wind farm confirms the efficacy of 
the proposed TCN model in capturing temporal dynamics and meteorological 
relationships for accurate power predictions. 

This research (Wang et al., 2021) introduces SIRAE (Stacked Independently 
Recurrent Autoencoder), an innovative DL framework tailored for ultra-short-
term wind power prediction. Utilizing variational mode decomposition for data 
preprocessing, SIRAE employs independent recurrent autoencoders (IRAE) to 
capture structural features and temporal dependencies in power of wind data. 
The exploratory outcome indicates that SIRAE significantly outperforms existing 
models, achieving notable improvements into the root mean square error across 
different months comparing with the persistence model. The approach is highlighted
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for its effective and stable forecasting performance, showcasing its potential in 
enhancing grid operation reliability. In order to enhance wind energy efficiency, 
this study (Aksoy & Selbaş, 2021) employs machine learning algorithms to predict 
energy production using wind turbine data from 2015. Achieving 90% accuracy, a 
mathematical model estimates energy output using temperature, wind speed, and 
direction inputs. A user-friendly computer program was developed to disseminate 
these results, emphasizing practical application and potential efficiency gains in 
wind energy production. In contrast, this paper (Fathy et al., 2022) addresses the 
challenge of optimizing wind energy generation under varying weather conditions 
by proposing an Archimedes Optimization Algorithm (AOA) for Maximum Power 
Point Tracking (MPPT). The system integrates a wind turbine with a constant 
magnet synchronous generator and employs a boost converter controlled by AOA 
to maximize electrical output power. Evaluations across the speed of real wind, 
variable and fixed in Saudi Arabia demonstrate superior performance of AOA-
MPPT compared to other algorithms like electric charged particle optimization, 
grasshopper optimization, and cuckoo search, validating its robustness in wind 
energy systems. This study (Rushdi et al., 2020) focuses on harnessing wind 
energy using kites, specifically a kite system introduced through Kyushu University 
which traction power is 7 kW. Experimental data from the system were taken 
advantage of to train ML regression models for predicting tether forces. Key 
input parameters were identified through sensitivity analysis, and various regression 
models, including neural networks, were evaluated for accuracy in predicting tether 
forces. The results demonstrate promising capabilities in accurately forecasting 
tether forces for new input combinations, potentially facilitating optimal design and 
power generation improvements. 

Deep reinforcement learning (DRL) is the focus of this research (Yang et al., 
2020), which attempts at enhancing revenue generation for wind power producers 
(WPPs) in deregulated contexts. The method employs a data-driven controller that 
utilizes electricity prices and wind generation forecasting to determine optimal steps 
such as reserve purchase schedules and energy storage system (ESS) operations. 
Implemented with the Rainbow algorithm, the approach improves upon traditional 
DRL methods by accommodating continuous input states, thereby optimizing 
control strategies effectively amidst uncertainties. Simulation results demonstrate 
significant revenue benefits for WPPs under varying conditions of electricity price 
and wind power uncertainties. This study (Emrani et al., 2022) introduced a novel 
methodology for optimizing the design and arrangement of a hybrid PV-Wind plant 
within a gravity energy storage (GES) system to enhance technical and economic 
competitiveness. Using a genetic optimization algorithm, the study aims to mini-
mize construction costs while ensuring structural integrity against mechanical loads. 
A case study validates the approach, revealing optimal dimensions of 48 m height, 
24 m diameter, and 3 m wall thickness, with a total construction cost of 6.7 MAC. 
Integration with the hybrid plant facilitates efficient renewable energy dispatching, 
mitigating issues of overcharging/discharging. Compared to battery storage, GES 
demonstrates superior performance with regard to discharge depth, lifetime, also 
efficiency, making it a promising solution for renewable energy integration. This
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study (Wang et al., 2022) introduces a novel self-adjusted triboelectric nanogen-
erator (SA-TENG) designed for efficient harvesting of random wind energy. The 
SA-TENG dynamically adjusts its driving-torque to match varying wind speeds 
(5.0–13.2 m s−1), achieving a peak power output of 7.69 mW. Compared to con-
ventional TENGs and electromagnetic generators, SA-TENG exhibits significantly 
improved power growth rates and energy conversion efficiencies, demonstrating 
its potential as a distributed energy source for environmental monitoring sensors. 
Similarly, this study (Angadi et al., 2022) introduces an innovative maximum 
power tracking algorithm for hill climbing, designed for a stand-alone self-excited 
induction generator primarily powered by wind energy, which can drive an induction 
motor pump. By utilizing a single voltage source converter (VSC) with the VSC 
operating frequency as the control variable and incorporating a feed-forward 
hill-climbing algorithm, the system significantly enhances stability and efficiency 
without relying on speed sensors. Both simulation and experimental results validate 
the algorithm’s effectiveness under varying wind and load conditions, presenting a 
robust and economical solution for remote stand-alone applications. 

3.3 ML and DL Approach for Hydro and Tidal Energy 
Applications 

The energy sector faces challenges like rising demand, efficiency issues, and 
changing supply patterns. This research paper (Chen et al., 2021) proposes an 
Artificial Intelligence-based Evaluation Model (AIEM) for forecasting renewable 
energy’s impact on the economy and enhancing energy efficiency. The study uses AI 
to address challenges such as consumer selection, competitive pricing, scheduling, 
facility management, and incentivizing demand response. The AIEM model aims 
to boost energy efficiency to 97.32% and optimize renewable energy utilization, 
providing significant economic insights and improvements. This study (Mostafa 
et al., 2020) introduces an evaluation model which can evaluate by considering 
various approach and their technical characteristics of short-term, medium-term, 
and long-term energy storage. The model integrates economic factors, for example 
disposal costs, replacement, capital, maintenance, and operation. Main magnitudes, 
including the reckoned annually the levelized cost of energy (LCOE) and life cycle 
cost of storage (LCCOS), are for guide energy storage functional decisions. A 
sensitivity analysis further aids in assessing the economic viability of energy storage 
systems, providing a robust decision-making tool. The paper (Sahu et al., 2022) 
presents a powerful comptroller for regulating the frequency in an microgrid with 
various uncertainties known as Tilt Fuzzy Cascade. The microgrid, incorporating 
renewable energy sources with low inertia, suffers from frequency stability issues. 
To address this, fuzzy cascade controller based on a tilt is employed, optimized 
using a novel deep Q-network (DQN) algorithm. Comparative assessments validate 
the controller’s effectiveness, demonstrating that significantly enhances frequency
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of the DQN-optimized tilt fuzzy cascade controller regulation in microgrids. This 
study (Ma et al., 2021) proposes two hybrid thermal energy storage systems 
(HTESS), outlet temperature control is indicated through HTESS-OTC and thermo-
cline storage is known as HTESS-TS. Comparative analysis shows that HTESS-TS 
and HTESS-OTC improve utility factors by 12.5% and 22.1%, respectively, over 
single-tank thermal energy storage systems, with HTESS-OTC reducing unit costs 
by 8.6%. Additionally, annual electricity generation increases by 9.8% and 14.1%, 
respectively, demonstrating enhanced performance and economic benefits. 

This work (Fonseca et al., 2021) addresses the growing need for climate change 
mitigation and energy security by proposing a strategy for decentralized power plant 
deployment, which is mentioned as multi-criteria. The approach includes various 
energy vectors and considers the time-varying operations and seasonal storage sys-
tem behaviors. Economic, environmental, and social aspects are evaluated, focusing 
on annual cost, dependence on grid and CO2. Accuracy shows significant benefits 
of decentralized generation over centralized systems, with potential emission 
reductions up to 89% of CO2 and self-sufficiency improvements up to 81%, power 
plant structure and policy highlighting the influence of assessed criteria. This study 
(Naik et al., 2022) addresses the need for an effective strategy of power management 
in a DC microgrid (MG) accomplishing micro hydro power plant (MHPP) sources, 
battery and photovoltaic. Due to technical constraints, such as MHPP’s battery C-
rate limitations and mechanical response time, load dynamics cannot be instantly 
compensated. SPMS, known as Supervised Power Management Scheme, optimizes 
MHPP’s contribution during load transients while considering battery limitations. 
The SPMS’s effectiveness is validated through hardware-in-loop experiments, 
demonstrating stable power flow control and voltage stability in the DC MG during 
load transients. The challenges of predicting renewable energy levels in light of their 
fluctuation are addressed in this study (Abd El-Aziz, 2022) by integrating the Cat 
Boost algorithms with Support Vector Regression and Multilayer Perceptron. This 
hybrid approach aims to enhance the predictability and performance of sustainable 
energy consumption. Evaluations of the system described at both train and test levels 
show that it outperforms other current methods, offering high prediction accuracy, 
lower costs, and improved overall system performance. This paper (Zhao & Kok 
Foong, 2022) explores a hybrid approach for predicting the electric power (PE) 
output of combined cycle power plants (CCPP) using an artificial neural network 
(ANN) with an electrostatic discharge algorithm (ESDA). Considering factors like 
relative humidity, atmospheric pressure, exhaust vacuum, and ambient temperature, 
a 4 × 9 × 1 network structure is employed. The ESDA-ANN hybrid demonstrated 
superior performance compared to conventionally trained ANNs, including the 
Levenberg-Marquardt algorithm. The study concludes that the ESDA-ANN is a 
robust and reliable tool for PE modeling, offering improved prediction accuracy 
and computational efficienc y.

The above discussion outlines the analysis and findings using ML and DL 
approach related to predicting power, forecasting, also conversion of energy. Despite 
the promising outcomes from these approaches, they faced certain exceptions, 
particularly with regard to prediction accuracy, improper load balancing, and power
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management during energy conversion. Addressing these limitations, future work 
aims to build productive and robust methodologies to conquer the issues present in 
current models. 

4 Methodology-Based Results 

4.1 Renewable Solar Energy 

Solar energy is one of the most prominent and widely utilized renewable energy 
sources, renowned for its purity and lack of carbon emissions. The Earth receives 
approximately 140 PW (petawatts) of power from sunlight, though only about 36 
PW is feasibly harnessed for practical use. There are two primary methods for har-
vesting energy from solar: Concentrated Solar Power (CSP) and Photovoltaic (PV) 
systems. Anyhow, solar energy does have certain limitations, including reduced 
efficiency during cloudy weather and nighttime. PV panels capture radiation from 
sunlight, which consists of direct radiation, diffuse radiation, and ground-reflected 
radiation, with direct and diffuse radiation contributing the most to the total solar 
radiation. Eqs. (1)–(4) delineate the methods used to accurately evaluate solar 
radiation, with Eq. 1 specifically representing the evaluation method for direct 
radiation. 

.Ibr = GscP
M (1) 

Here, Gsc represents the solar constant, P represents the transparency factor 
as well as M represents the mass of the air. The following Eq. (2) represents the 
methods of evaluating M. 

.M = 1

Sinα
(2) 

In this equation, α represents solar altitude angle. The following Eqs. (3) and (4) 
represent direct radiation of the tilted plane and the horizontal plane. 

.IbH = Ibr sin α (3) 

.Ibβ = Ibr (sin α cosβ + cos α cos γ sinβ) (4) 

According to the equation, β represents tilt angle, γ represents azimuth angle. 
Now the horizontal plan, titled plan, and ground-reflected radiation are represented 
by IdH , Ibβ, and Ip, respectively; moreover, tilted angle represented by β and p 
represent diffused ground reflectance, the diffused radiation is evaluated through
Eqs. (5) to (7) as follows:
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.IdH = 0.5 Gsc

1 − pM

1 − 1.4 ln P
sin α (5) 

.Idβ = cos2 β

2
IdH (6) 

.Ip = Hp

(
1 − cos β

2

)
(7) 

Here H is evaluated by Eq. (8) as follows:  

.H = IbH + IdH (8) 

The sum of the Ibβ , Idβ, Ip is the total solar radiation from the sun that evaluated 
through Eq. (9): 

.IR = Ibβ + Idβ + Ip (9) 

There are some stages that are undergone to convert solar energy into electrical 
energy that are mentioned below: 

The early step in harnessing solar energy involves the absorption of solar 
radiation by the cells of a solar panel. Each solar cell comprises two thin layers 
of silicon semiconductor material, which can function as both insulators and 
conductors. These layers are classified as P-type and N-type materials, representing 
positively and negatively charged layers, respectively. When sunlight strikes the 
surface of the solar panel, it interacts with small energy packets known as photons. 
The interaction between photons and the PV material generates electricity. Table 1 
presents solar energy related recent research which utilizes ML and DL techniques. 

The main consumers of solar energy are mostly from household usage rather 
than the application of industry. However, Table 1 describes very recent research of 
solar energy-based ML and DL techniques that are used in the process of predicting 
power, forecasting and conversion energy. 

4.2 Renewable Wind Energy 

To produce electrical power, wind energy utilizes the force of the wind. Here’s a 
brief overview of how it works:

• Wind Turbine Energy: This energy which consists of large blades mounted on 
a tower captures wind energy. The kinetic energy of the wind turns the turbine 
blades.
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Fig. 3 Wind energy conversion system schematic diagram (Abdelateef Mostafa et al., 2023)

• Rotor and Shaft: The movement of the blades spins a rotor connected to a main 
shaft inside the turbine.

• Gearbox: The main shaft turns into a gearbox that increases the rotational speed 
for electricity generation.

• Generator: A generator known as the gearbox powers, which transforms the 
mechanical energy into electrical energy.

• Transformer and Grid Connection: The generated electricity is then passed 
through a transformer to match the voltage level of the grid. Finally, it is 
transmitted and distributed through the electricity grid to homes and businesses.

• Control Systems: Modern wind turbines have control systems that adjust the 
blade angle and direction to ensure safe operation and optimize energy capture 
during differing wind conditions. 

This process of converting kinetic energy of wind into electrical energy is a clean, 
renewable way to generate power. Figure 3 emerges the entire process. Table 2 
presents recent research studies on wind energy that utilize ML and DL approach. 

Moreover, Table 2 presents recent research on wind energy utilizing ML and DL 
techniques for predicting power, forecasting, and conversion of energy. Wind energy 
undergoes several critical stages before it can be converted into electricity. During 
the generation process, power losses occur due to heat production, which affects 
the reliability of wind turbines. By appropriately utilizing ML and DL approach, it 
is possible to solve these issues and enhance power generation capabilities. These 
advanced methods can improve durability and forecast accuracy for electricity 
generation and pumping applications. 

4.3 Tidal and Hydro Energy 

Tidal energy is a type of hydropower that transforms the energy derived from tides 
into practical forms of power, mainly electricity. Use the kinetic energy of moving 
water to turn turbines, like how wind turbines work with air. This energy production 
is environmentally friendly and low emission, but the initial infrastructure cost is 
high. Hydro energy, or hydropower, is a form of sustainable energy that harnesses
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the power of water in motion, such as flowing rivers or waterfalls, to generate 
electricity. The process of generating electricity is quite interesting. First, water 
stored in reservoirs is released through turbines, generating electricity as it flows 
down. Second, it utilizes the natural flow of rivers without large reservoirs. Third, 
turbines are placed in the flow of the river to generate power. Lastly, it uses two 
different elevations of water reservoirs. Water is pumped to the higher reservoir 
during low demand and released to generate electricity during peak demand. The 
main advantage of this research is we can get clean energy sources and high 
efficiency, with 90% conversion rates. It can be used for irrigation and flood control. 
Despite that, the main limitation is the high initial capital costs for dam construction. 
Table 3 represents recent research studies on tidal and hydro energy that utilize ML 
and DL approach. 

5 Conclusion 

In recent times, artificial intelligence-based learning applications have demonstrated 
significant potential in addressing real-world challenges, particularly those related to 
sustainable environments. Electricity generation from sustainable sources of energy, 
especially wind and solar encounters limitations, including minimal electricity 
production and substantial financial investment requirements. This survey provides 
a comprehensive analysis of various DL and ML approaches applied to sustainable 
energy. It highlights models that can forecast energy, predict power output, and 
aid in energy conversion processes. Furthermore, the tabulated research findings 
serve as a valuable resource for future studies in this domain. The review con-
cludes that the development and implementation of advanced AI-based techniques 
and hybridized approaches can effectively address existing limitations, offering 
promising solutions for enhancing the efficiency and viability of sustainable energy 
systems.
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Efficient Gasoline Spot Price Prediction 
Using Hyperparameter Optimization and 
Ensemble Machine Learning Approach 

Md. Amir Hamja, Md Rakinus Sakib, Mahmudul Hasan, 
and Md Sabir Hossain 

1 Introduction 

Energy is fundamental to economic growth and social progress, with prices at the 
heart of the energy market. Oscillations in energy prices significantly impact the 
distribution and movement of resources within the market, exerting considerable 
economic influence (Agbaji et al., 2023). Many countries face challenges related 
to excessive energy consumption across industries and economies. While energy 
conservation is widely seen as a key solution, determining the most effective 
strategies for conserving energy across various sectors remains difficult (Fathi 
et al., 2020). Energy price prediction involves using historical data to create 
models that forecast future prices by analyzing factors like market supply and 
demand, participant behavior, costs, the socioeconomic environment, and energy 
system structure (Khan et al., 2023). Energy price forecasting is crucial for three 
main reasons: (a) It enables dynamic cost control, (b) it helps in accurately 
understanding market trends and seizing opportunities, and (c) it provides a solid 
foundation for policymaking and market regulation (Lu et al., 2021). The prediction 
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of energy prices has garnered significant interest from researchers, leading to a 
rapid increase in academic publications on the topic in recent years. But in the 
rapidly changing global energy markets, accurately forecasting gasoline prices is 
a persistent challenge. As economies expand and technology transforms energy 
consumption and production, the factors influencing gasoline prices grow more 
complex and volatile (Eliwa et al., 2024). Fuel that comes from crude oil and other 
petroleum-based liquids is called gasoline, and it is mostly utilized in car engines. 
Petroleum refineries and blending facilities generate it, while fueling stations sell 
it as finished motor gasoline (MultiMedia LLC, 2024). Since the pandemic began 
in December 2019 due to COVID situation, many countries imposed lockdowns 
and limited social interaction to curb the spread of the virus. This led to reduced 
consumption and travel, causing a drop in gasoline demand and prices. Recently, 
conflicts such as those between Russia and Ukraine, and Israel and Palestine, 
have driven energy prices up due to supply shortages. These events significantly 
impact crude oil demand and supply, leading to sharp fluctuations in the price of 
gasoline. It is vital to the economy, influencing the Consumer Price Index (CPI) 
and potentially triggering inflation and economic downturns. Gasoline prices are 
closely linked to macroeconomic activity, with oil price shocks often preceding 
economic recessions. Additionally, gasoline prices can affect foreclosure rates and 
house prices (Hamilton, 2009). Researchers have studied consumer responses to 
fluctuations in gasoline prices to gain insights into different economic behaviors, 
such as demand for automobiles (Allcott & Wozny, 2014), transportation choices 
(Knittel & Sandler, 2011), search patterns (Lewis & Marvel, 2011), and price 
stickiness (Borenstein & Shepard, 1996). Accurate gasoline price predictions are 
crucial for modeling the automobile market and analyzing environmental policies 
(Busse et al., 2013). As a key driver of the economy, gasoline prices influence 
overall market balance and the functioning of economic activities, directly affecting 
people’s lives. Therefore, forecasting gasoline prices holds significant practical 
importance for the global economy. Traditional and AI-based energy forecasting 
models can be generally divided into two groups (Lu et al., 2021). With the rise of 
AI, many researchers have turned to AI algorithms for energy prediction. Various 
studies have reviewed these models from different perspectives. Early oil price 
forecasts often relied on statistical models like AutoRegressive Integrated Moving 
Average (ARIMA), Generalized AutoRegressive Conditional Heteroskedasticity 
(GARCH), Linear Regression (LR), random walk, and Vector Error Correction 
Model (VECM) (Hasan et al., 2024a;  Jin  &  X  u, 2024; Yuan et al., 2023). While 
these models are effective for linear relationships and short-term predictions, they 
struggle with the nonlinear nature of gasoline prices (Abdollahi & Ebrahimi, 
2020). Gasoline prices, being nonstationary time series, pose challenges for time 
series models, which also rely on assumptions of linearity and normal distribution, 
failing to capture the specific characteristics of gasoline prices. In contrast, AI 
models are better equipped to handle the nonlinearity and complexity of gasoline 
prices due to their flexible structures (Yuan et al., 2023). Popular AI models 
for gasoline price forecasting include support vector regression (SVR) (Hasan 
et al., 2024a) and artificial neural networks (ANNs). Among ANNs, models like
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Extreme Learning Machine (ELM), Backpropagation Neural Network (BPNN), 
Random Vector Functional Link Network (RVFL), Recurrent Neural Network 
(RNN), LSTM, BiLSTM, GRU, and Bidirectional Gated Recurrent Unit (Bi-GRU) 
are frequently used (Zheng et al., 2024; Salamai, 2023; Dong et al., 2024; Li et al., 
2020). Despite their effectiveness, artificial intelligence models can be sensitive 
to parameter settings and may face challenges such as local optimization and 
overfitting. In this study, we examine the two most commonly used gasoline spot 
price datasets for forecasting. In order to enable predictions over a range of temporal 
periods, we conduct necessary preprocessing and mode adjustments in addition 
to analyzing the statistical properties of the gasoline price time series data. The 
following is a summary of this chapter’s main contributions: 

• We create an analysis framework for gasoline spot prices that incorporates deep 
learning (DL), machine learning (ML), and ensemble learning models. 

• To enhance the ML, DL, and ensemble ML models’ prediction performance for 
more thorough analysis, we deepen our hyperparameter tuning. 

• A set of multi-scale models using stacking ensemble learning is introduced to 
predict gasoline spot prices, addressing the limitations of conventional single-
method time series decomposition analysis. 

• It is demonstrated that the suggested stacking ensemble model performs better 
than the most advanced models currently in use, which are regarded as bench-
marks for predicting gas spot prices. 

The structure of the remaining sections of this chapter is outlined as follows. 
The related works are outlined in Sect. 2. Section 3 is dedicated to presenting our 
proposed methodology and the experimental setup. We detail the approach we have 
taken to address the research problem, including the methods, techniques, and tools 
employed in our study. In Sect. 4, we present the outcomes of our experiments. 
The chapter concludes in Sect. 5 with a summary of our findings and their 
significance. Additionally, we outline avenues for future research and development 
in this domain, emphasizing the potential directions for further exploration and 
enhancement. 

2 Literature Review 

Forecasting energy prices has advanced significantly in recent years. Numerous 
researchers have demonstrated promising outcomes through the analysis of various 
energy price time series using statistical, econometric, and ML techniques. This 
section highlights the latest developments in energy price forecasting, with a 
particular focus on ML approaches, including DL and hybrid and ensemble models. 

Hasan et al. (2023b) use blended ensemble learning to create a forecasting 
model that combines support vector regression, ridge regression, linear regression, 
regression trees, and k-nearest neighbor regression (Hasan et al., 2024a). This model 
demonstrated greater accuracy in both short- and medium-term forecasts and was
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validated using multiple time series of crude oil prices, namely WTI and Brent. 
Variational mode decomposition (VMD), which divides data into low- and high-
frequency components, is the basis of an interval-based framework that Zheng et al. 
(2024) suggested based on the “divide and conquer” theory (Zhang et al., 2021). An 
autoregressive conditional interval (ACI) model is used to predict the low-frequency 
component, and interval long short-term memory (iLSTM) networks are used to 
anticipate the high-frequency component. Combined predictions form the final 
interval-valued forecast, leading to improved forecasting and trading performance. 
Zhao et al. (2024) introduced a hybrid model that incorporates financial market 
factors and crude oil news, utilizing a two-layer multivariate decomposition to 
predict weekly WTI oil spot prices (Zhao et al., 2024). Benchmarks were greatly 
underperformed by this model. The Jaynes Weight Hybrid (JWH) model, which 
integrates Shannon information entropy with classical statistics, neural network, 
and deep learning models, is a unique combined forecasting approach with time-
varying weights that Liu et al. (2024) introduced to predict crude oil prices 
(Liu et al., 2024). In order to anticipate crude oil prices, Qin et al. (2023) 
used Google Trends data using a stacking ensemble approach. They identified 
pertinent indicators and assessed their impact using Granger causality tests and 
co-integration tests (Qin et al., 2023). Multiple-model approaches were found to 
be more effective than single-model approaches in the study. Yuan et al. (2023) 
introduced a clustering-based weight assignment strategy to reduce outlier impact 
and balance the ensemble model’s competitiveness and robustness, significantly 
improving forecasting accuracy for West Texas Intermediate oil prices (Yuan et al., 
2023). Salamai (2023) developed a framework for predicting daily and weekly 
crude oil prices, using optimized variational mode decomposition (OVMD), a Tree-
structured Parzen Estimator (TPE) algorithm, and enhanced AdaBoost with random 
forest (Salamai, 2023). The model captures spatial-temporal patterns with a Conv-
Former module and stacked LSTM networks, showing superior performance in 
predicting Brent crude oil prices. Dong et al. (2024) proposed a model using 
VMD, PSR, CNN, and BiLSTM for crude oil price forecasting, achieving low 
MAPEs and MSEs (Dong et al., 2024). The model’s superiority was confirmed by 
the Diebold-Mariano test. Li et al. (2024) introduced a hybrid forecasting method 
combining MEEMD and Mix-KELM, optimizing local and global kernel functions 
with a genetic algorithm, resulting in lower prediction errors for crude oil prices 
(Li et al., 2024). Zhang et al. (2024) proposed an attention-based PCA method to 
enhance oil price forecasting, integrating multiple attention mechanisms and diverse 
models (Zhang et al., 2024). The attention-PCA model significantly reduced MAPE, 
with the best combination model achieving a MAPE of 4.40%. Lastly, nonlinear 
autoregressive neural network models were employed by Jin and Xu (2024)  to  
forecast monthly prices for New York Harbor No. 2 heating oil and Henry Hub 
natural gas, as well as daily prices for WTI and Brent crude oil (Jin & Xu, 2024). 
In exploring several model configurations, their work produced simplified models 
with strong accuracy on a variety of datasets. The relative root mean square error for 
WTI, Brent, New York Harbor No. 2 heating oil, Henry Hub natural gas, and other 
crude oils was 1.95%/1.80%, 9.51%, and 20.35% overall.
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3 Methodology 

3.1 Approach Overview 

Outline of the suggested methodology is illustrated in Fig. 1. The collection and 
preprocessing of daily spot prices for gasoline in the United States and New 
York has been done to enhance computational efficiency and model performance. 
Consistent with prior research, the gasoline price datasets have been partitioned 
using a sequential validation approach. Specifically, an 80:20 ratio was used to 
divide the data into training and testing subsets. Various ML models, including 
Polynomial Regression, Linear Regression, Ridge, Lasso, SVR, Random Forest, 
Decision Tree, Gradient Boosting, XGBoost, LightGBM, KNN, and DL models 
such as MLP, GRU, LSTM, and BiLSTM, were then trained on both datasets. Using 
a variety of error criteria, the suggested and comparison models’ performance was 
assessed, including R2

., MSE, RMSE, MAE, MAPE, sMAPE, and elapsed time in 
seconds. The next section details the methods applied in this study. 

3.2 Description of Dataset and Variables 

This study uses two common gasoline spot prices datasets such as U.S. Gulf Coast 
Conventional Gasoline Regular Spot Price and New York Harbor Conventional 
Gasoline Regular Spot Price which are obtained from the U.S. Energy Information 
Administration (MultiMedia LLC, 2024). In both datasets the prices are represented 
as dollars per gallon. The duration of the both gasoline price datasets is from June 
02, 1986 to August 03, 2024, so the total number of observations for both is 9593. 

Fig. 1 Outline of the suggested methodology of energy price forecasting system
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Table 1 Summary statistics of daily gasoline spot price time series 

No. of Standard 

Dataset observations Minimum Maximum Mean deviation Variance Skewness Kurtosis 

U.S. 
gasoline 
spot price 

9593 0.270 4.873 1.364 0.855 0.731 0.615 − 0.766. 

New 
York 
gasoline 
spot price 

9593 0.290 4.509 1.400 0.876 0.767 0.601 − 0.845. 

Fig. 2 The relationship between gas costs and time 

Also there are no missing values for both datasets. The data was collected daily and 
are not adjusted for seasonal variations. The number of observations and additional 
descriptive statistics are detailed in Table 1. 

For both datasets, the kurtosis was negative, indicating that outliers are not a 
major problem because the distributions appear to have lighter tails than a normal 
distribution. Both datasets had skewness values between 0.5 and 1, which suggests a 
moderately positive skew. The price of gasoline throughout time is shown in Fig. 2. 

The time series of gas spot prices are shown in both datasets. This work uses a 
number of machine learning techniques, including KNN, that build models using 
the Euclidean distance. We normalized the data, which lowers data dispersion 
and improves the performance of the trained models, to improve the forecasting 
performance of these fundamental algorithms.
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3.3 Machine Learning Algorithms 

3.3.1 LR 

LR is a fundamental statistical method often employed to forecast time series. 
The model forecasts future values by establishing a linear connection between the 
explained variable and one or more explanatory variables (Hyndman & Athana-
sopoulos, 2018; Hasan et al., 2024b). When applied to time series forecasting, linear 
regression can be expressed as follows: 

. Yt = β0 + β1Xt−1 + β2Xt−2 + · · · + βnXt−n + εt

where the values for the dependent variable at time t . are represented by Yt .,  the  
lagged values are represented by Xt−1, Xt−2, . . . , Xt−n ., and the intercept term is 
represented by β0 .. The coefficients are represented by β1, β2, . . . , βn ., and the error 
term is represented by εt .. By minimizing the sum of squared differences between 
the observed and predicted values, the model estimates the coefficients under the 
assumption that the independent and dependent variables have a linear relationship. 

3.3.2 Ridge 

It is an extension of LR, which is particularly useful for time series forecasting 
when multicollinearity exists among the predictors. It enhances the linear regression 
model by incorporating a penalty term into the loss function, which aids in 
preventing overfitting and improves the model’s generalization to new data (Hastie 
et al., 2005; Hasan et al., 2024a). The ridge regression model for time series 
forecasting can be formulated as 

. Yt = β0 + β1Xt−1 + β2Xt−2 + · · · + βnXt−n + λ

n∑

i=1

β2
i + εt

where the values for the dependent variable at time t . are represented by Yt ., and 
the lagged values are represented by Xt−1, Xt−2, . . . , Xt−n .. The intercept term is 
denoted by β0 ., and the coefficients are represented by β1, β2, . . . , βn .. εt . denotes the 
error term, and λ. indicates the regularization parameter that regulates the severity 
of the penalty on the coefficients. The model is stabilized when the regularization 
parameter λ. reduces the coefficients toward zero, lessening the influence of less 
significant predictors. Ridge regression is particularly beneficial in situations where 
the number of predictors is large, or when the predictors are highly correlated, as it 
can yield more accurate and reliable forecasts.
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3.3.3 Lasso 

Lasso is an LR technique enhanced by a regularization mechanism, making it 
particularly useful for time series forecasting when feature selection is crucial. 
It introduces a penalty term to the loss function that helps prevent overfitting 
and allows the model to perform automatic feature selection by reducing some 
coefficients to zero (Tibshirani, 1996). The lasso regression model for time series 
forecasting can be expressed as 

. Yt = β0 + β1Xt−1 + β2Xt−2 + · · · + βnXt−n + λ

n∑

i=1

|βi | + εt

where the values for the dependent variable at time t . are represented by Yt ., and 
the lagged values are represented by Xt−1, Xt−2, . . . , Xt−n .. The intercept term is 
represented by β0 .. The coefficients are represented by β1, β2, . . . , βn .. The error 
term is εt ., and the regularization parameter λ. determines how much of a penalty 
is applied to the total of the absolute values of the coefficients. The regularization 
parameter λ. determines how much the coefficients are shrunk, with larger values of 
λ. leading to more coefficients being reduced to zero, effectively selecting a simpler 
model. This characteristic makes lasso regression particularly effective in scenarios 
where there are many predictors, but only a subset is expected to have a significant 
impact on the forecast. 

3.3.4 Poly 

Poly is an enhancement of LR that models the relationship between the independent 
and dependent variables using an nth degree polynomial. This technique is particu-
larly useful in time series forecasting when the data exhibits a nonlinear trend that 
cannot be captured by a simple linear model (Montgomery et al., 2021). It can be 
mathematically represented as 

. Yt = β0 + β1Xt−1 + β2X
2
t−1 + · · · + βnX

n
t−1 + εt

where Yt . represents the values of the dependent variable at time t .,Xt−1 . is the lagged 
value of the dependent or other predictors, β0 . indicates the intercept, β1, β2, . . . , βn . 

represents the coefficients for each polynomial degree, and εt . is the error term. 
By including higher degree terms of the predictor variables, polynomial regression 
allows the model to capture the curvature in the data, making it suitable for 
forecasting complex, nonlinear time series patterns.
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3.3.5 Decision Tree Regression (DTR) 

The DTR is a nonparametric model utilized in time series forecasting, adept at 
capturing nonlinear relationships by recursively dividing the data into smaller 
subsets. It constructs a tree structure where each node corresponds to a decision 
based on a feature, and each leaf node represents a predicted value (Breiman, 2001; 
Hasan et al., 2024c). Mathematically this model can be represented as 

. Yt = f (Xt−1, Xt−2, . . . , Xt−n)

where Yt . indicates the predicted value at time t ., and Xt−1, Xt−2, . . . , Xt−n . are 
the lagged predictors. Decision trees are highly interpretable and handle complex 
patterns well, though they may overfit if the tree is too deep. Pruning and ensemble 
methods like RF can mitigate this issue. 

3.3.6 SVR 

The SVR is a robust machine learning model used in time series forecasting, 
particularly adept at capturing complex relationships within the data which works 
by finding a hyperplane that best fits the data within a margin of tolerance, known 
as the epsilon-insensitive zone. The model aims to minimize prediction errors while 
ensuring the margin is as wide as possible (Smola & Schölkopf, 2004; Sajid et al., 
2023). The SVR model can be expressed as 

. Yt =
n∑

i=1

(αi − α∗
i )K(Xt−i , X) + b

where the predicted value at time t . is represented by Yt ., the Lagrange multipliers 
are denoted by αi . and α∗

i ., the kernel function that converts input data into a higher 
dimensional space is denoted by K(Xt−i , X)., and the bias term is b.. SVR may 
describe both linear and nonlinear patterns in time series data depending on the 
kernel function (linear, polynomial, or radial basis function, for example). SVR 
is recognized for its robustness and strong generalization capabilities, making 
it well suited for forecasting tasks, though it often requires careful tuning of 
hyperparameters. 

3.3.7 RF 

Because of its capacity to handle complicated, nonlinear data, the RF regressor is 
an ensemble learning technique that is frequently applied in time series forecasting. 
To improve accuracy and lessen overfitting, it builds several decision trees during 
training and averages their predictions. Every tree is constructed using a random
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subset of data and random feature selection to capture a variety of patterns (Breiman, 
2001; Hasan et al., 2023b). This model can be represented as 

. Yt = 1

M

M∑

m=1

fm(Xt−1, Xt−2, . . . , Xt−n)

where Yt .denotes the predicted value at time t ., Xt−1, Xt−2, . . . , Xt−n . are the lagged 
predictors, M . is used as the number of trees, and fm . shows the prediction from 
the m.th tree. By averaging the predictions of multiple trees, it enhances prediction 
accuracy and robustness while mitigating the risk of overfitting that might occur in 
individual decision trees. 

3.3.8 KNN 

The KNN regressor is a simple but effective model employed in time series 
forecasting, particularly known for its ability to model nonlinear relationships which 
predicts the target variable’s value by averaging the values of the k . closest neighbors 
in the training dataset. These neighbors are identified using a distance metric, 
most commonly the Euclidean distance (Altman, 1992). The KNN model can be 
mathematically described as 

. Yt = 1

k

k∑

i=1

YN(i)

where Yt . is the predicted value at time t ., k . is the number of nearest neighbors, 
and YN(i) . represents the values of the nearest neighbors. KNN is particularly useful 
for forecasting when the time series data is irregular or contains nonlinearity that 
traditional linear models cannot capture. Its simplicity and nonparametric nature 
make KNN a popular choice. However, it can be sensitive to the selection of k . and 
the chosen distance metric, and it may face challenges when dealing with high-
dimensional data. 

3.3.9 AdaBoost 

The AdaBoost is also an ensemble learning approach that enhances the accuracy 
of time series forecasting by integrating several weak learners into a powerful 
predictive model. It operates by iteratively training these weak learners on the 
dataset, with each new model paying more attention to the instances that earlier 
models struggled with. The final prediction is determined by a weighted sum of the
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predictions from all the weak learners (Freund & Schapire, 1997). This model can 
be represented as 

. Yt =
M∑

m=1

αmfm(Xt−1, Xt−2, . . . , Xt−n)

where Yt . is the predicted value at time t ., αm . is the weight assigned to the m.th weak 
learner, fm ., and M . represents the total number of weak learners. The model adjusts 
the weights αm . to minimize the overall prediction error, with higher weights given 
to models that perform better. AdaBoost is particularly effective in enhancing the 
accuracy of weak learners and is robust against overfitting, making it suitable for 
complex time series data. 

3.3.10 GBR 

Gradient Boosting Regression (GBR) enhances prediction accuracy by sequentially 
incorporating weak learners to address the mistakes made by previous models. Each 
learner is fit to the residual errors of the combined predictions from earlier learners 
(Friedman, 2001). This model can be represented as 

. Yt = Ŷt +
M∑

m=1

αmfm(Xt−1, Xt−2, . . . , Xt−n)

where Yt . indicates the predicted value at time t ., Ŷt . is the initial prediction (often 
the mean value), fm . represents the m.th weak learner, αm . is the weight of the m.th 
learner, and M . is the total number of iterations. Each fm . is trained to minimize the 
residual errors of the model at the previous iteration. This iterative process allows 
it to refine its predictions progressively, making it effective for capturing complex 
patterns in data. 

3.3.11 LGB 

Light Gradient Boosting (LGB) regressor improves performance by using a 
histogram-based approach to bin continuous features and a leaf-wise growth 
strategy to build decision trees (Ke et al., 2017). This method enhances 
computational efficiency and accuracy. The model’s prediction for a time series 
at stage m. can be represented as 

.ŷ
(m)
i = ŷ

(m−1)
i + η · hm(xi)
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where ŷ
(m)
i . denotes the prediction at stage m., ŷ

(m−1)
i . is the prediction from 

the previous stage, hm(xi). is the output of the m.th decision tree, and η . is the 
learning rate that controls the contribution of each tree. LightGBM optimizes the 
loss function L(yi, ŷ

(m)
i ). through gradient descent, with a focus on reducing the 

computation time. It can capture more intricate patterns with fewer trees since it 
employs leaf-wise growth for trees instead of level-wise growth. A very effective 
and scalable model is produced by adding together the predictions made by each 
tree to arrive at the final forecast. 

3.3.12 XGB 

XGB (eXtreme Gradient Boosting) is an efficient gradient boosting framework that 
builds an ensemble of decision trees to improve prediction accuracy (Hasan et al., 
2023a). The prediction at stage m. is given by 

. ŷi =
m∑

k=1

η · hk(xi)

where ŷi . is the final prediction, hk(xi). is the output of the k .th tree, and η . is the 
learning rate. XGB optimizes an objective function that includes a loss term and a 
regularization term to prevent overfitting: 

. Objective = L(yi, ŷi ) +
m∑

k=1

Ω(hk)

where Ω(hk). accounts for tree complexity. Key features include regularization, 
parallel processing, and column subsampling, making XGB a powerful and efficient 
tool for predictive modeling. 

3.4 Deep Learning Algorithms 

3.4.1 MLP 

The MLP is a kind of feedforward neural network that is used for time series 
forecasting. It consists of an input layer, one or more hidden layers, and an output 
layer, which are the different layers of neurons. Because every layer’s neurons are 
fully coupled to every other layer’s, the network can recognize complex patterns in 
the data. Training of the MLP model is carried out through backpropagation, which 
adjusts the network’s weights to reduce prediction errors (Rumelhart et al., 1986; 
Hasan et al., 2023c). The MLP model can be represented as
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. Yt = σ
(
WL · σ

(
WL−1 · · · σ

(
W 1 · Xt−1 + b1

)
· · · + bL−1

)
+ bL

)

where Yt . is the predicted value at time t ., Xt−1, Xt−2, . . . , Xt−n . are the input 
features (lagged observations), Wl

. and bl
. are the weights and biases for layer l ., 

and σ . denotes an activation function such as ReLU or sigmoid. MLP is flexible in 
modeling nonlinear relationships in time series data, but it requires careful tuning 
of hyperparameters, such as the number of layers and neurons, to achieve optimal 
performance. 

3.4.2 LSTM 

The LSTM network is a type of RNN designed for time series forecasting which 
effectively captures long-term dependencies through its gating mechanisms and 
manages the flow of data in memory cells (Cho et al., 2014; Rabbi et al., 2022). 
The LSTM equations are as follows: Forget: 

. ft = σ(Wf · [ht−1, Xt ] + bf )

Input: 

. it = σ(Wi · [ht−1, Xt ] + bi)

. C̃t = tanh(WC · [ht−1, Xt ] + bC)

Cell state: 

. Ct = ft · Ct−1 + it · C̃t

Output : 

. ot = σ(Wo · [ht−1, Xt ] + bo)

. ht = ot · tanh(Ct )

where Ct . is called the cell state, ht . is called the hidden state, Xt . is the input at time 
t ., and σ . is the sigmoid function. LSTMs excel in capturing long-term patterns in 
time series data but require careful tuning and are computationally intensive. 

3.4.3 BiLSTM 

The BiLSTM network extends the LSTM architecture by processing data in both 
directions (forward and backward), enabling it to grasp relationships from both
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historical and future contexts in forecasting. This approach increases the model’s 
ability to learn from sequences where future context improves the prediction of past 
elements (Cho et al., 2014).The BiLSTM model can be expressed with the following 
components: 

Forward LSTM: 

. 

f
f
t = σ(W

f
f · [hf

t−1, Xt ] + b
f
f )

i
f
t = σ(W

f
i · [hf

t−1, Xt ] + b
f
i )

C̃
f
t = tanh(Wf

C · [hf

t−1, Xt ] + b
f
C)

C
f
t = f

f
t · C

f

t−1 + i
f
t · C̃

f
t

o
f
t = σ(W

f
o · [hf

t−1, Xt ] + b
f
o )

h
f
t = o

f
t · tanh(Cf

t )

Backward LSTM: 

. 

f b
t = σ(Wb

f · [hb
t+1, Xt ] + bb

f )

ibt = σ(Wb
i · [hb

t+1, Xt ] + bb
i )

C̃b
t = tanh(Wb

C · [hb
t+1, Xt ] + bb

C)

Cb
t = f b

t · Cb
t+1 + ibt · C̃b

t

ob
t = σ(Wb

o · [hb
t+1, Xt ] + bb

o)

hb
t = ob

t · tanh(Cb
t )

Output: 

. ht = [hf
t ;hb

t ]

where hf
t . and hb

t . are the hidden states from the forward and backward passes, 
respectively, and [·; ·]. denotes concatenation. BiLSTM improves forecasting accu-
racy by utilizing both previous and upcoming information, making it particularly 
useful for sequences where the full context enhances prediction. 

3.4.4 GRU 

Reducing the number of parameters and computational complexity in comparison 
to LSTMs, the GRU network is a variation of the LSTM network that maintains 
effectiveness in capturing long-term dependencies while simplifying its architecture
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(Cho et al., 2014). It does this by combining the input and forget gates into a single 
update gate and using a reset gate to control the information flow. The following 
equations can be used to represent the GRU model for time series forecasting: 

Update Gate: 

. zt = σ(Wz · [ht−1, Xt ] + bz)

Reset Gate: 

. rt = σ(Wr · [ht−1, Xt ] + br)

Candidate Activation: 

. ̃ht = tanh(Wh · [rt � ht−1, Xt ] + bh)

Final Hidden State: 

. ht = (1 − zt ) � ht−1 + zt � h̃t

where ht . is the hidden state at time t ., Xt . indicates the input at time t ., zt . is the update 
gate, rt . is the reset gate, h̃t . is the candidate activation, and �. signifies element-wise 
multiplication. The update gate regulates the extent of past information to retain, 
whereas the reset gate dictates the amount of past information to discard. GRUs are 
efficient and effective for forecasting, with fewer parameters than LSTMs, making 
them suitable for tasks with limited computational resources. 

3.5 Stacking Ensemble Learning Model 

Stacking ensemble learning leverages the complementary strengths of various 
base models to enhance overall performance and generalization capabilities. This 
approach generally involves two stages: training the base models and training the 
meta-model (Wolpert, 1992). The original data is divided into training and testing 
sets in the first step. The k-fold cross-validation method is used to further divide the 
training set. Using this method, the training set is divided into k . subsets, of which 
k − 1. subsets are utilized for training and each subset for testing. Every subset is 
used as a test set once during the k . repetitions of the process. In the second stage, the 
predictions generated during k-fold cross-validation are collected and reassembled 
according to the original training dataset order, creating a new training set. The 
meta-model, which combines the outputs from the different basic models, is then 
trained using this new training set. The meta-model is trained on this combined 
dataset after the predictions from the underlying models on the test set are combined 
to create the test set. Let us have four base models, namely A,B,C,D ., and a meta-
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Fig. 3 Diagram of the working process of stacking ensemble learning models 

model Z ., then the diagram of stacking ensemble learning is presented as Fig. 3, and 
the algorithm can be expressed as the below algorithm. 

Algorithm 1 Stacking ensemble learning model 
1: Input: Training data D = {(xi ,  yi)}n 

i=1, Base models A, B, C, D, Meta-model Z 
2: Output: Stacked model prediction 
3: Step 1: Train Base Models 
4: for each model M in  {A,  B,  C,  D}  do 
5: Perform k-fold cross-validation on M to generate predictions 
6: end for 
7: Step 2: Train Meta-model 
8: Create meta-training set Dmeta from base model predictions 
9: Dmeta = {(ŷA 

i , ŷ
B 
i , ŷ

C 
i , ŷ

D 
i ,  yi)}n 

i=1 
10: Train meta-model Z on Dmeta 
11: Step 3: Make Final Predictions 
12: Generate base models’ predictions on test data 
13: Create meta-test set Dmeta,test 
14: Dmeta,test = {(ŷA 

i , ˆ yB 
i , ŷ

C 
i , ŷ

D 
i )}m 

i=1 
15: Generate final predictions with Z

return Final predictions from Z

This study creates four ensemble models which are listed below: 

• Stacking Random-Gradient-SVR-KNN with Logistic Regression (RGSKL) 
model (base models: RF, GB, SVR, and KNN and meta-model: LR) 

• Stacking Decision-AdaBoost-ElasticNet-SVR with Ridge (DAESR) model (base 
models: DT, AdaBoost, SVR, and ElasticNet and meta-model: Ridge) 

• Stacking Logistic-Ridge-SVR-Decision Tree with Ridge (LRSDR) model (base 
models: LR, Ridge, SVR, and DT and meta-model: Ridge) 

• Stacking ElasticNet-AdaBoost-GB-Huber with Logistic Regression (EAGHL) 
model (base models: EN, AdaBoost, GBR, and Huber and meta-model: LR)



Efficient Gasoline Spot Price Prediction Using Hyperparameter Optimization. . . 301

3.6 Performance Measure Metrics 

The observed value is represented by yi ., the predicted value by ŷi ., the mean of the 
observed values by ȳ ., and the total number of observations by n.. Next, the MSE 
measures the average squared discrepancies between actual and anticipated values, 
indicating the size of the mistakes (Dong et al., 2024). It is expressed as 

. MSE = 1

n

n∑

i=1

(yi − ŷi )
2

The RMSE, which provides a measure in the same units as the dependent 
variable, is the square root of the MSE (Dong et al., 2024): 

. RMSE = √
MSE

The MAE measures the average magnitude of errors in predictions (James, 
2013), treating all errors equally: 

. MAE = 1

n

n∑

i=1

|yi − ŷi |

The MAPE measures the average magnitude of prediction errors as a percentage 
of the observed values (Dong et al., 2024): 

. MAPE =
√√√√1

n

n∑

i=1

(
yi − ŷi

yi

)2

The sMAPE adjusts for the scale of errors and is symmetric (Dong et al., 2024): 

. sMAPE =
√√√√1

n

n∑

i=1

(
yi − ŷi

yi + ŷi

)2

The percentage of the dependent variable’s variance that the independent vari-
ables can account for is represented by the R2

.metric (James, 2013): 

.R2 = 1 −
∑n

i=1(yi − ŷi )
2

∑n
i=1(yi − ȳ)2
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4 Result Analysis 

4.1 Obtained Hyperparameters and Suitable Values for Model 
Training 

The hyperparameters for the ML models, determined through a grid search across 
specified parameter values, are listed in Table 2. 

We conducted this process using the scikit-learn library in Python. Using a PC 
with an Intel iRISxe graphics card, 8 GB of RAM, and a 1.30 GHz CPU, all 
tests were conducted on Google Colab with a reliable Internet connection. The 
“Grid Search” method was used to methodically adjust the hyperparameters. With 
this approach, a grid of potential hyperparameters is created, their corresponding 
values or ranges are specified, and cross-validation is applied to the model for 
every conceivable combination. The optimal set is the arrangement that yields the 
best results when evaluated using a particular evaluation metric. Grid Search is a 
rigorous and systematic method for optimizing hyperparameters, although it can be 
computationally intensive, particularly when working with huge parameter spaces. 

Table 2 Hyperparameter values for the ML models 

Models Best hyperparameters Range of value search 

LR N/A N/A 

Ridge “alpha”: 0.1 “alpha”: [0.1, 1, 10, 100] 

Lasso alpha’: 0.01 “alpha”: [0.01, 0.1, 1, 10] 

Poly linear__fit_intercept’: False, 
“poly__degree=2 

poly__degree’: [2, 3, 4], 
“linear__fit_intercept”: [True, False] 

SVR “C”: 0.1, “epsilon”: 0.01, “kernel”: 
“linear” 

kernel’: [“linear”, “rbf”], “C”: [0.1, 1, 
10], “epsilon”: [0.01, 0.1, 0.2] 

DTR “max_depth”: 10, “min_samples_split”: 
10 

max_depth’: [None, 10, 20, 30], 
“min_samples_split”: [2, 5, 10] 

RF max_depth’: 10, “min_samples_split”: 
10, “n_estimator”=100 

“n_estimators”: [100, 200, 500], 
“max_depth”: [None, 10, 20, 
30], “min_samples_split”: [2, 5, 10] 

GBR learning_rate’: 0.01, “max_depth”: 5, 
“n_estimator”=100 

“n_estimators”: [100, 200, 500], 
“learning_rate”: [0.01, 0.1, 
0.2], “max_depth”: [3, 5, 7] 

XGB learning_rate’: 0.1, “max_depth”: 3, 
“n_estimator”=100 

“n_estimators”: [100, 200, 500], 
“learning_rate”: [0.01, 0.1, 
0.2], “max_depth”: [3, 5, 7] 

LGB learning_rate’: 0.2, “max_depth”: -1, 
“n_estimator”=100 

“n_estimators”: [100, 200, 500], 
“learning_rate”: [0.01, 0.1, 
0.2], “max_depth”: [-1, 10, 20] 

KNN “n_neighbors”: 10, “weights”: “uniform” n_neighbors’: [3, 5, 7, 10], “weights”: 
[“uniform”, “distance”]
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4.2 Results of the U.S. Gasoline Spot Price Forecasting 

4.2.1 Performance of the ML Models 

The initial outcome demonstrates the accuracy of daily U.S. gasoline spot price 
predictions using various ML techniques without hyperparameter tuning which 
shows by Table 3. This indicates that the LR, Ridge, and Poly models outperformed 
the other ML models in this analysis prior to hyperparameter tuning. These models 
exhibited lower absolute and relative errors and achieved an R2

. of 97%, implying 
that they are better at capturing short-term fluctuations in the data and providing 
more accurate daily forecasts of the U.S. gasoline spot price. Additionally Lasso 
performed worst with higher errors and lower R2

. of only 7%. However, it is 
worth noting that the computation time for LR was slightly longer compared to 
the Ridge and Poly models. The performance metrics for the ML models after 
hyperparameter tuning, as shown in Table 4, reveal that LR, Ridge, and SVR 
outperformed the others, with relatively lower absolute and relative errors and an R2

. 

of 97%. This shows that these models are better at identifying short-term variations 
in the data and producing daily estimates of the current price of gasoline in the 
United States that are more accurate. However, the SVR model had a significantly 
higher computation time compared to the other two, making Ridge the optimal 
choice due to its lower elapsed time. Notably, after tuning, the Lasso model showed 
a remarkable improvement, achieving an R2

. of 96.9% and errors close to those of 
the optimal model. In contrast, GBR was the poorest performer among the tuned 
models. Figure 4 illustrates the actual versus predicted curves for the models, with 
the curves for the LR, Ridge, and SVR models closely aligning with the actual data. 
The GBR, XGB, LGB, and KNN models, on the other hand, were less successful 
and frequently greatly overestimated or underestimated the projected pricing. 

Table 3 Performance measures of the ML models without hyperparameter tuning for forecasting 
daily gasoline spot prices 

Models Elapsed time (s) MAE MSE RMSE MAPE sMAPE R2 . 

LR 0.02 0.06 0.01 0.09 2.36 2.35 0.97 

Ridge 0.01 0.06 0.01 0.09 2.36 2.35 0.97 

Lasso 0.00 1.21 1.72 1.31 43.34 56.29 0.07 

Poly 0.00 0.06 0.01 0.09 2.35 2.35 0.97 

SVR 0.29 0.10 0.03 0.17 3.14 3.22 0.88 

DTR 0.02 0.12 0.06 0.24 4.03 3.91 0.78 

RF 1.78 0.09 0.02 0.14 3.25 3.23 0.92 

GBR 0.94 0.11 0.04 0.21 3.48 3.39 0.83 

XGB 0.29 0.10 0.03 0.18 3.24 3.32 0.87 

LGB 0.17 0.10 0.03 0.17 3.20 3.27 0.88 

KNN 0.01 0.09 0.02 0.14 3.10 3.14 0.92
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Table 4 Performance measures of the ML models after hyperparameter tuning for forecasting 
daily gasoline spot prices 

Models Elapsed time (s) MAE MSE RMSE MAPE sMAPE R2 . 

LR 2.83 0.064 0.0075 0.087 2.358 2.353 0.970 

Ridge 0.15 0.064 0.0075 0.087 2.358 2.353 0.970 

Lasso 0.14 0.067 0.0079 0.089 2.446 2.458 0.969 

Poly 0.20 0.068 0.0089 0.094 2.466 2.468 0.965 

SVR 75.38 0.064 0.0075 0.087 2.354 2.347 0.970 

DTR 0.51 0.086 0.0203 0.142 3.049 3.016 0.920 

RF 277.69 0.079 0.0149 0.122 2.800 2.802 0.941 

GBR 153.64 0.102 0.0351 0.187 3.361 3.303 0.861 

XGB 14.18 0.099 0.0319 0.179 3.242 3.322 0.874 

LGB 26.89 0.097 0.0293 0.171 3.199 3.266 0.884 

KNN 0.48 0.096 0.0262 0.162 3.180 3.241 0.896 

Fig. 4 Daily prediction of gasoline spot price using different ML models 

4.2.2 Performance of the DL models 

Similar to the ML models, Table 5 shows the performance of the DL models for 
predicting the daily U.S. gasoline spot price. LSTM and BiLSTM stood out with 
lower absolute and relative errors, achieving an R2

. of 96.4%, closely followed 
by the GRU model with an R2

. of 95.9%. However, LSTM had the advantage in 
terms of elapsed time, making it the more efficient choice. On the other hand, MLP 
performed poorly among the DL models, with significantly higher errors and a low 
R2

. of only 26.5%. 
Similarly, Fig. 5 illustrates the daily forecasts of the U.S. gasoline spot price 

based on the predictions from the DL models. As with the ML models, LSTM
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Table 5 Performance measures of the DL models for forecasting daily gasoline spot prices 

Models Elapsed time (s) MAE MSE RMSE MAPE sMAPE R2 . 

MLP 33.85 0.412 0.1861 0.431 15.192 16.486 0.265 

LSTM 60.53 0.069 0.0090 0.095 2.486 2.481 0.964 

BiLSTM 76.81 0.069 0.0091 0.095 2.482 2.487 0.964 

GRU 60.20 0.073 0.0104 0.102 2.592 2.610 0.959 

Fig. 5 Daily prediction of gasoline spot price using different DL models 

and BiLSTM closely track the actual gasoline prices, providing almost accurate 
forecasts. However, MLP falls short in delivering accurate predictions. 

4.2.3 Performance of the Ensemble Models 

Lastly, the forecasting performance of four stacking ensemble models for predicting 
the daily U.S. gasoline spot price is shown in Table 6. Among these, the LRSDR 
model emerged as the top performer, surpassing all single ML, DL, and other 
stacking models with the lowest absolute and relative errors and achieving an 
impressive R2

. of 98%. Additionally, this model had the shortest elapsed time 
compared to the others. It was closely followed by two other stacking models, 
EAGHL and DAESR, which attained R2

. values of 96.7% and 95.1%, respectively. 
Figure 6 displays the predicted versus actual curves generated by various stacking 

models. The stacking LRSDR model, in particular, closely mirrors the actual curve, 
demonstrating near-accurate predictions. The EAGHL and DAESR models are also 
close to the actual curve. 

Based on all the performance metrics discussed in this study, the optimal model 
for forecasting the daily U.S. gasoline spot price is the stacking LRSDR model.
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Table 6 Performance measures of the stacking models for forecasting daily gasoline spot prices 

Models Elapsed time (s) MAE MSE RMSE MAPE sMAPE R2 . 

RGSKL 11.21 0.110 0.0446 0.211 3.552 3.459 0.824 

DAESR 7.00 0.076 0.0124 0.111 2.719 2.710 0.951 

LRSDR 1.57 0.059 0.0067 0.081 2.266 2.261 0.980 

EAGHL 6.32 0.067 0.0084 0.092 2.449 2.443 0.967 

Fig. 6 Daily prediction of gasoline spot price using different stacking models 

4.3 Results of the New York Gasoline Spot Price Forecasting 

4.3.1 Performance of the ML Models 

In line with the previous analysis, the initial results demonstrate the accuracy of 
daily New York gasoline spot price predictions using various ML techniques with 
hyperparameter tuning, as shown in Table 7. We did not include results without 
parameter tuning since the previous section established that model performance 
improves based on the hyperparameters listed in Table 2. The table indicates that the 
LR, Ridge, Lasso, Poly, and SVR models outperformed the others in this analysis, 
exhibiting lower absolute and relative errors and achieving an R2

. of 99.2%. This 
shows that these models are more successful in identifying brief variations in the 
data and producing daily predictions of the spot price of New York gasoline that are 
more accurate. Among them, the Lasso model can be considered optimal based on 
elapsed time, while SVR stands out for its performance in MAPE and sMAPE. The 
remaining models closely followed these leaders. 

Figure 7 presents the actual versus predicted curves for these models, with 
LR, Ridge, Lasso, Poly, and SVR models closely tracking the actual data. In



Efficient Gasoline Spot Price Prediction Using Hyperparameter Optimization. . . 307

Table 7 Performance measures of the ML models with hyperparameter tuning for forecasting 
daily New York gasoline spot prices 

Models Elapsed time (s) MAE MSE RMSE MAPE sMAPE R2 . 

LR 2.37 0.047 0.0045 0.067 2.256 2.244 0.992 

Ridge 0.18 0.047 0.0045 0.067 2.256 2.244 0.992 

Lasso 0.08 0.050 0.0049 0.070 2.354 2.349 0.992 

Poly 0.14 0.047 0.0045 0.067 2.254 2.243 0.992 

SVR 83.82 0.047 0.0045 0.067 2.253 2.240 0.992 

DTR 0.51 0.069 0.0171 0.131 2.913 2.942 0.971 

RF 299.45 0.068 0.0175 0.132 2.860 2.891 0.970 

GBR 177.69 0.068 0.0198 0.141 2.802 2.845 0.966 

XGB 14.72 0.070 0.0220 0.148 2.852 2.901 0.962 

LGB 23.56 0.069 0.0210 0.145 2.818 2.863 0.964 

KNN 0.26 0.070 0.0207 0.144 2.867 2.910 0.964 

Fig. 7 Daily prediction of New York gasoline spot price using different stacking models 

contrast, the other models were less accurate, often significantly overestimating or 
underestimating the predicted prices. 

4.3.2 Performance of the DL Models 

Similar to the ML models, Table 8 presents the performance of DL models in 
predicting the daily NewYork gasoline spot price. LSTM and GRUmodels excelled, 
with lower absolute and relative errors, achieving R2

. values of 99.1% and 99%, 
respectively, followed closely by the BiLSTM model with an R2

. of 98.8%. LSTM 
also proved to be more efficient in terms of elapsed time, making it the preferred
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Table 8 Performance measures of the DL models for forecasting daily New York gasoline spot 
prices 

Models Elapsed time (s) MAE MSE RMSE MAPE sMAPE R2 . 

MLP 31.02 0.322 0.1245 0.353 13.797 14.863 0.785 

LSTM 56.64 0.049 0.0051 0.071 2.349 2.328 0.991 

BiLSTM 70.19 0.058 0.0067 0.082 2.658 2.683 0.988 

GRU 63.73 0.054 0.0058 0.076 2.570 2.532 0.990 

Fig. 8 Daily prediction of New York gasoline spot price using different stacking models 

choice. Conversely, the MLP model performed poorly, with significantly higher 
errors and a low R2

. of just 78.5%. 
Similarly, Fig. 8 illustrates the daily forecasts of the New York gasoline spot price 

based on the predictions from the DL models. As with the ML models, LSTM 
and GRU closely followed the actual gasoline prices, delivering nearly accurate 
forecasts, with BiLSTM also performing well. However, MLP struggled to provide 
accurate predictions. 

4.3.3 Performance of the Hybrid Models 

Finally, Table 9 displays the forecasting performance of four stacking ensemble 
models for predicting the daily New York gasoline spot price. Among these, the 
LRSDR and EAGHL models excelled, outperforming all other single ML, DL, 
and stacking models with the lowest absolute and relative errors and achieving an 
impressive R2

. of 99.2%. Additionally, the LRSDR model had the shortest elapsed 
time, making it the most efficient. It was followed closely by the DAESR and RGSKl 
models, which achieved R2

. values of 92.4% and 98.1%, respectively.
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Table 9 Performance measures of the stacking models for forecasting daily New York gasoline 
spot prices 

Models Elapsed time (s) MAE MSE RMSE MAPE sMAPE R2 . 

RGSKL 9.40 0.063 0.0108 0.104 2.763 2.763 0.981 

DAESR 1.31 0.082 0.0439 0.209 3.198 3.321 0.924 

LRSDR 0.66 0.047 0.0046 0.068 2.259 2.248 0.992 

EAGHL 2.91 0.047 0.0046 0.068 2.267 2.259 0.992 

Fig. 9 Daily prediction of New York gasoline spot price using different stacking models 

Figure 9 showcases the predicted versus actual curves for various stacking 
models. Notably, the stacking LRSDR model closely tracks the actual curve, 
reflecting near-accurate predictions. The EAGHL and RGSKL models also align 
closely with the actual data. 

Similarly, based on all the performance metrics discussed in this study, the 
optimal model for forecasting the daily New York gasoline spot price is the stacking 
LRSDR model. 

5 Conclusion and Future Work 

In this research, we examined several stacking ensemble learning models that 
integrate various ML regression techniques to improve time series prediction. Our 
findings indicate that the stacking LRSDR model outperforms benchmark methods 
in terms of elapsed time, prediction accuracy, and various error metrics. For the 
purpose of making production decisions for the industry, the suggested LRSDR 
model exhibits robustness in forecasting across various granularities of gasoline
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time series. Furthermore, the findings can assist interested parties in creating 
profitable investment plans to optimize returns in times of market turmoil. 

This research also highlights areas requiring further exploration. While our ML 
approach has proven effective for modeling diverse fluctuation patterns in energy 
markets, it would be valuable to assess its performance in other commodity and 
financial markets, like foreign exchange rates, stock prices, and precious metal 
prices. For instance, comparable models have had difficulty adjusting to the current 
decoupling of oil and gas prices, despite advances in gasoline forecasting. 

There are a few restrictions to be aware of. This study focuses exclusively on 
univariate gasoline time series prices and does not account for factors such as 
environmental variables, macroeconomic conditions, or foreign market influences. 
This might be further explored in the future by creating forecasting models that 
take into account the political and economic factors that influence gas prices in 
addition to market sentiment indicators that are obtained from textual data such as 
news articles. Incorporating these other variables may offer a more sophisticated 
comprehension of the forces behind changes in gas spot prices. 

Acknowledgments We extend our deepest gratitude to the Center for Multidisciplinary Research 
and Development (CeMRD) for their resources, guidance, and support. The expertise and 
encouragement from CeMRD members have been invaluable. This research was made possible 
by the collaborative environment and cutting-edge facilities at CeMRD. 

References 

Abdollahi, H., & Ebrahimi, S. B. (2020). A new hybrid model for forecasting Brent crude oil price. 
Energy, 200, 117520. 

Agbaji, A. L., Morrison, R., & Lakshmanan, S. (2023). ESG, sustainability and decarbonization: 
An analysis of strategies and solutions for the energy industry. OnePetro. 

Allcott, H., & Wozny, N. (2014). Gasoline prices, fuel economy, and the energy paradox. Review 
of Economics and Statistics, 96, 779–795. 

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. 
The American Statistician, 46, 175–185. 

Borenstein, S., & Shepard, A. (1996). Sticky prices, inventories, and market power in wholesale 
gasoline markets. 

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. 
Busse, M. R., Knittel, C. R., & Zettelmeyer, F. (2013). Are consumers myopic? Evidence from 

new and used car purchases. American Economic Review, 103, 220–256. 
Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural 

machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259. 
Dong, Y., Jiang, H., Guo, Y., & Wang, J. (2024). A novel crude oil price forecasting model using 

decomposition and deep learning networks. Engineering Applications of Artificial Intelligence, 
133, 108111. 

Eliwa, E. H. I., El Koshiry, A. M., Abd El-Hafeez, T., & Omar, A. (2024). Optimal gasoline 
price predictions: Leveraging the ANFIS regression model. International Journal of Intelligent 
Systems, 2024, 8462056.



Efficient Gasoline Spot Price Prediction Using Hyperparameter Optimization. . . 311

Fathi, S., Srinivasan, R., Fenner, A., & Fathi, S. (2020). Machine learning applications in urban 
building energy performance forecasting: A systematic review. Renewable and Sustainable 
Energy Reviews, 133, 110287. 

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and 
an application to boosting. Journal of Computer and System Sciences, 55, 119–139. 

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of 
Statistics 1189–1232 (2001). 

Hamilton, J. D. (2009). Causes and consequences of the oil shock of 2007-08. Tech. Rep., National 
Bureau of Economic Research. 

Hasan, M., Das, U., Datta, R. K., & Abedin, M. Z. (2023a). Model development for predicting 
the crude oil price: Comparative evaluation of ensemble and machine learning methods (pp. 
167–179). Springer. 

Hasan, M., Hassan, M. M., Faisal-E-Alam, M., & Akter, N. (2023b). Empirical analysis of 
regression techniques to predict the cybersecurity salary (pp. 65–84) Routledge. 

Hasan, M., et al. (2023c). Ensemble based machine learning model for early detection of mother’s 
delivery mode (pp. 1–6). IEEE. 

Hasan, M., et al. (2024a). A blending ensemble learning model for crude oil price forecasting. 
Annals of Operations Research 1–31. 

Hasan, M., Ahmed, T., Islam, M. R., & Uddin, M. P. (2024b). Leveraging textual information for 
social media news categorization and sentiment analysis. PLOS One, 19, e0307027. 

Hasan, M., et al. (2024c). Performance discrepancy mitigation in heart disease prediction for 
multisensory inter-datasets. PeerJ Computer Science, 10, e1917. 

Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical learning: 
Data mining, inference and prediction. The Mathematical Intelligencer, 27, 83–85. 

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice.  OTexts  .
James, G. (2013). An introduction to statistical learning. 
Jin, B., & Xu, X. (2024). Price forecasting through neural networks for crude oil, heating oil, and 

natural gas. Measurement: Energy, 1, 100001. 
Ke, G., et al. (2017). LightGBM: A highly efficient gradient boosting decision tree. In Advances in 

neural information processing systems (Vol. 30). 
Khan, S. M., et al. (2023). A systematic review of disaster management systems: approaches, 

challenges, and future directions. Land, 12, 1514. 
Knittel, C. R., & Sandler, R. (2011). Carbon prices and automobile greenhouse gas emissions: The 

extensive and intensive margins (pp. 287–299). University of Chicago Press. 
Lewis, M. S., & Marvel, H. P. (2011). When do consumers search? The Journal of Industrial 

Economics, 59, 457–483. 
Li, J., Tang, L., & Wang, S. (2020). Forecasting crude oil price with multilingual search engine 

data. Physica A: Statistical Mechanics and Its Applications, 551, 124178. 
Li, J., Hong, Z., Zhang, C., Wu, J., & Yu, C. (2024). A novel hybrid model for crude oil 

price forecasting based on MEEMD and Mix-KELM. Expert Systems with Applications, 246, 
123104. 

Liu, L., et al. (2024). A robust time-varying weight combined model for crude oil price forecasting. 
Energy, 299, 131352. 

MultiMedia LLC. (2024). Gasoline explained—U.S. Energy Information Administration (EIA). 
https://www.eia.gov/energyexplained/gasoline/ 

Lu, H., Ma, X., Ma, M., & Zhu, S. (2021). Energy price prediction using data-driven models: A 
decade review. Computer Science Review, 39, 100356. 

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. 
John Wiley & Sons. 

Qin, Q., Huang, Z., Zhou, Z., Chen, C., & Liu, R. (2023). Crude oil price forecasting with machine 
learning and google search data: An accuracy comparison of single-model versus multiple-
model. Engineering Applications of Artificial Intelligence, 123, 106266.

https://www.eia.gov/energyexplained/gasoline/
https://www.eia.gov/energyexplained/gasoline/
https://www.eia.gov/energyexplained/gasoline/
https://www.eia.gov/energyexplained/gasoline/
https://www.eia.gov/energyexplained/gasoline/
https://www.eia.gov/energyexplained/gasoline/


312 M. A. Hamja et al.

Rabbi, M. F., Moon, M. H., Dhonno, F. T., Sultana, A., & Abedin, M. Z. (2022). Foreign currency 
exchange rate prediction using long short-term memory, support vector regression and random 
forest regression (pp. 251–267). Springer. 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323, 533–536. 

Sajid, S. W., Anjum, K. R., Al-Shaharia, M., & Hasan, M. (2023). Investigating machine learning 
algorithms with model explainability for network intrusion detection (pp. 121–136). Routledge. 

Salamai, A. A. (2023). Deep learning framework for predictive modeling of crude oil price for 
sustainable management in oil markets. Expert Systems with Applications, 211, 118658. 

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and 
Computing, 14, 199–222. 

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal 
Statistical Society Series B: Statistical Methodology, 58, 267–288. 

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5, 241–259. 
Yuan, J., Li, J., & Hao, J. (2023). A dynamic clustering ensemble learning approach for crude oil 

price forecasting. Engineering Applications of Artificial Intelligence, 123, 106408. 
Zhang, T., Tang, Z., Wu, J., Du, X., & Chen, K. (2021). Multi-step-ahead crude oil price forecasting 

based on two-layer decomposition technique and extreme learning machine optimized by the 
particle swarm optimization algorithm. Energy, 229, 120797. 

Zhang, X., Cheng, S., Zhang, Y., Wang, J., & Wang, S. (2024). An attention-PCA based forecast 
combination approach to crude oil price. Expert Systems with Applications, 240, 122463. 

Zhao, Z., Sun, S., Sun, J., & Wang, S. (2024). A novel hybrid model with two-layer multivariate 
decomposition for crude oil price forecasting. Energy, 288, 129740. 

Zheng, L., Sun, Y., & Wang, S. (2024). A novel interval-based hybrid framework for crude oil price 
forecasting and trading. Energy Economics, 130, 107266. 

Md. Amir Hamja is currently pursuing his MSc in Statistics 
from the Department of Statistics at Hajee Mohammad Danesh 
Science and Technology University, Dinajpur, Bangladesh, and 
he completed BSc (Hons.) in Statistics from the same university 
in 2023. Currently, he is a Research Assistant in the Center 
for Multidisciplinary Research and Development (CeMRD). His 
research interests include Federated Learning, Machine Learning, 
Deep Learning, Cyber Security, Health Informatics, Business 
Intelligence, Time Series, Public Health, and Biostatistics.



Efficient Gasoline Spot Price Prediction Using Hyperparameter Optimization. . . 313

Md Rakinus Sakib is currently pursuing an M.Sc. in Statistics 
at the Department of Statistics, Hajee Mohammad Danesh Sci-
ence and Technology University (HSTU), Dinajpur, Bangladesh. 
Where he also completed his B.Sc. (Hons.) in Statistics in 2024. 
His research interests encompass a wide range of areas, includ-
ing Machine Learning, Deep Learning, Cybersecurity, Health 
Informatics, Business Intelligence, Time Series Analysis, Public 
Health, and Biostatistics. 

Mahmudul Hasan is currently pursuing a PhD in Information 
Technology (IT) at Deakin University, Melbourne, Australia. He 
earned his BSc (Eng.) and MSc (Eng.) degrees in Computer 
Science and Engineering (CSE) from Hajee Mohammad Danesh 
Science and Technology University, Dinajpur, Bangladesh, in 
2021 and 2023, respectively. He previously served as a Lec-
turer in the Department of CSE at the University of Creative 
Technology, Chittagong (UCTC), Bangladesh. He is the Founder 
and Director of the Center for Multidisciplinary Research and 
Development (CeMRD) and a moderator of “Be Researcher BD,” 
the largest online research forum in Bangladesh. Additionally, 
he has taught online as a Data Science instructor to students in 
the USA, Italy, Denmark, South Korea, and Australia. He is also 
the founder of the online educational platform “MHM Academy.” 
His research interests include federated learning, machine learn-
ing, deep learning, cybersecurity, health informatics, renewable 
energy, computational sociology, and business intelligence. 

Md Sabir Hossain (a member, IEEE) received the bachelor’s 
and master’s degrees in computer science and engineering from 
the Chittagong University of Engineering and Technology, with 
an outstanding result. He is currently pursuing his PhD at 
Information and Computer Science Department of King Fahd 
University of Petroleum and Minerals (KFUPM), Saudi Arabia. 
Previously, he served as a faculty member (assistant professor) 
at the Chittagong University of Engineering and Technology. 
His research interests are algorithmic complexity analysis, data 
mining, machine learning, big data, and information visualization. 
He is the initiator and lead visionary of a research leveraging 
platform named “Be Researcher World Forum.”



The Implications of Energy Transition 
and Development of Renewable Energy 
on Sustainable Development Goals 
of Two Asian Tigers 

Rajib Bhattacharyya 

1 Introduction 

Of late, the transition of global energy resource base and shift towards de-
carbonization has been one of the most critical and sensitive issues in the debates 
and discussions on sustainable development goals index (SDGI), climate change 
and geopolitical policies to establish economic power and supremacy over other 
nation. The impact of energy transition not only limited within the energy sector of 
an economy, but it involves a whole gamut of changes over the entire economy as 
it includes issues like substitution of fossil fuels, electrification, de-carbonization, 
technological upgradation, which may have far-reaching implications on agricul-
ture, industry, services, infrastructure and others. It also involves changes in trade, 
fiscal and labour market policies. The issue of energy transition from fossil fuel to 
wind, solar, hydro and zero-carbon energy has serious implications in the context of 
energy crisis, energy affordability, security and sustainability in the long run. The 
Energy Transition Index (ETI) attempts to measure the emerging landscape of the 
performance of energy systems and readiness for energy transition across countries. 
China and India, the two populous giants, are highly vulnerable to climate change, 
but have shown significant improvements in ETI performances. 

The consumption of cleaner energy per capita is not only considered as an 
important indicator of good and healthy life but also a significant component of 
a nation’s green GNP measure of growth. Innovations in technology, mitigation 
policies of climate change, achievement of Sustainable Development Goals (SDGs) 
and geopolitical changes have brought into focus the issue of transition in the global 
energy system. The two recent macroeconomic shocks (Covid-19 and the Russia-
Ukraine War) had resulted in serious disruptions to movement of goods and energy 
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and this has led to severe inflation in the global market. It has forced countries to 
rethink about energy crisis, security and sustainability in the long run. It has also 
pushed economies to reallocate its resource base to address the issue of its energy 
affordability and energy sustainability in the long run. This has been supplemented 
by the quest for renewable energy instead of the traditional fossil fuels and the strive 
towards net-zero-carbon emission. But this urge for energy transition has resulted 
in a geopolitical divide between developed and developing countries on the basis of 
priority in the process of transition. Energy prices shoot up when the global market 
recovery began after the end of the Covid-19 lockdown and the Russia–Ukraine 
war broke out. This excess demand was combined with insufficient supply and 
underinvestment in the energy market, mainly due to uncertainties and poor returns 
during shocks and also due to environmental, social and governance (ESG) factors 
on the part of the investors. The other challenge in this shifting process is the ‘speed 
of transition’. Pressure has been imposed to bring down the carbon emission target 
from 2050 to 2030 to reduce the global warming by 1.5

◦ 
c per year. Hence, the issues 

linked to energy transition are multi-dimensional: socio-economic (reduction of 
inequality and poverty along with economic growth), ecological (mitigating climate 
change) and geopolitical (concerned with national security and energy resource 
constraints). It is a dynamic adjustment towards an equilibrium where changing 
technology necessitates more demand for energy which has to be balanced by better 
and cleaner energy supply .

Hence, the conflict of interest between fossil fuel-rich countries and supporters of 
green energy nations. Countries like USA, Russia, Saudi Arabia, Canada, Australia, 
Venezuela, Brazil, Mexico, Iran, Iraq are fossil fuel-rich nations and if zero-carbon 
energy transition is achieved, these nations may lose in three ways: (i) capital loss 
due to large stock of fossil fuel will remain unexplored; (ii) additional economic 
loss due to the fact that fossil fuel rents will no longer be available to finance public 
sector; (iii) suffer positional loss due to geopolitical relative advantage and will 
be challenged by nations having solar, wind, hydro, geothermal, biomass, nuclear 
power. 

1.1 Importance of India and China in Global Energy 
Transition Scenario 

To make it compatible with the changing demands, a new formulation of Energy 
Transition Index (ETI) was released by the World Economic Forum (WEF), June 
2023 edition, which takes a broader view of the energy triad: equity, security 
and sustainability. In the last decade there had been an improvement in global 
ETI score by around 10 percent with Nordic countries like Sweden, Denmark, 
Norway and Finland maintaining the top positions. This was supported by an 
enhancement in global scores of readiness transition by 19 percent. China is a 
soul exception in the global energy landscape to have shown an improvement in
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readiness transition scores by 43 percent (which is double the global average). 
This remarkable achievement made it possible for China as the only Asian country 
to enter into the top 10 performing nations in energy transition. It is also being 
pointed out in that report that the two countries—Singapore and India are making 
improvements in all aspects of energy system performance. 

1.2 Major Issues Involved in Energy Transition 

First, unlike the earlier energy transition driven by inter-fuel competition, the 
present energy transition is based on implementation of government policies and 
regulations with the prime aim of combatting global climate change. At the initial 
stage, the transition from hydrocarbon to renewable and carbon-free alternative may 
lead to failure of markets to price environmental externalities due to its high cost. 
The government support and investment policies may act as a catalyst through 
application of fiscal policy for the energy sector. 

Second, technological transformation is required to achieve zero-carbon energy 
breakthrough. Solar power technologies, wind potential, nuclear reactors can 
radically reshape the global energy landscape. 

Third, financial investment is one of the prime factors that drive technological 
innovations and government policy. A proper balance between public and private 
investment is the key to green energy transition as per the International Energy 
Agency (IEA). The Central banks initiative in the form of Network for Greening 
the Financial System (NGFS) is a step in this regard. 

Fourth, development of energy networking and infrastructure is very crucial for 
this transition. This implies developing new infrastructure to supply de-carbonized 
energy and replacing the older pipeline network shipping fleets and distribution 
outlets. Energy integration system and digitalization process need to be given more 
focus along with developing new infrastructural base. 

Fifth, energy access equity and justice are really an important matter of concern. 
With about 2.6 billion people still deprived access to clean cooking fuels (World 
Energy Outlook, 2020), energy transition may exacerbate energy inequality and 
poverty. Hence energy justice was a major issue in COP26. 

2 Literature Survey 

A large body of literature has developed on the energy transition and climate change 
issues. Here we mention some of the notable ones. Hafner and Tagliapietra (2020)s 
edited book on ‘The Geopolitics of the Global Energy Transition’ has been a pioneer 
in discussing the geopolitical impacts between developed and developing nations 
with regard to transition from fossil fuel to zero-carbon state. The shifting of power 
from coal, oil, natural gas to solar, wind, hydro, geothermal, biomass, nuclear
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requires not only a change in innovation, infrastructure, education and human 
capital, finance and investment, but political will, commitment and implantation. 
Singh et al. (2019) explored how ETI serves as composite and comprehensive world 
index which tracks the country wise performance of the energy system and has 
implications on macroeconomic, institutional, social and geopolitical levels. It also 
shows the direction and potentiality of a country to make transition. Yergin (2022) 
demonstrated the probable obstacles in the path of reducing net carbon emission 
to zero. Henderson and Sen (2021) discussed the major challenges of nations in 
the path of transition to a new system. They stress on the Intergovernmental Panel 
on Climate Change (IPCC) report on climate Change and IEA analysis. IRENA 
(2018) report talks about transition on global energy system with a road map 2050. 
It emphasizes energy efficiency and renewable energy as the two fundamental pillars 
of energy transition and stresses the need for scaling up renewable energy needs at a 
six times faster rate to meet the aims of the Paris Agreement. Energy Statistics India 
(2023), the report of the Government of India provides a theoretical and empirical 
comprehensive overview of India’s step forward towards energy transition. It 
highlights the importance of deploying renewable and energy efficient technologies 
in line with the UN Summit 2015. World Economic Forum (2023) report June 
2023 analyses the details of the ETI scores and rankings, performance of sub-
indices and country performance profiles. World Energy Outlook (2023) describes 
the various dimensions of the energy transition and also the key challenges ensuring 
a just and secure clean energy transition. World Energy Trilemma (2024) published 
a full report on ‘Evolving with Resilience and Justice’ to focus on the World 
Energy Trilemma Index depending on three core indicators: energy security, energy 
equity and environmental sustainability of Energy Systems. It discusses about the 
multiple paths followed by different countries to ensure cleaner, affordable and 
reliable energy framework, pointing out the deficiencies in supply infrastructure and 
investment. Janardhanan (2022) in his paper tried to examine three dimensions of 
the role of China in India’s energy transition: (a) identification of factors responsible 
for China’s comparative advantage and dominance in the overseas market, (b) 
China’s dual role (catalytic and inhibiting role) in the process of energy transition 
in India and (c) Scope and opportunities of China–India bilateral ventures in the 
development of clean energy. Mori (2022) in his book, through the various chapters, 
has extensively discussed China’s carbon policy (leakage, relocation) and its role in 
the energy transition in different countries of Asia like Japan, Vietnam, Indonesia 
and India. The book tries to assess how the policy intensifies pressure and motivates 
the Chinese companies. Isoaho et al. (2016) in their paper attempted to focus 
on transformation of electric power system in both India and China to decouple 
economic growth from unsustainable resource consumption. It tries to analyse the 
whole issue from the political economy angle. Odhiambo (2009) in his paper tried 
to examine the intertemporal causal relationship between energy consumption and 
economic growth in Tanzania during the period of 1971–2006 using ARDL bound 
testing model and found the relationship to be a stable one. Bhattacharyya (2019) 
examines the pattern and composition of energy use in two most populous countries, 
China and India. It also uses ARDL bound test to establish the short and long
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run relationship between energy use, per capita GDP, energy intensity, electric 
power and extent of urbanization. The study found long run association between 
the variables in case of India but not in case of China. 

3 Objective of the Study and Methodology 

The present paper attempts to provide various macro dimensions of indicator wise 
comparison and explores the potentials for renewable energy between the two 
fastest growing emerging nations—India and China. Empirically it tries to estimate 
the impact of some macroeconomic variables, viz. economic growth (ECOGR), 
access to clean fuels and technologies for cooking (% of population) (CFT), CO2 
emissions from fossil fuel combustion and cement production or manufacturing 
(CM) (tCO2/capita, 2021), CO2 emissions from fuel combustion per total electricity 
output (CME) (Mt CO2/TWh, 2019) and renewable energy share in total final energy 
consumption (%, 2019) (RE) on the Sustainable Development Goal Index (SDGI) 
using the ARDL model. The study also seeks to examine the uni-directional and bi-
directional short run causality between the dependent and independent variable in 
terms of pairwise Granger Causality test with the help of time series data available 
from WDI, WEF, WEO, GSIR. 

4 The Energy Transition Index Framework 

As per the methodologies developed by the World Economic Forum (WEF, 2023), 
the basic aim of the ETI tool is to assess two fundamental issues: (a) a nation’s 
present state of energy system performance and (b) preparedness for energy transi-
tion. ETI is based on two main pillars: (i) Energy System Performance (weight = 60 
percent) and (ii) Readiness for Energy Transition (weight = 40 percent). Again, 
system performance depends on three sub-pillars (weight = 33 percent each): 
(a) Equitability (including energy access, affordability economic development) 
(b) Security (supply security, resilience, reliability) and (c) Sustainability (energy 
efficiency, greenhouse gas (GHG) mitigation, clean energy). On the other hand, 
Readiness for Energy Transition depends on two sub-pillars (weight = 50 percent 
each): (a) regulatory framework and investment and (b) enabling factors (like 
education and human capital, inno vation, infrastructure).

5 China and India’s Standings and Role in ETI 

Figure 1 shows the ETI scores and rankings across various regions of the world and 
also across nations. In the last decade, the region of Emerging and Developing Asia,
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[Author’s construction based on ETI 2023, WEF] 
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Fig. 1 Present scores of ETI and their ranking across regions and nations. [Author’s construction 
based on ETI 2023, WEF] 

which includes the two most populous countries of the world, China and India, has 
improved the ETI scores by 12 percent. This region has shown more than 10 percent 
improvement in equitability dimension, but the achievement is poor in respect of 
sustainability and security aspects. China’s ETI score is 64.9 and its rank is 17th 
among 120 nations in 2023. China is the largest producer and consumer of energy 
in the world energy landscape and so its role is of vital importance for shaping the 
future trajectory. China has also been identified as the largest emitter of GHG. But 
it has improved greatly in both system performance and readiness transition aspects 
in the last decade. Though China had to face tremendous energy security challenge 
in the process of transition from fossil fuel to green energy, but in recent years its 
industry has been following the path of green development. It has moved a long way 
to introduce green finance to increase the supply of renewables and its investment 
was about 380 billion dollars in 2021. Moreover, it is one of the first nations in 
the world to launch the green bond project. One of the successful exhibitions is 
reflected in its industrial clusters where the powering is done by green and renewable 
electricity. 

As compared to China, India is way behind in terms of ETI performance scores. 
India’s score is 54.3 and its rank is 67th among 120 nations in 2023. But India 
has been highlighted as the country which has made significant improvement in 
all the three aspects: equitability, security and sustainability in the last decade. The 
main contributors to this success have been substitution of liquefied petroleum gas 
(LPG) in place of traditional wood, charcoal and others and also enhancement in the 
development of renewable energy. India has rapidly increased the share of renewable 
energy in power generation—more than 30 percent with solar and 92 percent of 
increased capacity by onshore wind. It has also set a target to install 500 GW of
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non-fossil power generation capacity by 2030. Indian government has introduced 
the Energy Conservation (Amendment) Bill 2022, which imposes the mandate to 
use renewable energy for big energy-intensive consumers and also initiated the 
carbon credit scheme. India also aims to develop a competitive ‘Green Hydrogen’ 
ecosystem and promote the production and distribution as well as consumption of 
green hydrogen through the policy of National Green Hydrogen Mission. 

5.1 A Comparative Performance of ETI and Its Components 
in China and India (2012–2023) 

Based on the time series data available from the WEF the present study has tried to 
analyse why China’s performance is relative much better than India in terms of ETI 
scores and rankings. 

For this we look separately into the progress with respect to the two pillars of 
ETI, i.e. energy system performance and preparedness for energy transition (Fig. 
2). Throughout the entire period of our analysis, India’s system performance was 
ahead of China, exception being years after 2021. But in case of readiness transition 
from the beginning China was ahead of India and the gap between them enlarged 
particularly after 2021 (post pandemic situation). This combined effect has helped 
China to improve its rank much faster than that of India. 

[Source: Author’s construction based on ETI scores available from WEF dataset.] 
[https://www.weforum.org/publications/fostering-effective-energy-transition-2021/in-full/rankings/] 
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Figure 3 shows the comparison between China and India with respect to some 
indicators commonly used in the ETI calculations. Panel A in Fig. 3 shows carbon 
intensity in industrial consumption and panel B shows carbon intensity in road 
consumption. In case of industrial consumption, the carbon intensity of China was 
much more than that of India in the 1990s but gradually the gap has been narrowed 
down. It is measured in units kgCO2/2015USD [IEA data series (1990–2021)]. But 
the opposite is seen in case of carbon intensity road consumption. Here, India lies 
ahead of China. Though the gap narrowed between them in 2004, but after that it 
increased till 2021. This is because China’s industrial activity is manyfold more 
than that of India, while China’s transition to green energy transport has paid off 
dividends as compared to India. Panel C in Fig. 3 shows the comparison with regard 
to carbon emission per unit of GDP. In this case China was much ahead in 1990, 
but it went down sharply and finally surpassed India after that global financial crisis 
(2008). Panel D shows greenhouse gas (GHG) emission from various sources (coal, 
oil, natural gas and others). 

The bottom panel E exhibits share of renewables, low carbon sources and fossil 
fuels (coal, oil and gas) in power of the two nations. In case of India the share of 
renewables and low carbon components in power has improved from 16 percent 
(1990) to 23.4 percent (2021, share of renewables) and from 16 percent (1990) to 
27.2 percent (2021, share of low carbon). But in case of China the share of both has 
in fact fallen. Among all the sources the share of coal in power contributes to almost 
one-third. In case of India its share has been reduced between 1990 and 2021, but 
for China the share of coal has increased. The share of oil has decreased in both the 
nations but it has increased in case of gas for both the countries. One very important 
point to note here is the fact that the GHG from coal in China has kept on increasing 
at an alarming rate and it is almost five times the emission from coal in India in 
2021. The two country’s renewable energy potential is portrayed in Fig. 4. 

6 Development of World Energy Trilemma Framework 

World Energy Council has tried to build up another index known as Energy 
Trilemma Framework which is based on three main pillars: (a) energy security, 
(b) energy equity and (c) environmental sustainability. The first one examines the 
nation’s capacity to be able to meet the present and future demand for energy as 
well as quick restoration from any external shock with minimal supply disruptions. 
The second one refers to the abundance of energy at both domestic and commercial 
levels at affordable prices. The third one indicates the ability of a nation to transform 
to a green energy system to mitigate environmental damage and climate change 
(Table 1). 

Initially, when about 15 years ago this framework was developed it included 
variables like shocks on the supply side, ability to access scarce resource, energy 
efficiency, strategic reserves and exposure to commodity prices, but now it includes 
newer variables like demand-driven energy shocks (as faced by Europe after the
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Panel-A (India) 

Panel-B (China) 

[Source:  Author’s construction based on Energy Statistics India. Ministry of Statistics and Programme Implementation (2023) 
  and Executive Summary-Renewables 2023-Analysis-International Energy Agency(IEA) (2023) World Energy Outlook] 
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Fig. 4 Comparison of India and China’s renewable energy potential. [Source: Author’s construc-
tion based on Energy Statistics India (2023) and Executive Summary- Renewables 2023- Analysis-
IEA] 

Russia–Ukraine war). Table 1 shows the position of the two countries China and 
India in terms of Energy Trilemma Index. The ranks for China and India are 47 
and 74, respectively (as per the latest Energy Trilemma Report 2024). As can be 
easily observed from the scores of energy security, energy equity and environmental 
sustainability, the achievements are much less, in case of both China and India, 
compared to the top 10 performers. It is interesting to note India worst performance 
is in the energy equity score.
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Table 1 China and India’s position in Energy Trilemma Index 

Energy Trilemma Country Trilemma Energy Energy Environmental 

index rank name score security score equity score sustainability score 

1. Denmark 83.2 72.2 95.8 83.5 
1. Sweden 83.1 73.4 93.4 85 
2. Finland 82.7 75.9 92.3 80.8 
3. Switzerland 82.1 64.5 98.1 85.7 
4. Canada 81 76.6 96.2 72.8 
5. Austria 80.9 71.8 95.3 78.6 
6. France 80.6 69.4 93.7 83.2 
7. Estonia 80.2 69.9 94.8 78.5 
7. Germany 80.2 72.9 94.4 76.6 
8. UK 80 67.7 95.7 79.2 
8. Norway 79.9 62.7 94.4 84.3 
9. New Zealand 79.6 68.2 95.4 76.4 
10 US 78.9 72.7 97.3 69 
47. China 64.4 66.3 73 56.4 
74. India 55.6 61.7 49.5 56.5 

Source: https://trilemma.worldenergy.org/#!/energy-index, World Energy Council 

7 Empirical Analysis 

Here we try to estimate the impact of economic growth (ECOGR), access to clean 
fuels and technologies for cooking (% of population) (CFT), CO2 emissions from 
fossil fuel combustion and cement production or manufacturing (CM) (tCO2/capita, 
2021), CO2 emissions from fuel combustion per total electricity output (CME) (Mt 
CO2/TWh, 2019) and renewable energy share in total final energy consumption (%, 
2019) (RE) on the sustainable development goal index (SDGI) using the ARDL-
ECM framework. 

7.1 Autoregressive Distributed Lag (ARDL) Approach 

Now after checking for unit root, we proceed for the testing of co-integration 
between the variables, based on ARDL framework. Pesaran et al. (2001) suggested 
the autoregressive distributed lag (ARDL) approach to test for co-integration as an 
alternative to co-integration model for Engle-Granger (1989). The ARDL-ECM 
model has been developed to check both long run and short run relationship 
between dependent variables, i.e. sustainable development goal index (SDGI) 
denoted by SDGI and the five explanatory variables are economic growth (ECOGR), 
access to clean fuels and technologies for cooking (% of population) (CFT), CO2 
emissions from fossil fuel combustion and cement production or manufacturing

https://trilemma.worldenergy.org/#!/energy-index
https://trilemma.worldenergy.org/#!/energy-index
https://trilemma.worldenergy.org/#!/energy-index
https://trilemma.worldenergy.org/#!/energy-index
https://trilemma.worldenergy.org/#!/energy-index
https://trilemma.worldenergy.org/#!/energy-index
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Table 2 Stability analysis (results of LM test) 

Country Test result (Breusch-Godfrey serial correlation LM test) CUSUM test 

India F-statistic 44.13297 Prob. F (2,4) 0.0951 Stable 
Obs*R-squared 17.60118 Prob. Chi-Square(2) 0.0876 

China F-statistic 38.37184 Prob. F (2,4) 0.0697 Stable 
Obs*R-squared 20.91013 Prob. Chi-Square(2) 0.0671 

(CM) (tCO2/capita, 2021), CO2 emissions from fuel combustion per total electricity 
output (CME) (Mt CO2/TWh, 2019) and renewable energy share in total final energy 
consumption (%, 2019) (RE). In general, the ARDL restricted error correction 
model (RECM) is shown below. We have taken an unrestricted ARDL model with 
no trends with 2 lags and estimate the following equation: 

For India 
Estimated equation: 

. 

d (SDGI (−2)) = c + α0 d (ECOGR (−1)) + α1 d (ECOGR (−2))

+β0 d (CFT (−1)) + β1 d (CFT (−2)) + δ0 d (CM (−1))

+δ1 d (CM (−2)) γ 0 d (CME (−1)) + γ 1 d (CME (−2)) + μ0 d (RE (−1))

+μ1 d (RE (−2)) + θ0 (ECOGR (−1)) + θ1 (CFT (−1))

+θ2 (CM (−1)) + θ3 (CME (−1)) + θ4 (RE (−1))

For China 
Estimated equation: 

. 

d (SDGI (−2)) = c + α0 d (ECOGR (−1)) + β0 d (CFT (−1))

+β1 d (CFT (−2)) + δ0 d (CM (−1)) + δ1 d (CM (−2)) γ 0 d (CME (−1))

+μ0 d (RE (−1)) + μ1 d (RE (−2)) + θ0 (ECOGR (−1))

+θ1 (CFT (−1)) + θ2 (CM (−1)) + θ3 (CME (−1)) + θ4 (RE (−1))

The details of the results of these estimations are added in the appendix section 
(Section-A). 

Then we check Residual Diagnostics (Serial correlation) using LM Test. Then 
stability analysis check is being performed using CUSUMTest (Table 2), and finally, 
in order to find whether there exists a long run association between the variables. 

Wald test is performed. For checking short run relationship, we have incorporated 
the error term [ECT (−1)] from our basic long run model and again estimated our 
model with 2 lags. The error term indicates the speed of adjustment towards long 
run equilibrium. Again, serial correlation is tested for short run model using LM 
test. Then long run causality is checked for each of the five independent variables—
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ECOGR, CFT, CM, CME and RE using Wald test. This has been done separately 
for the two countries, India and China. 

7.2 Checking Long Run Association Between Variables 

Here our objective is to determine whether there exists any long run association 
between SDGI, ECOGR, CFT, CM, CME and RE. This has been tested through 
Wald test (Table 3). F test is used to determine whether the long run relationship 
exists between the variables through testing the significance of the lagged levels 
of the variables. When the long run relationship exists, the F test will show which 
variable should be normalized. The null hypothesis of no co-integration amongst the 
variables in estimated equation, i.e., coefficients of SDGI (-1), ECOGR (-1), CFT 
(-1), CM (-1), CME (-1) and RE (-1) are all zeros. 

We discover a very interesting difference in the long run association between 
the variables in the two countries. In case of India there is no long run association 
between the independent variables, i.e. ECOGR, CFT, CM, CME, RE and the 
dependent variable SDGI, but in case of China the long run association exists. So, 
the ETI does have a significant long run impact on SDGI in China, but not in case 
of India and this probably explains why China has so rapidly improved its SDGI 
rank to move to the 66th position while India is still lagging behind in the 112th 

Table 3 Long run association between variable (Wald test) 

Country Test result for Wald test Interpretation 

India Test statistic Value df Probability F-Stat 
0.304482 < lower  
Bound 3.79. 
SDGI, ECOGR, 
CFT, CM, CME 
and RE has no 
long run 
association 

F-statistic 0.304482 (5, 2) 0.8772 
Chi-square 1.522412 5 0.9105 
Null Hypothesis: C(12) = C(13) = C(14) = C(15) = C(16) = 0

China Test statistic Value df Probability F-Stat 
14.58679 > upper 
Bound 4.85. 
SDGI, ECOGR, 
CFT, CM, CME 
and RE has long 
run association 

F-statistic 14.58679 (4, 4) 0.0118 
Chi-square 58.34715 4 0.0000 
Null Hypothesis: C(11) = C(12) = C(13) = C(14) = 0
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position. So, India is unable to convert the short run association to a long run one 
which actually China was able to do. 

7.3 Modified Model after Incorporating the Error Term 

For India 

. 

d (SDGI (−2)) = c + α0 d (ECOGR (−1)) + α1 d (ECOGR (−2))

+β0 d (CFT (−1)) + β1 d (CFT (−2)) + δ0 d (CM (−1))

+δ1 d (CM (−2)) γ 0 d (CME (−1)) + γ 1 d (CME (−2))

+μ0 d (RE (−1)) + μ1 d (RE (−2)) + θ0 (ECT (−1))

For China 

. 

d (SDGI (−2)) = c + α0 d (ECOGR (−1)) + β0 d (CFT (−1))

+β1 d (CFT (−2)) + δ0 d (CM (−1)) + δ1 d (CM (−2)) γ 0 d (CME (−1))

+μ0 d (RE (−1)) + μ1 d (RE (−2)) + θ0 (ECT (−1))

The details of the regression results after incorporating the error term are shown 
in appendix, Section B. This shows that ECT (−1) is negative and statistically 
significant and the speed of adjustment towards long run equilibrium is 72.64 
percent and 70.42 percent for India and China, respectively. 

. 

7.4 Short Run Association Between Variables 

In the short run we have incorporated the error term ECT (−1) as one independent 
variable and again checked for serial correlation using LM test. Here, from LM test 
we have found that there is no serial correlation and the CUSUM test is also stable. 

Finally, Wald test has been applied to check whether there exists short run 
causality. The test finds that in case of India there exists short run causality from 
CFT and CM to SDGI, but in case of China the short run causality only exists from 
CFT to SDGI and not for other independent variables.
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Table 4 Results of pairwise Granger causality test 

India Null hypothesis: F-statistic Probability. Granger causality test result 

ECOGR does not Granger Cause SDGI 2.68441 0.1031 > 0.05 Accept null; no causality 

SDGI does not Granger Cause ECOGR 4.58768 0.0294 < 0.05 Reject null; causality exists 

CFT does not Granger Cause SDGI 6.46662 0.0103 < 0.05 Reject null; causality exists 

SDGI does not Granger Cause CFT 0.18536 0.8328 > 0.05 Accept null; no causality 

CM does not Granger Cause SDGI 3.83632 0.0469 < 0.05 Reject null; causality exists 

SDGI does not Granger Cause CM 11.7302 0.0010 < 0.05 Reject null; causality exists 

CME does not Granger Cause SDGI 2.72547 0.1027 > 0.05 Accept null; no causality 

SDGI does not Granger Cause CME 6.00564 0.0142 < 0.05 Reject null; causality exists 

RE does not Granger Cause SDGI 0.90833 0.4273 > 0.05 Accept null; no causality 

SDGI does not Granger Cause RE 3.30217 0.0692 > 0.05 Accept null; no causality 

China Null hypothesis: F-statistic Probability Granger causality test result 

ECOGR does not Granger Cause SDGI 3.04115 0.0800 > 0.05 Accept null; no causality 

SDGI does not Granger Cause ECOGR 3.78708 0.0485 < 0.05 Reject null; causality exists 

CFT does not Granger Cause SDGI 4.33524 0.0343 < 0.05 Reject null; causality exists 

SDGI does not Granger Cause CFT 3.04940 0.0796 > 0.05 Accept null; no causality 

CM does not Granger Cause SDGI 2.95392 0.0851 > 0.05 Accept null; no causality 

SDGI does not Granger Cause CM 0.91583 0.4229 > 0.05 Accept null; no causality 

CME does not Granger Cause SDGI 0.31494 0.7352 > 0.05 Accept null; no causality 

SDGI does not Granger Cause CME 3.58234 0.0576 > 0.05 Accept null; no causality 

RE does not Granger Cause SDGI 2.12346 0.1592 > 0.05 Accept null; no causality 

SDGI does not Granger Cause RE 4.84394 0.0268 > 0.05 Reject null; causality exists 

7.5 Pairwise Granger Causality Test 

Now we want to see the short run causality between the dependent and independent 
variables in terms of pairwise Granger causality test. The results of this test are 
summarized below in Table 4. 

The results of the pairwise Granger causality (Table 4) show that for India there 
are uni-directional causality running from SDGI to ECOGR, CFT to SDGI and 
SDGI to CME and bi-directional causality between CMI and SDGI. But for China 
there is only uni-directional causality running from SDGI to ECOGR, CFT to SDGI 
and SDGI to REC. 

8 Policy Implications and Conclusion 

The whole world is passing through a critical juncture of time. In the last two 
decades it has been hit hard by the two crises—the global financial crisis and the 
Covid 19 crisis. After that the revival process again received a setback due to the 
Ukraine war. It caused severe disruption in movements of goods and energy. This 
caused energy prices to shoot up steadily and pushed the inflation rate to rise faster.
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But the transition of the globe from the use of fossil fuel to de-carbonized cleaner 
energy requires not only a shift in technology, infrastructure, skill development, but 
also involves a transformation of the occupational labour force and society. It may 
lead to financial loss of existing fossil fuel-rich nations as their resource base will 
not be further utilized for energy consumption as well as financing the government 
expenditure. So, transition to a zero-carbon state is a long-term affair involving 
decisions on various segments of the economy as well as geopolitical events shaping 
the global scenario. 
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