FUNDAMENTALS OF

ROBUST

MACHINE LEARNING

HANDLING OUTLIERS AND
ANOMALIES IN DATA SCIENCE

RESVE SALEH
SOHAIB MAJZOUB

A. K. MD. EHSANES SALEH vt
j=luy é
S

Fundamentals of Robust Machine Learning

Fundamentals of Robust Machine Learning

Handling Outliers and Anomalies in Data Science

Resve Saleh
University of British Columbia, Vancouver, Canada

Sohaib Majzoub
University of Sharjah, Sharjah, United Arab Emirates

A. K. Md. Ehsanes Saleh

Carleton University, Ottawa, Canada

WILEY

Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and training of
artificial technologies or similar technologies.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

The manufacturer’s authorized representative according to the EU General Product Safety Regulation is Wiley-VCH
GmbH, Boschstr. 12, 69469 Weinheim, Germany, e-mail: Product_Safety@wiley.com

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates in the United States and other countries and may not be used without written permission. All other trademarks
are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor
mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware
that websites listed in this work may have changed or disappeared between when this work was written and when it is
read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but
not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data Applied for:
Hardback ISBN: 9781394294374

Cover Design: Wiley
Cover Image: © Yuichiro Chino/Getty Images, © master_art/Shutterstock

Set in 9.5/12.5pt STIXTwoText by Straive, Chennai, India

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com
mailto:Product_Safety@wiley.com

We dedicate this book to

Shahidara Saleh
Lynn Hilchie Saleh
Bayan Majzoub

1.1
1.2
1.3
1.3.1
1.3.2
1.33
1.3.4
1.3.5
1.4
1.4.1
1.4.2
1.5
1.6
1.7
1.7.1
1.7.2
1.8
1.8.1
1.8.2
1.9
1.9.1
1.9.2
1.10
1.10.1
1.10.2
1.10.3
1.11

Contents

Preface xv
About the Companion Website xix

Introduction I

Defining Outliers 2

Overview of the Book 3

What Is Robust Machine Learning? 3
Machine Learning Basics 4

Effect of Outliers 6

What Is Robust Data Science? 7
Noise in Datasets 7

Training and Testing Flows 8
Robustness of the Median 9

Mean vs. Median 9

Effect on Standard Deviation 10
L,and L, Norms 11

Review of Gaussian Distribution 12
Unsupervised Learning Case Study 13
Clustering Example 14

Clustering Problem Specification 14
Creating Synthetic Data for Clustering 16
One-Dimensional Datasets 16
Multidimensional Datasets 17
Clustering Algorithms 19

k-Means Clustering 19

k-Medians Clustering 21

Importance of Robust Clustering 22
Clustering with No Outliers 22
Clustering with Outliers 23
Detection and Removal of Outliers 25
Summary 27

Problems 28

References 34

vii

viii | Contents

2 Robust Linear Regression 35

21 Introduction 35

2.2 Supervised Learning 35

2.3 Linear Regression 36

2.4 Importance of Residuals 38

2.4.1 Defining Errors and Residuals 38
2.4.2 Residuals in Loss Functions 39
2.4.3 Distribution of Residuals 40

2.5 Estimation Background 42

2.5.1 Linear Models 42

2.5.2 Desirable Properties of Estimators 43
2.5.3 Maximum-Likelihood Estimation 44
2.5.4 Gradient Descent 47

2.6 M-Estimation 49

2.7 Least Squares Estimation (LSE) 52
2.8 Least Absolute Deviation (LAD) 54
2.9 Comparison of LSE and LAD 55

2.9.1 Simple Linear Model 55
2.9.2 Location Problem 56
2.10 Huber’s Method 58
2.10.1 Huber Loss Function 58
2.10.2 Comparison with LSE and LAD 63
2.11 Summary 64
Problems 64
References 67

3 The Log-Cosh Loss Function 69
31 Introduction 69

3.2 An Intuitive View of Log-Cosh 69
33 Hyperbolic Functions 71

3.4 M-Estimation 71

3.4.1 Asymptotic Behavior 72

3.4.2 Linear Regression Using Log-Cosh 74

3.5 Deriving the Distribution for Log-Cosh 75
3.6 Standard Errors for Robust Estimators 79
3.6.1 Example: Swiss Fertility Dataset 81

3.6.2 Example: Boston Housing Dataset 82

3.7 Statistical Properties of Log-Cosh Loss 83
3.71 Maximum-Likelihood Estimation 83

3.8 A General Log-Cosh Loss Function 84
39 Summary 88

Problems 88
References 93

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.5
4.5.1
4.5.2
453
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.7
4.7.1
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.9
4.9.1
4.10

5.1
5.2
5.2.1
522
53
5.4
5.5
5.6

Outlier Detection, Metrics, and Standardization 95

Introduction 95

Effect of Outliers 95

Outlier Diagnosis 97

Boxplots 98

Histogram Plots 100
Exploratory Data Analysis 101
Outlier Detection 102
3-Sigma Edit Rule 102
4.5-MAD Edit Rule 104
1.5-IQR Edit Rule 105

Outlier Removal 105
Trimming Methods 105
Winsorization 105

Anomaly Detection Method 106

Regression-Based Outlier Detection 107

LS vs. LC Residuals 108

Comparison of Detection Methods 109

Ordered Absolute Residuals (OARs) 110

Quantile-Quantile Plot 111
Quad-Plots for Outlier Diagnosis

113

Regression-Based Outlier Removal 114

Iterative Boxplot Method 114
Regression Metrics with Outliers
Mean Square Error (MSE) 117

116

Median Absolute Error (MAE) 118
MSE vs. MAE on Realistic Data 119

Selecting Hyperparameters for Robust Regression 120

Dataset Standardization 121
Robust Standardization 122
Summary 126
Problems 126
References 131

Robustness of Penalty Estimators
Introduction 133

Penalty Functions 133
Multicollinearity 133

Penalized Loss Functions 135
Ridge Penalty 136

LASSO Penalty 137

Effect of Penalty Functions 138
Penalty Functions with Outliers

133

139

Contents

ix

x | Contents

5.7 Ridge Traces 142

5.8 Elastic Net (Enet) Penalty 143

5.9 Adaptive LASSO (aLASSO) Penalty 145
5.10 Penalty Effects on Variance and Bias 146

5.10.1 Effect on Variance 146
510.2 Geometric Interpretation of Bias 148
5.11 Variable Importance 151
5.11.1 The ¢-Statistic 151
5.11.2 LASSO and aLLASSO Traces 153
5.12 Summary 155
Problems 156
References 159

6 Robust Regularized Models 161
6.1 Introduction 161

6.2 Overfitting and Underfitting 161
6.3 The Bias—Variance Trade-Off 162
6.4 Regularization with Ridge 164

6.4.1 Selection of Hyperparameter A 165

6.4.2 Example: Diabetes Dataset 167

6.5 Generalization using Robust Estimators 169
6.5.1 Training and Test Sets 169

6.5.2 k-Fold Cross-validation 171

6.6 Robust Generalization and Regularization 173
6.6.1 Regularization with LC-Ridge 174
6.7 Model Complexity 175

6.7.1 Variable Selection Using LS-LASSO 176
6.7.2 Variable Ordering Using LC-aLASSO 176
6.7.3 Building a Compact Model 179
6.8 Summary 182

Problems 182

References 186

7 Quantile Regression Using Log-Cosh 187
7.1 Introduction 187

7.2 Understanding Quantile Regression 188
7.3 The Crossing Problem 189

7.4 Standard Quantile Loss Function 190

7.5 Smooth Regression Quantiles (SMRQ) 192
7.6 Evaluation of Quantile Methods 195

7.6.1 Qualitative Assessment 196

7.6.2 Quantitative Assessment 198

7.7 Selection of Robustness Coefficient 200

7.8
7.9
7.10

8.1
8.2
8.2.1
8.2.2
8.3
8.3.1
8.3.2
8.3.3
8.4
8.4.1
8.5
8.6
8.7
8.7.1
8.7.2
8.7.3
8.7.4
8.8
8.9
8.10
8.10.1
8.10.2
8.10.3
8.10.4
8.11

9.1
9.2
9.3
9.3.1
9.3.2
9.3.3
9.4

Maximum-Likelihood Procedure for SMRQ 202
Standard Error Computation 204

Summary 206

Problems 207

References 209

Robust Binary Classification 211
Introduction 211

Binary Classification Problem 212
Why Linear Regression Fails 212
Outliers in Binary Classification 213
The Cross-Entropy (CE) Loss 215
Deriving the Cross-Entropy Loss 216
Understanding Logistic Regression 218
Gradient Descent 221

The Log-Cosh (LC) Loss Function 221
General Formulation 223

Algorithms for Logistic Regression 224
Example: Motor Trend Cars 226
Regularization of Logistic Regression 227
Overfitting and Underfitting 228
k-Fold Cross-Validation 229

Penalty Functions 229

Effect of Outliers 230

Example: Circular Dataset 231

Outlier Detection 234

Robustness of Binary Classifiers 235
Support Vector Classifier (SVC) 235
Support Vector Machines (SVMs) 238
k-Nearest Neighbors (k-NN) 241
Decision Trees and Random Forest 243
Summary 244

Problems 244

Reference 249

Neural Networks Using Log-Cosh 251
Introduction 251

A Brief History of Neural Networks 251
Defining Neural Networks 252

Basic Computational Unit 253
Four-Layer Neural Network 254
Activation Functions 255

Training of Neural Networks 257

Contents

xi

xii | Contents

9.5 Forward and Backward Propagation 258
9.5.1 Forward Propagation 259

9.5.2 Backward Propagation 260

9.5.3 Log-Cosh Gradients 263

9.6 Cross-entropy and Log-Cosh Algorithms 264
9.7 Example: Circular Dataset 266
9.8 Classification Metrics and Outliers 269

9.8.1 Precision, Recall, F; Score 269
9.8.2 Receiver Operating Characteristics (ROCs) 271
9.9 Summary 273

Problems 273

References 280

10 Multi-class Classification and Adam Optimization 281
10.1 Introduction 281
10.2 Multi-class Classification 281
10.2.1 Multi-class Loss Functions 282
10.2.2 Softmax Activation Function 284
10.3 Example: MNIST Dataset 288
10.3.1 Neural Network Architecture 289
10.3.2 Comparing Cross-Entropy with Log-Cosh Losses 289
10.3.3 Outliers in MNIST 291
10.4 Optimization of Neural Networks 291
10.4.1 Momentum 293
10.4.2 rmsprop Approach 294
10.4.3 Optimizer Warm-Up Phase 295
1044 Adam Optimizer 296
10.5 Summary 297
Problems 297
References 302

11 Anomaly Detection and Evaluation Metrics 303
11.1 Introduction 303

11.2 Anomaly Detection Methods 303

11.2.1 k-Nearest Neighbors 304

11.2.2 DBSCAN 308

11.2.3 Isolation Forest 311

11.3 Anomaly Detection Using MADmax 316
11.3.1 Robust Standardization 317

11.3.2 k-Medians Clustering 317

11.3.3 Selecting MADmax 319

11.3.4 k-Nearest Neighbors (k-NN) 319

11.3.5 k-Nearest Medians (k-NM) 320

11.4
11.5
11.6

12
12.1
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6
12.3
12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.3.6
12.4
12.4.1
12.4.2
12.5
12.5.1
12.5.2
12.5.3
12.5.4
12.5.5
12.6

Qualitative Evaluation Methods 323
Quantitative Evaluation Methods 326
Summary 330

Problems 330

Reference 336

Case Studies in Data Science 337
Introduction 337

Example: Boston Housing Dataset 337
Exploratory Data Analysis 338

Neural Network Architecture 339
Comparison of LSNN and LCNN 342
Predicting Housing Prices 344

RMSE vs. MAE 344

Correlation Coefficients 345

Example: Titanic Dataset 346
Exploratory Data Analysis 346

LCLRvs. CELR 351

Outlier Detection and Removal 353
Robustness Coefficient for Log-Cosh 355
The Implications of Robustness 356
Ridge and aLASSO 357

Application to Explainable Artificial Intelligence (XAI) 359
Case Study: Logistic Regression 360
Case Study: Neural Networks 365

Time Series Example: Climate Change 366
Autoregressive Model 367

Forecasting Using AR(p) 369

Stationary Time Series 371

Moving Average 374

Finding Outliers in Time Series 375
Summary and Conclusions 376
Problems 376

References 382

Index 383

Contents

xiii

Preface

Outliers are part of almost every real-world dataset. They can occur naturally as part of the characteristics
of the data being collected. They can also be due to statistical noise in the environment that might be
unavoidable. More commonly, they are associated with measurement error or instrumentation error.
Another source is human error, such as typographical errors or misinterpreting the measurements of a
device. If there are extreme outliers, they are often referred to as anomalies. Sometimes, the true data is
differentiated from outliers by calling them inliers. While outliers may represent a small portion of the
dataset, their impact can be quite significant.

The machine learning and data science techniques in use today largely ignore outliers and their
potentially harmful effects. For many, outliers are somewhat of a nuisance during model building and
prediction. They are hard to detect in both regression and classification problems. Therefore, it is easier
to ignore them and hope for the best. Alternatively, various ad hoc techniques are used to remove them
from the dataset even at the risk of inadvertently removing valuable inlier data in the process. But we
have reached a point in data science where these approaches are no longer viable. In fact, new methods
have emerged recently with great potential to properly address outliers and they should be investigated
thoroughly.

The cost of ignoring this under-reported and often overlooked aspect of data science can be significant.
In particular, outliers and anomalies in datasets may lead to inaccurate models that result in making
bad business decisions, producing questionable explanations of cause-and-effect, arriving at the wrong
conclusions, or making incorrect medical diagnoses, just to name a few. A prediction is only as good as
the model on which it is based, and if the model is faulty, so goes the prediction. Even one outlier can
render a model unusable if it happens to be in the wrong location. Machine learning practitioners have
not yet fully embraced a class of robust techniques that would provide more reliable models and more
accurate predictions than is possible with present-day methods. Robust methods are better-suited to data
science, especially when outliers are present. The overall goal of this book is to provide the rationale and
techniques for robust machine learning and then build on that material toward robust data science.

This book is a comprehensive study of outliers in datasets and how to deal with them in machine
learning. It evaluates the robustness of existing methods such as linear regression using least squares and
Huber’s method, and binary classification using the cross-entropy loss for logistic regression and neural
networks, as well as other popular methods including k-nearest neighbors, support vector machines and
random forest. It provides a number of new approaches using the log-cosh loss which is very important

XV

XVi

Preface

in robust machine learning. Furthermore, techniques that surgically remove outliers from datasets for
both regression and classification problems are presented. The book is about the pursuit of methods
and procedures that recognize the adverse effects that outliers can have on the models built by machine
learning tools. It is intended to move the field toward robust data science where the proper tools and
methodologies are used to handle outliers. It introduces a number of new ideas and approaches to the
theory and practice of robust machine learning and encourages readers to pursue further investigation
in this field.

This book offers an interdisciplinary perspective on robust machine learning. The prerequisites are
some familiarity with probability and statistics, as well as the basics of machine learning and data science.
All three areas are covered in equal measure. For those who are new to the field and are looking to
understand key concepts, we do provide the necessary introductory and tutorial material in each subject
area at the beginning of each chapter. Readers with an undergraduate-level knowledge of the subject
matter will benefit greatly from this book.

You may have heard the phrase “regression to the mean.” In this book, we discuss “regression to the
median.” The methods currently in use target the mean of the data to estimate the model parameters.
However, the median is a better target because it is more stable in the presence of outliers. It is important
to recognize that data science should be conducted using methods that are reliable and stable which is
what the median-based approach can offer. There are good reasons why we frequently hear phrases like
“the median house price” or “the median household income.” It holds the key to building outlier-tolerant
models. Furthermore, robust methods offer stability and accuracy with or without outliers in the dataset.

We use the term “robust machine learning” as many of the techniques originate in the field of
robust statistics. The term “robust” may seem somewhat unusual and confusing to some, but it is a
well-established term in the field of statistics. It was coined in the 1950s and has been used ever since.
Note that the term robust machine learning has been used in other contexts in the literature, but here we
specifically refer to “outlier-tolerant” methods.

One may wonder why robust methods have not already been incorporated into machine learning tools.
This is in part due to the long history of the non-robust estimation methods in statistics and their natural
migration to the machine learning community over the past two decades. Attempts to use the L, loss
function (which is robust) were not successful in the past, whereas the L, loss (which is not robust) was
much easier to understand and implement. It is strongly tied to the Gaussian distribution which made it
even more compelling, especially in terms of the maximum likelihood procedure. The same can be said
of the cross-entropy loss used in binary classification. Most practitioners today are still employing least
squares and cross-entropy methods, both of which are not robust in the presence of outliers. We will show
that the log-cosh loss is robust, that it can be derived using maximum likelihood principles and inherits
all the nice properties required of a loss function for use in machine learning. This removes all the past
reasons for not using robust methods.

The approach taken in this book regarding outliers is to show how to robustify existing methods and
apply them to data science problems. It revisits a number of the key machine tasks such as clustering,
linear regression, logistic regression, and neural networks, and describes how they can all be robustified.
It also covers the use of penalty estimators in the context of robust methods. In particular, the ridge,
LASSO, and aLASSO methods are described. They are evaluated in terms of their ability to mitigate the
effects of outliers. In addition, some very interesting approaches are described for variable ordering using
aLASSO.

Preface

Outlier detection for regression and classification problems are addressed in detail. Previous
approaches have not been able to perform this function without removing valuable data along with the
outliers. The methods are essentially ad hoc in nature. In this book, practical solutions are provided using
robust techniques. Of note is an iterative boxplot method for linear regression and a histogram-based
method for classification problems. Anomaly detection is another form of outlier detection where the
outliers are at extreme locations and represent unusual and unexpected occurrences in the dataset.
Identifying such anomalies is very important in the detection of suspicious activity such as bank fraud,
spam in emails, and network intrusion. The techniques to be described in this book include k-nearest
neighbors (k-NN), DBSCAN, and Isolation Forest as they are popular techniques in this category. Also
included is a new method based on robust statistics and k-medians clustering called MADmax, which is
shown to provide better results than current methods.

We wanted to write a book suitable for senior-level (or fourth year) undergraduate and first/second-year
graduate students, that is also useful as a stand-alone guide for researchers or practitioners in the
field. As a result, there are equal parts of the theory and practice. Detailed derivations, theoretical support
for the methods, as well as a substantial amount of “know-how” and experience are part of every chapter
with code segments that can be executed by the reader to improve understanding. We found that when
we view existing methods through the lens of outliers, it leads to a deeper understanding of how current
methods work and why they may fail. In this sense, some new knowledge will be gained in every chapter.

The programming code provided in this book are based on Python which is the workhorse language
for the machine learning community. Many libraries and utilities are available in Python. We introduce
code segments for all of the techniques for regression and classification, as well as the code for outlier
removal in the form of projects at the end of each chapter. The reader would be well-served to follow
along the descriptions in the book while implementing the code wherever possible in Python. This is the
best way to get the most out of this book.

The book is spread over 12 chapters. Chapter 1 begins with an introduction to machine learning and
the importance of considering outliers in both regression and classification problems. Then, the k-means
clustering algorithm is described and transformed into a k-medians algorithm as an example of the robus-
tification of an existing method. Chapter 2 covers the L, and L, loss functions and describes a combination
of the two called Huber’s method. Chapter 3 provides a detailed analysis of the log-cosh loss function.
Chapter 4 discusses outlier detection, metrics, and standardization. Chapters 5 and 6 address robust
penalty estimation using ridge, LASSO and aLASSO. Chapter 7 introduces a flexible log-cosh loss func-
tion for quantile regression. Chapters 8-10 address the binary and multi-class classification problems and
the robustness of various methods for these tasks. Chapter 11 addresses the important topic of anomaly
detection. Finally, Chapter 12 concludes with applications of robust methods to some well-known data
science problems.

A suitable undergraduate course in robust machine learning would consist of Chapters 1-6 and a grad-
uate course would consist of Chapters 7-12. For practitioners, we recommend Chapters 1, 4, and 8-12.
For researchers, we recommend Chapters 1-3, 5-7, and 12. It is our hope that readers will find something
of value in each chapter, and that it will lead to many fruitful areas of future research and development.

Professor R. Saleh wishes to thank his parents, Dr. Ehsanes Saleh and Mrs. Shadidara Saleh, for their
love and support. He also acknowledges the encouragement and support from Lynn Saleh, Jody Fast,
Isme Alam, and Raihan Saleh. Special thanks to Dr. Mina Norouzirad for extensive reviews of all chapters
and to Paolo Pignatelli for his contributions during the writing of this book.

xvii

xviii

Preface

Professor S. Majzoub is immensely grateful to his parents, Dr. Samir Majzoub and Mrs. Zeinab
Khalidi, for their unwavering support and guidance. Heartfelt appreciation is expressed to his wife,
Bayan Almogharbel, and children, Baraa, Asma, and Ibrahim, whose love and encouragement are cher-
ished. Thanks are given to Haitham Tayyar, Mulhim Aldoori, Mottaqgiallah Taouil, and Said Hamdioui
for their invaluable assistance and encouragement throughout this journey.

Professor A.K. Md. E. Saleh is grateful to NSERC for supporting his research for more than four decades.
He is grateful to his loving wife, Shahidara Saleh, for her support over 70 years of marriage. He also appre-
ciates his grandchildren Jasmine Alam, Sarah Alam, Migel Saleh, and Malique Saleh for their loving care.

April 2025 Resve Saleh
Vancouver, Canada

Sohaib Majzoub
Sharjah, UAE

A.K. Md. Ehsanes Saleh
Ottawa, Canada

Xix

About the Companion Website

This book is accompanied by a companion website:
& web%

D
www.wiley.com/go/HandlingOutliersandAnomaliesinDataSciencele
The website includes:

o Student only: Python problems for students
o Instructor only: Answers

www.wiley.com/go/HandlingOutliersandAnomaliesinDataScience1e

1

Introduction

The field of machine learning (ML) has been advancing very rapidly since 2010 when it gained
momentum in both academia and industry. In the intervening years, many innovative ideas have been
implemented and applied to some very challenging data science problems with great success. Under-
pinning the work in these areas are the mathematical foundations within the field of probability and
statistics. The relationships between the three areas of data science, machine learning, and probability
and statistics are conceptualized in Figure 1.1. The interdependence of the three disciplines is per-
haps the most important point to note here. Data science relies heavily on probability and statistics and
the machine learning tools that build the models for a particular application domain. Applications drive
the investigation of the type of mathematics and machine learning capabilities that need to be developed.
Likewise, machine learning relies on the foundations that lie in probability and statistics and also on the
requirements of the applications that will eventually be used to develop the necessary tools. There is a
symbiotic relationship between these three disciplines. This book places a strong emphasis on all three
areas in equal measure to introduce the ideas and concepts to be described. As such, some familiarity
with one of these three areas will be helpful in navigating through the material to be presented.

This book is about robust machine learning. It addresses an under-reported and often overlooked aspect
of data science which is the effect of outliers on the model building process. A prediction is only as good as
the model on which it is based, and if the model is faulty, so is the prediction. In particular, outliers and
anomalies in datasets can lead to inaccurate models, resulting in bad business decisions, questionable
explanations of cause-and-effect, incorrect conclusions, or inaccurate medical diagnoses, just to name a
few. Even one outlier can render a model unusable if it happens to be in the wrong place. Robust meth-
ods are better-suited to data science, especially when outliers are present. ML practitioners have not yet
fully embraced a class of robust techniques that would provide more reliable models and more accurate
predictions than is possible with present-day methods. The overall goal of this book is to provide the
rationale and techniques for robust ML and then build on that material toward robust data science.

The topics to be covered in this book span a wide variety of subjects and there is substantial ground
to cover to gain deep knowledge in this field. This opening chapter covers introductory material and a
number of basic concepts in machine learning. Initially, descriptions of robust machine learning and
robust data science are provided as a backdrop for the material to be presented in the rest of the book.
Then, we focus on robustifying one ML algorithm. There are several options to choose from in this initial
chapter to demonstrate the value of using robust methods. Among the options, the one selected is simple

Fundamentals of Robust Machine Learning: Handling Outliers and Anomalies in Data Science,
First Edition. Resve Saleh, Sohaib Majzoub and A. K. Md. Ehsanes Saleh.

© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/HandlingOutliersandAnomaliesinDataSciencele

http://www.wiley.com/go/HandlingOutliersandAnomaliesinDataScience1e

2

1 Introduction

Applications Figure 1.1 Synergistic relationships between data science, machine
learning, and probability and statistics.

Data
science

Probability
statistics

Machine
learning

Theoretical Software
foundations tools

and yet provides a clear picture of the power of robust methods in general. Since clustering is one of the
well-known applications of machine learning, it will be used as the first vehicle to understand the way
that robust methods can be applied to handle outliers in datasets. It will also serve as a template for the
rest of the book.

1.1 Defining Outliers

Outliers are typically a small subset of data that deviates from the majority of the data within the same
dataset. Sometimes the true data is differentiated from outliers by calling them inliers. The sources of
outliers can vary significantly. Outliers can occur naturally as part of the characteristics of the data being
collected. Outliers can also be due to significant noise in the environment that might be unavoidable.
More commonly, they are associated with measurement error, or instrumentation error. Another source
is due to human error such as typographical errors or perhaps misinterpreting the units of measure of
a device. If there are large variances in the features of a dataset and a small amount of data, this could
lead to some of the data being declared as outliers. And other times, it is just inherently part of the data
collection process. Unusual or extreme outliers are often referred to as anomalies.

There are basically two options of handling outliers. The first is to build machine learning tools that are
tolerant to outliers. These are the robust machine learning tools. This involves understanding how the
current ML tools work and then seeking an alternative approach that is more effective in the presence of
outliers. Conceptually, the current approaches in ML seek the mean of the data to build a model. Robust
methods seek the median instead which makes the models much more stable and reliable. This is one of
the main thrusts of the book. The problems surrounding the use of the mean will be presented, followed
by the advantages of using the median. More generally, the first approach is to convert a non-robust
machine learning method into a robust one. Many of the existing techniques are not robust and those
should be identified and updated accordingly. However, if a method is inherently robust, it should be
preferred over its non-robust counterpart.

A second option is to detect and remove outliers and then apply the current ML tools or extract outliers
from a dataset for further inspection. In current practice, there is a large investment in non-robust
methodologies that are hard to change or replace, so it is easier to find ways to eliminate outliers and use
the existing infrastructure. Since robust methods are not widely used in Python (or well-understood),
it seems easier to remove outliers rather than build a new infrastructure based on robust methods.

1.3 What Is Robust Machine Learning?

However, as appealing as it may sound, it is not straightforward and requires an extra level of care to
ensure that inliers are not inadvertently removed with outliers. There are other cases where the goal of
the project is to find the outliers or anomalies in the dataset rather than to build a model. The detected
outliers would be inspected to learn something about the anomalies or any unusual aspects of the
data being collected. And finally, there are statistical tools and procedures that rely on the data being
outlier-free in order to produce meaningful results (e.g. correlation coefficients and analysis of variance).
Hence, the secondary thrust of the book is to describe efficient and effective methods to detect and
remove both outliers and anomalies.

1.2 Overview of the Book

With the background and preliminaries covered, we will now move to the main thrust of this book which
is the study of standard machine learning techniques and their robust counterparts. Table 1.1 provides a
roadmap of the topics to be described and their associated chapters.

1.3 What Is Robust Machine Learning?

Machine learning involves the development of software that analyzes data and produces predictive mod-
els based on algorithms and mathematics developed by computer scientists, engineers, and statisticians.
One can view it as the programming portion of the problem to build software tools and flows to process
data in furtherance of some specific data science objective. Most of the existing techniques are essentially
based on finding the mean of the data. Robust methods to be described in this book are based on finding
the median of the data. Thus far, robust methods have not seen widespread use due to their somewhat
mysterious nature. These techniques borrow heavily from robust statistics (see Maronna et al. 2019)
which is a well-known and long-standing field in its own right. However, robust methods have only
been of recent interest in machine learning. The objective of this chapter, and indeed the whole book,
is to demystify robust methods so that more data scientists can gain access to such methods when the
need arises.

Truth be told, most realistic datasets have outliers in one form or another. Some are harmless relative
to the rest of the data while others may cause significant errors, especially during inference or prediction.
The problem is that it is difficult to know a priori which case you are dealing with. You may not be able
to tell if the results are reliable unless additional steps are taken to ensure reliability. If, for example, the
outliers could be removed in some effective manner, then the traditional methods are quite effective.
However, outlier detection and removal are prone to error so this may not be a reliable approach either.
It is often considered to be tampering with the data. Unless you can successfully diagnose and detect
outliers in large datasets, the models generated by standard ML methods on these modified datasets
should be viewed as suspect. The more prudent approach is to employ machine learning tools that use
robust procedures wherever possible to avoid the problems altogether.

Generally speaking, robust ML is the development of tools, procedures, and methodologies that are
tolerant to outliers. In its most simplistic form, it implies the use of the median (or some neighboring
quantile) rather than the mean thereby producing outlier-tolerant models. It also includes the detec-
tion and removal of outliers using robust ML. Of course, robust methods introduce a set of different
issues that must be addressed before they can be used effectively. As we will show throughout this book,

3

4

1 Introduction

Table 1.1 Topics, chapters, and descriptions.

Topic Chapter Description

Robust Clustering 1 k-means clustering algorithm
Robust k-medians clustering algorithm

Robust Linear 2 L,, L,, Huber loss functions

Regression log-cosh loss function

4 Outlier detection, metrics (MSE, MAE), robust

standardization

Robust Models 5 Penalty functions (ridge, LASSO, aLASSO)

via Regularization 6 Model generalization, model complexity

Quantile Regression 7 Replacing the quantile check function with a flexible
log-cosh function

Robust Binary 8 Logistic regression

Classification Cross-entropy vs. log-cosh loss functions, SVM, kNN,
random forest

Neural Networks for Binary 9 Activation functions: relu, sigmoid, training, backprop,

Classification and Classification gradient descent, cross-entropy vs. log-cosh loss functions

Metrics recall, precision, F; score, AUROC

Multi-class Classification 10 Categorical loss, softmax activation

and Optimization Modified National Institute of Standards and Technology
(MNIST) dataset, Adam optimization

Anomaly Detection and 11 kNN, Isolation Forest, density-based spatial clustering of

Evaluation Metrics applications with noise (DBSCAN), MADmax, precision,
recall, AUROC

Application to 12 Boston housing, Titanic datasets

Data Science and
Artificial Intelligence (AI)

climate change time series (ARIMA)
explainable AT (XAI)

the advantages of robust ML greatly outweigh the disadvantages. Our goal is to provide side-by-side
comparisons of traditional methods with robust methods so that the reader can make their own judg-
ments about the value of robust ML.

1.3.1 Machine Learning Basics

Before launching into the key ideas of this book, it is useful to provide some background material on ML
and robust methods. ML grew out of the computer science field in the 1980s but went dormant for a time
in the 1990s, during which it was viewed as a dead-end field. It experienced a reawakening around 2000

1.3 What Is Robust Machine Learning?

and a significant resurgence around 2010. It continues to gain traction and momentum to this day with
the advent of generative Al Of course, in the 1980s, computers were relatively slow, datasets were not
readily available, and algorithms for ML were in their infancy. Fast forward a few decades and we find the
landscape has changed dramatically. Today, access to high-speed computing is at everyone’s fingertips,
data is ubiquitous, and many advanced ML algorithms have been developed, implemented, and tested.
They are now widely available through open-access online mechanisms.

Some of the algorithms in ML are grounded in statistical theory, while others are based on nonpara-
metric methods or a set of heuristics. We will study methods that fall into all these categories. There are
three main varieties of ML tools: supervised learning, unsupervised learning, and reinforcement learn-
ing.! We focus only on the supervised and unsupervised learning methods in this book. To understand
these two methods, consider a dataset given by a matrix X € R"™d where n is the number of observations
(rows in the dataset) and d is the number of variables (columns in the dataset). The “ground truth” or
true responses associated with each observation is optionally provided in a vector y € R". To contrast the
two categories, supervised ML requires both X and y, while unsupervised ML requires only X.

For example, linear regression, logistic regression, neural networks, k-nearest neighbors, tree-based
methods, and so on fall into the supervised category. In this book, we focus on the robustness aspects
of these methods. On the other hand, data clustering and anomaly detection are examples of unsuper-
vised learning methods. We will discuss robust clustering in this chapter as a way of introducing robust
concepts and their value in machine learning. Anomaly detection will be covered in Chapter 11.

For supervised learning, we mainly consider two types of problems: regression and classification.
Figure 1.2 shows the two cases graphically. On the left side, we show a set of points that are fitted with a
line, where the x-axis is the year and the y-axis is the number of sales in that year. Fitting a line to the data
is called linear regression. The ML objective in this case is to use the data to find the slope and intercept

Regression Classification
20 - 350
300
15
o 250
[]
8 *
8 10- 200
%
150
5 -
X
100
0 - | 50 X
1950 1955 1960 1965 1970 1.5 20 25 3.0 35 40 45 50 55
Year wt

Figure 1.2 Linear regression vs. linear classification.

1 Although an important topic in ML, reinforcement learning is outside the scope of this book.

5

6

1 Introduction

of the line that “best fits” the given points shown in the plot. The best fit is based on some objective
function used during optimization. We are, in effect, training the model to learn about the dataset. Once
the estimates of these parameters are obtained, predictions can be made for values that are not in the
original dataset. For example, we can now test our model by asking the question: “what is the expected
number of sales for year = 1968?” and the answer comes back as “sales = 8.2.” We did not have this value
in the dataset before but now we are able to make predictions using the fitted line. Building a prediction
model is the essence of machine learning.

The figure on the right shows two sets of points, represented using symbols “e” and “x,” respectively.
Each symbol represents a distinct class. The ML objective here is to establish a line that best separates
the “o” points from the “x” points. Finding the dividing line between the two classes is referred to as
linear classification. The data is linearly separable in this case and the separating line does a good job of
defining a decision boundary between the two sets of points. We say that the model was trained using
the given data, which actually means that we optimized an objective function to produce the slope and
intercept parameters. We can now ask another question: “if a new point is introduced at wt = 2.5 and
hp = 90, what class does it belong to?” and the answer would come back as “it belongs to the ‘%’ class.”
A large portion of the supervised machine learning tools involve this type of classification.

1.3.2 Effect of Outliers

Now consider the effect of outliers on the two cases above. This is shown in Figure 1.3. On the left side,
there is one new data point which is an outlier. The effect on traditional linear regression is to shift the
line and make it more horizontal than in Figure 1.2. Now if the question is asked, “what is the expected
sales for year = 1968?,” the answer comes back as “sales = 6.5” which is not accurate. Apparently, the
one outlier has produced misleading results. If used to make a business decision, this outlier may prove
to be very costly.

Regression Classification
20 350
300
15 .
o~ Outlier ° 250
7 o o . .0
E 10 0 = 200 Outlier i
o é o o
0© 150 b
54 o °) °
0 00 100 ¢
000° XX
01 T T | T 501 X
1950 1955 1960 1965 1970 1.5 20 25 3.0 35 40 45 50 55
Year wt

Figure 1.3

Impact of outliers in regression and classification.

1.3 What Is Robust Machine Learning? |7

[Pl

In the second case on the right side of Figure 1.3, we place an outlier by adding a “e” on the left side of
the boundary, where members of the “x” class reside. The effect of this outlier is to shift the line toward
it, relative to the corresponding one in Figure 1.2. The outlier should not affect the boundary, but it does.
When we again ask, “if a new point is introduced at wt = 2.5 and hp = 90, what class does it belong to?,”
the answer would come back as “it belongs to the ‘e’ class.” Of course, this is incorrect. It belongs to the
“x” class as we saw earlier. The outlier has moved the decision boundary thereby changing the predicted
response. As before, any business decision made using these results may be costly.

Ideally, we would like to obtain the results shown in Figure 1.2 given the data of Figure 1.3. Robust
methods offer this possibility along with the methodologies to achieve this outcome. Robust ML involves
methods that are suitable for datasets with or without outliers. They produce models as if the data were
outlier-free. This is the key benefit of using robust methods. You do not need to wonder what the effect of
outliers may be in the dataset or where they are located. You simply use this class of methods on all prob-
lems without any concerns about outliers. In some applications, you may be interested mainly in detect-

ing and removing the outliers. This issue is also addressed by robust methods, as detailed in this book.

1.3.3 What Is Robust Data Science?

Data science involves a set of application-specific tasks that focus on creating a coherent dataset from a
large number of observations, performing thorough exploratory data analysis (EDA), and carefully inter-
preting results obtained from machine learning tools and statistical analysis. It is a rather expansive field
with many layers of depth and a wide variety of applications. We will briefly describe some of these lay-
ers and emphasize the key aspects of this discipline. If we step back and look at statistics and machine
learning from a higher perspective, we can understand their roles in data science. Figure 1.4 shows the
traditional view. We start with the ground truth in the form of a probability distribution (assumed to be
the true distribution of a population). By sampling this distribution, we generate a dataset. Once we have
a dataset, then traditional statistics/ML seeks to find a model that best approximates the ground truth
(i.e. the original distribution). From this model, we can do whatever we want, such as making predictions.
Unfortunately, this is an idealized view of the world of data science.

1.3.4 Noise in Datasets

In the real world, there is noise that will add outlier observations to our dataset. Consider a slightly
modified version of Figure 1.4 as shown in Figure 1.5. Here, the data generation path is modified to
include additive noise. It is the “signal” plus “noise” that combine to produce more realistic datasets.

Probability
| distribution
Starting| Ground
point truth Dataset

?— Statistics/ML 4—,

Model

Figure 1.4 Traditional view of the model building process.

8| 1 Introduction

Noise

Probability | Signal

Jd
| distribution \Ll/ 1

Ground Dataset
truth (with outliers)
t Robust L |
Model statistics/ML

Figure 1.5 Realistic view of the model building process.

This is not the typical Gaussian noise that is usually taken into account. Rather, the noise is disruptive
enough to produce bad models if special care is not taken. As a result, in order to construct a model
that best approximates the ground truth, we must turn to robust statistics/ML that effectively removes
noise and generates a better model. Without robust methods, we may not be able to produce high-quality
models that approximate the ground truth when outliers are present.

In robust data science, the focus is on identifying outliers, utilizing data cleaning methods to remove
unwanted outliers or applying procedures that are largely insensitive to such outliers. We believe that the
field will naturally migrate in this direction, given the fundamentals and benefits of the methods to be
presented.

1.3.5 Training and Testing Flows

Data science involves building models using datasets and a number of supervised and unsupervised ML
tools. A typical flow for supervised learning is shown in Figure 1.6. We are given an initial dataset with a
design matrix X and known responses Y. Here, Y is usually a vector but can also be a matrix of responses
depending on the application. The dataset is divided into a training set and a test set. We build mod-
els using training data and then assess the accuracy using test data. There are many different ways to
determine the overall accuracy as described in later chapters. Not shown in the figure are the potential
iterations that are needed to experiment with different hyperparameters, which are user-specified values
that steer the optimization methods toward a desirable model.

The sequence of steps is as follows. Let us assume that the dataset contains outliers. First, the data is
randomly split into a training set and a test set. We will have no idea where the outliers have landed;
they could be all in the training set, all in the test set, or in both. In practice, we must assume they are
in both and develop methodologies and metrics under that assumption. The training data, shown as

A
Training set | Build model | B'S | Test |Predicted Ypred
(Yigains Xirain) | uSing ML | model | results

with outliers A

Accuracy
check

Xiest Actual

Frrain> Xirain) Dataset results

with outliers
(Yiests Xiest)

| Test set

(Frest: Xiest)
with outliers

Figure 1.6 Training and test sets for supervised learning.

1.4 Robustness of the Median

(Xirain» Yirain)> With potential outliers, is used as input to a selected ML tool, say logistic regression or a
neural network, in order to estimate the model parameters, . Often, a cross-validation (CV) scheme is
used whereby the training set is divided into a number of subsets, called folds, so that a more general
model can be produced by combining the results of k different folds. Next, the prediction accuracy of the
model must be evaluated on an independent test set (X, Yi.sr) t0 properly assess its accuracy. This is
carried out by taking X, possibly with outliers, and applying the trained model to make predictions,
and then comparing the predicted results, Ypred, against the true values, Y.

Quality assessment is typically performed using an appropriate set of metrics or statistics.2 One must be
careful when using an error measure with outliers present. Since outliers may appear in the training set,
the test set, or both, there may be a need for robust error measures, which will differ for regression and
classification. Consider the case where the training set has no outliers but the test set is full of outliers.
No amount of training will be able to produce good results on the test set using standard error measures.
So we will have to select some suitable robust error measure in order to properly evaluate accuracy.

In unsupervised learning, the dataset is given by X, ,;, but does not involve Y, ,;, or a test set. However,
the goal is still to minimize some objective function associated with the specific machine learning task.
Whether we are doing supervised or unsupervised learning, the presence of outliers can affect the quality
of the model so we have to consider robust ML. With this brief rationale, we can now proceed to the
technical details of how robust ML works and where it should be applied.

rain’

1.4 Robustness of the Median

Our starting point for robust ML is a brief review of two useful statistics: the mean and the median. The
mean is very well-known and forms the basis for the most popular ML methods, whereas the median is
less well-known but important for our purposes here.

1.4.1 Mean vs. Median

Given a set of n values, x = {x,, ..., X, }, the mean is given by
1 n
X = mean(x) = —in, (1.4.1)
3

which is the sum of the values divided by n.

The median of the set depends on whether #n is odd or even. First, we order the values from smallest to
largest. After ordering, the new set is denoted by Xy -+ s Xy 1 where Xy <0 L X These are referred
to as the order statistics of x with Xq) = min {x;,i=1,...,n}and Xy = max {x;,i=1,...,n},and the x(i)’s
are the ordered observations. If »n is odd, we take the middle value in the ordered set,

median(x) = X1, (1.4.2)
2

If n is even, we take the average of the two values in the middle of the ordered set. Assuming the above
ordering, it can be expressed compactly as follows:

. 1
median(x) = 3 [x(g) +x(§+1)] . (1.4.3)

2 A statistic is any calculation or measurable quantity that can be obtained using data.

9

10

1 Introduction

Here, the upper value X(2 1) and lower value Xz are averaged to obtain the median, but technically any
value between the upper and lower values can serve as the median which implies an infinite number of
possible values.

We can already see a problem in that the median seems a little complicated, requires several steps,
along with a caveat when n is even, while the mean is easy to understand in one simple equation. This
provides insight into why the median has not been embraced as readily as the mean. Furthermore, the
mean is always unique, whereas the median may or may not be unique. In fact, it can either be unique or
any one of an infinite number of values in a bounded region. However, the median is more important
when it comes to finding the essence of a dataset with outliers, as we will see shortly. It is for good reason
that we hear phrases like “the median house price” or “the median household income.”

Table 1.2 compares and contrasts these two statistics for some trivial cases. The first set {3, 1,4, 2,5, 3}
produces 3 for both the mean and median. This is consistent with a visual examination of the values in the
set. However, if we change one of the values from 3 to 100 to produce the second set, {100, 1, 4, 2, 5, 3}, the
mean increases significantly to 19.2, while the median is 3.5, which is close to the previous value. In this
case, the value of 100 would be considered an outlier because it is far away from the rest of the data. The
mean is greatly affected by one outlier which makes it unstable. On the other hand, the median seems
rather stable in the presence of one outlier.

Continuing the exercise, if we examine Set 3 listed as {100, 100,1,4,2,5,3} in the final column of
Table 1.2, we now have two outliers and the mean shifts further beyond the range of the original ele-
ments of Set 1 from 3.0 to 30.7. On the other hand, the median maintains relative stability at 4.0. We refer
to the median as having the robustness property for this reason.

Returning to Set 2 for a moment, if we let x,, represent the outlier value and set x,, = 100 initially,
what happens as x,, — c? The mean tends to co while the median remains stable at 3.5. This is fun-
damentally why robust methods are needed in ML. If outliers are present, the model cannot be trusted
using traditional methods.

1.4.2 Effect on Standard Deviation

The standard deviation is also greatly affected by outliers. Let u be the population mean, and let x of
Eq. (1.4.1) be an estimate of u. Further, let the population variance, 62, be defined by

n
1
0% =2 (= u,
n i=1

Table 1.2 Comparison of mean and median, and standard deviation (SD), and the
normalized median absolute deviation (MADN) on three small datasets.

Set 1 Set 2 Set 3
Measure {3,1,4,2,5,3} {100,1,4,2,5,3} {100,100, 1,4,2,5,3}
Mean 3.0 19.2 30.7
Median 3.0 3.5 4.0
SD 1.41 36.9 47.3

MADN 1.48 2.22 3.0

1.5 L, and L, Norms

and the unbiased estimator of ¢ be given by

SD(x) = 6 = (1.4.4)

which is the standard deviation (SD) of the sample set. Then, as the outlier increases to infinity, the mean
goes to infinity and, as a consequence, the standard deviation goes to infinity. Hence, one outlier can have
a domino effect on various other statistics that rely on the mean.

To address this issue, each statistic based on the mean could be replaced by a robust counterpart.
A robust statistic for standard deviation is the median absolute deviation (MAD) given by

MAD(x) = median (|x; — median(x)|) . (1.4.5)
1<i<n

A consistent and robust estimator of the population standard deviation based on a normalized MAD
can be computed as follows:3

MADN(x) = k X MAD(x), (1.4.6)

where k = 1.4826. This is used so that SD(x) and MADN(x) are approximately equal for outlier-free data.
If we take Set 1 in Table 1.2, the original set with no outliers, then SD(x) = 1.41 and MADN(x) = 1.48.
For the case of Set 2 with x,) = 100, SD(x) = 39.6 and MADN(x) = 2.22. Note that MADN(x) is stable
compared to SD(x).

If we now change the outlier in Set 2 to x,,) = 1000, then SD(x) = 407.0 and MADN(x) = 2.22; that is,
MADN remains unchanged. Clearly, a single large outlier can skew basic statistics such as the mean and
standard deviation, while the median and MADN(x) remain relatively stable even as Xy — 0. For Set 3,
with two outliers, SD(x) = 47.3 and MADN(x) = 3.0. We seek this type of stability in most data science
problems with outliers.

Exercise: Given the set x = {1, 2, 3,4, 5,1000}, compute the mean, median, SD(x), and MADN(x).

Ans.: mean =1015/6 =169.17, median = 3.5, SD(x) =407, MADN(x) =2.2. (Note: to be more precise,
the median € (3,4). We use the average of 3.5 simply for convenience when we seek a unique value
for it). O

1.5 L, andL, Norms

There are two vector norms that are pertinent to our discussion of traditional methods vs. robust methods:
the so-called L,-norm and L,-norm. These norms are simply measures of the magnitude of a vector or
the distance between two vectors. In particular, the two norms of a vector v with n elements are given as
follows:

n
Ly=lly = D vl = o]+ vyl + ..+ v,
i=1

3 Here, the word consistent means that MADN(x) will produce the true value if the sample size is large enough (see
Chapter 2). We will use MADN(x) whenever k is used as a multiply factor of MAD(x). We will use MAD(x) when we do not
apply k. Here, k is a factor that depends on the distribution. For a Gaussian normal distribution, k = 1.4826.

11

12

1 Introduction

and

L,=|v|,=

n
2 _ 2 442 2
PR RVAE AR
i=1
The Manhattan distance between two vectors, u and v, is given by

n
Ly =llu—vll, =) |u;— vl

i=1

and the Euclidean distance is given by

Lz = ||u—V||z =

Exercise: Let x = (—1,2,3)T. What are the values of the L, and L, norms?

Ans.: L, = 6,L, = \/14. (Note: the T superscript used in (-1, 2, 3)T refers to the transpose of the vector
as it is being represented horizontally for convenience rather than vertically.) O

Exercise: Letu = (—1,2,3)T and v = (-2, 3,4)". What is the distance between these two vectors in terms
of L, and L, norms?

Ans.: lu—v|, =3, lu—v|, = /3. o
Often, the phrase “L2” may be used even if we square the value of the norm as in
n
Ly =lu-v|;= Z(ui -2
i=1

This looser definition is used in cases where we are comparing relative magnitudes, especially in the
case of distance measures, loss functions, or penalty functions. Typically, we are referring to the sum of
squares when we use the phrase “L2” and sum of absolute values when referring to “L1.”

Exercise: Let u = (-1,2,3)" and v =(-2,3,4)". What are the values of [lu — v|| as compared to the
L,-norm given by ||lu —v||,?

Ans.: |lu — v||§ =3, lu-v|,= \/3 One takes the square root of the sum of squares while the other does
not take the square root. O

1.6 Review of Gaussian Distribution

One of the most important distributions in statistics is the well-known Gaussian or normal distribution.
This subject has been covered in countless papers, books, and online resources. It will be referenced
many times throughout this book, so it is presented here for completeness. It is assumed that the reader
is well-versed in this area as a prerequisite, but a brief tutorial is provided for review purposes.

1.7 Unsupervised Learning Case Study

The Gaussian distribution has a probability density function (PDF) given by

1 _aw?

e, (1.6.1)

fx&) =

2ro?

where y is the mean and o2 is the variance. A random variable, X, is said to follow a Gaussian distribution
if any sample is distributed according to the equation above. A more compact notation is

X ~ N(u,0?). (1.6.2)

This is equivalent to Eq. (1.6.1) except that we are now explicitly stating that X is a random variable
distributed as a Gaussian with mean y and variance o2.
The cumulative distribution function (CDF) of the Gaussian is defined as

Fy(x) =P(X <X) = / f(tydt. (1.6.3)

The CDF gives the probability that a random variable X is less than a specific number x. It is obtained
by taking the integral of the PDF from —oo to x. The total area under any PDF is 1.0 as an axiom of
probability theory. Therefore, the results of the integral will always lie in the range [0, 1] as probabilities
cannot exceed this range.

We are often interested in computing probabilities from the CDF of the Gaussian distribution but since
the integral in Eq. (1.6.3) does not have a closed form, we resort to lookup tables using z-scores which
have a normal distribution. The z-score is computed as

z="K (1.6.4)
[0}

where z is the standardized value of x and Z ~ A'(0, 1). For notational convenience, we refer to the PDF
of the Gaussian as M (u, ¢2) and the CDF of the Gaussian as ®(x).
The multivariate Gaussian distribution for a random variable, X € R¢, is denoted by

X~ Ny, 2), (1.6.5)

where pisadx 1 vector and X is a d X d covariance matrix, with the corresponding PDF given by

1 _
o) = ——— e WTE e, (1.6.6)
Vend x|
where 7! is the inverse of the covariance matrix and || is the determinant.
While the Gaussian distribution is invaluable in statistics, we will later discover that we need to move
away from this elegant distribution in favor of other lesser-known distributions to achieve robustness.

1.7 Unsupervised Learning Case Study

We are now ready for our first encounter with a machine learning problem that falls in the category of
unsupervised learning. We will take a deep dive into data clustering in the rest of this chapter to introduce
and illustrate many of the basic concepts in machine learning with a particular focus on the rationale and
proper use of robust techniques. Many of the methods in use today are not robust and therefore our goal
is to understand why the existing tools may not be good choices and where robustness can help most.

13

14

1 Introduction

1.7.1 Clustering Example

Clustering (see James et al. 2023) is a well-known and widely understood problem in ML so it serves
as a good entry point into our study of robust methods. The procedure in clustering involves taking a
set of unassigned multi-dimensional data points, X € R, and assigning them to one of K groups or
clusters based on their proximity to one another. The value of K is always an integer and serves as a
hyperparameter specified by the user based on the application of interest with K > 1 (since K =1 is a
trivial case). We will walk through the basics of clustering starting with simple problems and then work
our way up to the complete set of algorithms for both non-robust and robust methods. In the process, we
will follow the loops of Figures 1.4 and 1.5.

Exercise: Let the matrix X be defined as follows:

12
X=|14].
23

What is the value of n and d in this case? In this chapter, we will be referring to row i of this matrix using
the notation x. What is x»? What is x? — x(U?

Ans.: Throughout this book, the notation X € R™d will be used to refer to a real matrix X with n rows
and d columns. In this trivial example, n = 3 since there are 3 rows, and d = 2 since there are 2 columns.
Then, x? = (1,4)". Also, x® —xU = (0,2)". O

1.7.2 Clustering Problem Specification

Given a set of n points in R?, and an integer hyperparameter, K, the goal of clustering is to assign each
point to one of K clusters, Cy, ..., Cg, based on their proximity to a set of defined cluster centers, p, ... pg,
such that it minimizes a distance-based cost function. The cluster centers are computed using the set of
points assigned to each cluster. The algorithm used for clustering starts with an initial assignment of
points to clusters and then proceeds in an iterative fashion until convergence of cluster assignments is
achieved.

To understand the clustering process, consider Figure 1.7. The figure on the left is the original dataset
in R? represented by variables x; and x, for each point. The number of clusters is chosen to be K = 3
in this case and the clustering procedure after several iterations produces the figure on the right. The
representative centers are indicated with the symbol ®. The three circular/elliptical boundaries around
the data are shown only as a visual aid to identify the different clusters. Often, different colors or symbols
are used to represent different clusters.

The problem of clustering is harder than it looks; in fact, it belongs to the class of NP-hard problems,
meaning that it cannot be solved in polynomial time as the problem size increases. Therefore, locally
optimal solutions are usually sought using “greedy” algorithms, starting with an initial guess for
the centers and then repeating the process of clustering the data and recomputing the centers until
convergence. Results may vary significantly depending on the choice of initial starting points.

A generic unsupervised clustering algorithm is shown in Algorithm 1.1. It begins by randomly picking
K centers. Then, the iterative loop is entered. In the first phase of the loop, K groups are defined by

1.7 Unsupervised Learning Case Study

10
o o Before After
8 * 0'.0.
e & °®
6o.: %
°3
~ 2 °
=o
o °
0 .. P ..%. N
e o° oo o° . °
o ° oo Jooge
) ¢ e’ % o °
L]
4
4 2 0 2 4 6 8 10 4 2 0 2 4 6 8 10
X X

Figure 1.7 Dataset before and after clustering.

assigning data points to their closest center. In the second phase, the centers of each group are recomputed
using the data points assigned to it. Then a suitable cost function is computed for the new arrangement.
The iterations continue through the two phases until convergence is achieved. This occurs when the
cost function is minimized and the K groups no longer change. The loop is referred to as a Lloyd-style
iteration process.

The algorithm is sensitive to the initial guesses so it is worth discussing some of the options for ini-
tialization. The simplest approach is to pick K random points from the n total points in the dataset as
suggested in the algorithm. Unfortunately, these random values may be close to one another and that is
not desirable because it may lead to unbalanced clustering. Another way is to choose K + m initial cen-
ters and later remove m centers to produce K clusters. This is sometimes used to find outliers in the data.
A third initialization scheme involves picking K centers that are far away from each other. This allows
a more balanced set of clusters to form. In any case, some clever method should be used to pick the K
centers. Otherwise, the results may not be satisfactory for their intended purpose.

Algorithm 1.1 Generic clustering algorithm using Lloyd-style iteration.

: Input: dataset X, number of clusters = K;

: Initialize centers using K random points of X, cost,4 = 0, cost,,,, = maxcost;

: repeat until (|cost, ., — cost, 4| < €):
Define K new clusters, C,, ..., Cy, by assigning each point to the nearest center;
Recompute K cluster centers of C,, ..., Cg;

cost, 4 = cost,,
Compute cost,
: end repeat

: Output: final clusters, Cy, ..., Cg;

ew?

new Using a distance-based cost function;

15

16

1 Introduction

Exercise: Consider the scatter plot of data points below. What is the value of d and a suitable value of K
in this case?

10
8,
6,
]
47 %
n u u
X, N '.. ¥ .l. .
L oo 1]
.'. '. | n B
0 [] n s ¥ "
LI | | [[| [
u " .
2 n
s B - . .]
4
4 20 2 4 6 g 10
X

Ans.: Here, d = 2 because it is a two-dimensional problem, and it appears that K = 2 is a suitable choice
since there are apparently two clusters. m}

1.8 Creating Synthetic Data for Clustering

In the development of ML tools, we will often create representative datasets to validate the workings of
the program. These are referred to as synthetic datasets. Synthetic data is also used to test corner cases,
introduce artificial outliers, and augment existing real-world datasets to improve the quality of the mod-
els generated by ML tools. Before we solve the clustering problem, we need a way to generate synthetic
datasets that are composed of any number of clusters in a multi-dimensional space. We start with a prob-
ability distribution of some sort as depicted in Figure 1.4. For clustering, an appropriate distribution is a
linear combination of several Gaussian distributions called a Gaussian mixture. For simplicity, we start
the case of two clusters and then generalize to K clusters. For testing purposes, we also need to generate
clusters of points in 1-dimension, 2-dimensions, or any size up to d-dimensions.

1.8.1 One-Dimensional Datasets
A one-dimensional problem with two Gaussian distributions in a mixture takes the following form:
fx®) = 7y N1y, O'f) + 1, N'(py, 0'5), (1.8.1)

where 7; are the probability weighting factors (not the numerical value r) associated with each distribu-
tion of the form N (;, af). By definition, z; + 7, = 1. If we had K Gaussian distributions in the mixture,

1.8 Creating Synthetic Data for Clustering

0.14
0.12f
0.10 +
0.08 |
0.06 |
0.04 |
0.02]
0.00

0 5 10 15 20 25

Figure 1.8 One-dimensional Gaussian mixture.

then we would require that
K
Zn’i =1
i=1

in order to satisfy a basic probability axiom associated with a valid PDF.

Example: The graph shown in Figure 1.8 represents a one-dimensional Gaussian mixture. It is based
on the Gaussian mixture model of Eq. (1.8.1). The parameters of the mixture are z; = 0.2, 7, = 0.8,
1, =6, 0'12 =2, u, =18, and O'; = 5. When we draw a sample of 14 observations from such a distribu-
tion, we obtain a set of random points as depicted along the x-axis. This comprises the dataset that we
are given without any prior knowledge about the original distribution. The objective is to identify the
two clusters using this data and reconstruct the original distribution on which the sample was based,
as represented earlier in Figure 1.4. That is, we want to build a model of an unknown distribution from
which the data arose given only the random sample of points. The key concept is that data is always tied
to some unknown distribution. The best we can do with the given data is to build an approximate model
of it using machine learning. O

Exercise: What is the area under the curve (AUC) of the Gaussian mixture of Figure 1.8 from —oo to co?

Ans.: The AUC = 1.0 by definition of a valid probability distribution. In fact, all valid PDFs have normal-
izing constants to ensure that they integrate to 1. m]

1.8.2 Multidimensional Datasets

Consider a more realistic d-dimensional Gaussian distribution denoted by Nj(pu,X), where p=
(4y»-..,1y)" and T is a d x d nonsingular covariance matrix. In its most general form, we have the
following Gaussian mixture:

K
fx®) = Y21 Ny(py B). (1.8.2)

i=1

17

18

1 Introduction

Thus, we may define mixtures of two d-dimensional Gaussian distributions as
fx®) = w1y Ny(pp, Zp) + 1y Ny(u,, B). (1.8.3)

In the rest of this chapter, we will assume that the covariance matrix takes the simplified form of ¥ = ¢2I i
where I; is a d X d identity matrix. This is suitable for circular or spherically shaped distributions of data.
Then, for K = 2 and an arbitrary d,

fx@®) = 1) Ny(py, 011,) + 1, Ny(py, 031,). (1.8.4)
In the case when K = 2 and d = 2, we have
fx®) =, Noy(uy, X)) + 75 Noy(u,, Z). (1.8.5)

where 7, + 7, = 1, u; = (i, /412)T» Hy = (M, ,uzz)T,

1 1
21=0'12<0 (1)> and 22=0'§<0 (1)>

For notational convenience, we can define a set ® = {r,, 7,, 4;, 4,,0,,0,} that contains all the true
parameters. Data can be generated from the probability distribution of this two-dimensional Gaussian
mixture in the same manner as described for the one-dimensional case. Based on the data, we can esti-
mate the parameters of the mixture to reconstruct the distribution. When we compute these parameters,
we will use © = {71, 75, iy, By, 61,6, }, where the “hat” represents an estimate of each parameter. This
would constitute the model of the distribution.

Example: Consider the data in Figure 1.9. It was produced by sampling an unknown Gaussian mixture.
We want to express it in the form given in Eq. (1.8.5). How can we do this? Assume we can identify the
two clusters and the points belonging to each one using some clustering algorithm. Then we find that the
centers of the two clusters are (1.1,1.2) and (6.9,7.1), respectively, and assuming the covariance matrices
of the two clusters are symmetric, we can compute the variances as 1.3 and 2.1, respectively. Also, we find
that there are twice as many points in one cluster compared to the other. To write a Gaussian mixture
model using Eq. (1.8.5), we set #;, = 1/3 and #, = 2/3. The centers of the clusters are

i, =(1.1,1.2)", and i, =(6.9,7.1)".

Then the covariance matrices are

) 10 . 10
£ =13 d %,=21 .

It turns out that the true values are 7; = 0.3, 7, = 0.7, u; = (1,1)", u, = (7.7)7, 6] = 1,and o7 = 2. The
model is quite accurate in this case and it completes the flow shown in Figure 1.4. The only missing step
is how to create the clusters in the first place, which is the subject of the next section. O

1.9 Clustering Algorithms | 19

12 T
L]
L]
[]
10 | I I | ...'.’. ¥ —_—
s e
® ..: ..é %s..‘
8 ® e® *® 4 =
Ay
L]

o
> o ° F e'
4 oq | o ° °
o ® : ° *w
o, & %
2 .:'.0.5:3:0
]o:~.o L
x.‘? 5 °
0 .' !.Mg.e *
= ?¢‘ o .
° ® [T
o svie |
2 . L o
2 0 2 4 6 8 10 12

X

Figure 1.9 Two-dimensional Gaussian mixture.

1.9 Clustering Algorithms

We have already described a Gaussian mixture method of generating data and a generic Lloyd-style
iteration loop to create clusters. We now examine two ways to implement Algorithm 1.1. Once we choose
a distance measure, a cost function and a centering criteria, the generic algorithm becomes a specific
algorithm.

1.9.1 k-Means Clustering

The first approach is called k-means clustering. In phase 1, points are assigned to their closest center based
on an L, distance measure. Each distance is computed as follows:

. 2
distance(i, j) = ||x(l) - M(’)Hz

= G0 R 0 00— 0

20

1 Introduction

where x® is the ith observation of X and u is the jth center out of K possible centers. Then each of the
x®, i=1,...,n,is assigned to the closest u¥, j = 1, ..., K based on the distance formula. In the second
stage, the centroids of the clusters are computed using the points assigned to each cluster for all K clusters.
This is simply the column-wise mean of the data points assigned to each cluster,

u? = mean (C) Vj=1,....K.
In the above, Cj is the cluster matrix for cluster j.

The cost is computed as the total sum of all distances between data points inside each cluster to their
respective cluster centers for all clusters:

K
cost = Zzux@ - u2)3. (1.9.1)
j=1iec,

In the above, Cj is the set of row numbers of X.
The old and new costs are compared relative to a small value, ¢, to determine convergence as follows:

|cost, ., — COSt 4| < €. (1.9.2)
The two-phase loop continues until the convergence criterion is satisfied and none of the centers change
in two consecutive loops.
Exercise: Let x be the ith observation of matrix X € R%*? given by

12

x=|11.
23
Only the 1st, 2nd, and 60th rows of the matrix are shown above. Let cluster C, consist of only those three

points, specifically x, x?, and 6. By our notation, C; = {1, 2, 60}. What is the cluster centroid, which
we denote by uV?

Ans.: The data points in C; are ¥V = (1,2)T, ¥? = (1,4)7, and x®® = (2,3)T. The centroid is the
coordinate-wise average. Therefore, the centroid is u®® = (1 +1+2)/3,2+4+3)/3)" =(4/3,3)". O

Exercise: Let X € R®>2 be defined as above. What is the L, distance from x® to a cluster center u» =
(4/3,3)"?
Ans.: The distance is given by
distance(2,1) = [|x® — u@|12 = (7 — u{")? + 7 — ")
Therefore, (1 — 4/3)? + (4 — 3)> = 10/9. O

Exercise: Let cluster C; consist of three elements of X € R**2 given by V), x® and x” for the matrix
given above. What is the L, cost of this cluster assuming u¥ = (4/3,3)7?
Ans.: The L, cost is given by
cost(Cy) = [— p® |13 + 112 = w13 + 1 — uV|13.
Therefore, [(1 —4/3)> + (2 = 3)2] + [(1 —4/3)*> + (4 = 3)*] + [(2 — 4/3)* + (3 — 3)?] = 24/9. u]

1.9 Clustering Algorithms

1.9.2 k-Medians Clustering

One problem with k-means clustering is that it is not robust to outliers. This issue will be highlighted
in sections to follow, but there are many clustering problems that contain outliers and they will disrupt
the ability to obtain acceptable results using k-means. A logical alternative is to use k-medians clustering
which employs different distance, cost, and center calculations. The distance is typically given by the
Manbhattan distance (although Euclidean distance can also be used) as follows:

distance(i,j) = [|x© — u?||,

(D)
1

=1+ B = W1+ D =) (1.9.3)

= |x
This L, distance measure is used to determine the assignment of observations to clusters. Although this is
typically used in k-medians, the L, distance is also suitable for this purpose. The reason is that distance is
arelative measure here so either of the two options may be used. What is crucial for robustness is the com-
putation of the centers. After assignment, the centers are subsequently determined as the column-wise

medians of the observations in each cluster:
u¥ = median(C)) Vj=1,...,K,

where matrix C; contains the subset of rows of X that belong in cluster j.
The cost is computed as follows:

K
cost =)' Y [lx? — u?||,. (1.9.4)
j=1 ieC
The use of the median for center computation is what robustifies the algorithm. The centers are no longer
controlled by outliers and reasonable values of centers that truly represent each cluster will be found
using this approach. To summarize, both the cost and distance measures of k-means can be used in the
k-medians approach, so long as the centers are computed using the median.

Exercise: Let cluster C, consist of 3 elements of X € R%*2 given by x), x?, and x** of the matrix

1 2
x=|1
100 100

Hence, C; = {1,2,60} in this case. What is the cluster median?

Ans.: The data points in C; are ¥V = (1,2)T, x® = (1,4)7 and x®® = (100,100)T. The center is the
coordinate-wise median. Therefore, uV = (1,4)". This is about the same as the centroid (4/3,3)T found
in an earlier exercise even though this dataset has an outlier at (100, 100)" which is part of cluster C,. O

Exercise: Let X € R%*2 be defined as above. What is the Manhattan distance from x® to a cluster median
O = (1,4)77
Ans.: The Manhattan distance is given by

distance(2,1) = [|x® — u@|l; = X — 4V + X - 1.

Therefore, [1 — 1| + [4— 4] = 0. 0

21

22

1 Introduction

Exercise: Let cluster C; consist of three elements of X € R%2 given by xV, x®, and 20 of the matrix
given above. What is the L, cost of this cluster assuming u® = (1,4)7?

Ans.: The L, cost is given by
cost = [l = uPlly + %2 = w1y + I = uOl.

Therefore, [|1 — 1| + |2 — 4[]+ [|1 — 1| + |4 — 4|1+ [|100 — 1| + |100 — 4|] =2+ 0+ [99 + 96] = 197. O

1.10 Importance of Robust Clustering

With the data generation and clustering algorithms in place, it is time to compare the two approaches on
synthetic datasets. Initially, the dataset will not have any outliers to assess how each method performs
on outlier-free datasets. Then, outliers will be inserted to examine the consequences of their presence on
each method.

1.10.1 Clustering with No Outliers

Let us return to the simple flow shown in Figure 1.4 and follow a complete sequence around the loop.
Consider a Gaussian mixture in R? given by

fo(x) = 0.6 N5((=2,1)7,3L,) + 0.4 N5,((5,0)7, 4L,), (1.10.1)

which is the ground truth in this example. We draw a sample from this distribution to create the dataset,
as prescribed by the upper portion of the loop in Figure 1.4. The resulting dataset composed of a total of
60 points is shown in Figure 1.10 and it does not have any outliers. Although not immediately apparent,
there are two clusters in the scatter plot since the Gaussian mixture has two terms.

10
8,
6,
n
X o . .
2 | =. .l.
2 gl T . [T
": " LB [
0 - [u n n
u | |] | I]
-2 1 [] "
] "] .] u
—4 1 . n u
-4 -2 0 2 4 6 8 10
X

Figure 1.10 Dataset before clustering.

1.10 Importance of Robust Clustering

In practice, we are given the data but no access to the ground truth. Assume all we know is that the
hyperparameter is fixed at K = 2. The question is, can we reconstruct the Gaussian mixture using only the
given data to close the loop in Figure 1.4? The answer is yes. We can do this using a clustering algorithm
followed by the estimation of the parameters of ®.

The k-means clustering technique can be invoked using KMeans in the sklearn Python library. The
k-medians approach is not available in sklearn so a simple version can be written in Python for com-
parison purposes.*

If we run the KMeans algorithm to convergence, the resulting cluster centers are

AV =(-1.92,1.17)7 and A® = (4.93,-0.17)".

These values are close to the cluster centers associated with the original distribution of Eq. (1.10.1). If we
run the k-medians algorithm, we obtain

A =(-1.89,1.46)T and i@ =(5.48,0.30)".

These centers are also close to the original distribution values.

The results are shown graphically in Figure 1.11. The k-means and k-medians methods produce
roughly the same two clusters and centers (indicated by ® in the figure). Both sets of results are
acceptable as they are close to the two centers of the original distribution. To close the loop of Figure 1.4,
we need the variances of each cluster by computing the covariance matrix of the form oI, and also the
probability weights based on the ratio of points in each cluster relative to the total number of points. In
doing so, using k-means, we obtain:

fo(0) = 0.6N5((—1.9,1.0)7,2.4L,) + 0.4N,((4.9,-0.2)",3.81,) (1.10.2)
and with k-medians, we obtain:
f5(0) = 0.62N5((—=1.9,1.5)7, 2.51,) + 0.38N,((5.5,0.3)7,3.7L,) (1.10.3)

Both models are reasonably accurate. In practice, we will not be able to compare our model to the ground
truth. This is as far as we can go with the given data but we have no way to determine if the results are
acceptable. It will be hard to prove our model is correct. But since this data is outlier-free and we know
K = 2, we can have a high degree of confidence in the correctness of the model in this case.

1.10.2 Clustering with Outliers

So far, we have found k-means and k-medians to be about the same for the given outlier-free dataset.
What if one of the points was inadvertently entered manually as (—400, —400) instead of the correct value
of (—4.00, —4.00)? This outlier along with the original data are shown in Figure 1.12. The outlier is due to
human error and we want to investigate the effect on the two competing clustering methods. Note that
the outlier would be easy to detect and remove in a two-dimensional setting, but in a higher-dimensional
setting, where visualization is not possible, it would be more difficult.

The initial question is: how well do the two methods perform in reproducing the original distribution
from which the data arose before noise is added. Referring back to Figure 1.5, the noise is the outlier

4 The k-medians code in Python is available in one of the projects at the end of this chapter.

23

24

1 Introduction

k-means

k-medians

Figure 1.11 k-means and k-medians clustering.

introduced due to a typographical error. The results of k-means are shown graphically in the upper panel
of Figure 1.13. One large cluster is created with all the data and another cluster is created containing only
the outlier. The outlier cluster is not shown in Figure 1.13 at the scale of the plot but it is clear that one of
the cluster centers is forced outside of the region of the data by the k-means algorithm because only one
is visible in the diagram. The two centers are

AV = (-400,-400)" and A® =(1.10,0.6)".

The first cluster has a center that is well outside the cluster region located at (—400, —400). The other
center is located in the middle of the true data. It is evident that even a single outlier in the dataset can
significantly impact k-means clustering. We saw this effect in an earlier section regarding the mean vs.
the median and we see it here again in the clustering problem.

1.10 Importance of Robust Clustering

0 /“’
=50 1

Original data
—100 1

-150 1
X, —200 1
250+
—300 1 Outlier

350 /

—400 A

400 —350 —300 —250 —200 —150 —100 —50 0
X

Figure 1.12 Data with 1 outlier at (—400, —400).

Running the k-medians algorithm produces the following centers:
AV =(-1.89,1.33)T 4® =(5.48,0.30)".

Unlike the k-means case, the centers have not changed very much. This is highly desirable because it
indicates that the outlier has not affected the outcome of clustering. This is shown graphically in lower
panel of Figure 1.13 where the same two clusters are produced. The k-medians results are relatively stable
compared to k-means. This is a key point to emphasize: using a robust method produces superior results
in the presence of outliers and similar results with no outliers.

1.10.3 Detection and Removal of Outliers

One way to produce better results using k-means is to detect and remove outliers. This requires some
techniques that are themselves robust in nature since the non-robust methods fail to address the issue.
Consider the dataset with 1 outlier as described in the previous section. We must first run k-medians
clustering since the results from k-means results are not meaningful. More generally, in order to find
outliers, a robust method is always part of the methodology.

Once we have the results of robust clustering, we can apply simple rules to remove outliers. One
approach is to use the “3-sigma edit” rule. This rule is used to detect and delete any points that are greater
than 30; away from the center of cluster Cj, where j = 1, ..., K. This rule uses the criteria that, if point x®
is in matrix Cj,

deletex® if |x® — 49|, > 36, fori=1,....n,
where 4% and 6; are the mean and standard deviation of the points in cluster j. Unfortunately, the com-
putation of the cluster mean and standard deviation will be skewed by outliers so they cannot be trusted.

A better approach is to use a robust form of the 3-sigma edit rule. Since the mean and variance cannot
be computed reliably under outlier conditions, robust statistics can be used in their place. Data will only

25

26 | 1 Introduction

100 KMeans clustering with outliers

7.54

5.0

2.5+

—2.54

-5.04

—7.5 1

-10.0 T
-10.0 -7.5

10.0

10.0 KMedians clustering with outliers

7.5
5.0 1
2.5
X, 0.07

2.5 1

=5.0 1

7.5 1

—10,0 T T T T T T T
-10.0 -75 5.0 -25 0.0 25 5.0 75 100

X

Figure 1.13 k-means and k-medians clustering with 1 outlier at (=400, —400) which is not shown as it is outside
the limits of the plots.

1.11 Summary

be removed if any x¥ belonging in cluster j satisfies the “3-MADN edit” rule. That is, for all points ¥ in
matrix Cj,

deletex® if ||x® — median (C)||, > 3MADN(C)) fori=1,...,n.

This robust version will find and delete all the outliers, regardless of their number and location outside
the cluster region.

To compare the two methods, first consider the standard 3-sigma edit rule for the previous dataset
with only one outlier. If we use a Gaussian distribution for each cluster, then we find that 6, = 64.8
which is too large to be of any value. The 3-sigma edit rule would force us to reject points that are 3 x
64.8 = 194.4 units in all directions from the center. It will not delete any points and therefore the 3-sigma
statistic is not useful. Contrast this with the robust criteria. The estimate of MADN(C,) = 11.2 and so
the 3-MADN edit rule would yield 3 x 11.2 = 33.6. This is a much more reasonable distance to use as a
threshold for identifying and deleting outliers, especially since the median is used as the cluster center.
This would delete the single outlier in the data. Once this is done, the mean and variance computations
will be reasonably accurate. Furthermore, the KMeans tool can be used to build the model after the
outlier is removed.

Exercise: Given the one-dimensional dataset {1, -2, 5, -4, —6, 3} and K = 2, compute the centers using
k-means. Next, recompute the centers using k-medians.

Ans.: k-means {—4, 3}. k-medians {—4, 3}. O

Exercise: Given the one-dimensional dataset {1, —2, 5, —4, —66, 3} and K = 2, compute the centers using
k-means. Next, recompute the centers using k-medians.

Ans.: k-means {—24, 3}. k-medians {—4, 3}. |

The 3-MADN edit rule is somewhat arbitrary and may be too strict for most datasets. In practice, we
may need to adjust the rule to avoid declaring inliers as outliers. For example, a 10-MADN edit rule may
be better to ensure that true outliers are found far from the centers of the clusters. Some tuning may be
needed to find the proper multiplier. On the other hand, the 3-sigma rule would fail because the value of
6 would be unreliable. The key point here is that outlier detection requires the use of robust procedures
and robust statistics.

1.11 Summary

This chapter highlighted the use of the median as a key to robust methods. It provided a case study of
how to robustify an existing algorithm in machine learning and how to detect and remove outliers. It
is clear that the k-medians approach is robust to outliers and superior to k-means in this regard. Using
k-medians avoids having to find and remove outliers or be concerned with centers that do not represent
the data well enough for use in other applications. The k-means method can be safely used only if there

27

28

1 Introduction

are no outliers in the data. Unfortunately, this assumption is not a realistic for most datasets. Another
key point is that the myth that “having lots of data in the dataset tends to reduce the effect of outliers”
is dispelled here. Any of the clusters can be affected by just one outlier even if there are many points in
the dataset. It is more about the location of the outliers and their effect on cluster centers rather than
the number of outliers. Another key point is that robust methods are needed in the detection of outliers
and anomalies. This will be a recurring theme throughout the book as we progress through different
algorithms that require robustification.

In the rest of this book, we address machine learning through the lens of outliers and anomalies, as
opposed to the traditional view which tends to ignore or mishandle them. The initial machine learn-
ing example of clustering given in this chapter serves as a template for how we will be covering other
methods in this book. However, our focus will shift to the supervised learning tasks of linear regression,
logistic regression, and neural networks. The same issues will arise in all these areas, so the techniques
themselves will have to be modified to robustify the procedures.

Problems

To complete the projects in this book, you will need a Python programming environment for machine
learning. Jupyter notebooks are recommended for running the provided code segments, but you can also
use PyCharm or any other Integrated Development Environment (IDE) of your choice. You should set
yourself up accordingly at this stage to get the most out of the book.

1.1 a) ForthesetS = {1,2,3,4,5,100,101,102}, find the median and the mean. How many more val-
ues above 100 would have to be added to the set before the median is > 100?

b) For the set S = {1,2,3,4,5,100,101,102}, compute the standard deviation, SD(x), and the nor-
malized median absolute deviation, MADN(x). Assume that we want to remove outliers. Use
the 3-sigma and 3-MADN edit rules. Which approach is better at removing the outliers?

c¢) For the matrix given below

527
X=]1092],
211

compute the column-wise median and mean.

1.2 a) For the vector quantity u = (-1, -2,3,4,5)", compute the L,- and L,-norms. Which norm is
larger? Will this always be true? If not, construct a vector to demonstrate your answer.

b) For the same vector, compute the squared L,-norm. Again, compare the L,-norm against the
squared L,-norm. Which is larger and will this always be the case? Provide a counterexample if
not true.

¢) Letu and v be two vectors in RY. How likely is it that ||v||; < ||v| |§? Can you find a vector u such
that ||ul]; > ||u| |§? If so, state the vector. If not, explain why.

13

14

Problems

A data matrix X € R” is clustered into two groups as follows:

11 -
12
o=, || &=|s1
62
-8 -8

a) For k-means, compute the cluster means and total clustering cost.

b) For k-medians, compute the cluster medians and total clustering cost.

c) Plot all the points from both clusters on two graphs, one for k-means and one for k-medians.
Indicate the means and medians with ®. Comment on the results in terms of the tolerance of
the two methods with respect to the outlier data (—8, —8).

d) Compute the covariance matrix, 62 I of each cluster. This requires only the estimation of o2
for each cluster. Use the mean values computed above. For 67 in cluster 1, compute matrix
C, — u,, then average the sum the squares of all terms. In Python, sigmal2 = np.mean

((C1-mul) **2) would produce the estimate. The same procedure can be used for cluster 2.

e) Estimate 7, and z, using a ratio of the number of points in a cluster to the total number of points
in the dataset. Write an expression for the model of the Gaussian mixture. Is this a good model?

f) How would you use the median and MADN to build a better model? Write the expression for
the better model.

(PROJECT) In this project, the objective is to create a dataset for clustering using Gaussian mixtures.
a) Import the needed libraries.

$matplotlib inline

import numpy as np

import matplotlib.pyplot as plt

from scipy.stats import multivariate normal
from sklearn.cluster import KMeans

b) Create a dataset for the Gaussian mixture given by
fx(®) = 0.6 N5((=2,1)7, 3L,) + 0.4 N, ((5,0)7, 4L).
The data can be generated and plotted with the following code:

np.random.seed (8)
mu = np.array([[-2,1],[5,0]11])
sigma = np.array([[[3,0],([0,3]]1,[[4,0],10,4111])

Yl = np.random.multivariate normal (mu[0], \
sigma[0], size=60)
Y2 = np.random.multivariate normal (mul[l], \

sigma[1l], size=40)
X = np.vstack ((Y1,Y2))
plt.xlim([-10,10])
plt.ylim([-10,10])

29

30| 1 Introduction

plt.scatter (X[:,0],X[:,1], \
marker="$.38",color="black")
plt.show()

1.5 (PROJECT) The goal of this project is to compare KMeans against KMedians using the same
dataset as in the project above.
a) Runthe KMeans programin the sklearn.cluster library for the dataset without any outliers
using:

kmeans = KMeans (n_clusters=2, init="k-means++", \
random_state=1) .fit (X)

labels = kmeans.labels

means = kmeans.cluster centers_

print ("Centers from KMeans")

print (means)

b) The Python code given below, called KMedians, generates robust cluster centers given X and
the number of clusters, K. Enter and run it in your Python notebook.

Assign points to clusters
def assign clusters(X, M):
distances = np.sum(np.abs(X[:, \
np.newaxis] - M), axis=2)
clusters = np.argmin(distances, axis=1)
return clusters

Find the cluster centers
def calculate cluster medians (X, clusters, \
num_clusters) :

cluster medians = np.zeros((num clusters, \
X.shape[1]1))

for i in range (num clusters) :
cluster rows = X[clusters == 1i]

if len(cluster rows) > O:
cluster medians[i] = \
np.median(cluster rows, axis=0)
return cluster medians

Compute the cost of this arrangement
def calculate total cost (X, clusters, \
cluster medians) :
total cost = 0
for i in range(len (X)) :

Problems |31

cluster median = \
cluster medians[clusters[i]]
total cost += np.sum(np.abs(X[i] \
- cluster median))
return total cost

Plot 2D cluster arrangement
def plot clusters (X, clusters, cluster medians) :
plt.figure(figsize=(10, 6))
num_clusters = cluster medians.shape[0]
Plot each cluster in a different color
for i in range(num_ clusters) :
cluster points = X[clusters == 1i]
plt.scatter(cluster points[:, 0], \
cluster points[:, 11, \
label=f‘'cluster i}’)
Plot the cluster medians

plt.scatter(cluster medians[:, 0], \

7

cluster medians([:, 1], \
color=‘black’, marker=‘x’, \
s=100, label=‘cluster medians’)
plt.xlabel (‘Feature 1)
plt.ylabel (‘Feature 2')
plt.title(‘clusters and their medians’)
plt.legend()
plt.show()

Perform k-medians clustering
def KMedians (X,K) :
seed = 0
np.random. seed (seed)
n, d = X.shape
M = X[np.random.choice(n, K, replace=False)]
prev_cost = None
new_cost = None
#Use Lloyd-style iteration
while (prev cost is None or \
np.abs (prev_cost - new cost) > le-4):
clusters = assign clusters (X, M)
num_clusters = M.shape[0]
M = calculate cluster medians(X, \
clusters, num clusters)

32| 1 Introduction

prev_cost = new_cost
new_cost = calculate total cost (X, \
clusters, M)

return clusters,new _cost, M

¢) Run KMedians using the dataset X generated previously and plot the results. How do the two
methods compare in terms of computing the centers of the clusters?

K =2

cluster, cost, medians = KMedians (X, K)
print ("Centers from KMedians")

print (medians)

plot clusters (X, cluster, medians)

d) Use the code below to plot the results of the KMeans and KMedians programs next to each
other as subplots.

X1lmd = np.array(X[cluster == 1])

X2md = np.array(X[cluster == 0])

fig, axes = plt.subplots(1l, 2, figsize=(12, 5))

axes [0] .scatter(X[:, 0], X[:, 1], c=labels, \
cmap="plasma", marker="$.s$", \
edgecolors="k", s=50)

axes[0] .set_title("KMeans Clustering")
axes [0] .set_xlabel ("Feature 1")

axes [0] .set_ylabel ("Feature 2")

axes [0] .scatter (means [0, 0] ,means[0,1], \

marker="x",color="red")
axes [0] .scatter (means[1,0] ,means[1,1], \
marker="x",color="red")
axes [0] .set_x1im([-10,10])
axes[0] .set_ylim([-10,101)
axes[1l] .scatter (X1md[:, 0], Xlmd[:, 1], c="yellow",
marker="$.s$", edgecolors="k", s=50)
axes[1] .scatter (X2md[:, 0], X2md[:, 1], c="black",
marker="$.$",edgecolors="k", s=50)
axes[1l] .set_title("KMedians Clustering")
axes[1] .set_xlabel ("Feature 1")
axes [1] .set_ylabel ("Feature 2")
plt.scatter (medians[0,0] ,medians[0,1], \
marker="x",color="red")
plt.scatter (medians[1,0] ,medians[1,1], \
marker="x",color="red")
axes[1] .set _x1im([-10,101)

1.6

Problems

axes[1] .set_ylim([-10,10])
plt.tight layout ()
plt.show()

What do you notice about the cluster centers in each case?
e) Next, insert outliers using the code below and then rerun both methods. For KMeans, use

X[1] np.array([-400,-400])

X[2] = np.array([-400,0])

kmeans = KMeans (n clusters=2, init="k-means++", \
random_state=1) .fit (X)

labels = kmeans.labels

means = kmeans.cluster centers

print ("New centers from KMeans")

print (means)

For KMedians, use

cluster, cost, medians = KMedians (X, K)
print ("New centers from KMedians")
print (medians)

Compare KMedians and KMeans on the dataset with outliers.

f) Use the same plotting code as in part (c) to plot the KMeans and KMedians results again show-
ing the clusters in each case after outliers are inserted. How many cluster centers can you find
in each case?

(PROJECT) In this project, the objective is to detect outliers in the dataset from the previous project.
To do this, we need to use the KMedians results and the 10-MADN edit rule. Which outliers are
found using the code below?

Outlier detection method using MADN
X1lmd = np.array(X[cluster == 1])
X2md = np.array(X[cluster == 0])
def MADN(r) :
return(1l.4826*np.median (np.abs (r-np.median(r))))
distl = (np.abs((X1lmd - medians[0,:]))) .sum(axis=1)
madl = MADN(dist1l)
dist2 = (np.abs((X2md - medians[1l,:]))) .sum(axis=1)
mad2 = MADN (dist?2)
for i in range (X1md.shape[0]) :
if (np.sum(np.abs(X1md[i, :] - medians[0,:1)) \
> 10*madl) :
print ("Outlier found at",Xlmd[i,:]," \

33

34| 1 Introduction

in Cluster 1")
for i in range (X2md.shape[0]) :
if (np.sum(np.abs(X2md[i, :] - medians[1,:1)) \
> 10*mad2) :
print ("Outlier found at",X2md[i,:]," \
in Cluster 2")

References

James, G., Witten, D., Hastie, T. et al. (2023). An Introduction to Statistical Learning with Applications in
Python. Springer.

Maronna, R.A., Douglas Martin, R., Yohai, V.J., and Salibian-Barrera, M. (2019). Robust Statistics, Theory and
Methods (with R). Wiley.

2

Robust Linear Regression

2.1 Introduction

Supervised learning is the most common form of machine learning (ML) and will be covered extensively
in the rest of the book. As linear regression is the simplest form of supervised learning, it serves as a
launching point to understand this category of ML in a familiar setting. The subject of linear regression
has been thoroughly studied over many decades and is widely used in many applications in data science.
In fact, it predates ML itself. Our goal here is to address linear regression from the perspective of outliers
in the data, covering the essentials needed for our study of robust methods.

In this and the next chapter, we will be describing a number of different estimators for robust linear
regression. In this context, we need to understand how to derive these estimators and provide mecha-
nisms to compare them against one another. Several different criteria will be presented to assess which
one performs best and under what conditions. The chapter begins with a brief tour of the techniques and
issues associated with linear regression. Then we will make the case for robust regression using Huber’s
method and identify certain shortcomings of the approach. This will lead to an alternative approach to
be presented in Chapter 3. Once the basics of robust linear regression are understood, it can be applied
to more advanced ML methods such as quantile regression, logistic regression, and neural networks in
subsequent chapters.

2.2 Supervised Learning

Supervised learning takes on a variety of different forms because there are a wide variety of suitable
applications for machine learning. Typical applications include predicting the value of a home in a certain
region of the country given the housing data associated with that region; or deciding who should get a
loan based on the loan history of existing and previous customers; or recognizing handwritten digits from
0 to 9 based on a large dataset of labeled digits. The applications are endless and the techniques used in
supervised machine learning are, in turn, quite diverse.

The basic idea in supervised learning is to use a set of data to build a model with predictive power. This
is the value proposition of machine learning: take a training set, possibly with noise, define a suitable

Fundamentals of Robust Machine Learning: Handling Outliers and Anomalies in Data Science,
First Edition. Resve Saleh, Sohaib Majzoub and A. K. Md. Ehsanes Saleh.

© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/HandlingOutliersandAnomaliesinDataSciencele

35

http://www.wiley.com/go/HandlingOutliersandAnomaliesinDataScience1e

36

2 Robust Linear Regression

model, estimate the model parameters (i.e. train the model), and use this parameterized model to make
predictions on test data with (hopefully) a high degree of accuracy. Since we do not know the true value of
the parameters, the best we can do is estimate them using some well-grounded mathematical procedures
and the given data. This leads to the development of suitable estimators, the functions that will allow us
to carry out the estimation.

Estimates are the numerical values of the parameters produced by an estimator. Naturally, we want to
find the best parameter values that fit the data closely so that the model is able to make good predictions.
But how do we know if it is a good model if outliers are present? We need to check the accuracy using an
unseen test set with a known ground-truth to validate the whole process. The overall goal in this book
is to develop robust models for both regression and classification such that outliers in the dataset
do not adversely affect the prediction results and we want to eventually apply these methods to neural
networks (see Chapters 9 and 10). However, understanding the principles of neural networks begins with
an in-depth study of linear regression and logistic regression. The study of advanced ML methods is built
on top of these fundamentals, so it is important to fully understand these topics on our journey toward
robust ML.

2.3 Linear Regression

Assume we are given a pair of vectors, x and y, and asked to fit a line to the data by computing its slope
and intercept based on the data. For n observations, we usually write x € R" to denote a real vector with
n elements associated with the explanatory variable, and y € R" to denote the vector associated with the
response variable. The data is composed of a set of (x;, ;) pairs, withi = 1, ..., n. A suitable model for the
data in this case is a straight line. We could try to fit a more complex curve to the data but assume we
have a priori knowledge that there is a linear relationship between the x and y values so we need to fit a
line to the data. Therefore, the objective in linear regression (see Montgomery et al. 2012) is to estimate
the slope and intercept of the line that best fits the data.

Figure 2.1 shows a scatter plot of the points with the two parameters of interest labeled on the line. The
true line (which is unknown to us) is given by a well-known equation,

y=FH+ Bix, (2.3.1)

where f, is the intercept and f, is the slope. Unfortunately, it is not possible to find the exact values of
these two parameters unless we have access to the entire population. The best we can do is estimate f,
and p, from a given sample of the population. This is the purpose of linear regression.

An estimator tries to minimize a loss function to produce an optimal set of estimates of the parame-
ters. This is usually carried out using a numerical optimization method such as gradient descent. A loss
function is essentially a cost function that evaluates the total error associated with specific values for
the slope and intercept. Of course, if we could somehow compute the exact parameter values, they would
not be considered as estimates. But since we will only have access to a finite amount of data (i.e. a finite
sample set), the parameter values we produce must be viewed as estimates. Once we estimate the two
parameters, now denoted as ﬁo and ﬁl to distinguish them from the true values, we can use

~ A

§=ho+hix (232

2.3 Linear Regression

Linear regression

25

201

154

Slope p4

(=]

0 5 10 15 20 25 30
X

Figure 2.1 Slope and intercept parameters of a line.

25 Prediction using linear regression 25 Residuals of linear regression
20 20
2 7
15 Fitted line 15 Fitted line .
>
10
!
!
i 5
i i
i .
0 ° : 0 ° Residuals
0 5 10 15 20 25 30 0 5 10 15 20 25 30
X X

Figure 2.2 Prediction and residuals associated with linear regression.

to predict new values. These two estimated parameters are shown on the left panel of Figure 2.2, along
with the fitted line itself. Prediction using the estimates is rather straightforward. For example, it is
possible to predict the response y at x = 12, which is not represented in the original data. In this case,
the regression line predicts that y = 8.3 when x = 12. Note that the line shown in the figure is but one
of the many possible lines that “fit” the given data, and we will explore many different ways to estimate
the slope and intercept parameters. Simple linear regression involves only one explanatory variable
(also called feature or input) and one response variable (or output). Multiple linear regression has many
explanatory variables but usually one response variable.

37

38

2 Robust Linear Regression

An important point to mention here is that estimates inherently have some amount of uncertainty asso-
ciated with them. More specifically, they have a variance which is a measure of the uncertainty around
the estimates. Different estimators have different variances, and we seek ones that have small variances.
Further, there are many ways to estimate parameters, so we should not view any one estimator as the
gold standard but rather as one of many options for the application at hand. There are many trade-offs to
consider, and variance is just one of the factors. Another factor is robustness to outliers. The well-known
ordinary least squares (OLS) method seeks the mean of the data to obtain the estimates. However, it is
not robust. Methods that seek the median of the data are robust since they are tolerant to outliers. The
goal of this chapter is to illustrate why the median is so important in robust regression.

Notation: Estimates always use the “hat” notation from statistics. For example, if g, is the true inter-
cept, then f, is the estimate of the intercept. If §; is the true slope, then f, is the estimate of the
slope. Similarly y is the predicted response using the parameter estimates. For a multidimensional
problem, we use a bold version, i.e. g or B as the case may be. Sometimes 6 will be used as a
scalar parameter of interest in one-dimensional problems, such as the location problem, and 8 is the
estimate.

2.4 Importance of Residuals

In this section, we discuss the errors made by a model relative to the original data used to build the model.
These errors can be computed after using regression and are called residuals. They play an important
role in defining loss functions, selecting a loss function based on their probability distribution, and in
outlier detection. Therefore, we will spend some time to understand what they are and why they are
important.

2.4.1 Defining Errors and Residuals

Observe that, on the right panel of Figure 2.2, the regression line does not necessarily go through all the
points or any of the points in the data. This is typical of the results of linear regression. The regression
line is actually a summary of the data so that prediction can be performed. There is a vertical distance
between the original points and the line. The vertical differences are referred to as residuals and their
distribution plays a key role in defining the loss function, as we shall see shortly. Figure 2.2 on the right
panel highlights the set of residuals for this dataset as vertical bars between the regression line and the
data points.

If we include errors in the equation given earlier for a line, it can be rewritten to accurately reflect the
relationship between the data and the line. This gives rise to the simple linear model, which takes the
form

y=0+hx+e, (2.4.1)

where € represents the errors between the true line and the data points. These errors arise due to a variety
of sources such as effects unaccounted for in our model or random noise in the system. There is valuable
information within the errors and their distribution that will lead us to the right type of estimator.

2.4 Importance of Residuals

The above equation can also be written in matrix form as

1 x; £
1
y=|.: [/;0] +| 2| =xB+e. (2.4.2)
. . 1 .
1x 3

n n

where B = (f,, #;)" and X is now a matrix with 1’s inserted in the first column. The equation for the error
term is

e=y-Xp. (2.4.3)

Exercise: A dataset has x = (1,2,3,4,5)" andy = (1.1,1.9, 3.4,4.1,4.8)". Write the matrix equation in
the form of Eq. (2.4.2).

Ans.: The equation takes the form:

1] [11 £
19 |12 £,
_ Bo
34|=11 3]0 +]es .
4.1 14(% e,
4.8 15 £s
The 1’s in the first column of the X matrix are needed to incorporate the intercept parameter, f,. O

In the exercise above, the two parameters should be considered the true values of f, and f,. Unfortu-
nately, we do not know them so we have no way to obtain the true errors. However, we can compute the
residuals using the estimates of the parameters and use them as a proxy for the true errors. The residuals
are given by

r=y-(,+px=y-XB. (2.4.4)

Again, the true errors are based on the true parameter values while the residuals are based on the esti-
mated parameter values.

2.4.2 Residuals in Loss Functions

Our goal in estimation is to minimize the sum of terms that are a function of the residuals to obtain . This
can be done in a variety of different ways but they will all require the use of the residuals. In addition, we
need to assume that the residuals are distributed in a certain way so that we can apply suitable techniques
to estimate the slope and the intercept. Making assumptions about the error distribution will, in turn, define
the loss function. This is an important point. When we choose a loss function, we are implicitly requiring
that the residuals obey a particular distribution associated with that loss function. After regression, the
computed residuals may be used to check if our assumptions about their distribution are correct.

Two important loss functions that arise from well-known distributions are the L, and L, loss functions.
‘We saw how the L,- and L,-norms were used in Chapter 1 and they will be the two competing loss func-
tions for simple linear regression in this chapter. First, we define the ith residual as, r, = y, — (f, + x,4,),

39

40

2 Robust Linear Regression

fori=1,...,n. We will frequently use the more general formr, =y, — IT B for convenience. Then, the L,
loss function is the sum of the absolute values of the residuals, given by

n

L, loss = eril, (2.4.5)

i=1

while the L, loss function is half the sum of the squares of the residuals, given by
L,loss = %er (2.4.6)
i=1

Minimizing the L, loss is commonly referred to as least absolute deviation (LAD) while minimizing
the L, loss is called least squares estimation (LSE). These loss functions are minimized to obtain their
respective estimates of f, and f; which may be quite different. We will derive both functions and explore
their differences shortly.

Exercise: Assume that we know the true values of the regression parameters to be f, = 3 and g, = 1.
Using LSE, we find that 4, = 3.2 and §, = 1.1. Compute the residuals and errors (the two are different)
assuming thaty = (3.3,4.1,5.5)T and x = (0,1,2)".

Ans.: The residuals are given by r, =y, — (f, + f1x): r, =3.3-(32+1.1x0)=0.1, r, =4.1 — (3.2 +
11x1)=-0.2, and r; =5.5—-(3.2+ 1.1 x2) = 0.1. On the other hand, the errors are given by ¢; =
Y, —(By+ X)) e, =33-(B+1x0)=03,6,=41-(3+1x1)=0.1,and e, = 55— (3+1x2) = 0.5.
Note that ideally)’ r, = 0 (a property of least squares), whereas) ¢; = 0.9 # 0. O

Note: It is important to recognize that the roots of machine learning lie in the field of probability and
statistics. The fundamentals of probability distributions, estimators and estimation, convexity and
convergence, and error measures are all based on theoretical underpinnings provided in this field.
Essentially, they ensure that the ML techniques will work; that is, they will converge to the desired
values with a certain amount of assurance and a certain level of accuracy. As such, it is necessary to
cover the basics of probability and statistics as it relates to the subject matter at hand.

2.4.3 Distribution of Residuals

We are now ready to carry out a statistical analysis of the probability distribution of regression errors.
Since we do not have access to the true errors, our focus will be on the residuals which we can compute
after estimation. The starting point of the statistical analysis is to examine the properties of random vari-
ables because the residuals are themselves random variables. In this section, we use X as a generic random
variable but you should view it as the random variable representing residuals. More formally, we define
X as an independent and identically distributed (i.i.d.) random variable (r.v.). This type of assumption
will be carried throughout the book.

A random variable may be distributed in a variety of different ways. The probability density function
(PDF) specifies a continuous distribution denoted by fy (x). The cumulative distribution function (CDF)
gives the probability that the random variable is less than a particular value and is denoted as Fy(x).

2.4 Importance of Residuals

These two functions are directly related to one another. If we know the CDF, we can obtain the PDF by
differentiation:

dFy(x)
= —. 2.4.7
fx®) dx ()
Likewise, if we know the PDF, we can integrate to obtain the CDF. That is,
X
Fy(x) = P(X <x) = / fr(dt. (2.4.8)
Recall that the Gaussian distribution has a PDF given by:
f) = —L e (2.4.9)
2rwo?

where o2 is the variance. A random variable, X, is said to follow a Gaussian distribution if any sample
of X is distributed according to the equation above. The compact notation used for random variable X
following a Gaussian distribution is

X ~ N(0,0%). (2.4.10)

Here, the N symbol refers to the normal distribution and, inside the parentheses, 0 is the mean and &>
is the variance. In some sense, both Eq. (2.4.9) and Eq. (2.4.10) are saying the same thing; one is just a
compact version of the other. The normal distribution is important for a variety of reasons but for our
purposes, it leads to the L, loss function which is not tolerant to outliers.

Another important but less well-known distribution is the Laplace distribution, which is commonly
referred to as the double-exponential distribution. The basic form is given by

fx0) = %e""'. (2.4.11)

The interesting part for our purposes is that this distribution leads us to the L, loss function which is
tolerant to outliers in the dataset. For this reason, we will be encountering this distribution several times
in this and other chapters.

The distribution of well-behaved errors is usually taken to be e ~ N'(0, 62). That is, the mean is always
zero but the variance may differ from dataset to dataset. The tacit assumption is that the residuals of
linear regression follow a Gaussian distribution. Outliers cause the distribution to depart from this stan-
dard assumption which is why robust methods, involving the use of the L, loss, are considered. This is a
subtle but important point. If the residuals are not normally distributed, then robust methods are likely
to produce better results.

Two quantities of great interest when working with probability distributions are the expected value and
the variance. The expected value of X is the first moment of the PDF, given by

E[X] = /mxfx(x)dx. (2.4.12)

o0

We use the notation E[X] for convenience to represent this integral. It can be viewed as the expected value
operator E[-] acting on X. In simpler terms, this is the value you would expect if you ran an experiment
of independently selecting X a large number of times (approaching infinity) and then taking the average.

41

42

2 Robust Linear Regression

It is commonly known as the mean of the distribution. We are also interested in the second moment as
follows:

E[X?] = / ooxzfx(x)dx. (2.4.13)

0
The reason for our interest in the second moment is that the variance can be expressed in terms of this
quantity. In particular, the variance of X can be expressed using the two expectations above as

Var(X) = E[X?] — E[X]?; (2.4.14)

that is, the second moment minus the first moment squared is the variance. Intuitively, this gives us a
measure of spread or variability of the random variable about the mean.

For those unfamiliar with the expectation represented as E[X], there is a simple way to think about it.
Every time it is encountered, view E as an averaging operator on X. If you draw x; (an observation of X)
from a distribution n times, then the average, % Z;’zl X;, is an estimate of the expectation. Now if you draw
X; an infinite number of times and take the average, you obtain the true mean of the distribution which
is expressed as E[X]. More rigorously,

n
lim X D x; = ELX].
i=1

n—oopn 4

In the case of E[X?], it can be viewed simply as % >

i=1X;» where n goes to infinity. More rigorously,

n
.1
lim =) x? = E[X?].
n—»oon;l []

These results follow directly from the Law of Large Numbers and limit theory.

2.5 Estimation Background

Having described the goals of linear regression, the models, the errors, the residuals, and two competing
loss functions, we will now step back and build up the knowledge of how to derive the functions that will
lead to the estimates of the slope and intercept. We will briefly explore desirable characteristics of estima-
tors and how to use them for comparison purposes. This section concludes with a rudimentary descrip-
tion of numerical optimization using gradient descent which is how the estimates are actually computed.

2.5.1 Linear Models
For problems with one explanatory variable, the equation was shown earlier to be
y=p0+/x, +te=Xp+e (2.5.1)

This is referred to as the simple linear model. For problems with more than one variable, the equation
becomes

Yy=PF+bxX +5x%+ -+ Bx;+e=Xp+ ¢ (2.5.2)

This is referred to as the multiple linear model. If there are n observations and d variables, theny € R",
p € R¥*1 X € R+ and £ € R". The only difference relative to the simple linear model is that we

2.5 Estimation Background

now have d + 1 unknowns. The solution to this setup proceeds in the same manner as for simple linear
regression to obtain .

2.5.2 Desirable Properties of Estimators

In this book, we will investigate several estimators for robust regression so we have to follow certain rules
of engagement in order to ensure that they are well-suited for the machine learning task. Hence, we
should understand certain properties of estimators that are considered desirable. Specifically, we prefer
estimators that are consistent, asymptotically normal, and have a low bias and a low variance. While the
material to be presented here is essential in the theoretical sense, it is not needed to follow most of the
material in the rest of this book. However, in the interest of completeness, we provide the definitions
below.
Let 6 be a scalar parameter of interest and 6, be an estimate obtained using some estimator with sample
size n. Then, such an estimator is consistent if
0, L6 asn - . (2.5.3)

In simple terms, we want an estimator that is able to produce the true value given an infinite number of

observations. That is, we want our estimator to converge “in probability” (denoted by S above) to the
true value as the number of observations in our dataset goes to infinity. This is an expression of the Law
of Large Numbers. In practice, we have a finite amount of data but if the estimator is consistent, we can
reasonably expect the estimate to be near the true value. Otherwise, we have little or no hope of finding
its correct value.

We prefer estimators that exhibit asymptotic normality, that is

V@, —0) 2 N(©0,6%), asn - co.

This is a complicated looking expression, but we are expressing the desire to have an estimator that
produces estimates that are distributed as a Gaussian. In simple terms, we want the distribution of the
estimates obtained by using many different samples to be a Gaussian centered at the true value 8 with
variance o2 as n — co. More formally, we would like to have convergence “in distribution” (denoted by

2 above) of the quantity \/ﬁ(én — 0) to a Gaussian with a mean 0 and asymptotic variance o2 (i.e. the
asymptotic variance of #). This property is derived from the Central Limit Theorem and says that the
estimates have a Gaussian distribution which makes it easier to compute the uncertainty around each
estimated value.

Finally, the bias of an estimator is given as

bias = E[§] — 6. (2.5.4)

That is, how close is the expected value of our estimator to the true value. Ideally, the bias should be 0
in which case the estimator is said to be unbiased. Most of the estimators in this book will be unbiased
except for the ones where we purposely introduce bias to reduce the variance. One notable example of a
biased estimator is that of the sample variance. Most readers are familiar with the equation,

n
6% = %Z(xi — X%, (2.5.5)
i=1

43

44 | 2 Robust Linear Regression

and tend to use it without much thought. However, this is a biased estimator. It can be shown that the
unbiased estimator for 62 is actually

n
A2 1 =2
= — X —X)“. 2.5.6
6 n—l;(l) ()

However, both estimators are consistent meaning that, in the limit as n — oo, they both converge to the
true variance. In machine learning, the bias-variance trade-off is an important concept to understand in
detail. This is why we need to introduce the bias of estimators at this stage.

2.5.3 Maximum-Likelihood Estimation

We are now ready to derive estimators from distributions using a well-known procedure called
maximume-likelihood estimation (MLE). The reason we are interested in such a procedure is that
estimators derived using MLE inherit all the nice properties described in the last section, assuming some
mild regularity conditions. The basic idea is that if we have an i.i.d. random variable X with sample
observations of x,,x,, ... ,x, and we seek to estimate a parameter, 6, using an associated distribution,
then MLE can be used to construct a suitable estimator with some nice properties.

Specifically, if we have a PDF, f,(x), and we wish to estimate ¢, then we can construct a likelihood
function as follows:

L%y, 0%, 0) = [] £y (2.5.7)
i=1

This likelihood function is the joint density of i.i.d. observations from fj(x). Since they are i.i.d., we can
take the product of the distributions. We want to find the # that maximizes L(x,,x,, ..., X,; 6) and this
will constitute an estimate of our unknown parameter, 6. In effect, we are trying to find the 6 that would
best represent the distribution from which our x; values were drawn. This is a key point to understand:
we are given the distribution f,(x) and asking what value of @ would be most likely to be associated with
it, given set of x; values. There is an implicit assumption or belief that the x;’s were drawn from a specific
distribution but the assumption may not be true. This is worth keeping in mind when using MLE. It
does not guarantee that the data came from the given distribution. Rather, the estimate § is the one that
maximizes the likelihood function if the data were sampled from the given distribution.
The estimate itself is denoted by . Then to find this value, we use

A

n
0 = argmax L(x,X,, ..., X,;0) = argmaxH Joxp). (2.5.8)
0ER [4S —

This notation simply states that we should find the # that maximizes the likelihood function. In other
words, MLE finds the estimate § that maximizes the probability that the n observation, x,,x,, ..., x,,
were sampled from the distribution fj(x).

The way to find @ is to take the derivative of the likelihood function with respect to 6 and set it to 0. The
procedure is facilitated by taking the logarithm of the likelihood function, the so-called log-likelihood
form, as follows:

£, %y .. 5 X,3 0) = 1og L(xy, X, ..., X3 0) = Z log(f, (x;)). (2.5.9)
i=1

2.5 Estimation Background

By doing so, the product in Eq. (2.5.8) has now been converted to a sum in Eq. (2.5.9). Next, we use a
numerical optimizer to produce §. However, most optimizers are designed to find the minimum (rather
than the maximum) so we need one more adjustment to the equation: we negate the quantity. Thus, the
negative log-likelihood expression is given by

— (X, X0 o X3 0) = —) 10g(f () (2.5.10)
i=1

The estimator @ is the solution to the equation
0 (X1, Xy, ..., X5 0)
- = =
In some simple one-dimensional cases, a closed-form solution can be found. But this is not generally
true. However, the equation can be solved in a straightforward manner using an optimization technique,
as described in the next section, the steps for which can be expressed compactly as

0. (2.5.11)

6 = argmin l—z logfe(xi)] . (2.5.12)
0eR i=1

Example: Suppose we believe that the distribution associated with a random variable X has the form
fo(x) = 8¢~ and we would like to estimate 6 using the maximum-likelihood procedure. An i.i.d sample
of X produces the following five observations: 0.1, 0.2, 0.5, 1, and 3. The likelihood function is
5
L, %y, ..., Xs3 0) = Haefaxi = 95 0X(O01+02+0.5+143) _ 5,480
i=1
If the likelihood function is plotted to find 6, it produces the left panel of Figure 2.3 which has a maximum
at the quantity we seek.
The MLE procedure uses the negative log-likelihood which produces

—£(X), %, ..., X5;0) = —=51log 6 + 4.86,

as shown on the right in Figure 2.3 and then takes the derivative and sets it to zero. Doing so, we find that
it has a minimum at § = 25/24. The true value is # = 1. The estimate using the MLE procedure is close to
the actual value with only five observations. A larger number of observations would move the estimate
increasingly closer to the true value since MLE produces a consistent estimator. O

Exercise: Using MLE, derive the L, loss function assuming that residuals (r,,r,, ..., r,) are i.i.d values
drawn from random variable R ~ f(r) = e /2/+/2x, where r; = y, - x| p.

Ans.: The likelihood function is

n

L(ry Ty s 13 B) = HLe—rf/z. (2.5.13)

=1\ 27

The negative log-likelihood expression is

1y o1 B) = 5 Tog2m) + S Y 2. (2:5.14)
i=1

45

46

2 Robust Linear Regression

Likelihood function Negative log-likelihood function

0.010 20
18

0.008 1 161

‘ L(xy, X3,...,X55 0) —l(x, Xp,...,X5; 0)

0.006

0.004

0.002 ‘

0.000 125024 :

0 1 2 3 4 5

Figure 2.3 The likelihood and negative log-likelihood functions.

The first term is constant for a given n which is ignored during minimization and this gives rise to the L,
loss function in terms of residuals:

n
1
L,loss = EZrLZ (2.5.15)
i=1 o
Exercise: Using MLE, derive the L, loss assuming that r;,r,, ..., r, are i.i.d values drawn from random

variable R ~ f(r) = %e—lrl,where r=y —x p.

Ans.: The likelihood function is given by:

n
L(ry, 1y, .. 13 B) = H%e"m. (2.5.16)
i=1

The negative log-likelihood expression is
—£(ry,15,...,1,; p) = nlog 2+Z|ri|. (2.5.17)
i=1

The first term is constant for a given n which is ignored during minimization and this gives rise to the L,
loss function in terms of residuals:

n
L, loss = eril. (2.5.18)
i=1 |

The MLE procedure guarantees, under mild assumptions of continuity and differentiability, that the
estimator is consistent and asymptotically normal. These are two important and desirable characteristics
of an estimator. Furthermore, it produces estimators with low variance, which is indeed another desirable

2.5 Estimation Background

property. Therefore, we should pursue robust estimators that follow the MLE procedure, if possible. While
we will not delve much further into the theory behind maximum-likelihood methods here, we will be
using the procedure in a number of places so it is worthwhile to consult other sources for a more in-depth
study.

2.5.4 Gradient Descent

The majority of the techniques to be described in the rest of this book involve optimizing a loss function to
obtain estimates of the parameters of interest. Therefore, it is worth spending some time on the desirable
characteristics of loss functions and, in particular, the convexity property.

Figure 2.4 shows two hypothetical loss functions, labeled as f(x). The one in the left panel is a
non-convex function. It has three minima: one global minimum (A) and two local minima (B and C).
This type of function is difficult to optimize in general since the techniques typically used may end up
at one of the two local minima instead of the global minimum. The panel on the right shows a convex
function with only one minimum value and it is rather straightforward to optimize this type of function.
Whenever possible, the loss function that we use in machine learning applications should be convex
with a unique solution. However, it is not always possible to find such a function, especially in the case
of neural networks. Nevertheless, we usually find a minimum (whether it be local or global) using a
numerical optimization technique and generate estimates associated with this point.

One of the many ways to check for convexity is to take the second derivative of the loss function and
see if it is non-negative. If so, then the function is convex and there is a unique solution available. If not,
then there may be multiple solutions or an infinite number of solutions. In fact, having a strictly convex
loss function is highly desirable and leads to unique solutions.

Non-convex function Convex function

40

5 4
351

o 30 1

3 1 25 1 f(x)

5 20 1
151

11
10

01 51w

d A
-1 dx 07 *
-6 -4 -2 0 2 4 -3 2 -1 0 1 2 3

Figure 2.4 Comparing non-convex and convex functions.

47

48

2 Robust Linear Regression

The method generally used to minimize a convex function is called gradient descent. There are many
variations of this technique but for now it suffices to understand the basic idea. In gradient descent, we
start with a random initial point on the function and find the gradient at that point. This is shown in the
vicinity of the minimum B for the non-convex case and in the vicinity of the minimum A for the convex
case in Figure 2.4. If the slope is negative, as in this case, then the minimum lies to the right of the point.
Conversely, if the slope is positive, the minimum lies to the left of the initial guess. Using f(x) as the loss
function and ¢ as the iteration index, we can update the value of our next guess of the optimal value of
X using

L) — o _ P
dx
The negative sign reflects the fact that we should move in the opposite direction of the slope. However,
it may not make sense to take a large step in one direction or the other due to the fact that we could
oscillate back-and-forth or go well beyond the optimal value. For this reason, we introduce a factor
called (in the parlance of machine learning) the learning rate, £, to tune the step size, as follows:

(2.5.19)

o)

1) _ () df (x)

XD = X0 _ £ x o

The value of # can be fixed or adjusted during each iteration to enable faster convergence. Using this

simple approach in the convex case would produce a minimum at A but in the non-convex case, it might

produce a minimum at B, which is local minima. Clearly, the advantage of the convex optimization is

that the global minimum is always obtained (considering some mild assumptions about the existence
and continuity of the function and its first derivative).

(2.5.20)

x®

Exercise: Consider the function f(x) = (x — 2)?. Use the update equation

L0 _ o _ H
dx |y

and the initial condition x©® = 3 to find the minimum. Apply only two steps of the iteration.

Ans.: The derivative is df (x)/dx = 2(x — 2).
Iteration 1:

XD =xO _2x®_2)=3-2@3-2)=1
Iteration 2:
x@ =xW 26 —2)=1-21-2)=3

This will not convergence as it will oscillate from one side to the other. m]

Exercise: Consider the function f(x) = (x — 2)? again. This time, use the update equation

df (x)
) — O _ g
. dx |y

and the initial condition x” = 3 to find the minimum. Apply only two steps of the iteration using # = 1/2.

2.6 M-Estimation

Ans.: The derivative is df (x)/dx = 2(x — 2).
Iteration 1:

x = x© — % x20® —2)=3-2(3-2)/2=2
Iteration 2:
x@ = x — % x2xM -2)=2-22-2)/2=2

Convergence occurred in two iterations. O

As we are considering various loss functions for use in machine learning, we should check if they are
convex or non-convex. We can do this using the second derivative of a function. First, let x € I where I
is some interval of interest. Then the function f(x) is convex in interval I if and only if f"’(x) > 0 for all
x € I, and strictly convex if and only if f”(x) > 0. So we can test for convexity using this criterion. For
most of the loss functions used in practice, this will be true but the condition should be checked with any
new loss functions. However, in machine learning, especially in deep neural networks, this may not be
true and a local minimum is acceptable. In such cases, the optimization techniques will be much more
complex than the simple gradient descent described above, as presented later in Chapters 9 and 10.

2.6 M-Estimation

In our search for a robust loss function for machine learning, we will need a method to compare differ-
ent candidates that we encounter along the way. In robust statistics, there is a class of estimators called
M-estimators (see Maronna 2019) that will be useful throughout this book for this purpose. M-estimators
are used for robust regression, where the objective is to minimize a function of the residuals. The simplest
way to view these estimators is that they are all defined by a generic loss function, as follows:

n n
M-loss = Zp(ri) = Zp(yi -x'P). (2.6.1)
i=1 i=1
The idea is that the function p(r;) is selected to deliver robust estimates. The function itself depends solely
on your ingenuity and not necessarily on rigorous derivations carried out using MLE. If we can specify
the p(r;) function such that it is convex and gives desirable estimates, then we can optimize it to obtain a
robust model. Here we do not need to specify the distribution or carry out any steps of the MLE procedure.
We simply develop an estimator based on some p(r;) that satisfies a few requirements of continuity and
convexity. The derivative of the p(r;) is given by

_ap(ri)
T oor

i

yw(r;) (2.6.2)

The continuity requirement is needed to carry out differentiation so that gradients can be used to numer-
ically solve the equation. Assuming that p(r;) is differentiable, the estimates are the set of values that
satisfy the following condition:

Dwr)=o. (2.6.3)
i=1

49

50

2 Robust Linear Regression

The convexity condition is needed to find a unique minimum. We can assess the convexity of the loss
function using the second derivative:

2*p(r;)
') = . 2.6.4
v (1) o, (2.6.4)
Then, the convexity property is satisfied if and only if
v'(r;) > 0 for all r, (2.6.5)

and it is strictly convex if w'(r;) > 0 for all r;.
The M-estimation approach to specifying loss functions can also be used for non-robust estimators. For
L,, we have that

r?
Pa(r) = EI
Therefore,
vip(r) =1
and
wi(r) =1.

So L, has a strictly convex loss function. Now if we check L; we find that
p(r) = Iril.

Therefore,
wia(ry) = sgn(ry)

and

(2.6.6)

, undefined ifr,=0
v () =

ifr,£0

The function is convex but not strictly convex and is undefined at r; = 0. So we cannot guarantee that a
unique solution exists. In fact, there may be an infinite number of localized solutions using L,.

Figure 2.5 plots the p(r;) and w (r;) functions for L, and L,. Note that L, follows an absolute function, |r,],
while L, follows a quadratic function, rl.2 /2. The problem with using L, is that the residuals are squared,
which amplifies the importance of large residuals. During linear regression, outliers are considered to be,
in some sense, more important than the majority of the data since outliers tend to have larger residuals.
Thus, it is highly sensitive to outliers. This is the main problem with the L, estimator.

The L, estimator is not as sensitive to outliers because it sums the absolute value of the residuals in
the loss function, but it has other problems. The p(r;) function has a distinctive kink at r; = 0. When we
examine its first derivative in the lower-left panel of Figure 2.5, we note that it is a discontinuous function
whereas the first derivative of L, is continuous, as seen in the lower-right panel. The discontinuity of L,
poses problems both mathematically and in numerical optimization when used for machine learning.
Further, the second derivative of L, produces an impulse function at the origin while the second deriva-
tive of L, is flat and continuous at a value of 1. Clearly, L, and L, both have notable disadvantages so
alternative methods are needed to handle outliers.

2.6 M-Estimation

3.0 45
4.0
25 | LT
L. 3.5 2= 35
20 1= i 3.0 1
~ | 2.5
E1s]
< 2.0
1.0 157
1.0]
0.5
0.5
0.0 j : ' : 0.0 : ' : :
-3 2 -1 0 1 2 373 2 -1 0 1 2 3
3 3
21 2
sgn(r;) ri
1 17
s 0 0
-1 1
2 -2
-3 ; , ' g 3 y ' - .
3 2 0 1 2 3773 2 0 1 2 3

T

Figure 2.5 Comparing the loss term and its derivative for L; and L, as a function of the residual value, r;.

The question that immediately arises is: How do we come up with a better M-estimator? The answer
is to try out different options and compare them against one another. In particular, if you want to find
the median of the data and you find that the L, loss function is not suitable, then any other p(r;) function
that seeks the median would be a suitable replacement. In a later section, we will consider the Huber
estimator as our first M-estimator in this chapter, followed by the log-cosh estimator in the next chapter.

Notation: The general form of an M-estimator is given by:

B = arg;nin [Zp(yi - fﬁ)] :
i=1

The use of argmin indicates the loss function should be minimized to find the associated g located
at the minimum. The superscript * is usually replaced by acronyms such as L1, L2, LS, LAD, LC, and
H to refer to the specific type of loss function used.

51

52

2 Robust Linear Regression
2.7 Least Squares Estimation (LSE)

We are now ready to examine the least squares method in a more formal setting using the proper notation.
Consider the multiple linear model in matrix form as follows:

y=Xp+e, (2.7.1)

wherey = (¥, ...,¥,)" is a response vector, X is an n X (d + 1) design matrix of constants with an embed-
ded column of 1’s, and € = (g, ..., £,)" is the error term. Here we assume & ~ N'(0, 62I,), the normal
distribution with mean 0 and variance-covariance matrix ¢2I,,. Regression parameters g = (f,, ..., ;)"
are the d + 1 coefficients of interest.

The solution to a multidimensional problem is no longer a line but rather a plane or hyperplane. An
example of a two-variable regression model and its solution is illustrated in Figure 2.6. In this case, the
slopes are g, and f,, while the intercept on the y-axis is ;. The slopes represent the angle of the plane
in each dimension. Beyond two dimensions, the plane becomes a hyperplane. For obvious reasons, the
hyperplanes cannot be visualized; however, the same concepts apply.

We can write the L, loss function in two different ways. The first uses matrix notation, as follows:

IB) =y -XB) (y—Xp). (27.2)

This is just the sum of the squares of the errors written in matrix notation. To obtain the least squares

. ~LS o . . . o e . .
estimates, f, we minimize this loss function by taking the derivative of J(f) w.r.t. f and setting it to 0,
that is

B _ ot e
5 = 2X"(y-Xp) =0. (2.7.3)

Then, it follows that

X'y+X'Xg =0, (2.7.4)

Figure 2.6 A plane with slopes g, and §, and intercept f,
representing the solution for a multiple linear regression
problem with two variables.

2.7 Least Squares Estimation (LSE) | 53

which can then be rearranged to produce the well-known closed-form solution:
37 = X" %) XTy. (2.7.5)

This is the direct matrix solution for LSE and it produces the best linear unbiased estimate (BLUE), pro-
vided X" X is invertible. By best, we mean the one with the lowest variance. It is also referred to in the
literature as the ordinary least squares (OLS) estimator. There are volumes of books and information
available about OLS which we will not cover here.

Another way to obtain the least squares estimates is to apply an iterative method. We saw earlier that
the L, loss function is given by

N |-
D=
o
Il
N =
D=

L,loss =

v, —x B (2.7.6)

Il
_
1l
_

i i

Then, the least squares solution is obtained as follows:

n

ALS . 1

p = argmin la Z(yi - xiTﬂ)Z] . (2.7.7)
ﬂERd+1 i=1

Rather than try to solve this equation in closed form, it is more appropriate to use gradient descent to

find the minimum. If we take the derivative of the loss function w.r.t. f; and use it in the gradient descent

iterative equation, we obtain:

ﬁjff“) = ﬁj(” - f;(yi —x B)(—xy). (2.7.8)

At each iteration, t, we simply update each ﬂj(t) ,j=0,...,d, with the gradient term to produce ﬂj(m)
until convergence. The direct matrix approach and the iterative approach produce identical results, if
the matrix is well conditioned. However, the iterative approach does not require a matrix inversion and
therefore avoids issues posed by a large X matrix, or the possibility of an ill conditioned or singular matrix.
To avoid multicollinearity problems, it is also well suited to the application of a penalty function, such as
ridge or LASSO (as described in Chapter 5).

We can gain further insight into the solution if we state the loss function in terms of residuals in the
form of an M-estimator as follows:

n n
1 1
L,loss = Eszz(ri) = 52;'12 (2.7.9)
i1 i=1

which is just a restatement of an earlier MLE result. Then, taking the derivative w.r.t. r; and setting it to 0,
we obtain:

n

dr=o. (2.7.10)

i=1
The solution of the L, loss function is a set of estimates that forces the sum of the residuals to be
identically 0. Hence, in effect, we are seeking the mean line through the data such that the average
error is 0.

54

2 Robust Linear Regression
2.8 Least Absolute Deviation (LAD)

An alternative approach to LS to mitigate the effects of outliers is to use the LAD approach whereby an
L, loss function is used as follows:

n n
L,loss = eril = Zlyi -x/B|. (2.8.1)
i=1 i=1
The goal is to minimize the sum of the magnitudes of the residuals rather than the squares of the residuals.
This can be stated as follows:

n
ﬁLAD = argmin l2|yi - xl.T,Bll) (2.8.2)
=

The solution to this equation is not as straightforward as it looks so care must be taken to select the proper
way to find the minimum. For LAD, the loss function is piecewise linear and continuous. Therefore, a
linear programming method or equivalent is needed to obtain a solution. The issues are that there may be
an infinite number of localized solutions and a numerical optimization method such as gradient descent
may struggle with L, since the derivative is discontinuous. We will see an alternate approach shortly that
is more effective than L,.

We can gain further insight into the solution if we state the loss function in terms of residuals in the
form of an M-estimator as follows:

n n
L,loss = me(ri) = Z|ri|, (2.8.3)
i=1 i=1

which is just a restatement of an earlier MLE result. Then, taking the derivative w.r.t. r; and setting it to 0,
we obtain:

ngn(ri) =0. (2.8.4)
i=1

The minimum of the L, loss function occurs where the number of positive residuals equals the number
of negative residuals. Hence, the number of points above the line should be equal to the number of points
below the line. This is the fundamental difference between L, and L,. In one case, the points above and
below the line are balanced and, in the other case, the sum of the residuals must be equal to 0 (within a
numerical tolerance level). We can begin to see why the L, loss leads to robust estimates: it is effectively
counting and equalizing the points above and below the line without any concern about how far they are
away from the line. Hence, we are obtaining the median line through the data. Two problems with L,
are that there may be an infinite number of solutions, and we cannot use gradient descent since the first
derivative of the loss function is discontinuous and the second derivative is undefined at one location.
These issues open the door to a plethora of other techniques to achieve robust results while avoiding these
problems.

Exercise: The residuals from two different estimators, known to be LSE and LAD, are given as follows:
r, =(1.3,2.3,4.5,-2.3,-1.3,-2.5,-2.5,1.0)T and r, = (1.3,2.3,6.0, -2.3,—1.3,-2.5,-2.5,—1.0)". Which
one produced r; and which one produce r,?

2.9 Comparison of LSE and LAD

Ans.: r; has the same number of positive and negative residuals so it came from the LAD estimator
whereas r, values sum to 0.0 so it is from LSE. O

Exercise: The residuals associated with a linear regression problem are given as follows: r =
(-1,1,-1,1,1,1,1,-1,-1,1,10)". Compute the L, and L, losses.

Ans.: For L, we have the sum of the absolute values. Therefore the loss is 20. For L,, it is one-half of the
sum of the squares. Therefore, the loss is 55. In the case of L,, the value of 10 is an outlier and inflates
the loss.]

2.9 Comparison of LSE and LAD

In order to gain further insight into the two methods, we examine results for the simple linear model and
the location model. The simple linear model is used to illustrate the differences between the two in esti-
mating the slope and the intercept. The location problem is used to explore the nature of the minimization
process.

2.9.1 Simple Linear Model

For the simple linear model (see Section 2.5.1), we will use the Belgium telephone dataset provided in
Table 2.1. It contains the number of calls (in units of 10s of millions) made in Belgium in the years between
1950 and 1973. There are 24 data points, with 6 outliers due to a change in measurement technique (call
length instead of number of calls) for a 6-year period from 1964 to 1969.

Figure 2.7 shows the results of linear regression using LSE and LAD. The scatter points represent the
data in Table 2.1. Note that most of the points occur in the lower portion of the plot. The points in the
upper portion are outliers due to differences in measurement techniques in those intervening years.
The two lines are based on estimates from Eq. (2.7.7) for LSE and Eq. (2.8.2) for LAD.

In the case of LSE, we notice that the line traces a path through the middle of the data whereas the
LAD regression line is located in such a way as to split the data in half. This is due to the fact that the LSE
method seeks the line that averages the errors to 0 while the LAD method seeks the line that equalizes
the number of data points above and below the line. We can observe that LAD is ignoring the outlier data
and capturing the essence of the true data.

Table 2.1 Belgium telephone dataset.

X 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
y 0.44 0.47 0.47 0.59 0.66 0.73 0.81 0.88 1.06 1.2 1.35 1.49

X 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
y 1.61 2.12 11.9 12.4 14.2 159 18.2 21.2 4.3 2.4 2.7 2.9

55

56

2 Robust Linear Regression

20 A

Calls

1950 1955 1960 1965 1970
Year

Figure 2.7 Comparing LSE and LAD using the Belgium telephone dataset. LSE is affected by outliers, whereas
LAD is tolerant of outliers.

2.9.2 Location Problem

To emphasize the other key issue with the L, loss function compared to L,, we will examine the location
problem which is the simplest regression problem to tackle but offers additional insight into the inner
workings of the two approaches. The location problem involves a one-dimensional dataset and is used to
estimate the center of a sample of n observations, x;, ..., x,,, for some random variable X. This could be
the sample mean or median or any other similar type of estimate depending on the overall objective. The
formulation of the location model is given by

x;=0+¢, i=1,...,n

where 6 is the location parameter and ¢, ..., €, are i.i.d. random variables representing the errors.
To estimate the location parameter, we could use LSE by minimizing the loss function given by

L,6) = %Z(xi -0~ (2.9.1)
i=1

The mean is obtained using the L, loss function. The gradient function is

n

Ly(0) ==Y (x, = 0). (2.9.2)
i=1
Alternatively, another way to estimate the location parameter is to use the LAD estimator which mini-
mizes the loss function

Ly(0)=) Ix - 0. (2.9.3)

i=1

The median is obtained using the L, loss function. The gradient function is

L) = —ngn(xi - 0).
i=1

To illustrate one of the problems with L,, consider the data x = (0,3, 5,7, 10)T. We seek the mean and
the median using the L, and L, loss functions, respectively. By inspection, both the mean and median
are 5. The loss functions have been plotted in Figure 2.8 along with the gradient functions. Note that
the L, loss is continuous and smooth, whereas the L, loss is continuous but piecewise linear. This is
further confirmed by the gradient plots where the L, gradient is composed of a series of steps while the

L, gradient is linear.

2.9 Comparison of LSE and LAD

35 1
301
251
201 L loss

154

Loss

10 1 .
L, gradient

5_ .|

5

15041

125 4

100 -

L, gradient -

Figure 2.8 Comparing L, and L, for the location model.

57

58

2 Robust Linear Regression

The L, loss function requires the use of special optimization techniques in the form of linear program-
ming, such as the simplex method (for small datasets) or an interior point method (for large problems).
However, the L, loss can be minimized with gradient descent. This difference is crucial in machine
learning since gradient descent techniques are routinely used to minimize convex loss functions, while
linear programming is rarely used. Therefore, the L; loss function is not ideally suited for machine
learning applications for this reason, along with a host of other reasons.

With the details of L, and L, established, the next step is to explore methods of obtaining a robust
estimator that does not have the inherent limitations of the L, or L, loss functions but instead exploits
the advantages of both. In particular, we will examine the Huber loss function.

2.10 Huber’s Method

One way to create a more effective robust estimator is to try to combine the L; and L, loss functions.
The advantage of the L, loss is that it is robust to outliers. The disadvantage is that it has continuity
problems in the first and second derivatives, and it requires the use of elaborate methods such as the
simplex algorithm or interior point methods to obtain accurate estimates. The L, loss is continuously
differentiable and can be solved using gradient descent but it is highly sensitive to outliers.

2.10.1 Huber Loss Function

Referring back to Figure 2.5, Huber proposed a method that uses L, in the vicinity of the origin (where
the kink in L, resides) and then switches to L, a certain distance away from the origin (see Huber and
Ronchetti 2009). The method is quite straightforward. We first define a small interval around the origin
given by [—6, +6]. Inside this region, we use the L, loss function since it does not have a kink. Outside
this region, we use the L, loss but we take great care to match the function and its first derivative at the
interface between the different regions. Therefore, the Huber loss term p;,(r;) and its derivative y,(r;) are
both continuous in all regions. The resulting Huber loss function is given by

Huber loss = ZPH(Vi -x/p) = ZpH(ri), (2.10.1)

i=1 i=1
where the loss term is
r?/2 if[r,| <6
pu(r) = {5(Ih-l _ ;2) i > 5 (2.10.2)
The derivative of the Huber loss function is given by

r if|r;| <6
wy(r) = py(r) =46 ifr,>+6. (2.10.3)
) ifr,<—6

Further, the Huber loss can be used to define the Huber estimator as

B = argmianH(yi -xB). (2.10.4)

ﬂERd"'l i=1

2.10 Huber's Method

3.0 3
() wr(r)
2
+0
1
L L, L
0
-0 +0
-1
iz -
-2
+0
- T -3 - . T . -
1 2 3 -3 -2 -1 0 1 2 3
r, r,-

Figure 2.9 Plots of the loss term and its derivative for Huber’s method as a function of the residual value, r;,
using 6 = 1.

Consider the two plots in Figure 2.9 with 6 = 1. There are a total of 3 regions defined by the loss
function: r; < —1 (left L, region), r; > +1 (right L, region), and |r;| < 1 (L, region). As shown in the
figure, the region |r;| <1 uses the L, loss term while the two regions defined by |r;| > 1 use the L, loss
term. This defines a specific Huber loss term that has the following form:

r2/2 if] <1
py(r) = (2.10.5)

=% ifn>1

The 1/2 term in the second case is used for continuity at the boundary of the different regions. Plugging
inr; = 1, both cases are equal to 1/2 in Eq. (2.10.5). More importantly, we now have a robust loss function
without the L, kink that proved troublesome for the LAD estimator. The 6 parameter in the figure can be
used to adjust the boundary based on the needs of each dataset, depending on the number and location
of outliers in it. By default, the common practice is to set 6 = 1.345 based on experimentation on a
wide variety of datasets. This formulation is acceptable but we can do better by choosing the optimal
boundary between regions, if needed.

Figure 2.10 shows the behavior of the Huber loss term as § is varied. In essence, small values (§ < 1.345)
lead to characteristics that resemble the L, V-shape, while large values (6 > 1.345) lead to characteristics
that resemble the L, U-shape. We seek estimates that are close to the median (be it a point, line, plane,
or hyperplane) and therefore employ small values of 6 when outliers exist in the data. However, if the 6
is too small, the issues of L, will reappear.

59

60

2 Robust Linear Regression

Ly

- 0=1.345
6=1
6=05
6=0.1

T T T T T T T

~10.0 1.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

Figure 2.10 Comparing L,, L,, and Huber (for different values of §).

Exercise: Write down the Huber loss term with 6 = 0.1 which may be used when the dataset has many
outliers. Assume that r; is the ith residual. State the intervals over which they apply (see Figure 2.9, left
panel).

Ans.:
r}/2 if |r;] <0.1
pu(r) = -
T o.1<|ri|—%) if |7 > 0.1
2
m]
Exercise: Let 5§ = 0.1. Write down the derivative of the Huber loss term (see Figure 2.9, right panel).
Ans.:
r; if|r,] £0.1
yy(r) =4+0.1 ifr;>+0.1.
-0.1 ifr; < —0.1 o

Another issue that exists in the Huber method is the convexity of the loss function. While the loss is
always convex with respect to f (for a fixed §), it is not necessarily convex with respect to both § and g. This
presents a particular challenge since both 6 and f must be determined iteratively and simultaneously.
This is another reason why 6 is set to a specific value, typically 6 = 1.345.

2.10 Huber's Method

3.0 3.0
Pu(r)
25 25
6=0.1
2.0 2.0
15 15
1.0 1.0
05 05
-3 o) R 0 1 2
3 3 3
wr (1) v (1) v (r)
2 5=4 2 5=1.345 2 5=0.1
1 1 1
0 0 0 —/—
-1 -1 -1
-2 -2)
-3 - - v ™ T -3 + T T T d =3
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 2.11 p(r;) and y(r;) as a function of the residual value, r;, for 6 = 4,1.345, and 0.1.

Exercise: Plot the Huber loss term and its derivative for 6 = 4,1.345 and 0.1 using Egs. (2.10.2) and
(2.10.3). Comment on their differences. (Hint: see Figure 2.10.)

Ans.: See Figure 2.11 for solution. With § = 4, the plots are similar to L,. For é§ = 0.1, the plots are similar
to L, except they are scaled by 0.1. The plot for § = 1.345 strikes a balance between the two. O
Exercise: Write the expression for and plot the second derivative of the Huber function for 6 = 0.1.

Ans.: It will have two discontinuities, one at —0.1 and one at +0.1, as described by the following equation:
) 1 if |r;] 0.1
11/ r.) = . .
A 0 otherwise

The resulting discontinuous Huber second derivative plot with 6 = 0.1 is shown in Figure 2.12. O

61

62

2 Robust Linear Regression

vy (r)

0.8 1

0.6 1

0.4 1

0.2 1

an
\VAY) 1 1

03 02 0.1 0l0 0.1 0.2 03
—0.24

Figure 2.12 The second derivative of the Huber function y;,(r;) with 6 = 0.1.

From the exercise above, it is clear that the Huber loss does not have a continuous second derivative. As
aresult, various improvements have been devised to make it continuously differentiable using smoothing
techniques which will not be elaborated here since they introduce other issues as a side effect. Perhaps
more troubling is that the optimization problem begins to look like L, as § decreases which implies that
gradient descent is not as effective, and the results become unreliable. In spite of these issues, Huber’s
method is a popular alternative to LSE when outliers are present.

Some insight into the inner workings of Huber’s method can be gained by expressing the loss in an
alternative form as follows:

n n
Huber loss =)" r2/2+ Y 6(|r;| - 6/2). (2.10.6)
i=1 i=1
rj|<8 Irj>8

Setting 6 = 1 for convenience, if we take the derivative of the loss function in the various regions and set
it to 0, we would obtain

n n
Dri+ Dsen(n) =0. (2.10.7)
i=1 =1

= i=
Irjl<1 [rl>1

What Eq. (2.10.7) expresses is that the sum of the signs of the residuals in the two L, regions plus the
sum of the residuals in the L, region must equal 0. One way to satisfy this condition is that we can have
an equal number of residuals in the two L, regions, and the remainder of the residuals in the L, region.
In the L, regions, the terms that are summed can only be —1 or +1. Therefore, a balance must be reached
that sums to 0; otherwise, the L, region will have to make up the difference to make the total sum equal
to 0. The method is robust since the magnitude of the residuals in the L, region can be any (large) value
but they will only contribute —1 or +1 to the sum. Hence, Huber is robust to outliers provided the proper
6 is selected.

Table 2.2 Estimates from LSE, LAD, and Huber.

LSE LAD Huber
Intercept -983.9 —305.0 —298.0
Slope 0.504 0.155 0.154
1 — — 0.269

2.10.2 Comparison with LSE and LAD

2.10 Huber's Method

We compare the three methods of estimation, namely, LSE, LAD, and Huber’s method, on the Belgium
telephone dataset. The estimates are provided in Table 2.2. For Huber, the optimal choice of § is data
dependent as mentioned earlier. In this case, the optimal value is § = 0.269. The results of Huber’s method

and LAD are quite similar and both are quite different from LSE, as expected.

To gain a better understanding of the effect of 6, consider the plot of the linear regression results in
Figure 2.13. In this case, 100 different values of § were selected between 0 and 100. The resulting 100
lines produced by Huber shade the region bounded by LSE and LAD. This is expected because, at one
extreme, Huber’s method reduces to LSE and, at the other extreme, it becomes LAD. Again, 6 is data
dependent but is usually set to a default value of § = 1.345 in practice.

20 4

15 1

10 4

LAD

2ol es ive B aniiasi

1950

1955

1960

1965

1970

Figure 2.13 Comparing LSE, LAD, and Huber using the Belgium telephone dataset. LSE and LAD results form the
boundaries for the Huber results.

63

64

2 Robust Linear Regression

2.11 Summary

This chapter introduced L,, L,, and Huber loss functions for linear regression. The L, loss function is
robust to outliers but has mathematical and numerical issues that make it difficult to use in practice. The
L, loss function, which produces the ordinary least squares estimates, is not tolerant to outliers. Huber’s
method combines the advantages of the L, and L, loss functions and is tolerant to outliers. However, it
also has problems in that its second derivative is not continuous and we must be able to find a suitable
value for 6 along with the estimates themselves. Furthermore, small values of § may not be suitable
for optimization using gradient descent. In the next chapter, another approach will be presented which
avoids the inherent problems with Huber’s method and holds great promise in robust machine learning.

Problems

21

2.2

23

Consider the following small dataset.

x, 010 020 030 040 050 0.60

1

Y, 32 4.0 4.2 4.7 6.5 5.5

Let the data be modeled as

y=p+phx+e.

Perform hand calculations, or use Python, to do the following.
a) Find the least squares (LS) estimates using
ﬂfs _ Z?:ﬁfi —?_C)Oii —f), and ﬁgs —5- ﬁLS)_C,
2in (6 —X)?
where X and y are means of their respective variables.
b) Plot the points and the LS regression line. Identify the slope and intercept in the plot.
c) Indicate the residuals using vertical lines in the plot. What is the sum of the residuals?

What is the maximum-likelihood estimator for u for the following distribution?
59= T

The L, loss function for the location problem is given by
Ly(0) = %g(xi -0

The gradient function is

Ly(0) == (x,— 0).

i=1

24

2.5

Problems

a) Plotthe loss function and the gradient function for the datasetx = {1, 2, 3,4, 5,6, 7,100}. Choose
values of 8 between 0 and 30. s
b) What is the value of 9 at the minimum, referred to as § .

The L, loss function for the location problem is given by

Ly(0)=) Ix —0l.

i=1

The gradient function is

L) = —ngn(xi - 0).
i=1

a) Plottheloss function and the gradient function for the datasetx = {1, 2, 3,4, 5,6, 7,100}. Choose
values of § between 0 and 10. b
b) What is the value of 8 at the minimum, referred to as 0",

The Huber loss function for the location problem is given by

H(O) =) pyy(x; = 0),
i=1

where

N CEUE ifj0q -0l <
S R R R

The gradient function is
n
H'(0) =) wyy(x, - 0).
i=1

where
(x; — 0) ifl(x,—0)| <6
yyu(0) =4-6 if(x, —0) > +6
+6 if(x, - 0) < =6

a) Seté = 1and plot the functions py(0), yy(6) and 1//;!(0) asafunction ofr; = x; — 6. Is the function
convex?

b) Plot H(0) as a function of 0 for the datasetx = {1, 2, 3,4, 5, 6,7,100}. Choose values of # between
0 and 10.

¢) Plot H'(0) as afunction of @ for the datasetx = {1,2, 3,4, 5,6,7,100}. Choose values of # between
0 and 10.

d) Compute the Huber estimate of the location parameter éH for the dataset x = {1, 2, 3,4, 5,6,
7,100}.

e) Repeat part (d) with 6 = 10 and § = 0.1. Which is the most suitable value of § for this dataset
among 6 =1,6 = 10,and 6 = 0.1.

65

66

2 Robust Linear Regression

2.6 This problem concerns the use of gradient descent in machine learning. Assume that the objective
is to minimize the L, loss function for a simple linear regression problem as follows:

2.7

ALS . 1 “
B = argmin lzg;(yi —xiTﬂ)Z] .

PER?

What are the update equations for the least squares estimator? Note that it will take the form of:

9of(B)
%

1 _ pt _
b =Fh X

where j = 0 or 1, and 7 is a predefined learning rate and f(p) is the loss function.

(PROJECT) In this project, you will solve for the slope and intercept of a dataset using robust regres-
sion with Huber’s method.

a)

b)

)

d)

Import the needed libraries.

import numpy as np
from sklearn.linear model import HuberRegressor
import matplotlib.pyplot as plt

Create data similar to the telephone data set.

np.random.seed (0)

X = np.linspace(0, 23, 24) .reshape(-1, 1)

y = np.array([0.44, 0.47, 0.47, 0.59, 0.66, \
0.73, 0.81, 0.88, 1.06, 1.2 , \
1.35, 1.49, 1.61, 2.12, 11.9 , \
2.4 , 14.2 , 15.9 , 18.2 , 21.2 , \
4.3 , 2.4 , 2.7 , 2.9 1)

Fit the Huber regressor using the data.

huber = HuberRegressor (epsilon=4.0)

huber.fit (X, vy)

slope = huber.coef [0]

intercept = huber.intercept

print ("Slope=", f"{slope:.1lf}","Intercept=",f"{intercept:.1f}")
y_pred = huber.predict (X)

Plot the results.

plt.scatter(X, y, color=‘blue’, label=‘Data points’)
plt.plot (X, y pred, color=‘red’, \
label=‘Huber Regressor’)
plt.xlabel (*X’)
plt.ylabel (‘y’)

References | 67

plt.legend()
plt.title (‘Huber Regressor with Outliers’)
plt.show()

e) Using 6 = 4,1.345, and 0.1, plot the results (note: epsilon is the § parameter). Which value of
6 produces the robust solution? Explain why 6 = 0.1 might be a problem” (Hint: does it make
Huber closer to L, or L,?).

References

Montgomery, D.C., Peck, E.A., and Vining, G.G. (2012). Introduction to Linear Regression Analysis, 4e. Wiley.
Huber, P.J. and Ronchetti, E.M. (2009). Robust Statistics, 2e. John Wiley and Sons.

3

The Log-Cosh Loss Function

3.1 Introduction

In the previous chapter, we introduced the L, loss function (more commonly known as the least abso-
lute deviation (LAD)) and the Huber loss function as our first encounter with robust estimators. In this
chapter, we explore a more recent entry into the robust category, the log-cosh loss function, which is
central to the robust methods to be presented in this book. This loss function belongs to the class of asso-
ciated robust estimators because, like Huber, it also prefers solutions in the vicinity of the median rather
than the mean. Another view is that it is more tolerant to outliers in the dataset because the family of
associated estimators is related to the L, estimator. One standout feature is that it is a single, continuously
differentiable function that is parametric in nature and therefore possesses all the desirable properties of
estimators such as convexity, consistency and asymptotic normality. This is in contrast to the Huber loss
which has multiple segments and a discontinuous second derivative.

In this chapter, we demonstrate that the log-cosh loss function is superior to other robust estimators for
machine learning. The chapter provides a detailed and thorough treatment of the log-cosh loss function
by deriving it from first principles, starting with its distribution. Then, we will study properties such
as the bias, variance, and standard errors of estimation. We will also explore various extensions to the
basic log-cosh loss using the location and scale parameters. Finally, the general M-estimator form of the
log-cosh loss will be shown to be a very powerful tool for robust machine learning.

3.2 An Intuitive View of Log-Cosh

In order to gain an intuitive understanding of log-cosh, we need to go back to the L, loss function and
identify its primary weakness. Minimization of this loss function results in the median as the estimate,
dividing the data in half. However, it has a kink in the loss term which leads to a discontinuous first
derivative and an undefined second derivative.! This implies that the optimization of the loss function
may not produce a unique solution, and the solution may require methods other than gradient descent. In
fact, one of the reasons that L, is in widespread use today is that the L, loss requires linear programming

1 More accurately, the second derivative is an impulse function at the origin and zero elsewhere.

Fundamentals of Robust Machine Learning: Handling Outliers and Anomalies in Data Science,
First Edition. Resve Saleh, Sohaib Majzoub and A. K. Md. Ehsanes Saleh.

© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/HandlingOutliersandAnomaliesinDataSciencele

69

http://www.wiley.com/go/HandlingOutliersandAnomaliesinDataScience1e

70

3 The Log-Cosh Loss Function

7 74
6 6 log(cosh(x))
5 A 5.
44 4 4
34 3
21 2
N X I Integrate N
0 T T T T : : B I\
IR S a5 o 3 i 4
1.00 v 1.00 =
0.75- Differentiate 0751
0.50 0.50
0.25- sgn(x) 0555+ Replace tanh(x)
0.00 0.00
—-0.254 X —0.251 X
~0.50- ~0.50
~0.75 -0.751
—1.00 —1.00
40 20 0 20 40 40 20 0 20 40

Figure 3.1 Developing a continuous L, function using log-cosh.

methods for optimization. If an alternative can be found that retains the robust property of L, and does
not suffer from discontinuity issues while offering a unique solution to the minimization problem using
gradient descent, then it will be better suited for machine learning.

The objective is now clear: we seek a loss term that has continuous first and second derivatives to
replace the L; function. Consider how one might do this starting with the L, loss term, as shown in
Figure 3.1 on the top left panel. The absolute value loss term, |x|, is clearly piecewise continuous with a
V-shaped kink. When we take its derivative, we obtain sgn(x) which is discontinuous at x = 0 as seen
in the bottom left panel. This discontinuity will invite a certain amount of trouble in gradient-based
methods. What if we were to replace the discontinuous derivative function with a continuous func-
tion, such as the tanh(x) function? Since tanh(x) is continuous in all regions and ranges from —1 to 1,
it appears to be a very good option to replace sgn(x). This is shown in the bottom right panel. The two
functions, sgn(x) and tanh(x), look about the same but we know that one is discontinuous and the other is
continuous.

Having found a suitable replacement for the derivative, all that remains is to obtain the loss term by
integrating the tanh(x) function, whereby we obtain log(cosh(x)). This is shown in the top right panel.
It is a continuous function that is smooth around the origin. That is, it has the characteristic V-shape of
L, but does not have a kink (although it may appear to have one in the figure). Therefore, rather than
using |x| as the loss term, we can replace it with log(cosh(x)) and hopefully all of the issues associated
with L, can be resolved in this manner. This is the key motivation for the so-called log-cosh (LC) loss
function.

3.4 M-Estimation

3.3 Hyperbolic Functions

The log-cosh loss is built using hyperbolic functions for the distributions, loss functions and derivatives.
Assuch, it is necessary to refresh our memories about the definitions and identities associated with hyper-
bolic trigonometric functions. We review the equations and some of their properties below.

Recall the three main hyperbolic functions are

. e —e ™
h =
sinh(x) R
—X
cosh(x) = exi,
2
and
tanh(x) = coer
eX+e*
We also have the reciprocal hyperbolic functions given by
1 2
h = = 5
eseh0) = Grohe ~ e—er
1 2
h = =
sech(x) cosh(x) e +e™,
and
coth(x) = 1 —g+e

tanh(x) e —e>*’
Some useful properties are as follows:

sinh(—x) = — sinh(x),

cosh(—x) = cosh(x),
and
tanh(—x) = — tanh(x).
Other useful equations include the following:
cosh?(x) — sinh?(x) = 1,

and

X
/_ . cos;(x) = arctan [sinh (x)] + c.

3.4 M-Estimation

The log-cosh loss function in machine learning can be used to construct an M-estimator (refer to
Chapter 2). The loss function associated with an M-estimator has the general form

M-loss =)" p(x)). (3.4.1)
i=1

71

72

3 The Log-Cosh Loss Function

Any desired function may be used for the loss term, p(x;), as long as it satisfies some minimal set of
conditions. Say we are interested in estimating some quantity g which is associated with the explana-
tory variables of an n X (d + 1) design matrix X and the response vector y. Then the M-estimator of g is
defined as,

n

B = argmin) p(r)), (3.4.2)
BERH =y
where r; =y, — xiTﬂ is the residual, for i = 1, ..., n. The solution is typically carried out using numerical
optimization employing some form of gradient descent in the context of machine learning.
For the log-cosh loss, we already determined the loss term to be

pLc(x) = log(cosh(x)). (3.4.3)
Then, it follows that

W c(X) = po(x) = tanh(x) (3.4.4)

and
W o) = p]/o(x) = sech’(x). (3.4.5)

Hence, the first and second derivatives can be easily derived and all functions are continuous. This is
important for machine learning applications. We desire functions that are continuously differentiable to
avoid numerical issues in convergence during gradient descent.

The three functions are illustrated in Figure 3.2. Since yy .(x) is always positive, this implies that the loss
function is strictly convex and optimizing it provides a unique solution (unlike L,). The corresponding
log-cosh (LC) estimator, given by

n

fSLC = argminz log(cosh(r,)), (3.4.6)
BERH =1

can be solved in a straightforward manner using convex optimization due to the fact that it is globally
convex. That is, the second derivative of p; (x) is always non-negative which is the condition for convexity
of the loss function.

3.4.1 Asymptotic Behavior

The asymptotic behavior of log(cosh(x)) involves analysis as x — o0, x = —oco0 and x — 0. Recall that
e +e*

—

Starting with the first case, as x — oo, cosh(x) — /2. Then, in the limit,

cosh(x) =

log(cosh(x)) ~ x — log(2). 3.4.7)

Wi (X) 14
0.754

0.51

0.254

>l

w'Lc(x) 1

>

4 i)

Figure 3.2 The M-estimator functions p(x), w(x), and v’ (x) for log(cosh(x)).

3.4 M-Estimation

73

74 | 3 The Log-Cosh Loss Function

In the second case, as x - —o0, cosh(x) — ¢™*/2 and, in the limit,
log(cosh(x)) ~ —x — log(2). (3.4.8)
Therefore, far from x = 0, the function behaves as
log(cosh(x)) ~ |x| — log(2) (3.4.9)

which is like L, except for the constant term (which is of no consequence).
Finally, consider its behavior around the origin. As x — 0, we can take a Taylor series expansion at
x = 0 as follows:

2 6
log(cosh(x)) = x? - ’1% + Z—S +0(®) (3.4.10)

and therefore it is, to first order, like L,. That is, for small x values,
+2
log(cosh(x)) ~ =5 (3.4.11)

Since it behaves like L, close to the origin and L, far from the origin, one can view it as the best of both
worlds. This single function can replace the three-segment function used in the Huber loss. For robust
regression, the log-cosh loss should be considered as the function of choice.

3.4.2 Linear Regression Using Log-Cosh

Before proceeding further into a theoretical study, it is instructive to solve a simple linear problem using
the log-cosh loss to demonstrate that it is indeed a robust estimator. The LC estimator is given by

AL

p - argminz log(cosh(r,)), (3.4.12)

ﬂERd” i=1

where r; = y; — x| p are the residuals. The LC loss function is

n
LC loss = Z log(cosh(y; — x] B)). (3.4.13)
i=1
If we take the derivative of the loss function w.r.t. §; and use it in the gradient descent iterative equation,
we obtain:
n
P = g — £y tanh(@y, - x] B)(—x;), (3.4.14)
i=1

where ¢ is the learning rate. At each iteration, ¢, we simply update each ﬂj(t), j=0,...,d with the gradi-

ent term to produce ﬁ;”l) until convergence. The obvious point of comparison is with the least squares
(LS) estimator which was detailed in the previous chapter. The LS estimator is given by:
n .2
~ALS . ri
B =argmin) —. (3.4.15)
BeERI o
Figure 3.3 shows the results of linear regression using LS and LC on the Belgium telephone dataset
of Chapter 2. Note that most of the points occur in the lower portion of the plot. The ones in the upper

3.5 Deriving the Distribution for Log-Cosh | 75

20+

Calls

1950 1955 1960 1965 1970
Year

Figure 3.3 Comparing LS and LC using the Belgium telephone dataset of Chapter 2, Section 2.9.1. LS is affected
by outliers while LC is tolerant of outliers.

portion are outliers due to differences in measurement techniques. In the case of LS, it is highly sensitive
to these outliers and fails to produce an acceptable model. We notice that the line is greatly affected by the
outliers, whereas the LC regression line fits the true data and effectively ignores the outliers. This is due to
the fact that the LS method, which uses the L, loss function, seeks the mean of the data (meaning the line
that averages out the errors to 0), while the LC method seeks the median (meaning the line that has the
same number of points above and below it). We can observe that LC is ignoring the outliers and capturing
the essence of the inlier data. This provides the needed evidence that log-cosh is a robust estimator. With
that knowledge, we can now go ahead and understand the detailed mathematics and characteristics of
this loss function.

3.5 Deriving the Distribution for Log-Cosh

It is important to understand the log-cosh loss function from both theoretical and foundational perspec-
tives in order to appreciate its true value. Therefore, we need to study probability-based statistical models
associated with this loss function and relate the results to the underlying distributions. In this section,
we show how to derive this loss function and then provide a more mathematically rigorous view of its
origin.

The log-cosh loss function can be derived from a probability density function (PDF) using the
maximum-likelihood procedure. The challenge is to figure out which probability distribution to use as
a starting point when only the loss function is known. The goal in this section is to find the associated
PDF, f,(x). To do this, consider the relationship between fy(x) and one term of the loss function, p(x).
Since we know that the maximum-likelihood procedure (after constants are removed) produces

p(x) = —log fy (),

76

3 The Log-Cosh Loss Function

then it follows that the reverse MLE procedure would require that
fxx) = le‘*’<">, (3.5.1)
K

where « is a normalization coefficient. Here, fy(x) is the PDF we seek. We should keep in mind that
the distribution associated with a loss function must be centered at 0; in other words, we expect it to be
symmetric about 0. Hence, the mean of the distribution is 0, or mathematically E[X] = 0. The reverse
MLE procedure can be applied to well-known loss functions, such as L,, L,, and Huber. We illustrate the
steps for L, and L, in the following examples and leave the derivation of the Huber distribution as an
exercise for the reader.

Example: To find the distribution associated with the L, loss function, we begin with the term
PLl(x) = |x].
Then we apply the reverse MLE rule above to obtain
L i
x) = —e X,
S0 =

We can find « as follows:

K= / e Mdx = 2.

Hence, the basic form of the distribution for the L, loss is

fx(0) = %e""‘, (3.5.2)

which is called the Laplace distribution. O

Example: To find the distribution associated with the L, loss function, we begin with the term
pra(X) = x%/2.
Then we apply the reverse MLE rule above to obtain
fo) = Leer
K
We can find « as follows:

K= / e /2dx = V2.

(Se]

Hence, the basic form of the distribution for the L, loss function is

Jxx) = L, (3.5.3)
2r
which is, of course, the Gaussian distribution. O

If we now apply the reverse MLE rule to the log-cosh loss, we start with

pLc™) = log(cosh(x)).

3.5 Deriving the Distribution for Log-Cosh | 77

Then we apply the reverse MLE rule above to obtain

1 1 1 1
¥) = —e Prc® = — p—loglcosh(x) — —)
f® K K x cosh(x)

‘We can find « as follows:

®
= dx =n.
x ,/_oo cosh(x) g

Hence, the basic form of the distribution associated with log-cosh is

_1_1
Fx00 = 7 cosh(x)

(3.5.4)

The resulting PDF is sometimes referred to as the hyperbolic secant distribution but we will use the term
Cosh distribution to keep in mind its connection to the log-cosh loss function.

The cumulative distribution function (CDF) is obtained by integrating the PDF function up to some
desired point, x, as follows:

X
Fy(x) = / Sfx)dx. (3.5.5)
For the Cosh distribution, the CDF is found using
F(x)—/xl 1 dx (3.5.6)
X | meosh(x) e

Then, integrating and setting the constant of integration to 1/2, the CDF is given by:
Fy(x) = % + 1 arctan (sinh(x)) . (3.5.7)
V4

The CDF is plotted in Figure 3.4(a) along with the PDF in Figure 3.4(b).
More generally, we have a location-scale family of distributions of the form

Fo:60.0) = 1

_ (3.5.8)
no cosh(’%e)

where 6 is the location parameter and o is the scale parameter (not to be confused with the standard
deviation). We note here that
2.2
E[X]=6 and E[X*]= % + 62
so the asymptotic variance of the distribution is

w202

4
The location and scale parameters can be estimated from the data (i.e. residuals) as

n
= %in and 6 = 2\/\Er(\X)/7r, (3.5.10)
i=1

respectively, where

Var(X) = E[X?] - E[X]? = (3.5.9)

>

Var(X) = ﬁZ(xi -0y (3.5.11)
i=1

78

3 The Log-Cosh Loss Function

(@) 11
Fx(x)

0.84

-6 2 4 6
(b) 0.351
-6 —4 -2 0 2 4 6

Figure 3.4 The (a) CDF and (b) PDF plots of the Cosh distribution.

For the CDF, we have that
Fx(x;0,0) = 1 + 1 arctan <sinh (x;&)) . (3.5.12)
2 o

Typically, the location is 0 for distributions used to derive loss functions. Hence, for 6§ = 0, the CDF is
given by

Fy(x;0) = % + % arctan (sinh <§>> . (3.5.13)

It is interesting to compare the four main distributions we have mentioned thus far: Gaussian, Laplace,
Huber, and Cosh. This is provided in Figure 3.5. Both Cosh and Huber (6 = 1.345) look similar to one
another, whereas Laplace and Gaussian are quite different. In robust statistics, the Laplace distribution is
considered to have heavy tails. It is outlier-friendly because heavy tails imply a higher probability for the
occurrence of outliers. That is, outliers are easily accommodated by the PDF of the Laplace distribution
without affecting the model greatly, specifically, the mean and the variance. This makes it more robust to
outliers. In contrast, the Gaussian distribution has light tails so outliers can have a significant effect on
the mean and variance. Therefore, the Gaussian distribution is less suitable for outliers. Notice that the
Cosh distribution has heavier tails which is similar to the Laplace distribution. In the case of Huber, the
moderate tails are not as heavy as Cosh due to the fact that § = 1.345. However, it can be made heavier
by reducing the value of §, or lighter by increasing its value.

The importance of the different distributions should now be clear. Each one has a different sensitivity
to outliers. When we select a certain loss function, we are forcing the residuals of the regression to follow

3.6 Standard Errors for Robust Estimators

Laplace Gaussian
0.5+ 0.5
. 0.4+ . 0.4+
= 0.3+ . = 0.3+
% 024 Heavy-tailed % 0.2- Light-tailed
=l / Q0.1
00—, ; — 0.0 ; ' ' '
-10 -5 0 5 10 -10 -5 0 5 10
Cosh
0.5
> 0.4+
Z 0.3
(.24
=014
O'O_ T T T T T 00_ T T T T T
-10 -5 0 5 10 -10 -5 0 5 10
X X

Figure 3.5 Distributions for Laplace, Gaussian, Cosh, and Huber (6 = 1.345).

the associated probability distribution. Specifically, if we choose the L, loss function, the residuals will try
to follow a Gaussian distribution (Eq. (3.5.3)). If we choose L, it will try to follow the Laplace distribution
(Eq. (3.5.2)). A selection of log-cosh will follow the Cosh distribution (Eq. (3.5.4)), and a selection of Huber
will follow some form of the Huber distribution, depending on 6. The implications of this are profound
in the sense that if we have outliers, we should not choose the L, loss function (which follows a Gaussian
distribution) as it is highly sensitive to outliers. This was shown earlier in Figure 3.3. Fundamentally, this
is why we seek robust loss functions that are more suitable for datasets with outliers.

3.6 Standard Errors for Robust Estimators

Standard error (s.e.) is a measure of the uncertainty around an estimate (see Montgomery et al. 2012).
Since we know that different samples of a population will produce different estimates, it is desirable to get
a handle on the degree of this uncertainty. In fact, it is possible to show that the estimates from a log-cosh
estimator are asymptotically normal, meaning they follow a Gaussian distribution.? This makes life a lot
easier since we can follow the usual procedures to obtain the standard errors, which is an estimate of the
standard deviation of each parameter.

Consider the multiple linear regression model in matrix form as follows:

y=XpB+e, (3.6.1)

where y = (yy, ..., yn)T is a response vector, X is an n X (d + 1) design matrix of constants with X; =
(1,...,1)T,and € = (¢;, ... ,&,)" is the error term. Regression parameters g = (f,, ..., ;)" are the d +1
coefficients of interest. Here we assume € has some known distribution with mean 0 = (0, ...,0)7.

2 To be clear, the residuals follow the Cosh distribution while the estimates follow a Gaussian distribution.

79

80

3 The Log-Cosh Loss Function

In a (d + 1)-dimensional space, each estimate will have its own s.e. value. Least squares regression has
a well-known formula for the covariance matrix given by

var(B™) = 22X X (3.6.2)

The parameter variances lie along the diagonal and their square root produces the standard errors as
follows:

se(p”) = \/diag*X X)), (3.6.3)

where the unbiased estimator of ¢ is given by

/\2
=T (d D2 Z(’ (3.6.4)

Hence, the residuals are needed to obtain the standard errors.

There is an issue with this formulation when outliers are present. Specifically, the value of 62 will be
inflated due to the fact that outliers will contribute large residuals to the sum and each one will be squared
to increase their values even further.

In the case of log-cosh, a different approach is needed but with the same general formulation. For
large n, we treat the estimates as being normally distributed with

var(B-%) = (X x)! (3.6.5)
and then define the term v? as follows (see Maronna et al. 2019)3:

2 — 2 IE[WLC(r/S)z]

rer s (3.6.6)
Ely, o (r/s)]?
which has an unbiased estimate that can be obtained by replacing expectations with averages
1 2
= 2 wic(r;/%)
2o @2n ! n (3.6.7)

: Pn—d-1
;ZWLC(ri/S)

. ALC
In the above, the residuals are r; = y; — xiT B and, to provide a robust estimate of v, we estimate s using
§ = MADN(r), (3.6.8)

where the function MADN(x) was defined in Chapter 1, Eq. (1.4.6). To compute the terms under the
summations, recall that

wic(X) = p}(x) = tanh(x) (3.6.9)
and
Wi (%) = pilo(x) = sech®(x). (3.6.10)

These functions must be applied as required in Eq. (3.6.7). The s.e.’s are computed as the square root of
the diagonal elements of the covariance matrix, PXTX)L.

3 For a derivation, see Maronna et al. (2019, pp. 99-100).

3.6.1 Example: Swiss Fertility Dataset

3.6 Standard Errors for Robust Estimators

We now employ the well-known Swiss Fertility dataset to compute estimates and standard errors for LS
and LC for comparison purposes. The Swiss Fertility data* itself is provided in Table 3.1 and the variable
definitions and their abbreviations are provided in Table 3.2.

The dataset has 5 variables that may influence the fertility rates (F) in a 1888 study with 47 observations.
The abbreviations of the five variables are I, Ex, Ed, A, and C and the objective is to find the coefficient

Table 3.1 Swiss fertility dataset (F = Fertility, 2 = Agriculture, Ex = Examination, Ed = Education, C = Catholic,
and I = Infant Mortality).

Region F A Ex Ed C I Region F A Ex Ed C I
Courtelary 80.20 17.00 15 12 9.96 22.20 | Delemont 83.10 45.10 6 9 84.84 22.20
Franches-Mnt 92.50 39.70 5 5 93.40 20.20 | Moutier 85.80 36.50 12 7 33.77 20.30
Neuveville 76.90 43.50 17 15 516 20.60 | Porrentruy 76.10 3530 9 7 90.57 26.60
Broye 83.80 70.20 16 7 92.85 23.60 | Glane 92.40 67.80 14 8 97.16 24.90
Gruyere 82.40 5330 12 7 97.67 21.00 | Sarine 8290 4520 16 13 91.38 24.40
Veveyse 87.10 64.50 14 6 98.61 24.50 | Aigle 64.10 62.00 21 12 8.52 16.50
Aubonne 66.90 67.50 14 7 2.27 19.10 | Avenches 68.90 60.70 19 12 4.43 22.70
Cossonay 61.70 69.30 22 5 2.82 18.70 | Echallens 68.30 72.60 18 2 24.20 21.20
Grandson 71.70 34.00 17 8 3.30 20.00 | Lausanne 5570 19.40 26 28 12.11 20.20
La Vallee 54.30 1520 31 20 2.15 10.80 | Lavaux 65.10 73.00 19 9 2.84 20.00
Morges 65.50 59.80 22 10 523 18.00 | Moudon 65.00 5510 14 3 4.52 22.40
Nyone 56.60 50.90 22 12 15.14 16.70 | Orbe 5740 5410 20 6 420 15.30
Oron 72.50 7120 12 1 240 21.00 | Payerne 7420 58.10 14 8 5.23 23.80
Paysd’enhaut 72.00 63.50 6 3 2.56 18.00 | Rolle 60.50 60.80 16 10 7.72 16.30
Vevey 58.30 26.80 25 19 1846 20.90 | Yverdon 6540 49.50 15 8 6.10 22.50
Conthey 75.50 8590 3 2 99.71 15.10 | Entremont 69.30 84.90 7 6 99.68 19.80
Herens 77.30 89.70 5 2 100.00 18.30 | Martigwy 70.50 78.20 12 98.96 19.40
Monthey 79.40 64.90 7 98.22 20.20 | St Maurice 65.00 7590 9 99.06 17.80
Sierre 92.20 84.60 3 3 99.46 16.30 | Sion 79.30 63.10 13 13 96.83 18.10
Boudry 70.40 3840 26 12 562 20.30 | LaChauxdfnd 6570 7.70 29 11 13.79 20.50
Le Locle 72.70 16.70 22 13 11.22 18.90 | Neuchatel 64.40 17.60 35 32 16.92 23.00
Val de Ruz 77.60 37.60 15 7 497 20.00 | ValdeTravers 67.60 18.70 25 7 8.65 19.50
V.De Geneve 35.00 120 37 53 4234 18.00 | Rive Droite 4470 46.60 16 29 50.43 18.20
Rive Gauche 42.80 27.70 22 29 5833 19.30

4 This dataset is part of the R environment in the datasets package but is included here for the reader to create the dataset
manually as a file named swiss. csv for use in this and later chapters.

81

82

3 The Log-Cosh Loss Function

Table 3.2 Swiss fertility dataset definitions.

Feature Symbol Meaning

Region French-speaking provinces of Switzerland in 1888
Fertility F Ig, a common standardized fertility measure
Agriculture A % of males involved in agriculture as occupation
Examination Ex % draftees receiving highest mark on army examination
Education Ed % education beyond primary school for draftees
Catholic c % Catholic (as opposed to Protestant)

Infant Mortality I Live births who live less than 1 year

Table 3.3 Swiss fertility estimates and standard errors for least squares (LS) and log-cosh (LC).

Feature B se. (3) B se. (3
(Intercept) 66.92 10.706 63.12 10.556
Agriculture -0.17 0.070 -0.20 0.069
Examination —-0.26 0.253 -0.27 0.250
Education -0.87 0.183 —-0.89 0.180
Catholic 0.10 0.035 0.10 0.036
Infant Mortality 1.08 0.381 1.40 0.376

values or estimates for these five parameters and the intercept in order to predict the response variable
F.Hence,n =47 and d = 5.

We first note that all the data in Table 3.1 lies in the range 0-100 so scaling is not essential and the
estimates can be reasonably interpreted relative to one another. The parameter values from the LS and LC
methods are shown in Table 3.3. We find that the LS and LC are similar, both for estimates and standard
errors. This is due to the fact that there are no outliers in the Swiss dataset, as will be shown in Chapter 4.
This example demonstrates that robust estimates and standard errors are similar to least squares when
there are no outliers.

3.6.2 Example: Boston Housing Dataset

The Boston Housing dataset is a much larger dataset compared to the Swiss dataset. The linear regres-
sion problem is to build a model that predicts the median home price (MEDV) given data associated with
13 explanatory variables. In this dataset, approximately 10% of the observations can be categorized as
outliers (see Chapter 4). Therefore, LS will have difficulty in obtaining reasonable estimates and stan-
dard errors. In Table 3.4, the estimates and s.e. values are shown for LS and LC. If the second and fourth
columns are compared, the standard errors for LS are much higher than that of LC. This is due to the fact

3.7 Statistical Properties of Log-Cosh Loss

Table 3.4 Boston Housing data estimates and standard errors for least squares (LS)
and log-cosh (LC).

Feature ﬁLs s.e. (f}LS) ,3"‘ s.e. ([SLC)
(Intercept) 36.494 5.102 15.623 3.521
CRIM -0.121 0.033 —0.142 0.023
ZN 0.046 0.014 0.037 0.009
INDUS 0.020 0.062 0.017 0.042
CHAS 2.692 0.862 1.452 0.594
NOX —17.802 3.824 -9.321 2.636
RM 3.813 0.418 5.258 0.288
AGE 0.001 0.013 —-0.028 0.009
DIS —1.482 0.199 —-1.026 0.138
RAD 0.305 0.066 0.182 0.046
TAX —-0.012 0.004 —-0.010 0.003
PTRATIO —0.954 0.131 —0.747 0.090
B 0.009 0.003 0.011 0.002
LSTAT —0.526 0.051 —0.302 0.035

that the computation of 6 in the LS case will have large residuals which get squared thereby inflating all
the s.e. values. Clearly the LC results are superior and they represent the data more accurately.

3.7 Statistical Properties of Log-Cosh Loss

In this section, we derive the maximum-likelihood estimator (MLE) to understand the statistical proper-
ties of the log-cosh estimator. For readers who prefer to skip the detailed mathematical explanations, you
may proceed to the next section without loss of continuity in the overall subject matter. While it may not
be critical to machine learning to understand this material, it is useful to know some of these key prop-
erties when comparing one estimator against another and to carry out further mathematical analysis.

3.7.1 Maximum-Likelihood Estimation

Let us begin by deriving the log-cosh estimator for a location parameter @ starting with the probability

distribution. If x;, x,, ..., X, are i.i.d. random variables drawn from the distribution,
fx;0)= ;x.—e’ (3.7.1)
T o cosh(‘T)
then the likelihood function is given by:
! 1
L(x;, %y, ... %3 0) = _— (3.7.2)

0
=1 T O COSh(x’T)

83

84

3 The Log-Cosh Loss Function

The negative log-likelihood expression is given by

n _9
—£(X1,%,,...,%,;0) =n logwo + Z log <cosh (xl—>> . (3.7.3)
o2

i=1
Assume we are interested in estimating 6. Then, after removing the constant term, the estimator d can
be written as
LC “ x,— 0
6 = argmin log (cosh [©—)). 3.7.4
g HER; g (< p >) ()
Since the log-cosh estimator was derived using MLE and assumes some mild regularity conditions, we
find that asymptotic normality holds. That means that the uncertainty around the estimates will follow
a Gaussian distribution. More formally (using the notation given in Section 2.5.2), as n — oo, the Central
Limit Theorem tells us that

Vi (éic - 0) 2o (O,Var (éic)) : (3.7.5)

ALC,

where Var(d,,) is the asymptotic variance which can be derived® to obtain 2¢2. Hence, we find the dis-
. . ALC .

tribution of 6 is

n 2
0~ <0, 2%) . (3.7.6)

‘We can also state that the MLE estimator of 8 is consistent such that

A P
0= 0 (3.7.7)

n
and that the asymptotic bias is
bias = E[6- | — 6 = 0.

That is, the log-cosh estimator of € is unbiased. In summary, the log-cosh estimator has all the nice prop-
erties of least squares but is robust to outliers.

3.8 A General Log-Cosh Loss Function

There is one more improvement needed to the log-cosh loss to make it a superior robust method and that
is the subject of this section. We begin with the standard loss term using M-estimation notation,

p(x) = log(cosh(x)), (3.8.1)
and its derivative,

w(x) = tanh(x). (3.8.2)

5 For those with a statistics background, the asymptotic variance can be derived in a few steps as the reciprocal of the
Fisher information.

3.8 A General Log-Cosh Loss Function

The slope of the tanh(x) function around the origin is quite shallow. However, it can be made tunable by
introducing a hyperparameter, a, as follows:

p(x; a) = tanh(ax). (3.8.3)

The new hyperparameter controls the steepness of the slope as the function transitions from —1 to 1. By
integrating, we obtain

p(x;a) = % log(cosh(ax)). (3.8.4)

This is the general loss term for log-cosh with a hyperparameter a which gives it more flexibility.
This flexibility, in effect, controls the degree of robustness of the general log-cosh loss. We called this
hyperparameter the robustness coefficient.
The general form of the loss function can be written as
n n
1
J¥(x;a) = Y =log(cosh(ax)) = Y p(x;a), (3.8.5)
where a is the robustness coefficient that can be adjusted as needed. We have been using a = 1 thus far
in this chapter but we will find that most of the useful values are associated with a > 1.
The loss term p(x; a) is shown for different values of a in Figure 3.6 in the top panel along with the L,
loss term with the V-shape given in bold. The derivative is given by

w(x;a) = tanh(ax)). (3.8.6)

The effect of increasing a on the derivative is to sharpen the slope of the transition from —1 to 1 as shown
in Figure 3.6 in the lower panel. The derivative of the L, loss is given in bold for comparison purposes.

The general log-cosh estimator is defined as

n
ﬁLC = argminz:l log(cosh(ar,)). (3.8.7)
BeRrd+ 7 a

The importance of the robustness coefficient cannot be overstated. It determines whether the loss func-
tion is weakly robust, that is, slightly better than L,, or strongly robust, that is, approaching L,.

The distribution from which this loss function arises can be derived by running the MLE procedure in
reverse, as shown earlier in Section 3.5. We first take one term of the summation and note that it was the
result of the negative log-likelihood. Therefore, we should negate it to obtain

—p(x) = —% log(cosh(ax)). (3.8.8)
Next we can move the leading coefficient inside the log expression
—p(x) = log(cosh (ax)_i). (3.8.9)
Then we exponentiate the expression to obtain
P = 1 - (3.8.10)
(cosh(ax))«

If we integrate this from —oo to o0, it will produce the normalization coefficient,

/w — 1 (3.8.11)
- ((cosh(ax))a

85

86

3 The Log-Cosh Loss Function

20 - Figure 3.6 Plots of p(x) and w(x) for different values
- of a along with the L, loss term.
1.5 -
1.0 H
0.5 —
0.0 e
[I I I I
-2 -1 0 1 2
1.0 A
a=101"7
a=38 /:
0.5 — !
a= 6/
0.0 —
—0.5 H a=4 | [T sgn|x|
a=2 §
a=1~
-1.0
[I I I I
-2 -1 0 1 2
X

Hence, the PDF is

fx&) = i 1

_ (3.8.12)
Ka ((cosh(ax))=

Here, «, is different for each selected value of a. We can choose different values of a to examine how
the hyperparameter affects the distribution. In each case, an integration of Eq. (3.8.11) is needed for «,
but to simplify the process, we can use a fitted equation given by x, = (x — 2)/a + 2. This is shown in
Figure 3.7. Some of the computed values are indicated on the curve. For example, when a = 1, we obtain
k, = 7, and when a = 100, we obtain k, = 2, and so on.

From the results, we find that, as a is increased from 1 to 100, the log-cosh distribution approaches
e~™ /2 which is the L, distribution. We can see the effect of this in Figure 3.8. The analysis confirms
that the log-cosh family of distributions approaches the Laplace distribution when a is large. This is an
important result because it clearly explains why it is robust.

3.8 A General Log-Cosh Loss Function

Figure 3.7 «, as a function of a and a fitted model of 32
k=(x—-2)/a+2.
3.01 Fitted model
2.81
5 2.6
2.41
2.21
2.01
0 20 40 60 80 100
a
Figure 3.8 Comparison of double-exponential with 0.5 -
log-cosh for different values of a.
0.4 —
=
E 0.3 —
0.2
0.1

To select appropriate values of a, we return to Figure 2.8 in Chapter 2 showing the losses and gradients
for L, and L,. A similar set of plots can be produced for log-cosh as a function of a. Using the same data
to find the location parameter 6, namely {0, 3, 5,7, 10}, the results are shown in Figure 3.9. Note that as
a increases from 1 to 100, the continuous loss becomes piecewise linear while the continuous gradient
becomes stepwise continuous. It is clear that the log-cosh loss can behave similar to L, at one end and
L, at the other. However, values of a above 10 are not recommended since it may introduce convergence
problems in gradient descent. Therefore, the log-cosh loss function should always be used in its most
general form as

LC loss = 1 Z log(cosh(ar;)) (3.8.13)
a i=1

with typical values of a in machine learning tasks being set to 1, 1.5, 2, 5, or 10. For linear regression, a
value of a = 2 is recommended for reasons provided in Chapter 4. Note that a is not data dependent like
6 in Huber. It only depends on the type of machine learning task being undertaken. The standard errors
of the log-cosh estimates from linear regression can be obtained using the same procedure outlined in
Section 3.6.

87

88| 3 The Log-Cosh Loss Function
a=1 a=2
30 30
25 25
20 LC loss 20 LC loss
s 15 15
S 10 10
LC gradient 5 LC gradient
; 0 ———
-5 ? i — =5 v
0 2 4 6 10 12 0 2 4 6 8 10 12
a=10 a=100
35 35
30 30
25 25
20 LC loss 20 LC loss
2 15 15
3 10 10
5 LC gradient 5 LC gradient
0 0
-5 ; ’ -5
0 2 4 6 10 12 0 2 4 6 8 10 12

Figure 3.9 Comparison of LC loss and gradient with different values of a. For linear regression, a value of a = 2 is

recommended.

3.9 Summary

The log-cosh loss function is perhaps one of the most important loss functions in machine learning
because it offers robustness along with all of the attendant regularity conditions that allow for a thor-
ough mathematical treatment. In this chapter, the distribution from which the loss function arises has
been identified, followed by a maximum-likelihood derivation of the loss function. Its statistical proper-
ties were provided along with the computation of standard errors. The s.e.’s for log-cosh were compared
to the least squares case and found to be smaller than least squares for datasets with outliers, and similar
for datasets with no outliers. As a result of the detailed analysis, a strong case can be made for using the
general log-cosh loss to replace many other loss functions in machine learning.

Problems

3.1 Show that the CDF associated with the log-cosh loss, which is given by
Fy(x) = % + 1 arctan (sinh(x)),
/4

is correct by taking its derivative to produce the PDF. (Hint: you may need the identity sinh?(x) + 1
= cosh?(x).)

3.2

3.3

3.4

Problems

Use the reverse MLE procedure to find the distribution associated with
- 1
M-loss = = log(cosh(2x))
23"
using the following steps.
a) Find the form of the distribution using f(x) = e~ /x.
b) Find the normalizing constant x by integrating the result from —oo to co.

Derive the Huber distribution using the reverse MLE procedure. The first few steps are given below
starting with the term:

/2 if |x| < &
X) = .
Pr) 5(|x|—§) if x| > 5

Application of the reverse MLE rule above gives

F = Lo _ 1 e/ if x| < 6
(X)) =—e"P = — 9 s .
Tk G) RTIN I

K
The only remaining steps involve finding the value of x by integrating the different regions and
adding up the quantities. Use 6 = 1.345 to simplify the calculations. Plot the distribution and com-
pare it to the one in Figure 3.5. Re-do the problem with § = 0.1 and 6 = 10. Which of the two plots
has heavier tails? Which one is more robust to outliers?

(PROJECT) In this project, you will estimate the slope and intercept of a dataset using robust regres-
sion with the general log-cosh loss and compare it with Huber’s method as implemented in the
Python library sklearn.linear model.

a) Load Python libraries.

import numpy as np

from sklearn.linear model import HuberRegressor
import matplotlib.pyplot as plt

from scipy.optimize import minimize

b) Create the Belgium telephone dataset manually.

X = np.linspace (1950, 1973, 24) .reshape(-1, 1)

y = np.array([0.44, 0.47, 0.47, 0.59, 0.66, \
0.73, 0.81, 0.88, 1.06, 1.2 , \
1.35, 1.49, 1.61, 2.12, 11.9 , \
12.4 , 14.2 , 15.9 , 18.2 , 21.2 , \
4.3 , 2.4 , 2.7 , 2.91)

c) Define the general log-cosh loss.

logcosh = lambda x: np.logaddexp(x, -x) - np.log(2)
def residual(b,x,vy):

89

90

3 The Log-Cosh Loss Function

d)

e)

f)

g
h)

residual y = y-np.matmul (x,b)
return residual_y

def LC(beta):
ri = residual (beta,x,vy)
rho = (1/a)*logcosh(a*ri)
loss = np.sum(rho)
return loss

Create a column of 1’s in the x matrix.

column _ones = np.ones((24, 1))
x = np.hstack((column ones, X))

Find the slope and intercept using log-cosh.

initbeta = np.array([0.,0.])

a = 2

minval = minimize (LC, initbeta)
beta = minval.x

Plot the results.

abline = np.zeros (x.shape[0])
for i in range (x.shape[0]) :

abline[i] = beta[0]+betal[l]*x[1i, 1]
plt.plot(x[:,1],abline)
plt.scatter(x[:,1],y)
plt.show()

Rerun with different values of the robustness coefficient a. Comment on the results.
Run the Huber regressor. Adjust § (which is called epsilon) starting from 4.0 down to 0.1 to
determine its effect. Is this implementation of Huber’s method satisfactory?

X = np.linspace (0, 23, 24) .reshape(-1, 1)

huber = HuberRegressor (epsilon=4.0)

huber.fit (X, vy)

y_pred = huber.predict (X)

plt.scatter (X+1950, y, color=‘blue’, \
label='Data points’)

plt.plot (X+1950, y_pred, color=‘red’, \
label="Huber Regressor’)

plt.xlabel ('X')

plt.ylabel (‘y’)

plt.legend()

plt.title (‘Huber Regressor with Outliers’)

plt.show()

Problems

3.5 (PROIJECT) In this project, you will find the estimates and standard errors for the Swiss dataset
using the least squares approach. The data itself was provided in Table 3.1. A file called swiss.csv
must be created to use with the Python code below.

a)

b)

c)

d)

e)

The following code can be used to import libraries.

import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

from scipy.optimize import minimize

The Swiss dataset may be read in to create the X and y values as follows:

swiss = pd.read csv("swiss.csv")

swiss[‘ones’] =1

X = np.array(swiss.drop(["Fertility"], axis=1))
Y = np.array(swiss["Fertility"])

The LS code is as follows:

def LS (beta):
ri = Y-np.matmul (X, beta)
rho = ri*ri/2
loss = np.sum(rho)
return loss

The following code can be used to generate the estimates.

Initialize betals
initbetalS = np.array([-0.1,-0.1,-0.1,0.1,0.1,-0.11)
Minimize the LS 1loss function
model = minimize (LS, initbetalS, method=‘BFGS’)
Extract the estimates
betalS = model.x
col names = swiss.columns
print ("Estimates:")
for i in range(len(betalS)-1):
print (col names[i+1],f"{betaLS[i]:.3£f}")
print (" (Intercept) ", f"{betalLS[len(betalLs)-1]:.3£f}")

To obtain the standard errors, we can use the formulation given in Egs. (3.6.2)—(3.6.4).

resid = Y-np.matmul (X, betals)
n = X.shape[0]

p = X.shape[1l]
d=p -1
sigma2 = np.sum((resid-np.mean (resid))**2)/(n-d-1)

C = np.linalg.inv(np.matmul (X.T, X))
se2 = sigma2*np.diag(C)

91

92| 3 The Log-Cosh Loss Function

seLS = np.sqrt(se2)
print ("Standard errors:")
for i in range(len(selLS)-1):
print (col names[i+1],f"{seLS[i]:.3£}")
print (" (Intercept)",f"{seLS[len(selLS)-1]:.3f}")

3.6 (PROIJECT) In this project, you will find the estimates and standard errors for the Swiss dataset
from the previous problem using the log-cosh approach.
a) The LC code and MADN(r) function are as follows:

logcosh = lambda x: np.logaddexp(x, -x) - np.log(2)
a = 2
def LC(beta) :
ri = Y-np.matmul (X, beta)
loss = np.sum((1l/a)*logcosh(a*ri))
return loss
def MADN(r) :
return(l.4826*np.median (np.abs (r-np.median(r))))

b) The following code can be used to generate the estimates:

Initialize betalC
initbetalC = np.array([-0.1,-0.1,-0.1,0.1,0.1,-0.11)
Minimize the LC loss function
model = minimize (LC, initbetalLC, method=‘BFGS’)
Extract the estimates
betal.C = model.x
col names = swiss.columns
print ("Estimates:")
for i in range(len(betalC)-1):
print (col names[i+1],f"{betaLC[i]:.3£f}")
print (" (Intercept) ", f"{betalLC[len(betaLC)-1]:.3£}")

¢) To obtain the standard errors, we can use the formulation provided in Egs. (3.6.5)-(3.6.10).

resid = Y-np.matmul (X, betalC)

se = MADN (resid)

num = np.mean (np.tanh (a*resid/se) **2)

denom = (np.mean(a/np.cosh(a*resid/se)**2))**2
n = X.shape[0]

o) X.shape [1]

d=p -1

vhat = (n/(n-d-1)) *se*se*num/denom

C = np.linalg.inv(np.matmul (X.T, X))

se2 = vhat*np.diag(C)

References

seLC = np.sqgrt (se2)
print ("Standard errors:")
for i in range(len(selLC)-1):
print (col names[i+1],f"{seLC[i]:.3£}")
print (" (Intercept)",f"{seLC[len(selLC)-1]:.3f}")

References

Maronna, R.A., Douglas Martin, R., Yohali, V. J., and Salibian-Barrera, M. (2019). Robust Statistics, Theory and

Methods (with R). Wiley.
Montgomery, D.C., Peck, E.A., and Vining G.G. (2012). Introduction to Linear Regression Analysis, 4e. Wiley.

93

4

Outlier Detection, Metrics, and Standardization

4.1 Introduction

This chapter addresses three important topics related to outliers and robust linear regression. First, we
describe techniques for finding and removing outliers to produce outlier-free datasets, which are needed
for many different types of statistical analysis. Included in this chapter are standard methods such as box-
plots, histograms, and quantile-quantile plots. Each of these methods will be used to diagnose a number
of datasets to demonstrate how outlier detection should proceed. This chapter also provides practical
solutions to the problem. An algorithm is presented to find all the outliers, while leaving the true data
intact, based on an iterative scheme using the boxplot. Traditional methods have not been adequate in
this task because the least squares method forces the residuals to follow a Gaussian distribution. This
tends to hide the outliers, making them hard to detect. In fact, we will show that robust methods provide
the most reliable means to diagnose, detect, and remove outliers.

Second, the proper selection of evaluation metrics for tools that operate on datasets with outliers is
presented. If an unsuitable metric is chosen to evaluate accuracy in the presence of outliers, the results can
be misleading or hard to interpret. A detailed analysis of the mean square error (MSE), root mean square
error (RMSE), and median absolute error (MAE) metrics is provided. Once established, these metrics can
also be used to select the robustness hyperparameters, such as a in log-cosh methods (see Chapter 3) and
6 for Huber’s method (see Chapter 2).

Finally, to close out the chapter, procedures used to standardize datasets are discussed. Typically,
machine learning methods work best with variables that have similar ranges of values. Some methods
require that datasets be standardized in order to function properly. We present a robust standardization
method which is needed when the explanatory variables have outliers.

4.2 Effect of Outliers

Outliers are a major concern in data science and machine learning. They can significantly impact
statistical procedures beyond just the mean and standard deviation, as described in previous chapters.
For instance, in the clustering problem, they can distort cluster shapes significantly leading to incorrect
cluster centers (see Chapter 1). Linear regression slope and intercept estimates are skewed when

Fundamentals of Robust Machine Learning: Handling Outliers and Anomalies in Data Science,
First Edition. Resve Saleh, Sohaib Majzoub and A. K. Md. Ehsanes Saleh.

© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/HandlingOutliersandAnomaliesinDataSciencele

95

http://www.wiley.com/go/HandlingOutliersandAnomaliesinDataScience1e

96

4 Qutlier Detection, Metrics, and Standardization

outliers are present, as seen in Chapters 2 and 3. There are other issues caused by outliers in statistical
applications. For example, they can lead to correlation coefficients that are either higher or lower than
the true values (see Chapter 12). The analysis of variance (ANOVA) can be affected, making it harder
to detect differences between groups. The process of imputation, that is replacing missing values in a
dataset, can be skewed by outliers because it relies on the mean and variance of the data. Outliers
can also affect t-tests (see Chapter 5) or chi-square tests in hypothesis testing, one of the mainstays
of statistical analysis, potentially leading to incorrect conclusions. These are just a few of the many
procedures requiring outlier-free datasets.

Unfortunately, outliers are generally viewed as nuisance observations in a dataset and so robust meth-
ods have not been widely embraced as yet. Their effects are often considered to be relatively benign,
especially if there are only a few of them. As a result, they are usually overlooked or ignored completely.
However, ignoring outliers is a risky proposition and can result in misleading conclusions or significant
issues in data analysis. Instead, there are better options involving the removal of the outliers before using
the statistical procedures. If done carefully, it can be a very effective way to circumvent the problem of
outliers.

Before describing different strategies for outlier removal, we first demonstrate that even a single outlier
can substantially impact the results when using the least squares (LS) approach. And second, we illustrate
the impact as the number of outliers in the data is steadily increased. The results are contrasted with the
robust log-cosh (LC) approach which, as detailed in Chapter 3, is quite tolerant to outliers.

To demonstrate the potential issues with only one outlier, we show four different cases in Figure 4.1
based on the Belgian telephone dataset of Chapter 2. The explanatory variable is year and the response
variable is calls. In each case, one outlier is manually inserted in different locations. We will find that
a single outlier can have unpredictable effects on LS estimates but little or no effect on LC estimates,
depending on its position relative to other observations in the dataset. For example, in Figure 4.1(a), the
insertion of one outlier at (year =1963, calls =12.5) produces only a small difference between LS
and LC. Both produce acceptable results. This is a low-impact outlier that leads many to believe their
effects are relatively benign. However, when the outlier is moved to (year =1985, calls =12.5), as in
Figure 4.1(b), the LS and LC results begin to differ; hence, this is a medium-impact outlier in this dataset.
When we try to explain any prediction results from LS, we have to somehow account for the fact that
all the data points are not represented accurately by the model. In other words, we have to justify the
inaccurate model in some plausible manner. In contrast, LC produces the same result in both cases.

Now consider the case of the outlier at (year =1950, calls=12.5) in Figure 4.1(c). This position
constitutes a high-impact outlier for this dataset. In fact, LS tells us that there is no relationship between
calls and year, which we know is incorrect. Any business decision made using this result will also
be incorrect. In a multidimensional setting, this variable may be inadvertently removed during model
reduction by a penalty function (see Chapter 5). Trying to explain the removal of a critical variable would
be challenging and ultimately misleading to others. In the last case, Figure 4.1(d), the outlier placed at
(year=1940, calls =12.5) is called a high-leverage point since the value of year is well outside the
domain of the rest of the data. This type of outlier can have serious consequences on the results of LS.
In fact, it shows a negative correlation between year and calls which is clearly wrong. High-leverage
points can be detected and removed, but it requires additional effort. However, the LC method is not
significantly affected in either case.

The point of all these examples is to illustrate the unpredictability of LS when even a single outlier is
present, let alone a number of outliers and their effects. They show that outliers have varying impacts on

4.3 Outlier Diagnosis

R — 1S =
10 - e LC 10|~ LC
c c
U 5 i R U 5 N
Mf 0
O a T T T T T T T
1950 1960 1970 1950 1960 1970 1980
Year Year
(a) Outlier at 1963 (b) Outlier at 1985
= — LS " — s
10 - e LC 10 w LC
5 5
O 54 . O 54 o
P i = .
0 - M I 0 : , , ,
1950 1960 1970 1940 1950 1960 1970
Year Year
(c) Outlier at 1950 (d) Outlier at 1940

Figure 4.1 Effect of a single outlier (indicated with an arrow) on LS and LC estimators for (a) low-impact outlier,
(b) medium-impact outlier, (c) high-impact outlier, and (d) high-leverage point.

the results when LS is used but the results are quite stable for all four cases when LC is used. It would be
easy to explain the LC model for all four cases and make good decisions using this information, whereas
trying to explain the results for LS would be complicated.

Next, consider multiple outliers in the dataset, as in Figure 4.2. There are four different cases to study
the effects of increasing the number of outliers in the data. The datasets of Figure 4.2 (a), (b), (c) and (d)
have 0, 2, 4, and 6 outliers, respectively. As more outliers are added, the line associated with LS shifts
toward the outliers, while the line based on LC remains relatively stable. This figure gives us an indica-
tion of how easily LS estimates can shift due to a few outliers. The question is, why is this happening?
The details were described earlier in the book but the simple answer is that the quadratic loss function
associated with LS amplifies the error due to the outlier by squaring it. That makes outliers more impor-
tant than the data itself. Therefore, in order to reduce the error and satisfy the LS condition (the residuals
must sum to 0), the regression line is forced to be closer to the outliers. Unfortunately, this is the opposite
of what should happen because we want the line to be closer to the inliers. Again, the results are different
in all four cases for LS but stable for LC.

4.3 Outlier Diagnosis

The methods of dealing with outliers discussed so far in this book involve using robust machine
learning tools. Another way to address the problem of outliers is to remove them. However, this is not

97

98 | 4 Outlier Detection, Metrics, and Standardization

154 — LS — LS o
e LC 109| — LC
@ 10' :w
3 ca
5 A . ‘M
0 T"M ol I |
1950 1960 1970 1950 1960 1970
Year Year
(a) (b)
151[— Ls . 20— Ls S
w LC .® 1540 LC .
4 10 1 A °®
: g 10-
5 . ° 5 .
O- T T T 0_ T T T
1950 1960 1970 1950 1960 1970
Year Year
(©) (d

Figure 4.2 Four plots using different versions of the telephone dataset with fitted lines. The LC approach is
robust and stable while the LS line varies depending on the number of outliers, (a) data with no outliers, (b) two
outliers, (c) four outliers, and (d) six outliers.

as straightforward as it sounds. There is the risk of removing inliers along with outliers and there is the
possibility of leaving some outliers in the dataset if they are not detected. Typically, the former occurs
more frequently than the latter. In any case, it must be done carefully or the modified dataset may not
be outlier-free or may be missing important inliers.

In this section, we discuss two common methods of outlier diagnosis where the objective is to determine
if any outliers exist in the data. These methods are typically employed during exploratory data analysis
(EDA). Without running any form of regression, only the explanatory and response variables are available
for diagnosis. This is where the problem of inadvertently removing inliers occurs because it is difficult
to tell outliers from inliers at this stage. However, after running a linear regression, the residuals are
available for examination and they can be used to more accurately identify outliers. In a later section, we
address detection and removal using residuals.

4.3.1 Boxplots

The easiest way to identify outliers is by using a boxplot. This compact graphical tool visually represents
a one-dimensional set of data values, offering a quick snapshot of the inliers and outliers. The idea of a
boxplot is to order the data values from smallest to largest and then identify where the bulk of the values
reside to assess whether there are outliers beyond this range. Specifically, we identify the quartiles of the

4.3 Outlier Diagnosis

data (25th, 50th, and 75th percentiles) and determine if any data points lie well above the 75th percentile
or well below the 25th percentile. If so, they are declared as outliers.
The process for creating a boxplot is as follows:

o First, find the median (Q2), the 25th percentile (Q1), and 75th percentile (Q3). The data between the
25th and 75th percentiles defines the inter-quartile range (IQR) where 50% of the data resides.

o For visualization purposes, place a bounding box between the 25th and the 75th percentiles and a line
inside the box at exactly the 50th percentile (the median). The rest of the data lies outside this box.

o Next, we want to identify a reasonable range of values outside this box where the data would still be
considered inliers. A rule-of-thumb is to use 1.5 X IQR as the range on each side. We indicate this range
in the boxplot with a line-and-whiskers demarcation.

e The whiskers extend from Q1 to the smallest data point above Q1 —1.5xIQR and from Q3 to the
largest data point below Q3 + 1.5 x IQR. This may lead to asymmetry in the whisker length on each
side.

o All values outside this range are flagged as outliers and marked with circles above and below the
whiskers, as the case may be.

Three examples of boxplots for three different variables are shown in Figure 4.3. In each case, the line
in the middle of the box represents the median of the plotted data. The box itself shows the range from
the 25th percentile (Q1) to the 75th percentile (Q3), which is the IQR. The extended lines terminate at the
whiskers, and this represents the degree of dispersion of the given data. The lower and upper bounds are
calculated as Q1 — 1.5 IQR and Q3+ 1.5 XIQR, respectively, with whiskers terminating at the lowest
and highest data values in those regions, respectively.

200 ~ -1 o
175 +
150
125
§
§ 100 + T e}
75
50 4 -
=T
O .
T T T
Data 1 Data 2 Data 3

Figure 4.3 Example boxplots for different sample sets. Note that the rightmost plot clearly shows outliers
outside the whiskers.

99

100 | 4 Outlier Detection, Metrics, and Standardization

Examining the three boxplots shown in Figure 4.3 in greater detail, we find that:

o The leftmost boxplot is symmetric and represents data that is uniformly spaced so it has a nice compact
representation with no outliers.

o The middle boxplot is asymmetric in terms of the whisker lengths due the values above the 75th per-
centile (but within the Q3 + 1.5 X IQR region) which are more spread out compared to those below the
25th percentile. There are no outliers in this case.

o The rightmost boxplot is also asymmetric and the median line is not centered in the box. The position
of the median is data dependent so it may be located anywhere in the box. There are two outliers in the
data (indicated with circles) due to the fact that they lie beyond the whiskers.

Boxplots are used on explanatory variables and the response variable during EDA to get a sense of the
data and the likelihood of finding outliers in the dataset.

4.3.2 Histogram Plots

A histogram plot is a graphical representation of the approximate distribution of a given sample set. If
properly generated, it enables a rapid assessment of the existence of outliers. To create a histogram, a set
of equal-sized bins are defined based on the min-max range of the data. All values that lie within the
bounds of a given bin are counted and the counts in each bin are plotted to form the histogram. Hence,
the histogram is a frequency plot of the number of occurrences of values in each bin. The width of a bin
or the number of bins can be controlled by the user. Outliers may be found in bins that are separated at
a distance from the bulk of the data on either side with relatively low frequencies. The key issue is the
proper selection of the bin size. If the bin size is too small, the frequency within each bin will be too low
to identify outliers. If the bin size is too large, the outliers may be lumped in with inliers.

Figure 4.4 shows a sample histogram with frequency along the vertical axis and data values along the
horizontal axis. When assessing histogram plots to find outliers, we are looking for data in bins that are

1204

1001

o]
S

Frequency
N
S

Potential outliers

401 \

20-

0l m - Hm Bs. _ |
4 6 8 10
X

Figure 4.4 Example of histogram plots.

4.3 Outlier Diagnosis

outside the bulk of the data. In this case, it does appear to have multiple outliers beyond a value of 4.
On the other hand, a value of 7 may be a better choice. The criteria to decide if some of the data should
be considered as outliers is referred to as the threshold and its selection is critically important in outlier
detection. Further details are provided in Chapter 11 on anomaly detection.

4.3.3 Exploratory Data Analysis

EDA usually begins with boxplots and histograms of the data columns to familiarize oneself with the
dataset. Early stages of outlier detection involve using only the explanatory variables and the response
variable because no other information is available. Unfortunately, outlier diagnosis using traditional
descriptive methods such as boxplots or histograms of the input/output variables can be misleading and
inaccurate. To illustrate the issues, a well-known dataset, referred to as the Boston Housing dataset, will
be used. It is appropriate to introduce it here since it is known to have many outliers. This dataset pro-
vides 13 explanatory variables that relate to the median price of 506 homes in the Boston area in the 1970s.
Home prices in the dataset range from $0 to $50K. The goal is to build a model for prediction using linear
regression. In this section, we consider only 11 explanatory variables, as 2 of the variables are categori-
cal in nature and therefore not amenable to boxplots or histograms. Other details of the dataset are not
pertinent at this point, but the dataset itself will be referenced throughout the book.

Consider the boxplots shown in Figure 4.5 (displayed horizontally here for convenience). They indicate
that many of the variables may contain outliers. Only four variables (INDUS, NOX, AGE, and TAX) appear
to be outlier-free according to their boxplots. The MEDV response variable and ZN, CRIM, B, LSTAT, DIS,
PTRATIO, and RM explanatory variables all appear to have outliers. The estimated percentage of out-
liers is provided in each case. Here is the problem: if we declare all of them to be outliers, a total of 134
observations out of 506 will have to be removed. This is approximately 26% of the contents of the dataset.
Clearly, it is not reasonable to remove such a large percentage. It is likely that some inliers will be deleted
if this approach is used. Furthermore, some outliers may be undetected and remain lurking in the dataset.
While this is often done in practice, there are much more effective methods that will be described in this
chapter.

Another way to identify outliers is to generate histograms of the variables and examine their distri-
butions. This is shown in Figure 4.6. If the distributions are Gaussian in nature, it is unlikely to have
outliers. This is the case for variable RM. However, the rest of the variables do not appear to be Gaussian
but it is hard to detect any outliers from the distributions. This is one of the problems with the histogram:
it requires a separate bin size and threshold for each variable to find outliers and is not as informative as
the boxplot. Standardization can help (as described later in Section 4.9) but if not done properly, it can also
hide outliers. On the other hand, histograms do allow you to find any usual characteristics at a glance.

For example, the response variable MEDV is worth further investigation for potential outliers. Figure 4.7
shows the histogram in more detail using a smaller bin size. It indicates the presence of a number of
homes priced at exactly $50K. The reason for this unusual number of $50K homes is not clear but it
could be due to winsorization (see Section 4.5.2); that is, the values were so large that it skewed the data
and they were simply assigned to $50K. As a result, it is not clear if they are outliers or inliers or a mix
of both. We cannot risk deleting them from the dataset for fear of “throwing the baby out with the bath
water”. Overall, the best we can say at this stage from the boxplots and histograms is that the dataset likely
contains outliers.

101

102

4 Outlier Detection, Metrics, and Standardization

13% 0%
+ 1 [EXN I EY XXX 1
80 100 0 ' 20 30
INDUS
0% 6%
LR R 1 1o 4000 L X]
40 04 0. X) 8 0.9 I s 6 71 8 9
NOX RM
0% 1% 15%
] 4 { ommnenr e ¢ onn
0 20 40 60 80 100 25 50 75 100 125 0 100 200 300 400
AGE DIS B
J 8%
v] F”“
200 300 400 500 600 700 1416 18 20 10 20 30 M 3
TAX PTRATIO MEDY

Figure 4.5 Boxplots can be used to check for outliers in all variables for the Boston housing dataset.

4.4 Outlier Detection

After the preliminary diagnosis phase is complete, if we know that the dataset has outliers, we can move
to the outliers detection phase (see Aggarwal 2017). Here, we are interested in the number of outliers
in the dataset. In this section, three well-known methods are described. Note that methods for counting
outliers are described in this section, whereas removing the detected outliers will be described in the next
section.

4.4.1 3-Sigma Edit Rule

The 3-sigma edit rule is probably the most widely known method of outlier detection for data distributed
as a Gaussian. The idea is that any data points more than 3 standard deviations away from the mean are
counted as outliers. This is a sensible approach since 99.7% of the data lies within +3¢ of the mean, g,
for the normal distribution. Figure 4.8 shows a Gaussian distribution, labeled “true distribution,” along

4.4 Outlier Detection

& 3001 2100
o =
2 5 200 3
g g g 50
i = 100 =
. ; S 0 ; . — 0
40 60 80 0 20 40 60 80 100 0 5 10 15 20 25
CRIM INDUS
80 150 150
& 60 z z
5 8 100+ 5 100
= = =
g 407 g g
£ 5 i© 501 = 50
0- 0-
04 05 06 07 08 0 20 40 60 80 100
NOX AGE
150
1501
100 21001 g
s g S 100
g 50 {'f 50+ g
3 43 = 504
0 0- 0-
200 300 400 500 600 700 14 16 18 20 22
TAT PTRATIO
400 150
>~) -
2300 2 2 100
£.200 g =)
2 2 o
53 100 53 s9) 50
-y - - . 0
0 100 200 300 400 0 10 20 30 100 20 30 40 50
B LSTAT MEDV

Figure 4.6 Histogram can be used to check for outliers in all variables for the Boston housing dataset.

Histogram of MEDV

70 o

60

50 - Potegtlal
Z outlier
5 40 - data
=
5 30- 4}
&3

20

10

0
I T T T T 1
0 10 20 30 40 50
MEDV ($1000)

Figure 4.7 Distribution of MEDV showing unusual number of homes at $50K.

103

104

4 Outlier Detection, Metrics, and Standardization

0.40
True distribution

0.35 1 (u, 0)

0.30 1

0.251 Computed distribution
0.20 1 (i)

0.15 1

Probability density

0.10 1

Outliers
here

0.05 1

99.7% of the area

0.00 1
4 -2 0 2 4 6
Quantiles

Figure 4.8 Gaussian distributions illustrating issues with the 3-sigma edit rule.

with a region to the right in which outliers reside. The values along the x-axis are sometimes referred
to as quantiles.! We want to find outliers that occur above a quantile of 3 or below a quantile of —3. In
order to apply the 3-sigma edit rule, one can standardize the data using the equation,
_Xi— A
=T

to obtain the z-scores so that all the data belongs to N'(0,1). Both 2 and 6 are computed using the data
values. Unfortunately, the ji value will be shifted relative to i, and 6 value will be inflated relative to ¢
due to outliers. These effects are shown in the distribution labeled “computed distribution.” Outliers tend
to flatten and stretch out the computed distribution which hides the outliers. They are no longer beyond
+30 from ji. Therefore, the 3-sigma edit rule is of little or no value when outliers are present.

(4.4.1)

4.4.2 4.5-MAD Edit Rule

As usual, we turn to robust statistics to deal with outliers. A robust value of u is the median(x). A robust
value of ¢ for the 3-sigma edit rule can be obtained using:

6 = MADN(x) = 1.4826 x MAD(x), (4.4.2)
where MAD(x) is the median absolute deviation (MAD) given by
MAD(x) = median (|x; — median(x)|) . (4.4.3)
1<i<n

This gives rise to the 4.5-MAD edit rule which is a robust version of the 3-sigma edit rule. As the name
implies, we check for outliers that are 4.5-MAD or more away from the median. The reason for the

1 The term quantile is typically associated with values between 0 and 1. Here, the quantiles lie between —oco and oo but
their values are derived from the CDF which lies between 0 and 1.

4.5 Outlier Removal

4.5 multiplier is that we are using a 3-MADN edit rule which is roughly 4.5xMAD. In Figure 4.8, the
computed distribution using robust statistics would look similar to the true distribution.

4.4.3 1.5-IQR Edit Rule

Another robust alternative is to make use of the boxplot parameters when detecting the number of out-
liers. It makes use of the quartiles of the data. In the earlier section, we showed that outliers reside outside
the interval Q1-1.5XIQR and Q3+1.5XIQR according to the boxplot rules. This is much more effective
than the 3-sigma edit rule for reasons described earlier. In fact, we can count the number of outliers in a
straightforward manner using this simple approach.

There are some issues with this approach that could lead to an excessive number of outliers if used
incorrectly with the explanatory variables or the response variable. We saw this earlier in Figure 4.5 for
the variables of the Boston Housing dataset. If we apply the 1.5-IQR rule to this set of boxplots, we would
inadvertently remove 134 observations, most of which are not outliers. Therefore, a factor higher than
1.5 is usually required to identify outliers exclusively.

4.5 Outlier Removal

Now that the different methods of outlier detection have been described, we can move to the final phase
of outlier removal. There are two options available at this stage: the first is to delete all detected out-
liers, called trimming, and the second is to keep all outliers but adjust their location, a process called
winsorization. Both are discussed in the sections to follow.

4.5.1 Trimming Methods

The conventional approach to outlier removal is called trimming. The idea is to simply remove obser-
vations associated with predictors and responses that are considered outliers. It is used in conjunction
with the detection methods described above (3-sigma, 4.5-MAD, and 1.5-IQR). Often, a quantile-based
approach, targeting a specific percentage of outliers (such as 5%), is used rather than the results of the
detection methods. Trimming can be symmetric where both the highest and lowest values of potential
outliers are removed, or asymmetric where only the highest or the lowest values of potential outliers are
removed. This simple approach is illustrated in Figure 4.9. The original data is diagnosed for outliers and
then those observations are removed from the dataset. While this method is widely used in data science,
the main problem is that if it is applied using explanatory and response variables individually, then inliers
may be thrown out with the outliers, while some outliers still remain in the dataset. This may eventually
lead to inaccurate models. Also, the edit criteria are all heuristic in nature and the quality of the results
depends on the specific application.

4.5.2 Winsorization

An alternative to trimming is to keep all observations but adjust the extreme values of the explanatory and
response variables to be equal to some predefined maximum and minimum values. For example, if we

105

106 | 4 Outlier Detection, Metrics, and Standardization

Original data Figure 4.9 Trimmed data vs. winsorized data.
T T &0 0 & &— - — 100)
-10 2 4 6 8 10 100
Trimmed data
— T —®— OO ————— ¥

-10 2 4 6 8 10 100

Winsorized data °

® L]
T %o ———x
-10 2 4 6 8 10 100

decide on a 90% winsorization of the variable under consideration, we set boundaries at the 5th and 95th
percentiles. All values outside these bounds are moved to the boundaries. The procedure is illustrated in
Figure 4.9 in the lower diagram. A brief outline of the steps is as follows:

1) Calculate percentiles: For each column, calculate the 5th and 95th percentiles.
2) Winsorize: Replace values below the 5th percentile with the 5th percentile value, and values above
the 95th percentile with the 95th percentile value for each column.

In the process, none of the data has been removed but instead their values have been reset closer to
the bulk of the data. This was seen earlier in the Boston Housing dataset for response variable MEDV in
Figure 4.7. The $50K homes have a higher frequency in the histogram than expected, perhaps due to
winsorization of outlier values. This may introduce bias and some loss of information which may have
some unintended consequences during linear regression. Therefore, great care should be taken using this
approach.

4.5.3 Anomaly Detection Method

One additional technique that is perhaps more expensive but much more reliable is to use anomaly detec-
tion. The details of the different methods will not be covered here since Chapter 11 is devoted to the
subject. However, it is important to mention that, to carry out this approach, the explanatory variables
and the response variable must be combined together (rather than examining each one individually).
The response vector y is attached to the X matrix to form the input to anomaly detection, as depicted
in Figure 4.10. Instead of finding outliers by processing each individual variable separately, a holistic
approach is taken to find them in an R4+'-dimensional space using anomaly detection. The role of an
anomaly detector is to find extreme outliers in this composite dataset. It is not necessarily to find all out-
liers but rather the potentially troublesome ones. For example, high-leverage outliers will be far away
from the inlier data and can be identified as anomalies.

The candidate tools for this purpose are DBSCAN and MADmax, both of which are described in
Chapter 11. They use clustering techniques (see Chapter 1) to identify the inlier data and then detect

4.6 Regression-Based Outlier Detection

Figure 4.10 Combining explanatory variables and the response variable as X, X, X, y
input to anomaly detection.
X11 X5 X1q| Y1
X51 X2 Xra| Y2
X31 X35 }_f3d
Dataset
an Xn2 . - . Xnd Yn
25
14+
2N
12 \ 20 - Undetected outliers ," .:u
High-leverage g ," o !
10- outlier detected \I\,' ','
1 ® 1/
15 Do/
2 8 A H /
= = 0%/
© 6 One cluster © 104 L
4 ,/"'——-_“-;\ ~ Three clusters
Rad \
// l' 54 LeTTSs
2 / oottt R e e .\"
’ ° , =" Y \ e® ",
Pid i ()
N \:.0.00' "/,,' ooo:’:”’ \\“." 4,
T T T ~--l----'—l—— T T T ===== i T T T .
1940 1945 1950 1955 1960 1965 1970 1975 1950 1955 1960 1965 1970 1975
Year Year

Figure 4.11 Two cases for anomaly detection. On the left, the outlier can be detected since it is isolated and far
from the cluster. On the right, outliers form a cluster making them more difficult to detect.

outliers as those data points that are far from the clusters. Figure 4.11 illustrates the procedure for one
explanatory variable and one response variable. The type of outlier shown on the left side of Figure 4.11
can be detected since it is isolated from the bulk of the data in a single cluster. However, if there
are several outliers that form a cluster of the type shown on the right side of Figure 4.11, they may
not be detected since three clusters will be formed and none of them will be considered as outliers.
Nevertheless, it is important to remove the high-impact and high-leverage outliers of the type on the left

side of the figure before linear regression is used, and anomaly detection has this capability.

4.6 Regression-Based Outlier Detection

If finding and removing all outliers is a critical part of a data science application, especially for statistical
analysis that relies on outlier-free data, then the techniques described above may be unsuitable. In this

107

108

4 Outlier Detection, Metrics, and Standardization

section, we explore the options available after a linear regression is performed on the data. The differ-
ence is that we now have residuals to work with. Techniques involving quantile-quantile (QQ)-plots and
ordered absolute residuals can be employed to accurately detect outliers. Additionally, more effective
methods can be used to surgically remove them. In particular, a new method using an iterative boxplot
approach is described to enable the removal of outliers while keeping inliers intact.

4.6.1 LS vs. LC Residuals

As mentioned earlier, using input/output variables may not be effective in outlier detection. In this
section, we show that residuals have the needed information to diagnose outliers in a dataset. Recall
that the residuals are simply the difference between the true response and the predicted response for
all observations. The residuals for linear regression can be computed after estimation using a general
equation given by

r=y,-9% i=1..,n (4.6.1)

where y, is the true response and y; is the predicted value based on the regression model. Typically, outliers
in the dataset have large residuals whereas inliers have small residuals. Therefore, it is possible to tell
them apart by their relative positions in a residual histogram. Regardless of its size, outliers will always
be positioned at one extreme or the other. The question is, should we use LS residuals or LC residuals for
the task at hand?

To answer this question, consider Figure 4.12 which plots the histograms for the residuals of LS and
LC of Figure 4.2(d) from the Belgian telephone dataset. For LS residuals, it is difficult to tell whether or
not there are outliers since the distribution appears to be Gaussian. However, for the LC residuals, it is
clear that there are six outliers. Therefore, the residuals from a robust regression contain the information
needed to diagnose outliers using the histogram.

More evidence that residuals from LS should not be used to detect outliers can be found from boxplots.
In Figure 4.13, we show the residuals of LS and LC from the diabetes dataset in boxplot form. The dataset

LS residuals LC residuals
6- — D —
54 — 10 A
> 4 > 8
Q Q
= = |
g 34 g 6 -
o o
=]
= 24 = 4 -
14 2 *‘
N AR Ao
5 0 5 10 0 5 0 15 20
% %

Figure 4.12 Histograms of LS and LC residuals based on Figure 4.2(d).

4.6 Regression-Based Outlier Detection

150 o

100 + LS LC

50

50

—-100

—150 A s 8

1

Figure 4.13 Boxplot form of 1.5-1QR edit rule using LS and LC residuals for the diabetes dataset.

has 404 observations relating 10 explanatory variables to a response variable. This dataset will also be
used throughout this book but the focus in this chapter is on outlier detection. In the case of LS, only
one outlier is detected when in fact there are three outliers. Notice that with LC residuals, the boxplot
detects all three outliers. The key takeaway is that robust methods are needed to find the correct number
of outliers, and they should be used in any mission-critical outlier diagnosis, detection, and removal
methods. This was encountered in Chapter 1 for the clustering problem during outlier detection, and the
same concepts apply here.

4.6.2 Comparison of Detection Methods

In this section, the three methods, namely, 3-sigma, 4.5-MAD, and 1.5-IQR edit rules, are applied to Swiss,
diabetes, and Boston Housing datasets. The Swiss dataset does not have any outliers, while the diabetes
and Boston Housing datasets do contain outliers. Table 4.1 shows the number of outliers obtained when

Table 4.1 Comparison of three outlier detection methods on
three datasets using LC residuals.

Swiss Diabetes Boston

Fertility Data Housing
3-sigma 0 0 10
4.5-MAD 0 30

1.5-IQR 0 3 35

109

110

4 Qutlier Detection, Metrics, and Standardization

using the three methods. In all cases, LC regression was used to obtain the residuals. All three methods
show that there are no outliers in the Swiss dataset. For the diabetes dataset, only the 1.5-IQR method pro-
duced the correct result. The other two methods could not determine the number of outliers accurately.
For the Boston Housing data, the 3-sigma edit rule performed badly compared to the other methods. The
4.5-MAD and 1.5-IQR methods produced similar results, although we will find later that there are more
outliers than these numbers indicate. The main conclusion here is that the 1.5-IQR approach is the most
effective one when combined with LC residuals.

4.6.3 Ordered Absolute Residuals (OARs)

Aside from histograms and boxplots, there are a number of other ways to visually diagnose a dataset for
outliers. One useful approach is to plot the absolute values of the residuals in sorted order from smallest
to largest. A large residual is indicative of an outlier whether it be positive or negative. The notation used
when ordering a set of values from smallest to largest is to place parentheses around the subscript of the
variable. If we have a set of values in random order, such as x;, ..., X, then X(1ys +++ s Xy AT referred to as
the order statistics. When we take the absolute value of the quantities and then order them, we use the
notation, x|, ..., [X], for the absolute order statistics.

Exercise: Given x; = 0.4, x, = —0.6 and x; = 1.7, find the order statistics and then the absolute order
statistics.

Ans.: The order statistics are given by x;) = —0.6, X, = 0.4, and X3, = 1.7. The absolute order statistics
are given by |x|;, = 0.4, |x|, = 0.6, and x|, = 1.7. O

Consider Figure 4.14 showing the ordered absolute residuals from the Belgian telephone dataset based
on Figure 4.2(d) for both LS and LC cases. There are a total of 24 residuals in each case. We plot the
absolute order statistics of the residuals from 7|1y tO |¥] 24y, using an index from 1 to 24 along the x-axis.
The LS residuals produce a plot that makes it difficult to separate outliers from the rest of the data points.
This is because LS forces the residuals to have a Gaussian distribution which tends to blur the distinction

Figure 4.14 Ordered absolute residual plots of LS and LC estimators.

LS residuals LC residuals
2 151 15 - °
§ R Outliers o
S 10 10 oo
Q o
= 00? °
o 54 s000°° ° 5 .
2z 000 Inliers
<
0 000 0 °°°ooooooooo°o°°°
5 10 15 20 25 0 5 10 15 20 25
Index Index

4.6 Regression-Based Outlier Detection

between inliers and outliers. Therefore, it is not easy to make a definitive statement about whether or not
there are outliers based on the figure on the left panel.

On the other hand, the residuals for LC show a clear separation between the outliers and the rest of the
data. A threshold of 5.0 provides a suitable horizontal dividing line to sift out the six outliers. Note that
ordering does not help to separate the outliers from inliers for the LS case with a threshold of 5.0. At this
threshold, some inliers would be declared as outliers, which is not correct. In sharp contrast, we see a
clear distinction between the outliers and inliers in the LC case. Their respective absolute order statistics
are ||qg), --- » |24y Since there are 24 points and the last 6 are outliers.

The six outliers may now be inspected to determine if they should be retained, modified or removed
from the dataset. Some points may be easily corrected if they are due to manual entry errors or a measure-
ment calibration error that can be adjusted. The manual removal of outliers is error prone and must be
done carefully. An automatic approach using robust statistical procedures to detect and remove outliers
in a systematic way will be described later in Section 4.7.

4.6.4 Quantile-Quantile Plot

The quantile-quantile (or QQ) plot (see Maronna et al. 2019) is perhaps the most important statistical tool
in post-regression analysis. At a very basic level, it assesses whether the residuals belong to a Gaussian
distribution. If so, then the LS method is a suitable linear regression method for the data since the residu-
als fit the associated distribution. Therefore, one of the first steps after LS regression should be to perform
a QQ-plot on the residuals to determine if robust regression is required. Hence, it provides another qual-
itative way to determine whether there are outliers in a dataset. The only issue against this reasoning
is that LS forces the residuals to be Gaussian, so even if the residuals appear to be Gaussian, there may
still be undetected outliers. For reasons cited earlier, LC residuals may be preferable when generating a
QQ-plot.

The QQ-plot is a way to visually compare the quantiles of the data to the theoretical quantiles. By
default, the theoretical quantiles are placed along the x-axis. The quantiles were shown earlier in Figure 4.8
associated with the true distribution. To understand quantiles in the context of a QQ-plot, we start with
the cumulative distribution function (CDF) for the Gaussian, denoted as u = ®(x), where u € [0, 1]. The
CDF is simply the area under the Gaussian normal curve up to a point x. If the area is 0.5, then u = 0.5
and ®71(0.5) = 0. This quantile is at the center of the x-axis in Figure 4.8. We also note that ®1(0) = —co
and ®}(1) = oo so those values imply that the area under the curve as being 0 at —co and 1 at co. All
quantiles for a QQ-plot will lie between these two extremes.

To obtain the theoretical quantiles, we choose evenly spaced points between 0 and 1 along the vertical
axis of the CDF. If there are n values in our data, then the quantiles are based on n uniformly spaced points
between 0 and 1. In particular, the points would be located atu =1/(n+1),2/(n+ 1), ...,n/(n + 1). The
inverse CDF, ®~(u), is performed on these values to obtain the theoretical quantiles.? The sample order
statistics are placed along the y-axis. If the (x,y) points line-up along a diagonal, then we view the sample

2 The inverse CDF of the Gaussian distribution is typically found using lookup tables or specialized software programs, as
it does not have a closed-form expression.

111

112

4 Qutlier Detection, Metrics, and Standardization

data as being drawn from a Gaussian distribution. Otherwise it comes from some unknown distribution.
In either case, outliers are located at the extremes of the QQ-plot and are usually found off the diagonal.

Example: To illustrate the process of constructing a QQ-plot, we use a simple example with only
four values. Let y, =04, y, =—0.6, y; =17, and y, = —1.8. First, we need the order statistics as
follows: y;) = —1.8,y5 = 0.6,y = 0.4, and y,, = 1.7. In order to generate a QQ-plot, the theoret-
ical quantiles must be obtained using a CDF plot. The theoretical quantiles, x,, x,, x5, and x,, are
based on u = 0.2,0.4,0.6, and 0.8, respectively. We need the inverse CDF to obtain them, as follows:
©71(0.2) = —0.84, ®71(0.4) = —0.25, ®7'(0.6) = 0.25, and ®'(0.8) = 0.84.

The process of obtaining the theoretical quantiles is illustrated in Figure 4.15. It shows the CDF, ®(x),
for a standard normal Gaussian. The sample values are indicated with “m” along the x-axis. The theo-
retical quantiles are labeled from x, to x,. The x, quantile is obtained from the inverse CDF associated
with 1/(n +1) = 1/5 = 0.2. Tt is located at ®~*(0.2) = —0.84. The same process holds for the other quan-
tiles. Finally, we have the values needed for a QQ-plot which compares the theoretical quantiles with the
ordered actual values. The pairwise points to be plotted are

(—0.84,-1.8),(—0.25, —-0.6), (0.25,0.7) and (0.84, 1.7). m}

The previous example with four points is too small to obtain meaningful results, as a sample size of
at least 30 points is generally recommended for reliable QQ-plots. Consider the three realistic QQ-plots
in Figure 4.16. We see the theoretical quantiles on the x-axis and the sample quantiles on the y-axis. To
check if the sample quantiles belong to the Gaussian distribution, we expect the points to lie along the
diagonal line shown. On the left panel, we find that the data is Gaussian because the points lie along the

D(x)1.0

0.8 1

m = sample values

® = theoretical quantiles 0.6

A3 Ny
T T i—¢—é——¢l—é— T T
—4 -3 2Y1 -1 Yo Yy 1 Ya 2 3 4

X

Figure 4.15 Obtaining theoretical quantiles from the Gaussian CDF. The y, values (shown as “m”) are the order
statistics of the sample values. The x; values (shown as “e”) are the theoretical quantiles.

4.6 Regression-Based Outlier Detection

Gaussian Likely to be Gaussian Unlikely to be Gaussian
) o)| 20 - o a®

20 7| 2 |
515 & 157 E
g g g
= = a
g £ 5 | E
3 54 3 3
1751 %5} | »n

04 % s
T T T 1 - T T T 1 r T T T
-4 2 0 2 4 -4 2 0 2 4 -4 2 0 2 4
Theoretical quantiles Theoretical quantiles Theoretical quantiles

Figure 4.16 Example QQ-plots for different distributions.

diagonal. In the second case, the points mostly lie on the diagonal, but there are a number of points off
the diagonal at the extreme ends. However, the distribution is considered to be Gaussian because nearly
all the other points lie along the diagonal, which would not happen if it were not a Gaussian sample. It is
a judgement call but this is well within an acceptable region around the diagonal. In the third QQ-plot,
the sample distribution is not Gaussian, but rather some other unknown distribution. There are clearly
outliers in the dataset based on this QQ-plot. A robust method based on the LC loss is suitable for linear
regression in this case, or perhaps the removal of outliers before using LS.

4.6.5 Quad-Plots for Outlier Diagnosis

The four visualization methods for detecting outliers can be combined into a “quad-plot” for residuals.
The quad-plot encapsulates all four diagnostic methods, namely, the OAR-plot, boxplot, histogram, and
QQ-plot. By examining all four plots together, it is much easier to determine whether or not the dataset
has outliers. To illustrate the process, we compare the Swiss fertility dataset (which has no outliers) with
the Boston Housing dataset (which has over 50 outliers).

The quad-plot for the Swiss Fertility dataset based on LC residuals is given in Figure 4.17. If we examine
each one separately, we may get conflicting results. For example, the boxplot indicates that there are no
outliers. This is confirmed by the QQ plot. The histogram looks Gaussian in nature and does not appear
to have outliers either. However, the OAR-plot indicates there may be three outliers. But the QQ-plot
tells us that they are just three extreme values (one at the top and two at the bottom) that should not be
considered as outliers.

For the Boston Housing dataset, the residuals of the LC estimator are presented as a quad-plot in
Figure 4.18. These plots give a clear picture regarding the existence of outliers in contrast to the case
for the Swiss dataset. The boxplot provides the most compelling evidence of outliers, but the QQ-plot and
OAR-plot also support the claim of a large number of outliers. The histogram skews to one side which
is also indicative of the potential for outliers. We now have an effective method to detect outliers using
residuals from a robust estimator. However, surgically removing outliers without losing any inliers is
another matter, as we will address in the next section.

113

114

4 Outlier Detection, Metrics, and Standardization

sorted |r| Boxplot of r
15 i] |
10 — :
< 104 5 :
g 04
‘g 54 =5 |
sl |
0 i —15 =] I
| T I I |
0 10 20 30 40
Index
Histogram of r Normal Q-Q plot
15 4 e | 5
& 10 A
2‘ 10 g5 54
5] 1 —_—
£ 5 & =1
< =
)
0 1 -15 4%
I |] | | I | | | I
-20 -10 0 10 20 2 -1 0 1 2

Theoretical quantiles

Figure 4.17 Quad-plot diagnosis of the Swiss LC residuals, r.

4.7 Regression-Based Outlier Removal

The task of actually removing outliers is fraught with peril. It is a risky business which is why we have
been advocating the use of robust methods. However, many users of machine learning tools prefer to
remove outliers rather than switch to robust methods. Some statistical methods require outlier-free data.
There may also be no choice in some settings other than to remove outliers so we must develop meth-
ods that are fast and accurate for the intended purposes. We describe a method for surgically removing
outliers using robust LC regression and the boxplot metrics.

4.7.1 Iterative Boxplot Method

Most methods in use currently are unable to separate the “wheat from the chaff” with any precision.
Usually some outliers are missed and some useful data is thrown out. Here, we are trying to remove only

4.7 Regression-Based Outlier Removal

sorted |r| Boxplot of r
30 - & 30 ~ °
=] 20 1 8
E 204 § i
@ | 10 <
5 10 04 ==
5 ~10 4 °
g T g T T T T <
0 100 300 500
Index
Histogram of r Normal Q-Q plot
— 30 -] o
200 % ®
= 20
g 150 § §
g S 10
g 100 2
= o
=2 g 0+
50 e
] -10 @
O C: | [| | I I
— T T T 1
-10 0 10 20 30 3-2-101 2 3
r Theoretical quantiles

Figure 4.18 Quad-plot of the Boston Housing LC residuals, r.

outliers while leaving the valuable data intact. Note that standard methods for finding outliers are not
as effective because most of the outliers can only be found after a robust regression is performed and the
residuals are computed.

The Iterative Boxplot method is a fast and accurate alternative that can be used to remove outliers
of a dataset. The idea is to use the boxplot method in an iterative loop to remove outliers at each step
until none are left. It is derived from the 1.5-IQR method but uses I factor-IQR instead. The value of
Ifactor starts at 1.5 and is steadily increased by 50/n in each iteration based on the data size, n. This
is a heuristic value but it works well in practice over many datasets. Each additional pass takes the par-
tially cleaned data and removes any remaining outliers. Eventually, all of the outliers can be detected and
removed with enough iterations, typically around one to four iterations. The procedure given in Algo-
rithm 4.1 is fast, reliable, and more precise than previous algorithms. For the diabetes dataset, it removes
all three outliers. In the Boston Housing dataset, it finds and removes 52 outliers. In the Swiss dataset, it
is unable to find outliers because there are none. The results for the Iterative Boxplot method are given in
Table 4.2.

115

116 | 4 Outlier Detection, Metrics, and Standardization

Table 4.2 Outliers detected and removed by the iterative boxplot method on
three datasets.

Swiss Diabetes Boston
Fertility Data Housing
Number of outliers removed 0 3 52

Algorithm 4.1 Iterative boxplot method for outlier removal.

1: Input: entire dataset X, y;

2: set n=number of observations, d=number of variables,
outliers= n, Ifactor=1.5

3: while outliers > 0 do

4 run LC regression

5. compute residuals r; =y, — X B fori=1,....,n

6: compute U = Q3 + IfactorxIQR for residuals

7

8

9

compute L = Q1 - IfactorxIQR for residuals
compute outliers = Y (r; > U) + X1, (r; < L)
: fori=1,...,n
10: remove row i from datasetifr, > Uorr; <L
11: end for
12: Ifactor = Ifactor + 50/n
13: end while
14: run LS regression
15: use quad-plot of LS residuals on reduced dataset as a final check
16: Output: outlier-free dataset;

4.8 Regression Metrics with Outliers

A variety of metrics are used to evaluate the performance of various machine learning tools relative to one
another. These metrics are statistical in nature and some are prone to be misleading if not used carefully,
especially with outliers in datasets. In particular, if a robust metric such as MAE is not used, then it is
possible that a non-robust regression such as LS will look better according to the MSE metric, when in
reality a robust regression is performing better. How can we tell if a metric is not robust? As a general rule,
every time the word “mean” appears in a metric, it should be interpreted as non-robust and somewhat
unstable in the presence of outliers. The goal of this section is to compare and contrast MSE and MAE
and provide recommendations for their proper usage.

4.8 Regression Metrics with Outliers

4.8.1 Mean Square Error (MSE)

The MSE is one of the most popular metrics used with LS. It is given by

n n

MSE = 12()’1 _JA’i)Z = lzi‘iz, (4.8.1)
n i=1 h i=1

where n is the number of data points in the dataset, r; = y; — J;, and y; represents the ith true response
while J, is the predicted response. There is a problem using this metric with outliers that we will illustrate
using the Belgium telephone dataset (see Section 4.2). For simple linear regression using least squares
and log-cosh methods, which one provides a smaller error?

The results of the regressions and histograms of the associated residuals of LS and LC are plotted in
Figure 4.19. If we compute the MSE for the two cases, we find that for LS regression, MSE =29.0, and
for LC regression, MSE =42.4. This informs us that LS is better than LC. Unfortunately, the opposite
is actually true. The six outliers in the dataset force the LS regression to produce a line that does not
represent the true data. Consider the values of the two residuals shown in the figure as r;. In the LS case,
the residuals are all smaller due to the proximity of the line to the outliers. However, in LC, there is a
large distance to the outliers from the regression line so the MSE will necessarily be higher. This is also
shown clearly by examining the two histograms in Figure 4.19. In the LC case, the large residuals will
lead to a large MSE. Therefore, we must not be tempted to use MSE as a reliable metric with outliers.

LS linear regression LC linear regression
20 ‘ 20 ‘
15 A 15 1
= 104 10-
54 51
0- e o0oe0000 0- 23
1950 1960 1970 1950 1960 1970
Year Year
LS histogram LC histogram
15 1
2
S 10 -
=]
o
=t
~ 5 -
O |
-5 0 5 10 0 5 10 15
Residuals 7; Residuals 7;

Figure 4.19 Regression lines and residual histograms for LS and LC on the Belgium telephone data with six
outliers.

117

118

4 Qutlier Detection, Metrics, and Standardization

Another problem with the MSE metric is that the units are not the same as the response variable. This
can be fixed by using the RMSE which produces the same units of measure as the response variable. The
RMSE is given by

n n
RMSE = 12(%. -2 = 12‘/3. (4.8.2)

i i
For the two cases of Figure 4.19, RMSE = 5.4 for LS and RMSE = 6.5 for LC. Of course, there is no change
in the outcome of which method is better according to the RMSE metric. Again, LS is better than LC
based on the RMSE, which is misleading. The reason is that the line fitted by LC is further away from
the outliers and this gives rise to a higher RMSE. This will always be the case since the outliers will be
far from the regression line or hyperplane in robust regression. On the other hand, LS will try to balance
the residuals of the outliers and inliers to reduce the RMSE. Therefore, the MSE or RSME statistic should

only be selected when working with outlier-free datasets.

4.8.2 Median Absolute Error (MAE)

We need to find a better evaluation statistic with outliers in mind. A robust metric is the residual MAE
given by

MAE = median(ly, — 9,1, [y, = D5ls ... [y, = DuD)- (4.8.3)

Here, the median is used so it is a robust error measure. If the MAE is computed on the same dataset
as in Figure 4.19, then for LS, we have MAE = 3.45 and for LC, we have MAE =0.49. Hence, the results
favor LC by a substantial margin. This robust metric is much more suitable for datasets with outliers as
it takes into account that the robust method would necessarily have larger residuals due to outliers. This
was seen earlier in the residual histograms of Figure 4.19.

Another metric often used is the mean absolute error (MnAE) given by

n n
1 A 1
MnAE = =3Iy, = §il = = > Inil. (4.8.4)
i=1 i=1

Typically, this metric uses the same acronym as the MAE. Both are referred to in the literature as MAE.
To avoid confusion between the two, we use MnAE.?> Beware that this metric is not robust because it
uses the mean. It is somewhat better than MSE since it is not squaring the errors so the difference is not
exaggerated. In the case of Figure 4.19, the MnAE =4.24 for LS and MnAE =3.98 for LC. In this case,
it slightly favors LC even though this metric is not robust. However, it can favor LS in other cases even
when LC is better. Therefore, it is not as reliable a metric as MAE when comparing LS to LC. The MAE
is the only truly robust metric.

Now consider Figure 4.20 in which there are no outliers. For this case, the MSE=0.169 and
MAE =0.055 for LS, whereas MSE =0.170 and MAE = 0.054 for LC. They are almost identical which

3 Readers should be careful when using the acronym “MAE” to ensure it is the median absolute error being used and not
inadvertently the mean absolute error.

4.8 Regression Metrics with Outliers

LS linear regression LS linear regression

1950 1955 1960 1965 1970 1950 1955 1960 1965 1970

Year Year
LS histogram LC histogram
6 -
5y
£ 4
g
£ 5]
0 |
-0.1 0.0 0.1 0.2 -0.1 0.0 0.1 0.2
Residuals 7, Residuals r,

Figure 4.20 Regression lines and residual histograms for LS and LC on the Belgium telephone data (modified
version with no outliers).

indicates that LS and LC perform about the same without outliers. This is important because we would
like to use the MAE statistic even when there are no outliers. Usually, when comparing two or more
different regression methods, both the MSE (or RMSE) and MAE should be computed. However, more
weight should be placed on the MAE than MSE with outliers since the MAE is robust.

4.8.3 MSE vs. MAE on Realistic Data

The results from the analysis of the previous section using a simple dataset indicate that MAE is preferable
over MSE for comparison purposes when robust methods are involved. This means that any regression
method with the lowest MAE should be selected over other methods. This will now be tested on bigger
datasets, namely, the Swiss Fertility (no outliers), diabetes (3 outliers), and Boston Housing (over 50 out-
liers) datasets. The bar charts in Figure 4.21 show the relative MSE and MAE values for the three different
datasets. The values have been normalized to 1 since they all have different orders of magnitude of error.
In the left panel, we note that the MSE indicates that LS is better than LC in all three cases since the MSE
is smaller. This may be true in a marginal sense in the case of the Swiss dataset. However, the diabetes
and Boston Housing data both contain outliers so they should perform better with LC. Unfortunately,
the MSE would lead us to believe that LS is better even in the presence of outliers.

The panel on the right has a more accurate view of the situation. The MAE ratio between LS and LC
continues to increase as the number of outliers increases. Specifically, the Boston Housing data with

119

120

4 Outlier Detection, Metrics, and Standardization

MSE MAE
1.0 . S 1.0 1 LB
mm [C mm [L.C
0.8 1 0.8
g 15
5 5
=l 0.6 ho] 0.6 1
0] [0}
N N
; E
£ 0.4 £ 0.4+
Z Z
0.2 1 0.2
0.0 - 0.0 -
Swiss Fertility Diabetes Boston Housing Swiss Fertility Diabetes Boston Housing
0 outliers 3 outliers 52 outliers 0 outliers 3 outliers 52 outliers

Figure 4.21 MSE vs. MAE for both LS and LC on Swiss, diabetes, and Boston Housing datasets.

52 outliers and diabetes data with 3 outliers are better served using LC rather than LS according to the
MAE metric. More generally, if there are many robust methods to choose from, the one with the lowest
MAE should be selected rather than the one with the lowest MSE.

4.8.4 Selecting Hyperparameters for Robust Regression

Now that the MAE metric and its proper use have been described, it can immediately be applied to the
selection of the robustness coefficient a for linear regression using log-cosh and § for Huber’s method.
Recall from Chapter 3 that the general log-cosh loss has the form

JCx;a) = (112 log(cosh(ax)). (4.8.5)
i=1

A suitable value for a can be obtained by selecting six different values and comparing the MAE val-
ues. In addition, since this loss function is meant to deliver a median solution, the number of points
below the line or hyperplane should be 50% of the data. This criteria can also be used to select the
value of a.

Table 4.3 provides the MAE and number of points below the line (and percentage) for the Boston
Housing dataset using six different values of a. Effectively, we are comparing six different robust
estimators from the same family. The results indicate that a = 2 is a suitable value. Below this value,
the MAE is higher and the “points below the line” exceeds 50% which does not satisfy the definition of
the median. Above this value, the “points below the line” drops below 50%. Clearly, there is a trade-off
between the MAE and the need to satisfy the requirements of the median. The value of a = 2 is a good
balance between the two objectives and is applicable with all datasets.

4.9 Dataset Standardization

Table 4.3 Finding a suitable a-factor for log-cosh linear regression using the Boston Housing
dataset.

a=0.5 a=0.7 a=1.0 a=1.5 a=2 a=10
MAE 2.010 2.000 1.988 1.979 1.962 1.939
Points below line 263 259 255 254 253 252

Percentage of data (52.0%) (51.2%) (50.4%) (50.2%) (50.0%) (49.8%)

Table 4.4 Finding a suitable §-factor for Huber linear regression using the Boston Housing
dataset.

6=0.1 6=0.2 6=0.5 6 =1.345 6=2
MAE 1.975 1.962 1.979 2.017 2.080
Points below line 251 253 256 274 283
Percentage of data (49.6%) (50.0%) (50.6%) (54.1%) (55.9%)

Next, recall Huber’s method from Chapter 2 as

n
H-loss(x; §) = ZpH(x), (4.8.6)
i=1
where
x2/2 iflx| <6
= 4.8.7
Pr) 5(|x|—§> if x| > 5. (48.7)

Using the same procedure as above, we can find the most suitable value of § for the Boston Housing
dataset. The results are shown in Table 4.4. In this case, 6 = 0.2 is the proper compromise between
MAE and points below the hyperplane. The MAE value is the same as for log-cosh with a = 2. Unfor-
tunately, the value of § is specific to the Boston Housing dataset. For the Swiss dataset, the suitable
value is 6 = 4 whereas for the diabetes dataset, it is 6 = 1.2. A value of § = 1.345 is typically used as the
default but ideally it should be adjusted on a case-by-case basis. This is one of the drawbacks of Huber’s
method.

4.9 Dataset Standardization

An essential preprocessing step in every data science problem is data transformation. When a dataset
is initially received, various transformations are necessary to make it suitable for machine learning
tools. One crucial transformation is standardization, which simplifies the tasks of downstream machine

121

122

4 Qutlier Detection, Metrics, and Standardization

learning algorithms. During this step, explanatory variables with differing units and ranges are
standardized to ensure consistency and comparability.

Standardization is required in certain machine learning tasks such as logistic regression, neural net-
works, anomaly detection, and determining variable importance. For example, during gradient descent
in logistic regression or neural networks, the iterations may not converge if the data is not normalized*
in some way. Certain anomaly detectors do not work well unless the data is standardized. It is also good
practice to standardize the data (unless they are categorical data with discrete values) in order to obtain
reliable information about variable importance.’

Standardization is applied to the data on a column-by-column basis using the formula for z-scores as
follows:

X T H
Z} = =
0j

, for j=1,...,d, (4.9.1)

where f; and 6; are the computed mean and standard deviation of the jth column, respectively.
Essentially, we are making all the explanatory variables behave as standard normal variables such that
Z ~ N,(0,1,). This implies that the optimization space is much more uniform and leads to faster
convergence.

The results of such a procedure can be visualized as shown in Figure 4.22 for the Swiss Fertility, dia-
betes, and Boston Housing datasets. In each case, the non-standardized and standardized values are
shown side by side. The original variables (left panels) and the z-scores (right panels) are plotted horizon-
tally and stacked one on top of the other for ease of comparison. The explanatory variables are labeled
from x, to x,; in each case. The unstandardized values could have a different ranges and completely differ-
ent units of measure, as in the case of the Boston Housing.® Therefore, it is mandatory to standardize this
data set. The values for Swiss Fertility are roughly in the same range so standardization may be optional
here. The diabetes values are in the same range so standardization is not needed. For illustrative purpose,
we apply standardization to all of them.

After standardization, a majority of the standardized values fall between —4 and 4. There are a few
values that lie outside this range (indicated with a square) which we may be tempted to declare as outliers.
They are potentially high-leverage points which could be removed. However, they may also be valuable
data points which we may want to keep. Robust methods are better-equipped to handle these types of
outliers properly, as described in Chapters 2 and 3.

49.1 Robust Standardization

The above approach is not suitable when the variables have outliers. This is because outliers will com-
promise the values of /i; and 6;. In fact, as mentioned throughout the book, when any variable is treated

4 Standardization and normalization are used interchangeably in machine learning although they may have slightly
different meanings in other contexts.

5 Note that if standardization is performed in regression or classification problems, then we must unstandardize the
coefficients to revert back to the original units.

6 One should be careful not to standardize binary variables such as CHAS in the Boston dataset.

4.9 Dataset Standardization | 123

Not standardized Standardized
X * commens Xs . ® o esemmmen wmemes o
X4 . S s s - - - - - - - . X4 -—epes o
X5 am——. . W . X wemmatee o - B
XZ SN G W e ae XZ 0000 5. DIOGNESRE SN 000 48
X1 % % ‘aam i awee b e i e X bitilaatRoc e et
0 20 40 60 80 100 -4 -2 0 2 4
Swiss Fertility Swiss Fertility
Xjp o @ o Xi0 o -
X9 . - e w X9 " -
X8 *F M ermUNEEGEEGE S= SE: @ T W . XS - e - R e A
X7 e R T T X7 s e
X6 sesm o . XG [T 3
XS . seme @ X5 - -
X4 - . X4 e .
X3 - e X3 e
X5 . . Xy . .
Xl o Xl .
~0.15 -0.10 =0.05 0.00 0.05 0.10 0.15 0.20 2 5 0 > H
Diabetes Diabetes
X13 — X3 S — ———E
XlZ . = e X12 ®
Xll - X]] 00 D
X0 - S e WD - e o X10 o o
X9 - Xg — L]
XS - X8 ——
X, — — X5 e —t—
X - Xg 0 oroEE————
Xg . X5 ——————
. .
Xy o ® X4 —m——— e e
X; = X3 . -
))z? — iz — (T RE [
0 100 200 300 400 500 600 700 -4 2 0 2 4 6 8 10
Boston Housing Boston Housing

Figure 4.22 Non-standardized and standardized variable plots for Swiss Fertility, diabetes, and Boston Housing
datasets.

124

4 Qutlier Detection, Metrics, and Standardization

as if it was drawn from a Gaussian distribution, the outliers (if any) tend to be hidden by a shift in 2 and
an increase in 6. In other words, the distribution is modified to accommodate outliers as if they were
inliers. This was shown earlier in Figure 4.8. Therefore, we must turn to a robust alternative instead. In
particular, the mean and standard deviation should be replaced by

fi; = median(x;) (4.9.2)
and
&, = MADN(x)), (4.9.3)

respectively. These are the appropriate choices for non-Gaussian distributions of explanatory variables.
Then, the robust z-scores are obtained using
X — ﬁ
7 = L for j=1,....d. (4.9.4)
%j

One caveat on the use of robust standardization is that it cannot be applied blindly to binary or cate-
gorical data. The reason is that it may result in MADN(x) =0 which presents a problem in Eq. (4.9.4) as
it appears in the denominator. Instead, for these types of variables, the options are to use the standard-
ization based on the non-robust equations presented earlier or to leave them alone as unstandardized

variables.

Exercise: Givenx, = (0,1,1,0,0,1,0)", compute median(x,) and MADN(x,). What problem exists if we
attempt to compute the robust z-scores? To resolve this issue, compute the standard z-scores for this
variable or suggest another approach.

Ans.: We find that median(x;)=0 and MADN(x;)=0 so Eq. (4.9.4) is not applicable. However,
the mean is ji = 0.429, and the standard deviation is & = 0.535. Therefore, the z-scores of x, are
z, = (-0.802,1.069,1.069, —0.802, —0.802, 1.069, —0.802)". Or, we could skip the entire process and
simply use x, = (0,1,1,0,0,1,0)".

The effects of robust standardization compared to Gaussian standardization are illustrated in
Figure 4.23. For the Swiss and Diabetes datasets, the differences are not pronounced but it is clear that
more outliers remain noticeable and influential in the case of robust standardization. On the other hand,
the Boston dataset shows a stark difference between the two approaches. Most of the outliers have been
confined to the region between —4 and 4 in the case of Gaussian standardization whereas most, if not all,
of the outliers have been preserved after robust standardization. It is hard to detect outliers if the process
of standardization reduces their “outlierness.” In fact, most anomaly detectors require some form of stan-
dardization of the data before their application and it would be counterproductive if that process tended
to hide the outliers. That is why Gaussian standardization is problematic and robust standardization is
preferable.

4.9 Dataset Standardization

Standardized Robust Standardized
e . ® o ermmduen wmsoes » Xs =0 S Ge .
X4 -_—ephes . X4 L L B ‘E
X3 Ll T - E X3 TR e "[E E
Xy bty i X, seme suemen o0 55 se
X1 e W 0 D SYEERENe 8 Xl ssme o
2 2 0 2 4 4 2 0 2 4 6 8
Swiss Fertility Swiss Fertility
X10 .. o X10 .o o
Xg * P X9 . .
XS " ST oEEeE— - e 8 s® b Xg - SoeDpanED % tme 8 s8s
X7 - S e - Xy - "ae e i |
Xﬁ - » E| X6 - EE'
XS . - . XS . - e
X4 - . X4 . i
X3 .s X3 o
X2 . . X2
X, . X, . .
4 -2 0 2 4 4 2 0 b 4
Diabetes Diabetes
X3 -
X2 .
X11 00 5 T >
X10 — e
X9 — .
X8 ——————
);7 . 000-___. -
x6 mmslem———
XS . .
Xg we oo
.
i? = 2 i’m BE [.] - -e e - - - .
4 2 0 2 4 6 8 10 50100 150 200 250

Boston Housing

Boston Housing

Figure 4.23 Gaussian standardized and robust standardized variable plots for Swiss Fertility, diabetes, and
Boston Housing datasets.

125

126

4 Qutlier Detection, Metrics, and Standardization
4.10 Summary

This chapter began with methods for diagnosis, detection, and removal of outliers. Often, there is a need
to have outlier-free datasets since much of the current infrastructure for machine learning is built on this
assumption. There are also many statistical procedures that require clean datasets. One of the key points
of this chapter is that the best way to deal with outliers is to examine the residuals of a robust regression
rather than the explanatory and response variables.

The diagnosis phase involves checking whether any outliers exist in the dataset. Boxplots and his-
tograms are useful for this purpose. In detection, the goal is to determine the approximate number of such
outliers. Here, various edit rules can be applied. Robust rules, such as 4.5-MAD or 1.5-IQR, are most effec-
tive. A quad-plot for residuals that incorporates a boxplot, a QQ-plot, a histogram, and ordered absolute
residuals was introduced. In the removal phase, the process of deleting outlier rows of the dataset must be
done carefully or risk removing rows with valuable data. An iterative boxplot approach was described for
this purpose. This is a simple but effective method of removing outliers without inadvertently removing
inliers.

The chapter concluded with the topics of robust metrics and standardization. Robust metrics should
be used alongside non-robust metrics in order to ensure that models are accurate. In particular, MAE
is robust and should always be used alongside MSE or RMSE. In addition, standardization should be
carried out using robust statistics to retain information about outliers, as traditional methods tend to
hide them.

Problems

4.1 Letx={0,1,...,100}. Find the values of Q1, Q2, and Q3, associated with the boxplot. Find the upper
and lower values of the whiskers of the boxplot. Draw the boxplot associated with this data. What is
the minimum value of a new data point x,,,, that would be considered an outlier if x,.,, > 0? What
is the maximum value of a new data point to be considered an outlier if x, ., < 0?

new

4.2 The Python code below generates a boxplot for the given data. Run this code to examine the result-
ing boxplot. To understand the workings of a boxplot, change the existing data (without adding any
new data) such that it produces roughly the same boxplot as the right-most boxplot of Figure 4.3.
(Hint: consider changing outlier values so they fit into the box portion of the boxplot.)

import numpy as np
import matplotlib.pyplot as plt
data = np.array([0.7, 1.9, 2.0, 9.4, 10., \
10.5, 10.8, 11.2, 11.3, \
12.4, 12.6, 13.5, 14.6, \
15.7, 16.3, 18.1, 20.0, \
21.4, 37., 38., 45., \
108, 111, 127, \
143, 192 1)

4.3

4.4

4.5

Problems

fig = plt.figure(figsize =(10, 7))
plt.boxplot (data)
plt.show()

For the original data in the previous problem, generate a histogram using the following code.

plt.hist (data,bins=1)
plt.show()

What is a suitable value for the number of bins and the threshold to detect five outliers?

Let y = {-0.26,0.62,-1.47,-0.56,—0.83,0.59,1.41,0.18, —0.40}. Create a QQ-plot using y and
determine if it is Gaussian. In order to do this, you will need to find the inverse CDF of the
Gaussian distribution for the quantiles g = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. For example,
x, = ®7!(0.1) = —1.28. The same operation is applied to all quantiles in g. To obtain a QQ-plot,
simply plot x vs. y.

(PROJECT) Consider solving a linear regression problem associated with the Belgium telephone
dataset of Chapter 2 using the least squares, log-cosh, and Huber estimators in Python. The goal is
to compare the two metrics, MSE and MAE, and their suitability for datasets with outliers. First,
the least squares approach will be used to find the MSE and MAE using the following Python
code.

import numpy as np
import pandas as pd
from scipy.optimize import minimize
X = np.linspace (1950, 1973, 24) .reshape(-1, 1)
Y = np.array([0.44, 0.47, 0.47, 0.59, 0.66, \
0.73, 0.81, 0.88, 1.06, 1.2 , \
1.35, 1.49, 1.61, 2.12, 11.9 , \
12.4 , 14.2 , 15.9 , 18.2 , 21.2 , \
4.3 , 2.4 , 2.7 , 2.9 1)
column_ones = np.ones((24, 1))
X = np.hstack((column ones, X))
def LS (b):
ri = Y-np.matmul (X, b)
rhollS = ri*ri/2
loss = np.sum(rhoLS)
return loss
initbetalS = np.array([0.,0.])
minval = minimize (LS, initbetalsS)
betalS = minval.x
Y pred = betaLS[0]+ betaLS[1]*X[:,1]
print ("Least squares estimation")

127

128 | 4 Outlier Detection, Metrics, and Standardization

print ("Mean squared error", \

format (np.mean((Y - Y pred)**2),".3f"))
print ("Median absolute error", \
format (np.median(np.abs (Y - Y pred)),‘'.3£f"))

Next, the log-cosh loss can be used to perform robust regression. Run the following code and find

the MSE and MAE.

logcosh = lambda x: np.logaddexp(x, -x) - np.log(2)
a = 2

def LC(b) :

ri = Y-np.matmul (X, b)

loss = np.sum((1l/a)*logcosh(a*ri))

return loss
initbetalC = np.array([0.,0.])
minval = minimize (LC, initbetalC)
betalC = minval.x
Y pred = betaLC[0]+ betaLC[1]*X[:,1]
print ("log-cosh estimation")
print ("Mean squared error", \

format (np.mean((Y - Y pred)**2),".3f’))

print ("Median absolute error", \

format (np.median(np.abs(Y - Y pred)),*.3£f"))

Finally, Huber’s method can also be used to perform robust regression. Run the following code and
find the MSE and MAE.

def Huber (b) :
ri = Y-np.matmul (X, b)
n = len(ri)
rhoH = np.zeros (n)
for i in range (n) :

if np.abs(ri[i]) <= delta:
rhoH[i] = ri[i]l*ril[il/2
else:
rhoH[i] = delta* (np.abs(ri[i])-delta/2)

loss = np.sum(rhoH)
return loss
initbetaH = np.array([0,0])
delta = 1.345
minval = minimize (Huber, initbetaH)
betaH = minval.x
Y pred = betaH[0]+ betaH[1]*X[:,1]
print ("Huber estimation")
print ("Mean squared error", \

4.6

Problems

format (np.mean((Y - Y pred)**2),".3£f"))
print ("Median absolute error", \
format (np.median(np.abs(Y - Y pred)), .3f"))

Based on the results of least squares, log-cosh, and Huber, which metric is better for datasets with
outliers such as the Belgium telephone dataset? For Huber, how do the results compare when § is
set to 4.0 and 10.0? Explain why the MAE value is increasing as é increases.

(PROJECT) In this project, the task is to generate quad-plots of the different visualization methods
given in this chapter.
a) Import the needed libraries.

import matplotlib.pyplot as plt
import scipy.stats as stats
import pylab

import statsmodels.api as sm
$matplotlib inline

b) Generate the quad-plot for a synthetic set of residuals by sampling a Gaussian distribution. It
has the same number of residuals as the Swiss dataset. Repeat the process several times and
comment on the results.

#remove the following line for later projects
rl = np.random.randn(47)

fig, ax = plt.subplots(nrows=2, ncols=2)

row 0, col O

ax[0, 0] .boxplot(rl)

row 1, col O

ax[1l, 0].plot(np.sort(np.abs(rl)), \
linestyle="None’, marker=‘o’,markersize=2)

row 0, col 1

ax[0, 1].hist(rl)

fig = stats.probplot (rl, dist="norm", plot=pylab)

plt.tight layout ()

pylab.show ()

plt.show ()

4.7 (PROJECT) In this project, the task is to develop a Python program to implement the iterative box-

plot method to remove all outliers in the diabetes dataset.
a) Import the needed libraries.

import numpy as np
import pandas as pd
from scipy.optimize import minimize

129

130 | 4 Outlier Detection, Metrics, and Standardization

b) Load the dataset and define the X and y values.

from sklearn.datasets import load diabetes
diabetes dataset = load diabetes()

diabetes = pd.DataFrame (diabetes dataset.data, \
columns=diabetes dataset.feature names)

diabetes['Y’] = diabetes_dataset.target

diabetes["ones"] = 1

X = np.array (diabetes.drop(["Y"], axis=1))

Y = np.array(diabetes["Y"])

¢) Define the needed function for the log-cosh loss (reuse the code given in the previous problem).
d) Implement the iterative IQR code.

n = X.shapel[0]
d X.shape[1]
outliers = n

num outliers = 0
Ifactor = 1.5
while (outliers > 0):
initbetalLC = np.random.randn(d)/10.
result = minimize (LC, initbetalC,method="BFGS’)
betalC = result.x
rl = Y-np.matmul (X, betalC)

quantiles = np.percentile(rl, [25, 50, 75])
m = quantiles|[1]

IQR = quantiles[2]-quantiles[0]

IQR upper = quantiles[2]+Ifactor* (IQR)

IQR lower = quantiles[0]-Ifactor* (IQR)

outliers = np.sum(rl < IQR lower)+ \
np.sum(rl > IQR upper)

num outliers += outliers
Ifactor += 50/n
if (outliers > 0):
k=0
outliers = np.sum(rl > IQR upper) + \
np.sum(rl < IQR lower)
rows_to delete = np.zeros(outliers)
for i in range (X.shape[0]):
if (r1[il \

References | 131

< IQR lower or rl[i] > IQR upper) :
rows_to _delete[k] = 1
k+=1
delete rows from X
X = np.delete(X, \
rows_to delete.astype(int), \
axis=0)
delete rows from y
Y = np.delete(Y, \

rows_to delete.astype(int), \
axis=0)
print ("Number of Outliers detected and removed:", \

num_outliers)

e) How many outliers are detected and deleted by this program?

4.8 (ADVANCED PROJECT) Run the Boston Housing dataset through the iterative boxplot code given
in Problem 4.6. The input data is provided below. Generate the quad-plots before and after the
removal of outliers. How many outliers are removed?

import warnings

warnings.filterwarnings ("ignore")

from sklearn.datasets import load boston

boston dataset = load boston()

boston = pd.DataFrame (boston dataset.data, \
columns=boston dataset.feature names)

boston ["MEDV"] = boston_dataset.target

boston["ones"] =1

X = np.array (boston.drop (["MEDV"] ,axis=1))

Y = np.array (boston ["MEDV"])

initbetalC = np.random.randn (14)

minval = minimize (LC, initbetalC)

betalC = minval.x

rl = Y-np.matmul (X, betaLC)

You can use the code from Problem 4.6 to generate the quad-plot with the new value of r1 produced
by the above code. Then run the outlier removal code of Problem 4.7 and produce a new quad-plot
using a new value of r1.

References

Aggarwal, C.C. (2017). Outlier Analysis, 2e. Springer.
Maronna, R.A., Douglas Martin, R., Yohai, V.J., and Salibian-Barrera, M. (2019). Robust Statistics, Theory and
Methods (with R). Wiley.

5

Robustness of Penalty Estimators

5.1 Introduction

The loss functions L,, L,, Huber, and log-cosh described in Chapters 2 and 3 provide reasonable models
for prediction but they can be improved through a procedure called regularization. In this procedure, a
penalty is added to a loss function so that parameter values can be fine-tuned to produce a better model.
Using a penalty function with a loss function provides a range of models to choose from and the goal
becomes one of finding optimal model that produces the lowest prediction error. In effect, we seek a
model that does not overfit or underfit a given training set, but rather one that strikes a balance between
the two. Penalty functions can also be used to reduce model complexity. In this chapter, we explore the
basic properties and characteristics of a variety of different penalty functions that can be used to regularize
regression models. In the next chapter, the issues of overfitting and underfitting are explored in detail
along with the procedures that use penalty functions to control model complexity.

5.2 Penalty Functions

Penalty functions (see Saleh et al. 2019, 2022; James et al. 2023) and their effective use are very impor-
tant in machine learning, especially for linear and logistic regression models and, to some extent, neural
networks. Unfortunately, they are not used as often as they should be because many of their key benefits
are not well-understood. While the primary benefit stems from their use in regularization, they have a
number of other advantages. For example, they can be used to mitigate the effects of collinearity, reduce
parameter variance, identify important features, or simply keep the values of the parameters under con-
trol. These and other capabilities will be covered in this chapter. In the context of outliers, we will delve
into whether or not penalty functions can help reduce the impact of outliers. In this section, we describe
the origins of penalty functions, how they are derived, their functional form, and their main properties.

5.2.1 Multicollinearity

The original motivation for penalty functions was the problem of multicollinearity. To understand this
concept, consider the closed-form least squares (LS) solution in matrix form given by

B = x"x07'XTy, (5.2.1)

Fundamentals of Robust Machine Learning: Handling Outliers and Anomalies in Data Science,
First Edition. Resve Saleh, Sohaib Majzoub and A. K. Md. Ehsanes Saleh.

© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/HandlingOutliersandAnomaliesinDataSciencele

133

http://www.wiley.com/go/HandlingOutliersandAnomaliesinDataScience1e

134

5 Robustness of Penalty Estimators

which was derived in Chapter 2. Here X € R™ and y € R". The X matrix has been standardized (see
Chapter 4) such that the intercept is 0. Therefore, the intercept is not included in Eq. (5.2.1). Hence,
estimates of the regression coefficients are given by iiLs = (/ﬁs, s /?ZS)T. A key requirement of this for-
mulation is that the matrix X" X be invertible to produce the solution. Recall that (X" X)™! is also used in
constructing the covariance matrix so the invertibility of X" X deserves some discussion.

Two potential problems may arise when applying Eq. (5.2.1). First, if d > n, then the matrix X" X is
not invertible and the parameters are indeterminate. This is easy to check and can be resolved by either
adding more data points or reducing the number of parameters. Second, if any of the variables are linearly
related, then X' X may not be invertible and the parameters are again indeterminate. This second case
gives rise to the collinearity problem, which is harder to solve.

As a simple illustration, let d = 20 such that we have 20 column vectors in the X matrix given by
X, ..., Xy. Further, assume that

X, =2x,,
x; =0.6x;; + 0.4x,.

Then, we will encounter collinearity in X due to the first equation, since x, and x; are linearly related.
Furthermore, we will encounter multicollinearity' in X due to the second equation, since X, X, and x,,
are all linearly related. The respective variables in both equations are said to be highly correlated and,
therefore, the matrix will not be invertible for reasons cited above. Strong correlations between variables
are manifested as large off-diagonal values in the covariance matrix making it harder to invert.

Multicollinearity occurs when three or more variables exhibit a strong relationship even though any
two variables appear not to have any correlation. If there are hundreds of variables, there is likely to be
some form of multicollinearity. This is a more difficult condition to identify but may lead to instabil-
ity in the parameter values and make interpretability of the results more challenging. Outliers could
also play a role in this context. High-leverage observations, which are data points with extreme val-
ues in the predictor variables, can introduce apparent multicollinearity. This happens because these
outliers can disproportionately influence the regression coefficients, making it seem like there is a lin-
ear relationship between variables when, in fact, this relationship is driven by the outliers. When the
outliers are removed, the multicollinearity may disappear, revealing that the variables are not actually
collinear in the absence of these high-leverage points. However, multicollinearity may still exist even
in outlier-free datasets. Interestingly, the search for methods to address multicollinearity eventually led
to the discovery and use of penalty functions in machine learning, often for reasons unrelated to this
problem.

There are several ways to determine if multicollinearity exists which we will not detail here. The more
important point is that it is crucial for variables to be relatively independent of one another for accurate
regression modeling. If the covariance matrix is diagonal, then the variables are completely independent.
Any large off-diagonal terms are indicative of correlations between variables. In regression problems, the
standard method to address multicollinearity is to somehow force the matrix to become invertible by

1 The term multicollinearity, which involves multiple variables, is used more often than collinearity even though it is a
special case of collinearity.

5.2 Penalty Functions

changing the diagonal values of the covariance matrix, that is, make it diagonally dominant. But how
can one do that without violating the original LS problem? The key is that we are mostly interested in the
prediction error on test sets so we are permitted to do anything sensible to fine-tune the model parameters
as long as the prediction error of the resulting model is reduced.

The most well-known modification of the LS formation is
ﬁLS-ridge
where I is the identity matrix and A is a tuning hyperparameter that is adjusted to make the matrix
invertible. In this new formulation, all we have done is add 4 to the diagonals of X'X such that the
matrix becomes diagonally dominant and hence invertible for a sufficiently large value of A. The prob-
lem of multicollinearity can be mitigated by virtue of this simple change in formulation. However, this
adjustment will not produce the same set of LS estimates as in Eq. (5.2.1) and, as a result, it is given a
different name, specifically ridge regression.

A natural question to ask is, what happens to the estimates as a function of A? In fact, the estimates
will be shrinking as 1 is increased relative to the LS estimates. The use of ridge acts as a penalty on
the original LS formulation since it reduces the estimates. The follow-up question then arises regard-
ing the quality of the estimates if the new ridge formulation is used. Is it better or worse? The answer
lies in the fact that the variance is reduced and the bias is increased as 1 is increased. Then 1 is
chosen to balance the two such that the prediction error is minimized. Hence, an overall benefit can be
achieved using ridge. The procedure used to find the best A is called regularization. With these basic facts
understood, it is appropriate to take a deeper dive into penalty estimation.

=X"'X+ AD"' X"y, (5.2.2)

5.2.2 Penalized Loss Functions

In machine learning, the closed-form LS solution is rarely used because it is not suitable for large prob-
lems, the matrix may not be invertible and other penalty functions are difficult to incorporate. Instead,
the standard approach is to apply gradient descent to some objective function and minimize it to obtain
the model. A number of loss functions of the form Y| p(B) were presented in Chapters 2 and 3. With
that in mind, we need to create an objective function composed of a loss function and a penalty function.
In this context, it is better to view penalty estimation as a constrained minimization problem as follows:

n
minimize Zp(ﬂ) subjectto P(B) <c. (5.2.3)
pert S

That is, the original loss function is penalized by a function P(f) which is constrained by c. The constant
c limits the range of the possible solutions during optimization. To apply the constraint in the form of a
single objective function, we can reformulate the problem as a Lagrange multiplier as follows:

n n d
JOSPRIY(B) = N p(B) + AP(B) =) p(B) + 4) P(B). (5.2.4)
i=1 i=1 j=1

In the above, the first term is the loss function and the second term is the penalty function. In linear
regression, the loss function can be seen as a “coarse-grain tuner” because it broadly adjusts the model
to fit the data. The penalty function acts as a “fine-grain tuner” by making more subtle adjustments to

135

136

5 Robustness of Penalty Estimators

the model parameters. The hyperparameter A plays the role of c in the original constrained minimization
problem of Eq. (5.2.3). The solution to the regression problem of the form

~ loss-penalty

= argmin J'osPenalty(g) (5.2.5)
BERT
is called a penalty estimator.

Penalized loss functions can be used to solve regression problems even in the absence of multicollinear-
ity, and that is what is done in practice. The notion of multicollinearity is more of legacy justification
and is rarely mentioned because of the enormous benefits obtained when using penalty functions. For
example, they can be used to prevent overfitting or for variable selection to reduce model complexity
and improve model interpretability. These are major advantages that are achieved through penalized
estimators, making them critical to many data science problems.

5.3 Ridge Penalty

The most widely used form of penalty estimation is the one we have encountered already called ridge
regression. The objective function using the least squares loss and ridge penalty is given by

n d
]LS-ridge(ﬁ) — %Z(yl _ ;I'ﬂ)Z + /12‘%2 (5.3.1)
i=1 =1

Surprisingly, it is equivalent to Eq. (5.2.2) although it seems to bear little or no resemblance to it except
for the use of A. But they are indeed both penalized least squares. Because of its formulation seen above,
the ridge penalty function is sometimes referred to as an L, penalty since it is based on the L,-norm. Its
primary purpose is to shrink the parameters thus moving the estimates away from the unbiased value and
toward f = 0. By properly tuning 4, it is possible to apply enough shrinkage to the parameters such that
the resulting biased estimates provide a lower variance and a more accurate model for prediction. Note
that B = (B, B, --. . By)" but the intercept is not included in the penalty function. That is, f, is typically
left out of the shrinkage process and is instead adjusted to accommodate the overall level of shrinkage of
the other parameters.
To simplify the function, if weletr, =y, — lT B, the objective function becomes

n d
-ridge 1
JrSTde(g) = Eer + ,12/3].2. (5.3.2)
i=1 Jj=1
The objective function using the log-cosh (LC) loss and ridge penalty is given by
n d
JiCridee(gy — %Z log(cosh(ar;)) + /1213].2. (5.3.3)
i=1 j=1

For linear regression, a = 2 as discussed in Chapter 4.
For the Huber case, we use

n d
JH-ridgE(ﬂ) — ZpH(ri) + XZ‘H]Z’ (5.3.4)
j=1

i=1

5.4 LASSO Penalty

where the loss term is

) = . 5.3.5
Pu(r) s(inl-2) ifinl> s 533

2

One issue to resolve when using Huber is that of specifying the value of §. In many datasets with dif-
fering number of outliers, the value of 6 cannot be determined a priori. If there are no outliers, a large
value of § is appropriate (between 4 and 5) whereas for cases with lots of outliers, a smaller value is war-
ranted (between 0.1 and 0.5). However, as we saw in Chapter 3, choosing small values of § may lead to
optimization problems. Therefore, it is common practice to use a fixed value of § = 1.345 with penalty
functions.

Exercise: In a linear regression problem, let d = 2. The two parameters of interest are f, and f,. Write
the ridge penalty function in terms of these two parameters with a constraint c applied.

Ans.: The expanded form of the ridge penalty with the constraint is

PB)=pi+p: <c

m]
For a two-dimensional case, the constrained optimization problem of Eq. (5.2.3) can be written as
n
minimize subjectto 7 + p2 <c. 5.3.6
nimize 30(p) subjectto S+ 4} < (5.3.6)

This implies that as ¢ decreases (which is equivalent to increasing 1), the two parameters are constrained
to live in a tighter and tighter circle around the origin. Therefore, the parameters will shrink in value as
the constraint c is made smaller.

5.4 LASSO Penalty

The ridge penalty is based on the L,-norm so it is natural to consider devising a penalty based on the
L,-norm. Such a penalty function is referred to as LASSO (least absolute shrinkage and selection opera-
tor). The objective function combines the least squares loss with the LASSO penalty and is given by

n d
LS-LASSO, oy _ 1NV 2
SRRSO = /1];Iﬁ,»l- (5.4.1)

An interesting and unique property of LASSO is that it can set some parameters to 0 effectively removing
them from the regression procedure. This can be useful in many different data science problems, but par-
ticularly in high-dimensional problems with a large number of variables. In those situations, many of the
variables do not affect the response and therefore can be set to 0. This process of removing unimportant
variables is sometimes called feature selection in machine learning.

The objective function with the log-cosh loss and LASSO is given by

n d
JUCLASSO () — %Z log(cosh(ar,)) + /12|ﬂj|- (5.4.2)
i=1

=

137

138

5 Robustness of Penalty Estimators

Finally, in the Huber case, we use

n d
JH-LASSO(B) — ZPH(Vi) + /IZLBJ', (543)

i=1 j=1

where p,,(r;) was defined earlier in Eq. (5.3.5).

Exercise: In a linear regression problem, let d = 2. The two parameters of interest are f; and f,. Write
the LASSO penalty function using these two parameters with a constraint ¢ applied.

Ans.: The expanded form of the LASSO penalty is
P(B) = 1B+ 15| <c.

m}

For a two-dimensional problem, the constrained optimization problem of Eq. (5.2.3) can be written as

n
inimi bject t <ec 5.4.4
mlgé%lzei;p(ﬂ) subject to |8,] + [,] < ¢ (5.4.4)

This implies that as ¢ decreases (which is equivalent to 4 increasing), the two parameters are constrained
to live in a tighter and tigher diamond around the origin. Therefore, the parameters will shrink in value
as the constraint c is made smaller.

5.5 Effect of Penalty Functions

In this section, the effect of penalty functions on the unpenalized estimates is described. Assume we have
two parameters, f, and f,, representing the intercept and slope of a line, respectively. The penalty would
only be applied to g, since the intercept is not typically penalized. Then, the penalty function would act
to shrink the slope as 4 is increased. There are two basic ways to shrink a parameter value:

1) subtract a value until it reaches 0, or
2) divide by a number greater than 1.

. ~Unpenalized . . .
For example, assume that we have produced an estimate of the slope, f; , using simple linear

regression, and we want to reduce its value with a penalty. In the first approach, we can simply let

~Penalized ~Unpenalized

ﬂ1 =ﬁ1 -4

. ~Unpenalized APenalized
and increase 4 until we achieve the desired reduction in value. If 1 = §; , then f; =0and

no further reduction is allowed (otherwise, it would go negative).
A second approach is to set

~Unpenalized
~Penalized 1

! T+ A

. ~Penalized
and increase A until the needed reduction is obtained. However, in this case, §; does not reach 0,

except at A = o0. In both cases, we would pick the A that produces the lowest prediction error. As simple

5.6 Penalty Functions with Outliers

LASSO Ridge

1.0 1.0

0.8 0.8
o —~
206 £0.6
é Reaches O here E; Reaches O at infinity
<@ =
=04 0.4

0.2 0.2

0.0 0.0
00 25 50 7.5 10.0 125 15.0 17.5 20.0 00 25 50 7.5 10.0 125 15.0 17.5 20.0
A A

Figure 5.1 Key shrinkage characteristics of LASSO and ridge.

as these two cases may appear, they are the basis of the two most popular penalty estimators described
above: LASSO and ridge.

The characteristics of these two important penalty functions are illustrated in Figure 5.1 for the one
variable case. These types of plots are called traces because they trace the path of the estimates as A
increases. In the case of LASSO on the left, the estimate shrinks linearly as 4 increases and eventually
stops abruptly at 0. This is the result of the L, penalty. On the right side of the figure showing ridge, the
estimate reduces in value gradually and reaches 0 at infinity. This is the result of the L, penalty. Since
these plots are for a one-variable problem, they do not tell us about the behavior in a multidimensional
setting. That will be presented in the sections to follow. However, it is worth keeping these first-order
representations in mind when using the LASSO and ridge penalty functions: the ridge penalty reaches
0 gradually while the LASSO penalty reaches 0 abruptly as 4 increases. In the figure, if 4 = 15, LASSO
would set ﬁfenahzed = 0 while ridge would set ﬁfenahzed = 0.08.

There is one other effect of penalty functions which has to do with the variance. When an estimate
is reduced in size, the variance also decreases. That means that the uncertainty around the estimate is
reduced so there is more confidence in the estimate. If we reduce all estimates to 0, the variance goes
to 0, but the model is meaningless. The trade-off is that the bias increases (see Chapter 2). Estimates are
initially unbiased but the bias steadily increases as 4 increases. These two factors must be balanced which
gives rise to the bias-variance trade-off, as described later in this chapter.

5.6 Penalty Functions with Outliers

‘We now address the two central questions in this chapter. First, can penalty functions mitigate the effects
of outliers? And second, do penalty functions provide any benefits in terms of producing better models

139

140

5 Robustness of Penalty Estimators

with robust loss functions? To illustrate the effect of outliers, we return to the Belgium telephone dataset
from Chapter 2. It is a small dataset used throughout this book to illustrate some key features of linear
regression with outliers. Here, we examine the ridge and LASSO penalties and show what happens to
the slope of the regression line as the estimates shrink when A is increased. Obviously, multicollinearity
does not exist when there is only one variable, but the penalty function is still useful for reasons cited
earlier.

Consider Figure 5.2. The two plots, one for ridge and one for LASSO, show the change in the slope as
4 is adjusted using values 0, 50, 500, and 5000. We observe that the lines all rotate around a pivot point.
For LS, the pivot point is the centroid. Both ridge and LASSO start at the unbiased estimate and then

LS-ridge
[
20
[]
[]
15 .
w2 . . .
E 10 Centroid 1=0
50
500
5- o 5000
° I
O_
1950 1955 1960 1965 1970
LS-LASSO
[]
20-
[]
[]
15 .
E 104 Centroid A=0
50
500
37 ® 5000
° o ° °
0_
1950 1955 1960 1965 1970

Figure 5.2 Ridge and LASSO effect on LS estimates.

5.6 Penalty Functions with Outliers | 141
flatten out to ﬂfs_ndge = 0. If we examine the penalty function’s ability to correct for outliers, we find that
it cannot make the necessary adjustments because it is anchored to the centroid. Therefore, generally
speaking, penalty functions will not help much when outliers are present. Nevertheless, the variance is
reduced as the estimates shrink and the prediction error may be slightly reduced in the process.

Next, we address whether there are some gains to be had if a robust loss is used in conjunction with a
penalty function. Consider Figure 5.3 where the log-cosh loss is combined with ridge and LASSO, respec-
tively. Here, the pivot point is in the vicinity of the median of the data. There is some gain in choosing
a nonzero value of 4 as it may improve prediction accuracy. As we will see later, when there are many

LS-ridge

20+

Calls

107 Pivot
point

A=0

5_
50
‘M‘
-

0-M""' 5000

1950 1955 1960 1965 1970
LS-LASSO
[]
20-
[]
[]
151
[]
2 o ¢
S 101
Pivot
point

NErE=——— e a 5000

1950 1955 1960 1965 1970
Year

Figure 5.3 Ridge and LASSO effect on log-cosh estimates.

142

5 Robustness of Penalty Estimators

variables, ridge will improve the variance while LASSO allows for subset selection, but these two key
advantages of penalty estimators are not observable with only one variable. The main point here is that
penalties can improve the model and its variance in the robust case.

5.7 Ridge Traces

It is instructive to know what happens to each parameter as we vary 4 in a multivariate setting. As we
increase A, the estimates tend to decrease but exactly how they decrease is not as easy to predict. However,
in a previous section, we saw that the trajectory of one estimate as A is increased is either a gradual decay
to zero or an abrupt drop to zero. For the multivariate case, the estimates can be plotted as a function of
A to obtain the true trajectories which are called penalty traces.

In this and other chapters, we will be using these traces to illustrate many of the characteristics and
properties of penalty estimators. We use ridge to introduce the traces and their meaning but the reader
is encouraged to become very familiar with these traces as they will be used in the same way for other
penalty functions. The process of creating the traces is very simple: choose a number of values of 4,
compute the estimates at those values, and plot the results as a function of A. Typically, the estimates are
plotted as a function of log(4) because it is more informative due to the large scales over which shrinkage
occurs.

The Swiss dataset was introduced in Chapter 3. It is a linear regression problem with d = 5 explana-
tory variables (Agriculture (f;), Examination (f,), Education(f,;), Catholic(f,),and Infant
Mortality (f;))and one response variable (Fert i1ity). The overall goal is to build a model to under-
stand the relationship between the explanatory variables and the response variable. For our purpose, the
objective is to understand the properties of penalty functions through the use of ridge traces. As described
before, these traces are simply plots of the estimates for each variable as a function of A.

To generate the ridge traces, we have to select many values of 4 and compute the estimates for each
one using Eq. (5.3.2). The traces for the Swiss dataset are plotted as a function of log(4) in Figure 5.5. We
see that all five variables have different trajectories in the figure. However, they all gradually arrive at 0.
A key insight into the true nature of the traces is that the variance largely controls the rate of shrinkage.
Estimates with large variances will shrink faster than those with small variances. This is exactly what we
would like to happen. There is an important point worth mentioning here that may be clarifying in terms
of the meaning of the traces: if we pick any vertical line associated with a specific A value, the intersection
of that line and the curves would give us the penalized estimates for that A.

Exercise: Using Figure 5.4, find the approximate values of each of the parameters at 4 = 10%. (Hint: round
to the nearest 0.05).

Ans.: If a vertical line is drawn on Figure 5.4, the approximate values of each parameter when 1 = 102
are

p, =—-020, p,=-025 f,=-085 f, =010, p;=0.80. o

The ridge traces for LS-ridge, H-ridge, and LC-ridge are provided in Figure 5.5. They illustrate the sim-
ilarities and differences between the different cases. In LC-ridge and H-ridge, Examination is clearly

5.8 Elastic Net (Enet) Penalty

Infant Mortality
1.00
0.75 1
0.50+
0.254
i Catholic
0.00+
Agriculture
_0.25- Examination
—0.504
—0.75 1
Education
100 10! 102 103 104 105 100 107 108

A

Figure 5.4 Ridge traces for the LS-ridge estimator.

non-monotonic but this is not as noticeable in the LS-ridge case. Recall that the Swiss dataset does not
have outliers. In general, the traces of LS-ridge compared to LC-ridge and H-ridge will only differ slightly
with no outliers, but the differences will be more pronounced when outliers are present. We should note
that there is nothing magical about a particular 4 value. This can be understood by examining the x-axis
values of all three traces. Their ranges are all different because they are produced by three different loss
functions. Therefore, LS-ridge, LC-ridge, and H-ridge may all produce different optimal A values that lead
to essentially the same set of estimates if no outliers exist.

5.8 Elastic Net (Enet) Penalty

A penalty function that combines the ridge and LASSO penalties into a single composite penalty function
referred to as the Elastic Net as follows:

d d
P(B) =1,) |81+ 4,) B (5.8.1)
j=1 j=1
There are now two tuning hyperparameters, 4, and 4,. If 4; = 0, we obtain the ridge penalty, whereas if
4, = 0, we obtain the LASSO penalty. The two hyperparameters, 4, and 4,, are adjusted until the desired
bias/variance trade-off is achieved (i.e. balancing overfitting and underfitting).

143

144 | 5 Robustness of Penalty Estimators

LS-ridge Figure 5.5 Traces for LS-ridge, H-ridge, and
talit LC-ridge estimators.
1.00 1
0.75 1
0.50 1
0.251
Catholic
p
0.00 1
Agriculture

_0254 Examination

-0.501

-0.751

10! 10! 10° 105 107
H-ridge

1.5

1.0

0.5

0.00 1

0.5

-1.0

10! 10! 103 105 107
LC-ridge

1.01

0.5 1
p Catholic

0.001 Agriculture
Examination

-1.01

102 100 109 10' 102 10° 10* 105 106
1

5.9 Adaptive LASSO (aLASSO) Penalty

In machine learning, it is formulated by letting 4, = Aa and 4, = A(1 — a)/2 to produce

d 1-a) d
PB) =4 |a Y IBl+——5— 5| (5.8.2)
J=1 j=1

Ifa = 0, we are using ridge while if @ = 1, we are using LASSO. In practice, we must seek optimal values of
both 4 and a by selecting a number of discrete values of each one and then trying all possible combinations
of these values to find the best model—a procedure referred to as a grid search.

Exercise: Write the objective function for a log-cosh loss with an elastic net penalty function.

Ans.: The full expression is

n d d
JLCERet(g) — %Z log(cosh(ar)) + A |a Y || + d ; @) PV AR
i=1 j=1 j=1

5.9 Adaptive LASSO (alASSO) Penalty

Model reduction using LASSO is very important when the number of parameters is large. In a dataset
with many variables, most of them will not be important in terms of their impact on the response variable.
One can imagine a dataset with d = 50 being reduced to d, = 30 by variable selection, and ideally only
the important explanatory variables would be retained in the compact model. A penalty function with an
inherent ability to order the variables from most important to least important is said to have the oracle
property.

Unfortunately, the LASSO penalty does not have this property. It is effective at removing variables but
not necessarily in their order of importance. As a consequence, it is possible that the wrong variables
may inadvertently be removed by setting them to 0. For example, let d = 7 and assume we know a priori
that g, = f, = 0 (hence they should be removed) while all other parameters are nonzero. If LASSO is
used, it might remove two variables but not necessarily g, and f,. Thus, such a penalty estimator does
not have the oracle property. However, it may still produce a compact model but the parameter values
may not be as meaningful if the wrong variables have been removed. This is important because of model
interpretability. We want to be able to eliminate parameters from the model that are not explanatory
in terms of the response variable, leaving only those that are important. If an estimator possesses the
oracle property, it behaves asymptotically (i.e. with enough data) as if it has prior knowledge of the true
model. Whenever model reduction and interpretability are important, we require the oracle property to
be present in the penalty function.

Improved methods have been developed that do indeed possess the oracle property. One in particu-
lar is relevant to the discussion here: aLASSO. In the original LASSO, the same A value is used for all
parameters. In aLASSO, an additional weight is applied to each parameter as follows:

d
P(B)= 1) w,lB. (5.9.1)
Jj=1

where w; is the weight for each parameter. The only matter to resolve is to choose w.

145

146

5 Robustness of Penalty Estimators

Ifwe setw; =1/| ﬁ; |, where ﬁ; is a known quantity typically set to the unpenalized estimate for §;, we
obtain the new penalty function

gl &
Zzﬂ B, (5.9.2)

P(p) =

Jlj

where 4; = 4/ |/§j* |. Hence, each parameter has its own effective 4; based on the unpenalized estimates.
Then, small ﬁ; values will lead to large weights which is equivalent to a high 4;, while large B;-k val-
ues would be equivalent to a small 4;. This makes sense intuitively since the unpenalized solution has
valuable information about the magnitude of the estimates, which in turn can be used as a weighting
factor to guide the aLASSO estimation in the right direction for the removal of unimportant variables.
Although somewhat more complicated than ridge or LASSO, the aLASSO approach provides a powerful
mechanism for model reduction.

The objective function for a least squares loss with an aLASSO penalty function, assuming that the

unpenalized estimates are known and given by ,[?]LS forj=1,...,d,is
LS-aLASSO lﬂ |
T B) = Zr + /12 —
= =11 |

The objective function for a log-cosh loss with an aLASSO penalty function, assuming that the unpenal-
ized estimates are known and given by ﬁJLC forj=1,...,d,is

n d
a 1 151
JLC-ALASSO(gy aEIOg(cosh(ari)) + /12 |/§ch .
i= j=

J

Finally, in the Huber case, assuming that the unpenalized estimates are known and given by /?JH forj=1,
.,d, we use

JHAASO(g) = ZpH(r)+ zZ L

J= llﬁj

where pp(r;) was defined earlier in Eq. (5.3.5).

5.10 Penalty Effects on Variance and Bias

In the next chapter, we will carry out a mathematical treatment and provide practical applications of the
bias-variance trade-off in machine learning. In this section, we provide a more qualitative view of each
quantity in preparation for that discussion.

5.10.1 Effect on Variance

We first study the effect of a penalty function on parameter variance. It was mentioned earlier that the
variance is reduced as A increases. This effect will now be illustrated through a series of histograms.

5.10 Penalty Effects on Variance and Bias

It should be well understood at this stage that the variance is a measure of the uncertainty in the esti-
mates but closed-form expressions of variance may be hard to derive. An alternative is to generate a
large number of estimates of each parameter using many datasets, but unfortunately we only have one
to work with. However, we can use a well-known approach called the bootstrap method to generate the
distribution of the estimates in histogram form using only one dataset.

The basic idea in bootstrapping is to sample a given dataset multiple times and compute estimates
for each sample. That is, we can create what are called sampling distributions of the estimates. Ideally,
we would like to do this with many different datasets but since we only have one to work with, we use
a sample with replacement strategy. This means we will draw an observation from the original dataset
randomly and then put that observation back into the original dataset and repeat the process until we
have constructed the new dataset in full.

More concretely, in the Swiss dataset, there are 47 observations (i.e. rows). When we apply bootstrap-
ping, we randomly select 47 observations (with replacement) to create a new dataset, which implies
that we may have repeated observations in our synthesized dataset. We then compute the estimates
using some method (LS in this case) and repeat this procedure multiple times to generate parameter
distributions. The spread of the estimates around the mean captures the variance and this can be
computed easily. Figure 5.6 shows the distribution of LS estimates (4 = 0) after sampling the dataset in
this manner. We note that f,, f;, and g5 have large variances. In addition, §, has a large variance but we
will not be applying the ridge penalty to it; only g, ..., f; will be penalized because they are explanatory
variables directly associated with the response.

Now what happens to the variance when we shrink the estimates by increasing 4 when using a ridge
penalty? Consider only g using LS-ridge for a number of different values of 1 as shown in Figure 5.7. With
4 =0, we obtain the original distribution given in Figure 5.6 which features a large variance. However,
as A is increased, the variance is reduced, and the estimates move toward 0. This is exactly what the
theory predicts. Also implied here is the fact that the bias is increasing as we increase 4 since the mean

Histogram of f3, Histogram of 3,
g g
=
g - — 1 g d
E (=} T T T i (=4 r T T T T T 1
40 60 80 100 120 -3 -2 -1 0 1 2 3
Coefficient value Coefficient value
Hist f Histogre f
- istogram of 3, . istogram of fi;
=1 =
s 2 j r o 2 j
£ ss m_
o N [Salsel !
E : _I.-I:|§m-l—.__ ; : : E o : ‘ _.-rll]-...-hl_ : .
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Coefficient value Coefficient value
Hist f Histogre f
- istogram of 3, . istogram of fi;
=1 =
s 8 15} g :
= | = _Th.,
i ! T f T T | = T T T T ? i
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Coefficient value Coefficient value

Figure 5.6 Sampling distributions of LS estimates.

147

148 | 5 Robustness of Penalty Estimators

A=0 A=1
by by
5 2% 5 91 i
ik N u 1w SO _ g8 AT T .
= =
-1 0 1 2 3 -1 0 1 2 3
Coefficient value Coefficient value
A=10 A=100
> >
Q - Q i
& B i
g : I | ’_‘_|— ;1?; g _._l_[
i) e r T T 1 i) T T 1
-1 0 1 2 3 -1 0 1 2 3
Coefficient value Coefficient value
A =1000 4 =10,000
> >
Q Q
g2 IS
g AHL 5 o
e r T T 1 o) =] r f T 1
-1 0 1 2 3 -1 0 1 2 3
Coefficient value Coefficient value

Figure 5.7 Sampling distributions of LS estimates of g, for different 4 values.

is moving away from its original unbiased value (i.e. the mean of the distribution with 4 = 0). So the
variance is decreasing while the bias is increasing. But when do we stop? The answer is to choose the
4 that gives us the lowest prediction error; ideally, this occurs when the bias and variance are balanced.
Again, we will explore this trade-off more fully in the next chapter to answer this question properly.

5.10.2 Geometric Interpretation of Bias

In order to understand the bias of a penalty estimator, we now consider geometric interpretations of
the three penalty functions, ridge, LASSO, and aLASSO, using two variables. These interpretations also
provide insight into the inner workings of each penalty estimator but are only meant as a qualitative view
of their differences. They are based on a multiple linear model given by

Y =P+ hx +bx, + e, (5.10.1)

where least squares estimation is used for linear regression. The concepts to be described apply to robust
regression in the same manner.

We begin with the ridge penalty. One can show that the L, penalty function effectively places a circular
constraint on the two parameters, f, and f,, given by

B+ P <c (5.10.2)

where c is a constant. These circular regions centered at the origin are shown in Figure 5.8. The figure
represents the two-dimensional space of possible f; and g, values. The circles represent the constraint
B + ﬂ22 = ¢ due to the ridge penalty function for different values of ¢, which corresponds to A in the
penalty function. The point marked “Xx” represents the unbiased LS estimates. Imagine that the unbiased
solution sits at the bottom of a valley with contours around it. The elliptical contours represent lines of
equal value of the original loss function while the circles represent the constraints due to the penalty
function.

5.10 Penalty Effects on Variance and Bias

Figure 5.8 Geometric interpretation of ridge.

Starting at the unbiased solution on the circle labeled 0, with 4, = 0, when we begin to apply the penalty
function, the estimates shrink and follow some hypothetical trajectory depicted in the figure until the
edge of circle 1 is reached at 4 = ;. As 4 increases to A = 4, (circle 2), we shrink the estimates by a
greater degree. At A = A;, we reach circle 3. This continues until all estimates reach 0 at A = oo at the
origin. As we do this, the bias increases. For example, the bias at point 2 is the vector distance from point
0 to point 2. Essentially, we are shrinking the estimates toward the origin where the bias is the largest and
the variance is the smallest. In practice, we seek some intermediate point between the unbiased estimate
at “x,” where we have overfitting, and the origin, where we have underfitting.2 We can try a number of
different values of 4 until a proper balance is struck between the two. The process of finding the optimal
value, Aopt, to balance this bias—variance trade-off is called regularization.

Next, we examine the LASSO penalty in the same manner. The constraint imposed by the L, penalty
function is

1Bl + 18| < c (5.10.3)

The resulting constraint geometry is a diamond shape in two dimensions rather than the circle, as shown
in Figure 5.9. If A, = 0, we obtain the unbiased estimates at “x.” As 4 is increased, the diamond shrinks
in size, as do the resulting parameters. Eventually, when 4 = oo, the origin is reached. However, in the
case of LASSO, one of the two parameters may reach 0 well before the other.

2 The definitions of overfitting and underfitting will be elaborated in the next chapter. Briefly, overfitting refers to the
tendency to try to fit every point in the dataset as closely as possible so that the model loses its generality, whereas
underfitting is inadvertently not fitting enough points to create a usable model.

149

150

5 Robustness of Penalty Estimators

Figure 5.9 Geometric interpretation of LASSO.

The hypothetical trajectory for LASSO starts at the unbiased LS estimates (“X”) at point 0 and termi-
nates at point 1 with A = 4,. Both estimates shrink but neither one is 0 yet. However, when 4 = 4,, the
path lands on one corner of diamond 2, where g, = 0. Then, we are left with a model where only g, # 0.
We can now remove f, and keep only g, . This is the way LASSO performs feature selection. That is, it has
selected g, over f, because it is considered more important (with the caveat that LASSO does not possess
the oracle property). Further increases in A eventually forces §; = 0 at the origin.

Finally, consider the aLASSO penalty in the same manner. Recall that, in aLASSO, we introduced a
weight w; to the LASSO penalty. The effect of individual weights on each parameter can be seen in the
geometric interpretation of Figure 5.10. Weights effectively reshape the diamond from a symmetrical
one in LASSO (Figure 5.9) to an asymmetrical one in aLASSO (Figure 5.10). The constraint for aLASSO
is given by

1l 1Bl

ALS ALS T

By 18,]
The asymmetry is due to the division by the unpenalized estimates. In the case of LASSO in Figure 5.9, the

trajectory starting from “x” could reach either f; = 0 or , = 0since the diamond is symmetric. However,
aLASSO would likely reach the g, = 0 corner first, which is the nearest corner, assuming the geometry
in Figure 5.10. Then, the asymmetric diamond would continue to shrink in size as indicated by 4, and
A,, etc., and eventually reach f; = 0 at or before 4 = 0.

In this case, both LS-LASSO and LS-aLASSO reached the same conclusion that g, is more important

than g, but this was a simple two-variable problem. In larger problems, they tend to find different

(5.10.4)

5.11 Variable Importance

Figure 5.10 Diamond-warping effect of weights in aLASSO estimator.

orderings of the variables. Because of the oracle property, the aLASSO penalty captures an oracle
trajectory of each parameter whereas LASSO, in general, does not. We will explore this further in the
next chapter.

5.11 Variable Importance

One of the key objectives in data science is to determine the importance of different explanatory variables
relative to the response variable. There are many tools and techniques used to obtain the variable impor-
tance, two of which will be described in this section. For linear regression, we could look at the size of
the estimates to gain some insight into its importance. However, this requires that the dataset be stan-
dardized and does not take the variance into account. Instead, it is common practice to use the ¢-statistic
to obtain a first-order assessment of the relative importance of different variables. Another approach is
to use LASSO and aLASSO traces to provide an ordering of the variables from most important to least
important. These two penalty functions perform better if combined with robust methods, especially if
there are outliers in the dataset. In this section, we compare and contrast these different approaches.

5.11.1 The t-Statistic

The t-statistic is associated with the ¢-distribution which is a more general version of the Gaussian distri-
bution in that it can handle small sample sizes of less than 30 observations. Formally, the ¢-statistic for a

151

152

5 Robustness of Penalty Estimators

given estimate, #, with standard error, s.e.(d) is obtained using the formula
t; = H_A = BA) (5.11.1)
s.e.(0) s.e.(0)

The t-statistic is used in hypothesis testing to determine the statistical significance of an estimated value of
a parameter. We want to know if the estimate should be trusted. In this case, the hypothesis test assumes
the target value is 0. The t-statistic can be used to obtain a p-value to quantify the significance of the esti-
mate. For example, in Figure 5.11, a t-distribution is shown for some estimate. The ¢-statistic computed
as above turns out to be, say t; = —2.3. The p-value is the area under the curve between —oco and —2.3 plus
the area between 2.3 and oo (the two shaded areas). For this case, the p-value is 0.02 which means that
the estimate is significant at the @ = 0.05 level (95% confidence), but not at the & = 0.01 level (99% con-
fidence). The maximum p-value is 1 and the minimum is 0. Usually we want to have very small p-values
for all of our parameters so we are confident about the model.

The p-value is one of the most frequently cited quantities in statistical analysis. For our purposes, the
magnitude of the ¢-statistic is of greater interest rather than the p-value itself since it can be informative
about the relative importance of each variable. The further away the ¢-statistic is from 0 in either direction,
the greater is the parameter importance. Therefore, if we consider the absolute value of the ¢-statistic and
order the variables accordingly, we obtain a good idea of the variable importance relative to one another.

As mentioned in Chapter 4, if there are outliers in the dataset, the values of both § and s.e.(é) can
be affected. The computed distribution may be quite different from the true distribution, as shown in
Figure 4.8. Therefore, it is important to note that the t-test assumes an outlier-free dataset that conforms
to the true Gaussian distribution. Otherwise, the results may be misleading. With this caveat in mind, we
continue with the description of the ¢-statistic for variable importance.

0.40+

0.35

<

o

(e}
-

p-value = 0.02

<
)
o

Probability density
o
[\)
S

0.151
0.101 .
f-statistic
0.05 1 -
0.00
4 3 2 - 0 1 2 3 4
Figure 5.11 Using the t-statistic to find the p-value.

5.11 Variable Importance

Table 5.1 Swiss fertility t-statistics for least squares (LS) and log-cosh (LC).

Feature s.e.A(L,;S) Var. order s.:}(L;Lc) Var. order
Agriculture -2.43 4 -2.96 4
Examination —-1.03 5 —1.08 5
Education —4.75 1 —4.94 1
Catholic 2.88 2 3.01 3
Infant Mortality 2.83 3 3.72 2

Consider the analysis of the ¢-statistics for the Swiss dataset shown in Table 5.1. This dataset does not
have outliers so the t-test can be applied. The ¢-statistic and variable ordering are provided in the table
using LS and LC linear regression. From these results, it appears that Educat ion is the most important
factor to determine Fertility, and Examination and Agriculture are the least important. The
parameters Catholic and Infant Mortality are of medium importance. Both LS and LC produce
roughly the same ordering since the Swiss data does not have outliers. This is a simple and effective
method to get a sense of the relative importance of the parameters, so long as there are no outliers.

5.11.2 LASSO and aLASSO Traces

An interesting aspect of both LASSO and aLASSO is their feature selection capability based on their
traces. However, one is better than the other as we will demonstrate by examining their traces. To begin,
consider the traces for LS-LASSO, H-LASSO, and LC-LASSO provided on the left side of Figure 5.12 for
the Swiss dataset. They illustrate the fact that, unlike the ridge traces, these traces terminate abruptly on
the A-axis at some finite values. They are all similar in nature due to the fact that there are no outliers.
Again, the shape of LS-LASSO compared to LC-LASSO and H-LASSO will only differ slightly with no
outliers, but it will be more pronounced when outliers are present.

Perhaps more importantly, the order in which they reach an estimate of 0 has some significance. It can
be interpreted as a variable ordering from least important to most important as 4 increases. Note that
all variables eventually have estimates of 0 (the zero point) when 4 is large enough. There is valuable
information in the order in which they reach the zero point. It would be of great value if the order was
related to its relative importance. Then, the first variable to reach 0 would be deemed the least important,
while the one that reached 0 last would be considered the most important. But it has been found that
the LASSO penalty does not offer this desirable feature because it lacks the oracle properly. However, the
aLASSO penalty possesses this property, given enough data, and the traces can provide a visualization of
variable importance.

Consider the right-hand side of Figure 5.12 showing the traces for LS-aLASSO, H-aLASSO, and
LC-aLASSO. They look similar to the LASSO traces with one notable difference: the order in which the
variables reach 0 has changed. This is a subtle but important difference. Table 5.2 provides a summary
of the orderings for the Swiss dataset using LS-LASSO, LC-aLASSO, and the ¢-statistic. Both LC-aLASSO
and the t-statistic have the same order of the variables, but not LS-LASSO. From the consensus of

153

154 | 5 Robustness of Penalty Estimators

LS-LASSO LS-aLASSO
Infant Mortality Infant Mortality_
1.00 ““m.\\ Ha
1.0+ \
0.75 \ \
\ \
% 050 \ \
g \ 051
2025 \
5] \
2 000 Catholic |
g 0.0 r—
£-0251 Agriculture
Examination
-0.50 1 051
0751 Education _—
10 10' 10° 10° 107
H-aLASSO
Infant Mortality 1.5 { TInfant Mortality
i s
N\ \
1.01 \ \
\ 1.0 \
\ \
. \
8 \ \
< \ 1
g 0.51 I|II 0.51 |II
Z I. \
8 Catholic \ Catholic I'|
Q .
g 7 0.0
§ 0.0 . /T Agriculture .~
= Agriculture 7 —
= Examination Examination |
—0.51
—0.51
. Education
Education - T e
—-1.01
10 10! 10° 10° 107 10° 10" 10° 10° 107
LC-LASSO LC-aLASSO
Infant Mortality Infant Mortality
N 1.0 \\
1.01 \
\
g \ 051 il
£ 051 \ ||
b3 1
8 | . |
g Catholic | 00 Catholic I|
Q .0 -
g 0.01 . 4 Agriculture < l
5 Agriculture s ——— |
Examination [Examination II
—0.5 —0.51 =)
E ion s M_\/—/
—1.0 e . ; r r r r r r r r r r
102 10! 10° 10! 10% 10° 10* 102 10! 10° 10! 10? 10° 10
A A

Figure 5.12 Trace characteristics of LASSO and aLASSO.

5.12 Summary

Table 5.2 Variable importance of the Swiss fertility dataset.

Feature LS-LASSO LC-aLASSO t-Statistic
Agriculture (8,) 3 4 4
Examination (f,) 5 5 5
Education (4,) 2 1 1
Catholic (8,) 1 2 2
Infant Mortality () 4 3 3

LC-aLASSO and the t-statistic, Education is the most important. Then, Catholic and Infant
Mortality are next, then Agriculture, and then finally Examination (for which all three agree).
This ordering is also logically sound. While the ¢-statistic is correct for this example, it may not be correct
in general as it is only considering 4 = 0. aLASSO is considering the entire range of A values when
determining variable ordering and is much more reliable.

To summarize, LASSO does not have the oracle property, whereas aLASSO does possess this property
assuming there is enough data. Further, the ¢-statistic provides first-order information about variable
importance but it should be used with a robust loss function. If there are outliers, the LS estimates may
be inaccurate and the standard errors may be inflated. Therefore, the ordering may be incorrect. The most
reliable option is a robust loss function with aLASSO to produce the correct ordering.

5.12 Summary

In this chapter, we have presented properties and practical aspects of penalized robust estimators and its
application to machine learning. Several new ideas and concepts have been introduced to enable robust
linear regression and model building that deserve further investigation. These topics will be covered in
the next chapter. We have demonstrated the importance of penalty estimators in reducing variance and
identifying variable importance. The ridge penalty is a smooth shrinkage mechanism, whereas aLASSO
has the oracle property and is best-suited for variable ordering. One can view the LASSO as being some-
where in between. The LASSO penalty typically sets some parameters to zero, but not necessarily in the
proper order since it does not have the oracle property. There are some numerical challenges in the imple-
mentation of LASSO and aLASSO due to the L; nature of their respective penalty functions, especially
for large A.

The motivation for the use of robust penalty estimators in machine learning is due to the presence of
outliers in datasets. The LS method is not outlier-tolerant so penalty estimation with an LS loss is equally
problematic. This is why robust methods should supersede the least squares approach where appropri-
ate. In the next chapter, methods of regularization with penalty estimators and k-fold cross-validation
techniques will be described which will complete the picture on the value of these methods.

155

156

5 Robustness of Penalty Estimators

Problems

5.1

5.2

Consider the following dataset with d = 2 to study collinearity.

X, 132.2 501.5 904.0 227.6 66.6 434 1253.0
X, 11.7 17.9 21.1 14.7 7.7 8.4 32.8
y 404.6 1180.6 1807.5 470.0 151.4 93.8 32934

Assume the linear regression model to be
Y =Py + fiX + Brx, + €.

Use Python code to solve the following.

a) Plot x, vs. x;. Qualitatively assess whether there is a potential of collinearity, that is, a linear
relationship between the two variables. (Hint: if there is a strong correlation between the two
variables, there is likely to be collinearity in the dataset.)

b) Center and standardize the data by subtracting the mean and dividing by the standard deviation
for each variable.

c) Find the least squares estimates for #; and g, using centered data as follows:

~LS _
B =X"%"X"y.
d) Find the LS-ridge estimates and plot the ridge traces using the closed-form expression given here
(I, is a 2 x 2 identity matrix)

~ LS-ridge

p
Use 4 =0,1,2,5,10, 20, 50, 100, 200, 500, and 1000. What are the values of §; and g, for A = 50?
How should we decide which 4 is best? (Hint: you will need to read Chapter 6 to answer this
question.)

= (X'X+ L)' Xy.

(PROJECT) This problem uses Python libraries to obtain results for both least squares with ridge
and least squares with LASSO. In both cases, the traces will be plotted and compared.
a) Load the needed libraries.

import numpy as np

import math

import scipy

import pandas as pd

from sklearn.linear model import Ridge
from sklearn.linear model import Lasso
from scipy.optimize import minimize
import matplotlib.pyplot as plt

b)

)

d)

e)

Problems

Read in the data file (which you should already have in your directory using the data provided
in Chapter 3).

swiss = pd.read csv("swiss.csv")

swiss[‘ones’] =1

X = np.array(swiss.drop(["Fertility"], axis=1))
Y = np.array(swiss["Fertility"])

X = X - np.mean (X, axis=0)

y =Y - np.mean(Y)

colnames = swiss.columns

Run ridge regression from A = 10° to 107.

n_lambdas = 200

lambdas = np.logspace (0, 7, n_lambdas)

coefs = []

d = X.shape[1]

for a in lambdas:
ridge = Ridge (alpha=a)
ridge.fit (X, Y)
coefs.append(ridge.coef [0:d-1])

Plot the ridge traces.

plt.figure(figsize=(10, 8))

ax = plt.gcal()

ax.plot (lambdas, coefs)

ax.set xscale(‘log’)

plt.xlabel (*lambda’)

plt.ylabel (‘beta 1-5)

plt.title(‘LS-ridge coefficients as a function ' \
‘of lambda’)

betal = coefs[0]

pos = np.zeros(len(betal))

for i in range(len(betal)):
plt.annotate (xy=[lambdas[0] ,betal[i]+pos[i]l]l, \

text=colnames [1i+1])
plt.axis(‘tight’)
plt.show()

Replace the ridge code segment above with LASSO:

n_lambdas = 200

lambdas = np.logspace (-2, 3, n_lambdas)
coefs = []

d = X.shape[1l]

for a in lambdas:

157

158

5 Robustness of Penalty Estimators

lasso = Lasso(alpha=a) #LASSO
lasso.fit (x,y)
coefs.append(lasso.coef [0:d-1])

Plot the results again using the plotting code above with a change in the title to reflect the use
of LS-LASSO. Compare and contrast the results from LS-ridge and LS-LASSO. What value of 4
reduces the number of variables to 2 for LS-LASSO?

5.3 (PROIJECT) This project involves generating the traces for log-cosh with ridge and log-cosh with
LASSO.

a)

b)

Define the log-cosh function and all the routines needed for LC-ridge and LC-LASSO.

logcosh = lambda x: np.logaddexp(x, -x) - np.log(2)
def residual(b,x,y):
residual y = y-np.matmul (x,b)
return residual_y
def LCRidge (b) :
d = len(b)
diff = residual (b,X,Y)
#RIDGE
loss = np.sum(logcosh(diff))+ \
lam*np.sum(b[0:d-1]*b[0:d-1])
return loss
def LCLASSO(b) :
d = len(b)
diff = residual (b,X,Y)
#LASSO
loss = np.sum(logcosh(diff))+ \
lam*np.sum(np.abs(b[0:d-11))
return loss

Run LC-ridge with the following code.

n_lambdas = 25

beta = np.random.randn (d)/10.

lambdas = np.logspace(-3, 5, n_lambdas)

coefs = []

for lam in lambdas:
res = minimize (LCRidge, beta, method=‘BFGS’)
beta = res.x
coefs.append(beta[0:d-1])

Plot the results using the code in the previous problem with a change in the title to reflect the
use of LC-ridge.

References | 159

¢) Run LC-LASSO with the following code.

n lambdas = 25

beta = np.random.randn(d)/10.

lambdas = np.logspace(-3, 5, n_lambdas)

coefs = []

for lam in lambdas:
res = minimize (LCLASSO, beta, method=‘BFGS’)
beta = res.x
coefs.append(beta[0:d-1])

Plot the results using the code in the previous problem with a change in the title to reflect the
use of LC-LASSO. What value of 4 reduces the number of variables to 2 for LC-LASSO?

References

James, G., Witten, D., Hastie, T. et al. (2023). An Introduction to Statistical Learning with Applications in
Python. Springer.

Saleh, A.K. Md. E., Arashi, M., and Kibria, B.M.G. (2019). Theory of Ridge Regression Estimation with
Applications. New York: John Wiley and Sons.

Saleh, A.K. Md. E., Arashi, M., Saleh, R., and Norouzirad, M. (2022). Rank-Based Shrinkage and Selection:
With Application to Machine Learning. New York: John Wiley and Sons.

6

Robust Regularized Models

6.1 Introduction

When building a model using machine learning, there is a concerted effort to balance the possibilities
of overfitting and underfitting on a given dataset. This issue has its roots in the bias-variance trade-off.
In this chapter, we explore the details of this trade-off and then examine the effects of outliers on the
standard procedures used in model building to generalize the results. This chapter is a companion to the
previous chapter and covers a number of practical regularization techniques that can be used to build bet-
ter models. One of the key questions to be answered is regarding the selection of the A hyperparameter
associated with the penalty functions. The overall goal is to produce a compact, robust model that gener-
alizes to unseen test datasets when outliers are present. This involves feature selection, penalty functions,
and/or the application of k-fold cross-validation, all of which will be described.

The chapter begins with illustrations of overfitting and underfitting in linear regression problems.
Then, an in-depth study of the bias-variance trade-off is provided as it pertains to choosing the optimal A.
This is followed by the effect of outliers in datasets when they are divided into training and test sets. Next,
penalty estimation with various cross-validation schemes will be described as methods of generalization.
We also address the question of whether generalization procedures can mitigate the effects of outliers. The
application of penalty functions to the task of feature selection is also described. In this case, the objec-
tive is to select the best subset of the available features. A methodology is described that combines robust
penalty estimation with feature selection to find a compact model with good overall prediction accuracy.

6.2 Overfitting and Underfitting

An illustration of overfitting and underfitting in linear regression is provided in Figure 6.1. A simple way
to understand overfitting is “too many parameters” for the given data. For underfitting, it can be viewed
as “too few parameters” for the given data. For example, in the left panel of Figure 6.1, the data fitting is
carried out using linear regression with a polynomial expansion of variable x. In particular, if we expand
the parameter space using x, x?, ..., x°, then a solution can be produced that follows the data quite closely
leading to a small error. The regression model for this case is

V=P +Px+ P+ + X + € (6.2.1)

Fundamentals of Robust Machine Learning: Handling Outliers and Anomalies in Data Science,
First Edition. Resve Saleh, Sohaib Majzoub and A. K. Md. Ehsanes Saleh.

© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/HandlingOutliersandAnomaliesinDataSciencele

161

http://www.wiley.com/go/HandlingOutliersandAnomaliesinDataScience1e

162

6 Robust Regularized Models

Overfitting Underfitting
20 20
15 A 15 A o
o o
. o
~ 10 ~ 10 °
o o}
o
5 5 A o o
o 000
0 N T T T T 0 h T T T T
0 5 10 15 20 0 5 10 15 20
X X

Figure 6.1 Overfitting and underfitting in linear regression.

There are a total of 10 parameters including the intercept (too many for this data) which allows the
regression model to capture every nuance of the data but does not lead to a general model for prediction
purposes. Hence, having a large number of parameters can lead to overfitting.

At the other extreme, a model can be built with just one parameter (not enough parameters) using

y=p+e (6.2.2)

The results are shown on the right-hand panel of Figure 6.1. This model is also unsatisfactory because it
does not capture the general trend of the data and it incurs large errors. Hence, having fewer parameters
than necessary can lead to underfitting.

If we were to blindly carry out the two options, we would likely select the overfitted case because the
errors are small. But there is a better solution between the overfitted and underfitted cases that is more
general. Here, a simple linear model would suffice. We could try several models in between and choose
the best one but the problem is that if we use the errors as a guide, we would always pick the overfitted
case. Another approach is needed to address the problem of selecting the proper model complexity, and
it is based on the bias-variance trade-off.

Note: The next section provides details of the bias-variance trade-off for those who want to
understand it at a fundamental level. It contains mathematical analysis to clarify and reinforce
the concepts. It is possible to skip this section without any loss of continuity, although it is highly
recommended as it is an important concept in machine learning.

6.3 The Bias-Variance Trade-Off

Since the error of a model between the true value and predicted value, y — y, cannot help us to decide
which model is better, a different metric is needed. For example, the error between the estimated param-
eter and the true parameter, § — 6, is a viable option. This quantity can be positive or negative for different

6.3 The Bias-Variance Trade-Off

datasets so we could simply square it to obtain (§ — #)? and define a metric called the quadratic risk (QR)
(see Saleh et al. 2022) which is given by!

QR = E[(0 - 0)*]. (6.3.1)

The idea behind this metric is to monitor the expected value of the squared difference between the esti-
mated value § and the true value 6. We can use this quantity to compare various estimators. In practice,
the expected value is replaced with the average of the squared error.

It is difficult to use the equation in this form because we do not know 6, but there are two fundamen-
tal quantities that make up the QR: the bias and variance. These two quantities tend to go in opposite
directions to one another and this becomes the basis for the trade-off in the QR. We can obtain the
bias-variance relationship by starting with the equation for the variance of a random variable X (see
Chapter 2),

Var(X) = E[X?] - E[X]?, (6.3.2)
and rearranging it to obtain

E[X?] = Var(X) + E[X]*. (6.3.3)
Then letting X = d — 0, we obtain

E[(D — 0)*] = Var(d — 0) + (E[0 — 0])> = Var(d) + (E[0] — 6)°. (6.3.4)

The first term is obviously the variance of . The second term is simply the bias squared. Recall from
Chapter 2 that the bias is given by

bias = E[§] — 6. (6.3.5)

This is a measure of how close the expected value of our estimator is to the true value. Ideally, the bias
should be 0 in which case the estimator is said to be unbiased.

More concretely, if we have 100 datasets and compute 100 estimates of 6 using those datasets, we can
measure how close the average of those estimates is to the true value of 6. Now imagine an infinite number
of datasets and carrying out the same measurements. Surely, the average will be equal to the true value.
Not necessarily. It is only true if the estimator is unbiased. Perhaps an equivalent way to think about it
would be “how close is the average estimate to the true value if we had an infinite number of datasets?.”

With this understanding of the QR, we can now write that

QR(®®) = E[(D — 6)*] = Var(d) + bias*(). (6.3.6)

This equation lies at the heart of the bias-variance trade-off, a key part of many machine learning
procedures.

Exercise: An estimator is used on N = 5 datasets and each dataset produces a different estimate as
follows: 0.25, 0.27,0.29, 0.23, and 0.24. The true value is 0.25. Calculate the bias. (Hint: replace the expec-
tation with an average.)

Ans.: E[0]~ ;Y0 =(025+0.27+029+0.23 +0.24)/5 = 0.256. Therefore, E[0] -0~ 0.256 —
0.25 = 0.006. O

1 The quadratic risk is often referred to as the mean-squared error but we will continue to use quadratic risk to avoid
confusion with the MSE metric of Chapter 4.

163

164

6 Robust Regularized Models

Exercise: An estimator is used on N = 5 datasets and each dataset produces a different estimate as fol-
lows: 0.25,0.27, 0.29, 0.23, and 0.24. Estimate the variance.

Ans.: The mean is 6 = 0.256. The unbiased estimate of variance uses N — 1 instead of N as the divisor.
Then, Var(9) = ¥, (6, - 0)* = ((0.25 — 0.256)? + (0.27 — 0.256)? + (0.29 — 0.256)? + (0.23 — 0.256)* +
(0.24 — 0.256)2) /4 = 0.00058. O

We generally seek estimators with the lowest QR and Eq. (6.3.4) tells us there will be a different
bias-variance trade-off in each estimator. Ideally, we would like the bias to be 0 and the variance to be 0
but the equation does not permit this because if we reduce the variance, the bias will increase, and vice
versa. The best we can do is strike a balance between the two quantities.

Example: The bias-variance trade-off was derived using a shortcut earlier in this section. The proper
derivation proceeds as follows. Starting with the definition of the quadratic risk, we use the linearity of
expectations to produce the desired form of the equation:

QR =E[(6 - 6)*]
=E[(6 — E[0] + E[4] - 6)°]
= E[(6 — E[0])* + 2(0 — E[6)(ELF] - 6) + (E[6] — 6)°]
= E[(— E[0])°] + 2E[(6 — ELO])(E[] —)] + EL(E[A] — 6)°]
= E[(6 — E[0])°] + 2E[(6 — EOD](E[A] — 6) + EL(E[A] — 6)°]
=var(0) + 0 + bias*(9)
=var(0) + bias®(9).

In the fifth line of the above derivation, the first term is the definition of the variance, the last term is
the bias squared, and the middle term is 0. Since (E[A] - 6) is a number, it can be moved outside the
expectation of the middle term, and then we have that E[§ — E[])] = E[4] — E[E[A]] = E[§] — E[8] = 0.
Note that the QR equation is true in the limit, but not necessarily at finite values of N. O

6.4 Regularization with Ridge

The term regularization of a model refers to the adjustment of model parameters to obtain the lowest
quadratic risk using the hyperparameter A associated with a penalty function. First we develop a simple
strategy in a well-defined context with closed-form expressions for the bias and variance. Then, based on
this experience, we can formalize the procedure in a real-world setting for machine learning.

Our starting point is the least squares estimator,

B = X %)Xy, (6.4.1)

6.4 Regularization with Ridge

where X € R™4 and y € R". This is the best linear unbiased estimator as discussed in Chapter 2. How-
ever, we want to add flexibility to see if a better model can be found. One way to do this is to apply a
penalty function, namely, ridge (see Saleh et al. 2019). The LS-ridge estimator from Chapter 5 had the
following closed-form expression:

ﬁLS-ridge
where I; is a d X d identity matrix and A is the ridge hyperparameter. We can build a number of different
models just by changing 4 and then choose the model associated with the optimal A. This is how we
intend to regularize the model.

To understand the regularization procedure, we start by reviewing the aforementioned bias-variance
trade-off at a more basic level. We know the meaning of variance—it is the degree of uncertainty around
an estimate. In a multidimensional setting, there will be one variance for each parameter. We need to
construct a covariance matrix (see Chapter 3, Section 3.6) and then add up the terms along the diagonal
to obtain the sum of the variances. This is called the trace of the covariance matrix. Notationally, the trace
of a matrix C is represented as tr(C).

For the bias, a working definition in a multidimensional case is the L, distance between the expected
value of a given estimator and the true value, ||[E(8) — || ,. An estimator is said to be unbiased if EB) = B.
Although one would think it is desirable to have an unbiased estimator, there are no guarantees that the
variances will be low for unbiased estimators. In fact, we are more interested in models with a smaller
variance at the cost of a slightly higher bias by choosing the appropriate 4.

W) =X'X+)Xy, (6.4.2)

Exercise: Let E[f] = (—3.2,0.1,1.1)T and g = (=3,0,1)". Compute the bias. Then, given 62 = 0.25 for
the covariance matrix,

311
XX =6%|121],
112

compute the trace of the covariance matrix. Finally, compute the quadratic risk. What can you say about
the relative sizes of the bias and variance terms?

Ans.: First, ||bias(B)||2 = |E[B] - BII2 = (-0.2)* + 0.1 + 0.12 = 0.06. Next, the variance is Var(B) =
tr(c2(X"X)™1) = 3(0.25) + 2(0.25) + 2(0.25) = 1.75. Therefore, QR = 0.06 + 1.75 = 1.81. Note that the
variance is high and the bias is low in this case. o

6.4.1 Selection of Hyperparameter 4

To select the optimal value of 4, there are two possible options. One option is to use the mean-squared
error (MSE) as follows:

n
1 .
MSE = ;Z(”i -9 (6.4.3)
i=1

165

166

6 Robust Regularized Models

and choose the 4 that minimizes this metric. There is one major problem with this approach: the optimal
value is A = 0 because the MSE is minimized using LS. It can only grow larger as A is increased.

The other option is to use the quadratic risk which is the sum of the variance and the bias squared. In
short, the proper value of A should be based on balancing overfitting and underfitting to build our model.
Note that an optimal A value is unique to each estimator and generally cannot be compared or transferred
between estimators. Additionally, the most suitable A usually lies in a range of values in practice, as
opposed to being one unique value, so it is not critical that an ideal value be found. A near-optimal value
is sufficient in machine learning.

By applying a penalty function, we can increase the bias and decrease the variance until the estimates
minimize the QR statistic. But how do we know this is happening as we change 4? This was already
illustrated in Chapter 5 in a qualitative way. Here, we provide quantitative evidence of these effects. For
LS-ridge, there are closed-form expressions available (see Montgomery et al. 2012) that allow us to gain
insight into what is happening.

The QR of estimates in a multidimensional setting is given by

~ LS-ridge
[k (6.4.4)

QR(p

id
)= tr(Var(ﬂ Sridge)+ ||blas(ﬂLS neee
where tr(Var(i}LS_ridge)) is the trace of the covariance matrix and involves adding up its diagonal terms.
For Eq. (6.4.2), the formulas for bias and variance for LS-ridge are given by?

~ LS-ridge

||bias(B 2 =22 BTXTX + AL)*B, (6.4.5)

which is a scalar quantity, and

Var(p

which is a matrix quantity (for which the trace is taken to produce a scalar).
The above expressions look rather unwieldy and are too complicated to provide any understanding of
the bias-variance trade-off. To simplify the analysis and develop intuition, let X' X = I,,. This yields

A LS- rldge O'Z(XTX+ ﬂId)_l(XTX)(XTX'i' ﬂId)_l, (646)

LS-ridge

oo P 2

lIbias(p iz = a+ /1)2/3 B, (6.4.7)

and
A~ LS- rldge do’2

tr(V = . 6.4.8

r(Var(p = e P (6.4.8)
Hence, the quadratic risk is given by

R 2
QRBE) = 42 BB (6.4.9)

T+ /1)2 a1+ /1)2

We see that if 4 = 0, then the bias term is zero and the variance term is given by d 6. As we increase 4, the
bias increases while the variance decreases. In the limit, as 4 — oo, the variance approaches zero while
the bias converges to ' B, provided this quantity is bounded. This situation is also undesirable because
the bias is now too large. The trade-off between the bias and variance is clearly evident in this equation.
This search for the best A is what we call regularization in the context of penalty estimators.

2 For full derivation of variance and bias, see Montgomery et al. (2012).

6.4 Regularization with Ridge

6.4.2 Example: Diabetes Dataset

We now consider using the closed-form expressions of Egs. (6.4.4)-(6.4.6) on the diabetes® dataset to
obtain the optimal A. It has n = 442 observations and d = 10 explanatory variables. The reason for the
selection of this dataset is that the estimates have large variances so that the benefits of penalty estimation
are more pronounced. We proceed by using LS-ridge and progressively picking larger and larger values
of 4 to find a better set of estimates. For the moment, other details of the dataset are not pertinent to the
discussion here, and we will use the full dataset in the regularization process to find out if we can do
better than the standard LS estimates.

The results are shown in Figure 6.2. If we use the MSE metric of Eq. (6.4.3) to find the optimal 4,
we obtain the results shown in the upper portion of Figure 6.2. Unfortunately, the MSE increases as A
increases. Therefore, 4 = 0 is the optimal value if MSE is used as the metric. This makes sense since LS
is designed to find the minimum MSE but does not offer a way to improve the model.

Our goal is now clear: use the QR metric instead of MSE to find the optimal value A that balances
the bias and variance. We have plotted the results for the bias squared, variance, and QR in the lower
portion of Figure 6.2. We see that the bias is initially zero when 4 = 0 and the variance is large. This is
the overfitted situation.

Next, consider what happens as 4 is increased. Initially the variance alone determines the value of the
QR. Aswe increase J, the variance drops while the bias increases exactly as we would expect.* Eventually,
the bias alone determines the QR. This is the underfitted situation. Between the two extremes, the QR
reaches a minimum at 4., = 0.0025 for this dataset. It may appear that the QR has not been reduced by
much but remember that the variances have all been reduced significantly which implies a more general
model with less uncertainty.

The LS estimates (A = 0) and the resulting LS-ridge estimates (4 = 0.0025) are provided in Table 6.1
along with their corresponding variances. Notice that the estimates and variances are all smaller for
LS-ridge compared to LS for the variables that started with large variances (s1, s2, s3, s4, and
s5). However, the remaining variables (age, sex, bmi, bp, and sé6) did not change much in both
their estimates and their variances. That is because they already had good estimates for the general
model.

Itis also instructive to visualize the regularization process graphically. In the upper panel of Figure 6.3,
the ridge traces for the diabetes dataset are shown with a vertical line in the plot at the optimal value.
Each intersection of the line with one of the traces is the corresponding estimate for that parameter.

To complete the picture, we also plot the variances as a function of 4 in the lower panel of Figure 6.3.
Note the large drop in the variances for s1, s2, s3, s4, and s5. This is exactly what we would like
to happen since they are exceedingly high. Further reduction beyond the optimal point acts to increase
the bias so it is not effective to go beyond it. Meanwhile the variables age, sex, bmi, bp, and sé all
begin and end with essentially the same variances. Through this example, it is clear that using the ridge
penalty is very effective at reducing the variances of certain offending parameters while leaving other
parameters with low variances about the same.

3 This dataset can be obtained from the sklearn Python library of datasets and accessed using diab =
datasets.load diabetes().

4 Note that we are using g = BLS in Eq. (6.4.5).

167

168 | 6 Robust Regularized Models

MSE

24
o

30000

25000

20000 -

15000 ~

10000

5000 -

104 1073

102 10! 10° 10!

1000000

800000 -

600000

400000

200000 -

Overfitting

(high variance,
low bias)

__J

Underfitting

4=0.0025

(high bias,
low variance)

variance

1073

102 10!
A

Figure 6.2 MSE compared to OR for diabetes dataset (optimal 4 = 0.0025).

6.5 Generalization using Robust Estimators | 169

Table 6.1 Diabetes estimates and variances for LS (4 = 0) and LS-ridge (4 = 0.0025).

ALS A LS-ridge

Feature B var(3™) g Var(p)
age -10.0 3570.0 -8.9 3536.5
sex —239.8 3745.7 —-238.1 3709.0
bmi 519.8 4422.3 520.8 4365.9
bp 324.3 4277.2 323.0 4230.5
sl —-792.1 173622.2 —618.3 104173.8
s2 476.7 114944.7 338.8 70905.5
s3 101.0 45156.3 24.4 30714.3
s4 177.0 26082.3 156.4 23521.5
S5 751.2 29549.6 685.0 19774.7
S6 67.6 4353.9 68.7 4306.7

6.5 Generalization using Robust Estimators

The procedures described above are useful for comprehension of the bias-variance trade-off but cannot
be used directly in machine learning. This is because the bias and variance are not usually available in
closed form. What we actually take away from that exercise is an understanding of the important trade-off
which will show up time and time again in different forms. In fact, we are more interested in generalizing
the model in terms of prediction accuracy on a test set whereas in the previous section we optimized for
quadratic risk on a training set. Furthermore, if there are outliers in the dataset, LS is not effective so
different loss functions and metrics are needed.

6.5.1 Training and Test Sets

The first issue to resolve is that of not having any test data to evaluate a candidate model against other
possible models. The approach used in machine learning is to divide the given dataset into two parts:
a training set (say, 80% of the data) and a test set (the remaining 20% of the data), as in Figure 6.4. The
training set contains n — m rows while the test set contains m rows. Then, the model can be built using
only the training data and then applied to the test data to determine the prediction error.

The error measure on the test set can be any suitable metric, such as the MSE, root mean square error
(RMSE), or median absolute error (MAE), depending on the situation at hand. For example, the test error
could be measured as

m
1 o
MSE = EZ(VL - 9% (6.5.1)
i=1

where y; and ; are the true and predicted values of the ith response on the test set, respectively. Alterna-
tively, the RMSE given by

RMSE, o = (6.5.2)

170 | 6 Robust Regularized Models

8001 s -
= 4 =0.0025
6007 bmi
400 ;\
g 4
= i
E 200 sa |
;3) 04 ase_
5]
8
5 —200 A sex
=W
—400
—600 -
J
-800 -
1073 107! 10! 103 105
A
175000
sl
150000 -
A=0.0025
125000
8
g 100000 -
E
>
3
% 75000 (low variance)
s
A
50000 -
25000
s6 sex_bmi bp
0 -
103 102 10!
A

Figure 6.3 LS-ridge trace (upper panel) and variance (lower panel) vs. 4 for diabetes dataset (optimal 4 = 0.0025).

6.5 Generalization using Robust Estimators

Figure 6.4 Splitting a dataset into training and test sets. —

e Used to
build the ot
set (80%) model
Original
L dataset

\ Al

<

Test set Used to

(20%) test the m
W model
e

D —

can be used. For a robust test error, the MAE given by

MAEtest = median(lyl _j\)ll’ |y2 _j\)Zla cee |ym _ym|) (653)

is appropriate.

There is still a problem with this overall approach. If we tune the model to one test set, we run the
risk of not being able to handle other test sets. We need more training sets and test sets to produce a
general model. There is a simple way to resolve this issue. Any number of training and test sets can be
generated using randomized splits of the original dataset. This is referred to as the k-random validations
approach. It produces a more general model because of the randomized nature of the validation scheme.
When k training sets are used to build k models and validated on k test sets, the average of those models
is considered to be generalized. Typically, k in the range of 5-10 is sufficient to generalize the model.

6.5.2 k-Fold Cross-validation

In standard machine learning applications, a more coherent scheme is used called k-fold cross-validation
(seeJames et al. 2023). The previous approach may have overlapping training and test sets. However, once
we build the final model with the whole dataset, there is no longer a test set to validate the overall results.
If our goal is to produce a generalized model, then we should use the dataset in a way that reflects this
goal by creating several “independent” datasets. But how do we do this?

Given a dataset, we first divide it into a training set and a test set (which we now view as an unseen
test set called the “holdout” set). The test set can be used to assess our final model prediction accuracy.
We do not want to inadvertently tune A to a specific test set or even a randomized (and potentially overlap-
ping) subsets as described above since the prediction accuracy may not completely generalize to arbitrary
test sets.

Instead, it is common practice to further subdivide the training set into k disjoint sets, called
cross-validation (CV) sets or “folds.” The decomposition of the dataset into a 5-fold cross-validation
scheme is illustrated in Figure 6.5. The partitioning on the right represents one of the five folds. The four
unshaded areas collectively form the CV training set for one fold while the one shaded area is the CV
test set for that fold. Similarly, each of the other segments represents a different fold. At the end of the

171

172

6 Robust Regularized Models

Original
dataset

—

__-___-_-_-_-___'—-—-

—_—)

Training
set (80%)

-

—-_-_-_____-_'—'———-

Test set
(20%)

| S

Figure 6.5 k-fold cross-validation.

5-fold training process, we will have five sets of estimates that we can average to obtain the generalized

—_—)
e h e .
o ° _Outliers — .
. ; U
. L 3 .]
. Training ".
set (80%)
¢ Original @
L]
dataset .
,
J—
. ‘_“————-__.(_.\
. .
. Test set = °
. (20%)
— e
T

set

v
CV test
set

Hold-out
set

Figure 6.6

5-fold cross-
validation set

CV training

Addressing the issue of outliers in k-fold CV.

model. The final model can be tested on the holdout set to confirm the results.

One often-neglected issue concerning k-fold cross-validation is the impact of outliers. The question
that arises is whether or not a k-fold CV can be used to mitigate the effects of outliers since it produces a
more general solution. To answer this question, consider the diagram in Figure 6.6. Each dot represents a
potential outlier in the dataset. When applying k-fold CV, it is not clear where the outliers will land. They
could be in the holdout set or in the CV test set or in the CV training set or sprinkled throughout all of
them, depending on the number of outliers. Without knowing the exact location, one cannot blindly use
a non-robust method. Therefore, the k-fold CV method should not be viewed as a solution to the problem
of outliers. However, a robust method in conjunction with k-fold CV will certainly be more appropriate

for model generalization in the presence of outliers.

6.6 Robust Generalization and Regularization

Second, the use of MSE with outliers may not be suitable either. It is better to use RMSE and MAE
together because they will have the same units of measure. If these two metrics differ significantly, there
may be outlier issues in the dataset. The final test with the holdout set should also make use of both
RMSE and MAE to validate the model. The reasons for the selection of these two metrics are discussed
in Chapter 4.

6.6 Robust Generalization and Regularization

The combination of robust generalization and regularization will now be applied to the diabetes dataset to
select 4. Before applying any of these methods, one should check to see if there are outliers in the dataset.
One approach is to use a boxplot on the residuals following a linear regression, as shown in Figure 6.7.
Here, both least squares (LS) and log-cosh (LC) losses are used on the full dataset to obtain residuals to
create the boxplots (see Chapter 4). The boxplot of the LS residuals indicates only one outlier (below the
boxplot). The boxplot of LC residuals indicates three outliers (one above and two below). The latter is
of course correct since LS is not robust and therefore not able to find all the outliers. This is a key point
to remember: detecting outliers requires the use of a robust method since LS will try to distribute the
residuals as a Gaussian which tends to hide some of the outliers.

Having found three outliers, it is prudent to use robust methods even though the inclination would be
to ignore the outliers and forge ahead with LS. It is not possible to tell how the three outliers will impact
the estimates. For the diabetes dataset, these three outliers may not have a significant impact but we will
not take the risk and utilize robust regularization with ridge. One thing to note is that the ridge penalty
acts in roughly the same manner for robust and non-robust methods for linear regression.

150 e o

1007 LS LC

W
o
]

Residual values
=)

dn
o
]

—-100

150 1 Y s

Figure 6.7 Boxplots of residuals from LS and LC for diabetes dataset.

173

174

6 Robust Regularized Models

6.6.1 Regularization with LC-Ridge

Knowing that outliers exist in the diabetes dataset, we will be using LC-ridge to build a general regular-
ized model that balances bias and variance. Since we no longer have access to closed-form expressions
for the bias or variance, the dataset is divided into training and test sets for the k-randomized validations
technique. This will provide visibility into the internal workings of cross-validation. To evaluate the
performance, the RMSE on the test set will be used. This is feasible because the outliers do not signif-
icantly affect the results in this case. More generally, we should consider both RMSE and MAE. For
each generated training/test pair, a range of A values is selected, and the one with the minimum RMSE
determines the best A for LC-ridge.

The first step in the process is to find the range over which to sweep the hyperparameter 1. This range
can vary greatly depending on the loss function being used so a few attempts at generating the LC-ridge
traces may be required but it is important to find the proper range to obtain any meaningful results. For
LC-ridge using the diabetes dataset, the optimal value of 4 lies somewhere between 1078 and 10°.

Next, an 80-20 train/test split of the data is performed. Then, an LC-ridge regression is performed for a
number of A values in the given range. For each value of 4, the prediction RMSE of Eq. (6.5.2) is computed
on the test set based on the model from the training set. The results are plotted in Figure 6.8 on the left
panel for one randomized validation set. Note the characteristic dip in the curve until the minimum is
reached, after which it rises to the saturation value as A increases. At one end, there is a low bias and
a high variance due to overfitting and, at the other end, there is a high bias and a low variance due to
underfitting. Even though we have not explicitly computed the bias or variance, it is clear that the RMSE
plot obeys the basic characteristics of the bias—variance trade-off.

We could accept the minimum at approximately A = 3 x 107° but this is only one randomized run on
one test set. It may not generalize to other test sets. Therefore, we should run this experiment a few times
on several randomized train/test combinations until a more general result is produced. This is shown
in the right panel of Figure 6.8. The gray curves are five different cases of the randomized trials. The
black curve is the mean of the five curves. It indicates a minimum at A = 8 x 107°. This is a more general

70.0 - , 801
Underfitting
67.5 (high bias, 75 4
low variance)
65.0
70 A .
©n 62.5 Underfitting
% 60.0 65 A=8x10° |
ks /
57.5 A fitti J
Over"tvtmg 60 Overfitting
(low bias,
55.0 high variance)
55 A
52.5 A
50.0 4 T T T T T T T T T SOAW\ URELLL \\lum‘ L e e e R
108 107 10° 105 10 103 102 107! 10° 108 1077 10° 105 10* 103 102 10! 109
A A

Figure 6.8 Test RMSE for one trial (left panel) and five trials (gray, left panel) with embedded mean curve (black).

6.7 Model Complexity

800 -

8 2=8x10°6
600

bmi
400 B—— \

s4
2004

Parameter estimates
o
1
&

~200 - /
Sex
—400 -
~600 -
~800 - “/
10-6 10-5 104 10-3 102 10! 100 10!
)

Figure 6.9 Traces of LC-ridge estimates as a function of A.

result based on five trials. We could continue to do more runs but roughly the same result would be
obtained.

The last step is to perform estimation using LC-ridge and A = 8 x 107 to obtain the model. Consider
the LC-ridge traces of Figure 6.9 with a vertical line representing the resulting model. Note that it has
similar characteristics to the LS-ridge traces in Figure 6.3 and the vertical line is roughly in the same
place. One line was produced using the quadratic risk and the other using the test RMSE. In this case,
with only three outliers the results are expected to be similar. However, in other datasets, with a larger
percentage of outliers, the LS-ridge results may not be acceptable since the estimates will not be accurate
and the variances will be large. Therefore, datasets with outliers will require robust regularization to build
an accurate and general model.

6.7 Model Complexity

The complexity of a model generally refers to the number of parameters used by the model. A model
with only a few parameters is a low-complexity model, and one with a large number of parameters is a
high-complexity model. It is a goal in data science to produce a model that uses the fewest variables while
still retaining high predictive power. There are many reasons for this. One is that fewer variables produce

175

176

6 Robust Regularized Models

amore compact model which is highly desirable to avoid overfitting. It is also easier to assess their relative
importance if there are fewer of them. The second issue is that there are variables that add noise to the
model, and it is preferable to remove these variables. Third, and perhaps more subtly, the variance of the
residuals (which ideally should be small) can be large if there are too many variables in the model. To
understand this point, consider the unbiased estimator of residual variance which is given by

A2
& (d T2 Z(r (6.7.1)

As (d + 1) approaches n, the residual variance goes to infinity. Hence, keeping d small will reduce the
variance of all parameters because they all depend on 62

In effect, we have another bias-variance trade-off involving the number of variables in our model. If
we have too many variables, we risk overfitting the dataset and that leads to a high variance. If we have
too few variables, we risk underfitting which creates a high bias situation. Our next objective will be to
seek the optimal number of variables using some form of feature selection.

6.7.1 Variable Selection Using LS-LASSO

One useful application of penalty functions involves using the LASSO penalty to select the optimal num-
ber of parameters. The diabetes dataset will be used to demonstrate the procedures. It has 10 variables,
namely, s1, s2, s3, s4, s5, s6, age, bmi, bp, and sex. With domain knowledge, the relative impor-
tance of each variable may already be known. However, the approach to be described can be used with or
without domain knowledge. The first step is to generate the LS-LASSO traces as shown in Figure 6.10. In
contrast to the LS-ridge traces, the LS-LASSO traces all terminate abruptly on the A-axis. The zero points
are indicated with a “e” for each parameter. By selecting a suitable A, a subset of the variables can be
removed. This is how it is able to perform variable selection by setting some variables to 0.

To clarify the procedure, if a vertical line is drawn at 4 = 0.25 on the LS-LASSO traces, then any variable
to the left of the line can be removed, while those on the right are kept. In this case, s1, age, s2, s4,
and sé6 are all set to 0, meaning that they are removed from the model. By doing so, a compact model is
produced for the diabetes dataset involving only s3, s5, bp, bmi, and sex. The LS-ridge traces do not
provide this ability since all variables tend to reach 0 gradually rather than abruptly (cf. see Figure 6.3).

6.7.2 Variable Ordering Using LC-aLASSO

There are many different ways to assess variable importance but most of them rely on an outlier-free
dataset. For example, the adjusted-R?, BIC, AIC, and Cp metrics used for subset selection (see James et al.
2023)’ require either the mean or the standard deviation, which are not robust. Therefore, we suggest
removing outliers (see Chapter 4) before using these techniques. Another approach is to use the absolute
value of the t-statistic (see Chapter 5) obtained from an LC linear regression. In this section, we describe
an alternative method using an oracle penalty function, specifically aLASSO. This method provides a
visualization of variable ordering using penalty traces (see Saleh et al. 2022).

5 See James et al. (2023) for details on these metrics and the associated subset selection techniques.

6.7 Model Complexity

s5
800 1=0.25
6004 bmi)
s2 o
400 bp
‘g 200 1 s4
E 53
% s6
5 07 Tage
2
g -200 - Sex /
&
—400
—-600
8004 St
T T R —— e e
104 1073 102 10! 10° 10! 102
A

Figure 6.10 Traces of LS-LASSO estimates as a function of A.

Before proceeding further, we note that LS-LASSO is extremely valuable in high-dimensional appli-
cations where there are a large number of variables, say d = 10,000, because it will remove most of
the unimportant variables. But here we are concerned with a proper ordering of a smaller number of
variables. In this situation, there are two notable problems with LS-LASSO. The first is obviously the
lack of robustness of LS. The second is the lack of the oracle property in LASSO (see Chapter 5). We can
remedy both by utilizing LC-aLASSO.

The first step is to generate the LC-aLASSO traces as shown in Figure 6.11. The figure provides the
LC-aLASSO variable ordering labeled from 1 to 10. According to LC-aLASSO, the most important variable
is 85, then bmi and then bp. If we compare it against Figure 6.10, it is clear that the variables reach 0 in
a different order compared to LS-LASSO. In the case of LS-LASSO, bmi is the most important, slightly
more than s5 and then a distant third is bp. The complete orderings of all 10 variables are provided in
Table 6.2 along with another ordering based on the t-statistic of the unpenalized LC estimates. Recall
from Chapter 5 that, by ranking the |¢-statistic|, we obtain an approximate ordering of the variables. The
t-statistic itself is the ratio of the estimate to the standard error. Note that all three methods (¢-statistic,
LC-aLASSO, and LS-LASSO) produce different orderings (see columns 5, 6, and 7). Which is correct? The
t-statistic method and LC-aLASSO are the same for the last five variables. However, the only one with
the oracle property is LC-aLASSO and we know that asymptotically, it will produce the correct order.
According to the theory, this is a good ordering of the variables based on the given data.

177

178

6 Robust Regularized Models

8001 s

600

400

200

04

—200

Parameter estimates

—400

—600

-800

A T T T T T
107! 10° 10! 10? 10° 10*
A

Figure 6.11 Traces of LC-aLASSO estimates as a function of A, with variable ordering labeled from most
important (1) to least important (10).

But how can this be verified? There are many ways to do this but one way is to simply create a training
set and test set and then run 10 different LC regressions without a penalty function. The first run will have
only one variable; the second with two variables, and so on. The starting variable is the most important
one, followed by the addition of the next most important and so on until all 10 variables are included. The
variable order is provided in the LC-aLASSO column of the table. For each case, we obtain the estimates
on the training set and monitor the prediction error on the test set. The resulting plot should have a
convex shape according to an inherent bias-variance trade-off. If there are any spikes in the plot, there
may be a problem with the ordering, perhaps due to the limits of a finite amount of data.

To proceed, we first define a training set and a test set, but this time we choose an even split between
the two. If we do not use a 50-50 split on the diabetes dataset, the estimates may not be accurate or the
test MSE may not be reliable. In general, there needs to be sufficient data in both the training and test
sets to obtain acceptable results. At each step, the number of regression variables will be different. The
training and testing loops can be performed using k-random validations and the test MSE is averaged
over all the trials. Note that the effect of outliers is not significant in the diabetes dataset so the use of the
MSE is acceptable.

We start with only variable s5 in the model to be built using the training set and then compute the
test MSE. As we incrementally add bmi and then bp to the regression model, we expect the test MSE to
decrease because the model accuracy is improving. However, at some point, noise variables will be added

6.7 Model Complexity

Table 6.2 Estimates and standard errors (s.e.) and t-statistic for log-cosh (LC), followed by variable ordering for
LC ¢-statistic, LC-aLASSO, and LS-LASSO.

t-Statistic | C ¢-statistic LCalASSO LS LASSO

§< se. (35 (69 order order order Category
(Intercept) 151.52 2.7 55.78 0 0 0
s5 745.31 181.2 4.11 4 1 2
bmi 461.58 70.1 6.57 1 2 1 Critical
bp 401.75 68.9 5.82 2 3 3
sl —829.82 439.4 —1.88 5 4 7
sex —322.71 64.5 -4.99 3 5 5 Important
s4 261.88 170.2 1.53 6 6 8
s2 411.21 357.5 1.15 7 7
s6 41.52 69.5 0.59 8 8 6 Unimportant
s3 119.52 224.1 0.53 9 9 4 (noisy)
age 6.46 63.0 0.10 10 10 10

and therefore the test MSE will increase. The results of this validation process are plotted in Figure 6.12.
The MSE decreases at each step until six variables are used. Then it begins to increase according to the
underlying bias-variance trade-off.

The results validate the aLASSO ordering and also tell us that six variables will be sufficient to build
a compact but accurate model. We can now go back to Table 6.2 and understand the categorizations in
the final column. The critical and important variables are identified in the first two groups. They are
s5, bmi, bp, s1, sex, and s4. These variables must be included in the model. The remainder may be
optionally included but they are noise variables and should be considered for removal. Note that none of
this is possible without an initial ordering from the aLASSO traces.

6.7.3 Building a Compact Model

Now that the key variables in the diabetes dataset have been identified, a compact and accurate model
can be built using LC-ridge with a k-fold cross-validation scheme. Typically k = 5 or k = 10 is used
depending on the size of the dataset. A 5-fold scheme is used here. The first step involves subdividing
the training set into five smaller CV training and test sets (hence, 5-folds) using only the variables s5,
bmi, bp, s1, sex, and s4.

The estimates from each of the five CV training sets are used to compute the prediction MSE on each of
their associated five CV test sets. This is done for each selected value of A. That is, a set of five estimates is
produced and then averaged for each chosen A. Similarly, the average prediction MSE is computed for
each case. It is useful to keep track of the maximum and minimum MSE for each A for plotting purposes.
Finally, we choose the A that minimizes the average MSE among all selected values of A used during

179

180

6 Robust Regularized Models

s5
4000 -
(high bias,
low variance)
3800
m
w2
§ 3600
° Critical Important Unimportant
&0
g 3400 -
< (low bias,
3200 high variance)
sl sex o 6 s3 age
\‘N//—O
3000
2 4 6 8 10

Model complexity

Figure 6.12 Test MSE as a function of model complexity.

cross-validation. Of course, we do not explicitly compute the bias or variance at any time. Rather, the
prediction MSE serves as a proxy for the quadratic risk since it can be readily computed for any dataset.

The results are shown in Figure 6.13. On the top panel, the average CV MSE is plotted along with the
holdout test MSE. The minimum of the CV MSE occurs at roughly 4, = 3 X 1075. The holdout test set
requires a higher 4 = 107> but this should not be taken into account. In fact, the A, value found by 5-fold
CVisintended to be located in such a way as to provide acceptable accuracy for all possible test sets. This
is the meaning of the term “generalized model.” It is the best overall value since some test sets would
prefer a smaller A, while others a larger A. The estimates are indicated by the vertical line in the LC-ridge
traces in the lower panel.

It is important to note that the CV test MSE plots show the signature bias-variance trade-off. The
vertical bars indicate the range of the min/max MSE values of the CV test set. The holdout test set MSE
plot is included only to show that its minimum value may not occur at the same point as the CV test
MSE. Normally, it would not be shown. Notice the long seemingly flat region of the MSE plot. One may
wonder why we choose 4 = 3 X 1078 when the MSE is essentially constant for the entire range of 1078
to 107>. The answer is that the variance is reduced as 4 is increased and this means less uncertainty in
the estimates, which is a good thing. Therefore, a larger A provides an enormous benefit. However, we
cannot go too far, otherwise the bias will increase.

What has effectively been carried out in the above sequence is depicted in Figure 6.14. The original
dataset with n = 442 and d = 10 was used with LC-aLASSO to extract the variable ordering. A model
complexity plot was used to reduce the number of variables to d, = 6. At this point, the noise variables
have been removed. Then a 5-fold CV scheme can be used with LC-ridge to find the optimal A. Since a
robust method is used, the three outliers are effectively ignored implying that n, = 439 in this case. We
could have manually removed the outliers but we used a robust method to avoid this unnecessary step.
The final model is obtained using the optimal A and then verified on the holdout set to complete the task.

7000
hold-out
5-flod CV A=107
6000 - A=3x10"°
%J 5000 1 ;111O z Szisz’mce)
= & (high bias,
& low variance)
Hold-out test
1 HHHT :
3000 [TTTTTTTI T CV test MSE
108 107 10 10 10* 1023 102 10! 100
A
s3 A=3x10"°
600 - S
bmi
400 - :
§
<
E 200{
]
3
£ 0
<
3
A
—200
SEeX.
—4001 sl

Figure 6.13 Test MSE (upper panel) and LC-ridge traces (lower panel) for diabetes dataset.

105 10 103 102 107! 100

6.7 Model Complexity

181

182

6 Robust Regularized Models

d=10
d =6 S—fold .cross—
validation set
Tral;lézg CV training
B set (80%) set
n=442 (LC-ridge)
=4
n, =439 CV test
set
Test set Hold-out
20%) o
Original dataset Final test

(LC-aLASSO)

Figure 6.14 Splitting the diabetes dataset into a CV training and test sets and a holdout test set.

6.8 Summary

This chapter focused on the bias—variance trade-off and its use in building compact and accurate predic-
tion models. The mathematical origins of the trade-off in the quadratic risk formula were detailed along
with its application to the diabetes dataset. Methods to generalize and regularize models using a k-fold
cross-validation scheme with a penalty function were described. Notably, the effect of outliers cannot
be mitigated using these techniques. Therefore, robust methods must be used for linear regression.
A robust methodology for the development of a compact prediction model for linear regression was
described using the log-cosh loss function. This involved the use of penalty functions, specifically ridge
and aLASSO. Variable ordering and regularization procedures were explained in detail so that data
science methodologies could be developed for use in other applications. In particular, these methods
can also be applied to logistic regression, as described in Chapter 8.

Problems

6.1 The equation for the quadratic risk (QR) in the orthogonal case was derived to be:

~ LS-ridge _ do? A2
QR(P)= A+ A2 A+ AP

BB

a) What is the formula for the optimal value of 4 in terms of d, 62, and B? (Hint: take the derivative
and set it to 0.)

b) Letd = 3,62 =1,and B = (1,2,3)". Plot the variance, bias?, and QR.

c) Estimate the A associated with the minimum value of QR according to the plots.

d) Use the formula from part (a) to compute the optimal A.

6.2

6.3

Problems

The figure below was generated by ordering the 5 variables from the Swiss Fertility dataset accord-
ing to the LC-aLASSO results given in Chapter 5, Table 5.2. Then each data point was produced by
running 1 variable, then 2, 3, 4, and 5, as described in Section 6.7.2.

115

110

105

100

Average test MSE

95

90

T
1.0 2.0 3.0 4.0 5.0
Model complexity

Answer the following questions. Assume the following abbreviations:

Ex=Examination, Ed=Education, C=Catholic, A=Agriculture, and IM=Infant
Mortality. What is the ordering of the variables among the following four options? That is,
what labels should be applied to the vertices shown in the plot and in what order?

a) Ex, E4, C, A, IM

b) E4d, Ex, C, A, IM

¢c) Ed, ¢, IM, A, Ex
d) Ed, IM, C, A, Ex

Which variable is most important and which is least important? Would it make sense to remove
the least important variable in this case?

(PROJECT) In this first project, you will use the k-random validations approach to find 4, for an
LC-ridge regression. This will be done using the Swiss Fertility dataset which was given in Chapter
3. You will need a swiss. csv file to run the given code below. In this version, the Examination
variable is removed based on the previous problem. Enter this Python code and then run the pro-
gram. What is a suitable value of 1 based on the CV test MSE? (Hint: a higher value of 1 reduces
the variance.)

import numpy as np
import pandas as pd

184

6 Robust Regularized Models

from scipy.optimize import minimize

from sklearn.linear model import Ridge

from sklearn.model selection import train test split
import matplotlib.pyplot as plt

swiss = pd.read csv("swiss.csv")
plt.figure(figsize=(8, 6))
n_points = 20

lambdas = np.logspace (-2, 7, n_points)
num_trials = 8
avg_mse = np.zeros (n_points)
for i in range(num trials):
mses = []
mse = np.zeros (n_points)
j =0
train, test = train test split(swiss, \
test_size=0.2,random state=5*1i)
for lambdal in lambdas:
X = np.array(train.drop(["Fertility", \
"Examination"] ,axis=1))
y = np.array(train["Fertility"])
ridge = Ridge (alpha=lambdal) #RIDGE
ridge.fit (x, y)
intter = ridge.intercept
betaRidge = ridge.coef_
X test = np.array(test.drop(["Fertility", \
"Examination"] ,axis=1))
y_test = test["Fertility"]
yhat = intter + np.matmul (X_test, betaRidge)
test MSE = np.mean((y_test-yhat) **2)
mses.append (test MSE)
mse[j] = test MSE
jo+=1
avg mse += mse/num_trials
#plt.plot (lambdas, mse) #Use to plot all mse
ax = plt.gcaf()
ax.set xscale(‘log’)
plt.xlabel (*lambda’)
plt.ylabel(‘test MSE’)
plt.plot (lambdas,avg mse, color = ‘black’)
plt.show ()

Problems

6.4 (PROJECT) In this second project, you will use the k-fold CV approach to find 4, for an LC-ridge
regression. This will be done using the Swiss Fertility dataset as in the previous problem. Enter this
Python code and then run the program. What value of A produces the minimum CV test MSE? How
does it compare with the one from the previous project?

from sklearn.model selection import KFold
swiss = pd.read csv("swiss.csv")

numfolds = 5

kf = KFold(n_splits=numfolds)

train, test = train test split(swiss, \
test size=0.25,random_state=20)

target = swiss[‘Fertility’]

n _points = 20

lambdas = np.logspace(-3, 7, n_points)

mses = []

msetests = []

for lambda2 in lambdas:
i=0
betaAvg = np.zeros(train.shapel[l]-2)
interceptAvg = 0.0
mse = np.zeros (numfolds)
kf = KFold(n splits=5)
for train_index, test_index in kf.split(train):
X tr, X cv = train.iloc[train_ index], \
train.iloc[test_index]
Y tr, Y cv = target.iloc[train index], \
target.iloc[test index]
x = np.array(X_tr.drop(["Fertility", \
"Examination"],axis=1))
y X tr["Fertility"]
ridge = Ridge (alpha=lambda2) #RIDGE
ridge.fit (x, y)
intter = ridge.intercept
betaRidge = ridge.coef
X te = np.array (X cv.drop(["Fertility", \

"Examination"],axis=1))
y te = X cv["Fertility"]
vhat = intter + np.matmul (X te, betaRidge)
cv_test MSE = np.mean((y_te-yhat) **2)
mse[i] = cv_test MSE
i += 1

185

186 | 6 Robust Regularized Models

plt
ax

betaAvg += betaRidge/numfolds
interceptAvg += intter/numfolds

mse avg = np.mean(mse)

X_test = np.array(test.drop(["Fertility", \
"Examination"],axis=1))

y _test = test["Fertility"l]

vhatt = interceptAvg+np.matmul (x test, betalAvg)

msetest = np.mean((yhatt-y test)**2)

msetests.append (msetest)

mses.append (mse_avg)

.figure(figsize=(8, 6))
= plt.gcal()

ax.plot (lambdas, mses, color=‘red’)
ax.plot (lambdas, msetests,color=‘green’)

ax.
plt
plt

plt.

plt.
plt.

6.5 (Advanced Project) Using the given code above, convert it to run LC-ridge. To do this, you need to
replace the LS-ridge statements above with the corresponding LC-ridge statements and then run
the minimizer. You will need the code given in the Problems section of Chapter 5.

set _xscale(‘log’)

.xlabel (*lambda’)

.ylabel (‘test MSE’)

title('CV (red) and Test MSE (green) as ' \
‘a function of lambda’)

axis(‘tight’)

show ()

References

James, G.,
Python.

Montgomery, D.C., Peck, E.A., and Vining G.G. (2012). Introduction to Linear Regression Analysis, 4e. Wiley.

Saleh A.K. Md. E., Arashi, M., and Kibria, B.M.G. (2019). Theory of Ridge Regression Estimation with

Witten, D., Hastie, T. et al. (2023). An Introduction to Statistical Learning with Applications in

Springer.

Applications. New York: John Wiley and Sons.

Saleh, A.K. Md. E., Arashi, M., Saleh, R., and Norouzirad, M. (2022). Rank-Based Shrinkage and Selection:

With Application to Machine Learning. New York: John Wiley and Sons.

7

Quantile Regression Using Log-Cosh

7.1 Introduction

We have studied the log-cosh loss function in Chapter 3 as a way of resolving the problems of the L, loss
function. It was shown to be a robust approach for linear regression and useful for other tasks in machine
learning such as outlier detection. In simple linear regression, the log-cosh loss establishes a median line
through the points in a dataset. As we know, the median line represents the 50th percentile of a given
set of data points, dividing it in half: 50% of the points lie above the line and the remaining 50% below it.
However, what if we are interested in other quantiles? For instance, rather than the 50th percentile, what
if we want to find the line associated with the 25th percentile (also known as the first quartile)? In this
case, 25% of the points would lie below the line, while the remaining 75% would be above it. Similarly,
what about the lines associated with the 10th or 20th percentiles (called deciles)?

Methods for obtaining such lines associated with a desired percentile, decile, or quartile are referred
to collectively as quantile regression (see Koenker and Bassett 1978; Koenker 2005). This chapter focuses
on quantile regression which has been successfully applied to problems in econometrics, as well as
in survival analysis and computational biology. The method is well established in these areas and is
naturally robust to outliers. However, there exists a known problem with the original approach to
quantile regression: the so-called crossing problem. This issue is widely recognized and understood to
be troublesome. Specifically, it refers to the lack of monotonicity in the estimation of the conditional
and structural quantile functions. Unfortunately, the crossing problem has confounded researchers and
practitioners for over four decades. Numerous attempts have been made to find a simple and general
solution.

To tackle this challenge, an intriguing alternative lies in the log-cosh function. This flexible function
offers a solution that is easy to understand and implement. The basic idea is to replace the piecewise
linear quantile loss function with a smooth log-cosh counterpart. This approach, akin to what was done
in Chapter 3 for the L, loss, greatly reduces or even eliminates the crossing problem entirely.

Fundamentals of Robust Machine Learning: Handling Outliers and Anomalies in Data Science,
First Edition. Resve Saleh, Sohaib Majzoub and A. K. Md. Ehsanes Saleh.

© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/HandlingOutliersandAnomaliesinDataSciencele

187

http://www.wiley.com/go/HandlingOutliersandAnomaliesinDataScience1e

188

7 Quantile Regression Using Log-Cosh
7.2 Understanding Quantile Regression

At a very basic level, quantile regression serves as a natural extension of robust linear regression.
Unlike the usual form of robust regression, which seeks a single line dividing the data in half, quantile
regression allows us to divide the data using any desired percentile, decile, or quartile. The term
“quantile” encompasses all possible cases and is typically specified as a value between 0.0 and 1.0.

Consider Figure 7.1, which displays a scatter plot of a dataset along with different regression lines
representing various quantiles. Notably, the data exhibits heteroscedasticity-a phenomenon where the
spread of data widens like a cone as the explanatory variable increases. This implies that the variance
increases proportionally. Such heteroscedasticity has implications for the quality and reliability of
statistical procedures. In standard regression, we assume homoscedasticity, meaning that the stan-
dard errors remain consistent as we move along the x-axis. However, this assumption may not hold
in cases like the one in Figure 7.1. Quantile regression, with its flexibility, becomes well suited for
addressing such issues, as a single regression line may not adequately capture the true characteristics of
the data.

Each set of estimates from a quantile regression produces a line in Figure 7.1 that divides the data based
on the specified value of a quantile parameter = € [0, 1].

e For 7 = 0.0, we obtain the Oth percentile line located just below all the data points.

e For 7 = 1.0, the 100th percentile line is located just above all the points.

e For 7 = 0.5, the 50th percentile line divides the data in half.

e Other lines shown are for the 10th (r = 0.1), 25th (z = 0.25), 75th (z = 0.75), and 90th (r = 0.9)
percentiles.

Note that as = increases from 0 to 1, the slope of the line gets steeper as more points fall below it.
Essentially, the line sweeps through the points in the radial direction (indicated by the arrow) as = goes

1000

800 -

600 -

y

400

200 A

Figure 71 Quantile regression for different percentiles, deciles, and quartiles.

7.3 The Crossing Problem

from 0 to 1. The key to the quantile regression procedure is to find a suitable loss function to optimize in
order to find the quantile line or hyperplane associated with a given z.

7.3 The Crossing Problem

To introduce the crossing problem, it is useful to consider what would be a fundamental requirement of
any reasonable quantile regression method. It would be a property referred to as monotonicity between
quantiles. As the value of r increases, so should the number of points below the associated line or
hyperplane. Therefore, one natural approach to monitor the quality of a quantile regression method is to
simply count the number of data points below a given quantile regression line (or hyperplane in multiple
dimensions) to ensure that it satisfies the requirements.

o The median (50th percentile) should result in a line with half the points below it.
e The third quartile should result in 75% of the data below that line.
e The 90th percentile should have 90% of the points below it, and so on.

Unfortunately, this is often not the case for two reasons:

1) Non-integer number of points: If there are, say, 47 points in a given dataset, then what exactly con-
stitutes 75%? It would be 35.25 points. But since this is not an integer number, we will have either 35
or 36 points below the line. That implies 74.5% or 76.6%, respectively. So we have a problem due to
matching the exact percentile.

2) Inadvertent point placement: The quantile regression method itself may inadvertently place more or
fewer points than required below the line. In the above example with 47 points, there may be 34 or
37 points below the line for the 75th percentile instead of the expected 35 or 36 points, which can be
confusing to the user. But it does happen in traditional quantile regression.

One rule that should be enforced in any reasonable quantile regression method is that a higher per-
centile should have more points below it than a lower percentile. It could also have an equal number but
certainly not less. That is, during quantile regression, there should not be more points below the 75th
percentile than at the 76th percentile. Consider again the example above with 47 total points. Assume
that after running standard quantile regression, we find that:

o there are 37 points below the 75th percentile, and
o there are 36 points below the 76th percentile.

This situation would violate the basic definition of quantiles, which is not desirable. This is the type
of non-monotonic behavior that can occur with quantile regression and is referred to as the crossing
problem.

The issue is further illustrated in Figure 7.2. We see that the two lines intersect, i.e. cross, and this
has implications in the resulting monotonicity of the percentiles. There are more points below the 75th
percentile than the 76th percentile because the lines cross. Typically, this occurs frequently with nearby
quantiles but it can also occur between quantiles that are further apart. Not all cases where lines cross
actually present a problem, but the implication is that when two lines cross in the convex hull (i.e. the
interior region) of the data, an inconsistency has occurred. Therefore, the crossing problem always

189

190 | 7 Quantile Regression Using Log-Cosh

1000 ~

Fewer points
800 - below this line

Qo © o
Lines cross

= 600 - o oO
5
S More points
400 o below this line
o
200 -
0 h T T T T T
10 20 30 40 50

Esterase

Figure 7.2 The crossing problem occurs when a higher quantile (76th percentile) has fewer points below it
compared to a lower quantile (75th percentile).

manifests itself as a non-monotonicity problem as percentiles increase. But why would this occur?
‘We will explore this question in the next section.

Note: We emphasize here that the lines and hyperplanes from quantile regression will always inter-
sect in some way if they are not parallel. However, the model can still be viewed as acceptable
if the crossing occurs outside the convex hull. Lines crossing within the convex hull often leads
to non-monotonicity, but not always, whereas if non-monotonicity is detected, there is implicitly a
crossing problem inside the convex hull. Therefore, we need a way to monitor any non-monotonic
behavior in quantile regression to evaluate the performance of different approaches.

7.4 Standard Quantile Loss Function

Quantile regression is described in this section starting with the original method for studying the effect
of explanatory variables on the entire conditional distribution of the response variable. It has been used
extensively since the initial concepts were developed in the late 1970s and early 1980s. It is based on the
so-called check function whereby the quantile of interest is obtained by setting a parameter, 7.

Different regression quantiles (RQ) represented by lines or hyperplanes are obtained by minimizing
the conditional loss function in M-estimator form given by,

-IRQ(ﬂlT) = ZPRQ(ri; 7), (7.4.1)

i=1

-1-7)r ifr, <0
Pro(r7) = { (7.4.2)

.)
¥ ifr,>0

with

7.4 Standard Quantile Loss Function

/)(ri;f)

Figure 7.3 The standard check function used in quantile regression showing a number of cases with different
values of 7.

where the parameter = € [0, 1] is the quantile and 7, is the ith residual given by r, =y, — xiTBRQ. To under-
stand this loss function, it is useful to examine a plot of pyq(r;; 7) for different values of 7 as provided in
Figure 7.3.

Suppose we are interested in the median, which is also the 50th percentile and the 2nd quartile. We
would set 7 = 0.5 and use the following function:

(r:0.5) —(0.5)r; ifr,<0 (7.4.3)
r;0.5) = , 4.
PrQ¥i 0.5r, ifr, > 0.

This is equivalent to the least absolute deviation (LAD) function or the L, loss term. We see from
Figure 7.3 for = = 0.5 that it is symmetric about r; = 0 but has a kink at 0. This is the same character-
istic that causes problems for the L, function. Because of this kink, the derivative of this function is
discontinuous at 0.

For further illustration, suppose we are interested in the 3rd quartile or 75th percentile. Then we should
set 7 = 0.75 as follows:

—(0.25)r; ifr,<0
Pro(t;30.75) =

. (7.4.4)
0.75r, ifr, >0.

This produces the asymmetric plot that looks like a check mark as indicated for the lines labeled © = 0.75
in Figure 7.3. This is where the function gets its name; the two lines for = 0.75 taken together resemble a
check mark so it is called the check function. For other percentiles, deciles or quartiles, it simply requires
setting 7 to a different value, as shown in Figure 7.3. The cases shown for = = 0.1, 0.25,0.75, and 0.9, all

191

192

7 Quantile Regression Using Log-Cosh

exhibit a kink and are asymmetric in one direction or the other. Unfortunately, their derivatives are not
continuous either. We saw this earlier in Chapter 2 for the L, loss function except in this case it occurs
with the check function for every z.

The derivative of the check function is

(r7) —-1-1) ifr, <0 (7.4.5)
rT) = -
YrQli T ifr, > 0.

If r; = 0, then one side of the equation has a value of = while the other side has a value of —(1 — 7). Hence,
there is a discontinuity at r; = 0. It is clearer if we set 7 = 0.5. Then

ri0s < d 709 ifr, <0 (746)
r;0.5) = it
VRl 0.5 itr, > 0.

This discontinuity is also the same problem exhibited by the L, loss term, as described in Chapter 2.

As before, the kinks in the check function (one for each 7) imply discontinuous derivatives leading
to a number of mathematical and numerical problems when solving for quantiles. When minimizing a
loss function constructed from this check function, one must resort to linear programming techniques,
such as the simplex-type or interior point methods, to obtain a solution. These methods are beyond the
scope of this book but suffice it to say that it can lead to solutions that are non-monotonic. There is also
the possibility of an infinite number of solutions in a bounded region and therefore the selection of any
one solution for a given = may not be consistent with a neighboring quantile which leads to the crossing
problem. Whatever be the reason for the crossing problem, a different approach is required to resolve this
troublesome issue.

7.5 Smooth Regression Quantiles (SMRQ)

One way to circumvent the crossing problem is to smooth out the kinks in the check function by using
the flexibility of the log-cosh function. To develop the idea further, we use the same sequence of steps
as in Section 3.2 of Chapter 3 where the L, loss term was smoothed out using log-cosh. However, for
quantile regression, we must repeat the procedure for all values of z. For convenience, consider = € [0, 1]
in increments of 0.1. The check function prq (x; 7) of Eq. (7.4.2) is plotted as a function of a dummy variable
x for each 7 value in Figure 7.4 in the top-left panel. The highlighted function is associated with z = 1.0.
The derivative of the check function, Wrq(X; 7), is given in the lower-left panel based on Eq. (7.4.5). The
discontinuous derivative for = = 1.0 is also highlighted.
To remove the kink and discontinuity, we replace the derivative function with

N ¢ _1
w(x:7) = 5 tanh(10x) + (‘r 2) (7.5.1)

as shown in the lower-right panel. In the first term of Eq. (7.5.1), the coefficient of 1/2 is used to match
the range of the derivative of the check function. The second term is used to shift the % tanh(10x) func-
tion vertically up and down using 7 to track the derivative of the check function. The 10x term is used
temporarily rather than x to make the slope of the function rather sharp but it will be adjusted later when

7.5 Smooth Regression Quantiles (SMRQ)

149 Check function 14 Integral of
124 124 shifted and
scaled tanh
10 10
8- 8
6- 6-
4 4
2 2
0- = 0- n
10 5 J L 0 5 10 15 10 4>—5 0 5 10 15
X X
1.00 - \/ 1.00
0.75 - o 0.75 -
0.50- Derivative of | 0504 Shifted and
check function Oo— "=
0.25 1 0.25- scaled tanh
=10 r=1.0
0.00 - 0.00 -
0254 ~0.25
0501 —————— ~0.50
0751 1 0754 ———1
=00 =00
1.004 —F=——— -1.00 —/————
T T T T T T T T T T T T
-10 -5 0 5 10 15 -10 -5 0 5 10 15

X X

Figure 7.4 Illustrating the steps to go from the standard check function to the smooth check function. In each
plot, 11 values of 7 are selected from 0.0 to 1.0 in steps of 0.1.

the more general form is introduced. The function for = = 1.0 in the bottom-right panel is highlighted
with a noticeable slope compared to the bottom-left panel.

Exercise: Using Eq. (7.5.1), express this derivative term with = = 1.0. How much of a shift does this
introduce relative to r = 0.5?

Ans.: Eq. (7.5.1) withz = 1 s
w(x;1.0) = % tanh(10x) + %
The result is a vertical shift of 1/2 (relative to = = 0.5), as seen in the left-bottom corner of Figure 7.4. O
All that remains is to take the integral of this function to obtain a smooth check function which is
given by
pO 1) = % log(cosh(10x)) + (r - %)x (7.5.2)

This smoother function follows the original check function closely but does not have any kinks or
discontinuous derivatives, as shown in the top-right panel of Figure 7.4.

193

194

7 Quantile Regression Using Log-Cosh

We can now reformulate the quantile regression problem using this new loss term. It involves mini-
mizing a new convex loss function which is the conditional quantile function for each z. By replacing the
dummy variable x with r;, we obtain

n
JBlr) =) pr;; 7). (7.5.3)

i=1
This loss function has a unique solution and can be optimized using gradient descent. Unfortunately,
the new formulation may still exhibit the crossing problem if the degree of smoothness is not sufficient
to eliminate it. We need a more general form of this loss function involving the robustness coefficient a
and then we have to carefully select the value of a (rather than the 10 used above) to make the function

smooth enough to avoid the crossing problem while delivering the required model accuracy.
The general M-estimator based on log-cosh for quantile regression is given by:

ﬁSMRQ = argmin JSMRQ(B|7), (7.5.4)
B
where
n
TMBIR) = 3 povnqrii). (7.5:5)
i=1

and the loss term is
Psmrq(Fis 7, @) = % log(cosh(ar;)) + (T - %) ris (7.5.6)

wherer, =y, — x| MR and a is the robustness coefficient which controls the desired level of curvature
of the function (i.e. the smoothness at the kink). This formulation is referred to as the “smooth regres-
sion quantiles” (SMRQ). We will use SMRQ to refer to this loss function whereas quantile regression
using Eq. (7.4.1) will be referred to simply as “regression quantiles” (RQ). Both of these methods will be
compared qualitatively and quantitatively in the sections to follow.

The value of a requires some discussion. For a = 10 used above, there is still a sharp corner in the
loss term. The value needs to be reduced further within the range of 0.5 < a < 10 for optimal perfor-
mance. We recommend the use of a = 1.5 for reasons to be elaborated in Section 7.6.2. The resulting loss
term is

Psmrq(Fis T) = %log (cosh (%rl>> + (T - %) r;. (7.5.7)

This loss term is plotted as a function of ; for different values of = in Figure 7.5. At the top, we note that
the two cases for ¢ = 0.0 and = = 1.0 are mirror images of one another. The same holds true for the middle
pair of cases with = = 0.25 and = = 0.75. The case for r = 0.5 is the only symmetric case. The bottom right
panel includes all five cases plotted together. Note that the kinks in the standard check function have all
been smoothed out. This will eventually lead to quantile estimates that no longer exhibit the crossing
problem. The reasons have to do with the strictly convex property of the SMRQ loss function (in contrast
to RQ), which produces unique solutions for each 7, and the smoothness of the log-cosh check function,
which leads to monotonic quantiles.

7.6 Evaluation of Quantile Methods

10 10

8 =0 8 =1

6 6

44 4

2 2

0- T T T T T 0_ T T T T T
-10 -5 0 5 10 -10 -5 0 5 10

6

4

2

041+ T T T T 01 T T T T
-10 -5 0 5 10 -10 -5 0 5 10

Figure 7.5 SMRQ loss term with a = 1.5 for different = values. Bottom-right plot combines all other plots into

one plot.

7.6 Evaluation of Quantile Methods

Consider Figure 7.6 which shows the results of the two different methods for quantile regression. The
data and quantile regression lines are shown for r = 0.0, 0.25, 0.5, 0.75, and 1.0. The question is, which
one is better? The two plots look the same visually, but one has multiple crossing problems while the
other has none. Unfortunately, it is difficult to determine which option is superior based on a side-by-side

Method 1

1000 ~

800

600

400

Method 2

1000 ~

800

600

400

Figure 7.6 Comparing two methods for quantile regression. It is difficult to detect the crossing problem even in

the case of one variable using this type of plot.

195

196

7 Quantile Regression Using Log-Cosh

comparison of this sort. For higher dimensional problems, it is impossible to render the results in this
way. We need better qualitative and quantitative measures to compare two or more approaches, especially
in higher dimensions.

This section describes ways to properly compare and evaluate different methods for quantile regres-
sion. The most important criteria should be related to monotonicity, but others related to the severity of
crossing problems are also important. In Section 7.9, the standard errors will be used as another compar-
ison measure. However, if a quantile regression method has crossing problems, then all the other error
measures would seem to be less important.

7.6.1 Qualitative Assessment

One way to check for the crossing problem is to count the number of points below a line or hyperplane
against the target number implied by the = parameter. The larger the value of 7, the more points we expect
below the line. This way, the overall performance of different methods can be evaluated against the ideal
case or by comparing the total number of crossing problems encountered by each method. This method
scales easily to multiple dimensions since it reduces to a counting exercise.

For example, the Oth percentile (z = 0) should have 0 points below the corresponding regression line.
As 7 increases from 0.0 to 1.0, the number of points should increase monotonically from 0 to n. The
100th percentile (= = 1.0) should have all n points below the regression line. If these requirements are
not satisfied, then the desired monotonicity property of quantiles has been violated. In effect, the quantile
method has encountered the crossing problem.

Rather than plotting the data and the regression lines, the procedure is to plot the “points below line”
or “points below hyperplane” (as the case may be) against . We call this type of plot a quantile-points
(QP) plot. Such a plot is reminiscent of the QQ plot of Chapter 4 and can be interpreted in a similar way.
Hence, the ideal line is a diagonal line from corner to corner as in a QQ plot. Likewise, we want the QP
plot of a quantile regression method to closely follow the ideal one when plotted together.

To illustrate the nature of a QP plot, consider Figure 7.7. In this small dataset with n = 10, the x-axis
is between 0.0 and 1.0 and the y-axis is between 0 and 10. Ideally, the points should lie directly on the
diagonal line, as shown in the left panel, which means that the quantile method is working perfectly. On
the right panel, a more realistic QP plot is shown which clearly does not trace a path along the diagonal.
Each point on the plot is the result of a quantile regression with a specific value of = followed by a count-
ing of the points below the line or hyperplane. This provides a qualitative assessment of the associated
method for quantile regression. The QP plot can have peaks and valleys as well as flat regions.

We define a “dip” as any point along the QP plot where there is a decrease in value, rather than an
increase or a flat region. To understand the definition of a dip, consider the following example. We
compute the number of points below the line beginning at the Oth percentile and ending at the 100th
percentile, visiting each percentile in between. Assume that, after running standard quantile regression
up to the 76th percentile, we obtain the results shown in Table 7.1.

In the table, the first row indicates 35 points below the line. Then, there is a flat region from the 72nd
percentile to the 73rd percentile, as the number of points below the line remains at 35. This is not consid-
ered problematic. From the 73rd to the 74th percentile, the number of points below the line increases by
one, and the same occurs from the 74th to the 75th percentile. This is the expected behavior. However,
from the 75th to the 76th percentile, we encounter a dip: the number of points below the line drops from

7.6 Evaluation of Quantile Methods

Ideal QP plot Typical QP plot

10 A
o 87 ©
8 £
297 g
5] Q
oS o
z 4+ 1]
= =
s £

2 -

0 -

0.0 02 04 06 08 1.0
T T

Figure 7.7 Basic concepts of a QP plot. The ideal plot is shown on the left where all points lie along the diagonal.
A more realistic plot is shown on the right illustrating several dips which indicate non-monotonic behavior.

Table 7.1 A sequence of quantile regression results.

Points QP plot
Percentile below line feature
72nd 35 —
73rd 35 Flat
74th 36 Increase
75th 37 Increase
76th 36 Dip

37 to 36, which is unacceptable. Such a dip indicates a crossing problem, as dips imply non-monotonic
behavior in the quantile regression method. Thus, we can immediately determine whether a quantile
method is behaving properly if there are no dips.

This methodology can now be applied to Figure 7.6 to determine which is the preferred quantile
method. Method 1 is the standard quantile regression (RQ) using Eq. (7.4.2). Method 2 is based on
log-cosh quantile regression (SMRQ) using Eq. (7.5.7). To produce the results in Figure 7.8, 100 quantile
regressions were performed between 0.0 and 1.0, with steps of 0.01. The number of points below the
resulting lines is counted in each case.

Examining the two QP plots, five crossing problems were detected in RQ but not a single one in SMRQ.
In the case of RQ, the graph follows the diagonal but there are five dips produced, as indicated by the
circles. One of the dips has been enlarged in the inset for clarity, since the resolution of the plot is too low
to observe them. In the adjacent panel, the SMRQ plot is given with a similar diagonal characteristic but
this time with no dips. However, there are several flat regions, one of which has been enlarged in the inset.
These are quite acceptable in quantile regression. Clearly SMRQ performs better than RQ. Furthermore,
it illustrates that the use of the log-cosh loss has the ability to remove the crossing problem in quantile
regression.

197

198 | 7 Quantile Regression Using Log-Cosh

Method 1 - RQ Method 2 - SMRQ
% 100 % 100
£ 80+ 5 80+
o =
))
= 60 '; 60
2 2
E 40 1 8 40 -
E 2
S 201 S 201
~ ~
0 . . 5 Cros.smg pr?blems. 04 . I\IIO crossling prolblems .
0.0 0.2 04 06 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T T

Figure 7.8 Comparison of RQ and SMRQ using data of Figure 7.6.

10 10
Typical No errors Typical maxerr = 2
o 8- QPplot ‘ K o 81 QPplot
8 / > 8
3 ~Flat 2
‘é 4 ‘E 47 avgerr = 7/10
£ . __ Crossing £ .| dips =3
2 B 2 sumerr =2 -5
problems u
0- (dips) 0- =3
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T T

Figure 7.9 Key metrics of a QP plot. Left panel defines flats, dips, and maxerr. Right panel shows computation of
maxerr, avgerr, sumerr, and number of dips.

7.6.2 Quantitative Assessment

Now we move to quantitative measures for quantile regression to ensure accuracy as well as monotonicity.
The characteristics of a hypothetical QP plot are shown in Figure 7.9 annotated with the features to be
measured. If the number of data points at or below the line is exactly the expected number, they will
appear as dots on the diagonal (labeled “no errors”). However, if a dot is situated above or below the
diagonal line, there is an error in the quantile regression. It may not be a serious error unless it causes a
crossing problem. The three points indicated on the left panel (labeled “crossing problem”) arise due to
the non-monotonic behavior relative to a neighboring quantile, and each one generates a dip. There may
also be “flat” regions, one of which is indicated in the figure.

To quantify the errors, four metrics can be computed: the maximum error (maxerr), the average error
(avgerr), the sum of the errors (sumerr), and the number of non-monotonic events (dips). The maxerr

7.6 Evaluation of Quantile Methods

is the absolute worst-case error in the QP plot which happens to be 2, as shown in the right panel of
Figure 7.9. The avgerr is the average of the sum of the absolute errors along the diagonal. In this case,
the sumis |1| + | — 1| + | — 2| + |1] + | — 2| = 7 across 10 data points along the diagonal (excluding the
origin). Therefore, avgerr = 7/10. The sumerr tells us whether most of the errors are positive or negative.
Ideally, the sumerr should be 0 but in this case, itis +1 — 1 — 2+ 1 — 2 = —3. This means that the errors
are biased in the negative direction. The number of dips is 3 from a visual examination. There is usually
a trade-off between these parameters. For example, when reducing the number of dips to 0, the maxerr
and avgerr may increase, or the sumerr may increase in one direction or the other. When comparing two
quantile methods quantitatively, these four values can be used to assess their overall performance.

Exercise: For the QP plot below, compute the number of dips, and the maxerr, avgerr, and sumerr
quantities.

10

Points below line

00 02 04 06 038 1.0

Ans.: The number of dips is 0 since the graph is monotonically increasing. Then, maxerr = 1, avgerr =
4/10, and sumerr =3 -1 =2. O

As arealistic example, consider the diabetes dataset with 442 observations and 10 explanatory variables.
The four metrics are given in Figure 7.10. Based on this information, SMRQ (0 dips) is preferable over
RQ (10 dips). Furthermore, the other three measures are much better for SMRQ. Note that sumerr is
particularly high for RQ due to the number and severity of the crossing problems.

Next, RQ and SMRQ are compared on the Swiss Fertility dataset using a QP plot. As mentioned above,
we would expect to observe a monotonic trajectory of the graph of the number of points below the
hyperplane vs. quantiles. Figure 7.11 shows RQ on the right and SMRQ on the left. Notably, RQ is wildly
non-monotonic in its behavior, which is clearly observable, whereas SMRQ is uniformly monotonic.
There are numerous instances of the crossing problem in RQ whereas none are detected in SMRQ.
Furthermore, all quantitative measures are better in SMRQ.

The interesting thing to notice in SMRQ is that it does not strictly follow the diagonal line but rather
traces a stepwise continuous path from the Oth to the 100th percentile. This implies that the quantiles
from regression are not perfectly aligned with the true quantiles. Sometimes the graph stray above the

199

200 | 7 Quantile Regression Using Log-Cosh

RQ SMRQ
400 - 400 -

5] Q

g E

5 300 - 5 300

< a

> >

= =

2 2001 2 2001

& dips = 10 2 dips = 0

Z 1004 maxerr = 10.8 £ 1004 maxerr = 2.9

I~ avgerr = 4.0 £ avgerr = 0.8
sumerr = —56 sumerr = —-8.4

O h T T T T T T 0 h T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

T T

Figure 7.10 Comparison of QP plots of RQ and SMRQ on the diabetes data.

RQ SMRQ

o Q

5 40 & 40

= =

o 5]

£ 30 S 304

= =

2 2

< 201 5 201

o < dips =0

E 104 maxerr = 4.7 E 104 maxerr = 1.9

S S

~ avgerr = 2.1 [a¥ avgerr = 0.7

0- sumerr = -83.5 0- sumerr =-9.9
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

T T

Figure 7.11 Comparison of RQ and SMRQ on Swiss Fertility data.

diagonal and other times below the diagonal. However, for data science purposes, it is sufficient that the
quantiles be monotonic as opposed to the non-monotonic behavior exhibited by RQ.

7.7 Selection of Robustness Coefficient

We now address the issue of selecting the robustness coefficient, a, in detail. We saw in Chapter 3 that
this factor controls the steepness of the slope of the tanh(ax) function as it crosses the origin and the
smoothness around the kink region of the loss term i log(cosh(ax)). Asa — 100, the function approaches
the L, loss term. The same applies to the quantile loss term for exactly the same reasons. The difference
here is that we need to select the robustness coefficient to remove the crossing problem while at the same
time keeping the errors as small as possible.

7.7 Selection of Robustness Coefficient

7=0.5 7=0.7

TRTRRIERIIRT
o
<

Sl
(=)
[\)

check function

—4 -2 0 2 4 —4 -2 0 2 4

Figure 7.12 Loss functions for SMRQ (r = 0.5 and = = 0.7 cases) for different a and v values.

Consider the smooth quantile loss term of the form
PsmrQ(X; T, Q) = % log(cosh (ax)) + (r - %) X+ . (7.7.1)

A new variable v has been introduced for convenience to adjust the vertical position of the loss term to
make it align with the corresponding term of the check function (but otherwise has no effect on the opti-
mization since it is a constant). Figure 7.12 shows six different cases of Eq. (7.7.1) by varying parameters
aandv for r = 0.5 and = = 0.7. One can observe the different levels of smoothness offered by the SMRQ
function, which can be varied easily as the need arises. The lower bound of the different cases is the orig-
inal check function featuring the kink. The next curve above it is associated with a = 10 and it follows
the check function quite closely. As a decreases in value to a = 0.5, the function becomes smoother. The
question is, which of the given values of a should be used as a default setting?

Table 7.2 provides an answer. If we run all these cases on the Swiss Fertility dataset and compute the
number of dips, maxerr, avgerr, and sumerr from a QP plot, we find that a = 1.5 is a reasonable value to
use. This is the highest value that has no dips. Above this value, we encounter crossing problems. Below
this value, the errors tend to increase. Similar results will be obtained on other datasets. More gener-
ally, for a given dataset, the QP plot metrics can be used to obtain a finer resolution of the robustness
coefficient, if desired.

Table 7.2 Error metrics as a function of the robustness coefficient values between 0.5 and
10 from Figure 7.12.

a=0.5 a=0.7 a=1.0 a=15 a=2 a=10
dips 0 0 0 0 2 4
maxerr 2.52 2.52 2.05 1.88 1.88 1.87
avgerr 0.89 0.82 0.69 0.67 0.62 0.59

sumerr -259 —27.0 -159 -9.9 -2.0 5.0

201

202

7 Quantile Regression Using Log-Cosh
7.8 Maximum-Likelihood Procedure for SMRQ

Since the SMRQ loss function is a smoother version of the check function, it is possible to use
maximume-likelihood estimation (MLE), as described in Chapter 3. To derive the SMRQ loss using the
maximum-likelihood procedure, we need a probability density function (PDF), f(x). Since we only have
a loss function as a starting point, the reverse MLE rule can be used here (see Section 3.5). That is, we
know that p(x) = —log f(x). Then, it follows from the reverse MLE procedure that

fx) = %e"’“‘m(’“% (7.8.1)
where

PsMrQ(X: T) = % log (cosh (%)) + (r - %)x (7.8.2)

using a = 1.5 as in Eq. (7.5.7). Applying the procedure, the form of the PDF is given by

1
(-

_ (7.8.3)
x cosh (3x/2)3

fx(x) =

where the normalizing constant x will vary as a function of the selected z. For = = 0.5, we obtain « as
follows

/°° e 4.857
K= — =4, s
—eo C0sh(3x/2)

and for r = 0.25, we find « using

1

0 _(l_i)x
K = / —& 6546
- cosh (3x/2)3

For = 0.75, we find « using

) N
K = / —& 6546
- cosh (3x/2)3

Figure 7.13 A plot of the normalizing constant x for
different 7.

100
80
60
40
20

00 02 04 06 038 1.0

7.8 Maximum-Likelihood Procedure for SMRQ

0.0084 =0 0.008+
0.004 0.004+
0.000 - ; . . — 0.000-1— . . ; ;
-100 =50 0 50 100 -100 =50 0 50 100
0.15+ 12025 0.15+ 22075
0.104 0.104
0.05+ 0.05+
0.00+ T T T T 0.00-— T T T T
-10 -5 0 5 10 -10 -5 0 5 10
0.20 0.204
1z=05 | S\ 7=05
0.10- 0.101 4 y ‘0'25
B b 7=1 =0
0.00-— T T T T 0.00-— T T T T
-10 -5 0 5 10 -10 -5 0 5 10
X X

Figure 7.14 PDFs of the quantile function for five different values of z. The five plots are all combined in the
bottom-right panel.

A graph of k vs. 7 is provided in Figure 7.13 using a number of different values of z. The distributions can
now be plotted to reveal their characteristics.

Starting with Eq. (7.8.3) and the normalizing constants x given in Figure 7.13, different values of ¢
were selected and their associated distributions plotted in Figure 7.14. The cases shown are for 7 =
0,0.25,0.5,0.75, and 1.0. There is a one-to-one correspondence between Figures 7.14 and 7.5. The dis-
tributions for r = 0.25 and = = 0.75 are mirror images, as are distributions for r = 0.0 and = = 1.0. The
only symmetric distribution is associated with = = 0.5.

Since we now have the equations for the PDFs, we can find the expected values and variances. For
example, setting r = 0.5, we find that

E[X] =0 (7.8.4)
and noting that E[X?] = 8.29 via integration, we have

Var(X) = E[X?] — E[X]? = 8.29 — 0% = 8.29. (7.8.5)
However, for r = 0.75, we obtain

E[X] = -3.7 (7.8.6)
and

Var(X) = E[X?] — E[X]* = 34.4 — (=3.7)*> = 20.7. (7.8.7)

All of the distributions encountered in this book thus far have a mean that is 0 but in quantile regression,
the associated PDFs do not have a mean of 0 except for r = 0.5. From the above, the mean of the distri-
bution for r = 0.75 is negative rather than 0 and for r = 0.25 it would be positive rather than 0. This can
be seen in Figure 7.14. Furthermore, the variance is not constant but increases as r approaches either
lor0.

203

204 | 7 Quantile Regression Using Log-Cosh

The MLE can be derived for a given 7 using the following steps. First, the likelihood function is
n —(r—%)xi
L(xl,...,xn|7)=H(e—l). (7.8.8)
i=1 \ k cosh(3x;/2)3
Then, the negative log-likelihood is
“ 3x;
=C(X;, ..., %, |1) = l; Elog (cosh <7’>> + (r - %) xl] + nlog(x). (7.8.9)

Therefore, after removing the constant term, we obtain the loss function as

JSMRQ(ﬂ|T) — 2 [% log (COSh <%>> + <1- — %)xl] . (7.8.10)
i=1

The estimates are obtained by selecting = and then carrying out the optimization as follows:

SSMRQ w1 3r; 1
p = a;gﬂrgln; [§ log <cosh <7>) + (r - 5) rl] . (7.8.11)

In the above, the dummy variable x; is replaced with residuals r, = y; — xiT M fori=1,...,n

7.9 Standard Error Computation

Standard errors (s.e.’s) represent the uncertainty around the estimates, as described in Chapter 3. It is
essentially the computed value of the standard deviation for each estimate. In the case of quantile regres-
sion using log-cosh, the same general formulation of Chapter 3 can be used to obtain the standard errors.
However, there will be a different set of s.e.’s for each r so they must be computed separately for each
case. For large n, we treat the estimates as normally distributed so that we can use
~ SMR
var(B™Y) = X X, (7.9.1)
and then define the term v? as follows:
Elwsmrq(@)’]
=g (7.9.2)
ElWyo @]

where z = (r — p)/s, which has an unbiased estimate that can be obtained by replacing expectations with
averages (as described in Chapter 3):

1 N
2 san z WSMRQ(ri/S)z n

=3 . (7.9.3)
[+ 2 wirari/dP n—d =1
In the above, we assume t = 0.5 with
9 = Ltann (20 1 (7.9.4)
l[/SMRQ(ri/S) = E an 2—§ +|7— 5 5 J.

and

. 3 5 30
Wenrg(i/3) = Zsech <2—Sl> (7.9.5)

7.9 Standard Error Computation

Table 7.3 Swiss Fertility estimates and standard errors for RQ and SMRQ quantile
regression with = = 0.5.

Feature B se. (3 e seB Y
(Intercept) 63.49 15.60 62.14 10.41
Agriculture -0.20 0.10 -0.20 0.07
Examination —-0.46 0.37 -0.27 0.25
Education -0.79 0.27 —-0.88 0.18
Catholic 0.10 0.05 0.10 0.03
Infant mortality 1.46 0.56 1.42 0.37

S
where the residuals are given by r; = y; — lT p MRQ, i =1,...,n. And finally, for the needed § and §* terms,

we first obtain a robust estimate of s as follows (see Eq. (1.4.6)):
§ = MADN(r), (7.9.6)

and then square it. The s.e.’s are computed as the square root of the diagonal elements of the covariance
matrix, P*(X' X)!.

The estimates and s.e. values for RQ and SMRQ are provided in Table 7.3 using the Swiss Fertility
dataset. In this case, the quantile of interest is = = 0.5. The table indicates that, while the estimates are
similar, the standard errors are slightly larger in RQ as compared to SMRQ.

In order to compare both methods over a range of quantiles, a table is not sufficient. Since this dataset
has d = 5 explanatory variables, it is appropriate to show the aggregate s.e.’s for each = based on the
L,-norm. The following formula is used:

Is.e.ll, = y/s.ed+---+sel (7.9.7)

N

Exercise: Compute the L,-norm of the s.e.’s of the explanatory variables for the Swiss Fertility dataset
with 7 = 0.5 using Table 7.3.

Ans.: For RQ, [|s.e.|l, = V/0.102 + 0.372 + 0.27% + 0.05% + 0.56* = 0.732.
For SMRQ, ||s.e.l, = V/0.072 + 0.25% + 0.18% + 0.03% + 0.37% = 0.487. o

Figure 7.15 illustrates the relationship between s.e.’s and the quantile parameter z for the Swiss Fertility
dataset. The L,-norm of the standard errors for SMRQ and RQ is plotted in Figure 7.15. In the case of
SMRQ in the top panel, several graphs are shown for different values of the robustness coefficient, a. Each
one has a different error trajectory as r moves from 0 to 1. The graph associated with a = 1.5 provides a
relatively low standard error for all values of 7. This is yet another reason why a = 1.5 is a suitable value
for SMRQ. The other graphs begin to stray from their mid-range values as r approaches either 0 or 1,
especially for those with a low value of a.

In the lower panel, the standard error graphs for RQ and SMRQ (a = 1.5) are compared. The graph for
RQ indicates a higher overall standard error and it is not a smooth function of = due to the numerous

205

206

7 Quantile Regression Using Log-Cosh

1.2 1
SMRQ a=05

a=0.7

1.0
0.8

0.6

lIs-e.ll,

0.4 1
0.2 1

0.0 4

0.0 0.2 0.4 0.6 0.8 1.0

1.2 1
1.0 A RQ
0.8 1
0.6 1

IIs.e.ll,

0.41 SMRQ (a = 1.5)

0.2 1

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

T

Figure 7.15 Aggregate standard errors for quantile regression on the Swiss Fertility dataset.

crossing problems shown earlier. However, the SMRQ graph is much smoother and features a much
lower standard error. Based on these comparisons, and others earlier in the chapter, it is clear that the
SMRQ approach to quantile regression offers a significant advantage over the RQ approach which uses
the standard check function.

7.10 Summary

This chapter described methods for quantile regression which is a popular machine learning approach in
econometrics, survival analysis, and computational biology. It focused on the replacement of the standard
check function with a flexible log-cosh loss function as a way to resolve the crossing problem encountered
in quantile regression. The basic idea is to smooth out the kinks and remove the dips due to the standard
check function by replacing it with a smooth counterpart based on the log-cosh function. By adopting

Problems

this approach, the crossing problem can be reduced or removed entirely depending on the selection of
the robustness coefficient, a. Notably, the loss function can be optimized using gradient descent, which
is routinely used in machine learning.

A number of qualitative and quantitative techniques were presented to compare different methods of
carrying out quantile regression. The number of non-monotonic events, called dips, can be detected using
a QP plot as a measure of the severity of the crossing problem. Other metrics such as the maximum error,
average error, and sum of errors can also be computed. These values can be used to select the robustness
coefficient suitable for the smooth check function since there is an inherent monotonicity-error trade-off
which needs to be balanced.

The use of the log-cosh formulation also leads to a deeper understanding of quantile regression. The
source of the crossing problem can be identified as partially due to the kinks in the check function and
partially due to infinite solutions possible when solving the standard quantile loss function using linear
programming methods. In addition, the maximum-likelihood procedure can be applied to explore the dis-
tributions associated with the quantiles in the log-cosh case. Furthermore, the PDFs of different quantiles
can be plotted and statistical quantities, such as expectation and variance, can be computed. Indeed, this
formulation is a promising approach for use in robust machine learning for quantile regression.

Problems

7.1 Plot the loss terms for L,, the check function of Eq. (7.4.2) using = = 0.5 and the log-cosh quantile
term of Eq. (7.5.7) using = = 0.5. Compare and contrast the three cases.

7.2 For the QP plot below, compute the number of dips (non-monotonic events), the maximum error,
the average error, and the sum of errors.

10

oo
1

Points below line

0.0 02 04 06 08 1.0

7.3 Leta =10 in Eq. (7.5.6). Plot the pgyq(x; 7) loss term for the same 7 values as in Figure 7.5. Plot
Wsmro(; 7) for the same cases. Compare the results obtained for a = 10 with the results for a = 1.5.

207

208

7 Quantile Regression Using Log-Cosh

7.4 Consider the distribution of Eq. (7.8.3) with = = 0.25. What is the expected value, E[X], and vari-

7.5

ance, Var(X), of this distribution? (Hint: as a short cut, consider Egs. (7.8.6) and (7.8.7) in conjunc-
tion with Figure 7.14 where the PDFs are mirror images of each other.)

(PROJECT) In this project, the task is to develop a Python program to implement the smooth quan-
tile regression method to avoid the crossing problem.
a) Import the needed libraries.

import numpy as np

import pandas as pd

from scipy.optimize import minimize
import matplotlib.pyplot as plt
$matplotlib inline

b) Load the Swiss dataset (assumed to be stored in the file swiss.csv using the data of Chapter
3, Section 3.6.1) and define the X and y values.

swiss = pd.read csv("swiss.csv")

swiss[‘ones’] =1

X = np.array(swiss.drop(["Fertility"],axis=1))
y = np.array(swiss["Fertility"])

¢) Define the needed functions for the quantile log-cosh loss.

logcosh = lambda x: np.logaddexp (x,-x)-np.log(2)
def SMRQ (b) :
beta = b
ri = y-np.matmul (X, beta)
LCsum = np.sum((1l/(2*a)) *logcosh(a*ri) +
(tau-1/2) *ri)
return LCsum

d) Run the code witha = 1.5and = = 0.5.

a =1.5

tau = 0.5

#Initialize beta with small random values

initbetaSMRQ = np.random.randn (X.shape[1l])/10.

#Run the minimizer to obtain the estimates

res = minimize (SMRQ, initbetaSMRQ, method='BFGS’)

betaSMRQ = res.x

formatted values = [£"{value:.3f}" for value \
in betaSMRQ]

print ("Optimized estimates are:", ‘', ' \
.join(formatted values))

e) Re-run the code for = 0.75 and then again with = = 0.25.

References

7.6 (Project) In this project, the task is to generate the QP plot for the Swiss dataset for a = 1.5.
a) Define the code for the QP plot and run it.

m = 100
a =1.5
n = X.shape[0]
taus = np.zeros(m-1)
ptsbelow = np.zeros (m-1)
for i in range(m-1):
Set value of tau
tau = (i+1)/(m)
taus[i] = tau
Initialize betaSMRQ
initbetaSMRQ = np.random.randn (X.shape[1l])
Perform SMRQ regression
res = minimize (SMRQ, initbetaSMRQ, \
method="'BFGS"')
Save estimates
betaSMRQ = res.x
Determine points below line
count = np.sum(y < np.matmul (X,betaSMRQ))
ptsbelow([i] = count

b) Generate a QP plot using the results.

plt.plot (taus,ptsbelow, color="black’)
plt.title("QP plot of Swiss dataset™")
plt.xlabel ("tau")

plt.ylabel ("points below hyperplane")
plt.show()

7.7 (Advanced Project) In this project, the task is to write a Python program that takes the information
from the previous problem to generate the number of dips, maxerr, avgerr and sumerr of the QP plot.
Use the taus and ptsbelow arrays and compute these quantitative metrics. The results should
match Figure 7.11 for SMRQ.

References

Koenker, R. (2005). Quantile Regression. Cambridge University Press.
Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica 46: 33-50.

209

8

Robust Binary Classification

8.1 Introduction

This chapter addresses machine learning algorithms for binary classification. The fundamental concept
involves analyzing a dataset where the combined values of the explanatory variables lead to one of two
possible outcomes, which are referred to as classes. The objective is to establish a boundary that separates
the two classes. Predictions are made by adding new data points and assessing their positions relative
to the boundary to determine class affiliation. While the idea may seem straightforward conceptually,
there are many ways to address the problem, and the theory and its practical implementation can be
quite complex. However, it becomes interesting at this stage because logistic regression (see James et al.
2023), one of the techniques employed, shares many characteristics with linear regression, which has
been thoroughly explored earlier in this book.

We begin this chapter with a detailed treatment of logistic regression which is a well-known approach
to binary classification. Then, we modify it to use robust techniques based on the log-cosh loss func-
tion, unveiling its untapped potential for data science and machine learning applications. Specifically, we
compare the robust log-cosh method with the conventional cross-entropy approach, highlighting their
advantages and inherent limitations. This discussion sets the stage for a subsequent exploration of neural
networks in Chapter 9, making it crucial to grasp the foundational concepts presented here.

There are several other well-known approaches to binary classification. Some are robust to a certain
degree (but not relative to outliers) while others are truly robust (but still require some tuning to obtain
acceptable results). Our main interest here is to evaluate their degree of robustness. We first develop
the insights that lead to the support vector classifier (SVC). Then we extend the concepts learned to
the support vector machine (SVM). SVMs are considered to be among the best large-margin classifiers.
This method, developed by the computer science community, is not based on fundamental statistics or
any known distributions, but it has emerged as an important classification method. Then, we take a look
at the robustness characteristics of k-NN and finish with tree-based methods.

All the traditional methods have been widely studied and documented in the literature. Therefore, we
will not go into great depth here. The primary goal of this chapter is to broaden the reader’s understanding
of the importance and advantages of robust methods in binary classification.

Fundamentals of Robust Machine Learning: Handling Outliers and Anomalies in Data Science,
First Edition. Resve Saleh, Sohaib Majzoub and A. K. Md. Ehsanes Saleh.

© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/HandlingOutliersandAnomaliesinDataSciencele

211

http://www.wiley.com/go/HandlingOutliersandAnomaliesinDataScience1e

212

8 Robust Binary Classification
8.2 Binary Classification Problem

Binary classification is a machine learning problem whereby a given set of data falls into one of two
possible classes with the goal of finding a suitable decision boundary, either linear or nonlinear, that acts
to separate members of one class from the other. As an example, let us consider a bank that is issuing
loans and wants to classify each potential customer as either eligible for a loan or not, based on data from
existing and previous customers. This is a classic binary classification problem since we want to identify
the characteristics of customers who tend to pay back loans as the criteria for giving out future loans.
Our target group would be those who received loans and paid them back, labeled as being in Class 1,
and the alternate group would be composed of those who received loans and did not pay back, labeled as
being in Class 0. The goal is to build a model that predicts whether a new customer belongs to Class 1 or
Class 0.

For data science, logistic regression is one of the workhorse methods for binary classification and we
will focus most of this chapter on robustifying this approach. One of the main advantages of logistic
regression over other methods is that it is possible to compute probabilities of being in one class or the
other (if needed) for all points in the dataset, or any new points. Furthermore, it allows us to access feature
importance in ways similar to what is done in linear regression. These two aspects of logistic regression
make it preferable in many applications in data science.

8.2.1 Why Linear Regression Fails

Without knowing about logistic regression, our first inclination may be to use linear regression to see
what happens. Consider the two datasets shown in Table 8.1. In Set 1, the values for x and y are quite
suitable for linear regression. The (x;,y;) pairs consist of real values which fits the necessary requirements.
We can try to fit the data using the robust linear regression of previous chapters, noting here that an outlier
is present in the data table (due to data point (5.4, 9.73)). However, in Set 2, the response variable is binary;
i.e.y; € {0,1}. Therefore, the rules of the game must change. Although it is possible to attempt some sort
of fitting using linear regression, this type of data does not inherently lend itself to this approach. This is
why we turn to alternative methods such as logistic regression.

For binary responses, we talk in terms of two classes of observations, Class 0 and Class 1. Each class is
typically represented in plots with a different symbol. We are still seeking a line (more generally, a plane
or hyperplane) but now we want the line that divides the data into two classes rather than one that fits the
data. Often, the data is almost separable but not quite. There may also be some responses that are out of
place relative to others in the same class, the so-called outliers. Note that most of the other approaches
to binary classification do not perform well when outliers are present. We will describe robust methods
for binary classification that can handle outliers of the type given in Set 2 (due to data point (1.2, 1)).

Exercise: If a simple linear regression model is used on Set 2 of Table 8.1, we obtain ﬁo = 0.035 and
£, = 0.098. Plot the data and regression line. Can you see any problems using this type of approach for
binary classification? If so, list the problems. (Hint: consider the predicted values for each of the given x
values.)

Ans.: See Figure 8.1 for the plot. This is not a good approach because the line does not separate the points
properly and therefore does not produce a suitable decision boundary. Further, the predicted value at

8.2 Binary Classification Problem

Table 8.1 Examples of the use of real and binary numbers representing the response data and their implications.

Set x 0.1 1.2 2.1 33 4.1 5.4 6.2 7.3 8.0 9.2 10.4
1 y 0.44 1.47 2.47 2.59 4.66 9.73 5.81 7.88 7.06 9.21 10.35
Set x 0.1 1.2 2.1 33 4.1 5.4 6.2 7.3 8.0 9.2 10.4
2 y 0 1 0 0 0 0 1 1 1 1 1
1.2 1
1.0 A L]
0.8 1
0.6

Linear regression line

0.4 1
0.2 4 Ideal boundary line
004 © o o o o
o 2 4 6 810
x

Figure 8.1 Using linear regression for Set 2 of Table 8.1.

x = 10.4 exceeds 1.0 which is not desirable. Predictions should be in the range [0,1]. A vertical line at
x = 5.8 is actually the best decision boundary for this dataset, as demonstrated in the next section. O

8.2.2 Outliers in Binary Classification

Before describing various methods for binary classification, the notion of an outlier in the context of
binary classification should be defined. If we return to Table 8.1, we noted earlier that there is an outlier
in Set 2. Reviewing the above exercise involving the use of linear regression on Set 2, it seems that a simple
horizontal line at y = 0.5 would make a suitable boundary between the two classes and this would imply
that no outliers exist in the data. However, this is not correct. While it is a two-dimensional problem for
linear regression, it is only a one-dimensional problem in binary classification and, in that setting, there
is an outlier present in the dataset.

In Figure 8.1, we incorrectly represented the responses in the y-dimension. The problem is actually
one-dimensional and the y; values should be represented as symbols, such as “0” and “e,” along the

213

214

8 Robust Binary Classification

I IDEAL BOUNDARY Figure 8.2 One-dimensional binary classification
No outlier \[problem without and with an outlier. A method is robust

—p—o—p—op—ohe—er0—@—@—x ifoutliers do not greatly affect the position of the
0 2 4 6 8 10 decision boundary.

r IDEAL BOUNDARY

X
0 2 4 6 8 10

x-axis. This is done in Figure 8.2. The diagram in the upper half is a clean dataset free of outliers and it
is obvious where the ideal boundary point should be located. The diagram in the lower half represents
Set 2 of Table 8.1 and we can now see that there is indeed an outlier present. However, this should not
change the location of the ideal boundary. If a method is robust, the decision boundary remains the
same regardless of the presence of outliers. But this trivial example creates problems for standard logistic
regression as it would be influenced by the outlier, causing the boundary to move towards it, due to lack
of robustness. Of course, one-dimensional problems are not considered in practice but the same concept
applies in higher dimensions.

Now consider a more realistic two-dimensional problem with a linear decision boundary. While most
logistic problems have dimensions much higher than two, using two variables is sufficient to gain insight
into the way that logistic regression is carried out. In Figure 8.3, we see binary data values associated
with y represented with symbols “x” and “e.” The two classes appear to be linearly separable on the left
panel and the ideal linear decision boundary is shown in the plot. Logistic regression computes the slope
and intercept of such a line. Note that the boundary lies between the two classes, at a safe distance from
points on either side. This is the highly desirable large-margin property that is characteristic of some, but
not all, binary classifiers.

On the right-hand panel of Figure 8.3, there is an outlier in the data. Except for this one data point, the
same decision boundary could be established to separate the “x” class from the “e” class. But standard
logistic regression does not produce this line. Why? Because an outlier presents an attractive force. We
saw this earlier for linear regression in Chapter 2. The effect of outliers on the least squares method
is to change the slope of the line toward the outliers. The same type of effect occurs in standard logistic
regression: the decision boundary would be shifted toward the outlier. However, robust logistic regression
keeps the same boundary line as if outliers did not exist.

One question to ask is whether this is an error in classification or an outlier in the data. The point on the
left side of the boundary in the right-hand panel is an outlier only in the context of the proposed separation
boundary. We could consider it as an error in classification but that would be incorrect. Instead, it should
be treated as an outlier because it lies in the midst of elements from the other class and not in the vicinity
of the boundary. Errors in classification occur near the boundary, not in the middle of a region dominated
by the opposite class. This can be seen in Figure 8.3 for the outlier in the right-hand panel. Its nearest
neighbors are all of the opposite type and it is not near the boundary.

An outlier in binary data can be produced in a variety of ways but we can only find it once we establish
a decision boundary. Only then is it clear which points are inliers and which ones are outliers. Nonlinear
boundaries may also change our view of outliers and inliers. Whatever be the designation, we would like

8.3 The Cross-Entropy (CE) Loss

X . X .
/ IDEAL / IDEAL

3001 — BOUNDARY 300 1 — BOUNDARY

</ </
250 A o o 250 A o o
3200*) /. . . 2-200* /. . .
150 A No outliers / oo 150 A Outlier / oo
100 4 x xxxxxx/.- ° 100 4 x xx\.xxx/.o .
504 x / * s04 x / -
T T T T T T T T T T T T T T T T T T
1.5 20 25 30 35 40 45 50 55 1.5 20 25 30 35 40 45 50 55

wt wt

Figure 8.3 Outlier definition and robustness in a two-dimensional setting.

to have a method that is robust enough to produce a good model in the presence of a small percentage of
such outliers. In fact, the word robust implies that a certain amount of tolerance to outliers, meaning that
outliers will not greatly affect the estimation of the true underlying model. Hence, the model building
process should withstand a small number of these outliers and produce results as if they did not exist, as
shown in the right panel of Figure 8.3.

Unfortunately, standard cross-entropy methods are strongly affected by outliers. They act like an attrac-
tive force that moves the decision boundary in their direction. In essence, these methods are based on the
mean of the residuals, much like least squares for linear regression. In the robust approach, the median
is used to build the model. Note that it does not have to be precisely the median. Any quantile in the
vicinity of the median effectively ignores outliers.

Non-robust methods currently in use may produce misleading or erroneous results if there are outliers
present in the data, and this fact would be hidden from the user. Oftentimes, the accuracy of predictions
on a training set may reach 100%, which gives the user confidence in the results. Unfortunately, overfitting
has likely occurred. This means that the outliers were perfectly captured by the parameters which can
occur if the feature space is large enough. The effect of outliers will be felt only when the accuracy on the
test set is significantly lower than expected. With this background, the details of the standard and robust
methods will now be described.

8.3 The Cross-Entropy (CE) Loss

The concept of “cross-entropy” originated in information theory as a way of quantifying the difference
between two distributions. It is now used widely in machine learning in the form of a loss function to
compare a known distribution of the true labels y against an estimated distribution p over the same set of
observations. Following the procedure similar to that of Chapter 2 on linear regression, we will first derive
this loss function which is used in logistic regression. We will eventually end up with the cross-entropy
loss function and an equation to compute p so we might as well get a glimpse of these equations before
setting off to derive them.

215

216

8 Robust Binary Classification

The CE loss is given by
1 n
CE loss = —EZ[}G‘ log p; + (1 —y;)log(1 — p)l, (8.3.1)
i=1

where the y,’s are the true responses and the p;’s are the predicted values, fori = 1, ..., n. It is also referred
to as the log loss function.

This loss function does not have the same form as any of the loss functions we have encountered
thus far, but remember that we are now doing logistic regression, not linear regression. The term p; is
a probability that depends on the explanatory variables x; and the model parameters f € R**! in the
following way:

1

e 8.3.2
Pr=1 + exp(—x]) (83.2)

Rather than predicting 0 or 1, the goal of logistic regression is to predict the probability of a response of
1 for each observation using this logistic function. If the probability is high, the predicted response is
considered to be 1, whereas if the probability is low, it is considered to be 0. Because of its importance, we
will also derive this equation, but consider it to be known for the moment. The estimate of f associated
with the minimum of the CE loss function defines a point, line, plane, or hyperplane (depending on the
dimensions of f) that forms the decision boundary.

Note: While the goal of the next section is to derive the cross-entropy loss from first principles in
some easy to understand form, it may require several passes to fully grasp it. This is an important
derivation to follow carefully. One way to deal with the derivation in d-dimensional space is to
imagine that we are trying to find a linear boundary in a two-dimensional space. This may be helpful
in keeping things clear in your mind. The section may also be skipped without loss of continuity.

8.3.1 Deriving the Cross-Entropy Loss

To set up the derivation, we need to specify the distribution associated with the response variable Y as
a starting point. Since we can only have a response of 1 or 0, the random variable Y follows a Bernoulli
distribution with some unknown probability, p. Thatis, Y ~ Ber(p). The probability mass function (PMF)
of the Bernoulli distribution is shown in Figure 8.4. This discrete distribution describes our view of Y €
{0,1}, where the probabilities of being 0 or 1 are 1 — p and p, respectively. This particular distribution
can be written in an elegant form as follows:

p
_ 1—
Lo =pa-p". (8.3.3) p
To check if this is the correct formulation, we note that if y = 1, then f,(y) = p, l N
and ify = 0, we have that fp(y) =1 - p. Soitisindeed the Bernoulli distribution. y=0 y=1

To derive the CE loss function, suppose for the moment that we have access Figure 8.4 Bernoulli
to the (y;, p;) pairs. Since we know the distribution is Bernoulli, we can use the gjstripution of random
maximum likelihood procedure, as outlined in Chapter 2. Step one is to define variable Y.

8.3 The Cross-Entropy (CE) Loss

the likelihood function,

n
Ly, oY Do o) = [[P =). (8.3.4)
i=1

Then, the negative log-likelihood expression is given by:

—C(Y1, Y50 Y3 P1s -+ Pp) = —Z[yi log(p;) + 1 —y;)log(1 - p))]. (8.3.5)

i=1
This is the cross-entropy loss function and is expressed as follows:

n
CEloss = —) [y, log(p,) + (1 - y,) log(1 — p))1. (8.3.6)
i=1
The equation computes the total cross-entropy between y; and p; over n observations. During the
optimization process, the loss function of Eq. (8.3.6) will do its best to match each p; to each y; because
when they match, the loss function is identically 0. It is easy to check this condition for the case of, say
y; =1,p, =1ory, =0,p; =0.In either case, the loss is 0. Of course, in practice, we do not reach 0, but
hope to obtain some minimum loss value. At the minimum value, we find the corresponding ﬁCE that
becomes our model.
To summarize, the average cross-entropy loss is

n
1
CEloss = —EZ[yi log(p;) + (1 —y;)log(1 — p;)] (8.3.7)
i=1
and the CE estimator is given by
ACE , 1y
B =argmin ——Z[yi log(p;) + (1 —y;)log(1 —pyl o . (8.3.8)
ﬁERd“ n i=1

It can be shown that the CE loss function is convex which is a highly desirable property for convergence
to a global minimum. Therefore, the way we obtain BCE is the same as in Chapter 2: we use gradient
descent in one of its advanced forms so that convergence will occur smoothly and in a timely manner.
The estimates are used to establish a decision boundary between the two classes and new data can be
classified using the boundary line or plane. Essentially, logistic regression involves minimizing the CE
loss function to obtain estimates that define a decision boundary between two classes.

Now that the loss function is derived and understood, the logistic function will be derived based on the
generalized linear model (GLM) formulation. The procedure involves expressing the conditional proba-
bility that Y; = y; given p; in an exponential form and identifying the canonical link function associated
with it. We again start with the Bernoulli distribution as follows:

P(Y; = y,lp) = p,"(1 — p) 7. (8.3.9)

Next, we express it in the form of an exponential family by taking the log and then the exponential as
follows!:

P(Y; = y;|Ip;) = exp(y;log p; + (1 —y;)log (1 — p;)). (8.3.10)

1 Here, exp() is the exponential function expressed this way to improve readability.

217

218

8 Robust Binary Classification

Collecting all terms with y; (i.e. taking y; as a common factor from both terms) and then rearranging in
the GLM canonical form, we obtain

P(Y; = y;|p;) = exp (yi log T fip +log(1 —pi)> . (8.3.11)

12
The term next to y; in this formulation is called the link function. We take that term and postulate that
it is representable by a linear model as follows:

p;
log 1-p = Po+xp by + -+ Xgby- (8.3.12)

The right-hand side is the linear model we seek. The left-hand side is referred to as the logit link
function. This form is particularly useful since it will eventually lead to a convex loss function.
Rearranging Eq. (8.3.12) and solving for p;, we obtain the logistic function,

1

= 8.3.13
1+ exp(—x] p) ()

bi
This is same the equation we used earlier but now we have derived it from first principles so we can
proceed from here using the maximum-likelihood procedure outlined before to obtain the CE loss
function.

8.3.2 Understanding Logistic Regression

Now, suppose we find the estimates j using the estimator described in Eq. (8.3.8), or any other similar
classifier. What is the meaning of the estimates and what can we do with them? We know the estimates
establish the decision boundary, but since we cannot plot such a boundary in high dimensions, how do
we use them? The answer is that we can use a probability test for some new data point x to decide if
it should be categorized as being in Class 0 or Class 1. A second option is to use a sign test on x' § to
determine if it belongs to Class 1 or Class 0.

Conceptually, any point that satisfies x” § = 0 represents a point on the boundary line or hyperplane
with a 50% probability of belonging to Class 0 or Class 1. In Eq. (8.3.13), p, = 0.5 when x" § = 0. Thus,
the linear boundary in d dimensions (i.e. the hyperplane boundary) is defined where

o+ B+ + By =0. (8.3.14)

Note that j, serves as the intercept while the rest of the coefficients, f,, ..., f;, establish the angle of the
hyperplane in each dimension.

Using a sign test, we can tell if x falls on one side of the boundary or the other. Therefore, we would
predict Class 1 if

ﬁo + ﬁAlxl 4.4 ded >0, (8.3.15)
and Class 0 if

Bo+Brx, +- -+ faxy <O0. (8.3.16)

8.3 The Cross-Entropy (CE) Loss

Example: Consider the one-dimensional problem back in Figure 8.2. In that case, we have two param-
eters to estimate, f, and f; (even though it seems like one parameter would be enough). Some classifier
has produced estimates of , = 58 and §, = —10 for this problem. With this information, we can estab-
lish the boundary point. It occurs where x' = 0 which means that g, + f,x = 0, i.e.x = —f,/f, = 5.8
as shown in the figure. For some new data x = 2, since ﬁo + ﬁlx = 58 + (—10)(2) > 0, then x is consid-
ered to be in Class 1; similarly, if x = 7, then ﬁo + ﬁlx = 58 + (—10)(7) < 0 and therefore x is assigned to
Class 0. o

Example: Consider the two-dimensional problem back in Figure 8.3. A classifier has produced estimates
of /?0 =10, /?1 = —4, and ﬁz = 0.02 for this problem. The decision boundary occurs where 10 + (—4)x; +
0.02x, = 0. It corresponds to the line x, = —f,/f, — f,/#,x, = —500 + 200x,. Therefore, for some new
data point at (4,100), we find that 10 + (—4)(4) + 0.02(100) < 0 and it is considered to be in Class 0.
Likewise, a new point at (2, 300) is considered to be in Class 1 since 10 + (—4)(2) + 0.02(300) > 0. O

A graphical view of the two ways to use f is provided in Figure 8.5. Assume that x; is to be assigned to
a specific class. Starting with Figure 8.5(a), if xl.T B > 0, we declare the data point as belonging to Class 1,
which is on one side of the boundary. If xlTﬁ < 0, it belongs to Class 0, which is on the other side of the
boundary. Alternatively, we can use a probability test by computing p; = P(Y; = 1|x;) using

pi =p) = T e (8.3.17)

where z; = xl.T B. The way to determine the class of x; is depicted in Figure 8.5(b). On one side of the plot
is the region where p; < 0.5, which is Class 0, and on the other side is where p; > 0.5, which is Class 1.
When z; = 0, the probability is 0.5. So the boundary line is indeed where p; = 0.5. This is a key point
to understand about the decision boundary. It is defined as the linear or nonlinear boundary where the
probability is 0.5.

350 A 350 A
% Class 1 % Class 1
300 ~ e Class 0 300 ~ e Class 0
250 250
T T % .,
%200-xﬂ>0 xlp<0 22004 p<05
150 A 150 A
1004 * x 100 -
XX X
504 x 50
T T T T T T T T T T T T T T T T T T
1.5 20 25 3.0 35 40 45 50 55 1.5 20 25 3.0 35 40 45 50 55
wt wt
(a) Sign test (b) Probability test

Figure 8.5 Two ways to interpret the results of logistic regression either using (a) the sign test or (b) the
probability test.

219

220

8 Robust Binary Classification

1.0 A
p(2)
0.8
0.6

0.4 1

0.2 1

OO T T T T T T T
-100 -7.5 50 -25 00 2.5 5.0 75 100

Z

Figure 8.6 Logistic function of Eq. (8.3.17).

It is instructive to examine the logistic function with the computation of these probabilities in mind.
A graph of the logistic function p(z) is shown in Figure 8.6. Note that for large positive values of z, the prob-
ability asymptotically approaches 1, whereas for large negative values, it asymptotically approaches 0. The
ground truth (i.e. true value) of the dependent variable y is either 0 or 1 whereas the predicted probability
p(z) lies between 0 and 1.

Exercise: Let the estimates f, = 1.0, f, = —1.0, f, = —1.0, and f, = —1.0 be derived from a training
set for a logistic regression problem where the possible logical response is either 0 or 1. Using the sign
test, what is the predicted logical value (0 or 1) of the response for a new point x; = (1.0, 2.0, 3.0)T? What
about x, = (1.0, -2.0,-3.0)7?

Ans.: For x; = (1.0,2.0,3.0)T, we have that —1.0 — 1.0(1.0) — 1.0(2.0) — 1.0(3.0) = —7.0 < 0. Therefore,
this element belongs to Class 0. In the case of x, = (—1.0, —2.0,—3.0)7, we have that —1.0 — 1.0(-1.0) —
1.0(—2.0) — 1.0(—3.0) = 5.0 > 0. Therefore, this element belongs to Class 1. O

Exercise: Given f, = 1.0, #, = —=1.0, #, = —=1.0,and f§, = —1.0, find a vector x, such that the probability
of being in Class 0 or Class 1 is 0.5. Note that for this case, there is no unique solution for x; since it can
lie anywhere on the decision boundary.

Ans.:x; = (2.0,0.0,-3.0)" would be one of many solutions since —1.0 — 1.0(2.0) — 1.0(0.0) — 1.0(=3.0) =
0.0and p =1/(1 +¢°% =0.5. m]

Exercise: Given f, = —1.0, f, = -1.0, #, = 1.0, and f, = —1.0, compute the probability P(Y; = 1|x;)
for three different cases, x, = (1.0,2.0,3.0)7, x, = (-1.0,-2.0,-3.0)T, and x, = (2.0,0.0, —3.0)" using the
logistic function.

Ans.:p, =1/1+¢)=0.0.p,=1/(1+e>)~1.0.p, =1/(1 +€°) =0.5.]

8.4 The Log-Cosh (LC) Loss Function

8.3.3 Gradient Descent

The numerical optimization technique used to find f is usually some form of gradient descent. The objec-
tive function to be minimized in logistic regression with cross-entropy, written as J°£(8) to emphasize its
dependence on g through p;,, is given by

n
JE(B) = = Y[y, log p; + (1 - y) log — p)1. (8.3.18)
i=1
‘We will describe only the simplest form of gradient descent for our purposes here. Basically, we compute
the loss function for an initial guess, f”, and then take a step in the opposite direction of the gradient to
reduce the value of J°E(B). The process is repeated until the minimum of J°E(p) is found. This iterative
method requires partial derivatives of J°E(B) in Eq. (8.3.18) with respect to each of the parameters in the
vector f.
We begin with the case involving only one observation, x, and one known binary response, y, and
a predicted value, p. Starting with the loss function, J°E(8), we can apply the chain rule to obtain the
needed gradients. For some parameter, f;, we have that

0IE(B) _ aI(p) op

(8.3.19)
9p; dp 9p;
Then, the partial derivative in the first term of Eq. (8.3.19) is
0JCE 1-
P __y, Y (8.3.20)
dp p 1l-p
and the second term of Eq. (8.3.19), which involves the partial derivative of the logistic function, is
op exp(—x")
9% _ = (1 — D). 8.3.21
25~ Qrexpappd - PETP% (8:3.21)
Combining the two and simplifying, we obtain
aJCE(B)
5 b = - —px; = ¥ = p)=X). (8.3.22)
J

Next, consider the case with n observations. We have to sum up such quantities in Eq. (8.3.19)
associated with each observation for every parameter. Using the steps above, an update equation for
each g, j=0,...,d, to compute the next iteration value is given by
0] S
(t+1) _ o0 _ a0 _ v
B =B x5 = A = 0=y, (8.3.23)
i=
where i is the row index of the dataset and Z is a tuning parameter called the learning rate that controls
the step size needed in each iteration to produce a smooth yet rapid convergence to the global solution.

8.4 The Log-Cosh (LC) Loss Function

In this section, we explore log-cosh logistic regression (LCLR) and compare it against the aforementioned
cross-entropy approach. We motivate the use of log-cosh because it possesses some desirable properties
in terms of robustness to outliers. For our purposes here, robust estimation involves the replacement of

221

222

8 Robust Binary Classification

the cross-entropy loss function with the log-cosh loss function. This loss function has been implemented
in keras and tensorflow, which are open-source machine learning platforms (see Chapter 12).
Therefore, it is worthwhile to study the log-cosh approach in detail.

For the robust procedure, we start with the distribution of residuals of the form r, =y, —p;.
We postulate that the residuals are distributed according to the Cosh distribution and then use the
maximume-likelihood procedure (see Chapter 3). The likelihood function based on the Cosh distribution
is given by:

n

1
L(ry, 1y, ... 15 p) = _— 8.4.1
(Fps T o T B) gﬂ oo (8.4.1)
The negative log-likelihood expression is given by:
—£(ry, 1y, .. T3 B) = n log 7+). log(cosh(r,)). (8.4.2)

i=1
The first term is constant for a given n and ignored during minimization. This gives rise to the log-cosh
loss function in terms of residuals,

n n
LCloss = ZPLC(ri) = Z log(cosh(y; — p;)). (8.4.3)
i=1 i=1
Following the steps outlined earlier for gradient descent, we obtain
a]LC n
0ﬁ(ﬂ) = Zpi(l — py) tanh(y; — p)(=x;). (8.4.4)
J i=1

The update equation for each f; to compute the new parameter values is given by

n
BV = B — ¢ x Y pi(1 = p;) tanh(y; — p)(=xy), (8.4.5)
i=1
where ¢ is the learning rate that controls the step size needed in each iteration, ¢, to produce a smooth
yet rapid convergence to the optimum solution.
To compare CE and LC losses in a consistent framework, we start the loss function for cross-entropy as

n
CEloss = —) [y, log(p;) + (1 - y,) log(1 — p,)] (8.4.6)
i=1
and somehow introduce r; into the equation to get it into the M-estimation form (refer to Chapter 2).
First, we recognize that r; = y; — p;. Therefore, p; = y; — r;. Next, we note that when y; = 1, only the first
term of Eq. (8.4.6) contributes to the loss. And when y; = 0, only the second term of Eq. (8.4.6) contributes
to the loss. Therefore, we can redefine the CE loss as

CE loss = ZpCE(ri), (8.4.7)
i=1
where
—log(1 —r;) ify=1 (CE,)
pes(ry) = {—log(l +r) ify=0 (CEy)"
If peg(r;) and p; (r;) are plotted on the same graph, we obtain the results given in Figure 8.7. Note that
the residuals can only be in the range [—1, 1] because of the nature of the logistic response variable p and

(8.4.8)

8.4 The Log-Cosh (LC) Loss Function

2.5
/)(r,')

2.0 o0 &)
1.5

Outlier Outlier

cost cost
1.0
CE, CE,
0.5
LC LC

0.0 T T

-1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00

T

Figure 8.7 Comparison of p(r;) for CE and LC.

the binary variable y which are both in the range of 0 and 1. Therefore, only this region is plotted along
the x-axis. There are several important points to make at this stage. First, the two halves of the plot for
pcr(r;) are independent so the lack of a smooth transition at the origin is not an issue. In the figure, the
two sides are labeled separately as CE, and CE,, respectively. Second, the curves for both halves go to
infinity at —1 and 1, respectively, which is highly undesirable with outliers. It implies that outliers will
have an infinite weight attached to them and force solutions that are far from the desired general model.
In fact, this explains why there is a strong influence of outliers on the resulting model. And third, the LC
loss term does not have any of these issues and uses a weight of roughly 0.43 on outliers, which is quite
low. This is why it produces results that are robust to outliers.

On the other hand, the gradients associated with the log-cosh loss function are generally smaller, which
implies that convergence may require more iterations. The smoothness of log-cosh leads to an optimiza-
tion space that is flatter compared to the cross-entropy loss, which is typically steeper, allowing gradient
descent to make more progress in each iteration. This can be understood by examining Egs. (8.3.23) and
(8.4.5). For any term in the summation, it can be shown that

Ip;(1 —p;) tanh(yi =p)l <1y, —p)I. (8.4.9)

For a given learning rate, the smaller gradients and flatter landscape of log-cosh imply slower convergence
compared to cross-entropy. However, this is a small price to pay for a more robust and general solution.

8.4.1 General Formulation

A more general formulation for the LC loss is one that contains the robustness coefficient, a (as described
in Chapter 3), as follows:

JCp) = % Z log(cosh(a(y; — p)))- (8.4.10)
i=1

223

224

8 Robust Binary Classification

The general log-cosh logistic regression estimator is then given by

n
BLC = argmin 12 log(cosh(a(y;, — p,) ¢ - (8.4.11)
BERH a =
Typically, a value of a in the range of 5-10 is appropriate for logistic regression (see Chapter 12). The
optimization technique to solve Eq. (8.4.11) is gradient descent but we will need a set of partial derivatives
to utilize it. Following the steps outlined earlier, we obtain
WP <

Y pi(1 = p,) tanh(a(y; — p))(—x;). (8.4.12)
s# =

The update equation for each f; to compute the new parameter values is given by

oJ*C(B)

ap;
where ¢ is the learning rate that controls the step size needed in each iteration, t, to produce a smooth
yet rapid convergence to the optimum solution.

ﬁj““) = ﬂj“) - , (8.4.13)

8.5 Algorithms for Logistic Regression

This section describes the algorithms for binary classification problems using cross-entropy and log-cosh
loss functions. Recall that the cross-entropy loss function is

JEB) = = Y[y log(p) + (1 =y log(d -). (8.5.1)

i=1

and the log-cosh loss function is

J(B) = 13" log(cosh(a(y, - p))- (85.2)
i=1

Simplified algorithms in the form of pseudo-code for the two methods, referred to as CELR and LCLR,
are provided in Algorithms 8.1 and 8.2, respectively. Actual implementations can be much more involved
but, perhaps more importantly, they are almost identical except for lines 5 (loss update) and 7 (gradi-
ent calculation). Therefore, the implementation of the log-cosh approach in existing software is rather
straightforward.

The algorithms begin by reading in the X and y data, along with the settings of the desired number
of iterations, T, and learning rate, #. The two hyperparameters will be different for CELR and LCLR.
Then the g estimates are initialized to some small values. Next, a while loop is executed until the speci-
fied number of iterations is reached. In the loop, the loss function is computed to monitor convergence,
the derivatives for gradient descent are computed and the parameters are updated. The final estimates
are produced when the program exits the while loop.

The question of when robust methods should be used depends on whether the dataset is believed to
contain outliers. Many binary classification problems have two classes that are largely separable, but most

8.5 Algorithms for Logistic Regression

Algorithm 8.1 Cross-entropy logistic regression (CELR).

1: Input: training dataset X, y; number of iterations (T); learning rate (¢).
2: Set n=number of observations, d=number of parameters.

3: Set t=0. Initialize f© to small nonzero values.

4:whilet < T do

5. Compute loss function:

JEB) = - X1, y;log () + (1 =y log(1 - p))]

forj=0toddo

7: Compute gradient of the loss w.r.t. §;:

dJ;Zﬁ) = i 0 = P)(=x;)

8: Update estimate: ﬂj(”l) = ﬁj(” —fx %‘;‘;ﬂ)
9: end for !
10: Update iteration: t =t + 1

11: end while

12: Output: model B¢

A

Algorithm 8.2 log-cosh logistic regression (LCLR).

1: Input: training dataset X, y; number of iterations (T); learning rate (¢).
2: Set n=number of observations, d=number of parameters.
3: Set t=0. Initialize #© to small non-zero values.
4:while t < T do
5: Compute loss function: J*¢(8) = i >, log(cosh(a(y; — p)))
6: forj=0toddo
7: Compute gradient of the loss w.r.t. f;:
AP _ on
o5 Y1 tanh(a(y; — p)Ip;(1 — p)(=x;)
8: Update estimate: /3}.(‘“) = /3}.(‘) - %;@
9: end for l
10: Update iteration: t =t + 1
11: end while
12: Output: model p¢

tend to have outliers. Therefore, it is best to select a robust method. One can show that if there are no
outliers, the results of the two approaches are very similar. Therefore, log-cosh offers acceptable results
with or without outliers.

Our next step is to explore the advantages and disadvantages of CELR and LCLR through a number
of examples using a program written in Python. The results in the sections to follow are based on the
implementation of both algorithms in one program with the option of selecting CELR or LCLR to allow
fair comparisons to be carried out, including issues related to regularization to improve the model.

225

226

8 Robust Binary Classification
8.6 Example: Motor Trend Cars

We begin with a simple illustration of a binary classification problem with a single outlier. The dataset to
be used is called mtcars. It contains information about whether or not a car has automatic or man-
ual transmission (am) based on its horsepower (hp) and weight (wt). Hence, the binary response is
am, while the explanatory variables are hp and wt. The dataset was shown earlier as a scatter plot in
Figure 8.3 along with an ideal decision boundary line. Now, imagine a hypothetical setting as an employee
in a car company. Your manager gives you the mtcars dataset and asks you to determine whether a
soon-to-be-designed car with hp =125 and wt = 3.0 Mg (where 1 Mg = 1000 kg) should use an automatic
or manual transmission. How can you decide which type of transmission the car should use? Based on
the fact that the response variable is binary, logistic regression is a suitable choice.

If we apply the cross-entropy method using CELR, we obtain the separation boundary shown in
Figure 8.8(a). This is a somewhat surprising result at first glance because it is visually clear where
the separating line should go and CELR does not produce it because of the influence of one outlier.
Unfortunately, this is the main issue with CELR—the decision boundary is altered by the presence of
outliers. As a result, the linear boundary actually incurs four misclassifications in this example. There
are also two points straddling the line that are close enough to be called a 1 or 0. Therefore, even in this
ideal setting where a clear delineation exists between 0 and 1 responses, CELR may make a few mistakes
if outliers are present. To answer the manager’s question about the newly designed car with 125 hp and
a weight of 3.0 Mg (shown using a the symbol A in the figure), the decision would be to make it a manual
transmission based on CELR.

Now consider the results with LCLR shown in Figure 8.8(b). This is exactly what one would expect
without any outliers present, and visually this seems like the correct result as discussed previously.
The use of log-cosh effectively ignores the outlier in this case. It also behaves like a large margin
classifier, similar to SVCs (to be described in a later section). As an answer to the manager’s question,
LCLR recommends an automatic transmission (indicated by the A located on the other side of the
boundary). This is the correct decision. Clearly, the robust solution ignored the outlier and produced a
higher-quality result (which could save your job in the end!).

One important point to note is that we can obtain probability information using logistic regression.
The probability can be used to decide whether the point is a 0 or a 1, or can be used unaltered to
provide more information for a business decision. The reason for its importance is 2-fold. First, in a
high-dimensional setting, we cannot plot the decision boundary associated with p = 0.5 and examine
it visually. The probability is more informative than simply stating the class. Second, the threshold
for determining whether a point belongs to Class 0 or Class 1 is nominally set to 0.5, but if the more
appropriate setting for a particular application, say in the case of deciding on whether to give out a loan,
may be much higher, such as 0.7. In many data science problems, we may be interested in the probability
value rather than the class and logistic regression provides this information.

A contour map is shown in Figure 8.9 based on the probabilities computed using the logistic function.
The decision boundary line is the case where p = 0.5. Other probability contours are parallel to this line
and reach p = 1.0 on the left-hand side and p = 0.0 on the right-hand side. It is only out of convenience
that we plot only the p = 0.5 line and call it the decision boundary. As a practical matter, it can be set to
any desired value between 0 and 1.

8.7 Regularization of Logistic Regression

350
x Automatic x
300 - e Manual
A New Car
250
[]
& 200- o
[]
150 4
100 * " x
XX X
504 x
1.5 20 25 30 35 40 45 50 55
wt
(a) CELR
350 _
x Automatic
300 - e Manual
A New Car
250
[]
£ 2001 o*
[]
150 4
1001 * L x®
XX X
504 x
1.5 20 25 30 35 40 45 50 55
wt
(b) LCLR

Figure 8.8 Comparing the decision boundaries of CELR vs. LCLR with one outlier.

8.7 Regularization of Logistic Regression

Binary classification problems also face issues related to the bias—variance trade-off (see Chapter 6), more
commonly known as overfitting and underfitting. In overfitting, we may produce a model that predicts
the training set with high accuracy but fails to reach the same level of accuracy on the test set. Such a
model is said to have a high variance and low bias, which implies overfitting. In underfitting, the model
with high bias and low variance is unable to attain sufficient training accuracy due to the lack of enough
features. In machine learning, we always seek a general model to balance overfitting and underfitting
using a variety of different techniques.

227

228

8 Robust Binary Classification

350 -
300 p=10/p=0
250 -

200

hp

150

100 - « x/x

504 x

15 20 25 30 35 40 45 50 55
wt

Figure 8.9 Probability contours from logistic regression.

8.7.1 Overfitting and Underfitting

In Figure 8.10, the concepts of overfitting and underfitting in binary classification are illustrated in a
two-dimensional space. The 1’s represent Class 1 and the 0’s represent Class 0. The model parameters
define the decision boundary between the two classes. In Figure 8.10(a), the decision boundary is shown
to be some complex path through the data to separate 1’s and 0’s. This overfitted situation produces high
accuracy on the training data. Note that if there are outliers present, as shown in the figure, they will
not be predicted correctly. Therefore, 100% accuracy may not be achieved in training sets with outliers
even if the model is overfitted. In any case, the nonlinear decision boundary may not be general enough
to obtain good accuracy on test data. The reason is that there are overfitted regions that are stretched
out to capture 0’s and this may cause errors in classification on a test set.

X X
Outlier | I 1 1 Underfit Outlier | I 1 1
1
1 101 1\0 Lo Generalized
1 | [R
0,70 00 "
11 10 !
1 1 0 .
0 0]/Outher
0
0 0 0
(@) (b)

Figure 8.10 Effect of overfitting, underfitting, and generalization. (a) overfitting and underfitting, and (b)
generalized result.

8.7 Regularization of Logistic Regression

The linear boundary shown in the same plot is an example of underfitting. In this case, the decision
boundary is restricted to being linear so it is difficult to find a good solution. Figure 8.10(b) shows a
more general result which, in this case, produces a nonlinear decision boundary. It will likely produce
good accuracy on a wide range of test sets. When building a model, the goal is to balance overfitting and
underfitting in some manner using cross-validation, penalty functions, feature selection, or a variety of
other techniques. In the next two sections, we examine the use of cross-validation and penalty functions
for binary classification.

8.7.2 k-Fold Cross-Validation

The standard approach for generalization in logistic regression is to use k-fold cross-validation.
This subject was described in detail in Chapter 6 and will not be repeated here. However, its use in
connection with outliers in datasets is relevant to our discussion. The main issue is the presence of
outliers in the training set and the test set and how to interpret the results. First, the training set will
be partitioned into k folds and each one may have outliers. Therefore, the CELR approach will be
influenced by outliers as described in the previous section, whereas LCLR will exhibit its characteristic
robustness to outliers. Therefore, the results obtained using k-fold cross validation will usually be better
for LCLR with outliers present.

Second, there is a problem with the test set accuracy when outliers are present. It is difficult to control
the number of outliers in the test set without any knowledge of the decision boundary since the test set
is constructed using random selection from the dataset (before any training). However, after the deci-
sion boundary has been established, it may result in a number of outliers in the test set which would
be manifested as classification errors. These outliers can be detected and removed using the techniques
described in Section 8.9, but this is not generally done in practice. Recall that the unseen test set is mainly
used to confirm the results of the trained model. We are not permitted to adjust its contents to achieve
better results. The test accuracy might be higher or lower than what was achieved during training, but we
expect it to be in the same ballpark to validate the model. In Figure 8.10, imagine if only outliers appeared
in the test set. The accuracy would be 0% which is not reflective of the actual performance of the robust
model. Therefore, it is important to use both the cross-validation scores after training and the test scores
to evaluate the model due to unpredictable effects of outliers in the unseen test set. In general, the two
results tend to line up if there is enough data to work with using LCLR.

8.7.3 Penalty Functions

Penalty functions, such as ridge, LASSO, aLASSO, and Enet, were detailed in Chapters 5 and 6. They
are useful for fine-tuning a linear regression model to balance overfitting and underfitting—a process
called regularization. The cross-entropy loss for logistic regression can be regularized using penalty
functions in the same manner. Regularization in this context can be viewed as a way to adjust the
parameters until a high accuracy is achieved during cross-validation. This is particularly important for
CELR since it requires tuning a hyperparameter A to obtain acceptable results. However, for robust
logistic regression, there is some amount of “auto-regularization” built-in to the loss function so that
penalty functions are not as essential. For that reason, we present results only for the regularization
of CELR.

229

230

8 Robust Binary Classification

Regularization can be applied to cross-entropy logistic regression using ridge as follows:

d
A
220

where A > 0is the regularization hyperparameter. The hyperparameter A can be moved to the first term by
defining a hyperparameter C, where C = 1/ to conform to notation used in logistic regression packages
in Python. Therefore,

JEELRridge(g) — — %' [y, log (p,) + (1 - y;) log(1 — p))] +

i=1

(8.7.1)

n d
-ridge 1
JCELR-ridge gy — —CZ:,[J’i log (p;) + (1 —y;) log(1 — p)1 + E.Zfﬁfz' (8.7.2)
i= J=
Often, the equation is written in the form

1 d n
JCELR-rldge(ﬁ) — EZ'BJZ _ Cz[yi log(p;) + (1 —y,) log(1 — p))]. (8.7.3)

j=1 i=1

For LCLR, the use of ridge may act to offset its robustness and produce misleading results. However, k-fold
cross-validation is important for generalizing both CELR and LCLR independent of the use of ridge.

8.7.4 Effect of Outliers

‘We now apply a ridge penalty to CELR for cases with and without outliers and compare it against LCLR.
For this purpose, we return to the mtcars dataset. An obvious first experiment is to remove all outliers
and compare the two methods. This is shown in Figure 8.11. Note that in Figure 8.11(a), a good solu-
tion on linearly separable data is not obtained by CELR with C = 1, whereas LCLR produces the ideal
boundary in Figure 8.11(b). However, using C = 1000 does improve the result bringing it in line with
LCLR. Therefore, hyperparameter tuning of C is required in CELR to obtain satisfactory results.

350 350
300 300 1
250 1 250 1
£200 1 * " | & 200 °t
150 150
1004 * 1004 *
xx XX X
50 504 x
15 20 25 30 35 40 45 50 55 15 20 25 30 35 40 45 50 55
wt wt
(2) CELR (b) LCLR

Figure 8.11 Comparing CELR and LCLR with no outliers. CELR is unable to find a proper boundary on linearly
separable data until C = 1000. LCLR finds the proper decision boundary.

8.8 Example: Circular Dataset

3504 Cross-
300 - entropy
x Pivot point

250 Cc=1 .
o log-cosh °
£ 200 [— .

o 9 ©
150 - oo
° []
100 ~ °
50 A

1.5 20 25 30 35 40 45 50 55
wt

Figure 8.12 Comparing CELR (C = 1,10, and 1000) vs. LCLR with two outliers. The decision boundary for CELR is
controlled by the two outliers whereas LCLR is unaffected, as if there were no outliers.

In Figure 8.12, the results for mtcars with two extreme outliers are shown with different levels of hyper-
parameter tuning using C = 1, 10, and 1000. Each value of C changes the slope of the line. All such lines
are anchored at a pivot point and, as a result, they are not able to produce the robust solution of LCLR.
In fact, an extremely large value of C does not change the result much beyond the line for C = 1000.
Clearly, regularization via hyperparameter tuning can only go so far in producing general models in
CELR with outliers present. In reality, the alternative solutions provided are essentially different amounts
of rotation around the pivot point. Tuning does not solve the outlier problem for CELR but can mitigate it
to some degree. However, each new value of C in CELR requires a k-fold cross-validation step which can
be expensive. This cost is avoided completely in LCLR for which only one round of k-fold CV is needed
to generalize the model.

8.8 Example: Circular Dataset

In this section, an example is used to compare CELR and LCLR in which the data requires a nonlinear
decision boundary. A synthetic dataset that requires a circular/elliptical boundary is shown in Figure 8.13.
The two-dimensional set of points is either gray (0) or black (1) and the goal of binary classification is to
find a suitable separation boundary. To connect this example to a toy data science problem, let us imagine
that Bank ABC has given out 337 loans to customers in its local vicinity. After some analysis, the bank
manager finds that 266 loans were not repaid in full (gray points) but 71 loans were completely repaid
(black points). This is not an acceptable ratio so the manager decides to use machine learning to make all
future loans. The two features to be used are the normalized age of the customer and normalized si ze of
the loan. Normalizing the columns in the data matrix ensures that each feature contributes equally to the
optimization process, thereby enhancing the performance and accuracy of machine learning algorithms.
In this case, the range is [-2, 2], although generally the normalized range is [-1, 1].

The scatter plot of the data shows that middle-aged customers with mid-size loans have all paid
back completely, along with some folks with high value loans. Note that there is a separation region

231

232

8 Robust Binary Classification

2.0 °
1.5 °
1.0
0.5 1
0.0 e

|
o
|9
1

Normalized loan size
LR
n o

1 1

|
g
o
1

-20 -15 -10 -05 00 05 10 15 20
Normalized age

Figure 8.13 Binary classification problem with nonlinear decision boundary.

between the gray and black points. There are also six outliers (in black) in the upper region of the
figure representing the high-value loans that were paid back. If we ignore these points, the data is
clearly separable but not linearly separable. The two variables, age and size, by themselves are
insufficient to produce a nonlinear boundary. We need to carry out a polynomial expansion of these
variables. In particular, if we have two variables, x; and x,, we must use polynomial expansion to obtain
X;,%,, X, %,,%;, and X7 as our new feature set since the solution has a circular boundary. For this case, the
term x;x, is not needed. Therefore, the number of variables is 4 (i.e. d = 4), which implies that 8 € R®
since the intercept, f,, must also be included.

When we expand the feature space in this manner, i.e. via polynomial expansion, we are projecting the
data into a higher-dimensional space with the hope that there is a linear boundary to be found in that
space. We can illustrate the linear boundary that lies in the age? and size? space by replotting the data,
as shown in Figure 8.14. There is indeed a linear boundary and therefore we are likely to find a reasonable
solution. Obviously when the dimensions become larger than 2-3, it is difficult to determine the degree
of polynomial expansion needed but this is part of the art of feature engineering.

We can now proceed knowing that a good solution is close at hand using polynomial expansion. To com-
pare the robust approach to the non-robust approach, we can execute CELR and LCLR followed by a
comparison of the nonlinear decision boundaries. The results are provided in Figure 8.15. The CELR
approach (with A = 0) is not able to find a satisfactory solution because of the influence of the outliers in
the upper region. In fact, the separation boundary captures all the black points in the central region (as
desired), but inadvertently captures a number of gray points (which is undesirable). From the perspective
of our loan problem, this implies that some high value loans will be given out in the future even though
customers are unlikely to pay it back.

The LCLR approach finds a much better decision boundary that separates the data in a manner as if
the outliers did not exist. It also obtains a solution similar to a large-margin classifier. In fact, it achieves
331 correct classifications—the maximum possible given that there are 6 outliers. One lingering question

8.8 Example: Circular Dataset

4.0 R
354 e 2
304 % :

2.5

8 201 o°

wn

00 05 10 15 20 25 30 35 40
Age?

Figure 8.14 Scatter plot of the circle data for size? against age?.

CELR (4= 0) LCLR
2.0 . - : 2.01 . g :
1.5 1 '] 1.5 1 o
1.0 1.0
0.5 05
0.0 0.0
05 - 05]'
1.0 -1.0
151 ~1.51
2.0 20+

-20 -15 -10 -05 00 05 10 15 20 -20 -15 -10 -05 00 05 10 15 20

Figure 8.15 Binary classification comparison—nonlinear boundary.

is whether a penalized version of CELR would improve the situation. We have already seen the case of
4 = 0. The evolving decision boundaries for several nonzero values of A using CELR-ridge are shown
in Figure 8.16. An optimal choice is 4 = 10. The boundary first shifts downward as A increases and then
begins to shrink in size as A is increased towards infinity. Therefore, regularization is important for CELR.
For LCLR-ridge, the only effect is to worsen the decision boundary so it is not as useful as in the case of
CELR-ridge.

These two simple examples, one with a linear decision boundary for the mtcars dataset, and the other
with a nonlinear decision boundary for the circular dataset, demonstrate the inherent value of LCLR
over CELR. While these are toy examples, they provide the needed insight to understand the differences.
A larger example will be presented in Chapter 12 involving the Titanic dataset to showcase additional
advantages of the robust approach.

233

234 | 8 Robust Binary Classification

A=10 A=40
2.0 -I ° % . & 2.0 .I ° o 3
1.5 4 ° 1.5 o °
1.0 A 1.0 4
0.5 1 0.5 -
0.0 0.0 1
0.5 1 0.5+
-1.0 1 -1.0
—1.5 A ~15 A
—2.0 1 2.0
T T T T T T T T

20 -15 1.0 05 00 05 10 15 20 20 -15 -10 -05 00 05 10 15 20

1=60 2=80
20{ 40 o e, 3 20{ 0 o -~ e o
1.5 ° 1.5 °
1.0 1.0 1
[X X
0.5 0.5 - .°," ~
o,

0.0 0.0 - ° 0.’ @. .;.o

| U AN Y °
_0.5] 05 - ° ..:.'. ° . °
-1.0 -1.0
-1.5 ~1.5 1
2.0 - -2.0 1

T T T T T T T

T T T T T T T
-20 -15 -10 -05 00 05 10 15 20 20 -15 -1.0 -05 00 05 10 15 20

Figure 8.16 CELR-ridge regularization showing a suitable result for 4 = 10 after which the shrinking decision
boundary collapses to 0 as A — .

8.9 Outlier Detection

In binary classification problems, it is possible to identify potential outliers in the dataset after logistic
regression is performed. The basic idea is to examine the histogram of the residuals. Since this is a binary
classification problem, the difference between the predicted probabilities and the ground truth for all
points lies between —1 and +1. Outlier diagnosis simply requires a plot of the histogram of the residuals
from a robust regression. Residuals located in the vicinity of —1 and +1 are outliers. Detection simply
involved counting the number of outliers in those two regions.

Consider the histograms shown in Figure 8.17. The left panel is the histogram for residuals of CELR
while the right panel shows the residuals using LCLR. The outliers in this case all reside at —1, as detected
by LCLR. Note that in the case of CELR, the errors are more distributed compared to LCLR. In general,
LCLR is more likely to distinguish outliers from inliers as will be demonstrated in Chapter 12.

8.10 Robustness of Binary Classifiers

CELR LCLR
250 4
300 -
200 - 250 -
>
2150 1 200 1
g 150 -
£ 100 -
0o+
utliers
50 50
O = T 0 T

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 8.17 Histograms of residuals for CELR and LCLR on the circular dataset.
8.10 Robustness of Binary Classifiers

In the realm of binary classification, a number of other methods are available that have been routinely
used in practice for several decades. However, they have not been fully investigated in terms of their
robustness to outliers. In this section, we review these methods, including SVMs, k-nearest neighbors
(k-NN), and decision trees to illustrate to what degree they may be impacted by outliers. We begin with
the SVC and conclude the section by examining the random forest method.

8.10.1 Support Vector Classifier (SVC)

A large margin classifier is one that places a decision boundary that is maximally distant from points in
Class 0 and Class 1, assuming the data is linearly separable and no outliers exist. We already saw this
property in LCLR but not in CELR. Other binary classifiers also possess this property, specifically the
SVC which is the subject of this section. To develop intuition about SVCs, recall the regularized version
of CELR given earlier as

d n
-ridge 1
JEELRridee (g = zz;ﬂf - Cz;[yi logp; + (1 -y log(1 — p))l. (8.10.1)
= i=

where C is the regularization hyperparameter. If we want to change the characteristics of this classifier,
we simply need to choose a different loss function, which is the term after C (i.e. the cross-entropy loss
in this case).

To understand SVC, consider the diagram in Figure 8.18 where a linearly separable dataset is shown.
If the goal were to find a decision boundary with the maximum margin size, the result would be the dark
line shown. The so-called margins are represented by the dotted lines on each side. Any points that lie on
the margins are called support vectors,? labeled as SV. The size of the margin is 2/||B||,, where f is value

2 The term “vector” is derived from the simple fact that all x; can be viewed as vectors in the d-space.

235

236

8 Robust Binary Classification

350 Decision
boundary
300
X o ®g o
X
250 x oo R : oo
=N % ° ° °
= 200 1 x X X ° .
[]
X
150 ~ x X X SV, w, o
X X
100 ~ % X X
XX X
509 x
1.5 20 25 30 35 40 45 50 55

Figure 8.18 A demonstration of a support vector classifier showing the decision boundary, support vectors (SV)
and large margins.

that we seek through optimization. To obtain the largest margin, the term 2/|| ||, is to be maximized.
Alternatively, we can instead minimize ||f]|,/2, or equivalently minimize ||f| |§ /2 (for mathematical
convenience). However, minimizing this function would lead to the trivial solution f = 0 which sets the
margins at infinity. We need to apply some constraints to obtain nontrivial results.

To formulate the optimization problem, lety; € {-1,1}, 8 = (#,, ..., ﬁd)T, and call g, the bias. For logis-
tic regression, we said that x; belongs to Class 1 if

B+, >0
and Class 0 if
B+ By <o0.
Now, we insist on a larger margin such that x; belongs to Class 1 only if
& B+ By >1
and Class 0 only if
B+) < -1.
Instead of keeping track of two conditions, we could simply write that x; is properly classified if
yix B+ By) > 1.

Otherwise it is improperly classified. The added constraint in choosing a suitable g is that all the data be
properly classified, which avoids the trivial solution.
The constrained optimization problem can be stated as

minimize l||/3||2 st.yxB+p)>1, Vi=1,...,n. (8.10.2)
perd 2 !

8.10 Robustness of Binary Classifiers

Using a Lagrange multiplier formulation, we obtain the following objective function:

d n
ﬂﬁm=%2g+czmumJ—%@m+%» (8.10.3)
j=1 i=1

where C is the regularization hyperparameter and the second term uses the hinge loss to enforce
the requirement, yi(xl.T B+ By) > 1. Effectively, this is just a replacement of the cross-entropy loss of
Eq. (8.10.1) with the hinge loss. This convex optimization problem can be minimized in a straightforward
manner. Not all points may be properly categorized at the minimum but it will be optimal relative to any
given problem.

Consider the two plots in Figure 8.19. The results shown for the case with no outliers in the left-hand
panel would be produced using SVC. The decision boundary lies in the middle of two dotted lines that
define the margins. This approach is very effective as a large-margin linear classifier. The two support
vectors lie on the margins running in parallel to the decision boundary. They are the only points involved
in defining the decision boundary. None of the other points matter in the solution. In that sense, this is a
robust method.

However, it is not robust to outliers, and that is one of the weak points for standard SVCs. This is shown
in the plot on the right-hand side of Figure 8.19. When two outliers are introduced, the results clearly
shift to the left. The reason for this should be clear: the loss function penalizes errors in classification and
each outlier adds a large error to the objective function. If we look back at Eq. (8.10.3), we note that if
the classification of a point is correct, the term inside the summation of the loss function is identically 0.
However, ifitis incorrect, as will always occur with outliers on the wrong side of the margins, the term will
be greater than 1 and make a large contribution to the total loss. Points inside the margins will contribute
to the loss but these values will be small.

The complete picture is illustrated in Figure 8.20 where the hinge loss is plotted with various segments
indicating the cost for each type of data point. Regularization may help somewhat in this situation but it
depends on the location and impact of the outliers during cross-validation. Therefore, we can conclude
that outliers present a problem to the SVC method, although it is robust in terms of the support vectors
at the margins of the decision boundary.

350 350

No outliers
300 300 -
250 250
200 - * | 2004 .
150 150

X
100 4 x x X 100

XX X

50{ «x 50

15 20 25 30 35 40 45 50 55 15 20 25 30 35 40 45 50 55

Figure 8.19 Results of support vector classifier for the case of no outliers and two outliers.

237

238

8 Robust Binary Classification

Hinge loss
max [0, 1-X]

L L
1 |

i >
2 3 4 X
— >
Correctly classified

outside the margin

Figure 8.20 Hinge loss with segments showing data points contributing to the loss calculations. Notice that the
largest contributors to the total cost are misclassified outliers.

8.10.2 Support Vector Machines (SVMs)

The basic SVC approach described above can only produce linear boundaries with large margins. Poly-
nomial expansion can be used to produce nonlinear boundaries. However, the SVM is a more powerful
formulation based on duality to allow for nonlinear boundaries without resorting to polynomial expan-
sion. First, recall that f represents the model parameters for each data column in the training set. Next,
let & be the model parameters associated with each row of the training data, as shown in Figure 8.21.
This is not something we have considered thus far but it is quite feasible to formulate the problem in a
dual form. Now, we want to relate g and « in our formulation as follows:

n
B= Zaiyixr (8.10.4)
i=1

In other words, there is a relationship captured above between the optimal column coefficients and the
optimal row coefficients based solely on the data. Notice that we now have n parameters, essentially one

B Bo . . . By ¥ Figure 8.21 Relationship between a’s and #’s in SVMs.
ay, | Xy X, - . . X1
Ay | Xp1 Xpp - . . Xy |0
%3 2_{31 J_{sz CE R J_‘3d 1
Dataset
an an an Xnd 0

8.10 Robustness of Binary Classifiers

for each of the n rows, rather than one for each of the d columns. But it turns out most of the a; values
are 0 since all points outside the margins will have no contribution to the sum. Only the support vectors
have nonzero coefficients and it is this sparsity that makes SVMs efficient from a computational point of
view. The support vectors comprise only a small number of points in the training set.

We now have to find the values of the ¢,’s using some optimization method on a different problem with
linear constraints. The dual setup is a maximization problem given by

n
ma;(elrr}lze a; — llea yiijiij s.t. ;aiyi =0and0<q;<C. (8.10.5)
The details of the derivation of the above are not important here but rest assured that the ,’s can be
computed in an efficient manner using it. Once found, the support vectors due to nonzero a;’s come
in two flavors: some will be located exactly at the two margins while others will be located within the
margins. This is controlled by the regularization factor C. The new criterion for the decision on some test

point x is based on a sign test by replacing g with «, as follows:

n
sgn(x' B + f,) = sgn <Zaiyix?x + ao> , (8.10.6)
i=1
where f, = «,. If the sign test is positive, then x belongs to Class 1, otherwise it belongs to Class 0.
Only linear boundaries are possible with this formulation, as mentioned before regarding SVCs. The inter-
esting part is that it depends on xl.Tx where x; is from the training data and x is a new test data point.
This can be written more generally as k(x;, x), which is called a kernel function.

To obtain different classifiers, we simply choose different kernel functions and then compute the
associated a;’s. Three useful kernel functions are the linear kernel,

k(x;, x) = x x, (8.10.7)
the polynomial kernel, with expansion up to the d™ power, given by

k(x;,x) = (1 +x] x)°, (8.10.8)
and the radial basis function (RBF) kernel or Gaussian kernel,

k(x;,x) = exp(—y||x; — x||?). (8.10.9)

The latter one, the Gaussian kernel, is the most popular and produces a nonlinear decision boundary that
is quite adept at capturing complex boundaries between the two classes. As a result, SVM is a powerful
alternative to logistic regression.

The RBF kernel has the property of decreasing in value as a function of the distance from a support
vector (i.e. it is an exponential decay that depends on the y hyperparameter). The SVM has an added
advantage over CELR and LCLR in that it does not require specification of all the various polynomial
expansions of the variables to create the needed features. It will figure that out for itself from the original
variables and data using the RBF. However, the user must adjust two hyperparameters, y and C, to obtain
satisfactory results. After computing a using the training set, the decision of whether x belongs to Class
1 is based only on

sgn (Zai yik(x, %) + a0> >0 (8.10.10)

i=1

239

240 | 8 Robust Binary Classification

and to Class 0 based on

n
sgn (Zaiyik(xi,x) + ao) <o0. (8.10.11)
i=1

Now, by proper selection of the kernel function, this approach allows nonlinear and complex decision
boundaries to be created for a given dataset, as opposed to the linear boundary in the previous cases.
However, in this form, we can no longer directly extract probabilities, except through additional expensive
procedures. In contrast, LCLR can, in principle, provide probabilities as well as a large-margin boundary.
Furthermore, the direct connection to the explanatory variables is lost in the SVM since we are estimating
parameters for rows rather than columns. Aside from these limitations, the SVM is a very effective method
for binary classification.

Figure 8.22 illustrates the capability of the SVM with an RBF kernel. The original dataset is shown
in the top-left corner. The data is not linearly separable but a suitable linear decision boundary can be
established between the two regions. If we consider the case for y = 1 and C = 1 for SVM, the panel on

? Original data set = x 9 ¥ x

8 . 8 .

7 x ; ® x 7 x ° ® =

6 e m Tk wx 6 e wTx «x ¢ LCIR

5 .Kx . ® x:‘, x 5 .xx . ® ":x* = _iegy

vk £ 5 " . . e

4 . x L > 4 v 2 "; . =l

By B - g s| AR g i

2 i A 2 i SVM

1 . - 1L s €=
07 08 09 10 11 12 13 14 07 08 09 10 11 12 13 14

N W R~ L N 3 0 O
[S O R . =) N e c RN o)

[
—

07 08 09 10 11 12 13 14 07 08 09 10 11 12 13 14

Figure 8.22 Comparison of SVM with RBF kernel (y = 1) and C=1, 10 and 100 against the log-cosh loss.

8.10 Robustness of Binary Classifiers

9] - . 9 .
8 : |8 ?
- *] W 7

6 6
5 5
4 4
3
2 2

07 08 09 10 11 12 13 14 07 08 09 10 11 12 13 14

Figure 8.23 Comparison of SVM with RBF kernel (y = 1) and C =100 against the log-cosh loss with and without
outliers present.

the top-right corner is produced. The LCLR solution is also plotted in the same figure. Note that they do
not match very well. However, when we use C = 10 for SVM, there is a better match between the two
solutions. The nonlinearity of the SVM boundary is clear in the plot. When C = 100, there is a certain
amount of overfitting in the SVM solution which is not desirable. Overall, the case for C = 10 is the most
appropriate for this dataset, which is likely to be found via cross-validation, and it matches closely with
the LCLR solution.

One of the advantages of LCLR is that no hyperparameter tuning is necessary. It has an
auto-regularization feature due to its robustness. It will produce similar results with or without
outliers. Consider Figure 8.23. On the left side, the results with outliers are shown for LCLR and SVM
from the previous figure. On the right side, the outliers are removed. LCLR hardly changes while there is
a noticeable change in SVM. However, LCLR can only produce a nonlinear boundary using polynomial
expansion. Here, some knowledge of the application and its characteristics is needed. On the other
hand, SVM itself is not robust to outliers for reasons similar to those given in the section on SVCs.
Finally, while SVMs provide effective solutions to binary classification, it is not as informative in terms
of explainable AI (see Chapter 12).

8.10.3 k-Nearest Neighbors (k-NN)

The k-nearest neighbors (k-NN) approach is rather simple and straightforward. It offers good results in
a short amount of time and has robust characteristics. It operates by first computing the distance from
a given test point to all points in the training data. Then, as its name implies, the nearest k neighbors
are used to predict the binary outcome based on a simple majority vote of the neighbors, or a weighted
combination based on the distance from the test point. For example, if k = 3, then three nearest neighbors
of the test point are used to determine the class of the test point. If two neighbors are from Class 0 and
one neighbor is from Class 1, the test point is assigned to Class 0. Odd numbers of k are preferred to avoid
ties. The distance can be computed in a variety of ways including the Euclidean distance, the Manhattan
distance, or any other suitable measure. The dataset should be standardized to obtain good results.

241

242

8 Robust Binary Classification

k=1 (overfit) k=13 (overfit)
9 . 9| "
8 ¥ 81 g
7 R ? : 71 ull” #)
6 SrE 6 A% u

. X ® x x x: x My = " »)1:
5 .l: @ x ‘:*’ # *® 5 x*: " = x:x'(®

o« ou ¥ B o

4 - * x = 4= = ™ .
3 .' :: ® :.-' . : :.. - 3 .t .o . :..0 o : : . -
2 LR e g 21 ** . . 14
1 - l .

07 08 09 10 11 12 13 14 07 08 09 10 11 12 13 14

k=10 (regularized) k=41 (underfit)
9 x . 9 = &
8 . 8 %
7 .) = N 7 k>) *® X
6 g s *,(x X o 6 S . x; 5% x;
5 G Taed T g 5 il

® z B o Tim ’ . E . %3

41— — = 41 -y .
3 T . .. :..o i = o... . 3 .l : . :..' = : : . *
2 o, ., . 2 -, . *
1 : 1 :

07 08 09 10 11 12 13 14 07 08 09 10 11 12 13 14

Figure 8.24 Comparison of k-NN binary classification with k = 1, 3, 21, and 41.

The value of k also determines the amount of overfitting and underfitting as illustrated in Figure 8.24.
If k = 1, then the test point is simply assigned to the nearest neighbor class. Clearly, this is an overfitted
situation. It does not generalize because any outliers will affect the class of the test point. This can be
seen in the top-left panel which uses the data of the previous section. The training set is used as the test
set to illustrate this effect. For the special case of k = 1, the nearest neighbor is itself so the outliers will
remain unaltered and the training set is simply replicated. When k = 3, as shown in the top-right panel,
the three nearest neighbors of the outliers are usually of the opposite class, so most of the outliers are
removed. However, three points are still misclassified because there are two outliers in their neighbor-
hood. Therefore, a certain amount of overfitting remains.

When k = 21 (which is rather large for this dataset), the results are quite acceptable. All of the outliers
are gone meaning that the approach is robust to outliers for a proper setting of k. This is the regularized

8.10 Robustness of Binary Classifiers

solution for this dataset. Any point above 4.0 on the y-axis is considered Class 1 and those below 4.0 are in
Class 0. The dividing line is shown in all four cases to illustrate how the regularization proceeds relative
to different values of k. Finally, with k = 41, the method begins to underfit the data. In fact, if k = n (the
maximum possible value of k), then the majority of the overall data rules the decision and all data points
will be assigned to Class 0.

The main issue with k-NN is that the proper value of k must be found in a multi-dimensional setting
that balances overfitting and underfitting using cross-validation. It is not clear how outliers will affect the
results but it will have some impact. And second, the results may not be as accurate as SVM or LCLR,
especially near the boundaries between the two classes. Third, the interpretability of the results is not
as easy as for LCLR but much better than SVM. The issue of explainable AI will be discussed further in
Chapter 12.

8.10.4 Decision Trees and Random Forest

In this last section, we briefly describe tree-based methods for binary classification. Generally speaking,
both decision trees and random forest methods are robust to outliers. Figure 8.25 shows a decision tree
on the left for three variables, a, b, and c. The tree is built by starting at the root node and sequencing
through the variables. For each selected variable, a threshold ¢ is chosen such that the rows in the training
set with that variable value above t follow one branch of the tree while those below ¢ follow the other
branch. The thresholds for a, b, and c are found separately for each variable and are labeled ¢, t,, and ¢,
respectively. Since the threshold is typically selected at some midpoint in the data, the outliers do not
affect this part of the process. The number of levels in the tree is referred to as the tree depth. Once built,
the tree is used for prediction. Each new data point starts at the root node and follows a path through the
tree based on the thresholds until some leaf node is reached. At that point, the prediction is based on the
points in that leaf node of the tree.

Decision trees can be overfit by having too many levels and only one point in each leaf node. In
this case, outliers may cause problems in the prediction phase. The depth of the tree can be controlled
by restricting the number of levels in the tree and the minimum number of samples in a leaf node.
For regularization purposes, the tree is often constrained by two hyperparameters, max_depth and
min samples. Assuming the decision tree has been regularized properly, outliers may not play a
significant role in the prediction of new points in binary classification. Furthermore, decision trees have
much more explanatory power than k-NN and SVMs. Data scientists are usually interested in the relative
importance of each variable and they prefer methods for which the results can be rationalized. In the
decision tree of Figure 8.25, the binary outcome of any new point can be easily interpreted based on the
path it takes through the tree from the root node at the top to some leaf node at the bottom because a
clear decision is made at each intermediate node.

Random forests are quite robust to outliers but for a different reason. Consider the illustration on the
right side of Figure 8.25. It shows m random trees created by selecting different subsets of the rows and
columns of the training set. For prediction, the results from many trees are combined to produce the
result. When combining the trees for prediction, it is more tolerant to outliers since a bad prediction in one
tree is usually compensated by good predictions in the other trees. Also, random forests are regularized by
design so they are not prone to overfitting which causes the sensitivity to outliers. This is a very effective
method in machine learning for classification problems. The main issue is interpretability of the results.

243

244

8 Robust Binary Classification

Decision tree Random forest
0 0 0
Tree 1 Tree 2 Tree 3
0 0 0
\Y% Tree 4 Tree 5 === Treem

Figure 8.25 Robust decision trees and random forest.

It is very difficult to correlate a decision with the explanatory variables. In spite of this, the random forest
continues to be one of the more popular tools in machine learning today.

8.11 Summary

In this chapter, we explored various robust approaches to binary classification. Initially, we discussed the
cross-entropy loss in the context of logistic regression, namely CELR, which lacks tolerance for outliers.
This was followed by an introduction to an outlier-tolerant logistic regression method using the log-cosh
loss, namely, LCLR. Even in the absence of outliers, LCLR’s robust estimates can outperform the
standard cross-entropy method in prediction accuracy, albeit potentially requiring additional iterations.
Notably, robust techniques like LCLR serve as large-margin classifiers, offering both probability values
and insights into variable importance (more details are given in Chapter 12). Implementing these robust
methods is straightforward, involving minimal code alterations within an existing ML framework.
Furthermore, data scientists can leverage this approach for outlier detection. In Chapter 12, further
comparisons of CELR and LCLR are carried out on the Titanic dataset, including outlier detection and
removal.

Next, we explored the robustness of existing binary classifiers and found that only decision tress and
the random forest methods were deemed to be robust. This implies that the other methods are prone
to generate models that may not be accurate enough for the data science task at hand when outliers
are present. However, random forest does not allow for model interpretation and therefore may not be
suitable in all applications. Overall, LCLR provides all the key requirements for binary classification
problems.

Problems

8.1 Derive Eq. (8.3.23) of this chapter and Eq. (2.7.8) of Chapter 2. Compare the two equations. How
do they compare to the gradient of the LCLR loss function? Plot the two terms of Eq. (8.4.9) as a
function of r; = y; — p; in the interval [-1,1] for different values of p,. Compare the results. Which
gradient is larger?

8.2

8.3

Problems

Find the partial derivatives with respect to f, and g, of the log-cosh loss function for logistic regres-
sion given by

1y 1
]LCLR(ﬂ) = EFZI log(cosh(a(y; — p;))) where p; = m

(Hint: you need to compute the partial derivative for the slope and intercept, i.e. two cases. See
Eq. (8.4.12) for guidance.)

(Project) This project involves the creation of a circular dataset for use in subsequent problems.
You will build a circular dataset similar to Figure 8.13 using Python. There will be six data points
defined to be outliers as shown in the upper region of the figure. Run the Python code below and
check the results.

a) Import the needed libraries.

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import random

from sklearn.linear model import LogisticRegression

b) Randomly select points to define the binary classification problem.

m = 386
np.random. seed (4)
setx = np.random.random(m)*4.0-2.0
np.random.seed (6)
sety = np.random.random(m)*4.0-2.0
y = np.zeros (m)
for 1 in range(m) :
if (setx[i]**2 + sety[i]l**2) < 0.8:
ylil =0
elif (setx[i]**2 + sety[i]**2) > 1.5:
yli]l] =1
else: #remove these points
y[i] = -1
counter = 0
outliers = 6
for i in range(100) :
if sety[i] > 1.6 and counter < outliers:
yv[i] = 0
counter += 1

c) Plot the data to examine the possible decision boundary and the location of the six outliers.

setx_df = pd.DataFrame (setx,columns=["xval"])
sety df = pd.DataFrame (sety,columns=["yval"])
setr df pd.DataFrame (y,columns=['flag'])

245

246 | 8 Robust Binary Classification

setx df['yval'l = sety df['yval'l
setx df['flag'] = setr_df['flag']
setl = setx df[setx df['flag']==1]
set0 = setx df [setx df['flag']==0]

plt.scatter(setl['xval'],setl['yval'],color="'red')
plt.scatter(set0['xval'] ,set0['yval'],color="'blue')
plt.show ()

8.4 (Project) In this project, you will run CELR using the LogisticRegression () module of the
sklearn library. The code below assumes that the previous project was completed.
a) Create a data frame with a polynomial expansion of order 2 of the two variables.

setx df = pd.DataFrame (setx,columns=["xval"])
sety df = pd.DataFrame (sety,columns=["yval"])
setr df = pd.DataFrame (y,columns=['flag'])
setx df['yval'l = sety df['yval'l
setx df['flag'] = setr_df['flag']
setx df['x2'] = setx df['xval']**2

[

setx df['y2'] = setx df['yval']**2
setx df ["Ones"] =1
train df = setx df[setx df['flag']!=-1]

train df.head()

b) Run logistic regression based on CELR.

Xd = train df.drop(["flag", "Ones"],axis=1)
X = np.array (Xd)

yl = train df["flag"]

y = np.array(yl)

logreg = LogisticRegression ()
logreg.fit (X, vy)

c) Plot the nonlinear decision boundary and comment on the results.

bl = [logreg.coef [0,0],logreg.coef [0,1],
logreg.coef [0,2], logreg.coef [O0,3],
logreg.intercept]

plt.figure() # Create a new figure window

setl = train df[train df['flag']l==1]
set0 = train df[train df['flag']==0]
plt.scatter(setl['xval'],setl['yval']l, \

color="red')
plt.scatter(set0['xval'],set0['yval']l, \
color="blue"')

8.5

8.6

Problems

xlist = np.linspace(-2.0, 2.0, 100)

ylist = np.linspace(-2.0, 2.0, 100)

X1,Y1l = np.meshgrid(xlist, ylist)

F = b1[0]*X1 +4b1[1]1*Y1+b1[2]*X1**2 + \

b1[3]*Y1**2 + bl[4]

plt.contour (X1, Y1, F, [0], colors = 'k',
linestyles = 'solid')

plt.show ()

d) Find the number of correct predictions by CELR which ideally should be 331 out of 337 due to
the 6 outliers. Explain any discrepancies.

Y pred = logreg.predict (X)
print ("Number of samples predicted correctly is ", \
format (np.sum(Y_pred == y),'d"))

(PROJECT) Adjust the code above to include regularization using the ridge penalty.
a) Tryusing the following code in place of their counterparts in the above project. This is the default
setting for C.

logreg = LogisticRegression(C=1.0)
logreg.fit (X, vy)

b) Next, try different values of C such as 4.0, 1.0, 0.4, and 0.1. You can plot each of the decision
boundaries using the plot routine of the previous project. What value of C provides the best
results?

(PROJECT) In this project, the goal is to write and execute the code for LCLR. It requires the logis-
tic function, a routine for LCLR, and an iterative loop to implement gradient descent. The partial
derivatives of the form given in Eq. (8.4.12) will be needed. Also, the code below assumes that all
the previous projects have been executed.

a) Define the log-cosh function and the LCLR routine.

logcosh = lambda x: np.logaddexp(x, -x) - np.log(2)
def LCLR (b):

n = X.shape[0]

p=1./(l.+np.exp((-np.dot(X.T,b))))

diff = y-p

dbi = -p*(1l-p)*np.tanh(y-p)/n

db = np.dot (X,dbi.T)

cost = np.sum(logcosh(y-p))/n

return cost,db

b) Define the X and y data and then run the iterative loop for gradient descent to convergence. Plot
the results.

247

248

8 Robust Binary Classification

)

d)

Xd = train df.drop(["flag"],axis=1)
X = np.array(Xd.T)
yl = train df["flag"]
y = np.array(yl)
learning rate = 0.1
b = np.array([0.01,0.02,0.03,0.04,0.05])
T = 30 # 30 iterations of gradient descent
iterations = np.zeros(T)
for t in range(T):
loss,db = LCLR(b)
iterations[t] = loss
b = b - learning rate * db.T
b2 = b
plt.plot(iterations)
plt.show()

Plot the results of both CELR and LCLR. Compare the results noting that no regularization was
used on LCLR.

plt.figure() # Create a new figure window
setl = train df [train df['flag']==1]
set0 = train df [train df['flag']==0]
plt.scatter(setl['xval'],setl['yval'],color="'red')
plt.scatter(set0['xval'],set0['yval']l,color="'blue')
xlist = np.linspace(-2.0, 2.0, 100)
ylist = np.linspace(-2.0, 2.0, 100)
X1,Y1l = np.meshgrid(xlist, ylist)
F = b1[0]*X1 +b1[1]1*Y1+b1[2]*X1**2 + \
b1[3]*Y1**2 + bl[4]
plt.contour (X1, Y1, F, [0], colors = 'k',
linestyles = 'solid')
F = b2[0]*X1 +b2[1]1*Y1+b2[2]*X1**2 + \
b2 [3]*Y1**2 + b2[4]

plt.contour (X1, Y1, F, [0], colors = 'green',
linestyles = 'dashed')
plt.title("LCLR = green, CELR = black")

plt.show ()

Find the number of correct predictions by LCLR which ideally should be 331 out of 337 due to
the 6 outliers. Explain any discrepancies.

Reference

p=1./(1l.+np.exp((-np.dot (X.T,b2))))

Y pred = p > 0.5

print ("Number of samples predicted correctly is ", \
format (np.sum(Y_pred == y),'d'))

Reference

James, G., Witten, D., Hastie, T. et al. (2023). An Introduction to Statistical Learning with Applications in
Python. Springer.

249

9

Neural Networks Using Log-Cosh

9.1 Introduction

Our objective in this chapter is to build on Chapter 8, which addressed logistic regression using the
log-cosh loss function, and investigate the feasibility of applying the log-cosh loss to neural networks.
The question here becomes: Can log-cosh methods be effectively used in conjunction with neural net-
works? Since we already know that log-cosh methods are applicable to logistic regression, it naturally
follows that they should be immediately applicable to neural networks. Therefore, the issue at hand is to
determine the advantages of log-cosh neural networks over cross-entropy neural networks for machine
learning and what new capabilities they may provide, if any. This is the main question to be explored in
this chapter.

We begin with a brief history of neural networks (see Haykin 2009; James et al. 2023) and then describe
the basic units and architecture in the next section, including the activation functions, which are the non-
linear part of the units that allow neural networks to learn patterns and characteristics of the input data.
Then, details of training neural networks will be described, along with the steps involved in computing
gradients needed for training. The chapter concludes with examples of binary classification and a number
of metrics typically used to assess accuracy.

9.2 A Brief History of Neural Networks

Work on neural networks (NNs) began in earnest in the mid-to-late 1980s and early 1990s by computer
scientists in the pursuit of artificial intelligence (AI) systems. Neural networks were initially touted as
a way to mimic the behavior and operation of neurons in the brain, although that connection is not
fully embraced today. There was much excitement at the time regarding the potential of NNs to solve
many unsolvable problems due to breakthroughs such as the use of the sigmoid function for activation
in conjunction with the development of efficient methods for back propagation. But there were many
technological barriers to its success at that time and it quickly fell out of favor. In particular, computers
were relatively slow and the era of big data had not yet arrived. As skepticism grew, NNs were relegated to
being a stagnant technology with no future and, as a result, lay dormant for many years. In the intervening
years, the speed of computers increased significantly, new and efficient algorithms for neural networks

Fundamentals of Robust Machine Learning: Handling Outliers and Anomalies in Data Science,
First Edition. Resve Saleh, Sohaib Majzoub and A. K. Md. Ehsanes Saleh.

© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/HandlingOutliersandAnomaliesinDataSciencele

251

http://www.wiley.com/go/HandlingOutliersandAnomaliesinDataScience1e

252

9 Neural Networks Using Log-Cosh

were developed, and the Internet emerged as a way to deliver large datasets and open-source software to
users around the world.

By 2010, the neural network had emerged from its dormant state and made an impact in many impor-
tant applications, most notably speech recognition, image processing, and natural language processing.
In medical applications, it was able to quickly and accurately identify cancerous tissue and gained a strong
foothold in radiology. Other advances in optimization methods and NN architectures with many layers
of neurons were made in the same period. Some of the most difficult problems became tractable and
were solved using these advanced techniques. The promise of Al systems of the 1980s was finally being
realized. Collectively, these methods were rebranded as “deep learning.” This term caught the attention
of academics and practitioners alike and is now used to describe almost all neural networks in use today.
The key driver from the early use of NN to its ubiquitous presence today is the availability of big data.
Images, video files, audio files, etc. are well-known forms of data for deep learning, but there are an
uncountable number of other datasets that are also being processed using deep NNs. Eventually, NNs
led to the development of large language models (LLMs) which are at the heart of recent generative Al
systems used by hundreds of millions of people today.

Our purpose in this chapter is rather limited to a comparison of traditional cross-entropy NNs (CENNs)
against robust log-cosh NNs (LCNN). Here, we view NN as simply multiple layers of logistic regression
modified only by the activation functions used in each layer. If we have a single layer (i.e. no hidden
layers), it is standard logistic regression. If we have two or three layers it is a shallow NN. If there are
many layers of logistic regression, it is called a deep NN, which is used for deep learning. This view may
be somewhat oversimplified but it is something to keep in mind as a good starting point to understand
neural networks. The meaning of layers and networks will become clear later in this chapter but the basic
idea is that complex relationships between the independent variables and the response variable can be
realized by increasing the parameter space of the problem. Training of these types of networks is carried
out using gradient descent but they are usually accelerated using momentum and rmsprop, which will
be described when the Adam optimization technique is detailed in Chapter 10. However, the method of
creating the gradient terms through back propagation will be described in this chapter. Then, a simple
circular dataset from Chapter 8 will be used to compare and contrast LCNN and CENN. A more advanced
application using the MNIST dataset will be used to compare the two methods in Chapter 10. Finally, in
the last section, binary classification metrics such as the F, score and AUROC will be described.

Nomenclature: You may have heard the terms sigmoid function and logistic function and wondered
about the difference between them. The logistic function and the sigmoid function are equivalent.
Statisticians typically use the term “logistic function,” while those in machine learning prefer “sig-
moid function.” Generally, the term “logistic function” is used when referring to equations or com-
puting probabilities. In contrast, “sigmoid function” is used when discussing activation functions in
neural networks.

9.3 Defining Neural Networks

In this section, we describe the basic building blocks of neural networks. These building blocks will be
used to construct a prototypical neural network. As a simple way of thinking about neural networks, one

9.3 Defining Neural Networks

can view it as a natural extension of logistic regression. Recall that in logistic regression (as described
in Chapter 8), one of the problems was that in order to increase the feature space, a technique called
polynomial expansion is needed. However, it is not clear how many terms are required in the expansion
to obtain acceptable results. This is where neural networks can play a key role. Think of NNs as a way
to increase the feature space by introducing many layers of logistic regression between the inputs and
outputs. By doing so, we have a better chance to fit the data because there will be many parameters
in the neural network to work with. But how many layers should be used and how should the NN be
constructed? These and other questions will be addressed in this section.

9.3.1 Basic Computational Unit

Consider the diagram in Figure 9.1. This is another way to represent the operation of logistic regression.
In this case, there are four independent variables, X, x,, x;, and x,, plus the intercept term, b, and one
dependent variable, y. Each input, x;, is multiplied by its respective parameter, w;, and summed together
to form z as follows:

Z=Db+wXx; +Wyx, + WyX; + W,X,. (9.3.1)

Then z is applied to the logistic function to produce the probability

1

1+ exp(—z)’ (9.3.2)

az) =

which is the same as the output, hence, y = a().

For neural networks, we simply need to change the terminology. The computation involves a linear
combination of the inputs and the application of an activation function. We say that, in this computational
unit, the inputs are multiplied by their edge weights, w;, and then a bias, b, is added before applying the
sigmoid activation function, a(z), to produce the output. The activation function is not necessarily the
sigmoid function but can be any nonlinear function that operates on the linear combination of inputs to
produce useful results. What we have just described is the basic unit of all neural networks: an activated
sum-of-products unit. The only step remaining is to replicate this unit many times to construct a fully
connected neural network.

Figure 9.1 Computational unit (one neuron) in neural networks. m Bias

. & ’

3fi o Activation
Weights

unit

253

254

9 Neural Networks Using Log-Cosh

9.3.2 Four-Layer Neural Network

We are now ready to take the next step toward neural networks by increasing the number of layers, L, from
L =1 to some number L > 1. But how many layers should be added? This is where the art of designing
neural networks comes into play. A variety of experiments may be needed to find the right architecture for
a given application. There are some well-known architectures for certain problems but each data science
problem may require some amount of tweaking to obtain a suitable architecture. We will not delve deeply
into this aspect but rather focus on one specific architecture and how it operates.

First, we need to understand why we have layers in neural networks. To begin the discussion, we start
with a training set with four real variables, x,, x,, x5, and x,, and one binary response, y, as shown in
Figure 9.2. In the rest of this chapter, each entry in the main table will be referred to as x; and each
response in the last columnasy;, fori = 1,...,nandj =1, ..., d. In thiscase, d = 4. Suppose we know that
a linear boundary may not be sufficient to separate the two classes for this binary classification problem.
Then, for a nonlinear boundary, we could simply carry out a polynomial expansion for logistic regression
until we achieved sufficient accuracy. Unfortunately, it is not straightforward to do this without some
prior domain knowledge. For example, should we use a polynomial expansion of order 4 or 5? Should we
include all powers and all the cross terms? Should we take various ratios of different variables? It is a
matter of trial-and-error to obtain the right set of features if we wish to proceed in this manner.

A better approach is to use a neural network. If we take 12 computational units of the type shown
in Figure 9.1 and arrange them as shown in Figure 9.3 and add one more at the output, the result is a
four-layer neural network (with the bias terms not included to reduce clutter in the diagram). The units
between the inputs and output are called hidden units and each column of hidden units is called a hidden
layer. This NN has three hidden layers and one output layer comprising the four layers.! The architecture
of this particular neural network is symmetric but actual networks can be highly asymmetric. That is,

i X, X, X x, y Figure 9.2 Hypothetical training set for neural network.
1 0.306 0.898 0.239 0.902 1
2 0.294 0.863 0.176 0.871 1
3 0.361 0.835 0.125 0.863 1
4 0.310 0902 0.235 0.741 0
5 0.298 0.871 0.173 0.314 1
6 0.365 0.863 0.122 0.302 1
7 0.314 0.741 0.235 0.173 1
8 0.302 0.733 0.173 0.122 0
9 0.369 0.745 0.122 0.235 0
0

.=
o

0.318 0.757 0.239 0.173

n 0.235 0.173 0.310 0.902 0

1 Note that we are not counting the input as a layer since it is fixed, or alternatively it could be called layer 0. There is a
minor debate in the NN community about how to count layers. For our purposes, the number of layers L is determined by
the number of activation layers. In other words, the input does not count as a layer.

9.3 Defining Neural Networks

Figure 9.3 Four-layer neural network with relu activation X%
(denoted as “r”) for hidden layers and sigmoid activation
(denoted as “s”) for the output layer (bias terms are not
shown). This is a fully connected architecture.

<
AN :\,',{o
)
N ‘?\.’Ec‘\

/\

Layer 1 Layer2 Layer3 Layer4

the number of units in each layer may vary considerably, and the number of layers used depends on the
characteristics of the application and the associated dataset.

The question that arises is, what is the benefit of doing this? First, the number of parameters has
increased dramatically. This allows the NN to learn more about inherent relationships in the data and to
look for potential solutions in very high dimensions. Second, every output of the computational units is
a nonlinear function of their respective inputs. The nonlinearity in the different layers is the mechanism
by which the neural network is able to produce complex solutions. Without the nonlinearity, it would be
one big linear function with no real advantage over a logistic regression approach. In other words, the
key to the neural network is parameter-space expansion and nonlinearity in all computational units.

We call this a fully connected neural network because every output of a prior layer connects to every
input of a subsequent layer. In some sense, it seems like a waste of resources. But when the initial values
are set (usually to very small random non-zero values), each one produces a different result. Therefore,
we prefer to keep the fully connected structure and let the neural network figure out which ones to use.
We could remove some of them if we wanted to but it is not clear which ones to keep and which ones to
kill. Dropout is a heuristic approach that randomly keeps and kills neurons in each cycle for regularization
purposes.

Each arrow in the diagram of Figure 9.3 represents a different parameter. We can easily count the num-
ber of parameters associated with the four-layer neural network. There are 3 layers with 20 parameters
per layer (16 arrows plus 4 more for the bias terms, which are not shown), and the output layer has 4+ 1
parameters, for a total of 65 parameters. We have greatly increased the parameter space from 5 to 65
using this neural network architecture. Unfortunately, this architecture with 65 parameters could lead
to overfitting. As we increase the depth of the neural network and the number of hidden units in each
layer, the number of parameters in the network (and the likelihood of overfitting) increases considerably.
Therefore, regularization using dropout is needed to counteract this effect.

9.3.3 Activation Functions

The nonlinearity of the neural network is provided by the activation functions at the output of each unit.
However, the sigmoid function is not the only option. In fact, there are a host of other choices for this
function: relu(z), leaky-relu(z), tanh(z), elu(z), linear(z), softmax(z), maxout(z), and so on. We will focus
on the most widely used activation functions in this chapter, namely, the sigmoid and relu functions.

255

256

9 Neural Networks Using Log-Cosh

1.0 relu(z)
sigmoid(z)
0.5
0.0
0.0 z z

Figure 9.4 Sigmoid and relu activation functions. Typically, relu is applied to hidden units to speed up
convergence whereas sigmoid is applied to the output layer to provide probabilities.

The sigmoid function is given by

1

sigmoid(z) = a(z) = 1+eX—p(—Z)’

(9.3.3)

as shown on the left side of Figure 9.4. It takes the linear combination of the inputs, which can be any
real value, and forces it to lie in the range [0,1]. We will need the derivative of the activation function for
use in gradient descent during optimization. The derivative of the sigmoid function is

osigmoid(z) exp(-z)
9z (1+exp(—2)°

=a(z)(1 - a®k)). (9.3.4)

We could use the sigmoid function for activation throughout the neural network but unfortunately
convergence will be very slow during optimization. This is due to the two flat regions far away from
the origin as shown in Figure 9.4. These near-zero derivatives present major convergence problems in
cases when large values of z (positive or negative) arise in the network. Convergence will be very slow
since the gradients are said to “vanish” when the magnitude of z is large. The structures in the optimiza-
tion landscape that lead to slow convergence are often characterized as either “plateaus” or “ravines”
(see Chapter 10 for further details). However, visualizing them is a challenge as they occur in a multidi-
mensional space. In any case, a different approach is needed to speed up the rate of convergence.

The most popular alternative to the sigmoid function is the rectified linear unit (relu) function.?
It is widely used in the hidden layers of neural networks. In Figure 9.3, all nodes labeled “r” use the relu
activation, while those labeled “s” use the sigmoid activation. The relu function is composed of two linear
segments, as shown on the right in Figure 9.4, that can be represented as follows:

0 ifz <0

relu(z) = zl(z) = {z ifz >0’

where I(z) is the indicator function, which is often used for mathematical convenience, given by

0 ifz <0
Iz) = =
@ {1 ifz >0

2 Often, the acronym ReLU is used rather than relu. We will use relu in this chapter.

9.4 Training of Neural Networks

For gradient calculation, the relu function has a derivative that reduces to

orelu(z) 0 ifz <0
X I(7) = .
oz @ {1 ifz >0

The relu function has a slope of 1 in cases where z > 0. So the optimization method does not get trapped
in the aforementioned plateaus and ravines as readily as in the case of the sigmoid function.

There may be a concern that this relu function is too simple to be useful. In contrast, relu works
extremely well with gradient descent and is straightforward to implement. The relu function is used
instead of the sigmoid function in all neurons except the output layer. The problem with using the relu
function at the output is that it can take on values greater than 1. Once the a relu output exceeds 1, it can
no longer be viewed as a probability. Since classification outputs must lie in the range [0,1], a sigmoid
activation is required at the output.

Note: The subject matter in the next two sections is very important. If you can follow the descriptions
in detail, you will have a deeper understanding of how neural networks build a model through
a process called training: i.e. finding an appropriate a set of values for the weights and biases via
optimization. It is the core idea that allows training of neural networks to proceed in an orderly and
efficient manner.

9.4 Training of Neural Networks

In order to train multilayered neural networks, an approach based on gradient descent is used. This is
a numerical method that involves finding the minimum of a convex region of the objective function
using an iterative approach. Essentially, given an initial guess of the weights and biases, the slope of the
objective function at that point is used to decide which direction to take for the next step. So we will
need to take partial derivatives of the objective function with respect to every parameter in the network.
The size of the step taken is controlled by the learning rate, #. If the step is too small, many iterations will
be required. If too large, the process may not converge at all. After a proper selection of ¢, the objective
function is evaluated, gradients are computed, and parameters are updated in a repeated loop until the
iterations converge to some nearby minimum.

While this approach is theoretically appealing, the landscape of the optimization space will dictate the
number of iterations needed to converge. The true nature of the solution space is hard to grasp since the
number of dimensions is very high. In particular, it is not a convex optimization problem since there may
be many local minima. Adaptive learning rate adjustments can only go so far in navigating a complex
configuration space. Many different learning rates must be tried before a suitable one is found. But even
with a suitable learning rate adjustment strategy, the optimization procedure for neural networks may
get stuck in ravines with sharp edges on each side or plateaus with flat regions in all directions. It may
take hundreds of thousands of iterations to escape the ravine or find the edge of a plateau, if it happens
at all.

To address this type of problem, a well-known improvement to gradient descent called momentum
has been developed to speed up convergence in difficult solution spaces. It can be enhanced with

257

258

9 Neural Networks Using Log-Cosh

another method called rmsprop. The Adam optimizer contains these methods as well as other heuristic
techniques to improve convergence of neural networks. We will explore the details of the Adam optimizer
in Chapter 10. For now, the goal is simply to understand the basics of neural network optimization.

The two objective functions to be considered are the cross-entropy loss and the log-cosh loss.
The cross-entropy loss function is given by

JEw, b) = = Y [y, log(p,) + (1 - y,) log(1 — p)]. (9.4.1)
i=1
The log-cosh loss function is given by

JCw,b) = %Zlog(cosh((a(yi - D)) (9.4.2)
i=1

Both of these loss functions were derived for logistic regression in Chapter 8. In this chapter, the two will
be compared relative to their application in the training of neural networks. The two loss functions may
be represented as functions of p;, w and/or b. Therefore, we may use any of J(w, b), J(w), J(b), or J(p;),
depending on the circumstances.

Assume that we want to train a one-layer neural network. Then, w is a vector of weights and b is a
scalar bias. For gradient descent, we start with some initial values, w® and b®, then take a step toward
the minimum, and then repeat this in each iteration until we reach the minimum. The weights and biases
are updated at each iteration using some fraction of the gradient direction, controlled by Z, as follows:

®
WD — 1w _ f <M) , (9.4.3)
ow
aT(w,b)\ "
pD — pO _ o % (T) . (9.4.4)

Here, ¢ is the iteration count that starts at 0. At the end of the training process, we obtain the final weights
and biases which represents the complete model. For multi-layer neural networks, the process is much
more involved, as described in the next section.

9.5 Forward and Backward Propagation

The best way to understand the details of training a multilayered neural network is through a worked
example. Suppose we have a training set with n rows and two data columns for the explanatory variables
and one column for the binary response variable. We decide to build a model using a neural network
with one hidden layer comprised of 4 relu units and an output layer with 1 sigmoid unit, as depicted
in Figure 9.5. The training begins with some initial random values for the model parameters and then
proceeds with forward and backward propagation to update the model in an iterative fashion until satis-
factory convergence is achieved. Each pass through this network involves six steps for this small example:
four steps in forward propagation to compute a new output, and then two steps for back propagation
where the parameters are adjusted using gradients that are based on the size of the errors at the output.
Before sequencing through the steps, the issue of gradient calculation is addressed.

9.5 Forward and Backward Propagation | 259

4 units

input Layer 1 (hidden) Layer 2 (output)

Figure 9.5 Back propagation in a two-layer neural network. In this example, w;, w,5, and b, are to be computed
using backprop.

In order to produce the full set of gradients during backward propagation, we must compute a gradi-
ent for every parameter inside the network with respect to the loss function. More specifically, starting
with the loss function at the output, we must produce five gradients for layer 2, i.e. one for each of the
weights w,, ..., w,, and one for the bias, b,. For layer 1, eight gradients must be computed for weights
Wy, Wy,, Wes, ..., Wy, and four gradients for biases by, b,, b;, and b,. The weights and biases are organized
as matrices and vectors for ease of storage and retrieval, and to facilitate vectorized computations. A total
of 17 gradients are needed for this small network but the question becomes, how do we scale this up for
a large neural network with many layers to enable deep learning?

Back propagation is a formalized procedure to compute the vectors and matrices of gradients by starting
at the output of the neural network and working backwards to the input, hence its nickname, backprop.
The basic idea of backprop is to use the chain rule to systematically compute the gradients. We simply
need to apply it recursively as we traverse the entire network backwards. However, the number of paths
grows exponentially as the number of layers increases and this type of computation along all paths would
make deep learning unfeasible. To address this problem, the backprop algorithm stores data during a
forward propagation step, and then re-uses that stored data, and any newly computed data, during back-
ward propagation to compute the gradients. In other words, the backprop algorithm is a very efficient
way to store and retrieve partial data when computing gradients. This is what makes deep learning
computationally feasible.

9.5.1 Forward Propagation

During forward propagation, an input x; is applied to the neural network and propagated to the output
to produce p;, as in Figure 9.5. This is accomplished through a series of matrix-vector computations

260

9 Neural Networks Using Log-Cosh

using the most recent set of parameter values. Note that all weights and biases are initialized to small
random numbers before training begins. The entire sequence of operations will now be described for
the neural network of Figure 9.5. In the description to follow, we will use j as the index for the input
(two inputs), k as the index for hidden units (four units), and i for the row index of the training set (n
rows). Consider the case when we apply input vector x; = (xi1 J Xy) " with a known response y;. In forward
propagation, the following four steps are executed.

Step 1: First, the input values are multiplied by a weight matrix W and the bias vector b is added to
produce z; as follows:

z; = Wx; +b, (9.5.1)
where
i1 Wi Wy b,
zZ = % , W= 2 Wa2 and b= b2
<3 Wiz Wy bs
én Wiy Wy b,

Step 2: The resulting vector z; is “activated” with relu to produce vector a; as follows:
a; = relu(z;). (9.5.2)

Step 3: To produce the raw output, z,,;, we simply take the dot product of @; = (a;;,a;,a;3.a,)" and
w = (W, w,, w,;,w,)" and add the bias b, as follows:

Zouti = W' @ + by = wyay; +w,a;, + wia;; +w,ay, + by, (9.5.3)
Step 4: The raw output is passed through the sigmoid activation function to produce p; as follows:

. M 1
p; = SlngId(Zout,i) -

S S— (9.5.4)
1+ eXp(_zout,i)

Exercise: In Figure 9.5, what are the expressions for z;; and a;;, given an input of (x;;,;,)"?

Ans.: The expression for z;; is given by z;; = w;,x;; + w,,X;, + b,. Then q;; is the output of the relu unit
given by a;; = relu(z;) = z;,1(z;)-]

9.5.2 Backward Propagation

The procedure used in backward propagation is somewhat more elaborate than forward propagation but
it is conceptually straightforward. Initially, the value of the predicted output, p;, produced by forward
propagation, may deviate considerably from the target value of y;. A loss function, defined with y; and p;,
is minimized to produce the final model by adjusting the weights and biases in the entire network using
gradient descent.

To adjust the parameter values, we must compute the gradients of the loss function relative to all 17
parameters of the network and then apply one step of gradient descent. The gradients are computed using
the chain rule backward through the network. Rather than computing all the gradients for this example,

9.5 Forward and Backward Propagation

which would be lengthy and somewhat repetitive, we focus on three specific cases that are representative
of all the other cases: w;, by, and w,;. Each one is highlighted in the figure with an arrow that starts from
the loss function at the output and traces a path backwards to the weight or bias of interest. The arrows
represent the sequence of partial derivatives that are needed for the gradient computation, as will be seen
shortly.

The process begins by finding the partial derivatives of the cross-entropy loss function with respect to
each of the parameters. The loss function for the ith row of the training set is given by

JE(p;) = —y;log(p;) — (1 —y;)log (1 — p)). (9.5.5)

Consider weight w, as the first parameter of interest to us since it is directly related to the output. The
question is, how should we change w, to reduce the loss? The answer is to find its associated gradient,
which provides information about the amount and direction of the change. To obtain the gradient for w;,
we use the chain rule:
dIE(w) _ oJE(p) Ip; Zout
0W3 api azout,i aWS .

(9.5.6)

The arrow associated with w; in the diagram of Figure 9.5 refers to this chain rule of partial derivatives.
Using the cross-entropy loss and sigmoid functions, the needed partial derivatives are multiplied to obtain
oJE(w)

ow,

» 1 _Yi>
-——+ pi (1 =pag =—; — p;)a. (9.5.7)
(pi 1-p } 3

Then, considering all n rows of the training set,

)]CE
L OTEw) _

WD — w(;) _,
ow,

3

w() — £ x Z(Vi = Pi)(=a;). (9.5.8)
i=1

Now we know exactly how to change w; in each iteration.
The general expression for all four weights connected to the output is

a]CE
w 0w _

wi* =l —
ow,

n
¢ w = £ x Y\ = p)(—ay), (9.5.9)
i=1

for k =1, 2, 3, 4, which are the indices for the hidden units.

The update equation for the bias term b, can be obtained with minor changes to the above equation.
Specifically, the arrow in Figure 9.5 associated with b, has a fixed input value of a, = 1. After using this
value in the above equation, the update equation for b, becomes

0JE(by)
X —_—

_ 0 v
T = b fo(y, p)(=1). (9.5.10)

i=1

bg+1) _ bg) _7

In summary, the weight and bias update equations are (Step 5)

CE
(t+1) 10} 9 (w)
wy wy aw,
OJCE (w)

Wy W2 sl o

- oIEw) |’

W, Wy .
W3
w, w, AJCE (w)

ow,

261

262

9 Neural Networks Using Log-Cosh

and
dJE(b,)
ob,

This completes the update equations for the second layer.

The next goal is to derive the update equations for the first layer. We use w,; for illustration purposes
but the same steps apply to all the other gradients in that layer. We pose the same question as before:
How should we change w,, to reduce the loss? The answer is somewhat more complicated because we
must account for all the sum-of-products and activation functions between w,; and the loss function at
the output. Equivalently, we can work backward from the output to w,;, as indicated by the long back
arrow of Figure 9.5. In particular, it takes a path backward from the output loss function through unit z;;
to w,;. The corresponding chain rule for the ith row is as follows:

5JCE(W) _ aJCE(Pi) op; aZout,i % 023
oW,3 Op; 0%y 0a3 0% ow,;”

by = b - ¢ x

(9.5.11)

The first two terms have been computed already during the calculation of the second layer gradients
so this information would be saved for reuse. The third term is just the weight associated with a;; which
is w,, as evident from Eq. (9.5.3). The fourth term depends on the type of activation function in layer 1,
which in this case is a relu function. The relu derivative is either 1 or 0, since it is a “keep or kill” term
that depends on the value of z;;. We need an expression for a;; to obtain this derivative. From Figure 9.5,
the forward arrows pointing into z;; in layer 1 imply that

Ziz = Wi3Xq + WysX;, + by (9.5.12)
and, therefore, using the definition of relu given earlier, we can write

a;; = relu(zg;;) = 25 1(z;3), (9.5.13)
where I(-) is the indicator function. Then, using the fact that da;; /dz;; = I(z;3) and 0z /0w,; = X5, which
is the fifth and final term of Eq. (9.5.11), we can compute the terms

IR (p,) 0p; Oous; dai; 9%
(pz) D; out,i — _O}i -Dp;)W3 and -5 &
o0p; OZgy; 003

= I in) Xin . 9.5.14
0Z;3 OWy3 @ ()
The equation on the left can be precomputed and saved while processing layer 2, while the equation on
the right is a new computation specifically for w,,. At a basic level, this is how backprop saves time in the
gradient computations—by storing precomputed data for later use.

Multiplying the terms together, the final result for all n rows is

OJCE(w)
O0W,;3

n
= D s — PIWsI(Z5)(=x;). (9.5.15)
i=1
This looks complicated because of the indicator function but recall that it is either 0 or 1. In either case,
the computation is rather straightforward.
The other gradients in the first layer are computed in the same manner. Typically, a gradient matrix
would be assembled for the first layer, with each weight between input j and hidden unit k, given by

AJE(w)
oWy

= Z(yi = PWI(Zy)(—x;p), (9.5.16)
i=1

9.5 Forward and Backward Propagation | 263

where j = 1,2 and k = 1, 2, 3,4. Using the steps outlined above, all eight gradients can be calculated to
update the W matrix (Step 6) as follows:

(t+1) @ aJE(w) JCE(w)

Wy, Wy Wy, Wy owyy owy,
AIEw) I Ew)

Wiy Wy _ (W2 Waaf el e 0w

- AIE(w) aICEw) |’

wy; W Wy, w ww) ol (w)
13 W3 13 W23 s P
Wiy Wyy Wiy Wy, oJEw) oI w)
owyy oWy,

and likewise the four gradients to update the bias vector
oJ°E(b)
ob,
oJ°E(b)
ob,
WED) |
ob,
oJ°E(b)
ob,

(t+1) (t)
1

[y

8]

-7

W)
W

(=2~ N~ N
N

b
b
b
b

4

N

This constitutes one iteration of gradient descent. The whole process is repeated starting with Step 1 and
concluding with Step 6 until convergence is reached.

9.5.3 Log-Cosh Gradients

For the log-cosh loss, a similar set of operations are needed for back propagation. We note that, aside
from the objective function used at the output, the rest of the partial derivative calculations are identical
in the network. This makes it very easy to replace the CE loss with LC loss in existing machine learning
programs. Referring back to Figure 9.5, to obtain b,, we would use the gradient

oI C(by) AI(p) Op; Zowi <
= >~ = (1 — p;)tanh(a(y; — p;))(-1), 9.5.17
7. i Y IO L CUR DI (95.17)
To obtain w,, we would use the gradient
oI (w) oJ LC(Pi) Op; 9oy -
= ~ =) p;(1—p;)tanh(a(y; — p;))(—ay). (9.5.18)
0Wk api azout,i aWk ; g

Even though these expressions look more expensive, the terms need only be computed once and then
passed backward through the network. The update equation for the log-cosh weights is then (Step 5):

LC
(t+1) 0 @
1 1 "1
A w)
w, _ | W2 o
- - LC
w, w, AT w)
owy
w, Wy oTLC(w)
ow,

and the bias update equation is:
aJC(b,)

b(t+1) — b(t) _7
0 0 ()bo

264

9 Neural Networks Using Log-Cosh

For w,;, the same type of formulation is used as for CE except for the use of the LC loss function. The
needed partial derivatives for the ith row are
oI aw) _ oJ*(p;) 0p; OZow, 0a;3 0%

3 (9.5.19)
ow,; Op; 0Zgy; 0Q;3 0% OWyy

Then, as before, we can assemble the matrix update equation associated with the first layer parameters
as follows (Step 6):

(t+1) 10} I w) oIt w)

Wy Wy Wy Wy owy, owy,
oI Caw) I (w)

Wiy Wy, _ W2 War| ol e o
- oJCw))

Wy W wy; w o w) ol (W)
13 W3 13 Was s s
Wiy Wy Wiy Wy oI w) oI*C(w)
owyy Wy,

and the biases are updated using

aJC(b)
ob,

aJC(b)
ob,

aJ*(b) |°
b,

4 aJC(b)

ob,

(t+1) (t)
1

=

S}
8]

-7

W
W

b b
b b
b b
b b

IN

When we examine the expressions for gradients required for either CE or LC in this example, it is clear
that there is a natural structure and repeated use of partial derivatives as the network is traversed in the
reverse direction. This is the core idea of backprop: it relies on the fact that each layer requires partial
derivative terms from a previously computed layer. Simply stated, backprop is an efficient implemen-
tation of gradient calculations facilitated by the storage and reuse of precomputed partial derivatives.
Furthermore, with the advent of graphics processing units (GPUs) in recent years, the matrix-vector
operations of forward and backward propagation can be vectorized to greatly reduce computation time.
The tasks can also be parallelized to a great extent to further reduce the training time. The combination
of backprop, GPUs, and parallelism has made deep learning possible and eventually led to the generative
Al capabilities embodied in ChatGPT.

9.6 Cross-entropy and Log-Cosh Algorithms

We can now combine all the elements discussed thus far into simple algorithms for the cross-entropy
neural network (CENN) and the log-cosh neural network (LCNN). The algorithms are provided in
Algorithms 9.1 and 9.2.

In the setup phase, the algorithms begin by reading in the training data, X and y. If the dataset is
small, we can process all n rows together as one entity in each iteration. This is called batch gradient
descent and each iteration is referred to as an epoch. For large datasets, especially those encountered
in deep learning problems, the whole dataset is not usually processed all at once. Instead, we create
small batches of equal-sized subsets of rows of the data and process them one small batch at a time.

9.6 Cross-entropy and Log-Cosh Algorithms | 265

Algorithm 9.1 Training procedure for cross-entropy neural network (CENN).

: Input: training dataset X € R™d y;
: Network: # of inputs = d, # of outputs=1,
of Layers(L), # of units in each layer (U,), k =1, ...,L
: Activation: layers 1, ..., L — 1 = relu, layer L = sigmoid
: Set # of epochs (maxlter), learning rate(¢’)
: Initialize weights wg)) and biases bf) k=1,..L
: Set t=0
: while ¢t < maxIter do
Use forward propagation through network to compute p;, i =1,....,n
10: Use backprop to compute gradients, as follows:
11: fork =L downto 1 do
12: Compute gradients Vw;;) and ng)of JE(w, b)
13: Update weight estimates wg“) = wg) -7X ng)
14: Update bias estimates b*" = b — # x Vb
15: end for
16: Compute loss function
JEw, b) = - YL [y,log((p)) + (1 — yplog(1 — p)]
17: Updatet=t+1
18: end while
19: Output: modelw,,b, k=1,....L;

This is called mini-batch gradient descent with a batch size of m. Typically, m is set to 32, 64, or 128,
depending on the application. In each epoch, the mini-batches are processed sequentially. The process is
repeated until convergence, which may require hundreds or thousands of epochs. In this context, m is a
tunable hyperparameter.

In the extreme case, if we process one row of data at a time, it is referred to as stochastic gradient
descent with a batch size of m = 1. Here, the word “stochastic” is reflective of randomness seen in the
convergence behavior since the gradients may fluctuate wildly from row to row at the beginning of the
training process. Eventually, the gradients settle down as the model stabilizes. This approach has been
shown to be very effective in many deep learning applications.

In Algorithms 9.1 and 9.2, batch gradient descent is employed (i.e. all data is processed together in each
epoch). The neural network architecture is defined by the number of hidden layers, L, and the number
of units in each layer, U, k = 1,2, ..., L. The activation of the unit at the output is the sigmoid function
while all hidden layer units use the relu function. Then, the two hyper-parameters are set: number of
epochs (maxIter) and the learning rate (¢). Finally, the weights and biases are initialized to some small
random values. This defines the starting point of the optimization and the randomization allows the
neurons to pursue different learning objectives. Some initial conditions may lead to a local minima that
results in an unsatisfactory model. Subsequent runs may be needed to obtain a better model.

Both algorithms enter a while loop and execute a series of forward and backward propagation steps
to determine the parameter values in each epoch. The output is determined by a forward propagation

266

9 Neural Networks Using Log-Cosh

Algorithm 9.2 Training procedure for log-cosh neural network (LCNN).

: Input: training dataset X € R™d y;
: Network: # of inputs = d, # of outputs=1,
of Layers(L), # of units in each layer (U,), k=1, ...,.L
: Activation: layers 1, ...,L — 1 = relu, layer L = sigmoid
: Set # of epochs (maxlter), learning rate(¢’)
: Initialize weights w](co) and biases b](co) k=1,..L
: Set t=0
: while ¢t < maxIter do
Use forward propagation through network to compute p;, i =1, ...,n
10: Use backprop to compute gradients, as follows:
11: fork =L downto 1 do
12: Compute gradients ng) and ng)of JXC(w, b)
13: Update weight estimates wg“) = w(kt) -7X ng)
14: Update bias estimates b(kt“) = b(kt) —x ng)
15: end for
16: Compute loss function
Jw,b) = % Y, log(cosh(a(y; — p)))
17: Updatet=t+1
18: end while
19: Output: modelw,, b, k=1, ..., L;

© 0N WA WN e

step. The backprop operation involves computing the gradients for the weights and biases in the neural
network and then taking one step of gradient descent. Each backprop pass requires starting at the output
layer L and traversing the network backwards to layer 1 while computing the gradients, as specified in
the algorithms (note: for convenience, gradients are represented using the notation Vwk, ka, k=
1,...,L). Finally, the loss function is computed before proceeding to the next epoch. The only difference
between the two algorithms is whether CE or LC is used as the loss function, and the corresponding
gradient computations. Otherwise, the algorithms are identical.

After the while loopis completed, the loss function can be plotted graphically for each epoch to ensure
that proper values of # and maxIter have been selected. The convergence plot should be smooth for batch
gradient descent and should settle at a small value in the latter stages of the iterative process. If not, the
process must be repeated with different values of initialization, # and/or maxIter.

9.7 Example: Circular Dataset

Having established the two methods to be compared, along with the details of their implementation,
we can proceed to the next step of using a synthetic dataset to understand the advantages and disadvan-
tages of each approach. For demonstration purposes, the nonlinear classification problem from Chapter 8
will be used, in which the binary data is largely separable (except for a few outliers) by a circular or

9.7 Example: Circular Dataset

elliptical decision boundary. It is a two-dimensional problem, with variables x, and x,, and a binary
response, y. In that chapter, we compared cross-entropy logistic regression (CELR) and log-cosh logistic
regression (LCLR). However, for both CELR and LCLR, we needed to specify xl,xz,xf, and xg as input
variables since the solution has a nonlinear boundary. In other words, in logistic regression, a suitable
polynomial expansion of the variables must be provided to obtain satisfactory results.

Recall from Chapter 8 that, for support vector machines (SVMs), polynomial expansion is unneces-
sary because SVMs will find a complex boundary using the RBF kernel controlled by a hyperparameter
called y. Therefore, SVMs have a distinct advantage over CELR and LCLR in this regard. But SVMs have
a shortcoming since they do not directly report probabilities which may be needed in many applications,
and they do not easily extend to multi-class problems. Both logistic regression and neural networks
provide probabilities and easily extend to multi-class problems, as will be shown later in Chapter 10.

The key advantage of neural networks over logistic regression is that they require only the input
variables because the parameter space is very large due to the hidden layers and the hidden units in those
layers. There may be many different combinations of x; and x, required to create a highly nonlinear
boundary using logistic regression but neural networks will likely find such a boundary, given the right
number of layers and hidden units. The trade-off here is that it will not be easy to determine the best
architecture for the application, or what relationships exist between the variables and the trained model.
If the neural network used xf and x§ internally, for example, we will not be able to tell from the final
model. The parameter values are related to the variables but it will be difficult to interpret the results.
Furthermore, variable importance cannot be directly assessed from the trained model.

In any case, our objective at this stage is to compare fully connected neural networks based on CENN
and LCNN methods on a dataset with a known circular/elliptical boundary. For this purpose, we will only
examine the performance on a training set in this section, as we did in Chapter 8. The circular dataset
can be handled using a NN architecture with one hidden layer with 24 units fed only by x; and x,. We do
not have to explicitly deal with the bias term either since it is handled internally. The 24 hidden units use
the relu activation function while the unit in the output layer uses the sigmoid function.

The choice of 1 hidden layer with 24 units is based on knowledge about the problem itself. In order to
obtain a round shape, a large number of units is required. In general, it is not easy to determine the num-
ber of hidden units needed, or the number of layers for that matter.? In this case, it is possible to capture
the data in the center region with 24 hidden units. In practice, a number of different NN architectures
should be attempted with different numbers of layers and hidden units, and then the best architecture
can be selected among all the combinations tried. This can be done using trial-and-error or a grid search
or advanced hyperparameter tuning algorithms.

The original dataset is shown in Figure 9.6(a). There are 337 points of which 6 are outliers. Note the six
outliers at the top-left corner of the figure. As a result, the classifier should get at most 331 correct out of
337. The nonlinear decision boundary produced by a neural network is not easy to express in closed form
so that it can be rendered in a plot. However, there is a practical solution to the problem. If thousands
of random points are selected in the region of interest and used to predict the outcomes as either 0 or 1,
the results can be plotted with two different colors. This is the approach taken for this case, as shown in
Figure 9.6.

3 The website playground.tensorflow.org provides facilities to develop intuition about the number of layers and hidden
units needed for the circular dataset.

267

268

9 Neural Networks Using Log-Cosh

(a) Original data (b) log-cosh loss
2 BN e T, 2 p—
1 e o 0] a0 .;° el '..':':E.
t.: agh e veen' :a"‘_d'
0 - ...'. .'E 0. C:... L3R ". l:;-
LR .- .. :. - .9 * o ';
—1- : l:’ - .:'. - '..v LS T o."
‘.: -.50 .:.-:_-{. :":.0
-2 LWL, v e degv =
T T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2

(c) Cross-entropy loss (4 =0)

(d) Cross-entropy loss (4 =4)

T T T T
-1 0 1

2

T
-1 0 1

o -

Figure 9.6 The circular dataset (n = 337, with 6 outliers). Part (a) shows the original dataset. Parts (b) LCNN,
(c) CENN (4 = 0), and (d) CENN (4 = 4) show the nonlinear boundary of each method.

We see that LCNN finds a solution that separates the data in a manner as if there were no outliers, as
shown in Figure 9.6(b). However, the same cannot be said for CENN as it distorts the decision boundary
in the direction of the outliers, as shown in Figure 9.6(c). In other words, for this example, CENN is
influenced by the outliers so the boundary is stretched upwards and to the left. At first glance, it may
appear that CENN may not have converged to a final solution because of the irregularity of the boundary.
However, if we check the convergence plots for LCNN and CENN (loss vs. epoch) shown in Figure 9.7,
we see that both have properly converged to their solutions smoothly and monotonically.

CENN LCNN
0.7 1 40 1
0.6 351
301

051

@ % 251
S 041 3 20
031 15
0.2 10
5

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Epochs (x100)

Epochs (x100)

Figure 9.7 Convergence plots for CENN and LCNN for circular dataset.

9.8 Classification Metrics and Outliers

The characteristics of the two convergence plots are rather interesting. In the case of CENN, there is
a steep slope initially, followed by a small plateau, and then finally a gradual descent to the final value.
Many convergence plots for CENN exhibit this type of behavior whereby the gradient descent method
will get stuck in a narrow ravine and then eventually begin the drop to the minimum. A total of 15,000
epochs (i.e. iterations) were needed to reach convergence.

The LCNN convergence plot is also typical of log-cosh methods. Initially there is a sharp drop followed
by a stall along a plateau and finally a more gradual descent to the minimum. LCNN also required about
15,000 epochs to reach convergence, although usually more are required compared to CENN. From the
plots, we know that both CENN and LCNN did indeed reach their minimum values, but that CENN was
not able to produce a satisfactory boundary in the same number of epochs.

The last step is to determine if a ridge penalty (see Chapter 5) would improve the results for CENN. If
ridge is applied to CENN, the following objective function is obtained:

n d
JEETE ap) = — 31y, log (p) + (1 =) log (1 =)l + 4), w2, ©-7.1
i=1 j=1
where w; represents each weight in the network and d is the total number of weights. Using the techniques
described in Chapter 6, a suitable value of the regularization parameter is 4 = 4.0. The improved result is
shown in Figure 9.6(d). Beyond this value of 4, the solution gets worse. Hence, for CENN, ridge regression
can be used to find a better model whereas LCNN does not require any regularization.

9.8 C(lassification Metrics and Outliers

We close this chapter by examining the metrics associated with binary classification problems. Assume
we have a machine learning tool that performs binary classification on a training set to create a model
which predicts the responses on the same training set. Although it is desirable to obtain a high level of
prediction accuracy on the training set, the more important result is the accuracy on an unseen test set.
In either case, to assess the accuracy of a binary classification model, we could simply take the number
of correct predictions and divide by the total number of observations to determine the success rate, i.e.

Total number of correct predictions

Accuracy =
Y Total number of observations

However, this type of analysis, although useful as a first-order assessment, may be misleading if only a
few of the true responses are, say 1, and all the remaining are 0. Then by guessing 0 in all cases, a high
accuracy can be obtained but it would not be a proper indication of the accuracy of the model. Alternative
methods are available to assess the quality of prediction in binary classification, as described below.

9.8.1 Precision, Recall, F, Score

When dealing with binary responses, it is common practice to compute the F; score on both the training
set and test set. For this purpose, we need to build a table of outcomes based on whether or not the model
predicted the correct label of 1 or 0. There are four possible scenarios as listed in Table 9.1. For example,
if the true value is 1 and the prediction is 1, it is referred to as a true positive (tp). Similarly, a true value

269

270

9 Neural Networks Using Log-Cosh

Table 9.1 Interpretation of confusion matrix. The four possible outcomes of tn, fn, tp,
or fp are accumulated in this tabular format from the ground truth and predicted
binary values.

True-0 True-1 Interpretation of Matrix Entries
Predicted-0 tn fn tn = true negative, fn = false negative
Predicted-1 fp tp fp = false positive, tp = true positive

of 0 and a predicted value of 0 is called a true negative (tn). On the other hand, an incorrect prediction is
either a false positive (fp) when the true value is 0 and the model predicts 1, or a false negative (fn) when
the true value is 1 and the model predicts 0. We say that the model is confused under these conditions.

One interesting question at this point is, how do outliers factor into these definitions? The answer at
a conceptual level is provided in Figure 9.8. It shows a binary classification problem with a boundary
generated by a classifier. Some of the points have been labeled to denote their type. Ideally, all points on
the right of the boundary should be labeled tp and all those on the left should be labeled tn. However,
this is not the case in this example. In fact, we can make a general statement that all outliers are either fp
or fn. However, not all fp and fn are outliers. For example, the fp near the boundary line is a classification
error. This can be corrected using a better classifier. Unfortunately, all the outliers will remain as fp or tn
regardless of the classifier used. In this example, the best classifier will still produce two fp’s and one fn.
Therefore, outliers set an upper limit on the accuracy of classification methods. This is something to keep
in mind when trying to produce better results using different classifiers with no apparent improvement:
it could be that the upper limit due to outliers has been reached.

As shown in Table 9.1, the combination of true values along the diagonal and false values on the
off-diagonals forms a confusion matrix. This matrix is very useful in telling us what type of error we are
making using a particular classifier. One classifier may be prone to making a lot of false positive errors
while another may make more false negative errors. Choosing the right classifier depends on the data
science problem being solved. This is where the confusion matrix comes in handy because it contains
the needed information. To obtain it, we can simply discretize each predicted probability using a thresh-
old p; and enter the totals into each of the four categories in the confusion matrix. Typically, p; = 0.5
but it can be adjusted to improve performance. Using the discretized information, we compute the recall
and precision, which are both standard metrics in binary classification. Finally, the F; score is computed
using these two quantities to assess the overall effectiveness of the model.

In particular, the recall value, sometimes called the sensitivity, is given by

tp

= ——, 9.8.1
reca tp+1fn ()
while the precision value is given by
- tp
recision = . 9.8.2
P tp + fp ()

The recall quantifies what fraction of the predicted 1’s are correct. The precision quantifies the fraction
of true 1’s that were predicted correctly. Then the F, score is computed using a combination of recall and

9.8 Classification Metrics and Outliers

Figure 9.8 Examples of different logical cases involving .
outliers and errors. 0 1
300 H
i *
9] o*
= 200 fn
’\
y (outliers) {p (outlier)
100 - Xx.fn
XX X
501X . :
2 5
precision as follows:
2 X precision X recall
1= P (9.8.3)

precision + recall

Exercise: Compute the accuracy, recall, precision, and F, -score for the confusion matrix below.

Training set True-0 True-1
Predict-0 485 108
Predict-1 64 234

Ans.: Accuracy = (tp + tn)/(tp + tn + fp + fn) = 0.807. Recall=tp/(tp + fn) = 0.684. Precision =tp/(tp +
fp) = 0.785. Then F; = 2(0.684)(0.785)/(0.684 + 0.785) = 0.731. O

9.8.2 Receiver Operating Characteristics (ROCs)

Itis possible to improve the performance of a classifier by simply adjusting the threshold, p;. For example,
in Figure 9.8, the decision boundary can be shifted a bit to the right by increasing p;. Then, only outliers
would not be properly classified, which is the best that can be achieved. Therefore, different values of p;.
should be selected to find the optimal one for a given dataset to maximize the F, score.

An interesting issue arises when we have two classifiers, A and B, and we want to carry out a fair com-
parison between them. What if we adjusted p, to improve the quality of classifier A while ignoring such
adjustments for classifier B? That would be unfair but it may also be time consuming to adjust the p;
of both until all possible values are exhausted to find the best value for each one. The receiver operat-
ing characteristics (ROC) is an effective measure when comparing of the performance of two classifiers
for different p; settings. It is a plot of the true positive rate (TPR) against the false positive rate (FPR) for
different values of p as follows. For each p;, the TPR is given by
tp

TPR = s
tp + fn

(9.8.4)

271

272

9 Neural Networks Using Log-Cosh

Figure 9.9 ROC curves of classifiers A and B, and
a random guess classifier.

1.0 + Classifier B

AUROC =0.8
Classifier A
0.8 TAUROC = 0.7

o
oy
f
1

o
~
f

Random Guess

True positive rate (TPR)

Classifier
AUROC=0.5
02T
0.0 t t t f } ;
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate (FPR)

and the true negative rate (TNR), sometimes called the specificity, is given by

tn
R= . 9.8.5
tn+fp ()

Then, the FPR is given by

tn fp

FPR=1-TNR=1- = .
tn+fp tn+fp

(9.8.6)

In Figure 9.9, we show a few hypothetical plots of TPR against FPR to illustrate the concepts discussed
above. The trajectory of the plot starts from (0,0) and traces a path to (1,1). At (0,0), the classifier predicts
all 0’s, meaning no false positives, while at (1,1), the classifier predicts all 1’s, meaning no false negatives.
All other cases fall in between these two extremes as the ROC traces a path from one corner to the other.
Three such paths are shown. First, the diagonal line represents the case of a random value classifier.
That is, a classifier that simply guesses the outcomes would produce a diagonal line which represents
a worst-case classifier. Second, the curve labeled A is the plot for classifier A that is clearly better than
the random guess classifier since its trajectory lies above the diagonal line. Third, the curve labeled B
is the plot for classifier B that is better than A because its curve is above A.

Example: Let p; be the threshold for deciding whether a probability value from a classifier should be
considered a 0 or a 1. Next, select different values of p, starting at 0 and ending at 1 in steps of 0.01—a
total of 101 points. For each p;, the TPR and FPR are plotted to produce the ROC curve. The quality
of a classifier can be established by finding the area under the ROC curve (AUROC). Three classifiers
are compared in Figure 9.9. Specifically, the AUROC of a random guess classifier is 0.5. However, the
total AUROC of classifier A is 0.75 whereas the total area under the ROC of classifier B is 0.8. Therefore,
B is considered to be better than A. The AUROC can be loosely interpreted as the probability that the
classifier has assigned the correct class to the data points. The ideal value under this interpretation is of
course AUROC =1.0. O

Problems

When AUROC is used with robust methods, the results can be misleading to some extent. For example,
the AUROC of LCNN tends to be similar to CENN even though the F, results are better than CENN.
In fact, the AUROC may not be a suitable metric in this type of comparison. Chapter 12 describes an
alternative approach which is better suited for such a comparison.

9.9 Summary

In this chapter, it has been shown that the log-cosh loss function is effective when used with neural net-
works. In fact, it is robust to outliers for binary classification problems. The cross-entropy loss commonly
used in neural networks is affected by outliers but it can be made more tolerant with the use of the ridge
penalty for regularization. However, the log-cosh loss was shown to have an auto-regularization feature
such that penalty functions are not required. Chapters 10 and 12 take these concepts to several data sci-
ence problems to illustrate their use in real-world applications. A number of other capabilities provided
by using this robust loss function in neural networks will also be described in those chapters.

To close out this chapter, various metrics used to compare different binary classification tools were
presented. Prediction accuracy by itself is not sufficient as an evaluation metric. Instead, metrics such as
recall, precision, and F; score are more appropriate. In addition, the AUROC is also useful when com-
paring different classifiers. In Chapter 12, the effect of outliers on the AUROC metrics is considered
in detail.

Problems

The following two-layer neural network will be used in all problems to follow. The labels are associated
with Python code provided in the projects.

w_vector

273

274

9 Neural Networks Using Log-Cosh

9.1

9.2

9.3

9.4

9.5

How many total parameters must be learned during training for the above network?

Find the expression for dJX(b,)/db, for the log-cosh loss function. (Hint: derive Eq. (9.5.17) noting
that the bias term is fixed at 1.)

Apply the chain rule to find the partial derivative term dJ““(w)/dw, for the log-cosh loss function.
(Hint: this is similar to the derivation of Eq. (9.5.18).)

Apply the chain rule as in Eq. (9.5.19) to find the complete expression for J-C(w)/ow, ; using the
log-cosh loss function. (Hint: you will need to use the indicator function since the relu activation
function is involved.)

(Project) This project involves the creation of a synthetic circular dataset and the implementation
of CENN/LCNN algorithms to find a nonlinear decision boundary.
a) Import the libraries.

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

b) Build a circular dataset similar to Figure 9.6(a) using Python. Assign six data points to be outliers
as shown in the upper region of the figure. The Python code below is suitable for this purpose.
Enter this code and check the results in a Jupyter notebook.

m = 354
np.random. seed (42)
setx = np.random.random(m)*4.0-2.0
np.random.seed (30)
sety = np.random.random(m) *4.0-2.0
y = np.zeros (m)
for i in range (m) :
if (setx[i]**2 + sety[i]l**2) < 0.9:

ylil =0

elif (setx[i]**2 + sety[i]**2) > 1.2:
ylil] =1

else:
y[i] = -1

counter = 0

outliers = 6 # number of outliers
for i in range(100) :
if sety[i] > 1.6 and counter < outliers:
ylil =0
counter += 1
setx df = pd.DataFrame (setx,columns=["xval"])

c)

d)

Problems

sety df = pd.DataFrame (sety,columns=["yval"])

setr_df = pd.DataFrame (y,columns=['flag'])

setx df['yval'] = sety df['yval'l

setx df['flag'] = setr df['flag']

setl0 = setx df[setx df['flag']l==1]

set00 = setx df[setx df['flag']==0]

plt.scatter(setl0['xval'],setl0['yval'l, \
color="'red"')

plt.scatter(set00['xval'],set00['yval'l, \
color="'blue')

plt.show()

Create the X and y dataset for the neural network.

Create a DataFrame

df = pd.DataFrame ({'x': setx, 'y': sety, \
'flag': vy})

Filter DataFrame to exclude rows where z is -1

X df = df[df['flag'] .isin ([0, 1])]

Xd = X df.drop(["flag"],axis=1)

X = np.array (Xd)

yl = X df["flag"]

y = np.array(yl)

The code below is for a specific neural network that performs CENN/LCNN using the detailed
example provided in this chapter. The architecture of the NN was provided earlier in the figure.
The forward propagation uses four steps. The backward propagation uses two steps and requires
the partial derivatives to compute gradients for weights and biases, which are then stored in
matrices and vectors for ease of use. The learning rate is used to obtain the new estimates.
Note: The code below is written in a form that is easy to follow rather than for efficiency or
general-purpose use. Enter the code and run it on the circular dataset just created. It will initially
run CENN as the default setting.

#Define logcosh function
logcosh = lambda x: np.logaddexp (x, -x) - \
np.log(2)
#Define sigmoid function
def sigmoid(z) :
a=1./(1.+ np.exp(-2))
return a
#Initialize weights and biases
np.random.seed (9)
W _matrix = np.random.randn(4,2)*0.001
w_vector = np.random.randn(4)*0.001
b vector = np.random.randn(4,1)*0.001

275

276 | 9 Neural Networks Using Log-Cosh

pick random = np.random.randn(5)*0.001

b0 = pick_random([4]

n = X.shape[0]

#IMPORTANT : CE=1 and LC=0, OR CE=0 and LC=1

CE =1
LC =0
if (CE):
print ("Cross-entropy")
else:

alpha = 5. # hyperparameter a in log-cosh
print ("Log-cosh")

learning rate = 0.2

maxIter = 7500

epochs = np.zeros (maxIter)

#MAIN LOOP

for t in range (maxIter):

FWD PROP
z = np.matmul (W_matrix,X.T)+b_vector #Step 1
a = z*(z>0) # ReLU function #Step 2
zout = np.matmul (w_vector,a) +b0 #Step 3
p = sigmoid(zout) #Step 4

#BACK PROP
delW matrix = np.zeros([4,2])
delw_vector
delb vector = np.zeros([4,1])
delb0 = 0.0
wvec = np.array([w_vector])
ones _matrix = np.ones((n, 1))
for i in range(n):
Indicator = np.array([z[:,1]1>0,z[:,1]1>0])
if (CE):
fullW matrix = np.matmul (wvec.T, \
[(X[i,:11)*(p[i]l-yI[i])
fullb vector = np.matmul (wvec.T, \
[ones matrix([i,:]1)*(p[i]l-y[i])
delw vector += (y[il-p[il)*(-al[:,1])

np.zeros ([4])

delb0 += (y[i]l-plil)*(-1.)
else:
fullW matrix = -np.matmul (wvec.T, \
[X[i,:]1])*np.tanh(alpha* (y[i]l-p[i]))
fullb vector = -np.matmul (wvec.T, \

[ones matrix[i,:]]1)* \
np.tanh(alpha* (y[i]l-p[i]))

Problems
delw vector += pl[il*(1.-p[i])* \
np. tanh(alpha*(y[l] plil))*(-al:,1il)
delb0 += plil*(1.-p * O\
np. tanh(alpha*(y[l]— [i1))*(-1.)

delW matrix += fullW matrix*Indicator.T
Indicator = np.array([z[:,1i]1>0])
delb_vector += fullb vector*Indicator.T

w_vector -=learning rate*delw vector/n #Step 5
b0 -=learning rate*delb0O/n #Step 5
W matrix -=learning rate*delW matrix/n #Step 6
b vector -=learning rate*delb vector/n #Step 6
LOSS
if (CE):
loss = -np.sum(y*np.log(p)+(1l.-y)* \
np.log(l.-p))
else:

loss = np.sum(logcosh(alpha* (y-p)))/alpha
epochs[t] = loss
if t % 1000 == O:
print ("Cost after epoch %i of %i: \
$f" %$(t, maxIter, loss))
print ("Done!")
plt.plot (epochs)
plt.show ()

9.6 (Project) Plot the nonlinear decision boundaries.
a) In order to obtain the nonlinear decision boundary, one option is to create thousands of points
in the region of interest (either as a grid or randomly selected points) and then run the resulting
Xtest matrix through the forward propagation steps to get the predicted values. The results can
be color-coded to obtain the resulting boundary. First define the prediction code.

def predict (X,prob) :

pT = 0.5

z = np.matmul (W matrix,X.T)+b vector
a = z*(z>0)

zout = np.matmul (w_vector,a) +b0

if (prob) :

Y prediction = sigmoid(zout)
else:

Y prediction = sigmoid(zout) > pT
return Y prediction

277

278

9 Neural Networks Using Log-Cosh

b)

c)

Next, the predicted values, either 0 or 1, can be obtained using the following code.

m = 4000

setx = np.random.random(m) *4.0-2.0

sety = np.random.random(m) *4.0-2.0

setx df = pd.DataFrame (setx,columns=["xval"])
sety df = pd.DataFrame (sety,columns=["yval"])
setx df['yval'l = sety df['yval'l

Xtest = np.array(setx_ df)

predictions = predict (Xtest,False)

Finally, to observe the nonlinear decision boundary for CENN, use the following code fragment.

print ("CENN Correct Predictions:", \
np.sum(predict (X,False) == y))

setr df = pd.DataFrame (predictions, \
columns=['flag'])

setx df ['flag'] = setr df['flag']

setl = setx _df [setx df['flag']==1]

set0 = setx_df [setx df['flag']==0]

plt.scatter(setl['xval'],setl['yval'l, \
color="'red")

plt.scatter(set0['xval'],set0['yval']l, \
color="'blue')

if (CE):

plt.title("Cross-entropy Loss")
else:

plt.title("Log-cosh Loss")
plt.scatter(setl0['xval'],setl0['yval'],color="'black')
plt.show()

9.7 (Project) In this project, you will replace CENN with LCNN. For this purpose, you need to go back
to the main routine of Problem 9.5(d) and change to code to use the following:

CE =0
LC =1

With these changes, we see that only a few lines of code separate LCNN from CENN. Therefore,
existing programs can easily be modified to include the log-cosh loss. Repeat the same steps in the
previous problem for LCNN and compare the results with CENN.

m

= 4000

setx = np.random.random(m)*4.0-2.0

sety = np.random.random(m)*4.0-2.0
setx df = pd.DataFrame (setx,columns=["xval"])
sety df = pd.DataFrame (sety,columns=["yval"])

9.8

Problems

setx df['yval'] = sety df['yval']

Xt

= np.array (setx_df)

predictions = predict (Xt,False)
print ("LCNN Correct Predictions:", \

np.sum(predict (X,False) == y))

setr df = pd.DataFrame (predictions, \

columns=['flag'])

setx df['flag'] = setr df['flag']
setl = setx df[setx df['flag']l==1]
set0 = setx df [setx df['flag']==0]
plt.scatter(setl['xval']l,setl['yval']l, \

color="red')

plt.scatter(set0['xval']l,set0['yval']l, \

if

color="blue')
(CE) :
plt.title("Cross-entropy Loss")

else:

plt.title("Log-cosh Loss")

plt.scatter(setl0['xval'],setl0['yval'l, \

color="'black"')

plt.show ()

(Project) Using the results from CENN and LCNN in the previous projects, compute the accuracy,
recall, precision, F; score, and AUROC metrics for the two methods. Compare the results. You may
need to run CENN again in order to obtain both sets of metrics.

a)

b)

Predict the outcomes.

pred = predict (X,False) # Get logical outputs

Compute the metrics.
from sklearn import metrics
if (CE):
print ("Cross-entropy metrics")
else:

print ("Log-cosh metrics")
print ("Confusion Matrix:")
table = metrics.confusion matrix(pred,y)
print (table)
accuracy = np.mean(pred == y)
precision = metrics.precision_score(y,pred)
recall = metrics.recall_ score(y,pred)
fl1 = metrics.fl_ score(y,pred)
pred = predict (X, True)

279

280

9 Neural Networks Using Log-Cosh

auroc = metrics.roc_auc_score(y, pred)

print ("accuracy =", format (accuracy, '.3f'))
print ("precision =", format (precision, '.3f'))
print ("recall =", format (recall, '.3f'))

print ("F1 score =", format (f£f1, '.3f'))

print ("AUROC score =", format (auroc, '.3f'))

9.9 (Advanced Project) The goal of this advanced project is to modify the code for the CENN/LCNN
program in Problem 9.5(d) to use stochastic gradient descent. Every row will be processed sequen-
tially, rather than all rows at once. In order to do this, move the lines labeled Steps 5 and 6 so that
they reside inside the inner for loop (insert one tab space before each of the four lines). Then change
the learning rate to 0.006 and maxIter to 1000 (roughly one-eighth of the prior number of epochs).
Rerun CENN and LCNN to observe the results. Adjust maxIter and the learning rate as needed
to obtain the desired results.

References

Haykin, S. (2009). Neural Networks and Machine Learning, 3e. Prentice-Hall.
James, G., Witten, D., Hastie, T. et al. (2023). An Introduction to Statistical Learning with Applications in
Python. Springer.

10

Multi-class Classification and Adam Optimization

10.1 Introduction

This chapter addresses multi-class classification problems using neural networks (NNs) and the details of
their optimization during training. First, the loss functions for multi-class problems are described which
require categorical versions of the cross-entropy and log-cosh loss functions. Then, the sigmoid function
is extended to incorporate multiple outputs leading to the softmax activation function. The implemen-
tation of the softmax activation function is described in detail. It involves a slightly more complicated
calculation of the gradients than the sigmoid function used in Chapters 8 and 9. This is followed by an
example of a multi-class problem solved using neural networks. Specifically, the MNIST dataset is used
as the demonstration vehicle to identify the advantages of using a robust loss function for this type of
problem.

To close the chapter, a number of different algorithms that comprise the Adam optimization technique
will be described. Advanced algorithms are required in deep learning to navigate through the compli-
cated optimization landscapes posed by neural networks, such as plateaus and ravines. These techniques
include momentum, rmsprop and warm-up procedures. It should be noted that deep learning (see Haykin
2009; James et al. 2023) would not be possible without these advanced methods. While the primary aim of
this chapter is to compare the cross-entropy neural network (CENN) with the log-cosh network (LCNN),
itisimportant to understand that the foundational elements such as multi-class classification, categorical
loss functions, the softmax activation function, and the Adam optimizer are crucial for the development
of large language models (LLMs) used in today’s generative Al tools. These components will be explained
in detail, and it is highly recommended that readers study this material carefully.

10.2 Multi-class Classification

In the last two chapters, we focused on classification problems with binary outcomes—either 0 or 1. How-
ever, there are more complex classification scenarios where multiple outcomes are possible, but only one
is the correct response. For instance, consider predicting which of three stores a customer should visit to
purchase a certain type of product. The outcomes can only be Store A, Store B, or Store C. In this case,

Fundamentals of Robust Machine Learning: Handling Outliers and Anomalies in Data Science,
First Edition. Resve Saleh, Sohaib Majzoub and A. K. Md. Ehsanes Saleh.

© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/HandlingOutliersandAnomaliesinDataSciencele

281

http://www.wiley.com/go/HandlingOutliersandAnomaliesinDataScience1e

282

10 Multi-class Classification and Adam Optimization

i el X, X3 X, Store A Store B Store C
1 0.306 0.898 0.239 0.902 1 0 0
2 0294 0.863 0.176 0.871 0 1 0
3 0.361 0.835 0.125 0.863 0 0 1
4 0.310 0.902 0.235 0.741 0 0 1
5 0.298 0.871 0.173 0.314 1 0 0
6 0.365 0.863 0.122 0.302 1 0 0
7 0.314 0.741 0.235 0.173 1 0 0
8 0.302 0.733 0.173 0.122 0 1 0
9 0.369 0.745 0.122 0.235 0 1 0
10 0318 0.757 0.239 0.173 0 1 0
n 0.235 0.173 0310 0.902 0 0 1

Figure 10.1 A dataset with three one-hot encoded classes.

we refer to the set of outcomes as classes and the type of data as categorical. Typically, each class is
assigned a numerical label: Store A =1, Store B =2, and Store C = 3. To represent these labels in a dataset
for processing by a neural network (NN), we use one-hot encoding whereby each label is converted to
a binary vector where only one element is set to 1, while the others are set to 0. Specifically, we can
use the following one-hot encoding: Store A =100, Store B=010, and Store C=001. More generally,
for a response with c classes, a one-hot coding requires c bits with only one bit set to 1 to indicate the
class. By doing so, the y vector used in binary classification now becomes a Y matrix for multi-class
classification.

Consider the hypothetical dataset for the store selection problem depicted in Figure 10.1 that captures
customer purchasing behavior for each product. The four key variables are product price, product rating,
amount of discount available, and store distance from the customer. They are listed as column headings
X;,X,,%;, and x, in the table. In row 1 of the table, only one of the three possible responses is set to 1,
reflecting the one-hot encoding of the label associated with Store A. Row 2 refers to Store B, rows 3 and 4
to Store C, and so on.

With the dataset in hand, the next step is to build a neural network with four inputs and three outputs.
The NN architecture will involve three hidden layers and four hidden units in each layer. The output
activation will be performed using the softmax function. Next, a loss function is needed that is specifi-
cally designed for categorical outputs. Finally, an optimization technique is required to minimize the loss
function to produce the model that can be used for inference. Each of these steps will be outlined in the
rest of this chapter.

10.2.1 Multi-class Loss Functions

In order to carry out machine learning with the dataset of Figure 10.1, we need to modify the two loss
functions discussed in earlier chapters because we now have a large matrix of responses that are either 0
or 1. In particular, we want to use loss functions that focus on the 1’s in the responses which have been

10.2 Multi-class Classification

conveniently provided by the one-hot encoding. A categorical version of the cross-entropy (CE) loss for
use with multi-class problems will be described first. The categorical CE loss function is

n c
categorical CE loss = —Z Zyik log py. (10.2.1)
i=1 k=1
where c is the number of classes and n is the number of rows in the dataset. Similar to binary classification
terminology, y;, is the ground truth and p;; is the predicted probability. Keep in mind that all but one of
the y;.’s are 0 due to one-hot encoding so only one term will contribute to the loss in each row of the
dataset.
Recall from Chapter 9 that, in stochastic gradient descent, only one row of the dataset is processed at a
time. Let us focus on this case to simplify the understanding of the modified loss function. The categorical
CE loss for a single row is

c
categorical CE loss = —Zyk log py. (10.2.2)
k=1

For the first row of the dataset in Figure 10.1, we would obtain

—Zyk log py = -, log p, +y,log p, +y;log ps). (10.2.3)
k=1

Since Store A was selected, we have thaty, = 1,y, = 0, and y; = 0. Therefore,

Cc
— Y yilog py = —log p;. (10.2.4)
k=1

Using the categorical loss and one-hot encoding, we obtain a very simple loss term. Each row of the
training set will contribute one such term. The total loss is then the sum of the loss terms for all rows, as
prescribed by Eq. (10.2.1).

Exercise: Determine the expression for the categorical CE loss for the first four rows of the dataset in
Figure 10.1 using Eq. (10.2.1).

Ans.: For the first row, the loss is —log p,,. For the second row, the loss is —log p,,. For the third row,
the loss is — log ps5. For the fourth row, the loss is —log p,;. O

The categorical loss function for log-cosh (LC) is given by

n c
categorical LC loss = Zyiklogcosh i — Pi)- (10.2.5)
i=1 k=1

Exercise: Determine the categorical LC loss terms separately for rows 1, 2, 3, and 4 of the dataset in
Figure 10.1 using Eq. (10.2.5).

Ans.: For the first row, the loss is logcosh (y;; — p;;). For the second row, the loss is logcosh (y,, — p,,)-
For the third row, the loss is logcosh (y5; — ps;). For the fourth row, the loss is logcosh (43 — p43)- O

283

284

10 Multi-class Classification and Adam Optimization

Note: The softmax function is perhaps the most important activation function in deep learning.
It is important to understand this topic in detail because you will encounter it frequently in many
applications including generative Al tools such as ChatGPT.

10.2.2 Softmax Activation Function

One of the key aspects of multi-class problems involves the use of the softmax function. This is essentially
a multi-dimensional version of the sigmoid function. Recall that the sigmoid function generates a prob-
ability value for a single output in binary classification. In the multi-class problem, there are k outputs
which is equal to the number of classes. It is possible to use the sigmoid activation at each of the k outputs
but one inconsistency would arise. Since the outputs of the neural network are interpretable as proba-
bilities, the total sum of these probabilities at the outputs should be equal to 1. The sigmoid activation
cannot guarantee this probability axiom whereas the softmax function is designed such that it is always
true. That is why, with multiple classes and multiple outputs, the softmax activation function is required.

Assume we have k outputs that are one-hot encoded for training purposes. After forward propagation,
we will have k raw outputs, z,,2,, ... , g In the softmax operation, given by S(z;), the raw outputs of the
neural network are used in the following way to compute the probability for the i output:

eZl —_

e e ek
Effectively, the probabilities of all k outputs are scaled such that they will always add up to 1. The scaling
could have been done using the raw outputs, z;,2,, ... , %, but there is a good reason why the form of
normalization in Eq. (10.2.6) is used—it is shift invariant. That is, a constant can be added to all raw
outputs and their probabilities will not change.

The gradients of softmax have simple expressions that include the effects of all k outputs rather than
just a single output. We will show (through an example) that

S(zy) =

D (10.2.6)

()S(Zi) ()pl
azi azi pl(pl) (regu ar term)
and
0S(z;) dp;
= — = —D.p; t ,
oz 3z p;p; (cross terms)

forallj=1,...,k, j#i. Instead of one term for the derivative, there will now be k terms: one regular
term and k — 1 cross-terms.

To understand how the softmax activation function works, consider Figure 10.2. It is the four-layer
neural network of Figure 9.3 with the fourth layer replaced by the softmax function since there are three
outputs in the store selection problem. A slight modification has been made to show the dependencies
between the fourth layer outputs, i.e. the raw z; values, and the softmax function. For example, when z,
is generated as a sum-of-products quantity, it contributes to all three softmax outputs, p;, p,, and p;. In
the figure, the three lines emanating from z, are used to indicate this dependence. Likewise, z, affects p,,
D,, and p; so three more lines are used for the same purpose. The same holds for z,. These arrows do not
represent weights as they do in the rest of the network; they only indicate the dependencies between the
raw outputs and the softmax probabilities.

10.2 Multi-class Classification | 285

Example: To solidify the concepts presented above, we will go through a softmax example in a
step-by-step manner using row 1 of the dataset in Figure 10.1 and the neural network diagram of
Figure 10.2. We focus on the gradients for weights w;, w,, and w, for illustration purposes. The first step
is to determine the softmax probabilities of the three outputs along with their partial derivatives with
respect to the raw output of interest z;:

& op; (e +eB)

h= et 07, (64 +ea + e%)? =P =Py,
e Ip, et

b e Tamrea 0z, BCETEY ~PiPa
& op; eatss

Ps > = —P1P3-

= => -
€% + e + €% 0z, (6% + €% + e%)?2

We also know that p; + p, + p; = 1 which we will make use of later. Using the categorical CE loss for

row 1, represented as LF, we find that

LS = -y, logp, —y,logp, — y; logp;.

Next, we need to select a weight and find its associated gradient. Initially, we select w; which is multiplied
by a, to produce one component of z, as indicated by the arrow in Figure 10.2. Hence, 0z, /ow, = a,.
The full gradient will be composed of three terms, one for each output (see three arrows leaving z;) as
follows:

oL _ O op oz, L 0py 07, O op 0

ow, op; 0z, 0w, 0p, 0Z; 0w, Op; 0%, Ow,;

N by V3
== (1 —)a — _(_)a — _(_)a
1P1 pa, ; P1P2)a, . P1P3)a,

=-=y1(1 = py)a; — y,(=p1)a; — y3(=p1)ay
=-y1a; — Oy + Y, +¥3)(=py)a; = =, —pya;.

9 (%

Q
YR
OB IR0
LN Av‘o;‘,ﬁl‘§ e"v',‘\

Softmax

Layer1 Layer2 Layer3 Layer 4

Figure 10.2 A four-layer neural network with a softmax activation.

286

10 Multi-class Classification and Adam Optimization

Itis somewhat remarkable that after all the calculus and algebra used, the final form is a simple quantity
that we have seen several times throughout this book. This is due to the form of the softmax function and
the factthaty, +y, +y; = 1 which conveniently reduces the equation into a compact form. As a final step,
we can use the values associated with the one-hot encoding in the first row of the dataset. Since y, =1,
¥, = 0and y, = 0, the final result is

|]_CE
rl
— = —(1-p)a,.
w, 1 -ppa,
Interestingly, this is the same result that would be obtained by applying one-hot encoding of 100 to an
earlier step in the derivation as follows
CE
ﬁ =-11 - ppa, = 0(=p,py)a, = 0(=p,p3)a, = —(1 = p,)a;.
1

The next gradient of interest is associated with w,. It proceeds in the same manner as the above but
with different partial derivatives involving the cross-terms. We begin with the equation for the loss as
before,

Ly® = -y, logp, —y,logp, —y;logps.
Again, the gradient will be composed of three terms, since there are three arrows leaving z,, but they will

be different for the case of w, compared to w; as follows:

o oL opy 0 0L 05, 0 LT 00, 05

ow, op; 0z, 0w, dp, 0%, oW, Op; 0Z, ow,
N A Y3
=——=(=p1P2)a; — =Dp,(1 — py)a; — —(—p3p,)a
P 121p22 21p3 3P2)ay
=y10,a; —¥,(1 — py)a; +y3(py)a,
= =0, +) + ¥, +¥)(Pr)a; = =V, — Pr)a; = pyay.
Finally, for w,, we follow the same steps and obtain

CE
al]‘rl

w, = —(y; —p3)a; = psa,.

m]

It is abundantly clear why the categorical cross-entropy loss works well with softmax: the terms cancel

in such a way as to produce simple and familiar gradients. Therefore, the implementation of softmax with
categorical CE is common practice in deep learning applications.

Example: This example carries out a similar process to find the gradients for the categorical LC loss
function when used in conjunction with softmax activation. We select w;, w,, and w;, and repeat the
same steps as above. Using the categorical LC loss for row 1, represented as I]_I;lC below, we find that

LEC = y,logcosh(y; — p;) + y,logcosh(y, — p,) + y;logeosh(y; — ps).
Sincey; = 1,y, =0, and y; = 0, we can write the gradient as simply

oL _ 9Ly opy 0z

ow, op, 0%Z; ow;

= —tanh(1 - p,)p;(1 — py)a;.

10.2 Multi-class Classification | 287

Likewise, for the case of w,, we have
oL _ Ly opy 9z,
ow, op; 02, 0w,
= —tanh(1 - p;)(—p1p,)a,,

and for w;, we have
dLy oLy dp, 9z,
ow; 0p; 0z; ow,
= — tanh(l — pl)(_p1p3)al'

An efficient implementation of softmax with LC requires that the one-hot encoded values be used to
compute only one term for the loss and one term for the gradient for each of the weights. All of the other
terms are identically 0 and need not be computed. O

Exercise: For the general log-cosh loss function with hyperparameter a (not to be confused with the
activation output), let the categorical version be given by

c
categorical LC loss = Z&logcosh (@@ — Pp))-
a
k=1
Find the gradients for w;, w,, and w;, for the softmax function in the diagram of Figure 10.2 using the first
row of the dataset in Figure 10.1.

Ans.: Following the steps above, the gradient component for w; is

LC
no_

o tanh(a(y, — p;))p;(1 — py)a;.

Likewise, for the case of w,, we will have

LC
o

T, = tanh(a(y; — p))(—p1p,)a,

and for w,, we will have

LC
ILrl

ow,

= —tanh(a(y; — p;))(—=p1P3)q;-

All the pieces are now in place to build a model for the store selection problem. Key elements of the
dataset are given in Figure 10.1, and the architecture of the neural network in Figure 10.2. The gra-
dients associated with softmax activation were provided in the examples and exercises for 3 of the 12
weights in the final layer. The other 9 weights are derived in the same manner along with the associ-
ated 3 biases. Backprop can be used to compute the gradients for all weights and biases, as described in
Chapter 9. Finally, the algorithms given in that chapter for CENN and LCNN can be used to train the
NN using gradient descent to produce the final model, which concludes our study of the store selection
problem.

288

10 Multi-class Classification and Adam Optimization
10.3 Example: MNIST Dataset

In this section, we take on a more challenging problem in the domain of multi-class classification with
neural networks to compare LCNN against CENN (refer to Chapter 9) using the MNIST dataset.! Note
that we consider fully connected networks rather than the advanced convolutional neural network
(CNN). A CNN is more appropriate for image recognition but our goal is to compare CENN and LCNN so
a fully connected architecture is sufficient for our purposes. As such, we will use the same NN architec-
ture for both methods and the same learning rate. The objective is to tackle a large multi-class problem
to determine if LCNN is suitable for this purpose.

The MNIST dataset consists of 42,000 handwritten numbers from 0 to 9 (total of 10 digits) in the form
of 28 x 28 grayscale images with the objective of correctly recognizing as many numbers as possible
using neural networks. For a fully connected architecture, each 28 x 28 image must first be unrolled
to 784 pixels, each of which represents an input variable. Associated with each image is a corresponding
label of 0-9, i.e. the digit being represented by the image. The dataset has no known outliers but the robust
approach has a habit of finding outliers even when none are expected.

A sampling of 10 such digits is provided in Figure 10.3. They are hand-drawn digits such as would be
used in a US zip code or street address on letters to be mailed. Recognizing digits is challenging since
every person writes each digit in a slightly different way. The NN is given a subset of these images for
training purposes, while the rest are used for testing purposes.

The MNIST dataset falls into the category of multi-class classification. Rather than one output of the
network, we need 10 outputs—one for each digit to be recognized. The standard training approach is
to apply a given image at the input and then set the corresponding output to 1 while setting all other
outputs to 0. For example, an image of the number 3 would be encoded at the output as 0001000000, the

5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 10 15 20 25
C

10 15 20 25

0 5 10 15 20 25 0 5 10 15 20 25 O 5 10 15 20 25 5 5 10 15 20 25

Figure 10.3 Ten representative images from the MNIST dataset.

1 This dataset is available on the website kaggle.com in the Competitions section.

10.3 Example: MNIST Dataset

number 7 would be encoded as 0000000100, and so on. Hence, the response is now a matrix Y whereby
each element Yy € [0, 1]. The neural network is then trained on a dataset of images, each with 784 inputs
and 10 outputs with one-hot encoded labels.

10.3.1 Neural Network Architecture

The NN architecture to be used is as follows: 784 inputs, 25 units in the hidden layer, and 10 units in
the output layer as shown in Figure 10.4. Each image is unrolled and normalized into 784 pixel values to
be used as input. The output activation is based on softmax. The 25 hidden units all use relu activation.
Roughly speaking, this amounts to 20,000 parameters. Each image is labeled from 0 to 9 and then one-hot
encoded to form a binary output for the NN. These are all standard steps in mapping an image and label
for training purposes onto a fully connected neural network.

Exercise: How many total parameters are there in the neural network of Figure 10.4. Include all weights
and biases.

Ans.: For the first layer, there are 784 x 25 + 25 = 19, 625 parameters. For the second layer, there are
25 % 10 + 10 = 260. Thus, the total number of parameters 19,885. O

10.3.2 Comparing Cross-Entropy with Log-Cosh Losses

With this setup, the overall objective is to determine whether there are outliers in the data and if robust
methods can outperform the standard approach. A dataset of 42,000 images of handwritten characters
is used to compare LCNN and CENN. To make the problem tractable for demonstration purposes, the
training set is reduced to 2000 labeled images. Before examining the results, it is important to ensure that
both methods converge to a solution using batch gradient descent with momentum. The convergence
plots are shown for CENN and LCNN (a = 10), respectively, in Figure 10.5. Notice that both methods
have similar convergence patterns. LCNN generally requires a larger number of iterations to converge.
Specifically, CENN required 50,000 iterations while LCNN required 90,000 iterations.

Consider the first set of results in Table 10.1 associated with training. We find that CENN is able to fit
to 100% of the training data while LCNN is able to fit only 97.5% of the data. At first glance, one may

Figure 10.4 Neural network architecture for training on the MNIST AT
dataset. - HE O
" 15 ~
—_— 0—
2 H:z
3
o 3
o relu
o —
4] o 3]
0 o
784 X 0—o
\\\,\ ..} ./'_/
Features ~L 5 Output

Hidden layer

289

290 | 10 Multi-class Classification and Adam Optimization

CENN LCNN
7 ‘ 2500
6 2000
5_
. 4 1500
@]
=3 1000
2
500
1
0 M e : : 01 : : : ,
0 10000 20000 30000 40000 50000 0 20000 40000 60000 80000
Epochs Epochs

Figure 10.5 CENN and LCNN convergence traces—loss vs. iterations.

Table 10.1 MNIST training set size is n=2000. 50 outliers detected by LCNN.
0 outliers detected by CENN. The resulting models were used to predict on a
test set with n=40000.

Train Accuracy Matched Outliers
CENN 100% 2000/2000 0
LCNN 97.5% 1950/2000 50

Test Accuracy Matched Outliers
CENN 89.8% 35,930/40,000 —
LCNN 90.0% 36,009/40,000 —

believe that CENN is doing a better job and, in some respects, that is true. However, there are so many
parameters (i.e. approx. 20000) and only 2000 images that overfitting is likely to occur in both CENN and
LCNN. In any case, both methods achieve convergence, as shown in Figure 10.5, so there must be some
other reason for this discrepancy. The reason has to do with outliers, as described in the next section.

Results of the two models from CENN and LCNN when used to predict the label on 40,000 images
in the test set are provided in the same table. During the prediction phase, we want to select the output
with the largest probability to determine the class association. This is normally done with the argmax
function which translates the largest probability to a label for a given image. We find that CENN is able
to predict 89.8% of test images correctly (i.e. 35,930 out of 40,000) while LCNN is able to predict 90.0%
correctly (i.e. 36,009 out of 40,000). This is due to the fact that LCNN produced a slightly better model
than CENN. Even though the training set accuracy was lower for LCNN, it was able to achieve a higher
prediction accuracy on the test set. This demonstrates that the log-cosh loss may be more effective than
cross-entropy in certain applications where outliers are present.

10.4 Optimization of Neural Networks

CENN LCNN
2000 2000
1750 1750
1500 1500
g 1250 1250
(5}
Z 1000 1000
—
=~ 750 750
500 No outliers 500 50 outliers
250 250 :

0+ T T T " T T T 04— . . ; . . .
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75-0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Ti T

Figure 10.6 Histograms of residuals for CENN (0 outliers) and LCNN (50 outliers).

10.3.3 Outliers in MNIST

The reason why LCNN performed better than CENN can be linked to outliers detected in the MNIST
dataset by the robust method. A histogram of LCNN residuals in Figure 10.6 indicates that 50 outliers
exist in the data while the histogram for CENN does not show any evidence of outliers. In effect, CENN
was able to fit 100% because there are enough parameters to overfit the data, whereas in the case of
LCNN, only 97.5% of the digits were recognized and fitted. The remaining 50 images were designated
as potential outliers by LCNN. This serves as a form of auto-regularization because the model built by
LCNN effectively ignored 50 images. These outlier images are shown in Figure 10.7. Note that many of
the circled images are not recognizable as numbers and therefore can be considered as outliers. This is a
potentially valuable capability arising from the use of robust methods on the MNIST dataset.

10.4 Optimization of Neural Networks

To conclude this chapter, we shift our focus to the critical aspect of optimization of neural networks.
Optimization lies at the heart of training deep learning models. It determines how quickly and how
effectively the neural network adapts its weights and biases to minimize the loss function. While gradient
descent serves as the foundation, recent advancements have introduced more sophisticated optimization
algorithms. Among these, the Adam optimizer stands out as a powerful and widely used technique. In
this section, the goal is to bridge the gap between neural networks and optimization by describing the
Adam optimizer and its role in deep learning. We cover gradient descent with momentum and rmsprop
to provide a complete picture for the Adam optimizer. This optimization algorithm can also be used for
linear and logistic regression, in addition to neural networks for which it was originally intended.

To review the basic operation of gradient descent, recall that the parameters are updated at each iter-
ation using some fraction of the gradient based on the learning rate, #, shown symbolically as follows,
with ¢ as the iteration count

®
wtD — 1 _ £ x <M) . (10.4.1)
ow

291

292 | 10 Multi-class Classification and Adam Optimization

Figure 10.7 These are 50 potential outlier images reported by LCNN. Of these, the circled digits are not easily
recognized by humans as a number. The data scientist can decide if they should be kept or removed.

Here, the objective function, J(w), is being minimized and we seek the weight vector w associated with
the minimum. This iterative method requires partial derivatives of J(w) with respect to all the weights
represented by w. For ease of understanding, we focus on optimizing the weights but a similar formula-
tion is used for the bias. The descriptions are carried out using vectors and scalars for simplicity but will
often involve matrices and vectors in practice.

The optimization of neural networks can be quite difficult because the parameter space is extremely
large. The actual configuration space of the loss function in such high dimensions is hard to navigate and
harder to visualize. To give a sense of the complexity, we offer two representations of different landscapes
associated with two different loss functions in Figure 10.8. In the figure, the y-axis is the loss function
value and the two x-axes are the weights of interest, in this case w;, and w,. On the left, the landscape
exhibits a steeper terrain, characterized by plateaus, ridges, ravines and a myriad of twists and turns.
The gradients are large which tends to help the optimizer move more rapidly toward the minimum.
A hypothetical desirable path is shown beginning on a plateau, where convergence would be slow, and
then winding its way across the rugged terrain to eventually reach a minimum. This is representative of
the optimization space for the CE loss function.

On the right side of the figure, the landscape is much flatter with shallower valleys and ridges.
The gradients are smaller than in the CE case, which implies slower progress to the minimum (assuming
the same learning rate for both). The reasons for this were discussed in Chapter 8 using Eq. (8.4.9).
A hypothetical desirable path is shown in this case but does not reflect the speed at which the minimum
is reached. This type of landscape is representative of the LC loss function. An optimizer must be able
to handle both types of loss functions, with momentum, rmsprop and adaptive learning rates, in order

10.4 Optimization of Neural Networks

Loss Function 1 A Loss Function 2

Plateau

10.0° 10.0°

Flatter regions

20

Figure 10.8 Conceptual view of optimization landscapes for two different loss functions.

to converge in a timely manner. And it must do this reliably in a very high-dimensional space. This is
the reason that advanced methods are required for deep learning.

10.4.1 Momentum

There are a number of different ways to speed up the training process. One simple way is to adjust the
learning rate, £. The number of iterations needed to reach an acceptable level of accuracy is controlled
by the learning rate. If # is too large, convergence may not occur due to oscillations from one iteration
to the next. If 7 is too small, the rate of convergence can be very slow which implies a large number of
iterations. Therefore, adaptive learning rate adjustment is a requirement in neural networks. A general
rule is to reduce the learning rate as the minimum is approached.

The more important issue to be addressed is oscillations in the gradients in one or more dimensions
in the optimization space, which slows down convergence. If we damp out the oscillations by averaging
the gradients over several past iterations, it would allow for a more rapid convergence. A method called
gradient descent with momentum does exactly that. It makes use of the history of gradients for each
parameter using a weighted average of some number of past gradients. It is a smoothing mechanism that
prevents wild fluctuations in the gradients which allows larger learning rates to be used.

Momentum works by taking a combination of the past gradients and the latest gradient to produce an
exponentially weighted moving average using the following equation:

oT(w)) ®

W 10.4.2
o ()

dw

m"Y = almg‘l} +(1- a1)<
Basically, the latest gradient is scaled by (1 — @;) and added to the previous history of gradients mgi)
which is scaled by «;, where a; € [0, 1]. The rolling exponentially weighted average is used to update
the parameters. The smoothing parameter, «;, controls the number of gradients used from past iterations
in the averaging process and is typically set to 0.9. For example, with a; = 0.9, the last 9 gradients are

293

294

10 Multi-class Classification and Adam Optimization

averaged and added to the latest gradient. The resulting smoothed out composite gradient is then used to
establish the direction of the next step. The new update equation for w after applying momentum is

wD =w® -2 xm{*. (10.4.3)
Initially, mfiov)v =0 in Eq. (10.4.2). Then, it increases as the gradients are computed and a history is

developed. The use of momentum in conjunction with gradient descent has been found to be highly
effective in neural networks and is the foundation of the Adam optimizer.

Exercise: Given that (aJ(w)/ow)© = 5, mgi)v =0, and w® = 0.1, compute the value of w using the
momentum equation with ¢; = 0.9 and £ = 0.05.

Ans.: The momentum term is given by

m® =am® + (1 -a;)dw® =0.9%x0+0.1%x5=0.5.
1" dw 1

dw
Therefore, w¥ = 0.1 — 0.05 X 0.5 = 0.075. (Without momentum, it would be w® = 0.1 —0.05%x 5 =
-0.15.) [m}

10.4.2 rmsprop Approach

While the momentum adjustment to gradient descent is quite effective, it does not account for the fact
that different parameters will produce gradients that range in size from the very small to the very large.
Ideally, we would like to have a different learning rate for each parameter but as the parameter space
increases, this can become an unwieldy and expensive task, especially if the learning rate is varied from
one iteration to another. Instead, this problem can be handled by simply dividing the learning rate by the
absolute value of the derivative as follows:

WD = _ g (_oJw)/ow > (t)_ (10.4.4)
[0J(w)/ow|

Therefore, the final term is essentially the sign of each of the gradients rather than the actual gradient.
This is similar in principle to the aLASSO penalty function of Chapter 5.

This approach, while simple in nature, has a number of problems, one of which has to do with the
absence of the magnitudes of the gradients and the second having to do with absence of the exponentially
weighted aspect of the gradients seen in the momentum approach. The rmsprop approach resolves both
issues. Rather than using the absolute value term in the denominator, it is more effective to replace it
by a root-mean-square value, where the mean is actually the exponentially weighted value. That is, take
the square of the gradients of past iterations and then average them and take the square root to obtain the
correct scale. In particular, let us define a new term as follows:

® ®

aJ(w aJ(w

rol = o) +(1- aﬂ(#) X (#) , (10.4.5)

where a, € [0,1] and is typically set to 0.999. Then, the updated equation becomes
p (I (w)/ow)®

wth = y® (10.4.6)

10.4 Optimization of Neural Networks

In this form, the derivative is being scaled by 4/r,,, rather than the absolute value of the gradient. Since the
new formulation is intended to modify the learning rate, we could conveniently rewrite it for better
understanding as follows:

®
WD =0 _ L (af (W)) _ (10.4.7)

A /(rdw)(t+1) ow

Now the square root of the exponentially weighted squared gradients is in the denominator of the learning
rate and implies that each parameter adjusts the learning rate based on its own exponential history of
gradients. This has been found to be a very effective update equation. However, if the derivative is 0,
the equation goes to infinity. To resolve this issue, we can add a small value, such as e = 1078, to the
denominator as follows:

®
WD = 10 _ 4 <aj (W)) , (10.4.8)

(1 /(rdw)(t+1) +€) ow

Exercise: Given that dw©® = (aJ(w)/ow)© = 5, rfi?ﬁ)) =0, and w©® = 0.1 compute the value of w" using
the rmsprop equation with a, = 0.999, € = 0, and £ = 0.05.

Ans.: The rmsprop term is given by

rD = a1 + (1 — a,) dw® x dw® = 0.999 x 0 + 0.001 x 52 = 0.025

dw dw
Therefore, w® = 0.1 — \/0% X 5=—148. O

10.4.3 Optimizer Warm-Up Phase

When applying momentum or rmsprop, there is a startup problem due to the fact that there is no history
to draw from for the exponentially weighted gradients at the beginning. In fact, it is not until roughly
10 iterations have been computed that the requisite amount of history is available (assuming «; = 0.9).
Therefore, some mechanism is needed to “warm-up” the two methods until enough iterations of history
exist. One way to do this is to divide the corresponding terms for each method by a quantity that starts
with a large fraction of the initial gradients and then reaches the steady-state value when enough history
exists; i.e. the corrected values are

(t+1)

dw
g = s
1-a]
and
(t+1)
r
orr __ dw
- 9
dw 1—gt?

2
respectively. Assuming ¢t =0 at the start, the denominator for momentum is initially (1 — &;). Then
for t =1, we use (1 — af), for t =2, we use (1 — af), and so on. The same holds for rmsprop with a,.
Eventually, the denominator approaches 1 in both cases (given that «; and a, are always less than 1),
thereby ending the warm-up phase.

295

296

10 Multi-class Classification and Adam Optimization

Exercise: Compute the correction terms for momentum and rmsprop for the previous two problems.

Ans.: The corrected terms are

= =5
w109
and
r:;orr _ 0.025 — 25
w 1 - 0.999

[m}

Exercise: Given that dw® = 5, compute w using the corrected values of m,,, and r,, of the previous
two exercises.

Ans.: Using the corrected terms above, we obtain for momentum,
w® =0.1-0.05%5=-0.15

and for rmsprop,
w® =0.1-0.05x 5/4/25 = 0.05.

They are different even in the warm-up phase. O

10.4.4 Adam Optimizer

Each of the three methods above was presented as separate approaches. However, the Adam (ADAptive
Minimizer) optimizer combines all of them into one tool. It applies rmsprop to the momentum update
equation along with the warm-up correction to produce a very powerful method that has proven to be
extremely efficient at finding a regional minimum in deep neural networks. The combination of the meth-
ods produces the following update equation:
Ccorr
whD = — o 2 (10.4.9)
\/% + €

Exercise: Given that (aJ(w)/ow)©® =5, rgiz =0, and w® = 0.1, compute the value of w® using
Eq. (10.4.9) with a; =0.9,a, =0.999, ¢ =0, and £ = 0.05.

Ans.: Using the results from prior exercises, we find that

mP" =5 and r" =25
Therefore, w®® = 0.1 — (\)/—%55 X 5 = 0.05. o

As shown in Algorithm 10.1, the Adam optimizer begins by initializing «;, a,, and w® to the appro-
priate values. In addition, the starting values for m;,, and r,,, are set and the learning rate is specified.
The algorithm then enters the convergence loop where the momentum, rmsprop, and warm-up terms are

Problems

Algorithm 10.1 Adam optimization algorithm.

1: Input: training dataset X, y;
2:Seta, = 0.9, a, =0.999, £ = 1078, Initialize w®.
3: Set miio) =0, - 0,t =0, learning rate = 7.
w dw
4: while w not converged do
6: Compute momentum term
(®)
(t+1) _ (t) aJ(w)
m,~=am, + 1-a) <—d$))

7: Compute rmsprop term

) ®
D) _ o O - w) 9Jw)
rg, =, +(1 a2)< 0w> x<0w>

8: Add warm-up adjustment

(1+1) r([+1)
corr _ Tdw corr — _dw
dw 1-aitt ’ dw 1-aftt

corr

9: Update estimate w+) = w® — £ x —zde__
T e

10: Updatet=t+1

11: end while

12: Output: trained model;

applied. Because of the use of momentum and rmsprop, a larger learning rate can often be used as part
of an adaptive scheme. Using the learning rate, the w update phase is executed and the iteration count is
incremented. These steps continue until convergence.?

10.5 Summary

This chapter addressed multi-class classification problems using neural networks with two different
loss functions. First, the categorical cross-entropy loss was compared to the categorical log-cosh loss.
Their implementation with the softmax activation function was detailed. Next, the MNIST dataset
was used as the demonstration vehicle to identify outlier images which were a set of unrecognizable
hand-written numbers. This is a unique capability arising from the use of a robust loss function with
neural networks. To conclude, the Adam optimization technique was presented in detail, including
momentum, rmsprop, and warm-up techniques.

Problems

10.1 Using the categorical CE loss function, find the expression for the loss associated with the last
row of the dataset depicted in Figure 10.1.

2 The algorithm shows the updates for the weights only. The biases are processed in the same manner. See Problem 10.6
for an example Python code.

297

298

10 Multi-class Classification and Adam Optimization

10.2

10.3

104

10.5

10.6

Using the categorical LC loss function in its general form, find the expression for the loss asso-
ciated with the last row of the dataset depicted in Figure 10.1.

Assume we have the choice to buy a product from one of three stores. Let the three stores be
represented using one-hot encoding as follows: Store A =100, Store B =010, and Store C=001.
The features of the product are applied to a trained neural network. After prediction, letz, = —4,
Z, =0, and z; = 3 be the raw outputs of the neural network associated with the categorical
response. Compute the softmax probability for each output. Which store is predicted by the neu-
ral network to be the most suitable place to buy the product?

In this problem, the shift invariance property of the softmax function will be explored. Consider
the following candidate for normalization:
N = —— j=1,...k
DAL+

The sum of all the normalized outputs is 1, which is the same as for the softmax function.
However, if a shift value of b is applied to all of the raw outputs, what is the new expression
for N(z; + b)? Now, perform the same operation with the softmax function, S(z;). Compare the
results and comment on the shift invariance of each one.

Gradient descent with momentum uses an exponential weighting of previous derivative terms
using a momentum factor which is typically set to @; = 0.9. The update equation is given by

orcw)\"
ow '
Compute this term for 10 iterations and plot the coefficients on the previous 10 derivatives as a

c ®)
g;)) = 0. Set (%) = A® to make it easier to work

out the recursion formula. (Hint: The first iteration would be mfilvi =09%0+0.1A@ =0.1A©,
The second iteration would be mfizw)) =09x m;t)v +0.1 x A, Plug in the quantity for m;:}. Now
let t =2 and continue the recursion from there. You will end up with a long expression with A®

to A1? in the final iteration.)

(t+1) _ ®
m, ~=am; +(1 —al)<

function of iteration number. Initially, m

(Project) The following uses the Adam optimizer to solve a simple linear regression problem
similar to the telephone dataset of Chapter 2 using the log-cosh and least squares loss functions.
Run the code and plot the loss vs. iteration, and the linear model with the data, to validate the
results.

a) Import the libraries.

import numpy as np
import matplotlib.pyplot as plt

b) Enter the code for the Adam optimizer and convergence checking.

Define class for Adam optimizer
class AdamOptim() :

Set default values
def _ init_ (self, learning rate=0.1,

alphal=0.9, alpha2=0.999, \
epsilon=1e-8):

]
o
~
o

self.m dw, self.r dw
self.m db, self.r db = 0, 0
self.alphal = alphal

self.alpha2 = alpha2

self.epsilon = epsilon
self.learning rate = learning rate

def update(self, t, w, b, dw, db):

Momentum
self.m dw = self.alphal*self.m dw
(1-self.alphal) *dw
self.m db = self.alphal*self.m db
(1-self.alphal) *db
rmsprop
self.r dw = self.alpha2*self.r_ dw
(1-self.alpha2) * (dw*dw)
self.r db = self.alpha2*self.r db
(1-self.alpha2) * (db*db)
Warm-up corrections
m _dw _corr = self.m dw/ \
(1-self.alphal**(t+1))
m _db corr = self.m db/ \
(1-self.alphal** (t+1))
r dw_corr = self.r dw/ \
(1-self.alpha2** (t+1))
r db corr = self.r db/ \
(1-self.alpha2** (t+1))
Gradient descent

w = w - self.learning rate* (m dw corr/ \
(np.sgrt (r_dw_corr) +self.epsilon))

b = b - self.learning rate* (m _db corr / \
(np.sqgrt (r_db_corr) +self.epsilon))

return w, b

Convergence of w and b
def check convergence (dw, db):
if (np.abs(dw) <= 0.00001)
<= 0.00001) :
return True
else:
return False

and

(np.abs (db)

\

Problems

299

300 | 10 Multi-class Classification and Adam Optimization

c) Enter the log-cosh and least squares loss functions and gradient routines.

logcosh = lambda x: np.logaddexp(x, -x) - np.log(2)
Define loss for LC and LS
def Loss_ function(w _0,b 0,LC):
diff = y-(x*w_0+b_0)
if (LC) :
loss = np.sum(logcosh(a*diff) /a)
else:
loss = np.sum(diff*diff) /2.
return loss

Define gradients for LC and LS
def dLoss_function(w _0,b 0,LC):
diff = y-(x*w_0+b_0)
if(LC) :
dw = np.sum(np.tanh(a*diff)*(-x))
db = np.sum(np.tanh(a*diff)*(-1))
else:
dw = np.sum((diff)*(-x))
db = np.sum((diff)*(-1))
return dw, db

d) Enter the dataset.

Define x and y data

X = np.arange(0, 2.4, 0.1)

y= np.array([0.44, 0.47, 0.47, 0.59, 0.66, 0.73,
0.81, 0.88, 1.06, 1.2, 1.35, 1.49,
1.61, 2.12, 11.9, 12.4, 14.2, 15.9,
18.2, 21.2, 4.3, 2.4, 2.7, 2.9 1)

e) Enter the code for the main loop and then run the code. By default, it uses the log-cosh loss
function.

Find w and b
LC = True
LS = False
reg _type = LC #Choose LC or LS
if (reg_type):
print ("Running LC linear regression")
else:
print ("Running LS linear regression")
a=1.0
w, b = 10, 10

f)

adam = AdamOptim(learning rate=0.1)

t =20

loss = []

print ("Iteration",t, "w =",format (w, '.3f"), \
"b =", format (b, '.3f'"))

converged, iter count = False, 2000

while not converged:
loss.append (Loss_function(w,b,reg type))
dw, db = dLoss_function(w,b,reg type)
w old = w
w, b = adam.update (t,w=w, b=b, dw=dw, db=db)
if check convergence (dw, db):

print ("Iteration",t, "w =", \
format (w, '.3f'),"b =", \
format (b, '.3f'))
break
else:
t+=1
if (%200 == 0):
loss_at_t = Loss_function(w,b,reg_type)
print ("Loss =", format (loss at t, '.3f'"'))
print ("Iteration",t, "w =", \
format (w, '.3f'),"b =", \
format (b, '.3f'))

if (t > iter count):
converged = True

print ("Final result on iteration",t)
print ("w =", format (w, '.3f'),\
"b =", format (b, '.3f'))

Plot the loss and the linear model with the data.

plt.plot (loss)
plt.title("Loss as a function of iteration")
plt.xlabel ("Loss")
plt.ylabel ("iterations")
plt.show ()
plt.scatter(x,y,color="'black')
y pred = w * x + Db
plt.plot (x,y pred)
plt.ylim(-5,25)
if (reg_type):
plt.title("LC linear regression model")

Problems

301

302 | 10 Multi-class Classification and Adam Optimization

else:
plt.title("LS linear regression model")
plt.xlabel ("Year")
plt.ylabel('Calls")
plt.show()

g) Change the code to run least squares and compare the results.

References

Haykin, S. (2009). Neural Networks and Machine Learning, 3e. Prentice-Hall.
James, G., Witten, D., Hastie, T. et al. (2023). An Introduction to Statistical Learning with Applications in
Python. Springer.

11

Anomaly Detection and Evaluation Metrics

11.1 Introduction

Anomaly detection (see Aggarwal 2017) is a form of outlier detection where the outliers are at extreme
locations and represent unusual and unexpected occurrences in the dataset. Identifying such anomalies
is typically an unsupervised activity. There are a wide variety of anomaly detection methods reported in
the literature and in common use in machine learning. The techniques to be described in this chapter gen-
erally involve repurposing well-known machine learning methods, such as k-nearest neighbors (k-NN),
clustering methods, and tree-based approaches. The details of k-NN, DBSCAN, and Isolation Forest will
be described as they are popular techniques in this category. This will be followed by a new method based
on robust statistics and k-medians clustering called MADmax which is shown to provide better results
than current methods.

For our purposes here, the datasets to be considered are those that would be used for clustering.
In these datasets, there are data points near each other forming one or more clusters, along with other
isolated data points far from all clusters that we seek to identify using an anomaly detector. Sometimes,
a few points will be declared as anomalies when they are actually inliers. These are called false positives.
In other cases, some anomalies are left undetected. These are the false negatives. Methods are required
to evaluate different anomaly detectors based on their ability to limit the number of false designations.
The chapter includes an examination of various metrics to compare different anomaly detectors.

11.2 Anomaly Detection Methods

In terms of definitions, the term “outlier” is an all-encompassing term whereas an “anomaly” is a specific
type of outlier that is far from the rest of the data. In other words, an anomaly is an extreme outlier that
is considered a rare or unusual event associated with suspicious activity such as bank fraud, spam, and
network intrusion. More generally, anomalies are data points in a dataset that are somewhat isolated from
all other data and occur infrequently. While the difference between outliers and anomalies is somewhat
subjective, the terms are often used interchangeably since many of the techniques find both outliers and
anomalies depending on the settings of various hyperparameters. However, keep in mind that the overall
objective here is to find the isolated points in the dataset.

Fundamentals of Robust Machine Learning: Handling Outliers and Anomalies in Data Science,
First Edition. Resve Saleh, Sohaib Majzoub and A. K. Md. Ehsanes Saleh.

© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/HandlingOutliersandAnomaliesinDataSciencele

303

http://www.wiley.com/go/HandlingOutliersandAnomaliesinDataScience1e

304

11 Anomaly Detection and Evaluation Metrics

11.2.1 k-Nearest Neighbors

The k-NN algorithm is a supervised learning technique that was originally developed for classification
and regression problems (see Section 8.10.3). In this section, it will be redirected toward solving the
anomaly detection problem as an unsupervised learning technique. The basic idea is to use the average
distance of a given data point to its k nearest data points to determine whether it should be considered as
an outlier. If the average distance is large, it is an outlier; if it is small, then it is an inlier.

The quality of the results depends on the number of points, k, used in the computation. In the super-
vised k-NN algorithm, k is some small odd number in binary classification so that a majority vote of the
neighbors determines the prediction of a new point. In regression, it is the average of a small number of k
neighbors. In anomaly detection, the average distance needs to be computed over many neighbors, so k is
typically much larger. Usually, the Euclidean distance is used in the distance calculation. In some cases,
the Manhattan distance can be used as well. Once the average distances for all n points in the dataset
are calculated, a threshold distance is needed to determine if a given point is an inlier or an outlier. Both
k and the threshold are user-specified hyperparameters. Their proper selection is essential in obtaining
useful results.

After choosing k, it is common practice to plot the average distances as a histogram to identify the
cutoff point between outliers and inliers. The histogram can be very useful in identifying the threshold
beyond which the outliers can be easily identified. However, it is somewhat of a subjective decision since
the locations of points in a multidimensional space cannot be visualized and therefore the line between
outliers and inliers is often based on experience. The selection of k is somewhat easier. A number of
different values of k could be used to find a suitable value that clearly separates outliers from inliers.
Typically, a larger value of k such as k = \/ﬁ produces better results since the average is taken over many
points. This makes the average distance more stable for the purposes of threshold selection.

Figure 11.1 shows a sample dataset on the left with four anomalies strategically positioned for demon-
stration purposes. In this example, we assume two features, namely x; and x,. The figure also shows
what appears to be three separate clusters. Forming these clusters using k-means clustering could be
troublesome due to the presence of the four anomalies (see Chapter 1). If we found these anomalies and
removed them, then a clean dataset could be provided to the k-means approach. This is one of the rea-
sons to use anomaly detection in data science. As shown, the anomalies are far from the clusters and are
isolated from the inlier data. Therefore, this is a suitable example to illustrate the inner workings of a
k-NN anomaly detector.

The k-NN algorithm can be used to identify these anomalies assuming a particular size of the neigh-
borhood, say k = 3. First, the average distance of the three nearest neighbors is calculated for all data
points. Then a histogram plot, shown on the right of Figure 11.1, is produced. A suitable number of bins
must be selected to provide the necessary fidelity for selecting a threshold. In this example, 10 bins are
chosen. The majority of the average distances are squeezed into the first two bins which is expected. The
anomalies are identified as the extreme cases far away from the majority. These outliers can be separated
out using a threshold, such as 0.3, in which case any data point with a distance above this threshold is
considered an anomaly.

Figure 11.2 on the left shows the same dataset with the anomalies identified in gray and the inliers
in black after using the k-NN method with k = 3 and threshold = 0.3. After removal of four detected
anomalies from the dataset, the histogram on the right is produced. Note that the distribution of distances

11.2 Anomaly Detection Methods

20 A
@ 80
15 - 4
° 70
1543 60 1
>
T ,:g..h’o.
2 & 40+
01 - ‘ 2
a3 .
L1 30 1 Anomalies
5 -7 ® Threshold = 0.3
P 20
107 T T
-15 T - 2 0- . . e 1
-10 0 10 0.0 0.2 0.4 0.6 0.8 1.0
X, Average distance

Figure 11.1 Example of a dataset with anomalies numbered from 1 to 4, with two high-density and one
low-density clusters. The histogram on the right shows anomalies between the distances 0.7 and 1.0.

20
s 4 704 Anomalies
60 - removed
15 4 g - i
3] : ° g
; $o'a |
’ 0 - 3% S o’ ’ g
=2
(o
54 L) -
?% .
10 - . .
1
15 , . 2
-10 0 10 0.05 0.10 0.15 0.20
X, Average distance

Figure 11.2 On the left, the same dataset as Figure 11.1 with the outliers detected using k-NN is shown in gray.
The histogram with anomalies removed on the right is different from Figure 11.1. The average distances all lie
between 0 and 0.25 instead of 0.0 and 1.0.

is more contiguous with no extreme cases. This is what is expected after outlier removal. The dataset after
the anomalies are removed would be appropriate for a k-means clustering algorithm.

The approach above relies on the manual selection of k and the threshold. Consider the automated
selection of these hyperparameters. The choice of k is an important step in obtaining satisfactory results,
as mentioned earlier. In the supervised k-NN algorithm, a small value of k is appropriate. However, in
the unsupervised algorithm for anomaly detection, a larger value is needed because there could be small

305

306

11 Anomaly Detection and Evaluation Metrics

groups of outliers near each other that would remain undetected if k were small. The threshold can be
selected only if a suitable k is found. Hence, the development of an automated k-NN requires studying
the characteristics of a range of k values and thresholds.

The upper diagram of Figure 11.3 shows a contrived dataset with one cluster containing 190 inliers
and 11 scattered outliers, each of which has been numbered. The average distance from each point to all
other points in its neighborhood as a function of k is shown in the plot in the lower portion of the figure.
A total of 201 lines are plotted in that figure, one for each point in the dataset. The purpose of this figure
is to devise a method to automatically select the k value, which is a vertical line, and the threshold, which
is a horizontal line.

To understand Figure 11.3 in more detail, consider point 1 in the upper diagram. It is an anomaly that
is relatively far from the other points. In the lower panel, the curve associated with this point is labeled
with 1. It begins with a large distance to its nearest neighbor for k = 1 and continues to increase as k gets
larger, meaning more neighbors are included in the average distance. A similar behavior is observed by
point 2, the curve for which is given by label 2.

However, when examining points 3-11, it is a different matter. Their initial distances to nearest neigh-
bors (with k = 1) are relatively small because there are other outliers in their immediate vicinity. It is only
when k is increased to a large enough value that their average distances begin to increase significantly.
These points emerge from the average distances associated with the inliers to join the average distances
of the other outliers (points 1 and 2). Clearly, a large value of k is needed to separate inliers from outliers
when there are groups of outliers.

As an example, a value of n/3 would be sufficient to separate out all the outliers from inliers as indicated
by the vertical line at k = 60, which represents a suitable value of k. More generally, a value of k = n/5
gives good results. This fixed value can be used with most datasets, assuming that fewer than 20% of the
data are outliers.

Next, if we examine the vertical axis, it represents the range of average distances in our dataset. We
need to define a horizontal line that separates the outliers from the inliers. A suitable choice would be
10.0. In fact, the threshold for this example could be set to any value between 10 and 12.5 to obtain the
same results. A value less than 10.0 would incorrectly make point 12 an anomaly. The threshold value
(horizontal line) is usually obtained from a histogram of the distances produced by binning the values
along the vertical line at k = 60, as shown in Figure 11.3.

It is possible to take the histogram data and find an appropriate threshold by identifying the distances
that are large (outliers) from the ones that are small (inliers). This can be done automatically with a
suitable algorithm that takes the frequency counts of the average distances, with say 30 bins, and looks
through the bins to select the threshold. Using this strategy, the k-NN anomaly detection method can be
fully automated. It is referred to as auto-kNN later in this chapter.

The k-NN algorithm is simple and can be very effective in identifying anomalies and outliers. However,
one of the main drawbacks is the amount of computation needed to calculate the average distances for
all points. If the number of features and/or number of data points is large, the computational cost may be
prohibitive. The total number of distance calculations is non , thus the computational complexity is O(n?),
where n is the number of data points.! Therefore, it can only handle small to medium-sized datasets.

1 The Big O(-) notation describes the upper bound of an algorithm’s running time, indicating its efficiency as the input size
gIrOws.

154 =

10 -

10

X

15

20

30 -

25

20 -

15

10

1/3 of the data

2/3 of the data
60

Average distances

50

75

100

k

125

Figure 11.3 Average distance values as a function of k.

150

175

11.2 Anomaly Detection Methods

307

308

11 Anomaly Detection and Evaluation Metrics

11.2.2 DBSCAN

To handle very large datasets, an approach based on clustering can be very effective. The idea is that if
clusters can be formed using the data, then any points not in the clusters must be anomalies. This is
the rationale behind an approach called DBSCAN which was originally developed for robust clustering.
Assuch, itis an alternative to the k-medians clustering approach described in Chapter 1. DBSCAN stands
for Density-Based Spatial Clustering of Applications with Noise. This density-based clustering method
attempts to identify high-density regions of the feature space to create many clusters that can take on
arbitrary sizes and shapes. The regions between clusters are defined as low-density areas where outliers
will be found.

Every data point in the dataset is placed into one of three categories. A core point is one that is in close
proximity to a given number of other points in its immediate vicinity defined by a radius, €. A border
point is defined as a point with not enough neighbors within this radius. The remaining points that are
not identified as core or border points are declared as outliers. Hence, outliers are found as a side effect
of the clustering process. The user-defined hyperparameters in DBSCAN are the radius, (referred to as
eps), and the minimum number of points to identify a core point (referred to as MinPts).

Figure 11.4 illustrates the DBSCAN definitions on a small dataset showing the core points, border
points, and outliers. The radius value used to decide on the core vs. border points is eps = 0.2 in this
example, and the minimum number of neighboring points is MinPts = 10. Regardless of their shapes,
DBSCAN will be able to find all clusters in the dataset. Originally, DBSCAN was intended to be used as a
clustering method but it inherently detects outliers so it is often repurposed as an anomaly detector. For
our purposes, core and border points will be considered as inliers. The rest are declared as anomalies.

To understand the effect of eps and MinPts on the results, consider Figure 11.5 which shows
DBSCAN used as an anomaly detector on a dataset given earlier in Figure 11.1. Each plot shows the

@ Outliers ®
@ Core points
X Border points

0.5 1.0 1.5 2.0

Figure 11.4 Example of DBSCAN applied to a randomly generated dataset showing the border and core points,
and the outliers, given that eps = 0.2 and MinPts = 10.

eps =4, MinPts = 30

11.2 Anomaly Detection Methods

eps = 3, MinPts = 30

o 0
15 4 151 :
10 - & 101
51 . 51 o
a ® g ® « o] \gj L L]
° © &B2°
> e B, = 8 o
0 A] 01 %O
e s
=51 %) ® [e] =57 ‘? o)
@ %]
10 - o —10 1 o
[o) 1 (o] 1
~10 0 10 ~10 0 10
Xl Xl
(a) (b)
eps = 2, MinPts = 15 eps = 5, MinPts = 30
o o
15 - 4 15 A -
5 o 5 - o
o L4 o *
>g‘ %ﬁ%o b ® ; ® ® e
% CDO . k.. ®
-5 v o -5 1
é} > o I ° » ®
-10 1 o ~10 - o
o 1 fo) 1
~10 0 10 ~10 0 10
Xl Xl
(©) ()

309

Figure 11.5 DBSCAN applied to the same dataset given in Figure 11.1 with (a) eps = 4 and MinPts = 30,
(b) eps = 3 and MinPts = 30, (c) eps = 2 and MinPts = 15, and (d) eps = 5 and MinPts = 30. Detected
outliers in gray. True outliers are numbered 1-4.

DBSCAN results for different values of eps and MinPts. As mentioned earlier, the dataset has three
clusters, two that are high density and one of low density. For the different settings listed in the figure,
all four of the true anomalies are detected in only case (d). In fact, more than four anomalies are
found in cases (a), (b), and (c). As depicted in the figure, all the false positives are from the low-density

310

11 Anomaly Detection and Evaluation Metrics

cluster and none are reported from the high-density clusters. Although this example is contrived for
demonstration purposes, it is clear that the DBSCAN might not produce an optimal solution when the
dataset has density differences among clusters since only one value of eps is specified. Furthermore,
in a multidimensional setting, it is not easy to determine the proper settings without trial-and-error or
domain knowledge.

Generally speaking, DBSCAN provides acceptable results in most cases as long as eps and MinPts
are set properly. To illustrate this further, consider the four plots given in Figure 11.6 where the inliers are
highlighted in gray and the outliers found by DBSCAN are highlighted in black. In the top-left corner, all
12 anomalies were found. In the second example on the top-right, there are 9 anomalies but 10 outliers
were found. Only one data point is at the boundary of being an inlier or an outlier. The others are cor-
rectly reported as anomalies. In the bottom-left case, 11 anomalies were correctly detected. Finally, in the
bottom-right case, 10 anomalies were found, although it seems there are several undetected anomalies.
‘We note that by adjusting eps and MinPts, the desired set of anomalies can be produced but this would
be difficult in high dimensions where visualization is not possible.

DBSCAN outliers detected DBSCAN outliers detected

15{ . 21 ’
10 4 11
5 01
04 " B
i J
54 . o
5 . . ' . ? 24 . . ' . ' .
-10 0 10 20 -6 4 2 2 4
DBSCAN outliers detected DBSCAN outliers detected
20 1 3 .
154 % 2
1
10
0
3 -1
04 . o)
l.' X
-5 s B)
0 10 20 - | 2

Figure 11.6 DBSCAN (eps = 4.5, MinPts = 30) applied to four synthesized datasets with inliers (gray) and

detected outliers/anomalies (black).

11.2 Anomaly Detection Methods

DBSCAN is much faster than k-NN for large problems and produces the desired results if eps and
MinPts are selected properly. Its computation time is similar to k-means clustering since it is performing
a similar task. However, the proper selection of the two hyperparameters is not straightforward and may
require a few iterations which increases the overall computation time. Hence, it could be rather expensive
for extremely large datasets.

11.2.3 Isolation Forest

One of the fastest methods available for anomaly detection is referred to as Isolation Forest (IF). It is a
popular and effective method for very large problems based on decision trees (see Chapter 8). A large
number of random trees are built and then used to identify anomalies by examining the average tree
depth of each data point. Those with the shortest average depth are declared as anomalies, based on an
anomaly score. The approach can be viewed as an unsupervised version of Random Forest (RF), a robust
supervised learning method for regression and classification problems. However, the goals of IF and RF
are completely different.

The basic idea in IF is that anomalies tend to be “loners,” isolated from the rest of the data. Because of
this characteristic, if a random tree is constructed from the data, outliers tend to end up near the root of
the tree. However, building one gigantic tree using the data would be expensive. Instead, the approach in
IF is to subsample the dataset multiple times (like RF) and create a tree for each subsample. Figure 11.7
is a representation of 100 possible trees generated based on different selected subsets of the data. Not all
points may appear in all trees due to the effect of subsampling (see data points 1 and 2 in the figure).
Outliers are identified if their depth, on average, is shallow across all of the generated trees. For example,
point 1 in the figure is embedded deep in many of the trees so it is unlikely to be an anomaly. However,
point 2 has a shallow depth so it is likely to be an anomaly. To classify each point, an anomaly score based
on the average depth is used along with a threshold to declare it an outlier or inlier.

0 0
0
2 /(
2
1
1
Tree 1 Tree 2 Tree 3
0
0 0
2 /<(2>>\' o7 2
1
1
Tree 4 Tree 5 - - - Tree 100

Figure 11.7 Illustration of random tree generation for Isolation Forest.

311

312

11 Anomaly Detection and Evaluation Metrics

F2

\ *4 L5
.X5 X6
.7(3
6| 7 .
xg X
7 9 L4
\’10
X1 x X12 L3
Ll 1
Fl
(@) (b)
A x4 I
x X6
X3 5 x_L(1
7 15
A8 X9
X
2 oy |
T 0 14
X
X1 3 11]
=
Fl
(©) (d

Figure 11.8 Example of Isolation Trees: (a) plot showing the splitting of the sub-sample dataset, (b) the
corresponding Treel based on part (a), (c) another splitting of the same subsample set with different features,
and (d) the corresponding Tree2 based on part (c).

Figure 11.8 shows a simplified example of how the trees are constructed so that anomaly scores can
be calculated. In this example, the construction of two trees is shown considering a dataset with four
features, F1, F2, F3, and F4, to illustrate the nondeterministic nature of IF. To begin, assume there are
12 data points in the first subsample (denoted as “x” with a label number) and two features, namely, F1
and F2. In Figure 11.8(a), L1 divides the subsample into two regions using a random division of the F2
feature (unlike RF which uses specific criteria such as Gini value or entropy function). Then, the lower
region is further subdivided randomly along L2 using the F1 feature this time, followed by L3 and L4
considering the F2 feature, and so on and so forth. The final tree, Treel, is shown in Figure 11.8(b).

In Figure 11.8(c), the subsample for features F1 and F4 is selected with 12 data points.? The first split
begins using feature F1 and then F4 and continues in a similar fashion as above to generate Tree2.
It should be stressed that rows and columns selected from the dataset, and the splitting locations are
all done at random for each tree. It is unlikely that any two trees will be the same. On top of this, the
selections change from one run to the next which makes IF highly nondeterministic such that the results
are not repeatable from run to run.

Now consider the process of scoring based on these two trees, assuming they were generated in the
same execution of IF. Examining Treel in Figure 11.8(b), the depth for point 1 is 3, while in Tree2 in
Figure 11.8(d), the depth is 1. The average depth is 2 for this point. Let x be a specific point of interest in the
dataset. In mathematical notation, we can define h(x) as the random variable associated with the depth
of x within a tree and we want to find E[h(x)], essentially the average of all the h(x) values. For point 1,

2 Although there can be any random number of points in a subsample, the same 12 are selected in this example for
convenience in anomaly scoring to be described shortly.

11.2 Anomaly Detection Methods

h(x;) = 3 for Tree 1 and h(x,) = 1 for Tree 2. Therefore, E[h(x,)] = (3 + 1)/2 = 2.0. After all the trees are
created, the average depth of every point is computed in this way. Each data point can now be assigned
an anomaly score. The following equation is used to calculate the anomaly score:

E[h(x)]

s(x,n) =2 @ | (11.2.1)

where E[h(x)] is replaced with the average depth of a given data point x across all trees. For a dataset with
n points, c(n) is a normalizing factor based on the average of the path lengths of all data points. It can be
computed using

c(n) = 2(log(n — 1) — 0.577) — 2

n-b (11.2.2)
n

Table 11.1 shows the anomaly scores based on Figure 11.8. Points 1 and 4 seem to have the highest
scores. Examining Figure 11.8, both points seem to be at the edge of the dataset. On the other hand, point
8 is deeply embedded in the data so it has the lowest score. This provides some insight into the inner
workings of the IF approach in identifying anomalies. Points on the periphery of the data are candidates
for being outliers while points embedded inside the bulk of the data are not. Using a threshold of 0.4
would be effective at finding the two anomalies in this example (although the example is too small to
declare any points as anomalies).

Exercise: For the Isolation Forest shown in Figure 11.8, compute the anomaly scores for points 4 and 10.

Ans.: Since n =12, we find that c(n) = 2(log(n — 1) — 0.577) — @ = 1.8. For point 10, E[h(x)] ~
(4 +7)/2 = 5.5. Therefore, we have

_ Elhw)

s(e,m) =2 @ =271 =0.121.

Table 11.1 Anomaly score calculations for Isolation Forest.

Point Treel depth Tree2 depth E[h(x)] Anomaly score
1 3 1 2.0 0.465
2 3 4 3.5 0.261
3 4 4 4.0 0.216
4 2 2 2.0 0.465
5 4 7 5.5 0.121
6 4 7 5.5 0.121
7 4 6 5.0 0.147
8 5 7 6.0 0.100
9 5 6 5.5 0.121
10 4 7 5.5 0.121
11 4 5 4.5 0.178
12 4 5 4.5 0.178

313

314

11 Anomaly Detection and Evaluation Metrics

For point 4, we follow the same steps as above to obtain

E[hx)]

- _20 m]
s(x,n) =2 < =218 =0.465.

Based on the calculations, point 4 is more likely to be an anomaly compared to point 10. Again, in this
small example, there are no outliers or anomalies but the purpose here is to illustrate the basic operation
of the Isolation Forest.

The required number of random trees needed in IF is based on when the average depth of the points
converges to a consistent set of values. Typically 100 trees are sufficient to obtain acceptable results. The
shapes and sizes of the trees will all vary but after about 100 trees, the average depth does not change
significantly. Furthermore, the values used to split the features are randomized. In this way, the average
of all the trees is regularized and suitable for scoring and anomaly detection.

To evaluate the performance of IF, we use the same dataset shown earlier in Figure 11.1. IF uses
100 subsampled trees for this dataset with 201 points. Figures 11.9(a), (b), (c), and (d) show the differ-
ent anomalies obtained with the anomaly score threshold set to 0.87, 0.86, 0.78, and 0.5, respectively.
In Figure 11.9(a), only three anomalies were detected using 0.87 as the threshold. Lowering it to 0.86
identifies four anomalies, as shown in Figure 11.9(b). Figures 11.9(c) and (d) show the behavior if the
threshold is reduced further. It appears that the IF approach always focuses on the peripheral points of
the dataset, as we found earlier. These examples demonstrate the fact that IF can occasionally fail to iden-
tify anomalies if the threshold hyperparameter is set incorrectly. In practice, there is a contamination
hyperparameter that is accessible to the user rather than the threshold hyperparameter, but it acts in a
similar manner. It is the fraction of the dataset that is expected to be anomalies and is typically set to a
low value.

Figure 11.10 shows four cases (the same cases used to evaluate DBSCAN in the previous section) when
IF is applied with contamination=0.02 in all cases. Note that in the first case in the top-left corner,
the results are quite good. However, if the parameter is not adjusted on a case-by-case basis using domain
knowledge, the results are unpredictable as seen in the other three plots. In each case, the level of con-
tamination needs to be adjusted to obtain only the anomalies. If this is not done, the IF approach may
declare that some data are outliers as shown in the bottom-left plot. Notice that IF “eats away at the data”
from both ends in this case.

The main advantage of IF is its ability to handle high-dimensional data and very large datasets in a way
that is much faster than other methods. This is due to the subsampling feature of the approach which nat-
urally reduces the dimensionality of the data used to generate each tree. On the other hand, the random
nature of subsampling implies that results tend to vary from one run to another. This nondeterministic
behavior may require multiple runs to gain confidence in the results. Another issue is that clusters of
outliers may present some difficulty in detection since IF attempts to isolate individual anomalies. There
may also be some issues with binary and categorical features. Finally, the manual setting of the level of
contamination controls the quality of the results. Regardless of these shortcomings, it is one of the
most widely used detection methods today.

Threshold = 0.87

15 A
o
51 °
= ° .30.. ®
T ., &
e
51) —o
0"
~10 1 o
] 1
T Ll LY
-10 0 10
X
(a)
Threshold = 0.78
15 -
o
5 ® b T
o ® e
= ° sﬂ
0 R) e ® ‘
bkoo. ®
54 o)
5 é) : b @
10 1 : o
o] 1
: . 9
-10 0 10
X
(©)
Figure 11.9

outliers in gray. True outliers are numbered 1-4.

11.2 Anomaly Detection Methods

Threshold = 0.86

o
15 4 =
o
°
5 .
°
s pe” o
T ., &
e
| a
-5 ' . > @
-10 7 ' —®
o] 1
T T Z{i
-10 0 10
X
(b)
Threshold = 0.5
o
15 1 4
o
o .
57 ®
s 3 &
0- S
% o, ®
-5 1 Q o
>
¢ e
-10 - - o
o 1
! ! z'
-10 0 10
X
(d)

IF approach applied to the same dataset given in Figure 11.1 with different anomaly score
thresholds. (a) threshold = 0.87, (b) threshold = 0.86, (c) threshold = 0.78, and (d) threshold = 0.50. Detected

315

316

11 Anomaly Detection and Evaluation Metrics

Isolation forest outliers detected Isolation forest outliers detected
- -
15 < - . 2 1
* -
10 1 11
5 0 1
0 1 o 14
2
_5 + L] by ° ' o .'.
-10 0 10 20 -6 -4 -2 0 2 4
Isolation forest outliers detected Isolation forest outliers detected
20 .° -& 31 * .
15 1 % 21 5
11 Lo
10 . * .
0 4
5 4 —l] -
B :
. U .
01 . o 2 ® : ’
2 o
34
-5 .y " e
T R B R A

Figure 11.10 Isolation Forest (contamination=0.02) applied to four synthesized datasets with inliers (gray)
and detected outliers/anomalies (black).

11.3 Anomaly Detection Using MADmax

The methods described previously require the specification of certain hyperparameters in order to obtain
reasonable results. Furthermore, they do not directly make use of existing robust techniques or robust
statistics. In this section, we describe an anomaly detection method that does not require user assistance
and is based on various robust methods described throughout this book. It is called MADmax for rea-
sons that will be clear shortly. The method utilizes a combination of the k-medians clustering algorithm
of Chapter 1 and k-NN anomaly detection described earlier in this chapter. The automatic detection of
anomalies without user intervention is a distinct advantage over other methods since they are usually
prone to error if the hyperparameters are not set properly. In the case of MADmax, the parameters are
automatically determined based on robust statistics, although external tuning is still possible if desired.
The steps leading to the MADmax approach will be outlined in the sections to follow.

11.3 Anomaly Detection Using MADmax

11.3.1 Robust Standardization

The first step in any anomaly detection method is to carry out some form of standardization of the
data. This produces a dataset where all features are centered and scaled to lie in the same range of values.
Typically, the mean and standard deviation are used to compute z-scores (see Chapter 4) which are then
used in place of the original data. However, these statistics are not robust and they tend to hide outliers.
Hence, in the pre-processing of data containing outliers, it is prudent to compute robust z-scores. The
robust equivalent involves the use of the median and the MAD (see Chapters 1 and 4). In particular, the
robust z-scores for each column j can be computed using

X — median(xj)
%= T MADNG)
Recall from Chapter 1 that MADN(xj) = 1.426 X MAD(xj), where

, J=1,....d (11.3.1)

MAD(x;) = median (|x; — median(x;)|) . (11.3.2)
1<i<n

In the MADmax approach, it is essential that all data be robustly standardized, and it is also good practice
for all other anomaly detection methods.

11.3.2 k-Medians Clustering

The second step in MADmax is to perform k-medians clustering, as described in Chapter 1. This is
a robust version of k-means clustering. The number of clusters is usually specified by the user based
on domain knowledge and experience. The difference here is that the number of clusters is computed
automatically as

K= {_J ’ (11.3.3)

where n is the number of points in the dataset and m is the average size of a cluster. The notation used
above is the floor function to define K as the integer portion of n/m. In MADmax, the use of k-medians
clustering is not to find clusters but rather to create as many mini-clusters as needed containing roughly
m points in order to facilitate the process of finding a suitable threshold for anomaly detection. Typically,
m = 30 for MADmax. For a dataset with 91 points, 3 mini-clusters will be created. For a larger dataset with
907 points, 30 mini-clusters will be created even if the dataset contains only 3 actual clusters. In contrast,
DBSCAN will create three clusters in this case because there are only three clusters in the dataset. The
large number of mini-clusters allows MADmax to handle any random shapes that the actual clusters may
have, and any variations in density across clusters.

Example: The reason for k-medians clustering in MADmax is best understood through a detailed
example. Consider Figure 11.11 which illustrates the manner in which a suitable threshold is deter-
mined. The original dataset shown in the top-left corner contains 420 points. It appears there are three
clusters and four anomalies. The results of k-medians clustering are shown in the top-right corner.
A total of K = |n/m] = |420/30| = 14 mini-clusters are created even though there are only three
observable clusters. Each one has its own MAD value which is related to the density of the mini-cluster.
‘We want to create circular regions around the median of each mini-cluster to try to encompass all the
points in each mini-cluster. A good rule-of-thumb is to use the 4.5-MAD edit rule to compute the radius.

317

318 | 11 Anomaly Detection and Evaluation Metrics

(a) Original data (b) 14 mini-clusters (4.5-MAD)
1509 * / 1509 -
12.5 1 \ 12.5
Anomaly Anomaly
10.0 1 P 10.0
. ,:‘.__:-.-...-‘.;fx:.. v
75 L e %) A 75
B T g
. ¢ A
5.0 R AenNs 5.0
. . 0. ‘o= : :
25 Ik ’ 25
' SR . '
T Y o Anomalies
0.0 - "F e — 0.0
S c
25 (- Ig 25
50 25 00 25 50 75 100 125 150 50 25 00 25 50 75 100 125 150
() 14 mini-clusters (6.8-MAD) (d) 14 mini-clusters (6.8-MADmax)
1504 « . 1504 = ’
12,5 12,5 ﬁ
AR SN
10.0 100 (/-'g@; ¢'
')
% _ 7
50 \ X W%
5.0 : ,ﬁ%‘\}‘a‘z‘
’ LTS
2. \ ‘}’-
25 5 ~ O N
0.0 0.0
25 25
5.0 X;:Bgﬁ?;gased on this -5.0 : Cfactor x MADmax
50 25 00 25 50 75 100 125 150 =50 -25 00 25 50 75 100 125 150

Figure 11.11 Development of the MADmax anomaly detection method. (a) Original dataset, (b) 14 mini-clusters
indicated with circles of radius 4.5-MAD around the medians, (c) 14 mini-clusters with radius 6.8-MAD circles
around the medians, and (d) 14 mini-clusters with radius 6.8-MADmax circles around the medians.

This is a robust statistic that was described in Chapter 4. Then, circular regions around each median
can be produced, as shown in the top-right corner. Unfortunately, they do not cover all the points in the
three clusters. Therefore, we need to increase the radius by a factor larger than 4.5.

For that purpose, a radius of 6.8-MAD is better at capturing more inlier data in the region around each
median, as in the bottom-left figure. However, even 6.8-MAD does not cover all the points. This is true in
this example and also for most datasets. Rather than using individual MAD values for each mini-cluster,
it is better to use a single value for all mini-clusters. A sensible choice is the largest MAD value among
the set of 14 clusters. The maximum of all 14 of the MAD values, called MADmax, is used to define a
radius of 6.8xMADmax to create circular regions (or hyperspherical regions in higher dimensions) around

11.3 Anomaly Detection Using MADmax

all mini-clusters.® This covers all the inliers, as shown in the bottom-right corner. The mini-clusters all
use the same MADmax value which establishes the boundary between inliers and outliers. Note that a
cloud-like shape covers the inliers while the outliers and anomalies all lie outside the cloud. O

As mentioned before, one of the advantages of creating many mini-clusters is that it allows any cluster
shape and density to be accommodated in the procedure. For example, a cluster in the form of a U-shape
or S-shape can be decomposed into a number of mini-clusters of approximately 30 points each. The orig-
inal shape of the clusters in the dataset becomes irrelevant, as does any variation in density within or
between clusters.

11.3.3 Selecting MADmax

We now provide specific details of the third step in the approach involving the selection of MADmax. After
k-medians clustering is performed on robustly standardized data to create K mini-clusters, the median
and MAD are computed for each mini-cluster. The maximum of the mini-cluster MAD values is com-
puted as follows:

MADmax = max {MAD(d,), MAD(d,), ..., MAD(dy)}, (11.3.4)

whered;, i =1,...,K, represents the distances from all points in mini-cluster i to its median. The maxi-
mum MAD value across all mini-clusters, MADmax, can then be multiplied by a given amount, Cfactor,
to establish a threshold for finding anomalies. That is, any point further than a threshold t, = Cfactor
X MADmax away from the median of its own mini-cluster will be considered an anomaly candidate. In
our earlier example, we have been using Cfactor=6. 8 which is a good default setting. This method is
quite reliable since it uses robust statistics to determine the threshold.

To understand why this approach is reasonable, recall that MAD is simply a robust version of the stan-
dard deviation which is a measure of the dispersion or spread of the data. If the data spread is large, then
MAD will be large. However, if the data is tightly packed in a region, then the MAD will be small. There-
fore, the MAD for each mini-cluster represents the local density of that mini-cluster and can be used to
define an edit rule to trim data. However, one MAD value for all mini-clusters is required. Rather than
using the smallest MAD or an average MAD, it is best to use the largest MAD in order to cover all the
inliers. The data cloud associated with Cfactor x MADmax defines the region where outliers will not
exist. In particular, anything outside the cloud of say 6.8XMADmax is a potential anomaly. Unfortunately,
we cannot guarantee that it is an anomaly so further checking is necessary, as described next.

11.3.4 k-Nearest Neighbors (k-NN)

The fourth step is to take the candidate anomalies that lie outside the inlier cloud and apply the k-NN
algorithm. Used in this way, there are two advantages over the k-NN method described earlier. The first
is that only a few points are subjected to the k-NN test since only a small number of candidate anomalies
are expected. The second is that the threshold and k are also determined automatically. For clarity, we
use kyy to refer to the number of nearest neighbors to be considered in the algorithm and £y as the
threshold. Typically, kyy is set to a high number such as ky, = 25. This means that the distances to the
nearest 25 neighbors are averaged. The threshold is automatically set to tyy = Afactor X MADmax,

3 To avoid confusion, keep in mind that “MADmax” is the algorithm and “MADmax” is the parameter.

319

320

11 Anomaly Detection and Evaluation Metrics

20
AfactorxMADmax
15 Anomaly
10 \
Anomaly

5] »

0 _ Anomalies
-5 . ’ . . .

-10 -5 0 5 10 15 20

Figure 11.12 Post-processing of anomaly candidates using k-NN with acceptance criteria determined by a
circular region defined using the radius Afactor X MADmax.

where Afactor = 11.0 by default for reasons similar to those given for Cfactor. In doing so, all of
the limitations of the basic k-NN approach are circumvented. In fact, this is a more effective use of k-NN
since only a few points are involved (i.e. only anomaly candidates) and the threshold is automatically
computed using MADmax.

The procedure is shown in Figure 11.12. The candidate anomalies have a circular region around them
with aradius given by Afactor X MADmax. If the average distance of 25 nearest neighbors of a candidate
anomaly is greater than this threshold, then it is declared an anomaly. In the figure, five of the candidates
will be declared as anomalies, but the one near the inlier data will be not, because its radius encroaches
on nearby inliers. Therefore, the average distance to the 25 nearest neighbors will be less than Afactor
X MADmax. The three points in a group (in the lower part of the figure) will all be declared anomalies
because each of their average distances to their nearest 25 neighbors will greatly exceed the size of the
individual circles. In fact, all points in any small mini-clusters (those with less than five points) will be
subjected to the k-NN test. In this manner, it is straightforward to check each candidate one by one using
k-NN without incurring a large penalty.

11.3.5 k-Nearest Medians (k-NM)

With the basic ideas of MADmax covered, there are some special cases that need to be addressed.
For example, creating mini-clusters in the manner described may produce some cases of mini-clusters
that consist only of anomalies. If these points are far from each other, it results in a large MAD value
which impacts the chosen MADmax. There may also be cases where we may have mini-clusters containing
both inliers and outliers. These types of cases have to be identified and treated separately.

11.3 Anomaly Detection Using MADmax

One approach to handling such special cases is to use the k-nearest medians (k-NM) approach which is
a variant of k-NN that uses medians of mini-clusters rather than the original data points. In some sense,
the medians are representatives of each mini-cluster and we can inspect their proximity to one another
to assess whether or not the median is associated with the inliers or anomalies.

Assume that we have identified the K medians of the mini-clustered data. Then, when applying k-NM,
we have effectively reduced the dimensionality of the problem space from R"” to RX. The problem is O(K?)
instead of O(n?) which is a much lower computational complexity. In doing so, if we find any medians to
be outliers, their associated mini-clusters will not be included in the specification of MADmax. Then, all
data associated with that median are potential anomalies and they all need to be checked using k-NN as
described in the previous section. The value of the threshold for the mini-cluster median test is dictated
by tym = Mfactor X MADmax, where Mfactor is another internal parameter used in the MADmax
algorithm with a default value of 14.8.

Figure 11.13 illustrates this case with a scatter plot of medians for the inlier data and one median in
the bottom-right corner for the outlier data. The mini-cluster associated with the outlier median may
contain many anomalies, each of which must be checked using the k-NN algorithm. Of course, there
may be many outlier medians to deal with. Therefore, one last issue involves choosing the proper value
of k for k-NM, which we refer to as ky,,. In this case, a small value such as ky,; = 1 to 5 is appropriate.
It specifies how many mini-clusters containing outliers are allowed to be in the same vicinity of one
another. In particular, if we decide that three outlier mini-clusters are permitted next to each other as
neighbors, then we set ky,, = 3. Beyond the overall steps of the MADmax algorithm that have been
described, additional heuristics can be introduced to address any corner cases that may arise. The key
aspect to note is that once the internal parameters are set, the MADmax approach is able to find anomalies
in a variety of datasets without user intervention.

To summarize, the definitions of the internal parameters and multiplying factors for MADmax are:

e MADmax: the largest MAD value of all mini-clusters.

e fyc: this defines a circle of radius Cfactor x MADmax around mini-cluster centers that contains all
points associated with the mini-cluster.

e [yy: this defines a circle of radius Afactor X MADmax around anomaly candidates to declare them as
anomalies or inliers.

Figure 11.13 Scatter plot of medians to check if 20

there are any mini-clusters of anomalies using a i
test criteria determined by Mfactor X MADmax. R .
15 . ."-::.: .
10 T S
. ..'-.“'::'v. ”
5 > '-. ’.::- * MfactorxMADmax
: o

321

322

11 Anomaly Detection and Evaluation Metrics

MADmax anomalies detected

MADmax anomalies detected

15 % . 21
10 11
5 1 O _I
0 = 1
-5 o, > »7
. . . LA 3
-10 0 10 20 -6 4 2 0 2 4
MADmax anomalies detected MADmax anomalies detected
20 1 b . 3 4 ul A
151 % 21
13
104 .
- 0 4
5 1 .
0f =,) -2 :
Yot 3] * .
=5 . B ~
0 10 20 -2 -1 0 1 2 3

Figure 11.14 MADmax applied to four synthesized datasets with inliers (gray) and detected outliers/anomalies
(black).

o kyy: number of nearest neighbors to consider during the analysis of candidate anomalies.

o i this defines a circle of radius Mfactor X MADmax around the median of mini-clusters to deter-
mine if they are mini-clusters of anomalies.

o kyy: number of nearest medians to consider in the k-nearest medians approach.

These parameters are set once and then used for all datasets. The reason that this is possible is due to
the robust standardization carried out in the first step. Without it, the values would have to be adjusted
for each dataset, which would be similar to other manually tuned anomaly detectors.

Figure 11.14 shows the four cases (used earlier to evaluate DBSCAN and IF) when MADmax is applied
without modification of the parameters. The goal is to demonstrate the value and effectiveness of using
robust statistics and robust techniques to detect anomalies. In all cases, the results are quite acceptable.
There are a number of other refinements that can be applied to improve the overall performance on
realistic datasets.

11.4 Qualitative Evaluation Methods
11.4 Qualitative Evaluation Methods

It is a challenge to compare different anomaly detection methods for a variety of reasons. For example,
if there are four detection methods and three require manual adjustment of hyperparameters while the
fourth does not, how should the comparison be carried out? Second, some methods are faster or can easily
handle larger datasets compared to others but do not have the same level of accuracy as the others. Third,
if all 4 methods detect 10 anomalies but they do not all agree on which ones are true positives and which
ones are either false positives or false negatives, then how do we determine which one is best, especially
in a multidimensional setting where visualization is not an option? And finally, if the correct number of
anomalies is 10, what if each method obtains a different number of anomalies and only one predicts 10.
How should we view the quality of the other detectors.

As a general statement, we have to accept the fact that anomaly detectors are hard to compare. Ideally,
if a method automatically detects the anomalies without user intervention, it would be preferable. Then,
if a method produces the correct number of anomalies, that makes it even more attractive. However, if it
requires an inordinate amount of computer runtime, then its value may only be demonstrated on small
to medium-sized datasets. The k-NN and MADmax approaches are accurate and can be made to work
in an automated fashion. k-NN is more suitable for small or medium-sized problems. Both DBSCAN
and MADmax can handle larger datasets although DBSCAN may require some tuning. Isolation For-
est can operate on extremely large datasets but requires some amount of domain knowledge and user
intervention.

With this backdrop, we now carry out qualitative comparisons of k-NN, DBSCAN, Isolation Forest
and MADmax using a specific publicly available dataset. The four methods have noticeably different
approaches to the problem but, at a basic level, they all measure some form of “distance” in their algo-
rithms. These are converted into scores which are then used to rank data points. The rankings determine
the designation of outliers or inliers based on a threshold. The overall methodology involves using each
method as an unsupervised learning task on the same design matrix X € R™, with the option to tune
certain hyperparameters if necessary. The goal is to assess their ability to find a set of known anomalies/
outliers.

To illustrate the complications of comparing different methods, consider the wine dataset* which is
known to contain outliers. The dataset consists of 130 observations (n = 130) and 13 features (d = 13).
Therefore, it is not possible to visually examine results in a 13-dimensional space to compare different
methods. In that case, how should we proceed and how do we adjudicate the identification of a data point
as an outlier or inlier?

A good first step would be to invoke the auto-kNN approach to find the outliers and anomalies. This
was mentioned in Section 11.2.1 whereby the values of k and the threshold are set automatically using
heuristics. Although this method may be unsuitable for large datasets, it is quite suitable for the role of
identifying true outliers on small datasets, which serves as a baseline when comparing other methods.
Typically, a higher number of outliers are identified using this method, some of which are anomalies. If
auto-kNN is applied to the wine dataset, a total of 14 outliers and anomalies are found. The next problem
is to somehow visualize these outliers so that a comparison can be carried out.

4 The wine dataset is available in numerous places including on the site kaggle.com.

323

324

11 Anomaly Detection and Evaluation Metrics

One way to do this is to select two features from the dataset and plot only the outliers in that
two-dimensional space. Note that any two features can be used as long as the outlier positions are
spread out enough to identify them visually. These outlier positions then become the targets for the
other anomaly detectors to hit so that their accuracy can be assessed. This is shown in Figure 11.15 in
the top-left corner. After running auto-kNN, the 14 shaded dots show the positions of the outliers using
features Alcohol and Malic Acid. The other three methods must hit those targets to be considered
as accurate.

The first anomaly detector to be evaluated is MADmax. This approach requires no user intervention.
The dataset is simply fed to the algorithm and it reports its findings. The results are shown in the top-right
corner of Figure 11.15. A total of nine anomalies are detected, each one hitting one of the targets set up
by auto-kNN (see black dots). Of course, it misses five targets since only nine anomalies are found. For
DBSCAN, a certain amount of tuning is necessary to obtain nine anomalies. The targets hit by DBSCAN

Auto-kNN anomalies/outliers detected

MADmax anomalies detected

51 51

41 44
= 3] - 31 *
e 2 g 2
= =
= 1 = 1

0 of ° E

-1 -1 ‘e
-1.5 -1.0 =05 0.0 05 1.0 -1.5 -1.0 -0.5 00 05 1.0
Alcohol Alcohol
DBSCAN anomalies detected IF anomalies detected

5 51

4 41 .
o 31 o 31
'Q . .g .
2 21 o 21
= =
= 14 = 14 .

of ° v o1 ° X

-1 “a -1 e

Figure 11.15 Comparing anomaly detection using the wine dataset with exactly nine anomalies allowed by each

-1.5 -1.0 -0.5 00 05 1.0
Alcohol

method.

-1.5 -1.0 -0.5 0.0 0.5
Alcohol

1.0

11.4 Qualitative Evaluation Methods

are shown in the bottom-left corner of Figure 11.15. As mentioned above, DBSCAN can produce any
number of outliers so, in the first attempt, the hyperparameters were adjusted to deliver nine anomalies.
Of note is that fact that it does not hit all the same targets as MADmax. However, all 9 anomalies fall on
one of the 14 targets and 5 targets are missed. The same cannot be said for IF. In that case, it produces
three false positives and misses eight targets which are categorized as false negatives.

A second evaluation can be applied by forcing all the detectors to produce 14 outliers. This is shown in
Figure 11.16. While MADmax does not require tuning, it can be adjusted manually if desired by changing
the Cfactor. By doing so, all 14 outliers hit the targets set by auto-kNN. However, both DBSCAN and
IF produce false negatives and false positives in this case. Using these values, the precision and recall can
be computed (see next section). Furthermore, the area under the curve (AUC) of the receiver operating
characteristics (ROC) could also be computed for the different methods. The reason is that, in an unsu-
pervised setting, it is difficult to make claims about which points are inliers and which points are outliers

Auto-kNN anomalies/outliers detected MADmax anomalies/outliers detected

54 54 .

44 44
= 3 = 3] :
g g |
2 2] 2 2]
= =
= 1 = 14

. @
0 O 1 - . L] .
-
-1 -1 ‘s
-1.5 -1.0 -0.5 0.0 05 1.0 -1.5 -1.0 -0.5 0.0 05 1.0
Alcohol Alcohol
DBSCAN anomalies/outliers detected IF anomalies/outliers detected

5 5

4 44 .
- 3 * k=] 31 *
L 2 o 2
= =
2 14 E 14 .

s ® .
0 * L] * - L] 0 1 & . . L] : L
-1 ‘3) -1 e
-1.5 -1.0 -0.5 0.0 05 1.0 -1 0 1
Alcohol Alcohol

Figure 11.16 Comparing anomaly detection using the wine dataset with exactly 14 outliers required by each
method.

325

326

11 Anomaly Detection and Evaluation Metrics

and anomalies. Even with labeled data, there is no guarantee that the labeling is correct. However, the
qualitative approach outlined here is very useful for multidimensional problems with n < 20, 000 (due to
limits on k-NN). Detailed analysis can be performed in this manner to build confidence in the tool that
is finally selected for the anomaly detection task. Alternatively, comparisons across many benchmarks
can be done in a similar fashion using row numbers of the dataset rather than the visualization approach
shown here. In that way, the entire benchmarking process can be automated.

11.5 Quantitative Evaluation Methods

To develop quantitative metrics to compare different outlier detectors, the concepts described in Section
9.8 of Chapter 9 can be used as a starting point. The first step is to tabulate the results of an anomaly
detector based on whether or not outliers and inliers were properly categorized. The definitions are pro-
vided in Table 11.2. If a true outlier is detected by an anomaly detector, it is considered a true positive (tp).
If an inlier is erroneously considered an outlier, that is a false positive (fp). If an outlier is erroneously
considered an inlier, that is a false negative (fn). Finally, if an inlier is declared to be an inlier, that is a
true negative (tn). In evaluating the results of an anomaly detector, the recall and precision are both good
metrics. The precision expresses what percentage of outliers detected by the anomaly detector are actu-
ally outliers. Typically, there is a preference for anomaly detectors with a higher precision. The recall
expresses what percentage of the true outliers is detected by the anomaly detector. Together, these two
metrics can be used as the initial quantitative assessment of the anomaly detector.

The AUROC can also be used to compare different approaches by plotting the true positive rate (TPR)
against the false positive rate (FPR). Unlike the binary classification case, the meanings of true positive
and false positive refer to whether or not an outlier was detected properly. As before, it is possible to plot
the ROC curves to compare different detectors visually. However, for outliers, the plot is a sequence of
steps (resembling an uneven staircase) with the number of steps equal to the number of outliers. Because
of this, we use a different approach than for binary classification when computing the AUROC metric.
Specifically, if we rank the outliers and inliers using their anomaly scores, we can formulate a compact
equation for AUROC as follows,

¥ (rank of outlier i) — M(M + 1)/2
MxN ’
where N is the number of inliers and M is the number of outliers.

AUROC = 1.0 — (11.5.1)

Table 11.2 Interpretation of confusion matrix for outliers. The four possible outcomes
of tn, fn, tp, or fp are accumulated in this tabular format from the ground truth and
detected outliers.

True True Interpretation of
Inlier Outlier Matrix Entries
Detected-Inlier tn fn tn = true negative, fn =false negative

Detected-Outlier fp tp fp = false positive, tp = true positive

11.5 Quantitative Evaluation Methods

Table 11.3 Computing the AUROC for different anomaly detectors
using the ranks of inliers and outliers. 0 = inliers and 1 = outliers.

Rank Ground Detector Detector Detector
truth 1 2 3
1 1 1 0 0
2 1 0 0 0
3 0 0 1 0
4 0 0 1 0
5 0 1 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 1
10 0 0 0 1

To understand this equation, consider Table 11.3 where the ground truth and the hypothetical results
of three anomaly detectors are provided. There are only 10 data points in this small example of which
two are outliers. The outliers are indicated with 1 and inliers with 0. The rankings of inliers and out-
liers are based on their respective anomaly scores, and rank 1 is the highest while rank 10 is the lowest.
In the Ground Truth column, the two outliers are ranked 1 and 2. The AUROC for this case is always
1.0. A brute-force way to obtain this value is to carry out rank comparisons of outliers with inliers while
counting the number of inliers above each outlier. A total of M X N comparisons will be performed. Start-
ing with a count of 0, each time an inlier is ranked higher than an outlier, we add one to the count. Since
there are no inliers above the outliers for the Ground Truth, the sum is 0. This is divided by M X N and
then subtracted from 1.0. The same steps would be carried out for the three detectors to obtain their
AUROC values.

There is an easier way to do this (without the tedious counting process) using Eq. (11.5.1). First, we
sum the ranks of outliers. Then, we subtract the ideal value of this sum which, in general, for M outliers
is M(M + 1)/2. For most practical anomaly detectors, the sum of the outlier ranks will likely be higher
than the ideal value. Finally, the difference between the two sums is divided by the total number of com-
parisons, and then subtracted from 1.0 to produce the AUROC. This a much easier method because it
only requires the ranks of the outliers.

Exercise: What is the AUROC of each of detectors 1, 2, and 3 of Table 11.3 based on the formula given
in Eq. (11.5.1)?

Ans.: We begin by noting that M(M + 1)/2 =2(2+1)/2 = 3,and M X N = (8)(2) = 16. The ranks of the
outliers for each detector can be summed easily by looking at the first column in the table. The AUROC
of the three detectors are:

Detector 1: AUROC =1 — 222 = 1 -3/16 = 13/16 = 0.8125

327

328

11 Anomaly Detection and Evaluation Metrics

Detector 2: AUROC =1 — &£=2 = 1 - 4/16 = 12/16 = 0.75
Detector 3: AUROC =1 — &0=2 =1 -16/16 = 0 o

Example: This example describes the steps used to produce an ROC plot for outliers, which resembles an
uneven staircase as mentioned above. An example of an ROC curveis given in Figure 11.17. Itisbased on a
dataset with n = 100 points of which 10 are outliers and 90 are inliers. In the ideal case (ground truth), the
outliersareranked as 1,2, 3,4, 5,6,7,8,9, 10, while inliers are ranked from 11 to 100. A candidate anomaly
detector ranks the outliers as follows: 5, 8, 9, 11, 12, 13, 18, 23, 37, 57, with the remainder as inliers. To
plot the ROC, we begin by assuming all data are inliers and place all 100 points in the Detected-Inlier
row of Table 11.2. Therefore, tn = 90 and fn = 10, while fp = 0 and tp = 0. These values are used in the
following equations:

f t
P _ ppr=_—P
tn + fp tp+fn

(11.5.2)

Initially, FPR = 0 and TPR = 0 which produces the first point in the ROC plot. Next, we sequence through
the data in rank order. Going from rank 1 to rank n, if an inlier is encountered (indicated by 0 in the table),
we decrease the value of tn by one and increase the value of fp by one. If an outlier is encountered (indi-
cated by 1 in the table), then we decrease the value of fn by one and increase the value of tp by one.
Then we recompute TPR and FPR. Each outlier produces a step in the staircase of the resulting ROC.
For the outlier ranked 5, we have that FPR = 4/(4 + 86) = 0.04 and TPR = 1/(1 + 9) = 0.1. This consti-
tutes the first step in Figure 11.17. There are a total of 10 steps, although the resolution does not allow
all steps to be shown. The last point is given by TPR = 10/(10 + 0) = 1.0 and FPR = 90/(0 + 90) = 1.0.
In this way, the TPR and FPR are computed (total of n data points) and then plotted to produce the ROC
shown. O

1.0 1

0.8 1

0.6 1

TPR

0.4 1

0.2 1

0.0 1

T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
FPR

Figure 11.17 ROC plot for a candidate anomaly detector. There are a total of 10 steps (although it appears to
have only 7 due to the resolution).

11.5 Quantitative Evaluation Methods

Exercise: What is the AUROC of the anomaly detector represented by the ROC curve in Figure 11.17?

Ans.: Here N =90 and M =10. Then M(M +1)/2=55. The sum of the ranks is) ranks=

5+8+9+11+12+4 13418423 + 37+ 57 = 193. Therefore, AUROC = 1— 11903(;;5 =1-138/900 =

762/900 = 0.847. O

If several detectors are plotted together, the ROC tells us how quickly an anomaly detector will find
most of the outliers and which one is the first to find all outliers. Typically, the TPR will increase quickly
from the origin. This is because at the origin all data are inliers so TPR =0. Then, as we find outliers the
TPR increases until we run out of outliers. In some sense, we only care about the early part of the ROC
curve. After detecting all the outliers, one of the anomaly detectors can be declared the winner. Again,
the AUROC value provides this information in one metric.

Exercise: Plot the ROC of Detectors 1 and 2 using the information in Table 11.3. Of the three detectors,
which is the best detector?

Ans.: Detector 3 is ruled as being the worst by default. Then, as shown in Figure 11.18, detector 1 is
better than detector 2 based on the AUROC. The results of manual area computations to obtain the
AUROCSs can be compared to the results of a previous exercise (which is 0.8125 for Detector 1 and 0.75 for
Detector 2). Both methods produce the same values. Note that Detector 2 finds the two outliers ahead of
Detector 1. O

The precision-recall curve can also be generated in a similar manner, as shown in Figure 11.19. This
plot is not usually monotonic in its behavior and not as informative as the ROC curve. However, it does
tell us where the largest value of precision occurs and what value of recall is associated with it. Since we
seek high values of precision, we will tend to operate at the peak level of this curve.

Figure 11.18 ROC curve for two anomaly Anomaly detector ROC
detectors of Table 11.3. 1.0 1
0.8 1
0.6 Detector 1
0.4
02 ™
Detector 2
0.0

T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

329

330

11 Anomaly Detection and Evaluation Metrics

1.0

0.8 4

0.6 4

Precision

0.4 4

0.2 1

0.0 T . T T .
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 11.19 Precision-recall curve for a candidate anomaly detector.

11.6 Summary

In this chapter, the subject of anomaly detection was described in detail, focusing primarily on k-NN,
DBSCAN, and Isolation Forest. Anomalies are an important subset of outliers. They are extreme outliers
that have unusual characteristics compared to the rest of the data and oftentimes are symptomatic of
suspicious activity such as spam or bank fraud. The three main methods for anomaly detection were com-
pared and contrasted. The k-NN approach works well but is very expensive on large datasets. DBSCAN
is a cluster-based method which can handle much larger datasets but requires careful hyperparameter
tuning. Isolation Forest is among the fastest and most widely used for very large datasets. However, it also
requires manual tuning and can generate more false positives and false negatives than the other methods
due to the heuristic approach it takes for outlier detection. A new technique called MADmax was intro-
duced which uses robust statistics and k-medians clustering to detect anomalies. Its speed is comparable
to DBSCAN but has no requirement to tune any hyperparameter to obtain acceptable results. Finally, the
techniques and metrics used to evaluate anomaly detectors were described, including precision, recall,
and the AUROC metrics.

Problems

11.1 (Project) In this project, you will run DBSCAN using synthetically created data with anomalies
inserted manually. Run the following Python code:
a) Load in the needed libraries.

Standard imports

$matplotlib inline

from matplotlib.colors import ListedColormap
from itertools import groupby

b)

c)

d)

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.cluster import DBSCAN

from sklearn.ensemble import IsolationForest

from scipy.stats import norm, multivariate normal

Generate the data with three clusters using a Gaussian mixture model.

Generate data using Gaussian mixture model
dataset = 1
ml = [-4,3]

m2 = [7,7]
m3 = [1,7]
covl = [[1.5, 1], [1, 1.5]]

cov2 = [[2, -11, [-1, 2]]

cov3d = [[0.8,0.5],[0.5,0.8]]

np.random. seed (np.random.randint (100))

x = np.random.multivariate normal (ml1, \
covl, size=(150,))

y = np.random.multivariate normal (m2, \
cov2, size=(300,))

z = np.random.multivariate normal (m3, \
cov3, size=(120,))

trainx = np.concatenate((x, y,z), axis=0)
print ('The dimensions of the trainx are: ', trainx.shape)
Plot the raw data before anomaly detection.

plt.figure(figsize=(4,4))

plt.scatter (trainx[:,0], trainx[:,1], marker='."')
plt.axis('equal')

plt.xlabel ('X-Axis', fontsize=16)

plt.ylabel ('Y-Axis', fontsize=16)

plt.show ()

Insert four anomalies into the data and plot the results.

#Insert anomalies to be detected
trainx[0] = [20,-1]

trainx[1] = [21,-1]

trainx[2] = [-5,15]

trainx[3] = [15,15]

plt.figure(figsize=(4,4))

plt.scatter (trainx([:,0], trainx[:,1], marker='."')

plt.axis('equal')

Problems

331

332

11 Anomaly Detection and Evaluation Metrics

e)

f)

plt.xlabel ('X-Axis', fontsize=16)
plt.ylabel ('Y-Axis', fontsize=16)
plt.show()

Run DBSCAN and adjust the radius (eps) and the minimum number of samples
(min_samples) until the results are correct.

DBSCAN code starts here
print ("Running DBSCAN on dataset", dataset)
eps, MinPts = 4.5, 10
db = DBSCAN (eps=eps, min samples=MinPts) .fit (trainx)
outlierDB = db.labels_
cats = pd.Series(outlierDB) .value_counts ()
print ("Number of anomalies found:",cats[-1])
if (cats[-1] >4):
print ("Adjust eps and MinPts to improve results")

Plot the results to determine if the four anomalies were found. If not, adjust (eps) and
(min_samples) as needed.

Plot DBSCAN results

DBrows _with anomalies = \
np.where (db.labels == -1) [0]

xdbplot = []

ydbplot = []

for i in DBrows_with anomalies:
xdbplot .append (trainx[i, 0])
ydbplot .append (trainx[i, 1])

plt.figure(figsize=(4,4))

plt.scatter(trainx[:,0], trainx[:,11, \
marker="'."',color="1lightgray')
plt.scatter (xdbplot,ydbplot,marker="'.", \

color="'black')
print ("DBSCAN found", cats[-1],"anomalies")
plt.title ("DBSCAN Outliers Detected")
plt.show ()

11.2 (Project) In this project, you will run Isolation Forest using the same synthetically created data
with anomalies inserted manually as in the first project.

a)

Run Isolation Forest by setting the contaminat ion parameter.

Isolation Forest code starts here

print ("Running IF on dataset ",dataset)
threshold = 0.1

IF = IsolationForest (contamination=threshold)

b)

Problems

IF.fit (trainx)
anomaly score = IF.decision_ function(trainx)
outlierIF = IF.predict (trainx)
rows_to delete = np.where(outlierIF <O0)
count = 0
IFrows_with anomalies = []
for i in range(len(outlierIF)) :
if outlierIF[i] == -1:
count += 1
IFrows_with anomalies.append (i)
print ("Number of anomalies found:", count)
if (count > 6):
print ("Adjust threshold to improve results")

Plot the results and adjust the contamination parameter, if needed.

Plot IF results

xifplot = []

yifplot [l

for i in IFrows_with anomalies:

xifplot.append (trainx[i, 0])
yifplot.append (trainx[i,1])
plt.figure(figsize=(4,4))

plt.scatter(trainx[:,0], trainx[:,1], marker='.',6 \
color="'lightgray')
plt.scatter (xifplot,yifplot,marker="'.", \

color="'black')
plt.title("Isolation Forest Outliers Detected")
plt.show ()

11.3 (Advanced Project) In this project, you will run a prototype version of MADmax using the same
synthetically created data with anomalies inserted manually as in the previous projects. The
code uses only k-medians and k-NN algorithms to find outliers. The k-NM improvements are not
included in this version.

a)

b)

To begin this project, you will need the k-medians code from Chapter 1 Problem 1.5(b). Enter
that code into your notebook.
Next, run the following code to generate mini-clusters.

Create mini-clusters for MADmax

m = 30

n = trainx.shape[0]

K = int (n/m)

print ("Number of mini-clusters:",K)
cluster, cost, medians = KMedians (trainx, K)

333

334 | 11 Anomaly Detection and Evaluation Metrics

c) Next, compute the value of MADmax from the mini-clusters.

Find the value of MADmax
def MAD (x) :
return (np.median (np.abs (x-np.median(x))))
MADset = np.zeros (K)
for 1 in range(K) :

mini_ cluster = trainx[cluster == i]
distlL2 = np.sqgrt(((mini cluster - \
medians[i, :])**2) .sum(axis=1))

mini_ cluster MAD = MAD (distL2)
MADset [i] = mini cluster MAD
MADmax = np.max (MADset)
print ('The value of MADmax is ', format (MADmax, '.3f'))

d) Finally, enter the MADmax code to find and plot the outliers.
#Prototype MADmax code: kMedians+k-NN (without k-NM)

print ("Running MADmax on dataset ", dataset)
plt.figure(figsize=(4,4))

plt.scatter(trainx[:,0], trainx[:,1], marker='.',6 \
color="'1lightgray')

min size = 5 #Deal with small mini-clusters

count_outliers = 0

kNN = 25 #internal parameter

Cfactor = 6.8 #internal parameter

Afactor = 11.0 #internal parameter

for 1 in range(K) :

mini cluster = trainx[cluster == i]
distlL2 = np.sqgrt(((mini_ cluster - \
medians[i, :])**2) .sum(axis=1))

mini_cluster size = mini_cluster.shape[0]
for j in range (mini cluster size):
if (distL2[j] > Cfactor*MADmax \
or mini_cluster size < min size):
out_distLl = (np.abs(trainx - \
mini cluster([j,:]1)) .sum(axis=1)
sort _dist = np.sort(out_distLl)
if (np.mean(sort dist[1:kNN]) > \
Afactor*MADmax) :
count_outliers += 1
plt.scatter (mini cluster[j,0], \

e)

f)

Problems

mini cluster([j,1], marker='.', \
color="black')
print ("Total outliers:",count outliers)
plt.title('MADmax Anomalies Detected', fontsize=15)
plt.show ()

Use the following new data to rerun all three anomaly detection methods: DBSCAN, IF, and
MADmax. Do not adjust the parameter values. Compare the results.

dataset = 2

ml = [0,3]
m2 = [7,7]
m3 = [3,7]

covl = [[6, 21, [2, 611

cov2 = [[5, -1], [-1, 511

[[7,1.0],[1.0,7]]

np.random. seed (np.random.randint (100))

x = np.random.multivariate normal (ml, \
covl, size=(150,))

cov3

y = np.random.multivariate normal (m2, \
cov2, size=(300,))

z = np.random.multivariate normal (m3, \
cov3, size=(120,))

trainx = np.concatenate((x, y,z), axis=0)
trainx[0] = [20,-11]
trainx[1] = [21,-1]
trainx[2] = [-5,15]
trainx[3] = [15,15]

print ("Re-run DBSCAN, IF and MADmax")

Use the following new data to rerun all three anomaly detection methods: DBSCAN, IF, and
MADmax. Do not adjust the parameter values. Compare the results.

dataset = 3
ml = [3,5]

m2 [10,10]
m3 = [15,15]

covl = [[6, 31, I[3, 311
cov2 = [[6, 31, I[3, 311
cov3d = [[6, 31, [3, 3]1

np.random. seed (np.random. randint (100))

x = np.random.multivariate normal (ml, \
covl, size=(1200,))

y = np.random.multivariate normal (m2, \
cov2, size=(1500,))

335

336 | 11 Anomaly Detection and Evaluation Metrics

z = np.random.multivariate normal (m3, \
cov3, size=(1200,))
trainx = np.concatenate((x, y,z), axis=0)

trainx[0] = [20,-1]
trainx[1] = [21,-1]
trainx[2] = [-5,15]
trainx[3] = [15,15]

print ("Re-run DBSCAN, IF and MADmax")

Reference

Aggarwal, C.C. (2017). Outlier Analysis, 2e. Springer.

12

Case Studies in Data Science

12.1 Introduction

In this chapter, we consider robust data science using the algorithms and procedures described in
the previous chapters. The focus here is to compare the log-cosh (LC) methods with the traditional
log-likelihood methods, namely, least squares (LS) and cross-entropy (CE), using two well-known
datasets. In particular, we compare the competing approaches on linear regression, logistic regression,
and neural networks. Examples include the Boston Housing and Titanic datasets. Data science problems
of model building, prediction, and feature importance are addressed in the context of datasets with
outliers. In each case, an outlier-centric approach is taken to demonstrate the enormous advantages of
conducting data science in this manner. In addition, future directions for work in this area are described,
namely, time series analysis of climate change and explainable artificial intelligence (XAI).

12.2 Example: Boston Housing Dataset

The Boston Housing dataset was used throughout this book to evaluate and compare different forms of
machine learning. The dataset itself has 506 observations with 13 explanatory variables that factor into
the median home prices in the Boston area, circa 1970-1975. The response variable and the 13 explana-
tory variables were all defined in Chapter 6. It is of particular interest to us in this book because it is
also known to have many outliers. Housing prices vary considerably in an area or region and there-
fore the median price is often quoted, rather than the average price or a specific price, to account for
outliers. For the moment, assume that the actual number of outliers is unknown but their existence is
known. The question is, how do we handle a dataset when we know it may have potentially harmful
outliers?

Three data science tasks will be carried out using this dataset. The first is to perform exploratory data
analysis (EDA) to understand the dataset in some detail. The second is to build an accurate, compact
model for prediction purposes, as was the case for most of the problems in this book. With the model,
it will be possible to predict the median price of any home in the region provided that the needed informa-
tion in terms of the explanatory variables is given. The model will be generated using linear regression

Fundamentals of Robust Machine Learning: Handling Outliers and Anomalies in Data Science,
First Edition. Resve Saleh, Sohaib Majzoub and A. K. Md. Ehsanes Saleh.

© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/HandlingOutliersandAnomaliesinDataSciencele

337

http://www.wiley.com/go/HandlingOutliersandAnomaliesinDataScience1e

338

12 Case Studies in Data Science

with a neural network. The third task addresses the problem of variable importance and correlations
between them. With these data science objectives in mind, we follow a sequence of steps typically used
in machine learning and data science, albeit in a streamlined fashion.

12.2.1 Exploratory Data Analysis

When we first obtain a dataset, we do not have any idea about its contents and characteristics so we need
to perform EDA. Typically, the first step is to determine whether there are any missing values in any of
the columns of the dataframe.! The Boston Housing dataset has missing values but here we will assume
that some method of imputation is used to resolve this issue.

With a complete dataframe now in our possession, the next task is to examine the characteristics of
the dataset. Some of these steps were shown in Chapter 4. Notably, we want to determine if there are
outliers in the dataset and, if so, how many and where they are located. For example, the boxplots for the
explanatory and response variables were presented in Chapter 4 to address these questions. The boxplots
indicate the presence of outliers; so we will have to be extra careful about any operations performed that
assume outlier-free data. Some preliminary analysis involves extraction of descriptive statistics such as
the min, max, mean, median, quartiles, and standard deviation. These values are inspected to determine if
standardization is required to enhance the performance and accuracy of downstream machine learning
tools. The numerical ranges of the features were provided graphically in Chapter 4 which tells us that
robust standardization will be needed.

Before going further, one useful step is to get a sense of the number of outliers for each variable in
the dataframe. Another step is to examine the correlation coefficient matrix. The idea is to understand
certain relationships between variables. Table 12.1 lists the variable names, the projected number of out-
liers using the 1.5-IQR edit rule (see Chapter 4), and the correlation coefficients relative to the response
variable, MEDV. The number of outliers? indicates that we will likely have to resort to outlier removal.
As a result, we cannot fully trust any of these correlation values. However, we find that variables RM and
LSTAT are likely to have strong correlations to MEDV. Part of the data science problem here is to figure
out how to accurately compute the number of outliers and correlations. We will explore the options in
the sections to follow.

Next, we examine MEDV in the form of a boxplot and histogram in Figure 12.1. When the data is rep-
resented using this type of visualization, it is possible to observe both the frequency distribution and
summary statistics of MEDV, making it easier to identify patterns, trends, anomalies, and unusual char-
acteristics in the data. The boxplot identifies a total of 40 outliers in the response variable. The histogram
indicates the presence of a number of homes priced at exactly $50K which appears suspicious given the
Gaussian-type distribution of the rest of the data. The reason for this is not clear at this stage but it could
be due to censored data, or perhaps the values of these homes were high but unknown and they were
simply assigned to $50K as a default (i.e. winsorized data as described in Chapter 4). This will create

1 A dataframe is the standard format of a dataset, which may include columns of text, categorical values, real values, and
the response variable. The data frame must eventually be converted into a design matrix, X, and a response vector, y, for use
by a machine learning tool.

2 The number of outliers obtained this way cannot be trusted because it involves only individual variables and not
regression residuals. Also, CHAS is a binary categorical variable so the number of outliers is not meaningful and therefore
N/A is used in the table.

12.2 Example: Boston Housing Dataset

Table 12.1 Outlier counts for the Boston Housing variables using 1.5-IQR criteria,
percentage of the total data, and correlation coefficients with respect to MEDV.

Number of Percent Correlation
Feature set outliers (%) coefficient (MEDV)
CRIM 65 12.9% —-0.39
ZN 68 13.4% 0.36
INDUS 0 0.0% -0.48
CHAS N/A N/A 0.18
NOX 0 0.0% -0.43
RM 30 5.9% 0.70
AGE 0 0.0% —0.38
DIS 5 1.0% 0.25
RAD 0 0.0% —0.38
TAX 0 0.0% —-0.47
PTRATIO 15 3.0% —-0.51
B 77 15.2% 0.33
LSTAT 7 1.4% —-0.74
MEDV 40 7.9% 1.00

headaches for the least squares (LS) method. We now have mounting evidence that we should resort to
robust approaches.

One more check can be performed to determine the nature of the apparent outliers for two important
variables. The RM variable has a strong positive correlation with MEDV (see Table 12.1) and a scatter plot
confirms this, as shown in Figure 12.2. The LSTAT variable has a strong negative correlation with MEDV
and a scatter plot in Figure 12.2 confirms this as well. We can observe the $50K homes along the top right
and top left portions of the two plots, respectively. More outliers seem to be present for RM compared to
LSTAT, but it is not clear if they are outliers or inliers at this stage. Any removal of the inliers would be
a mistake so if we were to consider eliminating all $50K homes from the dataset, we may lose valuable
information. Again, the idea of removing outliers before any regression is applied can be dangerous as it
may lead to lower-quality models and higher prediction errors.

12.2.2 Neural Network Architecture

After the preliminary analysis of the data and potential outliers, it is time to decide how to proceed in
building a model. For comparison purposes, LC can be used for the robust case, while for the non-robust
case, LS can be used. It is possible to use standard linear regression methods but this is a particularly
challenging dataset. The option of polynomial expansion of the variables exists to increase the feature
space. A more powerful method to tackle this problem is to use a neural network (NN) for linear regres-
sion, as shown in Figure 12.3. It has 13 inputs, 1 output and one hidden layer comprised of 39 relu units.

339

340

12 Case Studies in Data Science

: |
g ¢ A I
= |
10 20 30 40 50
16
14
12
>
210
()
% 8
£ 6
4
2.
N I |
10 20 30 40 50
MEDV ($1K)

Figure 12.1 Relationship between boxplot and histogram of MEDV indicating suspected outliers and a large

spike at $50K.

Scatter plot of MEDV vs. RM

Scatter plot of MEDV vs. LSTAT

50 b - L - L - - - ?. -. -
I| /k'/ ’ B
§ &
401 Many potential % ‘e Few potential
outliers p ‘%. * outliers
2304 4
21— N\
= # ‘ N\
20 . ’ -¥ . //,. s * \\‘
] -, ; ’:.‘ Potential b N
10 [outlier Rl Cee oy
4 5 6 7 8 9 0 10 15 20 25 30 35
RM LSTAT

Figure 12.2 Scatter plot of MEDV vs. RM and LSTAT indicating suspected outliers.

12.2 Example: Boston Housing Dataset

/ m
pre—— 2 —3
1 34
2 |
3 ' log-cosh
! : loss
[
I |
i : Relu i_—MEDV
| |
| : Output
|
|
13 ——— i
Features 39H
Hidden layer

Figure 12.3 Neural network used for Boston Housing dataset.

As described in Chapter 9, this neural network creates 13 X 39 + 39 = 546 parameters which increases
the parameter space dramatically. This will allow for a better fitting of the model to the data, although
there is a high risk of overfitting. As a result, we need to establish a methodology to produce a regularized
model to avoid overfitting.

Regularization was discussed in detail in Chapter 6. For example, reducing model complexity and the
use of a ridge penalty function are effective methods to regularize models. Regularization can also be per-
formed by controlling the number of iterations and this is how we will proceed here. Rather than letting
the network converge to a set of final parameter values, an early-stopping criteria will be established so
that a regularized model is produced. To accomplish this, we first divide the dataset into a training set
and a test set using an 80-20 split. The resulting training set has 404 observations and the test set contains
the remaining 102 observations. Then, we place the test set to one side and work with only the training
set to build the model. To generalize the model, a 10-fold cross-validation (CV) scheme (as described in
Chapter 6) can be used to find the optimal number of iterations with the smallest error.

The internal workings of a k-fold CV scheme are somewhat opaque to the user. An alternative, which
is more transparent, is to use a related iterative method whereby the training set is randomly divided
into CV training and test sets several times. In each pass, the two sets are used as if they were one fold
of a k-fold CV scheme. This so-called k-randomized validations scheme is repeated a number of times,
say 10 times, to get a similar effect as a 10-fold CV scheme. Accordingly, each CV training set can be
processed over a large number of iterations to find the iteration at which the prediction error on the CV
test set is minimized. Then, the optimal number of iterations across the 10-folds can be used to build a
regularized model.

The results of this procedure are shown in Figure 12.4. The motivation behind this idea is based on the
bias-variance trade-off. If we iterate too long, we end up overfitting. If we do not iterate enough, we are
underfitting. The sweet spot between the two provides the optimal amount of fitting. The measurement
criteria of the prediction error on each generated test set are the root-mean-square error (RMSE) and

341

342

12 Case Studies in Data Science

11+

10+

Underfitting

Optimal fitting
Overfitting

MAE+RMSE

0 200 400 600 800 1000 1200 1400
Iteration count

Figure 12.4 Using RMSE and MAE to find iteration count for regularization.

median-absolute error (MAE), as described in Chapter 4. The RMSE criteria is effective when outliers
are not present in the test set whereas MAE is more suitable for test sets with outliers. When splitting the
data into random CV training and test sets, there may be an unknown number of outliers in the test set.
Therefore, it is better to use the sum of the RMSE and MAE to find the optimal number of iterations.

In Figure 12.4, each gray trajectory represents a different combination of CV training and test sets, as
described above. The dark trajectory is the average of the 10 trajectories and it indicates that an itera-
tion count in the neighborhood of 300 is suitable for this dataset. This value is now fixed for all further
comparisons using the neural network.

12.2.3 Comparison of LSNN and LCNN

The next step is to use the above methodology to compare least squares NN (LSNN) and log-cosh NN
(LCNN). For the purposes of the comparison, we consider four different cases involving outlier inclu-
sion and removal. First, we remove all outliers that were found during EDA (see Table 12.1) and run a
comparison between the robust and non-robust regressions. Second, we remove only the $50K data that
look suspicious (see Figure 12.1) and rerun the regressions. These two cases will allow us to gain some
insight into the inherent problems of the removal of outliers detected during EDA using only boxplots,
histograms and quantiles of explanatory and response variables. Third, we keep all the outliers in the
dataset and re-run the regressions. Finally, we remove all outliers using the iterative boxplot method (see
Chapter 4), which is a very effective method, and rerun the regressions.

A comparison of the four cases, with the number of outliers removed in parentheses, is shown in
Table 12.2. The comparison metrics are the RMSE and the MAE. There are several things to note in
Table 12.2. First, the RMSE and MAE metrics are higher for LSNN compared to LCNN in all cases on the
training set. However, the true measure of the quality of a model is the prediction accuracy on the test set.
We see that the first column has the highest errors of the four cases. This is the problem with using EDA
as the guide to outlier detection. It removes some inliers along with some outliers, but not necessarily
all outliers.

Table 12.2 RMSE and MAE for the Boston Housing Dataset.

12.2 Example: Boston Housing Dataset | 343

Remove All Remove Only Keep All Remove All
Removal Method Potential $50K Data Outliers True Outliers
(outliers) Outliers (158) (16) (0) (52)
LSNN
CV train RMSE 2.66 2.13 242 1.72
CV train MAE 1.27 1.22 1.37 1.02
CV test RMSE 1.98 1.46 2.42 —-1.29
CV test MAE 2.08 1.50 1.56 1.44
LCNN
CV train RMSE 1.95 1.72 2.04 1.38
CV train MAE 0.40 0.51 0.53 0.38
CV test RMSE 1.66 1.46 2.78 —1.29
CV test MAE 1.94 1.44 1.28« 1.26«

The second column produces a noticeable improvement for LSNN just by removing the $50K data.
In the case of LCNN, the training error is higher using MAE, but the test scores are lower. In the third
column, we find that LCNN is much better than LSNN since LCNN is robust and no outliers have been
removed. However, in the fourth column, only the true outliers (52 in total) have been removed so the
dataset is outlier-free. Note the left-pointing arrows indicate where LCNN is producing almost identical
results for MAE regardless of whether outliers are present or not. Similarly, the right-pointing arrows in
the fourth column show that the RMSE values are the same for LCNN and LSNN when true outliers are
removed. All the values are roughly the same at about 1.3, which is considered to be about the lowest
value obtainable for this dataset.

Itis an interesting exercise to take the 52 outliers extracted by the iterative boxplot method to see where
they actually land in the original dataset. This is shown in Figure 12.5 for MEDV against the same two
variables mentioned earlier (RM and LSTAT). The gray regions are the inlier data and the dark dots are

50 we o 50 4 ecuei, w e
AS S
40 . . 40 .
> 8 . J L] .
2309 . : 301 1%e ™ .
E b - .
20 i 20 . v
10 i : 10 . .
4 5 6 8 9 0 5 10 15 20 25 30 35
RM LSTAT

Figure 12.5 Actual outliers (black dots) based on residuals using the iterative boxplot method (see Chapter 4).

344

12 Case Studies in Data Science

the outliers. Clearly, some of the true outliers would not be detectable prior to regression because they
are only detectable in a 14-dimensional space, not a 2-dimensional space. This is the danger of trying
to sift out the outliers during EDA. If we removed all 158 potential outliers, there would be 106 inliers
that would be inadvertently removed. If we removed only the $50K winsorized data, it would reduce the
errors but we would still not catch all the outliers. The only viable options are to run robust regression
without removing outliers, or use the iterative boxplot method to remove true outliers and use LSNN
or LCNN. As noted earlier, outliers are having a noticeable effect on the overall accuracy of the LSNN
model, which should not be used for this dataset unless outliers are removed.

12.2.4 Predicting Housing Prices

‘We now have a model based on the 546 parameters generated using the neural network. This model can
be used to predict the price of any new house that is up for sale in the same region. For our purposes,
we can predict the prices for the original dataset and compare the predictions against the original prices.
The predictions are based on the model from the third column of Table 12.2. This is shown in Figure 12.6.
Notice that the histogram is essentially the same but the suspicious $50K homes are gone and the distri-
bution is well-behaved. The error in the prediction, according to the MAE value in Table 12.2, is about
$1.3K. This is what we would expect of a very accurate model generated by a neural network using robust
methods.

12.2.5 RMSE vs. MAE

The results presented in Table 12.2 were obtained for one specific split of the training set into its CV
components. To solidify the understanding of how to interpret RMSE and MAE metrics when used
with robust methods, we examine the effects of 10 different splits of the training set, one for the orig-
inal data with outliers and one for outlier-free data (i.e. as done in the last two columns of Table 12.2).
Before proceeding, we should remove the INDUS variable since it was found to be a nuisance variable

Original data Predicted data

20.0

20

17.5
15.0
12.5
10.0
75
5.0
2.5
0.0

Frequency

] | L
10 20 30 40 50 10 20 30 40 50

MEDV ($1K) MEDV ($1K)

Figure 12.6 Original and predicted housing prices.

12.2 Example: Boston Housing Dataset

RMSE MAE
3.0 3.0
25 (outliers) e
g 2.0 2.0 .
b5 (outliers)
_‘é‘ 1.54 . 1.5 ;
2 — v Ny ——
2 1.01 1.0 (outlier-free)
(outlier-free)
0.51 0.5
0.0 ——— — — — — (.0 +—r— — — — —
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Trials Trials

Figure 12.7 LCNN CV test set errors on 10 trials comparing RMSE and MAE on datasets with and without outliers.

in Chapter 6. Next, we run LCNN for 300 epochs using 12 inputs and 39 units in the hidden layer of the
neural network.

The CV test results of the 10 trials on the two datasets, each using an 80-20 split, are given in Figure 12.7.
On the left, we can clearly see that the RMSE is large in the dataset with outliers compared to the
outlier-free data. This is why RMSE is not advisable for use on datasets with outliers. It causes an infla-
tion of residuals which leads to large RMSE values. The outlier-free data produces a relatively constant
low value across all 10 trials. On the right panel, we note that MAE is roughly the same whether or not
outliers exist in the dataset. We know that the robust MAE metric will be roughly constant (at around 1.5
in this case) across many different configurations of the training and test sets if LCNN is used, regardless
of the presence or absence of outliers. The recommendation is to observe both RMSE and MAE when
using robust methods.

12.2.6 Correlation Coefficients

Finally, we return to the issue of computing the correlation coefficients. In statistics, a correlation
coefficient is a numerical measure that quantifies the strength and direction of the linear relationship
between two variables. The value of a correlation coefficient ranges from —1 (strong negative correlation)
to 1 (strong positive correlation). We noted earlier in Table 12.1 that the correlation coefficients relative
to the response variable MEDV could not be trusted due to the presence of outliers. But how do we obtain
values that are trustworthy? We must use the outlier-free data. There is no choice here.

Figure 12.8 plots two sets of correlation coefficients for the explanatory variables relative to MEDV. One
set is directly taken from Table 12.1. The other set is obtained in the same manner using outlier-free data.
Note that most of the values change noticeably when the outliers are removed. Some are higher, while
others are lower. For example, the original value of the correlation coefficient is 0.25 for the DI S variable.
After removing the outliers, the value jumps to 0.50. This is a significant change in the value. For AGE,
the value drops from —0.4 down to —0.6. If accurate values of the correlation coefficients are important
for a particular data science application, then outliers must be removed before applying the necessary
computations. Again, the iterative boxplot method (see Chapter 4) is the most reliable way to find and
remove outliers.

345

346

12 Case Studies in Data Science

1.00
O With outliers
0.75 ® ® No outliers
= 0.50 4
®
.§ 0 ® 8
E 025 o
€ 0.25 o
3 @
= 0.00
.2
=
Qg:’ -0.25 A
3 o o
@) o o
-0504 @ 0 o e ©O o
o * ®
-0.75 A
-1.00 T T T T T T
]
12} E e~
= o 2 a b <
< X = = x ¢
= a 1) =
& Z C =2 O <
5 & 2 532 2 2 3 2 £ 8 = 3

Figure 12.8 Correlation coefficients (with respect to MEDV) with and without outliers.
12.3 Example: Titanic Dataset

The Titanic dataset is well-known in data science circles as a standard binary classification problem.
It contains information about the passengers who survived and those who did not on the ill-fated maiden
voyage of the Titanic in April 1912, which struck an iceberg 400 miles off the coast of Canada. Our objec-
tive is to use a training set to analyze a random subset of Titanic passengers and their survival rates. By
applying logistic regression, we can build a model and use it to predict which passengers would survive
based on a given test set. This approach seeks to determine whether survival was random or if there were
underlying patterns that could be captured in a predictive model.

We first illustrate basic elements of data science and EDA. Then, the dataset is processed to create
the needed X and y values for both training and testing purposes. There are 891 rows in the training set
and 418 rows in the test set.3 Next, two approaches to binary classification are compared and contrasted,
namely, CELR and LCLR, which were covered in Chapter 8. The Titanic dataset is expected to have
many outliers by its very nature, leading us to believe that robust methods would be better suited for this
application. Another goal of this section is to demonstrate that robust methods offer a number of other
advantages, in addition to better prediction accuracy.

12.3.1 Exploratory Data Analysis

When a dataset is first encountered, there are a number of procedures that are usually followed to obtain a
deeper understanding of the problem and gain some domain knowledge. It is rarely the case that you can
run a machine learning tool directly on the dataset without any modifications. Many of the steps to follow

3 The Titanic dataset is available on the Kaggle website at www.kaggle.com in the Competitions section.

http://www.kaggle.com

12.3 Example: Titanic Dataset

have been covered in different parts of this book. In this section, we carry out rudimentary elements of
EDA to provide a more coherent picture.

To begin the analysis, we examine the first 10 rows of the Titanic dataset in Table 12.3. The origi-
nal dataset contains much more information but this reduced form is sufficient for our purposes here.
The first column is the passenger Id for the dataset and is only used for bookkeeping. The second column
is the binary response indicating whether the passenger survived (1) or not (0). This tells us immedi-
ately that it is a binary classification problem which will require the use of the methods of Chapter 8.
This column will be used to form the y-vector. A subset of the remaining columns will be used to derive
the X matrix, with one row for each passenger.

The definitions associated with other columns are provided in Table 12.4. The dataset is a mixture of
strings, categorical data, and real and integer numbers. This is usually the nature of most datasets. They
are a mix of all types of data in different formats. In order to process the data in Python, it should be
expressed in the form of a dataframe, which is a two-dimensional, tabular data structure commonly
used for data manipulation and analysis. Libraries like Pandas provide powerful tools for working with
dataframes. Our task at hand is to convert all of this data into numbers so that it is suitable for logistic
regression.

We will only provide a brief glimpse of EDA because there are so many ways to represent and visual-
ize a dataset.* We start by examining the total number of missing elements in each column, as given in
Table 12.5, noting that there are 891 rows in the Titanic training set. The Cabin and Age columns each
have a significant number of missing entries with a label of NaN or NA, whereas Embarked has only
two entries missing. Each case would be handled differently. The relevance of the Cabin number seems
questionable and many entries are missing so this column can be deleted. As an aside, the Name column
seems irrelevant too. It is not clear how a person’s name would affect their survival, and any family or sib-
ling/spouse relationships are captured in the Parch and SibSp columns. Therefore, the Name column
can also be deleted. The same applies to the Ticket column.

The missing entries in the Age column pose a real problem because there may be some correlation
between Age and Survived. The missing values can be simply replaced with the mean of the ages. A bet-
ter approach is to compute the mean and standard deviation of the data in Figure 12.9(a) and sample Age
values from the computed Gaussian distribution. This approach was taken to impute the missing values.

The next step is to investigate each variable in more detail. Consider the two columns represented
with real numbers: Age and Fare. These are suitable for visualization using histograms as seen in
Figure 12.9. For the Age histogram, one can observe a higher frequency of young people with a decline
as Age increases. The Fare histogram indicates that most fares are in the same range, but some outliers
exist. Both are skewed right. We would typically investigate which categories of Age and Fare have the
most survivors to understand if Age and/or Fare are important features to retain. We skip those details
here and keep them both because they will turn out to be important. Further, we will scale Age by 20
and Fare by 50 to bring them in line with other values in the table.

Following this, we examine the categorical data columns: Sex, Embarked, and Pclass. These
columns can be cross-tabulated with the Survived column to get a snapshot of the relevance of the
data. Consider, for example, the tabulated data in Table 12.6. It indicates that more females survived
than males by a significant margin. If we simply guessed that all female passengers survived and all

4 For a thorough analysis, we refer the reader to the Kaggle website and the detailed explanations therein.

347

Table 12.3 Sample of first 10 rows of Titanic training data.

Id Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

1 0 3 Braund, Mr. Owen Harris Male 22.0 1 0 A/521171 7.2500 NaN S

2 1 1 Cumings, Mrs. John Bradley Female 38.0 1 0 PC 17599 71.2833 C85 C
(Florence Briggs Th...)

3 1 3 Heikkinen, Miss. Laina Female 26.0 0 1 STON/ 7.9250 NaN S

02.3101282

4 1 1 Futrelle, Mrs. Jacques Heath Female 35.0 1 0 113803 53.1000 C123 S
(Lily May Peel)

5 0 3 Allen, Mr. William Henry Male 35.0 0 0 373450 8.0500 NaN S

6 0 3 Moran, Mr. James Male NaN 0 0 330877 8.4583 NaN Q

7 0 1 McCarthy, Mr. Timothy J Male 54.0 0 0 17463 51.8625 E46 S

8 0 3 Palsson, Master. Gosta Male 2.0 3 1 349909 21.0750 NaN S
Leonard

9 1 3 Johnson, Mrs. Oscar W Female 27.0 0 2 347742 11.1333 NaN S
(Elisabeth Vilhelmina Berg)

10 1 2 Nasser, Mrs. Nicholas (Adele Female 14.0 1 0 237736 30.0708 NaN C

Achem)

Table 12.4 Definitions of variables in the Titanic dataset.

12.3 Example: Titanic Dataset

Variables Description Data type
Pclass Passenger class (1, 2, 3) Categorical
Name Full name of passenger String
Sex Male or female passenger (0, 1) Categorical
Age Age of passenger Real
Parch Number of parents with children Integer
SibSp Number of siblings/spouse of passenger Integer
Fare Actual fare paid by passenger Real
Cabin Cabin number of passenger String
Embarked Starting point for passenger (S, C, Q) Categorical
Table 12.5 Number of actual data entries in each column.
Total number of
Data columns valid entries
Survived 891
Name 891
Sex 891
Age 714
SibSp 891
Parch 891
Fare 891
Cabin 204
Embarked 889
175 700
150 600
= 125 500
=
% 100 400
g 75 300
50 200
25 100
0 10 20 30 40 50 60 70 80 0 100 200 300 400 500

(a)

Figure 12.9 Histograms of passenger (a) Age and (b) Fare.

(b)

349

350

12 Case Studies in Data Science

Table 12.6 Cross-tabulation of survivors based on Sex.

Sex Survived Did not survive Totals
Female 233 81 314
Male 109 468 577

Table 12.7 Cross-tabulation using Embarked for the Titanic dataset.

Embarked Survived Did not survive Totals
S 217 427 644
C 93 75 168
Q 30 47 77
Totals 342 549 889

males did not, we would have 233 + 468 = 701 correct predictions out of 891. That is an accuracy of 78%
without using machine learning. Clearly, the Sex of the passenger is a critical feature. Also, we should
view 78% as a baseline accuracy for the evaluation of different classification methods set since it is easy
to obtain this value using hand calculations.

We now turn our attention to the Embarked column. Passengers embarked from Southampton
(S), Cherbourg (C), or Queenstown (Q). Table 12.7 lists the number of passengers embarking from
each port. The number of survivors from each port seems to be roughly proportional to the total
number who embarked from that port. This kind of assessment of the data is very useful because
we noted earlier that two data entries are missing. The data scientist performing EDA must now
decide how to fill those two missing entries. Since S and C are the most frequent, one entry could
be set to S and the other to C. This will not change the results significantly so this simple solution is
acceptable. The last step is to convert each category into a number. We should choose S=3, C=2, and
Q=1 because it roughly correlates to the number of passengers embarking from each port, if for no
other reason.

The Pclass column may be examined in the same way as Embarked, with some cross-tabulation
work to assess its relative importance. We skip this step here. Since none of the data entries are missing,
we choose to keep this column in case it has relevance. Finally, the Parch and SibSp columns are
integer quantities indicating the number of Parent/Children and Sibling/Spouse totals associated with
each passenger, so we choose to keep them both without modification. With EDA now completed for the
Titanic dataset, the numerical data for the training and test sets can be generated.

After applying all the above steps, we produce X and y for the training data shown in the upper part
of Table 12.8. Next, we apply the identical steps to the test set. A portion of the test data is shown in the
lower part of Table 12.8. We must remove the same columns as in the training set, apply replacements for
NaN or NA in the same manner, and scale or standardize the data in the same manner as the training set.
Otherwise, the logistic regression model will be of no value during prediction.

12.3 Example: Titanic Dataset

Table 12.8 Sample of Titanic training and test data.

Survived Pclass Sex Age/20 SibSp Parch Fare/50 Embarked
1 1 0 1.90 1 0 1.425 2
0 3 1 1.10 1 0 0.145 3
0 3 1 1.10 1 0 0.145 3
1 3 0 1.30 0 1 0.158 3
S 1 1 0 1.75 1 0 1.062 3
E‘) 0 3 1 1.75 0 0 0.161 3
:g 0 3 1 1.45 0 0 0.169 1
= 0 1 1 2.70 0 0 1.037 3
0 3 1 0.10 3 1 0.421 3
1 3 0 1.35 0 2 0.222 3
1 2 0 0.70 1 0 0.601 2
0 3 1 1.70 0 0 0.157 1
‘g 1 3 0 2.35 1 0 0.140 2
E 0 2 1 1.55 0 0 0.160 1

In the results to follow, we will not use k-fold cross-validation (see Chapter 6) but instead use the
entire training set to generate the model parameters and then perform prediction using the test set.
Regularization, if needed, will be performed using a penalty function. Recall, our goal here is to compare
different methods using the same procedure. For this reason, we can skip the normal cross-validation
scheme and simply illustrate the similarities and differences of the two approaches. Our overall objective
is to provide evidence that the robust method can be used to produce superior results.

12.3.2 LCLRvs. CELR

In this section, we compare the results of CELR and LCLR (see Chapter 8 for details of the two methods).
All the steps of the previous section are used to produce the X and y data. The task of machine learning
is to generate model parameters for prediction. Model generation is done with the training set (n = 891,
d = 7); prediction is performed using the test set (n = 418, d = 7). We can now use them to compare the
two machine learning methods for binary classification.

In a multidimensional setting, the model defines a hyperplane that separates the survivors from the
non-survivors. With the presence of so many outliers, the data is not easily separable with a linear or
nonlinear boundary. Since the dataset represents a seven-dimensional problem, we are unable to plot
or even visualize the hyperplane boundaries produced by CELR or LCLR. However, we can determine

351

352 | 12 Case Studies in Data Science

Table 12.9 Number of correct predictions for Titanic training and test sets.

Dataset CELR LCLR
(Training = 891, Test = 418) (C =100) (a = 10)
train (# correct out of 891) 710 725
train (% correct) 79.6% 81.6%
Outliers detected 57 159

test (no. correct out of 418) 317 325

test (% correct) 75.8% 77.8%

Table 12.10 CELR (left) and LCLR (right) confusion matrices for Titanic dataset for
training and test sets.

CELR (C = 100) LCLR (a = 10)
Training set True-0 True-1 Training set True-0 True-1
Predict-0 470 102 Predict-0 492 113
Predict-1 79 240 Predict-1 57 229
Test set True-0 True-1 Test set True-0 True-1
Predict-0 211 48 Predict-0 222 51
Predict-1 53 106 Predict-1 42 103

the number of correct responses for the training and test sets to compare the two methods against one
another. This is shown in Table 12.9. The results indicate that LCLR outperforms CELR in both training
and test sets. Of particular note is the 2% improvement in the test accuracy for LCLR over CELR. CELR
used ridge regularization with C = 100, whereas LCLR was executed without any regularization. The
selection of the robustness parameter (a = 10) for LCLR will be described in a later section.

A proper evaluation of the performance of a binary classifier involves the use of other metrics such
as recall, precision, and F; score which account for false positives and false negatives in the results (see
Chapter 8). The F, score is composed of the recall and precision so it will be used as an overall assessment
of the two approaches. The confusion matrices for the two methods are shown in Table 12.10. For CELR,
the scores for the training and testing sets are F; = 0.726 and F; = 0.677, respectively. For LCLR, the
scores for the training and testing sets are F; = 0.729 and F,; = 0.689, respectively. Therefore, LCLR is
marginally better than CELR based on the F; metric.

Exercise: Compute the accuracy, recall, precision, and F,-score for all four confusion matrices in
Table 12.10. Which set of results are more important, those on the training set or those on the test set?
Also, which method performs better overall?

12.3 Example: Titanic Dataset

Ans.: For CELR on the training set:

Accuracy = (tp+tn)/(tp+tn+fp+fn) = 710/891 = 0.797.

Recall = tp/(tp+fn) = 240/(240+102) = 0.701.

Precision = tp/ (tp+fp)=240/(240+79) = 0.752.

Then F1 = 2(0.701) (0.752)/(0.701+0.752) = 0.726.
For CELR on the test set:

Accuracy = (tp+tn)/(tp+tn+fp+£fn) 317/418 = 0.758.
Recall = tp/ (tp+fn)=106/(106+48) 0.688.

Precision = tp/(tp+fp)=106/(106+53) = 0.667.

Then F1 = 2(0.688) (0.667)/(0.688+0.667) =0.677.

For LCLR on the training set:

Accuracy = (tp+tn)/(tp+tn+fp+fn) = 721/891 = 0.801.
Recall = tp/(tp+fn)=229/(229+113) = 0.670.
Precision = tp/(tp+fp)=229/(229+57) = 0.801.

Then F1 = 2(0.670) (0.801)/(0.670+0.801) = 0.729.

For LCLR on the test set:

Accuracy = (tp+tn)/(tp+tn+fp+fn) = 325/418 = 0.778.
Recall = tp/(tp+fn)=103/(103+51) 0.669.

Precision = tp/ (tp+fp)=103/(103+42) = 0.710.

Then F1 = 2(0.669) (0.710)/(0.669+0.710) = 0.689.

The test set results are more important than the training set results because they are more representative
of the model performance on unseen data. The LCLR results are superior to the CELR results due to
outliers in the dataset. O

12.3.3 Outlier Detection and Removal

At this stage, it is natural to ask the question of how the two methods would perform if the outliers
were removed. Returning to Table 12.9, note that it also contains the number of outliers detected. In
Chapter 8, an outlier in the binary classification problem was defined as a data point whose label is the
opposite of those in its immediate vicinity. The Titanic dataset contains many such outliers and LCLR
is able to identify all potential outliers using a rather straightforward methodology. The basic idea is to
compute the residuals of logistic regression and plot the associated histogram. The extreme values on
either side are likely to be outliers. This was done for CELR and LCLR, as shown in the histograms of
Figure 12.10. The histogram on the right for CELR shows that residuals are distributed across the range
between —1 and +1, with a large peak around 0. LCLR also has a large peak around 0. However, many
LCLR residuals are either located near 41 or —1. These are the potential outliers resulting from a choice
of a = 10 in LCLR. For a = 1, the histogram for LCLR would look similar to CELR.

The number of LCLR and CELR outliers can be determined by setting a criteria of +0.85 and above
for false negatives, and —0.85 and below for false positives. As listed in Table 12.9, CELR reports only

353

354

12 Case Studies in Data Science

CELR residuals (C = 100) LCLR residuals (a = 10)
350
700 -
300 -
600
250
% 500 A
2 -
g 200 400 -
Sy
S 150 A
= 300 -
100 A 200 -
o M |
0 - 0 '—- T T T T T T
—-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00 -1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
T T

i i

Figure 12.10 Histograms of residuals r; associated with the CELR and LCLR cases for the Titanic dataset.

57 outliers out of 891 observations (6.3%). LCLR reports that 159 out of 891 observations (i.e. 17.8%) are
potential outliers. Assuming LCLR is correct, this gives us an idea that the maximum achievable accuracy
in the Titanic training set is about 82.2%. Since we know which data points are potential outliers, we
are able to report and inspect each one. This may serve as an important tool for many data scientists
attempting to clean their dataset by removing unwanted outliers in binary classification problems.

The next question to be asked is, how many of them are actual outliers and how many are errors made by
the classifier due to the location of the decision boundary? To answer this question, the outliers detected
by LCLR can be removed from the dataset and both CELR and LCLR can be executed on the clean dataset.
The results on the outlier-free training set are shown in Table 12.11. What is remarkable, although com-
pletely expected, is that the two tables are almost the same. This is true for the training set as well as
the test set. The results for LCLR did not change much (somewhat improved) over Table 12.10, whereas
there is a great deal of improvement for CELR. The accuracy is now 99% and the F;-score is 0.98, while
the results on the test set remain relatively unchanged for LCLR. This is what the robust method is able
to deliver: stable test results with or without outliers in the training set.

Table 12.11 CELR (left) and LCLR (right) confusion matrices for Titanic dataset for
training (outlier removed) and test sets.

CELR (C = 100) LCLR (a = 10)
Training set True-0 True-1 Training set True-0 True-1
Predict-0 492 3 Predict-0 492 2
Predict-1 8 229 Predict-1 8 230
Test set True-0 True-1 Test set True-0 True-1
Predict-0 222 51 Predict-0 221 50

Predict-1 42 103 Predict-1 43 104

12.3 Example: Titanic Dataset

CELR (C =100) LCLR (a=10)
5001 Test set Test set 5001 Test set Test set
acc =0.78 True-0 True-1 acc =0.78 True-0 True-1

4009 recall = 0.67 Pred-0 222 51 400 1 recall = 0.67 Pred-0 221 50
o precision = 0.71 Pred-1 42 10 precision = 0.71 Pred-1 43 104
% 3004 F,=0.69 3004 F,=0.69
5
(£ 200 1 Trainine set 200 Training set

residuals residuals
100 100
O - T T T T
-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00 -1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

T; r;

Figure 12.11 Histograms of training set residuals after outlier removal, and test set metrics for the Titanic
dataset.

A more detailed investigation can now be carried out. There are a total of 153 true outliers. This
implies that the classifier made only 10 actual errors (2 false negatives and 8 false positives). These are
essentially classification errors that occur near the separation boundary. If we examine the new histogram
of residuals as shown in Figure 12.11, the outliers are now gone, but there are a few lingering classifi-
cation errors. After the outlier removal process, a new set of test metrics can be computed and they are
provided in the figure. For LCLR, the metrics remain unchanged from the original training set with out-
liers. The CELR approach also produces the same results using the training set with outliers removed.
This analysis gives us a lot of insight into what is actually going on in the classification problem and
the ability for robust methods to find the proper decision boundary in the midst of both outliers and
classification errors.

12.3.4 Robustness Coefficient for Log-Cosh

In this section, the goal is to select an appropriate value for the robustness coefficient, a, for LCLR.
The loss function for logistic regression using the log-cosh function is given by

JICLR(By = ;%log(cosh(a(yi -p)) (12.3.1)

wherep, =1/(1+ ¢ P) as described in Chapter 8.

To demonstrate how to select a suitable value of a, we use the Titanic dataset, but this value will be
suitable for all other binary classification problems. Four values of a are considered for comparison pur-
poses, specifically a = 1, 2, 5, and 10. Using these values, the histograms of the residuals are plotted in
Figure 12.12 for the four cases along with all the metrics and confusion matrices described in the pre-
vious section. The histogram in the top-left corner is very similar to the one for CELR in Figure 12.10.
In fact, the accuracy and F, scores are about the same as CELR. This is why a = 1 is not a suitable level
of robustness. Also note that with a = 1 or 2, the outliers are not clearly visible based on the histograms.
Some can be observed near +1 but only a few at —1. However, as a increases, the outliers begin to emerge

355

356

12 Case Studies in Data Science

LCLR (a=1) LCLR (a=2)
Test set Test set 400 4 Test set Test set
3509 acc=0.75 True-0 True-1 acc =0.76 True-0 True-1
300 F,=0.66 Pred-0 216 55 35071 F =066 Pred-0 220 56
Pred-1 48 99 300 Pred-1 44 98
2 250 -
s 250
= 200
g 200 A
£ 150 7 Training set 150 4 Training set
100 - residuals 100 residuals
50 4 50
0 - 0-
-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00 -1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
LCLR (a=5) LCLR (a = 10)
Test set Test set 300 Test set Test set
acc =0.77 True-0 True-1 acc =0.78 True-0 True-1
4001 F, =0.68 Pred-0 221 53 4009 £, =0.69 Pred-0 221 50
Pred-1 43 101 Pred-1 43 104
>
2 300 - 300
5}
=
g
i) 200 Training set 200 1 Training set
residuals residuals
100 A 100 4

0
-1.00-0.75 -0.50-0.25 0.00 0.25 0.50 0.75 1.00 -1.00-0.75 -0.50-0.25 0.00 0.25 0.50 0.75 1.00

r; r;

Figure 12.12 Test set metrics for the Titanic dataset for four selected robustness coefficients (a = 1, 2, 5, 10) for
LCLR.

ata = 5 and are clearly visible at a = 10 around —1 and +1. In addition, all the metrics improve at a = 10.
The inset provides the confusion matrices for the test set for each case, and a = 10 produces the best
results. The outliers indicated by this case will limit the maximum accuracy possible so, optionally, they
can be removed to produce outlier-free data. On the other hand, the case for a = 2 is more suitable if
probabilities are desired as opposed to outlier detection and removal.

12.3.5 The Implications of Robustness

In this section, we explore the deeper implications of robustness. While it is true that the robust methods
are outlier tolerant, they also provide stability to the results. To understand the nature of this stability,
consider an underlying issue in logistic regression which involves the selection of a threshold, p;, that
determines whether a probability is discretized as 0 or 1. The range of possible values of p; is between
0.0 and 1.0. The nominal value is 0.5. However, in practice, a different value can be selected if it produces
better overall results. But how should such a threshold be selected? To answer this, we first review the
metrics of Chapter 9.

Recall that the quality of a binary classification method is often evaluated using the area under the
ROC curve (see Aggarwal 2017). To produce this curve, different values of p; are selected between 0.0

12.3 Example: Titanic Dataset

True positive rate (TPR)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

Figure 12.13 ROC curves for CELR and LCLR.

and 1.0. Then the true positive rate (TPR) is plotted against the false positive rate (FPR). The area under
the resulting curve is the AUROC metric. An example of two ROC curves is given in Figure 12.13. Here,
CELR and LCLR are compared in terms of their ROC. They are very similar and they cross over several
times. The AUROC for CELR is larger than LCLR so one could conclude that CELR is better than LCLR
in this context. However, this is not quite right.

The ROC curves can be misleading in cases such as this. We have already found that LCLR is superior
to CELR with outliers present. These two curves are too close to make any definitive judgments. Further-
more, it does not suggest which value of p; is best to use for a given test set. Ultimately, a particular value
of p, will be selected and the F, score will necessarily be a function of p;. In fact, the best p; is the one
that has a point closest to the top-left corner of the plot, where TPR=1 and FPR =0. Instead of using
AUROC, more insight can be gained by examining F; as a function of p;.

The results of the F, score plotted as a function of p;. for the cross-entropy and log-cosh cases are shown
in Figure 12.14. On the left side, we observe that CELR has one optimal value of p; given by 0.5 in this
case. On the right side, LCLR produces a flat characteristic implying that any value of p; between 0.1
and 0.8 will produce roughly the same F, score. Therefore, LCLR is robust in terms of the selection of p,
whereas CELR will require a certain amount of adjustment to obtain satisfactory results. In other words,
the robust method is not as sensitive to the specific choice of p; compared to the non-robust approach.
This is why the ROC may not be as useful when used with outliers and robust methods. The average F,
score would be a more appropriate metric in this case.

12.3.6 Ridge and alLASSO

Our final step in this section is to examine how penalty functions impact the results achieved through
their application.’ We know that LCLR produces the best results without the need for a penalty function.

5 Refer to Chapters 5 and 6 for a detailed treatment of penalty functions.

357

358

12 Case Studies in Data Science

Cross-entropy loss Log-cosh loss

0.7
0.6 r
0.5
041 Optimal range \
0-31 pr=0.1100.8

0.2- Optimal p,=0.5 0.2-

0.1+ 0.11

0.0 ; 0.0+

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Pr Pr

Figure 12.14 F, score as a function of p;.

However, CELR-ridge can improve the results by adjusting the C hyperparameter, but it only provides a
marginal improvement. The robust form of logistic regression achieves superior results without requiring
regularization.

On the other hand, penalty functions, such as the adaptive LASSO (aLASSO), can still play an impor-
tant role for LCLR in reducing variance and assessing variable importance. In particular, aLASSO traces
provide useful information regarding variable ordering due to the fact that aLASSO has the oracle prop-
erty. LCLR traces with aLASSO are shown in Figure 12.15. Based on the variable ordering, we find that

Embarked
0 Fare - = 7654 32 1
LoAge ooy
Parch /
\lh\p
Pclass /
) I;'
< /
5]
g
<
3
~ _p v
p
P
y
81 S
102 100 100 100 10° 10° 10 10°

A

Figure 12.15 Visualization of feature importance using LCLR-aLASSO traces for the Titanic dataset.

12.4 Application to Explainable Artificial Intelligence (XAl)

Sex is avery important parameter in determining whether a passenger survives the sinking of the Titanic
since its trace reaches 0 at the largest value of 4 in Figure 12.15. In fact, it is the most important variable
by far compared to the others. This confirms the analysis carried out during EDA.

Then, following the order given in the figure, we encounter Pclass and SibSp, followed by Parch,
Fare, Age, and Embarked. So we can safely conclude that Sex is the most important, Pclass
and SibSp are of intermediate importance, while Parch, Fare, Age, and Embarked are the least
important.

To summarize, LCLR outperformed CELR and it gives us some idea of the maximum accuracy that
can be obtained on the dataset. It also provides a list of potential outliers which can be removed to create
a clean dataset. In addition, feature importance can be obtained using LCLR-aLASSO in the presence
of outliers.

12.4 Application to Explainable Artificial Intelligence (XAl)

The robust machine learning techniques described in this book have a wide range of applications in data
science, as detailed in this chapter. However, they also play an important role in an emerging field of
research known as explainable artificial intelligence (XAI). The goal is to be able to explain the “why?”
of a decision or prediction generated by an Al tool, not just the “how?.” The machine learning tools
presented in this book, along with many of the generative Al tools such as ChatGPT, can provide a
predicted response but often lack transparency in their decision-making process. XAI aims to address
this by providing insights into how Al tools arrive at their results to foster more trust and confidence.
Consider the conceptual diagram of Figure 12.16. It is a qualitative view of the accuracy of different
machine learning tools against their ease of interpretability. Tools such as linear regression, logistic
regression, and decision trees are model-based techniques that are largely considered to be inter-
pretable. On the other hand, neural networks, random trees, support vector machines (SVMs), and
k-nearest neighbors are called post hoc techniques and are more difficult to interpret. For example,
in a deep neural network, there may be hundreds of thousands of parameters that are learned but it is
very difficult to comprehend how a prediction is made with the final model. The same is true for random
forest and SVMs. It is easy to create thousands of trees and make a decision but it is not easy to figure out
how a specific decision was made, and if it is a reasonable decision. For SVMs, the decision boundary

Figure 12.16 Accuracy vs. interpretability of mainstream 4 B Neural networks
machine learning tools.
B Random forest

B Support vector machines

B k-Nearest neighbors

Accuracy

B Decision trees
B Linear regression

m Classification

v

Interpretability

359

360

12 Case Studies in Data Science

is based on a limited number of support vectors, but very little insight can be gained in terms of the
decision-making process. To highlight the nature of the research in XAI, we examine logistic regression
as a case study because it is easier to understand than the advanced research being conducted today.

12.4.1 Case Study: Logistic Regression

In this section, the importance of using a robust version of logistic regression is described in the context
of XAI. The objective is to show why the use of logistic regression based on the cross-entropy loss may
lead to incorrect explanations of certain outcomes due to the presence of outliers. On the other hand, the
explanations resulting from the robust counterpart can be justified more easily and with more confidence.
This will be done using detailed calculations of the probabilities based on the estimates. Interestingly,
we have not focused much on the actual estimates produced by the two competing approaches but in
this section, we will scrutinize them in detail to determine if the values can be trusted. This is easier to
do for logistic regression since it is model based and it will give us an idea of the challenges ahead for the
post hoc techniques.
Recall that the cross-entropy loss function is given by (see Chapter 8),

JEER(B) = = Y [y logp; + (1 -y log(1 - p)l,

i=1

and the log-cosh loss function is (see Chapter 8),

LCLR gy _ 1 S .
J p) = 0 glog(cosh(lo(yl D))-

These two loss functions are minimized to produce estimates of . If CELR and LCLR are used on the
Titanic training data, the parameter estimates given in two columns of Table 12.12 are obtained. Because
LCLR is robust while CELR is not, the two sets of estimates are different. Both sets look reasonable and,
in general, it is not possible to tell by simple inspection which is better and in what sense. What we can

Table 12.12 Parameter estimates after training on Titanic
dataset using CELR and LCLR.

Parameters Beeir Biar

Pocrass ~1.03 ~1.37
Bex -2.78 ~8.65
Prge ~0.69 —0.30
ﬁsibSp —0.33 —1.10
Poazen -0.11 ~1.01
Prae 0.13 0.42
ﬁEmarked 0.16 0.63

2, 4.36 6.28

12.4 Application to Explainable Artificial Intelligence (XAl)

say is that LCLR believes that Sex is the most important variable because the coefficient is the largest
by far. The more relevant questions to be raised are, which model is explainable and which one should
we trust?

To answer these questions quantitatively requires elements from the test set along with an analysis of
the total contributions of each variable toward the probability computation. Recall that p;, used in the
loss functions above, is given by

pi = (1 +exp(—x] B)~". (12.4.1)

Therefore, the quantity xl.Tﬁ determines the probability p;. It is the sum of the products of the estimates
with their corresponding data values. We can examine the detailed computations to identify the signifi-
cant contributors to the probability to assess whether the results are explainable.

Two cases drawn from the Titanic test set of Table 12.8 are listed in separate columns in Table 12.13.
The contributions of each parameter to the overall decision can be computed by taking the product of its
estimate (Tables 12.12) and data value (Table 12.13). The results are shown in Table 12.14. For example,
in the first row of Table 12.14, we have f,.; .. X Pclass = —1.03 x 3 = —3.09 for CELR and fl,.; .. X
Pclass = —1.37 X 3 = —4.11 for LCLR. The same calculations are carried out for all rows in the table.
The sum of product values are provided at the end of the table along with the corresponding values of p,
(using Eq. (12.4.1)) and predicted response for each test case.

The tabular data of Table 12.14 can be converted to bar graphs as in Figure 12.17 to visualize the results.
From the bar graph on the right, it is clear that the decision made by LCLR of whether the passenger
survived (1) or did not survive (0) is largely due to the Sex of the passenger (male in this case), with some
influence of Pclass. For CELR, it is a combination Pclass, Sex, and Age that leads to the decision.
In both cases, the ground truth is that the passenger did not survive (0) and both methods produce the
same decision, CELR with probability 0.075 and LCLR with probability 0.002 of survival, respectively.
However, the robust solution is more easily explained and believable: it is mostly controlled by the Sex
of the passenger.

Table 12.13 Two test cases from the Titanic test set used
to compare CELR and LCLR.

Data for Data for

Parameters Test 1 Test 2
Pclass 3 3

Sex 1 0

Age 1.70 2.35
SibSp 0 1
Parch 0 0

Fare 0.157 0.140
Embarked 1 2
Survived 0 1

(ground truth)

361

362 | 12 Case Studies in Data Science

Table 12.14 Parameter x value for CELR and LCLR on Test cases 1 and 2 from Table 12.12.

Test 1 Test 2
Parameter x value CELR LCLR CELR LCLR
Powraes X Pclass -3.09 —4.11 -3.09 —4.11
Beoy X SEX -2.78 -8.65 0 0
Page X Bge -1.17 -0.51 -1.62 -0.71
Pipsp X SibSP 0 0 -0.33 -1.10
Poaren X Parch 0 0 0 0
frnpe X Fare 0.02 0.07 0.02 0.06
Barbarreq X Embarked 0.16 0.63 0.32 1.26
by x1 4.36 6.28 4.36 6.28
Sum of products, x] B -2.5 -6.3 —-0.34 1.64
Probability, p, 0.075 0.002 0.42 0.84
Predicted response 0 0 0 1
CELR with Test 1 output O LCLR with Test 1 output O
67 T/ CELR 61 3
4] XTCRR=-25 4| XTBCER=63
=0.075 =0.002
7 Py 5 P
E 0 — g 0 | I
521 . L[] 521
—4 4 44
6 6
_8 _8
T T T T T T T T T T T T T T T T
$ L& & & F & b $ L F & & & b
LRGP P E T Ty
< Variables < Variables

Figure 12.17 Bar graphs for CELR and LCLR depicting values of Table 12.14 using Test 1 of Table 12.13.

If the same steps are applied to Test 2, a different explanation is needed. The results are also tabulated
in Table 12.14 and shown as bar graphs in Figure 12.18. Note that Sex is set to 0 for female so it does
not play any direct role in the decision (there is no bar in Figure 12.18 for Sex). In this case, the ground
truth is that the passenger survived (1) and LCLR did indeed arrive at this conclusion with a probability
0.84. Using p; = 0.5 as the threshold for CELR, the computed probability is only 0.42 which implies that
the passenger did not survive (0), which is wrong. We see a discrepancy here and only LCLR produces an
acceptable result. When Sex is set to 0, all other variables control the outcome. In particular, the value of
p, needs to be high enough to overcome the other components to obtain the correct result. The conjecture
is that outliers are corrupting the estimates for CELR so that it is not able to handle this case.

12.4 Application to Explainable Artificial Intelligence (XAl)

CELR with Test 2 output 1 LCLR with Test 2 output 1
6 6
L XTpoRR =038 . X,TALCLR = .64
p, =040 p,=0.84
§ 2 1 § 2
Gl =
=0 — ~0- o _
'l | -
24 2
—4 1 —4 4
T T T T T T T T T T T T T T T T
4 > @ X & A & o & <
Yﬁa g %&gg <] & Qo\{b e %® Po \?30 g ‘}%g; <& <) Qc}{b e %.;0 Bo
Q’é\ Variables Q’& Variables

Figure 12.18 Bar graphs for CELR and LCLR depicting values of Table 12.14 using Test 2 of Table 12.13.

But how far is CELR from the ground truth, and what changes in variable values would be needed
for LCLR to make the wrong decision? These types of questions are referred to as counterfactuals.
It involves the adjustment of the test data values (typically one at a time) to obtain a desired outcome.
For each variable, the data is increased and decreased to understand how it affects the response. In the
case of LCLR, we want to know what specific changes in values would lead to an incorrect decision.
Conversely, since CELR is not correct, we would ask what changes in data values would lead to a correct
decision. These are unusual questions in that we are trying to coerce the opposite outcome from what
the algorithm produces, hence the name counterfactuals.

When testing counterfactual hypotheses, it is important to bound the values of the variables to the
appropriate ranges. For example, an Age value of 150 is unreasonable so it should not be allowed. Like-
wise, Pclass cannot be set to 4 since it can only hold values of 1, 2, or 3. Given these types of constraints
on the Titanic dataset, it is difficult to flip the decision in LCLR unless Parch and Sibsp are increased.
This implies that the decision made by LCLR is quite robust and tolerant to small changes in the data. How-
ever, the incorrect decision made by CELR can be flipped easily by adjusting either Pclass, Age, Fare,
or Embarked. The decision is not robust and reflects the characteristics of CELR itself. Therefore, when
faced with the choice of robust methods and non-robust methods, it is clear that robust methods offer
the opportunity to make intuitive and reasonable explanations for binary decisions made in classification
problems because they are quite stable. For CELR, the explanations are not as reliable in the presence of
outliers.

Exercise: Consider test data from row 3 of the Titanic dataset in Table 12.8 and the estimates of
Table 12.12. Compute the probability of survival using the CELR and LCLR estimates. Which is closer
to the ground truth? What happens if Pclass=1?

Ans.: Using the steps given in this section, p; = 0.2 for CELR and p, = 0.007 for LCLR. In this case,
LCLR is closer to the ground truth which is 0 (did not survive). If Pclass=1, then p; = 0.4 for CELR
and p,; = 0.027 for LCLR. It does not affect LCLR by much whereas CELR is greatly affected by this
change. O

363

364

12 Case Studies in Data Science

In addition to the choice of robust methods over non-robust methods, there is a similar choice in
the penalty functions. In particular, for problems where many of the parameter values are ideally 0,
the LASSO penalty function (see Chapters 5 and 6) is often coupled with CELR. The combined loss
function is

n d
JCELRLASSO(g) = — %" (y, logp, — (1 = y) log(1 = p) + Y IBI.
i=1 j=1
Unfortunately, CELR is not robust and LASSO does not possess the oracle property and therefore may
not asymptotically produce the proper variable ordering. On the other hand, using LCLR with aLASSO
provides robustness and the oracle property. The combined loss function is given by
JUCLRALASSO(g) 1 il (cosh(10(y ") + i 15
=5 2 og(cos . — D; 2 |ﬁj*|’

where f* is a known quantity typically set to the unpenalized estimate, ﬁJLC

The difference between the two approaches is illustrated in Figure 12.19 using the Titanic dataset.
The CELR-LASSO and LCLR-aLASSO traces are shown and there are notable differences. In the
CELR-LASSO case, Pclass is considered to be as important as Sex. However, we know that this is
not true. In fact, the LCLR-aLASSO trace shows that the Sex of the passenger is the most important
variable, far more important than the Pclass. In addition, CELR-LASSO indicates that the Age is as
important as the remaining of the variable whereas LCLR-aLASSO indicates it is less important. The
previous analysis of the contributions of each variable to the predicted outcome shows that Age should
not be considered as important as SibSp and that is exactly what LCLR-aLASSO shows in its traces.
Furthermore, many Age values were imputed as they were missing so its true importance would be hard
to gauge. Hence, CELR and LASSO both fall short of the desired goals of XAI and lead to explanations
that may not be correct. This is why the LCLR and aLASSO combination is preferable. Conclusions
reached using this combination may have more credibility and stability, and hence explainability.

CELR-LASSO LCLR-aLASSO
Fare Embarked
0 OW —— —Fare——
U1 Parch_ _ - 0| Age
.__SibSp - Parch
-0.5
" Ace I 25 . Pclass
g o
< e
§ —1.04__Pclass -
z
5 1.5 0
E —1.
<
5
201 -6
-2.5
-8
Sex sex
10! 100 10! 10 103 102 107 10° 10! 102 103 104 105
p) A

Figure 12.19 Comparison of CELR-LASSO with LCLR-aLASSO traces for the Titanic dataset.

12.4 Application to Explainable Artificial Intelligence (XAl)

To summarize, robust methods can play an important role in XAI. When explaining model predictions,
robust logistic regression ensures that extreme data points do not disproportionately affect the interpreta-
tion of feature importance. By downplaying the influence of outliers, robust logistic regression provides
more reliable estimates of coefficients. Users can trust the model’s coefficients even when the dataset
contains noisy or anomalous observations. By handling outliers effectively, it enhances the transparency
of the model’s decision boundaries. In some sense, robustness helps maintain fairness by preventing
outliers from disproportionately affecting predictions.

12.4.2 Case Study: Neural Networks

In the previous section, the focus was on the issue of model interpretability in the context of logistic
regression but this comprises only one component of the field of XAI. In a broader context, XAl refers
to a set of processes and methods that make the results and workings of AI models understandable to
humans. It involves interpretability, transparency, trust, and bias. Most of the activity is focused on neural
networks where the challenges are much greater.

Consider Figure 12.20 which shows a 4-input, 1-output model for logistic regression, and a neural net-
work. There are only 5 parameters in logistic regression but there are 65 parameters in the neural network.
Interpretability is straightforward in logistic regression because there is a one-to-one correspondence
between the variables and the parameters. This is not the case in the neural network. It is very difficult
to sequence through the same steps as done in the previous section to understand how each weight in
the neural network controls the outcome and how to interpret the results. There are so many parameters
and nonlinearities in the network that the complex relationships between the input and output are hard
to unwind.

Taking it to the extreme, in generative Al today, there are up to 32,000 inputs (referred to as tokens),
and up to 50,000 probabilistic (i.e. softmax) outputs in the large language models (LLMs) of tools like
ChatGPT. The number of trained parameters exceeds 1.5 trillion. The meaning of XAl is quite different
in this setting. Due to the “black-box” nature of neural networks, especially for deep learning models,

. X, °v°v
N Y

., SRR
P IO

V"‘Povl“ oq,“ ()
W

(@) (b)

Figure 12.20 Comparing XAl in (a) logistic regression and (b) neural networks.

365

366

12 Case Studies in Data Science

transparency about the inner workings of Al models, i.e. making it clear and understandable, has become
a major area of focus for XAl Techniques like feature importance, layer-wise relevance propagation,
and attention mechanisms are used to explain their decisions. Of particular importance are whether the
responses are trustworthy and whether there are systemic built-in biases.

Research is currently underway in a number of different directions. One approach is to use a Bayesian
neural network, an extension of the traditional neural network that incorporates Bayesian statistics to
estimate uncertainty in the predictions. Instead of weights that have fixed values, they are represented by
probability distributions. The degree of uncertainty can give insights into the model’s trustworthiness and
make it more explainable. Other promising directions include SHapley Additive exPlanations (SHAP),
which provides information about how much each feature contributes to a prediction, and Layer-wise
Relevance Propagation (LRP), which provides relevance scores to each neuron using a back propagation
scheme. While these issues are beyond the scope of this book, it is worth noting that much more study
is needed about the role of robust methods in this emerging field. Ongoing research in this challeng-
ing area would involve finding links between models and outcomes for all aspects of machine learning,
including random forest and SVMs. However, most of the future work in the field will focus on generative
Al models.

12.5 Time Series Example: Climate Change

Thus far in this book, we have examined ways to build outlier-tolerant machine learning tools and iden-
tified methods for outlier detection and removal. Once the concepts described herein have been fully
digested and mastered, the reader is encouraged to seek new opportunities to apply these methods. The
basic ideas can be extended to many other application areas. To close out the book, we consider one
such application to demonstrate how future work in data science can be conducted using the knowledge
gained from this book.

Consider the problem of climate change. This is currently a topic of great concern around the world
due to the potentially disruptive effects of high CO, levels heating the Earth’s atmosphere. In 1968, the
measured level of CO, was roughly 322 parts per million (ppm) whereas by 2025, it reached 425 ppm. That
is an increase of about 30% in less than 6 decades. Atmospheric CO, creates a “greenhouse” effect which
leads to the heating of the land and oceans around the Earth. As a consequence, the ice fields around the
North and South poles are melting which increases sea levels and releases methane (another greenhouse
gas) trapped in the ice. Climate disruption is the net result and it may have severe consequences if not
dealt with in the near future.

As a measurable indicator of heating effects over time, the average land temperature from 1750 to 2015
is shown in Figure 12.21. From 1750 to 1900, there are wild fluctuations in temperature but the average
is roughly 8°C. Beyond 1900, the start of the Industrial Revolution, there is a noticeable upward trend
in the temperature. This is the effect of climate change. Going forward, we want to be able to predict
the temperature increase using machine learning by treating this data as a time series. Thus, we need to
consider using the techniques available in time series analysis.

A univariate time series is constructed by measuring some quantity of interest in uniform increments
of time, e.g. each day, month, or year. Since the measurements are evenly spaced, the time series can
be represented as a sequence of numbers occurring at different integer values of time. Based on this

12.5 Time Series Example: Climate Change

10.0
9.5

9.0

" j i W , .u/'\f\nu
el WMW“ Al

7.0

Average land temperature

6.5

6.0

1750 1800 1850 1900 1950 2000
Year

Figure 12.21 Time series of the average land temperature on Earth from 1750 to 2015.

assumption, a set of statistical procedures have been developed for modeling and prediction. Specifi-
cally, we will examine the ARIMA time-series modeling approach used in machine learning (see Cryer
and Chan 2008). The acronym ARIMA stands for Autoregressive Integrated Moving Average. We will
sequence through the different components of ARIMA and then apply it to the specific time series asso-
ciated with climate change in Figure 12.21. Keep in mind that the purpose of this exercise is to illustrate
how to robustify existing machine learning techniques.

12.5.1 Autoregressive Model

The first component of ARIMA is the autoregressive (AR) model. In such a model, the future value of the
time series is constructed as a linear combination of past values of the time series. We use the notation
AR(p) to refer to models that use a total of p previous values in time to predict the value at time p + 1.
More concretely, assume we have a time series given by {x;,x,, ..., X, }. If we have a model with p = 6, we
use the first 6 time points to predict the 7th time point. Likewise, the values from positions 2 to 7 are used
to predict the value at the 8th time point, and so on. It is possible to create a matrix X with p values in each
row and n — p rows, and a response vector y with the (p + 1)st values associated with each row. Then, we
can apply linear regression using least squares estimation to produce an AR(p) model. Alternatively, and
perhaps more in line with our objective, the log-cosh loss can be used to robustify AR(p).
More generally, for a model of order p, we consider the linear regression problem of the form,

W=@ot X+ +eX ,+E, p+tl<t<n, (12.5.1)

where ¢, is the noise, and ¢ = (¢, ¢4, --. , qop)T € RP* is a vector of unknown autoregressive parameters
with a response vector y, = X,. This is called the autoregression process of order p (> 1). It is a form of

367

368 | 12 Case Studies in Data Science

self-regression since it creates rows of the dataset by repeated use of the values in its own time series based
on a sliding window of size p + 1.
As a more concrete example, consider an AR(p) model given by

y = X Q® + €
Xp+1 Xy Xpp 0 X 1|y Ept1
Xpi2 _ Xpy Xy X 1| o, " €pi2 . (12.5.2)
X Xn-1 Xn—2 """ Xpp 1\ @, En

The y column on the left is the time series starting at p + 1 and ending at n. Each row of the X matrix is
a contiguous set of p values of the time series. The error term € is assumed to be Gaussian. The goal is to
estimate ¢ using robust linear regression.

Exercise: Given a time series x = {x;,X,,X;,X,,X;}, what is the matrix equation for an AR(p) model with
p=1?

Ans.: From Eq. (12.5.2), it is straightforward to write the AR(1) model as

y = X o + €
X, x 1 £,
x| _[x 1 <(p1> L&
Xy X3 1|\ @, &y
Xs x, 1 £

[m}

If we now apply AR(1) to the average land temperature time series of Figure 12.21 and plot the first
column of the X matrix (which we call x) vs. y, we obtain Figure 12.22. Note that there are a few outliers
so a robust regression method may be better suited to the problem. The results of the robust regression
followed by a point-by-point prediction of the time series using the model are shown in Figure 12.23
along with the original time series. Here, the log-cosh loss was used rather than least squares. In some
sense, this is a robustified AR(p) model.

Examining Figure 12.23, the original time series and the predicted time series are very close. But this is
to be expected because the parameters ¢, and ¢, were learned using the original time series. So the fact
that they are close is not surprising. On closer inspection, the predicted values lag the original values and
the prediction gets worse as time evolves. Note that no future predictions are made as yet; only values
within the span of the time series have been computed thus far.

The time lag and errors can be reduced by using higher orders of AR(p). For example, in Figure 12.24,
we see the original time series and the AR(1), AR(4), and AR(12) predictions. Clearly, AR(12) is the closest
to the original time series but there are two issues regarding this choice. The first is that the model has
p + 1 = 13 parameters which could lead to overfitting. The second is that it may be more computationally
expensive than necessary. A smaller value of p may be sufficient to obtain a more general model without
the excessive computation time. But this is a good start in modeling the time series since all the predictions
are close to the true values.

12.5 Time Series Example: Climate Change

10.0

9.5 A

9.0

8.5 1

8.0

7.5 A

7.0 1

6.5

6.0

T T T T T T T T
6.0 6.5 7.0 75 8.0 8.5 9.0 9.5
X

Figure 12.22 Scatter plot of y and x for an AR(1) model of the average land temperature time series indicating
the presence of outliers.

10.0
Original time series

9.5
9.0
8.5 J

8.0 . .
AR(1) predicted time

series

7.54

7.0+

Average land temperature

6.5

6.0+

T T T T T T
1750 1800 1850 1900 1950 2000
Year

Figure 12.23 Applying AR(1) to the average land temperature time series.

12.5.2 Forecasting Using AR(p)

The purpose of machine learning is to be able to make predictions based on a given set of data, but
the prediction is not of the type just described. We want to predict the future of a time series, i.e. pro-
duce a forecast, not simply replicate what we already know about its past. The way to do that is to

369

370 | 12 Case Studies in Data Science

Original time series AR (1)

10.0 — 100 |
295 o] os o
g 9.0 ‘|‘ | M ri | |‘ﬁ||||'|’|"| 9.0 | II'

Q. A0 AV IV
5 83 lﬂ | |4|| W +‘|1 l Al A fi 8.5
= | ULy ra
g il ‘ | ‘J[IF"II | ||I‘ lw !vt‘r”lll; J llr‘lr; ri 8.0
© 75 1 |‘|\ ¥ 75
& |J
570 V! 7.0
<65 6.5

6.0 6.0

0 50 100 150 200 250
AR(12)

10.0 10.0
295 9.5
%; 9.0 9.0
£85 8.5
E 8.0 8.0
2 7.5 7.5
§ 7.0 7.0
<65 6.5

6.0 6.0
0 50 100 150 200 250 0 50 100 150 200 250
Time (years) Time (years)

Figure 12.24 Comparison of AR(1), AR(4), and AR(12) on climate change time series.

define a training set and a test set, then build a model from the training set, and see how well it aligns
with the time series in the test set. This is consistent with common practice in machine learning and
seems rather straightforward but it is challenging to produce accurate predictions when dealing with
time series.

To illustrate the difficulty, consider the forecasting problem using the climate data. Specifically, the
time series for the average land temperature contains 266 values, of which 254 can be used to train the
model and 12 can be placed in the test set for prediction purposes. Effectively, we are using 254 years of
data to predict 12 years into the future. To simplify the explanation, we use AR(1) on the training set and
build a model with only ¢, and ¢,. The forecast can be carried out recursively using the estimates of ¢,
and @, with the iterative equation,

X1 = Qo + P1%;, (12.5.3)

where t=254,...,266 in our example. Using this equation, the forecast can be completed in 12
iterations.

12.5 Time Series Example: Climate Change

10 1 Ground truth__|
Original time series _
o 91
E Rﬁ
: W e
5 s . W‘W V\;"' [
ke
E AR(D)
5} /
& 7
5]
< Forecast
61 Training set Test
set
0 50 100 150 200 250

Time (years)

Figure 12.25 Creating training and test sets using the climate change time series. The test set and forecast are
on the right side of the figure.

Exercise: An AR(1) model produces the estimates @, = 2.0 and ¢; = 0.7. Predict the next three values
of the time series at n + 1, n + 2, and n + 3. Assume that x,, = 9.0.
Ans.:

Xpe1 = Po + P1X, = 20+ 0.7%9.0 =83

Xpir = P+ P1Xppy =2.0+0.7%x83 =78
Xpy3 = Do+ P1Xpey = 2.0+0.7X 7.8 =7.5 O
The results for the climate change data are shown in Figure 12.25 which identifies the time intervals

for the training and test sets and provides plots of the original time series and the AR(1) predicted time
series for the training set. The forecast is also shown in the test set region of the figure. It is not only
inaccurate but it is going in the wrong direction. So clearly AR(1) by itself is not sufficient in this case.
One would think that applying the same procedure using AR(4) or AR(12) would improve the forecast,

but increasing p does not improve the forecast accuracy by much, if at all. Another approach is needed
to obtain satisfactory results.

12.5.3 Stationary Time Series

To understand the source of the problem, it is important to recognize that the time series is not
stationary. A stationary time series has a constant mean value across time about which the series

371

372

12 Case Studies in Data Science

fluctuates (i.e. moves above and below), and its range of fluctuation around that mean remains bounded
over time. Neither of these requirements are satisfied by the time series of Figure 12.21. Because it is
not stationary, it will be difficult to build a good model for prediction using AR(p) due to an underlying
assumption in AR(p) that the time series is stationary. However, there is a well-known solution to this
problem: we can apply a difference operation to the time series which increases the likelihood that it is
stationary. If it is still not stationary, we can apply a second difference operation (usually two is sufficient)
and then apply AR(p) on the resulting time series. This process is the Integrated part of ARIMA and
uses the notation I(d), where the parameter d (unrelated to the dimensions of the problem) specifies the
desired number of differencing operations (which can be set to 0, 1, or 2).

The effect of differencing is to de-trend the time series and make it stationary. That is, we want to
remove any dependence of each point with its prior point or future point so that the points used in the
regression are independent and come from the same distribution. The differencing operation itself is
rather straightforward. The first difference is simply

6V =x,—-x_, t=2,...,n (12.5.4)

The notation 5[@ refers to d differencing operations at time ¢. In the process, the length of the new time
series is reduced by one relative to the original series. The second difference is given by

6P =61 -5 t=3,...,n (12.5.5)

Again, the length of the newer time series is reduced by two relative to the original series. The result after
two differencing operations is shown in Figure 12.26 for the average land temperature time series. Note

2nd difference of time series

0 50 100 150 200 250
Time (years)

Figure 12.26 Results of second differences of the average land temperature time series which produces a
stationary time series.

12.5 Time Series Example: Climate Change | 373

that there is a clear mean around 0 and the fluctuations mostly live within the two bounds indicated in
the figure. Finally, we can apply AR(p) to this stationary time series and then reverse the whole process
to predict the values of the average land temperatures. Only the last n — p — d points in the time series
can be predicted since a combination of AR(p) and the differencing operation removes the early points
from the time series. However, this does not pose a problem when using the derived model to make a
forecast of future values.

For the AR(1) case with d = 2, the forecasting equations for the next time point at n + 1 are

()
6n+1

A A 2
=@+ (ﬂléil),

O _ @ 2)
6n+1 - 5" + 5n+1’

and

@)

Xpp1 =X, +6n+1.

These equations can be used iteratively to construct the complete forecast for the desired future interval.
Extensions to higher-order AR(p) models are straightforward.

The results of these two steps for AR(12) with I(2) are given in Figure 12.27. This time, the prediction
is quite good and, in fact, it is trending in the right direction. Therefore, p = 12 and d = 2 are suitable
values for this example. On the other hand, there is still room for improvement. The forecast tends to
overshoot the test set in this example. The question is, can we do better?

10 | Forecast ___ |
| S . IA ﬁ@
9| Original time series —— I:‘;\V.:I I
£ I\ A I urv’*’\f\f-ffv/x-!ﬁu ay
§ ” P‘ l\ ﬂ/‘ |L3I hﬂv]u" ' 1 .’_.-' . |
2 8 W WY W |
5 A i/ AR(12) |
2) 12 |
§ 7 A | 2) |
ED Groundl truth
51 | Training set Test
| set
0 50 100 150 200 250

Time (years)

Figure 12.27 Using AR(12) with two differences (d = 2) to model and predict average land temperature time
series.

374

12 Case Studies in Data Science

12.5.4 Moving Average

There is one last part of ARIMA that involves the moving average (MA) which can further improve the
results. The term itself is somewhat misleading because it involves creating an autoregression around the
residual errors at each time point rather than on a true moving average of the time series. The notation
used in ARIMA is MA(q), where q is the order of the MA model. If we wanted to use such a model, it
would have the form

V=0 +0ir_ +...+0,_+e, q+1<t<n g=1, (12.5.6)

where r_jare the residuals at each point in the time series (the original time series, the first difference, or

the second difference, depending on the value of d). Strangely, the residuals of the past are being used to

predict the time series value in the future. But if used in conjunction with AR(p) and I(d), it can produce

more accurate models. In order to compute residuals, we must know the previous values and predicted

values at each time point in the training set. Therefore, this process is iterative which adds much more

computational complexity to the problem, but it may be needed in practice to obtain satisfactory results.
The complete ARIMA(p, d,) model is given by

P q
Vi=@y+ Z(pi 6&; + ZBJ e+ & (12.5.7)
i=1 j=1
Herey, = 6fd) by definition, and the 652 terms in the first sum are the differences between adjacent time
points (as determined by I(d)), whereas the r,_; terms in the second sum are the residual differences at
each time point (¢ — j), respectively. In general, the choices of p, d, and q are based on experience, good
judgment, or simply trial-and-error.

Exercise: Given a time series x = {x;,X,,x;,X,,X;}, what is the matrix equation for an ARIMA(1,1,1)
model?

Ans.: First note that because d = 1, we will have to find the first difference of the given data. Therefore,
6;1) =X, — X, 5;1) =X; — Xy, 631) =X, — X5, and 521) = X; — x,. Furthermore, the residuals are r; = 51.(1) -

(Dold (1)old
o i

) , where & is the predicted value in the previous iteration. Then, we can write that

Y (8 1y 1) (1) (e

3
ol_|s®
5?) = 5%);'31 0, | +|eq]-
1 1
d4 6," 1y, 1J\@g £s
O

Returning to the climate change problem, the previous example essentially used ARIMA(12,2,0), since
q was not specified. It is time to revisit the settings of p, d, and q. First, large values of p may lead to
overfitting and an increase in the computational cost of training. Therefore, the smallest value of p that
produces acceptable results should be selected. Next, for d, a value of 1 or 2 is recommended. Finally, for g,
a low value is usually sufficient. The results shown in Figure 12.28 use ARIMA(8,2,1) to avoid overfitting
while still producing an acceptable prediction. The prediction of the time series is much improved and the
forecast is now in line with expectations based on the test set. The autoregressive model can be solved
using a log-cosh loss function making it a robust ARIMA model. Further work on robust ARIMA is
necessary to identify the benefits and limitations of such an approach.

12.5 Time Series Example: Climate Change | 375

10 Forecast-_ PJW
94 r : A« i ﬁ Original timez\fri'es';‘___i_._# I&Ru!
s | b A
2 mild N | L w MY H‘ v
N LA
. , | VY
5 | W\ .h/f | ARIMA(12,2,1)
7 | |
5
&
5] 6)
z
i Training set Test
set
0 50 100 150 200 250

Time (years)

Figure 12.28 Using AR(8) with two differences I(d = 2) and MA(1) to accurately predict and forecast average land
temperature time series.

12.5.5 Finding Outliers in Time Series

Aswith other topics in this book, the alternative to robust methods is to detect outliers and handle them in
some manner. Outliers occur in time series because time series tend to be noisy and may have significant
fluctuations, as seen in Figure 12.21. The average land temperature varies significantly in the early years
of this figure, but it stabilizes as time progresses. The effect of outliers is dependent on the nature of the
analysis being conducted. Statistical quantities such as mean, variance, and autocorrelation will all be
skewed by outliers in the context of time series. They can also make forecasts less reliable. Therefore,
outlier detection is an important part of time series analysis.

There are many ways to find outliers in a time series. Visualization is one way to quickly identify
the existence of outliers, especially in the case of a one-dimensional time series. However, the robust
statistical approaches described in Chapter 4 are better suited for outlier detection. In particular, box-
plots applied to the first or second difference of the time series (since they are de-trended) would be
very effective in detecting outliers. Robust z-scores can also be used in conjunction with an edit rule
between 4.5-MAD and 15-MAD, depending on the time series of interest. Advanced methods, such as Iso-
lation Forest and DBSCAN described in Chapter 11, can also be evaluated for this purpose. Furthermore,
the robust clustering techniques of MADmax may be useful along with the associated outlier detection
methodology.

For outlier removal, rather than trimming the data (which can be dangerous), it is more appropriate to
winsorize the data since every time point requires some data. There are methods to place upper and lower
bounds on the data, and then these bounds can be used to replace outliers. Different quantiles, such as the
5th/95th or 1st/99th combinations, are suitable for upper and lower bounds. Careful attention must be
paid to their use on de-trended time series rather than the original time series. These and other details of

376

12 Case Studies in Data Science

outlier detection and removal described throughout the book can all be adapted for use with time series.
This book has equipped you with the knowledge and “know-how” to solve these and other advanced
problems in data science.

12.6 Summary and Conclusions

In this chapter, we have opened the door to robust data science by illustrating some of the novel capa-
bilities available in robust machine learning. We have demonstrated that it is superior in many respects
to the traditional methods. Two well-known datasets, such as Boston Housing and Titanic, were used to
demonstrate its viability for linear regression and binary classification. Its viability for multi-class clas-
sification and neural networks was demonstrated in earlier chapters. The information provided in this
book was also applied to time series analysis as a case study of how the knowledge gained from the book
can be used. However, we have only scratched the surface of the possible data science problems that may
be addressed using robust machine learning. Many research topics also remain unexplored in this area.
We see a large potential for future work and expect there to be fruitful outcomes for those who pursue
this topic. Our hope is that this book and all of the new concepts and ideas will resonate with readers
and provide motivation to pursue some of these ideas in more detail in the near future. Greatness awaits
those with deep knowledge.

Problems

At this stage, there is no better way to learn the material than to write Python code to produce the results
in this chapter associated with the Titanic dataset. We recommend that you visit the kaggle.com website
to gain access to the dataset and examine other Jupyter notebooks on the site to carry out the assign-
ments below.

12.1 (PROJECT) Using the tensorflow library, write Python code to perform logistic regression
using the general log-cosh loss function and the cross-entropy loss function, as described in
Section 12.3. The name of the data file here is titanic . csv. However, you may need to modify
it according to the location of the training file on your computer or on the website kaggle.com.
a) Import the needed libraries.

import numpy as np

import pandas as pd

import tensorflow as tf

from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt

import warnings

warnings.filterwarnings ("ignore")

b)

d)

Problems

Read the data, drop certain unneeded columns.

#Read the titanic dataset

train df = pd.read csv("titanic.csv")

#Get rid of some unneeded columns

train df = train df.drop(['PassengerId', \
'Ticket', 'Name', 'Cabin'],axis=1)

Process data to fill in missing data, scale certain columns, and convert strings to numbers.

Process data as described in this chapter

if train df.iloc([829] ['Survived'] == 0:
train df ['Embarked'] = \
train df ['Embarked'].fillna('S"')
else:
train df ['Embarked'] = \
train df ['Embarked'].fillna('C"')
train df['Sex'] .loc[train df['Sex'] == 'male'] =1
train df['Sex'] .loc[train df['Sex'] == 'female'] = 0
train df ['Embarked'].loc[train df ['Embarked'] \
== 'Q'] =1
train df ['Embarked'] .loc[train df ['Embarked'] \
== 'S'] =2
train df ['Embarked'] .loc[train df['Embarked'] \
== 'C'] =3
Get average, std, and number of NaN values
average age titanic = train df ["Age"] .mean()
std _age titanic = train df ["Age"] .std()
count nan_age_ titanic = \
train df ["Age"] .isnull () .sum()

rand 1 = np.random.randint (average age titanic - \
std_age_titanic, average_age_ titanic + \

std age titanic, size = count nan age titanic)
Fill mssing values in Age column
train df ["Age"] [np.isnan(train df ["Age"])] = \
rand 1
train df ['Age'] = train df['Age']/20.0
train df ['Fare']l = \

train df['Fare']/50.0
train df.head()

Create the needed X and y data.

X = train _df.drop(["Survived"],axis=1)
y train df ["Survived"]

377

378

12 Case Studies in Data Science

e)

X np.array (X)

y = np.array([y])

y =y.T

print ('The dimensions of X and Y are:')

print (X.shape, y.shape)

As a programmer in modern times, one of the advantages is that generative AI tools such as
ChatGPT can produce Python code in seconds. The following code was generated by Bing
Copilot with only a few prompts. It uses a custom loss function for the general log-cosh
function to perform robust logistic regression. Run the Al-generated LCLR code and try
different values of the robustness factor. Also, compare the results with CELR using the
cross-entropy loss.

#AI generated code for LCLR

import tensorflow as tf

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

from tensorflow.keras.optimizers import Adam

Split the data into training and testing sets

X _train, X test, y train, y test = \
train test split (X, y, test size=0.001, \
random_state=12)

Define the custom loss function

def custom_logcosh loss(y_true, y pred):
return (1/10) * tf.math.log \

(tf.math.cosh(10 * (y pred - y true)))

Standardize the features

scaler = StandardScaler ()

X _train = scaler.fit_ transform(X train)

#X test scaler.transform(X_test)

y_train = y train.astype(np.float32)

#y test = y test.astype(np.float32)

Define the model

model = tf.keras.Sequential ([
tf.keras.layers.Dense (1, \

activation='sigmoid', \
input shape=(X_ train.shape[l],))
I

Compile the model with Cross-entropy loss

#model .compile (optimizer="'adam', \
#loss='binary crossentropy', \
#metrics=['accuracy'])

Problems | 379

Compile the model with LogCosh loss

model .compile (optimizer="adam', \
loss=custom logcosh loss, \
metrics=['accuracy'])

Train the model

model.fit (X train, y train, epochs=200, \
batch size=32, \
validation data=(X_train, y train))

Evaluate the model
loss, accuracy = model.evaluate(X train, y train)
print (f'Loss: {loss}, Accuracy: {accuracy}')

Compare the overall accuracy of the two models with the training set.

12.2 (Advanced Project) The previous project made use of components from the tensorflow library
to carry out logistic regression. While it is very easy to generate and run such tools, the process is
somewhat opaque since the inner workings are not readily available to the user. In this project,
we will implement the equivalent Python code that allows for further experimentation by the user,
especially with regard to reproducing the results from this chapter.

a) Begin by obtaining the code for the Adam optimizer from Problem 10.6(b) of Chapter 10 and
run it in your notebook.

b) Enter the following code to define the log-cosh and cross-entropy loss functions and their
gradients.

import pandas as pd
logcosh = lambda x: np.logaddexp(x, -x) - np.log(2)
#Define sigmoid function
def sigmoid(z) :
a=1./(1.+ np.exp(-2))
return a
#Define log-cosh and cross-entropy loss functions
def Loss function(w _0,b 0,LC):
p = sigmoid(np.dot(X,w _0)+b_0)
if (LC) :
loss = (1/a)*np.sum(logcosh(a* (y-p)))
else:
loss = -np.sum(y*np.log(p)+ \
(1.-y)*np.log(l.-p))
return loss
#Define log-cosh and cross-entropy gradient functions
def dLoss function(w 0,b 0,LC):

380 | 12 Case Studies in Data Science

p = sigmoid(np.dot (X,w_0)+b_0)
if (LC) :
v = p*(l.-p)*np.tanh(a*(y-p))
v =v.T
v_stacked = np.tile(v[:, np.newaxis], \
(1, X.shapelll]))
X multiplied = -X * v_stacked
dw = np.sum(X multiplied, axis=0)
db = np.sum(p* (1.-p)*np.tanh(a* (y-p))*(-1))

else:
v = Yy-p
v_stacked = np.tile(v[:, np.newaxis], \
(1, X.shapelll))
X multiplied = -X * v_stacked

dw = np.sum(X multiplied, axis=0)
db = np.sum((y-p)*(-1))
return dw, db

¢) Run the following code to perform LCLR and CELR. Initially, it is set to run LCLR on the
Titanic training set. The code assumes a successful completion of the Problem 1 of this
chapter.

X = train df.drop(["Survived"],axis=1)

y train df ["Survived"]

LC = True

CE = False

reg type = LC #LC or CE

if (reg_type):
print ("Running LC logistic regression (LCLR)")
adam = AdamOptim(learning rate=0.005)

else:

print ("Running CE logistic regression (CELR)")
adam = AdamOptim(learning rate=0.005)

a = 10.0
w = np.array([-0.1,-0.1,-0.1,0.1,0.1,0.1,-0.11)
b =20.0
t =0
loss = []
print ("Iteration =", t, "Loss =", \
format (Loss_function(w,b,reg type), '.3f'))
converged, iter count = False, 4500

while not converged:
loss.append (Loss_function(w,b,reg_type))
dw, db = dLoss_ function(w,b,reg type)

d)

e)

f)

Problems

w old = w
w, b = adam.update(t,w=w, b=b, dw=dw, db=db)

t+=1
if (£%1000 == 0):
print ("Iteration =", t, "Loss =", \

format (Loss_function(w,b,reg type), '.3f'"))
if (t > iter count):
converged = True

print ("Iteration =", t, "Loss =", \

format (Loss_function(w,b,reg type), '.3f'))
print (w)
print ("intercept ",format(b, '.6f'))

Plot of the loss function against iterations to confirm that convergence has occurred.

plt.plot (loss)
plt.xlabel ('Iteration')
plt.ylabel('loss'")
plt.show ()

Predict the outcomes.

pT = 0.5

z = np.dot (X,w)+b
p = sigmoid(z)
pred = p >pT

Run the following code to obtain the metrics for accuracy, precision, recall, F; score, and
AUROC.

from sklearn import metrics
if (reg _type):
print ("Log-cosh metrics")
else:
print ("Cross-entropy metrics")
print ("Confusion Matrix:")
table = metrics.confusion matrix(pred,y)
print (table)
accuracy = np.mean(pred == y)
precision = metrics.precision_ score(y,pred)
recall = metrics.recall score(y,pred)
f1 = metrics.fl score(y,pred)
auroc = metrics.roc_auc_score(y, pred)
print ("accuracy =", format (accuracy, '.3f'))
print ("precision =", format (precision, '.3f'))

381

382

12 Case Studies in Data Science

print ("recall =", format (recall, '.3f'))
print ("F1 score =", format (f1, '.3f'))
print ("AUROC score =", format (auroc, '.3f'))

g) Rerun the sequence for CELR. Compare the results with LCLR.
h) With the working code for both methods, follow the steps through the chapter to reproduce
the results of Sections 12.3 and 12.4.1.

Assuming that you have successfully completed the projects, you can proceed to work on robust

data science using these techniques and/or solve new research problems in robust machine
learning. Congratulations and Good luck!

References

Aggarwal, C.C. (2017). Outlier Analysis, 2e. Springer.
Cryer, J.D. and Chan, S.-K. (2008). Time Series Analysis, with Applications in R, 2e. Springer.

Index

a

absolute order statistics 110
Adam optimizer 296
aLASSO penalty 145, 357
anomaly definition 2
anomaly detection 106, 303
AUROC 272, 326, 357

b

backward propagation 258, 260

batch gradient descent 264

bias 43, 148, 253

bias-variance trade-off 146, 162, 227,
341

binary classification 211

boxplot 98,113

(4

categorical loss
cross-entropy 283
log-cosh 283
Central Limit Theorem 43, 84
centroid 20, 140
check function 190
clustering 14
DBSCAN 308
k-means 19
k-medians 21
MADmax 316
collinearity 134

convexity property 47, 50, 60, 72, 217

correlation coefficients 345

Cosh distribution 75, 77

covariance matrix 13,17, 80, 134, 165, 205

cross-entropy logistic regression (CELR) 225, 346

cross-entropy loss 215, 258, 261

cross-entropy neural network (CENN) 252, 264

crossing problem 189

cumulative distribution function (CDF) 13, 40, 77,
111

d

datasets
Boston Housing 82, 337
diabetes 108, 115, 123,167, 199
MNIST 288
Swiss 81, 109, 123, 142, 153, 199, 205, 206
synthetic datasets 16, 231, 266
Titanic 346
wine 323

DBSCAN 308

decision trees 243

dropout 255

e

exploratory data analysis (EDA) 7, 101, 338, 346
Enet penalty 143

epoch 264

estimators

asymptotic normality 43

bias 43

consistency 43

Fundamentals of Robust Machine Learning: Handling Outliers and Anomalies in Data Science,
First Edition. Resve Saleh, Sohaib Majzoub and A. K. Md. Ehsanes Saleh.

© 2025 John Wiley & Sons, Inc. Published 2025 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/HandlingOutliersandAnomaliesinDataSciencele

383

http://www.wiley.com/go/HandlingOutliersandAnomaliesinDataScience1e

384

Index

estimators (contd.)

definition 36

properties 43

Euclidean distance 12

explainable artificial intelligence (XAI)

359
logistic regression 360
neural networks 365

f

F, score 269, 357

false positive rate (FPR) 271, 326
forward propagation 259
fully-connected neural network 253

9

Gaussian distribution 12
Gaussian mixture 16,17
gradient descent

basic procedure 47
momentum 257, 293
rmsprop 294
warm-up 295

h

heavy-tailed distribution 79
heteroscedasticity 188
histogram 100, 113, 305, 340
homoscedasticity 188
Huber’s method

basic approach 58
continuity 59
default 5 =1.345 59
discontinuity 61
hyperbolic functions 71
hyperparameter

clustering 14
definition 8

Huber 120

log-cosh 120

ridge 165

i

inlier definition 2
Isolation Forest 311
iterative boxplot 114

k

k-fold cross-validation 171

k-means 19

k-medians 21, 316, 317

k-nearest medians (k-NM) 320
k-nearest neighbors (k-NN) 241, 304
k-random validations 171,178

[

L, loss function 40

L;-norm 11

L, loss function 40

L,-norm 11

Lagrange multiplier 135, 237
Laplace distribution 41, 76, 79, 86
LASSO penalty 137

Law of Large Numbers 43
LC-aLASSO 153,176
LC-ridge 174

learning rate £ 48, 257

least absolute deviation (LAD) 40, 54, 191
least squares estimation (LSE) 40, 52, 63

least squares NN (LSNN) 342
light-tailed distribution 79
likelihood function 46, 204
linear regression 36, 95, 107
metrics 116
Lloyd-style iteration 15, 19
location model 55, 56
log-cosh
general form 85
linear regression 74
maximum likelihood estimation 83
neural network 251, 264
statistical properties 83

log-cosh logistic regression (LCLR) 225, 346
log-cosh NN (LCNN) 252, 264, 281, 342, 343

logistic regression 211, 346, 350, 360

log-likelihood 44, 84

loss functions

definition 36

Huber 58

L, 40,46,187

L, 40,46

log-cosh 69, 192
quantile loss function 190
LS-LASSO 153,176
LS-ridge 140, 166, 170

m

MADmax 316
Manhattan distance 12
maximum likelihood
basic procedure 44

L, 46
L, 46
log-cosh 75,83
SMRQ 202

mean vs. median 9
mean square error (MSE) 117,119, 165, 169
median absolute deviation (MAD) 11, 104, 318
median absolute error (MAE) 116,118,169, 171,
342, 344
M-estimation
definition 49
Huber 58
log-cosh 71
M-estimator 190, 194
mini-batch gradient descent 265
model complexity 162, 175
momentum 293
multi-class classification 281
multicollinearity 133
multiple linear model 42, 52

n

neural networks 251, 281
activation 255
architecture 254, 289, 339
backprop 260

forward prop 259

Index

history 251
neuron 251, 253
training 257
XAI 365

normalized median absolute deviation (MADN)

10, 11, 27, 80, 104, 124, 317

OAR-plot 110, 113

order statistics 9, 110
ordinary least square (OLS) 53
outlier definition 2

outlier detection

boxplots 98
clustering 25
histogram 100

outlier edit rules 102, 109

1.5-IQR 105, 109
3-MADN 27
3-sigma 25,102
4.5-MAD 104

outlier removal 105

anomaly detection 106
iterative boxplot 114
trimming 105
winsorization 105

overfitting 161, 228

polynomial expansion 161, 232
precision 269, 326, 329, 352
probability density function (PDF) 13, 40, 75, 86,

202

p-value 152

QP plot 196, 199, 201
QQ-plot 111

quad-plot 113
quadratic risk 163
quantile regression 187

check function 190
crossing problem 189

385

386

Index

quantile regression (contd.)
monotonicity 189
non-monotonicity 190, 192
standard errors 204

r
random forest 243
recall 269, 326, 329

receiver operating characteristics (ROC) 271, 325
regression quantiles (RQ) 190, 194
residuals
definition 38
distribution 40
reverse MLE rule 76, 202
ridge penalty 136, 148, 164, 341, 357
rmsprop 258, 294
robustness coefficient
definitions 85
linear regression (a =2) 120
logistic regression, a =10 355
quantile regression (a = 1.5) 200
root-mean-square error (RMSE) 118, 169, 344

S

sigmoid 253

simple linear model 55

smooth regression quantiles (SMRQ) 192

softmax activation 284

standard deviation 11

standard errors 79, 204

standardization
Gaussian 124

robust 122,317

stochastic gradient descent 265
supervised learning 5, 35

support vector classifier (SVC) 235
support vector machine (SVM) 238
synthetic circular dataset 267

t

tensorflow 376

time series 366

AR(p) model 367
moving average 374
outliers 375

stationary 371
trimming 105

true positive rate (TPR) 271
t-statistic 151, 177

u
underfitting 161, 228
unsupervised learning 5, 13, 304, 323

v

variable ordering 176-182, 358, 364
variable selection 176

variance 42, 43,139, 146

w
winsorization 105

z
z-score 13,104, 122,317

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

www.wiley.com/go/eula

	Cover
	Title Page
	Copyright
	Contents
	Preface
	About the Companion Website
	Chapter 1 Introduction
	1.1 Defining Outliers
	1.2 Overview of the Book
	1.3 What Is Robust Machine Learning?
	1.3.1 Machine Learning Basics
	1.3.2 Effect of Outliers
	1.3.3 What Is Robust Data Science?
	1.3.4 Noise in Datasets
	1.3.5 Training and Testing Flows

	1.4 Robustness of the Median
	1.4.1 Mean vs. Median
	1.4.2 Effect on Standard Deviation

	1.5 L1 and L2 Norms
	1.6 Review of Gaussian Distribution
	1.7 Unsupervised Learning Case Study
	1.7.1 Clustering Example
	1.7.2 Clustering Problem Specification

	1.8 Creating Synthetic Data for Clustering
	1.8.1 One‐Dimensional Datasets
	1.8.2 Multidimensional Datasets

	1.9 Clustering Algorithms
	1.9.1 k‐Means Clustering
	1.9.2 k‐Medians Clustering

	1.10 Importance of Robust Clustering
	1.10.1 Clustering with No Outliers
	1.10.2 Clustering with Outliers
	1.10.3 Detection and Removal of Outliers

	1.11 Summary
	Problems
	References

	Chapter 2 Robust Linear Regression
	2.1 Introduction
	2.2 Supervised Learning
	2.3 Linear Regression
	2.4 Importance of Residuals
	2.4.1 Defining Errors and Residuals
	2.4.2 Residuals in Loss Functions
	2.4.3 Distribution of Residuals

	2.5 Estimation Background
	2.5.1 Linear Models
	2.5.2 Desirable Properties of Estimators
	2.5.3 Maximum‐Likelihood Estimation
	2.5.4 Gradient Descent

	2.6 M‐Estimation
	2.7 Least Squares Estimation (LSE)
	2.8 Least Absolute Deviation (LAD)
	2.9 Comparison of LSE and LAD
	2.9.1 Simple Linear Model
	2.9.2 Location Problem

	2.10 Huber's Method
	2.10.1 Huber Loss Function
	2.10.2 Comparison with LSE and LAD

	2.11 Summary
	Problems
	References

	Chapter 3 The Log‐Cosh Loss Function
	3.1 Introduction
	3.2 An Intuitive View of Log‐Cosh
	3.3 Hyperbolic Functions
	3.4 M‐Estimation
	3.4.1 Asymptotic Behavior
	3.4.2 Linear Regression Using Log‐Cosh

	3.5 Deriving the Distribution for Log‐Cosh
	3.6 Standard Errors for Robust Estimators
	3.6.1 Example: Swiss Fertility Dataset
	3.6.2 Example: Boston Housing Dataset

	3.7 Statistical Properties of Log‐Cosh Loss
	3.7.1 Maximum‐Likelihood Estimation

	3.8 A General Log‐Cosh Loss Function
	3.9 Summary
	Problems
	References

	Chapter 4 Outlier Detection, Metrics, and Standardization
	4.1 Introduction
	4.2 Effect of Outliers
	4.3 Outlier Diagnosis
	4.3.1 Boxplots
	4.3.2 Histogram Plots
	4.3.3 Exploratory Data Analysis

	4.4 Outlier Detection
	4.4.1 3‐Sigma Edit Rule
	4.4.2 4.5‐MAD Edit Rule
	4.4.3 1.5‐IQR Edit Rule

	4.5 Outlier Removal
	4.5.1 Trimming Methods
	4.5.2 Winsorization
	4.5.3 Anomaly Detection Method

	4.6 Regression‐Based Outlier Detection
	4.6.1 LS vs. LC Residuals
	4.6.2 Comparison of Detection Methods
	4.6.3 Ordered Absolute Residuals (OARs)
	4.6.4 Quantile–Quantile Plot
	4.6.5 Quad‐Plots for Outlier Diagnosis

	4.7 Regression‐Based Outlier Removal
	4.7.1 Iterative Boxplot Method

	4.8 Regression Metrics with Outliers
	4.8.1 Mean Square Error (MSE)
	4.8.2 Median Absolute Error (MAE)
	4.8.3 MSE vs. MAE on Realistic Data
	4.8.4 Selecting Hyperparameters for Robust Regression

	4.9 Dataset Standardization
	4.9.1 Robust Standardization

	4.10 Summary
	Problems
	References

	Chapter 5 Robustness of Penalty Estimators
	5.1 Introduction
	5.2 Penalty Functions
	5.2.1 Multicollinearity
	5.2.2 Penalized Loss Functions

	5.3 Ridge Penalty
	5.4 LASSO Penalty
	5.5 Effect of Penalty Functions
	5.6 Penalty Functions with Outliers
	5.7 Ridge Traces
	5.8 Elastic Net (Enet) Penalty
	5.9 Adaptive LASSO (aLASSO) Penalty
	5.10 Penalty Effects on Variance and Bias
	5.10.1 Effect on Variance
	5.10.2 Geometric Interpretation of Bias

	5.11 Variable Importance
	5.11.1 The t‐Statistic
	5.11.2 LASSO and aLASSO Traces

	5.12 Summary
	Problems
	References

	Chapter 6 Robust Regularized Models
	6.1 Introduction
	6.2 Overfitting and Underfitting
	6.3 The Bias–Variance Trade‐Off
	6.4 Regularization with Ridge
	6.4.1 Selection of Hyperparameter λ
	6.4.2 Example: Diabetes Dataset

	6.5 Generalization using Robust Estimators
	6.5.1 Training and Test Sets
	6.5.2 k‐Fold Cross‐validation

	6.6 Robust Generalization and Regularization
	6.6.1 Regularization with LC‐Ridge

	6.7 Model Complexity
	6.7.1 Variable Selection Using LS‐LASSO
	6.7.2 Variable Ordering Using LC‐aLASSO
	6.7.3 Building a Compact Model

	6.8 Summary
	Problems
	References

	Chapter 7 Quantile Regression Using Log‐Cosh
	7.1 Introduction
	7.2 Understanding Quantile Regression
	7.3 The Crossing Problem
	7.4 Standard Quantile Loss Function
	7.5 Smooth Regression Quantiles (SMRQ)
	7.6 Evaluation of Quantile Methods
	7.6.1 Qualitative Assessment
	7.6.2 Quantitative Assessment

	7.7 Selection of Robustness Coefficient
	7.8 Maximum‐Likelihood Procedure for SMRQ
	7.9 Standard Error Computation
	7.10 Summary
	Problems
	References

	Chapter 8 Robust Binary Classification
	8.1 Introduction
	8.2 Binary Classification Problem
	8.2.1 Why Linear Regression Fails
	8.2.2 Outliers in Binary Classification

	8.3 The Cross‐Entropy (CE) Loss
	8.3.1 Deriving the Cross‐Entropy Loss
	8.3.2 Understanding Logistic Regression
	8.3.3 Gradient Descent

	8.4 The Log‐Cosh (LC) Loss Function
	8.4.1 General Formulation

	8.5 Algorithms for Logistic Regression
	8.6 Example: Motor Trend Cars
	8.7 Regularization of Logistic Regression
	8.7.1 Overfitting and Underfitting
	8.7.2 k‐Fold Cross‐Validation
	8.7.3 Penalty Functions
	8.7.4 Effect of Outliers

	8.8 Example: Circular Dataset
	8.9 Outlier Detection
	8.10 Robustness of Binary Classifiers
	8.10.1 Support Vector Classifier (SVC)
	8.10.2 Support Vector Machines (SVMs)
	8.10.3 k‐Nearest Neighbors (k‐NN)
	8.10.4 Decision Trees and Random Forest

	8.11 Summary
	Problems
	Reference

	Chapter 9 Neural Networks Using Log‐Cosh
	9.1 Introduction
	9.2 A Brief History of Neural Networks
	9.3 Defining Neural Networks
	9.3.1 Basic Computational Unit
	9.3.2 Four‐Layer Neural Network
	9.3.3 Activation Functions

	9.4 Training of Neural Networks
	9.5 Forward and Backward Propagation
	9.5.1 Forward Propagation
	9.5.2 Backward Propagation
	9.5.3 Log‐Cosh Gradients

	9.6 Cross‐entropy and Log‐Cosh Algorithms
	9.7 Example: Circular Dataset
	9.8 Classification Metrics and Outliers
	9.8.1 Precision, Recall, F1 Score
	9.8.2 Receiver Operating Characteristics (ROCs)

	9.9 Summary
	Problems
	References

	Chapter 10 Multi‐class Classification and Adam Optimization
	10.1 Introduction
	10.2 Multi‐class Classification
	10.2.1 Multi‐class Loss Functions
	10.2.2 Softmax Activation Function

	10.3 Example: MNIST Dataset
	10.3.1 Neural Network Architecture
	10.3.2 Comparing Cross‐Entropy with Log‐Cosh Losses
	10.3.3 Outliers in MNIST

	10.4 Optimization of Neural Networks
	10.4.1 Momentum
	10.4.2 rmsprop Approach
	10.4.3 Optimizer Warm‐Up Phase
	10.4.4 Adam Optimizer

	10.5 Summary
	Problems
	References

	Chapter 11 Anomaly Detection and Evaluation Metrics
	11.1 Introduction
	11.2 Anomaly Detection Methods
	11.2.1 k‐Nearest Neighbors
	11.2.2 DBSCAN
	11.2.3 Isolation Forest

	11.3 Anomaly Detection Using MADmax
	11.3.1 Robust Standardization
	11.3.2 k‐Medians Clustering
	11.3.3 Selecting MADmax
	11.3.4 k‐Nearest Neighbors (k‐NN)
	11.3.5 k‐Nearest Medians (k‐NM)

	11.4 Qualitative Evaluation Methods
	11.5 Quantitative Evaluation Methods
	11.6 Summary
	Problems
	Reference

	Chapter 12 Case Studies in Data Science
	12.1 Introduction
	12.2 Example: Boston Housing Dataset
	12.2.1 Exploratory Data Analysis
	12.2.2 Neural Network Architecture
	12.2.3 Comparison of LSNN and LCNN
	12.2.4 Predicting Housing Prices
	12.2.5 RMSE vs. MAE
	12.2.6 Correlation Coefficients

	12.3 Example: Titanic Dataset
	12.3.1 Exploratory Data Analysis
	12.3.2 LCLR vs. CELR
	12.3.3 Outlier Detection and Removal
	12.3.4 Robustness Coefficient for Log‐Cosh
	12.3.5 The Implications of Robustness
	12.3.6 Ridge and aLASSO

	12.4 Application to Explainable Artificial Intelligence (XAI)
	12.4.1 Case Study: Logistic Regression
	12.4.2 Case Study: Neural Networks

	12.5 Time Series Example: Climate Change
	12.5.1 Autoregressive Model
	12.5.2 Forecasting Using AR(p)
	12.5.3 Stationary Time Series
	12.5.4 Moving Average
	12.5.5 Finding Outliers in Time Series

	12.6 Summary and Conclusions
	Problems
	References

	Index
	EULA

oS or

ROBUST

WACHINE LEARNING.

o

