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FOREWORD 

When I first started working with Phil, I held the one-dimensional impression 

of architecture that he mentions early in the book: architecture as a 

discipline that translates desire and capital into occupiable space. Although 
truthful and concise, this formulation makes it disturbingly easy for computer 

scientists like me to view architects as people who mechanically execute a 

semi-formal translation function. It took several Zoom-mediated and whiskey-
lubricated discussions of architecture and AI for Phil and his patient colleagues to 
gently disabuse me of this blinkered and reductionist view. 

The change in my own conception of architecture is not unlike the recent and 

dramatic evolution of AI, which is why this book is so timely for both of our 

professions. In the last decade, AI has rapidly advanced from meticulously 
authored rule systems to the staggeringly complex world of deep learning 
networks and self-supervised methods. Instead of relying on collections of 
intricate rules manually programmed for specific tasks, modern machine learning 

systems now base their outputs on impenetrably complex patterns that result 
from automatically analysing massive data sets. AI-generated design, which was 
once mostly an academic exercise in combining rules in different ways, can now 

produce creations that are far more subtle and compelling. 

The need to reflect on architecture in the age of AI is therefore much more 

acute than it was even five years ago. Although machine learning will not make 

professional architects obsolete, neither will it have zero impact. The combination 
of Phil’s deep knowledge of the architectural profession and substantial AI chops 

allows him to investigate the space between these two extremes and explore 
how modern AI can affect the intricate information structures that underlie 

the delivery of a constructed building. Phil also grapples with the elephant in 
the room: can AI ever adequately comprehend the deeply human context of 
places, replicate the architect’s unique blend of formalism and creativity, and be 

responsible for the safety and fitness of a building? To address this, Phil’s analysis 

goes beyond the usual reductionist critique and considers how modern AI could 

not only make the overall value chain of architecture faster or more efficient, 
but also result in a stronger architectural profession overall. I find this book 

tremendously thought-provoking, and I hope you do as well. 

Mark Greaves, Mercer Island, WA 
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INTRODUCTION TO THE FIRST EDITION 

Almost half a century ago I was an undergraduate-aspiring-architect 
studying at a school where the design studio was reserved for the elders 

while the rest of us fulfilled our general requirements. An early interest 
in computers had led me to a lower-level course called ‘Introduction to 
Computer Graphics’, where, according to the syllabus, we were to spend the 
first three drab weeks programming oscilloscopes to draw circles; exercises in 
early computer-aided design (CAD) on the first graphic displays – which were, 
of course, about 6 in wide, as seen in Figure 0.1. 

Deciding that slog was not for me, I stumbled upon an exotic class in the 
same department called ‘Natural Language Processing’, where, apparently, 
we were going to teach computers to understand English. Our avuncular – if 
prickly – professor, Roger Schank, explained that he had uncovered one of 
the fundamental aspects of human existence by discovering the structure of 
language understanding encoded within the mind. Our job was to translate 
that theory into computer code. Of course, we were doing so on a 16-bit 
predecessor of the IBM PC called a PDP-11/45, with a whopping 256 kilobytes 
of main memory. One afternoon, in the computer lab, with ten or more of us 
working on the system, it burst into flames.1 

0.1: 
A CATHODE RAY 
OSCILLOSCOPE, 
C. 1996, NOT 
MUCH CHANGED 
FROM ITS 1975 
PREDECESSOR 
(COURTESY 
OF MAKEHAVEN 
INC.) ⏎ 
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vii INTRODUCTION TO THE FIRST EDITION 

0.2: 
AN EARLIER 
VERSION OF 
THE PDP-11 
COMPUTER, 
NOT ON FIRE2 

My project for the semester was to write a program that would accept input 
from what was then called a ‘newswire’ – a text streaming service derived from 
teletype that delivered news from national sources – about the particular topic 
of oil tanker crashes and resulting spills, and then answer simple questions 
about the same. Our solutions essentially ‘hard-coded’ the extraction of 
meaning from English sentences and built semantic structures from which 
the machine could perform what we thought was inferential reasoning, all 
based on the thesis that we were digitising the thought processes also used by 
humans. My solution, while adequate, was no early version of Google. It also 
became clear by the end of the term that my days in the computer science 
department were numbered, as the professor correctly observed that my 
particular solution could not differentiate between a tanker accident and a car 
crash. I beat a rapid retreat to the entirely analogue architecture curriculum 
the next semester. 
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Like my early academic experience, architects have always had an ambivalent 
relationship with computation. In the early days of computer-aided design, 
we worried that the ancient art of drawing would be lost.3 As the industry 
transitioned in the 2010s to 3D digital representation, and particularly building 
information modelling (BIM), anxieties increased that tools would diminish 
the designer’s authorial agency when digital building components became 
standardised and dispensed with ease into our designs by increasingly 
powerful tools. Now that computation has become ubiquitous and machines 
are learning to perform knowledge work through artificial intelligence, the 
profession believes itself once again under threat. While the University of 
Oxford’s Richard and Daniel Susskind, exploring the implications of artificial 
intelligence on the work of professionals, have suggested that ‘we will neither 
need nor want professionals to work in the way that they did in the twentieth 
century and before’,4 there is very little computational intelligence impinging 
on the practice of architecture today. Yet we worry. Are we headed to a world 
where computers largely replace architects altogether? Surely there are 
reasons that this will not be the case? 

Here is one example. When computers design buildings, the public will lose 
out. Why? Because when an architect imagines a building, it is from its base 
upwards. What you see is an imagined image of what is being created from 
bottom to top. A real building shows us a holistic structure that starts from the 
very foundations and works all the way to the top, from foundation to roof, and so 
on. If we do not know the foundations of the building, we do not know what we are 
being sold, and we will not understand what we are looking at. The bottom line is 
that there is little or no aesthetic value in a building that has no soul, and so the 
negative view of digital architecture is not justified. 

Why? Because when architect imagines a building, it is from its base upwards. 
What you see is an imagined image of what is being created from bottom to top. 
A real building shows us a holistic structure that starts from the very foundations 
and works all the way to the top, from roof to foundation and so on. If we don’t 
know the foundations of the building, we don’t know what we’re being sold, and 
we won’t understand what we’re looking at. The bottom line is that there is little or 
no aesthetic value in a building that has no soul and so the negative view of digital 
architecture is not justified. 

I see two reasons why digital architecture is lacking aesthetics. First, it is solely 
a technical process. If you try to make the process of creating a building into 
something beautiful, a lot of work will go into that, and you won’t save much in 
time. And second, digital architecture uses software as the sole element in the 
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ix INTRODUCTION TO THE FIRST EDITION 

building process, which we know is unreliable. Software is so far from being easy 
to understand, we wouldn’t even recognise it as software. We can’t see a word of 
the message it’s trying to send. So, it’s not easy to tell from looking at a building 
whether it was designed by a computer or not. The work of design is not something 
we can simply throw into the computer and have it turn out like a BMW. 

Digital architects try to make the process of creating buildings into something 
beautiful, but ultimately they don’t deliver. There are other issues with digital 
architecture. To make the building more “real”, you need software to manipulate 
the material the building will be made from. In the past, materials were never 
digitally designed, so when a digital architect took the material out of a computer, 
the software had no idea how to work with it, and the result was a “coffin” with 
“free” space at the base. Digital architecture only takes you to the model first, and 
once it’s built, it will only keep it in the model, and create something completely 
different with it. Digital architecture can give you better clarity, but at the cost of 
aesthetic. It has never produced anything that looks like a real building. 

Here’s hoping, dear reader, that you’re still with me after that brief italicised 
diversion, which was generated entirely (and unedited by me) with a 
technology called GPT-3, the third generation of what is called a Generative 
Pre-Trained Transformer, an artificial intelligence (AI) system that conjures 
original text in response to a prompt, which in this case was ‘(w)hen 
computers design buildings, the public will lose out’.5 GPT-3 is my oil tanker 
program run in reverse – instead of merely absorbing a narrative to somehow 
understand, it creates one. It runs on computers orders of magnitude more 
powerful that were programmed by much more talented people. 

The sample output above has an uncanny similarity to coherent English, the 
broad framework of an ‘original’ argument and even cites concrete examples. 
It has the maddening quality of bare intelligibility, as the more you think you 

understand it, the more obscure it becomes. GPT-3 technology is the current 
generation of machine intelligence that ‘learns’ language by ingesting huge 
amounts of text from the internet and ‘teaches’ itself underlying semantic 
structures. This is the same strategy that the mostly reliable Google Translate 

uses to translate a web page from English to Spanish, but greatly accelerated 
by rapidly advancing machine learning (ML). Yet both my early effort and that 
of GPT-3, above, lack real coherence, and the more time spent reading the 

text above, the less sense it seems to make. GPT-3 is certainly a more efficient 
approach than mine of 1976, but without the sweeping philosophical assertions. 
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Yet, the possibilities here are intriguing. Could a computer design an entire 
building well? The computer scientist, Mark Greaves, who contributed the 
Foreword to this book, describes the advances in natural language generation 
with tools like GPT-3 as having ‘fluency and expressivity’: 

>> Using modern ML techniques, machines are starting to successfully 

perform creative, original tasks in domains like language that were 

once uniquely the realm of humans. There have certainly been limited 

achievements based on more traditional AI which have been called 

‘creative’, such as the famous ‘hand of God’ move played by Deep Blue 

in its chess match against Garry Kasparov. But these are quite rare… 

These systems seem to exhibit a level of creativity and expressiveness 

and linguistic artistry that machines hadn’t reached in the past. And, 
in the realm of game playing, ML-based AlphaGo has shown real 
creativity as well.6 << 

Creativity and coherence do not equate with competence, however, and 
therein lies at least part of the answer to the question that this book will 
explore. To wit, how should the profession of architecture consider and 
respond to futures made possible by advances in artificial intelligence, the 
so-called ‘Second Machine Age’?7 Having moved deliberately, if reluctantly, 
through the eras of both CAD and BIM, can we propose a willful, designed 
route – a professional strategy – that acknowledges the inevitability of 
a preponderance of intelligent machines in every dimension of design, 
construction and built asset operation while maintaining a proper role for 
human architects? 

This is not a new question, at least as far as the relationship of machine 
intelligence and its implication for Design with a capital D is concerned – 
always the first place that architectural theory visits when struggling with a 
big problem.8 Unexamined, however, are the implications for the practice, 
rather than the result, of architecture. If designers solve, as described by Peter 
Rowe (quoting Horst Rittel) ‘wicked problems’,9 with open-ended beginnings 
and no fixed conclusion, competent practice requires heuristics across a 
broad spectrum of technical and aesthetic issues. This would seem to be 
a strategy that is exclusively human. However, computers are increasingly 
able, empowered by machine learning, to learn these techniques, and when 
they do so, professional strategies and methods – and the value of designers 
themselves – will be inalterably transfigured. 
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xi INTRODUCTION TO THE FIRST EDITION 

For the practice of architecture, the implications of this change are nascent. 
Machine learning algorithms are evaluating mortgage applications, reading 
routine X-rays, inventing never-before-seen strategies for playing board 
games, and even getting dangerously close to composing coherent ideas. 
However, AI-based approaches to the design generation are only now 
becoming apparent and none are commercially viable. As Daniel Susskind 
predicts in his second book, computers are increasingly becoming capable 
of tasks, as opposed to entire jobs.10 Across the spectrum of services that 
architects provide, there are ample opportunities for the automation of tasks. 
Does that mean architectural work will be replaced, or by contrast augmented, 
by capable computers? Rather than wrestle with the larger question of 
whether we are to be wholly replaced by machines, perhaps a more intelligent 
route can be found where computers assist in the critical, but more mundane, 
aspects of practice: those that drive project delivery, technical precision and 
performative predictability. 

At this juncture, the architecture profession itself is not under existential 
threat, but neither has it developed a strategy for the inevitable advent of 
learning machines. That strategy should have an expanded remit beyond our 
usual worries about our agency as designers and look more broadly at how 
powerful computation may affect our roles in the formulation, conception, 
delivery and use of buildings, and thereby the essential value of the profession 
of architecture itself. To that end, this text will examine three aspects of 
practice in the upcoming age of computer intelligence that in combination give 
us a view towards our fate: 

1. How the processes and methods of practice may change. 

2. What those changes will mean for our relationships to the systems of 
delivery in the built environment. 

3. What opportunities there may be to refactor and improve the results of 
our efforts. 

In concert it will attempt to propose a strategy for the profession going 
forward into the age of machine intelligence. 
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INTRODUCTION 

A clear danger of writing a book about the disciplinary implications of 
artificial intelligence is a short shelf life: as the galleys arrive at the printing 
house, the thinking behind the text may already be obsolete. And surely 
there has been enormous energy invested in the architecture | engineering | 
construction | operations (AECO) technology space since the first edition of 
this book was finished in late 2021, and particularly in the market for AI-based 
applications.1 A central thesis of the first edition was that AECO AI solutions 

faced considerable challenges of representation, training, precision, know-
how, and risk and reward of their use. Four years later, as this second edition 
goes to press, many of these barriers remain. 

This is not to say that there has not been considerable progress in the 
underlying technology, particularly in widely used language and image 
generation models. Consider first this 2025 response to the text provocation 
‘when computers design buildings, the public will lose out’, first given to 
ChatGPT-3 (see the Introduction to the first edition) and now to ChatGPT-4o:2 

The idea that "when computers design buildings, the public will lose out" 
assumes that computational design replaces human architects rather 
than augmenting their capabilities. However, this view overlooks the 
potential benefits of computer-aided design in architecture. 

1. Computers Enhance, Not Replace Human Creativity 
Computational tools allow architects to explore more innovative, 
efficient, and sustainable designs. Algorithms can generate optimized 
structures based on environmental factors, energy efficiency, and 
material sustainability, but human designers still provide the vision, 
context, and cultural sensitivity. 

2. Greater Accessibility and Customization 
Parametric and AI-driven design can create more personalized and 
adaptable spaces, making architecture more responsive to the needs 
of individuals and communities rather than less. 
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3.	 Efficiency and Sustainability 

Computational design can reduce waste, improve energy efficiency, 
and optimize structures for climate resilience. Rather than the 
public losing out, these advancements can lead to better, more cost-
effective, and environmentally friendly buildings. 

4. Risk of Homogenization? 
A valid concern is that an over-reliance on algorithmic design could 
lead to uniformity or a loss of cultural identity. However, this depends 
on how technology is applied. If architects continue to lead the 
process, computers will serve as tools to enhance rather than dictate 
design outcomes. 

In summary, the real issue is not whether computers should design 
buildings, but how they are used. If controlled by human architects with 
an emphasis on creativity, ethics, and public interest, computational 
design can be a powerful force for good rather than a detriment.3 

Alas, a far cry from 2021’s jumbled suggestion that ‘digital architecture’ is 
unreliable, and ‘[s]o, it’s not easy to tell from looking at a building whether it 
was designed by a computer or not. The work of design is not something we 
can simply throw into the computer and have it turn out like a BMW.’ OpenAI 
has clearly tokenised a lot of material from the internet, dramatically improved 
the tool’s semantic skills and argument building, and, to some extent, drunk its 
own marketing Kool-Aid about the power of AI. 

Figure 1.3.2 in the first edition is an early example of an AI image created 
with the prompt ‘a building in a city’. Figure 0.3 overleaf suggests that today’s 
generators are clearly far more adept and even provides a cheery description 
of its handiwork: ‘Here is an image of a modern high-rise building in a bustling 
cityscape, featuring sleek glass windows, vibrant city lights, and a futuristic 
architectural design. Let me know if you’d like any modifications!’4 

Of course, if the desired modifications were ’make this building less expensive’ 
– or even ‘make sense of that extraordinary, cantilevered opening at the top’ 
– then the algorithm might be less cooperative, or at least less apparently 
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0.3: 
DALL-E’S 
CURRENT 
‘UNDERSTANDING’ 
OF URBAN 
ARCHITECTURE 

competent. That’s because while words can create a reasonable facsimile of 
ideas and pixels, a seemingly precise picture of the three-dimensional world, 
a deep understanding of both, particularly in the complex, abstracted, multi-
disciplinary realm of the built environment, still can’t been accomplished by 
memorising billions of tokenised words about, and pictures of, buildings. 

In 2024, our university convened a faculty committee to advise our Provost 
on a possible strategy for the implementation of AI on campus. 5 During 
our investigations, each unit – from the Law School through the Philosophy 
Department to the Facilities Group – presented their current thinking about 
the implications of AI for their work and operations. The philosophers 
explored the ethical implications of autonomous algorithms; the Divinity 

⏎ 
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xv INTRODUCTION 

School wondered how we might properly treat AIs should they reach levels of 
human consciousness; the Law School was training platforms on both case 
and administrative law. And while Computer Science showed provocative 
research in AI fundamentals, the Schools of Medicine and Public Health 
were the stars of the show, presenting more than fifty projects that took 
advantage of clearly defined research questions, gigantic and well-curated 
data sets, and plenty of grant funding to provide the necessary human and 
computational resources. I moved to the other side of the conference table 
to present our early work at the School of Architecture, which comprised 
early experimentation in what we could leverage – unsurprisingly – from 
commercially-available text and image foundations models in the classroom 
and studio along with our preliminary theoretical assertions about both. 

But four years after this book’s 2021 attempts to frame the challenges to 
getting to truly useful AI in AECO, where are our ‘Med School’-worthy projects? 
There is significant activity in AI-related tech investment, and many larger 
AECO firms are energetically exploring AI’s possibilities using AI’s own talents 
and datasets. A major US-based construction company experimenting 
heavily with AI is using its massive database of responses to RFIs (Requests 
for Information), which in the United States is the formal term for an inquiry 
made by a builder to the design team when they have a question – justified or 
not – about the construction documents from which they are trying to bid or 
build, to correlate characteristics of the requests with related problems during 
the execution of the project, particularly cost overruns.6 Provocative indeed, 
but hardly the autonomous construction of a building by AI-driven robots, or 
even the generation of a complete and reliable cost estimate by an algorithm 
reading a building information model. 

Levels of existential angst, at least amongst the AECO professionals I speak to, 
remains high, and young architects in particular wonder if there will be jobs for 
them in the future. I’m not so concerned about these worries, at least in the 
near term. In a recent presentation to a room of 200 construction attorneys, 
I asked for a show of hands by any lawyer in the room aware of their clients 
– there were probably 1,000 or more such design, construction and owner 
firms represented by these folks – who were doing actual billable work (not 
marketing or experimentation) with AI. Two hands went up. My teaching 
colleagues and I recently tried to find a small architecture firm doing anything 
substantive with AI – including the design firm owned by one of us – and failed 
miserably, despite the recent report by the American Institute of Architects 
that 8% of small firms were using AI for ‘daily work’. That same report lists such 
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activities as ‘image prompts, photo editing, embedded in CAD software (e.g., 

7

rely mostly on commercial platforms for words and images, with a few 

that we are still some years away from profoundly useful and transformative 
implementation of AI-based technology, because the necessary capabilities 

0.4: 
EVOLUTION 
OF SYSTEMS, 
CAPABILITIES capabilities of various tools are organised from left to right, starting with 
AND GAPS
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CAD through today’s AI platforms, and eventually beyond the capabilities 
of humans when we reach the putative holy grail of AGI, Artificial General 
Intelligence, where computers can do even more than the most capable 
human architect. 

Manual drawing appears first as Drawing where data is entirely graphical, 
followed by computerised representational platforms like CAD and BIM, which 
digitise the process of drawing. By 2020, a variety of foundational platform 
generators became widely available, introducing the general public to the 
ideas of generative AI. As those platforms matured, end-users began creating 
their own platform implementations using those same tools with their 
own data. At the same time, a variety of incumbent technology companies 
and other upstarts are creating bespoke, more sophisticated innovator 
tools, biting off discrete parts of the AECO process. Beyond a specific 
Architecture|Engineering|Construction|Operation platform foundation 
model (described below) is you, a human architect, and, eventually, the holy 
grail that is Artificial General Intelligence. 

Digital technology makes its appearance in this construct in the second 
column, with CAD and BIM, where algorithms are used essentially for drawing 
representation, and moves next to commercial foundation models like 
ChatGPT or DALL-E, and then to customised instantiations of those platforms 
built by firms with their own, more extensive training sets. The activity on 
the above-mentioned AI in AEC website, as well as the interesting work by 
my colleagues, in our School of Medicine, fall in the next category. The goal 
for the building industry, however, is to get to what I only half-jokingly call 
the ‘GAECO’ platform – for a ‘General Architecture, Engineering, Construction 
and Operation’ system that is founded upon a representational schema 
for the built environment and that can reason about the complex systemic 
interactions, relationships, decisions and processes that comprise a building 
project throughout its lifetime. Currently, the system we have for doing 
such things is called ‘a human’. And should the technology ever get to AGI, 
special purpose AIs won’t be needed. Right now, however, and despite the 
protestations by today’s tech oligarchs, that’s nowhere near to fruition.8 

Gaps in capabilities in this progression of technologies follow a similar arc. 
Current large language models (LLMs) are limited by the inherent logic 
extractable from statistical correlations of tokenised data. Those same models 
can only be extended by further training in specific contexts, but they struggle 
with simple data structures like images, tables or even the logical structure 
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of cross-referenced text. Complex reasoning and inferential logic are implied 
but unreliable. The explosion of domain/task-specific tools is an opportunity, 
however, to move in the direction of my GAECO platform, as capabilities 
are developed in constrained contexts. But several deep challenges remain 
before we cross that final finish line to tools that are truly useful to the 
building industry. 

Our putative next-generation AI-based platform must be built on three key 
capabilities, in my view. First, what has become known as distillation – the 
ability of one AI to absorb the knowledge and data from another system – 
will leverage the capabilities of emergent speciality systems.9 In that future, 
the insights gleaned from RFI training data will affect the computationally 
generated cost estimate prepared by a contractor working on this platform. 
Second, it seems highly unlikely that memorising every disparate piece 
of digital data about the built world will yield satisfactory insight, and so 
logic (also known in AI circles as neuro-symbolic logic) must become part 
of AI infrastructure, particularly because project process relies so heavily 
on inferential reasoning and an understanding of temporality (which 
today’s systems completely lack). Whereas today’s AI platforms depend on 
sophisticated statistical correlations, neuro-symbolic logic means adding not 
just the data about the world, but the rules by which it operates. 

Finally, and perhaps most important, there is the question of representation. 
Words, pixels, even certain types of medical data are consistent, easily curated 
and well-structured training data for an AI, and despite the advent of digital 
modelling and other modern tools, AECO has no similar counterpart, even in 
BIM. Early experiments in computer vision to train AIs to read drawings are 
interesting, but the putative consistency of drawings belies enormous levels of 
abstraction, personal preference and implied complexity and likely will lead to 
limited results. Therefore it’s still very hard to be an architect or builder, and 
even harder for an algorithm to do that job, and will remain so until the tools 
and their underlying technologies dramatically improve. 

In a recent historical exposition of architectural practice, George Johnston asks 
‘who is the architect?’ as he examines the ambiguous and evolving relationship 
of design activity and construction execution, and frames the question as 
one of ‘mediated agency and collective intelligence’.10  Johnston suggests 
that there has never been one fixed definition of the architect, particularly 
as the building enterprise has become increasingly fraught, complex and 
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demanding of the people who design and build. The role of the architect 
continues to evolve and will do so as AI enters the fray and likely changes 
both the location and deployment of the necessary collective intelligence and, 
with them, our constantly remediated agency. These questions continue to 
underpin how architects should consider and, if possible, direct the evolution 
of artificial intelligence. 

Phil Bernstein 
April 2025 
New Haven, Connecticut 
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Understanding the implications 
of a disruptive tool like artificial 
intelligence means exploring 
the relationship between the 
enabling technology, the agency 
of architects in deploying that 
tool towards new ends, how 
that agency might change the 
architect's role in the systems 
of project delivery, and 
finally how the value of the 
architect's services might change 
accordingly. Each of the following 
chapters is a different take on the 
combination of these questions. 
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>> COMPUTERS HAVE BEEN DEPLOYED OVER 
THE LAST TWO DECADES LARGELY IN THE 
SERVICE OF MORE EFFICIENT DEPICTION AND 
REPRESENTATION. ARTIFICIAL INTELLIGENCE 
SHIFTS THE FOCUS FROM REPRESENTING A 
DESIGN TO REASONING ABOUT IT DIGITALLY 
– IN SOME CASES WITHOUT THE NEED FOR 
A HUMAN OPERATOR OR EVEN MUCH HUMAN 
INTERVENTION. WHAT DOES THIS MEAN 
FOR THE EVOLUTION OF THE INSTRUMENTS 
AVAILABLE TO MAKE ARCHITECTURE? << 
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TAXONOMY OF TECHNOLOGIES 
Various scholars have written the history of technology in the architecture 

profession and it is beyond the remit of this project to reprise that history in detail 
here.1 It is possible, however, to see that history organised along two axes: the 
progression of technologies that comprise the toolkits of architecture, and the 

taxonomy of uses these tools support. Artificial intelligence – defined broadly as 

the ability to perform complex cognitive tasks in ways that produce results akin to 

the human mind – is an enabler of the various tools described in this taxonomy. 

On the first axis, a vast simplification of the history of technologies in 
our discipline could start as far back as 2150 BC, with a statue of the 
Mesopotamian ruler, Gudea, that depicts a drawing of an architectural plan 
sitting on his lap,2 marking the putatively first evidence of analogue drawing 
of a design. For at least the next 42 centuries architects abstracted their ideas 
by depicting design, explicitly or implicitly at scale, on pieces of paper. Mario 
Carpo maps this process in digital terms by suggesting that drawings and 
allographic notations, as vectors of design information, are actually a way of 
processing data with the very limited ‘central processing unit (CPU) cycles’ 
made available by manual graphics.3 With minimal expenditure of energy – 
the act of drawing two parallel lines on a piece of paper – the architect could 
imply the construction of a three-dimensional, tectonic, materialised wall in 
the actualised building, and memorialise that rich idea for reference by the 
entire enterprise responsible for making it. 

1.1.1: GUDEA, 
WITH A PLAN 
DRAWING IN 
HIS LAP, C. 
2150 BC4 
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COMPUTER-AIDED DESIGN 
In the penultimate decade of the 20th century, architects moved in earnest 
into their first foray of digital, computer-aided design (CAD, sometimes 
referred to as computer-aided drafting), whereby the mechanical process of 
inscribing lines, arcs and circles on paper was replaced by creating those same 
lines on to a virtual plane by inputting digital lines. While the vast investment 
in computers and plotters made this transition feel monumental, it was in fact 
more of a translation of existing techniques of drafting into virtual form, the 
object of which was still the production of drawings – but more precise. The 
evolution of technologies of large-scale printing devices (like plotters) moved 
in parallel with the electronic drafting tools (like AutoCAD©). 

The move to computerised drawing, while ushering in an era of curvier 
buildings that were suddenly easier to draw – and to a lesser extent also 
easier to build – by virtue of the more precise geometry afforded by CAD, 
did little to address the informational gap between the definition of a 
design, its intent by the architect and the builder’s ultimate responsibility 
for its construction, a divide defined in the Renaissance by Alberti in De 
re aedificatoria.5 According to Carpo, Alberti set out the proposition that 
architects draw and builders follow those drawings without deviation. CAD 
gave architects an opportunity to draw faster, with more graphic consistency, 
and even reuse certain representations (like AutoCAD© blocks) across multiple 
sheets of a drawing set or even multiple projects. Yet, despite the added 
informational power of this data, the quality of work itself did not improve: 

>> In short, the ontological gap between design intentions, their 

notation through construction drawings, and their material 
implementation leaves an inevitable grey area of undecidability, 
argument, frustration, litigation, and liability where all kinds of ad-
hoc personal interventions, approximations, improvisation, bullying, 
persuasion, implorations, machinations, and subterfuge take the place 

of construction drawings and specifications, and haggling becomes the 

design instrument of choice.6 << 

Into this gap, 20 or so years later, came the next leap in representational 
technologies: building information modelling (BIM). In theory, BIM 
represented a flip of the traditional allographic strategy for architects: a 3D 
representation of the building was constructed in virtual digital space, from 
which those venerable drawings would be extracted as ‘reports’. Gudea’s floor 
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5 1.1 TOOLS AND TECHNOLOGIES 

plan, rather than representing the diagram of a design that otherwise lived 
in his head, would now be an extraction from full-scale digital replica living 
in computer memory – just another view of the relevant data. Every member 
of the design-to-build team could, in theory, add information to that model 
to complete their respective work. In practice, however, incompatibilities in 
process and outcome, the adversarial nature of building and the centuries-old 
allure of drawings have made BIM a tool used largely for production of even 
better working drawings than CAD. Its epistemological value as an organising 
principle for the informatics of building is almost completely ignored. 

The last 10 years have seen explosive digitisation of many aspects of modern 
life, and design and construction have been no exception. Powered by the 
ubiquitous availability of the massive storage and CPU power of the cloud, 
and the ability to deliver those capabilities virtually anywhere through the 
internet, the architecture/engineering/construction/operation (AECO) industry 
is adopting a variety of computational tools, if peripatetically. 

Designers have an array of 

» modelling 

» rendering 

» data management 

» analytical platforms. 

1.1.2: AN 
EARLY CAD 
DRAWING 
BY CESAR 

PELLI & 
ASSOCIATES 
ARCHIITECTS 
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Builders, armed with digital tablets on the project site: 

»	 rely on digital versions of what used to be the exclusive domain of paper 

»	 use data tools to manage the array of administrative transactions that 
comprise the construction process, deploy drones and LiDAR (Light 
Detection and Ranging) to document construction progress. 

Building owners: 

» demand digital documentation of completed projects in lieu of rolls of 
post-construction drawings 

» assemble data from sensor networks in their building control systems 
to optimise building performance. 

THE DIGITAL INTERSTICE 
All told, the AECO industry seems to have entered a ‘computational 
interregnum’ of sorts, where various processes across the delivery continuum 
are becoming digitised. As a result, the variety of programs, platforms, data 
types and supporting hardware is becoming as varied – and disorganised – 
as the disaggregated building industry itself. In 1970, Nicholas Negroponte 
anticipated this state when he suggested that any transition to computation 
first imitates directly the analogue process it proposes to replace.7 As a result, 
we are likely to see more years of excitement and confusion as the building 
industry wills itself into its digital future at the same time that it gives up 
the simple ‘interoperability’ afforded by paper-based, analogue processes.8 

Desires for some sort of broad theory of global data exchange will remain 
strong, but unrequited, outstripped by a software market eager to address 
new opportunities and the inherent complexities of various processes that 
necessarily comprise the delivery chain. 

The building industry is typically not well-enough organised, nor can it compile 
enough market clout, to adopt fresh technologies or innovations soon after 
their introduction. It often has to wait until hardware, software or business 
models are sufficiently mature for architects, engineers and builders to adopt, 
adapt and improve such systems for their use. Such was the case with CAD 
platforms, which were originated by the aerospace industry and had to be 
ported down to personal computers sufficiently inexpensive to be in reach 
of AECO customers. Similarly, modelling platforms such as BIM or high-
resolution rendering eventually appropriated the tools of manufacturing and 
movie-making once those technologies were within economic reach.9 
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7 1.1 TOOLS AND TECHNOLOGIES 

1.1.3: 
A LIDAR SCAN 
OF CONSTRUCTION 
IN PROGRESS, 
MAPPED AGAINST 
A BIM DATA SET. 
THE CONDUITS 
(IN GREEN) 
AND DUCTING 
(IN BLUE) 
ARE VIRTUAL 
ADDITIONS TO 
THE DIGITAL 
SCAN FROM THE 
MODEL. 

MOVING TO MACHINE INTELLIGENCE 
In an exception to this otherwise reliable rule of thumb, architects did lead 
the charge with the earliest versions of machine-driven design: scripting. As 
the first proponents of technologies, such as McNeel Grasshopper (and, later, 
Autodesk Dynamo), architects defined and elaborated the idea of what is now 
known as parametric, or generative, design, where computerised scripts drive 
geometry engines (like Grasshopper controlling Rhino). However, after 20 
years of such work, scripting capabilities are largely deployed in the service of 
relatively minor problems, such as shape generation or fenestration geometry, 
rather than systematic alternative generation or analytical evaluation. While 
later-generation tools like Hypar10 have begun to accelerate the idea of 
generative design, the dearth of analytic tools to evaluate alternative designs 
generated by scripting has generally limited their use to form generation. 

Machine learning and artificial intelligence, the most recent tools on our 
timeline, are likely to follow the typical path in order to reach architects. 
While major corporations are already absorbing AI/ML capabilities into their 
core operating strategies,11 most artificial intelligence available to architects 
is delivered through their smart phones, while we order dinner online or 
request a ride to the office. A few promising start-ups and other experiments 
are testing the technology on various tasks on the construction site (e.g. 
worker safety checking through computer vision) or project administration 
(e.g. managing vast swathes of change orders and requests for information), 
suggesting that we are still in early days. 
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1.1.4: 
AUTODESK 
SPACEMAKER 
AI’S 
DESIGN AND 
EVALUATION 
INTERFACE 

However, there are indications that this wait may not last much longer. 
As I write this chapter in November 2020, Autodesk, my former employer, 
announced the acquisition of Spacemaker, an AI-driven design generation tool 
that evaluates site and building constraints and generates preliminary design 
solutions (see Figure 1.1.4). That tool comprises a combination of design 
representation, evaluative analysis and an AI infrastructure that learns best 
results by interacting with its human decision-maker/operator. 

As such, it may be an indicator of where the next generation of modelling 
representation, beyond BIM, may be heading. The acquisition cost was $240 
million, or 25% more (in 2002 USD) than the acquisition of Revit Technologies, 
which started the BIM revolution in AECO in earnest.12 

A TAXONOMY OF USE 
In earlier work I have proposed a taxonomy by which the vast array of 
digital tools emerging might be categorised, irrespective of their underlying 
technologies.13 In that analysis I suggest that the tasks of the building 
enterprise, as supported by computation, fall broadly into four categories: 

1. Representation (the depiction of authorial ideas). 

2. Analysis and simulations (evaluation of those idea to understand their 
performance and implications). 

3. Realisation (the translation of those ideas into built form). 

4. Collaboration (the distribution and management of information across 
the enterprise). 

⏎ 
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9 1.1 TOOLS AND TECHNOLOGIES 

As we consider the implications of machine learning and artificial intelligence 
in this context, those definitions require some additional refinement. 

Representation 

Drawings, text, images and physical models were the representational tools 
of the pre-digital age, followed by CAD and, eventually, BIM and parametric 
design. In a world of increasingly digitised data that might be consumed by 
smart machines, mathematical models and other data sets depicting a built 
asset – like sensor data coming from a building control system – should also 
be considered as representational. Further, as early forays into parametric/ 
generative design suggest, algorithms that generate design are increasingly an 
important part of the representational process. 

Analysis and Simulation 

Computation is well-suited to examining data that results from representation 
in order to understand and evaluate it. Extended by the putative power of 
artificial intelligence, this capability might more accurately be described, as 

suggested by Agrawal, Gans and Goldfarb, as prediction: using (representational 
and other) data to evaluate the implications of design decisions and predict 
outcomes and implications of their underlying logic and decisions.14 

Realisation 

Design data is the logical underpinning of digitised construction processes. 
This is particularly true as construction, assisted by AI/ML, is automated and 
the processes of building are absorbed by machines that learn how to build. 
Those robots will need design data to guide them on the job site. Similarly, 
gathering information that documents the construction process – LiDAR scans 
of construction process that are mapped into BIM by intelligent systems are 
one example – is another aspect of digital project realisation. 

Collaboration 

From the early days of internet-based data management to today’s common 
tools such as BIM 360, Procore or even Google Docs, project teams have 
needed to organise, transmit and manage digital assets irrespective of format. 
As we transit the digital interregnum, however, there is an increasing need 
to index, locate and understand all this data, much in the same way that 
modern search engines find information without user concern about format 
or location. Over time, digital design and construction will demand federated 
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TIME REPRESENTATION SIMULATION AND 
PREDICTION 

REALISATION COLLABORATION 

ANALOGUE 2500 BC 
– 1985 

DRAWING AND 
PHYSICAL 
MODELS 

EXPERIENCE, 
INTUITION, 
JUDGEMENT 

MANUAL 
DOCUMENTATION 
AND ASSEMBLY 

COLLECTIONS 
OF PHYSICAL 
OBJECTS 

CAD 1985 – 
2008 

DIGITAL 
DRAWINGS VIA 
AUTOCAD©, RHINO 

SCRIPTS, 
SPREADSHEETS 

PHOTOGRAMMETRY, 
GEOMETRY-DRIVEN 
FABRICATION 

COMPUTER FILES, 
OVERNIGHT 
EXPRESS 

BIM 2008… BEHAVIOURAL 
MODELS 
PARAMETRICS 

BESPOKE 
ANALYSIS 
SOFTWARE 

LASER SCANNING, 
DATA-DRIVEN 
MANUFACTURING 

FILE SERVERS, 
CLOUD STORAGE 
SYSTEMS 

DATA 
INTERREGNUM 

2020… AN EXPLOSION 
OF FORMATS 

AN EXPLOSION 
OF TOOLS 

DIGITAL 
INDUSTRIALISED 
CONSTRUCTION 

SINGLE DATA 
ENVIRONMENTS 

INTELLIGENT 
MACHINES 

2025… DATA 
LAKES 

MACHINE-
GENERATION 
PROJECTIONS 

REAL-TIME 
DATA FEEDS, 
ROBOTICS 

MACHINE-GUIDED 
INTEROPERABILITY 

1.1.5: 
RELATIONSHIP 
OF 
TECHNOLOGIES 
AND TOOLS 
OVER TIME 

project informatics across the enterprise, where data structures in differing 
formats are connected to form a coherent whole with distinct parts. It is highly 
unlikely that standard data formats or interoperability protocols will allow 
all this data to become useful across the varied processes of construction. 
Machine learning algorithms may well be our only strategy to make sense of it. 

THE EVOLUTION OF TECHNOLOGIES AND TOOLS 
Each of the technologies described above – analogue drawing, CAD, BIM, and 
ultimately AI/ML – will change the way work is done and the tools deployed to 
accomplish it. The intersection of technology types and the evolution of the 
resulting processes and procedures they enable is described in Figure 1.1.5. 

Computational power, reliance on automation, depth and breadth of data 
resolution and precision increase dramatically as our profession has moved 
from the upper left to the lower right on this grid. Certain aspects of design 
autonomy will be refactored as machines take over some – but not all – of 
the tasks of the architect. Figure 1.1.6 describes some of these possibilities, 
mapping the evolution of our four categories of technologies against both the 
data richness of the design enterprise (the top curve) and the automation of 
design process (the bottom curve). 

⏎ 
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2500 BC–1985 1985–2008 2008… 2025… 2030… 

# 

ANALOGUE CAD BIM DATA INTERSTICE AI / ML 

INCREASING BETTER BETTER DIGITAL REPRESENTATION 
BUILDING DRAWING DRAWING EXPLOSION / INTEGRATION
COMPLEXITY AND 

GEOMETRIC 
COMPLEXITY 

LEVEL OF 
PRECISION 

FAMILIES, 
DEGREE OF SCRIPTS, ROBUST AUTOMATION MACHINE 
AUTOMATION OBJECTS DATA EXPLOSION AUTONOMY 

LESS RESOLUTION AND PRECISION MORE 

DESIGN REPRESENTATION 
1.1.6:DEGREES OF AUTOMATION 
HUMAN VS 
MACHINE 

 

11 1.1 TOOLS AND TECHNOLOGIES 

AUTOMATION
It is suggested here that as tools become more enabled, there are parallel 
increases in the granularity and complexity of resulting information, along 
with the potential, in the digital era, for computational automation. During 
the drawing era, for example, informational complexity increased only with 
a similar change in the technical demands of construction itself, with the 
introduction of modern construction systems and complex delivery models. 
Automation was not available at all. The advent of CAD allowed for additional 
geometric complexity, more extensive documentation (in theory) and some 
automation through standard component libraries and scripting tools inside 

⏎ 
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the CAD programs themselves, such as AutoLISP in early AutoCAD©. Those 
early scripting tools allowed the functions of AutoCAD© to be recorded and 
repeated; their successors in Rhino controlled dimensional parameters of the 
geometry model and gave the designer an ability to generate new forms. 

A significant jump on both curves is apparent with the advent of BIM, 
however, as representation switched from the abstraction of drawing to 
virtual 3D models in parallel with parametric BIM families and data sets, and 
generative design approaches through mature scripting that will memorialise 
processes and procedures once dependent on human intervention. While 
scripts within CAD simply manipulated geometry, tools like Dynamo allow a 
designer to parametrically manipulate both the components of the design 
(like the size of windows) and their relationship to the overall building (like 
the location of the windows within an exterior wall). In the interregnum, we 
will see extensive generation of digital data and the episodic automation of 
various processes that would be otherwise disconnected. 

The transition to broad-scale AI/ML will greatly enhance both the amount and 
the value of its precedent digital sources, serving as data lakes for intelligent 
machines to learn from. At the same time, computers will start to train 
themselves to perform machine-automated tasks. Those same machines will 
teach themselves about the relationships of the heterogenous data sets that 
comprise projects and create an ‘interoperable’ constellation of AECO data. 

These trends portend a potentially daunting – but entirely necessary – 
trajectory for practice as the complexity of buildings and the power of 
computers advance in parallel. In combination, sophisticated digital modelling 
enhanced by machine intelligence will likely draw together the disparate 
forces of design, construction and building operation in a single, consolidated 
effort, coalescing around the data about the enterprise of building, from 
inception to demolition. As Carpo speculates: 

>> Given the unprecedented power of digital simulations, one may surmise that 
at some point virtual models may become perfect duplicates of, and substitutes 
for, the buildings they represent – embodying and enacting all and every aspect of 
them. Their designers could then make a digital model just as builders would once 
have made an actual building, and the final translation from model to building 
would entail no intellectual (or informational) added value whatsoever.15 << 

The information about and knowledge necessary for building would, as a 
result, be dramatically transformed. But how? 
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13 1.1 TOOLS AND TECHNOLOGIES 

NOTES TO THE 2025 EDITION 
Carpo’s prediction of ‘digital substitutes’ finds its current incarnation 
on two fronts as AECO stays largely planted in the Digital Interstice. 
First are attempts to create the so-called ‘Digital Twin’, a term of art 
deployed in many contexts to represent a complete digital simulation 
of a physical object. For AECO, BIM was the initial incarnation of 
this concept, but 23 years after my former employer began its BIM 
journey, the tool has, in the main, reverted to a sophisticated and 
efficient drawing production environment, much like its preceding 
CAD platforms (like AutoCAD©). An AI-enabled modelling tool could 
perhaps, in the distant future, embody the materiality, detail and 
behaviour of a completed building, but at this juncture the vendors 
(and some private concerns) are building their own independent 
visions of the digital twin in their separate work. The hope that 
some standard might be established remains remote, and therefore 
unavailable, to the industry, as consistent training data. 

Perhaps a more promising, if unrealised, approach can be found in 
the concept of the ‘surrogate model’; a vague simulacrum of a design 
that is ‘an abstract representation of a real problem, a simplification’ 
that supports rapid analysis and evaluation of a digital design without 
the purported need for a complete digital twin.16 A pre-AI example 
of a surrogate model can be found in the analytical, mathematical 
constructs that underlie the structural calculations in engineering 
software tools like Tekla or Etabs or energy models like Energy+. 
Such models can be parametrically extrapolated into what are called 
synthetic models, variations on the original theme, which can then be 
used for AI training. At bare minimum, surrogate models are proxies 
for future advances where simulation results could be extrapolated 
from less complete and less curated data. 

Each example, however, further elaborates the heterogeneity 
of the Digital Interstice, and as of the time of writing, there is no 
consolidated strategy in sight for interoperability or even logical 
connection between these piles of AECO information. 
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>> THE IDEA THAT COMPUTERS MIGHT 
DRAMATICALLY AUGMENT THE CAPABILITIES 
OF HUMANS – OR POSSIBLY SUPPLANT 
US ALTOGETHER – IS MANY YEARS OLD. 
BEFORE SETTING OUT THE OPPORTUNITIES 
AND THREATS OF AI FOR ARCHITECTURAL 
PRACTICE, THIS CHAPTER WILL SKETCH A 
BRIEF HISTORY OF THE TECHNOLOGY AND 
POSIT A TAXONOMY BY WHICH ITS PRESENCE 
AND FUTURE MIGHT BE UNDERSTOOD AND 
PREDICTED. << 

DOI: 10.4324/9781003726654-3 
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ORIGINS OF GOOD OLD-FASHIONED AI 
The computer scientist John McCarthy is generally credited with coining the 
term ‘artificial intelligence’ in 1956, suggesting that computing machines 
could somehow mimic the functions of the human brain. And long before 
computing was within reach of mainstream practising architects, Nicholas 
Negroponte and others were exploring the idea of digital design. As early 
as 1964, Walter Gropius acknowledged that there might be a role for these 
new machines in the profession, suggesting that ‘it will certainly be up to us 
architects to make use of them intelligently as means of superior mechanical 
control which might provide us with ever-greater freedom for the creative 
process of design’.1 

In 1958, the psychologist Frank Rosenblatt put forth a theory of ‘perceptrons’ 
that was the precursor of today’s modern neural networks. Rosenblatt posited 

that it was theoretically possible to represent visual information by ‘teaching’ 
a crude digital facsimile of a human neuron, and thereby encode human 
knowledge in accessible form. A decade later, the theory was challenged by 

MIT’s Marvin Minsky, who suggested that ‘deeper’ models (with more layers of 
such neurons) would never yield reliable results, presaging an argument in AI 
strategy that survives, in part, to this day. 

1.2.1: 
NICHOLAS 
NEGROPONTE’S 
URBAN 5 
SEEK, BY THE 
ARCHITECTURE 
MACHINE 
GROUP, AS 
EXHIBITED AT 
THE JEWISH 
MUSEUM, NEW 
YORK, 1970 
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17 1.2 WHAT IS ARTIFICIAL INTELLIGENCE (AI)? 

At the same time Nicholas Negroponte was exploring more practical questions 
in his MIT lab, ‘The Architecture Machine’. An architect by training, Negroponte 
experimented widely in the early uses of technology and design, anticipating 
our use of tools like large screens, video and cameras, machine intelligence and 

immersive environments. His efforts anticipated early strategies for artificial 
intelligence, positing the possibilities of ‘an intelligent environment that we 
would all eventually inhabit and that would eventually surround all of us’.2 

While Negroponte examined questions of the representation, generation 
and manipulation of 3D space, other work considered core to understanding 
human thought probed what was called natural language processing: 
computers understanding and creating the written word.3 Computer scientists 
attempted to translate emergent theories of human cognition into software, 
creating computational and semantic structures to extract understanding 
from text and reason inferentially from that resulting knowledge. This 
established what has since been called ‘GOFAI’ or ‘Good Old Fashioned AI’,4 as 
attempts were made to build models of human cognition. 

By the mid-1980s, AI research and software companies were attempting to 
extrapolate these theories into commercial ‘expert systems’, in which the 
knowledge of particular domains were painstakingly encoded by human 
programmers into algorithms in order to transfer detailed domain knowledge 
into a computer that could, theoretically, replace its human counterpart. 
These efforts rapidly hit the limits of both the efficacy of theory and the 
processing and storage capacity of hardware. The ‘AI Winter’ ensued, in which 
attention (and funding) waned for many years and the promises of AI would 
seem unfulfilled.5 

BEYOND PERCEPTRONS 
By the 1990s, computers were getting faster, cheaper and more available, and 
a different strategy for AI emerged: neural networks and machine learning. 
Benefiting from the vast computing power – and equally gigantic storage 
capacities – of the cloud, AI systems began to be based on a digital emulation 
of human memory, encoding information and relationships in increasingly 
complex layers that could be indexed and accessed like hyper-intelligent 
databases.6 The power of computation revived the theory of the perceptron. 
The definition of an expert system could shift from ‘human-encoded 
understanding’ to ‘computer-generated expertise’ through programs that 
‘learned’ from examining enormous data sets. Machine learning programs 
could, by virtue of their ability to process vast amounts of example data, 
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1.2.2: 
AI-BASED 
X-RAY 
EVALUATION7 

create statistical correlations that approximated learning.8 Rather than 
somehow simulating the mechanics of human understanding, the goal of 
machine learning AI became software that could deeply learn – rather than be 
told about – the world.9 

Nowadays, ‘deep learning’ comprises much of the academic and commercial 
work in AI and is often conflated with the broader definition of the term. 
Cloud computing infrastructure, fed by vast data sets coming from an array 
of internet-based sources, along with significant progress in the underlying 
learning algorithms, has brought AI into daily use, from smartphones to 
Google Translate. Computers are now world champion chess players, 
competent radiologists and credit scorers. Later generation ML programs 
can learn the rules of a game like backgammon by simply playing millions of 
simulated contests and testing what works best. 

As capable as these systems appear, they do not actually understand 
anything, but have rather built semi-reliable statistical correlations of 
information relationships. In highly constrained contexts (where, for example, 
there is a well-defined training set, such as a game or a set of specific images), 
ML systems are surprisingly effective, and particularly today in the realm of 
natural language, as Google Translate demonstrates. As a result, much of the 
work in AI/ML today pursues this empiricist strategy. What the AI/ML systems 
entirely lack, however, is a rudimentary understanding of how the world works 
or anything remotely resembling common sense. 
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19 1.2 WHAT IS ARTIFICIAL INTELLIGENCE (AI)? 

There is scepticism that without such an understanding of context, AI systems 
cannot be truly useful or reliable, and therefore if they will challenge the 
existence of, say, architects. The psychologist and entrepreneur Gary Marcus 
concludes that these ‘narrow intelligence’ strategies are flawed: 

>> (I)t is a fallacy to suppose that what worked reasonably well for 

domains such as speech recognition and object labeling – which 

largely revolve around classification – will necessarily work reliably 

for language understanding and higher-level reasoning. A number of 
language benchmarks have been beaten, to be sure, but something 

profound is still missing. Current deep learning systems can learn 

endless correlations between arbitrary bits of information, but still go 

no further; they fail to represent the richness of the world, and lack 

even any understanding that an external world exists at all.10 << 

Marcus argues that the work should consider a return to the original 
motivations of the AI field – simulating human cognition – and combine the 
data collection and analysis capabilities of deep learning systems with new 
models of perception and inference. While some progress has been made on 
this front, such systems do not exist today and will depend on the digitisation 
of new theories of understanding and, particularly, causality.11 

TOOLS OF INTELLIGENCE FOR ARCHITECTS 
As AI becomes more capable, today’s architect is presented with a range of 
potential sources of intelligence to deploy in the service of the craft: 

» her12 own talents, skills and experience (as certified by, for example, 
professional registration) 

» an array of hard-coded computer programs that achieve specific ends 
(such as energy analysis or structural engineering) 

» machine learning systems (which might learn from data coming from 
their design projects, or even sensors within finished buildings and 
provide insight), and 

» ultimately the speculative prospect of cognitive systems that can 
reason within context (only seen in science fiction today). 

The latter three, based on technology, are summarised in Figure 1.2.3. 
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1.2.3: 
COMPARISON 
OF AI 
TECHNOLOGICAL 
TYPES 

COMPUTATION TYPE TECHNOLOGY CAPABILITIES EXAMPLE 

ALGORITHMIC 
(TRADITIONAL 
SOFTWARE) 

HARD-CODED 
PROCEDURES 

AUTOMATION 
OF SPECIFIC 
PROCESSES AND 
DATA INTERACTIONS 
IN A HIGHLY 
CONSTRAINED 
CONTEXT 

BUILDING 
INFORMATION 
MODELLING, 
ENERGY ANALYSIS 
SOFTWARE 

EMPIRICIST 
(DEEP LEARNING 
AI SYSTEMS) 

NEURAL 
NETWORKS 

COLLECTION, 
CLASSIFICATION 
AND CORRELATION 
OF LARGE, 
HOMOGENOUS 
DATA SETS 

LANGUAGE 
TRANSLATION, 
CREDIT RISK 
ASSESSMENT, 
WINNING 
JEOPARDY, PLAYING 
SUPER-HUMAN CHESS 

COGNITIVE 
(‘COMMON SENSE’ 
LEARNING 
SYSTEMS) 

CAUSALITY MODELS 
AND INFERENCE 
ENGINES 

COMMON SENSE 
KNOWLEDGE OF THE 
WORLD COMBINED 
WITH ENORMOUS 
DATA SOURCES 
FROM WHICH TO 
REASON AND INFER 

MEDICAL DATA 
QUERIES, TERRORISM, 
KNOWLEDGE 
DATABASES13 

The computers available to architects today are more adept at direct problem-
solving than what Stanford Anderson once called ‘problem-worrying’, resolving 
the goals of the problem while simultaneously creating the design,14 evocative 
of both Negroponte’s and Peter Rowe’s interest in heuristics as a strategy 
for solving ‘wicked problems’.15 Hard-coded software single-mindedly solves 
specific problems; your cost-estimating system will tell you nothing about 
the fire exiting required of your design, nor is it capable of learning how to 
do so. Emerging AI/ML systems, now being applied to problems of the built 
environment, may be able to evaluate or even predict issues in a specific 
context, but certainly are nowhere near ready to design entire buildings, 
heuristically or otherwise.16 And, as of this writing, devotees of cognitive 
systems have spent decades building ‘real world knowledge’ as the basis of a 
next generation inference system, with limited success.17 

While questions of human consciousness are not considered here, it is fair to 
describe intelligence – artificial or otherwise – as the ability to amass, organise 
and reason inferentially about heterogeneous collections of knowledge in 
context. Marcus believes this robustness cannot be currently achieved by 
today’s AI systems, which are unable to ‘reason flexibly and dynamically about 
the world, transferring what is learned in one context to another, in the way 
that we would expect of an ordinary adult’.18 The work of architects surely 

⏎ 
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21 1.2 WHAT IS ARTIFICIAL INTELLIGENCE (AI)? 

qualifies as ‘higher-level reasoning’ in Marcus’s terms, as he suggests that 
‘where there is no coherent, causal understanding of basic concepts, there 
may be no way to engineer robustness in complex real-world environments’.19 

Early attempts, however, are beginning to emerge, with Autodesk’s 
Spacemaker AI acquisition as a primary example. That tool uses a combination 
of modelling, analytical algorithms and AI to generate and evaluate planning 
alternatives, and then ‘learns’ about best practice by compiling results 
garnered from both the result of analysis and the choices of the human 
designers selecting the best options. 

MACHINE CAPABILITIES 
AI expert Mark Greaves describes the capabilities of current AI systems within 
a continuum from evaluation (understanding the implications of information), 
to simulation (using information to approximate similar circumstances in a 
different context), through to generation (creation of new ideas).20 I will add to 
his categories, which are generally based on Bloom’s Taxonomy of learning21 

(to which we will return later), a fourth, earlier capability of lesser profundity, 
‘understanding,’ where the system can locate, access and deploy information. 

Current capable empiricist AI/ML systems are excellent at evaluation (when 
systems read routine X-rays, for example) and even, in some circumstances, 
simulation (demonstrated best by extremely competent chess programs). 
However, examples of real generation, beyond the occasional flash of brilliance 

in the use of a hitherto never before seen Go move,22 are limited, and there are 
no circumstances where computers are capable of generating a set of original 
ideas that comprise the design of something as complex as a building. 

CAPABILITY EXPLANATION 

UNDERSTANDING BEING ABLE TO FIND, INDEX, ACCESS AND DEPLOY DATA 

EVALUATION UNDERSTANDING THE IMPLICATIONS OF DATA BASED ON 
STATISTICAL ANALYSIS OF VERY LARGE DATA SETS 

SIMULATION PROJECTING FUTURE STATES OR CONDITIONS BASED ON 
CHARACTERISTICS OF PAST SITUATIONS OR CONSTELLATIONS 
OF DATA 

GENERATION CREATING ENTIRELY NEW IDEAS OR CONCEPTS BASED ON 
KNOWLEDGE AND UNDERSTANDING OF A GIVEN CONTEXT 

1.2.4: 
MODIFIED 
GREAVES’S 
MODEL OF AI 
CAPABILITIES23 
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This is, however, only the current state of affairs and is a function of empiricist 
AI systems that can only ‘deduce’ based on massive correlations of data. It 
is likely that, over time, empiricism will give way to emulation of cognition 
as philosophers, neuroscientists, computer scientists and their commercial 
counterparts build ever more capable machines that move toward general AI, 
what Pedro Domingos has called the Master Algorithm,24 in the service of what 
is now becoming known as ‘artificial general intelligence’, or machines that 
can both learn and reason about the world in context. Today, we are far away 
from such functionality, but it remains the grandest goal of AI development. 

When Marcus’s ‘robustness’ meets Greaves’s generative capabilities, architects 
(and most of the labour force, as Daniel Susskind has suggested) have much 
to worry about, since ‘(q)uite simply, if we cannot count on our AI to behave 
reliably, we should not trust it’.26 So, until then, the work of human architects 
is to orchestrate the combined tools of their talents, an array of software tools 
including BIM and emerging deep learning tools into coherent and valuable 
practice in anticipation of the day when cognitive platforms are readily 
available. By then, one hopes, the profession will have a firm grip on both the 
technologies available and the means to direct them. 

NOTES TO THE 2025 EDITION 
In 2025, AI platform providers that have been called the ‘hyperscalers’ 
contend that reaching Artificial General Intelligence (AGI) is mostly a 
problem solved by more storage and CPU power.27 Chipmakers like 
Nvidia oblige, creating faster and more capable GPU processors, and 
charging for them accordingly.28 But as the capabilities of successive 
large language models diminish in relative terms with each release, 
the argument over the ultimate success of AGI has returned to 
familiar ground: symbolic logic, or ‘understanding the rules by which 
the world works’. Also known as good old fashioned AI or GOFAI, 
these ideas revert to the origins of primordial learning systems like 
the one that set the computer in my undergraduate lab on fire: 
that AI will never gain sufficient traction, or climb Greaves’ learning 
curve, without a combination of deep learning and symbolic logic 
approaches.29 

CONT. 
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Further, as mentioned earlier, the reliability of what I call here 
empiricist systems remains uneven at best, despite best efforts 
at human-based reinforcement learning and training and the 
application of what now appears to be a significant percentage of 
the earth’s energy and considerable amounts of fresh water, rare 
earth minerals and forced labour.30 For architects, much of this effort 
goes to image generation, creating images (rather than designs) of 
buildings designed to provoke, rather than resolve, a design. This 
does not fit at all in Greaves’ taxonomy, but rather alongside it, as the 
earliest and perhaps least profound potential architectural use of AI. 
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>> PROFESSIONAL KNOWLEDGE IN 
ARCHITECTURE IS AN INTRACTABLE 
CONSTRUCT, GIVEN THAT MUCH OF THE 
COMPETENCE AND DECISION-MAKING BY 
PROFESSIONAL ARCHITECTS IS BASED ON 
TRAINING, INSIGHT AND, MOST IMPORTANTLY, 
JUDGEMENT. TECHNICAL KNOWLEDGE IS 
NEITHER WELL-ORGANISED NOR EASILY 
REACHED. ASSUMING AI MAKES BOTH THE 
CAPABILITIES AND KNOWLEDGE BASE OF 
PROFESSIONALS MORE WIDELY ACCESSIBLE, 
PROFESSIONAL KNOWLEDGE WILL NO LONGER 
RESIDE EXCLUSIVELY IN THE MINDS 
OF HIGHLY TRAINED ARCHITECTS. DOES 
PROFESSIONAL DESIGN TRANSFORM? << 

DOI: 10.4324/9781003726654-4 
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PROFESSIONALS AND PROFESSIONALISM 
In The Future of the Professions, Richard and Daniel Susskind’s treatise on the 
potential demise of the professions in a world of increasingly capable artificial 
intelligence, you can find the following complete, if slightly tongue-in-cheek, 
definition of why society has created and empowered a class of professionals, 
architectural or otherwise (emphasis added): 

>> In acknowledgement of and in return for their expertise, 
experience and judgement, which they are expected to apply in 

delivering affordable, accessible and up-to-date, reassuring and 

reliable services, and on the understanding that they will curate and 

update their knowledge and methods, train their members, set and 

enforce standards for the quality of their work, and they will only 

admit appropriately qualified individuals into their ranks, and that 

they will always act honestly, in good faith, putting the interests 

of clients ahead of their own, we (society) place our trust in the 
professions in granting them exclusivity over a wide range of 
socially significant services and activities, by paying them a fair 

wage, by conferring upon them independence, autonomy, rights of 
self-determination, and by according them respect and status.1 << 

There is a social bargain defined here: running our world would seem to 
require both extraordinary expertise leavened by public trust, so we ennoble a 
small group of highly educated, certified and supposedly well-paid individuals 
to do very special things. Architecture, it seems, as the profession that 
translates desire and capital into occupiable space, falls under this rubric. And 
while some have suggested that this power and influence has failed the public 
it is intended to serve,2 architects remain a crucial, if challenged, component 
of the equally challenged building industry ecosystem. That system, explored 
more thoroughly in Chapter 1.6, is largely organised in the service of making 
products – to wit, buildings and other physical infrastructure – yet architects 
as professional players within it have a distinctly different role: individuals with 
expertise who provide judgement and take personal responsibility for results 
of that judgement. In the systems of building delivery, this means that, unlike 
almost everyone else (builders, subcontractors, product suppliers, fabricators), 
professional architects provide services, not things. And as a result, they take 
personal, rather than corporate, responsibility for their actions. 
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The philosopher Donald Schön, who studied how professionals learn and 
deploy expertise, has suggested that architects and other professionals work 
in a way that is distinct from less institutionalised careers by virtue of what 
he calls ‘reflective practice’, or the ability to apply insight and make decisions 
through the implicit understanding gained with ‘extraordinary knowledge in 
matters of human importance’.3 What Schön called tacit ‘knowing in place’ 
we might call intuition, or the heuristic approach that Rittel describes as 
necessary to solve the ‘wicked problems’ of design.4 We will examine later the 
question of whether an AI could even achieve such ‘extraordinary knowledge’, 
but for purposes of this specific exploration of professionalism, let us stipulate 
that the architect’s synthetic role, by virtue of her professional responsibilities, 
is not well-replaced entirely by either empiricist AI of today or perhaps even 
tomorrow’s cognitive systems that could somehow ‘learn’ all the procedures 
and processes of practice. If Schön is correct, there is something about 
professional knowledge that will lie beyond the reach of those systems. 

However – and with AI, it seems there is always a ‘however’ – the formulation, 
design, procurement, construction and operation of a building is rife with 
procedural and data-driven tasks, ranging from calculating quantities 
to modulating temperature and humidity. As such, the systems within 
which those processes operate are sure to be influenced, if not partially 
transformed, by autonomous computing. The question for architects is where, 
how and what will tomorrow’s AI-assisted architects really need to know? 

WHAT IS PROFESSIONAL KNOWLEDGE? 
In autumn 2020 I participated in an online panel of practitioners, educators 
and students to explore career prospects for graduates, during what we 
hoped was the latter stages of the global pandemic. Late in the discussion 
there was an exchange between the principal of a local firm and a well-
respected, left-leaning dean of a New York school, comparing their respective 
expectations of professional know-how of recent graduates. Unsurprisingly, 
the practising architect wondered why his recent hires knew so little 
about ‘how a building goes together’ (a familiar refrain) or the processes 
or procedures of practice. The dean wondered why she should prepare 
graduates for a profession that currently seems so unsuited to the challenges 
– social, economic, environmental – of the times, and suggested that her 
job was to graduate students not in order to support the practice of today, 
but rather to radically reform it in and for the future. Unwilling to miss an 
opportunity to triangulate one of my favourite hobby horses, I asked the 
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practitioner how the profession can simultaneously demand that graduates 
know so much more – and be delivered to them by the schools as ‘mini-
architects’ – while paying them so little. The response was telling: in this local 
firm, reaching licensure meant a bump in pay of $1,000, or slightly less than 2% 

of what I expect he pays his least experienced staff.5 

So, what do you need to know to be an architect? The vantage points of 
the panellists can be a good starting point: what do educators think a 

young architect needs to know to begin her career, versus the authors of 
professional licensing examinations and requirements? Of course, the timing 

does not correspond exactly, since licensure in the UK and US requires 

professional experience after education, but nevertheless a comparison of 
the two constructs is instructive. For purposes of this examination, I compare 
a curriculum with which I am deeply familiar (that of the Yale School of 
Architecture) and the post-graduate licensure competencies as outlined by the 
ARB Part 3 examination in the UK and the comparable standard in the United 

States: the Architectural Registration Exam (ARE) administered by the National 
Council of Architectural Registrations Boards (NCARB).6 

At Yale, we require our ‘Part 2’ candidates (those getting a post-baccalaureate 

Master of Architecture degree) to be capable in the following curricular 

categories:7 

» 	 Architectural Design –  traditional studio pedagogy in the creation of 
a building design, focused primarily on the conceptual and schematic 
phases of the work. 

» 	 Visualisation – depiction, through analogue and digital means, of 
ideas of building design. 

» 	 Environmental Systems – the design and integration of structural, 
mechanical, electrical and other technical subsystems of building. 

» 	 History/Theory – understanding the historical and theoretical 
platforms of the discipline of architecture. 

» 	 Building Technology – seeing and performing the technical 
manifestation of building, including integration of complex systems,  
creation of construction documentation and field construction  
experience. 

»	 Urban Design and Landscape – understanding how buildings operate in  
the context of cities and sites. 

»	 Professional Practice – introduction to the profession, including ethical,  
legal, project management, business and project delivery aspects. 
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The comparable list of competency categories from the NCARB ARE is both 
more extensive and somewhat incompatible, with six major categories and 
almost 100 sub-competencies:8 

»	 Practice Management – how do you run an architectural practice? 

»	 Project Management – how do you manage, coordinate and lead a 
project through the stages of delivery? 

»	 Programming and Analysis – how do you set up a project to be ready 
to design it? 

»	 Project Planning and Design – what do you need to know to design 
a complete building that meets all applicable regulations and 
requirements? 

»	 Project Development and Documentation – once the design is set, 
how do you properly detail, document and transmit that project to 
the builder? 

»	 Construction and Evaluation – once the design is complete, how do you  
support and administrate construction, and evaluate the building after  
its completion? 

The ARB, as a somewhat more parsimonious examiner, has fewer categories 
and only half as many sub-competencies (50):9 

»	 Professionalism – how do you function ethically as a professional, and in  
a practice? 

» 	 Clients, Users and Delivery of Services – what is your role in 
organising, leading and managing a project? 

» 	 Legal Framework and Processes – what are the legal and regulatory 
frames of practice and building, and what is your responsibility for 
them? 

» Practice and Management – how do you run an architectural 
business? 

» Building Procurement – what are your roles and responsibilities 
during contactor procurements and subsequently, construction? 

An informal mapping of sub-competencies against curricular categories yields 
an interesting disconnect, particularly as regards UK standards, suggested by 
the comparison in Figure 1.3.1. 

It would seem that issues of practical implementation, and particularly as 
regards the business and processes of professional practice, are emphasised 
strongly by the ARB, and assuming that architecture curricula are generally 
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1.3.1: 
COMPARING 
CURRICULUM 
AND 
COMPETENCIES, 
US AND UK 
FOR NCARB, 
ARB AND YALE 
PART 2 

aligned around the world (having all been derived from a similar source in the 
Beaux Arts) there is generally a dramatic shift in emphasis as a student leaves 
the studios of schools and enters those of practice, with the resulting tensions 
illuminated during our panel. 

An architect is trained on curricular platforms established by educators – and 
accreditors like ARB – to reflect an understanding of required aptitudes on 
the one hand, while professional licensing establishes a parallel, if different, 
level of minimal professional competence on the other.10 As such, both are 
rough proxies for what our discipline believes an architect needs to know to 
practise. And while the American standard seems to emphasise the synthetic 
act of design itself in comparison to its British counterpart, an understanding 
of performance, practice and technical issues, as indicated by the emphasis 
on environmental systems, building technology and professional practice, 
appears to be, on the whole, a more important gauge of whether an educated 
student can be properly certified to protect the public’s health, safety and 
welfare – the raison d’être for professional certification in the first place. 

⏎ 
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In a recent exploration of the implications of AI, the computer scientist Stuart 
Russell suggests that a fundamental characteristic of human reasoning, and 
with it, of human knowledge, is our ability to deploy our understanding in 
the service of actions hierarchically with ‘dozens of levels of abstraction’.11 He 
further invokes the Aristotelean concept of practical reasoning, the idea that 
knowledge and actions are rationally deployed in the service of achieving a 
specific goal.12 For architects, those goals might be as limited as ‘make sure 
this door swings in the right direction’ to as lofty as ‘try to stir the soul with 
this spatial experience’. The knowledge necessary to accomplish the former 
requires a rudimentary understanding of how doors work, perhaps in the 
context of a building regulation, while the latter likely demands the collective 
insight from a lifetime of work. Either way, each goal shares the common 
requirement that the architect reference proper, current and relevant 
information and apply her judgement in its use. 

A talented designer deploys her skills in managing these ‘dozens of levels 
of abstraction’ in ways both poetic and technical, and much current work 
in architectural AI research, particularly in the academy, is focused on the 
former. Training machine-learning systems on thousands of beaux-arts 
floor plans in order to generate new options or using AI strategies to create 
novel aesthetic solutions is, of course, a valid avenue of exploration. It is not, 
however, the place where such systems are likely to have the most immediate 
nor important implications for practice in the near term and thus not the 
focus of the balance of this examination. 

Developing a complete epistemology – aesthetic or technical – is a task for 
others, but for the purposes of this examination we might therefore conclude 
that architectural knowledge ranges from detailed technical information, 
through an understanding of procedures and processes, to insights gained 
from constant reapplication, refinement and synthesis during the course of 
career in the profession. Where might AI fit in to such a construct? 

HOW MIGHT PROFESSIONAL KNOWLEDGE CHANGE 
UNDER AI? 
The emphasis of licensing regulators on the more prosaic aspects of practice 
and professional competence would seem at odds with both the curricular 
emphasis of architectural knowledge as created in the academy and the need 
to train architects to face an uncertain future of new conditions, technologies 
and responsibilities. 
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1.3.2: AN 
AI-GENERATED 
IMAGE 

It is not, however, incompatible with the current, or even immediately 
forthcoming, capabilities of artificial intelligence systems, which are very 
adept at collecting, indexing and referencing vast amounts of very ‘thin’ data. 
By ‘thin’, I mean epistemologically ‘shallow’ information: information that is 
largely devoid of machine-generated meaning or insight. Today’s AI systems 
can absorb vast amounts of digital information, mostly words and images, but 
with scant real understanding of their underlying meaning or implications. 
Despite Mario Carpo’s assertion that a completely digitally indexed world 
makes knowledge universally accessible and therefore the need for 
techniques like human reasoning or the scientific method obsolete,13 we have 
yet to see machines with even the faintest idea of what a building actually ‘is’ 
– which will require the evolution of cognitive intelligence in order to usefully 
deploy the vast potential catalogue of building knowledge. 

A brief demonstration tells this story well. Consider the image in Figure 1.3.2. 

Two of today’s supposedly ‘best’ AI capabilities are natural language 
processing and image indexing and generation. Researchers at the Allen 
Institute for AI, who work on understanding human implications of AI systems, 

⏎ 
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have built a generator that creates images from its understanding of a short 
descriptive phrase. The picture here is the result of the phrase ‘building in a 
city’, not a difficult or particularly complex challenge. You can judge the result 
for yourself and try your hand at AI-created images on the Allen Institute 
website.14 

Stipulating that computers in general, and AI in particular, are excellent 
at finding, sorting and cataloguing information and accessing it through 
correlation and statistics,15 I would assert two related potential implications of 
the intersections of architecture, digital knowledge, and AI: 

1. Most relevant – and certainly no surprise to architect readers – the 
world’s architectural knowledge is dissipated, poorly organised and 
virtually inaccessible with ease. There is no architectural version of, say, 
the MEDLINE index, which cross-references all medical research, or (here 

in the United States) Lexus/Nexus, which provides access to the entire 

history of American legal cases. Proper medical treatment would be almost 
impossible without the former, nor could common law jurisprudence like in 

the US or UK progress without the latter. 

2. Perhaps, therefore, the first role of any AI system aimed at the building 

industry could be getting our data, which are increasingly digitised and 
sorted. 

1.3.3: LEXUS/ 
NEXUS LEGAL 
RESEARCH 
SYSTEM IN 
THE UNITED 
STATES. 
THERE IS NO 
COMPARABLE 
SYSTEM FOR 
ARCHITECTURAL 
DATA 



34 

Machine Learning 2e.indd  34Machine Learning 2e.indd  34 16/07/2025  09:3316/07/2025  09:33

 

 
 

 
 

 
 

 
 

  

 

 
 

1.3.4: 
DIGITAL 
INFORMATION 
SOURCES AS 
SUGGESTED BY 
THE BUILDING 
VENTURES 
INNOVATION 
NETWORK 

At the point where the numerous sources of architectural data, ranging from 
building product manufacturer’s specifications to LIDAR scans of downtown 
sites in London, are accessible, next generation AI systems can not only begin 
to emerge, but proliferate to the point where both those systems and the 
data they catalogue can be of use. As I have asserted elsewhere,16 measured 
performance based on data and analytics are likely to become a much more 
important part of design and construction as it digitises, and a first role of AI 
would be to help rationalise the informational platforms necessary to make 
that happen. 

In doing so, one of the greatest yet untapped resources available to today’s 
architects may become available to their successors, to wit, the digital project 
data, terabytes of which reside on servers in today’s offices across the world, 
that are the artefacts of project work. As a practitioner in the 1980s and 1990s, 
despite all our digital drawings and other data, we relied on memory to inform 
us, with only our brains to connect our hard-won experience on previous 
projects with decisions we needed to make on our current jobs.17 While 
today a human architect might have to scan a multitude of digital models to 
determine a best practice or trend illuminated by that data, an AI is well-suited 
to gathering and evaluating such information from a firm’s archives. 

BIM AUTONOMY AR/VR ADVANCED 
MATERIALS 

ELECTRIC 
VEHICLES 

AI/ML IoT 

DIGITAL 
TWINS 

DRONES UAV REALITY 
CAPTURE 

MODULAR 
PREFAB 

(TEX) TENANT 
EXPERIENCE 

MOBILE BLOCK CHAIN 

GIS ROBOTICS COMPUTER 
VISION 

3D PRINTING BUILDING 
MANAGEMENT 

COMPUTATION AL 5G/LTE/Wifi 

MODELS ROBOTS VISION METHODS OTHER TECH ENABLERS 
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That same principle may apply to another intractable issue of architectural 
knowledge, the interoperability of information across digital systems. Figure 
1.3.4 describes a potential array of today’s digital information that could be 
rationalised by AI into new outputs. AI processes are well-suited to indexing, 
cross-referencing and correlating such data, and as such could become an 
implicit interoperability tool for AEC information, and thereby begin to build a 
more coherent informational platform for subsequent systems – disciplinary 
and computational – to evolve. A parallel concept in computer science, known 
as ‘glue code’, is a precedent. Glue code is comprised of computer instructions 
that operate at a low level in larger systems to connect disparate parts of a 
larger program, passing data from one subroutine to another. While hardly 
exotic, AI may be the glue code of architectural knowledge of the future. 

NEW MODELS OF KNOWLEDGE 
The broad outline of an argument to be built further in the balance of this 
text should be apparent: there is much to do and a long way to go before AI 
becomes even useful for architects, much less an existential threat. Let us 
assume that utility is preferable to destruction, that architectural processes 
(like many processes of the industry) are increasingly dependent upon 
computation, and that truly useful AI systems must rely on that data. There will 
likely be a time, perhaps a decade or more hence, where computational and 

epistemological coherence will combine for architects, and the days of disparate 
standards, incompatible digital processes and inaccessible insight will end. 

That work will likely grow from the priorities of practice, which, as argued 
above, are largely concerned with the more practical, procedural and prosaic. 
And as other parts of the building delivery process, examples of which include 
feasibility studies, precision cost-modelling, construction automation and 
autonomous digital building operation, evolve through increasing digitisation, 
architects will need to understand how to manage and access information and 
deploy it in the service of the new responsibilities and professional obligations 
that will result. Where today’s architect relies on passing familiarity with an 
ever-increasing pool of information combined with professional judgement and 
intuition, tomorrow’s will likely need the intervening capabilities of AI to design. 



36 

Machine Learning 2e.indd  36Machine Learning 2e.indd  36 16/07/2025  09:3316/07/2025  09:33

 

 
    

   
    

    
  

    
     

  

NOTES TO THE 2025 EDITION 
While the UK ARB testing requirements for Part 3 have remained 
stable since 2012, here in the United States NCARB is contemplating 
a complete revision of the framework for assessing capabilities 

18,19at licensure, the so called Competency Standard for Architects. 
Now comprised of three categories – ‘Design and Documentation’, 
‘Construction Administration’ and ‘Project and Practice Management’, 
and sixteen fundamental competencies – NCARB plans to restructure 
the requirements for education, experience and testing using these 
putative capabilities as the measure of meeting a minimal standard for 
licensure. 

This is a significant shift from previous measuring sticks for 
architectural capabilities, which in my era included the demonstration 
of specific skills and knowledge (‘draw this flashing detail’, or ‘choose 
the right sort of glass for this window system’) and is rather a broader 
set of skill sets that can somehow be evaluated through testing and/ 
or experience to be permitted to use the title architect. And while we 
are only now beginning to completely understand the implications of 
this so-called competency approach here in the United States, it’s likely 
both an opportunity and a threat. 

The opportunity is epistemological: perhaps this Competency Matrix 

is the early start for a profession sorely in need of some organising 
principles for professional knowledge around which future, more capable 

AI systems could be trained. Today’s emergent so-called reasoning 
models are absorbing and managing ever thicker data sets (as opposed 

to what the original text of this chapter refers to as ‘thin data’), but the 
wealth of data generated in the Digital Interstice remains impenetrable 
and uncoordinated. Could a combination of rigorous definitions of 
measurable competencies be a first guide to making sense of it all? 

The threat is equally apparent: if you can accurately measure a 
competency, then you can easily test an algorithm’s ability to achieve 
it. It’s not clear that NCARB considered the potential replacement of 
competent architects with their AI counterparts when developing this 
taxonomy. The competency standard may need to evolve in parallel 
lest we find, sometime in the future of the ‘General AECO Foundation 
Model’, a need for far fewer humans in those jobs. 



Machine Learning 2e.indd  37Machine Learning 2e.indd  37 16/07/2025  09:3316/07/2025  09:33

 

 

 

 
 

 
 
 

 

37 

COMPETENCY STANDARD | OCTOBER 2024 The Competencies 

1.3.5: 
NCARB’S 
NEW 16 
FUNDAMENTAL 
COMPETENCIES 
FOR 
ARCHITECTS 

1.3 PROFESSIONAL INFORMATION AND KNOWLEDGE 

THE COMPETENCIES 
The competencies are organized into three domains. Candidates for licensure must demonstrate their 
capabilities in each independent competency to earn a license in the jurisdiction(s) in which they practice. 
After becoming licensed, architects must ensure they maintain the capabilities described to remain 
competent. In addition, architects should strive to continually grow their competency in these and other 
areas to provide quality service and public protection. 

Design & Documentation Domain 

1. Assess regulatory design requirements. 

2. Evaluate existing project conditions. 

3. Develop a program that establishes project criteria. 

4. Create design solutions that support public and environmental well-being. 

5. Integrate socio-demographic considerations and universal design principles. 

6. Create design solutions that address project requirements. 

7. Create deliverables that convey a design solution. 

8. Coordinate the integration of building systems into a project design. 

Construction Administration Domain 

9. Prepare and administer documentation of the construction phase. 

10. Evaluate the progress of construction for conformance with contract documents and design intent. 

Practice & Project Management Domain 

11. Execute contracts for professional services. 

12. Implement a work plan according to a project’s scope, schedule, and budget. 

13. Organize and coordinate an interdisciplinary project team. 

14. Understand statutes and regulations that govern architectural practice within U.S. jurisdictions to 
provide services legally. 

15. Understand ethical and professional standards that govern architectural practice. 

16. Understand foundational business principles to operate a practice. 

On the following pages, you can fnd more detailed descriptions of the 16 competencies. The descriptions 
serve to illustrate some of the core knowledge, skills, abilities, and behaviors that an individual must be 
able to demonstrate to prove their qualifcation to practice as an architect. These descriptions are not 
exhaustive in their establishing of the criteria necessary to obtain a license to practice architecture in an 
NCARB member jurisdiction. 

3 
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>> EMERGENT ARTIFICIAL INTELLIGENCE 
TECHNOLOGIES GENERATE AN ARRAY OF 
OPPORTUNITIES FOR DESIGNERS IN AN 
INCREASINGLY DIGITISED CONSTRUCTION 
INDUSTRY, WHILE SIMULTANEOUSLY 
INTRODUCING TREMENDOUS UNCERTAINTY 
IN DEFINING THEIR ROLES AND 
RESPONSIBILITIES. IN A WORLD OF 
ACCELERATED AUTOMATED PROCESSES, HOW 
MIGHT THE CURRENT TECHNOLOGIES AVAILABLE 
TO THE PROFESSION TRANSFORM AS AI 
BECOMES MORE CAPABLE? << 
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My first real job in an architect’s office was in the pre-digital era, long before 
computers became ubiquitous in the profession. The managing partner of our 
small practice in North Carolina returned to the studio one summer afternoon 
after a demonstration of a new technology called ‘computer-aided drafting’. 
While he was deeply sceptical of the entire idea, and especially the cost, he 
noted that watching the plotter create a drawing was mesmerising, ‘like a real 
draftsman1 working on one part of the drawing and then another’. He also 
made it clear that no machine was going to be replacing anyone there laying 
down plastic lead on mylar sheets in our office in the foreseeable future. 

My old boss was channelling architects’ early but persistent uncertainty 
towards technology. While a decade earlier the visionary technologist Nicholas 
Negroponte and his colleagues were working at MIT on ‘The Architecture 
Machine’, mainstream practices like my employer were years away from 
anything more sophisticated than a word processing system.2 

Somewhere in the space between Negroponte’s research and my first drafting 
job tracing flashing details, one can find the dual anxieties at the heart of 
this ambivalence: the conviction that our work as architects is a uniquely 
valuable contribution, paired with the paranoia that capable machines will 
mercilessly replace us – the source of our profession’s angst about machine 
intelligence and its putative disastrous effect on design process. However, as 
Stanford computer scientist, Roy Amara, is purported to have said, ‘We tend 

1.4.1: AN 
EARLY PEN 
PLOTTER, 
C. 1980 
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to overestimate the effect of a technology in the short run and underestimate 
the effect in the long run,’3 which is certainly the case with architecture’s 
current concerns about artificial intelligence. The technological circumstances 
today are radically different from those of four decades ago, but the 
ambivalence justifiably remains. 

Resulting concerns about the implications of AI on practice run the gamut 
from design theory to employment economics. Neil Leach wonders whether 
AI-enabled computers can be creative,4 while Antoine Picon gingerly embraces 
the opportunities of machine-assisted design and simultaneously worries 
about AI restructuring the labour force: 

>> Until recently, one assumed that automation would impact only 

poorly qualified jobs. This might not be the case. Architecture will be 

probably among the most severely hit disciplines. The reason for this 

high degree of vulnerability is that architecture is among the most 

formalized of all the arts. The mechanical part is stronger than in 

other domains, and hence the traditional position of the discipline on 

the threshold between art and technology.5 << 

Labour economist Daniel Susskind (quoting the Governor of the Bank of 
England) refers to this phenomenon as ‘the massacre of the Dilberts’6 and 
challenges the value proposition of professionals more generally: 

>> (W)e argue that the professions will undergo two parallel sets of 
changes. The first will be dominated by automation. Traditional ways 

of working will be streamlined and optimized through the application 

of technology. The second will be dominated by innovation. 
Increasingly capable systems will transform the work of professionals, 
giving birth to new ways of sharing practical expertise. In the long run, 
this second future will prevail, and our professions will be dismantled 

incrementally.7 << 

There can be a wide gulf between theoretical speculation and the realities 
of daily practice, so now is an opportune time to bridge the two, lest the 
dismantling begin in earnest. Beyond theorising about the possibilities of this 
new technology – ignoring in the hope it will pass us by or fighting the inevitable 

automation of knowledge work – we should examine the relationship between 

design process and machine intelligence to determine how, if at all, they can at 
worst co-exist and at best be mutually complementary. 
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PROCESSES AND PLATFORMS 
As the building industry has become increasingly digitised, an emergent 
taxonomy of data inputs, algorithmic processes and potential AI-assisted 
outputs is emerging. As the industry relies more and more on computers, it 
creates large pools of digital information. Those data are made accessible 
via so-called common data environment platforms that organise, index and 
reference the resulting information. They systematise both inputs and outputs 
created by the collection of current automated process tools common to 
the industry – CAD, BIM, analytical engines, spreadsheets and so forth. As 
AI tools become available to AECO, a new set of autonomous process tools 
will emerge that create results without the direct input and control that 
were necessary for their automated predecessors. The combination of all 
three process platforms – common data environments, automated process 
tools and autonomous processes – will generate a new series of potential 
outcomes that are likely to radically change design process and the architect’s 1.4.2:   

INPUTS,   responsibility for results. PROCESS  
TRANSFORMATION   

See Figure 4.1.2 for a diagram of these relationships. AND OUTCOMES ⏎ 
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Today’s building projects generate huge piles of digital information, as the 
tools of building are increasingly computer-based. While in the 1980s and 
early 1990s the most relevant digital output was created by either CAD or 
word processing tools (primarily by AutoCAD© and WordPerfect, respectively), 
some element of almost every part of the design-build-operate-use continuum 
is digitised today. The ease with which the architecture profession shifted 
entirely to remote work during the Covid pandemic demonstrates that design 
work can be largely digitised and is likely to remain so, permanently. 

As we saw in the previous chapter, today’s artificial intelligence systems, 
based largely on empiricist platforms, must consume vast amounts of digital 
information to reach some level of basic competence. Unfortunately, these 
data exist today in a wide variety of forms and formats, and are not nearly as 
heterogeneous as the records of thousands of games of chess or millions of 
pictures of cats. 

However, it is possible to categorise digital building information in ways 
suggested by current practice and the likely evolution of digital techniques 
and processes, in order to develop intelligent input strategies for the futures 
of AI in design. Those categories include: 

Design representations in the form of models, drawings, studies, 
project management documents and other metadata generated as 
result of the creation of asset design, coordination and construction. 
Representational information is generated by the designers, builders and 
building operators to formally memorialise intent. Building information 
models (BIM) fall into this category and are important for other reasons 
that will be explored later. 

Reality capture information that documents existing physical 
reality, including topographic and GIS data, as well as video records, 
photographs (2D and 3D) and point cloud data from scans of existing 
conditions and construction in progress, all of which combine to 
translate the physical world of building into accessible, digital form. 

Evaluation, simulation and analytical data, including reference data 
sets that support design, engineering and construction management, 
analytical models for determining performance and simulations that use 
design representations as input to project behaviour of the project as 
it is being developed. Structural engineering analysis software, energy 
modelling and computational fluid dynamics models are good examples 
of what Andrew Witt calls ‘technoscientific’ models.8 
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1.4.3: 
A BUILDING 
INFORMATION 
MODEL (BIM) 

1.4.4: 
A LIDAR 
SCAN 

1.4.5: 
DIGITAL 
ANALYSIS AND 
SIMULATION 
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1.4.6: 
AUTODESK 
B360 
COST 
MANAGEMENT 
TRACKING 
SYSTEM 

1.4.7: 
AUTODESK 
TANDEM 
DIGITAL TWIN 

Control and coordination information generated by process control, 
monitoring and tracking protocols, such as construction management data 

systems, project control websites and cost estimating/management systems. 

Asset operation, systems performance and use information generated 
from building management control systems and other sensors that run 
the asset, and internet of things (IoT) information depicting the interaction 
of users with the asset itself. As built assets contain more and more digital 
infrastructure of all sorts, the resulting data will accumulate as a record 
against which future designs can be developed. 
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In combination these data sources are incoherent, held together only by 
the abstract concept of ‘the project’ enterprise that originates, realises, 
operates and uses a built asset. Individually, however, they are well 
organised, indexed, consistent and thereby entirely accessible as data 
sources for machine intelligence systems, and in some cases may be 
generated by such systems themselves. 

PROCESS TRANSFORMATION 
At the centre of the transformation of data streams into new, digitally enabled 
outcomes are both existing and new software, platforms and computerised 
procedures that work in combination to move the work of architects to its 
digital future, comprised of three elements. 

1. Common Data Environment: Streams of input coalesce in an 
environment called the Common Data Environment, or CDE, which is 
formally defined as ‘agreed source of information for any given project 
or asset for collecting, managing and disseminating each information 
container through a managed process’.9 That information structure 
creates an index referencing system for organising, locating, versioning 
and deploying various digital artefacts of the asset creation process 
(referred to above as ‘containers’) and as such provides referenceable 
‘containers’ (using CDE terms) for the various input streams and data 
collections that accumulate during project asset creation. 

The designers, builders and operators of a project then have two types of 
tools to either create or support their respective roles in the creation of a 
building: those that are ‘automated’ and those that are ‘autonomous’. It is a 
distinction that will be important to define, during the balance of this book, 
how AI tools offer different opportunities – and threats – to the architect. 

2. Automated processes: Automated tools are those digital instruments with 
which most architects are familiar today and fall directly in the category 
of ‘algorithmic’ machine intelligence. Any software tool today that, as 
an outcome of direct human manipulation of its capabilities, generates 
results and data based on a specific set of inputs could be characterised 
as ‘automated’. For purposes of this discussion, we can use the example of 
BIM to illustrate this point. 
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An architect developing her design using a BIM tool is largely in complete 
control of the data creation process. She decides that her project needs doors, 
walls, windows and floors, and creates those elements digitally by instructing 
her BIM software to do so. Each of those elements has been algorithmically 
encoded to have specific characteristics; a door, for example, has a certain 
constrained relationship to a wall and in that sense has specific tectonic 
‘intelligence’ that the architect deploys as she creates the model. The process 
of deploying that door is automated as she instantiates it into her BIM, and its 
representation in various modalities – the plans, elevations, sections, details, 
schedules – is automatically populated in those spots for her. Most traditional 
software tools available to the architect today are such ‘automated’ processes. 

3. Autonomous processes: Artificial intelligence tools, however, are distinct 
from their automated counterparts in that they process and generate 
results without the direct intervention of the designer, operating 
autonomously. When our BIM-enabled architect above searches online for 
product information, for example, the search engine’s AI-driven process 
combines what it has ‘learned’ as a machine about not just the realm of 
building product information on the web based on previous searches but 
what her specific interests might be, based on a model of her previous 
searches and its conclusions about the objectives she had in initiating the 
search in the first place. As such, the product search, and all such tools 
that today are based on AI/ML systems, are ‘autonomous’ and distinct 
from her BIM authoring experience. 

A NEW GENERATION OF OUTCOMES 
With increasingly large, better organised data sets accessible to AI-based 
systems, we can speculate on the likely set of autonomous opportunities that 
architects will see in the next decade as such systems become more capable 
and available. These categories, that we will call ‘autonomous outputs’ for now, 
form a speculative framework from which we can begin to build strategies for 

the implications for the profession, and might include the following: 

Design task automation: Procedures and protocols that require the direct 
intervention of the designer as likely to be autonomous in the future. 
While most code checking is a manual process today, that procedure 
can be supported by submitting a digital model to a code-checking tool 
that uses AI to evaluate code compliance, combining a more traditional 
‘architectural’ model with a technoscientific counterpart. 
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Tomorrow, that AI-based code checker could be lurking in the background 1.4.8: 
UPCODESof a BIM process, anticipating code-related problems as the designer 
CODE-

creates her scheme. Similar autonomous protocols might reach across the CHECKING 
entire delivery and operation life of a building. SOFTWARE 

Alternative generation, exploration: Design alternatives were once 
created entirely by direct manipulation of design information, like the 
cardboard models shown in Figure 1.4.9. Today this process is assisted by 
scripting, a form of ‘automating’ the control of certain digitally controlled 
parameters of a model to vary its characteristics and thereby create a 
variety of solutions. Those scripts are sometimes combined with analytical 
software – such as energy analysis – to evaluate and optimise the results. 
Scripts create the parameters by which designs might be generated in the 
future by AI. 

Construction automation: As robotics accelerate with AI-assisted systems 
for control, enhanced by computer vision and bolstered by the advent 
of industrialised construction processes borrowed from manufacturing, 
construction tasks once performed exclusively by human workers will be 
augmented, and in some cases, replaced, by autonomous devices on the 
job site. An excellent recent example is the PictoBot, an AI-driven robot 
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that works alongside an accompanying human supervisor to paint interior 
walls, otherwise unassisted. While the patterns, locations and finishes 
of such work might be specified in the architect’s building information 
model, translating the designer’s intent for a surface with those particular 
characteristics requires a context-dependent operation that can only 
mechanised effectively through some sort of computational intelligence. 

Autonomous building function: If the architect’s and engineer’s initial 
BIM is a first functional descriptor of a building that might include the 
performance objectives of its systems (and the design of the control 
infrastructure that might implement that performance), the operating 
air, water, waste and signal systems of that building generate another 
digital collection of data that, in concert with real-time analytics, can be 
used to calibrate and optimise those systems. Companies that provide 
such building infrastructure, such as Johnson Controls, build not just, 
for example, an air distribution system but also the digital controls for 
the system that communicate with AI-based monitors that memorialise 
and optimise the system output and use of energy (thereby reducing 
carbon). Of course, the resulting analytical data sets, interpreted by AI, 
can also provide insight into the design of subsequent buildings and their 
component equipment. 

1.4.9: 
MANUALLY 
CONSTRUCTED 
STUDY 
MODELS, C. 
1993 ⏎ 
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1.4.11: 
PICTOBOT, AN 
AUTONOMOUS 
PAINTING 
ROBOT, AS 
PROPOSED BY 
E. ASADI, B. 
LI AND I. 
CHEN10 

1.4.10: 
SCRIPTING 
TOOLS TO 
GENERATE A 
BUILDING 
ENCLOSURE 
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A VIRTUOUS LOOP 
The relationship between today’s largely automated processes used by 
designers and builders (like BIM) will, over time, give way to the autonomous 
opportunities of AI-based processes, and in doing so transform both the 
inputs and outputs of the building process. As computational platforms gain 
independence from their human masters, they themselves will generate 
additional sources of data in a potentially virtuous, self-reinforcing data loop. 
Properly guided, this cycle might bring the industry many of the advantages of 
productivity, efficiency and effectiveness that the designers, builders and users 

of buildings alike so desire. Doing so requires those same players to be directive 

about the generation of digital information and its intelligent use, with clear 
ideas of how AI might translate vast oceans of data into useful knowledge. 

NOTES TO THE 2025 EDITION 
In 2015, the Susskinds predicted that professions would be changed 
by two parallel forces: automation, as processes are absorbed by 
AI, and innovation (by either practitioners or software vendors), 
leading inexorably to the ‘incremental dismantling’ of the professions 
themselves. A decade after this provocation, process absorption is 
limited, innovation in practice has just begun, and the dismantling of 
architecture is hardly under way. 

This is not to say that AI use hasn’t grown significantly since the 
Susskinds’ and my various speculations. More than half of UK 
architects expect to use the tool in some capacity in the near future, 
and their American counterparts are similarly experimenting.11,12 In 
typical fashion, the new technologies are deployed in the service of 
near-term productivity, with various experiments in mostly larger 
firms with more enticing extractions from their large, internal data 
sets. Not unexpectedly, these implementations lean heavily on text 
data (files of correspondence, marketing materials and other written 
stuff) because the underlying foundation models that can make 
use of text data are substantial and increasingly reliable for search, 
indexing and inferential reasoning. 

CONT. 
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51 1.4 AI AND PROCESS TRANSFORMATION IN DESIGN AND BEYOND 

The capabilities predicted in my so-called ‘virtuous loop’ of self-
reinforcing AI-based processes, perhaps functions of my proposed 
GAECO foundation model, have yet to come to fruition. Virtuous 
loops require a degree of collaboration, consistency and cooperation 
not strongly evident in today’s building industry. 

We still await the lurking code-checking or other analytical reasoning 
agents that could assist the designer in her daily tasks. Perhaps 
one of the flickering, distant stars attempting such ends out in the 
constellation of AECO start-ups will supernova and dismantle some 
portion of our profession. We may still be (light) years away from that 
moment, and for the time being, architecture’s Dilberts seem to be 
safe from imminent massacre. 

1.4.12: SELF-
REINFORCING AI 
MODELLING TO 
EXAMINE SITE 
ACOUSTICS, 
DESCRIBED IN A 
PHYSICS-BASED 
SIMULATION 
(TOP) AND 
IN REAL-
TIME RESPONSE 
TO CHANGING 
DESIGN 
CONDITIONS 
(BOTTOM). 
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>> DIGITISATION WILL CONTINUE TO 
TRANSFORM THE WORK OF ARCHITECTS, 
AUGMENTING AND SUPPORTING SOME 
ACTIVITIES AND REPLACING OTHERS. WHILE 
TODAY’S COMPUTERS DO SO IN A WAY THAT IS 
LARGELY PROCEDURAL – ACCELERATING WORK 
AND MANAGING COMPLEXITY – AI SYSTEMS 
OFFER DIFFERENT OPPORTUNITIES AND 
THREATS TO THE PROFESSION IN THE SCOPE, 
BREADTH AND STRUCTURE OF THE SERVICES 
THEY OFFER THE INDUSTRY. AS AI SYSTEMS 
EVOLVE, SO WILL THEIR INTEGRATION TO THE 
DAILY WORK OF ALL PROFESSIONALS AND, 
EVENTUALLY, EVEN ARCHITECTS. << 

DOI: 10.4324/9781003726654-6 

https://dx.doi.org/10.4324/9781003726654-6
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JOBS VERSUS TASKS 
When Richard and Daniel Susskind argued in their 2015 book, The Future of the 

Professions, that artificial intelligence would eventually replace society’s need for 

professionals, architects were understandably concerned. Ours is a precarious 
profession, smaller, less politically powerful and certainly less remunerated 
than our equally threatened brethren in law or medicine, who will certainly put 
up a bigger fight before allowing themselves to be automated out of existence. 
The Susskinds declared, right at the outset of their treatise, that 

>> … we are on the brink of a period of fundamental and irreversible change in 

the way that the expertise of specialists is made available in society. Technology 

will be the main driver of this change. And in the long run, we will neither need 

nor want professionals to work in the way that they did in the twentieth century 

and before.1 << 

They observed that society established professionals to dispense expertise, 
and in doing so those professionals horde expert information, control the 
access to it and deploy it in ways that can be easily automated by an intelligent 
machine. Radiologists will give way to algorithms who can more patiently and 
accurately read diagnostic images; attorneys will no longer be needed to search 

documents for evidence, prepare routine legal arrangements or even represent 
clients in disputes; and architects will not be needed to design, document or 

help build projects.2 

As I write in 2021, we are six years past this declaration of extinction, with no 
significant encroachment by super-intelligent machines on the work of any 

of these disciplines. Best not get too comfortable, however, as technological 
change comes much more slowly to the building industry in general, and 
architecture in particular.3 

The encroachment on architects and the services we provide is probably 
better described in Daniel Susskind’s subsequent book, where he argues 

that it is likely that discrete tasks rather than entire jobs will be eliminated 

by computers. He extrapolates from the work of economists David Autor, 
Frank Levy and Richard Murnane, called the ‘ALM hypothesis’, drawing a 

distinction between entire jobs versus tasks, and routine versus non-routine 

tasks. Routine tasks (like many of those automated by mechanisation during 

the Industrial Revolution) require what ALM theory called ‘explicit’ knowledge, 
which is easy to document, explain and repeat. Then there are tasks based on 

‘implicit’ knowledge – requiring, for example, the creativity and judgement of 
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55 1.5 SCOPES OF SERVICE 

professional architects – which will not be automated because it is impossible 

to capture such work with rules expressed with logical expressions such 

as algorithms.4 

Susskind projects this thinking on to the current era of emergent AI to argue 

that machines may well encroach into the domains of implicit knowledge: 

>> The temptation is to say that because machines cannot reason like us, they 

will never exercise judgement; because they cannot think like us, they will never 
exercise creativity; because they cannot feel like us, they will never be empathetic. 
And all that may be right. But it fails to recognize that machines still might be able 

to carry out tasks that require empathy, judgement, or creativity when done by a 

human being – by doing them in some entirely other fashion.5 << 

Today’s empiricist, deep-learning based systems are beginning to emulate 
creativity, but certainly not to the degree that, for example, one might be willing 
to entrust that algorithm to replace wholesale the professional judgement of an 
architect. In the meantime, it is more important to examine, through the lens 
of today’s professional services, structures where AI might affect the tasks of 
professional work. 

MACHINES LEARNING ARCHITECTURE 
If today’s most capable intelligent machines are based on various strategies for 
deep learning, we can evaluate their capabilities by what they can be trained 
to do. Mark Greaves’s machine capability taxonomy, described in Chapter 1.2, 
was derived from a canonical reference known to many teachers, Bloom’s 

Taxonomy of learning, which defines a hierarchy of capabilities that build from 

so-called ‘lower order thinking’ (like memorisation) to ‘higher order thinking’ 
(like creating something new). Bloom created this approach as a guide to 

choosing pedagogical strategies in the classroom, and his students, Anderson 
and Krathwohl, subsequently refined the hierarchy to the terms very familiar to 

teachers today,6 and compiled in comparison in Table 1.5.1. 

It can be argued that the most successful deep learning systems today – the 
ones that invent new game strategies and thereby annihilate their human 
opponents, credibly translate from English to Japanese or even compose 
music or paintings – have somehow climbed Bloom’s pyramid, having gone 
far past remembering or even testing data to ‘creating’ new concepts. Within 
certain extremely limited contexts, like the specific rules of the game of Go, 
for example, or the ‘learned’ patterns of thousands of paintings, perhaps this 



56 

Machine Learning 2e.indd  56Machine Learning 2e.indd  56 16/07/2025  09:3316/07/2025  09:33

1.5.1:  
LEARNING  
TAXONOMIES  

is true. A machine programmed with a rigorous set of rules, however, can be  
said to have a ton of explicit knowledge, and as such is ‘creating’ in only a very  
limited way, particularly since the measures of success – winning the game or  
identifying a tumour on a radiograph – are so specific. 

So let us assume, at least for the next few pages of this argument, that  
Susskind’s thesis of task automation is the most likely implication of AI on  
architectural practice in the foreseeable future, and that selected tasks within  
the services that the profession provides may well be augmented, accelerated  
or even replaced by an intelligent computer. Susskind asserts that those tasks  
are easy to identify: they serve explicit goals that can be easily measured (to  
determine success) and there needs to be a lot of data for the machine to learn  
how to achieve the goal.7 One might argue that a wide array of architectural  
tasks might fit this bill, including questions such as: ‘Does this project meet the  
fire safety code?’ or ‘Does this ceiling plenum accommodate all the building  
services?’ With enough data and proper training, could a computer achieve  
these goals? Or, even better, not just answer the question but generate the  
required design solutions to meet those needs? 
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57 1.5 SCOPES OF SERVICE 

Why not? That stuff either fits in the ceiling plenum or not, and those doors 

either have the right fire rating and swing in the correct direction, or they do not. 
Assuming our deep-learning AI could study enough ceilings and exit corridors, it 
should be able to learn right from wrong, and correct from negligent. 

If only it were that simple, we could start building architectural intelligence into 
machines right away. However, there is another dimension to task automation, 
what Stuart Russell calls hierarchical planning and management: 

>> Intelligent behavior over long time scales requires the ability to plan and 

manage activity hierarchically, at multiple levels of abstraction – all the way 

from doing a PhD (one trillion actions) to a single motor control command 

sent to one finger as a part of typing a single character in the application cover 

letter.8 << 

In order to achieve specific goals, even those that require explicit knowledge 

and have clear, measurable outcomes, an intelligent machine must be able to 
deploy a hierarchy of (automated) tasks in an integrated order to reach that 
goal, and in doing so assure that the tasks work in concert towards the defined 

objective. Very few of the obligations of the architect today, even those reliant 
only on explicit knowledge, can be automated in this way, and as such it is 

unlikely that large swathes of design service will be satisfactorily automated in 

the near to middling future. 

ARCHITECTURAL SERVICES 
Modern architects deliver their services in a prototypical continuum that begins 

with project definition and extends through design to construction. In the UK, such 

services are well-defined by the RIBA Plan of Work,9 and in the United States as 
‘Basic Services’ by the AIA’s Owner-Architect Agreement B101.10 Each are compared 
in the diagram in Figure 1.5.2. 

In general, each scope prescribes a route through a standard set of tasks that can 

be described in in categories like Project Definition, Design, Production and so forth. 
Each phase of the work is comprised of a series of subtasks that differ by phase and 

are modulated based on the expectations, deliverables and professional standards 
that govern the architect’s services. These subtasks themselves can be categorised 

into general buckets like Practice Management, Project Management, etc, and they 

span across the phases of service. A rough mapping of a sample of such tasks, 
aligned with service categories, can be found in Figure 1.5.3. 
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STANDARD SCOPES OF SERVICE 

RIBA (UK) 
0 
STRATEGIC 
DEFINITION 

1 
PREPARATION 
+ BRIEFING 

2 
CONCEPT 
DESIGN 

3 
SPATIAL 
COORDINATION 

PD SD DD 
AIA (US) PRELIMINARY DESIGN, 

PROGRAMMING 
SCHEMATIC 
DESIGN 

DESIGN 
DEVELOPMENT 

SERVICE CATEGORIES 

DEFINITION 

DESIGN 

PRODUCTION 

PROCUREMENT 

CONSTRUCTION 

OPERATION 

1.5.2: 
RIBA AND 
AIA SCOPE OF 
SERVICES 

If we look at these task components through a lens that combines Susskind’s 

‘clear goals and lots of data’ criteria and Russell’s task hierarchy, and includes 

the ALM’s tasks that require implicit knowledge, we can start sorting the service 

work of architects by likelihood of empiricist automation. 

Let us call any task component that can be easily defined with a measurable 

goal and executed through explicit logic as ‘procedural’, those that require an 

intelligent integration of procedural tasks to reach a goal, even a measurable 

one, as ‘integrative’ and those that are inherently creative, subjective and/ 
reliant on implicit knowledge as ‘perceptive’. Figure 1.5.3 attempts to categorise 

each component on this continuum, from procedural through integrative to 
perceptive, depending on the work necessary to complete each task component. 

As the coded bars suggest, there is very little that today’s architects do, even 
at this relatively detailed level of examination, that can be characterised as 
easily automatable. In fact, much of the technology of today is procedural 
(including every piece of software we use), all of which is deployed in the 
service of higher order tasks they accomplish. Eliminating humans from the 

architectural equation is going to require an enormous jump in capability, 
climbing the Bloom Taxonomy while combining those capabilities to accomplish 
hierarchically complex objectives. This suggests that architects would better 

⏎ 
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spend time strategising which procedural aspects of practice might best benefit  
from autonomous processes of AI, rather than worrying that our work will be  
replaced wholesale by capable machines. 

AI-SUPPORTING SERVICES 
We can excerpt a few sample tasks from the list in Figure 1.5.3 in order to test  
this thesis that selected responsibilities in the project process are more suited  
to autonomous technology than others. Choosing a few examples that are  
primarily procedural by using our classifications above, I speculate on how AI  
systems might work in concert with their human architectural counterparts. 

What this quick sketch problem suggests is that, at least in the near term, AI  
systems will be limited in scope, require enormous amounts of what is currently  
unavailable data, and likely augment, rather than eliminate, the central jobs of  
architects. This is a reassuring conclusion in the near term, but bears further  
consideration as AI systems evolve, in theory, from empiricist to cognitive  
capabilities. 
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AIA (US) 
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DEFINITION 
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TASK COMPONENTS 
PRACTICE MANAGEMENT 

OBTAINING WORK 

GETTING, ASSIGNING, MANAGING STAFFING 

MONITORING PRACTICE FINANCIAL HEALTH 

SETTING BUSINESS STRATEGY 

MANAGING PRACTICE OPERATIONS 

PRACTICE MANAGEMENT AND COORDINATION 

MANAGING PROJECT STAFFING RESOURCES 

ASSIGNING AND COORDINATING WORK 

MAINTAINING BUDGETS AND SCHEDULES 

COORDINATING CONSULTANTS AND OTHERS 

IDEATION DESIGN GENERATION 
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GENERATING ALTERNATIVES 

EVALUATING AND SELECTING ALTERNATIVES 

DOCUMENTING DESIGN DECISIONS 

RESOLVING CONFLICTING REQUIREMENTS 

TECHNICAL PRODUCTION AND ANALYSIS 

DETERMINING CONFORMANCE TO THE BRIEF 

EVALUATING AND INTERGRATING 
TECHNICAL CONSIDERATIONS 

PERFORMING ENGINEERING ANALYSIS 

EVALUATING AND MANAGING PROJECT COSTS 

COORDINATING SPATIAL AND TECHNICAL SYSTEMS 
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REVIEWING AND APPROVING TECHNICAL DOCUMENTS 

REVIEWING CONSTRUCTION PROGRESS 

CLIENT AND REGULATORY MANAGEMENT 
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1.5.3: 
TASK 
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CLIENT AND REGULATORY MANAGEMENT 

COORDINATING 
WITH REGULATORS 

ASSURE THE 
PROJECT 
CONFORMS TO 
REGULATORY 
CONSTRAINTS 

PERMITS AND 
APPROVALS 
ACHIEVED 

EVALUATES CODE 
CONFORMANCE, IDENTIFIES 
DISCONTINUITIES, 
RECOMMENDS VARIANCES 

TASK COMPONENT GOAL METRIC PROPOSED AI 

IDEATION, DESIGN GENERATION 
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1.5.5: 
AI-BASED 
START-UPS IN 
ARCHITECTURE, 
2021 

PRESENT, NEAR FUTURE AND BEYOND 
Empiricist AI systems that subscribe to the Susskind definition are beginning 
to appear in today’s ‘BuildTech’ marketplace, and many focus on narrowly 
drawn procedures that demand clearly measurable goals, explicit logic 
and plenty of data. The table below describes a selection of some of these 
companies that are emerging as of mid-2021: 

COMPANY GOAL LOGIC DATA 

SPACEMAKER AI OPTIMISE MULTI-
UNIT BUILDING 
CONFIGURATIONS 
ON A SITE 

MEASURE AND REDUCE 
ENERGY AND WATER 
USE IN A BUILDING 

ORGANISE, 
OPTIMISE, AND 
CONTROL PROJECT 
CONSTRUCTION COSTS 
FROM CONCEPT TO 
COMPLETION 

DETERMINE THE 
MAXIMUM ALLOWABLE 
BUILDABLE AREA ON 
AN URBAN SITE 

ADJUST BUILDING 
DIMENSIONAL 
PARAMETERS TO 
OPTIMISE USE AND 
CONFIGURATION 

SITE PLANS AND 
ANALYTICAL 
OUTPUTS 
OF SPACE USE 

ENERGY MODELS, 
USAGE DATA, SITE 
INFRASTRUCTURE 
INFORMATION 

COST ESTIMATING 
HISTORY, LOCAL 
ECONOMIC 
CONDITIONS, 
MARKET 
INFORMATION 

ZONING CODES, 
PARAMETRIC 
BUILDING 
TEMPLATES 

PLANIT IMPACT TRANSLATE 
BUILDING 
CHARACTERISTICS 
INTO ENERGY 
AND STORMWATER 
INPUTS AND 
OUTPUTS 

JOIN ANALYSE AND 
MANAGE COST 
INPUTS AND 
PROJECT HISTORY 
TOWARD COST 
TARGETS 

ENVELOPE TRANSLATE 
BUILDING ZONING 
REGULATIONS IN 
TO BUILDING 
CONFIGURATIONS 

As these systems become more capable, collecting data and building complex, 
correlative data structures within their neural networks, it is likely that their 

logics will expand to a wider range of targeted tasks across the architect’s 

responsibilities. Russell suggests that new ideas were often attributable to 
‘the three ineffable I’s: intuition, insight, and inspiration’.11 Procedural AI will 
augment these critical (perceptual) components of professional judgement, 
making the architect’s services increasingly reliant upon, and validated by, 
analysis and data. One can imagine a day where the architect, having fully 
explored a range of options for the configuration of site – including the resulting 

performance data about rental area, storm water draining, zoning conformance 
and even construction cost – can recommend with greater confidence a 
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65 1.5 SCOPES OF SERVICE 

decision that they chose with the assistance of a procedural AI. These systems 
will remain, however, limited to the lower rungs of Bloom’s ladder of higher 
order thinking – analysis, with perhaps a touch of evaluation – since creation 

will continue to require the integration of a wide range of information, decisions 

and competency. Empirical AI is highly unlikely to reach the top rung. 

Beyond the near-term future, the architect’s services will need to respond to an 
evolving set of new expectations and constraints, including: 

» the automation of construction 

» the increased use of data across all enterprises including those of 
clients, and 

» higher order design aspirations of social equity, environmental justice 

and epidemiological safety. 

Few of the required services that architects will need to provide to address 

these needs can be found in the traditional methodologies of today, be it 
through the RIBA Plan of Work or the AIA’s definition of ‘Basic Services’. Deeper 

analytical insight, deployment of broad data evaluation and coordination of the 
data-driven tasks of a design team with varied (and ever-increasing) numbers of 
consultants will require architects to integrate the AIs that will support this work, 
in the same way in which they manage their engineers today. The challenges of 
design tomorrow will be best faced and conquered by people, masters of the 

ineffable I’s, whose ideas will drive the spaces, buildings and cities of tomorrow, 
even if we reach the distant goal of Domingos’ Master Algorithm. 

1.5.6: 
SPACEMAKER 
AI, RECENTLY 
ACQUIRED BY 
AUTODESK FOR 
$240 MILLION 
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NOTES TO THE 2025 EDITION 
Mark Greaves’ learning taxonomy suggested that algorithms could 

become increasingly capable through a progression of functional 
accomplishments, all of which are based on an underlying theory 
of computational ’reasoning’ that builds greater ability to grasp, 
manipulate, infer from and eventually originate ideas. This logic 
is apparent if one assumes that these algorithms are capable of 
reasoning, in whatever form is appropriate for systems based on 
Bayesian logic with a smattering of neuro-symbolic logic (or what I call 
’cognitive’ algorithms in the original text). Perhaps this approach still 
obtains to reach truly useful systems in our discipline. 

While we wait, however, a different functional taxonomy of use has 

emerged for architects experimenting around the edges of 2025’s 
systems, comprised, in my view, of three use categories: 

Provocation – using generative tools (for images or text) to create an 

array of provocative, inspirational and sometimes useful – at least 
in the aggregate – outputs that spur a further, more coherent and 

appropriate human-generated idea. Since producing these outputs 
is very low-cost, the ‘systematic generation of useless alternatives’ (as 
Cesar Pelli once described certain digital output) has marginal utility. 

Production – taking advantage of incumbent foundation models 

to help with routine tasks like writing correspondence, generating 

marketing materials, searching existing text data, or doing first order 

internet-based research. Creating more sophisticated products – like 

plans, sections or elevations – is currently beyond the capabilities of 
such systems. 

Prediction – since generative AI is essentially predictive and based 

on statistical models of tokens, it is logical to assume that sufficiently 

trained models could create new ideas, or at least evaluate the 
performance of other (design) ideas. Right now, such work is done 

through the idea of surrogate models that simulate a world of 
CONT. 
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67 1.5 SCOPES OF SERVICE 

predictive possibilities, and are only accessible through advanced AI 
adventures like Autodesk’s Forma environment. 

A fascination with provocation, combined with a non-unexpected 
interest in (text) production may divert necessary attention from the 
more fruitful possibilities of prediction as more mature AI platforms 
are developed. Either way, there are no discernible shifts since 2021, 
catalysed by AI or otherwise, in the current scopes of service delivered 
by architects in 2025. 

1.5.7: 
IMAGE 
PROVOCATION 
AS A 
‘CAPABILITY’ 
OF AI THAT 
DOES LITTLE 
TO PROGRESS 
THE LARGER 
ENTERPRISE 
OF AI-BASED 
DESIGN AS 
ANTICIPATED 
BY MARK 
GREAVES 

UNDERSTAND 

EVALUATE 

SIMULATE 

CREATE 

PROVOKE 
(WITH AN IMAGE) 

PRODUCE (A BUILDING INFORMATION MODEL) 

DESIGN (AN ENTIRE, COHERANT INTEGRATED DESIGN + DELIVERABLES) 

PREDICT (THE ACCOUSTIC CHARACTERISTICS OF A SPACE) 



Machine Learning 2e.indd  68Machine Learning 2e.indd  68 16/07/2025  09:3416/07/2025  09:34

 
 

 
 

 
 

 
 

 
 

 
 

>> ARCHITECTS OPERATE IN THE SYSTEMS 
OF PROJECT DELIVERY WITH SPECIFIC 
RELATIONSHIPS AND OBLIGATIONS TO THEIR 
CLIENTS, THEIR CONSULTING COLLABORATORS, 
BUILDERS AND, ULTIMATELY, THE PUBLIC. 
THEY DEPLOY A VARIETY OF TECHNICAL 
SKILLS AND TOOLS, IN COMBINATION WITH 
HEURISTIC STRATEGIES THAT COMBINE SKILLS 
OF JUDGEMENT, INTUITION AND LEADERSHIP, 
TO FULFIL THEIR RESPONSIBILITIES. HOW 
DOES THE ROLE OF THE ARCHITECT AS A 
PROFESSIONAL CHANGE AS TECHNOLOGY MOVES 
TOWARD AUTONOMOUS COMPUTING? << 

DOI: 10.4324/9781003726654-7 

https://dx.doi.org/10.4324/9781003726654-7
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SYSTEMS OF DELIVERY 
The term ‘project delivery’ comprises two central aspects of making buildings: 

1. The constellation of clients (who create demand for buildings and then 
operate and use them), architects (who design them) and constructors 
(who procure, fabricate, assemble and build them). 

2. How those players are arrayed in a set of professional, informational, 
financial and legal relationships defined by their respective roles, 
responsibilities and ability to manage risk. 

These two factors combine in typical ways according to a formal template 
known as a project delivery model.1 In a perfect world, an appropriate 
delivery model would be determined that matched the demands of the project 
and the capabilities of the participants. However, since power dynamics and 
politics play as much a role in such decisions as technical considerations, the 
choice of a delivery system is not always perfectly suited to the players or the 
project itself, introducing informational discontinuities at the beginning of a 
project that often last for the duration, to little good effect. 

Over the course of the 20th century, and particularly as architecture evolved 
into a bona fide profession, the key players in these delivery models 
developed prototypical roles. Clients look to convert capital into a physical 
asset, but lack the technical capability to do so, so they hire architects to 
define their needs and contractors to translate that definition into a building. 
For a variety of reasons that includes the misalignment of interests, these 
systems yield unsatisfactory results2 and as such there has been extensive 
experimentation in reforming them. 
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As described in Chapter 1.3, that misalignment, combined with the 
prototypical roles of the architect and builder, sets each in opposition to 
the other. Architects deliver professional services in the form of judgement 
and are therefore largely in the business of creating and dispensing ideas 
(the design), whereas contractors deliver products, and as such are primarily 
tasked with making things (the building). These distinctions, in this context, 
are important. If architects have the role of ‘proposing ideas’ and contractors 
somehow ‘disposing them’, tensions will surely result. However, as the built 
environment becomes increasingly digitised, the divide between designer and 
builder feels unnecessarily artificial – serving neither the architect, builder, nor 

their mutual client. While the production of many of the products that drive the 
economy – automobiles, airplanes, consumer appliances, electronics – has been 

digitally optimised for decades, the construction industry has trailed far behind. 
This gap is beginning to close with the industrialisation of construction.3 

Thus, the autonomous opportunities of artificial intelligence are likely to have 
an impact on both the services provided by architects in delivery systems and 
how those services are converted into physical artefacts of the built world. 

The challenges of delivery dynamics in modern construction have been 
addressed by a variety of strategies, ranging from the reconfiguration of 
relationships between design, cost estimating, construction and suppliers 
as seen in models like public-private partnerships (PPP) and recent 
experimentation with integrated project delivery (IPD), to attempts at 
revolutionary means of joint design/construction representation like BIM – or 

even a combination of these together. The heart of the problem, however, was 
identified as early as 1963 in a report prepared for the UK construction industry: 

>> The basic decisions of construction control are often incomplete 

or unduly rushed because necessary information is not available 

sufficiently ahead of time, or is not complete enough. On many 

occasions members of the construction team could, but do not, 
ease this problem by supplying the data that would facilitate the 

preparation of fuller and more useful information by others. Building 

construction is remarkable among industrial activities for the lack of 
detailed information about how it proceeds. Until more is known there 

can be no basis for improvement.4 << 
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Each of the players working to deliver a project requires information at 
a specific level of resolution, at a certain time, and with a precise degree 
of completeness. Each creates, consumes, deploys and/or distributes 
this information in order to fulfil their obligations, make a profit and not 
assume unmanageable risk. Projects are thus delivered in a constellation of 
interdependent yet incompatible collections of information structures and 
responsibilities. In the digital age, various technologies lurk below the surface 
of delivery, hoping to smooth and improve it. AI is just now arriving to join 
that crowded field of suitors. We can expect AI to augment – yet also possibly 
replace – the capabilities of the architect, and to generate and organise the 
informational structures that connect architecture to construction. 

DESIGN INTENT 
At the centre of these questions is the definition of the architect’s fundamental 
responsibility to the delivery process itself. That duty is best understood 
through a concept of ‘design intent’, defined by the RIBA Plan of Work as ‘(t)he 
means by which the design team describes a Building System in a manner that 
allows a specialist subcontractor to design the system’.5 If you are wondering 
who, exactly, is the designer of any given system in a building, you are not 
alone. Architects and their collaborating consultants (engineers and the 
like) set out, at a level of detail necessary to be clear about their intentions 
(whatever that may mean), information about how the design should look and 
operate once it has been completed. There are numerous intermediate steps 
necessary before ‘the design’ is ready to be realised in the field, including the 
specifics of materials and assemblies, the exact procedures and processes of 
building (called the ‘means and methods’ of construction) and numerous other 
decisions made by the contractors, both big and small. Broadly generalising 
about the nature of modern construction on both sides of the Atlantic, it can 
be charitably concluded that construction has become too technically complex 
for a single entity – designers or builders – to be wholly responsible for it. Even 
the smallest project has a coterie of subcontractors, product manufacturers 
and material suppliers, and cost is always top of mind. In the most optimistic 
characterisation of the ideal arrangement under these rules of engagement, 
the architect sets out her ideas in sufficient detail to guide the builder, and the 
contractor figures out all the specific particulars. Much is lost in translation. 

It was not always such. In the late 18th century in the UK, and as long as 100 years 
later in the US, the architect was wholly responsible for all aspects of construction. 
Higgin and Jessop described the project delivery model in Figure 1.6.2. 
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function MEASURERS 

  
 

 
 

1.6.2: 
PROJECT 
DELIVERY IN 
THE UK, 18TH 
CENTURY6 

Alas, worries about and failures of project coordination and management 
of budgets, along with the increasing complexity of urban- and industrial-
age construction, brought things more into current alignment by the 19th 
century7, with only slight elaboration in the 20th, as seen in Figure 1.6.3. 

Note the appearance of the quantity surveyor (to manage costs) and the 
main contractor (to procure and coordinate the work), both roles that reflect 
current practice. As these models evolved, the level of granularity and 
resolution of information necessary to build ever increased, and it became 
apparent that as the project’s interface with the procurement process, the 
contractor and her minions – including subcontractors who would fabricate 
building systems – was best to ‘finalise’ the design itself.8 

As the building industry has moved from drawings to BIM, the inherent 
tensions of such a system were exacerbated rather than calmed by the 
availability of 3D information. Architects complained that they had neither the 
expertise nor the fee to provide extreme construction detail in their design 
intent BIM data, and builders declared that the resulting BIM deliverables 
were unsuitable for building. So despite the insertion of a technology designed 
to increase transparency and collaboration, the age-old pathologies persist. 

Yet there are other forces at play that may, through technology, finally close 
this ancient divide. In a market that is increasingly pressed towards more 

⏎ 
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1.6.3: 
PROJECT 
DELIVERY IN 
THE UK, 19TH 
AND 20TH 
CENTURIES9 
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efficiency and productivity, and dissatisfied with the results of traditional 
delivery approaches, the move to digital fabrication and industrial processes 
in construction is inevitable. This is particularly true as automation moves the 
industry towards what is now being called ‘industrialised construction’ and 
accelerated using manufacturing strategies for building.10 There is an obvious, 
resulting demand for higher quality digital deliverables to smooth the path. 
However, will architects and their consulting engineers deliver them? And can 
AI play a part in closing the professional divide? 

PROFESSIONAL RELATIONSHIPS 
This question must be examined in the context of all the obligations of the 
architect, informational and otherwise. To do so, we can turn the traditional 
delivery model diagrams found in Figure 1.6.1 inside-out to look at the specific 
connections of the architect in any such structure, depicted in Figure 1.6.2. 
With our hypothetical architect in the middle of her relationships, we can see 
four distinct roles required (see Figure 1.6.4). 

An agent of the owner, who acts as the client’s intermediary in the process, 
generating the design and stewarding it, armed with descriptions of her 
‘design intent’, through construction and acting as the owner’s proxy to assure 
the building conforms to that intent. 

A leader of the design team, who orchestrates and integrates the work of 
various consultancies in the service of creating a coherent, coordinated and 
accurate design which will be passed along to the builders. 

A guide to the builder, to articulate the goals of the project and help the 
construction team to interpret, clarify and ultimately review and approve 
the design intent on behalf of the client as it is translated into more detailed 
information to support construction. A subcontractor, responsible for a given 
building system, will often create very detailed information in support of the 
fabrication of that system (shop drawings) but the architect must review and 
approve such proposals before the fabricator may begin. 

A protector of the public, including both the specific users of the project as 
well as those with whom the architect has no specific contractual obligations 
but nonetheless is responsible for the health, safety and welfare of those who 
inhabit her design. 
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ClientBuilder 

Building 
Supply 
Chain 

2 AGENT/ EXPERT 

1 PROTECTOR 

GUIDE 3 

STANDARD 
OF CARE 

Users 

Public 

Project
Consulting

Team 

MANAGER /LEADER 4 

ARCHITECT 

* For further detail on this diagram, 
see Figure 2.2.1. 

The architect thus either generates, reviews or is subject to the implications 
of the vast amounts of information that swirl around even a simple building 
enterprise. That information, despite efforts to rigorously standardise it, 
manifests in a wide variety of formats, versions and levels of detail, and must 
be understood, coordinated and often translated from source to recipient to 
be useful. An immediate opportunity of AI – one that is yet unexplored as of 
this writing – would be to try to ‘understand’ the relationships between these 
data and help deploy them in a structured, accessible and efficient manner. 

1.6.4: 
ARCHITECT’S 
RELATIONSHIPS 
IN DELIVERY 
MODELS* ⏎ 
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RELATIONSHIPS, DELIVERY AND COMPUTATION 
So perhaps AI will one day rationalise the ebbs and flows of digital information 

that follow the relationships and obligations of the architect as a project is 
delivered. If enough data can be organised and made accessible, this would seem 
a prime opportunity for the next generation of empiricist, deep-learning systems 
that are so good at finding patterns and connections between data points. 

But how might AI, in the immediate future, either augment or eliminate the 
jobs of architects as defined in these four roles? Some early speculation is 
summarised in Table 1.6.5. 

1.6.5: 
EXAMPLE 
OF AI 
IMPLICATIONS 
FOR THE 
DELIVERY 
ROLE OF THE 
ARCHITECT 

ROLE AUGMENTATION BY AI ELIMINATION BY AI 

AGENT OF THE OWNER DEMONSTRATED DESIGN 
RESULTS BASED ON 
LARGE REPRESENTATIVE 
DATA AND AI-GENERATED 
CONCLUSIONS 

GENERATION OF COMPLETE 
DESIGN SCHEMES 

LEADER OF 
THE DESIGN TEAM 

COHERENT DISTRIBUTION 
OF USEFUL INFORMATION 
TO THE POINT OF WORK 

INTEGRATION OF 
ENGINEERING AND OTHER 
REPRESENTATIONS OF THE 
PROJECT AND COORDINATION 
OF THEIR WORK 

GUIDE TO THE 
DESIGN INFORMATION 
TO THE BUILDER 

DESIGN DATA AUGMENTED 
BY PROCEDURAL 
INFORMATION FOR 
ASSEMBLY AND 
CONSTRUCTION 

AUTOMATIC GENERATION 
OF CONSTRUCTION 
DOCUMENTATION, BASED ON 
INFORMATION DEMANDS OF 
THE BUILDER 

PROTECTOR OF THE 
PUBLIC’S HEALTH, 
SAFETY AND WELFARE 

LIFE SAFETY ANALYSIS 
AND COMPLIANCE 
EVALUATION 

CODE CHECKING AND 
CERTIFICATION FOR 
PERMIT 

The importance of guiding the development and outcomes of emergent AI 
systems is apparent in the contrasts between augmentation and elimination 
scenarios. While autonomous algorithms may help architects to generate 
alternatives and evaluate them, it is technically a very short step to allowing 
those systems to make final decisions about the design, essentially leaving the 
architect (or someone else) as just the operator. Less likely is the possibility 
that the coordination of the design team itself would be entirely replaced 
by automation, as this task is as much about human leadership as technical 
integration. The move towards industrialised construction creates demand 
for far more data than just traditional ‘design intent’, in the form of higher 

⏎ 
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resolution design data and procedural templates for sequences of fabrication 
and assembly. These may be automated by virtue of intelligent algorithms 
in the future and have the potential to eliminate huge swathes of the 
architect’s role – and compensation – as a result. Finally, in what is perhaps a 
central existential threat that will be examined in Chapter 2.3, the architect’s 
fundamental responsibility for the public’s health, safety and welfare, as 
defined by the understanding, interpretation and implementation of planning 
and safety codes, is being automated by companies like UpCodes even today. 
Once that job is done by computers, the need for professional certification by 
a person – rather than a machine – is called into question. 

MEANS AND METHODS 
So it appears now that design, construction, and building operation processes 
are rapidly digitising; that the obligations of the players in delivery are likely 
to evolve accordingly, particularly those of designers and builders; that 
these processes are creating a lot of data that could be consumed by hungry 
AI systems looking to learn how to (charitably) help; and that the biggest 
gulf in the digital divide is between design and construction, especially as 
construction becomes more like manufacturing. 

So what is the most useful focus for AI in delivery from the architect’s 
perspective? Automation algorithms are good at memorialising processes (like 
how to count the number of windows in a building), empiricist autonomous 
processes are good at examining data for patterns and, eventually, cognitive 
systems might stitch the two together. Bridging the gap from design intent 
to construction execution is the most likely target of the combination of all 
of these AI-based technological options, in that it will require a broad set of 
capabilities beyond a single technology and could, potentially, improve the 
overall delivery of projects in the most dramatic and immediate way. 

As BIM was beginning to focus the attention of the building industry on 
process revolution, the labour theorist, Paolo Tombesi, put forth a proposition 
about the changing role of the architect called ‘flexible specialisation’. He 
argued that the making of a building – in essence, the underlying delivery 
model – was comprised of a constellation of processes and obligations which 
required the technical and synthetic design skills of an architect, and as such 
the profession should move away from slavish dedication to the design of 
objects to a broader, more dynamic set of responsibilities in project delivery 
(see Figure 1.6.6).11 
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While Tombesi did not speculate beyond the technological possibilities of 
BIM, his argument extends easily to circumstances where certain data and 
procedural aspects of his process nodes are automated in part by AI, and 
the architect assumes the role of deploying these capabilities to orchestrate 
and integrate the results. Further, the variety of data flows implied by 
delivery structure of flexible specialisation demand a rationalising platform to 
organise, normalise and monitor that information, a powerful potential use of 
AI’s capabilities. 

Finally, beyond the immediate interdependent processes of construction lies 
an extensive supply chain of both raw and processed materials. The architect 
and historian, Andrew Rabeneck, has gone so far as to argue that designers 
and builders are mere ‘contingent players with the new political economy’ 
of the capital flows of construction commodities such as steel or cement.12 

Control of the intellectual property of industrial production was, according 
to Rabeneck, assumed by those who took on the risk of development of 
those systems and, as a result, ‘industrial control over scientific knowledge 
and processes grew steadily among material and product manufacturing 
companies’.13 He extends this argument to suggest that this shifting of 
knowledge and understanding of the supply chain and its components is part 
of the larger loss of value and influence of architects themselves. 

As the means and methods of construction are increasingly industrialised, it 
is possible that Rabeneck’s purported professional descent of architectural 
prowess may accelerate, further widening the gap between intent and 
execution. This possibility strengthens the argument that the tools of AI 
– which could significantly enhance the architect’s understanding of the 
processes, procedures and informational requirements of construction, and 
allow that insight to inform and support design – can be deployed to either 
augment or eliminate the architect in the systems of delivery. 
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Building 
design 

1.6.6: 
TOMBESI’S 
CONCEPT OF 
FLEXIBLE 
SPECIALISATION 

NOTES TO THE 2025 EDITION 
Johnston’s framing of professional practice as an evolution of 
mediated agency and collective intelligence becomes particularly 
interesting when considering how overall project delivery systems 
may evolve in the era of AI. Tombesi’s ‘flexible specialisation’ is 

CONT. 

⏎ 
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something of a catalogue of potentially automatable design-to-build 
tasks, and defining the locus of knowledge and the agency to deploy it 
when augmented by algorithms blurs the crisp edges of the diagrams 
of traditional project delivery models. Where are the lines of contract 
privity, information flow, risk and reward, and ultimate responsibility 
when agent algorithms intercede in the production of a building? 

An early assertion of the move to BIM was the potential evolution of 
delivery models to more collaborative, outcome-based systems like 
integrated project delivery (IPD). That generation of technology did 
not have the anticipated transformational effect, however, as various 
agents continue to hoard knowledge and regress to traditional 
protocols, means and methods, despite the alleged transparency of 
information in a BIM-based project. 

With tens of billions of dollars invested in the construction industry 
tech sector in the past four years, the generation of and demand 
for digital information – mostly on the build rather than design 
side of the delivery model – grows exponentially. Designers and 
builders have shared interests in a variety of data sets and analytical 
outcomes that, supported by agentic algorithms, might inspire new 
strategies for creating, sharing and taking responsibility for the data 
necessary to build. 

By definition, contractor information demand (and process influence) 
is of an order of magnitude greater than that of designers, creating 
an asymmetry in the potential development trajectories of new AI-
based tools, and with that asymmetry, potential for new demands on 
design information. The dynamic is already apparent in BIM-based 
projects, on which Boston-based constructor Suffolk’s Alexis McGuffin 
recently remarked: 

…at Suffolk we discard the design models altogether. We don’t use them 
at all. Our teams actually rebuild models from the more accurate 2D 
documents, which allows us to get closer to ‘virtual construction’ versus 
3D coordination. We know that building our models from the CD set in a 
3D virtual environment can reduce our risk significantly, as opposed to 
simply using the design models as backgrounds. While this approach is 

CONT. 
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not easy, we’re confident it is the most effective way for us to mitigate our 
risk. We simply could no longer accept the risk associated with building 
from the design models or architect drawings alone. We needed a better 
way… we [then] realised we could offer additional value throughout the 
entire building life cycle, including during the design phase. So we hired 
our own architectural expertise. Suffolk Design allows us to do the things 
that we think architects don’t want to do, including constructability 
reviews, completing the CD set and design management. This allows 
the architects to focus on creating great design and providing us the 
information we need to build the building in an efficient manner.14 

Should a wide range of Tombesian tasks become fully automated 
through a next generation of AI tools, one might expect dismantling 
of our profession to begin in earnest, unless more collaborative 
models come to the fore. 

1.6.7: 
DATA OF 
COMMON 
INTEREST 
ACROSS THE 
DESIGN AND 
CONSTRUCT 
DIVIDE 
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>> THE BUILDING ENTERPRISE DEPENDS 
UPON A SERIES OF NETWORKS ACTUALISED 
TO YIELD RESULTS. PROFESSIONAL 
TEAMS OF CONSULTANTS AND BUILDERS 
ARE ONE SUCH NETWORK; THEIR RISK 
RELATIONSHIPS, ECONOMIC EXCHANGES AND 
DATA NETWORKS ARE OTHER EXAMPLES. 
HOWEVER, A THIRD SET OF NETWORKS – 
THE NEURAL NETWORKS THAT COMPRISE AI/ 
ML SYSTEMS – WILL SOON OVERLAY THESE 
STRUCTURES AND TRANSFORM THEM. << 
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>> LIKE ALL TECHNOLOGY, AI IS LIKELY 
TO PROVIDE NEW OPPORTUNITIES FOR 
VALUE CREATION AND PRODUCTIVITY WHILE 
SIMULTANEOUSLY ELIMINATING THE NEED 
FOR SOME TASKS PERFORMED BY HUMAN 
ARCHITECTS. THE DANGERS OF TRADITIONAL 
PRESSURES OF COMMODIFICATION MIGHT BE 
OFFSET BY NEW CAPABILITIES, AND WITH 
THOSE CAPABILITIES, NEW OPPORTUNITIES 
TO DELIVER VALUE – AND INCREASE 
PROFITABILITY – IN PRACTICE. << 
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Architects operate within the larger economic models of the building 
industry, which has long struggled to create consistent value propositions 
for its participants. Most buildings are produced under an economic dictum: 
achieve the end product by optimising for the single variable of lowest 
first cost. Clients often select architects by arbitraging fees for the lowest 
price; architects then choose their consulting engineers in the same way. 
Contractors are often chosen based upon lowest bid, passing that logic down 
the entire supply chain to the far reaches of building product manufacturers, 
fabricators and suppliers. The value of the resulting project to the participants 
in its creation or, ultimately, the client, is not reflected in the economic deals 
that actualise it. As artificial intelligence changes the capabilities, obligations 
and outcomes of project architects, how might the economic propositions 
evolve accordingly? 

CANONICAL MODELS 
As came to be understood during the first Industrial Revolution, technology 
disrupts patterns of employment and pay. Mechanised farm equipment 
displaced plough drivers and their oxen, and industrialised looms put hand 
weavers out of business. This is a version of ‘creative destruction’, as defined 
by the Austrian economist Joseph Schumpeter in the mid-20th century, where 
new economic systems – often catalysed by new technologies – destroy and 
replace their predecessors, presumably improving economic performance 
for everyone while doing so.1 And although these improvements may prove 
temporary, as new competitors touting newer technologies enter the fray, the 
concept of creative destruction advancing the marketplace can be paired with 
the so-called ‘canonical model’ of employment described by Daniel Susskind, 
where ‘it was impossible for new technologies to make either skilled or 
unskilled workers worse off; technological progress always raised everyone’s 
wages, though at a given time some more than others’.2 

If artificial intelligence is the catalyst for creative destruction in the practice of 
architecture, then one can conclude that design jobs will be eliminated by the 
capabilities it presumably assumes. The canonical economic model argues, 
however, that those jobs are more than replaced by new ones necessary to 
support the creation and support of the new technologies. So you might have 
lost your job working in an architect’s office doing zoning and code analysis 
and planning studies, but you (or someone else) will surely be hired by one 
of the many AI-based companies creating software to do that particular 
task.3 And, in theory at least, the quality of the resulting design work created 
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by the surviving practitioners will improve by virtue of the tremendous new 
capabilities of software-assisted design, and the cost of your house or school 
will decline as a result. 

Those challenges are heightened by the possibilities of AI-related 
replacement. Susskind further argues in A World Without Work that it is not 
entire jobs that will be supplanted by AI, but rather specific tasks within those 
jobs. He suggests that technology will continue to spread the gap between 
skilled labour (not easily replaced by machines) and unskilled jobs (where 
many tasks may be automated). Architects are generally considered skilled 
workers, but there are broad swathes of our jobs subject to such automation, 
as suggested in Figure 1.5.3. 

The challenge, as always, is converting that resulting potency into actual value 
that is reflected in the economics of practice. Technology notwithstanding, 
it has always been difficult for architects to both improve the quality of our 
services and the amount of money we are paid to provide them. 

EFFICIENCY AND EFFECTIVENESS 
Two relatively recent technological shifts in practice demonstrate this 
difficulty. As computer-aided drafting tools such as AutoCAD© came to the 
fore, largely in the early 1990s, the capital investment in both hardware and 
software was significant.4 To defray these costs, firms often would charge 
clients an hourly fee for ‘CAD services’ that was treated as a project expense 
not unlike travel or blueprinting. Over time, however, clients got wise to 
this idea and refused to pay these charges, arguing that the benefits of the 
computer’s precision and efficiency accrued to the architect, not themselves. 
Of course, this point of view did not reflect the greater accuracy or consistency 
of CAD-generated deliverables, nor the increased complexity of design 
solutions they were able to create, and architects (once again) failed to convert 
the improvement in the quality of their services to an increase in their fees, 
which continued to be pressured by lowest-first-cost competition. 

The second technological wave brought along by BIM had similar, if 
structurally distinct, results, at least here in the United States. Figure 2.1.2 
documents performance of the American architectural profession in the two 
years on either side of the great economic crisis of 2009. Net revenue for 
all AIA firms in 2005 was approximately $27 billion, and the profession had 
returned to 96% of that revenue number ($26.4 billion) by 2013, signalling a 
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2.1.1: 
A HAPPY CAD 
OPERATOR AT 
HIS STATION 
IN THE 
OFFICES OF 
CESAR PELLI 
& ASSOCIATES 
(NOW PELLI 
CLARKE & 
PARTNERS), 
C. 2000 

recovery. If net revenue is a rough proxy for work produced, then that same 
amount of effort was produced by 16,000 fewer employees (about 11%) at the 
same time that BIM adoption rose almost four-fold: 

YEAR 
NET REVENUE 
($ BILLIONS) 

PERCENTAGE OF 
FIRMS USING BIM 
ON BILLABLE 
PROJECTS 

NUMBER OF 
ARCHITECTURAL 
POSITIONS 

2005 27.5 10% 115,9000 

2013 26.4 37% 99,800 

2.1.2: 
COMPARING 
REVENUE, BIM 
ADOPTION AND 
EMPLOYMENT IN 
TWO RECENT 
YEARS5 

What the data seems to suggest is that these architects increased their 
productive capacity, presumably by use of newer technology, by over 10% by 
producing the same amount of work with far fewer people. Anecdotal data 

from practitioners indicate that while work volume increased steadily after the 

Crisis, fee multiples stayed depressed, suggesting that these numbers may 
not completely reflect the productivity gains of BIM technology. A more careful 
analysis mapping profits, BIM adoption and a proxy for productivity (net fee 

revenue per employee) in Figure 2.1.3 indicates that productivity accelerates 

with BIM adoption but, sadly, profitability is unrelated. A missed opportunity to 

be sure. 

⏎ 
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2.1.3: So, here is a case where new technology (BIM) brought new capabilities 
PRODUCTIVITY, and efficiencies, yet it appears the profession did not directly benefit in any
PROFITABILITY 

tangible, economic way. If AI has similar implications, essentially shrinkingAND BIM 
ADOPTION6 the commoditised value of the architect’s services, a radically enfeebled 

profession is likely to result. However, there are at least three strategies – 
automation, analysis and prediction – made possible by the technical potency 
of emergent AI that could help us to avoid this fate. 

PRODUCTIVITY REDEFINED 
The analysis above is an invented proxy for the putative improvements in 
architectural productivity in the correlation between technology adoption (the 
instrumentation) and the number of staff positions necessary to generate a 
certain fee volume. There are no generally accepted measures for determining 
such productivity, a result of both the intractable nature of the design process 
and a general lack of attention of researchers to such questions, particularly 
those in the professional associations.7 In my professional practice courses, 
I pose this question slightly differently: if you are a manager of a design 
process, exactly how long does it take to have a good idea, and then produce 
it? If design is a process of solving Horst Rittel’s ‘wicked problems’, then the 

⏎ 
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‘wicked’ nature of the process itself makes it difficult to precisely answer 
this question, making the resulting projections of time, effort and expense 
similarly intractable. 

So perhaps any intelligent strategy for deploying AI tools for increased 
productivity should take a different tack, in three dimensions – automation, 
analysis and prediction – by combining the capabilities of AI as defined by 
Greaves in Chapter 1.2, Figure 1.2.4. 

Automation is intelligently replacing linear processes currently performed 
by humans with AI-assisted algorithms that might learn those capabilities 
as they ‘see’ more examples. 

Analysis is creating more sophisticated means to measure and 
understand the results and implications of a design decision. 

Prediction is combining the capabilities of automation and analysis to 
project a final result of such a decision, and in doing so learning, by virtue 
of selections made by human designers, how to both select and optimise 
a result. 

The diagram in Figure 2.1.4 sketches this relationship by examining a process 
realm ripe for technology-driven productivity: checking a building design for 
code compliance. 

The hypothetical designer of this AI-enabled future is struggling to validate 
the building code compliance of her design, and is deploying a progressively 
capable set of machine learning algorithms, which we will call a ‘Code 
Evaluation System’, that combine both cognitive and empiricist strategies. 
Early in the life of this system she has created a design, probably in BIM, 
so the components can be easily identified spatially and typologically. The 
system first identifies all the relevant life safety components relative to, say, 
fire exiting, in her model; in this case, the doors and stairs, all of which must 
be properly sized, oriented and configured. If the AI missed a component, 
the architect identifies it manually, and the AI identifier learns over time to 
better find and understand those elements. This is indicated in the diagram as 
'Part 1'. 

Once this system has learned to find all the pieces of the building’s existing 
components, it can move to ‘Part 2’ of this process – applying evaluative 
algorithms to analyse the actual behaviour of each of the elements of the 
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Our machine learning Code Evaluation System is starting, with a combination 
of rules-based algorithms and practice with its human operator, to learn 

move from the evaluation of individual elements to the behaviour of an entire 
building, evaluating the comprehensive performance of that building under 
the simulated conditions of duress. This is the intersection of analysis and 

our system.

Machine Learning 2e.indd   90 16/07/2025   09:34

⏎ 



Machine Learning 2e.indd  91Machine Learning 2e.indd  91 16/07/2025  09:3416/07/2025  09:34
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In the ultimate manifestation of this proposed system, ‘Part 3’ in our diagram, 
the system has assembled a sufficiently robust understanding of the 
combined characteristics of safe conditions in a building so that it has limited, 
but ever-expanding, capabilities to generate a series of safety solutions from 
the preliminary model presented by its architect master. If a number of such 
architects are training such a progressively capable system, it will ‘learn’ over 
time to optimise the answers. 

The system proposed here has several salient characteristics: 

» It is working on a discrete problem that is vexing, technical and 
measurable in result. 

» It is solving problems that do not implicate the architect’s design abilities. 

» If it works well, it saves time, effort and brainpower for the architect, 
who can then, in theory, either convert the resulting work cycles into 
profit (by simply cashing them) or by applying them to improve the 
‘wicked’ characteristics of the design itself. Either way, this architect 
has converted the capabilities of her new AI-enabled design assistant 
into value, economic or otherwise.8 

BEYOND PRODUCTIVITY AND PERFORMANCE 
A sufficiently effective set of AI tools, capable of both optioneering and 
accurate prediction, brings the architect’s value proposition into an entirely 
new realm, entirely decoupling compensation from the value of time sold and 
allowing designers to be paid on the basis of the resulting performance of 
their buildings. This is a tricky but potentially lucrative strategy where design 
services are no longer a commoditised transaction in the delivery chain, but rather 
tied closely to project behaviour. The resulting promises should not be bound 
to issues of beauty, experience or aesthetics, but rather to the sorts of technical 
behaviour that computers could be trained, over time, to accurately predict. 

Productivity and process strategies notwithstanding, another immediate value 
opportunity in a world increasingly dependent upon AI is the fuel for that 
process itself – data, sometimes called ‘the new oil’.9 The building industry 
is notorious for a lack of data standards, repositories or means for shared 
access across its participants. Yet there is a hierarchy of provocative data that 
will accumulate across the various dimensions of the building enterprise itself, 
described graphically in Figure 2.1.5. 
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For our purposes, the centre of this universe is the data collected within the 
architect’s office itself, which in sufficient quantity might be useful to the firm 
in improving the capabilities of its AI systems. However, since such systems 
require enormous amounts of data, it is more likely that architectural data per 
se would be collected among the profession itself. Beyond that, training and 
reference data for machine learning platforms could be aggregated at project 
level, say by building type, or even across the design-to-build marketplace. 
Eventually, all such data could exist in the context of the overall building 
industry, including design, construction, procurement and operational 
information, ultimately referenceable across all the players implementing AI. 
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There is a tremendous economic value in such a proposed data reserve, 
both as a source of insight and as employment. Training AI systems requires 
coherent, consistent, ‘clean’ data and it has been argued that conforming data 
requires as much, if not more, effort than building the AI software itself.10 

As the ‘canonical model’ suggests, curating and managing this data is a likely 
source of employment for architects, new roles emerging from the resulting 
creative destruction. 

Such data should not, however, be simply gifted to the industry, as it has 
tremendous inherent value as well as potential risk of misuse. The creation 
of a data trust, mediated and managed by an independent, non-profit 
third party, could create the necessary platform for what will likely be huge 
amounts of digital building information that will be created in the future, 
fodder for capable AI systems.11 

ALTERNATIVE ECONOMIC MODELS 
If Susskind is right, the next decade will see an array of architectural tasks 
augmented, and in many cases supplanted, by AI systems. Whether entire 
jobs will be replaced as a result is the subject of some debate. Mastering 
a game like chess or Go – with very specific rules, precedents and a highly 
constrained context – is hardly a precondition for managing the various 
tasks, responsibilities and synthetic processes that comprise the abilities of 
any capable architect. It may be that, in the aggregate, the production and 
analytic functions of practice will be replaced by autonomous computation 
to an extent that fewer architects will be required to design the world’s 
environment. However, conversely, perhaps, released from the drudgery 
of the mundane, the power of designers will intensify sufficiently so that 
the influence and importance of architects and architecture will expand by 
virtue of technology rather than be diminished by it. Careful and purposeful 
planning at the intersection of technological innovation and process 
improvement is the only way to make such an outcome a reality. 
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NOTES TO THE 2025 EDITION 
Beyond the marginal productivity that 2025’s AI platforms provide to 
architects, only a partial third of the proposed triad of optioneering, 
prediction and value creation has actualised. Under the previously 
described rubric of ‘provocation’, today’s generative algorithms have 
lowered the barrier to the rapid generation of inspirational images 
and, in some cases, increased the ability to further manipulate those 
images toward a desired visual – if not semantic – end. Adobe Firefly 
may be adept at helping change the background of your project 
rendering by manipulating the appropriate pixels, but it still can’t 
draw the plan of the project nor accurately adjust the spacing of your 
mortar joints. 

This is a stunted version of ‘prediction’. The rapid production of what 
many architects who use AI image generators describe as ‘project 
mood boards’ is hardly a big move toward the increased value of 
architectural services. The potential value propositions of AI for 
architects, therefore, are neither realised or even within near reach. 
Firms aggressively adopting current platforms will enjoy near-term, 
and short-lived, productivity gains that will drop as they are widely 
embraced, much as the competitive advantage enjoyed by BIM’s early 
adopters was eventually erased by its widespread use. An attendant 
danger is the image-generator-equipped client, who is unable to 
differentiate between a compelling image and a completed, resolved 
design, and pushes the architect aside accordingly. 

So where is a sustainable competitive advantage in the near term 
for AI-engaged architects? If we must wait first for my proposed 
AECO foundation model or – even less imminent – Artificial General 
Intelligence (AGI) incarnate, it’s going to take a while. A business 
strategy based on an AI advantage must therefore come from two 
sources: a firm’s unique capabilities and therefore its competitive 
edge, and accumulated knowledge embodied in the firm’s project 
data itself. 

Recent promising developments, like Deepseek’s distillation training 
strategy or the platform provider’s ‘project specific’ instantiations 

CONT. 



Machine Learning 2e.indd  95Machine Learning 2e.indd  95 16/07/2025  09:3416/07/2025  09:34

95 2.1 ECONOMICS, COMPENSATION AND VALUE 

of their products, suggest that it may soon be possible to train an 
in-house model on specific knowledge within the practice. And while 
these tools can’t remotely understand or reason about something as 
complex as, say, a CAD drawing or a BIM model, well-curated data 
extractions from those sources, combined with the other artifacts of 
the Digital Interstice, may well give an inventive firm a route toward 
creating unique value – and profitability – from that instantiated 
digital knowledge. 

For example, AI tools with specific capabilities, combined with the 
analytical capabilities of other non-AI algorithms, might combine in 
the future in a way that makes them together more valuable than 
their discrete use: an energy analysis tool combines with an AI trained 
to manipulate a BIM and another that generates building enclosure 
options quickly creates a sophisticated set of options for the design to 
select. This is a post-Interstice vision of an AI-enabled design process. 
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>> ARCHITECTS HAVE TRADITIONALLY 
BEEN HELD TO A COMMON LAW STANDARD 
OF REASONABLE CARE, BASED ON THEIR 
RESPONSIBILITY TO EXERCISE GOOD 
JUDGEMENT IN CONTEXT. AS THOSE 
RESPONSIBILITIES EVOLVE WITH MORE 
INTELLIGENT TECHNOLOGY, HOW MIGHT LEGAL 
STANDARDS, PUBLIC POLICY WITH REGARD 
TO BUILDING AND THE PERFORMANCE OF THE 
ARCHITECT CHANGE ACCORDINGLY? << 
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While we await a wave of intelligent machines to change the architectural 
profession, AI/ML technology is already in wide use to set insurance rates, 
evaluate radiographic images, determine eligibility for loans and other 
government benefits, even capture suspected criminals with facial recognition. 
And given the inscrutable nature of these algorithms, which ‘teach themselves’ 
to generate results from pools of data (like hundreds of thousands of 
insurance claims, or even millions of portraits of potential criminals scraped 
from the internet), it is impossible to unpack the underlying logic by which 
they make decisions. Worse, that logic is barely comprehensible to the 
professionals that deploy it. 

Attorney Michele Gilman represents indigent patients fighting for their 
rights in the opaque US health system, a bureaucracy made even more 
impenetrable now by its use of AI to allocate resources. This was exhibited in a 
recent case in Baltimore, Maryland, as described in a article in MIT Technology 
Review: 

>> Not until they were standing in the courtroom in the middle of 
a hearing did the witness representing the state reveal that the 

government had just adopted a new algorithm. The witness, a nurse, 
couldn’t explain anything about it. ‘Of course not – they bought it off 
the shelf,’ Gilman says. ‘At least she’s a nurse, not a computer scientist. 
She couldn’t answer what factors go into it. How is it weighted? What 

are the outcomes that you’re looking for? So there I am with my 

student attorney, who’s in my clinic with me, and it’s like, “Oh, am I 
going to cross-examine an algorithm?”’1 << 

This vignette elegantly captures the range of challenges that the regulators, 
the public, the courts, architects and their clients face as the work of 
professionals is automated: who or what is responsible for the implications of 
decisions made by machines, and can they ever be sufficiently understood to 
place the public’s welfare in their care? 
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THE DUTY OF CARE AND ITS RISKS 
The United Kingdom and United States share a common law tradition 
establishing the competency standard for architects (emphasis added): 

>> The Architect/Consultant will exercise the reasonable skill, care 
and diligence to be expected of an Architect/Consultant experienced 

in the provision of such services for projects of a similar size, nature 

and complexity to the Project. (RIBA Standard Professional Services 

Contract 2018: Architectural Services)2 

The Architect shall perform its services consistent with the 

professional skill and care ordinarily provided by architects 

practicing in the same or similar locality under the same or similar 

circumstances. The Architect shall perform its services as expeditiously 

as is consistent with such professional skill and care and the orderly 

progress of the Project. (AIA Document B101–2017: Standard Form of 
Agreement Between Owner and Architect)3 << 

In each case, the measure of the architect’s performance is how it might 
compare to that of other competent practitioners in the same circumstances. 
This standard is not delineated by statute in any other form, but rather 
determined in a court of law after testimony by expert witnesses who posit 
correct professional behaviour and application of appropriate precedent. 

As examined in Chapter 1.3, the relationship between architects and the 
public is essentially an exchange of trust: architects are empowered to 
make important decisions about the public’s health, safety and welfare, 
and as such enjoy special privileges of this professional status; presumably 
influence, autonomy and compensation. In exchange, they must take personal 
responsibility for their actions and cannot delegate that responsibility in the 
manner of corporations, where the company, rather than the individual, is 
culpable for bad decisions. 

Public policy dictates that a design professional be involved in a building 
project precisely to assure that the public’s welfare is protected in the 
built environment and, at least for now, there is a responsible person held 
accountable. The requirements differ slightly between the US and the UK: in 
the latter, a ‘principal designer’ must be specified for any project involving 
more than one construction contractor4 whereas in most US jurisdictions, a 
licensed architect must design any building for human habitation larger than 
approximately 275 sqm.5 
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In performing her duties, the architect assumes two types of risk: 

1. Business risk: the possibility that the obligations of service will require 
more resources than available in the contract, particularly fees. 

2. Professional liability: the possibility that an error in judgement will result 
in an assertion of professional negligence in violation of the duty of care. 

The business risks of machine intelligence in architecture are more existential, 
and these are addressed in a later section in this chapter. Of more direct, 
practical consequence are questions of professional responsibility, duty of 
care and the implications of machines making complex decisions either in 
support of (augmentation) or in lieu or (automation) human architects. 

TECHNOLOGY AND TECHNICAL RESPONSIBILITY 
Despite its admittedly slow pace, broad swathes of the design and 
construction supply chain are being digitised today with an array of 
procedural, automation and data management tools. In architecture, BIM 
is the most prominent of such instruments,6 but this software falls largely 
into the category of automating, rather than autonomous, instrumentation. 
While certain aspects of its functionality are entirely autonomous (such as the 
generation of schedules and views), BIM relies on minute interactions with a 
designer to instantiate design data, and the attribution of responsibility for 
the results of this interaction are unambiguous: the architect using the tool is 
responsible for its output. This is consistent with the concept of responsible 
control established by both the ARB7 and NCARB.8 

Even in circumstances where the responsible designer relies on technology 
for substantive portions of technical analysis, there can be no assumption 
of delegated authority to software or its producers. A vivid example 
of this relationship is in the allied discipline of structural engineering, 
where software like Tekla Structures has been used for years for routine 

calculations of loads and generation of structural details. Repeated use 
(and professional validation) of this technology has led engineers to rely 
upon it to produce calculations upon which buildings literally stand, but 
the engineer of record is still personally liable for that work, irrespective of 
computer output. 
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Representational tools like BIM, or analytical tools like structural engineering 
software, have two important distinctions from their potential AI-enabled 
successors: 

1. A given set of inputs to such software reliably produces a set of results, 
creating predictability and reliability in the relationship between the two. 

2. If necessary, the creators of the underlying software code can explain, 
with precision, the foundational logic whereby a given input produced a 
given output, and potential anomalies can be, at least in theory, repeated 
and, if necessary, diagnosed and corrected. 

A future machine learning-based tool, however, has neither of these 
reassuring characteristics. Given that its underlying code evolves constantly 
as it is exposed to more data, the algorithm may decide to make different 
choices at different times, based on the same set of constraints, parameters 
or inputs. And since deep learning systems in particular are notoriously 
obscure – as they construct their own internal logics – it will be impossible to 
determine why a given decision has been made. 

Of course, as an architect becomes more experienced, she may also make 
different decisions about an identical set of circumstances and, as a result, 
generate different results. The difference, however, is that if she makes an 
error, we know who to hold responsible. This is hardly the case with software. 

THE RESPONSIBILITY OF ALGORITHMS 
In fact, the polar opposite is the case. Before you are allowed to access any 
piece of commercial software, you are required to acknowledge agreement 
with that software’s ‘End User License Agreement’, or EULA. The EULA 
explains, in turgid terms, exactly what you can – and cannot – do and expect 
from the software you have licensed.9 

My former employer, Autodesk, has millions of users worldwide, including a 
lot of architects, engineers and contractors. At the risk of either inspiring you 
to turn the page in boredom or abandon the chapter entirely, I quote at length 
below two relevant but nonetheless redacted passages from the standard 
Autodesk EULA, with emphasis (bolding) added. While painful to read, they are 
illuminating: 
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5.2 Disclaimer. EXCEPT FOR THE EXPRESS LIMITED WARRANTY PROVIDED 
IN SECTION 5.1 (LIMITED WARRANTY), AND TO THE MAXIMUM EXTENT 
PERMITTED BY APPLICABLE LAW, AUTODESK AND ITS SUPPLIERS MAKE, 
AND LICENSEE RECEIVES, NO WARRANTIES, REPRESENTATIONS, OR 
CONDITIONS OF ANY KIND, EXPRESS OR IMPLIED (INCLUDING, WITHOUT 
LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS 
FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT, OR WARRANTIES 
OTHERWISE IMPLIED BY STATUTE OR FROM A COURSE OF DEALING 
OR USAGE OF TRADE) WITH RESPECT TO ANY AUTODESK MATERIALS, 
RELATIONSHIP PROGRAMS, OR SERVICES (PURSUANT TO A RELATIONSHIP 
PROGRAM OR OTHERWISE) … AUTODESK DOES NOT WARRANT:… THAT 
THE OPERATION OR OUTPUT OF THE LICENSED MATERIALS OR SERVICES 
WILL BE UNINTERRUPTED, ERROR-FREE, SECURE, ACCURATE, RELIABLE, 
OR COMPLETE, WHETHER OR NOT UNDER A RELATIONSHIP PROGRAM OR 
SUPPORT BY AUTODESK OR ANY THIRD PARTY… 

6.1 Functionality Limitations. The Licensed Materials and Services … 
are commercial professional tools intended to be used by trained 
professionals only. Particularly in the case of commercial professional 
use, the Licensed Materials and Services are not a substitute for 
Licensee’s professional judgment or independent testing. The Licensed 
Materials and Services are intended only to assist Licensee with its design, 
analysis, simulation, estimation, testing and/or other activities and are 
not a substitute for Licensee’s own independent design, analysis, 
simulation, estimation, testing, and/or other activities, including those 
with respect to product stress, safety and utility.10 

To make absolutely sure the user understands the importance of the 
Disclaimer, it is printed IN ALL CAPITAL LETTERS, whereas the section on 
Functionality Limitations is in mixed case. If it is not abundantly clear here, 
there are two important concepts to which an end user agrees when using 
this software. First, you use the software entirely at your own risk, and the 
company assumes no responsibility whatsoever for its fitness for purpose, 
accuracy or other outputs. This is often hard for licensees to swallow, given 
the cost of a software subscription. 

Second, as if that is not enough, the EULA specifies that the software is to 
be used by trained professionals who will, allegedly, understand its purpose 
and functionality. It goes further to explain that use of this tool by such a 
professional is no substitute for professional judgement itself. You may have 
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some powerful digital instruments at your disposal, but the duty of care 
still obtains – and you are still on the hook. Please make sure to keep your 
subscription current. 

To be fair to my former employers (and their vendor brethren), there is 
some logic in this contractual deal. While responsible software companies 
extensively test their products before release,11 it is simply impossible to 
anticipate every combination of user interactions and design conditions the 
software may need to accommodate during its use. In fact, during my time 
negotiating contracts for an architectural practice, I used similar ‘suitability for 
use’ language when clients demanded digital versions of our drawings, as I 
had no idea what they might do with that data and how they might try to hold 
my firm responsible for its uncontrolled use. I also required them to rely on 
the paper versions of same. There is no practical way to predict or manage the 
resulting liability of unrestricted data in the wild. 

The challenge, of course, is that the complexity of data interactions that 
include user inputs and software outputs is a magnitude of complexity higher 
when the software is constantly evolving as a machine learning algorithm. 
History suggests that software vendors will, in response, move further from 
responsibility with their next generation tools.12 

FAILURES OF EXECUTION 
Failures in the building industry are common, ranging from the more typical 
broken schedules and blown budgets to infrequent but calamitous disasters 
like the Grenfell Tower fire in west London. Somewhere in between these 
extremes lies the responsibility of buildings to be technically, environmentally, 
socially and contextually appropriate. Surely technology can play an important 
part in helping building professionals – and especially principal designers 
such as architects – do a better job with such outcomes. For the purposes of 
this particular exploration, the question remains about the extent to which 
the responsibilities of managing the resulting risks of project execution are 
increased or diminished by AI-driven tools. 

Those risks are sketched in Figure 2.2.1, based on Figure 1.6.5, that examines 
the fundamental risks of failure when AI is enlisted to assist the architect in 
each of her four fundamental roles during project execution: 
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ROLE AUGMENTED BY AI REPLACEMENT 
BY AI 

PROFESSIONAL 
RISK OF FAILURE 

AGENT OF 
THE OWNER 

DEMONSTRATED 
DESIGN RESULTS 
BASED ON LARGE 
REPRESENTATIVE 
DATA AND AI-
GENERATED 
CONCLUSIONS 

GENERATION OF 
COMPLETE DESIGN 
SCHEMES 

INCOHERENT, 
INEPT OR 
DANGEROUS 
SOLUTIONS 
OTHERWISE 
UNVETTED FOR 
FIT FOR PURPOSE 

LEADER OF 
THE DESIGN 
TEAM 

COHERENT 
DISTRIBUTION 
OF USEFUL 
INFORMATION 
TO THE POINT 
OF WORK 

INTEGRATION OF 
ENGINEERING 
AND OTHER 
REPRESENTATIONS 
OF THE PROJECT 
AND COORDINATION 
OF THEIR WORK 

MISCOORDINATION 
LEADING TO 
TECHNICAL OR 
OPERATIONAL 
ERRORS 

GUIDE TO 
THE DESIGN 
INFORMATION 
TO THE BUILDER 

DESIGN DATA 
AUGMENTED BY 
PROCEDURAL 
INFORMATION FOR 
ASSEMBLY AND 
CONSTRUCTION 

AUTOMATIC 
GENERATION OF 
CONSTRUCTION 
DOCUMENTATION, 
BASED ON 
INFORMATION 
DEMANDS OF THE 
BUILDER 

MISMATCH OF 
INFORMATION 
FIDELITY, 
DESIGN DECISION 
ERRORS, UNTIMELY 
RESPONSES 

PROTECTOR OF THE 
PUBLIC’S HEALTH, 
SAFETY AND 
WELFARE 

LIFE SAFETY 
ANALYSIS AND 
COMPLIANCE 
EVALUATION 

CODE CHECKING 
AND CERTIFICATION 
FOR PERMIT 

CONSEQUENTIAL 
DAMAGES OF 
INJURY AND DEATH 

2.2.1: 
ROLES AND 
PROFESSIONAL 
RISK 

Consider these risks in the context of the terrible fire at Grenfell Tower in 
2017. In that disaster, a small appliance fire on the fourth floor of a residential 
high-rise spread uncontrolled through the building envelope, and 72 people 
perished. Components of that envelope had been replaced during a 2015 
refurbishment conducted by the building owners and managers and without 
direct involvement of the original principal designers. In fact, the requirement 
that every project even involve a principal designer was implemented in 2015, 
too late to be relevant during the refurbishment project. The Grenfell disaster 

was a result of a confluence of technical decisions and errors made by a 

combination of players from the client, design and construction/building supply 

industries. It may have been the complex interaction of these players that will 
ultimately be found to be responsible for the inexcusable deaths at Grenfell, 
although at the time of writing all those players deny any responsibility.13 

⏎ 
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What is clear from this evaluation is that all the responsibilities of building 
– and particularly the architect – in execution are correlated to complex 
and ambiguous obligations, tasks, dependencies and outcomes that will 
be difficult to delegate to machines, and that in order to assure these 
important obligations are fulfilled, humans must remain in charge, EULAs 
notwithstanding. 

POLICY-MAKING 
Building well is undeniably a strong public interest and assuring that 
buildings are designed and constructed well is a necessary component of 
public policy. The building enterprise continues to increase in complexity, 
as clearly demonstrated by phenomena as disparate as the climate crisis (at 
a global scale) and the Grenfell disaster (at a project scale). Understanding, 
managing and optimising the complex characteristics and interactions of 
design decisions, construction strategies, building performance, material 
characteristics and even market conditions is a task well suited to big data 
and AI/ML. Proper responsibility for managing the application of machine 
intelligence in the building enterprise could benefit the public if the 
relationship between the two is correctly mediated. 

Two policy initiatives are suggested by this logic. Given that each of the 
responsibilities described in Figure 2.2.1 might be easily characterised as 
a ‘wicked problem’, it makes little sense for the resulting obligations to be 
delegated strictly to machines, which will play an important – but not exclusive 
– part in solving them. Thus, despite some suggestions to the contrary,14 

professional licensing requirements and statutes should be strengthened so 
that educated, experienced architects and engineers can remain at the centre 
of projects and accept responsibility accordingly. 

Public policy with regard to the development, deployment and efficacy of 
the technologies upon which we are increasingly reliant must catch up, as 
much as possible, with the accelerating pace of machine intelligence. Just as 
governments establish, control and enforce regulations about medical devices 
and medications, air traffic and aircraft safety, and other aspects of public 
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health, safety and welfare, it must support the creation of standards and 
certification protocols for systems and algorithms upon which the building 
industry will rely, including the data trusts that might be repositories for 
related information. Much like Underwriter Laboratories in the US is legally 
tasked with certifying the safety of electrical devices, similar structures should 
be established for digitally empowered design and building. 

BUSINESS RISK AND BEYOND 
A final note on the business risks of machine intelligence in the design 
professions, which have been alluded to elsewhere in this text, particularly 
Chapter 1.5. 

In the short term, certain firms will likely establish a viable but short-lived 
competitive advantage by early adoption of AI that will differentiate their 
services by capabilities or efficiency. As more firms follow their lead, this 
advantage will disappear. 

Over the long term, however, architects are likely to face the same questions 
of disruption and replacement by cognitive automation as other knowledge 
workers,15 although the argument above suggests that the timeline of our 
destruction may be attenuated. Our demise could be largely eliminated, 
however, by using the capabilities of AI technologies to increase the value of 
our services – and by implication, of the built environment itself – and to make 
society more dependent on architects and the machines that assist them, in 
that order. 
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NOTES TO THE 2025 EDITION 
Unlike other technological disruptions described in Figure 1.1.6 
(page 79), many of AI’s implications are being wrestled with by 
Society writ large. The mechanisms of data collection, questions 
of intellectual property, the impact on the environment and 
governmental responsibility for regulating the AI industry will all be 
adjudicated by the world of our clients rather than within our own 
circles, leaving more limited but critical questions in our care as 
architects, particularly the dimensions of risk. 

Assuming the more practical questions are answered for the general 
use of AI, architects still face both business and professional risk 
as AI is widely implemented, but through the technology they are 
now intertwined. Professional risk falls under the rubric of the duty 
of care to protect the public’s health, safety and welfare (HSW). 
The professional responsibilities of designers are distinct between 
the United States and the United Kingdom, but are based on a 
similar desire to both protect the public and hold someone (not 
something) responsible in case of failure. In the United Kingdom, 
while no licensed architect is necessary to participate in a building 
project as it is in the United States, a designated Principal Designer 
with demonstrated competence to monitor health and safety, and 
proactively identify and mitigate the specific risk of fire, is required. In 
both cases it is assumed that the complexity of the problem of HSW 
requires a person to manage it. 

But if a sufficiently capable AI can be trained to understand and 
interpret building regulations, fire performance, or even manage 
the so-called ‘Golden Thread’ of design-to-construction information, 
the obligations (and businesses) of the principal designers, on either 
side of the Atlantic, will be dismantled accordingly. AI platforms in 
2025 are likely close to partial capability on this front, particularly in 

CONT. 
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managing complicated information streams and interpreting text-
based regulations. Is it possible that the final step – derogation of 
responsibility to an algorithm – completes this process? 

That is, of course, a big ‘if’. Perhaps designers can strategically 
deploy AI to stay sufficiently ahead of the obligations necessary 
to complete today’s complex, environmentally demanding and 
regulatorily bound projects. If we can use these tools in combination 
with our very human skills to demonstrate a willingness to assume 
even greater risk in managing the public’s welfare, we can demand a 
commensurate reward in return. 
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>> IF MACHINES CAN REPLACE KNOWLEDGE 
WORKERS, DOES THE BUILDING INDUSTRY, 
OR SOCIETY WRIT LARGE, REALLY NEED 
ARCHITECTS? ONE THESIS SUGGESTS THAT 
MUCH OF OUR WORK AS ARCHITECTS – WHO 
PURPORTEDLY DESIGN VERY FEW OF THE 
WORLD’S BUILDINGS ANYWAY – COULD BE 
EASILY AUTOMATED. PERHAPS ARCHITECTURAL 
EXPERTISE COULD BE MORE WIDELY 
DISTRIBUTED VIA INTELLIGENT MACHINES 
RATHER THAN BY GREATER REACH AND AGENCY 
OF ARCHITECTS? ALTERNATIVELY, THOSE 
MACHINES AND THEIR INCREASINGLY POTENT 
SUCCESSORS COULD BE SEEN AS TOOLS THAT 
EMPOWER ARCHITECTS TO TRULY IMPROVE THE 
BUILT ENVIRONMENT. << 
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When the UK Government’s Health and Safety Executive (HSE) enacted 
the requirement that building projects require a principal designer, it 
acknowledged that built assets manifest in three distinct phases: planning, 
execution and use (followed, presumably, by eventual demolition). Before 
2015, when the HSE CDM (Construction, Design and Management) regulations 
went into effect, designers were considered desirable, but not necessary, 
participants in the delivery process. This is in stark contrast to US law, 
where any habitable building of significant size must be designed by a 
licensed architect,1 and is likely an indication of the political strength of the 
construction industry in dictating the terms of building delivery. 

HSE makes the case for the necessity for architects (as one option) crisply in 
their regulation, indicating that principal designers must (emphasis added): 

» Plan, manage, monitor and coordinate health and safety in the 
pre-construction phase. In doing so they must take account of 
relevant information (such as an existing health and safety file) 
that might affect design work carried out both before and after the 
construction phase has started. 

» Help and advise the client in bringing together pre-construction 
information, and provide the information designers and contractors 
need to carry out their duties. 

» Work with any other designers on the project to eliminate 
foreseeable health and safety risks to anyone affected by the work 
and, where that is not possible, take steps to reduce or control 
those risks. 

» Ensure that everyone involved in the pre-construction phase 
communicates and cooperates, coordinating their work wherever 
required. 

» Liaise with the principal contractor, keeping them informed of any 
risks that need to be controlled during the construction phase.2 

Missing, of course, from this otherwise nifty summary of the need for 
designers is anything about the quality of the resulting artefact, including 
its suitability for use, relationship to context, expressive nature, or even 
environmental or social appropriateness. These are results that clients 
who hire architects clearly desire, even though they could meet the CDM 
requirements with any party willing to assume the role of principal designer. 
Even so, consider whether an intelligent machine in the foreseeable future 
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2.3.1: 
SUPER-STAGES 
OF THE 
ARCHITECT’S 
SCOPE OF 
SERVICE 

might ‘plan, manage and coordinate health and safety’, ‘help and advise 
the client’, ‘eliminate foreseeable risks’ or ‘ensure everyone communicates 
and cooperates’. If these things were even remotely possible, I suspect 
construction managers, who perform many of the same tasks during their 
phase of the work, will join architects at the unemployment office. However, is 
even considering such a future a good idea? 

THE PLAN OF WORK 
As an architect who practises in the United States, I have always admired 
the clarity, flexibility and elegance of the RIBA Plan of Work. It evolves over 
time, changes to reflect delivery and computational realities, and presents 
clients and collaborators with a very clear definition of both the arc of a 
project’s lifecycle and the architect’s possibilities to participate in a project 
in its entirety. This structure contrasts starkly with its American counterpart, 
defined by the American Institute of Architects (AIA) as ‘Basic Services’ in 
several stolid and largely unhelpfully described phases like ‘Schematic Design’, 
which have remained largely unchanged for decades despite the fluid nature 
of practice, particularly in the digital age.3 

A comparison of the two structures, derived from Figure 1.5.2, can be seen 
in Figure 2.3.1, in which I have also diagrammed the subtle but important 
implications of the Plan of Work: it can be abstracted to understand the work 
of architects in four ‘super-stages’: 

1. Project Definition, comprised of the stages of work necessary to create 
the overall approach for the project 

2. Technical Development, where the approach is refined as an engineered 
and buildable idea, technical insight integrated and detailed information 
in preparation for construction created 

PROJECT DEFINITION TECHNICAL 

RIBA 
0 
STRATEGIC 
DEFINITION 

1 
PREPARATION 
& BRIEFING 

2 
CONCEPT 
DESIGN 

3 
SPATIAL 
COORDINATION 

PD SD DD 
AIA PRELIMINARY DESIGN, SCHEMATIC DESIGN DESIGN 

PROGRAMMING DEVELOPMENT 

⏎ 
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3. Execution, where the asset is constructed by the contractor 

4. Use, when the building is occupied.4 

In contrast with the ‘bottom up’ analysis of services we looked at in Chapter 1.5, 
let us consider the implications of machine intelligence on these super-stages 
and how the work of the architect might be either augmented or replaced. 

PROJECTIVE RESPONSIBILITIES 
At the heart of the architect’s value in creating the built environment is what 
I will call, for purposes of this discussion, her ‘projective responsibilities’ to 
generate and instantiate ideas about the future state of the building she is 
designing. To do this job, her conceptual skills must range from broad-scale 
predictions about the implications of her building in the city, to the minute 
choices of finishes in the interior; this is a very broad remit, particularly when 
each of these decisions should support an integrated vision of the project. 

Design, as apart from construction, is essentially an Enlightenment era idea 
about how humans should make things, and was defined for architecture 
by Leon Battista Alberti around 1450, when he wrote that buildings should 
be ‘conceived in the mind, made up of lines and angles, and perfected in 
the learned mind and imagination’5 and then executed without deviation by 
builders, whose job was to convert the design projection into a built reality.6 

And while it has been argued that architecture has long relied on structured, 
formalised systems ranging from Vitruvian Orders to off-the-shelf storefront 
window systems7 that make for easy pickings by AI, the range of imaginative 
obligations demanded of today’s architects, particularly in the project 
definition super-phase of the work, defy systematic outputs by algorithms. 
There is simply too much ambiguity, need for judgement and trade-offs, and 
demand to solve wicked problems at a variety of scales. 
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USED 
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Today’s AI/ML systems see patterns, particularly those that humans cannot 
divine, by virtue of the vast ocean of data available to those systems, but they 
are only projective to the extent they have specific computational templates 
to follow, like the rules of chess or Go. Their ability to project the future 
state of, say, a building design, is a function of past experience (as defined 
by data generated by other projects) and whatever rule set they have been 
programmed to follow. Completely missing in today’s systems is the ability 
to reason counter-factually or to understand causality (why something did 
or did not happen) versus correlation (something might happen because, 
statistically, it has happened under the same circumstances before). Ironically, 
this argument is made best by computer scientist Judea Pearl, who invented 
the statistical theory called Bayesian networks, upon which today’s correlation-
reliant machine learning neural network systems are based.8 

Pearl is convinced that truly intelligent machines are not possible until they 
can reason causally and climb what he calls ‘The Ladder of Causation’ 
(see Figure 2.3.2), which has three rungs: 

Association (where understanding is a function of observing data); 
Intervention (where actions are possible based on projecting the 
implications of the future), and Counterfactuals (where understanding 
leads to ideas based not just on actions but counter-factual assertions 
about the future). Today’s systems are firmly planted on the lowest rung. 

The ladder is a sophisticated successor to the theories of Roger Schank, 
mentioned earlier. Schank believed that the true test of any intelligent 
machine was the ability to reason inferentially – a different take on Pearl’s 
assertions of Intervention and Counterfactual reasoning. He suggested that 
the logic of inference was at the heart of human language and cognition. If a 
machine could draw a conclusion by ‘understanding’ the logic of implications, 
it could be said to be reasoning like a human. Unfortunately, this thesis was 
strongly hobbled by the crude machines we programmed in the 1970s and the 
need to explicitly code all the resulting cognitive logic. Schank’s thesis faded 
with the ‘AI Winter’ of the 1980s. 

Pearl’s ladder is not simply a software roadmap for 21st-century AI systems, 
but rather yet another assertion about the fundamental nature of human 
intelligence, one that differentiates humans from other species and accounts 
for our accelerated progress: 
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2.3.2: 
PEARL’S 
‘LADDER OF 
CAUSATION’ 

>> What humans have that other species lacked was a mental 
representation of their environment – a representation that they could 

manipulate at will to imagine hypothetical environments for planning 

and learning … (they have) the ability to create and store a mental 
representation of their environment, interrogate the representation, 
distort it by mental acts of imagination, and finally ask the ‘What if?’ 
kinds of questions.9 << 

⏎ 
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Pearl speculates that the most important ideas in history were the result 
of ‘wild modelling strategies’ (like the Earth astride a giant turtle as early 
astrophysics) and that algorithms that merely fit data to scenarios could never 
generate such concepts.10 ‘Imagining hypothetical environments’, or, in more 
prosaic terms, ‘Project Definition’, is the central value of a good architect and 
demands third-rung talents that are unlikely to be achieved by machines 
anytime soon. In fact, should machines reach the second rung, we might 
achieve tools that help architects speculate on ‘what if’, the more modern 
versions of today’s analysis software, that could be hugely helpful to the 
human architects occupying the top of Pearl’s ladder. 

TECHNICAL COMPRESSION 
If the value of projectivity firmly roots human architects in the responsibilities 
of project definition, our future involvement in technical definition is less 
clear. Once design strategies have been defined – choosing and spatially 
coordinating systems, generating coherent and coordinated documents, 
analysing performance and cost, and organising and transmitting information 
from designers to builders – are formalised protocols that are more suited 
to automation. As digital project histories become available as data sources, 
empiricist systems or even those reaching Pearl’s cognitive capabilities of the 
‘intervention’ rung, may assume more responsibility for technical integration. 
Digitally automated construction and fabrication systems can consume data 
systematically generated by their AI counterparts on the design side. All of 
which is to suggest that the technical development super-stage is much more 
subject to AI replacement than its predecessor in project definition. 

However, there is an important caveat here. Health and safety considerations 
are at the forefront of HSE’s requirement for a principal designer, and while 
AI tools are likely to get much smarter in guiding projects towards safer 
outcomes, there is little benefit in allocating that responsibility exclusively 
to algorithms, which are far from being capable of making decisions and 
therefore taking the corresponding obligations. 

As philosopher Daniel C. Dennett suggests, computers are not conscious 
entities, cannot suffer consequences of failure and do not assume human 
obligations. He asks if it is possible to ‘Give me the specs for a robot that could 
sign a binding contract – not as a surrogate for some human owner but on its 
own … as a morally responsible agent.’11 If there is any lesson from Grenfell, 
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it is that the complexity of the building enterprise – in all dimensions of 
design, construction, supply chain management, certification and regulation, 
and human behaviour – is beyond the ken of machines. As Dennett further 
posits: ‘We don’t need conscious agents. There is a surfeit of natural conscious 
agents, enough to handle whatever tasks should be reserved for such special 
and privileged entities. We need intelligent tools.’12 

HEALTH, SAFETY, WELFARE AND THE FUTURE 
In summer 2020, academic administrators (like me) were facing the 
daunting task of planning the upcoming school year in the face of a global 
pandemic. Under the rubric of ‘everything looks like a nail when all you 
have is a hammer’, our team at the School of Architecture began looking 
for an architectural strategy to address an epidemiological crisis. We knew 
that if we could translate the spatial demands of public health parameters 
(established by our colleagues in the School of Public Health) we had a chance 
of maintaining some semblance of the education our students so reasonably 
expect. After a summer of careful planning, we produced an operating plan – 
50 pages of architectural and engineering analysis – that allowed us to open 
our building and give our students access to our facilities while working in 
studio. Every classroom was evaluated and rearranged so those faculty who 
could teach in person might do so. Air systems were evaluated and adjusted, 
and a safe occupancy schedule established and enforced. The school year 
ended without almost no positive cases among our students. 

Architects in the 21st century face an array of similar challenges that must 
draw the profession away from its obsession with making beautiful objects 
for the wealthy. At the top of this list is climate change, followed closely by 
housing inequity, structural racism in the built environment, especially cities, 
even questions of modern slavery in the building supply chain.13 

In the aggregate, these challenges comprise a new definition of the public’s 
health, safety and welfare, an idea that catalyses the need for a principal 
designer in the UK and is the basis of professional licensure in the US. Facing 
these questions as a set of spatial challenges demands the essentially human 
capabilities of Russell’s intuition, insight and intuition that are unlikely to be 
provided by machines soon, and certainly not in time to attack these problems 
with the ‘wild modelling strategies’ they will demand. As Dennett so wisely 
posits, AI producers should be ‘making tools, not colleagues’.14 Architects are 
needed as never before, empowered by those tools. 



Machine Learning 2e.indd  116Machine Learning 2e.indd  116 16/07/2025  09:3416/07/2025  09:34

116 

  
 

 
 

 
 

 
 

2.3.3: 
YALE 
ARCHITECTURE 
STUDIO SPACE 
PLANNING 
(COURTESY 
APICELLA 
+ BUNTON 
ARCHITECTS) 



Machine Learning 2e.indd  117Machine Learning 2e.indd  117 16/07/2025  09:3416/07/2025  09:34

117 2.3 THE DEMAND FOR PROFESSIONALS 



118 

Machine Learning 2e.indd  118Machine Learning 2e.indd  118 16/07/2025  09:3416/07/2025  09:34

 
 

 
 

 
 

 

NOTES TO THE 2025 EDITION 
In the autumn of 2020, about the same time I was working on the 
first edition of this text, I began a teaching and research project with 
a team of architects, engineers and civil rights attorneys to look at the 
issue of modern slavery in the building supply chain, with a specific 
view toward the architect’s agency in facing this global challenge. The 
ethical, political and technical challenges of this crisis are daunting 
and complex, and the architect’s leverage at the front end of the 
supply chain is limited at best. But the profession’s understanding of 
this problem is even more so. 

If the obligations of licensed American architects and UK Principal 
Designers define one dimension of the architect’s obligation for 
the public’s welfare, work in modern slavery opens another set of 
questions. In an era where labour abuse, inequity in the quality of the 
built environment and environmental crises press on the demands 
of the modern designer while digital tools simultaneously make the 
technical dimension of creating design solutions easier, is this an 
opportunity for our profession to call into question the definition of 
health, safety and welfare itself? 

In a world where, over time, the more routinised aspects of practice 
are going to be automated, but the need for effective and ethical 
building has never been greater, it would seem that dismantling the 
profession of architecture is ill-timed at best, and disastrous at worst. 
The Susskinds ask, in essence, ‘How do we solve problems to which 
[architects] are the best answer?’ Those problems might demand a 
redefinition of HSW to include the bigger challenges of the climate 
crisis and social inequity – protecting the broader public, and not just 
those who use our designed buildings – and simultaneously increase 
the value of both architecture and architects. Perhaps AI is a strategy 
toward that important end. 

2.3.4: 
THIS DIAGRAM, PREPARED 
BY KIERANTIMBERLAKE 
ARCHITECTS, DESCRIBES 
THE ENORMOUS COMPLEXITY 
OF THE SYSTEMS THAT 
TRANSLATE HUMAN LABOUR 
INTO BUILDINGS 
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>> TECHNOLOGIES, BY THEMSELVES, RARELY 
BEND THE ARC OF ARCHITECTURAL EDUCATION 
OR CERTIFICATION. NEW TOOLS CHANGE THE 
NATURE OF THE ARCHITECTURAL PROCESS, 
ALBEIT VERY SLOWLY, AND THE INTELLECTUAL 
INFRASTRUCTURE OF THE PROFESSION – 
SCHOOLS, PROFESSIONAL ASSOCIATIONS 
AND LICENSURE BOARDS – ARE EVEN SLOWER 
TO RESPOND. THE ADVENT OF INTELLIGENT 
MACHINES AND THE DEMANDS ON 21ST-CENTURY 
DESIGN WILL REQUIRE THESE INSTITUTIONS 
TO RETHINK HOW ARCHITECTS ARE TRAINED, 
THE CRITERIA BY WHICH THEY ARE CERTIFIED 
AND THE INTELLECTUAL INFRASTRUCTURE OF 
THE PROFESSION ITSELF. << 
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I have argued to this point that while AI systems are likely to both augment 
and impinge on the work of architects, they are unlikely to replace us as 
designers, a capability that will require the development of artificial general 
intelligence (AGI). The data scientist Herbert Roitblat correlates AGI with just 
such an ability to attack the ‘wicked’ problem of design, suggesting that ‘to 
have a truly general intelligence, computers will need the capability to define 
and structure their own problems,’1 which is an excellent way to characterise 
the value of a talented designer. 

There are, of course, many problems facing architects in the day-to-day 
business of design that are well structured and suited to emergent, empiricist 
machine learning systems. This will be increasingly true as architecture and 
the scientific disciplines necessary to attack issues of climate change, material 
performance or even the socio-economic dynamics of building become more 
entwined. Although data-dependent analytical tools that can help architects 
with these issues are a far cry from the representational tools like CAD or 
BIM, which have been treated largely as instruments of expression in both 
the academy and the office, their emergence suggests that the two poles 
of intellectual infrastructure of architecture – academic and professional 
institutions – must plan for the resulting implications. 

LEARNING OBJECTIVES 
We will touch first on the well-trod and contested ground between those who 
prepare architects for practice in the academy and those who establish the 
criteria for accredited curricula and, eventually, professional certification that 
leads to licensure. The uneasy truce between providers of architectural talent, 
the certifiers of competence and the consumers of that talent in daily practice 
is underpinned by a basic tension: what does it mean to educate a competent 
practitioner? To crudely summarise the positions of the contestants, 
educators argue that architecture is best understood as a form of culture, 
and it is difficult, time-consuming and expensive to train students in the 
design skills necessary to achieve that end, so there is little time to do much 
else. Licensure certifiers define competency in terms of the legal demands 
of the public’s health, safety and welfare, and demand technical competency 
first. They are bolstered by professional associations that protect the brand 
and potency of architects and steer toward capabilities with marketplace 
relevance. Meanwhile, the practices just want folks who can function the day 
they first sit down behind their assigned computer. 
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The means by which these competing aspirations place demands on the 
architect include: 

» curriculum and accreditation constraints (in the academy) 

» testing and experience and continuing professional education (by the 
licensing authorities), and 

» qualifications for membership and more continuing education (by 
professional associations). 

While the standards and structures differ slightly, these arrangements are 
largely the same in the UK and US, and compiled in Figure 2.4.1. 

2.4.1: [Demonstrate 
INTELLECTUAL experience] 
DEMANDS 
ON THE 
ARCHITECT ⏎ 
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These competing constituencies, with our architect in the middle, take 
divergent positions about what constitutes competence and use different 
instruments to enforce them. The emergence of new technologies, at least 
to date, has changed these positions little, if it all, since those technologies 
have largely been technical means (software) to representational ends 
(drawings, models). However, once computers begin to augment (or replace) 
competence, the conditions on this pitch will need to change. 

TERMS OF TOOLS 
The advent of BIM demonstrates this intransigence and holds potential 
lessons for the upcoming era of AI. As that technology began widespread 
adoption around 2010, at a point where the software was sufficiently mature, 
machines capable and when propellants like the UK BIM Mandate came into 
focus, there was widespread conversation about how a new means of data-
rich representation might empower architects and the building industry writ 
large. Early academic enthusiasm, however, soon faded, and despite massive 
investments in software and hardware, design pedagogy remained largely 
unchanged.2 While BIM is begrudgingly taught in most schools, it is done so 
as a necessary evil to prepare students for practice, and widespread research 
on the possible implications of BIM for design pedagogy are somewhat 
unexplored territory.3 

I would argue that the disinterest in fully engaging BIM in design curricula 
is indicative of the larger inclination of educators to see technologies only 
as tools or instruments, although there are specialised, post-graduate BIM 
technical degrees for those so inclined.4 Since BIM joined a crowded field 
of ‘representational’ instruments (used directly to depict a design), and that 
software is deployed largely in the service of form- and image-making, this 
conclusion is understandable. At my institution we are careful to say that we 
teach principles and theory, not tools, and there are no parts of the curriculum 
(save one) where learning tools can result in credit toward the degree.5 

This arm’s-length relationship, however, will not serve either students or the 
overall professional well in the long term, and the advent of machines that 
can do knowledge work is best faced now by educators and other leaders 
of our profession. As intelligent machines move from efficient depiction and 
data management (CAD, BIM) to analysis, insight and evaluation (AI/ML), the 
academy must face two parallel obligations: 
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1. Instantiating a different source of design insight into design pedagogy. 

2. Providing the foundational research around the data sources and uses 
that newly intelligent instruments require. 

These two objectives are self-reinforcing; by laying out the proper terms of 
intelligent digital competence in the enterprise of design, the academy can set 
the direction for their use in the marketplace. 

It is important to draw the distinction here between the development of 
algorithms that design things themselves and those that provide a supporting 
role. Subscribing to the earlier argument that we need ‘tools, not colleagues’,6 

some of the most interesting research today in the architecture/ML nexus looks 

at what we can learn from algorithmic generation of building plans or room 
configurations, like that of Stanislas Chaillou of Harvard Graduate School of 
Design (see Figure 2.4.2). 

This work is important in that it may yield insights into building organisation, 
or even optimisation. It allows designers to see problems in a different light, 
but it does not solve those same problems. Stuart Russell suggests that ‘… AI 
research has focused on systems that are better at making decisions, but that is 

not the same as making better decisions’.7  Thus, this research is not likely to be 

of the most immediate use in a world when structured, scientific and technical 
interrogation and evaluation of design work will be increasingly demanded. 

Finally, recent graduates often introduce new technologies and methods 
to practice, where technology hesitancy is a function of conservative work 
processes, long project schedules, costs of implementation and low profit 
margins. If AI strategies for architecture can be incubated in the academy, 
perhaps they can be carried into regular practice by the most technologically 
adept new employees. 

PROFESSIONAL PREROGATIVES, CERTIFICATIONS AND DEMANDS 
On leaving the academy, our future architect enters the domain of the 
profession and its disparate masters: registration authorities and professional 
associations and accreditors, both with roles in certifying competence, and 
therefore in defining the knowledge and skills that a professional architect 
must possess. However, where technology once relieved architects of the 
obligation for such prosaic obligations as consistent hand-lettering and line 
weights on drawings (that were not of much concern to certifiers), or even 
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2.4.2: 
AI-BASED 
PLAN 
GENERATION ⏎ 
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2.4.3: 
NCARB 2012 
PRACTICE 
ANALYSIS OF 
KNOWLEDGE/ 
SKILLS 
RELATED TO 
TECHNOLOGY8 

70% 

EDUCATORS 
60% 

ARCHITECTS 

50% 

40% 

30% 

20% 

10% 

0% 

properly coordinating callouts on CAD drawings, its role in both dispensing 
and generating knowledge that supports the design process should draw 
more careful attention. 

In the US, the National Council of Architectural Registration Boards is the 
organisation, comprised of licensure authorities of 54 US jurisdictions, that 
sets certification standards for architectural registration. As part of their 
protocols for establishing testing and experience standards, as well as 
influencing the accreditors of architectural schools, they prepare a ‘Practice 
Analysis of Architecture’ to determine what skills practising architects and 
educators believe are necessary for recent graduates and licensees to master, 
whether in school or otherwise. Even in 2012, the year the last analysis was 
completed (see Figure 2.4.3), there was strong agreement that technological 
skill was necessary to be deemed competent, if only towards various 
representational ends (like drawings). 

While we wait for the 2020 analysis, it is safe to presume that the 2032 
analysis will include knowledge and skills of AI applications, and the overall 
summary of competencies will reflect the idea that certain functions of today’s 
architects, particularly those related to building science, will be performed by 
machines and managed and integrated into project process by architects. 

SKILL: USE 
SOFTWARE TO 
PRODUCE 2D 
DRAWINGS 

SKILL: USE 
SOFTWARE TO 
PRODUCE 3D 
MODELS 

KNOWLEDGE: 
UNDERSTAND 
COMPUTER 
AIDED DESIGN 

KNOWLEDGE: 
UNDERSTAND 
PRINCIPLES OF CAD 
TO COMMUNICATE 
DESIGN IDEAS 

⏎ 
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The lessons of the UK National Level 2 BIM Standard, which stipulates both 

the information outputs and performance levels of the design process when 
powered by BIM, may be instructive.9 It was created by an industry consortium 
and eventually evolved from a UK-only template (PAS 1192) to an international 
standard (ISO 19650). While some practitioners in the UK may avoid working in 

BIM, any government-funded project requires it for the large number of industry 

projects they fund, and it is a matter of time before BIM techniques and data 

strategies will be instantiated into the standard of professional care, expected of 
competent practitioners. 

The Level 2 standard was based on a larger industry strategy established by the 
Cabinet Office as part of a national economic agenda to improve building and UK 

construction competitiveness globally, decrease climate impacts of construction 
and make government building more efficient.10 The resulting technology 
requirements were designed to provide process and outputs towards those ends, 
and acknowledged the importance of information strategies: 

>> Information management using building information modelling 

can enable dramatic improvement in delivery and performance 

efficiencies by catalysing increasingly innovative ways of working 

across the built environment. As an information-based industry, this 

approach is helping to support better strategic decisions, improved 

predictability through better risk management and – when coupled 

with a soft-landings methodology (Annex B of this guidance) – can lead 

to certainty of operational outcomes and improved learning.11 << 

The particular implications for the instruments of professional certifiers – 
licensing criteria, testing, experience and continuing professional development 
– should be derived both organically from emerging practice standards and 
duties of care, and strategically from cross-industry efforts like Level 2 BIM 
that set technological objectives and standards of use from agreed goals. 

This suggests that the most important role of certifiers in establishing the 
use of machine intelligence should not stem from determining or driving the 
particular and unique requirements of AI-supported architectural practice but 
rather in concert with larger industry collaborators who can prioritise the most 
important objectives and use of these new systems. This approach will be not 
just desirable but necessary, given that, unlike BIM tools that generate data 
by virtue of its use, AI/ML systems require large, well-curated data sets for 
training and optimisation, and those data are most useful when contributed 
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across the entire delivery chain. The training obligations demanded by 
certifiers do not serve only as requirements for professionals, but for the 
machine learning systems as well. 

Professional associations, like RIBA or AIA, have more vague ideas about 
certification for membership, as such considerations are primarily designed 
to assure that members have credibility with the marketplace. Continuing 
professional development requirements ask only that member architects 
be regularly exposed to a broad spectrum of technical and professional 
concerns, stipulating general categories (such as ‘Health, Safety and Welfare’, 
for example, in the US) and numbers of hours of attendance. Over the next 
decade, as architectural clients rely on AI-based processes in their business 
or government operations, it is possible that those clients will ask the same of 
their architects, and professional education and CPD certification are sure to 
follow the desires of the customer base. 

PRESSING PROBLEMS OF INSIGHT 
The marketplace is currently pressing the building industry about carbon and 
climate change, and that challenge gives us a good opportunity to speculate 
on how the academic and professional platforms of architecture might 
respond in the time of machine intelligence. Imagine the following scenario: 

In 2032 the Ministry of Justice issues a request for proposals for a new 
headquarters building in Westminster. The project is to adhere to the recent 
update of ISO 19650, the so called ‘Intelligent Level 3 BIM’ mandate, and reflect 
best practices in responsible environmental design, including certifications that the 
project will be net zero, generate at least 500 construction jobs and be free of any 
evidence of modern slavery in labour or material practices. 

The Construction Industry Council, with participation of RIBA, ARB and a 
consortium of universities including Cambridge, Liverpool, Manchester and the 
Architectural Association, has certified a complement of artificial intelligence 
platforms for the evaluation of embodied carbon and the labour supply chain. 
Those systems were built, based on research in the consortium, by several 
companies in the M4 Corridor, the so-called ‘England’s Silicon Valley’, and trained 
with the National Building Data Trust, created and curated by the Infrastructure 
and Projects Authority in 2026 with data provided by the UK’s global design and 
construction industry. 
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The RFP (Request for Proposal) stipulates that submitting architects must be RIBA 
certified in machine data analytics for Level 3 outcomes, and able to deploy AI 
platforms to evaluate submitted schemes for compliance to climate, economic 
and labour performance. The team must also include at least two architects 
with registrations in the recently approved SPLC (Speciality Professional Licence 
Certification) created by ARB in climate change modelling and supply chain 
management evaluation. Several graduate candidates from Leeds and Liverpool 
have sat for, and received, these special registrations. 

The SPLC program has been created in concert with a new definition of Principal 
Designer established in 2029 by the Health and Safety Executive that includes 
environmental and labour equity in the responsibilities for that designation. Many 
firms have been experimenting with two AI platforms, smartTALLY (see Figure 2.4.4) 
and buildFRDM (see Figure 2.4.5), that assess Level 3 BIM schemes for embodied 
carbon and forced labour, and collect information about design decisions and 
strategies that are contributed to the National Building Data Trust. The HSE has 
further stipulated that projects for human habitation larger than 300 sqm must 
have an assigned Principal Designer who is a licensed architect, causing some 
consternation amongst the country’s construction/design managers – none of 
whom have been certified in data-driven design methods. 

This admittedly rosy scenario presupposes that our profession organise itself 
in ways as yet unseen to accomplish three ends: 

1. a strategic focus on key social challenges 

2. the intelligent deployment of technology in service of that focus 

3. the integration of academic, professional and technical resources used in 
concert toward those ends. 

In these circumstances, AI technology is not just an available tool, but more 
importantly a catalyst of change in standards, relationships and processes, and an 
opportunity to synchronise education, certification and subsequent professional 
training in technology suitable for 21st-century design and building. 
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2.4.4: 
TALLY 
CARBON BIM 
ASSESSMENT 
TOOL THAT 
EVALUATES 
EMBODIED 
CARBON IN 
BUILDING 
MATERIALS 
FROM A 
DIGITAL 
CONCEPTUAL 
DESIGN IN 
REVIT ⏎ 

Option 1: Corrugated Shingle Cladding 

Option 2: Translucent Panel Cladding (selected) 



Machine Learning 2e.indd  131Machine Learning 2e.indd  131 16/07/2025  09:3416/07/2025  09:34

  
  
 
 

 
 
 

131 2.4 EDUCATION, CERTIFICATION AND TRAINING 

Results Per Life Cycle Stage, Itemised by CSI Division 
2.4.5: 
FRDM, AN 
AI-BASED 
TOOL FOR 
FINDING FORCED 
LABOUR IN THE 
MANUFACTURING 
SUPPLY CHAIN ⏎ 
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NOTES TO THE 2025 EDITION 
In a recent faculty meeting at Yale Architecture where policy 
issues about the use of artificial intelligence were being rigorously 
discussed, there was little consensus about the efficacy of the tools. 
A historian described AI as ‘an anti-scholarly plagiarism machine’, 
while his counterpart on the design faculty averred that these tools 
were a critical technology that we were obligated to understand, 
teach and embrace. 

These extremes frame one dimension of AI as an educational and 
training challenge. After several months of work, our university has 
settled into a strategy that combines incentives for innovation with 
various frameworks for establishing AI policy and learning objectives 
in the classroom, bowing to the inevitable march of AI into every 
corner.12 Yale’s Center for Teaching and Learning leans heavily toward 
my design colleague’s position, and believes that the opportunities 
for AI far outweigh the threats to proper academic behaviour. 

A second dimension is the state of the developing technology at any 
given moment. The tools we are using in teaching our AI courses 
change constantly during the term, making it difficult to establish 
constant positions on capabilities or trajectory. For every revision to 
ChatGPT (there are at least four versions available on their platform 
as I write) there’s the regular appearance of something even more 
disruptive, with the Chinese release of DeepSeek being the most vivid 
example of 2025 so far. If the academy is struggling to put a stake in 
this proverbial ground, how can the profession? 

These are complex waters for professional organisations like RIBA 
and AIA to navigate. RIBA publishes surveys, futures thought pieces 
and news coverage at a torrid pace.13 The AIA has just announced 
an eighteen-month ’AI strategic plan’ almost two years after their 
initial investigations. There is a clear disconnect between the pace 
of change and our institutional ability to respond. 

CONT. 
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Thus, certification and, with it, educational competency requirements 
and related training, will run even further behind. After a 2024 
conference on AI, the National Council of Architectural Registration 
Boards in the United States issued a mild statement on AI policy 
that bemoaned the possibility of regulatory overreach regarding 
tools (an ironic position for a regulatory body), and avowed 
steadfast commitment to the notion that architects must maintain 
responsible control of the work.14 With so little assertive evaluation 
of this technology, it is safe to assume it will be some time before 
accreditation, testing and continuing education react to the 
possibilities of automation, and the locus of innovation will remain 
in the studio. 
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>> JUST AS ACCELERATING STORAGE AND PROCESSING 
CAPABILITIES OF TODAY’S COMPUTERS HAVE VIVIFIED 
MACHINE INTELLIGENCE, THOSE CAPABILITIES IN TURN 
BRING THE POTENTIAL OF EXPONENTIALLY MORE PRECISE 
AND INSIGHTFUL PROTOCOLS TO DESIGN, SUGGESTING THAT 
COMPUTERS (AND, ONE HOPES, THEIR HUMAN MASTERS) MAY 
BECOME MUCH MORE SKILLED AT NOT JUST PROJECTING THE 
FUTURE STATE OF A BUILDING, BUT IN PREDICTING ITS 
BEHAVIOUR. << 
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>> THE INEVITABLE ADDITION OF ARTIFICIAL 
INTELLIGENCE TOOLS AND ‘BIG DATA’ IN 
THE BUILDING INDUSTRY WILL CHALLENGE 
TOMORROW’S ARCHITECTS TO RE-EXAMINE 
THE CLASSICAL DEFINITION OF THEIR 
OBLIGATION TO DEFINE THE ‘DESIGN INTENT’ 
OF A PROJECT. AT THIS STAGE, ARCHITECTS 
LEAVE MANY OF THE IMPLICATIONS OF THEIR 
IDEAS – FOR CONSTRUCTION AND EVENTUALLY 
BUILDING OPERATIONS – TO BE RESOLVED 
AND REFINED BY OTHERS. AI TOOLS ARE 
LIKELY TO ACCELERATE THE USE OF DATA-
DRIVEN EVIDENCE TO AUGMENT THE PRECISION 
OF DESIGN, GIVE ARCHITECTS GREATER 
UNDERSTANDING OF PROJECT PERFORMANCE 
ACROSS THE MANY DIMENSIONS OF PROJECT 
DELIVERY AND RAISE EXPECTATIONS OF THE 
RESULTS. THE PROFESSION CAN DECIDE TO 
SEE THESE OPPORTUNITIES AS AN ADVANTAGE 
OR A THREAT TO ITS AGENCY. << 
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When Alberti defined the architect’s design of a building as ‘conceived in the 
mind, made up of lines and angles, and perfected in the learned mind and 
imagination’,1 he centred those responsibilities on the abstract projection of 
a future state, which, according to Carpo, was to be translated from idea to 
concrete result by virtue of the architect’s ‘sound advice and clear drawings’.2 

Carpo, channelling Alberti, further explains: 

>> Designers first need drawings and models to explore, nurture and 

develop the idea of the building … (those) models should also be used 

to consult experts and seek their advice; as revisions, corrections and 

new versions accumulate, the design changed over time; the whole 

project must be examined and re-examined… The final and definitive 

version is attained only when each part has been so thoroughly 

examined that any further addition, subtraction or change could only 

be for the worse.3 << 

In Carpo’s interpretation we find three important architectural strategies: 

1. The use of abstraction, in the form of models and drawings, to 
memorialise ideas. 

2. The incorporation of outside expertise in completing the design so it is 
suitable for construction. 

3. Designing in successive iterations to refine the project until it could not 
possibly be adjusted for the better.4 

Today’s architects use much the same approach, bolstered by various digital 
armaments, but what happens when those tools become agents of design? 

THE AI-ENABLED DESIGNER 
Let us assume that an architect by, say, the year 2030 has a complement 
of AI-enabled tools at her disposal, along with significant advancements 
in the resolution, precision and flexibility of modelling platforms that one 
hopes would be the logical successors of today’s BIM. While there may be a 
conceptual breakthrough, some time in the future, in what I have described 
as ‘cognitive’ AI platforms that can reason inferentially about the complex 
interactions that comprise a building, let us assume that by 2030 we only are 
at the point of useful architectural versions of ‘undeniably single-mindedly 
successful’5 platforms like today’s language and game-playing software, for 
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example GPT-3 or AlphaGo.6 Such systems would be tightly tied to design 
modelling/representational platforms and their data, and receive training 
from other information sources like engineering systems, real-world data 
collection about context from LIDAR or GIS, construction management sources 
that describe process and results from contractors, and building operations 
data from existing projects controlled by sensor-driven building management 
and control systems. These systems are likely to be semi-autonomous, cloud-
based agents that operate in the background of the architect’s process, 
appearing when the architect demands some piece of insight or analysis. 

While it is impossible to accurately predict what will comprise this new set of 
AI-empowered tools, Table 3.1.1 summarises a few speculative suggestions 
designed to sketch the potential future of autonomous, AI-based tools. 

Notably absent from this list, save perhaps the last item, are systems tasked 
with generating entire design solutions (at any scale) for a project. A central 
thesis of this book is that such systems will not be useful until far in the 
future – if at all. They are unlikely to provide useful insights and present an 
unnecessary existential threat to architects. The world is already populated 
with many not-quite or barely competent buildings; the creation of a design 
generator capable of even simple buildings is likely to have unintended 
and unpleasant consequences for the profession. And with so many other 
opportunities, energies are best focused elsewhere – augmenting the design 
process to improve the performance and results of design and building.7 

THREE NEW DIMENSIONS OF DESIGN 
These AI examples suggest that Alberti’s components of the design process 
– representation, iteration and expertise – will be transformed as intelligent 
systems that augment (but do not replace) the central role of the designer. 
First, as has already been seen in our now data-rich world, the extensive 
availability of information in digital form, combined with the predictive and 
analytical power of AI systems, will make the role of evidence in supporting 
design decisions much more apparent. While, as I have argued previously, 
the credibility of design decisions stemmed primarily from the (presumably) 
sound judgement and intuition of an experienced architect, 8 those 
judgements will need to be substantiated, at least in part, by evidence and 
analysis to back them up. The built environment has traditionally disgorged a 
collection of ambiguous, heterogenous data sets, but the ability of AI systems 
to divine and understand patterns within it gives architects the opportunity to 
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AI-BASED TOOL CAPABILITY TRAINING DATA 

ZONING AND PLANNING ANALYSER EVALUATES CONFORMANCE TO 
SPECIFIC PLANNING AND ZONING 
CONSTRAINTS OF THE PROJECT 

PLANNING CODE, RECORD OF 
VARIANCES, EXISTING BUILDINGS 
IN SIMILAR JURISDICTIONS 

BUILDING CODE EVALUATOR CHECKS EMERGING SCHEME FOR 
CONFORMANCE TO BUILDING/LIFE 
SAFETY PERFORMANCE 

STANDARD CODES AND LOCAL 
IMPLEMENTATION, EXAMPLES OF 
CONFORMING CONFIGURATIONS 
FROM OTHER PROJECTS 

SPATIAL COORDINATOR CHECKS 3D COORDINATION OF 
BUILDING ELEMENTS WITH 
AN UNDERSTANDING OF WHEN 
CONFLICTS ARE PROBLEMATIC 

CLASH ANALYSIS OF CURRENT 
DESIGN SCHEME AND EXAMPLES 
FROM OTHER PROJECTS OF 
APPROPRIATE AND PROBLEMATIC 
INTERFERENCES IN PLENUMS AND 
OTHER SPACES 

CARBON IMPACT CALCULATOR COMPUTES GENERATED AND 
EMBODIED CARBON IN THE DESIGN 

ENERGY AND CARBON 
CALCULATIONS AND STANDARDS, 
RECORDS FROM OTHER PROJECTS, 
SUPPLY CHAIN AND MATERIAL 
DATABASES 

MEANS AND METHODS EVALUATOR EXAMINES THE 
CONSTRUCTABILITY/SEQUENCING 
AND PROCEDURES NECESSARY TO 
CONSTRUCT A GIVEN BUILDING 
ELEMENT TO TEST ITS VIABILITY 
DURING DESIGN 

CONSTRUCTION PROCEDURE 
INFORMATION FROM BUILDERS AND 
PRODUCT SYSTEM MANUFACTURERS, 
CONSTRUCTION SIMULATION AIS. 

PRODUCT RECOMMENDATIONS AND EXAMINES CHARACTERISTICS AND PAST PROJECT RECORDS, 
SPECIFICATION GENERATOR RECOMMENDS POSSIBLE MATERIALS 

AND PRODUCTS AND COORDINATES 
THE NECESSARY SPECIFICATIONS 

MATERIAL AND SPECIFICATION 
DATABASES, PRODUCT 
MANUFACTURING INFORMATION, 
SUPPLY CHAIN AVAILABILITY 
DATA 

COST MONITOR AT THE PROPER LEVEL OF 
RESOLUTION9 PROJECTS THE COST 
OF CONSTRUCTION AND OPERATION 

CONSTRUCTION COST DATA FROM 
PROVIDERS AND PAST PROJECTS; 
BUILDING OPERATIONS DATA FROM 
EXISTING PROJECTS 

SUPPLY CHAIN AVAILABILITY 
PROBE 

WORKING WITH THE PRODUCT 
RECOMMENDER, EVALUATES THE 
SUPPLY CHAIN CONSTRAINTS OF A 
PRODUCT SELECTION, INCLUDING 
AVAILABILITY, COST AND FORCED 
LABOUR ISSUES. 

BASED ON PARAMETERS SET BY 
THE DESIGNER, GENERATES 
ALTERNATIVES FOR A GIVEN 
DESIGN PROBLEM AND PROVIDES 
MEASURES OF PERFORMANCE AND 
SUITABLE FIT FOR PURPOSE 

MANUFACTURING AND SUPPLY 
STREAM SHIPPING AND 
MANIFESTS, CERTIFICATION 
DATA, LABOUR STANDARDS INPUTS 
FROM LOCAL CONDITIONS, MODELS 
OF PAST PROJECTS 

EXAMPLES OF SIMILAR 
CIRCUMSTANCES IN DESIGN 
MODELS OR EXISTING BUILDINGS 

SKETCH PROBLEM SOLVER 

3.1.1: 
FUTURE 
AI-BASED 
TOOLS 
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generate and leverage just such evidence. And since many of today’s clients 
rely on AI data systems to run their enterprises, architects will be expected 
to do the same to substantiate the decisions that form the design. 

Alberti has asserted that the architect should produce designs that are 
perfectly ready for a builder to enact physically. At the end of the design 
process, Carpo interprets that: 

>> This is when all revisions and the final blueprint (as we would have 

said until recently, both literally and figuratively) is handed over to the 

builders. Thenceforth, no more changes may occur. The designer is no 

longer allowed to change his mind, and builders are not expected to 

have opinions on design matters. They must build the building as is – 

as it was designed and notated.10 << 

The master builder of Brunelleschi’s ilk, a central repository of all things design 
and construction and the maker of every decision, gives way to the architect, 
generator of complete, immutable and clearly depicted ideas. 

If only. There is a profound mismatch between Enlightenment aspiration and 
the realities of modern construction, where design documents are a frequent 
source of contention and the architect is relegated as a subconsultant of 
a contractor in the name of better control, while the builder has not just 
opinions about design, but control over it. However, the advent of AI gives 
architects an interesting opportunity to close this gap and realise design ideas 
with great fidelity, if not greater control, of the design-build relationship. 

If architects will benefit from AI systems focused on specific tasks, it is equally 
likely that our colleagues in construction will see similar progress, with AI-
driven systems automating aspects of construction in the field through 
robotics and industrialised methods of digitally driven mechanisms. An AI that 
plays brilliant chess can likely be repurposed to control a robot that installs 
curtain walls, for example. In doing so, the procedural knowledge of building 
that architects are oft accused of lacking will have been instantiated digitally 
and will be accessible to them as an evaluative/performative measure of 
the efficacy of their design.11 While sharing the ‘mind and imagination’ with 
an AI, the architect can perfect the design with substantial new, accessible 
understanding of how it can be built. 
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Finally, deploying evidence in combination with the predictive powers of AI 
systems will make performance a profound objective of the modern design 
process and its deliverables. Architects today operate in a mode that might 
be characterised as ‘implicit’ performance: our work process is organised and 
calibrated to produce physical artefacts (drawings) that lead to an object (a 
building) that is hoped to achieve certain ends once complete, and those goals 
are rarely explicitly defined as measurable objectives or outcomes. Implicit in 
the design process are expectations that those goals will be achieved, costs 
will be met, documents completed on schedule, materials properly specified 
and codes conformed. At the same time, the resulting buildings consume 
resources and produce carbon, require regular maintenance and staffing, 
organise the circulation of people and materials, and most importantly 
create platforms for their owner’s objectives: students learning, patients 
healing, goods selling. They contribute (or detract from) the environment, 
economic health and social fabric of their locales. As AI systems learn from 
the data derived from the built environment, and to the extent that these 
characteristics model in predictive AI systems, architects get the ability to 
‘explicitly’ design projects towards improved ends, demonstrating a priori, by 
virtue of the resulting simulations, that such outcomes are the result of the 
design itself. And while the earliest opportunities may be of a more limited 
technical nature (as suggested in Table 3.1.1), more sophisticated systems will 
model and evaluate larger, more complex contexts. 

This power of prediction is perhaps the most important implication of AI 
for the design process. It seems likely that AI technology, and the building 
industry data necessary to train it, will be in great supply by 2030. Prediction, 
according to a recent analysis of AI implementation in business, ‘takes 
information you have, often called “data”, and uses it to generate information 
you don’t have’.12 ‘Information you don’t have’ might be the watchword of 
today’s building industry. 

BREAKING FROM ALBERTI’S DESIGN PROTOCOLS 
Alberti’s design protocols of representation, iteration and instantiation of 
expertise have not been dramatically transfigured by the first few waves of 
technology, including even BIM. Representation is still centred on creation 
of drawings, and while much of the resulting information is now digital, the 
means by which it is generated – by an iterative refinement informed by 
outside expert consultants – is today exactly as asserted c. 1450. The third 
wave of digital tools, those driven by intelligent computation, will follow, but 
dramatically break from these traditions. 
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143 3.1 THE OBJECTIVES OF DESIGN 

AI-enabled representation will stretch the definition of ‘model’, which once 
referred to a scaled physical artefact (maquette), a mathematical simulation 
of geometry (CAD) or a parametric, meta-data-infused simulation of building 
components in three dimensions (BIM). An AI evaluation of a design will be a 
predictive model that will substantiate design decisions that are represented 
by more traditional means, but at the same time it will expand the range 
of the architect’s instruments of service. Those AI models will be required 
for both validation and as contributions to larger data repositories that can 
further train other AIs. 

An architect I once worked with compared the current iteration process of 
design to a circular staircase. Looking straight down on it, you appear to be 
going around in circles, but with each cycle you rise slowly toward the goal. 
In today’s design environment, climbing those process steps is accelerated 
by the inherent flexibility and accessibility of digital models and enhanced by 
emergent strategies called generative design, where computerised scripts 
generate alternatives by varying specific characteristics of a scheme. Properly 
constrained – so as to not lead to the ‘systematic generation of useless 
alternatives’ as César Pelli once described the misuse of CAD – AI-enabled 
generative design will set its own constraints. It will be informed by the logic 
of previously approved schemes as a training set and simultaneously provide 
evaluation of its own results. Design exploration will still demand choices by 
humans to make decisions that solve ‘wicked’ problems, but the process will 
be much more intelligent and systematic. 

Generative strategies that connect representation, iteration and instantiation 

may be the most important implication of AI-supported design processes of 
the future. Today’s modelling and analysis tools can only episodically optimise 
limited parameters of a design challenge – adjusting the dimensions of a solar 

shade to limit exposure and thereby reduce the size of a cooling system, for 
example – but this is hardly a strategy for the complete design of the building 

enclosure. Over time, AI systems will be able to manage multiple variables while 
evaluating design representations created by the architects and engineers, 
instantiating expertise while simultaneously recommending alternative 
solutions that meet design objectives. As designers select solutions, these 
systems will come to learn which combined strategies are best, and thereby 
improve their performance – and that of their architect masters. 

Consider the case of an architect coordinating the design of a mechanical/ 
electrical room (MER) in her project. That room, never big enough to satisfy 
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the engineers who fill it with complex equipment and connections, must be 
integrated in 3D with the balance of the project. She must assure the systems 
all fit, there is sufficient room for servicing the equipment, and that none of 
the architecture, structure, lighting and fire suppression interferes with the 
locations and pathways of the systems. An intelligent AI, trained on many 
similar rooms and the components that often fill them, can do more than 
just check the MER layout for clashes (a common feature of today’s BIM) but 
identify potential operational problems, recommend potential configurations, 
even strategise how to sequence and install the systems. Rapid simulation 
and evaluation of these issues will speed the process and make a successful 
solution more likely, improving over time as the AI systems ‘learn’ what is 
best. Our architect can use the additional time made available to resolve the 
proportions of the facade. 

Early AI efforts in the 1980s purported to create ‘expert systems’ that would 
memorialise knowledge and insight of humans in computer code. Neither the 
theory nor the technology were up to the task. By contrast, in our AI-enabled 
design future, sources of expertise that are today provided almost exclusively 
by human consultants will be greatly expanded by the analytical insights that 
computers can provide. While conceptual decisions that are more strategic 
in nature are best dispensed by human experts who can evaluate systems 
approaches and large-scale choices, specific outputs can be provided for 
specific tasks with particular inputs that result from well-understood rules. In 
the examples above, evaluating the particulars of life safety code compliance 
(and, with it, the arrangement of fire sprinklers or rated corridors) might have 
been provided by consultant with that expertise. Our designer of the future 
will apply an AI overlay to her design to yield much the same results, faster, 
and allowing for further iterations and resolution of the scheme in real time. 
Her decisions will be catalogued by the assisting AI and guide successive work. 

NEW OBJECTIVES, NEW OUTPUTS 
At the heart of the potential future changes in the objectives of the design 
process wrought by AI lie the implications of data and its use. Today’s 
architects use digital tools to create data, translate it into various forms 
like drawings or specifications, and dispense it as evidence of their design 
decisions. When machines can consume, create and deploy data to assist 
in those decisions, the models they create extend to and are entwined with 
the descriptors of the design itself. The resulting capabilities can make the 
results of design more precise, transparent and predictable. The balance of 
this section will explore strategies for enabling these capabilities in ways that 
further empower architects accordingly. 
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NOTES TO THE 2025 EDITION 
As examined in Chapter 2.3 and its epilogue, the likely depository for 
the architect’s technical responsibility for life safety is an algorithm 
working on both sides of the regulatory table. Johnston further 
wonders whether this is, in fact, an unavoidable fate: 

If the life-safety functions of the architect, the defining attributes of 
the licensed professional from the 20th century to present day, were 
preloaded in their design technologies as some “deus ex machina” 
defaults, what then would become of the parochial title architect? Out 
of all the possible hybrid manifestations offered by history, is there not 
any alternative to replacing one reductive definition of the life-safety 
architect with a new totalizing vision of the architect as a technological 
fait accompli?13 

Of course, as Victoria Beach has rightly declared, ‘[e]xpecting an 
architect to design a safe structure is like expecting a chef to cook 
a safe meal: it is at once a high ethical requirement and a very low 
expectation…’.14 She goes on to posit that the architect’s aesthetic 
obligations might be most important. Should AI overtake HSW, that’s 
one possible route to irrelevance. The expansion of the definition of 
(W)elfare is an alternate path. 

In an era where data, analytics and automation suffuse the entire arc 
of delivery, another set of alternative objectives can be found in the 
ultimate goals of the design process itself: the ability of a finished 
project to fulfil the objective of its funders, users and the public. 
While contractors bemoan the quality of design intent documents 
as insufficient for construction, this is a tautology: the architect’s 
documents describe the end state of the construction process, 
not the process itself, and only imply the means and methods of 
construction. 

One could imagine, (once the barriers to AECO foundation models 
are overcome), systems that could integrate flows of information, 

CONT. 
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evaluate relationships and anticipate conflicts and problems. They 
would do so from the performative objectives of the finished building, 
looking through the entire continuum of design and construction 
decisions and measuring their effectiveness through that lens, 
creating a putative ‘Golden Thread’ of insight. Somewhere between 
the alleged advantages of so-called digital twins and the predictive 
ability of AI to examine them lies this long-term goal for the future 
objectives of design. 
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>> DIGITISATION OF THE BUILDING INDUSTRY 
MAKES DATA MORE PORTABLE, TRANSMITTABLE 
AND, TO SOME DEGREE, FUNGIBLE. AI 
SYSTEMS WILL REQUIRE LARGE SWATHES OF 
SUCH DATA, FIRST FOR TRAINING AND THEN 
TO PERFORM. A GIVEN PROJECT GENERATES 
DATA IN A WIDE VARIETY OF FORMATS, 
SCALES AND LEVELS OF RESOLUTION BY 
DISPARATE PLAYERS WITH A VARIETY OF 
MOTIVATIONS TO SHARE IT, OR NOT. 
AS AI CHANGES THE DEMAND FOR AND 
CONSUMPTION OF DIGITAL INFORMATION BY 
ARCHITECTS, HOW DOES THAT CHANGE THEIR 
RESPONSIBILITIES AND PROCESS? << 
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 In 1994, my former employers at Autodesk organised about a dozen 
companies across the AECO industry in an effort to address a growing 
concern. The company’s increasingly ubiquitous CAD platform, AutoCAD©, was 
becoming the data standard for the building industry with their proprietary 
file format, .DWG. At the same time, the company was building a global 
ecosystem of third-party developers to create additional functionality on top 
of the AutoCAD© platform, and other software companies were looking to 
consume AutoCAD© DWGs in their own systems. The file format itself was 
understandably defended zealously by Autodesk, as much of their intellectual 
property was contained in each file. 

The 12 companies, including architects, mechanical equipment manufacturers, 
engineers and at least one real estate developer, called their consortium 
the ‘International Alliance for Interoperability’, and opened it to all members 
by 1995.1 Their mission was to achieve the ability to seamlessly move data 
between applications without translation or the need to duplicate DWG 
functionality. Rebranded BuildingSMART in 2005, the global consortium writes 
and distributes a data standard called Industry Foundation Classes (IFCs), 
an attempt to create a common denominator exchange that can transport 
relevant data between any software that has been written to generate or 
consume it. BuildingSMART’s efforts have turned from CAD data (DWG) to BIM 
in past years,2 creating standard data exchanges and libraries designed to 
make BIM more open. 

Achieving interoperability standards in the building industry, even given 
BuildingSMART’s admirable global efforts, is a daunting task. By the late 1990s, 
DWG had become the standard of data exchange in design and construction 
powered by two divergent realities: the industry was turning to digital tools, 
primarily AutoCAD©, but even more importantly, the vector of information 
exchange for architects and engineers was still largely drawings, rather 
than more robust data. This made the transmission of information via IFC 
relatively simple, using common definitions of geometry, lightly dusted with 
meta-data about that geometry. Given the explosion of digital tools today, the 
problem, however, is much more complex, and accepted non-proprietary data 
standards for the AECO industry have not been established.3 

MORE SOFTWARE, MORE DATA, LESS COOPERATION 
The move to BIM was but one part of the inevitable digitisation of AECO writ 
large. Building things is an information-rich enterprise, and architects among 
others had to wait until machines and networks were sufficiently powerful to 
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handle the required data. Cloud computing, high-speed interconnectivity 

and capable mobile devices all have spurred a veritable explosion in digital 
tools, formats, processes and even hardware.4  Standards for building 
information, analogue or otherwise, vary widely from country to country. 
This makes the mission of BuildingSMART even more challenging, despite 

their new branding as enablers of the ‘full benefits from digital ways of 
working in the built asset industry’.5 

However, what became apparent as architects and their collaborations 
began using larger collections of digital tools was that data exchange and 
relationships were not just a function of technical standards. Each constituent 
of the building process has its own contract and risk models, tools, data 
expectations, representational schema, content and business expectations, 
and is digitising at its own pace and in its own terms. 

In 2004, the US National Institute of Standards and Technology published a 
report purporting to identify an annual cost of $15.8 billion lost to software 
interoperability in the capital projects industry. The report gained significant 
notoriety, and certainly brought attention to the process inefficiencies of 
non-interoperability among software used for building. It failed, however, to 
address the underlying structural questions in the industry – discontinuity 
in business models, disaggregation in the supply chain, conflicting risk 
management strategies and lack of optimisation incentives in project delivery 
– that plague construction,6 all of which are strong disincentives to work 
together with data. 

Those same challenges of cooperation and integration can be seen more 
broadly in the structure and use of data in the building industry, and especially 
for architects. Being careful not to create too much responsibility or risk for 
construction, while managing limited fees with which to produce information, 
design data is held closely when released at all. Other ‘learned’ professions 
carefully generate, curate and consume knowledge about their disciplines: 
databases of case law, medical research about treatments and outcomes or 
pharmaceutical efficacy. An attorney researching the legal precedents for her 
client can explore a complete, cross-referenced database of every relevant 
legal decision in the history of jurisprudence (see Figure 1.3.3). Architects have 
access to no such central data. The move towards interoperability was a plea 
to play nicely together, but not to share any toys. 
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3.2.2: PRECONDITIONS OF INTEROPERABLE DATA 
COMPONENTS 
OF A The advent of machine learning-based AI systems demands that our industry
POTENTIAL 

not just share toys but builds a new sandbox in which to play with them. ThisDATA TRUST 
FOR THE is the first and most important precondition of moving towards and taking 
BUILDING complete advantage of the power of AI for architects and other players in 
INDUSTRY the building enterprise. The ability to leverage the potential of AI lies in the 

profession working closely with industry partners who might also benefit, and 
sharing data to do so in responsible ways. 

The problem, of course, is the other external factors, not the least being 
underlying motivations (or lack thereof) to share data. We will address some 
of the structural risk and reward questions in Chapter 3.5, but for purposes of 
this discussion the issue is diagrammed in Figure 3.2.2, which represents four 
hypothetical architectural projects that are otherwise unrelated. While there 
is some motivation to allow the project data generated within your office 
to roam more freely in the domain of the project, there is no structure nor 
incentive to organise or share it beyond that limited use. 

INDUSTRY 
DATA TRUST 
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At the centre of the diagram is a proposal to address this issue, which must 
be solved in order for AI to have any real chance of adoption or use in 
architecture or the allied building disciplines: a cross-industry data trust that 
would be the steward of a global building industry information resources. 
The concept of data trusts has evolved in the last several years to address 
questions of information coherence, privacy and fiduciary responsibility 
in circumstances where individuals contribute their personal data that is 
then used, for commercial purposes, by third parties. A data trust is an 
independent, third party who collects, manages, anonymises and provides 
access to such a large-scale collection of data: 

>> Typical use cases for data sharing are fraud detection in financial 
services, getting greater speed and visibility across supply chains, 
improving product development and customer experience, and 

combining genetics, insurance data, and patient data to develop new 

digital health solutions and insights. Indeed, the research has shown 

that 66% of companies across all industries are willing to share data. 
Nevertheless, sharing sensitive company data, particularly personal 
customer data, is subject to strict regulatory oversight and prone to 

significant financial and reputational risks.8 << 

While it is unlikely that 66% of architects, or contractors for that matter, 
would be willing to share data today, the benefits of access to a central global 
repository of project data, properly anaesthetised for attribution, would 
be too great to pass up, as both a useful reference tool and the necessary 
information infrastructure to begin AI in earnest. And of course, the challenges 
presented by European data sharing standards must be overcome. 

Such a data trust would, by necessity, need to be cross-disciplinary and 
include information from designers, builders, subcontractors, product 
manufacturers and suppliers, and operating building owners; the entire 
supply chain that builds assets. For architects, there is marginal utility in 
an ‘architecture only’ data set, as it is likely to be sparse and inconsistently 
curated. And if my experience of years as a technology vendor is any 
indication, most architects are highly sceptical – and unwilling to pay for – 
new, disruptive technologies, especially in comparison with their colleagues 
in the building supply chain – engineers, contractors, subcontractors. The 
architecture business is small, relatively unprofitable and generally unwilling 
to invest in disruptive technologies, creating a classic chicken-and-egg 
dilemma in establishing the necessary foundations of artificial intelligence. 
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Thus cross-industry cooperation is necessary for both data assembly and AI  
platforms. With the exception of the decision by Autodesk to invest, initially,  
$133 million in Revit and then develop that platform first for architects, there  
has been scant history in the technology of major investment in new software  
or platforms for architects, per se. So while there might be short-term comfort  
in the idea that perhaps it is too expensive to invest in AI that would replace  
architects as individual contributors, there is clearly benefit in data sources and  
AI platforms suited for the entire industry and it is more likely that investment  
will be made by vendors to address a broader market of customers. 

BUILDING AND USING TRUSTABLE DATA 
So let us assume that some combination of industry inspiration, government 
support and academic research has yielded, in our imaginary AI year of 2030, 

3.2.3:  a global building industry data trust where firms are paid to contribute data, 
PROJECT DATA  
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and in exchange have access to that data and the AIs that have been trained 
to use it. Let us further assume that there is enough useful data in the trust 
that it begins to enjoy widespread adoption and grows with each significant 
project designed or built, worldwide. Designers, builders, their supply chain 
and building owners all contribute data that results from their work. 

This new relationship is described in Figure 3.2.3, an elaboration of 
Figure 1.4.2. 

The data sources created by a project team, including data from modelling, 
analysis and other artefacts of architectural design, would be contributed to 
the data trust. Assuming that its use has become widespread, we might expect 
some standardisation of software, but I suspect the continued explosion 
of tools that will result from the widespread digitisation of the industry will 
make this challenging. It is more likely that AI itself may provide the means to 
standardise and conform project data from architects and others before it is 
contributed to the common cause. 

Training an AI to recognise a representation of, say, a window in a BIM 
model, purchase order or shop drawing (if such a thing exists in the future) 
across those data sets is a question of pattern matching – something 
machine learning systems do well. One imagines an AI-based ‘transaction 
layer’ shown in the diagram, which would collect, translate and standardise 
project data into consistent relationships and formats, and would be an 
excellent opportunity for supervised learning, combined with BIM and other 
evolving model typologies, for next-generation AI platforms. And if such a 
capability could evolve, it would also improve the project-based common 
data environments used by individual architects, creating integrated 
representations of a project before that data streamed, at the appropriate 
point, into the data trust itself. 

An architect would therefore access and consume information, in this 
construct, in three ways: 

1. At the level of the individual project, as a result of the development of the 
design. 

2. From the data trust, for both reference and to deploy AI-assisted tools 
(like, for example, the cost estimating and analysis tools described earlier). 

3. From outside data sources that can inform the development of the 
design, like economic models of the project context, weather data or 
information about the availability of site utilities. 
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DESIGN CREDIBILITY 
When structural engineers began to rely on software for routine calculations, 
the credibility of those results relied not so much on the regulation of or 
promises by the technology vendors but rather on that the engineer herself 
was responsible for the output of those systems and any errors that might 
occur as a result of their use. Just as BIM has now become a tool that, under 
the duty of care, an architect may be expected to use on a project, 
AI-produced results will become part and parcel of the architect’s 
professional judgement. 

However, at least in today’s AI systems, the complexity of the data structures 
that comprise neural networks are too great for humans to really understand, 
and those systems are trained with enormous data sets and measured by the 
validity of the outputs, not the specific computations that produced them. 
Kate Crawford, who writes on the challenges of AI implementation, describes 
this challenge well: ‘In the case of AI, there is no singular black box to open, no 
secret to expose, but a multitude of interlaced systems of power. Complete 
transparency, then, is an impossible goal.’9 

Opacity will make it impossible, in my view, for architects or others to rely 
on these systems without some sort of third-party validation of their results. 
Should the building industry, with architects as important contributors, decide 
to build a global data trust to drive AI, a component of that trust would include 
entities who would extensively test and certify the results of these systems 
before releasing them into the wild. The future leaders of BuildingSMART have 
a much bigger enterprise on their hands. 

Beyond the proximate concerns of professional efficacy and certification, 
much work is currently underway to understand and evaluate the social 
and ethical dimensions of AI for decision-making. There are two important 
dimensions of this work. First, AI systems are trained from data that is the 
result of ‘real world’ inputs. Current natural language systems such as GPT-3 
or facial recognition systems build their networks from scraping data, text 
or photographs from the internet, and as such that data has, inherently, 
the structural biases of its contributors. Princeton computer scientists who 
research this idea call it ‘veridical’ bias,10 and suggest not only that is it is 
endemic in the world’s data structures, but also a potential dashboard to 
understand social bias itself.11 
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A second dimension of AI only now beginning to be understood is its 
implications on the environment. In the now famous paper that resulted 
in her being fired from Google, computer scientist Timnit Gebru argues 
that the inherent environmental implications of building AI systems 
are underappreciated and accrue to the detriment of underprivileged 
communities who do not benefit from them. Calling natural language AIs like 
GPT-3, upon which Google increasingly relies, ‘stochastic parrots’, Gebru and 
her co-authors recommend that AI systems be designed to acknowledge the 
enormous contribution to atmospheric carbon they contribute by virtue of 
their intensive training, and rigorously curated to design out the inherent bias 
of available training data. Given that, for example, much of the content in the 
proposed data trust would likely be sourced from Western projects initially, 
carefully tending this data to be free of its obvious neo-liberal dynamics will 
be critically important.12 Crawford further argues that the damage to the 
environment of extractive mining necessary to build the enormous compute 
infrastructure of AI is an externality that should be reflected in its cost and 
development.13 

THE FUTURE OF DATA 
With the advent of artificial intelligence systems, the building industry 
should be strongly motivated to share data beyond the solving of the near-
term problem of the inefficiency that results from incompatible formats. 
Generating, consuming and properly curating digital design, construction 
and building operations data will allow these systems to be properly 
trained, and then unleash real power of computation for design. Doing so 
is an enormous opportunity for architects and their industry collaborators 
and comes with numerous pitfalls. However, perhaps the benefits of next 
generation technologies will finally motivate them to address and solve 
the larger questions of collaboration and integration, as well as ethical and 
environmental responsibility, that creating such a data source demands. 
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NOTES TO THE 2025 EDITION 
When I posited the advent of the Digital Interstice in this text in 2021, 
it didn’t occur to me that the explosion of AI start-ups that populate 
the AI in AEC database today would exacerbate, rather than address, 
the problem of our AEC data tower of Babel.14 A sophisticated practice 
might find many emergent tools to try there, and with their use the 
landscape of data objects, types and standards to be managed will 
continue to expand. 

The heroic efforts of buildingSmart©, the organisation driving the 
evolution and adoption of the Industry Foundation Classes (IFC) 
is Sisyphean at best, given these conditions. Making this ‘useful, 
exchangeable AECO data’ challenge even worse is its translation into 
useful training data for ML algorithms. In a recent presentation in our 
post-graduate-level AI class, Autodesk data scientist João Monteiro 
discussed an experiment: his team tokenised a large novel into 
readable training bits, then did the same for an IFC model of a simple 
building. The resulting design dataset was an order of magnitude 
greater than the book: seven million tokens for the project model, 
versus about 800,000 for War and Peace. Google Gemini and its 
brethren won’t be training on the world’s Revit models anytime soon. 

I suggested in 2021 that AI itself might be a strategy for rationalising 
the terrain of the Digital Interstice. Four years later, it’s clear that all 
of the data challenges to get to next-generation AI for architecture 
remain – disparate, unorganised and non-integrated data, and no 
apparent player willing or able to collect, curate and maintain it – and 
it remains a task for individual practices to wrestle with their own 
extensive collections of data. 

Unless a DeepSeek-like solution is found for this dilemma, our road to 
the Era of AI will be long indeed.15 
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>> AI WILL EXTEND THE RANGE OF AUTOMATED 
PROCESSES AVAILABLE TO ARCHITECTS AND 
CREATE OPPORTUNITIES FOR OTHER ASPECTS 
OF OUR WORK TO BE FULLY AUTONOMOUS, 
OPERATING IN PARALLEL WITH HUMAN 
COUNTERPARTS. SUCH CHANGES ARE LIKELY 
TO FIRST OCCUR IN THE TECHNICAL 
OBLIGATIONS OF ARCHITECTS, AND MORE 
SPECIFICALLY IN THE RELATIONSHIP BETWEEN 
DESIGN AND CONSTRUCTION, WHERE AI-
ENABLED, AUTONOMOUS ANALYSIS CAN IMPROVE 
THE EFFECTIVENESS AND CREDIBILITY OF 
DESIGN AND PAVE THE WAY TO OTHER AI 
CAPABILITIES. << 

DOI: 10.4324/9781003726654-16 
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3.3.1: 
DOXEL’S 
CONSTRUCTION 
SITE INSPECTION 
ROBOT, THEIR 
FIRST ITERATION 
OF SCANNING/ 
AI-BASED FIELD 
VERIFICATION1 

In 2018, BuildTech2 start-up, Doxel, announced its first product, an AI-enabled 
robot that, rolling around like a tiny tank that can traverse rough terrain and 
even climb stairs, inspects a construction site using scanning and computer 
vision. It compares the results to BIM-based design information to determine 
construction progress on site. With the tagline ‘Artificial Intelligence for 
Construction Productivity – Software that inspects quality and tracks progress 
so you can react in minutes, not months’,3 this system purports to evaluate the 
completeness, precision and installed value of work in place, automatically. 

Meanwhile, in the analogue world of humans, standard services contracts 
for architects stipulate the architect’s responsibility for construction 
administration (emphasis added): 

>> Carry out visual site inspections, as stated in item F of the Contract 
Details, to review the general progress and quality of the works 
as they relate to the architectural design and issue site inspection 

reports to the Client. (RIBA Standard Professional Services Contract 
2020)4 

The Architect shall visit the site … to become generally familiar with 

progress and quality of the portion of the Work completed, and to 

determine, in general, if the Work observed is being performed in 
a manner indicating that the Work, when fully completed, will be 
in accordance with the Contract Documents. However, the Architect 
shall not be required to make exhaustive or continuous on-site inspects 

to check the quality or quantity of the Work. (AIA B101-2017)5 << 
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3.3.2: 
DOXEL 
ANALYSIS OF 
CONSTRUCTION 
COMPLETENESS6 

While here in America we clearly have a penchant for more turgid contractual 
definitions – a function of years of construction foibles and resulting litigation 
– the overlap is clear. Doxel’s deep learning-enabled system is designed to 
either dramatically augment, or eliminate altogether, the need for human 
inspection of construction progress. It is a perfect example of the potential 
of AI in the design-to-construction process continuum: a Doxel robot uses 
computer vision and machine learning from other projects and related BIM, 
looking for something very specific (‘is that column installed in the right 
place?’), and creates analytical results more quickly, cheaply and accurately 
than a person walking the construction site twice a day – an obligation 
specifically excluded from the AIA’s definition of construction observation. 

MISPLACED ANXIETIES 
Doxel’s value proposition – understanding and managing construction faster 
and more accurately – fits several trends that AI in building industry is likely to 
follow. Early investments in AI systems are: 

» predominantly in the construction space (where there is more money 
spent, and to be had) 

» focused on well-defined problems with technical inputs and outputs, 
and 

» operates in the intersection of originating digital design data and 
construction execution (start with BIM, add computer vision, then 
measure progress). 
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The technical emphasis of this system, and many to follow, was anticipated 
early in the last technological transition to BIM by the architect Patrick 
MacLeamy, who created what is now known as the ‘MacLeamy Curve’, as seen 
in Figure 3.3.3. 

Originally an argument for the efficacy of BIM for architects, MacLeamy posited  
that since the greatest value of the architect’s work was early in the design  
process – where important decisions have the best chance of positively affecting  
results without disrupting progress – the bulk of our work process and value  
should shift to the earlier phases in the design-to-construction schedule.  
Further, he predicted that BIM would automate much of the production of  
technical documents and other information needed by contractors, making  
work in that portion of the scope of service far less valuable. 

AI systems like Doxel’s, which autonomously perform technical tasks that once 
required humans, is a logical extension of this same argument. However, while 
construction progress evaluation will clearly benefit from additional, digitally 
enabled help, a construction site is technically, geographically and, to some 
extent, politically complicated in a way that our little tank is unlikely to be able 
to fully understand. So our human architect, continuing to act on behalf of 
the client to protect her interests during construction, will continue to have 

3.3.3:   
THE MACLEAMY  
CURVE ⏎ 
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a role even here (despite the likely reduction of human-required production 
tasks during the creation of working drawings, as argued in Chapter 1.5). In 
any case, since the technical aspects of design and construction – including 
document production and coordination, technical evaluation like code 
compliance or coordination, and managing and evaluating the information 
flow from the construction process – are the most likely candidates for AI-
driven task automation, I remain convinced that anxiety by architects about 
being replaced as designers by autonomous AI is at best misplaced, and this 
argument was anticipated by MacLeamy in 2003. 

RECONSIDERING RELATIONSHIPS 
In Chapter 1.6, I defined the architect in terms of her relationships with four 
key constituents: 

1. As a protector of the public’s health, safety and welfare. 

2. As an agent expert to the client. 

3. As a guide and translator of design intent to the builder. 

4. As a manager/leader/integrator to the balance of the design team. 

Each of these roles requires the innate human ability to understand context, 
manage relationships and make trade-offs and judgements; these are 
tasks that are precisely the opposite capabilities of AIs, and particularly those 

whose neural networks require training in large, well-curated data sets. The 

multi-valent responsibilities of the architect, writ large as in this definition, are 

therefore unlikely to be replaced wholesale by computers, hence the argument, 
consistent with Susskind, about task replacement: limited tasks, perhaps, but 
complete supplanting by autonomous computerised agents, certainly not; and 

where tasks are AI-involved, they will be of a technical nature. 

Of these four archetypal relationships which anchor the architect firmly 
in project delivery models, such technical task automation will alter most 
significantly the connection and obligations between the architect and the 
contractor/building supply chain. That relationship is the most transactional 
of the lot, characterised largely by exchanges of information, with the levels 
of precision and completeness often contested. AI systems will characterise, 
catalogue and eventually measure the quality of these interactions and 
connections in an effort to make those exchanges more effective. As the 
construction process is further automated by AI-assisted devices and systems, 
the demand for specific design information that is suited as input to those 
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systems will increase, further tying architectural design to construction 
production in the name of efficiency. And as the demands for more intelligent 
supply chain decisions and management increase in an era of climate change, 
reduction of toxicity or even attempts to reduce forced labour, the architect’s 
specification of materials will tie even more closely with an understanding of 
the supply itself. Contractors will therefore come to rely on architects for such 
intelligent decisions.7 This is an inversion of the relationship of technology to 
design that emerged with the blob-makers of the 1990s, when the architect’s 
digital shape-making tools made possible ever more elaborate forms that 
were left to engineers and builders to actualise. 

The UK tendency to novate the architect’s contract to the contractor after 
design, while simultaneously confusing and terrifying to this American 
architect, is consistent with the conclusion that design and construction can 
be operationally bound more tightly in contract, procedure and technology. As 
construction processes are more reliant on AI-based automation, the demand 
for logical relationships between design information and decision-making will 
naturally gravitate toward the design-construction interface. 

PROCEDURAL PRODUCTION AND ITS POSSIBILITIES 
So, an extension of this line of reasoning that includes MacLeamy’s thesis, 
combined with the task analysis of the jobs of architects (see Figure 1.5.3 for 
the complete version, and Figure 3.3.4 for production work), suggests that the 
most likely opportunities for AI-based augmentation or automation of tasks 
is deep in the production phases of design, when a project is translated from 
design intent to the information readied for the contractor. 

The automation of selected tasks of working drawing production is the best 
example to date of the implications of BIM in design. Working drawings 
today are more precise, better coordinated, more accurate and useful to 
contractors than their CAD predecessors, and BIM is a good platform, as both 
a representational schema and a training ground, for AI to continue this trend. 

As many of the tasks of the working drawing phase are procedural in nature, 
it should be relatively straightforward to train AIs to perform them. Other 
objectives of the hand-off between designer and builder will still demand 
the judgement and coordination of the architect, who will be supported by 
machine intelligence in areas where large data sets, pattern matching and 
complex calculations and predictive algorithms could be of most use. 
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To that end, consider the problem of construction cost projection, and 
particularly the heated negotiations oft held between designers and builders 
about conformance to target costs. The dimensions of this complex dance of 
data, judgement and computation are sketched in Figure 3.3.5. 

Just as BIM was anticipated to accelerate aspects of cost estimating by 
automating the tasks of quantity take-off and calculation,8 the various 
analytical tasks that converge to generate cost estimates, based on careful 
analysis combined with professional judgement, can generate greater insight 
and precision in cost projections – if AI were available in the following ways: 

⏎ 

PROJECTED COST  
OF CONSTRUCTION

LABOUR  
MATERIAL  

COSTS
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Quantity surveying: Design documents define design intent, and builders 

must interpolate precise system characteristics, unspecified materials and 

implied construction elements in order to price them. By training on data sets 
that map construction documents to detailed previous take-offs, an AI could 

create these mappings from working drawings and create more accurate and 

historically informed bills of materials. The resulting data collections would be 
the basis of further training of the systems. 

Market conditions: Macro-economic conditions introduce extreme volatility 

in construction pricing. Global or local circumstances change the availability 

of labour or the cost of materials more quickly than capital plans for projects 

can respond. This volatility is demonstrated by the difference between 

material purchase prices from manufacturers versus their cost as stockpiled 

in warehouses by builders in the US, as can be seen in Figure 3.3.6. At the time 

of writing, material prices have jumped as much as 40% (timber) since January 
2021, as the US economy recovers from the pandemic; a similar pattern was 

seen in the recovery from the 2008 crisis. AI-based analysis and predictions, 
based on previous economic models and pricing profiles, could elucidate the 

potential implications for pricing, bidding and market conditions that affect 
cost models. 

Cost of labour and materials: The costs of both labour and materials are 
estimated traditionally from historical information, but the actual pricing of 
projects generated by builders is a combination of historical data, in particular 
competitive advantages or disadvantages based on the builder’s capabilities, 
as well as larger market forces such as the availability of skilled workers and 

other competitive pressures. A given builder or trade could train an AI from a 
combination of past projects to create a more reliable and accurate projection 
of such costs and map those projected costs to the designer’s digital models to 
provide continuous cost modelling during the course of a project. 

Supply chain conditions: The availability, price, performance and 
suitability of building materials is subject to many conditions in the 
delivery supply chain, from original sourcing to fabrication to delivery. 
Carbon implications of both embedded carbon and transportation costs, 
toxicity and labour equity (modern slavery) all affect the possibilities that 
a given material can be supplied to a project properly. AI systems could 
be trained on industrial material flow models, shipping manifests, bills 
of materials for sub-systems, even labour assessments, to factor these 
questions into cost projections of built assets. 
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169 3.3 TASKS, AUTOMATED 

Construction schedule: As most builders model the construction schedule 
for projects in order to plan and manage the build, such schedules could be 
training set for AI systems that would establish patterns and relationships 
between building typologies, construction locations, specific combinations of 
subcontractors and fabricators, and construction cost. The insights provided to 
builders could be provided, a priori, to design teams to understand whether a 
particular design was difficult or more expense to construct. Such information 

would be particularly useful in the concept stage, but it would allow a valid 
performance evaluation during technical production as well. 

Build strategy: As contractors use increasingly sophisticated systems to model 
the sequence and methods of construction, these ‘5D’ data sets instantiate 

libraries of construction logic at a macro-scale. With sufficiently large training 

sets they could be the basis for AI-generated construction planning. If the 
resulting projective modellers, which would become familiar with a wide variety 
of construction approaches and building types, could function as ‘constructability 
evaluators’ via AI-enabled simulators and were available to architects, the 
Albertian gap between intent and execution could be further closed. 

The foregoing example, a speculation through the lens of a critical yet 
suboptimised dependency between design and construction, is meant to 
reinforce the idea that AI systems will appear first, and be most useful and 
efficacious, in the translation of design into technical performance, and 
particularly with regard to construction. Given the well-trod conclusion 
that the construction enterprise is unproductive and unpredictable, such 
improvements would be both welcome and embraced by architects, builders 
and their clients alike.9 

CONSTRUCTING AUTOMATION 
The painting robot we examined in Chapter 1.4 signals important changes for 
designers, not the least of which is the likelihood that their projects will be 
festooned with more precisely applied colours and textures. As Negroponte 
suggested in his early explorations of the automation of processes by 
machines, a first step towards incorporating digital technology is to use 
it to replicate an analogue process, and surely this is where our painting 
robot will begin. However, Negroponte further speculated that once these 
processes are fully integrated and understood, their capabilities will expand 
far beyond what their originators could have anticipated.10 Our painting robot 
will improve its technique by repeatedly painting surfaces and sharing the 
lessons of its success and failures with other robots doing the same on other 
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3.3.6: projects. Further insights will be supplied by data coming from the construction 
MATERIAL supervision robots made by Doxel and their inevitable competitors. Eventually, 
PRICE the robotic painter will have AI-automated, autonomous colleagues installing
VOLATILITY 
IN THE US, and assembling other aspects of the construction project, and the procedures 
2006–21 11 and protocols they generate could combine into an accessible, evolving source 

of construction insight that could truly modernise building. 

For architects, this is a profound implication. It is not the automation of their 
tasks, so much as those of builders, that could close the divide between design 

intent and construction execution, a divide that Alberti defined six centuries ago 

and that has since characterised, or plagued, our industry. The instantiation of 
construction logic makes it available to the robots that enact it on site, but also 

to the designers who are configuring the eventual results of that robotic work. 
Where today an architect projects the eventual state of her design through a 
building information model, that design could be informed by a BIM connected 

to a construction simulator that might answer questions from as small as ‘does 

that fit’ to as large as ‘can that be built?’ In that sense, the task automation 

potential of AI enlarges, rather than diminishes, the potential of design. 

⏎ 
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3.3.7: 
FOSTER + 
PARTNERS 
USING A BOSTON 
DYNAMICS 
ROBOT FOR 
CONSTRUCTION 
PROGRESS 
ANALYSIS11 
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NOTES TO THE 2025 EDITION 
Four years after the first edition of this book, fully autonomous 
robots are not yet roaming today’s construction sites replacing 
their human counterparts painting, hanging wallboard or wiring 
electrical systems. There is incremental progress in more ambitious 
projects that were underway since 2020, particularly experiments in 
bricklaying and large-scale 3D printing, but one suspects giant leaps 
in robotic construction work will depend on vast improvements in 
AI-based spatial reasoning and control.12 In that sense, big jumps 
in AI construction depend on the same sorts of advancements that 
might also accelerate the development of autonomous design tools, 
particularly the ability to reason inferentially about the configuration, 
three-dimensional characteristics and assembly of buildings. 

But that is not to say that builders are waiting idly by awaiting a 
quantum improvement in the technologies. As might be expected, 
investment in the construction side of AI continues apace as 
contractors look to exploit the maturity of various platforms for any 
possible productivity or competitive advantage, particularly in areas 
where there is available, curatable data; for example, construction 
management transactions, site LIDAR scans and detailed cost 
estimates.13 A recent presentation by an innovative Dallas-based 
builder included LLM-based research of construction scope, machine 
interpretation of completed construction through mesh segmentation 
of scans, and various experiments in computer vision for worker 
safety and construction site planning.14 

Note, however, that very few of these opportunistic AI deployments 
rely on originating information from a design team, although 
some start-ups in the space are moving – like their design product 
counterparts – into the early phases of construction, or directly 
into the bridge in between. One interesting example is Firmus, an 
AI start-up that purports to provide ‘[a]ctionable insights reducing 
inherent risks and elevating project quality for General Contractors, 
Architects and Developers.’15 A similar effort can be seen in the early 
start-up LeanCON, an AI-based system that ’infers’ construction 

CONT. 
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173 3.3 TASKS, AUTOMATED 

means and methods by reading an originating design model.16 

Each company relies, in part, on information pulled from architects 
and engineers and then extrapolates from that data to generate 
construction insight. In this sense, MacLeamy’s pre-AI prediction that 
the intellectual project of the building enterprise would move forward 
on the project timeline seems to continue to hold during the Digital 
Interstice, and early efforts to build more robust, intelligent systems 
may bring us closer to an actual era of AI in our industry. 
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>> THE LABOUR OF KNOWLEDGE WORKERS 
LIKE ARCHITECTS, AS WITH MANY OF THEIR 
PROFESSIONAL COUNTERPARTS, WILL LOOK 
DIFFERENT WHEN MACHINES CAN PERFORM 
ARCHITECTURAL TASKS. THE TYPES OF LABOUR 
AND LABOURERS, THE STANDARDS UNDER 
WHICH THEY OPERATE AND THEIR 
INTERACTIONS WITH PRACTICES AND PROJECTS 
WILL DEVELOP AS DIGITAL PLATFORMS 
EVOLVE FROM INSTRUMENTS TO COGNITIVE 
COLLABORATORS. << 
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My first full-time job in an architect’s office was in 1979, the pre-CAD era, when 

our work was taped to large drafting tables and prepared with plastic lead on 

giant sheets of mylar. The small office in Charlotte, North Carolina was known 

as a solid, if stolid, practice that did complete working drawings that resulted 

in routine buildings which did not leak or miss their budgets. I was assigned to 

help prepare construction documents for a bland shopping mall in Tennessee 
that still haunts my dreams. 

There were about 20 or so of us in the drafting room – which I hesitate to call a 

studio, as there was so little design to speak of going on – at least two or three 

of whom were architectural draughtsmen (no women). These were older guys, 
some with architectural degrees, none with licenses, who drew and lettered 
beautifully, knew a lot of about how to put a building together, could never be in 

front of a client and were constant sources of knowledge to the younger, better 

educated but far less experienced architects-in-waiting like myself. In that era, 
many offices of any size had folk like this, whose main job was to draw, leaving 

all other architectural responsibilities to others. Late in my 15-month stint in this 
firm, the office manager began researching a new idea called ‘computer-aided 

drafting’, which the draughtsmen dismissed entirely as a gimmick. 

TECHNOLOGY AND DESIGN LABOUR FROM DRAFTING 
TABLE TO BIM 
Two decades later, these sorts of wise but unregistered drafters were largely 
missing from practices, unable to make the transition to CAD. Their jobs were 
replaced by young, digitally enabled CAD operators who were unafraid of the 
computer and had the skills to use it to draw. Almost no one in an architecture 
firm was trained or hired at this point as a drafter; young designers in training 
filled these roles. Just as today’s secretaries no longer do much typing but are 
more general support staff, architectural jobs were no longer differentiated by 

3.4.1: 
THE DRAFTING 
ROOM AT 
SKIDMORE, 
OWINGS & 
MERRILL’S 
OFFICE, 
CHICAGO, 
1958 
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production tasks (drafting) but more around roles and responsibilities (design, 
construction administration, specifications). 

As firms are completely reliant on technology of all sorts these days, there 
are specialists in network management or even coordination of BIM data, but 
such roles are limited and certainly do not contribute to billable work. And even 

if yesterday’s ‘CAD monkeys’ are today’s ‘BIM monkeys’, BIM work is not routine 

drafting, as using a BIM tool requires a strong understanding of how a building 

goes together and how to properly represent it. But even today, while larger 
firms are hiring specialists in data management or, in some cases, software 

development, practice is largely devoid of technological specialists. 

The advent of machine learning tools will reverse this trend. It will create 
demand for different sorts of architectural workers. As I have argued (see 

Chapter 2.4) that artificial general intelligence (AGI) is far in the future – 

particularly AGI that can step into the multi-faceted role of a proper architect 
– AI systems in architecture will be specific to tasks, technical in nature and will 
support the broader enterprise of design. Those systems will require specialised 

understanding of inputs, outputs, data demands and relationships of the AI 
system to the broader infrastructure of design information. These are skills that 
architects trained as generalists are unlikely to understand, nor, frankly, have 

much engagement with: the outputs of such systems will be of great interest; 
the process by which they are generated, not so much. While it would be nice 
to simply ask the 2030 version of Alexa, ‘How much carbon is embodied in my 

project?’ the route to that answer is likely significantly more complex. 

TECHNOLOGY, SUPPLY AND DEMAND 
I have argued up to this point that AI systems are likely to automate the 
more routine aspects of technical drawing production, data and document 
management, and information control. Just as today’s 3D modelling platforms 
that generate high-resolution renderings have largely put professional 
(analogue and) digital renderers out of business, those jobs in offices will 
be lost. 

However, there will be new jobs. Architecture will need experts who can 
manage these systems in production, particularly in relation to affiliated AI-
based processes that will translate knowledge and insight from construction 
back to design. Complex technical analysis and building performance 
evaluation will be a necessary element of design generation. The dilemma 
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177 3.4 LABOUR OF DESIGN 

for practices will be mapping demand for the specialists to handle such work 
and the available supply of talent. If an AI-based system is helping optimise 
the carbon footprint or forced-labour-free supply chain procurement of your 
building in the phase of conceptual design, that work is episodic at best, and 
probably punctuated with interactions with other intelligent systems. The data 
trust proposed in Chapter 3.2 will provide ubiquitous data, but using it well 
will be challenge. 

In a recent survey of architectural and engineering professionals in Europe 
and the Middle East, 70% of firms reported that big data, data science and 
machine learning were important emerging technologies.1 Far fewer are 
actually doing anything about it. Those firms trying to realise actual work from 
AI are competing – with limited success, I suspect – with the global demand 
for data scientists and machine learning experts, many of whom earn starting 
salaries well above those of their staff architects in UK practices.2 While 
expertise in AI will grow in the next decade, matching supply and demand will 
be a challenge. 

As Daniel Susskind argues in A World Without Work: Technology, Automation and 
How We Should Respond (the successor to The Future of the Professions: How 
Technology Will Transform the Work Of Human Experts), machine intelligence 
will, over time, take over responsibility for tasks rather than complete jobs. 
However, the aggregate task elimination in architecture will eliminate jobs, 
if for the simple reason that production-related activities such as creating 
working drawings or managing construction administration data comprise, at 
least in the USA, as much as 35% of a typical fee for an architect’s services.3 

Automating this work, at least under current business models, means fewer 
workers. The so-called ‘canonical model’ described by Susskind – where jobs 
destroyed by innovation are replaced by the jobs required to create the 
new technologies – has given way to a new thesis, the so-called ‘Autor-Levy-
Murnane (ALM) Hypothesis’, which declares that the routine tasks of work will 
be eliminated by computers, as those tasks are the easiest to teach machine 
learning systems to replicate. Skilled workers, like my early drafting colleagues, 
are eventually replaced, resulting in fewer jobs that do not reappear.4 

Or at least fewer jobs will reappear than disappear, given the current demand 
for architects. However, there is another scenario, where AI technology 
empowers architects to the extent that demand for professionals – even those 
doing different jobs, like their counterparts in the early days of CAD – will be 
much higher. The history of BIM in the UK suggests that this might be the 
case, as demonstrated in Figure 3.4.2. 
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3.4.2: 
DEMAND FOR 
UK ARCHITECTS 
AND RELATED 
CONSTRUCTION 
VOLUME 
DESIGNED5 

Despite the inherent efficiencies introduced by BIM and its adoption driven by 
the Level 2 requirements, which in theory should have decreased architectural 
positions, and even despite a drop in designed construction value in 2020, 
the number of architectural positions in the UK has steadily increased for a 
decade. Perhaps better work begets more employment. 

TALENT, SUPPLY AND DEMAND 
Practice in the era of AI will therefore entail arbitraging the value of expert labour, 
machine production and data. The profession will need to find a way to access 

this talent across many scales of business, particularly since most firms, world-
wide, are relatively small, averaging less than ten staff each.6 While larger firms, 
with more human and financial resources, may get to AI capabilities first, for real 
change to be possible the wider profession must be able to access AI assets. 

An intelligent design of the industry data trust described in Chapter 3.2 would 
entail a central marketplace for such talent and the infrastructure to make 
it accessible. The technologies of the so-called gig economy, which match 
demand with capacity, are the template for such a system. Like ride- and 
apartment-sharing services today, these systems use artificial intelligence 
themselves to align unused resources with those who might need them. Given 
that AI enactment in design practice will be task-oriented, perhaps the data 
trust might manage such a platform as part of the value proposition it puts 
forth to the global design industry. 

⏎ 
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3.4.3: 
BUSINESS 
MODEL OF 
AIRBNB, 
MATCHING 
HOUSING 
CAPACITY WITH 
TRAVELLER 
DEMAND 

More than a year of digitally enabled knowledge work by architects during the 
Covid-19 pandemic demonstrated that design work can be conducted with a 

relatively low loss of efficiency, with staff working remotely and distributed 
around the world. AI expertise could be similarly dispensed, making it more 
likely that this talent would be used fairly and effectively. 

ETHICAL LABOUR AND AI 
The architecture profession does not enjoy a sterling reputation for labour 
equity, and the advent of machine intelligence should not be seen as a 
strategy to extend that poor record. Salaries relative to other learned 
professionals are low,7 steady jobs as uncertain as the economy and even 
the most well-known offices have well-earned reputations for labour abuse.8 

In the US, most architectural workers are exempt from labour laws that 
require employers to limit hours and provide minimum pay for overtime, 
characterising them as ‘professional workers’. Doing rote CAD work, not so 
much; wrangling an AI, absolutely true. 

Like any disruptive technology, AI offers opportunities and threats to the 
knowledge work of architects. As has been argued by my Yale colleague, 
Peggy Deamer, many architectural workers, particularly those who are 
unlicensed or less experienced, can be precarious workers whose work lives 
are destabilised by long hours, low pay, competitions and the generally poor 
management of human resources that many architects learn in the design 
studios of school (where time is considered an unlimited resource).9 AI, like 
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many of the automation technologies of the past, can be deployed in the 
interest of ruthless efficiency, with little consideration for the welfare of 
workers; ask anyone working today in an Amazon warehouse.10 Systems that 
match workers with jobs have been demonstrated to instantiate the biases of 
the data set (like résumés of employed workers), denying qualified applicants 
opportunities generated by machine-based hiring systems. Workers in the 
extractive industries that drive modern computation are often exploited and 
unlikely to see any benefit from the computers they supply. 

In her ill-fated paper for Google, Timnit Gebru makes the case that AI 
development must occur in parallel with an understanding of its broad 
implications. She suggests: 

>> Work on synthetic human behavior is a bright line in ethical AI 
development, where downstream effects need to be understood and 

modeled in order to block foreseeable harm to society and different 

social groups. Thus what is also needed is scholarship on the benefits, 
harms, and risks of mimicking humans and thoughtful design of target 

tasks grounded in use cases sufficiently concrete to allow collaborative 

design with affected communities.11 << 

Modelling downstream effects is what an AI-enabled future of design might 
look like. In architecture’s case, the affected communities – including both 
our clients and our workers, and the profession – working in concert with 
providers and the academy, would best heed her advice and begin plotting 
the route to equitable AI today. 

The ALM hypothesis (as discussed in Chapter 1.5) proposes that highly skilled 
workers – like the ones that will create, develop and manage AI – will remain in 
demand once machines carry out knowledge work. Very low-skilled but highly 
localised jobs, like those in personal services or dining, will also remain. In 
Susskind's 'massacre of the Dilberts', many jobs in between will be eliminated. 
Most architectural jobs in this scenario are probably safe, but the society for 

which we design buildings is likely to be dramatically affected. Like other issues 

of social equity, it is best to add this question to the list that the profession must 
address to responsibly design the built environment of the future. 
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Early design stage visualisations  6% 22% 42% 18% 12% 

Generative design  4 17% 31% 16% 32% 

Parametric design  2 14% 27% 17% 40% 

Model generation 2 12% 22% 21% 43% 

Building performance simulation  3 10% 14% 18% 54% 

Environmental impact modelling  3 8% 14% 14% 60% 

Specifcation writing 8% 13% 18% 61% 

Standards and regulatory compliance checking  1 4 22% 10% 63% 

Construction product and material selection and analysis  1 3 22% 18% 56% 

 Always     Often Sometimes  Rarely     Never 
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181 3.4 LABOUR OF DESIGN 

NOTES TO THE 2025 EDITION 
As I write in the first quarter of 2025, both RIBA and the AIA have 
issued ’state of AI’ reports that measure, in general terms, both 
adoption and sentiment about the emergent use of the technologies 
in architectural practice as of late 2024. In the United States, 6 to 8% 
of architects ‘regularly use’ the tools and, of course, a much higher 
percentage purport to be experimenting with various degrees of 
engagement.12 While 41% of UK architects use AI in their work, only 
2 to 4% do so on most or all of their projects.13 The enthusiasm-
to-implementation gap remains wide in architecture. Meanwhile, 
among the broader business community, a recent survey suggests 
that the productivity of ‘low skilled’ workers in the corporate world 
has increased via AI by over 40%, and ‘high skilled’ workers gained 
almost 17%.14 These same measures are unlikely to be identical in 
architecture, however. 

3.4.4: 
AI’S 
IMPLEMENTATION 
ACCORDING 
TO RIBA FOR 
VARIOUS DESIGN 
TASKS IN 2024 
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It's safe to assume that almost everyone in an architectural practice is, 
in some form, a high skilled worker, so how might they be using these 
tools? UK data is more nuanced, with implementors suggesting the 
use of AI on a range of design tasks from early design visualisations 
(28% ’often’ or ‘always’) through model generation (14%) to 
construction product selection and analysis (4%).15 It’s likely the case 
(although unmeasured) that routine text generation, web search and 
managing/generating marketing materials are running neck and neck 
of the use of image generators to provoke new ideas or manipulate 
renderings and presentation materials. The tools are entering the 
studio as productivity enhancers rather than radical restructurers of 
the work of the architects who use them. 

In spring of 2025, for our Yale course on AI in architecture entitled 
‘Scales of Intelligence’, we invited practitioners from both large and 
small firms to present their most interesting implementations of AI 
in their practice. The freshly-minted new CTO of Skidmore Owings & 
Merrill presented a wealth of material, while – despite our extensive 
network of innovative practices, many of whose principals teach 
here – we couldn’t find a small firm candidate as a counterpoint. If 
specialists in AI are emerging, in anticipation of the ALM hypothesis, 
they will arrive in the largest firms first. But at this juncture, there is 
no sign of this is large or small firms. So like BIM before it, it will be 
left to the architects serving biggest firms, that have the necessary 
financial, technical and human resources, to pave the way to our 
eventual AI future in architecture. 
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>> TECHNOLOGICAL CHANGE IN ARCHITECTURE 
HAS CHANGED THE PROCESSES, BUT NOT THE 
VALUE, OF THE ARCHITECT’S SERVICES, 
WHILE THE BUSINESS MODELS OF PRACTICE, 
WHICH ORIGINATED CENTURIES AGO, 
HAVE REMAINED STUBBORNLY IN PLACE. 
AS THIS NEXT WAVE OF NEW TOOLS AND 
CAPABILITIES WROUGHT BY INTELLIGENT 
MACHINE AUTOMATION BECOMES APPARENT, THE 
PROFESSION HAS ITS BEST CHANCE TO BREAK 
THIS CYCLE BY REVISITING AND REVISING 
ITS VALUE RELATIONSHIP TO THE BROADER 
BUILDING INDUSTRY. << 

DOI: 10.4324/9781003726654-18 
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In his superb history of American architectural practice, Assembling the 
Architect: The History and Theory of Professional Practice, George Barnett 
Johnston explores the psyche of early 20th-century American architects 
through the eyes of one Tom Thumtack, the fictional alter ego of architect 
Frederick Squires, who wrote an illustrated volume about practice called 
Architec-tonics: The Tales of Tom Thumtack, Architect. Tom expounds on the 
anxieties of fees, as quoted by Johnson: 

>> We’re paid on a percentage of the cost, but the capable architect 
is the one who keeps down the cost. Therefore, by doing his best he 

reduces his compensation… The client wants to keep the cost down, and 

his architect must help him in this, but the less the cost of a particular 

job, the less the compensation and the less likely to be the beauty of its 

execution from which the architect obtains his reputation.1 << 

Tom was explaining the seeming illogic of a system of compensation for 
architects that had, within it, two deep contradictions. First, when the 
architect’s fee is based on a percentage of construction cost, the harder the 
architect works to bring the project into cost conformance, the less she is 
paid. Second, in the cases so common today when said fee is converted into 
a lump sum, the client has transferred the financial risk of the fee over to the 
architect, who perversely is now incentivised to work less, rather than more, to 
service that client, and thereby preserve some remainder of the fee as profit. 

The idea that an architect should be paid in some proportion to the cost of 
construction seems to have originated centuries ago in Europe. Johnston 
explores this trajectory and quotes Benjamin Latrobe, the so-called ‘first 
architect’ of the United States, European-trained, British immigrant to America: 

>> It is in France, Germany & England the established custom of 
Architect (in England, confirmed by many decisions of the Courts) to 

charge for their works, 1., a commission of 5 prCent on the whole 

amount of the expence incurred in executing their design, -2., a certain 

sum for fair drawings, if furnished, according to their difficulty, 
number, or beauty; -3., if the work be at a distance from the usual 
residence of the Architect,-all traveling expences, & a certain sum pr 

day for loss of time.2 << 

The origins of today’s percentage-of-construction-costs fees, adjusted by 
project complexity, plus reimbursable expenses of travel, are evident here and 
remain in place on both sides of the Atlantic today.3 
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185 3.5 VALUE PROPOSITIONS AND BUSINESS MODELS 

COMMODITY RESISTANCE 
It is hard to imagine another modern enterprise, even one so reluctant to 
really modernise like architecture, whose business models are essentially 
unchanged from their 18th-century precedents. Yet architecture, like much 
of the construction industry, remains tied to a fundamental value strategy of 
lowest first cost, where services are bid and purchased in a way not dissimilar 
to steel, sheetrock or carpeting: maximum pressure on competitive price, with 
far less attention paid to the value delivered, particularly over the cycle of a 
project’s lifespan. 

Neither of two immediate implications of AI for practice are particularly 
sanguine for architects, given our seemingly intractable business model. 
More productivity may provide short-term gains to the early adaptors, but 
such competitive advantages are short lived when eventually available to all 
competitors in the market and quickly fade.4 Should AIs replace jobs in the 
architect’s office, commoditised fees will fall in proportion, or worse.5 Given 
this inevitable economic logic, finding new value propositions and business 
models will not just be nice benefits that accrue from these new technologies, 
but rather an existential necessity for the profession itself. If neither CAD nor 
BIM inspired such change, will AI? 

3.5.1: 
KENT 
ROCKWELL’S 
‘FEES: A 
REDUCTIO 
ABSURDUM’ FROM 
ARCHITECTURE 
AND BUILDING, 
46, 19146 
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There is no question that those technologies improved the processes and, 
in some ways, the results of architectural services. CAD made drafting more 
accurate and efficient, while allowing architects to depict projects that were 
technically and formally more complex. BIM has allowed all members of 
the delivery team to generate, organise, integrate and exchange design 
information at much higher levels of resolution and transparency. It also, 
in some minimal way, begin to bridge the information gulf between design 
and construction; builders who saw the value of 3D data began to request 
it to assist their work. Other digital technologies have improved information 
exchange and client-facing images of projects (think renderings or even virtual 
reality models). Yet despite these improvements, the centuries-old methods 
for computing architectural computation remains largely intact, suggesting 
that these improved services have not translated into business terms, nor 
profit. The MacLeamy Curve, as described in Chapter 3.3, suggests that 
the real value of design work lies early in the delivery process, despite the 
relatively small degree of effort entailed there compared to production and 
delivery stages. Perhaps AI will begin the value shift. 

A willingness to examine innovative business strategies for new services, 
organisational strategies and even new products can translate the threat of 
AI into an opportunity to improve both our performance as professionals 
and our business results, if we apply the same sort of creative thinking oft 
reserved for the design studio to this problem. 

EXPLORING NEW VALUE 
For the last several years we have offered a course at Yale called ‘Exploring 
New Value Propositions of Design Practice’, where our students are asked 
to interrogate the business models of architecture with the assumption that 
better jobs can be done designing them. Each semester, teams of students 
create what they believe to be the most provocative new models for practice, 
in response to the question: ‘Where can the value of architectural services be 
best translated into a business model?’ The projects are required to conform 
to just two conditions: the proposal must be based on something that a 
competent architect is capable of providing, and the compensation strategy 
must completely abandon any vestige of commoditised pricing, so no fixed or 
hourly fees are allowed. 
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187 3.5 VALUE PROPOSITIONS AND BUSINESS MODELS 

By definition, this second constraint eliminates any option to extrapolate 
traditional practice, which is something of a pedagogical conceit intended to 
push the students far from the comfort zone with which they are familiar by 
dint of their professional experience and the businesses largely run by their 
professors. It does not imply, however, that there are no approaches for 
transfiguring traditional practice models towards new technologically inspired 
value, an idea we will examine later in this chapter. 

After a few years of teaching this class, several consistent strategic themes 
emerged from the students’ research, which range across the opportunities of 
services, organisation and products.7 These ideas were congruent in that they 
could be mapped in relation to the connections between architects, clients 
and builders, as described graphically in Figure 3.5.2, and included: 

» verticalisation strategies, where the architect assumes her role plus at 
least one other traditional delivery role 

» supporting strategies, where the architect uses special skills, talents 
(and often technology) to provide a service to some part of the supply 
chain (including other architects) 

» spanning strategies, where a business derives value by creating an 
important connection between two sectors of the delivery model. 

Should AI diminish the demand for architects, these approaches are a 
sketchy roadmap for other opportunities. However, they also suggest that 
the disruptive power of autonomous computing through intelligent machines 
might create new leverage and power for architects in the overall process of 
making buildings. For example: 

A robust, AI-enabled design schema aimed at leveraging prefabrication and 
industrialised construction, based on procedural knowledge of manufacturing 
and assembly draws architects close enough to the means and methods of 
constructions so that they could perform sub-contracting or even construction 
management duties. There have been attempts to leverage BIM in similar 
ways as current precedent, tightly binding design strategy with construction, 
like SHoP Architects’ early provision of digital fabrication data directly to the 
exterior enclosure fabricator in their Porter House project in New York. 
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A firm making a significant investment in an AI-based decision-making system 
that supports a specific technical design objective recoups the investment and 
makes a profit by offering the resulting expertise to other firms with similar 
challenges, or to clients as a validation service for other designs. An architect with 
deep expertise in a given discipline, say healthcare design, may have made 
a significant investment to develop AI-based analysis systems to evaluate or 
generate solutions in that building type. A healthcare practice, for example, 
might have transferred its deep knowledge of operating theatre layout into 
an AI that has been trained (with good and bad examples) from the global 
data trust. While their competitive advantage is in deploying the analytical 
results into the larger context of an overall solution for a hospital, the AI 
platform – which is very ‘knowledgeable’ about operating theatres – could 
be made available to other firms doing work (perhaps in another geographic 
location where competition is not an issue) or as a service to current hospital 
clients to evaluate their existing facilities. This could be a profitable business 
in and of itself, as well as a valid business development strategy to create new 
opportunities. As mentioned in Chapter 2.4, the current precedent today is 
Philadelphia architects KieranTimberlake, who shares its expertise in energy 
assessment through its Tally© carbon assessment tool. 

An architect with a long-term relationship with an institutional client – like a 
university or retail operator – has designed numerous buildings for them. Mapping 
design model data with data streams from building control operations systems, 

3.5.3:  
SHOP 
ARCHITECTS, 
PORTER HOUSE 
ADDITION, 
ELEVATION 
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3.5.4: she has collected a large enough data base of this client’s building base that,
TALLY© 

combined with data from the trust, has allowed the firm to create an AI-basedCARBON 
ASSESSMENT optimisation tool that can apply to future designs as well as tuning the operation 
TOOL of current assets. The resulting contract, extending in blocks of five years 

post-occupancy for every building in the portfolio, requires the architect to 
manage and evaluate the data streams from projects, evaluate operational 
optimisation and make recommendations to the client. In addition to an 
annual service contract fee, the architect is also paid a small percentage of the 
operational savings in energy, maintenance and staffing resulting from these 
services. Today, architects EskewDumezRipple reserve 2% of fees to provide 
post-occupancy services to clients, discovering strategies for improving future 
projects and building credibility for new projects as well.8 

TRANSFORMING BASIC SERVICES 
These short vignettes are meant to stimulate thought about what alternative 
value propositions for architects, underpinned by the new capabilities of AI, might 
look like in the future. More important, however, are considerations of how, if at 
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191 3.5 VALUE PROPOSITIONS AND BUSINESS MODELS 

all, the basic services of architects at the core of our value – directly designing the 

built environment – may evolve when we share the job with intelligent machines. 
It is naïve to believe that architects can immunise themselves completely from 
the pressures of productivity improvements and knowledge work replacement 
that these systems will inevitably bring, and further that a profession that has 
operated with essentially the same business model since before the invention of 
electricity can, within a generation, turn to fundamentally new busines strategies. 
We are stuck with what we have, but can we fix it? 

Facing these realities, which include continued competitive pressure to deliver 
our work as a commodity, there are two approaches that can reform, rather 

than completely replace, current fee-for-service approaches: reliability and 
results. Project uncertainty – the concern that project process will result in 

unexpected and unfortunate results – is a significant concern for architects, 
clients and builders alike. 

A 2014 study in the United States quantified these worries, identifying the top 

causes for project instability as perceived by these constituents. While there is 
general agreement about the list of challenges, there is significant disagreement 
about their relative importance, as can be seen from the data in Figure 3.5.5. 

3.5.5: 
UNCERTAINTY 
FACTORS IN 
PROJECTS, 
ACCORDING TO 
A SURVEY OF 
US DELIVERY 
PARTICIPANTS9 

OWNERS 

ARCHITECTS 

CONTRACTORS 

⏎ 
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3.5.6: 
WHEN 
PROJECTS 
MEET 
EXPECTATIONS, 
OR NOT10 

Of this list, two of the factors are the direct responsibility of the architect 
(design errors, omissions) and several more include the significant 
involvement of the architect in some way (owner changes, accelerated 
schedule and construction coordination). The resulting projects fail to 
perform, in some way, as seen in Figure 3.5.6. 

The anxieties in Figure 3.5.5 portend failures of results in Figure 3.5.6. 

Emerging AI strategies in construction give us a clue where this might be 
going. My former colleagues at Autodesk are developing a system that applies 

machine learning to construction administration data to identify potential 
problems on a job site – either in production or with specific contractors – in 

advance. A dashboard is shown in Figure 3.5.7. 

Another provocative start-up, SmartVid.io, makes a tool that uses a combination 

of machine learning and computer vision to scan activity on a construction site 
and identify potential safety violations, as seen in Figure 3.5.8. 

Note that neither of these companies is using AI to replace the work of human 

construction coordinators, risk managers or safety leaders, but rather augment 
their capabilities and allow them to significantly improve their performance. 
There is no reason why such an approach, applied to architectural design 
process, could not go right to the heart of client and contractor uncertainty 
in design process, be it checking for properly coordinated construction 

documents, cost prediction, lifecycle modelling of materials for durability/price 

trade-offs, and even missing information from the documents that comprise the 

contract for construction. ⏎ 

https://SmartVid.io
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193 3.5 VALUE PROPOSITIONS AND BUSINESS MODELS 

3.5.7: 
PROBLEM 
DASHBOARD 
FROM BIM 
360 IQ 

Even generative design, where algorithms generate alternative design solutions, 
is not likely to be really useful until the resulting schemes can be sifted by 

intelligent evaluative systems driven by AI. Those systems can measure, 
mathematically, the performance of the resulting generated schemes, but 
choosing, refining and implementing those decisions will remain far beyond 

the reach of their capabilities, and human architects will always make the final 
determinations of what is best. 

NUMERACY, CREDIBILITY VALUE 
Z. Smith, the Director of Sustainability and Performance at EskewDumasRipple, 
believes that one key to success is for architects to reach what he calls ‘numeracy’: 
‘Illiteracy is about language, innumeracy is about numbers. We don’t like 

numbers. It’s not what people thought they were getting into when they went 
into architecture. But you have to do it if you want to make a good building.’11 

Architects largely measure the success of projects by an intangible sense of ‘good’ 
and ‘bad’ design, and size up the competition accordingly. As the respective chief 
technologists of three of the world’s largest firms said to me once during an early 

BIM conversation: ‘We don’t compete with each other with technology. We beat 
each other on design.’ 

The definition of good design must move, at least in part, into the numerative, 
performance-based aspects of cost, quality and schedule – not to mention 

environmental and social impact – and the proper design and implementation 

of AI systems is the key to this change. Numerate and talented designers and 

the results they can create will have the dual benefits of increasing the credibility 

of architects and firmly anchoring our value in the building supply chain. And 

perhaps building an AI-assisted numeracy in setting performance objectives – and 

getting paid for them – will achieve the alignment of value and business models 

that Latrobe bemoaned almost three centuries ago. 

⏎ 
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IMPALEMENT 
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NOTES TO THE 2025 EDITION 
In the notes for Chapter 1.5, I introduced a construct of provocation 

(using image generators to spur the imagination) versus prediction 

(using the power of machine learning to predict the behaviour of 
a spatial solution). As long as our attention stays largely focused 
on provocation, and to a lesser extent the productive results of 
language processing, it’s unlikely we’ll see a change in business 
models catalysed by AI technology. When MacLeamy suggested that 
the greatest value of architectural decision-making was early in the 
design process, he was considering the distribution of work under 
the BIM paradigm, and surely did not anticipate that even newer 
technologies might add predictive powers to the projective design 
tools of the architect. Should a building industry foundation model 
emerge – either from whole cloth by one of the incumbents, or a 
frisky start-up – it will depend in some part on the representational 
strategy, if not the current solution, that is BIM today. That 
combination might open the door to the sorts of outcome-based 
business models this original chapter anticipated but that have not 
yet materialised. 

In the intervening semesters since the 2022 publication, I’ve found my 
‘Exploring New Value’ students straying ever further from traditional 
practice business models in their proposals. They’re distracted 
perhaps by the (financial) possibilities of a breakout idea, particularly 
with the new opportunities of AI at their (admittedly abstract) 
disposal. It remains interesting to me that, even though almost every 
one of these graduates will enter traditional, mainstream firms, none 
deploy any particular innovation opportunities at the intersection 
of technology and their chosen path as future practitioners. Their 
counterparts in our ‘Scale of Intelligence’ AI course, however, 
are pressing the boundaries of design process within the limited 
capabilities of today’s systems. When these twain meet, perhaps a 
few years down the road when these students enter their mid-careers 
and the technologies fully mature, we’ll hope to see real innovation 

CONT. 
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197 3.5 VALUE PROPOSITIONS AND BUSINESS MODELS 

in the business models of practice as they deliver more rigorously 
explored, analytically evaluated results to their clients – and demand 
to be paid for same. 

Until then, if current multi-billion dollar investment in construction-
related AI continues, much of the effort will be toward build 
optimisation in whatever form: lowest first cost, on-site productivity, 
construction information management, site safety, supply chain 
management. There are many companies already on this path. While 
it’s hard to predict if any of these examples will exist by the time you 
read this, there are provocative examples out there, including: 

» Togal.ai, which uses AI to read floorplans and extract 
take-offs necessary for cost estimating, including building 
footprint, net area, wall perimeters and assisted manual 
take-off.12 

» OpenSpace.ai, which combines 360-degree scanning with 
design/construction information to evaluate construction 
progress and assist in management, a competitor to Voxel 
mentioned in the first edition.13 

» Prefabex, which purports to use robotic prefabricated 
assembly to build housing quickly.14 

» BrainboxAI, which gathers sensor information from building 
control and management systems and uses AI to optimise 
sustainable operations.15 

Each of these companies, anticipated in the first edition, focuses 
on construction optimisation while creating a demand for valuable 
and accessible design data from the architect. With that demand 
comes additional value creation opportunities, should we choose 
to take them. 
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>> THE PHILOSOPHER ARTHUR I. MILLER 
DEFINES CREATIVITY AS ‘THE PRODUCTION 
OF NEW KNOWLEDGE FROM ALREADY EXISTING 
KNOWLEDGE AND … ACCOMPLISHED BY PROBLEM 
SOLVING’.1 IN THAT SINGLE SENTENCE, HE 
CAPTURES THE ESSENCE OF THE CHALLENGE FOR 
ARCHITECTS AS ARTIFICIAL INTELLIGENCE 
TECHNOLOGIES MATURE. << 
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CONCLUSION 199 

Our profession is, at its core, a creative enterprise that is valued for our ability 
to both define and solve problems in unique, appropriate and beautiful ways. 
Using AI should extend, rather than exterminate, that obligation to our clients 
and the public at large. 

While it may take some time until it reaches the far corners of the design 
and construction professions, eventually the pattern analysis, autonomous 
processing and data evaluation capabilities of AI/ML will appear in the 
architectural landscape. We can declare, a priori, that the technology 
represents an existential threat to architects, or we can use our problem-
solving skills and design a strategy that determines their ultimate destiny and 
use. And in doing so, we can increase the influence and credibility of architects 
with clients, mend decades of broken relationships with our construction 
collaborators and maybe even break the chain of our commoditised value 
propositions and stunted fee structures. 

Any strategy for guiding the development and use of AI systems in 
architecture should serve two goals, to improve the quality of the built 
environment and to enhance the relevance of the human architects who 
are best suited to make those improvements through design. Given that 
the development of increasingly capable modes of automation are inevitable, I 
propose that the profession embrace five strategies to guide its future: 

1. Explicitly guide the definition and creation of technologies that will frame 

future practice. Given that the next generation of technology may well define 

the future of architectural practice, the profession must establish means to 
declare its needs and direction in a way that does not defer to the business 
whims of software providers, whose motivations will ultimately prioritise 
profits and shareholders.2 Architects have spoken with individual voices as 

customers rather than in a united fashion as a collective of important users. 
They should organise, collaborating with regulators, clients, designers and 
builders, to declare an industry technology strategy that prioritises the most 
important data and AI/ML capabilities and then demand the industry provide 

them. Contrary to common wisdom, software providers actually prefer such 
an approach, which saves them the time and effort of extensive and usually 

incomplete requirements research. The national BIM initiative in the UK, 
begun in 2010 and now a template for global technology adoption, is an 
excellent example of how this can be done at scale.3 
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2. Expand the remit of design to include explicit performance. Building 
performance is increasingly a necessary component of competent 
design. Starting with life safety at the beginning of the 20th century, and 
energy performance at the beginning of the 21st century, the range of 
performance parameters that architects must address will continue to 
expand. AI systems, driven by data, can empower architects to integrate a 
broader set of these parameters into their design processes, connecting the 
generation of solutions to performance models of, for example, occupancy, 
economics, epidemiological implications, embedded carbon and even 
embodied labour.4 These considerations do not supplant the importance 
of design in its traditional sense, but rather expand it, while simultaneously 
enlarging the effectiveness of building and the credibility of architects. 

3. Create the data infrastructure that can serve as platforms for design. 
Today’s designers have created tens of thousands of digital models, 
mostly through BIM, of projects that represent an enormous resource 

for AI-generated insight. Contractors are doing the same with drone 
scans, computer-vision analysis of construction and digital construction 
management tools. Building control systems are generating huge lakes 

of digital information about systems performance. The potential of these 
resources is wholly unrealised without a strategy to organise and access 
them, particularly in the industry’s contentious and risk-averse delivery 

models. The collaborative organisations described above could guide 
software strategy and create policy and platforms for the collection, 
organisation, access and use of this data, ostensibly through a global 
building data trust managed by a third-party fiduciary and accessible to all. 

4. Change the relationship between design, construction and asset 
operation. The emergence of BIM as a broadly understood concept 
around 2004 coincided with the development of new models of integrated 
project delivery, based on the assumption that readily available, 
transparent sources of project information would accelerate cooperation 
between owners, designers and builders, the lack of which is a well-
known pathology of the building industry.5 More than 15 years later, that 
promise remains largely unfulfilled. Digital data created by the various 
players may be more transferrable, but it is often incompatible and rarely 
shared.6 AI platforms, which could develop, manage and integrate the 
data relationships between these various representations and process, 
can be a catalyst for allowing architects to cross the traditional boundaries 
that separate project definition, design, construction and asset operation 
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and making knowledge reciprocally available across the design intent– 

construction execution divide. The tools may make the opportunity, but 
practitioners must want to embrace it. 

5. Shift the value propositions of design. The commodification of the 
architect’s services is a primary inhibitor of innovation and value creation 
by the profession.7 Artificial intelligence tools strategically deployed in 
the service of performance-enhanced design solutions could be the 
catalyst for changing the fundamental business propositions of practice, 
converting the value of the architect’s services from deliverables and 
fixed fees to outcome-based delivery models and related services. AI/ML 
systems could radically accelerate the capability of today’s algorithmically 
driven software tools to predict the future state of project performance, 
generating best value by virtue of simulation. As soon as reliable AI-based 
tools – as a result of implementation of the previous four strategies – 
become widely available, architects could embrace the largest challenges 
of architecture and society, and finally escape the tyranny of commodified 
fees, limited resources and public scepticism about the value of the 
buildings they design. 

The architect Eyal Weizman leads a London-based research team called 
Forensic Architecture, which is also the term that he uses to describe his 
‘investigative practice’ that ‘regards the common elements of our built 
environment – buildings, details, cities and landscapes, as well as their 
representations in media and as data – as entry points from which to 
interrogate contemporary processes and with which to make claims for 
the future’.8 His team uses architectural approach methods supported by 

sophisticated data collection and analysis to examine political questions 
of government jurisdiction and use of force. The work is not traditional 
architecture in that it deconstructs information sources and reassembles 
them in ways that might not have been otherwise understood, using digital 
tools and analysis. Forensic Architecture’s work – which is understandably 
highly controversial, especially to the governments he exposes – is a template 
for a strategy for AI in architecture as a whole. The data fragments that 
Forensic Architecture assembles for analysis are the basis for speculation 
about future states, which is a fundamental responsibility of an architect, 
especially those designing the built environment. To be able to make such 
claims about how design actions are manifest, as Weizman declares, architects 
need a critical stance about the collection, use and deployment of information 
about the world. 
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An obsessive reliance on data without such a critical view of its results 
could lead to disastrous results, particularly in a field of endeavour such 
as architectural design that purports to protect the public welfare. In early 
research on neural networks applied to medical treatments at a time when 
the internal logic of such systems was legible, ML platforms that yielded life-
and-death decisions – even when such systems were generally reliable – led 
hospitals to wholly reject the use of AI. They became suspicious when the 
systems reported that asthma patients were less, rather than more, likely 
to suffer severe consequences from catching pneumonia, a clearly counter-
intuitive result. Apparently, those patients are referred immediately to critical 
care early in the disease, and as such have far better outcomes. The neural 
network connected the inputs and the outputs, with no understanding 
whatsoever of what happened in between. Systems upon which such 
decisions are made must be both transparent and, in the case of professional 
judgement like architecture, validated externally.9 

If the necessary data can be collected, and the systems validated, architecture 
can expand its remit dramatically. In a recent article addressing the fraught 
relationship between architecture and incarceration, Garrett Jacobs and 

Deanna Van Buren, leaders of the non-profit design alliance, Designing Justice 

+ Designing Spaces, argue that architects must apply their skills to ‘end the 

racism that is embedded in the built environment’. To create prototypes for 
their ‘Alternatives to Incarceration Plan’ for Los Angeles, they have implemented 
a design process deeply dependent on complex, interrelated data sources, 
explaining that ‘We are partnering with data visualization, mapping and 
research organizations to understand how various systems – such as health 

care, first response, pre-arrest diversion, housing, post-incarceration re-entry, 
and more – interact at a district scale.’10 In a pre-digital era, even collecting this 
data would have been impossible, much less evaluating it or deploying it as the 
basis for new design. At this juncture, when empiricist systems are coming to 
the fore, but cognition is largely missing, human designers play an irreplaceable 
role to direct data and marshal it. Only then will strategies for computation and 
design combined accomplish completely new results that humans create to 
improve our condition. This is the optimal outcome of the highest and best uses 
of artificial intelligence in architecture. 
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EPILOGUE 
In 2011 the UK Government published its Construction Strategy, a framework 
for the industry that, among other elements, established the requirement for 
Level 2 Building Information Modelling for all government projects of a certain 
size and complexity.11 In 2017, at approximately the same time as that BIM 
standard was being fully implemented, the tragic fire befell Grenfell Tower. 

The Construction Strategy in general, and the BIM Standard in particular, were 
unique accomplishments for an industry replete with lack of cooperation 
and a general inability to attack and solve difficult problems. Through 
a collaborative, cross-disciplinary effort across design and construction 
that acknowledged that advanced technology was a critical component to 
achieving more efficient, economic and sustainable buildings, the United 
Kingdom led the fastest and most well-integrated uptake of a disruptive 
technology worldwide.12 

The Grenfell fire catalysed a different sort of collaboration and strategy for 
UK building. Declaring that the complex of decisions that led to the disaster 
comprised a fundamental failure of the delivery systems of construction, 
a new approach emerged that redefined professional roles, assigned 
unambiguous responsibilities, and declared that information coherence and 
communication were central to assuring the public’s welfare and safety. The 
key concept, reliant on digital technology, is the so-called ‘Golden Thread’ 
that requires a design/construction team to maintain an indexed, open, clear, 
accessible information infrastructure from inception through asset operation. 

4.1.1: 
CHATGPT’S 
DIAGRAMMATIC 
VIEW OF THE 
COLLABORATIVE 
STRUCTURE 
OF THE BIM 
LEVEL 2 

STANDARD 

DOI: 10.4324/9781003726654-20 

https://dx.doi.org/10.4324/9781003726654-20
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The Golden Thread implies not just clear record-keeping, but a coherent, 
interrelated, interoperable project record. Over time, these Golden Threads 
will form the basis of an extraordinary training set for future AI models. 

The BIM Level 2 and Grenfell efforts speak to the power of coherent 
technology strategy in the building industry, a strategy that, I’m sad to say, has 
yet to materialise in the form I posited in the Conclusion in 2021. Ironically, 
the two projects have many of the same components: a clearly defined set of 
objectives, performance standards, data infrastructure and the integration 
of design and construction information. Whether the business models of UK 
practice will adjust in response has yet to be seen. 

Technology platforms – like CAD, BIM and now AI – tend to be produced 
globally, whereas data standards are produced locally. Those same platforms 
emerge from purely commercial, rather than industry-based, efforts. I 
still maintain that such an approach for AI will be a tremendous missed 
opportunity for our profession and our collaborators in the asset lifecycle, 
especially when the consequences of inattention are potentially existential. 
We can’t leave this important destiny to the sole discretion of the vendors, and 
thus must work together to shape their platforms while cooperating to supply 
the necessary training data. I’m heartened by the strategic template offered by 
the innovations that have come out of the United Kingdom in the last decade, 
and would strongly advise my American colleagues – who entirely lack such a 
collaborative infrastructure – to take heed. The ‘Construction Industry Council’ 
of America would be an excellent first start. 

4.1.2: 
CHATGPT’S 
INTERPRETATION 
OF THE 
REQUIREMENTS 
OF THE GOLDEN 
THREAD 
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Innovation in AI continues apace, overall strategy notwithstanding, while 
widely available ML tools are seemingly ubiquitous. When writing the 
original text of the book in late 2021, those broadly accessible systems 
were in their (public-facing) infancy and thus I asked little of them, save 
some stilted text and an uninterpretable image.13 Those same models have 
advanced considerably, and with them task- and domain-specific models in 
realms where large datasets and defined problems are well understood. 
In medicine alone, foundation models have been built and trained to support 
physicians and scientists in such realms as protein folding, drug development, 
echocardiology and radiology. Should the building industry coalesce around 
a focused strategy, one could imagine a future where far more capable 
algorithms operate alongside the technologically augmented architect, but 
likely will never replace her. 

To that end, I asked a language model to indulge in some speculation of that 
future, and here’s what the technology had to ‘say’: 

Prompt: I'm writing a book about the future of AI in the architectural profession, 
and the building industry in general. Given that current foundation models 
don't really understand buildings – they don't reason spatially, nor comprehend 
temporality, nor physics for example – where do you think AI is going for architects 
in the future? 

Response: That's a fantastic and timely topic. You're absolutely right–current 
AI models, even the most advanced foundation models, lack deep spatial 
reasoning, temporality and physics awareness, which are all essential for 
architectural thinking. But where things are headed is rich with possibility. 
Here’s a look at where AI might be going for architects and the broader 
building industry in the coming years: 

1. From Language to Spatial Models 
Future AI tools will evolve from handling text and images to reasoning 
through 3D geometry, physics and time. They will generate and 
evaluate building plans, understand sun paths and occupant flow, 
and reason about sequences of construction and use. 

2. Cognitive Co-Designers 
AI will move from inspiration engine to collaborator: understanding 
design constraints, critiquing options, suggesting tradeoffs and 
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integrating live data for context-aware design. Future tools may act 
like a design critic or studio partner. 

3. Construction-Integrated Intelligence 
AI will leave the desk for the job site, powering robotics and real-time 
BIM updates. It will detect schedule impacts from conflicts, suggest 
reroutes based on material or labour availability, and dynamically 
adjust plans. 

4. Lifecycle-Aware Design 
AI will simulate and optimise for full building lifecycles – from 
deconstruction and reuse to decades of carbon impact and adaptive 
reuse – helping architects design not just for occupancy, but for 
future history. 

5. Code + Ethics + Emergence 
As AI makes design decisions, ethical and legal questions will arise. 
Who owns AI-authored work? How do we audit compliance? Can 
AI understand cultural context? Architects will be vital in shaping 
these answers. 

Summary: What AI Can Become for Architects 
In time, AI might become: 
» A junior designer that generates options. 

» A technical assistant that checks compliance. 

» A building whisperer that listens to structures over time. 

» A creative provoker that helps spark the unexpected. 

But buildings are not only objects–they are experiences, stories, 
negotiations, and values made physical. And AI doesn’t have values. 
Architects do.14 

Johnston asks ‘who is the architect?’ and argues that the roles, responsibilities 
and potential of architects and architect constantly evolve. Even AI itself 
doesn’t suggest that technology can replace the architect. I couldn’t have put it 
better myself. 
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INTRODUCTION 

1 As of this writing in March of 2025, 
Stjepan Mikulic’s website “AI in AEC 
| AEC AI Hub” boasts a catalogue of 
1,598 tools purporting to operate 

in this space. See https://aiinaec. 
notion.site/aec-ai-hub (accessed 2 
March 2025). 

2 Of course, it’s entirely possible that 
ChatGPT has somehow ingested 
the original text of this book, as 
well as everything I’ve written since. 

3 Prompt provided by the author to 
ChatGPT-4o on 3 March 2025. 

4 Image generated by DALL-E via 
ChatGPT-4o on 3 March 2025. 

5 The final report of the Committee, 
entitled Report of the Yale Task 
Force on Artificial Intelligence can 
be found at https://ai.yale.edu/ 
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artificial-intelligence (accessed 25 
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com/three-observations. But 
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of the time, see Noor Al-Sibai, 
‘Futurism: OpenAI Admits That Its 
New Model Still Hallucinates More 
Than a Third of the Time’, 1 March 
2025, at https://ca.news.yahoo. 
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1.1 

1 Among the varied histories of 
technology in architecture, those by 
Mario Carpo are perhaps the most 
prescient, particularly Mario Carpo, 
The Alphabet and the Algorithm, 
‘Writing Architecture’, MIT Press, 
Cambridge, MA, 2011, xi, and Mario 
Carpo, The Second Digital Turn: 
Design Beyond Intelligence, ‘Writing 
Architecture’, MIT Press, Cambridge, 
MA, 2017. 

2 See © RMN-Grand Palais / Art 
Resource, NY. 
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Algorithm. 
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7 See Nicholas Negroponte, The 
Architecture Machine, MIT Press, 
Cambridge, MA, 1970. 

8 One distinct advantage of paper-
based information exchange is 
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nor data standards, beyond 
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translate it between originator and 
consumer. 

9 The aerospace, automotive and 
manufacturing design disciplines 
had deployed modelling tools 
decades before architects. 
Similarly, the form-making and 
rendering tools of movies and 
games (such as Autodesk’s Maya) 
were appropriated by architects 
once they ran on sufficiently 
affordable machines. 

10 See hypar.io (accessed 11 April 
2021). 

11 For example, see McKinsey & 
Company, ‘An executive’s guide 
to AI’, <https://www.mckinsey. 
com/business-functions/ 
mckinsey-analytics/our-insights/an-
executives-guide-to-ai?cid=other-
eml-alt-mip-mck&hdpid=d36c6b61-
313b-431c-b3d4-141bc805e7e2&h 
ctky=11625380&hlkid=36ab108977 
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1 This quote from Walter Gropius can 
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