Data Without Labels

Practical unsupervised machine learning

Vaibhav Verdhan

Foreword by Ravi Gopalakrishnan

/II MANNING

The Complete Machine Learning Modeling Process

% Data science project steps

Archetype segmentation

Data Data Model Text mining using Business outcome

input preprocessing dataset Identify clusters within cosine-similarity
« Extracted segments

data

‘ based on customer

buying habits

« Variable dependency
graphs and their
implication on sales

Identify key factors
@ in user experience

Bayesian belief networks

Survey

Identify variable change
implication

Praise for Data Without Labels

A must read for learning unsupervised learning and GenAl.

—Khuram Pervez, EGA

A practical guide for beginners as well as practitioners.

—Amaresh Rajasekharan, IBM

The absolute resource for all important questions about data without labels.

—Arne Peter Raulf, German Aerospace Center

Comprehensive and detailed guide to mastering unsupervised learning and generative Al

—XKTrishna Chaitanya Anipindi, Hexagon

Explores new ways to uncover patterns, generate insights, and push machine learning beyond
labeled data.

—Stephen Tobayiwa, Unite Services GmbH

A concise guide covering both theory and implementation.

—Deepika Sinha, Head of AI/ML/Gen Al

Data Without Labels

PRACTICAL UNSUPERVISED MACHINE LEARNING

VAIBHAV VERDHAN
FOREWORD BY RAVI GOPALAKRISHNAN

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2025 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any
usage of the information herein.

/I/I Manning Publications Co. Development editor: Ian Hough
20 Baldwin Road Technicaleditor: Davide Dev Vento
PO Box 761 Review editor: Kishor Rit
Shelter Island, NY 11964 Production editor: Kathy Rossland

Copyeditor: Kari Lucke
Proofreader: Mike Beady
Technical proofreader: Frances Buontempo
Typesetter and cover designer: Marija Tudor

ISBN 9781617298721
Printed in the United States of America

To Yashi, Pakhi, Rudra, and Shiva

brief conients

PART 1 BASICS tteuteeteeeeeeeeeecesceseesescescescssescessesssssssessssssssssesssssssssons 1

1 = Introduction to machine learning 3
2 = (Clustering techniques 32
3 = Dimensionality reduction 77

PART 2 INTERMEDIATE LEVEL .cuueceeeeeereeceecescescescscessesssscscessnsonns 109

4 = Association rules 111

5 = Clustering 149

6 = Dimensionality reduction 176

7 = Unsupervised learning for text data 202

PART 3 ADVANCED CONCEPTS .eeeveteeeececercscecescscscssessscssesscsseses 233

& = Deep learning: The foundational concepts 235
9 = Autoencoders 267

10 = Generative adversarial networks, generative Al, and
ChatGPT 279

11 = End-to-end model deployment 291

appendix A Mathematical foundations 307

contents

Sforeword xiv

preface xvi

acknowledgments xviii

about this book xx

about the author — xxiii

about the cover illustration — xxiv

Introduction to machine learning 3
1.1 Technical toolkit 4
1.2 Data, data types, data management, and quality 5

What is data? 5 = Various types of data 6 = Data quality 9
Data engineering and management 11

1.3 Data analysis, ML, Al, and business intelligence 12
1.4 Nuts and bolts of ML 14
1.5 Types of ML algorithms 17

Supervised learning 18 = Unsupervised algorithms 24
Semisupervised algorithms 28 = Reinforcement learning 28

1.6 Concluding thoughts 29

Clustering techniques 32
2.1 Technical toolkit 33

2.2
2.3

2.4

2.5

2.6

2.7
2.8
2.9

CONTENTS

Clustering 34
Centroid-based clustering 37

K-means clustering 39 = Measuring the accuracy of clustering 42
Finding the optimum value of k 43 = Pros and cons of k-means

clustering 44 = K-means clustering implementation using
Python 46

Connectivity-based clustering 50

Types of hierarchical clustering 52 = Linkage criterion for distance
measurement 53 = Optimal number of clusters 54 = Pros and
cons of hierarchical clustering 56 = Hierarchical clustering case
study using Python 57

Density-based clustering 60
Neighborhood and density 60 = DBSCAN clustering 62

Case study using clustering 67

Business context 68 = Dataset for the analysis 69 = Suggested
solutions 70 = Solution for the problem 70

Common challenges faced in clustering 72
Concluding thoughts 74

Practical next steps and suggested readings 74

Dimensionality reduction 77

3.1
3.2
3.3

3.4

3.5

3.6

3.7
3.8
3.9
3.10

Technical toolkit 78
The curse of dimensionality 78
Dimension reduction methods 82
Mathematical foundation 82
Manual methods of dimensionality reduction 82

Manual feature selection 83 = Correlation coefficient 84
Algorithm-based methods for reducing dimensions 85

Principal component analysis 85
Eigenvalue decomposition 90 = Python solution using PCA 91
Singular value decomposition 97
Python solution using SVD 98
Pros and cons of dimensionality reduction 101
Case study for dimension reduction 103
Concluding thoughts 106

Practical next steps and suggested readings 106

CONTENTS ix

PART 2 INTERMEDIATE LEVEL ..cceccectececrecaccessecesececses 109

Association rules 111
4.1 Technical toolkit 112
4.2 Association rule overview 112
4.3 The building blocks of association rules 114
Support, confidence, lift, and conviction 115
4.4 Apriori algorithm 119

Python implementation 121 = Challenges with the Apriori
algorithm 125

4.5 [Equivalence class clustering and bottom-up
lattice traversal 126

Python implementation 129
4.6 F-P algorithm 130
4.7 Sequence rule mining 137
Sequential Pattern Discovery Using Equivalence 138
4.8 Case study for association rules 142
4.9 Concluding thoughts 145
4.10 Practical next steps and suggested readings 147

Clustering 149
5.1 Technical toolkit 150
5.2 Clustering: A brief recap 150
5.3 Spectral clustering 151

Building blocks of spectral clustering 153 = The process
of spectral clustering 156

5.4 Python implementation of spectral clustering 158
5.5 Fuzzy clustering 160

Types of fuzzy clustering 161 = Python implementation of
FCM 164

5.6 Gaussian mixture model 167
EM technique 169 = Python implementation of GMM 171

5.7 Concluding thoughts 174
5.8 Practical next steps and suggested readings 174

CONTENTS

Dimensionality reduction 176

6.1
6.2

6.3
6.4

6.5

6.6
6.7
6.8

Technical toolkit 177
Multidimensional scaling 177
Classic MDS 179 = Nonmetric MDS 180
Python implementation of MDS 184
t-distributed stochastic neighbor embedding 189

Cauchy distribution 191 = Python implementation
of -SNE 193

Uniform manifold approximation projection 196

Working with UMAP 197 = Using UMAP 197
Key points of UMAP 198

Case study 198
Concluding thoughts 200
Practical next steps and suggested readings 200

Unsupervised learning for text data 202

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15

7.16
7.17
7.18
7.19

Technical toolkit 203

Text data is everywhere 203

Use cases of text data 204

Challenges with text data 205

Preprocessing the text data 207

Data cleaning 207

Extracting features from the text dataset 209
Tokenization 210

BOW approach 211

Term frequency and inverse document frequency 213
Language models 214

Text cleaning using Python 216

Word embeddings 219

Word2Vec and GloVe 221

Sentiment analysis case study with Python
implementation 222

Text clustering using Python 228
GenAl for text data 230
Concluding thoughts 230

Practical next steps and suggested readings 231

CONTENTS xi

PART 3 ADVANCED CONCEPTS .eoceveeccescescescescescescescese 233

Deep learning: The foundational concepts 235
8.1 Technical toolkit 236
Deep learning: What is it? What does it do? 236
8.2 Building blocks of a neural network 238

Neural networks for solutions 238 = Antificial neurons and
perceptrons 239 = Different layers in a network 241
Activation functions 243 = Hyperparameters 245
Optimization functions 246

8.3 How does deep learning work in a supervised
manner? 248

Supervised learning algorithms 248 = Step 1: Feed-forward
propagation 248 = Step 2: Adding the loss function 249
Step 3: Calculating the error 250

8.4 Backpropagation 250

The mathematics behind backpropagation 251 = Step 4:
Optimization 253

8.5 How deep learning works in an unsupervised
manner 253

8.6 Convolutional neural networks 254
Key concepts of CNN 254 = Use of CNN 256
8.7 Recurrent neural networks 256
Key concepts of RNN 256
8.8 Boltzmann learning rule 258
Concepts of the Boltzmann learning rule 258 = Key points 259
8.9 Deep belief networks 259
Key points of DBN 259
8.10 Popular deep learning libraries 261
Python code for Keras and TF 262
8.11 Concluding thoughts 263
8.12 Practical next steps and suggested readings 264

Autoencoders 267
9.1 Technical toolkit 267
9.2 Feature learning 268

9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

CONTENTS

Introducing autoencoders 268

Components of autoencoders 269

Training of autoencoders 270

Application of autoencoders 271

Types of autoencoders 271

Python implementation of autoencoders 275
Concluding thoughts 277

Practical next steps and suggested readings 277

Generative adversarial networks, generative Al, and
ChatGPT 279

10.1
10.2
10.3
10.4

10.5

10.6
10.7
10.8

AI: A transformation 279

GenAl and its significance 280
Discriminative models and GenAl 282
Generative adversarial networks 283

The generator network 283 = The discriminator network 284
Adversarial training 285 = Variants and applications of
GANs 286 = BERT, GPT-3, and others 286

ChatGPT and its details 287

Key features of ChatGPT 287 = Applications of ChatGPT 287
Integration of GenAl 288
Concluding thoughts 289

Practical next steps and suggested readings 290

End-to-end model deployment 291

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10

The machine learning modeling process 292
Business problem definition 292

Data discovery and feasibility analysis 294

Data cleaning and prepreparation 295
Duplicate values in the data 295

Categorical variables 296

Missing values in dataset 297

Outliers present in the data 299

Exploratory data analysis 299

Model development and business approval 300

11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18

appendix A

Model deployment 300

Purpose of model deployment 300

Types of model deployment 301
Considerations while deploying the model 302
Documentation 303

Model maintenance and refresh 303
Concluding thoughts 304

Practical next steps and suggested readings 305

Mathematical foundations 307

index 319

Joreword

In today’s dynamic landscape of Al and machine learning, the ability to extract mean-
ingful insights from unlabeled data is transforming industries and driving innovation.
As an Al leader and practitioner with experience across multiple sectors—and cur-
rently heading the Data Science and Al team at a major pharmaceutical company—I
have witnessed first-hand how groundbreaking ideas reshape entire industries.

In our work in oncology and biopharma, we use Al to empower life sciences com-
panies to educate healthcare professionals and target key stakeholders with preci-
sion—ensuring that the right therapy reaches the right patient at the right time. In
regulated industries, where precision and compliance are paramount, innovative
approaches that extract actionable insights from raw, unlabeled data are not just ben-
eficial but essential.

Data Without Labels is organized into three comprehensive parts that chart a clear
course from theory to application, as detailed in the table of contents. Part 1 lays the
groundwork with core unsupervised learning techniques, covering clustering, dimen-
sionality reduction, and anomaly detection to equip readers with essential tools for
interpreting raw data. Part 2 advances into sophisticated methodologies, introducing
self-supervised and contrastive learning approaches that overcome the limitations
imposed by scarce labeled data. Part 3 bridges theory and practice, delving into deep
learning essentials—from neural network building blocks, activation functions, and
autoencoders with practical TensorFlow and Keras code to cutting-edge generative
models, including generative adversarial networks, BERT, and large language models
like GPT. This final section illustrates how these tools can be applied to real-world
challenges, guiding practitioners in deploying Al-driven strategies that ensure optimal
outcomes while maintaining regulatory compliance.

Xiv

FOREWORD XV

I'am honored to support and endorse this remarkable work. May it inspire you to
explore new frontiers in Al and drive innovative solutions that lead to better outcomes
for patients and the broader healthcare community.

—RAVI GOPALAKRISHNAN, VICE PRESIDENT
DATA SCIENCE & Al, ASTRAZENECA

preface

Data is the new oil, electricity, and power. The amount of data available has exploded
in the past 10 to 15 years. Al-based solutions are harnessing the datasets, and hence Al
has made unprecedented progress in the past decade. It has transformed our lives—
the way we buy, plan, travel, respond, and connect. With the introduction of cloud
computing, massive computational power became readily available. One of the most
powerful additions has been large language models like ChatGPT, which revolution-
ized the entire ecosystem. Across all business domains, including retail, telecommuni-
cations, banking, financial services, insurance, healthcare, manufacturing, and
aviation—and cutting through the functions of marketing, CRM, production, supply
chains, pricing, quality—data-based Al tools are proving their tremendous value. Pre-
dictive algorithms, optimization solutions, and classification tools have improved effi-
ciency, reduced operations cost, enhanced profit, and opened new doors to
humankind. We can research for new drugs faster and more efficiently, create better
and safer manufacturing processes, enhance the effectiveness of business teams, and
generate superior and more mature business solutions.

As an ardent follower of Al, I have witnessed both the unwavering excitement and
the complexity of navigating this complicated landscape, which is a combination of
technology, engineering, research, and human interest. Throughout the process of
writing this book, I have often been reminded of the complexities and nuances of
understanding Al. The answers are not simple, and, honestly, the more I explored the
topic, the more I came to appreciate the layers and shades that shape the way we
learn, act, and understand.

This book has been a journey—a journey of discovery, reflection, challenge, and
certainly arduous work. A simple thought was the inception: a curiosity about unsu-

xvi

PREFACE xvii

pervised learning solutions by harnessing deep learning and generative Al. And
during this journey, the curiosity evolved into something that I hope will inspire,
inform, and perhaps challenge readers. This book is a culmination of hours of brain-
storming sessions, discussions and research, and thought and grit, woven together
with the intention of offering something tangible as well as valuable to readers.

I've made a conscious effort to present convoluted ideas in a manner that is both
approachable as well as technically thorough. The goal is not just to help you compre-
hend deep learning or generative Al but to help you develop a much more in-depth
understanding of how these solutions are created, the mathematics behind them, and
how they can be adapted to solve a range of problems.

acknowledgments

This book is possible due to support from Manning Publications: a big thank you to
Manning. I owe a deep debt of gratitude to many individuals who have helped me in
shaping the book. To my mentors, colleagues, and friends—thank you for your
insights, patience, and unwavering support throughout this journey. I want to thank
the Manning team for making this book possible, particularly Andy Waldron, the
acquisitions editor who believed in this book and got it started; Ian Hough, the devel-
opment editor who saw the book through the writing process; Ravi Gopalakrishnan
for his excellent foreword; and Davide Dev Vento, the technical editor who provided
great technical insights throughout. Davide has been a senior advanced physicist and
high-performance computing specialist at Quantinuum since 2022. He specializes in
computational physics, high-performance computing, parallel computing, optimiza-
tion, and tuning.

Thanks also to the rest of the team working in the background to get this book
published. To all the reviewers: Alessandro Buggin, Amaresh Rajasekharan, Arne
Peter Raulf, Bob Liu, Clifford Thurber, Gary Bake, Joel Holmes, Juan Jimenez, Keith
Kim, Krishna Chaitanya Anipindi, Lara Thompson, Leonardo Gomes da Silva,
Michael Aydinbas, Monica Guimaraes, Obiamaka Agbaneje, Oliver Korten, Ondiej
Krajicek, Paul Adamson, Radhakrishna Maddukuru, Ramakanth Gidijala, Richard
Vaughan, Rohit Mishra, Sergio Govoni, Simon Tschoeke, Simone Sguazza, Sruti S.,
Stephen Tobayiwa, Subhash Talluri, Todd Cook, and Vishwesh Ravi Shrimali, your
suggestions helped make this a better book.

I am grateful to my family—my wife Yashi and my lovely kids Pakhi and Rudra for
bearing with me and giving me the time and space to bring this book into being.

Xviii

ACKNOWLEDGMENTS Xix

Finally, I extend my thanks to you, the reader, for taking the time to engage with
this book. Your interest in the field of Al is what is driving the continued growth in
this field. I hope this book serves you well in this journey.

about this book

As you read through the chapters, I urge you to not just absorb the material but to
actively experiment with the concepts and techniques presented. One of the best
techniques to learn is getting your hands dirty; there are numerous practical exercises
and challenges to reinforce your understanding. Whether you are reading the book in
its entirety or only the portions that pique your interest, I hope you find something
meaningful in these pages.

Who should read this book

This book serves as both an introduction to unsupervised learning, deep learning,
and generative Al for newcomers and a comprehensive reference for experienced
professionals. It is intended for those interested in the latest trends, methodologies,
and best practices in unsupervised learning, including students and researchers who
wish to explore unsupervised learning algorithms in depth. Data science professionals
seeking insights and solutions to common challenges and managers aiming to com-
municate effectively with teams and clients will find value here. Additionally, curious
individuals looking to learn about unsupervised learning algorithms and enhance
their Python skills through case studies will benefit.

The book assumes a basic knowledge of software engineering but provides expla-
nations and references for foundational material when needed. Familiarity with
object-oriented programming languages like C++, Java, and Objective-C is advisable,
as well as experience with Python, which is used throughout the book. A basic under-
standing of mathematics and geometry will aid in visualizing results, and knowledge of
data-related use cases will assist in relating to business scenarios. Above all, an open
mindset for learning is essential.

XX

ABOUT THIS BOOK xxi

How this book is organized: A road map

The book is organized into three parts, each covering a key area of unsupervised
learning.

In part 1, we explore the basic principles, mathematical foundations, and core
algorithms around clustering and dimensionality reduction techniques.

As the book progresses into part 2, we dive into more advanced topics such as deal-
ing with text data, advanced clustering, and advanced dimensionality reduction
algorithms.

Part 3 (perhaps the most complex) is focused on deep learning and generative Al
solutions. In this book, we aim to bridge the gap between theoretical knowledge and
practical application, and hence we give emphasis to pragmatic case studies, examples,
and exercises. It is complemented by developing solutions with Python using Al algo-
rithms. All the datasets and Python code books are checked in at the GitHub location.

All the very best for the upcoming journey. We hope it is as enriching and exciting
for you as it has been for us.

About the code

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (=). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/data-without-labels. The complete
code for the examples in the book is available for download from the Manning web-
site at https://www.manning.com/books/data-without-labels, and from GitHub at
https://github.com/vverdhan/DataWithoutLabels.

liveBook discussion forum

Purchase of Data Without Labels includes free access to liveBook, Manning’s online
reading platform. Using liveBook’s exclusive discussion features, you can attach com-
ments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the
author and other users. To access the forum, go to https://livebook.manning
.com/book/data-without-labels/discussion.

https://livebook.manning.com/book/data-without-labels/discussion
https://livebook.manning.com/book/data-without-labels/discussion
https://livebook.manning.com/book/data-without-labels/discussion
https://livebook.manning.com/book/data-without-labels
https://www.manning.com/books/data-without-labels
https://github.com/vverdhan/DataWithoutLabels

xxii

ABOUT THIS BOOK

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

about the author

VAIBHAV VERDHAN is a seasoned data science and Al professional,
and he has worked across geographies and domains. He is an
industry leader and a regular speaker at conferences and summits.
He loves to work on machine learning and Al problems and men-
tor students/professionals on data science and machine learning
solutions. Currently, he resides in London with his family.

xxiii

about the cover illustration

The figure on the cover of Data Without Labels is “Paysan des Environs de Berne,” or
“Peasant from the surroundings of Bern,” taken from a collection by Jacques Grasset
de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by
hand.

In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.

XXiv

Part 1

Basics

elcome to part 1.

Machine learning and Al are not magic. Neither are they a secret art that can
be understood only by a select few. At their core, they are simply a way for us to
help the algorithms assimilate historical datasets and generate insights for us.
These insights help us to initiate better, faster, and more influential business
effects We give clear, logical instructions that guide the algorithms to do what we
want.

But, like any art, learning machine learning and Al take practice. It’s not
about memorizing Python or R or a programming language syntax or learning
some commands to run the code or cut-paste the code. It’s about solving prag-
matic business problems, thinking about the business objectives critically, and
breaking down those complex tasks meticulously into smaller and manageable
steps and hence achieving the business objective.

This book isn’t just about writing code; it’s about learning how to think like a
data scientist.

If you’ve never studied unsupervised learning or you’ve never written a single
line of Python code, that’s perfectly fine. It is much easier than you think. We
start with simple unsupervised learning algorithms.

All the very best on this journey. Let’s start with the basics, one step at a time.

Introduction to
machine learning

This chapter covers

= An introduction to data, types of datasets, quality,
and sources

= Machine learning and types of machine learning
algorithms

= An overview of different types of algorithms

There are only patterns, patterns on top of patterns, patterns that affect other
patterns. Patterns hidden by patterns. Patterns within patterns.

—Chuck Palahniuk

There is a saying going around: “Data is the new electricity.” Data is indeed trans-
forming our world, much like electricity has; nobody can deny that. But like elec-
tricity, we must remember that data must be properly harnessed to utilize its value.
We have to clean the data and analyze and visualize it, and only then can we
develop insights from it. The fields of data science, machine learning (ML), and Al
are helping us to better harness data and extract trends and patterns so we can
make more insightful and balanced decisions in our activities and business.

1.1

CHAPTER 1 Introduction to machine learning

In this book, we unravel the puzzles of data and see how we can find the patterns
hidden within. We will be studying a branch of ML referred to as unsupervised learning.
Unsupervised learning solutions are one of the most influential approaches and are
changing the face of the industry. They are utilized in banking and finance, retail,
insurance, manufacturing, aviation, medical sciences, telecom, and almost every other
sector.

Throughout the book, we discuss concepts of ML with a focus on unsupervised
learning—the building blocks of algorithms, their nuts and bolts, background pro-
cesses, and mathematical foundation. We will examine concepts, study best practices,
analyze common errors and pitfalls, and use a case study—based approach that comple-
ments the learning. At the same time, we develop actual Python code for solving such
problems. All the codes are accompanied by step-by-step explanations and comments.

By the time you finish this book, you will have a very good understanding of unsu-
pervised technique-based ML, various algorithms, the mathematics and statistical
foundation on which the algorithm rests, business use cases, Python implementation,
and best practices.

This first chapter is designed to introduce the concepts of ML. We’ll begin by dis-
cussing the concepts fundamental to all data analysis and ML: data itself, how it is
managed, and what constitutes good-quality data. We’ll then move on to discuss data
analysis in the context of ML and deep learning, consider different types of ML algo-
rithms, and wrap up by considering the technical toolkit recommended for getting
hands-on with the content in this book. Welcome to the first chapter and all the very
best!

Technical toolkit

The following tools are used for different facets of the project:

Data engineering—Hadoop, Spark, Scala, Java, C++, SQL, Redshift, Azure,
PySpark

Data analysis—SQL, R, Python, Excel

ML—SQL, R, Python, Excel, Weka, Julia, MATLAB, SPSS, SAS
Visualization—Tableau, Power BI, Qlik, COGNOS

Model deployment—Docker, Flask, Amazon S3

Cloud services—Azure, AWS, GCP

In this book, we are going to use Python. You are advised to install the latest version of
Python on your system. At least version 3.5+ is advisable, though the latest version as of
this writing is 3.13. We will also use Jupyter Notebook, so installing Anaconda on your
system is advisable.

NOTE All the codes and datasets will be checked in at the GitHub repository:
https://github.com/vverdhan/DataWithoutLabels. You are expected to repli-
cate them and try to reproduce the results.

https://github.com/vverdhan/DataWithoutLabels

1.2

121

A

0

0
W
0

1.2 Data, data types, data management, and quality 5

Data, data types, data management, and quality

We begin by introducing the protagonist of this book: data. Data can be thought of as
facts and statistics that are collected for performing any kind of analysis or study. But
data also has its own traits, attributes, quality measures, and management principles. It
is stored, exported, loaded, transformed, and measured. In that sense, data is a tangi-
ble “thing” in its own regard, and it must be handled properly to correctly utilize it. To
do that, we must properly understand data.

Let’s start with the fundamentals: the definition of data. Once we’ve defined data,
we will proceed to discuss different types of data, their respective examples, and the
attributes of data that make it useful and of good quality.

What is data?

Data is ubiquitous. You make a phone call using a mobile network; as you do, you are
generating data. You book a flight ticket and hotel for an upcoming vacation; data is
being created. Our day-to-day activity-generated data might include performing a
bank transaction, surfing social media, or shopping websites online. That data is trans-
formed from one form to another, stored, cleaned, managed, and analyzed. So what
actually is it?

Formally put, data is a collection of facts, observations, measures, text, numbers,
images, and videos. A dataset might be clean (i.e., organized to be free from errors,
inconsistencies, and irrelevant information) or unclean, be ordered (e.g., alphabeti-
cally) or unordered, or have mixed data types or all one type. As mentioned, data in
itself is not useful until we clean it, arrange it, analyze it, and draw insights from it. We
can visualize the transition from raw to more useful forms in figure 1.1.

oo

=X

O ook
O

oA 00X oA

AOLo Aoa 0.0

0 <A o KA
Raw Data Information Knowledge Insights

Figure 1.1 How we can transform raw data to become information, knowledge, and, finally, insights that can be
used in business to drive decisions and actions

Raw data is converted to information when we can find distinctions in it. When we
relate the terms and “connect the dots,” the same piece of information becomes
knowledge. Insight is the stage where we can find the major centers and significant

1.2.2

CHAPTER 1 Introduction to machine learning

points. An insight should be actionable, succinct, and direct. For example, if a
customer retention team of a telecom operator is told that customers who do not
make a call for nine days have a 30% higher chance of churn than those who make
calls, this will be a useful insight that they can work on and try to resolve. Similarly, if a
line technician in a manufacturing plant is informed that using mold X results in 60%
more defects than using mold Y, they will refrain from using the poorly performing
mold in the future. An insight is quite useful for a business team because they can con-
sider it and take corrective measures.

Various types of data

As we’ve discussed, data is generated by much of our day-to-day activity. We can
broadly classify that data into different types, as shown in figure 1.2.

Data

Quantitative Qualitative

[—Iﬁ I
[
Discrete Continuous l Binary l Nominal Ordinal
J

Figure 1.2 The divisions and subdivisions of data

Data can be divided into quantitative and qualitative categories, which are further sub-
classified:

Qualitative data is the data type that cannot be measured or weighed—for exam-
ple, taste, color, odor, fitness, name, etc. They can only be observed subjectively.
Formally put, when we categorize something or make a classification for it, the
data generated is qualitative in nature. Examples are colors in a rainbow, cities
in a country, quality of a product, gender, etc. They are also called categorical
variables. Qualitative data can be further subcategorized into binary, nominal,
and ordinal datasets:

— Binary data, as the name suggests, has only two classes that are mutually
exclusive to each other. Examples are yes/no, dry/wet, hard/soft, good/bad,
true/false, etc.

— Nominal data can be described as the type of data that, though categorized,
does not have any sequence or order. Examples are distinct languages that

1.2 Data, data types, data management, and quality 7

are spoken in a country, colors in a rainbow, types of services available to a
customer, cities in a country, etc.

— Ordinal data is similar to nominal data, except we can order it in a sequence.
Examples are fast/medium/slow, positive/neutral/negative, etc.

Quantitative data is all the types of data points that can be measured, weighed,
scaled, recorded, etc. Examples are height, revenue, number of customers,
demand quantity, area, volume, etc. They are the most common form of data
and allow mathematical and statistical operations. Quantitative data is further
subcategorized as discrete and continuous:

— Discrete data is precise, to the point, and represented as integers. For exam-
ple, the number of passengers in a plane or the population of a city cannot
be in decimals.

— Continuous data points can take any value, usually in a range. For example,
height can take decimal values or the price of a product need notbe an integer.

Any data point will generally will fall into one of these classes, based on its properties.
There is one more logical grouping that can be done using source and usage, which
makes a lot of sense while solving business problems. This grouping allows us to
design solutions customized to the data type.

Depending on the source and usage, we can also think of data in two broad classes:
structured and unstructured data. A dataset that can be represented in a row-column
structure easily is a structured dataset. For example, transactions made by five custom-
ers in a retail store can be stored, as shown in table 1.1.

Table 1.1 An example of a structured dataset with attributes like amount, date, city, items, etc.

Customer ID Transaction date Amount ($) No. of items Payment mode (3147
1001 01-June-2024 100 5 Cash New Delhi
1002 02-June-2024 101 6 Card New York
1003 03-June-2024 102 7 Card London
1004 04-June-2024 103 8 Cash Dublin
1005 05-June-2024 104 9 Cash Tokyo

In table 1.1, for each unique customer ID, we have the transaction date, the amount
spent in dollars, the number of items purchased, the mode of payment, and the city in
which the transaction was made. Such a data type can be extended to employee
details, call records, banking transactions, etc.

NOTE Most of the data used in analysis and model building is structured.
Structured data is easier to store, analyze, and visualize in the form of graphs
and charts.

CHAPTER 1 Introduction to machine learning

Many algorithms and techniques cater to structured data—in normal real-world lan-
guage, we refer to structured data primarily. Unstructured data is not easily sorted
into a row-column structure. It can be text, audio, image, or video. Figure 1.3 shows
examples of unstructured data and their respective sources, as well as the primary
types of unstructured data: text, images, audio, and video along with their examples.

- Text data Facebook reviews, tweets, customer
complaints, product reviews

l Product images, objects ‘

— Images data

Figure 1.3 Unstructured data,

along with its various types and
m Audio data | Call center recordings, radio ads | examples. This data is usually

complex to analyze and

| Video data YouTube videos, product videos, generally requires deep learning-
video ads, product shoots based algorithms.

Computers and processors understand only binary numbers. So these unstructured

data points still need to be represented as numbers so that we can perform mathemat-
ical and statistical calculations on them. For example, an image is made up of pixels. If
itis a colored image, each pixel will have RGB (red, green, blue) values and each RGB
can take a value (0-255). Hence, we will be able to represent an image as a matrix on
which further mathematical calculations can be made. Text, audio, and video can be
represented similarly.

NOTE In general, deep learning-based solutions like convolutional neural
networks (CNN) and recurrent neural networks (RNN) are used for unstruc-
tured data. We are going to work on text and explore CNN and RNN at a
later stage in the book.

Unstructured data can be understood through an example: consider a picture of a
vacuum cleaner, as shown in figure 1.4. A portion of the image can be represented as
a matrix and will look like the matrix seen in the figure. This example is only for illus-
tration purposes and doesn’t show actual values.

Figure 1.4 An
10 11 |11 [10] 12 example of how
unstructured data can
be represented as a
matrix to analyze. The
matrix on the right is
only an illustration
and not the actual
numbers.

10 | 11 | 10 |16 | 11

123

1.2 Data, data types, data management, and quality 9

Similarly, we can have representations of text, audio, or video data. Due to the size
and large number of dimensions typically present in such data, this kind of unstruc-
tured data is complex to process and model, and hence, in general, deep learning-
based models serve that purpose.

In addition to the broad types of data we’ve discussed so far, we can have more cat-
egories like ratios or scales, which can be used to define the relationship of one vari-
able with another. All these data points (whether structured or unstructured) are
defined by the way they are generated in real life.

All of these data points have to be captured, stored, and managed. There are quite
a few tools available for managing data, which we will discuss in due course. But
before that, let’s examine one of the most crucial but often less talked about subjects:
data quality.

Data quality

“Garbage in, garbage out”—this principle summarizes the importance of good-quality
data. If the data is dirty or incorrect and lacks any business relationship between vari-
ables, we will not be able to solve the business problem at hand. But what is the mean-
ing of “good quality”? Imagine you want to predict rainfall this year based on last
year’s daily rainfall measurements. A good-quality dataset for this task would be as
complete as possible (very few missing days of rainfall measurements). It would be rel-
evant and valid (e.g., covering the same local area as where you are making your pre-
dictions), the measurements

would be accurate, and the data

would be readily available for

you to access and use without Complete

permission problems. A bad

dataset, in contrast, might have Integrity Valid

lots of “holes” in the data, might

have been taken in an area dis-

tant from the site you wish to Data

studY. (making.it less relevant), Timeliness qu allty Accurate
or might be difficult to access.

As you can no doubt gather,

good-quality data facilitates

good-quality outputs, while bad Consistent Representative

data quality actively hinders

your work and will likely result Available
in a poor outcome. The major
components of data quality are
shown in figure 1.5. Let’s

Figure 1.5 Data quality is of paramount importance;
explore them one by one. attributes of good-quality data are shown.

10

CHAPTER 1 Introduction to machine learning

The major attributes of good-quality data are

Completeness—We would expect our dataset to be proper and not missing any
values. For example, if we are working on sales data for a year, good data will
have all the values for all 12 months. Then it will be a complete data source.
The completeness of a dataset ensures that we are not missing an important
variable or data point.

Validity—The validity of data is its conformance to the properties, characteris-
tics, and variations that are present and being analyzed in our use case. Validity
indicates if the observation and measurement we have captured are reliable
and valid. For example, if the scope of the study is for 2015-2019, then using
2014 data will be invalid.

Accuracy—Accuracy is an attribute focusing on the correctness of data. If we
have inaccurate data, we will generate inaccurate insights, and actions will be
faulty. It is a good practice to start the project by generating key performance
indicators (KPIs) and comparing them with the numbers reported by the busi-
ness to check the authenticity of the data available to us.
Representativeness—This is one of the most important attributes of the data and
often the most undermined. Representation of data means that the data in use
truly captures the business need and is not biased. If the dataset is biased or is not
representative enough, the model generated will not be able to make predictions
on the new and unseen data, and the entire effort will go down the drain.
Availability—Nonavailability of data is a challenge we face often. Data might not
be available for the business problem, and then we face a dilemma on whether
to continue the use case. Sometimes we face operational challenges and do not
have access to the database or permission problems, or data might not be avail-
able at all for a particular variable since it is not captured. In such cases, we have
to work with the data available and use surrogate variables. For example, imag-
ine we are working on a demand generation problem. We want to predict how
many customers can be expected during the upcoming sales season for a partic-
ular store. But we do not record the number of customers visiting for a few
months. We can then use revenue as a surrogate field and synthesize the miss-
ing data points.

Consistency—Here we check whether the data points are consistent across sys-
tems and interfaces. It should not be the case that one system is reporting a dif-
ferent revenue figure while another system is showing a completely different
value. When faced with such a problem, we generate the respective KPIs as per
the data available and seek guidance from the business team.
Timeliness—Timeliness simply means that we have all the data that is required at
this point. If the dataset is not available now but might become available in the
future, then it might be prudent to wait.

Integrity—The data tables and variables we have are interlinked and interrelated
to each other. For example, an employee’s details can be spread over multiple

124

1.2 Data, data types, data management, and quality 11

tables that are linked to each other using the employee’s ID. Data integrity
addresses this requirement and ensures that all such relations between the
tables and respective entities are consistent.

The quality of data is of paramount importance. In pragmatic day-to-day business,
often we do not get good-quality data. Due to multiple challenges, good, clean data
that is accessible, consistent, representative, and complete is seldom found.

Degradation in quality can be due to challenges during data capturing and collec-
tion, exporting or loading, transformations done, etc. A few of the possibilities are as
follows:

We can get integers as names, or special characters like “#$!&” in a few col-
umns, or null values, blanks, or not a number (NaN) as some of the values.
There may be duplicates in the records.

Outliers may occur. This is a nuisance we deal with quite a lot. For example,
let’s say that the average daily transactions are 1,000 for an online retailer. One
fine day, due to a server problem, there were no transactions done. It is an out-
lier situation. Or, one fine day, the number of transactions was 1,000,000. It is
again an example of an outlier. Outliers can bias the algorithms we create.
There may be seasonal variations and movements concerning the time of the
day and days of the week—all of them should be representative enough in the
dataset.

Inconsistencies in the date format can lead to multiple challenges when we try
to merge multiple data sources. For example, source 1 might be using DD/
MM/YYYY while another might be using MM/DD/YYYY. This is taken care of
during the data loading step itself.

All these aberrations and quality problems should be addressed and cleaned thor-
oughly. We will be solving these data problems throughout the book and sharing the
best practices to be followed.

NOTE The quality of your raw data and the rigor shown during the cleaning
process directly affect the quality of your final analysis and the maturity of
your solution.

We have now defined the major attributes of data. We next study the broad process
and techniques used for data engineering and management.

Data engineering and management

A strong data engineering process and mature data management practice are prereq-
uisites for a successful ML model solution. Whether you come from a data engineer-
ing or data science background, each goes hand in hand; a data engineer would be
well served by understanding the basics of data science, and vice versa. Figure 1.6
provides a high-level overview of what the engineering process and management

12

1.3

CHAPTER 1 Introduction to machine learning

practice might look like. The end-to-end journey of data is described—right from the
process of data capturing, data pipeline, and data loading to the point it is ready for
analysis.

Data engineering

Data preparation

Incoming
data

Prepare

Ingest
Transform
Load

Clean
Merge
Reshape

Incoming data
from multiple
sources is
loaded.

Data is enriched
and major
transformations
are done.

Variable creation

Missing value treatment

Junk values removed

Data is further
enriched and will
be ready for
analysis.

Ready for
analytics

Figure 1.6 Data engineering paves the way for data analysis. It involves data loading, transformation,
enrichment, cleaning, preparation, etc., which leads to the creation of data ready for analysis.

In the data engineering step, data is cleansed, conformed, reshaped, transformed,
and ingested. Generally, we have a server where the final data is hosted and is ready
for access. The most used process is the creation of an export, transform, load (ETL)
process. Then we make the data ready for analysis. We create new variables, treat null
values, enrich the data with methods, and then finally proceed to the analysis/model-
building stage.

Many times, we find that terms like data analysis, data science, machine learning,
data mining, artificial intelligence, business intelligence, big data, etc., are used quite
interchangeably in business. It is a good idea to clarify them, which is the topic of the
next section. There are plenty of tools available for each respective function that we
are discussing. We will also understand the role of software engineering in this entire
journey.

Data analysis, ML, Al, and business intelligence

ML and Al are relatively new fields, and as such, there is little standardization and dif-
ferentiation in the scope of their work. This has resulted in unclear definitions and
demarcation of these fields. We examine these fields—where they overlap, where they

1.3 Data analysis, ML, Al, and business intelligence 13

differ, and how one empowers the other. Each of the functions empowers and comple-
ments the other, as visualized in figure 1.7.

—| Data analysis, business domain, statistics, and data visualization enable data science.

Business
intelligence
and
visualization

Data Business Data
analytics domain Science

Insights

Required -
Incoming . . Data engineering Actionable
data Machine learning and mining insights
based on

.| Empowers !

|Data engineering is required for ML.

Deep
learning

the data

ML empowers data engineering. |

ML and data engineering make deep learning possible while deep learning improves ML and data engineering.

Figure 1.7 How the various fields are interlinked with each other and how they are dependent on each other

After the business problem has been defined and scoped properly, we start with the
technical process. Data mining and data engineering start the whole process by provid-
ing the data required for analysis. It also exports, transforms, cleans, and loads the data
so that it can be consumed by all of the respective functions. Business intelligence and
visualizations use this data to generate reports and dashboards. Data analytics generates
insights and trends using data. Data science stands on the pillars of data analysis, statis-
tics, business intelligence, data visualization, ML, and data mining. ML creates statisti-
cal and mathematical models, and Al further pushes the capabilities.

ML uses traditional coding. The coding is performed in traditional languages (such
as Python), and hence, all the logic and rules of computer science and software engi-
neering are valid in ML too. ML helps us make sense of data that we are otherwise not
able to comprehend. The most fascinating advantage of ML is its ability to work on very
complex and high-dimensional data points like video, audio, image, text, or complex
datasets generated by sensors. It allows us to think beyond the obvious. Now Al can
achieve feats that were previously thought impossible. This level of pattern recognition
and learning has resulted in technological breakthroughs such as self-driving cars, chat-
bots conversing like humans, speech-to-text conversion and translation to another lan-
guage, automated grading of essays, photo captioning, etc. With the advent of

14

14

CHAPTER 1 Introduction to machine learning

generative Al, using large language models like ChatGPT, we can create images, videos,
and text based on the prompt given by the user. And that is just the start!

Nuts and bolts of ML

Consider this: if a child has to be taught how to open a door, we show them the exact
steps quite a few times. The child tries to open it but fails. They try again and fail
again. But with each subsequent try, the child improvises their approach. And, after
some time, the child can open the door. Another example is when we learn to drive:
we make mistakes, we learn from them, and we improve. ML works similarly, wherein
the statistical algorithm looks at the historical data and finds patterns and insights.
The algorithm uncovers relationships and anomalies, trends and deviations, similari-
ties and differences—and then shares actionable results with us.

Formally put, ML can be called a branch or a study of computer algorithms that
works on historical data to generate insights and helps in making data-driven deci-
sions. The algorithms are based on statistical and mathematical foundations and
hence have a sound logical explanation. ML algorithms require coding, which can be
done in any of the languages and tools available such as Python, R, SPSS, SAS, MAT-
LAB, Weka, Julia, Java, etc. It also requires a domain understanding of the business.

Whenever you are doing some online shopping for clothing and the website rec-
ommends accessories that go along with it or you are booking an airplane ticket and
the travel operator shows you a customized deal as per your needs and plan, most of
the time, ML is working in the background. It has learned your preferences and com-
pared them with your historical trends. It is also looking for similarities you have with
other customers who behave almost the same. Based on all that analysis, the algorithm
is making an intelligent recommendation to you. Quite fascinating, right?

Why exactly is ML so good at finding patterns? We humans can analyze only two or
maybe three dimensions simultaneously; for example, we can pick up a pattern
between two or three interacting variables. But what if there are 50 different variables
all interacting? We wouldn’t have a chance. An ML algorithm can work on 50, 60, or
maybe 100s of dimensions simultaneously. It can work on any type of data, structured
or unstructured, and it can help in the automation of tasks. Hence, it generates pat-
terns and insights quite difficult for a human mind to visualize.

ML, like any other project, requires a team of experts who work closely with each
other and complement each other’s skill sets. As shown in figure 1.8, an ML project
requires the following roles:

Business team—DBusiness stakeholders and subject matter experts define the busi-
ness problem for the project. They own the solution, have a clear understanding
of the ask, and have a clear measurable goal in sight. They course-correct the
team in case of confusion and serve as experts who have a deep understanding
of the business processes and operations. They are marketing managers, product
owners, process engineers, quality experts, risk analysts, portfolio leads, etc. It is
imperative that business stakeholders are closely knit into the team from day one.
They help in course correction of the overall direction.

1.4 Nuts and bolts of ML 15

Operations team—This team comprises the scrum master, project manager, busi-
ness analysts, etc. The role of the team can be compared to a typical project
management team, which tracks the progress, maintains the records, reports
the day-to-day activities, and keeps the entire project on track. They create user
stories and act as a bridge between the business team and the data team.

Operations team Data team

—— Business team |——

Business owner IT/scrum master

Subject matter
expert/consultant

Data engineering

Ul/visualizations/
dashboards/reports

Business analyst

Data science/ML

« Define the business problem * Infra/tools required * Development of the solution

Roles | | Owner of the solution « Project management * Implement and maintain

Figure 1.8 Team required for a data science project and the respective interactions of them with each
other—truly a team effort

Data team—The core team that creates the solution, does the coding, and gen-
erates the output in the form of a model, dashboard, report, and insights is the
data team. It comprises three main pillars: the data engineering team, the UI/
visualization team, and the data science team. Their functions are as follows:

— The data engineering team is responsible for building, maintaining, integrat-
ing, and ingesting all the data points. They do a periodic data refresh and act
as a prime custodian of data. They use ETL, SQL, AWS, Kafka, PySpark, etc.

— The Ul/visualization team builds dashboards, reports, interactive modules,
and web applications. They use SQL, Tableau, Qlik, Power BI, and others.

— The data science team is responsible for all the data analysis and model-build-
ing tasks. They discover patterns and insights, test hypotheses, and generate
the final output that is to be finally consumed by all. The final output can be
an ML model that will be used to solve the business problem. In situations
where an ML model is not possible, the team might generate actionable

16 CHAPTER 1 Introduction to machine learning

insights that can be useful for the business. This team requires SQL, Python,
R, SAS, SPSS, etc., to complete their job.

— The DevOps team is generally a part of the data engineering team, or they
can exist as a separate entity. They focus on the operationalization of the ML
model. Remember: if your ML model is not being used, it is just a shiny piece
of software sitting on a shelf. The UI/UX team will lead the development of
the final product layer where the ML-based outputs will be surfaced to the
end user. User experience is often ignored, and without an interactive and
engaging user experience, ML will not be used to its full potential.

The team sometimes has a testing team as well to assess the functionality, vari-
ous use cases, and overall look and feel of the application.

Having discussed the typical team structure for a data science project, we will now
examine the broad steps involved in a data science project.

A data science project runs like any other project that has deadlines, stages, test-
ing, phases, etc. The raw material is the data that passes through various phases to be
cleaned, analyzed, and modeled.

Figure 1.9 shows an illustration of a data science project’s stages. It starts with a
business problem definition of the project. The business problem must be concise,
clear, measurable, and achievable. Table 1.2 depicts an example of a bad (ill-defined)
and a good business problem.

% Data science project steps

Archetype segmentation

Data Data Model Text mining using Business outcome

input preprocessing dataset Identify clusters within cosine-similarity
« Extracted segments

data

‘ based on customer

buying habits

« Variable dependency
graphs and their
implication on sales

Bayesian belief networks
Y Identify key factors

@ in user experience

Identify variable change
implication

Figure 1.9 A data science project is like any other project, having stages and deadlines, dependencies, and
processes.

1.5

1.5 Types of ML algorithms 17

Table 1.2 Examples of how to define a business problem to make it clear, concise, and measurable

Examples

lll-defined business problems Good business problems

Increase the production Optimize the various cost heads (A, B, C, and D) and
identify the most optimal combination to decrease the

Decrease the cost cost by 1.2% in the next six months

Increase the revenue by 80% in one month From the various factors of defects in the process (X, Y,
) Z), identify the most significant factors to reduce the
Automate the entire process defect % by 1.8% in the next three months

Then we move to the data discovery phase, during which we list all the data sources
and host them. All the various datasets, like customer details, purchase histories, social
media data, portfolios, etc., are identified and accessed. The data tables that are to be
used are finalized in this step, and most of the time, we create a database for us to
work, test, and learn.

We then go ahead with data preprocessing. It involves cleaning data like the
removal of null values, outliers, duplicates, junk values, etc. The previous step and this
one can take 60% to 70% of the project time.

We create a few reports and generate initial insights during the exploratory data
analysis phase. These insights are discussed with the business stakeholders, and they
guide course correction.

The data is now ready for modeling. Quite a few versions of the solution are tested.
Then, depending on the requirements, we choose the best version. Generally, param-
eters like accuracy and statistical measures like precision and recall drive the selection
of the model. We will be exploring the process of choosing the best model and terms
like precision and recall in later chapters of the book. Once we choose the final
model, we are ready to deploy the model in the production environment, where it will
work on unseen data.

These are the broad steps in an ML project. Like any other project, there is a code
repository, best practices, coding standards, common errors, pitfalls, etc., which we
will discuss throughout the book.

Types of ML algorithms

ML models affect decision-making and follow a statistical approach to solve a business
problem. They work on historical data and find patterns and trends in it. The raw
material is the historical data, which is analyzed and modeled to generate a predictive
algorithm. The historical data available and the sort of problem that needs to be
solved informs the ML approach that should be taken. ML algorithms can be split
broadly into four classes: supervised learning, unsupervised learning, semisupervised
learning, and reinforcement learning, as depicted in figure 1.10. We will examine

18

1.5.1

CHAPTER 1 Introduction to machine learning

each of the four types in detail, with a focus on unsupervised learning—the topic of
this book.

You might have heard about generative Al (GenAl) in the news. GenAl-based solu-
tions generally start with unsupervised and may include supervised or reinforcement
learning to specialize the model for certain tasks. We will discuss GenAl further
throughout the book.

Machine learning

' 1 ! 1

[Supervised] [Unsupervised] [Semisupervised] Reinforcement
learning

[Regression] [Classification]

Figure 1.10 ML algorithms can be classified as supervised learning algorithms, unsupervised
learning algorithms, semisupervised learning algorithms, and reinforcement learning algorithms.

Supervised learning

Formally put, supervised models are statistical models that use both the input data
and the desired output to predict the future. The output is the value that we wish to
predict and is referred to as the target variable, and the data used to make that predic-
tion is called training data. The target variable is sometimes referred to as the label.
The various attributes or variables present in the data are called independent variables.
Each of the historical data points or a training example contains these independent
variables and the corresponding target variable. Supervised learning algorithms make
a prediction for unseen future data. The accuracy of the solution depends on the
training done and patterns learned from the labeled historical data. An example is
described in the next section.

Supervised learning problems are used in demand prediction, credit card fraud
detection, customer churn prediction, premium estimation, etc. They are heavily used
across domains like retail, telecom, banking and finance, aviation, insurance, and
more and for functions like marketing, CRM, quality, supply chain, pricing, and so on.

Supervised learning algorithms can be further broken into regression algorithms
and classification algorithms. Let’s consider each of these in turn.

REGRESSION ALGORITHMS

Regression algorithms are supervised learning algorithms—that is, they require target
variables that need to be predicted. These algorithms are used to predict the values of
a continuous variable. Examples include revenue, amount of rainfall, number of trans-
actions, production yield, and so on. In supervised classification problems, we predict
a categorical variable like whether it will rain (yes/no), whether the credit card

1.5 Types of ML algorithms 19

transaction is fraudulent or genuine, and so on. This is the main difference between
classification and regression problems.

Let us understand the regression problem with an example. Say we assume that
the weight of a person is only dependent on height and not on other parameters like
gender, ethnicity, diet, etc. In such a case, we want to predict the weight of a person
based on height. The dataset and the graph plotted for the same data will look like
figure 1.11.

A regression model will be able to find the inherent patterns in the data and fita
mathematical equation describing the relationship. It can then take height as an
input and predict the weight. Here, height is the independent variable, and weight is
the dependent variable or the target variable or the label we want to predict.

Weight (kg) Height (cm) Weight (cm)

B0
125 45

50
_’,,_n—\/. 126 46
= 127 48
. 128 50
20 129 52
10 130 55

Figure 1.11 Data and plot of relationship between height and weight that is used for regression
problem

There are quite a few algorithms available for regression problems. Some of the major
ones are as follows (although this list is certainly not exhaustive):

Linear regression
Decision tree
Random forest
k-nearest neighbor
Boosting algorithm
Neural network

We can use any of the algorithms to solve this problem. We will explore more by using
linear regression to solve a problem.

The linear regression algorithm models the relationship between dependent vari-
ables and target variables by assuming a linear relationship between them. The linear

20

CHAPTER 1 Introduction to machine learning

regression algorithm would result in a mathematical equation for the problem, shown
in equation 1.1:

Weight = B, * height + (1.1)

Generally put, linear regression is used to fit a mathematical equation depicting the
relationship between dependent and independent variables, shown as equation 1.2:

Y=L00+P1 %1 +Poxo+....+ & (1.2)

Here, Yis the target variable that we want to predict; x; is the first independent vari-
able; x9 is the second independent variable; ¢ is the error term in the equation; and
By is the intercept of the equation.

A simple visualization for a linear regression problem is shown in figure 1.12. Here
we have the x and Y variables where x is the independent variable and Y is the target
variable. The objective of the linear regression problem is to find the line of best fit,
which can explain the randomness present in the data.

Line of best fit

Y e o
® o
) @
) P Figure 1.12 Raw
o © () data that needs to
® ® be modeled (left).
P) ® Using regression, a
® X line of best fit is
identified (right).

Equation 1.2 is used to make predictions for the unseen data. There are variations in
linear regression too, like simple linear regression, multiple linear regression, nonlin-
ear regression, etc. Depending on the data at hand, we choose the correct algorithm.
A complex dataset might require a nonlinear relationship between the various
variables.

The next type of regression algorithm we shall explore is tree-based solutions. For
tree-based algorithms like decision trees, random forests, etc., the algorithm will start
from the top and then, like an if/else block, will split iteratively to create nodes and
subnodes until we reach a terminal node (see figure 1.13). In the decision tree dia-
gram, we start from the top with the root node, and then we perform splitting until we
reach the endpoint, which is the terminal node.

Decision trees are simple to comprehend and implement, and they are fast to
train. Their usability lies in the fact that they are intuitive enough to understand with-
out much technical background.

1.5 Types of ML algorithms 21

Root node

Splitting

Figure 1.13 A decision tree has a root

Decision node -
node, and after splitting, we get a decision

Terminal node node and a terminal node, which is the
final node and cannot be split further.

There are other famous regression algorithms like k-nearest neighbor, gradient boost-
ing, and deep learning-based solutions. Different regression algorithms are best
suited to specific contexts.

To understand the effect of regression use cases, let’s consider a few business-rele-
vant use cases that are implemented in the industry:

= An airport operations team is assessing staffing requirements and wants to esti-
mate the amount of passenger traffic expected. The estimate will help the team
prepare a plan regarding future resource requirements and will help in the
optimization of the resources required. Regression algorithms can help in pre-
dicting the number of passengers.

= A retailer wants to understand the expected demand for the upcoming sales
season so it can plan the inventory. This will result in cost savings and avoid
stock-outs. Regression algorithms can help in such planning.

= A manufacturing plant wishes to improve the yield from the existing use of vari-
ous molds and raw materials. The regression solutions can suggest the best
combination of molds and predict the expected yield.

= A bank offers credit cards to its customers. Consider how the credit limit
offered to new customers is calculated. Based on the attributes of customers like
age, occupation, income, and previous transaction history, regression algo-
rithms can help in suggesting credit limits at a customer level.

= An insurance company wants to come up with a premium table for its custom-
ers using historical claims. The risk can be assessed based on the historical data
around driver details, car information, etc. Regression can surely help with such
problems.

Regression problems form the foundation of supervised learning problems and are
quite heavily used in the industry. Along with classification algorithms, they serve as a
go-to solution for most of the predictive problems used in real-world business.

CLASSIFICATION ALGORITHMS

Classification algorithms are used to predict the values of a categorical variable, which
is the dependent variable. This target variable can be binary (yes/no, good/bad,
fraud/genuine, pass/fail, etc.) or multiclass (such as positive/negative/neutral or

22

CHAPTER 1 Introduction to machine learning

yes/no/don’t know). Classification algorithms will ascertain whether the target event
will happen by generating a probability score for the target variable.

After the model has been trained on historical data, a classification algorithm will
generate a probability score for the unseen dataset, which can be used to make the
final decision. Depending on the number of classes present in the target variable, our
business decision will vary. Let’s have a look at a use case for classification problems.

Consider this: a telecom operator is facing a problem with its decreasing subscriber
base. The number of existing subscribers is shrinking, and the telecom operator would
like to arrest this churn of subscribers. For this purpose, an ML model is envisioned.

In this case, the historical data or the training data available for model building
might look like table 1.3. These data points are only for illustration purposes and are
not exhaustive. There can be many other significant variables available.

Table 1.3 Example of a structured dataset for a telecom operator showing multiple data attributes

Revenue ($) Duratiz)yr;::ss)ervice Avg. cost Mon:::la);:)s age Churned (Y/N)
1001 100 1.1 0.10 10 Y
1002 200 4.1 0.09 25 N
1003 300 5.2 0.05 28 N
1004 200 0.9 0.25 11 Y
1005 100 0.5 0.45 12 Y

In the example in table 1.3, the dataset comprises the past usage data of subscribers.
The last column (Churned) depicts if that subscriber churned out of the system or
not. For example, subscriber 1001 churned while 1002 did not. Hence, the business
problem is to build an ML model based on this historical data and predict if a new
unseen customer will churn or not.

Here, the churned status (yes/no) is the target variable. It is also referred to as the
dependent variable. The other attributes like revenue, duration, average cost, monthly
usage, etc., are independent variables that are used to create the ML model. The his-
torical data is called the training data. Before the training of the model, the trained
supervised learning model will generate prediction probabilities for a new customer.

There are quite a few algorithms available for classification problems; the major
ones are as follows:

Logistic regression
Decision tree

Random forest
k-nearest neighbor
Naive Bayes

Support vector machine

1.5 Types of ML algorithms 23

Boosting algorithms
Neural networks

One of the most popular classification algorithms is logistic regression. Logistic regres-
sion uses a logit function to model the classification problem. If we are solving for a
binary classification problem, it will be binary logistic regression or multiple logistic
regression. Similar to linear regression, logistic regression also fits an equation, albeit
it uses a sigmoid function to generate the probability score for the event to happen.

A sigmoid function is a mathematical function that has a characteristic S-shaped
curve or a sigmoid curve. The mathematical equation of a sigmoid function is shown
in equation 3.1:

S(x) =1/(1+e™) (1.3)
which can be rewritten as equation 1.4
S(x) =e*/(e*+1) (1.4)

Logistic regression uses the sigmoid function. The equation used in the logistic
regression problem is shown in equation 1.5:

log (p/1=p) =Bo +p1 %1 (1.5)

where p is the probability of the event happening; S is the intercept term; S is
the coefficient for the independent variable x;; log(p/1 — p) is called the logit; and
(p/1 — p) is the odds. As depicted in figure 1.14, if we try to fit a linear regression
equation for the probability function, it will not do a good job. We want to obtain the
probability scores (i.e., a value between 0 and 1). The linear regression will not only
return values between 0 and 1 but also probability scores that are greater than 1 or less
than 0. Hence, we have a sigmoid function at right in the figure, which generates
probability scores for us between 0 and 1 only.

1.0 1.0

0.0 0.0

Figure 1.14 A linear regression model will not be able to do justice (left); hence, we have logistic
regression for classification. Linear regression can generate probability scores more than 1 or less
than 0 too, which is mathematically incorrect, whereas the sigmoid function generates probability
scores between 0 and 1 only (right).

24

1.5.2

CHAPTER 1 Introduction to machine learning

The logistic regression algorithm is one of the most widely used techniques for classifi-
cation problems. It is easy to train and deploy and is often the benchmark algorithm
whenever we start any supervised classification learning project.

Tree-based algorithms like decision trees and random forests can also be used for
classification problems. The other algorithms are also used as per the requirements.

Unsupervised algorithms
Imagine you are given some paper
AN ‘ labels, as shown in figure 1.15. The task is
to arrange them by similarity. Now, there
O are multiple approaches to that prob-

lem. You can use color, shape, or size.

=
A ' :> O Here, we do not have any label to guide

this arrangement. This is what makes

‘ unsupervised algorithms different.
. Formally put, unsupervised learning
only takes the input data and then finds
O patterns in it without referencing the
target variable. An unsupervised learn-
Figure 1.15 Example of various shapes that can ing algorithm therefore reacts based on
be grouped together using different parameters the presence or lack of patterns in the

dataset.

Unsupervised learning is hence used for pattern detection, exploring the insights in the
dataset and understanding the structure of it, segmentation, and anomaly detection.

We can understand unsupervised learning algorithms by looking at figure 1.16.
The figure on the left shows the raw data points represented in a vector space dia-
gram. On the right is the clustering, which will be done using an unsupervised learn-
ing algorithm.

%9 00N TN
0 ‘ 0 0 \
% oo %0 ade
09 ."/OO) /,,::::::\
OOO OOO ‘\\OO O { ... b
0 (0] R | e
N [0y 0

Figure 1.16 An unsupervised learning algorithm finds patterns in the data on the left and results in
clusters on the right.

1.5 Types of ML algorithms 25

Some use cases for unsupervised algorithms are as follows:

A retail group wants to understand its customers better. The task is to improve
the customer’s stickiness, revenue, number of visits, basket size, etc. Customer
segmentation using unsupervised learning can be done here. Depending on
the customer’s attributes like revenue, number of visits, last visit date, age since
joining, demographic attributes, etc., the segmentation will result in clusters
that can be targeted personally. The result will be improved customer experi-
ence, increased customer lifetime value, etc.

A network provider needs to create an anomaly detection system. The historical
data will serve as the anomalies data. The unsupervised learning algorithm will
be able to find patterns, and the outliers will be given out by the algorithm. The
distinguished anomalies will be the ones that need to be addressed.

A medical product company wishes to find if there are any underlying patterns
in the image data of its patients. If there are any patterns and factors, those
patients can be treated better, and maybe they require a different approach.
Unsupervised learning can help with the image data, which will help address
the patients’ needs better.

A digital marketing company wants to understand the “unknowns” in the
incoming customer data like social media interactions, page clicks, comments,
stars, etc. This understanding will help improve customers’ recommendations
and overall purchasing experience.

Unsupervised learning algorithms offer flexibility and performance when it comes to
finding patterns. They are usable for all kinds of data—the core topic of this book—
including structured data, text, or images.

The major unsupervised learning algorithms are

Clustering algorithms

k-means clustering

Hierarchical clustering

DBSCAN clustering

Spectral clustering

Principal component analysis

Singular value decomposition

Association rules

t-distributed stochastic neighbor embedding
Autoencoders

We cover all these algorithms in detail in the coming chapters. We will examine the
mathematical concepts, the hidden processes, Python implementation, and the best
practices throughout the book. Let’s first understand the basic process by means of a
case study.

A retailer wants to develop a deeper understanding of its consumer base and then
wants to offer personalized recommendations, promotions, discounts, offers, etc. The

26

CHAPTER 1 Introduction to machine learning

entire customer dataset should be segmented using attributes like persona, previous

purchase, response, external data, and so on (see figure 1.17).

/

1
|
|
'
|
'
\

\,

-

/ L J .

.

<

i m—> Understand Cluster Validate m

_/

(Data sources

\
’

N

(i .
L Implementation) N

(A
L Output) ~
C Cluster of objects similar to each other) i

Figure 1.17 Steps in an unsupervised learning algorithm from data sources to the final solution
ready for deployment

For the use case, the steps in an unsupervised learning project are as follows:

We start the project by defining the business problem. We wish to understand
the customer base better. A customer segmentation approach can be a good
solution. We want segments that are distinguishable using mathematical KPIs.
This is the data discovery phase. All the various datasets, like customer details,
purchase histories, social media data, portfolios, etc., are identified and
accessed. The data tables to be used are finalized in this step. Then, all the data
tables are generally loaded into a common database, which we will use to ana-
lyze, test, and learn.

Now we have access to the data. The next step is to clean it and make it usable.
We treat all the null values, NaN, junk values, duplicates, etc.

Once the data is clean and ready to be used, we perform an exploratory data
analysis of it. Usually, during exploratory analysis, we identify patterns, cyclicity,
aberrations, max-min range, standard deviation, etc. The outputs of the explor-
atory data analysis stage will be insights and understandings. We will also gener-
ate a few graphs and charts, as shown in figure 1.18.

We begin with the unsupervised approach now. We want to implement cluster-
ing methods, and hence we can try a few clustering methods like k-means, hier-
archical clustering, etc. The clustering algorithms will result in homogeneous
segments of customers based on their various attributes.

Performance YoY

4.50
4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
2014

2015 2016

mm Customers (1,000) —— Revenue (1,000,000)

280
103
22 9
D =
& ®

Purpose
300
250

234
181
150 97
100 50
50 12 12
0 - -
{\\e}

00

& N o &
R @ &
00\}‘ < <

&

1.5 Types of ML algorithms 27

Credit history

100.00
80.00
60.00
40.00
20.00

2017 (Till date)

= all paid = critical/other existing credit

= delayed previously existing paid

= no credits/all paid

Rev/Cust
300

250
200
150
100

> 50
> 06&
& ¥
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 1.18 Examples of the graphs and charts from the exploratory data analysis of the data

In the case study, we will be working on the past two to three years of data,

which is the training data. Since we are using an unsupervised approach, there
is no target variable here. The algorithm will merge the customer segments that
behave alike using their transactional patterns, their demographic patterns,
and their purchase preferences. It will look like the results in figure 1.19.

Q0 =

Figure 1.19 Output of the clustering
algorithm where we can segment
customers using various attributes

Fashion diva —
Big spender —
I, me, and myself —
Practical working —

Shopping Kids come first —

behavior

Value conscious — «

(7N Engagement
style

Life stage

28

1.5.3

1.54

CHAPTER 1 Introduction to machine learning

We now check how the various algorithms have performed; in other words, we
will compare the accuracy of each algorithm. The final clustering algorithm
chosen will result in homogeneous segments of customers, which can be tar-
geted and offered customized offers.

We discuss the results with the business stakeholders and make iterations based
on the feedback.

We deploy the solution in the production environment and are ready to work
on new unseen datasets.

These are the broad steps in an unsupervised problem. Algorithm creation and selec-
tion are tedious tasks. We will be studying these in detail later in the book.

GenAl most often starts with an unsupervised stage. This stage enables the model
to learn patterns, structures, and relationships without explicit labels. It is sometimes
referred to as the pretraining stage. Once the model has been pretrained, we move to
the supervised stage. Here, the pretrained model is tailored to a specific task or
domain using a labeled dataset.

Semisupervised algorithms

Semisupervised learning is a middle path of the supervised and unsupervised
approaches. The primary reason for a semisupervised approach is the lack of availabil-
ity of a complete labeled dataset for training. Formally put, the semisupervised
approach uses both supervised and unsupervised approaches: supervised to classify
the data points and unsupervised to group them together.

In semisupervised learning, we train initially on a smaller number of labeled data
points available using a supervised algorithm. Then we use it to label or pseudo-label
new data points. The two datasets (labeled and pseudo-labeled) are combined, and we
use this dataset for further analysis.

Semisupervised algorithms are used in cases where the dataset is partially available,
like images in the medical industry. If we are creating a cancer detection solution by
analyzing the images of patients, we will likely not have enough sample sets of training
images. Here, the semisupervised approach can be helpful.

Reinforcement learning
Imagine you are playing a game of chess with a computer, and it goes like this:

Round 1—You win after 5 moves.
Round 2—You win after 8 moves.
Round 3—You win after 14 moves.
Round 4—You win after 21 moves.
Round 5—The computer wins!

What is happening here is the algorithm is training itself iteratively depending on
each interaction and then correcting/improving itself.

1.6

1.6 Concluding thoughts 29

Formally, reinforcement learning solutions are self-sustained solutions that train
themselves using a sequence of trial and error. One sequence follows the other. The
heart of reinforcement learning is reward signals. If the action is positive, the reward
is positive, indicating to continue. If the action is negative, the reward will penalize the
activity. Hence, the solution will always correct itself and move ahead, thereby improv-
ing itself iteratively.

Self-driving cars are the best examples of reinforcement learning algorithms. They
detect when they should turn left or right, when to move, and when to stop. Modern
video games also employ reinforcement learning algorithms. Reinforcement learning
allows us to break the barriers of technology and imagine things that were earlier
thought impossible.

With this, we have covered the different types of ML algorithms. Together, they are
harnessing the true power of data and creating a long-lasting effect on our lives. But
the heart of the solutions is the technology, which we have not discussed yet. We now
move to the technology stack required to make these solutions tick.

Exercise 1.1
Use these questions to check your understanding:
Why is ML so powerful that it is being used very heavily now?

What are the different types of ML algorithms, and how are they different from
each other?

What are the steps in an ML project?

What is the role of data engineering, and why is it important?

What are the various tools available for ML?

Concluding thoughts

A common question is: Which is better, R or Python? Both are fantastic languages.
Both are heavily used. But after the introduction of TensorFlow, Keras’s libraries on
Al the balance has slightly tilted in favor of Python.

You’ve now taken your first step in the journey toward learning unsupervised
machine learning techniques. It is time to wrap up.

ML and AI are indeed pathbreaking. They are changing the way we travel, order
food, plan, buy, see a doctor, order prescriptions—they are making a dent everywhere.
ML is indeed a powerful capability that is paving the path for the future and is proving
much better than existing technology stacks when it comes to pattern identification,
anomaly detection, customizations, and automation of tasks. Autonomous driving,
cancer detection, fraud identification, facial recognition, image captioning, and chat-
bots are only a few examples where ML and Al are outperforming traditional technol-
ogies. And now is the best time to enter this field. This sector is attracting investments
from almost all business functions. The field has created thousands of job opportuni-
ties across the spectrum.

30

CHAPTER 1 Introduction to machine learning

At the same time, the field lacks trained professionals: data analysts, data engi-
neers, visualization experts, data scientists, and data practitioners. They are all rare
breeds now. The field requires a regular supply of budding talents who will become
the leaders of tomorrow and will make data-driven decisions. We have only scratched
the surface of understanding the power of data—there are still miles to be covered.

In the following chapter, we will dive deeper into the unsupervised learning con-
cepts of clustering. The mathematical and statistical foundations, a pragmatic case
study, and Python implementation are discussed. The discussion includes the simpler
clustering algorithms: k-means clustering, hierarchical clustering, and DBSCAN. In
the later chapters of the book, we will study more complex clustering topics like
Gaussian mixture modeling clustering, time series clustering, fuzzy clustering, etc.

Summary

Data can be conceptualized as an interconnected set of facts and statistics nec-
essary for analysis, characterized by unique traits and governed by specific man-
agement principles.

Real-world activities such as mobile calls, online transactions, and social media
interactions continually generate data, underscoring its omnipresence in mod-
ern life.

Raw data requires cleaning, organization, and analysis to be converted effectively
into information and insights that can drive business decisions and actions.
Data can be broadly classified into structured datasets, which follow a clear row-
column format, and unstructured datasets, like text and images, which require
more advanced analysis techniques.

To analyze unstructured data, we typically transform it into numerical represen-
tations, often utilizing deep learning models such as CNNs and RNNs.

A clear, concise, achievable, and measurable business problem is a vital step to
ensure the success of a data science project.

High-quality data is essential for reliable analysis and is characterized by attri-
butes such as completeness, validity, accuracy, representativeness, availability,
consistency, timeliness, and integrity.

Effective data engineering and management are crucial for preparing data for
analysis involving techniques like ETL processes and data cleaning.

The role of UI/UX is of paramount importance to ensure adoption and usage
by the end consumers; otherwise, ML will just be a shiny piece sitting on a shelf.
Interconnected fields like data analysis, ML, Al, and business intelligence each
play a critical role in processing and deriving insights from data.

Supervised learning is an ML approach that uses existing data to predict future
outcomes, common in tasks like demand prediction and fraud detection.
Supervised learning is divided into regression and classification tasks, each with
numerous available algorithms to model quantitative or categorical outcomes,
respectively.

Summary 31

Unsupervised learning algorithms discover patterns and relationships in data
independently of predefined target variables, useful in activities like segmenta-
tion and anomaly detection.

Variants of unsupervised learning algorithms include clustering techniques and
methods for reducing data dimensionality, offering flexibility and performance
in pattern recognition.

Semisupervised learning bridges supervised and unsupervised methods and is
effective when dealing with datasets that are partially labeled.

Reinforcement learning involves systems that learn by trial and error, rewarding
desired outcomes, and are applied in dynamic decision-making tasks, such as
autonomous vehicle navigation.

Technological solutions are at the heart of modern data-driven strategies, and
understanding the technological stack is essential to maximize the effect and
benefits of data solutions.

Clustering techniques

This chapter covers

= Clustering techniques and salient use cases in
the industry

= Simple k-means, hierarchical, and density-based
spatial clustering algorithms

= |Implementation of algorithms in Python
= A case study on cluster analysis

Simplicity is the ultimate sophistication.

—Leonardo da Vinci

Nature loves simplicity and teaches us to follow the same path. Most of the time,
our decisions are simple choices. Simple solutions are easier to comprehend, less
time-consuming, and painless to maintain and ponder over. The machine learning
world is no different. An elegant machine learning solution is not the one that is
the most complicated algorithm available but the one that solves the business
problem. A robust machine learning solution is easy enough to readily decipher

32

21

2.1 Technical toolkit 33

and pragmatic enough to implement. Clustering solutions are generally easier to
understand.

In the previous chapter, we defined unsupervised learning and discussed the vari-
ous unsupervised algorithms available. We will cover each of those algorithms as we
work through this book; in this second chapter, we focus on the first of these: cluster-
ing algorithms.

We will define clustering first and then study the different types of clustering tech-
niques. We will examine the mathematical foundation, accuracy measurements, and
pros and cons of each algorithm. We will implement three of these algorithms using
Python code on a dataset to complement theoretical knowledge. The chapter ends
with the various use cases of clustering techniques in the pragmatic business scenario
to prepare for the actual business world. This technique is followed throughout the
book—we study the concepts first, implement the actual code to enhance the Python
skills, and then dive into real-world business problems.

We study basic clustering algorithms in this chapter, which are k-means clustering,
hierarchical clustering, and density-based spatial clustering of applications with noise
(DBSCAN) clustering. These clustering algorithms are generally the starting points
whenever we want to study clustering. In the later chapters of the book, we will
explore more complex algorithms like spectrum clustering, Gaussian mixture models,
time series clustering, fuzzy clustering, and others. If you have a good understanding
of k-means clustering, hierarchical clustering, and DBSCAN, you can skip to the next
chapter. Still, it is advisable to read this chapter once—you might find something use-
ful to refresh your concepts!

Let’s first understand what we mean by clustering. Good luck on your journey to
master unsupervised learning—based clustering techniques!

Technical toolkit

We use the latest version of Python in this chapter. A basic understanding of Python
and code execution is expected. You are advised to refresh your knowledge of object-
oriented programming and Python.

Throughout the book, we use Jupyter Notebook to execute the code. Jupyter offers
flexibility in execution and debugging. It is quite user-friendly and is platform or
operating-system agnostic. So, if you are using Windows, macOS, or Linux, Jupyter
should work just fine.

All the datasets and code files are checked into the GitHub repository at https://
mng.bz/IYq2. You need to install the following Python libraries to execute the code:
numpy, pandas, matplotlib, scipy, and sklearn. CPU is good enough for execution,
but if you face some computing lags and would like to speed up the execution, switch
to GPU or Google Collaboratory (Colab). Google Colab offers free computation for
machine learning solutions. I recommend studying more about Google Colab and
how to use it for training machine learning algorithms.

https://mng.bz/lYq2
https://mng.bz/lYq2

34

2.2

CHAPTER 2 Clustering techniques

Clustering

Consider this scenario: a group of children is asked to group the items in a room into
different segments. Each child can use their own logic. Some might group the objects
based on weight; other children might use material or color; while yet others might
use all three: weight, material, and color. There are many permutations, and they
depend on the parameters used for grouping. Here, a child is segmenting or cluster-
ing objects based on the chosen logic.

Formally put, clustering is used to group objects with similar attributes in the same
segments and objects with different attributes in different segments. The resultant
clusters share similarities within themselves while they are more heterogeneous
between each other. We can understand this better by looking at figure 2.1.

- RN Figure 2.1 Clustering is grouping
O O * ,O O\\ [A \) objfects with similar attribut(?s ir}to
* 0 0 100 o [N o logical segments. The grouping is
0 “OY oo based on a similar trait shared by
A A*O oA . TR '\\ poo J different observations, and hence
@) 0 C?\(X .’/ * \‘. ool they are gathered into a group. We
* \ *) are using shape as a variable for

N clustering here.

Cluster analysis is not one individual algorithm or solution; rather it is used as a
problem-solving mechanism in practical business scenarios. It is a class of algorithms
under unsupervised learning and an iterative process following a logical approach
and qualitative business inputs. It results in the generation of a thorough understand-
ing of the data and the logical patterns in it, pattern discovery, and information
retrieval. As an unsupervised approach, clustering does not need a target variable. It
performs segmenting by analyzing underlying patterns in the dataset, which are gen-
erally multidimensional and, hence, difficult to analyze with traditional methods.
Ideally, we want the clustering algorithms to have the following attributes:

The output clusters should be easy to explain and comprehend, usable, and
make business sense. The number of clusters should not be too few or too
many. For example, it is not ideal to have only two clusters, and the division is
not clear and decisive. On the other hand, if we have 20 clusters, handling them
will become a challenge.

The algorithm should not be too sensitive to outliers or missing values or the
noise in the dataset. Generally put, a good solution will be able to handle multi-
ple data types.

It is advisable for a data analyst/scientist to have a good grip on the business
domain, although a good clustering solution may allow analysts with less
domain understanding to train the clustering algorithm.

2.2 Clustering 35

The algorithm should be independent of the order of the input parameters. If
the order matters, the clustering is biased on the order and hence will add
more confusion to the process.

As we generate new datasets continuously, the clusters should be scalable to
newer training examples and should not be a time-consuming process.

As one could imagine, the clustering output will depend on the attributes used for
grouping. In figure 2.2, there can be two logical groupings for the same dataset, and
both are equally valid. Hence, it is prudent that the attributes or variables for cluster-
ing are chosen wisely, and often that decision depends on the business problem at
hand.

) QA \
90 '\ L
B 4 R i [§ B
---3- L pod oy
/l Ay ~ ’
1 \ \s__—’
o0® ' !
0 N /!

=
.A .jkf \ B Figure 2.2 Using different

""""" attributes for clustering results in

* / .A A //[1 ié% different clusters for the same
. 0. @ " . Uo \
1]

| o0 ' H dataset. Hence, choosing the
5 A o ./ correct set of attributes defines the
e -7 S -7 final set of results we will achieve.

Along with the attributes used in clustering, the actual technique used also makes a
big difference. There are quite a few (in fact, more than 80) clustering techniques.
For the interested audience, we provide a list of all the clustering algorithms in the
appendix.

Clustering can be achieved using a variety of algorithms. These algorithms use dif-
ferent methodologies to define similarity between objects—for example, density-
based clustering, centroid-based clustering, distribution-based methods, and others.
Multiple techniques, such as Euclidean distance, Manhattan distance, etc., are avail-
able to measure the distance between objects. The choice of distance measurement
leads to different similarity scores. We will study these similarity measurement parame-
ters in a later section.

At a high level, we can identify two broad clustering methods: hard clustering and
soft clustering (see figure 2.3). When the decision is quite clear that an object belongs
to a certain class or cluster, it is referred to as hard clustering. In hard clustering, an
algorithm is quite sure of an object’s class. On the other hand, soft clustering assigns a
likelihood score for an object belonging to a particular cluster. So, a soft clustering

36

CHAPTER 2 Clustering techniques

method will not put an object into a cluster; rather, an object can belong to multiple
clusters. Soft clustering sometimes is also called fuzzy clustering.

™
0 S0 1A f .

Y T
|:|I:IIII,'

Figure 2.3 Hard clustering has distinct clusters, whereas in the case of soft clustering, a data
point can belong to multiple clusters, and we get a likelihood score for a data point to belong to
a cluster. The figure on the left is hard clustering, and the one on the right is soft clustering.

We can broadly classify the clustering techniques as shown in table 2.1. The methods
described are not the only ones available. We can have graph-based models, overlap-
ping clustering, subspace models, etc.

Table 2.1 Classification of clustering methodologies, brief descriptions, and examples

Serial no. Clustering methodology Brief description of the method Example
1 Centroid-based Distance from a defined centroid | k-means
clustering
2 Density-based models Data points are connected in DBSCAN, OPTICS
dense regions in a vector space
3 Connectivity-based Distance connectivity is the Hierarchical clustering, bal-
clustering modus operandi anced iterative reducing and
clustering using hierarchies
4 Distribution models Modeling is based on statistical Gaussian mixture models
distributions
5 Deep learning models Unsupervised neural network Self-organizing maps
based

Note: This list is not exhaustive.

Generally, the six most popular algorithms used in clustering in the industry are as

follows:

= k-means clustering (with variants like k-medians, k-medoids)

= Agglomerative clustering or hierarchical clustering

2.3

2.3 Centroid-based clustering 37

DBSCAN

Spectral clustering

Gaussian mixture models

Balanced iterative reducing and clustering using hierarchies

Multiple other algorithms are available, like Chinese whisper, canopy clustering, SUB-
CLU, FLAME, and others. We will study the first three algorithms in this chapter and
some of the advanced ones in subsequent chapters in the book.

Exercise 2.1

Use these questions to check your understanding:
DBSCAN clustering is a centroid-based clustering technique. True or False?
Clustering is a supervised learning technique with a fixed target variable. True

or False?
What is the difference between hard clustering and soft clustering?

Centroid-based clustering

Centroid-based algorithms measure the similarity of the objects based on their dis-
tance to the centroid of the clusters (for more information on centroids, see the
appendix). The distance is measured between a specific data point to the centroid for
the cluster. The smaller the distance, the higher the similarity. We can understand the
concept by looking at figure 2.4. The figure on the right side represents the respective
centroids for each of the group of clusters.

TIP To get more clarity on the concept of centroid and other mathematical
concepts, refer to the appendix.

Centroids
0 0 0 0
1 009 0 0¥ 0 040
000 000
0 0 0dy OO ofy
00 o&o}

Figure 2.4 Centroid-based clustering methods create a centroid for the respective clusters, and the
similarity is measured based on the distance from the centroid. In this case, we have five centroids;
hence, we have five distinct clusters.

38

CHAPTER 2 Clustering techniques

In clustering, distance plays a central role as many algorithms use it as a metric to
measure the similarity. In centroid-based clustering, distance is measured between
points and between centroids. There are multiple ways to measure the distance. The
most widely used are as follows:

Euclidean distance—This is the most common distance metric used. It represents
the straight-line distance between the two points in space and is the shortest
path between the two points. For example, if we want to calculate the distance
between points P; and Py where coordinates are (xj, y;) for P; and (x9, y9) for
Py, Euclidean distance is given by equation 2.1. The geometric representation is
shown in figure 2.5:

Distance = +/(y2 — y1)? + (x9 — x7)? (2.2)

Chebyshev distance—Named after Russian mathematician Pafnuty Chebyshev,
this is defined as the distance between two points such that their differences are
maximum value along any coordinate dimension. Mathematically, we can rep-
resent Chebyshev distance in equation 2.2 and as shown in figure 2.5:

Chebyshev distance = max (|ys — y1|, |x9 — x1]) (2.2)
2 2 2(| 4 2 4
. AN A AN A
4 .
2 - > 2|0 - > 2
(S} Xo
2 /] 2 2)4/ 2 4

Figure 2.5 Euclidean distance, Chebyshev distance, Manhattan distance, and cosine distance are the primary
distance metrics used. Note how the distance is different for two points using these metrics. In Euclidean distance,
the direct distance is measured between two points, as shown by the first figure on the left.

Manhattan distance—This is a very easy concept. It simply calculates the distance
between two points in a grid-like path, and the distance is hence measured
along the axes at right angles. Hence, sometimes it is also referred to as city
block distance or the taxicab metric. Mathematically, we can represent the Man-
hattan distance in equation 2.3 and as shown in figure 2.5:

Manhattan distance = (|yg = y;| + |x9 — x1]) (2.3)

Manhattan distance is in .1 norm form while Euclidean distance is in L2 norm
form. Refer to the appendix to study the L1 norm and L2 norm in detail. If we

23.1

2.3 Centroid-based clustering 39

have a high number of dimensions or variables in the dataset, Manhattan dis-
tance is a better choice than Euclidean distance. This is due to the curse of dimen-
sionality, which we will study in chapter 3.

Cosine distance—Cosine distance is used to measure the similarity between two
points in a vector-space diagram. In trigonometry, the cosine of 0 is 1 and the
cosine of 90" is 0. Hence, if two points are similar to each other, the angle
between them will be zero; hence, cosine will be 1, which means the two points
are very similar to each other and vice versa. Mathematically, cosine similarity is
shown in equation 2.4. If we want to measure the cosine between two vectors A
and B, then cosine is

Cosine distance = (A . B) / (||A]| ||Bl]) (2.4)

TIP If you want to refresh your knowledge on the concepts of vector factor-
ization, refer to the appendix.

Other distance-measuring metrics, such as Hamming distance, Jaccard distance, and
others, are available. Mostly, we use Euclidean distance in our pragmatic business
problems, but other distance metrics are also used sometimes.

NOTE These distance metrics are true for other clustering algorithms too. I
recommend testing the Python codes in the book with different distance met-
rics and comparing the performance.

Now that we understand the various distance metrics, we proceed to study k-means
clustering, which is the most widely used algorithm.

K-means clustering

K-means clustering is an easy and straightforward approach. It is arguably the most
widely used clustering method to segment data points and create nonoverlapping
clusters. We have to specify the number of clusters &k we wish to create as an input, and
the algorithm will associate each observation to exactly one of the k clusters.

NOTE K-means clustering is sometimes confused with the k-nearest neighbor
(KNN) classifier. Although there is some relationship between the two, KNN
is used for classification and regression problems.

K-means clustering is quite an elegant approach and starts with some initial cluster
centers and then iterates to assign each observation to the closest center. In the pro-
cess, the centers are recalculated as the mean of points in the cluster. Let’s study the
approach used in a step-by-step fashion by using the diagram in figure 2.6. For the
sake of simplicity, we are assuming that there are three clusters in the dataset.

The steps are as follows:

Let’s assume that we have all the data points, as shown in step 1.
The three centers are initialized randomly, as shown by three squares: blue, red,
and green. This input of three is the final number of clusters we wish to have.

40 CHAPTER 2 Clustering techniques

0
) 0 0
0
o o 00 °. : 0% o
o o o.° oo Y
%OO o0 0
Step 1 Step 2 Step 3

Figure 2.6 Step 1 represents the raw dataset. In step 2, the algorithm initiates three random centroids as we have
given the input of the number of clusters as three. In step 3, all the neighboring points of the centroids are assigned
to the same cluster.

3 The distance of all the data points is calculated to the centers, and the points are
assigned to the nearest center. Note that the points have attained blue, red, and
green colors as they are nearest to those respective centers. (The colors are not
distinguishable in the print version; hence we have grouped them together.)

4 The three centers are readjusted in this step. The centers are recalculated as
the mean of the points in that cluster, as shown in figure 2.7. We can see that in
step 4, the three squares have changed their respective positions as compared
to step 3.

Step 4 Step 5 Step 6

Figure 2.7 The centroids are recalculated in step 4. In step 5, the data points are again reassigned new centers.
In step 6, the centroids are again readjusted as per the new calculations.

5 The distance of all the data points is recalculated to the new centers and the
points are reassigned to the nearest centers again. Note that two blue data
points have become red while a red point has become green in this step.

& The centers are again readjusted as they were in step 4.

7 The data points are again assigned a new cluster, as shown in figure 2.8.

s The process will continue until convergence is achieved. In other words, the pro-
cess continues until there is no more reassignment of the data points; hence, we
cannot improve the clustering further, and the final clustering is achieved.

2.3 Centroid-based clustering 41

Step 7 Step 8

Figure 2.8 The centroids are recalculated, and this process continues until we can no
longer improve the clustering. Then the process stops, as shown in step 8.

The objective of k-means clustering is to ensure that the within-cluster variation is as
small as possible while the difference between clusters is as big as possible. In other
words, the members of the same cluster are most similar to each other, while members
in different clusters are dissimilar. Once the results no longer change, we can conclude
that a local optimum has been reached, and clustering can stop. Hence, the final clus-
ters are homogeneous within themselves while heterogeneous with each other.

It is imperative to note two points here:

K-means clustering initializes the centers randomly; hence it finds a local opti-
mum solution rather than a global optimum solution. Thus it is advisable to
iterate the solution multiple times and choose the best output from all the
results. By iteration, we mean to repeat the process multiple times, as in each of
the iterations, the centroid chosen randomly will be different.

We have to input the number of final clusters k we wish to have, and it changes
the output drastically. A very small value of k relative to the data size will result
in redundant clusters as they will not be of any use. In other words, if we have a
very small value of & relative to big-sized data, data points with different charac-
teristics will be cobbled together in a few groups. Having a very high value of k&
will create clusters that are different from each other minutely.

Moreover, having a very high number of clusters will be difficult to manage
and refresh in the long run. Let’s study an example. If a telecom operator has 1
million subscribers, and if we take the number of clusters as two or three, the
resultant cluster size will be very large. This can also lead to different customers
classified in the same segment. On the other hand, if we take the number of
clusters as 50 or 60, due to the sheer number of clusters, the output becomes
unmanageable to use, analyze, and maintain.

With different values of k, we get different results; hence, it is necessary that we under-
stand how we can choose the optimum number of clusters for a dataset. Now let’s
examine the process to measure the accuracy of clustering solutions.

42

23.2

CHAPTER 2 Clustering techniques

Measuring the accuracy of clustering

One objective of clustering is to find the cleanest clusters. Theoretically (though not
ideally), if we have the same number of clusters as the number of observations, the
results will be completely accurate. In other words, if we have 1 million customers, the
purest clustering will have 1 million clusters, wherein each customer is in a separate
cluster. Butitis not the best approach and is not a pragmatic solution either. Clustering
intends to create a group of similar observations in one cluster, and we use the same
principle to measure the accuracy of our solution. Other options include the following:

Within the cluster sum of squares (WCSS) or cohesion—This index measures the vari-
ability of the data points with respect to the distance they are from the centroid
of the cluster. This metric is the average distance of each data point from the clus-
ter’s centroid, which is repeated for each data point. If the value is too large, it
shows there is a large data spread, whereas the smaller value indicates that the
data points are quite similar and homogeneous and hence the cluster is compact.
Sometimes, this intracluster distance is also referred to as inertia for that clus-
ter. It is simply the summation of all the distances. The lower the value of iner-
tia, the better the cluster is.
Intercluster sum of squares—This metric is used to measure the distance between
centroids of all the clusters. To getit, we measure the distance between centroids
of all the clusters and divide it by the number of clusters to get the average value.
The bigger it is, the better the clustering is, indicating that clusters are heteroge-
neous and distinguishable from each other, as represented in figure 2.9.

Figure 2.9 Intracluster vs. intercluster distance. Both are used to measure the purity of the final
clusters and the performance of the clustering solution.

Silhouette value—This is one of the metrics used to measure the success of clus-
tering. It ranges from —1 to +1, and a higher value is better. It measures how a
data point is similar to other data points in its own cluster as compared to other
clusters. As a first step, for each observation we calculate the average distance
from all the data points in the same cluster; let’s call it x;. Then we calculate the
average distance from all the data points in the nearest cluster; let’s call it y;,. We
will then calculate the coefficient by equation 2.5:

Silhouette coefficient = (y; — x;)/ max (y;, x;) (2.5)

233

2.3 Centroid-based clustering 43

If the value of coefficient is -1, it means that the observation is in the wrong
cluster. If it is 0, the observation is very close to the neighboring clusters. If the
value of coefficient is +1, it means that the observation is at a distance from the
neighboring clusters. Hence, we would expect to get the highest value for the
coefficient to have a good clustering solution.

Dunn index—This can also be used to measure the efficacy of the clustering. It
uses the inter- and intradistance measurements defined in the previous inter-
cluster sum of squares silhouette value sections and is given by equation 2.6:

Dunn index = min (intercluster distance)/max (intracluster distance) (2.6)

Clearly, we would strive to maximize the value of Dunn index. To achieve it, the
numerator should be as big as possible, implying that clusters are at a distance from
each other, while the denominator should be as low as possible, signifying that the
clusters are quite robust and close-packed.

Finding the optimum value of k

Choosing the optimum number of clusters is not easy. As I said earlier, the finest clus-
tering is when the number of clusters equals the number of observations, but as we
studied in the last section, it is not practically possible. Hence, we should provide the
number of clusters kas an input to the algorithm.

Perhaps the most widely used method for finding the optimum value of % is the
elbow method. In this method, we calculate within the cluster sum of squares or WCSS
for different values of k. The process is the same as discussed in the last section. Then,
WCSS is plotted on a graph against different values of k. Wherever we observe a kink
or elbow, as shown in figure 2.10, we find the optimum number of clusters for the
dataset. Notice the sharp edge.

Selecting k with the elbow method

Average distortion
o
[o9)

Figure 2.10 The elbow method to find the optimal number of clusters. The circle shows the
kink. However, the final number of clusters is dependent on business logic, and often we merge/
split clusters based on this. The ease of maintaining the clusters also plays a crucial role.

44

234

CHAPTER 2 Clustering techniques

Exercise 2.2
Answer these questions to check your understanding;:
K-means clustering does not require the number of clusters as an input. True
or False?
KNN and k-means clustering are the same thing. True or False?
Describe one possible process to find the optimal value of k.

But this does not mean that it is the final number of clusters we suggest for the busi-
ness problem. Based on the number of observations falling in each of the clusters, a
few clusters might be combined or broken into subclusters. We also consider the com-
putation cost required to create the clusters. The higher the number of clusters, the
greater the computation cost and the time required. We can also find the optimum
number of clusters using the silhouette coefficient we discussed earlier.

NOTE It is imperative that the business logic of merging a few clusters or
breaking a few clusters is explored. Ultimately, the solution has to be imple-
mented in real-world business scenarios.

With this, we have examined the nuts and bolts of k-means clustering—the mathemat-
ical concepts and the process, the various distance metrics, and determining the best
value of k.

Pros and cons of k-means clustering

The k-means algorithm is quite a popular and widely implemented clustering solu-
tion. The solution offers the following advantages:

It is simple to comprehend and relatively easier to implement as compared to
other algorithms. The distance measurement calculation makes it quite intui-
tive to understand even by users from nonstatistics backgrounds.

If the number of dimensions is large, the k-means algorithm is faster than other
clustering algorithms and creates tighter clusters. Hence, it is preferred if the
number of dimensions is quite high.

It quickly adapts to new observations and can generalize very well to clusters of
various shapes and sizes.

The solution produces results through a series of iterations of recalculations.
Most of the time, the Euclidean distance metric is used, which makes it less
computationally expensive. It also ensures that the algorithm surely converges
and produces results.

K-means is widely used for real-life business problems. Though there are clear advan-
tages of k-means clustering, we do face certain challenges with the algorithm:

Choosing the optimum number of clusters is not easy. We should provide it as
an input. With different values of k, the results will be completely different. The
process of choosing the best value of kis explored in the previous section.

2.3 Centroid-based clustering 45

The solution is dependent on the initial values of centroids. Since the centroids
are initialized randomly, the output will be different with each iteration. Hence,
it is advisable to run multiple versions of the solution and choose the best one.
The algorithm is quite sensitive to outliers. Outliers can mess up the final
results, and hence it is imperative that we treat outliers before starting with clus-
tering. We can also implement other variants of the k-means algorithm, like k-
modes clustering, to deal with the problem of outliers. We discuss dealing with
outliers in section 11.4.4 of chapter 11. You can refer to it if you want to know
how to deal with outliers.

Since the basic principle of k-means clustering is to calculate the distance, the
solution is not directly applicable to categorical variables. In other words, we
cannot use categorical variables directly since we can calculate the distance
between numeric values but cannot perform mathematical calculations on cate-
gorical variables. To resolve this, we can convert categorical variables to
numeric ones using one-hot encoding. We discuss dealing with categorical vari-
ables in section 11.4.2 of chapter 11. You can refer to it if you want to know how
to deal with categorical variables.

Despite these problems, k-means clustering is one of the most used clustering solu-
tions due to its simplicity and ease of implementation. There are different implemen-
tations of k-means algorithms like k-median, k-medoids, etc., which are sometimes
used to resolve the problems faced:

As the name suggests, k-median clustering is based on the medians of the dataset
as compared to the centroid in k-means. This increases the amount of computa-
tion time as the median can be found only after the data has been sorted. But at
the same time, k-means is sensitive to outliers whereas k-median is less affected
by them.

K-medoids clustering is one of the variants of the k-means algorithm. Medoids are
similar to means, except they are always from the same dataset and are imple-
mented when it is difficult to get means, like with images. A medoid can be
thought of as the most central point in a cluster that is least dissimilar to all the
other members in the cluster. K-medoids choose the actual observations as the
centers as compared to k-means, where the centroids may not even be part of
the data. It is less sensitive to outliers as compared to the k-means clustering
algorithm.

There are other versions too, including k-means++, mini-batch k-means, and others.
Generally, in the industry, k-means is used for most of the clustering solutions. You can
explore other options like k-means++, mini-batch k-means, etc., if the results are not
desirable or if the computation is taking a lot of time. Moreover, having different dis-
tance measurement metrics may produce different results for the k-means algorithm.

This section concludes our discussion on the k-means clustering algorithm. It is
time to hit the lab and develop actual Python code!

46

2.3.5

CHAPTER 2 Clustering techniques

K-means clustering implementation using Python

We will now create a Python solution for k-means clustering. In this case, we are using
the dataset from the link at GitHub at https://mng.bz/1Yq2. This dataset has informa-
tion about the features of four models of cars. Based on the features of the car, we are
going to group them into different clusters:

Import the libraries and the dataset into a dataframe. Here, vehicles.csv is
the input data file. If the data file is not in the same folder as the Jupyter note-
book, you would have to provide the complete path to the file. dropna is used to
remove the missing values, if any:

import pandas as pd
vehicle df = pd.read csv('vehicle.csv') .dropna/()

Perform some initial checks on the data, like shape, info, top five rows, distribu-
tion of classes, etc. This is to ensure that we have loaded the complete dataset
and there is no corruption while loading the dataset. The shape command will
give the number of rows and columns in the data, info will describe all the vari-
ables and their respective types, and head will display the first five rows. The
value_counts displays the distribution for the class variable. Or, in other
words, value_counts returns the count of the unique values:

vehicle df.shape

vehicle_df.info()

vehicle df.head()
pd.value counts(vehicle df['class'])

Generate two plots for the variable class. The dataset has more examples from
car while for bus and van it is balanced data. I used the matplotlib library to
plot these graphs. The outputs of the plots are as follows (see figure 2.11):

import matplotlib.pyplot as plt
$matplotlib inline

pd.value counts(vehicle df["class"]) .plot (kind='bar")
pd.value counts(vehicle df['class']) .hist (bins=300)
400
350
. 10
750 LT
200
o0&
150
100 s
50 02
ol
- L} = T T T T
g 2 2 T %50 500 0 00

Figure 2.11 Two plots for the variable class

https://mng.bz/lYq2

2.3 Centroid-based clustering 47

Check for any missing data points in the dataset. There are no missing data
points in our dataset, as we have already dealt with them:

vehicle df.isna() .sum()

NOTE We cover the methods to deal with missing values in section 11.4.3 of
chapter 11 as dropping the missing values is generally not the best approach.

Standardize the dataset. It is a good practice to standardize the dataset for clus-
tering. It is important, as the different dimensions might be on a different scale,
and one dimension may dominate the computation of distance if its values are
naturally much larger than other dimensions. This is done using the Standard-
Scaler () function. Refer to the appendix to examine different scaling
techniques:

vehicle df 1 = vehicle df.drop('class', axis=1)

from scipy.stats import zscore

vehicle df 1 z = vehicle_df_1.apply(zscore)

from sklearn.preprocessing import StandardScaler

import umpy as np

sc = StandardScaler ()
X standard = sc.fit transform(vehicle df 1)

Have a quick look at the dataset by generating a scatter plot. The plot displays
the distribution of all the data points we have created as X_standard in the last
step (see figure 2.12):

plt.scatter (X _standard[:,0], X standard[:,1])
plt.show ()

[]
[)

L

1 LA . e o

2 -.'4 ob
L ‘r.

L]
0 gumnL RN ¢

Figure 2.12 A scatter plot of the dataset

}
]

I
LA
o
(e
(N
w

Perform k-means clustering. First, we have to select the optimum number of
clusters using the elbow method. From the sklearn library, we import KMeans.
In a for loop, we iterate for the values of clusters from 1 to 10. In other words,
the algorithm will create between 1 and 10 clusters and will then generate the
results for us to choose the optimal value of k.

48

CHAPTER 2 Clustering techniques

In the following code snippet, the model object contains the output of the k-
means algorithm, which is then fit on the X_standard generated in the last step.
Here, Euclidean distance has been used as a distance metric (see figure 2.13):

from sklearn.cluster import KMeans
from scipy.spatial.distance import cdist
clusters=range(1,10)
meanDistortions=[]
for k in clusters:
model=KMeans (n_clusters=k)
model.fit (X standard)
prediction=model.predict (X standard)
meanDistortions.append (sum(np.min(cdist (X _standard,
model.cluster centers , 'euclidean'), axis=1)) / X standard
.shape[0])
plt.plot (clusters, meanDistortions, 'bx-')
plt.xlabel ('k")
plt.ylabel ('Average distortion')
plt.title('Selecting k with the Elbow Method')

Selecting the values of k with the elbow method for k-means clustering
4.004

3.754
3.50
3.25
3.00+
2.75+

Average distortion

2.50
2.25

Figure 2.13 K-means clustering

As we can observe, the optimal number of clusters is three. It is the point where
we can observe a sharp kink in the graph. We will continue with k-means clus-
tering with the number of clusters as three. While there is nothing special about
the number 3 here, it is best suited for this dataset. random_state is a parame-
ter that is used to determine random numbers for centroid initialization. We set
it to a value to make randomness deterministic. If you want to repeat the same
results again, use the same random state number. It acts like a seed number:

kmeans = KMeans (n_clusters=3, n_init = 15, random state=2345)
kmeans.fit (X standard)

2.3 Centroid-based clustering 49

Get the centroids for the clusters:

centroids = kmeans.cluster centers_
centroids

Now we use the centroids so that they can be profiled by the columns:
centroid df = pd.DataFrame (centroids, columns = list (X standard))

We will now create a dataframe only for the purpose of creating the labels,
and then we convert it into categorical variables:

dataframe labels = pd.DataFrame (kmeans.labels , columns =
list(['labels']))

dataframe labels['labels'] =
dataframe labels['labels'].astype ('category')

In this step, we join the two dataframes:
dataframe labeled = vehicle df 1.join(dataframe_ labels)
A groupby is done to create a data frame required for the analysis:

dataframe analysis = (dataframe labeled.groupby (['labels'] ,
axis=0)) .head(1234)
dataframe labeled['labels'].value counts()

Now we create a visualization for the clusters we have defined. This is done
using the mpl_toolkits library. The logic is simple to understand. The data
points are colored as per the respective labels. The rest of the steps are related
to the display of the plot by adjusting the label, title, ticks, etc. Since it is not
possible to plot all 18 variables in the plot, we have chosen 3 variables to show in
the plot (see figure 2.14):

from mpl toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(8, 6))

ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=20, azim=60)

kmeans.fit (vehicle df 1 =z)

labels = kmeans.labels_

ax.scatter (vehicle df 1 z.iloc[:, 0], vehicle df 1 z.iloc[:, 1],
vehicle df 1 z.iloc[:, 3],c=labels.astype(np.float),
edgecolor="'k"')

ax.w_xaxis.set ticklabels([])

ax.w_yaxis.set ticklabels([])

ax.w_zaxis.set ticklabels([])

ax.set_xlabel ('Length')

ax.set ylabel ('Height')

ax.set_ zlabel ('Weight')

ax.set_title('3D plot of KMeans Clustering on vehicles dataset')

We can also test the preceding code with multiple other values of k. We have created
the code with different values of k. In the interest of space, we have put the code for
testing with different values of £ at the GitHub location.

50

2.4

CHAPTER 2 Clustering techniques

3D plot of k-means clustering on vehicles dataset

oljes snipel

Figure 2.14 K-means clustering for
the vehicles dataset

NOTE Exploratory data analysis holds the key to a robust machine learning
solution and a successful project. In the subsequent chapters, we will create
detailed exploratory data analyses for datasets.

In the preceding example, we first did a small exploratory analysis of the dataset. This
was followed by identifying the optimum number of clusters, which in this case comes
out to be three. Then we implemented k-means clustering. You are expected to iterate
the k-means solution with different initializations and compare the results, iterate with
different values of k, and visualize to analyze the movements of data points.

Centroid-based clustering is one of the most recommended solutions due to its less
complicated logic, ease of implementation, flexibility, and trouble-free maintenance.
Whenever we require clustering as a solution, mostly we start with creating a k-means
clustering solution that acts as a benchmark. The algorithm is highly popular and gen-
erally one of the first solutions utilized for clustering. Then we test and iterate with
other algorithms.

Connectivity-based clustering

“Birds of a feather flock together” is the principle followed in connectivity-based clus-
ters. The core concept is that objects that are connected with each other are similar to
each other. Hence, based on the connectivity between these objects, they are grouped
into clusters. An example of such a representation is shown in figure 2.15, where we
can iteratively group observations. As an example, we are initiating with all things,
dividing into living and nonliving, and so on. Such representation is known as a den-
drogram. Since there is a tree-like structure, connectivity-based clustering is sometimes
referred to as hierarchical clustering.

2.4 Connectivity-based clustering 51

All things

Living things Nonliving things

|Animals | |Plants| | Moveable | | Immoveable |

Figure 2.15 Hierarchical clustering
+ utilizes grouping similar objects

v 1 1
; iteratively. Such representation is
|Z| known as a dendrogram.

Hierarchical clustering fits nicely into human intuition and, hence, is easy to compre-
hend. Unlike k-means clustering, in hierarchical clustering we do not have to input
the number of final clusters, but the method does require a termination condition
(i.e., when the clustering should stop). At the same time, hierarchical clustering does
not suggest the optimum number of clusters. From the hierarchy/dendrogram gener-
ated, we have to choose the best number of clusters ourselves. We will explore this
more when we create the Python code for it in subsequent sections.

Figure 2.16 shows an example of hierarchical clustering. Here, the first node is the
root, which is then iteratively split into nodes and subnodes. Whenever a node cannot
be split further, it is called a terminal node or leaf.

w00

75

Splitting P

Internal Internal b
node node e I
Splitting Splitting e
50
25
Internal Leaf Leaf Internal o
node node (5) (3) (22) (128) (62) (101) (87) [203) (8) (178)

Figure 2.16 Hierarchical clustering has a root that splits into nodes and subnodes. A node that cannot be split
further is called the leaf. In the bottom-up approach, a merging of the leaves will take place.

Since there is more than one process or logic to merge the observations into clusters,
we can generate a large number of dendrograms, which is given by equation 2.7:

Number of dendrograms = (27— 3) 1/[22 (n=2)1] (2.7)

where 7 is the number of observations or the leaves. So, if we have only two observa-
tions, we can have only one dendrogram. If we have 5 observations, we can have 105

52

24.1

CHAPTER 2 Clustering techniques

dendrograms. Hence, based on the number of observations, we can generate a lot of
dendrograms.

Hierarchical clustering can be further classified based on the process used to cre-
ate the grouping of observations, which we explore next.

Types of hierarchical clustering

Based on the grouping strategy, hierarchical clustering can be subdivided into two
types: agglomerative clustering and divisive clustering (see table 2.2).

Table 2.2 Different types of hierarchical clustering

Serial no. Agglomerative clustering Divisive clustering

1 Bottom-up approach. Top-down approach.

2 Each observation creates its own cluster We start with one cluster and then observa-
and then merging takes place as the tions are iteratively split to create a tree-like
algorithm goes up. structure.

3 Greedy approach is followed to merge (the | Greedy approach is followed to split.

greedy approach is described below).

4 An observation will find the best pair to All the observations are taken at the start and
merge and the process completes when then, based on division conditions, splitting
all the observations have merged with takes place until all the observations are
each other. exhausted or the termination condition is met.

Let’s explore the meaning of the greedy approach first. The greedy approach or greedy
algorithm is any algorithm that makes the best choice at each step without considering
the effect on future states. In other words, we live in the moment and choose the best
option from the available choices at that moment. The current choice is independent
of the future choices, and the algorithm will solve the subproblems later. The greedy
approach may not provide the most optimal solution but generally provides a locally
optimal solution that is close to the best solution in a reasonable amount of time. Hier-
archical clustering follows this greedy approach while merging or splitting at a node.
We next examine the steps followed in the hierarchical clustering approach:

As shown in figure 2.17, let us say we have five observations in our dataset: 1, 2,
3,4, and b.

In this step, observations 1 and 2 are grouped into one and 4 and 5 are grouped
into one; 3 is not grouped in any one.

In this step, we group the output of 4,5 in the last step and observation 3 into
one cluster.

The output from step 3 is grouped with the output of 1,2 as a single cluster.

In this approach, from left to right, we have an agglomerative approach, and from
right to left, a divisive approach is represented. In an agglomerative approach, we
merge the observations, while in a divisive approach, we split the observations. We can

24.2

2.4 Connectivity-based clustering 53

- Step 4 Step 3 Step 2 Step1——

Divisive clustering

S

— Step 1 Step 2 Step 3 Step 4 —
Agglomerative clustering

Figure 2.17 Steps followed in hierarchical clustering. From left to right, we have
agglomerative clustering (merging of the nodes), while from right to left, we have divisive
clustering (splitting of the nodes).

use both agglomerative and divisive approaches for hierarchical clustering. Divisive
clustering is an exhaustive approach and sometimes might take more time than the
other.

Similar to k-means clustering, the distance metric used to measure plays a significant
role here. We are aware of and understand how to measure the distance between data
points, but there are multiple methods to define that distance, which we study next.

Linkage criterion for distance measurement

We can use Euclidean distance, Manhattan distance, Chebyshev distance, and others to
measure the distance between two observations. At the same time, we can employ var-
ious methods to define that distance. Based on this input criterion, the resultant clus-
ters will be different. The various methods to define the distance metric are as follows:
Nearest neighbors or single linkages use the distance between the two nearest points
in different clusters. The distance between the closest neighbors in distinct clus-
ters is calculated, and this is used to determine the next split/merging. It is
done by an exhaustive search among all the pairs.
Farthest neighbor or complete linkage is the opposite of the nearest neighbor
approach. Here, instead of taking the nearest neighbors, we concentrate on the
most distant neighbors in different clusters. In other words, the distance
between the clusters is calculated by the greatest distance between two objects.
Group average linkage calculates the average of the distances between all the pos-
sible pairs of objects in two different clusters.
The Ward linkage method aims to minimize the variability of the clusters that are
getting merged into one.

54

CHAPTER 2 Clustering techniques

We can use these options of distance metrics while we are developing the actual code
for hierarchical clustering and compare the accuracies to determine the best distance
metrics for the dataset. During algorithm training, the algorithm merges the observa-
tions, which will minimize the linkage criteria chosen. We can visualize the various
linkages in figure 2.18.

NOTE Such inputs to the algorithm are referred to as hyperparameters.
These are the values we feed to the algorithm to generate the results as per
our requirement, and they act as our control on the algorithm. An example
of a hyperparameter is kin k-means clustering.

@
@
@
@
d
D
@
@

Figure 2.18 Single linkage is for closest neighbors (left); complete linkage is for farthest neighbors (center); and
group average is for the average of the distance between clusters (right).

24.3

With this, we have understood the working mechanisms in hierarchical clustering. But
we have still not addressed the mechanism to determine the optimum number of clus-
ters using hierarchical clustering, which we examine next.

Optimal number of clusters

Recall that in k-means clustering, we have to give the number of clusters as an input to
the algorithm. We use the elbow method to determine the optimum number of clus-
ters. In the case of hierarchical clustering, we do not have to specify the number of
clusters to the algorithm, but we still have to identify the number of final clusters we
wish to have. We use a dendrogram to answer that question.

Let us assume that we have 10 data points in total at the bottom of the chart, as
shown in figure 2.19. The clusters are merged iteratively until we get the one final
cluster at the top. The height of the dendrogram at which two clusters get merged
with each other represents the respective distance between the said clusters in the
vector-space diagram.

From a dendrogram, the number of clusters is given by the number of vertical
lines being cut by a horizontal line. The optimum number of clusters is given by the
number of vertical lines in the dendrogram cut by a horizontal line such that it inter-
sects the tallest of the vertical lines. Or if the cut is shifted from one end of the vertical
line to another, the length covered is the maximum. A dendrogram utilizes branches
of clusters to show how closely various data points are related to each other. In a

2.4 Connectivity-based clustering 55

091

0.71

0.6

___ X
0.5 I

041

____________ — [l]
____________ Fodcdofop-d---eo®

0.3F

0.2

2 10 5 8 9 1 4 3 6 7

Figure 2.19 Dendrogram to identify the optimum number of clusters. The distance between
X and Y is more than between A and B and between P and Q; hence, we choose that as the
cut to create clusters and the number of clusters chosen is five. The x-axis represents the
clusters, while the y-axis represents the distance (dissimilarity) between two clusters.

dendrogram, clusters that are located at the same height level are more closely related
than clusters that are located at different height levels.

In the example shown in figure 2.19, we have shown three potential cuts: AB, PQ,
and XY. If we take a cut above AB, it will result in two very broad clusters, while below
PQ will result in nine clusters that will become difficult to analyze further.

Here, the distance between X and Y is more than between A and B and between P
and Q. So we can conclude that the distance between X and Y is the maximum, and
hence, we can finalize that as the best cut. This cut intersects at five distinct points;
hence, we should have five clusters. The height of the cut in the dendrogram is similar
to the value of kin k-means clustering. In k-means clustering, k determines the num-
ber of clusters. In hierarchical clustering, the best cut determines the number of clus-
ters we wish to have.

Similar to k-means clustering, the final number of clusters is not dependent on the
choice from the algorithm only. Business acumen and pragmatic logic play a vital role
in determining the final number of clusters. Recall that one of the important attri-
butes of clusters is their usability, which we discussed in section 2.2.

Sometimes we also use cophenetic correlation coefficient to measure how well the
dendrogram represents the actual pairwise distance between the points. It compares
the cophenetic distance, which is the height at which two points merged first in the
dendrogram, with the original dissimilarity between the points.

There is one more index known as the Calinski-Haranasz index. It measures the
ratio of between-cluster dispersion to within-cluster dispersion. A higher value means
better clustering, and hence we choose the optimal number of clusters to maximize
this index.

56

24.4

CHAPTER 2 Clustering techniques

Exercise 2.3
Answer these questions to check your understanding;:
What is the greedy approach used in hierarchical clustering?

Complete linkage is used for finding distances for closest neighbors. True or
False?

What is the difference between group linkage and ward linkage?
Describe the process to find the most optimal value of k.

Pros and cons of hierarchical clustering

Hierarchical clustering is a strong clustering technique and is quite popular, too. Sim-
ilar to k-means, it also uses distance as a metric to measure similarity. At the same time,
there are a few challenges with the algorithm. The advantages of hierarchical cluster-
ing are as follows:

Perhaps the biggest advantage of hierarchical clustering is the reproducibility
of results. Recall in k-means clustering, the process starts with random initializa-
tion of centroids giving different results. In hierarchical clustering, we can
reproduce the results.

In hierarchical clustering, we do not have to input the number of clusters to
segment the data.

The implementation is easy to implement and comprehend. Since it follows a
tree-like structure, it is explainable to users from nontechnical backgrounds.
The dendrogram generated can be interpreted to give a very good understand-
ing of the data with a visualization.

At the same time, we do face some challenges with hierarchical clustering algorithms,
which are as follows:

The biggest challenge we face with hierarchical clustering is the time taken to
converge. The time complexity for k-means is linear, while for hierarchical clus-
tering it is quadratic. For example, if we have “»n” data points, then for k-means
clustering the time complexity will be O(n), while for hierarchical clustering it

is O(n®).
TIP Refer to the appendix if you want to study O(n).

Since the time complexity is O(n?), it is a time-consuming task. Moreover, the
memory required to compute is at least O(n?), making hierarchical clustering
quite a time-consuming and memory-intensive process. And this is the problem
even if the dataset is medium. The computation required might not be a chal-
lenge if we are using high-end processors, but it surely can be a concern for reg-
ular computers.

The interpretation of dendrograms at times can be subjective; hence due dili-
gence is required while interpreting dendrograms. The key to interpreting a

2.4.5

2.4 Connectivity-based clustering 57

dendrogram is to focus on the height at which any two data points are connected.
It can be subjective, as different analysts can decipher different cuts and try to
prove their methodology. Hence, it is advisable to interpret the results in the
light of mathematics and marry the results with real-world business problems.
Hierarchical clustering cannot undo the previous steps it has done. Even if we
feel that a connection made is not proper and should be rolled back, there is
no mechanism to remove the connection.

The algorithm is very sensitive to outliers and messy datasets. The presence of
outliers, NULL, missing values, duplicates, etc., makes a dataset messy. Hence
the resultant output might not be proper or what we expected.

But despite all the challenges, hierarchical clustering is one of the most widely used
clustering algorithms. Generally, we create both k-means clustering and hierarchical
clustering for the same dataset to compare the results of the two. If the number of
clusters suggested and the distribution of respective clusters look similar, we get more
confident about the clustering methodology used.

We have covered the theoretical background of hierarchical clustering. It is time to
take action and jump into Python for coding.

Hierarchical clustering case study using Python

We will now create a Python solution for hierarchical clustering using the same data-
set we used for k-means clustering:

Load the required libraries and
dataset. For this, follow steps 1 to
6 we followed for the k-means
algorithm.

Next, we create hierarchical clus-
tering using three linkage meth-
ods: average, ward, and
complete. Then the clusters will
be plotted. The input to the
method is the X _Standard vari-
able, the linkage method used,
and the distance metric. Then,
using the matplotlib library, we
plot the dendrogram. In the fol-
lowing code snippet, simply
change the method from “aver-
age” to “ward” and “complete”
and get the respective results (see

Figure 2.20 Hierarchical clustering using
average, ward, and complete linking methods
figure 2.20): (top to bottom, respectively)

from scipy.cluster.hierarchy import dendrogram, linkage
7z df average = linkage (X standard, 'average',K metric='euclidean')
7z_df_average.shape

CHAPTER 2 Clustering techniques

plt.figure (figsize=(30, 12))
dendrogram(Z_df average)
plt.show()

We now want to choose the number of x5
clusters we wish to have. For this pur- s
pose, let’s re-create the dendrogram by
subsetting the last 10 merged clusters.

We have chosen 10 as it is generally an i
optimal choice; I advise you to test with 50
other values too (see figure 2.21): 25
oo -
dendrogram ((8] (3} (22) (148) (62) (101) (87} (203) (4) (178)

Z df complete,
truncate mode='lastp', p=10,)
plt.show()

Figure 2.21 A dendrogram subsetting
the last 10 merged clusters

We observe that the most optimal distance is 10.

Cluster the data into different groups. By using the logic described in the last

section, the number of optimal clusters is going to be four:

from scipy.cluster.hierarchy import fcluster

hier clusters = fcluster(Z df complete, max distance,
criterion='distance')

hier clusters
len(set (hier clusters))

Plot the distinct clusters using the matplotlib library. In the print version of
the book, you will not see different colors. The output of the Python code will
have the colors; I advise that you run the code to appreciate the output. The
same output is available in the GitHub repository (see figure 2.22):

plt.scatter (X standard[:,0], X standard[:,1], c=hier clusters)
plt.show()

-1

Figure 2.22 A plot of the distinct

-2 i y i . i clusters using the matplotlib library
L -1 [i] i 2 £}

=1

2.4 Connectivity-based clustering 59

For different values of distance, the number of clusters will change, and the
plot will look different. We are showing different results for distances of 5, 15,
and 20 and different numbers of clusters generated for each iteration. Figure
2.23 shows that we get completely different results for different values of dis-
tances as we move from left to right. We should be cautious when we choose the
value of the distance, and sometimes we might have to iterate a few times to get
the best value.

Figure 2.23 The number of clusters using different values of distance

Using hierarchical clustering, we segment the data on the left side to the one on the
right side of figure 2.24. The left side represents the raw data, while on the right, we
have a representation of the clustered dataset. In the print version of the book, you
won’t see the different colors. The output of the Python code will have the colors. The
same output is available at the GitHub repository.

o H -1
5202302 BOEDISEED B9 2ED

-2 -2

0
AN
o
s
~
w
A
L
o
v
~
w

Figure 2.24 Segmenting the data using hierarchical clustering

Hierarchical clustering is a robust method and is highly recommended. Along with k-
means, it creates a great foundation for clustering-based solutions. Most of the time, at
least these two techniques are used when we create clustering solutions, and then we
move on to iterate with other methodologies.

60

2.5

0

o0o%e@

CHAPTER 2 Clustering techniques

Density-based clustering

We have studied k-means in the earlier sections. Recall how it uses a centroid-based
method to assign a cluster to each of the data points. If an observation is an outlier,
the outlier point pulls the centroid toward itself and is also assigned a cluster like a
normal observation. These outliers do not necessarily bring information to the cluster
and can affect other data points disproportionally but are still made a part of the clus-
ter. Moreover, getting clusters of arbitrary shapes, as shown in figure 2.25, is a chal-
lenge with the k-means algorithm. Density-based clustering methods solve the
problem.

0
OOO Q%) OO OO OO

0 ¢
0 0} 0 0 (O)0)
0 0 (0) 0 0
OO OO %O OO

0

0
0 0
OO OOO

Figure 2.25 DBSCAN is highly recommended for irregular-shaped clusters. With k-means, we generally get
spherical clusters; DBSCAN can resolve it.

251

In the density-based method, the clusters are identified as the areas that have a higher
density as compared to the rest of the dataset. In other words, given a vector-space dia-
gram where the data points are represented, a cluster is defined by adjacent regions
or neighboring regions of high-density points. This cluster will be separated from
other clusters by regions of low-density points. The observations in the sparse areas or
separating regions are considered noise or outliers in the dataset. A few examples of
density-based clustering are shown in figure 2.25.

We mentioned two terms: neighborhood and density. To understand density-based
clustering, we will study these terms in the next section.

Neighborhood and density

Imagine we represent data observations in a vector-space, and we have a point P. We
now define the neighborhood for this point P. The representation is shown in figure
2.26. For a point P we have defined an s¢—neighborhoods for it that are the points
equidistant from P. In a 2D space, it is represented by a circle; in a 3D space it is a
sphere; and for a n-dimensional space, it is n-sphere with center P and radius &. This
defines the concept of neighborhood.

2.5 Density-based clustering 61

° ° © ° ° °
°
° ...o°. : ° ° °
° L4 ° ° L4
° ° ° e o © e
° ~.o
® o ° e o © o 4 ° ° ° o °
° ° e o ° °
° ® o L4 °
° ° ° : ° ° °
° ° e © ® o °
°

Figure 2.26 Representation of data points in a vector-space diagram. On the right-side we have a point P, and the
circle drawn is of radius &. So, for £ > 0, the neighborhood of P is defined by the set of points that are at less than
or equal to ¢ distance from the point P.

Now let’s explore the term density. Recall density is mass divided by volume (mass/
volume). The higher the mass, the higher the density, and the lower the mass, the
lower the density. Conversely, the lower the volume, the higher the density, and vice
versa.

In the previous context, mass is the number of points in the neighborhood. In fig-
ure 2.26 we can observe the effect of ¢ on the number of data points or the mass.
When it comes to volume, in the case of 2D space, volume is nr?, while for a sphere
that is 3D, it is 4/3 nr’. For spheres of n-dimensions, we can calculate the respective
volume as per the number of dimensions, which will be © times a numerical constant
raised to the number of dimensions.

So, in the two cases shown in figure 2.27, for a point P, we can get the number of
points (mass) and volumes, and then we can calculate the respective densities. But the
absolute values of these densities mean nothing to us; rather how they are similar (or
different) from nearby areas is what’s important. The points that are in the same
neighborhood and have similar densities can be grouped into one cluster.

Figure 2.27 The effect of radius ¢. On the left side, the number of points is more than on the right side. So the
mass of the right side is less, since it contains a smaller number of data points.

In an ideal case scenario, we wish to have highly dense clusters with a maximum num-
ber of points. In the two cases shown in figure 2.28, we have a less dense cluster
depicted on the left and a high-dense one on the right.

62

CHAPTER 2 Clustering techniques

Figure 2.28 Denser clusters are preferred over less dense ones. Ideally, a dense cluster, with a maximum number
of data points, is what we aim to achieve from clustering.

25.2

From the preceding discussion, we can conclude that

If we increase the value of &, we will get a highervolume but not necessarily a higher
number of points (mass). It depends on the distribution of the data points.

If we decrease the value of &, we will get a lowervolume but not necessarily a lower
number of points (mass).

These are the fundamental points we adhere to. Hence, it is imperative that we choose
clusters that have high density and cover the maximum number of neighboring points.

DBSCAN clustering

DBSCAN clustering is one of the highly recommended density-based algorithms. It
clusters the data observations that are closely packed in a densely populated area but
does not consider the outliers in low-density regions. Unlike k-means, we do not spec-
ify the number of clusters, and the algorithm is able to identify irregular-shaped clus-
ters, whereas k-means generally proposes spherical-shaped clusters. Similar to
hierarchical clustering, it works by connecting the data points but with the observa-
tions that satisfy the density criteria or the threshold value.

NOTE DBSCAN was proposed in 1996 by Martin Ester, Hans-Peter Kriegal,
Jorg Sander, and Xiaowei Xu. The algorithm was given the Test of Time
award in 2014 at ACM SIGKDD. The paper can be accessed at https://
mng.bz/BXvl.

DBSCAN works on the concepts of neighborhood we discussed in the last section. We
will now dive deeper into the working methodology and building blocks of DBSCAN.

NUTS AND BOLTS OF DBSCAN CLUSTERING
Let’s now examine the core building blocks of DBSCAN clustering. We know it is a
density-based clustering algorithm, and hence the neighborhood concept is applica-
ble here.

Say we have a few data observations that we need to cluster. We also locate a data
point P. Then we can easily define two hyperparameter terms:

The radius of the neighborhood around P, known as &, which we discussed in
the last section.

https://mng.bz/BXv1
https://mng.bz/BXv1

2.5 Density-based clustering 63

The minimum number of points we wish to have in the neighborhood of P or,
in other words, the minimum number of points that are required to create a
dense region. This is referred to as minimum points (minPts). It is one of the
parameters we can input by applying a threshold on minPts.

Based on these concepts, we can classify the observations into three broad categories:
core points, border or reachable points, and outliers:

Core points—Any data point x can be termed as a core point if at least minPts are
within ¢ distance of it (including x itself), shown as squares in figure 2.29. They
are the building blocks of our clusters and are called core points. We use the
same value of radius (¢) for each point and hence the volume of each neighbor-
hood remains constant. But the number of points will vary and hence the mass
varies. Consequently, the density varies as well. Since we put a threshold using
minPts, we are putting a limit on density. So we can conclude that core points ful-
fill the minimum density threshold requirement. It is imperative to note that we
can choose different values of ¢ and minPts to iterate and fine-tune the clusters.

Border points or reachable points—A point that is not a core point in the clusters is
called a border point, shown as filled circles in figure 2.29.

(O Noise points
B Core points

@® Border points

minPts = 3 O ’
radius = & Figure 2.29 Core points are shown
as squares; border points are shown
O as filled circles, while noise is

unfilled circles. Together, these
three are the building blocks for
O O DBSCAN clustering.

A pointy is directly reachable from x if y is within & distance of core point x. A
point can only be approached from a core point, and it is the primary condition
or rule to be followed. Only a core point can reach a noncore point, and the
opposite is not true. In other words, a noncore point can only be reached by
other core points; it cannot reach anyone else. In figure 2.29, border points are
represented as dark circles.

To understand the process better, we have to understand the term density-
reachable or connectedness. In figure 2.30, we have two core points: X and Y. We
can directly go from X to Y. Point Z is not in the neighborhood of X but s in the
neighborhood of Y. So we cannot directly reach Z from X, but we can surely

64

B Core points
@ Border points

CHAPTER 2 Clustering techniques
reach Z from X through Y or, in other words, using the neighborhood of Y, we

can travel to Z from X. Conversely, we cannot go from Z to X since Z is the bor-
der point and, as described earlier, we cannot travel from a border point.

B

Figure 2.30 X and Y are the core points, and we can travel from X to Y. Though Z is not in the immediate
neighborhood of X, we can still reach Z from X through Y. This is the core concept of density-connected points used
in DBSCAN clustering.

Oudtliers—All the other points are outliers. In other words, if it is not a core point
or is not a reachable point, it is an outlier, shown as unfilled circles in figure
2.29. They are not assigned any cluster.

STEPS IN DBSCAN CLUSTERING
The steps in DBSCAN clustering are as follows:

We start with assigning values for & and minPts required to create a cluster.

We start with picking a random point, let’s say P, which is not yet given any label
(i.e., it has not been analyzed and assigned any cluster).

We then analyze the neighborhood for P. If it contains a sufficient number of
points (i.e., higher than minPts), then the condition is met to start a cluster. If
so, we tag the point P as the core point. If a point cannot be recognized as a core
point, we will assign it the tag of outlier or noise. We should note this point can be
made a part of a different cluster later. Then we go back to step 2.

Once this core point P is found, we start creating the cluster by adding all
directly reachable points from P and then increase this cluster size by adding
more points directly reachable from P. Then we add all the points to the cluster,
which can be included using the neighborhood by iterating through all these
points. If we add an outlier point to the cluster, the tag of the outlier point is
changed to a border point.

This process continues until the density cluster is complete. We then find a new
unassigned point and repeat the process.

Once all the points have been assigned to a cluster or called an outlier, we stop
our clustering process.

2.5 Density-based clustering 65

There are iterations in the process. Then, once the clustering concludes, we utilize
business logic to either merge or split a few clusters.

Exercise 2.4
Answer these questions to check your understanding;:

Compare and contrast the importance of DBSCAN clustering with respect to k-
means clustering.

A noncore point can reach a core point and vice versa is also true. True or
False?

Explain the significance of neighborhood and minPts.
Describe the process to find the most optimal value of k.

Now we are clear with the process of DBSCAN clustering. Before creating the Python
solution, we will examine the advantages and disadvantages of the DBSCAN algorithm.

PROS AND CONS OF DBSCAN CLUSTERING
DBSCAN has the following advantages:

Unlike k-means, we need not specify the number of clusters to DBSCAN.

The algorithm is quite a robust solution for unclean datasets. Unlike other algo-
rithms, it can deal with outliers effectively.

We can determine irregular-shaped clusters too. Arguably, this is the biggest
advantage of DBSCAN clustering.

Only the input of radius and minPts is required by the algorithm.

DBSCAN has the following challenges:

The differentiation in clusters is sometimes not clear using DBSCAN. Depending
on the order of processing the observations, a point can change its cluster. In
other words, if a border point P is accessible by more than one cluster, P can
belong to either cluster, which is dependent on the order of processing the data.
If the difference in densities among different areas of the datasets is very big,
then the optimum combination of ¢ and minPts will be difficult to determine,
and hence DBSCAN will not generate effective results.

The distance metric used plays a highly significant role in clustering algorithms,
including DBSCAN. Arguably, the most common metric used is Euclidean dis-
tance, but if the number of dimensions is quite large, then it becomes a chal-
lenge to compute.

The algorithm is very sensitive to different values of & and minPts. Sometimes
finding the most optimum value becomes a challenge.

PYTHON SOLUTION FOR DBSCAN CLUSTERING
We will use the same dataset we have used for k-means and hierarchical clustering:

Load the libraries and dataset up to step 6 in the k-means algorithm.

66

CHAPTER 2 Clustering techniques

Import additional libraries:

from sklearn.cluster import DBSCAN

from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import normalize

from sklearn.neighbors import NearestNeighbors

Here we fit the model with a value for minimum distance and radius:

db default = DBSCAN(eps = 0.0375, min samples = 6).fit (X standard)
labels = db_default.labels_

The number of distinct clusters is 1:
list (set(labels))

We are not getting any results for clustering here. In other words, there will not
be any logical results of clustering since we have not provided the optimal val-
ues for minPts and e.

Now we will find the optimum values for ¢ (see figure 2.31). For this, we will cal-
culate the distance to the nearest points for each point and then sort and plot
the results. Wherever the curvature is maximum, it is the best value for ¢. For
minPts, generally minPts > d + 1 where d is the number of dimensions in the
dataset:

neigh = NearestNeighbors (n neighbors=2)

nbrs = neigh.fit (X standard)

distances, indices = nbrs.kneighbors (X standard)
distances = np.sort (distances, axis=0)

distances = distances|[:,1]

plt.plot (distances)

40+
351
304
251

201

104

051

00+

0 100 200 00 400 500 600 700 600
Figure 2.31 Finding the optimum value of &
NOTE See the paper at https://iopscience.iop.org/article/10.1088/1755-

1315/31/1/012012/pdf for further study on how to choose the values of
radius for DBSCAN.

https://iopscience.iop.org/article/10.1088/1755-1315/31/1/012012/pdf
https://iopscience.iop.org/article/10.1088/1755-1315/31/1/012012/pdf

2.6

2.6 Case study using clustering 67

The best value is coming up as 1.5, as observed in the point of defection. We will
use it and set the minPts as 5, which is generally taken as a standard:

db_default = DBSCAN(eps=1.5, min_samples=5)
db_default.fit (X_standard)
clusters = db_default.labels

Now we can observe that we are getting more than one cluster:
list (set (clusters))

Let’s plot the clusters (see figure 2.32). In the print version of the book, you will
not see different colors. The output of the Python code will have the colors.
The same output is available at the GitHub repository:

colors = ['blue', 'red', 'orange',6 'green',K 'purple', 'black', 'brown',
'cyan', 'yellow', 'pink']
vectorizer np.vectorize (lambda x: colors[x % len(colors)])

= [
plt.scatter(X_standard[:,0], X standard[:,1], c=vectorizer (clusters))

=

-2 |) Figure 2.32 Plotting the clusters

We have thus created a solution using DBSCAN. I advise you to compare the results
from all three algorithms. In real-world scenarios, we test the solution with multiple
algorithms, iterate with hyperparameters, and then choose the best solution.

Density-based clustering is quite an efficient solution and, to a certain extent, is a
very effective one too. It is heavily recommended if the shape of the clusters is sus-
pected to be irregular.

With this, we conclude our discussion on DBSCAN clustering. In the next section,
we solve a business use case on clustering. In the case study, the focus is less on techni-
cal concepts and more on business understanding and solution generation.

Case study using clustering

We will now define a case study that employs clustering as one of the solutions. The
objective of the case study is to give you a flavor of the practical and real-life business
world. This case study-based approach is also followed in job-related interviews,

68

2.6.1

CHAPTER 2 Clustering techniques

wherein a case is discussed during the interview stage. I highly recommend you
understand how we implement machine learning solutions in pragmatic business
scenarios.

A case study typically has a business problem, the dataset available, the various
solutions that can be used, the challenges faced, and the final chosen solution. We
also discuss the problems faced while implementing the solution in real-world
business.

So let’s start our case study on clustering using unsupervised learning. In the case
study, we focus on the steps we take to solve the case study and not on the technical
algorithms, as there can be multiple technical solutions to a particular problem.

Business context

The industry we are considering can be retail; telecom; banking, financial services,
and insurance; aviation; healthcare; or any other industry that has a customer base.
For any business, the objective is to generate more revenue for the business and ulti-
mately increase the overall profit of the business. To increase revenue, the business
would want to have increasingly more new customers. The business would also want
the existing consumers to buy more and buy more often. So the business always strives
to keep the consumers engaged and happy and to increase their transactional value
with the business.

For this to happen, the business must have a thorough understanding of its con-
sumer base; it must know their tastes, price points, category preferences, affinity, pre-
ferred marketing/communication channels, etc. Once the business has examined
and understood the consumer base minutely, then

The product team can improve the product features as per the consumer’s
need.

The pricing team can improve the price of the products by aligning them to
customers’ preferred prices. The prices can be customized for a customer, or
loyalty discounts can be offered.

The marketing team and customer relationship team can target the consumers
with a customized offer.

The teams can win back the consumers who are going to churn or stop buying
from the business, can enhance their spending, increase the stickiness, and
increase the customer lifetime value.

Overall, different teams can align their offerings as per the understanding of
the consumers generated. And the end consumer will be happier, more
engaged, and more loyal to the business, leading to more fruitful consumer
engagement.

The business hence should dive deep into the consumers’ data and generate an
understanding of the base. The customer data can look like that shown in the next
section.

2.6 Case study using clustering 69

2.6.2 Dataset for the analysis
We take as an example an apparel retailer that has a loyalty program and that saves the
customer’s transaction details. The various (not exhaustive) data sources are shown in
figure 2.33.
CustlD Revenue Invoices Items Discount® CustlD DOB City Gender
123 100 2 10 30 123 |01/01/19%0] A M
124 101 3 12 0 124 |02/01/1990] B F
125 102 4 15 5 125 |03/01/1990] ¢ M
126 103 2 11 40 126 |04/01/19%0[D F
ItemNo Price Subcategory | Category StorelD | StoreName City Area
1 10 A P 100 xvz A 1000
2 1 B Q 101 POR B 2000
3 12 c R 102 ABC 3 1500
4 10 D s 103 TUV D 2500
Figure 2.33 Data sources for an apparel retail store
We can have store details, such as store ID, store name, city, area, number of employ-
ees, etc. We can have an item hierarchies table, which has all the details of the items
like price, category, etc. Then we can have customer demographic details like age,
gender, city, and customer transactional history. Clearly, by joining such tables, we will
be able to create a master table that will have all the details in one place.
NOTE I advise you to develop a good skill set for SQL. It is required in almost
all of the domains related to data—be it data science, data engineering, or
data visualization, SQL is ubiquitous.
Figure 2.34 is an example of a master table. This is not an exhaustive list of variables,
and the number of variables can be much larger than the ones shown. The master
table has some raw variables like Revenue, Invoices, etc., and some derived variables
like Average Transaction Value, Average Basket Size, etc.
CustID Revenue Invoices |ltems bought Age Gender | Avg txn value | Avg basket size |Days since last txn City
1 1000 2 2 25 M 500 1 20 A
2 2000 5 26 F 500 1.25 12 8
3 3000 3 4 27 M 1000 133 30 c
4 4000 4 5 28 F 1000 1.25 25 D
5 5000 2 1 29 F 2500 05 1 E

Figure 2.34 A master table

We could also take an example of a telecom operator. In that subscriber usage, call
rate, revenue, days spent on the network, data usage, etc., will be the attributes we ana-
lyze. Hence, based on the business domain at hand, the datasets will change.

70

2.6.3

2.6.4

CHAPTER 2 Clustering techniques

Once we have the dataset, we generally create derived attributes from it. For exam-
ple, the average transaction value attribute is total revenue divided by the number of
invoices. We create such attributes in addition to the raw variables we already have.

Suggested solutions

There can be multiple solutions to the problem, some of which we include in the
following:

We can create a dashboard to depict the major key performance indicators.
This will allow us to analyze the history and take necessary actions based on it.
But the dashboard will only show the information that we already know (to
some extent).

We can perform data analysis using some of techniques we used in the solutions
in the earlier sections. This will solve a part of the problem and, moreover, it is
difficult to consider multiple dimensions simultaneously.

We can create predictive models to predict if the customers are going to shop in
the coming months or are going to churn in the next X days, but this will not
solve the problem completely. To be clear, “churn” here means that the cus-
tomer no longer shops with the retailer in the next X days. Here, duration Xis
defined as per the business domain. For example, for the telecom domain, X
will be less than in the insurance domain. This is due to the fact that people use
mobile phones every day, whereas in the insurance domain, most customers pay
the premium yearly. So customer interaction is less for insurance.

We can create customer segmentation solutions wherein we group customers
based on their historical trends and attributes. This is the solution we will use to
solve this business problem.

Solution for the problem

Recall figure 1.9 in chapter 1, where we discussed the steps we follow in the machine
learning algorithm. Everything starts with defining the business problem and then we
move on to data discovery, preprocessing, etc. For our case study here, we will utilize a
similar strategy. We have already defined the business problem; data discovery is done
and we have completed the exploratory data analysis and the preprocessing of the
data. To create a segmentation solution using clustering, follow these steps:

We start with finalizing the dataset we wish to feed to the clustering algorithms.
We might have created some derived variables, treated some missing values or
outliers, etc. In the case study, we would want to know the minimum/
maximum/average values of transactions, invoices, items bought, etc. We would
be interested to know the gender and age distribution. We also would like to
know the mutual relationships between these variables, such as if women cus-
tomers use the online mode more than male customers. All of these questions
are answered as part of this step.

2.6 Case study using clustering 71

TIP A Python Jupyter notebook is checked in at the GitHub repository, which
provides detailed steps and code for the exploratory data analysis and data
preprocessing. Check it out!

We create the first solution using k-means clustering followed by hierarchical
clustering. For each of the algorithms, iterations are done by changing hyperpa-
rameters. In the case study, we will choose parameters like the number of visits,
total revenue, distinct categories purchased, online/offline transactions ratio,
gender, age, etc., as parameters for clustering.

A final version of the algorithm and respective hyperparameters are chosen.
The clusters are analyzed further in the light of business understanding.

More often, the clusters are merged or broken, depending on the size of the
observations and the nature of the attributes present in them. For example, if
the total customer base is 1 million, it will be really hard to take action on a clus-
ter of size 100. At the same time, it will be equally difficult to manage a cluster
of size 700,000.

We then analyze the clusters we finally have. The clusters distribution is
checked for the variables, their distinguishing factors are understood, and we
give logical names to the clusters. We can expect to see such a clustering output
as shown in figure 2.35.

Spending patterns

High spenders -

Balanced spending -

Discount shoppers —

Overall
engagement

Response to previous
campaigns

Life stage

Figure 2.35 Segmentation based on a few dimensions like response, life stage,
engagement, and spending patterns. The dimensions are not exhaustive, and in a
real-world business problem, the number of dimensions can be higher.

72

2.7

CHAPTER 2 Clustering techniques

In the example clusters shown, we have depicted spending patterns, responsiveness to
previous campaigns, life stage, and overall engagement as a few dimensions. Respec-
tive subdivisions of each of these dimensions are also shown. The clusters will be a log-
ical combination of these dimensions. The actual dimensions can be much higher.

The segmentation shown in figure 2.35 can be used for multiple domains and busi-
nesses. The parameters and attributes might change, the business context may be dif-
ferent, the extent of data available might vary—but the overall approach remains
similar.

In addition to the applications we saw in the last section, let’s examine a few use
cases here:

Market research utilizes clustering to segment the groups of consumers into
market segments; then the groups can be analyzed better in terms of their pref-
erences. Product placement can be improved, pricing can be made tighter, and
geography selection will be more scientific.

In the bioinformatics and medical industry, clustering can be used to group
genes into distinct categories. Groups of genes can be segmented and compari-
sons can be assessed by analyzing the attributes of the groups.

Clustering is used as an effective data preprocessing step before we create algo-
rithms using supervised learning solutions. It can also be used to reduce the
data size by focusing on the data points belonging to a cluster.

Clustering is utilized for pattern detection across both structured and unstruc-
tured datasets. We have already studied the case for a structured dataset. For text
data, it can be used to group similar types of documents, journals, news, etc. We
can also employ clustering to work and develop solutions for images. We will
study unsupervised learning solutions for text and images in later chapters.

As the algorithms work on similarity measurements, clustering can be used to
segment the incoming dataset as fraud or genuine, which can be used to reduce
the number of criminal activities.

The use cases of clustering are many. We have discussed only the prominent ones.
Clustering is one of the algorithms that changes the working methodologies and gen-
erates a lot of insights around the data. It is widely used across telecom; retail; bank-
ing, financial services, and insurance; aviation; and others.

At the same time, there are a few problems with the algorithm. We next examine
the common problems we face with clustering.

Common challenges faced in clustering

Clustering is not a completely straightforward solution without any challenges. Like
any other solution in the world, clustering too has its share of problems. The most
common challenges we face in clustering are as follows:

Too much data—Sometimes the magnitude of the data is quite big, and there are
a lot of dimensions available. In such a case, it becomes difficult to manage the

2.7 Common challenges faced in clustering 73

dataset. The computation power might be limited, and like any project, there is
finite time available. To overcome the problem, we can

— Try to reduce the number of dimensions by finding the most significant vari-
ables by using a supervised learning-based regression approach or decision
tree algorithm, etc.

— Reduce the number of dimensions by employing principal component analy-
sis or singular value decomposition, etc.

A noisy dataset—“Garbage in, garbage out” is a cliché that is true for clustering

too. If the dataset is messy, it creates a lot of problems. The problems can

include

— Missing values (i.e., NULL, NA, ?, blanks, etc.).

— Outliers present in the dataset.

— Junk values like #€1§" etc., present in the dataset.

— Wrong entries made in the data. For example, if a name is entered in the
Revenue field, it is an incorrect entry.

We discuss the steps and the process to resolve these problems in later chapters.
In this chapter, we are examining how to work with categorical variables.

Categorical variables—While discussing, recall the problem where k-means was
not able to use categorical variables. We solve that problem next.

To convert categorical variables into numeric ones, we can use one-hot encod-
ing. This technique adds additional columns equal to the number of distinct
classes as shown in the following figure. The variable city has unique values as
London and New Delhi. We can observe that two additional columns have been
created with 0 or 1 filled in for the values (see figure 2.36).

CustiD City Sales Age CustiD London New Delhi Sales Age
1234 London 100 25 1234 1 1] 100 25
1235 NewDelhi 101 26 1235 0 1 101 26
1236 NewDelhi 102 27 1236 0 1 102 27
1237 NewDelhi 103 2B 1237 a 1 103 28
[1238 | london | 104 29 1238 T o | 108 2

Figure 2.36 Using one-hot encoding to convert categorical variables into numeric ones

Using one-hot encoding does not always ensure an effective and efficient solu-
tion. Imagine if the number of cities in this example is 100; then we will have
100 additional columns in the dataset, and most of the values will be filled in
with 0. Hence, in such a situation, it is advisable to group a few values.

Distance metrics—With different distance metrics, we might get different results.
Though there is no “one size fits all,” Euclidean distance is most often used for
measuring distance.

74

2.8

2.9

CHAPTER 2 Clustering techniques

Subjective interpretations—Interpretations for the clusters are quite subjective. By
using different attributes, completely different clustering can be done for the
same datasets. As discussed earlier, the focus should be on solving the business
problem at hand. This holds the key to choosing the hyperparameters and the
final algorithm.

Time-consuming—Since a lot of dimensions are dealt with simultaneously, some-
times converging the algorithm takes a lot of time.

Despite all these challenges, clustering is a widely recognized and utilized technique.

Concluding thoughts

Unsupervised learning is not an easy task. But it is certainly a very engaging one. It
does not require any target variable, and the solution identifies the patterns itself,
which is one of the biggest advantages of unsupervised learning algorithms. And the
implementations are already having a great effect on the business world. We studied
one of these solution classes called clustering in this chapter.

Clustering is an unsupervised learning solution that is useful for pattern identifica-
tions, exploratory analysis, and, of course, segmenting the data points. Organizations
heavily use clustering algorithms and proceed to the next level of understanding con-
sumer data. Better prices can be offered, more relevant offers can be suggested, con-
sumer engagement can be improved, and overall customer experience becomes
better. After all, a happy consumer is the goal of any business. Clustering can be used
not only for structured data but for text data, images, videos, and audio too. Due to its
capability to find patterns across multiple datasets using a large number of dimen-
sions, clustering is the go-to solution whenever we want to analyze multiple dimen-
sions together.

In this second chapter of this book, we introduced concepts of unsupervised-based
clustering methods. We examined different types of clustering algorithms—k-means
clustering, hierarchical clustering, and DBSCAN clustering—along with their mathe-
matical concepts, respective use cases, and pros and cons with an emphasis on creat-
ing actual Python code for these datasets.

In the following chapter, we will study dimensionality reduction techniques like
principal component analysis and singular value decomposition. We will discuss the
building blocks for techniques, their mathematical foundation, advantages and disad-
vantages, and use cases and perform actual Python implementation.

Practical next steps and suggested readings

The following provides suggestions for what to do next and offers some helpful

reading:
Get the online retail data from https://mng.bz/dXqo. This dataset contains all
the online transactions occurring between January 12, 2010, and September 12,
2011, for a UK-based retailer. Apply the three algorithms described in the chap-
ter to identify which customers the company should target and why.

https://mng.bz/dXqo

Summary 75

Get the IRIS dataset from https://www.kaggle.com/uciml/iris. It includes three
iris species with 50 samples, each having some properties of the flowers. Use k-
means and DBSCAN and compare the results.
Explore the dataset at UCI for clustering at http://archive.ics.uci.edu/ml/
index.php.
Study the following papers on k-means clustering, hierarchical clustering, and
DBSCAN clustering:
— K-means clustering
https://mng.bz/rKq]
https://mng.bz/VVEy
https://ieeexplore.ieee.org/document,/1017616
— Hierarchical clustering
https://ieeexplore.ieee.org/document/ 7100308
https://mng.bz/xKqd
https://mng.bz/AQno
— DBSCAN clustering
https://arxiv.org/pdf/1810.13105.pdf
https://ieeexplore.ieee.org/document,/9356727

Summary

Clustering is used for a variety of purposes across all industries, such as retail,
telecom, finance, and pharma. Clustering solutions are implemented for cus-
tomer and marketing segmentation to better understand the customer base,
which further improves targeting.

Clustering groups objects with similar attributes into segments, aiding in data
understanding and pattern discovery without needing a target variable.

Using clustering, we find the underlying patterns in a dataset and identify the
natural groupings in the data.

There can be multiple clustering techniques based on the methodology. A few
examples are k-means clustering, hierarchical clustering, DBSCAN, and fuzzy
clustering.

Different clustering algorithms (k-means, hierarchical, DBSCAN) offer distinct
pros and cons, and each is suitable for different data characteristics and purposes.
Clustering is categorized into hard clustering, where objects belong to a single
cluster, and soft clustering, where objects can belong to multiple clusters.
Difterent clustering attributes and techniques, such as centroid-based, density-
based, and distribution models, lead to varied clustering results.

Effective clustering algorithms produce comprehensible, scalable, and inde-
pendent clusters, handling outliers and multiple data types with minimal
domain input.

https://www.kaggle.com/uciml/iris
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
https://mng.bz/rKqJ
https://mng.bz/xKqd
https://mng.bz/VVEy
https://ieeexplore.ieee.org/document/1017616
https://ieeexplore.ieee.org/document/7100308
https://mng.bz/AQno
https://ieeexplore.ieee.org/document/9356727
https://arxiv.org/pdf/1810.13105.pdf

76

CHAPTER 2 Clustering techniques

Distance metrics for clustering include Euclidean, Chebyshev, Manhattan, and
cosine distances.

Centroid-based clustering measures similarity based on the distance to the cen-
troid of clusters.

K-means clustering creates nonoverlapping clusters by specifying the number of
clusters, k, and assigning data points to the nearest center iteratively.

The elbow method is a common technique to determine the optimal number
of clusters in k-means clustering.

K-means is based on the centroid of the cluster.

Hierarchical clustering creates clusters based on connectivity and does not
require a predefined number of clusters.

Hierarchical clustering can be agglomerative (bottom-up) or divisive (top-
down) and uses linkage criteria to measure distances.

DBSCAN identifies clusters based on point density and effectively distinguishes
outliers.

DBSCAN does not require specifying the number of clusters and is suited for
irregular-shaped clusters.

Measuring clustering accuracy involves metrics like WCSS, intercluster sum of
squares, silhouette value, and the Dunn index.

Dimensionality redwetion

This chapter covers

The curse of dimensionality and its disadvantages
Various methods of reducing dimensions
Principal component analysis

Singular value decomposition

Python solutions for both principal component
analysis and singular value decomposition

A case study on dimension reduction

Knowledge is a process of piling up facts; wisdom lies in their simplification.

—Martin H. Fischer

We face complex situations in life. Life throws multiple options at us, and we
choose a few viable ones from them. This decision of shortlisting is based on the
significance, feasibility, utility, and perceived profit from each of the options. The
ones that fit the bill are then chosen. A perfect example can be selecting your vaca-
tion destination. Based on the weather, travel time, safety, food, budget, and several

77

78

3.1

3.2

CHAPTER 3 Dimensionality reduction

other options, we choose a few where we would like to spend our next vacation. In this
chapter, we study precisely the same—how to reduce the number of options—albeit in
the data science and machine learning world.

In the last chapter, we covered major clustering algorithms. We also went over a
case study. The datasets we generate and use in such real-world examples have a lot of
variables. Sometimes, there can be more than 100 variables or dimensions in the data.
But not all of them are important. Having a lot of dimensions in the dataset is referred
to as the curse of dimensionality. To perform any further analysis, we choose a few
from the list of all of the dimensions or variables. In this chapter, we study the need
for dimension reductions, various dimensionality techniques, and the respective pros
and cons. We will dive deeper into the concepts of principal component analysis
(PCA) and singular value decomposition (SVD) and their mathematical foundations
and complement these with Python implementation. Also, continuing our structure
from the last chapter, we will examine a real-world case study in the telecommunica-
tion sector. There are other advanced dimensionality reduction techniques like t-dis-
tributed stochastic neighbor embedding (t-SNE) and linear discriminant analysis
(LDA), which we will explore in later chapters.

Clustering and dimensionality reductions are the major categories of unsupervised
learning. We studied major clustering methods in the last chapter, and we discuss
dimensionality reduction in this chapter. With these two solutions, we cover a lot of
ground in the unsupervised learning domain. But there are many more advanced top-
ics to be covered, which are part of the latter chapters of the book.

Let’s first understand what we mean by the “curse of dimensionality.”

Technical toolkit

We are using the same version of Python as in the last chapters. Jupyter Notebook will
be used in this chapter too.

All the datasets and code files are available at the GitHub repository at (https://
mng.bz/ZIBR). You need to install the following Python libraries to execute the code:
numpy, pandas, matplotlib, scipy, and sklearn. Since you have used the same pack-
ages in the last chapter, you don’t need to install them again. CPU is good enough for
execution, but if you face some computing problems, switch to GPU or Google Colab.
Refer to the appendix if you face any problems with the installation of any of these
packages.

The curse of dimensionality

Let us continue with the vacation destination example we introduced earlier. The
choice of destination is dependent on several parameters: safety, availability, food,
nightlife, weather, budget, health, and so on. Having too many parameters is confus-
ing. Let us understand by a real-life example.

Consider this: a retailer wishes to launch a new range of shoes in the market, and
for that, a target group of customers should be chosen. This target group will be

https://mng.bz/ZlBR
https://mng.bz/ZlBR

3.2 The curse of dimensionality 79

reached through email, SMS, newsletter, etc. The business objective is to entice these
customers to buy the newly launched shoes. From the entire customer base, the target
group of customers can be chosen based on variables like customer age, gender, bud-
get, preferred category, average spend, frequency of shopping, and so on. These many
variables or dimensions make it hard to shortlist the customers based on a sound data
analysis technique. We would be analyzing too many parameters simultaneously,
examining the effect of each on the shopping probability of the customer, and hence
it becomes too tedious and confusing of a task. It is the curse of dimensionality prob-
lem we face in real-world data science projects. We can face the curse of dimensional-
ity in one more situation wherein the number of observations is fewer than the
number of variables. Consider a dataset where the number of observations is X, while
the number of variables is more than X—in such a case, we face the curse of
dimensionality.

An easy method to understand any dataset is through visualization. Let’s visualize a
dataset in a vector-space diagram. If we have only one attribute or feature in the data-
set, we can represent it in one dimension (see the left diagram in figure 3.1). For
example, we might wish to capture only the height of an object using a single dimen-
sion. If we have two attributes, we need two dimensions, as shown in the middle dia-
gram in figure 3.1, wherein to get the area of an object, we will require both length
and width. If we have three attributes, for example, to calculate the volume, which
requires length, width, and height, we require a 3D space, as shown in the diagram at
right in figure 3.1. This requirement will continue to grow based on the number of
attributes.

y y
Two dimensions are required.
° Three dimensions
are required.
Only one dimension is ® ®
required to represent a o °
point in vector space. 1.1
° [
’
x @9 @ @ e e *
11,1 L]
[

Figure 3.1 Only one dimension is required to represent the data points—for example, to represent the height of
an object (left). We need two dimensions to represent a data point. Each data point can correspond to the length
and width of an object, which can be used to calculate the area (middle). Three dimensions are required to show a
point (right). Here, it can be length, width, and height, which are required to get the volume of an object. This
process continues based on the number of dimensions present in the data.

80

CHAPTER 3 Dimensionality reduction

Consider a dataset where you have an attribute for a data point—for example, gender.
Then we add age and then education, address, and so on. To represent these attri-
butes, the number of dimensions will keep on increasing. Hence, it is quite easy for us
to conclude that with an increase in the number of dimensions, the amount of space
required to represent increases by leaps and bounds. This is referred to as the curse of
dimensionality. The term was introduced by Richard E. Bellman and is used to refer to
the problem of having too many variables in a dataset—some of which are significant
while many others may be less important.

There is another well-known theory named the Hughes phenomenon, shown in fig-
ure 3.2. Generally, in data science and machine learning, we wish to have as many vari-
ables as possible to train our model. The performance of the supervised learning clas-
sifier algorithm will increase to a certain limit and will peak with the most optimal
number of variables. But, using the same amount of training data and with an
increased number of dimensions, there is a decrease in the performance of a super-
vised classification algorithm. In other words, it is not advisable to have the variables
in a dataset if they are not contributing to the accuracy of the solution. We should
remove such variables from the dataset.

Figure 3.2 The Hughes
phenomenon shows that the
performance of a machine learning
model will improve initially with an
increase in the number of
dimensions. But a further increase
leads to a decrease in the model’s
g“,;.,1,.,,1.,,,1,,,,|,,,,} performance.

0 Dimensionality (number of features)

Classifier performance

Optimal number of features

An increase in the number of dimensions has the following effects on the machine
learning model:

As the model deals with an increased number of variables, the mathematical
complexity increases. For example, in the case of the k-means clustering
method we discussed in the last chapter, when we have a greater number of vari-
ables, the distance calculation between respective points will become complex.
Hence the overall model becomes more complex.

The dataset generated in a larger dimensional space can be much sparser as
compared to a smaller number of variables. The dataset will be sparser as some
of the variables will have missing values, NULLSs, etc. Therefore, space is much

3.2 The curse of dimensionality 81

emptier, the dataset is less dense, and a smaller number of variables have values
associated with them.

With increased complexity in the model, the processing time required
increases. The system feels the pressure to deal with so many dimensions.

The overall solution becomes more complex to comprehend and execute.
Recall chapter 1, where we discussed supervised learning algorithms. Due to
the high number of dimensions, we might face the problem of overfitting in
supervised learning models.

DEFINITION When a supervised learning model has good accuracy on training
data but lesser accuracy on unseen data, it is referred to as overfitting. Overfit-
ting is a nuisance as the very aim of machine learning models is to work well
on unseen datasets, and overfitting defeats this purpose.

Let us relate things to a real-world example. Consider an insurance company offering
different types of insurance policies like life insurance, vehicle insurance, health
insurance, home insurance, etc. The company wishes to use data science and execute
clustering use cases to enhance the customer base and the total number of policies
sold. They have customer details like age, gender, profession, policy amount, histori-
cal transactions, number of policies held, annual income, type of policy, number of
historical defaults, etc. At the same time, let us assume that variables like whether the
customer is left-handed or right-handed, whether they wear black or brown shoes,
what shampoo brand they use, the color of their hair, and their favorite restaurant are
also captured. If we include all the variables in the dataset, the total number of vari-
ables in the resultant dataset will be quite high. The distance calculation will be more
complex for a k-means clustering algorithm, the processing time will increase, and the
overall solution will be quite complex.

It is also imperative to note that not all the dimensions or variables are significant.
Hence, it is vital to filter out the important ones from all the variables we have.
Remember, nature always prefers simpler solutions! In the case discussed previously, it
is highly likely that variables like hair color and favorite restaurant, etc., will not affect
the outputs. So it is in our best interest to reduce the number of dimensions to ease
the complexity and reduce the computation time. At the same time, it is also vital to
note that dimensionality reduction is not always desired. It depends on the type of
dataset and the business problem we wish to resolve. We will explore this more when
we work on the case study in subsequent sections of the chapter.

Exercise 3.1
Answer these questions to check your understanding:

The curse of dimensionality refers to having a lot of data. True or False?

Having a high number of variables will always increase the accuracy of a solu-
tion. True or False?

How does a large number of variables in a dataset affect the model?

82

3.3

3.3.1

3.4

CHAPTER 3 Dimensionality reduction

We have established that having a lot of dimensions is a challenge for us. We next
examine the various methods to reduce the number of dimensions.

Dimension reduction methods

We studied the disadvantages of having really high-dimensional data in the last sec-
tion. A fewer number of dimensions might result in a simpler structure for our data,
which will be computationally efficient. At the same time, we should be careful when
reducing the number of variables. The output of the dimension reduction method
should be complete enough to represent the original data and should not lead to any
information loss. In other words, if originally we had, for example, 500 variables and
we reduced it to 120 significant ones, still these 120 should be robust enough to cap-
ture almost all the information. Let us understand using a simple example.

Consider this: we wish to predict the amount of rainfall a city will receive in the
next month. The rainfall prediction for that city might be dependent on temperature
over a period, wind speed measurements, pressure, distance from the sea, elevation
above sea level, etc. These variables make sense if we wish to predict rainfall. At the
same time, variables like the number of cinema halls in the city, whether the city is the
capital of the country, or the number of red cars in the city will not affect the predic-
tion of rainfall. In such a case, if we do not use the number of cinema halls in the city
to predict the amount of rainfall, it will not reduce the capability of the system. The
solution, in all probability, will still be able to perform quite well. Hence, in such a
case, no information will be lost by dropping such a variable, and surely we can drop it
from the dataset. On the other hand, removing variables such as temperature or dis-
tance from the ocean will very likely negatively affect the prediction accuracy. This is a
very simple example highlighting the need to reduce the number of variables.

The dimensions or the number of variables can be reduced by a combination of man-
ual and algorithm-based methods. But before studying them in detail, there are a few
mathematical terms and components we should be aware of, which we will discuss next.

Mathematical foundation

There are quite a few mathematical terms that one must know to develop a thorough
understanding of dimensionality reduction methods. We are trying to reduce the
number of dimensions of a dataset. A dataset is nothing but a matrix of values—thus,
a lot of the concepts are related to matrix manipulation methods, their geometrical
representation, and performing transformations on such matrices. The mathematical
concepts are discussed in the appendix. You also need an understanding of eigenval-
ues and eigenvectors. These concepts will be reused throughout the book; they are
been put in the appendix for quick reference. You are advised to go through them
before proceeding.

Manual methods of dimensionality reduction

To tackle the curse of dimensionality, we wish to reduce the number of variables in a
dataset. The reduction can be done by removing the variables from the dataset. Or a

3.4.1

3.4 Manual methods of dimensionality reduction 83

very simple solution for dimensionality reduction can be combining the variables that
can be grouped logically or can be represented using a common mathematical
operation.

For example, as shown in figure 3.3, the data can be from a retail store where dif-
ferent customers have generated different transactions. We will get the sales, the num-
ber of invoices, and the number of items bought by each customer over a period. In
the table, customer 1 has generated two invoices, bought five items in total, and gen-
erated a total sale of 100.

Customer ID Sales Invoices No. of items || Customer ID ATV ABS
1 100 2 5 1 50 25
2 200 2 4 2 100 2
3 300 10 12 3 30 1.2
4 400 2 10 4 200 5
5 500 5 12 5 100 24

Figure 3.3 In the first table, we have the sales, invoices, and number of items as the
variables. In the second table, they have been combined to create new variables.

If we wish to reduce the number of variables, we might combine three variables into
two variables. Here we have introduced variables average transaction value (ATV) and
average basket size (ABS) wherein ATV = Sales/Invoices and ABS = Number Of
Items/Invoices.

So, in the second table for customer 1, we have ATV as b0 and ABS as 2.5. Hence,
the number of variables has been reduced from three to two. The process here is only
an example of how we can combine various variables. It does not mean that we should
replace sales with ATV as a variable.

This process can continue to reduce the number of variables. Similarly, for a tele-
com subscriber, say we have the minutes of mobile calls made during 30 days in a
month. We can add them to create a single variable—minutes used in a month. These
examples are very basic ones to start with. Using the manual process, we can employ two
other commonly used methods: manual selection and using correlation coefficient.

Manual feature selection

Continuing from the rainfall prediction example we discussed in the last section, a data
scientist might be able to drop a few variables. This will be based on a deep understand-
ing of the business problem at hand and the corresponding dataset being used. How-
ever, it is an underlying assumption that the dataset is quite comprehensible for the
data scientist and that they understand the business domain well. Most of the time, the
business stakeholders will be able to guide on such methods. The variables must also be
unique, and not much dependency should exist. As shown in figure 3.4, we can remove
a few of the variables that might not be useful for predicting rainfall.

84

CHAPTER 3 Dimensionality reduction

) .| Number of | Distance | Numer of | Number of) Distance
Temperature | Pressure | Elevation| Is_capital Temperature | Pressure | Elevation
cars from the sea| malls parks from the sea
50 1.1 200 Y 1000 100 5 4 50 1.1 200 100
51 1.2 200 N 1200 120 4 6 51 1.2 200 120
52 1.1 200 Y 1100 150 5 8 52 1.1 200 150
54 1.2 200 N 2000 200 2 4 54 1.2 200 200
54 1.2 200 Y 2100 120 6 2 54 1.2 200 120

Figure 3.4 In the first table, we have all the variables present in the dataset. Using business logic, some of the
variables that might not be of much use have been discarded in the second table. But this is to be done with due
caution; the best way is to get guidance from the business stakeholders.

3.4.2

Sometimes, feature selection methods are also referred to as wrapper methods. Here, a
machine learning model is wrapped or fitted with a subset of variables. In each itera-
tion, we will get a different set of results. The set that generates the best results is
selected for the final model.

Correlation coefficient

Correlation between two variables simply means that they have a mutual relationship
with each other. The change in the value of one variable will affect the value of
another, which means that data points with similar values in one variable have similar
values for the other variable. The variables that are highly correlated with each other
supply similar information, so one of them can be dropped.

NOTE Correlation is described in detail in the appendix.

For example, for a retail store, the number of invoices generated in a day will be
highly correlated with the amount of sales generated, so one of them can be dropped.
Another example is students who study for a higher number of hours will have better
grades than the ones who study less (mostly!).

But we should be careful in dropping the variables and not trust correlation alone.
The business context of a variable should be thoroughly understood before making
any decision.

NOTE It is a good idea to discuss this with the business stakeholders before
dropping any variables from the study.

Correlation-based methods are sometimes called filter methods. Using correlation coef-
ficients, we can filter and choose the variables that are most significant.

Exercise 3.2
Answer these questions to check your understanding;:

We can drop a variable simply if we feel it is not required. True or False?
If two variables are correlated, always drop one of them. True or False?

3.4.3

3.5

3.5 Principal component analysis 85

Manual methods are easier solutions and can be executed quite efficiently. The data-
set size is reduced, and we can proceed with the analysis. But manual methods are
sometimes subjective and depend a lot on the business problem at hand. Many times,
it is also not possible to employ manual methods for dimension reduction. In such sit-
uations, we have algorithm-based methods, which we study in the next section.

Algorithm-based methods for reducing dimensions

We examined manual methods in the last section. Continuing from there, we examine
algorithm-based methods in this section. The algorithm-based techniques are based on
a more mathematical base and hence prove to be more scientific methods. In real-
world business problems, we use a combination of both manual and algorithm-based
techniques. Manual methods are straightforward to execute as compared to algorithm-
based techniques. Also, we cannot comment on the comparison of both techniques, as
they are based on different foundations. But at the same time, it is imperative that you
put due diligence into the implementation of algorithm-based techniques.

The major techniques used in dimensionality reductions are listed as follows. We
explore some of them in this book:

PCA

SVD

LDA

Generalized discriminant analysis
Non-negative matrix factorization
Multidimension scaling

Locally linear embeddings
IsoMaps

Autoencoders

t-SNE

These techniques are utilized for the common end goal: transform the data from a
high-dimensional space to a low-dimensional one. Some of the data transformations
are linear in nature, while some are nonlinear.

We discuss PCA and SVD in detail in this chapter. In the later chapters of the book,
other major techniques will be explored. PCA is perhaps the most quoted dimension-
ality reduction method, which is explored in the next section.

Principal component analysis

Consider this: you are working on a dataset that has 250 variables. It is almost impossi-
ble to visualize such a high-dimensional space. Some of the 250 variables might be cor-
related with each other and some of them might not be, and there is a need to reduce
the number of variables without losing much information. PCA allows us to mathe-
matically select the most important features and leave the rest. PCA does reduce the
number of dimensions but also preserves the most important relationships between

86

CHAPTER 3 Dimensionality reduction

the variables and the important structures in the dataset. Hence, the number of vari-
ables is reduced, but the important information in the dataset is kept safe.

PCA is a projection of high-dimensional data in lower dimensions. In simpler
terms, we are reducing an n-dimensional space into an m-dimensional one where n >
m while maintaining the nature and the essence of the original dataset. In the process,
the old variables are reduced to newer ones while maintaining the crux of the original
dataset. The new variables thus created are called principal components. The principal
components are a linear combination of the raw variables. As a result of this transfor-
mation, the first principal component captures the maximum randomness or the
highest variance in the dataset. The second principal component created is orthogo-
nal to the first component.

NOTE If two straight lines are orthogonal to each other, it means they are at
an angle of 90° to each other.

The process continues to the third component and so on. Orthogonality allows us to
maintain that there is no correlation between subsequent principal components.

NOTE PCA utilizes linear transformation of the dataset, and such methods
are sometimes referred to as feature projections. The resultant dataset or the
projection is used for further analysis.

Let us understand this better using an example. In figure 3.5, we have represented the
total perceived value of a home using some variables. The variables are area (sq m),
number of bedrooms, number of balconies, distance from the airport, distance from
the train station, and so on; we have 100+ variables.

Area (sq m) | Number of bedrooms | Number of balconies | Distance from airport | No. of schools | ...and so on
100 2 2 20 2
200 3 2 21 4
250 4 4 16 2
400 4 3 15 5
450 5 4 25 4

Figure 3.5 The variables on which the price of a house can be estimated

We can combine some of the variables mathematically and logically. PCA will create a
new variable that is a linear combination of some of the variables, as shown in the fol-
lowing example. It will get the best linear combination of original variables so that the
new variable is able to capture the maximum variance of the dataset. Equation 3.1 is
only an example shown for illustration purposes wherein we are showing a new vari-
able created by a combination of other variables.

new_variable = ¢*area — b*bedrooms + c*distance — d*schools (3.1)

3.5 Principal component analysis 87

Now let’s understand the concept visually. In a vector-space diagram, we can represent
the dataset, as shown in figure 3.6. The left figure represents the raw data where we
can visualize the variables in an x-y diagram. As discussed earlier, we wish to create a
linear combination of variables. In other words, we wish to create a mathematical
equation that will be able to explain the relationship between x and y.

\% “Q Y %
(€]
“Q‘) Error
‘Q‘ ©) (©)
o® ©))
o % ©

@ @ @

@ X X X

Figure 3.6 The dataset can be represented in a vector-space diagram (left). The straight line can be called the
line of best fit having the projections of all the data points on it (middle). The differences between the actual value
and the projections are the error terms (right).

The output of such a process will be a straight line as shown in the middle diagram in
figure 3.6. This straight line is sometimes referred to as the line of best fit. Using this
line of best fit, we can predict a value of y for a given value of x. These predictions are
nothing but the projections of data points on a straight line.

The difference between the actual value and the projections is the error, as shown
in the right diagram in figure 3.6. The total sum of these errors is called the total pro-
jection error.

There can be multiple options for this straight line, as shown in figure 3.7. These dif-
ferentstraightlines will have different errors and different values of variances captured.

Y ® o Y ® o
® o ® o
@/ © ° () @ °
® (]
o® o®
o® o °
° L)
e © e ©
) X @ X
% ® o)
o) ® Figure 3.7 The dataset can be
(*] .' e ° captured by several lines, but
.Q €] not all the straight lines will be
o © able to capture the maximum
° ® o variance. The equation that
® ® ® gives the minimum error will be
X X the one chosen.

88

CHAPTER 3 Dimensionality reduction

The straight line that can capture the maximum variance will be the chosen one. In
other words, it gives the minimum error. It will be the first principal component, and the
direction of maximum spread will be the principal axis.

The second principal component will be derived in a similar fashion. Since we know
the first principal axis, we can subtract the variance along this principal axis from the
total variance to get the residual variance. In other words, using the first principal com-
ponent, we would capture some variance in the dataset. But there will be a portion of
the total variance in the dataset that is still unexplained by the first principal compo-
nent. The portion of the total variance unexplained is the residual variance. Using the
second principal component, we wish to capture as much variance as we can.

Using the same process to capture the direction of maximum variance, we will get
the second principal component. The second principal component can be at several
angles with respect to the first one, as shown in figure 3.8. It is mathematically proven
that if the second principal component is orthogonal (i.e., 90°) to the first principal
component, this allows us to capture the maximum variance using the two principal

components. In figure 3.8, we can observe that the two principal components are at
an angle of 90° to each other.

The angle
is 90°.

Figure 3.8 The first figure on the left is the first principal component. The second principal component can be at
different angles with respect to the first principal component (middie). We should find the second principle that
allows us to capture the maximum variance. To capture the maximum variance, the second principal component
should be orthogonal to the first one, and thus the combined variance captured is maximized (right).

The process continues for the third and fourth principal components and so on. With
more principal components, the representation in a vector space becomes difficult to
visualize. You can think of a vector space diagram with more than three axes. Once all
the principal components are derived, the dataset is projected onto these axes. The
columns in this transformed dataset are the principal components. The principal compo-
nents created will be fewer than the number of original variables and will capture the
maximum information present in the dataset.

Before we examine the process of PCA in-depth, let’s study its important
characteristics:

PCA aims to reduce the number of dimensions in the resultant dataset.

3.5 Principal component analysis 89

PCA produces principal components that aim to reduce the noise in the dataset
by maximizing the feature variance.

At the same time, the principal components reduce the redundancy in the data-
set. This is achieved by minimizing the covariance between the pairs of features.
The original variables no longer exist in the newly created dataset. Instead, new
variables are created using these variables.

It is not necessary that the principal components map one-to-one with all the
variables present in the dataset. They are a new combination of the existing
variables. Hence, they can be a combination of several different variables in one
principal component (as shown in equation 3.1).

The new features created from the dataset do not share the same column
names.

The original variables might be correlated with each other, but the newly cre-
ated variables are unrelated to each other.

The number of newly created variables is fewer than the original number of
variables. The process to select the number of principal components has been
described in section 3.5.2. After all, that is the whole purpose of dimensionality
reduction.

If PCA has been used for reducing the number of variables in a training dataset,
the testing/validation datasets should be reduced by using PCA.

PCA is not synonymous with dimensionality reduction only. It can be put into
use for a number of other usages beyond dimensionality reduction like feature
extraction, data visualization, multicollinearity detection, preprocessing, etc.
Using a PCA only for dimensionality reduction will be a misnomer for sure.

We will now examine the approach used while implementing PCA, and then we will
develop a Python solution using PCA. We need not apply all the steps while we
develop the codes, as the heavy lifting has already been done by the packages and
libraries. The steps given here are taken care of by the packages, but still, it is impera-
tive that you understand these steps to properly appreciate how PCA works:

In PCA, we start with normalizing our dataset as a first step. It ensures that all our
variables have a common representation and become comparable. We have
methods to perform the normalization in Python, which we will study when we
develop the code. To explore more about normalizing the dataset, see the
appendix.

Get the covariance in the normalized dataset. It allows us to study the relation-
ship between the variables. We generally create a covariance matrix, as shown in
the Python example in the next section.

We can then calculate the eigenvectors and eigenvalues of the covariance
matrix. The mathematical concept of eigenvectors is given in the appendix.

We then sort the eigenvalues in decreasing order of eigenvalues. We choose the
eigenvectors corresponding to the maximum value of eigenvalues. The

90

CHAPTER 3 Dimensionality reduction

components chosen will be able to capture the maximum variance in the data-
set. There are other methods to shortlist the principal components, which we
will explore while we develop the Python code.

Exercise 3.3
Answer these questions to check your understanding:

PCA will result in the same number of variables in the dataset. True or False?

PCA will be able to capture 100% of the information in the dataset. True or
False?

What is the logic of selecting principal components in PCA?

So, in essence, principal components are the linear combinations of the original vari-
ables. The weight in this linear combination is the eigenvector satisfying the error cri-
teria of the least square method.

3.5.1 Eigenvalue decomposition
In the context of PCA, the eigenvector will represent the direction of the vector and
the eigenvalue will be the variance that is captured along that eigenvector. See figure
3.9, where we break the original » x 7 matrix into components.
= * *
Original n x n matrix Eigenvector matrix Eigenvalue matrix Inverse of the

eigenvector matrix

Figure 3.9 Using eigenvalue decomposition, the original matrix can be broken into an eigenvector matrix, an
eigenvalue matrix, and an inverse of an eigenvector matrix. We implement PCA using this methodology.

Mathematically, we can show the relation with equation 3.2

Axv=Axv (3.2)

where A is a square matrix, v is the eigenvector, and A is the eigenvalue. Here, it is
important to note that the eigenvector matrix is the orthonormal matrix, and its col-
umns are eigenvectors. The eigenvalue matrix is the diagonal matrix, and its eigenval-
ues are the diagonal elements. The last component is the inverse of the eigenvector

3.5.2

3.5 Principal component analysis 91

matrix. Once we have the eigenvalues and the eigenvectors, we can choose the signifi-
cant eigenvectors for getting the principal components.

We present PCA and SVD as two separate methods in this book. Both methods are
used to reduce high-dimensional data into lower-dimensional ones and, in the pro-
cess, retain the maximum information in the dataset. The difference between the two
is SVD exists for any sort of matrix (rectangular or square), whereas eigen decomposi-
tion is possible only for square matrices. You will understand it better once we have
covered SVD later in this chapter.

Python solution using PCA

We have studied the concepts of PCA and the process using eigenvalue decomposi-
tion. It is time for us to dive into Python and develop a PCA solution on a dataset. I
will show you how to create eigenvectors and eigenvalues on the dataset. To imple-
ment the PCA algorithms, we will use the sklearn library. Libraries and packages pro-
vide a faster solution for implementing algorithms.

We use the Iris dataset for this problem. It is one of the most popular datasets used
for machine learning problems. The dataset contains data of three iris species with 50
samples each and having properties of each flower, like petal length, sepal length, etc.
The objective of the problem is to predict the species using the properties of the
flower. The independent variables, hence, are the flower properties, whereas the vari-
able “species” is the target variable. The dataset and the code are checked in at the
GitHub repository. Here we are using the inbuilt PCA functions, which reduce the
effort required to implement PCA. The steps are as follows:

Load all the necessary libraries. We are going to use numpy, pandas, seaborn,
matplotlib, and sklearn. Note that we have imported PCA from sklearn.

NOTE The following are the standard libraries. You will find that almost all
the machine learning solutions would import these libraries in the solution
notebook:

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

Load the dataset now. It is a .csv file:
iris df = pd.read csv('IRIS.csv')

We will now perform a basic check on the dataset, looking at the first five rows,
the shape of the data, the spread of the variables, etc. We are not performing an
extensive exploratory data analysis here as the steps are covered in chapter 2.
The dataset has 150 rows and 6 columns (see figure 3.10).

92

CHAPTER 3 Dimensionality reduction

iris_df.head()

iris_df.head()

Id

SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species

0 1

2
3
4
5

5.1 35 14 0.2 Iris-setosa
4.9 3.0 14 0.2 lIris-setosa
4.7 3.2 1.3 0.2 Iris-setosa
4.6 3.1 1.5 0.2 lIris-setosa
5.0 3.6 14 0.2 lIris-setosa

iris_df.describe()
iris_df.shape

iris_df.describe(}|

Id SepallengthCm SepalWidthCm PetalLengthCm PetalWidthCm

count
mean
std
min
25%
50%
75%

max

150,000000 150.000000 150.000000 150.000000 150.000000
75.500000 5.843333 3.054000 3.75B667 1.198667
43.445368 0.828066 0.433594 1.764420 0.763161
1,000000 4.300000 2.000000 1.000000 0.100000
38.250000 5.100000 2.800000 1.600000 0.300000
75.500000 5.800000 3.000000 4.350000 1.300000
112.750000 6.400000 3.300000 5.100000 1.800000
150.000000 7.900000 4.400000 6.900000 2.500000 Figure 3.10 Code output

Here, we should break the dataset into independent variables and a target vari-
able. x_variables here represent the independent variables, which are in col-
umns 2-5 of the dataset while y_variable is the target variable, which is
“species” in this case and is the final column in the dataset. Recall we wish to
predict the species of a flower using the other properties. Hence, we have sepa-
rated the target variable “species” and other independent variables:

X _variables = iris df.iloc[:,1:5]

X variables
y_variable = iris df.iloc[:,5]

Normalize the dataset. The built-in method of Standardscalar () does the job
for us quite easily.

NOTE The standardScalar () method normalizes the dataset for us. It sub-
tracts the mean from the variable and divides it by the standard deviation. For
more details on normalization, refer to the appendix.

3.5 Principal component analysis 93

We invoke the method and then use it on our dataset to get the transformed dataset.
Since we are working on independent variables, we are using X_variables here. First,
we invoke the Standardscalar () method. Then we use the fit transform method.
The fit_ transform method first fits the transformers to X and Y and then returns a
transformed version of X:

sc = StandardScaler ()
transformed df = sc.fit transform(X variables)

Calculate the covariance matrix and print it. The output is shown in figure 3.11.
Getting the covariance matrix is straightforward using numpy:

covariance matrix = np.cov(transformed df.T)
covariance matrix

array([[1.00671141, —0.11010327, 0.87760486, 0.82344326],
[-0.11010327, 1.00671141, -0.42333835, -0.358937 1,
[0.87760486, -0.42333835, 1.00671141, 0.96921855],
[0.82344326, -0.358937 , 0.96921855, 1.006711417]])

Figure 3.11 The covariance matrix

Calculate the eigenvalues. Inside the numpy library, we have the built-in func-
tionality to calculate the eigenvalues. We will then sort the eigenvalues in
descending order. To shortlist the principal components, we can choose eigen-
values greater than 1. This criterion is called Kaiser criteria. We are exploring
other methods too.

NOTE The eigenvalue represents how good a component is as a summary of
the data. If the eigenvalue is 1, it means that the component contains the
same amount of information as a single variable; hence, we choose the eigen-
value that is greater than 1.

In this code, first we get the eigen_values and eigen vectors, and then we arrange
them in descending order (see figure 3.12):

eigen values, eigen vectors = np.linalg.eig(covariance matrix)
eigen pairs = [(np.abs(eigen values[i]), eigen vectors[:,i]) for i in
range (len(eigen values))]
print ('Eigenvalues arranged in descending order:')
for 1 in eigen pairs:
print (i[0])

Eigenvalues arranged in descending order:

2.9303537755893165

0.9274036215173417

0.1483422264816399 Figure 3.12 Eigenvalues
0.02074601399559571 arranged in descending order

94

CHAPTER 3 Dimensionality reduction

Invoke the PCA method from the sklearn library. The method is used to fit the
data here. Note we have not yet determined the number of principal compo-
nents we wish to use in this problem:

pca PCA()
pca = pca.fit (transformed df)

The principal components are now set. Let’s have a look at the variance
explained by them. We can observe that the first component captures 72.77%
variation, the second captures 23.03% variation, and so on (figure 3.13):

explained variance = pca.explained variance ratio
explained variance

array([0.72770452, 0.23030523, 0.03683832, 0.00515193])

Figure 3.13 The degree of variance of the principal components

We now plot the components in a bar plot for better visualization (see figure
3.14):

dataframe = pd.DataFrame ({'var':pca.explained variance ratio ,
'PC':['PCl','PC2','PC3','PC4']})
sns.barplot (x="'PC',y="var",
data=dataframe, color="b");

Variance

Figure 3.14 Bar plot of the
principal components

PC2 PC3 PC4
Principal component

Here we draw a scree plot to visualize the cumulative variance being explained
by the principal components (see figure 3.15):

plt.plot (np.cumsum(pca.explained variance ratio))
plt.xlabel ('number of components')

3.5 Principal component analysis 95

plt.ylabel ('cumulative explained variance')
plt.show()

o N
© o
(&3] o

o
©
o

o
©
o

o
3
3

Cumulative explained variance
o
[o]
(9]

Figure 3.15 Scree plot
of cumulative variance

00 05 10 15 20 25 30
Number of principal components

In this case study, we choose the top two principal components as the final solu-
tions, as these two capture 95.08% of the total variance in the dataset:
pca_2 = PCA(n_components =2)

pca 2 = pca_2.fit(transformed df)
pca 2d = pca_ 2.transform(X variables)

We will now plot the dataset with respect to two principal components. For that,
species must be tied back to the actual values of the species variable, which are
Iris-setosa, Iris-versicolor, and Iris-virginica. Here, 0 is mapped to
Iris-setosa, 118 Iris-versicolor, and 2 is Iris-virginica. In the following
code, first the species variable gets its values replaced by using the mapping dis-
cussed earlier:

iris df['Species'] = iris df['Species'].replace({'Iris-setosa':0, 'Iris-
versicolor':1, 'Iris-virginica':2 })

We will now plot the results with respect to two principal components. The plot
shows the dataset reduced to two principal components we have just created.
These principal components can capture 95.08% variance of the dataset. The
first principal component represents the x-axis in the plot while the second
principal component represents the y-axis in the plot (see figure 3.16). The
color represents the various classes of Species. The print version of the book
will not show the different colors, but the output of the Python code will. The
same output is also available at the GitHub repository:
plt.figure(figsize=(8,6))

plt.scatter(pca_2d[:,0], pca 2d[:,1],c=iris df['Species'])
plt.show()

96

6.5

6.0

5.5

5.0

4.5

4.0

CHAPTER 3 Dimensionality reduction

L]
.
.
* . :' o :u.
X S
- 8" .o:. -
>*° T A
I" o *
L] e ® L]
T " -o'.'- :
%
L] L]
3 4 5 6 7 8

Figure 3.16 The results for
two principal components

This solution has reduced the number of components from four to two and still is
able to retain most of the information. Here, we have examined three approaches to

select the principal components based on the Kaiser criteria, the variance captured,

and the scree plot.

Let us quickly analyze what we have achieved using PCA. Figure 3.17 shows two
representations of the same dataset. The one on the left is the original dataset of
X_variables. It has four variables and 150 rows. The right is the output of PCA. It has
150 rows but only two variables. Recall we have reduced the number of dimensions

from four to two. So, the number of observations has remained 150, while the number

of variables has reduced from four to two.

SepaolLengthCm SepalWidthCm PetalLengthCm PetalWidthCm

0 6.1
1 4.9
2 4.7
3 4.6
4 6.0
146 6.7
146 6.3
147 6.5
148 6.2
149 59

150 rows x 4 columns

3.5
3.0
32
3.1
3.6

3.0
2.5
3.0
34
3.0

1.4
1.4
13
1.5
14

52
5.0
52
54
5.1

0.2
0.2
02
02
02

23
19
2.0
23
1.8

-

pca_2d[0:5]

array([[2.66923088,
[2.69643401,
[2.4811633 ,
[2.57151243,
[2.59065822,

len(pca_2d)

150

5.18088722],
4.6436453],
4.75218345],
4.62661492],
5.23621104]])

Figure 3.17 The figure on the left shows the original dataset, which has 150 rows and four variables. After the
implementation of PCA at right, the number of variables has been reduced to two. The number of rows remains the
same as 150, which is shown by the length of pca_2d.

3.6

3.6 Singular value decomposition 97

Once we have reduced the number of components, we can continue to implement a
supervised learning or an unsupervised learning solution. We can implement the pre-
ceding solution for any of the other real-world problems where we aim to reduce the
number of dimensions. We explore this more in section 3.8.

With this, we have covered PCA. The GitHub repository contains a very interesting
PCA decomposition with variables and a corresponding plot.

Singular value decomposition

PCA transforms the data linearly and generates principal components that are not
correlated with each other. But the process followed in eigenvalue decomposition can
only be applied to square matrices, whereas SVD can be implemented to any m x n
matrix.

Say we have matrix A. The shape of A is m x n, or it contains m rows and n columns.
The transpose of A can be represented as A”.

We can create two other matrices using A and A" as A A”and A”A. These resultant
matrices A A”and A”A have some special properties, which are as follows (the mathe-
matical proof of the properties is beyond the scope of the book):

They are symmetric and square matrices.

Their eigenvalues are either positive or zero.

Both A A"and A”A have the same eigenvalue.

Both A A”and A”A have the same rank as the original matrix A.

The eigenvectors of A A”and A”A are referred to as singular vectors of A. The square
root of their eigenvalues is called singular values.

Since both matrices (A A”and A”A) are symmetrical, their eigenvectors are ortho-
normal to each other. In other words, because they are symmetrical, the eigenvectors
are perpendicular to each other and can be of unit length.

Now, with this mathematical understanding, we can define SVD. As per the SVD
method, it is possible to factorize any matrix A, as shown in equation 3.3:

A=UxS= V" (3.3)

Here, A is the original matrix, Uand Vare the orthogonal matrices with orthonormal
eigenvectors taken from A A”and A”A, respectively, and Sis the diagonal matrix with r
elements equal to the singular values. In simple terms, SVD can be seen as an
enhancement of the PCA methodology using eigenvalue decomposition.

NOTE Singular values are better and numerically more robust than eigenval-
ues decomposition.

PCA was defined as the linear transformation of input variables using principal com-
ponents. All those concepts of linear transformation, such as choosing the best com-
ponents, etc., remain the same. The major process steps also remain similar, except in
SVD we use a slightly different approach wherein the eigenvalue decomposition is

98

3.6.1

CHAPTER 3 Dimensionality reduction

replaced by singular vectors and singular values. It is often advisable to use SVD when
we have a sparse dataset; in the case of a denser dataset, PCA can be utilized.

Exercise

3.4

Answer these questions to check your understanding:

SVD works on the eigenvalue decomposition technique. True or False?
PCA is a much more robust methodology than SVD. True or False?

What are singular values and singular vectors in SVD?

Python solution using SVD

In this case study, we are using the mushrooms dataset. This dataset contains descrip-
tions of 23 species of grilled mushrooms. There are two classes: either the mushroom
is ¢, which means it is edible, or the mushroom is p, meaning it is poisonous. The steps
are as follows:

Import the libraries:

import
import
import
import

from sklearn.preprocessing import LabelEncoder,

numpy as np
pandas as pd
seaborn as sns

matplotlib.pyplot as plt

StandardScaler

Import the dataset and check for shape, head, etc. (see figure 3.18):

mushro
mushro
mushro

oms_df = pd.read csv('mushrooms.csv')

oms_df.shape
oms_df.head ()

class s:::e w:::; ::;; bruises odor . Wn\geiﬂ; spa:k::lg :I:: r:l':;
P % 2 n t p f ¢ n k .
e X s y t a f T K
e b s W t | § l: b =
P % y w L P f < n n
e x s] f n f w B Kk
e e e
below- above- below- type color number type pc:::; population
ring ring ring
B i bid P o p k s
s w W p 5 p n n
s w w p " o p n n
= N e P o o p k s
£ W w P w o & n a

Figure 3.18 Code output

3.6 Singular value decomposition 99

As we can observe, the values are categorical in nature in the dataset. They
should be first encoded into numeric values. This is not the only approach for
dealing with categorical variables. There are other techniques too, which we
will explore throughout the book.

First, invoke the LabelEncoder and then apply it to all the columns in the dataset. The
LabelEncoder converts the categorical variables into numeric ones using the one-hot
encoding method:

encoder = LabelEncoder ()

for col in mushrooms_ df.columns:
mushrooms_df [col] = encoder.fit transform(mushrooms_ df [col])

Have another look at the dataset. All the categorical values have been converted
to numeric ones (see figure 3.19):

mushrooms_df .head ()

cliae shc::; sur::; x beises: odor attachmg:::; m:i::; sglI:; ccgllll:;
V] 1 5 2 4 1 6 1 0 1 4
1 0 5 2 E:] 1 o 1 1] o 4 .
2 0 0 2 8 1 3 1 0 0 B0
3 1 5 3 & 1 L] 1 0 1 L B
4 o 5 2 3] 5 1 1 o 4 .

stalk- stalk- stalk-

surface- color- color- wveil- veil- ring- ring- sprhlt- population
below- above- below- type color number type ol
ring ring ring
2 7 7§ 0 2 1 4 2 3
2 7 7 o 2 1 4 3 2
2 7 7 1] 2 1 4 3 2
2 T 7 1] 2 1 4 2 3 .
Figure 3.19

2 T T 1] 2 1 0 3 0

Code output

The next two steps are the same as the last case study, wherein we break the
dataset into X_variables and y_label. Then the dataset is normalized:

X variables = mushrooms df.iloc[:,1:23]
y_label = mushrooms df.iloc[:, 0]

scaler = StandardScaler ()

X features = scaler.fit transform(X variables)

Implement the SVD. There is a method in numpy that implements SVD. The
output is u, s, and v, where u and v are the singular vectors and s is the singular
value. If you wish, you can analyze their respective shapes and dimensions:

u, s, v = np.linalg.svd (X features, full matrices=True)

100

CHAPTER 3 Dimensionality reduction

We know that singular values allow us to compute variance explained by each of
the singular vectors. We will now analyze the percentage variance explained by
each singular vector and plot it (see figure 3.20). The results are shown to three
decimal places. Then we plot the results as a histogram plot. On the x-axis, we
have the singular vectors while on the y-axis we have the percent of variance
explained:
variance explained = np.round(s**2/np.sum(s**2), decimals=3)
variance explained
sns.barplot (x=1ist (range (1, len(variance explained)+1)),

y=variance_ explained, color="blue")

plt.xlabel ('SVs', fontsize=16)
plt.ylabel ('Percent of the variance explained',K fontsize=15)

Text(0, 0.5, 'Percent of the variance explained')

0175
0150
0125
0.100
0.075
0.050

0025

0.000 i Figure 3.20 Code output
12345678 9%1W0111213141516171819202122

SVs

Percent of the variance explained

Create a dataframe (see figure 3.21). This new dataframe svd_df contains the
first two singular vectors and the metadata. We then print the first five rows
using the head command:

col labels= ['SV'+str(i) for i in range(1,3)]

svd df = pd.DataFrame(ul[:,0:2], index=mushrooms df["class"].tolist(),
columns=col_labels)

svd df=svd df.reset index()

svd_df.rename (columns={'index':'Class'}, inplace=True)

svd_df.head ()

Class SV sv2
0 1 0.003238 -0.006710
1 0 0.012864 0.001919
2 0 0.010474 -0.001863
3 1 0.004988 -0.005202

Figure 3.21 Dataframe containing the first

4 0 -0.003887 0.008522

two singular vectors and the metadata

3.7

3.7 Pros and cons of dimensionality reduction 101

Like the last case study, we replace numeric values with actual class labels; 1 is
edible while o is poisonous:

svd df['Class'] = svd df['Class'].replace({1l:'Edible', 0:'Poison'})

We now plot the variance explained by the two components (see figure 3.22).
Here, we have chosen only the first two components. You are advised to take the
optimum number of components using the methods described in the last sec-
tion and plot the respective scatter plots. Here, on the x-axis, we have shown the
first singular vector SVI1, and on the y-axis we have shown the second singular
vector SV2. The print version of the book does not show the different colors,
but the output of the Python code does. The same output is available at the
GitHub repository too:
color dict = dict({'Edible':'Black’',
'Poison': 'Red'})

sns.scatterplot (x="SvV1l", y="Sv2", hue="Class",

palette=color dict,

data=svd_df, s=105,

alpha=0.5)
plt.xlabel ('SV 1: {0}%'.format (variance explained[0]*100), fontsize=15)
plt.ylabel ('SV 2: {0}%'.format (variance explained[1]*100), fontsize=15)

0.06 Class
@ Edible
0.04 @ Poison
2
< 002
~
-l
Al 000
=
n
-0.02 A .
Figure 3.22 Plot of the
soiad variance explained by two
components

-0.04 -003 -0.02 -001 000 001 002 003 004
SV 1: 18.4%

We can observe the distribution of the two classes with respect to the two components.
The two classes—Edible and Poison—are color-coded as black and red, respectively.
As we have noted previously, we have chosen only two components to show the effect
using a visualization plot. You should choose the optimum number of components
using the methods described in the last case study and then visualize the results using
different singular vectors. This solution can be used to reduce dimensions in a real-
world dataset.

Pros and cons of dimensionality reduction

In the initial sections of the chapter, we discussed the drawbacks of the curse of
dimensionality. In the last few sections, we discovered PCA and SVD and implemented

102 CHAPTER 3 Dimensionality reduction

them using Python. Now we will examine the advantages and challenges of these tech-
niques. The major advantages of implementing PCA or SVD are

A reduced number of dimensions leads to less complexity in the dataset. The
correlated features are removed and transformed. Treating correlated variables
manually is a tough task, which is quite manual and frustrating. Techniques like
PCA and SVD do that job for us quite easily. The number of correlated features
is minimized, and overall dimensions are reduced.

Visualization of the dataset is better if the number of dimensions is fewer. It is
very difficult to visualize and depict a very high-dimensional dataset.

The accuracy of the machine learning model is improved if the correlated vari-
ables are removed. These variables do not add anything to the performance of
the model.

The training time is reduced as the dataset is less complex. Hence, less compu-
tation power and time are required.

Overfitting is a nuisance in supervised machine learning models. It is a condi-
tion where the model behaves very well on the training dataset but not so well
on the testing/validation dataset. It means that the model may not be able to
perform well on real-world unseen datasets. And it defeats the entire purpose of
building the machine learning model. PCA/SVD helps tackle overfitting by
reducing the number of variables.

At the same time, there are a few challenges we face with dimensionality reduction
techniques, which are as follows:

The new components created by PCA/SVD are often less interpretable. They
are a combination of the independent variables in the dataset and do not actu-
ally relate to the real world; hence it can be difficult to relate them to real-world
scenarios.

Numeric variables are required for PCA/SVD. Hence all the categorical vari-
ables should be represented in numeric form.

Normalization/standardization of the dataset is required before the solution
can be implemented.

There might be information loss when we use PCA or SVD. The principal com-
ponents cannot replace the original dataset, and hence there might be some loss
of information when we implement these methods.

However, despite a few challenges, PCA and SVD are used for reducing dimensions in
a dataset. They are two of the most popular methods and are quite heavily used. Note
that these are linear methods; we cover nonlinear methods of dimensionality reduc-
tion in a later part of the book.

We have now covered the two most important techniques used in dimensionality
reduction. We will examine more advanced techniques in the later chapters. It is time
to move on to the case study.

3.8 Case study for dimension reduction 103

3.8 Case study for dimension reduction

Let’s explore a real-world case to relate the use of PCA and SVD in real-world business
scenarios. Consider this: you are working for a telecommunication service provider.
You have a subscriber base, and you wish to cluster the consumers over several param-
eters. The challenge is the huge number of dimensions available to be analyzed.

The objective will be to reduce the number of attributes using dimension reduc-
tion algorithms. The consumer dataset might include the following:

Demographic details of the subscriber, which will consist of age, gender, occu-
pation, household size, marital status, etc. (see figure 3.23).

Mobile number Age Gender | Marital status | Household size City Country Children
12345678900 25 M Married 2 New York us 0
98765432100 26 F Unmarried 4 London UK 0
45656465210 27 U Married 4 New Delhi India 2
89323242111 28 M Unmarried 2 Dublin Ireland 0
31822338924 29 F Married 5 Tokyo Japan 3

Note: This list is not exhaustive.

Figure 3.23 Demographic details of a subscriber like age, gender, marital status, household size, city, etc.

Subscription details of the consumer, which might look like figure 3.24.

Mobile number | Prepaid/Postpaid Tenure Home broadband included | Family pack included
12345678900 Prepaid 1 Y N
98765432100 Postpaid 1.5 Y N
45656465210 Prepaid 1.2 N Y
89323242111 Prepaid 2 Y Y
31822338924 Postpaid N Y

Note: This list is not exhaustive.

Figure 3.24 Subscription details of a subscriber like tenure, postpaid/prepaid connection, etc.

Consumer usage, such as the minutes, call rates, data usages, services, etc. (see
figure 3.25).

12345678900 199 123 1GB 170 24 101 104 141
98765432100 105 119 2GB 118 10 120 116 123
45656465210 130 137 2.5GB 156 23 181 182 181
89323242111 110 161 4GB 162 18 125 116 157
31822338924 186 172 5GB 139 25 177 167 138

Note: This list is not exhaustive.

Figure 3.25 Usage of a subscriber specifies the number of minutes used, SMS sent, data used, days spent in a
network, national or international usage, etc.

CHAPTER 3 Dimensionality reduction

Payment and transaction details of the subscribers, which could be the various
transactions made, the mode of payment, frequency of payments, days since last
payment made, etc. (see figure 3.26).

Mobile number | No. of transactions Value Mode Frequency
12345678900 20 100 Cash Monthly
98765432100 15 150 Card Yearly
45656465210 25 1000 Online Monthly
89323242111 5 10 Voucher Monthly
31822338924 40 400 Cash Weekly

Figure 3.26 Transaction details of a subscriber showing all the details of amount, mode, etc.

Many more attributes. So far, we have established that the number of variables
involved are indeed high. Once we join all these data points, the number of
dimensions in the final data can be huge (see figure 3.27).

Mobile number | Age |[Gender| Marital status | Children | Mins Data usage | SMS Value | Frequency | Others...
12345 20 F Unmarried 0 200 1 100 10 Monthly
12346 21 F Married 1 200 2 120 15 Weekly
12347 22 M Unmarried 0 210 1 140 12 Monthly
12348 23 M Married 2 90 4 120 10 Quarterly
12349 24 F Married 2 1000 5 110 11 Yearly

Figure 3.27 The final dataset is a combination of all the aforementioned datasets. It will be a big, really high-
dimensional dataset to be analyzed.

We should reduce the number of attributes before we proceed to any supervised or
unsupervised solution. In this chapter, we focus on dimensionality reduction tech-
niques, and hence the steps cover that aspect of the process. In later chapters, we will
examine exploratory analysis in more detail.

As a first step, we will perform a sanity check of the dataset and do the data clean-
ing. We will examine the number of data points, number of missing values, duplicates,
junk values present, etc. This will allow us to delete any variables that might be very
sparse or contain not much information. For example, if the gender is available for
only 0.01% of the customer base, it might be a good idea to drop the variable. Or if all
the customers state their gender is male, the variable is not adding any new informa-
tion to us, and hence it can be discarded. Sometimes, using business logic, a variable
might be dropped from the dataset. An example has been discussed in section 3.4. In
this step, we might combine a few variables. For example, we might create a new vari-
able as average transaction value by dividing the total amount spent by the total num-
ber of transactions. In this way, we will be able to reduce a few dimensions.

NOTE A Python Jupyter notebook is available in the GitHub repository, where
we have given a very detailed solution for the data cleaning step.

3.8 Case study for dimension reduction 105

Once we are done with the basic cleaning of the data, we start with the exploratory
data analysis. As a part of exploratory analysis, we examine the spread of the variable,
its distribution, mean/median/mode of numeric variables, and so on. This is some-
times referred to as univariate analysis. This step allows us to measure the spread of the
variables, understand the central tendencies, examine the distribution of different
classes for categorical variables, and look for any anomalies in the values. For exam-
ple, using the dataset mentioned earlier, we will be interested in analyzing the maxi-
mum/minimum/average data usage or the percentage distribution of gender or age.
We would want to know the most popular method to make a transaction, and we
would also be interested to know the maximum/minimum/average amount of the
transactions. The list goes on.

Then we explore the relationships between variables, which is referred to as bivari-
ate analysis. Crosstabs, or distribution of data, is a part of bivariate analysis. A correla-
tion matrix is created during this step. Variables that are highly correlated are
examined thoroughly. And based on business logic, one of them might be dropped.
This step is useful to visualize and understand the behavior of one variable in the pres-
ence of other variables. We can examine their mutual relationships and the respective
strength of the relationships. In this case study, we would answer questions such as,
“Do subscribers who use more data spend more time on the network as compared to
subscribers who send more SMS?”, “Do the subscribers who make a transaction using
the online mode generate more revenue than the ones using cash?”, or “Is there a
relationship between gender/age and the data usage?” Many such questions are
answered during this phase of the project.

NOTE A Python Jupyter notebook is available in the GitHub repository, which
provides detailed steps and code for the univariate and bivariate phases.
Check it out!

At this stage, we have a dataset that has a huge number of dimensions, and we want to
reduce the number of dimensions. Now is a good time to implement PCA or SVD. The
techniques will reduce the number of dimensions and will make the dataset ready for
the next steps in the process, as shown in figure 3.28. The figure is only representative

Figure 3.28 A very high-dimensional dataset will be reduced to a low-dimensional one
by using principal components that capture the maximum variance in the dataset.

106

3.9

3.10

CHAPTER 3 Dimensionality reduction

in nature to depict the effect of dimensionality reduction methods. Notice how the
large number of black lines in the left figure is reduced to a smaller number of red
lines in the right figure.

The output of dimensionality reduction methods will be a dataset with a lower
number of variables. The dataset can be then used for supervised or unsupervised
learning. We have already looked at the examples using Python in the earlier sections
of the chapter.

This concludes our case study on telecom subscribers. The case can be extended to
any other domain like retail; banking, financial services, and insurance; aviation;
healthcare; manufacturing; and others.

Concluding thoughts

Data is everywhere in various forms, levels, and dimensions and with varying levels of
complexity. It is often mentioned that “the more data, the better.” It is indeed true to
a certain extent. But with a really high number of dimensions, it becomes quite a her-
culean task to make sense of it. The analysis can become biased and very complex to
deal with. We explored this curse of dimensionality in this chapter. We found PCA and
SVD can be helpful to reduce this complexity. They make the dataset ready for the
next steps.

Dimensionality reduction is not as straightforward as it looks. It is not an easy task,
but it is certainly a very rewarding one. And it requires a combination of business acu-
men, logic, and common sense. The resultant dataset might still require some addi-
tional work. But it is a very good point for building a machine learning model.

This marks the end of the third chapter. It also ends the part 1 of the book. In this
part, we have covered a few core algorithms. We started with the first chapter of the
book, where we explored the fundamentals and basics of machine learning. In the
second chapter, we examined three algorithms for clustering. In this third chapter, we
explored PCA and SVD.

In the second part of the book, we change gears and study more advanced topics.
We start with association rules in the next chapter. Then we go into advanced cluster-
ing methods of time-series clustering, fuzzy clustering, Gaussian mixture mode clus-
tering, etc. That is followed by a chapter on advanced dimensionality reduction
algorithms like t-SNE and LDA. To conclude the second part, we examine unsuper-
vised learning on text datasets. The third part of the book is even more advanced, so
still a long way to go. Stay tuned!

Practical next steps and suggested readings
The following provides suggestions for what to do next and offers some helpful
reading:

Use the vehicles dataset used in the last chapter for clustering and implement

PCA and SVD on it. Compare the performance on clustering before and after
implementing PCA and SVD.

Summary 107

Get the datasets from https://mng.bz/2y9g. You can find many datasets. Com-
pare the performance of PCA and SVD on these datasets.

Go through the following papers on PCA:

https://mng.bz/1XKX

https://mng.bz/PdOw

https://mng.bz/JYeo

https://mng.bz/w]qO

Go through the following research papers on SVD:
— https://mng.bz/qxqA

— https://mng.bz/7pNm

— https://arxiv.org/pdf/1211.7102.pdf

Summary
The “curse of dimensionality” refers to problems arising from high-dimensional
datasets with too many variables, complicating the analysis and model
performance.
High dimensions can lead to a sparse dataset, increased mathematical complex-
ity, longer processing times, and potential overfitting in machine learning
models.
Hughes phenomenon shows that increasing variables only improves model per-
formance up to a point, after which it declines.
Not all dimensions are significant; some may not contribute meaningfully to a
model’s accuracy and should be removed to reduce complexity.
Data visualization can help explain datasets by reducing them to fewer dimen-
sions that still capture significant information.
Manual dimension reduction includes dropping insignificant variables or com-
bining them logically to reduce dataset dimensions.
Algorithm-based methods for dimension reduction include PCA, SVD, LDA,
and t-SNE, among others, which transform high-dimensional data into low-
dimensional spaces.
PCA reduces dimensions by creating principal components that capture maxi-
mum variance while minimizing redundancy and noise.
SVD enhances PCA, handling any matrix shape and decomposing them into
singular values and vectors to maintain dataset information.
Each reduction technique requires the normalization of data and converting
categorical variables to numeric forms.
Dimensionality reduction simplifies datasets, enhancing visualization and
model accuracy, reducing computation time, and mitigating overfitting risks.
Challenges with dimensionality reduction include the loss of interpretability,
information loss, and the requirement for numerical data.

https://mng.bz/7pNm
https://mng.bz/qxqA
https://arxiv.org/pdf/1211.7102.pdf
https://mng.bz/wJqO
https://mng.bz/JYeo
https://mng.bz/Pd0w
https://mng.bz/1XKX
https://mng.bz/2y9g

108

CHAPTER 3 Dimensionality reduction

Both PCA and SVD are widely used to effectively reduce dimensions, and each
is suitable for different dataset densities.

The techniques can be applied in various industries like retail; banking, finan-
cial services, and insurance; and healthcare to simplify high-dimensional data-
sets for analysis.

The reduction process involves preliminary data cleaning and exploratory data
analysis and then applying dimension-reduction techniques.

Part 2

Intermediate level

Kudos on finishing the first part, and welcome to the second part.

Think of the journey in this book as your workshop, where raw concepts and
fundamentals are turned into case studies and working solutions using Python.
Each concept we cover, each algorithm we study, and each case study we solve
here is a building block, but it’s up to you to put them together in creative ways
and implement them in your real-life business. This implementation should
help you solve business problems in ways that are both logical and creative. The
algorithms, tools, and techniques you are learning will allow you to create func-
tional, powerful solutions—step by step.

The true art of machine learning lies not in knowing all the algorithms by
heart or cramming the deepest of mathematical concepts but in knowing how to
approach the problem, use the available dataset effectively and efficiently, and
finally solve problems. You should not ignore the user experience while reveal-
ing the insights to the end user.

You’ve learned the fundamentals of unsupervised learning in the first part; it
is now time to move to slightly more advanced topics. In this part, we’ll dive into
association rules, advanced clustering, and dimensionality reduction techniques.

Association rules

This chapter covers

Association rules
Different types of algorithms for association rules

Implementation of different algorithms for
association rules

Sequence learning using SPADE

The power of association is stronger than the power of beauty; therefore, the power
of association is the power of beauty.

—]John Ruskin

Congratulations on finishing the first part of the book! You explored the basics of
unsupervised learning and algorithms like k-means clustering, hierarchical cluster-
ing, DBSCAN, principal component analysis, and others. It is expected that you
have covered the mathematical concepts in the first part and created the Python
codes to solve the exercise given at the end of each chapter.

Welcome to the second part of the book where we use the concepts learned in
the first part and explore slightly more complex topics. We start with association
rules in this chapter.

111

112

4.1

4.2

CHAPTER 4 Association rules

Next time you visit a nearby grocery store, look around inside the store and notice
the arrangements of various items. You would find shelves with items like milk, eggs,
bread, sugar, washing powder, soaps, fruits, vegetables, cookies, and various other
items neatly stacked. Have you ever wondered about the logic of these arrangements
and how these items are laid out? Why are certain products kept near each other
while others are quite far from one another? Obviously, the arrangement cannot be
done in a random manner, and there has to be scientific reasoning behind it. Or do
you wonder: How does Netflix recommend movies to you based on your movie history
like a sequence? We are going to find the answers to these questions in this chapter.
Like always, we study the concepts first. We go through the mathematical logic for dif-
ferent algorithms, the pros and cons of each, and practical implementations using
Python. A business case study is provided at the end of the chapter to complement the
knowledge. Welcome to the fourth chapter and all the very best!

Technical toolkit

We will continue to use the same version of Python and Jupyter Notebook we have
used so far. The codes and datasets used in this chapter have been checked in at the
same Github location.

You will need to install a few Python libraries for this chapter, including apyori,
pYECLAT, fpgrowth_py, and pyspade. Along with this, you will need numpy and pandas.
Using libraries, we can implement the algorithms very quickly. Otherwise, coding
these algorithms from scratch is quite a time-consuming and painstaking task.

Let’s get started with association rules.

Association rule overview

You might have heard the famous “beer and diaper story.” As per this anecdote, cus-
tomers (mostly young men) in a supermarket who buy diapers also buy beer in the
same invoice. In other words, young men who are buying diapers for their babies have
quite a high probability of buying beer in the same transaction. We will not comment
on the authenticity of the story, but association rule learning can be attributed as the
logic derived from this story.

Formally put, association rules can be used to find compelling relationships
between the variables that are present in the datasets. We can use association rules for
measuring the correlations and co-occurrences between the variables in a dataset. In
the example given here (assuming the story is true), one could analyze the daily cus-
tomer transactions. And if a relationship emerges between beer and diapers, it is a
very strong insight for the supermarket, which can allow it to customize their place-
ments of beer and diapers or tailor the marketing strategy or even alter the prices.

We can understand by a different example in a supermarket. Assume that by ana-
lyzing five invoices generated in a supermarket, we get the data as shown in table 4.1.
In this example, in invoice number 1001 milk is purchased and thus has a value of 1,
whereas cheese is not purchased and thus is 0.

4.2 Association rule overview 113

Table 4.1 Examples of invoices generated in a supermarket

Invoice number Milk Eggs Bread Cheese
1001 1 1 1 0
1002 0 0 0 1
1003 1 1 1 0
1004 0 1 6] 1
1005 1 1 0 1

So, in invoice number 1001, milk, eggs, and bread are purchased while in invoice
number 1002, only cheese is purchased. Here we can see that whenever milk and eggs
are purchased together, bread is always purchased in the same invoice. It is an import-
ant discovery indeed.

Now scale up this understanding to thousands of transactions made in a day. It will
lead to very strong relationships that human eyes are generally oblivious to, but associ-
ation rule algorithms can uncover them for us. This can lead to better product place-
ments, better prices on the products, and much more optimized marketing spending.
Such patterns will enhance the customer experience and prove quite handy to
improve overall customer satisfaction.

We can visualize association rules
as shown in figure 4.1. Here there
are some incoming variables repre-
sented as nodes 1, 2, 3, 4, etc. These
nodes are related to each other as
shown by the arrows. This relation-
ship between them gives rise to rules
A and B. If we relate back to the
beer/diaper story we mentioned at
the start of this section, rule A can
be that when a young male cus-
tomer buys diapers, they also often
buy beer, while rule B can be that

Figure 4.1 An association rule can be visualized as the
when milk and eggs are purchased, relationship between various variables in the dataset.
often bread is bought too. These variables are linked to each other, and significant
relationships are established between them.

The example of the supermarket
is sometimes referred to as market
basket analysis. But association rules are applicable not only in grocery retail. Their
utility has been proven in other sectors like bioinformatics, the medical industry,
intrusion detection, etc. They can be utilized by Netflix or Spotify to analyze historical
user behavior and then recommend the content the user most likely is going to like.
Web developers can analyze the historical clicks and usages of the customers on their
websites. By identifying the patterns, they can find out what users tend to click and

114

4.3

CHAPTER 4 Association rules

which features will maximize their engagement. Medical practitioners can use associa-
tion rules to better diagnose patients. The doctors can compare the probability of the
symptoms in relationship with other symptoms and provide more accurate diagnoses.
The use cases occur across multiple business domains and business functions.

The building blocks of association rules

We covered the definition of an association rule in the last section. Now let’s under-
stand the mathematical concept behind association rules. Assume that we have the fol-
lowing datasets in a retail store:

Let X = {x1, X9, X3, X4, X5, X,,} are the n items available in the retail store. For
example, they can be milk, eggs, bread, cheese, apples, and so on.

LetY = {y1, yo, ¥3, V4, V5 ..., V) are the m transactions generated in that retail
store. Each transaction could have all or some items from the retail store.

Obviously, each item in the transaction will be bought from the retail store only. In
other words, every item in transactions in set Y will be a subset of items in set X. At the
same time, each item would have a unique identifier attached to it, and each transac-
tion would have a unique invoice number attached to it.

Now we are interested in analyzing the patterns and discovering the relationships.
This will be used to generate any rule or insight. So let’s define the meaning of the
rule first.

Assume that we find a rule that whenever items in list P are bought, items in list Q
are also bought. This rule can be written as follows:

The rule is P > Q. It means that whenever items defined in P are bought, it
leads to a purchase in Q too.

Items in P will be a subset of X or P < X.

Similarly, items in Q will be a subset of X or Q < X.

P and Q cannot have any common elementor P N Q =0

Now let’s understand these mathematical concepts with a real-world example. Assume
that X = {milk, bananas, eggs, cheese, apples, bread, salt, sugar, cookies, butter, cold
drinks, water}. These are the total items available in the retail shop.

Y = {1001, 1002, 1003, 1004, 1005} are the five invoices generated in that retail
store. The respective items purchased in each of these invoices are given in figure 4.2.

Invoice number |Milk |Bananas |Eggs [Cheese |Apples |Bread [Salt |Sugar |Cookies |Butter [Cold drinks |Water

1001

1002

1003

1004

alo|lalo] -
alalalo] -
alo|alo] -
alalol-]o
=l =l =]
o|l=|O|O|O
ol|lalo|l=|~
= k=l k=1 k=1 K=]
=l e E=A k=]
alo|lol-a] -~
=~ |JOo|Oo|O|~
olo|al=|~

1005

Figure 4.2 Example of five invoices generated in a retail store

4.3.1

4.3 The building blocks of association rules 115

Note how for each invoice, we have 0 and 1 associated for each of the items. These
invoices are just for illustration purposes. In the actual invoices, the number of items
can be much more. Using this dataset, let’s assume we create two rules that {milk,
bananas} -> {eggs} and {milk, bananas} -> {bread}.

The first rule means that whenever milk and bananas are bought together, eggs are
also purchased in the same transaction. The second rule means that whenever milk
and bananas are bought together, bread is also bought in the same transaction. By
analyzing the dataset, we can clearly see that rule 1 is always true whereas rule 2 is not.

NOTE The items on the left side of a rule are called the antecedent or the LHS
and the ones on the right side of a rule are called the consequents or the RHS.

In the real world, for any such rule to have significance, the same pattern must repeat
itself across several hundreds and thousands of transactions. Only then would we con-
clude that the rule is indeed true and can be generalized across the entire database.
At the same time, there can be many such rules. In a retail shop where thousands of
invoices are generated daily, there can be hundreds of such rules. How can we find out
which rules are significant and which are not? This can be understood using the con-
cepts of support, confidence, lift, and conviction, which we will study in the next section.

Support, confidence, lift, and conviction

We identified the meaning of a rule in an association rule in the last section. We also
understand that there can be hundreds of rules based on the transactional dataset. In
this section, we will explore how we can measure the effectiveness of such rules and
shortlist the most interesting ones. This can be achieved using the concepts of sup-
port, confidence, lift, and conviction.

Recall in the last section we discussed the generalization of a rule. Support, confi-
dence, lift, and conviction allow us to measure the level of generalization. In simple
terms, using these four parameters, we can determine how useful the rule can be in our
pragmatic real-world business. After all, if a rule is not useful or is not powerful enough,
itis not required to be implemented. Support, confidence, lift, and conviction are the
parameters to check the efficacy of the rule. We look at these concepts in detail next.

We will use the dataset in table 4.2 to understand the concepts of support, confi-
dence, lift, and conviction. The first invoice, 1001, has milk, eggs, and bread while
cheese is not purchased. Again, for the sake of this example, we have taken only four
items in total.

Table 4.2 Dataset to understand the concept of support, confidence, lift, and conviction

Invoice Number Cheese
1001 1 1 1 0
1002 0 1 1 1

1003 1 1 1 0

116

CHAPTER 4 Association rules

Table 4.2 Dataset to understand the concept of support, confidence, lift, and conviction (continued)

Invoice Number Cheese
1004 0 1 0 1
1005 0 1 1 0

Here, for an invoice, 1 represents if an item is present in that invoice while 0 shows
that the item was not purchased in that particular invoice. For example, invoice num-
ber 1001 has milk, eggs, and bread while 1002 has eggs, bread, and cheese.

SUPPORT
Support measures the frequency percentage of the items in the datasets. In simpler
terms, it measures the percentage of transactions in which the items are occurring in
the dataset.

Support can be denoted as follows:

(Total number of transactions in which the item of rule is present)

Support =
PP (Total number of transactions present in the data base)

Refer to table 4.2. Say we are interested in the rule {milk, eggs} -> {bread}. In such a
scenario, there are two transactions in which all three items (milk, eggs, and bread)
are present. The total number of transactions is five. This means that the support for
the rule is 2/5, which is 0.4 or 40%.

Now say we are interested in the rule {bread, eggs} -> {cheese}. In such a scenario,
there is only one transaction in which all three items are present. The total number of
transactions is five. This means that the support for the rule is 1/5, which is 0.2 or 20%.

NOTE The higher the support for a rule, the better it is. Generally, we put a
minimum threshold to get support. A minimum threshold is generally deter-
mined in consultation with the business stakeholders.

CONFIDENCE
Confidence measures how often the rule is true; that is, it measures the percentage of
transactions that contain antecedents that also contain consequents.

So if we wish to measure the confidence of the rule A -> B:

Confidence = support(4 U B)
support(A4)
Here, the numerator is supported when both A and B are present in the transaction,
while the denominator refers to the support only for A.
Refer to table 4.2. Again, say we are interested in the rule {milk, eggs} -> {bread}. In
such a scenario, there are two transactions in which both milk and eggs are present.
Hence, the support is 2/5 = 0.4. It is the denominator. There are two transactions in

4.3 The building blocks of association rules 117

which all three (milk, eggs, bread) are present. Hence, support is 2/5 = 0.4, which is
the numerator. Putting in the preceding equation, the confidence for the rule {milk,
eggs} > {bread} is 0.4/0.4 = 1.

Now say we are interested in the rule {eggs, bread} -> {cheese}. In such a scenario,
there are four transactions in which (eggs, bread) are present. The total number of
transactions is five. This means that the support is 4/5, which is 0.8. There is only
one transaction in which all three items (eggs, bread, cheese) are present. So the sup-
port is 1/5 = 0.2. Hence the confidence for the rule {eggs, bread} -> {cheese} is 0.2/
0.8 =0.25.

NOTE The higher the confidence in the rule, the better it is. Like support, we
put a minimum threshold on confidence.

Sometimes this is also referred to as the conditional probability of A on B. It can be
understood as the probability of B occurring provided A has already occurred and can
be written as P(A|B). So, in the preceding examples, the probability of cheese to be
bought provided eggs, bread is already bought is 25% while the probability of bread to
be purchased, provided milk, eggs are already purchased is 100%.

LIFT AND CONVICTION
Lift is a very important measurement criterium for a rule. Lift for a rule A -> B can be
defined as

support(A U B)

Lift(4 — B) =
it = B) support(A4) * support(B)

Here the numerator is supported when both A and B are present in the transaction,
while the denominator refers to the support for A multiplied by the support for B.

Again, refer to table 4.2 and say we are interested in the rule {milk, eggs} -> {bread}.
In such a scenario, there are two transactions in which all three (milk, eggs, bread) are
present. Hence, supportis again 2/5 = 0.4, which is the numerator. There are two trans-
actions in which only (milk, eggs) are present, so the supportis 2/5=0.4. There are four
transactions in which bread is present, hence the supportis 4/5=0.8. Putting in the pre-
ceding equation, the lift for the rule {milk, eggs} -> {bread} is 0.4/ (0.4 x 0.8) = 1.25.

Then say we are interested in the rule {eggs, bread} -> {cheese}. In such a scenario,
there is only one transaction in which (eggs, bread, cheese) are present. The total
number of transactions is five. This means that the supportis 1/5, which is 0.2. There
are two transactions in which (cheese) is present. So the support is 2/5 = 0.4. There
are four transactions in which (eggs, bread) are present, so the support is 4/5 = 0.8.
Putting in the preceding equation, the lift for the rule {eggs, bread} -> {cheese} is 0.2/
(0.4x0.8) = 0.625.

If the value of the lift is equal to 1, it means that the antecedent and precedent are
independent of each other, and no rule can be drawn from it.

If the value of lift is greater than 1, it means that the antecedent and precedent are
dependent on each other. This rule can be used for predicting the antecedent in
future transactions. This is the insight we want to draw from the dataset.

118

CHAPTER 4 Association rules

If the value of lift is less than I, it means that the antecedent and precedent are sub-
stitutes of each other. The presence of one can have a negative effect on the other. Itis
also an important insight that can be used by the business teams for strategic planning.

While we evaluate any rule using the lift, it is imperative that we apply domain
knowledge to it. For example, if we evaluate the rule {eggs, bread} -> {cheese} and if we
find that eggs, bread can be a substitute for cheese, we know that it is not true in real
life. Hence, in such a scenario we cannot make any decision for this role. We must use
domain knowledge to draw any conclusions for this rule.

At the same time, rule {milk, eggs} -> {bread} might be a rule that can be true many
times. For many customers, when they purchase milk and eggs together, it is highly
likely that bread will be purchased in the same transaction. Hence this rule makes
much more sense for such customers. The objective is to have a strong business logic
to either support or disapprove a rule identified using the algorithm.

Conviction is another important parameter, which is given by the following
formula:

1 — support(B)

Conviction(4 — B) = T~ confidence(d = B)

Refer to table 4.2. Again, say we are interested in the rule {eggs, bread} -> {cheese}. In
such a scenario, there is only one transaction in which (cheese) is present. The total
number of transactions is five. So, it means that the supportis 1/5, which is 0.2 and will
be used in the numerator. We have already calculated the confidence as 0.625. Putting
back in the formula, we can calculate conviction as (1 —0.2) /(1 —0.625) =2.13

We can interpret the conviction as: the rule {eggs, bread} -> {cheese} would be
incorrect 2.13 times more often if the association between {eggs, bread, cheese} was
purely chosen at random.

In most of the business scenarios, lift is the measurement criteria used. There are
other measurement parameters, too, like leverage, collective strength, etc. But most of
the time, confidence, support, lift, and conviction are used to measure the effective-
ness of any rule.

Exercise 4.1
Answer these questions to check your understanding;:
Support measures how often the rule is present in the dataset. True or False?

If the lift is greater than 1, it means that the two items are independent of each
other. True or False?

The lower the value of confidence, the better the rule. True or False?

While we evaluate any rule while analyzing the dataset, most of the time, we set a
threshold for the confidence, support, lift, and conviction. It allows us to reduce the
number of rules and filter out the irrelevant ones. In other words, we are interested in

4.4

4.4 Apriori algorithm 119

only the rules that are very frequent. We will study this in more detail when we create
a Python solution for a dataset.

Apriori algorithm
The Apriori algorithm is one of the most popular algorithms used for association
rules. It was proposed by Agrawal and Shrikant in 1994. The link to the paper is given
at the end of the chapter.

Apriori is used to understand and analyze the frequent items in a transactional
database. It utilizes a “bottom-up” approach where the first candidates are generated
based on the frequency of the subsets. Let us understand the entire process by means

of an example. We will use the same dataset we have discussed earlier (see table 4.2).
The process used in the Apriori algorithm will look like figure 4.3.

Bread

Y 7

[)
= =3 @8
, L
[Cheese] [Eggs] [Cheese] [Milk] [Milk] [Eggs]

Figure 4.3 The Apriori algorithm process

Let us say we wish to analyze the relationship of bread with all the other items in the
dataset. In this case, level 1 is bread, and we find its frequency of occurrence.

Then we move to the next layer, which is layer 2. Now we find the relationship of
bread with each of the other items: milk, eggs, and cheese, which are at layer 2. Here
again we find the respective frequencies of occurrence for all the possible combina-
tions, which are {bread, milk}, {bread, eggs}, and {bread, cheese}. See figure 4.4.

Bread Level 1

i

Level 2 Eggs Level 2 Level 2

Figure 4.4 We have bread at level 1 while the other items (milk, eggs, and cheese) are kept at level 2.
Bread is kept at level 1 since we wish to analyze the relationship of bread with all the other items.

.

120

CHAPTER 4 Association rules

After layer 2 has been analyzed, we move to the third layer and fourth layer and so on.
This process continues until we reach the last layer wherein all the items have been
exhausted.

As a result of this process, we can calculate the support for all the possible combi-
nations. For example, we would know the support for

{bread} -> {milk},
{bread} -> {eggs}, and
{bread} -> {cheese}.
For the next level, we would also get the support for
bread, milk} -> {eggs},
bread, eggs} -> {milk},

bread, cheese} -> {milk},

{

{

{bread, milk} -> {cheese},

{

{bread, cheese} -> {eggs}, and
{

bread, eggs} -> {cheese}.

Now, using the same process, all the possible combinations for the next level are cal-
culated. For example, {bread, eggs, milk} -> {cheese}, {bread, eggs, cheese} -> {milk},
and so on.

When all the item sets have been exhausted, the process will stop. The complete
architecture can look like figure 4.5.

Now we can easily understand that the possible number of combinations is quite
high, which is one of the challenges with Apriori. But Apriori is quite a powerful algo-
rithm and is very popular too. Now it’s time to implement Apriori using Python.

m Level 2 Eggs Level 2 Level 2

Level 3 Level 3 Level 3 Level 3 Level 3

[Cheese [Eggs [Cheese [Milk [Milk [Eggs
4 4 | 4

Level Level 4 Level 4 Level

Level

Figure 4.5 The complete architecture for the Apriori algorithm. Here we would have calculated support
for all the possible combinations. The relationships between all the items are explored, and because of
this entire database scan, the speed of Apriori gets hampered.

4.4.1

4.4 Apriori algorithm 121

Python implementation

We will now proceed with Python implementation of the Apriori algorithm. The data-
set and Python Jupyter Notebook are checked in at the GitHub repository. You might
have to install apyori.

To install the libraries, simply do the following:

import sys
1 {sys.executable} -m pip install apyori

The steps are as follows:

Import the necessary libraries for the use case. We are importing numpy and
pandas. For implementing Apriori, we have a library called apyori, which is
also imported:

import numpy as np

import pandas as pd
from apyori import apriori

Import the dataset store_data.csv file:
store_dataset = pd.read csv('store data.csv')
You are also advised to have a look at the dataset by opening the .csv file. It will look

like the screenshot in figure 4.6. The first 25 rows are shown in the screenshot. Each
row represents an invoice.

A B Cc D E . G H 1
1 |shrimp .Ialmcnds avocado wegetables mix green grapes wholewheat flour yams cottage cheese energy drink
2 | burgers meatballs eges
3 | chutney
4 turkey avocado
5 mineral water milk energy bar whole wheat rice green tea
6 low fat yogurt
7 |whole wheat pasta french fries
8 soup light cream shallot
9 frozen vegetables spaghetti green tea
10 | french fries
11 |eggs pet food
12 |cookies
13 turkey burgers mineral water eggs cooking oil
14 spaghetti champagne cookies
15 'mineral water salmon
16 mineral water
17 shrimp chocolate chicken honey oil cooking oil low fat yogurt
18 | turkey BEES
19 turkey fresh tuna tomatoes spaghetti mineral water black tea salmon eggs chicken
20 meatballs milk honey french fries protein bar
21 red wine shrimp pasta pepper BEES chocolate shampoo
22 rice sparkling water
23 spaghetti mineral water ham body spray pancakes green tea
24 burgers grated cheese shrimp pasta avocado honey white wine toothpaste
25 eggs
26 parmesan cheese spaghetti soup avocado milk fresh bread

Figure 4.6 Screenshot of the .csv file

122 CHAPTER 4 Association rules

Next we perform some basic checks on the data by the .info and.head com-
mands (see figure 4.7):

store_dataset.info()

store_dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7500 entries, 0 to 7499
Data columns (total 20 columns):

shrimp 7500 non-null object
almonds 5746 non-null object
avocado 4388 non-null object
vegetables mix 3344 non-null cbject
green grapes 2528 non-null object
whole weat flour 1863 non-null object
yams 1368 non-null object
cottage cheese 980 non-null object
energy drink 653 non-null object
tomato juice 394 non-null ocbject
low fat yogurt 255 non-null ocbject
green tea 153 non-null ocbject
honey 86 non-null object
salad 46 non-null object
mineral water 24 non-null object
salmon 7 non-null object
antioxydant juice 3 non-null object
frozen smoothie 3 non-null object
spinach 2 non-null object
olive oil 0 non-null float64

dtypes: float64(l), object(19)
memory usage: 1.1+ MB

store_dataset.head()

In [71: 1 store_dataset.head()
out(7]:

vegetables green Whola o

5 cottage energy tomato green

shrimp almonds avocado mix grapes w:::: yams 4 oese drink juice Wg:'ar: Saa honey salad
0 burgers meatballs eggs NaN NaN NaN NaN NaN NaN NaMN NaN NaN NaN NaN
1 chutney NaN MaM MNaN NaM MNaMN NaN NaM NaN MNaM MNaM MNaN NaN NaN
2 turkey avocado NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

mineral . energy whole green
3 Vidter milk bar vikat ride ta NalN NaN NaN NaN NaN NaMN NaN NaN NaN

low fat

yogurt NaN NaM NaN NaN NaN NaN MNaM NaN MNaM MNaN MNaN NaN NaN

Figure 4.7 Output for . info and .head commands

Here we can see that the first transaction has been considered the header by
the code. Hence, we would import the data again, but this time we would spec-
ify that headers are equal to None:

store _dataset = pd.read csv('store data.csv', header=None)

4.4 Apriori algorithm 123
Let’s look at the head again (see figure 4.8). This time it looks correct:
store_dataset.head ()
In [10]: 1 store_dataset.head()
Out[10]:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
hole low .
. vegetables green " cottage energy tomato green mineral
0 shrimp almonds avocado mix grapes w;sat yams i oces drink juice fat it honey salad water salmon
our yogurt
1 burgers meatballs &0gs NaN MNaN MNaN NaN MaN NaN NaN NaN NaN NaN NaN NaN NaN
2 chutney NaM NaM NaN NaN MNaN NaN NaN NaN NaN MNaN NaMN NaN NaN NaM NaN
3 turkey avocado NaN NaN NaN MNaM NaN NaM MNaN NaN NaN NaMN NaM NaN NaN NaN
mineral energy whole green
4 e milk bBar wheat ies tea MNaN NaN NaN NaN NaN NaN MNaN MNaMN NaN NaN NaN

Figure 4.8 Correct results for .head ()

The
entire dataset must be a big list while each transaction is an inner list in the big

The library we are using for the code accepts the dataset as a list of lists.

list. So, to achieve it, we first convert our store dataset dataframe into a list:

all records []
for i in range (0, 7501):
all records.append([str(store dataset.values[i,j])
range (0, 20)])

for j in

Next, we implement the Apriori algorithm.

For the algorithm, we are working on the all_records list we created in step 6. The
minimum support specified is 0.5 or 50%, the minimum confidence is 25%, the mini-
mum lift is 4, and the minimum length of the rule is 2.

The output of this step is the apriori_rules class object. This object is then con-
verted into a list that we can understand. Finally, we print this list:

apriori rules apriori(all records, min support=0.5, min confidence=0.25,
min_lift=4, min_length=2)
apriori rules list (apriori rules)

print (len(apriori rules))

The output of the code will be 0. This means that no such rules exist that satisfy the
condition we have set for the rules.
We again try to execute the same code, albeit by reducing the minimum support to

25%:

apriori rules apriori(all records, min support=0.25, min confidence=0.25,
min 1ift=4, min length=2)
apriori_rules list (apriori_rules)

print (len(apriori rules))

124 CHAPTER 4 Association rules

Again, no rules are generated and the output is 0. Even reducing the minimum sup-
port to 10% does not lead to any rules:

apriori_rules = apriori(all records, min_ support=0.1, min confidence=0.25,
min_lift=4, min_length=2)
apriori rules = list(apriori rules)

print (len(apriori rules))

Now we reduce the minimum lift to 2. This time we get 200 as the output. This means
that there are 200 such rules that fulfill the criteria:

apriori_rules = apriori(all records, min_ support=0.25, min_confidence=0.25,
min_1lift=2, min_length=2)
apriori rules = list(apriori rules)

print (len(apriori rules))

Let’s look at the first rule (see figure 4.9):

print (apriori_rules[0])

print (apriori_rules[0])

RelationRecord(items:frozenset({‘almonds‘, 'burgers'}), support=0.005199306759098787,
ordered_statistics=[OrderedStatistics (items_base=frozenset ({'almonds'}),
item add=frozenset ({'burgers'}), confidence=0.25490196078431376, lift=2.923577382023146)])

Figure 4.9 Output from print (apriori rules[0])

The rule explains the relationship between almonds and burgers. The support is .005,
and the confidence is 0.25. Lift, which is 2.92, indicates that this rule is quite strong.

We will now look at all the rules in detail. For that, loop through the rules and
extract information from each of the iterations. Each of the rules has the items
constituting the rule and respective values for support, confidence, lift, and
conviction. We have shown an example in step 8. Now, in step 9, we are just
extracting that information for all the rules using a for loop:

for rule in apriori rules:
item pair = rulel0]

items = [x for x in item pair]

print ("The apriori rule is: " + items[0] + " -> " + items[1])
print ("The support for the rule is: " + str(rulell]))

print ("The confidence for the rule is: " + str(rulel2] [0] [2]))
print ("The 1lift for the rule is: " + str(rulel[2] [0] [3]))

print(”************************ll)

The output for this step is shown in figure 4.10. Here we can observe each rule is
listed along with the respective values of support, confidence, lift, and conviction.

4.4.2

4.4 Apriori algorithm 125

for rule in apricri rules:
item_pair = rule[0]
items = [x for x in item pair]
print("The apriori rule is: "

+ items[0] + -> + items[1])

print ("The support for the rule is: " + str(rulefl]))
print("The confidence for the rule is: " + str{rule[2][0][2]})

print("The lift for the rule is: " + strirule[2][0][3]))
priﬂt("k**‘!kk***k*******itk**i")

The apriori rule is: almonds -> burgers

The support for the rule is: 0.005199306755098787
The confidence for the rule is: 0.2549019607B431376
The lift for the rule is: 2.9235773B2023146

R R R e R e W R W R

The apriori rule is: cereals -> milk

The support for the rule is: 0.007065724570057326
The confidence for the rule is: 0.2746113989637306
The lift for the rule is: 2.119197637476279

L T e T e e e

The apriori rule is: chocolate -> tomato sauce

The support for the rule is: 0.005065991201173177
The confidence for the rule is: 0.3584905660377358
The lift for the rule is: 2.1879883936932925

AR EEENN N AR NN T AR ERERN

The aprieri rule is: mushroom cream sauce -> escalope
The support for the rule is: 0.005732568990801226

The confidence for the rule is: 0.3006993006993007
The lift for the rule is: 3.790832696715049

Figure 4.10 Output for step 9

We can interpret the rules easily. For example, the rule almonds -> burgers has a lift of
2.92 with a confidence of 25.49% and support of 0.51%. This concludes our imple-
mentation using Python. This example can be extended to any other real-world busi-
ness dataset.

NOTE Not all the rules generated are not worth using. We will examine how
to get the best rules from all the rules generated when we deal with the case
study in the last section of the chapter.

The Apriori algorithm is a robust and very insightful algorithm. But, like any other
solution, it has a few shortcomings.

Challenges with the Apriori algorithm

As we have seen, the number of subsets generated in the Apriori algorithm is quite
high (see figure 4.5). It is very tedious to generate candidates’ item sets, and hence it
becomes quite cumbersome to analyze the dataset. Apriori scans the entire dataset
multiple times, and hence it requires the database to be loaded in the memory. We
can safely deduce that it requires a lot of time to make the computations. This prob-
lem is magnified when we are dealing with a very large dataset. In fact, for real-world
problems where millions of transactions are generated, quite a huge number of candi-
date item sets are generated, and it is very time-consuming to use Apriori on the
entire dataset.

126

4.5

CHAPTER 4 Association rules

Due to this very reason, generally, a minimum value of support is set to reduce the
number of possible rules. In the previous example, we can calculate the support for
level 1 combinations, as shown in table 4.3. Here, if we set the minimum value of sup-
portas 0.5, only one rule will be shortlisted. Support is calculated for each of the com-
bination of the items. For example, for milk and bread, the number of transactions is
2, while the total number of transactions is 5. So the supportis 2/5, which is 0.4.

Table 4.3 Support for level 1 combinations

Combination Number of transactions Total transactions
Milk, Eggs 2 5 0.4
Milk, Bread 2 5 0.4
Milk, Cheese 0 5 [0}
Eggs, Bread 4 5 0.8
Eggs, Cheese 2 5 0.4
Bread, Cheese 1 5 0.2

Setting up a minimum value of support is hence an intelligent tactic to make the rules
much more manageable. It reduces the time and generates rules that are much more
significant. After all, the rules generated from the analysis should be generalizable
enough so that they can be implemented across the entire database.

Exercise 4.2
Answer these questions to check your understanding;:

The Apriori algorithm scans the database only once. True or False?
If bananas are present in 5 transactions out of a total of 12 transactions, it
means the support for bananas is 5/12. True or False?

But the Apriori algorithm is indeed a great solution. It is still highly popular and gen-
erally one of the very first algorithms brought up whenever association rules are
discussed.

NOTE Data preparation is one of the key steps and quite a challenge. We will
explore this challenge during the case study in section 4.8.

Equivalence class clustering and bottom-up

lattice traversal

We will now study the equivalence class clustering and bottom-up lattice traversal algo-
rithm (ECLAT), which sometimes is considered better than Apriori in terms of speed
and ease of implementation. ECLAT uses a depth-first search approach. This means

4.5 Equivalence class clustering and bottom-up lattice traversal 127

that ECLAT performs the search in a vertical fashion throughout the dataset. It starts
at the root node and then goes one level deep and continues until it reaches the first
terminal note. Let’s say the terminal node is at level X. Once the terminal node is
reached, the algorithm then takes a step back and reaches level (X- 1) and continues
until it finds a terminal node again. Let’s understand this process by means of a tree
diagram, as shown in figure 4.11.

—T,
I N) e) e

Figure 4.11 Tree diagram to understand the process of the ECLAT algorithm. It starts with 1 and ends
at 16.

~

1 1
n
13] [14

ECLAT will take the following steps:

The algorithm starts at the root node 1.

It then goes one level deep to root node 2.

It will then continue one more level deep until it reaches terminal node 11.
Once it reaches terminal node 11, it then takes a step back and goes to node 5.

a & W N BB

The algorithm then searches if there is any node available that can be used. At

node 5 we can see that there is no such node available.

6 Hence, the algorithm again takes a step back and reaches node 2.

7 Atnode 2, the algorithm explores again. It finds that it is possible to go to node 6.

2 So, the algorithm goes to node 6 and starts exploring again until it reaches ter-
minal node 12.

9 This process continues until all the combinations have been exhausted.

Obviously, the speed of computation depends on the total number of distinct items
present in the dataset. This is because the number of distinct items defines the width
of the tree. The items purchased in each of the transactions would define the relation-
ship between each node.

During the execution time of ECLAT, each item (either individually or in a pair) is
analyzed. Let us use the same example we have used for Apriori to understand ECLAT
better. Refer to table 4.2.

128 CHAPTER 4 Association rules

ECLAT will undergo the following steps to analyze the dataset:

1 In the first run, ECLAT will find the invoice numbers for all single items. In
other words, it will find the invoice numbers for all the items individually. It is
shown in table 4.4, wherein milk is present in invoice numbers 1001 and 1003,
while eggs are present in all five invoices.

Table 4.4 Respective invoices in which each item is present

Invoice numbers

Milk 1001, 1003

Eggs 1001, 1002, 1003, 1004, 1005
Bread 1001, 1002, 1003, 1005
Cheese 1002, 1004

2 In the next step, all the two-item datasets are explored as shown in table 4.5. For
example, milk and eggs are present in invoice numbers 1001 and 1003, while
milk and cheese are not present in any invoice.

Table 4.5 Two-item datasets

Item Invoice numbers

Milk, Eggs 1001 ,1003

Milk, Bread 1001, 1003

Milk, Cheese —

Eggs, Bread 1001, 1002, 1003, 1005

Eggs, Cheese 1002, 1004

Bread, Cheese 1002

2 In the next step, all three-item datasets are explored, as shown in table 4.6.
Here we have two combinations only.

Table 4.6 Three-item datasets

Invoice numbers

Milk, Eggs, Bread 1001, 1003
Eggs, Bread, Cheese | 1002

4 There are no invoices present in our dataset that contain four items.

5 Now, depending on the threshold we set for the value of the support count, we
can choose the rules. So, if we want the minimum number of transactions in

4.5.1

4.5 Equivalence class clustering and bottom-up lattice traversal 129

which the rule should be true to be three, then only one rule qualifies, which is
{eggs, bread]. If we decide the threshold for the minimum number of transac-
tions is two, then rules like {milk, eggs, bread}, {milk, eggs}, {milk, bread}, {eggs,

bread}, and {eggs, cheese} qualify as the rules.

We will now create a Python solution for ECLAT.

Python implementation

We will now work on the execution of ECLAT using Python. We use the pyECLAT
library here. The dataset looks like figure 4.12.

almonds avocado

1 shrimp vegetables mix green grapes whole wheat flour yams
2 | burgers meatballs egEs
3 |chutney
4 |t:urke'g|I avocado .
5 |mineral water milk energy bar whole wheat rice green tea
6 |low fat yogurt
7 |whole wheat pasta french fries
8 |soup light cream shallot
9 |frozenvegetables spaghetti green tea
10 |french fries
11 |eggs pet food
12 |cookies
13 [turkey burgers mineral water eggs cooking oil
14 |spaghetti champagne cookies
15 | mineral water salmon
16 |mineral water
17 |shrimp chocolate chicken honey oil cooking oil low fat yogurt
18 turkey eEES
15 |turkey fresh tuna tomatoes spaghetti mineral water black tea salmon
20 \meatballs milk haney french fries protein bar
21 |red wine shrimp pasta pepper eggs chocolate shampoo
22 |rice sparkling water
23 spaghetti mineral water ham body spray pancakes green tea
24 burgers grated cheese shrimp pasta avocado heney white wine
25 |eggs
26 parmesan cheese spaghett SOUp avocado milk fresh bread
27 ground beef spaghetti mineral water milk energy bar black tea salmon
28 | sparkling water
29 \mineral water eggs chicken chocolate french fries
Figure 4.12 ECLAT for the pyECLAT library using Python
The steps are as follows:
Import the libraries:
import numpy as np
import pandas as pd
from pyECLAT import ECLAT
Import the dataset:
data frame = pd.read csv('Data ECLAT.csv', header None)

Generate an ECLAT instance:

eclat =

ECLAT (data=data_frame)

130

CHAPTER 4 Association rules

There are some properties of ECLAT instance eclat generated in the last step like
eclat.df_bin, which is a binary dataframe, and eclat.uniqg_, which is a list of all the
unique items.

Fit the model. We give a minimum support of 0.02 here. After that, we print the
support:

get ECLAT_indexes, get ECLAT_supports = eclat.fit (min_support=0.02,
min_combination=1,
max_combination=3,

separator=' & ')

get ECLAT supports

The output is shown in figure 4.13.

‘french fries eggs’': 0.0343218%270243252,
'french fries mineral water': 0.02299233588803732,

In [11]:

out[11]:

&
&
- = ————— ‘'french friea & spaghetti’': 0.021659%44685104965,
‘french fries & chocolate': 0.027657447517494167

et ECLAT_ supports .
|g = ~BUPR ‘french fries & green tea': 0.0223258%1369543487,

{'pepper': 0.02865711429523492 ‘cake & mineral water': 0.0236587B0406531157,
= i} L] r

; ST ‘eggs & milk': 0.027990669776741087,

french fries': 0.15428190603132289, ‘eggs & mineral water': 0,D4798400533155615,
'light mayo': 0.02332555814728424, ‘eqgs & spaghetti': 0.0326557B140619793,

'cake': 0.0769743418B603798, ‘egga & chocolate': 0.026323B92035988004,

'low fat yogurt': 0.05664778407197601, |°392 £ geasn naa's 0.D306599A0074300096,

‘eggs’: 0.17727424191936023, ‘milk & mineral water': 0.048317227590803064,
'champagne’: 0.042652449183605466, ‘milk & spaghetti’': 0.03B65378207264245,

‘ham': 0.027657447517494167, ‘milk & chocolate': 0.0D26391002999000334,

‘milk': 0.12695768077307565, ‘milk & ground beef’: 0.02165%94§4665104965,

: Vi ‘mineral water & olive oil': 0.02732422525824725,
Ih‘"‘ey 2 0'0?36537320725'“5' ‘mineral water & spaghetti’: 0.06064645118293902,
cooking oil': 0.04798400533155615, ‘mineral water & soup': 0.025658113962012664,
‘mineral water': 0.23692102632455847, 'mineral water L frozen vegetablea’: 0.03698767077640786,
'turkey': 0.06537800733088971, ‘mineral water & shrimp': 0.027990669776741087,

' : - ‘mineral water & chocolate': 0.04765078307230923,
,Coones_' ,0‘0769”3“88603798’ ‘mineral water & tomatoes': 0.024991669443518827,
olive 0-1-1.- : 0.06597800733088971, ‘mineral water & burgers': 0.023992002665778073,
'spaghetti': 0.18293902032655782, ‘mineral water & ground beef': 0.03698767077640786,

Figure 4.13 Output for step 4

4.6

We can interpret the results provided based on the support. For each of the items and
combination of items, we are getting the value of the support. For example, for french
fries and eggs, the value of support is 3.43%.

ECLAT has some advantages over the Apriori algorithm. Since it uses a depth-
search approach, it is faster than Apriori and requires less memory to compute. It
does not scan the dataset iteratively, and that makes it even faster than Apriori. We will
compare these algorithms once more after we have studied the last algorithm.

F-P algorithm

The F-P algorithm is the third algorithm we discuss in this chapter. It is an improve-
ment over the Apriori algorithm. Recall in Apriori we face the challenges of time-con-
suming and costly computations. F-P resolves these problems by representing the

4.6 F-P algorithm 131

database in the form of a tree called a frequent pattern tree or I'P tree. Because of this fre-
quent pattern, there is no need to generate the candidates as done in the Apriori algo-
rithm. Let’s discuss F-P in detail now.

An F-P tree is a tree-shaped structure, and it mines the most frequent items in the
datasets. This is visualized in figure 4.14.

Bread:2 Apples:2

Cheese:1 Bread:2

Bread:2

Figure 4.14 An F-P algorithm can be depicted in a tree-diagram structure. Each node represents a
unique item. The root node is NULL.

Each node represents a unique item in the dataset. The root node of the tree is gener-
ally kept as NULL. The other nodes in the tree are the items in the dataset. The nodes
are connected with each other if they are in the same invoice. We will study the entire
process in a step-by-step fashion.

Assume we are using the dataset shown in table 4.7. So we have the unique items as
Apples, Milk, Eggs, Cheese, and Bread. There are nine transactions, and the respec-
tive items in each of the transactions are shown in table 4.7.

Table 4.7 Dataset to understand the F-P algorithm

Transactions Item sets
T1 Apples, Milk, Eggs
T2 Milk, Cheese
T3 Milk, Bread

T4 Apples, Milk, Cheese

132

CHAPTER 4 Association rules

Table 4.7 Dataset to understand the F-P algorithm (continued)

Transactions Item sets

5
T6
T7
T8
T9

Apples, Bread

Milk, Bread

Apples, Bread

Apples, Milk, Bread, Eggs

Apples, Milk, Bread

Let’s apply the F-P algorithm on this dataset now. The steps are as follows:

1 Like Apriori, the entire dataset is scanned first. Occurrences for each of the

items is counted, and a frequency is generated. The results are suggested in

table 4.8. We have arranged the items in descending order of the frequency or

the respective support count in the entire dataset. For example, apples have

been purchased in six transactions.

Table 4.8 Respective frequency for each of the item sets

Item Frequency or support count

Milk
Apples
Bread

Cheese

Eggs

7

6
6
2
2

If two items have exactly same frequency, either can be ordered first. In the
example here, Bread and Apples have the same frequency. So we can keep
either Bread or Apples as the first one.

2 Start the construction of the F-P tree. We start with creating the root node,
which is generally the NULL node, in figure 4.15.

NULL

Figure 4.15 The root node for the tree is generally kept NULL.

3 Analyze the first transaction, T1. Here we have Apples, Milk, and Eggs in the
first transaction. Out of these three, Milk has the highest support count, which

4.6 F-P algorithm 133

is 7. So a connection is extended from the root node to Milk, and we denote it
as Milk:1 (see figure 4.16).

Figure 4.16 Connection from the root node to Milk. Milk
has the highest support; hence we have chosen Milk.

4 Now look at the other items in T1. Apples has a support count of 6 and Eggs
have a support count of 2. So we will extend the connection from Milk to
Apples and name it Apples:1 and then from Apples to Eggs and call it Eggs:1
(see figure 4.17).

5 Look at T2 now. It has Milk and Cheese. Milk is already connected to the root
node. So the count for Milk becomes 2, and it becomes Milk:2. Next, we will
create a branch from Milk to Cheese and name it Cheese:1. The addition is
shown in figure 4.18.

Apples:1

Apples:1 Cheese:1

Figure 4.17 Step 4 of the process Figure 4.18 Step 5 of the process where we
where we have finished all the items in started to analyze T2. Milk is already connected,
T1. All the items—Milk, Apples, and so its count increases by 2 while Cheese gets
Eggs—are now connected. added to the tree.

6 Consider T3. T3 has Milk and Bread. So, similar to step 5, the count for Milk is
3, and it becomes Milk:3. And, similar to step 5, we add another connection

134 CHAPTER 4 Association rules

from Milk to Bread and call it Bread:1. The updated tree is shown in figure
4.19.

Apples:1 Bread:1

Figure 4.19 In step 6, T3 is
analyzed. Milk’s count
increased by 1 more and
becomes 3, while Bread is
added as a new connection.

7 In T4, we have Apples, Milk, and Cheese. The count for Milk becomes 4; for
Apples it is now 2. Then we create a branch from Apples to Cheese, calling it
Cheese:1 (see figure 4.20).

Bread:1

Apples:2

Cheese:1

Figure 4.20 In step 7 of the process, T4 is being analyzed. The count of
Milk becomes 4, for Apples it increases to 2, and a new branch from
Apples to Cheese is added.

s We find in T5 that we have Apples and Bread. Both are not directly connected
to the root node and have an equal frequency of 6. So we can take either to be
connected to the root node. The figure gets updated to figure 4.21.

4.6 F-P algorithm 135

Apples:2

AppISS:1

Cheese:1 Bread:1

Figure 4.21 After analyzing T5, the diagram changes, as shown here. We have Apples and
Bread, which get added to the tree.

9 This process continues until we exhaust all the transactions, resulting in the
final figure as shown in figure 4.22.

Bread:2 Apples:2

Cheese:1

Bread:2

Bread:2

Figure 4.22 The final tree once we have exhausted all the possible combinations

Great job so far! But there are more steps after this. So far, we have created only the

tree. Now we need to generate the dataset as shown in table 4.9. This is the output we
wish to generate.

136

CHAPTER 4 Association rules

Table 4.9 Table for the F-P algorithm

Conditional Conditional Frequent pattern
pattern base F-P tree generated
Cheese
Bread
Eggs
Apples

You might be wondering why there are only four items listed. Since Milk has directly
originated from the root node and there is no other way to reach it, we need not have
a separate row for Milk.

10 Before continuing, we must fix the minimum support count as 2 for any rule to
be acceptable. We do this for simplicity’s sake as the dataset is quite small.

NOTE For real-life business problems, you are advised to test with multiple
and even much higher values for the support counts; otherwise, the number
of rules generated can be very high.

Let’s start with Cheese as the first item. We can reach cheese through {NULL-Milk-
Cheese} and {NULL-Milk-Apples-Cheese}. For both paths, the count of Cheese is 1.
Hence, (if we ignore NULL) our conditional pattern base is {Milk-Cheese} or {Milk:1}
and {Milk-Apples:Cheese} or {Milk-Apples:1}. The complete conditional pattern base
becomes {{Milk:1}, {Milk-Apples:1}}. This information is added to the second column
of table 4.10.

Table 4.10 Step 10 of the process where we have filled the first cell for Cheese

Conditional Conditional Frequent pattern
pattern base F-P tree generated
Cheese {{Milk:1}, {Milk-Apples:1}}
Bread
Eggs
Apples

11 Now if we add the two values in a conditional pattern base, we would get Milk as
2 and Apples as 1. Since we have set up a threshold for the frequency count of
2, we will ignore the count of Apples. The value for the conditional F-P tree,
which is the third column in the table, becomes {Milk:2}. Now we simply add the
original item to this, which becomes the frequent patten generated or column
4. See table 4.11.

4.7

4.7 Sequence rule mining 137

Table 4.11 Step 11 of the process where we have finished the details for the item Cheese

Conditional Conditional Frequent pattern
pattern base F-P tree generated
Cheese {{Milk:1}, {Milk-Apples:1}} | {Milk:2} {Milk-Cheese:2}
Bread
Eggs
Apples

12 In a similar fashion, all the other cells are filled in the table, resulting in the
final table (table 4.12).

Table 4.12 Final table after we have analyzed all the combinations for the items

Conditional Conditional Frequent pattern
pattern base F-P tree generated
Cheese {{Milk:1}, {Milk-Apples:1}} | {Milk:2} {Milk-Cheese:2}
Bread {{Milk-Apples:2}, {Milk:2}, {{Milk:4, Apples:2}, {{Milk-Bread:4}, {Apples-Bread:4},
{Apples:2}} {Apples:2}} {Milk-Apples-Bread:2}}
Eggs {{Milk-Apples:1}, {Milk- {Milk:2, Apples:2} {{Milk-Eggs:2}, {Milk-Apples:2},
Apples-Bread:1}} {Milk-Apples:2}}
Apples {Milk:4} {Milk:4} {Milk-Apples:4}

Itis a complex process indeed. But once the steps are clear, it is straightforward.
As a result of this exercise, we have received the final set of rules as depicted in the
final column Frequent Pattern Generated.

NOTE Notice that none of the rules are similar to each other.

We will use the final column, Frequent Pattern Generated, as the rules for our dataset.
The Python implementation for the F-P growth algorithm is quite simple and is
easy to compute using the libraries. In the interest of space, we have uploaded the
Jupyter notebook to the GitHub repository of the chapter.
We will now explore another interesting topic: sequence rule mining. It is a very
powerful solution that allows a business to tailor its marketing strategies and product
recommendations to the customers.

Sequence rule mining

Consider this: Netflix has a transactional database of all the movies ordered by cus-
tomers over time. If it analyzes and finds that 65% of customers who viewed a war
movie X also viewed a romantic comedy Y in the following month, then this is very
insightful and actionable information. It will allow Netflix to recommend its offerings
to customers and customize its marketing strategy.

138

4.7.1

CHAPTER 4 Association rules

So far in the chapter, we have covered three algorithms for association rules. But
all the data points were limited to the same dataset, and there was no sequencing
involved. Sequential pattern mining allows us to analyze a dataset that has a sequence
of events happening. By analyzing the dataset, we can find statistically relevant pat-
terns, which allows us to decipher the entire sequence of events. Obviously, the
sequence of events is in a particular order, which is a very important property to be
considered during sequence rule mining.

NOTE Sequence rule mining is different from time-series analysis. To learn
more about time-series analysis, refer to the appendix.

Sequence rule mining is utilized across multiple domains and functions. It can be
used in biology to extract information during DNA sequencing, or it can be used to
understand the online search pattern of a user. Sequence rule mining would help us
understand what the user is going to search next. During the discussion of association
rules, we used the transactions in which milk, bread, and eggs were purchased in the
same transaction. Sequence rule mining is an extension to that wherein we analyze
consecutive transactions and try to decipher the sequence present, if any.

While studying the Sequential Pattern Discovery Using Equivalence classes
(SPADE) algorithm, we cover the mathematical concepts that form the base of the
algorithm. These concepts are a little tricky and might require more than one reading
to grasp.

Sequential Pattern Discovery Using Equivalence

We now explore sequence rule mining using SPADE. It was suggested by Mohammed
J. Zaki; the link to the paper is at the end of this chapter.

So we wish to analyze a sequence of events. For example, a customer bought a
mobile phone and a charger. After a week, they bought earphones, and after two
weeks, they bought a mobile phone cover and screen guard. So, in each of the transac-
tions, there were items purchased. And each transaction can be called an event. Let’s
understand it in more detail.

Let us assume we have the complete list of items for the discussion. It will contain
items like iy, iy, i3, 14, 15, and so on. So we can write I = {iy, iy, i3, ig, i5..c...... , 1,} where
we have 7 distinct items in total.

Items can be anything. If we consider the same example of a grocery store, items
can be milk, eggs, cheese, bread, and so on.

An event will be a collection of items in the same transaction. An event can contain
items like (iy, i5, iy, ig). For example, an event can contain items bought in the same
transaction (milk, sugar, cheese, bread). We will denote an event by a.

Next, let’s understand a sequence. A sequence is nothing but events in an order. In
other words, a; -> a9 > ag -> a4 can be termed a sequence of events. For example,
(Milk, Cheese) -> (Bread, Eggs) -> (Cheese, Bread, Sugar) -> (Milk, Bread) is a
sequence of transactions. It means that in the first transaction, milk and cheese were
bought. In the following transaction, bread and eggs were bought, and so on.

4.7 Sequence rule mining 139

A sequence with kitems is a k-item sequence. For example, sequence (Milk, Bread)
-> (Eggs) contains three items. Now let’s explore the SPADE algorithm step by step.

Let’s say we have the following sequences generated. In the first sequence, ID
1001, Milk is bought in the very first transaction. In the second one, Milk, Eggs, and
Bread are bought. They are followed by Milk and Bread. In the fourth one, only Sugar
is purchased. In the fifth and final transaction of sequence 1001, Bread and Apples
are purchased; this is applicable to all the respective sequences. For example, in
sequence ID 1001, we have multiple events. In the first purchase, Milk is bought. Then
(Milk, Eggs, Bread) are bought and so on. See table 4.13.

Table 4.13 The dataset for sequence mining

Sequence ID Sequence
1001 <(Milk) (Milk, Eggs, Bread) (Milk, Bread) (Sugar) (Bread, Apples)>
1002 <(Milk, Sugar) (Bread) (Eggs, Bread) (Milk, Cheese)>
1003 <(Cheese, Apples) (Milk, Eggs) (Sugar, Apples) (Bread) (Eggs)>
1004 <(Cheese, Bananas) (Milk, Apples) (Bread) (Eggs) (Bread)>

Table 4.13 can be converted into a vertical data format as shown in table 4.14. In this
step, we calculate the frequencies for one-sequence items, which are sequences with
only one item. For this, only a single database scan is required. We simply have the
sequence ID and element ID for each of the items.

Table 4.14 Vertical format for table 4.13

Sequence ID Element ID Items
1001 1 Milk
1001 2 Milk, Eggs, Bread
1001 3 Milk, Bread
1001 4 Sugar
1001 5 Bread, Apples
1002 1 Milk, Sugar
1002 2 Bread
1002 3 Eggs, Bread
1002 4 Milk, Cheese
1003 1 Cheese, Apples
1003 2 Milk, Eggs
1003 3 Sugar, Apples
1003 4 Bread

140

CHAPTER 4 Association rules

Table 4.14 Vertical format for table 4.13 (continued)

Sequence ID Element ID Items
1003 5 Eggs
1004 1 Cheese, Bananas
1004 2 Milk, Apples
1004 3 Bread
1004 4 Eggs
1004 5 Bread

Table 4.14 is nothing but a vertical tabular representation of table 4.13. For example,
in sequence ID 1001, at the element ID 1 we have Milk. For sequence ID 1001, at the
element ID 2 we have Milk, Eggs, Bread, and so on.

For the purpose of explanation, we are considering only two items—O0 Milk and
Eggs—and the support threshold of 2.

Then, in the next step, we will break it down for each of the items. For example,
Milk appears in sequence ID 1001 and element ID 1, sequence ID 1001 and element
ID 2, sequence ID 1001 and element ID 3, sequence ID 1002 and element ID 1, and so
on. It results in a table like table 4.15 where we have shown Milk and Eggs. It needs to
be applied to all the items in the dataset.

Table 4.15 Respective sequence IDs for Milk and Eggs

Sequence ID Element ID Sequence ID Element ID

1001 1 1001 2
1001 2 1002 3
1001 3 1003 2
1002 1 1003 5
1002 4 1004 4
1003 2

1004 2

Now we wish to count two sequences or those with two-item sequences. We can have
two sequences: either Milk -> Eggs or Eggs -> Milk. Let’s first take Milk -> Eggs.

For Milk -> Eggs, we need to have Milk in front of Eggs. For the same sequence ID,
if the element ID of Milk is less than the element ID of Eggs, then it is an eligible
sequence. In the preceding example, for sequence ID 1001, the element ID of Milk is
1, while the element ID of Eggs is 2. So we can add that as the first eligible pair, as

4.7 Sequence rule mining 141

shown in the first row of table 4.16. The same is true for sequence ID 1002. In table
4.15, row 4, we have sequence ID 1002. The element ID of Milk is 1, while that of Eggs
in row 2 is 3. Again, the element ID of Milk is lesser than the element ID of Eggs, so it
becomes the second entry, and the process continues. The key point is to have the
same sequence ID while comparing the respective element IDs of Milk and Eggs.

Table 4.16 Sequence for Milk and Eggs

Milk and Eggs
Sequence ID Element ID (Milk) Element ID (Eggs)
1001 1 2
1002 1 3
1003 2 5
1004 2 4

By using the same logic, we can create the table for Eggs -> Milk, which is shown in
table 4.17. Again, the key point is to have the same sequence ID while comparing the
respective element IDs of Milk and Eggs.

Table 4.17 Sequence for Eggs and Milk

Eggs and Milk
Sequence ID Element ID (Eggs) Element ID (Milk)
1001 2 3
1002 3 4

This can be done for each of the possible combinations. We now move to creating
three-item sequences, and we will create Milk, Eggs -> Milk. For this purpose, we have
to join the two tables. See table 4.18.

Table 4.18 Combining the sequence Milk -> Eggs and Eggs -> Milk to join the tables
Milk and Eggs Eggs and Milk

Element ID Element ID Sequence ID Element ID Element ID
(Milk) ((34-5)] q (Eggs) (Milk)

Sequence ID

1002 1 @ 1002 @ 4

1003 2

5
1004 2 4

142

4.8

CHAPTER 4 Association rules

The logic of joining is matching the sequence ID and the element ID. We have high-
lighted the matching ones in red and green, respectively, although this will not show up
in the printed book. For sequence ID 1001, the element ID of Eggs in the left table
matches the elementID of Eggsin the righttable, and that becomes the first entry of table
4.19, which shows the results. Similarly, for sequence ID 1002, element ID 3 matches.

Table 4.19 Final table after we have analyzed all the combinations for the items

Milk, Eggs -> Milk

Sequence ID Element ID (Milk) Element ID (Eggs) Element ID (Milk)

1001 1 2 3
1002 1 3 4

This process continues. The algorithm stops when no frequent sequences can be found.

We will now implement SPADE on a dataset using Python. We use the pyspade
library, and thus we have to load the dataset and call the function. It generates the result
for us. The support is kept as 0.6 here, and then we print the results (see figure 4.23):
from pycspade.helpers import spade, print result

spade_result = spade(filename='SPADE dataset.txt',6 support=0.6, parse=True)
print_result (spade_result)

[17]1: print_result|spade result)

Occurs Accum Support Confid Lift
Sequence
as 88 0.7927928 N/A N/A
(10)
68 68 0.6126126 0.7727273 0.8168831
(10)->(6)
67 67 0.6036036 0.7613636 0.7825126
(10)->(9)
88 88 0.7927928 N/A N/A
(3)
71 71 0.6396396 0.B068182 0.8292298
(3)->(3)
102 560 0.91B9189 N/A N/A
(4)
79 79 0.7117117 0.7745098 0.B42B489
14)-=(4)
77 77 0.6936937 0.7549020 0.7980392
14)=>(5)
a3 83 0.7477477 0.8137255 0.8602241
(4)->(6)
a0 80 0.7207207 0.7843137 0.8136339
(4)=>(7)
77 77 0.6936937 0.7549020 0.7831226
(4)-=(B) Figure 4.23 SPADE implemented on the
83 83 0.7477477 0.B137255 0.8363290 . .
(4)->(9) pyspade library using Python

Case study for association rules

Association rule mining is quite a helpful and powerful solution. Next, we are going to
solve an actual case study using association rules. Recall that, at the start of the

4.8 Case study for association rules 143

chapter, we suggested you study the pattern of a grocery store. What is the logic of
such arrangements in the store?

Consider this: you are working for a grocery retailer like Walmart, Tesco, Spar,
Marks & Spencer’s, etc., and you are planning the visual layout of a new store. Obvi-
ously, it is imperative that retail stores utilize the space in the store wisely and to the
maximum capacity. At the same time, it is vital that the movement of the customers is
not hindered. Customers should have access to all the items on display and be able to
navigate easily. You might have experienced some stores where you feel choked and
bombarded with displays while others are neatly stacked.

How do we solve this problem? There can be multiple solutions. Some retailers
might wish to group the items based on their categories. For example, they might
want to keep all the baking products on one shelf or use some other condition. We are
studying the machine learning example here.

Using market basket analysis, we can generate the rules that indicate the respective
relationships between various items. We can predict which items are frequently
bought together, and they can be kept together in the store. For example, if we know
that milk and bread are bought together, then bread can be kept near the milk
counter. The customer purchasing milk can locate bread easily and continue with
their purchase.

But it is not as easy as it sounds. Let us solve this case step by step:

1 Business problem definition—The very first step is defining the business problem,
which is clear to us. We wish to discover the relationships between various items
so that the arrangement in the store can be made better. Here, planograms come
into the picture. Planograms help the retailer plan the utilization of the space
in the store in a wise manner so that the customer can also navigate and access
the products easily. It can be considered a visual layout of the store. An example
is shown in figure 4.24.

DECODING a [PHASE 1 : GROUND FLOOR — 10,000 Sq. Ft.]
RETAIL P -
START-UP LooaER

PRODUCE FROZEN PRODUCE

vic | vec J vec [
VEG J VEG Q VEG JPFRUTS

PRODUCE PRODUCE

PHARMALCY

TROLLEY BAY
TOILETERIES
TOILETERIES

TROLLEY BAY
STAPLE - FOOD

STAPLE - FOOD

o
EJI
w
i
o
L.

STAPLE - FODD
STAPLE - FOOD

STAPLE - FOOD
STAPLE - FOOD

a
9
2
L
i
Q.
=

Figure 4.24 An example of
a planogram. Planograms
are very useful for visual
merchandising.

r

STAPLE - FOOD
TROLLEY BAY

STAPLE - FOOD
TROLLEY BAY

144

CHAPTER 4 Association rules

In the figure, we can see that there are specific areas for each item category.
Association rules are quite insightful to help generate directions for
planograms.

Data discovery—The next step is data discovery, wherein the historical transac-
tions are scouted and loaded into a database. Typically, a transaction can look
like table 4.20. Note it is quite a challenge to convert this data format into one
that can be consumed by the association rule algorithms.

Table 4.20 Example of invoices generated in a real-world retail store

Invoice number Date Items Amount
1001 01-Jun-21 Milk, Eggs, Cheese, Bread $10
1002 01-Jun-21 Bread, Bananas, Apples, Butter $15
1003 01-Jun-21 Butter, Carrots, Cheese, Eggs, $19
Bread, Milk, Bananas
1004 01-Jun-21 Milk $1
1005 01-Jun-21 Bread $0.80

Data preparation—This step perhaps is the most difficult step. As we have seen,
association rules model creation is a very simple task. We have libraries that can
do the heavy lifting for us. But the dataset expected by them is in a particular
format. This is a tedious task; it is quite time-consuming and requires a lot of
data preprocessing skills.

There are a few considerations you should keep in mind while preparing the
dataset:

— Sometimes we get NULL or blank values during the data preparation phase.
Missing values in the datasets can lead to problems while computing. In
other machine learning solutions, we would advise to treat the missing val-
ues. In the case of association rules, we suggest ignoring the respective trans-
actions and not considering them in the final dataset.

— Many times, we get junk values in the data. Special characters like
1@%"&*()_ are found in the datasets. This can be attributed to incorrect
entries in the system. Hence, data cleaning is required. We cover the data
preprocessing step in detail in chapter 11, wherein we deal with NULL values
and junk values.

— Converting a table into a format that can be understood and consumed by
the association rule learning algorithms is an imperative but arduous step.
Go through the concept of SQL pivoting to understand the concept better.

Model preparation—Perhaps the easiest of the steps is modeling. We have already
solved Python solutions for different algorithms, so you should be quite com-
fortable with it.

4.9

4.9 Concluding thoughts 145

Model interpretation—Creating the model might be easy, but interpretation of
the rules is not. Sometimes, you have rules like #NA -> (Milk, Cheese). Such a
rule is obviously not usable and does not make any sense. It indicates that the
data preparation was not correct and some junk values are still present in the
dataset. Another example is (Some items) -> (Packaging material); this is per-
haps the most obvious rule but, again, not usable. This rule indicates that when-
ever shopping is done, packaging material is also purchased. That’s obvious,
right? A final example is (Potatoes, Tomatoes) -> (Onions). This kind of rule
might look correct, but it is a common-sense fact that the retailer would already
know. Obviously, most of the customers who are buying vegetables will buy pota-
toes, tomatoes, and onions together. Such rules might not add much value to
the business.

The threshold for support, confidence, lift, and conviction allows us to filter
out the most important rules. We can sort the rules in the descending order of
the lift and then remove the most obvious ones.

Itis of vital importance that business stakeholders and subject matter experts

are involved at every step. In this case study, the operations team, visual mer-
chandising team, product teams, and marketing teams are the key players,
which should be closely aligned at each step.
Improving the planogram—Once the rules are generated and accepted, then we
can use them to improve the planogram for the retail space. The retailer can use
them to improve the marketing strategy and improve product promotions. For
example, if a rule like (A, B) -> (C) is accepted, the retailer might wish to create
a bundle of the products and sell them as a single entity. It will increase the aver-
age number of items purchased in the same transaction for the business.

This case study can be extended to any other domain or business function. For exam-
ple, the same steps can be used if we wish to examine user’s movement across web
pages. Web developers can analyze the historical clicks and usages of the customers on
their websites. By identifying the patterns, they can find out what users tend to click
and which features will maximize their engagement. Medical practitioners can use
association rules to better diagnose patients. The doctors can compare the probability
of the symptoms in relationship with other symptoms and provide a more accurate
diagnosis.

Concluding thoughts

There are some assumptions and limitations in the association rules and sequence
rules we have studied:

The respective significance of an item is ignored while we generate the rules.
For example, if a customer purchased five cans of milk and 1 kg of apples in a
transaction, it is treated similarly to an invoice in which one can of milk and 5
kg of apples are purchased. Hence, we should bear in mind that the respective
weight of an item is not being considered.

146

CHAPTER 4 Association rules

The cost of an item indicates the perceived value of a product. Some products
that are costly are more important, and hence, if they are purchased by the cus-
tomer, more revenue can be generated. While analyzing the invoices, we ignore
the cost associated with an item.

While analyzing the sequence, we have not considered the respective time peri-
ods between the two transactions. For example, if between T1 and T2 there
were 10 days while between T2 and T3 there were 40 days, both are considered
as the same.

In all the analyses, we have considered different categories as the same. Perish-
able items and nonperishable items are treated in a similar fashion. For exam-
ple, fresh milk with a shelf life of two to three days is treated similarly to washing
powder, which has a much longer shelf life.

Many times, we receive noninteresting rules after analysis. These results are
from common sense (Potatoes, Tomatoes) -> (Onion). Such rules are not of
much use. We face such a problem a lot of the time.

While noninteresting rules are a challenge, a huge number of discovered rules
are again one of the problems. We get hundreds of rules, and it becomes diffi-
cult to understand and analyze each one of them. Here the thresholding
becomes handy.

The time and memory requirements for computations are huge. The algo-
rithms require scanning the datasets many times, and hence it is quite a time-
consuming exercise.

The rules generated are dependent on the dataset that has been used for analy-
sis. For example, if we analyze the dataset generated during summers only, we
cannot use the rules for winters as consumers’ preferences change between dif-
ferent weather conditions. Moreover, we should refresh the algorithms over
time since with the passage of time, the macro- and micro-economic factors
change and hence the algorithms should be refreshed too.

There are some other algorithms that are also of interest. For association rules, we can
have multirelation association rules, k-optimal pattern discovery, approximate fre-
quent datasets, generalized association rules, high-order pattern discovery, etc. For
sequence mining, we have Generalized Sequence Pattern, FreeSpan, PrefixSpan, min-
ing associated patterns, etc. These algorithms are quite interesting and can be studied
for knowledge enhancement.

Association rules and sequence mining are quite interesting topics. Various busi-
ness domains and functions are increasingly using association rules to understand the
pattern of events. These insights allow the teams to make sound and scientific deci-
sions to improve the customer experience and overall engagement. In this chapter, we
have explored association rules and sequence mining. These were studied using Apri-
ori, F-P, and ECLAT algorithms, and for sequence mining we used SPADE.

Summary 147

4.10 Practical next steps and suggested readings
The following provides suggestions for what to do next and offers some helpful
reading:
Go through these research papers for the association rules algorithm:

— Fast Discovery of Association Rules: https://mng.bz/eyqv

— Fast Algorithms for Mining Association Rules: https://mng.bz/64GZ

— Efficient Analysis of Pattern and Association Rule Mining Approaches:
https://arxiv.org/pdf/1402.2892.pdf

— A Review of Association Rule Mining Techniques with Respect to their Pri-
vacy-Preserving Capabilities: https://mng.bz/0Q0N

For sequence mining, go through these research papers:

— SPADE: An Efficient Algorithm for Mining Frequent Sequences: https://
mng.bz/9YG7

— Sequential Mining: Patterns and Algorithm Analysis: https://arxiv.org/pdf/
1311.0350.pdf

— Sequential Pattern Mining Algorithm Based on Interestingness: https://
ieeexplore.ieee.org/document/8567170

— A New Approach for Problem of Sequential Pattern Mining: https://
mng.bz/jpxr

Summary
Association rule learning identifies relationships between variables in datasets,
like the beer and diaper example.
Through data analysis, such associations can inform marketing strategies, prod-
uct placement, and pricing in supermarkets.
Market basket analysis in retail uses association rules to find buying patterns
and is applicable in other industries like bioinformatics.
Association rules consist of antecedents leading to consequents, denoted as P ->
Q, with no common elements between them.
Rule significance depends on support (frequency), confidence (accuracy), lift
(dependence measurement), and conviction.
High support, confidence, lift, and conviction indicate stronger, more useful
rules.
The Apriori algorithm generates item sets for association rules using a “bottom-
up” approach but faces challenges with large datasets.
The ECLAT algorithm uses a depth-first search for faster, memory-efficient
computation of frequent item sets.
The F-P growth algorithm improves on Apriori by using a frequent pattern tree
to eliminate candidate generation.

https://arxiv.org/pdf/1311.0350.pdf
https://arxiv.org/pdf/1311.0350.pdf
https://mng.bz/64GZ
https://mng.bz/jpxr
https://mng.bz/jpxr
https://ieeexplore.ieee.org/document/8567170
https://mng.bz/9YG7
https://mng.bz/9YG7
https://mng.bz/0Q0N
https://arxiv.org/pdf/1402.2892.pdf
https://mng.bz/eyqv

148

CHAPTER 4 Association rules

Sequence rule mining helps explain user behavior over time, distinct from
time-series analysis.

The SPADE algorithm analyzes sequences of events and dependencies over
time for sequence rule mining.

Python implementations of the Apriori, ECLAT, F-P growth, and SPADE algo-
rithms are achievable with appropriate libraries.

Evaluation metrics and threshold settings for support, confidence, and lift are
crucial for efficient rule generation.

Sequence rule mining has applications in marketing, bioinformatics, and user
interaction analysis, allowing for actionable insights.

Clustering

This chapter covers

= Spectral clustering
= Fuzzy clustering
= Gaussian mixture models clustering

Out of complexity, find simplicity.

—FEinstein

Sometimes life is very simple, and sometimes we experience quite complex situa-
tions. We sail through both situations and change our approach as needed.

In part 1, we covered the fundamentals to prepare you for the journey ahead.
We are now in part 2, which is slightly more complex than part 1. Part 3 will be
more advanced than the first two parts. So please give careful attention to the com-
ing chapters, as the skills and knowledge gained here will prepare you for the later
chapters in the book.

Before starting this chapter, we should refresh our memory on what we covered
in chapter 2. We studied clustering algorithms in part 1 of the book. In chapter 2,
we learned that clustering is an unsupervised learning technique where we wish to

149

150

5.1

5.2

CHAPTER 5 Clustering

group the data points by discovering interesting patterns in the datasets. We went
through the meaning of clustering solutions and different categories of clustering
algorithms and looked at a case study. In that chapter, we explored k-means cluster-
ing, hierarchical clustering, and DBSCAN clustering in depth. We went through the
mathematical background, process, and Python implementation and the pros and
cons of each algorithm.

You may often encounter datasets that do not conform to a simple shape and form.
Moreover, we have to find the best fit before making a choice of the final algorithm we
wish to implement. Here we might need help with more complex clustering algo-
rithms—the topic of this chapter. In this chapter, we are going to again study three
such complex clustering algorithms: spectral clustering, fuzzy clustering, and Gauss-
ian mixture models (GMM) clustering. As always, Python implementation will follow
the mathematical and theoretical concepts. This chapter is slightly heavy on mathe-
matical concepts. There is no need to be an advanced student of mathematics, but it is
sometimes important to understand how the algorithms work in the background. At
the same time, you will be surprised to find that Python implementation of such algo-
rithms is not tedious. This chapter does not have a case study.

Welcome to the fifth chapter, and all the very best!

Technical toolkit

We will continue to use the same version of Python and Jupyter Notebook as we have
used so far. The codes and datasets used in this chapter have been checked in at
GitHub (https://mng.bz/6epo).

We are going to use the regular Python libraries we have used so far: numpy,
pandas, sklearn, seaborn, matplotlib, etc. You need to install two other Python
libraries in this chapter: skfuzzy and network. Using libraries, we can implement the
algorithms very quickly. Otherwise, coding these algorithms is quite a time-consuming
and painstaking task.

Let’s get started with a refresh of clustering!

Clustering: A brief recap

Recall from chapter 2, clustering is used to group similar objects or data points. It is
an unsupervised learning technique where we intend to find natural grouping in the
data, as shown in figure 5.1.

Here, we can observe that on the left side, we have ungrouped data, and on the
right side, the data points have been grouped into logical groups. We can also observe
that there can be two methodologies to do the grouping or clustering, and both result
in different clusters. Clustering as a technique is quite heavily used in business solu-
tions like customer segmentation, market segmentation, etc.

We learned about k-means and hierarchical and DBSCAN clustering in chapter 2.
We also covered various distance measurement techniques and indicators to measure
the performance of clustering algorithms. You are advised to revisit the concepts.

In this chapter, we focus on advanced clustering methods. We start with spectral
clustering in the next section.

https://mng.bz/6epo

5.3

5.3 Spectral clustering 151

A,
VLA
\. . \\‘_A/ /, /|:|’|E|\\\\\

T I

\

® e e N
A* ; .ﬂn - %*
oA
e Ny
Q.CA A Dzégﬁ%

T
...,\III
’ \D

7’
~ -

>o)

Figure 5.1 Clustering of objected results into natural grouping

Spectral clustering

Spectral clustering is one of the unique clustering algorithms, and a lot of research
has been done in this field. Revered researchers include Prof. Andrew Yang,
Prof. Michael Jordan, Prof. Yair Weiss, Prof. Jianbo Shi, and Prof. Jitendra Malik, to
name a few. We provide links to some of their papers at the end of the chapter.

Spectral clustering works on the affinity and not the absolute location of the data
points for clustering. When we consider the absolute location of the points, the simi-
larity is simply based on the distances between the points, whereas affinity considers
the similarity between the points. If the affinity is 0 between the points, they are dis-
similar, whereas if the affinity is 1, they are very similar. Hence, wherever the data is in
complicated shapes (i.e., some kind of special relationship exists between the data
points), spectral clustering is the answer. We show a few examples in figure 5.2 where
spectral clustering can provide a logical solution.

000000
0] 00,

0000000 o. o® .. 00000000

° °
0 00 : 0.0. o 00000000
0

.Oo o o 0o0?
° 0000..

....

Figure 5.2 Examples of various complex data shapes that can be clustered using spectral clustering

152 CHAPTER 5 Clustering

For figure 5.2, we could have used other algorithms like k-means clustering too. But
they might not be able to do justice to such complicated shapes of data. You can see
from figure 5.2 that the various data points are in a certain pattern. Algorithms like k-
means clustering utilize the compactness of the data points and are driven by cen-
troids of the respective clusters. In other words, the closeness of the points to each
other and compactness toward the cluster center drive the clustering in k-means. On
the other hand, in spectral clustering, connectivity is the driving logic. In connectivity,
either the data points are immediately close to one another or they are connected in
some way. Some examples of such connectivity-based clustering are depicted in figure
5.2. The points in the inner circle belong to one cluster while those in the outer circle
belong to another cluster.

Now look at the first diagram in figure 5.3, where the data points are in a dough-
nut pattern. There can be data points that follow this doughnut pattern. We need to
cluster this data, and it is indeed a complex pattern. Imagine that by using a clustering
method, the circles inside a square are made a part of the same cluster, which is shown
in the middle diagram in figure 5.3. After all, they are close to each other. But if we
look closely, the points are in a circle and in a pattern, and hence, the actual cluster
should be as shown in the far right diagram in figure 5.3.

000000
[L 0
LI % K LR
e o % § 000, ¢
) °
o © o 0 0
o o o ¢ $ o ,
$ o o 9 © o ¢
0, Y00t t. 0 J
o, %009

Figure 5.3 We can have a complex representation of data points that need to be clustered. Observe the doughnut
shape (left). An explanation can be that the dots in a square are a part of the same cluster as what would be based
on the distance only, but clearly, they are not part of the same cluster (middle). We have two circles here. The
points in the inner circle belong to one cluster, whereas the outer points belong to another cluster (right).

The example shown in figure 5.3 depicts the advantages of spectral clustering as
opposed to k-means clustering. In the second figure, the dots in red (those in the
square in the print book) will be incorrectly clustered into a different cluster, and in
the third figure, the correct clustering is shown. Spectral clustering may group the
data from the inner circle in a separate cluster.

As we said earlier, spectral clustering utilizes the connectivity approach. In spectral
clustering, data points that are immediately next to each other are identified in a
graph. These data points are sometimes referred to as nodes. These data points or

531

5.3 Spectral clustering 153

nodes are then mapped to a low-dimensional space. A low-dimensional space is one
that has a fewer number of input features. During this process, spectral clustering uses
eigenvalues, affinity matrix, Laplacian matrix, and degree matrix derived from the
dataset. The low-dimensional space can then be segregated into clusters.

NOTE Spectral clustering utilizes the connectivity approach for clustering. It
relies on graph theory, wherein we identify clusters of nodes based on the
edges connecting them.

We will study the process in detail. But first, there are a few important mathematical
concepts that form the foundation of spectral clustering, which we will cover now.

Building blocks of spectral clustering

We know that the goal of clustering is to group data points that are similar into one
cluster and the data points that are not similar into another. One important mathe-
matical concept is similarity graphs, which are a representation of data points.

SIMILARITY GRAPHS

A graph is one of the intuitive methods to represent data points. The first diagram in
figure 5.4 shows an example of a graph that is simply a connection between data
points represented by the edge. Two data points are connected if the similarity
between them is positive or it is above a certain threshold, which is shown in the sec-
ond diagram. Instead of absolute values for the similarity, we can use weights. So in
the second diagram in figure 5.4, as point 1 and 2 are similar compared to points 1
and 3, the connection between points 1 and 2 has a higher weight than points 1 and 3.

Points 1 2 Figure 5.4 A graph is a simple
representation of data points. The
Edges points or nodes are connected by edges
if they are very similar (left). The weight
3 is higher if the similarity between data

points is high; for dissimilar data
points, the weight is less (right).

So, we can say that, using similarity graphs, we wish to cluster the data points such that
the edges of the data points have

Higher weight values and hence are similar to each other and so are in the
same cluster

Lower values of weight and hence are not similar to each other and so are in
different clusters

Apart from similarity graphs, we should also know the concept of eigenvalues and
eigenvectors, which we covered in detail in the previous chapter. You are advised to
refresh your memory on it should you need to.

154

4

CHAPTER 5 Clustering

ADJACENCY MATRIX

Have a close look at figure 5.5. We can see those various points from 1 to 5 are con-
nected. We represent the connection in a matrix. That matrix is called an adjacency
matrix. In an adjacency matrix, the rows and columns are the respective nodes. The
values inside the matrix represent the connection: if the value is 0, that means there is
no connection, and if the value is 1, it means there is a connection.

Figure 5.5 An adjacency
1 1 0 1 0 0 1 matrix represents the
connection between

2 2 1 0 1 0 0 various nodes. There is a
5 connection between node
8 0 1 0 1 1 1 and node 5; hence the
value is 1. There is no
4 4 0 0 1 0 1 ;
connection between node
5 1 0 1 1 0 1 and node 4; hence the

corresponding value is 0.

So, for an adjacency matrix, we are only concerned if there is a connection between
two data points. With the way that we are defining the edges (as nonoriented), the
matrix is always symmetric. This is because if there is a connection from 1 to 2, there
must also be a connection from 2 to 1, and if there is no connection between 3 and 1,
there is no connection between 1 and 3 either. If we extend the concept of the adja-
cency matrix, we get a degree matrix, which is our next topic.

DEGREE MATRIX

A degree matrix is a diagonal matrix, where the degree of a node along the diagonal
is the number of edges connected to it. If we use the same example as previously, we
get the degree matrix shown in figure 5.6. Nodes 3 and 5 have three connections
each, so they have values of 3 along the diagonal; the other nodes have only two con-
nections each, so they have 2 as the value along the diagonal.

1 2 3 4 5 Figure 5.6 While an adjacency
matrix represents the connection

1 1 2 0 0 0 0 between various nodes, a degree
matrix is for the number of
z 0 2 0 0 0 connections each node has. It is
5 shown on the diagonal of the matrix.

For example, node 5 has three
connections and hence has a value of
3 in the adjacency matrix, while node
5 0 0 0 0 3 1 has only two connections and so
has a value of 2.

5.3 Spectral clustering 155

You might be wondering: Why do we use these matrices? Matrices provide an elegant
representation of the data and can clearly depict the relationships between two
points. Also, computers can more easily deal with matrix representation than alterna-
tive ways for manipulating the graph.

Now that we have covered both the adjacency matrix and degree matrix, we can
move to the Laplacian matrix.

LAPLACIAN MATRIX

There are quite a few variants of the Laplacian matrix, but if we take the simplest
form, it is nothing but a subtraction of the adjacency matrix from the degree matrix—
in other words, L = D — A. We can demonstrate it as shown in figure 5.7.

1 2 3 4 5 1 2 3| 4 5 1 2 3 | 4 5

1 2 0 0 0 0 1 0 1 0 0 1 1 2 [0 0| -1

2 0 2 0 0 0 2 1 0 1 0 0 _ 2 |- 2| 0 0

3 0 0 3 0 0 - 3 0 1 0 1 1 - 3 0 (-1 3|11

4 0 0 0 2 0 4 0 0 1 0 1 4 0 0|~ 2| -1

5 0 0 0 0 3 5 1 0 1 1 0 5 | -1 0o |-11-1 3
D A L

Figure 5.7 The Laplacian matrix is quite simple to understand. To get a Laplacian matrix, we can simply
subtract an adjacency matrix from the degree matrix as shown in the example here. Here, D represents
the degree matrix, A is the adjacency matrix, and L is the Laplacian matrix.

The Laplacian matrix is an important concept, and we use the eigenvalues of L to
develop spectral clustering. Once we get the eigenvalues and eigenvectors, we can
define two other values: spectral gap and Fielder value. The very first nonzero eigen-
value is the spectral gap, which defines the density of the graph. The Fielder valueis the
second eigenvalue; it provides an approximation of the minimum cut required to sep-
arate the graph into two components. The corresponding vector for the Fielder value
is called the Fielder vector.

NOTE The Fielder vector has both negative and positive components, and
their resultant sum is zero.

We will use this concept once we study the process of spectral clustering in detail in
the next section. We cover one more concept—the affinity matrix—before moving on
to the process of spectral clustering.

AFFINITY MATRIX
In the adjacency matrix, if we replace the number of connections with the similarity of
the weights, we will get the affinity matrix. If the points are completely dissimilar, the

156 CHAPTER 5 Clustering

affinity will be 0; if they are completely similar, the affinity will be 1. The values in the
matrix represent different levels of similarity between data points.

Exercise 5.1
Answer these questions to check your understanding:

The degree matrix is created by counting the number of connections. True or
False?

Laplacian is a transpose of the division of degree and adjacency matrix. True or
False?

Draw a graph on paper and then derive its adjacency and degree matrix.

5.3.2 The process of spectral clustering

Now we have covered all the building blocks for spectral clustering. At a high level,
the various steps can be noted as follows:

We get the dataset and calculate its degree matrix and adjacency matrix.

Using them, we calculate the Laplacian matrix.

Then we calculate the first k eigenvectors of the Laplacian matrix. The k eigen-
vectors are the ones that correspond to the k smallest eigenvalues.

The resultant matrix formed is used to cluster the data points in k-dimensional
space.

NOTE For more clarity on eigenvalues, the affinity matrix, and the Laplacian
matrix, refer to the appendix.

We cover the process of spectral clustering using an example, as shown in figure 5.8.
These steps are generally not done in real-world implementation, as we have packages
and libraries to achieve them, but they are covered here to give you an idea of how the
algorithm can be developed from scratch and how it works so that you have a better
understanding on how to effectively utilize it. For the Python solution, we will use the
libraries and packages only. Though it is possible to develop an implementation from
scratch, it is not time-efficient to reinvent the wheel.

Figure 5.8 Consider the example shown
where we have some data points and they
are connected. We will perform spectral
clustering on this data.

5.3 Spectral clustering 157

When we wish to perform the spectral clustering on this data, we follow these steps:

Create the adjacency matrix and degree matrix. We will leave this step up to

you.

Create the Laplacian matrix (see figure 5.9).

A B © D E F G H |

A 3 -1 -1 -1 0 0 0 0 0

B -1 2 -1 0 0 0 0 0 0

C -1 -1 3 -1 0 0 0 0 0

D -1 0 -1 4 -1 -1 0 0 0

E 0 0 0 -1 4 -1 -1 -1 0

Fl o of of -] - 4 | | 0 Figure 5.9 The
Laplacian matrix of

G 0 0 0 0 -1 -1 4 -1 -1 the data. You are
advised to create

H 0 0 0 0 -1 -1 -1 3 0 the degree and
adjacency matrix and

| 0 0 0 0 0 0 -1 0 -1
check the output.

Create the Fielder vector, as shown in figure 5.10, for the preceding Laplacian
matrix. We create the Fielder vector as described in the Laplacian Matrix sec-
tion. Observe how the sum of the matrix is zero.

0.33 -0.38
0.33 -0.48
0.33 -0.38
0.33 -0.12
0.33 0.16
0.33 0.30
0.33 0.24
0.33 0.51
0.33 0.16

Figure 5.10 The Fielder vector is
the output for the Laplacian matrix.

We can see that there are a few positive values and a few negative values. Based

on the positive or negative values, we can create two distinct clusters. Figure

5.11 illustrates the process of spectral clustering.

158

5.4

CHAPTER 5 Clustering

Figure 5.11 The two clusters are
identified. This is a very simple
example to illustrate the process of
spectral clustering.

Spectral clustering is useful for image segmentation, speech analysis, text analytics,
entity resolution, etc. The method does not make any assumptions about the shape of
the data. Methods like k-means assume that the points are in a spherical form around
the center of the cluster, whereas there is no such strong assumption in spectral
clustering.

Another significant difference is that in spectral clustering the data points need
not have convex boundaries as compared to other methods where compactness drives
clustering. Spectral clustering is sometimes slow since various matrices and their
eigenvalues, Laplacians, etc., have to be calculated. With a large dataset, the complex-
ity increases, and hence, spectral clustering can become slow, but it is a fast method
when we have a sparse dataset.

Spectral clustering requires building a matrix that nominally has the size of the
number of items in a dataset squared because there is one column and one row for
each element. For example, a modest dataset of a few million elements will require a
matrix of several trillion elements! Storing that matrix verbatim requires terabytes of
RAM and is something that is at the edge of what a very powerful and expensive server
could do. There are techniques to mitigate the memory needs (such as not storing
every single element separately), but they make working with the matrix more compli-
cated. Moreover, finding the eigenvalues and even one eigenvector of such a large
matrix is very time-intense. As such, spectral clustering is a viable approach generally
for small datasets.

We will now proceed to the Python solution of the spectral clustering algorithm.

Python implementation of spectral clustering

We have covered the details of spectral clustering—it is time to get into the code. For
this, we will create an artificial dataset and run a k-means algorithm and then spectral
clustering to compare the results. The steps are as follows:

Import all the necessary libraries. These libraries are standard, except for a few
that we will cover. sklearn is one of the most famous and sought-after libraries,
and from sklearn we import SpectralClustering, make blobs, and
make circles:

from sklearn.cluster import SpectralClustering

from sklearn.datasets import make blobs
import matplotlib.pyplot as plt

5.4 Python implementation of spectral clustering 159

from sklearn.datasets import make circles

from numpy import random

import numpy as np

from sklearn.cluster import SpectralClustering, KMeans
from sklearn.metrics import pairwise distances

from matplotlib import pyplot as plt

import networkx as nx

import seaborn as sns

Curate a dataset. We will use the make circles method. Here, we take 2,000 sam-
ples and represent them in a circle. The output is as follows (see figure 5.12):
data, clusters = make circles(n_samples=2000, noise=.01, factor=.3,

random_state=5)
plt.scatter(datal:,0], datal:,1])

104
0s |
00
-0.5
Figure 5.12 Curating a dataset using
= the make circles method

Test this dataset with k-means clustering. The two colors show two different clus-
ters, which overlap each other. The print version of the book will not show the
colors, but the output of the Python code will. The same output is available in
the GitHub repository (see figure 5.13):

kmeans = KMeans (init='k-means++', n_clusters=2)

km clustering = kmeans.fit (data)
plt.scatter(datal:,0], datal:,1], c=km clustering.labels , cmap='prism',
alpha=0.5, edgecolors='g')

Figure 5.13 Testing the dataset with
k-means clustering

160

5.5

CHAPTER 5 Clustering

4 Run the same data with spectral clustering. We find that the two clusters are
being handled separately here (see figure 5.14):

spectral = SpectralClustering(n_clusters=2,
affinity='nearest _neighbors', random state=5)

sc_clustering = spectral.fit (data)

plt.scatter(datal:,0], datal:,1], c=sc_clustering.labels_,
cmap="'prism', alpha=0.5, edgecolors='g"')

Figure 5.14 The two clusters are
being handled separately when
using spectral clustering.

We can observe here that the same dataset is handled differently by the two
algorithms. Spectral clustering handles the dataset arguably better, as the circles
that are separate are depicted separately.

5 Simulate various cases by changing the values in the dataset and running the
algorithms. Observe the different outputs for comparison.

Fuzzy clustering

So far we have covered quite a few clustering algorithms. Did you wonder why a data
point should belong to only one cluster? Why can’t a data point belong to more than
one cluster? Have a look at figure 5.15: the red points in the right image (shown with
an x in the print version) can belong to more than one cluster.

Figure 5.15 The figure
on the left represents all
the data points. The red
points (those with an x in

0] 0 the print version) can
% 0 0 0 % 0 0 0 belong to more than one
0 0 0 0 0 0 Q0 cluster. In fact, we can
O 08 O O 8 allocate more than one
0 0] cluster to each point. A

probability score can be
given for a point to belong
to a particular cluster.

5.5.1

5.5 Fuzzy clustering 161

We know that clustering is used to group items in cohesive groups based on their sim-
ilarities. The items that are similar are in one cluster, whereas the items that are dis-
similar are in different clusters. The idea of clustering is to ensure the items in the
same cluster are similar. When the items can be only in one cluster, it is called hard
clustering. K-means clustering is a classic example of hard clustering. But if we reflect
on figure 5.15, we can observe that an item can belong to more than one cluster. This
is called soft clustering.

NOTE It is computationally cheaper to create fuzzy boundaries than to create
hard clusters.

In fuzzy clustering, an item can be assigned to more than one cluster. The items that
are closer to the center of a cluster will have a stronger belongingness to that cluster
as compared to the points that are at the edge of the cluster. This is referred to as mem-
bership. It employs the least-square algorithm to find the most optimal location of an
item. The optimal location that we derive from the least-square algorithm will be the
probability space between two or more clusters. We will examine this concept in detail
later.

Types of fuzzy clustering

Fuzzy clustering can be further divided into classical fuzzy algorithms and shape-based
fuzzy algorithms. See figure 5.16.

—

Classical fuzzy clustering Shape-based fuzzy clustering

Fuzzy c-means Circular shaped

Gustafson-Kessel Elliptical shaped

algorithm

Figure 5.16 Fuzzy algorithms can be
Gath-Geva . divided into the classical fuzzy
algorithm Genzilse algorithm and the shape-based fuzzy

algorithm.

We will cover the fuzzy c-means (FCM) algorithm in detail next, but first we will review
the rest of the algorithms briefly:

The Gustafson-Kessel algorithm, sometimes called the GK algorithm, works by
associating an item with a cluster and a matrix. GK results in elliptical clusters,
and to modify as per varied structures in the datasets, GK uses the covariance
matrix. It allows the algorithm to capture the elliptical properties of the cluster.

162

CHAPTER 5 Clustering

GK can result in narrower clusters, and wherever the number of items is higher,
those areas can be thinner.

The Gath-Geva algorithm is not based on an objective function. The clusters
can result in any shape, because it is a fuzzification of statistical estimators.

The shape-based clustering algorithms are self-explanatory as per their names.
A circular fuzzy clustering algorithm will result in circular-shaped clusters and
so on.

The FCM algorithm is the most popular fuzzy clustering algorithm. It was initially
developed in 1973 by J.C. Dunn, and it has been improved multiple times. It is quite
similar to k-means clustering.

Refer to figure 5.17. In the first part of the figure (left), we have some items or data
points. These data points can be a part of a clustering dataset like customer transac-
tions, etc. In the second part of the figure (middle), we create a cluster for these data
points. While this cluster is created, membership grades are allocated to each of the
data points. These membership grades suggest the degree or the level to which a data
point belongs to a cluster. We will shortly examine the mathematical function to calcu-
late these values.

TIP Do not get confused by the degree and the probabilities. If we sum these
degrees, we may not get 1, as these values are normalized between 0 and 1 for
all the items.

In the third part of the figure (right), we can see that point 1 is closer to the cluster
center and thus belongs to the cluster to a higher degree than point 2, which is closer
to the boundary or the edge of the cluster.

0.0
00
0%

(@)

Figure 5.17 Data points that can be clustered (left). The data points can be grouped
into two clusters. For the first cluster, the cluster centroid is represented using a + sign
(middle). Point 1 is much closer to the cluster center as compared to point 2. So we can
conclude that point 1 belongs to this cluster to a higher degree than cluster 2.

We will now venture into the technical details of the algorithm. This can get a little
mathematically heavy.

5.5 Fuzzy clustering 163

Consider we have a set of n items (equation 5.1):

x={x], X9, X3, Xq, X5, - - . , Xp} (5.1)

We apply the FCM algorithm to these items. These n items are clustered into ¢ fuzzy
clusters based on some criteria. Let’s say that we will get from the algorithm a list of ¢
cluster centers (equation 5.2):

c= {Cl’ €9, €3, C4, C5, « .., C(:} (5.2)
The algorithm also returns a partition matrix, which can be defined as equation 5.3:
W=w;e[0,1],i=1,...,n,j=1,...,¢ (5.3)

Here, each of the elements in w; ; is the degree to which each of the elements in X
belong to cluster ¢;. This is the purpose of the partition matrix.

Mathematically, we can get w; ;as shown in equation 5.4. The proof of the equation
is beyond the scope of this book.

~ 1
- 2
S L (5-4)
k=1 \ [Ixi—c|l

The algorithm generates centroids for the clusters too. The centroid of a cluster is the
mean of all the points in that cluster, and the mean is weighted by their respective
degrees of belonging to that cluster. If we represent it mathematically, we can write it
like in equation 5.5:

Wi, j

L) e
=T @ =8

In equations 5.4 and 5.5, we have a very important term: m. m is the hyperparameter
used to control the fuzziness of the clusters. The values of m > 1 and can be kept as 2
(a typically used value).

NOTE The higher the value of m, the fuzzier the clusters.

We now examine the step-by-step process in the FCM algorithm:

Start as we start in k-means clustering by choosing the number of clusters we
wish to have in the output.

Allocate the weights randomly to each of the data points.

The algorithm iterates until it has converged. Recall how the k-means algorithm
converges, wherein we initiate the process by randomly allocating the centroids
of clusters. And then iteratively we refine the centroids for each of the clusters
until we get convergence. This is how k-means works. For FCM, we will utilize a
similar process albeit with slight differences. We have added a membership
value w; jand m.

164 CHAPTER 5 Clustering

For FCM, for the algorithm to converge we calculate the centroid for each of
the clusters as per equation 5.6:

_ 2o w(0)"

o = (5.6)
D RO

For each of the data points, we also calculate its respective coefficient for being
in that particular cluster. We will use equation 5.4.

Now we should iterate until the FCM algorithm has converged. The cost func-
tion that we wish to minimize is given by equation 5.7:

n C
Objective function = arg min Z Z wfjllxi - cj||2 (5.7)

¢ =l =l
Once this function has been minimized, we can conclude that the FCM algorithm has
converged. In other words, we can stop the process as the algorithm has finished
processing.

This is a good time to compare this with the k-means algorithm. In k-means, we have
a strict objective function that will allow only one cluster membership, while for FCM
clustering, we can get different clustering membership based on the probability scores.

FCM is very useful for business cases where the boundary between clusters is not
clear and stringent. Consider the field of bioinformatics, wherein a gene can belong
to more than one cluster of genes. Another example is when we have overlapping
datasets like in the fields of the marketing analytics or image segmentation where we
might have a lot of complex, overlapping, and confusing datasets. FCM can give com-
paratively more robust results than k-means.

We will now proceed to the Python solution of FCM clustering using the libraries.

Exercise 5.2
Answer these questions to check your understanding;:
Fuzzy clustering allows us to create overlapping clusters. True or False?

A data point can belong to one and only one cluster. True or False?

If the value of m is lower, we get clusters with more precise boundaries. True or
False?

5.5.2 Python implementation of FCM

We have covered the process of FCM. We will now work on the Python implementa-
tion of FCM by following these steps:

Import the necessary libraries:

import skfuzzy as fuzz

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

5.5 Fuzzy clustering 165

import seaborn as sns
$matplotlib inline

Declare a color palette, which will be used later for color coding the clusters:

color _pallete = ['r','m','y','c', 'brown', 'orange',6 'm',6'k"',
'gray', 'purple', 'seagreen']

Define the cluster centers:

cluster centers = [[1, 1],
[2, 4],
(5, 81]

Assign the weights:

sigmas = [[0.5, 0.6],
[0.4, 0.5],
[0.1, 0.6]]

Set the seed and then loop through the cluster centers:
np.random. seed (5)

xpts = np.zeros (1)
ypts = np.zeros (1)

labels = np.zeros (1)
for i, ((xmu, ymu), (xsigma, ysigma)) in enumerate(zip (cluster_ centers,
sigmas)) :

xpts = np.hstack((xpts, np.random.standard normal (500) * xsigma + xmu))
ypts = np.hstack((ypts, np.random.standard normal (500) * ysigma + ymu))
labels = np.hstack((labels, np.ones(500) * 1i))

We will represent the data points first. See figure 5.18:

fig0, ax0 = plt.subplots()
for label in range(5):

ax0.plot (xpts[labels == labell], ypts[labels == label], '.')
ax0.set_title('Data set having 500 points.')
plt.show ()

Dataset having 500 points.

10 A1
B -
6 1
4 4
2 4
*5 Figure 5.18
09 Representation of
the data points

166 CHAPTER 5 Clustering

7 Iterate different outputs with different values of cluster values and FPC (see fig-
ure 5.19):

cluster_centers = 2; FPC = 0.90 cluster_centers = 3; FFC = 0.91 cluster_centers = 4; FPC = 0.80

cluster_centers = 5; FPC = 0.74 cluster_centers = 6; FPC = 0.73 cluster_centers = 7; FPC = 0.65
- .
A "
et i
cluster_centers = 8, FFC = 0.63 cluster_centers = 9; FPC = 0.60 cluster_centers = 10; FPC = 0.59
| i
- "
i
" - .
B > & A
r . s fub 2 att
. = £ '
.- 3 . TH .
- . ® ‘-1.‘ - *

Figure 5.19 The output of the FCM algorithm

figl, axesl = plt.subplots (3, 3, figsize=(10, 10))
alldata = np.vstack((xpts, ypts))
fpcs = []

for ncenters, ax in enumerate (axesl.reshape(-1), 2):
cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans (
alldata, ncenters, 2, error=0.005, maxiter=1000, init=None)

Store fpc values for later
fpcs.append (fpc)

Plot assigned clusters, for each data point in training set
cluster membership = np.argmax(u, axis=0)
for j in range (ncenters) :

5.6

5.6 Gaussian mixture model 167

ax.plot (xpts[cluster membership ==

ypts[cluster membership == j], '.', color=colorsl[j])

Mark the center of each fuzzy cluster
for pt in cntr:
ax.plot (pt [0], pt[l], 'rs')

ax.set title('cluster centers = {0}; FPC =
{1:.2f}'.format (ncenters,

fpc), size=12)
ax.axis ('off")

figl.tight layout ()

Observe the output of the code, where for the same datasets you can see the different
clusters with different positions of the centers. To appreciate the colors, you will have
to run the code.

Gaussian mixture model

Next, we continue our discussion of soft clustering. Recall we introduced the GMM at
the start of the chapter. Now we will study the concept and see the Python implemen-
tation of it.

First, let’s get an understanding of the Gaussian distribution or what is sometimes
called normal distribution. You might recognize it as a bell curve; it usually refers to the
same thing.

In figure 5.20, observe that the distribution where the x (mean) is 0 and o* (stan-
dard deviation) is 1. It is a perfect normal distribution curve. Compare the distribu-
tion in different curves here.

I e o e RS e s i s B
1.0
| 02202, =—]
r 02=1.0, =
08| 0?=5.0,]
o 0?=05, ==
~ 0.6
L _'
s |]
S o4
0.2
0.0
| | 1 | [o | | | |
5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.20 A Gaussian distribution is one of the most famous distributions. Observe how the
values of mean and standard deviation are changed and their effect on the corresponding curve.

168

CHAPTER 5 Clustering

The mathematical expression for Gaussian distribution is

1 1(a=p\2
f(x) = e 2 ()
oVar
/(x) = probability density function (5.8)

o = standard deviation

M = mean

The equation is also called the probability density function. In figure 5.20, observe the
shape of the probability distribution where the pis 0 and o is 1. It is a perfect normal
distribution curve. Compare the distribution in different curves in figure 5.20 where,
by changing the values of the mean and standard distribution, we get different graphs.

You might be wondering why we are using Gaussian distribution here. There is a
very famous statistical theorem called the central limit theorem. The theorem states that
if the variability of the data is due to a large number of unrelated causes, then the dis-
tribution can be approximated by a Gaussian curve. Also, the approximation becomes
more and more accurate the more data is collected; that is, the more data we collect,
the more Gaussian the distribution. This normal distribution can be observed across
all walks of life and in chemistry, physics, mathematics, biology, or any other branch of
science. That is the beauty of Gaussian distribution.

The plot shown in figure 5.20 is 2D. We can have multidimensional Gaussian distri-
bution too. In the case of a multidimensional Gaussian distribution, we will get a 3D
figure as shown in figure 5.21. Our input was a scalar in 1D. Now, instead of scalar, our
input is a vector; the mean is also a vector and represents the center of the data.
Hence, the mean has the same dimensionality as the input data. The variance is now
the covariance matrix X. This matrix not only tells us the variance in the inputs but
also comments on the relationship between different variables—for example, how the
values of y are affected if the value of xis changed. Have a look at figure 5.21. We can
understand the relationship between the x and y variables here.

(x)d

Figure 5.21 3D representation
of a Gaussian distribution

5.6.1

5.6 Gaussian mixture model 169

NOTE Covariance plays a significant role here. K-means does not consider the
covariance of a dataset, which is used in the GMM model.

Let’s examine the process of GMM clustering. Imagine we have a dataset with n items.
When we use GMM clustering, we do not find the clusters using the centroid method;
instead, we fit a set of k& Gaussian distributions to the dataset at hand. In other words,
we have k clusters. We should determine the parameters for each of these Gaussian
distributions, which are mean, variance, and weight of a cluster. Once the parameters
for each of the distributions are determined, then we can find the respective probabil-
ity for each of the nitems to belong to k clusters.

Mathematically, we can calculate the probability as shown in equation 5.9. The
equation is used so we know that a particular point x is a linear combination of k
Gaussians. The term ¢;is used to represent the strength of the Gaussian, and it can be
seen in the second equation that the sum of such strength is equal to 1.

§
plx) = Z OiN (x5 pj, X5)
=l (5.9)

For spectral clustering, we must identify the values of ¢, ~, and . As you can imagine,
getting the values of these parameters can be tricky. It is indeed a slightly complex
process called the expectation-maximization (EM) technique, which we will cover
next. This section is quite heavy on mathematical concepts and is optional. It is rec-
ommended for readers interested in understanding the deeper workings of the
techniques.

EM technique

EM is a statistical method to determine the correct parameters for a model. There are
quite a few techniques that are popular; maximum likelihood estimation might be the
most famous. But at the same time, there could be a few challenges with maximum
likelihood. The dataset might have missing values or, in other words, be incomplete.
Or it is possible that a point in the dataset is generated by two different Gaussian dis-
tributions. Hence, it will be very difficult to determine which distribution generated
that data point. Here, EM can be helpful.

NOTE K-means uses only mean while GMM utilizes both mean and variance
of the data.

The variables that are generated in the process are called latent variables. Since we do
not know the exact values of these latent variables, EM first estimates their optimum
values using the current data. Once this is done, then the model parameters are esti-
mated. Using these model parameters, the latent variables are again determined. And,

170

CHAPTER 5 Clustering

using these new latent variables, new model parameters are derived. The process con-
tinues until a good enough set of latent values and model parameters are achieved
that fit the data well. Let’s study that in more detail now. We will use the same example
as in the last section.

Imagine we have a dataset with » items. As mentioned, when we use GMM cluster-
ing, we do not find the clusters using the centroid method; instead, we fit a set of k&
Gaussian distributions to the dataset at hand. In other words, we have k clusters. We
determine the parameters for each of these Gaussian distributions (mean, variance,
and weight). Let’s say that mean is pp, pto, #3, pa.... pt; and covariance is X1, Zg, X3,
Yy4.... 2. We can also have one more parameter to represent the density or strength of
the distribution, and it can be represented by ¢.

We start with the expectation, or the E step. In this step, each data point is assigned
to a cluster probabilistically. So, for each point, we calculate its probability of belong-
ing to a cluster; if this value is high, the point is in the correct cluster; otherwise, the
point is in the wrong cluster. In other words, we calculate the probability that each
data point is generated by each of the k Gaussians.

NOTE Since we are calculating probabilities, these are called soft
assignments.

The probability is calculated using the formula in equation 5.10. If we look closely, the
numerator is the probability, and then we normalize by the denominator.

W $iN(@D;), 3)) (5.10)

! Zszl ¢qN(x(i)§ Mg Zq)

In the expectation step, for a data point x; ;, where 7is the row and j is the column, we
are getting a matrix where rows are represented by the data points and columns are
their respective Gaussian values.

When the expectation step is finished, we will perform the maximization or the M
step. In this step, we will update the values of y, £, and ¢ using the formula in equa-
tion 5.7. Recall, in k-means clustering, we simply take the mean of the data points and
move ahead. We do something similar here albeit use the probability or the expecta-
tion we calculated in the last step.

The three values can be calculated using the equations below. Equation 5.7 is the
calculation of the covariances X j, of all the points, which is then weighted by the prob-
ability of that point being generated by Gaussian j as shown in equation 5.11. The
mathematical proofs are beyond the scope of this book.

ZL W @0 -) (O -)
DRV

(5.11)

%=

5.6 Gaussian mixture model 171

The mean yj, is determined by equation 5.12. Here, we determine the mean for all the
points, weighted by the probability of that point being generated by Gaussian j.

£ a0

Hj= ——— (5.12)
2311”6()

Similarly, the density or the strength is calculated by equation 5.13, where we add all

the probabilities for each point to be generated by Gaussian j and then divide by the

total number of points V.

N
1 (i)
;= v Zle (5.13)
i=1

Based on these values, new values for 2, y, and ¢ are derived, and the process contin-
ues until the model converges. We stop when we can maximize the log-likelihood
function.

It is a complex mathematical process. We have covered it to give you an in-depth
understanding of what happens in the background of the statistical algorithm. The
Python implementation is much more straightforward than the mathematical
concept.

Exercise 5.3
Answer these questions to check your understanding:

Gaussian distribution has a mean equal to 1 and a standard deviation equal to
0. True or False?

GMM models do not consider the covariance of the data. True or False?

5.6.2 Python implementation of GMM

We will first import the data, and then we will compare the results using k-means and
GMM. We follow these steps:

Import all the libraries and the dataset:
import pandas as pd

data = pd.read_csv('vehicle.csv')
import matplotlib.pyplot as plt

Drop any NA from the dataset:
data = data.dropna ()

Fit a kmeans algorithm. We are keeping the number of clusters as 5. Please note
that we are not saying that this is an ideal number of clusters. The number of

172

CHAPTER 5 Clustering

clusters is only for illustrative purposes. We declare a variable k-means and then
use five clusters. The dataset is fit next:

from sklearn.cluster import KMeans
kmeans = KMeans (n_clusters=5)
kmeans. fit (data)

Plot the clusters. First, a prediction is made on the dataset, and then the values
are added to the data frame as a new column. The data is then plotted with dif-
ferent colors representing different clusters. The print version of the book will
not show the different colors, but the output of the Python code will. The same
output is available in the GitHub repository.

The output is as follows (see figure 5.22):

pred = kmeans.predict (data)
frame = pd.DataFrame (data)
frame['cluster'] = pred

color=['red', 'blue', 'orange', 'brown', 'green']
for k in range(0,5) :
data = frame[frame["cluster"]=
plt.scatter (data["compactness
plt.show ()

=k]
'] ,data["circularity"], c=color [k])

55

45 |

Figure 5.22 Outcome of plotting
the clusters after fitting the
kmeans algorithm

80 %0 100 110 120

Fit a GMM model. Note that the code is the same as the k-means algorithm,
only the algorithm’s name has changed from k-means to GaussianMixture:

from sklearn.mixture import GaussianMixture
gmm = GaussianMixture (n components=5)
gmm. fit (data)

#predictions from gmm

labels = gmm.predict (data)
frame = pd.DataFrame (data)
frame['cluster'] = labels

554

45

5.6 Gaussian mixture model 173

Plot the results. The output is as follows (figure 5.23):

color=['red', 'blue', 'orange', 'brown', 'green']
for k in range(0,5):
data = frame[frame["cluster"]==k]

plt.scatter (data["compactness"],data["circularity"], c=color [k])
plt.show ()

SI2E3T0R80008E° Figure 5.23 Outcome of
08p 30,7030 oo plotting the clusters after
J fitting a GMM algorithm

bl

80 %0 100 110 120

Run the code with different values of clusters to observe the difference. In the
following plots, the left one is k-means with two clusters, while the right is GMM
with two clusters. There are a few points that are classified differently in the two
clustering approaches. The print version of the book will not show the different
colors, but the output of the Python code will. The same output is available in
the GitHub repository, too (see figure 5.24).

60 1
o %2 o * o o % B o
o 800 88 & o5 | o 000 80 &
oyr. or.
o & OO0DO00E 00 9 [] ® ¢ SOUDONNE 00 ¢ L]
o "% £:325%8 8% o B o "% 538380 8% 00 *
oo oole’sl IRESEEPITT ° el oo sele’sl SiEBBEEDTC ° .
: m-lllr.ig. [] 45 | m'..g. []
-SSR, S S
% IR T 8 x 2, st f ¢
P | i’ill 5 liiir-o » P -:ﬁf,?:!!’ri....
® ':'1 . s 35 4 5 ':H‘."l' 3
8 % 100 110 120 & %0 100 110 120

Figure 5.24 K-means with two clusters (left) and GMM with two clusters (right)

Gaussian distribution is one of the most widely used data distributions used. If we
compare k-means and the GMM model, we see that k-means does not consider the

174

5.7

5.8

CHAPTER 5 Clustering

normal distribution of the data. The relationship of various data points is also not con-
sidered in k-means.

NOTE K-means is a distance-based algorithm; GMM is a distribution-based
algorithm.

In short, it is advantageous to use GMM models for creating clusters, particularly
when we have overlapping datasets. It is a useful technique for financial and price
modeling, natural language processing-based solutions, etc.

Concluding thoughts

In this chapter, we have explored three complex clustering algorithms. You might
have felt the mathematical concepts were a bit heavy. They are indeed, but they pro-
vide a deeper understanding of the process. These algorithms are not necessarily the
best ones for every problem. Ideally, in a real-world business problem, we start with
classical clustering algorithms (k-means, hierarchical, and DBSCAN). If we do not get
acceptable results, we can try the more complex algorithms.

Many times, a data science problem is equated to the choice of algorithm, which it
is not. The algorithm is certainly an important ingredient of the entire solution, but it
is not the only one. In real-world datasets, there are a lot of variables, and the amount
of data is also quite high. The data has a lot of noise. We should account for all of these
factors when we shortlist an algorithm. Algorithm maintenance and refreshing are also
considerations. All of these aspects are covered in detail in the last chapter of the book.

Practical next steps and suggested readings
The following provides suggestions for what to do next and offers some helpful
reading:
In chapter 2, we did clustering using various techniques. Use the datasets from
there and perform spectral clustering, GMM, and FCM clustering to compare
the results. Datasets provided at the end of chapter 2 can be used for clustering.
Get the credit card dataset for clustering from Kaggle (https://mng.bz/oKwd)
and data from the famous Iris dataset, which we used earlier (https://www
.kaggle.com/uciml/iris).
Refer to the book Computational Network Science by Henry Hexmoor to study the
mathematical concepts.
Get spectral clustering papers from the following links and study them:
— On spectral clustering: analysis and an algorithm: https://mng.bz/nRwa
— Spectral clustering with eigenvalue selection: https://mng.bz/vKw7
— The mathematics behind spectral clustering and the equivalence to principal
component analysis: https://arxiv.org/pdf/2103.00733v1.pdf
Get GMM papers from the following links and explore them:

— “GMM Estimation for High Dimensional Panel Data Models”: https://
mng.bz/4agw

https://www.kaggle.com/uciml/iris
https://www.kaggle.com/uciml/iris
https://www.kaggle.com/uciml/iris
https://arxiv.org/pdf/2103.00733v1.pdf
https://mng.bz/4agw
https://mng.bz/4agw
https://mng.bz/vKw7
https://mng.bz/nRwa
https://mng.bz/oKwd

Summary 175

— “Application of Compound Gaussian Mixture Model in the Data Stream”:
https://ieeexplore.ieee.org/document/5620507

Get FCM papers from the following links and study them:

— “FCM: The Fuzzy c-Means Clustering Algorithm”: https://mng.bz/QDXG

— A Survey on Fuzzy c-Means Clustering Techniques: https://www.ijedr.org/
papers/IJEDR1704186.pdf

— “Implementation of Fuzzy C-Means and Possibilistic C-Means Clustering
Algorithms, Cluster Tendency Analysis and Cluster Validation™ https://
arxiv.org/pdf/1809.08417.pdf

Summary
Spectral clustering focuses on data point affinity rather than location for clus-
tering. It works well with complex data shapes where traditional algorithms like
k-means may not suffice.
Spectral clustering utilizes graph theory and connectivity, relying on eigenval-
ues, the Laplacian matrix, and the affinity matrix.
The process includes calculating degree, adjacency, Laplacian matrices, and the
Fielder vector for clustering.
K-means clustering uses centroids, whereas spectral clustering’s focus is on con-
nectivity and data point similarities.
Spectral clustering can require substantial computational resources due to
matrix operations and is suitable for smaller datasets.
Fuzzy clustering allows data points to belong to multiple clusters, introducing
“membership” for data items.
FCM is a key algorithm in fuzzy clustering, utilizing membership degrees and
controlling fuzziness through hyperparameter m.
GMM employs Gaussian distributions for soft clustering, factoring in dataset
covariance.
GMM is suitable for overlapping datasets and considers the relationship
between data points, unlike k-means.
The EM technique is used in GMM to estimate parameters iteratively.
GMM models are advantageous for financial modeling, natural language pro-
cessing, and cases with overlapping data.
Fuzzy and GMM are soft clustering methods, allowing detailed membership
and probability assignment to data points.
Spectral clustering supports applications in image segmentation, speech analy-
sis, and text analytics without assuming data shape constraints.

https://mng.bz/QDXG
https://ieeexplore.ieee.org/document/5620507
https://www.ijedr.org/papers/IJEDR1704186.pdf
https://www.ijedr.org/papers/IJEDR1704186.pdf
https://arxiv.org/pdf/1809.08417.pdf
https://arxiv.org/pdf/1809.08417.pdf

Dimensionality reduction

This chapter covers

= t-distributed stochastic neighbor embedding

= Multidimensional scaling

= Uniform manifold approximation and projection
= Python implementations of the algorithms

Life is really simple, but we insist on making it complicated.

—Confucius

Simplicity is a virtue—both in life and in data science. We have discussed a lot of
algorithms so far. A few of them are simple enough, and some of them are a bit
complicated. In part 1 of the book, we studied simpler clustering algorithms, and
in the last chapter, we examined advanced clustering algorithms. Similarly, we stud-
ied a few dimensionality algorithms like principal component analysis (PCA) in
chapter 3. Continuing on the same note, we will study three advanced dimensional-
ity reduction techniques in this chapter.

176

6.1

6.2

6.2 Multidimensional scaling 177

The advanced topics we cover in this and the next part of the book are meant to
prepare you for complex problems. While you can apply these advanced solutions, it
is always advisable to start with the classical solutions like PCA for dimensionality
reduction. And if that solution doesn’t appropriately address the problem, then you
can try the advanced solutions.

Dimensionality reduction is one of the most sought-after solutions, particularly
when we have a large number of variables. Recall the “curse of dimensionality” we dis-
cussed in chapter 3. You are advised to refresh your memory on chapter 3 before mov-
ing forward if needed. We will cover t-distributed stochastic neighbor embedding (t-
SNE), multidimensional scaling (MDS), and uniform manifold approximation and
projection (UMAP) in this chapter. This chapter will cover some mathematical con-
cepts that create the foundation of the advanced techniques we are going to discuss.
As always, the concept discussion will be followed by a Python solution. This chapter
also has a short case study. We will also develop a solution using an images dataset.

There may be a dilemma in your mind: What is the level of mathematics required,
and is an in-depth statistical knowledge a prerequisite? The answer is both yes and no.
While having a mathematical understanding will allow you to understand the algo-
rithms and appreciate the process in greater depth; at the same time, for real-world
business implementation, sometimes one might want to skip the mathematics and
directly move to the examples in Python. We suggest having at least more than a basic
understanding of the mathematics to fully grasp the concept. In this book, we provide
that level of mathematical support without going into too much depth, presenting
instead an optimal mix of practical world and mathematical concepts.

Welcome to the sixth chapter, and all the very best!

Technical toolkit

We will continue to use the same version of Python and Jupyter Notebook as we have
used so far. The codes and datasets used in this chapter have been checked in at
https://mng.bz/XxOv.

You will need to install Keras as an additional Python library in this chapter. Along
with this, you will need the regular modules: numpy, pandas, matplotlib, seaborn, and

sklearn.

Multidimensional scaling

As you know, maps prove to be quite handy while traveling. Now imagine you are given
a task. You receive distances between some cities around the world—for example,
between London and New York, London and Paris, Paris and New Delhi, and so forth.
Then you are asked to re-create the map from which these distances have been derived.
If we have to re-create that 2D map, that will be through trial and error; we will make
some assumptions and move ahead with the process. It will surely be a tiring exercise
prone to error and quite time-consuming indeed. MDS can do this task easily for us.

https://mng.bz/XxOv

178

CHAPTER 6 Dimensionality reduction

NOTE While thinking of the preceding example, ignore the fact that the
earth is not flat, and assume that the distance measurement metric is con-
stant—for example, there is no confusion in miles or kilometers.

As an illustration, consider figure 6.1. Formally put, if we have x data points, MDS can
help us convert the information of the pairwise distance between these x points to a
configuration of points in a Cartesian space. Or, simply put, MDS transforms a large
dimensional dataset into a lower dimensional one and, in the process, keeps the dis-
tance or the similarity between the points the same.

O

Q a

@ 2 ? <

8| g 8 | x e 2

© c 87 o S % 2 5 5 Z o [0} g

2l s|®|g|¢||5|<|e|Q|Z2|&5|xc]|=2]¢c%

S|8|l=s|=x|85|3|&|s|s|3|3|[2|5|5]|S8

|l |0|lo|la|Z2| S| |S|z|z|a|la|o] =
Atlanta 1095| 715 | 805 (1437 | 844 [1920|2230(675 | 499 | 884 | 1832|2537 |2730| 657

Boston 1095 983 | 1815(1991|1886 [2500|3036 | 1539|1541 | 213 | 2664|3179 (3043 | 44
Chicago 715 | 983 931 [1050|1092 | 1500|2112 | 1390 | 947 | 840 [1729|2212 (2052 | 695
Dallas 805 | 1815 931 801 | 242 [1150|1425(1332| 504 | 1604|1027 |1765|2122|1372
Denver 143711991 (1050 | 801 1032| 885 [117412094 (1305|1780 | 836 | 1266|1373 | 1635
Houston 844 (1886|1092 | 242 (1032 1525|1556 1237 | 365 |1675| 118 [1958|2348 | 1443
Las Vegas 192012500| 1500|1150 | 885 | 1525 289 |2640| 1805|2486 | 294 | 573 | 1188|2568
Los Angeles 2230(3036|2112 (1425|1174 | 1556 | 289 2757119212825 | 398 | 403 [1150|2680
Miami 675 | 1539|1390 | 1332|2094 | 1237 | 2640 | 2757 892 | 1328 (2359|3097 (3389|1101
New Orleans 499 (1541| 947 | 504 |1305| 365 | 1805|1921| 892 1330 [1523|2269 | 2626 | 1098
New York 884 | 213 | 840 (1604|1780 (1675|2486 2825|1328 1330 2442|3036 (2900 | 229
Phoenix 1832|2664 | 1729|1027 | 836 [1158| 294 | 398 | 2359 | 1523|2442 800 | 1482|2278
San Francisco 2537(3179|2212 (1765|1266 | 1958 | 573 | 403 (3097|2269 3036 | 800 817 | 2864
Seattle 2730|3043]|2052(2122|1373|2348 (1188|1150 3389 | 2626|2900 | 1482 | 817 2755

Washington, DC | 657 | 440 | 695 [1372]|1635| 1443|2568 [2680|1101 | 1098 | 229 | 2278|2864 | 2755

S e
S s Bremen

|7 i B
¢

- GBydgoszez |
Poland |

S o

Sl b

P A
Dart 5 Redarm—
seldanf :

W ! b
- estochowal‘q/ _jSKieles, 1
a0 LI" pid I i
)
ratowice S
: T

¢ ! s
T TReAugsIurg

& ST

Figure 6.1 Illlustration of distance between the cities and if they are represented on a map. The figure
is only to help develop an understanding and does not represent the actual results.

6.2 Multidimensional scaling 179

To simplify, consider figure 6.2. Here we have three points: A, B, and C. We are repre-
senting these points in a 3D space. Then we represent the three points in a 2D space,
and finally they are represented in a 1D space. The distance between the points is not
up to scale in the diagrams in the figure. The example represents the meaning of low-
ering the number of dimensions.

C
\ 2D representation of the points
d,, = distance B B
between point A
AandB Not to scale
A
d,, = distance between point B and C
- ' . .
d,, = distance _-" 1D representation of the points
between point Phe
AandC - . .
_-- ¢ 3D representation of the points A B c
-
i —e oo
Not to scale Not to scale

Figure 6.2 Representation of three points

6.2.1

Hence, in MDS, multidimensional data is reduced to a lower number of dimensions.
There are three types of MDS algorithms:

Classical MDS
Metric multidimensional scaling

Nonmetric multidimensional scaling

Classic MDS

We will examine the metric MDS process in detail in the book, while we will cover the
classical and nonmetric briefly. Imagine we have two points: and j. Let us assume that
the original distance between two points is d;; and the corresponding distance in the
lower dimensional space is Jj;.

In classical MDS, the distances between the points are treated as Euclidean dis-
tances, and the original and fitted distances are represented in the same metric. It
means that if the original distances in a higher dimensional space are calculated using
the Euclidean method, the fitted distances in the lower dimensional space are also cal-
culated using Euclidean distance. We already know how to calculate Euclidean dis-
tances. For example, we have to find the distance between points ¢ and j, and let’s say

180

6.2.2

CHAPTER 6 Dimensionality reduction

the distance is d;;. The distance can be given by the Euclidean distance formula given
by equation 6.1 in a 2D space:

diy = @ =) + (s = 3 (6.2

Recall in chapter 2, we discussed other distance functions like Manhattan distance,
Euclidean distance, etc. You are advised to refresh your memory on chapter 2.

Nonmetric MDS

We just now noted that Euclidean distance can be used to calculate the distance
between two points. Sometimes it is not possible to take the actual values of the dis-
tances, like when d;; is the result of an experiment where subjective assessments were
made or, in other words, where a rank was allocated to the various data parameters.
For example, if the distance between points 2 and 5 was at rank 4 in the original data,
in such a scenario, it will not be wise to use absolute values of di]-, and hence relative
values or rank values have to be used. Here, distance can mean a kind of ranking—for
example, who came first in a race. This is the process in nonmetric MDS. For exam-
ple, imagine we have four points: A, B, C, and D. We wish to rank the respective dis-
tances between these four points. The respective combinations of points can be A and
B,Aand C, Aand D, B and C, B and D, and C and D. Their distances can be ranked as
shown in table 6.1.

Table 6.1 The respective distance between four points and the ranks of the distances

Pair of points Distance Ranks of the respective distances
Aand B 100 3
Aand C 105 4
A and D 95 2
Band C 205 6
B and D 150 5
Cand D 55 1

So, in the nonmetric MDS method, instead of using the actual distances, we use the
respective ranks of the distance. We next move on to the metric MDS method.

We know that in classical MDS, the original and fitted distances are represented in
the same metric. In metric MDS, it is assumed that the values of dij can be transformed
into Euclidean distances by employing some parametric transformation on the data-
sets. In some articles, you might find classical and metric MDS used interchangeably.

In MDS, as a first step, the respective distances between the points are calculated.
Once the respective distances have been calculated, then MDS will try to represent the

6.2 Multidimensional scaling 181

higher dimensional data point in a lower dimensional space. To perform this, an opti-
mization process has to be carried out so that the optimum number of resultant dimen-
sions can be chosen. Hence, a loss function or cost function has to be optimized.

COST FUNCTION

We use algorithms to predict the values of a variable. For example, we might use some
algorithm to predict the expected demand of a product next year. We would want the
algorithm to predict as accurately as possible. Cost functions are a simple method to
check the performance of the algorithms.

Cost function is a simple technique to measure the effectiveness of our algorithms.
It is the most common method used to gauge the performance of a predictive model.
It compares the original values and the predicted values by the algorithm and calcu-
lates how wrong the model is in its prediction.

As you would imagine, in an ideal solution, we would want the predicted values to
be the same as the actual values, which is very difficult to achieve. If the predicted val-
ues differ a lot from the actual values, the output of a cost function is higher. If the
predicted values are closer to the actual values, then the value of a cost function is
lower. A robust solution is one that has the lowest value of the cost function. Hence,
the objective to optimize any algorithm will be to minimize the value of the cost func-
tion. Cost function is also referred to as loss function; these two terms can be used
interchangeably.

In metric MDS, we can also call the cost function stress. It is just another name for
cost function. The formula for stress is given in equation 6.2:

rol—

Stressp(z1, 29, ..., TN) = Z (dij = ll; — ;1) (6.2)

i#j=1,..,N

In the equation,

Term Stressy, is the value the MDS function has to minimize.

The data points with the new set of coordinates in a lower dimensional space
are represented by xj, xo, X3.... xx:

The term [|x;— x;|| is the distance between two points in their lower dimensional
space.

The term d;;is the original distance between the two points in the original mul-
tidimensional space.

By looking at the equation, we can see that if the values of ||x;— xj|| and d;;are close to
each other, the value of the resultant stress will be small.

NOTE Minimizing the value of stress is the objective of the loss function.

To optimize this loss function, we can use multiple approaches. One of the most
famous methods is using a gradient descent that was originally proposed by Kruskal

182 CHAPTER 6 Dimensionality reduction

and Wish in 1978. The gradient descent method is very simple to understand and can
be explained using a simple analogy.

Imagine you are standing on top of a mountain and you want to get down. You want
to choose the fastest path because you want to get down as fast as possible (no, you can-
not jump!). So, to take the first step, you look around and, whichever is the steepest
path, you take a step in that direction and reach a new point. Then again, you take a
step in the steepest direction. This process is shown in the first diagram in figure 6.3.

Starting point

Loss

Point of convergence or where
the cost function is minimum

Value of weight

Figure 6.3 A person standing on top of a mountain and trying to get down. The process of gradient descent follows
this method (left). The actual process of optimization of a cost function in gradient descent process. Note that at
the point of convergence, the value of the cost function is minimal (right).

Now say an algorithm has to achieve a similar feat; the process is represented in the
right diagram in figure 6.3, wherein a loss function starts at a point and finally reaches
the point of convergence. At this point of convergence, the cost function is minimal.
MDS differs from the other dimensionality reduction techniques. As compared to
techniques like PCA, MDS does not make any assumptions about the dataset and hence
can be used for a larger number of datasets. Moreover, MDS allows the use of any dis-
tance measurement metric. Unlike PCA, MDS is not an eigenvalue-eigenvector tech-
nique. Recall in PCA, the first axis captures the maximum amount of variance, the
second axis has the next best variance, and so on. In MDS, there is no such condition.
The axes in MDS can be inverted or rotated as needed. Also, in most of the other dimen-
sional reduction methods used, the algorithms do calculate alot of axes, but they cannot
be viewed. In MDS, a smaller number of dimensions are explicitly chosen at the start.
Hence there is less ambiguity in the solution. Further, in other algorithms, generally,
there is only one unique solution, whereas MDS tries to iteratively find the most accept-
able solution. Itmeans thatin MDS there can be multiple solutions for the same dataset.
But at the same time, the computation time required for MDS is greater for bigger
datasets—and there is a catch in the gradient descent method used for optimization
(see figure 6.4). Let’s refer to the mountain example we covered earlier. Imagine that
while you are coming down from the top of the mountain, the starting point is A, and

6.2 Multidimensional scaling 183

the bottom of the mountain is point C. While you are coming down, you reach point
B. As you can see in the left diagram in the figure, there is a slight elevation around
point B. At this point B, you might incorrectly conclude that you have reached the
bottom of the mountain. In other words, you will think that you have finished your
task. This is the problem of the local minima.

Local minima

Local minima

Loss

“_ Global minima

Value of weight

Figure 6.4 While the first figure is the point of convergence and represents the gradient descent method, note
that in the second figure the global minima is somewhere else, while the algorithm can be stuck at a local minima.
The algorithm might check that it has optimized the cost function and reached the point of global minima, whereas
it has only reached the local minima. In a local minima, there is no direction that is ascending; all the directions
descend. The algorithm, if purely local, has no information about other deeper minima existing beyond a potentially
small hill.

Itis a possibility that instead of a global minimum, the loss function might be stuck in
a local minima. The algorithm might think that it has reached the point of conver-
gence, while the complete convergence might not have been achieved, and we are at a
local minimum.

There is still a question to be answered about the efficacy of the MDS solution.
How can we measure the effectiveness of the solution? In the original paper, Kruskal
recommended the stress values to measure the goodness-of-fit of the solution, which
are shown in table 6.2. The recommendations are mostly based on the empirical expe-
rience of Kruskal. These stress values are based on Kruskal’s experience.

Table 6.2 Stress values and their goodness of fit

Stress values Goodness of fit

0.200 Poor
0.100 Fair
0.050 Good
0.025 Excellent
0.000 Perfect

184

6.3

CHAPTER 6 Dimensionality reduction

The next logical question is: How many final dimensions should we choose? A scree
plot provides the answer, as shown in figure 6.5. Recall in chapter 2 we used a similar
elbow method to choose the optimal number of clusters in k-means clustering. For
MDS too, we can use the elbow method to determine the optimal number of compo-
nents to represent the data.

Selecting k with the elbow method

By
10 A
0.9 1
o 081
(]
5 07
n - Figure 6.5 Scree plot to find the
06 - optimal number of components.
i It is similar to the k-means
05 1 solution; we have to look for the
elbow in the plot.

Number of components ———»

Exercise 6.1
Answer these questions to check your understanding:

What is the difference between metric and nonmetric MDS algorithms?
Gradient descent is used to maximize the cost. True or False?
Explain the gradient descent method using a simple example.

Python implementation of MDS

For the Python implementation of the MDS method we will use the famous Iris data-
set, which we have used previously. Using the algorithm is quite simple, thanks to the
libraries available in the scikit learn package.

NOTE The implementation is generally simple as the heavy lifting is done by
the libraries.
The steps are as follows:

Load the libraries. The usual suspects are sklearn, matplotlib, and numpy, and
we also load MDS from sklearn:

import numpy as np
from sklearn.datasets import load iris

6.3 Python implementation of MDS 185

import matplotlib.pyplot as plt

from sklearn.manifold import MDS

from sklearn.preprocessing import MinMaxScaler
import pandas as pd

import warnings

warnings.filterwarnings ("ignore")

Load the dataset. The Iris dataset is available in the sklearn library, so we need
not import Excel or .csv files here:

raw_data = load iris()
dataset = raw_data.data

A requirement for MDS is that the dataset should be scaled before the actual
visualization is done. We use the MixMaxScalar () function to achieve this. Min-
Max scaling simply scales the data using the formula in equation 6.3:

X — Tmin

Lscaled = — (6.3)
max — Tmin

d_scaler = MinMaxScaler ()
dataset scaled = d scaler.fit transform(dataset)

As an output of this step, the data is scaled and ready for the next step of
modeling.

Invoke the MDS method from the sklearn library. The random state value
allows us to reproduce the results. We have chosen the number of components
as 3 for the example:

mds_output = MDS(3,random_state=5)

Fit the scaled data created earlier using the MDS model:

data 3d = mds_output.fit transform(dataset scaled)

Declare the colors we wish to use for visualization. Next, the data points are
visualized in a scatter plot:

mds colors = ['purple', 'blue', 'yellow']
for i in np.unique(raw_data.target) :
d subset = data 3d[raw _data.target == i]

x = [row[0] for row in d subset]
y = [row[1l] for row in d_subset]
plt.scatter(x,y,c=mds_colors[i],label=raw data.target names[i])
plt.legend()
plt.show ()

The output of the preceding code is shown in figure 6.6.

186 CHAPTER 6 Dimensionality reduction

® setosa
uk ..0 ® versicolor
o virginica
04 L D

‘¢
°
0.0
) e e
® (S
age []
2 L] ® [}
s ™ e
% °
04 - %

Figure 6.6 Output for the Iris data

This example of Python implementation is a visualization of the Iris data. It is quite a
simple example, as it does not involve stress and optimization for the number of com-
ponents. In other words, we need a more complex dataset to really optimize MDS. We
will now work on a curated dataset to implement MDS (see figure 6.7).

Distance A B C D E
A 0 40 50 30 40
B 40 0 40 50 20
o 50 40 0 20 50
D 30 50 20 0 20
E 40 20 50 20 0

Figure 6.7 Various cities and their respective distances between each other

Let us assume we have five cities and the respective distance between them is given in
figure 6.7. The steps are as follows:

We have already imported the libraries in the last code:

import numpy as np

from sklearn.datasets import load iris

import matplotlib.pyplot as plt

from sklearn.manifold import MDS

from sklearn.preprocessing import MinMaxScaler
import pandas as pd

import warnings

warnings.filterwarnings ("ignore")

6.3 Python implementation of MDS 187

Create the dataset. Although we create a dataset here, in real business scenar-
ios, it will be in the form of distances only (see figure 6.8):

data dummy cities = {'A':[0,40,50,30,40],
'B':[40,0,40,50,20],
'C':[50,40,0,20,50],
'D':[30,50,20,0,20],
'E':[40,20,50,20,0]
}

cities_dataframe = pd.DataFrame (data_dummy cities, index

=['a','B','C','D','E'])

cities_dataframe

l

1 ecities_dataframe

A B C D E

0 40 50 30 40
40 D 40 50 20
50 40 0 20 50

L= > T - B

30 50 20 0 20

m

4017207502070 Figure 6.8 Creating the dataset

Use the MinMaxScalar () function to scale the dataset as we did in the last cod-
ing exercise:

scaler = MinMaxScaler ()
df scaled = scaler.fit transform(cities_dataframe)

Now we work toward finding the most optimal number of components. We will iterate
for different values of the number of components. For each of the values of the num-
ber of components, we will get the value of stress. The point at which a kink is
observed is the optimal number of components.

As a first step, we will declare an empty dataframe, which can be used to store the
values of the number of components and corresponding stress values. Then we iterate
from 1 to 10 in a for loop. Finally, for each of the values of components (1 to 10), we
get the respective values of stress:

MDS stress = []
for i in range(1l, 10):
mds = MDS (n_components=i)

pts = mds.fit_ transform(df_ scaled)
MDS_stress.append(mds.stress_)

Now that we have the values of stress, we will plot these values in a graph. The
respective labels for each of the axes are also given. Look at the kink at values 2
and 3 in figure 6.9. These can be the optimal values of the number of

Components:

188

CHAPTER 6 Dimensionality reduction

plt.plot (range (1, 10), MDS_stress)
plt.xticks (range(1l, 5, 2))
plt.title('Plot of stress')
plt.xlabel ('Number of components')
plt.ylabel ('Stress values')
plt.show()

Plot of stress

3.0 1

25

20 A

15

Stress values

10 1

0.5 A1

0.0 A1

Number of components

Figure 6.9 Scree plot to select the optimized number of components

Run the solution for the number of components = 3. If we look at the values of
stress, number of components = 3, it generates the minimum value of stress as

0.00665 (see figure 6:10):

mds = MDS(n_components=3)
x = mds.fit transform(df scaled)
cities = ['A','B','C','D','E"]

plt.figure(figsize=(5,5))
plt.scatter(x[:,0],x[:,1])
plt.title('MDS with Sklearn')

for label, x, y in zip(cities, x[:, 0], x[:, 11):
plt.annotate (
label,
xy = (x, v),
xytext = (-10, 10),
textcoords = 'offset points'
)
plt.show()

print (mds.stress)

This concludes our discussion on the MDS algorithm. We discussed the foundation
and concepts, pros and cons, algorithm assessment, and Python implementation of
MDS. As one of the nonlinear dimensionality reduction methods, it is a great solution
for visualization and dimensionality reductions.

6.4

6.4 tdistributed stochastic neighbor embedding 189

MDS with sklearn
D
®
E
0.4 1 o
02
0.0 A
A
®
-0.2
C
@
-0.4 4 B. Figure 6.10 Output for the MDS dataset:
representation of the five cities in a plot

t-distributed stochastic neighbor embedding

If a dataset is really high dimensional, the analysis becomes cumbersome. The visual-
ization is even more confusing. We have covered that in great detail in the curse of
dimensionality section in chapter 3. You are advised to revisit the concept before pro-
ceeding if you need a refresher.

One such really high-dimensional dataset can be image data. We find it difficult to
comprehend such data due to anything beyond 3 dimensions being increasingly diffi-
cult for us to intuit.

You may have used facial recognition software on your smartphone. For such solu-
tions, facial images have to be analyzed, and machine learning models have to be
trained. Look at the pictures in figure 6.11: we have a human face, a bike, a vacuum
cleaner, and a screen capture of a phone.

Image is a complex data type. Each image is made up of pixels, and each pixel can
be made up of RGB (red, green, blue) values. Values for each of the RGB can range
from 0 to 255. The resulting dataset will be a very high-dimensional dataset.

Figure 6.11 Images are quite complex to decipher by an algorithm. Images can be of
any form and can be of a person, a piece of equipment, or even a phone screen.

190

CHAPTER 6 Dimensionality reduction

Now recall PCA, which we studied in chapter 3. PCA is a linear algorithm. Thus, its
capability to resolve nonlinear and complex polynomial functions is limited. More-
over, when a high-dimensional dataset has to be represented in a low-dimensional
space, the algorithm should keep similar data points close to each other, which can be
a challenge in linear algorithms. PCA, as a linear dimension reduction technique,
tries to separate the different data points as far away from each other as possible, and
tries to maximize the variance captured in the data. The resulting analysis is not
robust and might not be best suited for further use and visualization. Hence, we have
nonlinear algorithms like t-SNE to help.

t-SNE is a nonlinear dimensionality reduction technique that is quite handy for
high-dimensional data. Itis based on stochastic neighbor embedding, which was devel-
oped by Sam Roweis and Geoffrey Hinton. The t-distributed variant was proposed by
Lauren van der Maaten. Thus, t-SNE is an improvement of the SNE algorithm.

At a high level, SNE measures the similarity between instance pairs in a high-dimen-
sional space and in a low-dimensional space. A good solution is where the difference
between these similarity measures is the least, and SNE then optimizes these similarity
measures using a cost function similar to what we have discussed for MDS.

We examine the step-by-step process of -SNE next. The process described is a little
heavy on mathematics:

Consider a high-dimensional space and some points in it.

Measure the similarities between the various points in the high-dimensional
space mentioned in the last point. For a point x;, we will then create a Gaussian
distribution centered at that point. We have already studied Gaussian or normal
distribution in chapter 2. The Gaussian distribution is shown in figure 6.12.

I I I I | o | I
10
| 02=20.2, m—
- 02=1.0, =]
o8| 0?=50, |
- 0?=0.5, ==
~—~ 06
a2 _'
s | i
S 04
0.2
0.0
| | | | 1. " | | | |
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 6.12 Gaussian or normal distribution.

6.4.1

6.4 tdistributed stochastic neighbor embedding 191

Measure the density of points (let’s say x;) that fall under that Gaussian distribu-
tion and then renormalize them to get the respective conditional probabilities
(pji)- For the points that are nearby and hence similar, this conditional proba-
bility will be high, and for the points that are far and dissimilar, the value of
conditional probabilities (p;);) will be very small. These values of probabilities
are those in the high-dimensional space. For curious readers, the mathematical
formula for this conditional probability is presented as equation 6.4

12
! (6.4)

llt —a ||
Dki €XP (—T

pjli =

where o is the variance of the Gaussian distribution centered at x;. The mathe-
matical proof is beyond the scope of this book.

Measure one more set of probabilities in the low-dimensional space. For this set
of measurements, we use the Cauchy distribution, described next. We use Kull-
back-Liebler (KL) divergence for measuring the difference between two proba-
bility distributions.

Cauchy distribution

The Cauchy distribution belongs to the family of continuous probability distributions.
Though there is a resemblance with the normal distribution, as we have represented

in figure 6.13, the Cauchy distribution has a narrower peak and spreads out more

04r

035

011

0.05

standard normal
Cauchy

0
-10

6 8 10

Figure 6.13 Comparison of Gaussian distribution vs. Cauchy distribution. (Image source: Quora)

192

CHAPTER 6 Dimensionality reduction

slowly. It means that, compared to a normal distribution, the probability of obtaining
values far from the peaks is higher. Sometimes, the Cauchy distribution is known as
the Lorentz distribution. It is interesting to note that Cauchy does not have a well-
defined mean, but the median is the center of symmetry.

Consider we get y; and y; as the low-dimensional counterparts for the high-
dimensional data points x; and x;. So we can calculate the probability score like
we did in the last step. Using the Cauchy distribution, we can get a second set of
probabilities ¢;|; too. The mathematical formula is shown in equation 6.5:

exp (—Ily; — ¥;11%)
Sz xp (=lyi —mell?)

qjli = (6.5)

So far, we have calculated two set of probabilities (p;;) and (gj;). In this step,
we compare the two distributions and measure the difference between the two.
In other words, while calculating (p;;) we measured the probability of similarity
in a high-dimensional space whereas for (¢;;) we did the same in a low-dimen-
sional space. Ideally, the mapping of the two spaces is similar, and for that, there
should not be any difference between (p;);) and (gj;). So the SNE algorithm
tries to minimize the difference in the conditional probabilities (p;);) and (gj;),
similar to what we have done with MDS for the distance in high- and low-dimen-
sional spaces.

The difference between the two probability distributions is done using KL
divergence.

DEFINITION KL divergence or relative entropy is used to measure the differ-
ence between two probability distributions. Usually, one probability distribu-
tion is the data or the measured scores, and the second probability
distribution is an approximation or the prediction of the original probability
distribution—for example, if the original probability distribution is X and
the approximated one is Y. KL divergence can be used to measure the differ-
ence between X and Y probability distributions. In absolute terms, if the
value is 0, then it means that the two distributions are identical. The KL
divergence is applicable for neurosciences, statistics, and fluid mechanics,
among others.

To minimize the KL cost function, we use the gradient descent approach. We
have already discussed the gradient descent approach in section 6.2 where we
discussed the MDS algorithm.

There is one more important factor we should be aware of while we work on t-SNE,
and that is perplexity. Perplexity is a hyperparameter that allows us to control and opti-
mize the number of close neighbors each of the data points has.

NOTE As per the official paper, a typical value for perplexity lies between 5
and 50.

https://shortener.manning.com/nRVa
https://shortener.manning.com/nRVa

6.4.2

6.4 tdistributed stochastic neighbor embedding 193

There can be one additional nuance: the output of a t-SNE algorithm might never be
the same on successive runs. We have to optimize the values of the hyperparameters to
receive the best output.

Exercise 6.2

Answer these questions to check your understanding:
Explain Cauchy distribution in your own words.
PCA is a nonlinear algorithm. True or False?

KL divergence is used to measure the difference between two probability distri-
butions. True or False?

Python implementation of t-SNE

We will use two datasets in this example. The first one is the Iris dataset, which we have
already used more than once in this book. The second dataset is quite an interesting
one: the MNIST dataset is a database of handwritten digits. It is one of the most
famous datasets used to train image processing solutions and generally is considered
the “Hello World” program for image detection solutions. An image representation is
shown figure 6.14.

00000000 pODOOY 0 OO
A U D W U AR S R R U B B TV A |
2AAd 2223272227122 %22LA
3333332933333 33
Hg A9 Yy #4444\ ¥y
5 58535SS58595s 55555
6 6bblLEbbbace ébeel
T797777710720712%F777
¥ 88 8P B P TT ST & T 8
?199999%99%4994999 Figuwe6.14 MNIST dataset

The steps for the Iris dataset are as follows:

Import the necessary libraries. Note that we have imported the MNIST dataset
from the keras library.

rom sklearn.manifold import TSNE

from keras.datasets import mnist

from sklearn.datasets import load iris
from numpy import reshape

import seaborn as sns

import pandas as pd

194 CHAPTER 6 Dimensionality reduction

TIP If you are not able to install modules in your Python code, refer to the
appendix where we provide a solution.

Load the Iris dataset. The dataset comprises two parts: one is the “data” and the
second is the respective label or “target” for it. It means that “data” is the
description of the data and “target” is the type of iris. We print the features and
the labels using code:

iris = load iris()

iris data = iris.data

iris_target = iris.target

iris.feature names

iris.target names

Invoke the t-SNE algorithm. We are using the n_components=2, verbose=1, and
random_state=5 to reproduce the results. Then the algorithm is used to fit the
data (see figure 6.15):

tsne = TSNE(nfcomponents:Z, verbose=1, randomﬁstate:S)
fitted data = tsne.fit transform(iris data)

In [31}: 1 tsne = TSNE(n components=2, verbose=1l, random state=5)
2 fitted data = tsne.fit transform(iris_data)

[t-SNE] Computing 91 nearest neighbors...

[t-SHE] Indexed 150 samples in 0.000s...

[t-SNE] Computed neighbors for 150 samples in 0.003s...

[t-S5NE] Computed conditional probabilities for sample 150 / 150

[t=SNE] Mean sigma: 0.509910

[t-SNE] KL divergence after 250 iterations with early exaggeration: 52.932037
[t-SNE] KL divergence after 1000 iterations: 0.123070

Figure 6.15 Output of the code when we are fitting the algorithm

Plot the data. This step allows us to visualize the data fitted by the algorithm in
the last step.

First, we will initiate an empty dataframe. We will add three columns, one at a time.
We start with iris_target, followed by tSNE_first_component and tSNE_second_
component. tSNE_first component is the first column of the fitted data dataframe,
and therefore the index is 0. tSNE_second component is the second column of the
fitted_data dataframe and hence the index is 1. Finally, we represent the data in a
scatterplot in figure 6.16:

iris df = pd.DataFrame ()

iris df["iris target"] = iris_ target

iris df["tSNE first component"] = fitted datal:,0]
iris df ["tSNE_second component"] = fitted datal:,1]

6.4 tdistributed stochastic neighbor embedding 195

sns.scatterplot (x="tSNE_first component", y="tSNE_second component',
hue=iris df.iris_target.tolist(),
palette=sns.color palette("hls", 3),
data=iris_df) .set (title="Iris data tSNE projection")

Iris data t-SNE projection

10 A -ﬁa%f'#ﬁ%

N = O

[]

o
L

b

tSNE_second_component

|
—
o

L

|
—
%

T T T T T T T T
-20 -15 -10 -5 0 5 10 15
SNE_first_component

Figure 6.16 t-SNE projection of the Iris dataset. Note how we are getting
three separate clusters for the three classes we have in the dataset.

To implement the algorithm for the MNIST dataset, load the libraries and dataset.
The libraries were already loaded in the last code example. Now load the dataset. The
dataset requires reshape, which is done here (see figure 6.17):

(digit, digit label), (_ ,) = mnist.load data()

digit = reshape(digit, [digit.shape[0], digit.shapel[l] *digit.shapel2]])
Step 2: the subsequent steps are exactly same to the last example we used.
tsne MNIST = TSNE(n_components=2, verbose=1, random state=5)

fitted data = tsne MNIST.fit transform(digit)

mnist df = pd.DataFrame ()

mnist df ["digit label"] = digit_ label

mnist df ["tSNE_first component"] = fitted datal:,0]
mnist df ["tSNE_ second component"] = fitted datal:,1]

sns.scatterplot (x="tSNE_first component", y="tSNE second component",
hue=mnist df.digit label.tolist (),
palette=sns.color palette("hls", 10),
data=mnist df) .set (title="MNIST data T-SNE projection")

196

6.5

CHAPTER 6 Dimensionality reduction

MNIST data t-SNE projection

6{) 4

40 -
i
& ®
g 20
E
S, ‘
B 0
3)
@ °
w' =201 o
bl pe Figure 6.17 Output of t-SNE

401 o for the 10 classes of digits
® 4 represented in different
= shades of gray

—40 =20 0 20 40 60
tSNE_first_component

There are a few important points to keep in mind while running t-SNE:

= Run the algorithm with different values of hyperparameters before finalizing a
solution.

= Ideally, perplexity should be between 5 and 50, and for an optimized solution,
the value of perplexity should be less than the number of points.

= T-SNE guesses the number of close neighbors for each of the points. For this
reason, a dataset that is denser will require a much higher perplexity value.

= Note that perplexity is the hyperparameter that balances the attention given to
both the local and the global aspects of the data.

t-SNE is a widely popular algorithm. It can be used for studying the topology of an
area, but a single t-SNE cannot be used for making a final assessment. Instead, multi-
ple tSNE plots should be created to make any final recommendation. Sometimes
there are complaints that t-SNE is a black-box algorithm. This might be true to a cer-
tain extent. What makes the adoption of t-SNE harder is that it does not generate the
same results in successive iterations. Hence, you might find t-SNE recommended only
for exploratory analysis.

Uniform manifold approximation projection

UMAP is a powerful and popular dimensionality reduction technique. It is designed
to preserve both the local and global structures of the dataset while reducing the com-
plexity and dimensions of the high-dimensional dataset to a low-dimensional dataset.
UMAP was introduced in 2018 by Lealand Mclnnes, John Healy, and James Mel-
ville. UMAP makes the data more suitable for visualizations and data analysis. This
relates to the concepts of topology and manifold theory. UMAP assumes that the high-
dimensional dataset often lies on a manifold, which means a low-dimensional struc-
ture is embedded in a higher-dimensional space. Hence, it attempts to project this
manifold into a lower dimensional space, preserving both the nearest neighbor

6.5.1

6.5.2

6.5 Uniform manifold approximation projection 197

relationships, which is nothing but the local structure, and the larger relationships,
which is the global structure.

Working with UMAP

UMAP methodology uses the concept of fuzzy simplicity sets. These sets represent the
probability distribution of distances between various data points and capture the
underlying manifold structures.

The first step in UMAP is to construct a weighted graph where each of the data
points is connected to its nearest neighbor based on a distance metric. Generally, the
Euclidean distance is used as the distance metric. This graph construction is an
abstract representation of the data structure in high dimensions.

The next step is to optimize the graph. The graph is optimized in a lower dimen-
sion space by minimizing cross-entropy loss between the original high-dimensional
relationships and the newly created low-dimensional relationships. This uses the sto-
chastic gradient descent, producing the UMAP embeddings. We will study stochastic
gradient descent in chapter 9.

There are two key parameters for UMAP:

n_neighbours—The number of nearest neighbors to consider for each point.
Using this parameter, we balance the preservation of the local data structure as
compared to the global data structure.

min_dist—This is used to control how tightly the points are clustered together.
Smaller values of minimum distance keep the points much closer and hence
create deeper clusters. The larger value for minimum distance will create
lighter clusters, which are spread out.

Using UMAP
The various uses of UMAP are as follows:

One of the most popular uses of UMAP is the visualization of high-dimensional
datasets in the bioinformatics field. Gene datasets are quite complex and multi-
dimensional, where each data point might be represented by hundreds or thou-
sands of attributes. Using UMAP, researchers can virtually inspect the clusters
and the underlying relationships in the dataset. The solution helps them iden-
tify cell types, developmental stages, and gene expression patterns.

UMAP is also applied to the natural language processing field by reducing the
dimensionality of embeddings. It helps in the visualization of relationships
between words or sentences or documents, making it easier to understand the
similarities.

UMAP can also be applied to images. It helps in the visualization of the plaster-
ing of images based on various similarities, hence it is quite useful for competi-
tive vision tasks to understand how similar images can be clustered together.
UMAP can be used with other clustering algorithms like k-means or DBSCAN.
It can uncover the hidden patterns in large datasets and since it preserves both

198

6.5.3

6.6

CHAPTER 6 Dimensionality reduction

local and global structures, the clusters found in lower dimensional representa-
tions often provide more important groupings as compared to the original
high-dimensional dataset.

In addition to helping with visualizations, UMAP can also be used as a preprocessing
step to reduce the dimensions of data. It can be used as an alternative to PCA or other
solutions. By reducing the number of dimensions in a dataset, the model’s perfor-
mance might be improved and the computation time is reduced.

The use of UMAP in Python is straightforward. The library umap-1learn allows us to
use the power of UMAP.

Key points of UMAP
Let’s now cover the key points of UMAP and compare it to other algorithms:

Since UMAP is a nonlinear solution, it can capture more complex datasets and
patterns as compared to PCA. Recall that PCA is a linear dimensionality tradi-
tion technique, so when the data is not on a simple linear manifold, UMAP
proves to be more accurate.

The goal of PCA is to explain the maximum variance in the entire dataset. On
the other hand, UMAP balances both local and global structures and hence is
more versatile for tasks like anomaly detection.

As compared to PCA, UMAP can be used for larger datasets.

UMAP is faster than the other nonlinear solution, t-SNE. t-SNE can preserve the
local structure of the data, but it struggles with preserving the global structure,
and it can lead to a misleading interpretation of the clusters. UMAP does a bet-
ter job as it preserves both local and global structures.

UMAP results are much more stable and consistent across multiple iterations.
For other algorithms, the results can be unstable and might change with differ-
ent values of random seeds.

UMAP has gained a lot of popularity recently and has become a go-to tool for
machine learning and Al solutions. It is fast and can preserve both local and global
data structures. Hence it is a strong option compared to other dimensionality reduc-
tion solutions like PCA, t-SNE, and autoencoders.

Case study

In chapter 3, we explored a case study for the telecom industry reducing dimensional-
ity. In this chapter, we will examine a small case study wherein t-SNE or MDS can be
utilized for dimensionality reduction.

Have you heard about hyperspectral images? As you know, we humans see the col-
ors of visible light in mostly three bands: long, medium, and short wavelengths. The
long wavelengths are perceived as red, medium as green, and short as blue. All the
other colors human beings perceive are simply mixtures of these three, and that is
what allows screens and printers to work with only three colors. Spectral

6.6 Case study

imaging, on the other hand, divides the spec-
trum into many more bands, and this technique
can be extended beyond the visible and hence is
used across biology, physics, geoscience, astron-
omy, agriculture, and many more avenues.
Hyperspectral imaging collects and processes
information from across the electromagnetic
spectrum. It obtains the spectrum for each of the
pixels in the image. See figure 6.18.

One such dataset is the Pavia University data-
set. The dataset is curated by the ROSIS sensor
in Pavia, northern Italy. The details of the dataset
are given next, and the dataset can be down-
loaded from https://mng.bz/nRVa.

There are 103 spectral bands in this dataset.
The HIS size is 610 * 340 pixels, and it contains
nine classes. Such a type of data can be used for

199

Figure 6.18 Hyperspectral image of
“sugar end” potato strips shows
invisible defects (Source:
SortingExpert, CC BY-SA 3.0)

crop analysis, mineral examination and exploration, etc. Since this data also contains

information about geological patterns, it is quite useful for scientific purposes. Before

developing any image recognition solution, we have to reduce the number of dimen-
sions for this dataset. The computation cost will be much higher if we have a large
number of dimensions. Hence, we want a lower representative number of dimensions.
Figure 6.19 shows a few example bands. You are advised to download the dataset
(which is also pushed at the GitHub repository) and use the various dimensionality

reduction techniques on the dataset to reduce the number of dimensions. There can
be many other image datasets and complex business problems where t-SNE and MDS

can be of pragmatic use.

Band - 25 Band - 9
Band - 29 Band - 63

Band - 53

Band - 14

Figure 6.19
Example of bands in
the dataset. These
are only random
examples.

https://mng.bz/nRVa

200

6.7

6.8

CHAPTER 6 Dimensionality reduction

Concluding thoughts

Dimensionality reduction is quite an interesting and useful field. It makes machine
learning less expensive and less time-consuming. Imagine that you have a dataset with
thousands of attributes or features. You do not know the data very well, the business
understanding is limited, and, at the same time, you have to find the patterns in the
dataset. You are not even sure if the variables are all relevant or just random noise. At
such a moment, when we want to make the dataset less complex to crack and reduce
the computational time, dimensionality reduction is the solution.

We covered dimensionality reduction techniques earlier in the book. This chapter
covers three advanced techniques: t-SNE, MDS, and UMAP. All three techniques
should not be considered a substitute for the other, easier techniques we discussed.
Rather, they can be useful if we are not getting meaningful results with basic algo-
rithms. It is always advised to use PCA first and then try the advanced techniques.

The complexity of the book is increasing. This chapter started with images—but
we have only wet our toes. In the next chapter, we deal with text data. Perhaps you will
find it very interesting and useful.

Practical next steps and suggested readings
The following provides suggestions for what to do next and offers some helpful
reading:
Use the vehicles dataset used in chapter 2 for clustering and implement MDS
on it. Compare the performance on clustering before and after implementing
MDS.
Get the datasets used in chapter 2 for Python examples and use them for imple-
menting MDS.
For MDS, refer to the following research papers:

— “Dimensionality Reduction: A Comparative Review,” by Lauren van der
Maaten, Eric Postma, and H. Japp Van Den Herik: https://mng.bz/eyxQ

— “Multidimensional Scaling-Based Data Dimension Reduction Method for
Application in Short-Term Traffic Flow Prediction for Urban Road Network,”
by Satish V. Ukkusuri and Jian Lu: https://mng.bz/pKmz

Get t-SNE research papers from the following links and study them:

— “Visualizing Data Using t-SNE,” by Laurens van der Maaten and Geoffrey
Hinton: https://mng.bz/OBaE

— “The Art of Using t-SNE for Single Cell Transcriptomics”: https://mng.bz/
YD9A

See the paper “Performance Evaluation of t-SNE and MDS Dimensionality
Reduction Techniques with KNN, SNN, and SVM Classifiers”: https://arxiv.org/
pdf/2007.13487.pdf

https://mng.bz/OBaE
https://arxiv.org/pdf/2007.13487.pdf
https://arxiv.org/pdf/2007.13487.pdf
https://mng.bz/YD9A
https://mng.bz/YD9A
https://mng.bz/pKmz
https://mng.bz/eyxQ

Summary 201

Summary
MDS is a dimensionality reduction technique that transforms high-dimensional
data into a lower-dimensional space while preserving distances.
There are three types of MDS: classical, metric, and nonmetric.
Classical MDS uses Euclidean distances, aligning original and fitted distances.
Nonmetric MDS ranks distances rather than using absolute values.
Metric MDS transforms distances to fit a lower dimensional space.
MDS involves calculating distances and optimizing a stress cost function with
gradient descent, though it can be computationally intensive and is prone to
local minima problems.
MDS works iteratively and does not make assumptions about data distribution,
making it versatile for choosing distance metrics compared to PCA.
t-SNE is a nonlinear dimensionality reduction technique and is particularly
effective for high-dimensional and complex datasets like images.
t-SNE optimizes similarity between data points in both high- and low-dimen-
sional spaces using the Cauchy distribution and KL divergence.
t-SNE has an edge over PCA due to its nonlinear nature, though it involves
hyperparameters like perplexity.
UMAP is another dimensionality reduction method that efficiently preserves
both local and global data structures and is faster and more stable than t-SNE.
Python implementations are available for both MDS and t-SNE.
MDS is one of the advanced dimensionality reduction techniques, requiring
optimization of a loss function or cost function.

Unsupervised learning
Jor text data

This chapter covers

Text data analysis: use cases and challenges
Preprocessing and cleaning text data
Vector representation methods for text data

Sentiment analysis and text clustering using
Python

Generative Al applications for text data

Everybody smiles in the same language.
—George Carlin

Our world has so many languages. These languages are the most common medium
of communication to express our thoughts and emotions. These words can be writ-
ten into text. In this chapter, we explore the sorts of analysis we can do on text data.
Text data falls under unstructured data and carries a lot of useful information and
hence is a useful source of insights for businesses. We use natural language process-
ing (NLP) to analyze the text data.

202

7.1

7.2

7.2 Text data is everywhere 203

At the same time, to analyze text data, we have to make the data analysis-ready. Or,
in very simple terms, since our algorithms and processors can only understand num-
bers, we have to represent the text data in numbers or vectors. We will explore all these
steps in this chapter. Text data holds the key to quite a few important use cases, such as
sentiment analysis, document categorization, and language translation, to name a few.
We will cover the use cases using a case study and develop a Python solution on the
same.

The chapter starts with defining text data, sources of text data, and various use cases
of text data. We will then move on to the steps and processes to clean and handle the
text data. We cover the concepts of NLP, mathematical foundations, and methods to
represent text data into vectors. We will create Python codes for the use cases. Toward
the end, we share a case study on text data. Finally, we will also look into the generative
Al-based (GenAl) solutions. We have not covered GenAl concepts yet in the book, as
they are in part 3. But here we introduce the concepts in the light of text data.

Welcome to the seventh chapter, and all the very best!

Technical toolkit

We will continue to use the same version of Python and Jupyter Notebook as we have
used so far. The codes and datasets used in this chapter have been checked in at the
same GitHub location.

You need to install the following Python libraries for this chapter: re, string, nltk,
1xml, requests, pandas, textblob, matplotlib, sys, sklearn, scikitlearn, and
warnings. Along with these, you will need numpy and pandas. With libraries, we can
use the algorithms very quickly.

Text data is everywhere

Recall in the very first chapter of the book we explored structured and unstructured
datasets. Unstructured data can be text, audio, image, or video. Examples of unstruc-
tured data and their respective sources are given in figure 7.1, where we explain the
primary types of unstructured data—text, images, audio, and video—along with exam-
ples. The focus of this chapter is on text data.

— Text data
— Images data l Product images, objects ‘

Facebook reviews, tweets, customer
complaints, product reviews

- Audio data l Call center recordings, radio ads ‘ Figure 7.1 Unstructured data can

be text, images, audio, or video. We

* YouTube videos, product videos, deal with text data in this chapter.
video ads, product shoots This list is not exhaustive.

204

7.3

CHAPTER 7 Unsupervised learning for text data

Language is perhaps our greatest tool for communication. When in written form, this
becomes text data. Today, thanks to widely accessible computers and smartphones,
text is everywhere. It is generated by writing blogs and social media posts, tweets, com-
ments, stories, reviews, chats, and comments, to name a few. Text data is generally
much more direct than images and can be emotionally expressive. It is useful for busi-
nesses to unlock the potential of text data and derive insights from it. They can under-
stand customers better, explore the business processes, and gauge the quality of
services offered.

Have you ever reviewed a product or a service on Amazon? You award stars to a
product; at the same time, you can also input free text. Go to Amazon and look at
some of the reviews. You might find some reviews have a good amount of text as the
feedback. This text is useful for the product/service providers to enhance their offer-
ings. Also, you might have participated in a few surveys that ask you to share your feed-
back. Moreover, with the advent of Alexa, Siri, Cortona, etc., the voice command acts
as an interface between humans and machines—which is again a rich source of data.
Even the customer calls we make to a call center can be transcribed so that they
become a source of text data. These calls can be recorded, and using speech-to-text
conversion, we can generate a huge amount of text data.

Use cases of text data

Not all the use cases discussed in this section can implement unsupervised learning.
Some require supervised learning too. Nevertheless, for your knowledge, we share
both types of use cases, based on supervised learning and unsupervised learning:

Sentiment analysis—You might have participated in surveys or given your feed-
back on products/surveys. These surveys generate tons of text data. That text
data can be analyzed, and we can determine whether the sentiment in the
review is positive or negative. In simple words, sentiment analysis gauges the
positivity or negativity of the text data. Hence, we can see the sentiment about a
product or service in the minds of the customers. We can use both supervised
and unsupervised learning for sentiment analysis.

News categorization or document categorization—Look at the Google News web page
and you will find that each news item has been categorized to sports, politics,
science, business, or another category. Incoming news is classified based on the
content of the news, which is the actual text. Imagine the thousands of docu-
ments that are sorted in this manner. In this use case, it is clear that machine
learning is ideal, given the unfeasible amount of time and effort that would be
required to sort such items manually. Supervised learning solutions work well
for such problems.

Language translation—Translation of text from one language to another is a
very interesting use case. Using NLP, we can translate between languages.
Language translation is very tricky, as different languages have different

74

7.4 Challenges with text data 205

grammatical rules. Generally, deep learning—based solutions are the best fit for
language translation.

Spam filtering—Email spam filters can be set up using NLP and supervised
machine learning. A supervised learning algorithm can analyze incoming mail
parameters and give a prediction if that email belongs to a spam folder or not.
The prediction can be based on various parameters like sender email ID, sub-
ject line, body of the mail, attachments, time of mail, etc. Generally, supervised
learning algorithms are used here.

Part-of-speech tagging—This is one of the popular use cases. It means that we can
distinguish the nouns, adjectives, verbs, adverbs, etc., in a sentence. Named-
entity recognition is also one of the famous applications of NLP. It involves
identifying a person, place, organization, time, or number in a sentence. For
example, John lives in London and works for Google. Named-entity recognition
can generate understanding like [John]peyo, lives in [London]ygcagon and
works for [Google] o rganization-

Sentence generation, captioning the images, speech-to-text or text-to-speech tasks,
and handwriting recognition—These are a few other significant and popular use
cases.

The use cases listed here are not exhaustive. There are tons of other use cases that can
be implemented using NLP. NLP is a very popular research field too. We share some
significant papers at the end of the chapter.

You might have also heard about large language models (LLMs) like ChatGPT,
Bard, and Claude. They are algorithms that process natural language inputs and pre-
dict the next word based on what they have already seen. With GenAl in the picture, a
lot of the use cases can be solved by simply calling the API. ChatGPT can communi-
cate like a human with memory and serves as customer support for many services.
LLMs can summarize hundreds of pdf documents. You can even create applications
that can be used for getting answers from multiple documents and websites. Certainly,
GenAl has enhanced the power here.

While text data is very important, at the same time it is quite difficult to analyze.
Remember, our computers and processors understand only numbers. So the text
needs to be represented as numbers so we can perform mathematical and statistical
calculations on it. Before diving into the preparation of text data, we cover some of
the challenges we face while working on text datasets.

Challenges with text data

Text is a difficult data type to work with. There are a large number of permutations to
express the same thought. For example, I might ask, “Hey buddy, what is your age?” or
“Hello there, may I know how old are you?”—they mean the same, right? The answer
to both the questions is the same, and it is quite easy for humans to decipher, but it
can be a daunting task for a machine.

206

CHAPTER 7 Unsupervised learning for text data

Some of the most common challenges we face in this area are as follows:

Text data can be complex to handle. There can be a lot of junk characters like

$7%*& present in the text.

With the advent of modern communications, we have started to use short forms

of words; for example, “u” can be used for “you,” “brb” for “be right back,” and

so on. Additionally, the challenge is where the same word might mean some-

thing different to different people, or misspelling a single letter can change the

complete meaning of the word.

Language is changing, unbounded, and ever-evolving. It changes every day and

new words are added to the language. If you do a simple Google search, you will

find that quite a few words are added to the dictionary each year.

The world has close to 6,500 languages, and each one carries its own unique

characteristics. Each and every one completes our world. Each language follows

its own rules and grammar, which are unique in usage and pattern. Even the

writing can be different: some are written left to right, some right to left, and

some even vertically. The same emotion might take fewer or more words in dif-

ferent languages.

The meaning of a word is dependent on the context. A word can be both an

adjective and a noun, depending on the context. Consider these examples:

— “This book is a must-read” and “Please book a room for me.”

— “Tommy” can be a name, but when used as “Tommy Hilfiger” its usage is
completely changed.

— “Apple” is both a fruit and a company.

— “April” is a month and can be a name too.

Look at one more example: “Mark traveled from the UK to France and is work-
ing with John over there. He misses his friends.” Humans can easily understand
that “he” in the second sentence is Mark and not John, which might not be that
simple for a machine.

There can be many synonyms for the same word, like “good” can be replaced by

”

“positive,” “wonderful,” “superb,” or “exceptional” in different scenarios. Words
like “studying,” “studious,” and “studies” are related to the same root word
“study.”

The size of text data can be daunting too. Managing a text dataset, storing it,
cleaning it, and refreshing it is a herculean task.

Like any other machine learning project, text analytics follows the principles of
machine learning, albeit the precise process is slightly different. Recall in chapter 1 we
examined the process of a machine learning project, as shown in figure 7.2. You are
advised to refresh your memory on the process from chapter 1 if needed.

7.6 Data cleaning 207

% Data science project steps

Archetype segmentation

Data Data Model Text mining using Business outcome
input preprocessing dataset Identify clusters within cosine-similarity

data * Extracted segments

based on customer
buying habits

* Variable dependency
graphs and their
implication on sales

Bayesian belief networks

Survey

Identify key factors
@ in user experience

Identify variable change
implication

Figure 7.2 The overall steps in a data science project are the same for text data. The preprocessing of text data
is very different from the structured dataset.

Defining the business problem, data collection and monitoring, etc., remain the same.
The major difference is in the processing of the text, which involves data cleaning, cre-
ation of features, representation of text data, etc. We will cover this in the next section.

Exercise 7.1
Answer these questions to check your understanding:

Note the three most effective use cases for the text data.
Why is working on text data so tedious?

7.5 Preprocessing the text data

Text data, like any other data source, can be messy and noisy. We clean some of it in
the data discovery phase and a lot of it in the preprocessing phase. At the same time,
we should extract the features from our dataset. Some of the steps in the cleaning pro-
cess are common and can be implemented on most text datasets. Some text datasets
might require a customized approach. We start with cleaning the raw text data.

7.6 Data cleaning

As with any form of data analysis, ensuring good data quality is vital. The cleaner the
text data, the better the analysis. At the same time, preprocessing is not a straightfor-
ward task but rather is complex and time-consuming.

208 CHAPTER 7 Unsupervised learning for text data

Text data must be cleaned as it contains a lot of junk characters, irrelevant words,
noise and punctuation, URLS, etc. The primary ways of cleaning the text data are

Stopping word removal—Out of all the words that are used in any language, there
are some words that are most common. Stop words are the most common
words in a vocabulary that carry less importance than key words. Examples are
“is,” “an,” “the,” “a,” “be,” “has,” “had,” “it,” etc. Once we remove the stop words
from the text, the dimensions of the data are reduced and hence the complex-
ity of the solution is reduced.

We can define a customized list of stop words and remove them that way, or

there are standard libraries to remove the stop words.

At the same time, it is imperative that we understand the context very well
while removing the stop words. For example, if we ask a question “is it raining?”
then the answer “it is” is a complete answer in itself. When we are working with
solutions where contextual information is important, we do not remove stop
words.

Frequency-based removal of words—Sometimes you might wish to remove the words
that are most common in your text or that are very unique. The process is to get
the frequency of the words in the text and then set a threshold of frequency. We
can remove the most common ones. Or maybe you wish to remove the ones
that have occurred only once/twice in the entire dataset. Based on the require-
ments, you will decide. At the same time, we should be cautious and observe
due diligence while removing the words.

Library-based cleaning—This is done when we wish to clean the data using a pre-
defined and customized library. We can create a repository of words that we do
not want in our text and iteratively remove them from the text data. This
approach allows us flexibility to implement the cleaning of our own choice.
Junk or unwanted characters—Text data, particularly tweets, comments, etc.,
might contain a lot of URLs, hashtags, numbers, punctuations, social media
mentions, special characters, etc. We might need to clean them from the text.
At the same time, we should be careful as some words that are not important for
one domain might be required for a different domain. If data has been scraped
from websites or HTML/XML sources, we need to get rid of all the HTML enti-
ties, punctuations, nonalphabet characters, and so on.

TIP Always keep business context in mind while cleaning the text data.

As we know, a lot of new types of expressions have entered the language—for
example, lol, hahahaha, brb, rofl, etc. These expressions are to be converted to
their original meanings. Even emojis like :-), ;-), etc., should be converted to
their original meanings.

Data encoding—There are a few data encodings available like ISO/IEC, UTF-8,

etc. Generally, UTF-8 is the most popular one. But it is not a hard and fast rule
to always use UTF-8 only.

7.7

7.7 Extracting features from the text dataset 209

Lexicon normalization—Depending on the context and usage, the same word
might get represented in different ways. During lexicon normalization, we
clean such ambiguities. The basic idea is to reduce the word to its root form.
Hence, words that are derived from each other can be mapped to the central
word, provided they have the same core meaning.

Figure 7.3 shows that the same word, “eat,” has been used in various forms. The
root word is “eat,” but these different forms demonstrate the many different
representations for “eat.”

Figure 7.3 “Ate,” “eaten,”
“eats,” and “eating” all have
the same root word: “eat.”

can be used to get the root word.

”

Here, we wish to map all these words like “eating,” “eaten,” etc., to their central
word, “eat,” as they have the same core meaning. There are two primary meth-

ods to work on this:

— Stemming is a basic rule-based approach for mapping a word to its core word.
It removes “es,” “ing,” “ly,” “ed,” etc., from the end of the word. For example,
studies will become “studi” and “studying” will become “study.” Being a rule-
based approach, the output spellings might not always be accurate.

— Lemmatization is an organized approach that reduces words to their dictio-

nary form. The lemma of a word is its dictionary or canonical form. For exam-

« Bl

ple, “eats,” “eating,” “eaten,” etc., all have the same root word “eat.

Lemmatization provides better results than stemming, but it takes more time.

These are only some of the methods to clean text data. These techniques will help,
but business acumen is required to further make sense of the dataset. We will clean
the text data using these approaches by developing a Python solution.

Once the data is cleaned, we start with the representation of data so that it can be
processed by machine learning algorithms, which is our next topic.

Extracting features from the text dataset

We have explored the concepts and techniques to clean up messy text data. Now we
have cleaned the data, and it is ready to be used. The next step is to represent this data
in a format that can be understood by our algorithms. As we know, our algorithms can
only understand numbers.

A very simple technique to encode text data in a way that it can be useful for
machine learning can be to simply perform one-hot encoding on our words and

210

7.8

CHAPTER 7 Unsupervised learning for text data

represent them in a matrix—but certainly not a scalable one if you have a complete
document.

NOTE One-hot encoding is covered in the appendix.

The words can be first converted to lowercase and then sorted in alphabetical order.
Then a numeric label can be assigned to them. Finally, words are converted to binary
vectors. Let us understand using an example.

If the text is “It is raining heavily,” we will use these steps:

Lowercase the words so the output will be “it is raining heavily.”
Arrange them in alphabetical order. The result is heavily, is, it, raining.
Assign place values to each word as heavily:0, is:1, it:2, raining:3.
Transform them into binary vectors as shown here:

[0.0. 1. 0.] #it
[0.1.0.0.] #is
[0.0.0. 1.] #raining
[1.0.0.0.]] #heavily

As we can see, we are able to represent each of the words in binary vectors, where 0 or
1 is the representation for each of the words. Though this approach is quite intuitive
and simple to comprehend, it is pragmatically not possible when we have a massive
corpus and vocabulary.

NOTE Corpus refers to a collection of texts. It is Latin for “body.” It can be a
body of written words or spoken words, which can be used to perform a lin-
guistic analysis.

Moreover, handling massive data sizes with so many dimensions will be computation-
ally very expensive. The resulting matrix thus created will be very sparse too. Hence,
we should consider other means and ways to represent our text data.

There are better alternatives than one-hot encoding. These techniques focus on
the frequency of the word or the context in which the word is being used. This scien-
tific method of text representation is much more accurate, robust, and explanatory.
There are multiple such techniques like term frequency-inverse document frequency
(TF-IDF), the bag of words approach, etc. We discuss a few of these techniques later in
the chapter. First, we need to examine the important concept of tokenization.

Tokenization

Tokenization is simply breaking a text or a set of text into individual tokens. It is the
building block of NLP. Look at the example in figure 7.4, where we have created indi-
vidual tokens for each word of the sentence. Tokenization is an important step as it
allows us to assign unique identifiers or tokens to each of the words. Once we have
allocated each word a specific token, the analysis becomes less complex.

7.9

7.9 BOW approach 211

It is raining heavily outside

Figure 7.4 Tokenization
can be used to break a

1 y j j }
- “ m m sentence into different
tokens of words.

Tokens are usually used on individual words, but this is not always necessary. We are

allowed to tokenize a word or the subwords or characters in a word. In the case of sub-
words, the same sentence can have subword tokens as rain-ing (i.e., rain and ing as
separate subtokens).

If we wish to perform tokenization at a character level, it can be r-a-i-n-i-n-g. In fact,
in the first step of the one-hot encoding approach discussed in the last section, tokeni-
zation was done on the words. Tokenization at a character level might not always be
used.

NOTE Tokenization is the building block for NPL solutions.

Once we have obtained the tokens, the tokens can be used to prepare a vocabulary. A
vocabulary is the set of unique tokens in the corpus.

There are multiple libraries for tokenization. Regexp tokenization uses the given
pattern arguments to match the tokens or separators between the tokens. Whitespace
tokenization treats any sequence of whitespace characters as a separator. Then we
have blankline, which uses a sequence of blank lines as a separator. Finally, wordpunct
tokenizes by matching a sequence of alphabetic characters and a sequence of nonal-
phabetic and nonwhitespace characters. We will perform tokenization when we create
Python solutions for our text data.

Next, we will explore more methods to represent text data. The first such method
is the bag of words (BOW) approach.

BOW approach

As the name suggests, all the words in the corpus are used. In the BOW approach, the
text data is tokenized for each word in the corpus, and then the respective frequency
of each token is calculated. During this process, we disregard the grammar, the order,
and the context of the word. We simply focus on the simplicity. Hence, we will repre-
sent each text (sentence or document) as a bag of its own words.

In the BOW approach for the entire document, we define the vocabulary of the
corpus as all the unique words present in the corpus. Please note we use all the unique
words in the corpus. If we want, we can also set a threshold (i.e., the upper and lower
limit for the frequency of the words to be selected). Once we have the unique words,
each of the sentences can be represented by a vector of the same dimension as the
base vocabulary vector. This vector representation contains the frequency of each
word of the sentence in the vocabulary. It might sound complicated, but it is actually a
straightforward approach.

212 CHAPTER 7 Unsupervised learning for text data

Let us understand this approach with an example. Let’s say that we have two sen-
tences: “It is raining heavily” and “We should eat fruits.” To represent these two sen-
tences, we calculate the frequency of each of the words in these sentences, as shown in
figure 7.5.

It 1 We 1
is 1 should 1
raining 1 eat 1
heavily 1 fruits 1

Figure 7.5 The frequency of
each word has been calculated.

It is raining heavily We should eat fruits In t:'s example, we have two
sentences.

Now if we assume that the words in these two sentences represent the entire vocabu-
lary, we can represent the first sentence as shown in figure 7.6. Note that the table
contains all the words, but the words that are not present in the sentence have
received a value of 0.

eat 0
fruits 0
heavily 1
is 1

it 1
raining 1
should 0
we 0

Figure 7.6 We are assuming that in the vocabulary

It is raining heavily only two sentences are present and the first
sentence will be represented as shown.

In this example, we examined how the BOW approach has been used to represent a
sentence as a vector. But the BOW approach has not considered the order of the
words or the context. It focuses only on the frequency of the word. Hence, it is a very
fast approach to represent the data and is computationally less expensive compared to
its peers. Since it is frequency based, it is commonly used for document classifications.

7.10

7.10 Term frequency and inverse document frequency 213

But, due to its pure frequency-based calculation and representation, solution accu-
racy using the BOW approach can take a hit. In language, the context of the word
plays a significant role. As we have seen earlier, apple is both a fruit as well as a well-
known brand and organization. That is why we have other advanced methods that
consider more parameters than frequency alone. One such method is TF-IDF, which
we will study next.

Exercise 7.2
Answer these questions to check your understanding;:

Explain tokenization in simple language as if you are explaining it to a person
who does not know NLP.

The bag of words approach uses the context of the words and not frequency
alone. True or False?

Lemmatization is a less rigorous approach than stemming. True or False?

Term frequency and inverse document frequency

In the BOW approach, we give importance to the frequency of a word only. But the
words that have a higher frequency might not always offer meaningful information as
compared to words that are rare but carry more importance. For example, say we have
a collection of medical documents, and we wish to compare two words: “disease” and
“diabetes.” Since the corpus consists of medical documents, the word “disease” is
bound to be more frequent, while the word “diabetes” will be less frequent but more
important to identify the documents that deal with diabetes. The term frequency and
inverse document frequency (TF-IDF) approach allows us to resolve this problem and
extract information on the more important words.

In TF-IDF, we consider the relative importance of the word. TF means term fre-
quency, and IDF means inverse document frequency. We can define TF-IDF in this way:

TF is the count of a term in the entire document (for example, the count of the
word “a” in document “D”).

IDF is the log of the ratio of total documents (N) in the entire corpus and the
number of documents (df) that contain the word “a.”

So the TF-IDF formula will give us the relative importance of a word in the entire cor-
pus. The mathematical formula is the multiplication of TF and IDF and is given by
equation 7.1:

w; =[ﬁ,jX10g(d£f) (7.1)

where N is the total number of documents in the corpus, #f;; is the frequency of the
word in the document, and df;is the number of documents in the corpus that contain
that word.

214

7.11

CHAPTER 7 Unsupervised learning for text data

The concept might sound complex. Let’s understand this with an example. Say we
have a collection of 1 million sports journals. These sports journals contain many arti-
cles of various lengths. We also assume that all the articles are in the English language
only. So, let’s say, in these documents, we want to calculate the TF-IDF value for the
words “ground” and “backhand.”

Let’s assume we have a document of 100 words with the word “ground” appearing
five times and “backhand” only twice. So the TF for ground is 5/100 = 0.05, and for
backhand, it is 2/100 = 0.02.

We understand that the word “ground” is quite a common word in sports, while
the word “backhand” will be used less often. Now we assume that “ground” appears in
100,000 documents out of 1 million documents while “backhand” appears only in 10.
So the IDF for “ground” is log (1,000,000/100,000) = log (10) = 1. For “backhand” it
will be log (1,000,000/10) = log (100,000) = 5.

To get the final values for “ground,” we multiply TF and IDF = 0.05 x 1 = 0.05. To
get the final values for “backhand,” we multiply TF and IDF = 0.02 x 5 = 0.1.

We can observe in this case that the relative importance of the word “backhand” is
more than the relative importance of the word “ground.” This is the advantage of TF-
IDF over the frequency-based BOW approach. But TF-IDF takes more time to com-
pute as compared to BOW, since all the TF and IDF have to be calculated. Neverthe-
less, TF-IDF offers a better and more mature solution as compared to the BOW
approach in such cases. So, in scenarios where the relative importance of a word is in
discussion, we can use TF-IDF. For example, if the task is to shortlist medical docu-
ments on cardiology, the importance of the word “angiogram” will be higher as it is
much more related to cardiology.

We have so far covered BOW and the TF-IDF approach. But in neither of these
approaches did we take the sequence of the words into consideration, which is cov-
ered in language models. We cover language models next.

Language models

Language models assign probabilities to the sequence of words. N-grams are the sim-
plest in language models. We know that to analyze the text data, they must be con-
verted to feature vectors. N-gram models create the feature vectors so that text can be
represented in a format that can be analyzed further.

N-gram is a probabilistic language model. In an n-gram model, we calculate the
probability of the N" word given the sequence of (N - 1) words. To be more spe-
cific, an n-gram model will predict the next word x; based on the words x;_(,1),
Xi_(n-9)---%j_1- If we wish to use the probability terms, we can represent them as the
conditional probability of x; given the previous words, which can be represented as
P(x; | Xi—(n-1)> Xi—(n-2)---X;—1). The probability is calculated by using the relative fre-
quency of the sequence occurring in the text corpus.

NOTE If the items are words, n-grams may be referred to as shingles.

7.11 Language models 215

Let’s study this using an example. We will take a sentence and then break down the
meaning by using words in the sentence. Consider we have the sentence “It is raining
heavily.” We show the respective representations of this sentence by using different val-
ues of nin figure 7.6. You should note how the sequence of words and their respective
combinations are getting changed for different values of n. If we wish touse n=1ora
single word to make a prediction, the representation will be as shown in figure 7.7.
Note that each word is used separately here. They are referred to as unigrams.

It is raining heavily

It is raining

is raining is raining heavily

raining heavily

Figure 7.7 Unigrams, bigrams,
and trigrams can be used to
represent the same sentence.
The concept can be extended to
n-grams too.

If we wish to use n = 2, the number of words used will become two. They are referred
to as bigrams. If we use n = 3, the number of words becomes three, and they are
referred to as trigrams, and so on.

Hence, if we have a unigram, it is a sequence of one word; for two words, it is a
bigram; for three words, it is a trigram; and so on. So, a trigram model will approxi-
mate the probability of a word given all the previous words by using the conditional
probability of only the preceding two words, whereas a bigram will do the same by
considering only the preceding word. This is a valid assumption, indeed, that the
probability of a word will depend only on the preceding word and is referred to as the
Markov assumption. Generally, n > 1 is considered to be much more informative than
unigrams. But obviously, the computation time will increase too.

The n-gram approach is very sensitive to the choice of n. It also depends signifi-
cantly on the training corpus that has been used, which makes the probabilities heav-
ily dependent on the training corpus. So, if an unknown word is encountered, it will
be difficult for the model to work on that new word.

Next we create a Python example. We will show a few examples of text cleaning
using Python.

216

7.12

CHAPTER 7 Unsupervised learning for text data

Text cleaning using Python

There are a few libraries you may need to install. We will show a few small code snip-
pets. You are advised to use them as per the examples. We are also including the
respective screenshots of the code snippets and their results:

Code 1: Remove the blank spaces in the text. Import the library re; it is called the
Regular Expression (Regex) expression. The text is “It is raining outside” with a lot of
blank spaces in between (see figure 7.8):

import re

doc = "It is raining outside"
new _doc = re.sub("\s+"," ", doc)

print (new_doc)

1 import re
2 doo = "It is raining outside"
i new_doc = re.sub("\s+"," ", doc)

print (new_doe) Figure 7.8 Removing the

blank spaces

It is raining outside

Code 2: Now we will remove the punctuation in the text data (see figure 7.9):

text _d = "Hey!!! How are you doing? And how is your health! Bye, take care."
re.sub (" [*-9A-Za-z 1", "" , text d)
text d = "Hey!!! How are you doing? And how is your health! Bye, take care."
2 re.sub("["-%A-Za-z]", "" , text d)

'Hey How are you doing And how is your health Bye take care'

Figure 7.9 Removing the punctuation

Code 3: Here is one more method to remove the punctuation (see figure 7.10):

import string

text _d = "Hey!!! How are you doing? And how is your health! Bye, take care."
cleaned text = "".join([i for i in text d if i not in string.punctuation])
cleaned_ text

1 import string

2 text d = "Hey!!! How are you doing? And how is your health! Bye, take care.”
3 cleaned text = "".join([i for i in text d if i not in string.punctuation])

4 eleaned_text

'Hey How are you doing And how is your health Bye take care'’

Figure 7.10 An alternative way to remove punctuation

7.12 Text cleaning using Python 217

Code 4: We will now remove the punctuation as well as convert the text to lowercase
(see figure 7.11):

text_d = "Hey!!! How are you doing? And how is your health! Bye, take care."
cleaned text = "".join([i.lower() for i in text_d if i not in
string.punctuation])

cleaned_text

1
2 text d = "Hey!!! How are you doing? And how is your health! Bye, take care."
3 cleaned_text = "".join([i.lower() for i inm text d if i not in string.punctuation])

4 eleaned text

'hey how are you doing and how is your health bye take care'

Figure 7.11 Converting the text to lowercase

Code 5: Tokenization is done here using the standard nltk library (see figure 7.12):

import nltk
text d = "Hey!!! How are you doing? And how is your health! Bye, take care."
nltk.tokenize.word tokenize (text d)

1 dimport nltk
2 text d = "Hey!!! How are you doibg? &nd how is your health! Bye, take care."
3 nltk.tokenize.word_ tokenize(text d)

['Hey',
Ty
e,

e,

'HO‘WI,

‘are',

'you',

'doing’',

2,

'And',

'how',

risl'

'your',

'health',

e,

'Bye',

rf.!

"take',
'care',
Tt

Figure 7.12 Tokenization
Note that in the output of the code, we have all the words, including the punctuation

marks, as different tokens. If you wish to exclude the punctuation, you can clean the
punctuation marks using the code snippets shared earlier.

218 CHAPTER 7 Unsupervised learning for text data
Code 6: Next comes the stop words. We will remove the stop words using the nltk
library. After that, we tokenize the words (see figure 7.13):
stopwords = nltk.corpus.stopwords.words ('english')
text _d = "Hey!!! How are you doing? And how is your health! Bye, take care."
text new = "".join([i for i in text d if i not in string.punctuation])
print (text new)
words = nltk.tokenize.word tokenize (text new)
print (words)
words_new = [i for i in words if i not in stopwords]
print (words_new)
1 atopwords = nltk.corpus.stopwords.words('english')
2 text_d = "Hey!!! How are you doing? And how is your health! Bye, take care."
3 text new = "".join([i for i in text d if i mot in string.punctuation])
4 print(text_new)
5 words = nltk.tokenize.word_tokenize(text new)
6 print(words)
7 words_new = [i1 for 1 in words if i not in stopwords]
8 print(words_new)

Hey How are you doing And how is your health Bye take care

['Hey',
['Hey',

'How', 'are', 'you', 'doing', 'And', 'how', 'is', 'your', 'health', 'Bye', 'take', 'care’]
'How', 'And', 'health', 'Bye', 'take', 'care']

Figure 7.13 Removing stop words and tokenizing words

Code 7: We will now perform stemming on a text example. We use nltk library for it.
The words are first tokenized, and then we apply stemming (see figure 7.14):

import nltk
from nltk.stem import PorterStemmer
stem = PorterStemmer ()
text = "eats eating studies study"
tokenization = nltk.word tokenize (text)
for word in tokenization:
print ("Stem for {} is {}".format (word, stem.stem(word)))

1 | import nltk

2 | from nltk.stem import PorterStemmer

3 | stem = PorterStemmer()

4 | text = "eats eating studies study"

5 | tokenization = nltk.word_tokenize(text)

for word in tokenization:
print("Stem for {} is {}".format(word, stem.stem(w)))

-] o

Stem for eats is eat
Stem for eating is eat
Stem for studies is studi
Stem for study is study

Figure 7.14 Tokenizing and then stemming the words

7.13

7.13 Word embeddings 219

Code 8: We now perform lemmatization on a text example. We use the nltk library

for it. The words are first tokenized, and then we apply lemmatization (see figure
7.15):

import nltk
from nltk.stem import WordNetLemmatizer
wordnet lemmatizer = WordNetLemmatizer ()
text = "eats eating studies study"
tokenization = nltk.word tokenize (text)
for word in tokenization:
print ("Lemma for {} is {}".format (word,
wordnet lemmatizer.lemmatize (word)))

import nltk
from nltk.stem import WordNetLemmatizer
wordnet_lemmatizer = WordNetLemmatizer()
text = "eats eating studies study"
tokenization = nltk.word tokenize(text)
for word in tokenization:
print("Lemma for {} is {}".format(word, wordnet lemmatizer.lemmatize(w)))

E- N, RS U S

Lemma for eats is eat
Lemma for eating is eat
Lemma for studies is study
Lemma for study is study

Figure 7.15 Tokenizing and then lemmatizing the words

Observe and compare the difference between the two outputs of stemming and lem-
matization. For “studies” and “studying,” stemming generated the output as “studi”
while lemmatization generated the correct output as “study.”

We have covered BOW, TF-IDF, and n-gram approaches so far. Butin all these tech-
niques, the relationship between words has been neglected. This relationship is used
in word embeddings, our next topic.

Word embeddings
A word is characterized by the company it keeps.
—John Rupert Firth

So far we have studied several approaches, but all the techniques ignore the contex-
tual relationship between words. Let’s take a closer look using an example.

Imagine we have 100,000 words in our vocabulary, starting from “aa” (the basaltic
lava) to “zoom.” Now, if we perform one-hot encoding, all these words can be repre-
sented in a vector form. Each word will have a unique vector. For example, if the posi-
tion of the word “king” is 21000, the vector will have a shape like the following vector,
which has 1 at the 21,000th position and the rest of the values as 0:

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, O i, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

220

CHAPTER 7 Unsupervised learning for text data

There are a few glaring problems with this approach:

The number of dimensions is very high, and it is complex to compute.

The data is very sparse in nature.

If » new words have to be entered, the vocabulary increases by n, and hence
each vector dimensionality increases by n.

This approach ignores the relationship between words. We know that “ruler,”
“king,” and “monarch” are sometimes used interchangeably. In the one-hot-
encoding approach, any such relationships are ignored.

If we wish to perform language translation, or generate a chat-bot, we need to pass
such knowledge to the machine learning solution. Word embeddings provide a solu-
tion to the problem. They convert the high-dimensional word features into lower
dimensions while maintaining the contextual relationship. Word embeddings allow us
to create much more generalized models. We can understand the meaning by looking
at an example.

NOTE In an LLM-enabled solution, you might not need to do a lot of these
steps.

In the example shown in figure 7.16, the relation of “man” to “woman” is similar to

”, <«

“king” to “queen”; “good” to “nice” is similar to “bad” to “awful”; or the relationship of
“UK” to “London” is similar to “Japan” to “T'okyo.”

Men

Good
O\ o O\
0 0 Nice
King Bado\
Queen

Awful

Figure 7.16 Word embeddings can be used to represent the relationships
between words. For example, there is a relation from “men” to “women” that is
similar to “king” to “queen” as both “men-women” and “king-queen” represent
the male-female gender relationship.

In simple terms, using word embeddings, we can represent the words that have simi-
lar meanings. Word embeddings can be thought of as a class of techniques where we
represent each of the individual words in a predefined vector space. Each of the
words in the corpus is mapped to one vector. The distributed representation is under-
stood based on the word’s usage. Hence, words that can be used similarly have similar

7.14

7.14 Word2Vec and GloVe 221

representations. This allows the solution to capture the underlying meaning of the
words and their relationships. Hence, the meaning of the word plays a significant
role. This representation is more intelligent as compared to the BOW approach
where each word is treated differently, irrespective of its usage. Also, the number of
dimensions is fewer as compared to one-hot encoding. Each word is represented by
10s or 100s of dimensions, which is significantly less than the one-hot encoding
approach where 1000s of dimensions are used for representation.

We cover the two most popular techniques—Word2Vec and global vectors for word
representation (GloVe)—in the next section. The mathematical foundation for
Word2Vec and GloVe are beyond the scope of this book. We provide an understand-
ing of the working mechanism of the solutions and then develop Python code using
Word2Vec and GloVe. This section is more technically involved, so if you are inter-
ested only in the application of the solutions, you can skip the next section.

Word2Vec and GloVe

Word2Vec was first published in 2013. It was developed by Tomas Mikolov and others
at Google. We share the link to the paper at the end of the chapter. You are advised to
study the paper thoroughly if you wish to learn about the more technical elements in
detail.

Word2Vec is a group of models used to produce word embeddings. The input is a
large corpus of text. The output is a vector space with a very large number of dimen-
sions. In this output, each of the words in the corpus is assigned a unique and corre-
sponding vector. The most important point is that the words that have a similar or
common context in the corpus are located nearby in the vector space produced.

In Word2Vec, the researchers introduced two different learning models—the con-
tinuous bag of words (CBOW) and the continuous skip-gram model:

In CBOW, the model makes a prediction of the current word from a window of
surrounding context words. So the CBOW model predicts a target word based
on the context of the surrounding words in the text. Recall that in the BOW
approach, the order of the words does not play any part. In contrast, in CBOW,
the order of the words is significant.

The continuous skip-gram model uses the current word to predict the sur-
rounding window of context words. While doing so, it allocates more weight to
the neighboring words as compared to the distant words.

GloVe is an unsupervised learning algorithm for generating vector representation for
words. It was developed by Pennington and others at Stanford and launched in 2014.
It is a combination of two techniques: matrix factorization techniques and local
context-based learning used in Word2Vec. GloVe can be used to find relationships like
zip codes and cities, synonyms, etc. It generates a single set of vectors for words with
the same morphological structure.

Both Word2Vec and GloVe learn and understand vector representation of their
words from the co-occurrence information. Co-occurrence means how frequently the

222

7.15

CHAPTER 7 Unsupervised learning for text data

words appear together in a large corpus. The prime difference is that Word2Vec is a
prediction-based model, while GloVe is a frequency-based model. Word2Vec predicts
the context given a word while GloVe learns the context by creating a co-occurrence
matrix on how frequently a word appears in a given context.

Exercise 7.3
Answer these questions to check your understanding:

BOW is more rigorous than the TF-IDF approach. True or False?
Differentiate between Word2Vec and GloVe.

We will now move to the case study and Python implementation.

Sentiment analysis case study with Python
implementation

So far, we have discussed a lot of concepts on NLP and text data. In this section, we
first explore a business case and then develop a Python solution based on it. Here we
are working on sentiment analysis.

Product reviews are a rich source of information—both for customers and organi-
zations. Whenever we wish to buy any new product or service, we tend to look at the
reviews by fellow customers. You might have reviewed products and services yourself.
These reviews are available at Amazon and on blogs, surveys, etc.

Let’s consider a case. A telecom operator receives complaints from its customers,
reviews about the service, and comments about the overall experience. The streams
can be product quality, pricing, onboarding experience, ease of registration, payment
process, general reviews, customer service, etc. We want to determine the general con-
text of the review—whether it is positive, negative, or neutral. The reviews include the
number of stars allocated, actual text reviews, pros and cons about the product/ser-
vice, attributes, etc. However, there are a few business problems—for instance,

Sometimes the number of stars received by a product/service is very high, while
the actual reviews are quite negative.

The organizations and the product owners need to know which features are
appreciated by the customers and which features are disliked by the customers.
The team can then work on improving the features that are disliked.

There is a need to gauge and keep an eye on the competition! The organiza-
tions need to know the attributes of the popular products of their competitors.

The product owners want to better plan for the upcoming features they wish to
release in the future.

So the business teams will be able to answer these important questions:

What are our customers’ satisfaction levels for the products and services?
What are the major pain points and dissatisfactions of the customers?

7.15 Sentiment analysis case study with Python implementation 223

What drives the customers’ engagement?
Which services are complex and time-consuming, and which are the most liked
services/products?

This business use case will drive the following business benefits:

The products and services that are most satisfactory and are the most liked
should be continued.

The ones that are not liked and are receiving a negative score should be
improved and challenges mitigated.

The respective teams, like finance, operations, complaints, CRM, etc., can be
notified, and they can work individually to improve the customer experience.
The precise reasons for liking or disliking the services will be useful for the
respective teams to work in the right direction.

Overall, it will provide a benchmark to measure the Net Promoter Score for the
customer base. The business can strive to enhance the overall customer
experience.

We might want to represent these findings by means of a dashboard. This dashboard
will be refreshed on a regular cycle, like monthly or quarterly.

To solve this business problem, the teams can collect relevant data from websites,
surveys, Amazon, blogs, etc. Then an analysis can be done on that dataset. It is rela-
tively easy to analyze the structured data. In this example, we work on text data.

The Python Jupyter notebook is pushed to the GitHub location. You are advised to
use the Jupyter notebook from the GitHub location as it contains more steps. The
steps are as follows:

Import all the libraries:

Loading all the required libraries here
from 1xml import html

import requests

import pandas as pd

from nltk.corpus import stopwords
from textblob import TextBlob
import matplotlib.pyplot as plt
import sys

import numpy as np

import pandas as pd

import matplotlib

import matplotlib.pyplot as plt
import sklearn

import scikitplot as skplt
import nltk

#to ignore warnings

import warnings
warnings.filterwarnings ("ignore")
nltk.download ('stopwords"')
nltk.download ('punkt')
nltk.download ('wordnet')

224 CHAPTER 7 Unsupervised learning for text data

Define the tags. These tags are used to get the attributes of the product from

the reviews:

xpath reviews = '//div[@data-hook="review"]'

reviews = parser.xpath(xpath reviews)

xpath rating = './/il[edata-hook="review-star-rating"]//text ()"

xpath title = './/al@edata-hook="review-title"]//text ()"

xpath _author = './/al[@data-hook="review-author"]//text ()"

xpath date = './/span[@data-hook="review-date"]//text ()"

xpath body = './/span[@data-hook="review-body"]//text ()"

xpath helpful = './/span[e@data-hook="helpful-vote-statement"]//text ()"

Make everything ready to extract the data. We create a dataframe to store the
customer reviews. Then we iterate through all the reviews and extract the
information:

Create a dataframe here.

reviews df = pd.DataFrame ()
for review in reviews:

rating = review.xpath(xpath rating)
title = review.xpath(xpath title)
author = review.xpath(xpath author)
date = review.xpath (xpath date)
body = review.xpath (xpath body)

(

helpful = review.xpath (xpath helpful)
review dict = {'rating': rating,
'title': title,
'author': author,
'date': date,
'body': body,
'helpful': helpful}
reviews df = reviews_ df.append(review dict, ignore index=True)
all reviews = pd.DataFrame ()

Iterate through the reviews and then fill in the details:

Fill the values of the reviews here.

for i in range(1,90):
amazon url = 'https://www.amazon.co.uk/Hive-Heating-Thermostat-
Professional-Installation/product-reviews/B011B3J6KY/
ref=cm_cr othr d show_all?ie=UTF8&reviewerType=all revie
ws&pageNumber="'+str (i)
headers = {'User-Agent': user agent}
page = requests.get (amazon url, headers = headers)
parser = html.fromstring(page.content)
xpath reviews = '//div[edata-hook="review"]'
reviews = parser.xpath(xpath reviews)
reviews_df = pd.DataFrame ()
xpath rating = './/il[edata-hook="review-star-rating"]//text ()"
xpath title = './/al@edata-hook="review-title"]//text ()"
xpath _author = './/al@data-hook="review-author"]//text ()"

7.15 Sentiment analysis case study with Python implementation 225

xpath date = './/span[@data-hook="review-date"]//text ()"
xpath body = './/spanl[e@data-hook="review-body"]//text ()"
xpath helpful = './/span[@data-hook="helpful-vote-statement"]//text ()"
#print (i)
for review in reviews:

rating = review.xpath(xpath rating)

title = review.xpath(xpath title)

author = review.xpath(xpath author)

date = review.xpath (xpath date)

body = review.xpath (xpath body)

(

helpful = review.xpath(xpath helpful)

review dict = {'rating': rating,
'title': title,
'author': author,
'date': date,
'body': body,
'helpful': helpful}

reviews_df = reviews_df.append(review dict, ignore_index=True)
#print (reviews_df)
all reviews = all reviews.append(reviews df)

Have a look at the output we generated:
all reviews.head()

Save the output to a path. You can give your own path:

out folder = '/Users/Data/'
all reviews.to_csv(out_folder + 'Reviews.csv')

Load the data and analyze it:

#Load the data now and analyse it

data path = '/Users/vaibhavverdhan/Book/UnsupervisedLearningBookFinal/'
reviewDataCSV = 'Reviews.csv'
reviewData = (pd.read csv(data_path+reviewDataCSV,index col=0,))

Look at the basic information about the dataset:

reviewData.shape
reviewData.rating.unique ()
reviewData.rating.value counts ()

Look at the distribution of the stars given in the reviews. This will allow us to
understand the reviews given by the customers:

labels = '5 Stars', 'l Star', '4 Stars', '3 Stars', '2 Stars'

sizes = [reviewData.rating.value_counts () [0],
reviewData.rating.value counts () [1],reviewData.rating.value counts (
) [2] , rev

iewData.rating.value counts () [3],reviewData.rating.value counts () [4]]

colors = ['green',6 'yellowgreen', 'coral', 'lightblue', 'grey']

explode = (0, 0, 0, 0, 0) # explode 1lst slice

226 CHAPTER 7 Unsupervised learning for text data

Plot
plt.pie(sizes, explode=explode, labels=labels, colors=colors,
autopct='%1.1£%%"', shadow=True, startangle=140)

plt.axis('equal')
plt.show()

Make the text lowercase, and then remove the stop words and the words that
have the highest frequency:

reviewData.body = reviewData.body.str.lower ()

reviewData.body = reviewData.body.str.replace (' [*\w\s]','")

stop = stopwords.words ('english')

reviewData.body = reviewData.body.apply(lambda x: " ".join(x for x in

x.split() if x not in stop))

freq = list(freq.index)

reviewData.body = reviewData.body.apply(lambda x: " ".join(x for x in
x.split() if x not in freq))

freq = pd.Series (' '.join(reviewData.body) .split()) .value counts() [-10:]

freq = list (freq.index)

reviewData.body = reviewData.body.apply(lambda x: " ".join(x for x in

x.split() if x not in freq))

Tokenize the data:

from nltk.tokenize import word tokenize
tokens = word tokenize (reviewData.iloc([1,1])
print (tokens)

Perform lemmatization:

from textblob import Word

reviewData.body = reviewData.body.apply(lambda x: "
".join([Word(word) .lemmatize () for word in x.split()]))

reviewData.body.head ()

Append all the reviews to the string:

sentimentString = reviewData.iloc[1,1]
append to this string
for i in range(2,len(reviewData)) :
sentimentString = sentimentString + reviewData.iloc[i,1]

Do the sentiment analysis. From textblob, we take the sentiment method. It
generates polarity and subjectivity for a sentiment. Sentiment polarity for an
element is the orientation of the sentiment in the expression; that is, it tells us if
the text expresses a negative, positive, or neutral sentiment in the text. It subjec-
tively measures and quantifies the amount of opinion and factual information
in the text. If the subjectivity is high, it means that the text contains more opin-
ion than facts:

the functions generates polarity and subjectivity here, subsetting the
polarity only here

7.15 Sentiment analysis case study with Python implementation 227

allReviewsSentiment = reviewData.body[:900] .apply(lambda x:
TextBlob (x) .sentiment [0])

this contains boths subjectivity and polarity
allReviewsSentimentComplete = reviewData.body[:900] .apply (lambda x:
TextBlob (x) .sentiment)

allReviewsSentimentComplete.head ()

Save the sentiment to a .csv file:

allReviewsSentiment.to csv(out folder + 'ReviewsSentiment.csv')

Allocate a meaning or a tag to the sentiment. We classify each of the scores from
extremely satisfied to extremely dissatisfied:

allReviewsSentimentDF = allReviewsSentiment.to frame ()
Create a list to store the data
grades = []

For each row in the column,
for row in allReviewsSentimentDF['body'] :
if more than a value,
if row >= 0.75:
grades.append ('Extremely Satisfied')
elif (row >= 0.5) & (row < 0.75):
grades.append('Satisfied')
elif (row >= 0.2) & (row < 0.5):
grades.append ('Nice')

elif (row >= -0.2) & (row < 0.2):
grades.append ('Neutral')

elif (row > -0.5) & (row <= -0.2):
grades.append('Bad")

elif (row >= -0.75) & (row < -0.5):

grades.append('Dis-satisfied’')
elif row < -0.75:
grades.append ('Extremely Dis-satisfied')
else:
Append a failing grade
grades.append('No Sentiment')

Create a column from the list
allReviewsSentimentDF ['SentimentScore'] = grades
allReviewsSentimentDF.head ()

Look at the sentiment scores and plot them too. Finally, we merge them with
the main dataset:

allReviewsSentimentDF.SentimentScore.value counts ()
allReviewsSentimentDF ['SentimentScore'] .value counts () .plot (kind='bar")
Merge the review data with Sentiment generated

reviewData['polarityScore']l = allReviewsSentimentDF['body']

Adds column
polarityScore

228

3 stars

2 stars

CHAPTER 7 Unsupervised learning for text data

In this case study, you not only scraped the reviews from the website but you also ana-
lyzed the dataset. If we compare the sentiments, we can see that the stars given to a
product do not represent a true picture.

Figure 7.17 compares the actual stars and the output from sentiment analysis. We
can observe that 73% of customers have given five stars and 7% have given four stars,
while in the sentiment analysis most of the reviews have been classified as neutral. This
is the real power of sentiment analysis!

4 stars

1 star

Nice
Bad

Satisfied
Dissatisfied

Extremely satisfied.

5 stars

Figure 7.17 Compare the original distribution of number of stars on the left side and the real results from the
sentiment analysis on the right.

7.16

Sentiment analysis is quite an important use case. It is very useful for business and prod-
uct teams. The preceding code can be scaled to any such business problem at hand.
We now move to the second case study on document classification using Python.

Text clustering using Python

Consider this: we have a bunch of text datasets or documents, but they all are mixed
up. We do not know which text belongs to which class. In this case, we will assume that
we have two types of text datasets: one that has all the data related to football and one
that is related to travel. We will develop a model that can segregate these two classes.
To do that, we follow these steps:

1 Importall the libraries:

from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans

7.16 Text clustering using Python 229

import numpy as np
import pandas as pd

Create a dummy dataset. This text data has a few sentences we have written our-
selves. There are two categories:

text = ["It 1s a good place to travel",

"Football is a nice game", "Lets go for holidays and travel to
Egypt",

"It is a goal, a great game.", "Enjoy your journey and forget
the rest", "The teams are ready for the same"]

Use TF-IDF to vectorize the data:

tfidf vectorizer = TfidfVectorizer (stop words='english')
X = tfidf vectorizer.fit transform(text)

Do the clustering:

k =2
model = KMeans (n_clusters=k, init='k-means++', max_iter=10, n_init=2)
model. fit (X)

Represent the centroids and print the outputs (see figure 7.18):

centroids = model.cluster centers_.argsort() [:, ::-1]
features = vectorizer.get feature names/()

for i in range (k) :
print ("Cluster %d:" i),
for ind in centroids([i, :10]:

°

print ("$s" % terms[ind])

o°

| for i in range(k):

2 print("Cluster %d:" % i),

3 for ind in centroids([i, :10]:
4 print("%s" % terms([ind])

Cluster 0:
travel
ready
teams
good
place
lets
holidays
egypt
journey
rest
Cluster 1:
game

great
football
nice

goal
travel
enjoy
fortget i
good Figure 7.18

holidays Printed output

230

7.17

7.18

CHAPTER 7 Unsupervised learning for text data

You can extend this example to other datasets too. Get the datasets from the internet
and replicate the code in the preceding example.

We have pushed the code to the GitHub location of the book. You are advised to
use it. It is really an important source to represent text data.

GenAl for text data

GenAl solutions are a new kind of unsupervised solution. You surely have heard about
ChatGPT and LLMs. They have revolutionized the world. GenAl for text data uses
machine learning models to create human-like text. It is trained on large-scale data
patterns and hence can generate a variety of content pieces—for example, essays,
technical reports, and summaries of a book—and can act like a human chat interface.
Even the complex translation of languages is made easy with GenAl.

GenAl for text data involves the use of advanced algorithms, like transformers, to
generate coherent, contextually appropriate text. These algorithms are trained on
mammoth datasets. Imagine we feed tons of content present on the internet to the
algorithms. By learning patterns and relationships between the words and the sen-
tences, the grammar used, syntax, and semantics, they can create human-like
responses. These models, such as OpenAI’s GPT or Google’s BERT, are very powerful
for drafting emails with correct language and grammar, creating detailed reports, writ-
ing code modules in a language like Java/C++, and many other tasks. Using this
power, content creators, writers and copyrighters, brand managers and marketers,
and business owners can produce high-quality text in a much more scalable and effi-
cient manner.

Despite its amazing potential, GenAl still has some areas in need of improvement.
Sometimes it generates inaccurate information, also known as hallucinations. Ensur-
ing that the output remains unbiased and ethical is another hurdle, as models can
inadvertently reflect societal biases present in the data they were trained on. Al-gener-
ated text is increasingly being used in customer service, automating responses while
still maintaining a personal tone. Researchers are also exploring its use in the health-
care and legal fields, where it can help with documentation and drafting. While
GenAl is revolutionizing the way text is produced, the need for human oversight
remains critical to ensure quality, accuracy, and fairness.

Concluding thoughts

Text data is one of the most useful datasets. A lot of intelligence is hidden in the texts:
logs, blogs, reviews, posts, tweets, complaints, comments, articles, and so on—the
sources of text data are many. Organizations are investing in setting up the infrastruc-
ture for accessing text data and storing it. Analyzing text data requires better process-
ing powers and better machines than our standard laptops. It requires special skill sets
and a deeper understanding of the concepts. NLP is an evolving field, and a lot of
research is underway. At the same time, we cannot ignore the importance of sound
business acumen and knowledge.

7.19

7.19 Practical next steps and suggested readings 231

Data analysis and machine learning are not easy. We have to understand a lot of
concepts around data cleaning, exploration, representation, and modeling. But ana-
lyzing unstructured data might be even more complex than analyzing structured data-
sets. We worked on an images dataset in the last chapter, and in the current chapter,
we worked on text data.

Text data is one of the most difficult datasets to analyze. There are so many permu-
tations and combinations for text data. Cleaning the text data is a difficult and com-
plex task. In this chapter, we discussed a few important techniques to clean text data.
We also covered some methods to represent text data in vector forms. You are advised
to practice each of these methods and compare the performances by applying each of
the techniques. We also introduced the concept of GenAl for text data.

With this, we come to the end of chapter 7. This also marks an end to part 2. In the
next part, the complexity increases. We will be studying even deeper concepts of unsu-
pervised learning algorithms.

Practical next steps and suggested readings
The following provides suggestions for what to do next and offers some helpful
reading:
Get the datasets from the following link. You will find a lot of text datasets here.
You are advised to implement clustering and dimensionality reduction solutions:

— 50 Free Machine Learning Datasets: Natural Language Processing: https://
mng.bz/Z]jO

You will find a lot of useful datasets at Kaggle as well: https://www.kaggle.com/

datasets?search=text

Go through the following research papers:

— Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient Estimation
of Word Representations in Vector Space. https://arxiv.org/pdf/
1301.3781.pdf

— Pennington, J., Socher, R., and Manning, C. D. (2014). GloVe: Global Vec-
tors for Word Representation. https://nlp.stanford.edu/pubs/glove.pdf

— Das, B., and Chakraborty, S. (2018). An Improved Text Sentiment Classifica-
tion Model Using TF-IDF and Next Word Negation. https://arxiv.org/pdf/
1806.06407.pdf

Consider these widely quoted papers:

— Blum, A., and Mitchell, T. (1998). Combining labeled and unlabeled data
with co-training. https://dl.acm.org/doi/10.1145/279943.279962

— Knight, K. (2009). Bayesian Inference with Tears. https://mng.bz/RVp0

— Hofmann, T. (1999). Probabilistic latent semantic indexing. https://
dl.acm.org/doi/10.1145/312624.312649

— Hindle, D., and Rooth, M. (1993). Structural Ambiguity and Lexical Rela-
tions. https://aclanthology.org/J93-1005.pdf

https://mng.bz/ZljO
https://www.kaggle.com/datasets?search=text
https://www.kaggle.com/datasets?search=text
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1301.3781.pdf
https://nlp.stanford.edu/pubs/glove.pdf
https://arxiv.org/pdf/1806.06407.pdf
https://arxiv.org/pdf/1806.06407.pdf
https://aclanthology.org/J93-1005.pdf
https://dl.acm.org/doi/10.1145/312624.312649
https://mng.bz/RVp0
https://dl.acm.org/doi/10.1145/279943.279962

232

CHAPTER 7 Unsupervised learning for text data

— Collins and Singer. (1999). Unsupervised Models for Named Entity Classifi-
cation. https://aclanthology.org/W99-0613.pdf

See the comprehensive study on TF-IDF feature weighting: Das, M., Selvaku-
mar, K., and Alphonse, J. P. A. (2023). A Comparative Study on TF-IDF Feature
Weighting Method and its Analysis using Unstructured Dataset. https://
arxiv.org/abs/2308.04037

Summary

Text data’s omnipresence in blogs, social media, surveys, and more, and its
capacity to express emotions, emphasizes the importance of this form of data.
Applications of text analysis include sentiment analysis, document categoriza-
tion, language translation, spam filtering, and named-entity recognition.
Challenges in text data include handling junk characters, multiple languages,
evolving language, synonyms, and context-based meanings.

Data preprocessing and cleaning involves removing stop words and unwanted
characters and normalizing text through stemming and lemmatization.

Within text representation techniques, one-hot encoding is basic but not scal-
able; advanced techniques consider frequency and context.

Tokenization involves breaking down text into tokens and is fundamental for
creating analysis-ready datasets.

The BOW approach is a fast, frequency-based method that ignores word order
and context.

TF-IDF weighs words based on importance over mere frequency, offering more
insightful analysis than BOW.

Language models and n-grams use word sequences for probabilistic predic-
tions, with variations like unigrams, bigrams, and trigrams.

Python for text parsing illustrates cleaning and preprocessing text data using
Python libraries like nltk.

Techniques like Word2Vec and GloVe maintain contextual relationships
between words for better semantic understanding.

Word2Vec is prediction based, while GloVe is frequency based; both create com-
pact and meaningful word representations.

LLMs have revolutionized the entire landscape for text datasets.

https://aclanthology.org/W99-0613.pdf
https://arxiv.org/abs/2308.04037
https://arxiv.org/abs/2308.04037

Part 3

Advanced concepts

-b » elcome to the final part of the book.

You've completed the first two parts of the book: you've built programs,
solved case studies, and navigated the foundational challenges of unsupervised
learning solutions. But machine learning, like any other discipline, art, or sport,
has no finish line. It’s a constantly evolving field wherein constant upgradation is
required, and to truly be a master, you must adapt and improve, innovate and
learn, and push the boundaries of what you know.

In this final part of the book, we’ll dive into the more nuanced aspects of
unsupervised learning. We will cover much more advanced topics that separate
good data scientists from great ones: deep learning, autoencoders, generative
Al and patterns that scale across large applications. We will also cover the end-
to-end lifecycle of a machine learning project, including deployment and
maintenance.

But don’t be fooled—this part isn’t about quick Python codes that you can
cut and paste. These advanced techniques are about developing a much more
sophisticated system that can be used for datasets like text, images, and videos.
It’s about making more bespoke solutions that are customizable as well as scal-
able. These solutions don’t just work today but will work tomorrow too.

Are you ready to take your skills to the next level? Let’s dig deeper.

Deep learning:
The foundational concepis

This chapter covers

Core building blocks of deep learning
Supervised and unsupervised learning approaches
Convolutional and recurrent neural networks

The Boltzmann learning rule and deep belief
networks

Python coding with TensorFlow and Keras
Overview of deep learning libraries

The art of simplicity is a puzzle of complexity.

—Douglas Horton

Welcome to the third part of the book. So far, you have covered a lot of concepts
and case studies and Python code. From this chapter onward, the level of complex-
ity will be even higher.

In the first two parts of the book, we covered various unsupervised learning
algorithms like clustering, dimensionality reduction, etc. We discussed both

235

236

8.1

8.1.1

CHAPTER 8 Deep learning: The foundational concepts

simpler and advanced algorithms. We also covered working on text data in the second
part of the book. Starting from this third part of the book, we will start our journey on
deep learning.

Deep learning and neural networks have changed the world and the business
domains. You have probably heard about deep learning and neural networks. Their
implementations and sophistication result in better cancer detection, autonomous
driving cars, improved disaster management systems, better pollution control systems,
reduced fraud in transactions, and so on.

In the third part of the book, we will explore unsupervised learning using deep
learning. We will study what deep learning is and the basics of neural networks, as well
as the layers in a neural network, activation functions, the process of deep learning,
and various libraries. Then we will move to autoencoders and generative adversarial
networks (GANs) and generative Al (GenAl). The topics are indeed complex and
sometimes quite mathematically heavy. We will use different kinds of datasets for work-
ing on the problems, but primarily the datasets will be unstructured in nature. As
always, Python will be used to generate the solutions. We also share a lot of external
resources to complement the concepts. Please note that these are advanced topics,
and a lot of research is still ongoing for these topics.

We have divided the third part of the book into four chapters. This chapter covers
the foundational concepts of deep learning and neural networks. The next two chap-
ters focus on autoencoders, GAN and GenAl. The final chapter of the book talks
about the deployment of these models.

In this chapter, we discuss the concepts of neural networks and deep learning. We
discuss what a neural network is, its activation functions, different optimization func-
tions, the neural network training process, etc. The concepts covered in this chapter
form the base of neural networks and deep learning and subsequent learning in the
next two chapters. Hence, it is vital that you are clear about these concepts. The best
external resources to learn these concepts in more detail are given at the end of the
chapter.

Welcome to the eighth chapter, and all the very best!

Technical toolkit

We will continue to use the same version of Python and Jupyter Notebook as we have
used so far. The codes and datasets used in this chapter have been checked in at the
same GitHub location. You will need to install a couple of Python libraries in this
chapter: tensorflow and keras.

Deep learning: What is it? What does it do?

Deep learning has gathered a lot of momentum in the past few years. Neural networks
are pushing the boundaries of machine learning solutions. Deep learning is machine
learning only. Deep learning is based on neural networks. It utilizes a similar con-
cept—that is, using historical data and understanding the attributes and the intelli-
gence gathered to find patterns or predict the future, albeit deep learning is more
complex than the algorithms we have covered so far.

8.1 Technical toolkit 237

Recall chapter 1, where we covered the concepts of structured and unstructured
datasets. Unstructured datasets include text, images, audio, video, etc. Figure 8.1
describes the major sources of text, images, audio, and video datasets.

Facebook reviews, tweets, customer
— Text data . -

complaints, product reviews
| Images data l Product images, objects ‘

Figure 8.1 Unstructured datasets

= Audio data l Call center recordings, radio ads ‘ like text, audio, images, and video
can be analyzed using deep
B Video data YouTube videos, product videos, learning. There are multiple sources
video ads, product shoots of such datasets.

While deep learning can be implemented for structured datasets too, it is mostly work-
ing wonders on unstructured datasets. One of the prime reasons is that the classical
machine learning algorithms are sometimes not that effective on unstructured data-
sets like that of images, text, audio, and video. A few of the path-breaking solutions
delivered by deep learning across various domains are as follows:

= The medical field and pharmaceuticals—Deep learning sees application in areas
such as the identification of bones and joint problems or in determining if
there are any clots in arteries or veins. In the pharmaceutical field, it expedites
clinical trials and helps to reach the target drug faster.

= The banking and financial sector—Deep learning-based algorithms are used to
detect potential fraud in transactions. Using image recognition-based algo-
rithms, we can also distinguish fake signatures on checks.

= The automobile sector—You have probably heard about autonomous driving (aka
self-driving) cars. Using deep learning, the algorithms can detect traffic signals,
pedestrians, other vehicles on the road, their respective distances, and so on.

= Retail—In the retail sector, using deep learning-based algorithms, humans can
improve customer targeting and develop advanced and customized marketing
tactics. The recommended models to provide next-best products to the custom-
ers have been improved using deep learning. We can get better returns on
investments and improve cross-sell and upsell strategies.

In addition, automatic speech recognition is possible with deep learning. Using
sophisticated neural networks, humans can create speech recognition algorithms.
These solutions are being used across Siri, Alexa, Translator, Baidu, etc.

Image recognition is also advancing. Neural networks are improving image recog-
nition techniques. This can be done using convolutional neural networks, which are
improving computer vision. Use cases include the following:

= Deep learning is quite effective for differentiation between cancerous cells and
benign cells. Differentiation can be achieved by using the images of cancerous
cells and benign cells.

238 CHAPTER 8 Deep learning: The foundational concepts

An automated number plate reading system has been developed using neural
networks.

Object detection methods and monitor sensing and tracking systems can be
developed using deep learning.

In disaster management systems, deep learning can detect the presence of
humans in affected areas. Just imagine how, during rescue operations, human
lives can be saved using better detection.

GenAl is changing the world rapidly. Use cases include automating content creation,
such as writing articles, essays, and social media posts and generating images and vid-
eos. Itimproves customer service and customer experience by providing chatbots that
provide instant, personalized responses to the queries of the customers. It can be imple-
mented in any industry. In data-heavy industries, it creates ripples by summarizing com-
plex and long documents and generating insights from dashboards and reports. These
reports can be Power BI/Tableau dashboards, PowerPoints, or pdf files, for example. It
has also helped software developers in code generation and debugging and has
improved software development efficiency. The use cases are many, ranging from retail;
telecommunications; healthcare; R&D; banking, finance, and insurance, etc., in
improving sales, reducing costs, saving time, and improving accuracy.

The use cases listed are certainly not exhaustive. Using deep learning, we can
improve natural language processing solutions used to measure customers’ senti-
ments, language translation, text classification, named-entity recognition, etc. Across
use cases in bioinformatics, the military, mobile advertising, technology, the supply
chain, and so on, deep learning is paving the path for the future.

8.2 Building blocks of a neural network

Artificial neural networks (ANNSs) are said to be inspired by the way the human brain
works. The human brain is the best machine we currently have access to. When we see
a picture or a face or hear a tune, we associate a label or a name with it. That allows us
to train our brain and senses to recognize a picture or a face or a tune when we see/
hear it again. ANNs learn to perform similar tasks by learning or getting trained.

Exercise 8.1
Answer these questions to check your understanding:

What is the meaning of deep learning?

Neural networks cannot be used for unsupervised learning. True or False?
Explore more use cases for deep learning in nonconventional business
domains.

8.2.1 Neural networks for solutions

In deep learning, too, the concepts of supervised and unsupervised learning are appli-
cable. We cover both types of training of the network: supervised and unsupervised.

8.22

8.2 Building blocks of a neural network 239

This will give you a complete picture. At the same time, to fully appreciate unsuper-
vised deep learning, you should be clear on the supervised deep learning process.
Let’s understand the deep learning process by using an example. Consider this: we
wish to create a solution that can identify faces—a solution that can distinguish faces
and identify the person by allocating a name to the face. For training the model, we
will use a dataset that will have images of people’s faces and corresponding names.
The ANN will start with no prior understanding of the image’s dataset or the attri-
butes. During the process of training, it will learn the attributes and the identification
characteristics from the training data. These learned attributes are then used to distin-

guish between faces. At this moment, we are only covering the process at a high level;
we will cover this process in much more detail in subsequent sections. Figure 8.2
shows a representation of a neural network.

Figure 8.2 A typical neural network
with neurons and various layers

The process in a neural network is quite complex. We will first cover all the building
blocks of a neural network, like neurons, activation functions, weights, bias terms, etc.,
and then move on to the process followed in a neural network. Let’s start with the pro-
tagonist: a neuron.

Artificial neurons and perceptrons

The human brain contains billions of neurons. The neurons are interconnected cells
in our brains. These neurons receive signals, process them, and generate results. Arti-
ficial neurons are based on biological neurons only and can be considered simplified
computational models of biological neurons.

In 1943, researchers Warren McCullock and Walter Pitts proposed the concept of a
simplified brain cell called the McCullock-Pitts neuron. It can be thought of as a sim-
ple logic gate with binary outputs.

The working methodology for artificial neurons is similar to that of biological neu-
rons, albeit artificial neurons are far simpler than biological neurons. A perceptron is
a mathematical model of a biological neuron. In the actual biological neurons,

240

CHAPTER 8 Deep learning: The foundational concepts

dendrites receive electrical signals from the axons of other neurons. In a perceptron,
these electrical signals are represented as numerical values.

The artificial neuron receives inputs from the previous neurons or can receive the
input data. It then processes that input information and shares an output. The input
can be the raw data or processed information from a preceding neuron. The neuron
then combines the input with its own internal state, weighs them separately, and
passes the output received through a nonlinear function to generate output. These
nonlinear functions are also called activation functions (we will cover them later). You
can think of an activation function as a mathematical function. A neuron can be rep-
resented as shown in figure 8.3.

e \ / e

Mathematical
function

input E———)) output

Figure 8.3 A neuron gets the
inputs, processes them using
\ mathematical functions, and then
input output generates the output.

In simpler terms, a neuron can be termed as a mathematical function that computes
the weighted average of its input datasets; then this sum is passed through activation
functions. The output of the neuron can then be the input to the next neuron, which
will again process the input received. Let’s go a bit deeper.

In a perceptron, each input value is multiplied by a factor called the weight. Biolog-
ical neurons fire once the total strength of the input signals exceeds a certain thresh-
old. A similar format is followed in a perceptron. In a perceptron, a weighted sum of
the inputs is calculated to get the total strength of the input data, and then an activa-
tion function is applied to each of the outputs. Each output can then be fed to the
next layer of perceptron.

Let’s assume that there are two input values, @ and b, for a perceptron X, which for
the sake of simplicity has only one output. Let the respective weights for a and b be P
and Q. So the weighted sum can be calculated as P * X+ Q * b. The perceptron will
fire or will have a nonzero output only if the weighted sum exceeds a certain thresh-
old. Let’s call the threshold C. So, we can say the following:

The output of Xwill be 0if P* X+ Q* y<= C.
The output of Xwill be 1if P* S+ Q* y> C.

If we generalize this understanding, we can represent it as follows. Representing a per-
ceptron as a function maps input x as the function:

lifwxx+b>0

f(x) =

0 otherwise

8.23

8.2 Building blocks of a neural network 241

where x is the vector of input values, w represents the vector of weights, and b is the
bias term. We explain the bias and the weight terms next.

Recall the linear equation: y = mx + ¢ where mis the slope of the straight line and ¢
is the constant term. Both bias and weight can be defined using the same linear
equation.

The role of weight is similar to the slope of the line in a linear equation. It defines
the change in the value of f(x) by a unit change in the value of x.

The role of the bias is similar to the role of a constant in a linear function. In case
there is no bias, the input to the activation function is x multiplied by the weight.

NOTE Weights and bias terms are the parameters that get trained in a
network.

The output of the function will depend on the activation function used. We will cover
various types of activation functions in the next section after we have covered different
layers in a network.

Different layers in a network

A simple and effective way of organizing neurons is the following. Rather than allow-
ing arbitrary neurons connected with arbitrary others, neurons are organized in lay-
ers. A neuron in a layer has all its inputs coming only from the previous layer and all
its output going only to the next. There are no other connections, for example,
between neurons of the same layer or between neurons in neurons belonging to dis-
tant layers (with a small exception for specialized cases, which is beyond the scope of
this book).

We know that information flows through a neural network. That information is
processed and passed on from one layer to another layer in a network. There are
three layers in a neural network, as shown in figure 8.4.

Figure 8.4 A typical neural network
layer Hidden Hidden with neurons and input, hidden, and
layer 1 layer 2 output layers

242 CHAPTER 8 Deep learning: The foundational concepts

The neural network shown in figure 8.4 has three input units and two hidden layers
with four neurons each and one final output layer:

Input layer—As the name signifies, this receives the input data and shares it with
the hidden layers.

Hidden layer—This is the heart and soul of the network. The number of hidden
layers depends on the problem at hand; the number of layers can range from a
few to hundreds. All the processing, feature extraction, and learning of the
attributes is done in these layers. In the hidden layers, all the input raw data is
broken into attributes and features. This learning is useful for decision-making
at a later stage.

Output layer—This is the decision layer and final piece in a network. It accepts
the outputs from the preceding hidden layers and then makes a prediction.

For example, the input training data may have raw images or processed images. These
images will be fed to the input layer. The data then travels to the hidden layers where
all the calculations are done. These calculations are done by neurons in each layer.
The output is the task that needs to be accomplished—for example, identification of
an object or classification of an image, etc.

The ANN consists of various connections. Each of the connections aims to receive
the input and provide the output to the next neuron. This output to the next neuron
will serve as an input to it. Also, as discussed earlier, each connection is assigned a
weight, which is representative of its respective importance. It is important to note
that a neuron can have multiple input and output connections, which means it can
receive inputs and deliver multiple outputs.

Exercise 8.2

Answer these questions to check your understanding;:
The input data is fed to the hidden layers in a neural network. True or False?
A bias term is similar to the slope of a linear equation. True or False?
Find and explore the deepest neural network ever trained.

So what is the role of a layer? A layer receives inputs, processes them, and passes the
output to the next layer. Technically, it is imperative that the transformation imple-
mented by a layer is parameterized by its weights, which are also referred to as param-
eters of a layer. In simple terms, to ensure a neural network is “trained” to a specific
task, something must be changed in the network. It turns out that changing the archi-
tecture of the network (i.e., how neurons are connected) has only a small effect. On
the other hand, as we will see later in this chapter, changing the weights is the key to
the “learning” process.
We now move to the very important topic of activation functions.

8.24

8.2 Building blocks of a neural network 243

Activation functions

We have already mentioned activation functions. The primary role of an activation
function is to decide whether a neuron/perceptron should fire or not. These func-
tions play a central role in the training of the network at a later stage. They are some-
times referred to as transfer functions. It is also important to know why we need
nonlinear activation functions. If we use only linear activation functions, the output
will also be linear. At the same time, the derivative of a linear function will be constant.
Hence, there will not be much learning possible. Thus, we prefer to have nonlinear
activation functions. We study the most common activation functions next.

SIGMOID FUNCTION
A sigmoid is a bounded monotonic mathematical function. It always increases its out-
put value when the input values increase. Its output value is always between —1 and 1.
A sigmoid is a differentiable function with an S-shaped curve, and its first deriva-
tive function is bell-shaped. It has a nonnegative derivative function and is defined for
all real input values. The sigmoid function is used if the output value of a neuron is
between 0 and 1.
Mathematically, a sigmoid function can be represented by equation 8.1:

S(x) = %e—x (8.1)

Figure 8.5 shows a graph of a sigmoid function. The sigmoid function finds its applica-

tions in complex learning systems. It is usually used for binary classification and in the
final output layer of the network.

Figure 8.5 A sigmoid function.
Note the shape of the function
1 I J and the min/max values.

TANH FUNCTION

In mathematics, the tangent hyperbolic (TANH) function is a differentiable hyper-
bolic function. It is a smooth function, and its input values are in the range of —1
to +1.

244

CHAPTER 8 Deep learning: The foundational concepts

A TANH function is written as equation 8.2:

et — %

TANH = ——— (8.2)
et +e "
A graphical representation of TANH is shown in figure 8.6. It is a scaled version of the
sigmoid function, and hence a TANH function can be derived from a sigmoid func-
tion and vice versa.

tanh x
10F
[o
L L 1 1 x
-4 2 L 2 4
j -
—————'—"‘f -l,ﬂ =

Figure 8.6 A TAHN function, which is a scaled version of a sigmoid function

A TANH function is generally used in the hidden layers. It makes the mean closer to
zero, which makes the training easier for the next layer in the network. This is also
referred to as centering the data.

RECTIFIED LINEAR UNIT

A rectified linear unit (ReLU) is an activation function that defines the positives of an
argument. Equation 8.3 shows the ReLLU function. Note that the value is 0 even for
the negative values, and from 0 the value starts to incline.

F(x) =max (0, x) (8.3)

It will give the output as x if positive, else 0.

The ReLU is a simple function and hence less expensive to compute and much
faster. It is unbounded and not centered at zero. It can be differentiated at all places
except zero. Since the ReLLU function is less complex, it is computationally less expen-
sive and, hence, is widely used in the hidden layers to train the networks faster. Figure
8.7 is a graphical representation of a ReLU function.

8.2.5

8.2 Building blocks of a neural network 245

Figure 8.7 A RelU function. It is one
of the favored activation functions in
the hidden layers of a neural network.
A ReLU is simple to use and less
expensive to train.

=10.0 <75 =50 =25 0.0 2.5 5.0 7.5

SOFTMAX FUNCTION

The softmax function is used in the final layer of the neural network to generate the
output from the network. It is an activation function that is useful for multiclass classi-
fication problems and forces the neural network to output the sum of 1.

As an example, say the distinct classes for an image are cars, bikes, or trucks. The
softmax function will generate three probabilities for each category. The category that
has received the highest probability will be the predicted category.

There are other activation functions too, like ELU, PeLU, etc., which are beyond
the scope of this book. We provide a summary of various activation functions at the
end of this chapter.

We next cover hyperparameters, which are the control levers we have while the
network is trained.

Hyperparameters

During training a network, the algorithm is constantly learning the attributes of the
raw input data. At the same time, the network cannot learn everything itself; there are
a few parameters for which initial settings must be provided. These are the variables
that determine the structure of the neural network and the respective variables that
are useful to train the network.

A few examples of hyperparameters are the number of hidden layers in a network,
the number of neurons in each layer, the activation functions used in layers, weight
initialization, etc. We have to pick the best values of the hyperparameters. To do so, we
select some reasonable values for the hyperparameters, train the network, measure
the performance of the network, tweak the hyperparameters and retrain the network,
reevaluate and retweak, and so on.

NOTE Hyperparameters are controlled by us, as we input hyperparameters to
improve the performance.

246

8.2.6

CHAPTER 8 Deep learning: The foundational concepts

We now move to the next important component in a neural network: optimization
functions.

Optimization functions

In deep learning, optimizers play a critical role. They minimize the loss function by
adjusting the model parameters, which are weights and biases. The optimizers facili-
tate faster convergence and improve the overall performance of the network. Some of
the most commonly used optimization functions are discussed next.

BATCH GRADIENT DESCENT, STOCHASTIC GRADIENT DESCENT, AND MINI-BATCH STOCHASTIC
GRADIENT DESCENT

In any prediction-based solution, we want to predict as best as we can; or, in other
words, we want to reduce the error as much as possible. Error is the difference
between the actual values and the predicted values. The purpose of a machine learn-
ing solution is to find the optimum value for our functions. We want to decrease the
error or maximize the accuracy. Gradient descent can help to achieve this purpose.

The batch gradient descent technique is an optimization technique used to find
the global minima of a function. We proceed in the direction of the steepest descent
iteratively, which is defined by the negative of the gradient.

But batch gradient descent can be slow to run on very large datasets or datasets
with a very high number of dimensions. This is due to the fact that one iteration of the
gradient descent algorithm predicts for every instance in the training dataset. Hence,
it is obvious that it will take a lot of time if we have thousands of records. For such a sit-
uation, we have stochastic gradient descent (SGD).

In SGD, rather than at the end of the batch of the data, the coefficients are
updated for each training instance, and hence it takes less time.

Figure 8.8 shows the way gradient descent works. Notice how we can progress
downward toward the global minimum.

Jw) Initial . Gradient

Global cost minimum Figure 8.8 The concept of gradient
JinlW) descent. It is the mechanism to
> minimize the loss function.

Mini-batch gradient descent batches gradient descent and SGD by using small subsets
of data. They are called mini-batches. In this fashion, it can balance both speed and

8.2 Building blocks of a neural network 247

accuracy. At the same time, it adds a hyperparameter, and we have to carefully tune
the batch size. Generally, it is kept in the power of 2 (32, 64, 128, 256, etc.).

ADAPTIVE OPTIMIZATION ALGORITHMS

Researchers have observed that there is a need for optimization algorithms for more
complex tasks like image, text, video, or audio analysis. Hence, adaptive optimization
solutions like momentum, Nesterov accelerated gradient (NAG), Adagrad, etc., have
been developed. We provide a brief summary of these solutions:

Momentum—This optimizer adds a fraction of the previous gradient to the cur-
rent gradient. The idea is to give more weight to the most recent update as
compared to the previous updates. It accelerates the convergence and achieves
better accuracy

@.8(J(0))

Vi)y=yV(@t-1)+ 59

and hence the weights are updated by 6 = 6 — V(¢).

Generally, the value of the momentum term (y) is set to 0.9. With momen-
tum, the convergence is faster, but at the same time, we must compute one
more variable for each update.

NAG—This is an improvement over momentum. In momentum, if the value
becomes too large, the optimizer might miss the local minima. Hence, NAG was
developed. It is a look-ahead method wherein the weights are modified to
determine the future location.

Next, we discuss the most widely used optimization algorithms in the industry.

LEARNING AND LEARNING RATE

For a network, we take various steps to improve the performance of the solution:
learning rate is one of them. The learning rate will define the size of the corrective
steps that a model takes to reduce the errors. Learning rate defines the amount by
which we should adjust the values of weights of the network with respect to the loss
gradients (more on this process later). If we have a higher learning rate, the accuracy
will be lower. If we have a very low learning rate, the training time will increase.

Exercise 8.3
Answer these questions to check your understanding:

Compare and contrast the sigmoid and TANH functions.
ReLU is generally used in the output layer of the network. True or False?
Gradient descent is an optimization technique. True or False?

We have examined the main concepts of deep learning. Now let us study how a neural
network works. You will learn how the various layers interact with each other and how
information is passed from one layer to another.

248

8.3

8.3.1

83.2

CHAPTER 8 Deep learning: The foundational concepts

How does deep learning work in a supervised manner?

We have covered the major components of a neural network. It is the time for all the
pieces to come together and orchestrate the entire learning process. The training of
a neural network is quite a complex process and can be examined in a step-by-step
fashion.

You might be wondering what is meant by “learning” of a neural network. Learn-
ing is a process to find the best and most optimized values for weights and bias for all
the layers of the network so that we can achieve the best accuracy. As deep neural net-
works can have practically infinite possibilities for weights and bias terms, we have to
find the optimum value for all the parameters. This seems like a herculean task con-
sidering that changing one value affects the other values, and indeed, it is a process
where the various parameters of the networks are changing.

Recall in the first chapter we covered the basics of supervised learning. We will
refresh that understanding here. The reason is to ensure that you are fully able to
appreciate the process of training the neural network.

Supervised learning algorithms

Supervised learning algorithms have a “guidance” or “supervision” to direct toward
the business goal of making predictions for the future. Formally put, supervised mod-
els are statistical models that use both the input data and the desired output to predict
the future. The output is the value we wish to predict and is referred to as the target
variable, and the data used to make that prediction is called the training data. The tar-
get variable is sometimes referred to as the label. The various attributes or variables
present in the data are called independent variables. Each of the historical data points or
training examples contain these independent variables and corresponding target vari-
ables. Supervised learning algorithms make a prediction for the unseen future data.
The accuracy of the solution depends on the training done and patterns learned from
the labeled historical data.

NOTE Most deep learning solutions are based on supervised learning. Unsu-
pervised deep learning is rapidly gaining traction, however, as unlabeled data-
sets are far more abundant than labeled ones.

Supervised learning problems are used in demand prediction, credit card fraud detec-
tion, customer churn prediction, premium estimation, etc. They are heavily used
across retail, telecom, banking and finance, aviation, insurance, and other fields.

We have now refreshed the concepts of supervised learning. We now move on to
the first step in the training of the neural network: feed-forward propagation.

Step 1: Feed-forward propagation

Let us start the process that occurs in a neural network (see figure 8.9). This is the
basic skeleton of a network we have created to explain the process. Let’s say we have

8.3.3

8.3 How does deep learning work in a supervised manner? 249

some input data points and the input data layer, which will consume the input data.
The information flows from the input layer to the data transformation layers (hidden
layers). In the hidden layers, the data is processed using the activation functions and
based on the weights and bias terms. Then a prediction is made on the dataset. This is
called feed-forward propagation, as during this process, the input variables are calculated
in a sequence from the input layer to the output layer.

Input data
[Weight updates Data transformation]
[Weight updates Data transformation
Figure 8.9 The basic skeleton of a neural network

Prediction training process. We have the input layers and data
transformation layers.

For example, say we wish to create a solution that can identify the faces of people. In
this case, we will have the training data, which is different images of people’s faces
from various angles, and a target variable, which is the name of the person.

This training dataset can be fed to the algorithm. The algorithm will then under-
stand the attributes of various faces or, in other words, learn the various attributes.
Based on the training done, the algorithm can then make a prediction on the faces.
The prediction will be a probability score if the face belongs to Mr. X. If the probabil-
ity is high enough, we can safely say that the face belongs to Mr. X.

Step 2: Adding the loss function

The output is generated in step 1. Now we have to gauge the accuracy of this network.
We want our network to have the best possible accuracy in identifying the faces. Using
the prediction made by the algorithm, we will control and improve the accuracy of the
network.

Accuracy measurement in the network can be achieved by the loss function, also
called the objective function. The loss function compares the actual values and the pre-
dicted values. The loss function computes the difference score and hence is able to
measure how well the network has done and what the error rates are. Let’s update the
diagram we created in step 1 by adding a loss function and corresponding loss score,
used to measure the accuracy of the network, as shown in figure 8.10.

250

8.3.4

8.4

CHAPTER 8 Deep learning: The foundational concepts

Input data
[Weight updates » Data transformation]
[Weight updates Data transformation
O

. True value of
Prediction -
target variable

[Loss function generating]

the loss score

Figure 8.10 A loss function has been added to measure the accuracy.

Step 3: Calculating the error

We generated the predictions in step 1 of the network. In step 2, we compared the
output with the actual values to get the error in prediction. The objective of our solu-
tion is to minimize this error, which is the same as maximizing the accuracy.

To constantly lower the error, the loss score (Predictions — Actual) is then used as
feedback to adjust the value of the weights. This task is done by the backpropagation
algorithm.

Backpropagation

In step 3 of the last section, we said we use an optimizer to constantly update the
weights to reduce the error. While the learning rate defines the size of the corrective
steps to reduce the error, backpropagation is used to adjust the connection weights.
These weights are updated backward based on the error. Following this, the errors are
recalculated, the gradient descent is calculated, and the respective weights are
adjusted. Hence, backpropagation is sometimes called the central algorithm in deep
learning.

Backpropagation was originally suggested in the 1970s. Then, in 1986, David Rum-
elhartm, Geoffrey Hinton, and Ronald Williams’s paper received a lot of appreciation.
Nowadays, backpropagation is the backbone of deep learning solutions.

Figure 8.11 shows the process for backpropagation, where the information flows
from the output layer back to the hidden layers. Note that the flow of information is
backward as compared to forward propagation, where the information flows from left
to right.

84.1

8.4 Backpropagation 251

)

i

" Output

é{"‘% layer
I /
Backpropagation
A Figure 8.11 Backpropagation

Backpropagation

as a process: the information
layer Hidden Hidden flows from the final layers to the
layer 1 layer 2 initial layers

First, we describe the process at a very high level. Remember that in step 1, at the start
of the training process, some random values were assigned to the weights. Using these
random values, an initial output is generated. Since this is the first attempt, the output
received can be quite different from the real values and the loss score is accordingly
very high. But this is going to improve. While training the neural network, the weights
(and biases) are adjusted a little in the correct direction, and subsequently, the loss
score decreases. We iterate this training loop many times, and it results in the opti-
mum weight values that minimize the loss function.

NOTE Backpropagation allows us to iteratively reduce the error during the
network training process.

The following section is mathematically heavy. If you are not keen to understand the
mathematics behind the process, you can skip it.

The mathematics behind backpropagation

When we train a neural network, we calculate a loss function. The loss function tells us
how different the predictions from the actual values are. Backpropagation calculates
the gradient of the loss function with respect to each of the weights. With this infor-
mation, each weight can be updated individually over iterations, which reduces the
loss gradually.

In backpropagation, the gradient is calculated backward—that is, from the last
layer of the network through the hidden layers to the very first layer. The gradients of
all the layers are combined using the calculus chain rule to get the gradient of any
particular layer.

We go into more details of the process next. First, let’s denote a few mathematical
symbols:

252

CHAPTER 8 Deep learning: The foundational concepts

h'"—output of the hidden layer i

g'"—activation function of hidden layer i

w'’—hidden weights matrix in the layer i

b'"—bias in layer i

x—input vector

N—total number of layers in the network

W j—weight of the network from node jin layer (i-1) to node kin layer i
OA/ & B—partial derivative of A with respect to B

During the training of the network, the input x is fed to the network, and it passes
through the layers to generate an output j. The expected output is y. Hence, the cost
function or the loss function to compare yand yis C(y, j). Also, the output for any hid-
den layer of the network can be represented as equation 8.4

R = g0 (WU)% + b(i)) (8.4)

where ¢ (index) can be any layer in the network.
The final layer’s output is

y(x) = WWT j(N=1) L p(\) (8.5)

During the training of the network, we adjust the network’s weights so that Cis reduced.
Hence, we calculate the derivative of Cwith respect to every weight in the network. The
following is the derivative of Cwith respect to every weight in the network:

Jdc
oW (i)jk

Now we know that a neural network has many layers. The backpropagation algorithm
starts at calculating the derivatives at the last layer of the network, which is the N
layer. Then these derivatives are fed backward. So the derivatives at the N layers will
be fed to the (N- 1) layer of the network and so on.

Each component of the derivatives of Cis calculated individually using the calculus
chain rule. As per the chain rule, for a function ¢ depending on b, where b depends on
a, the derivative of ¢ with respect to @ can be written as equation 8.6:

de _ dedb (8.6)

da dbda
Hence, in backpropagation the derivatives of the layer N are used in the layer (N-1)
so that they are saved and again used in the (V- 2) layer. We start with the last layer of
the network, through all the layers to the first layer, and each time, we use the deriva-
tives of the last calculations made to get the derivatives of the current layers. Hence,
backpropagation turns out to be extremely efficient compared to a normal approach
where we would have calculated each weight in the network individually.

84.2

8.5

8.5 How deep learning works in an unsupervised manner 253

Once we have calculated the gradients, we update all the weights in the network.
The objective is to minimize the cost function. We have already studied methods like
gradient descent in the last section. We now continue to the next step in the neural
network training process.

Step 4: Optimization

Backpropagation allows us to optimize our network and achieve the best accuracy (see
figure 8.12). Notice the optimizer, which provides regular and continuous feedback to
reach the best solution.

Input data
[Weight updates Data transformation]
S
[Weight updates Data transformation]

| |
Prediction True valu.e of
target variable

Loss function generating]

the loss score

Figure 8.12 Optimization is the process to minimize the loss function.

Once we have achieved the best values of the weights and biases for our network, we
say that our network is trained. We can now use it to make predictions on an unseen
dataset that has not been used for training the network.

How deep learning works in an unsupervised manner

We know that unsupervised learning solutions work on unlabeled datasets; thus, for
deep learning in unsupervised settings, the training dataset is unlabeled.

As compared to supervised datasets where we have tags, unsupervised methods
have to self-organize themselves to get densities, probabilities’ distributions, prefer-
ences, and groupings. We can solve a similar problem using supervised and unsuper-
vised methods. For example, a supervised deep learning method can be used to

254

8.6

8.6.1

CHAPTER 8 Deep learning: The foundational concepts

identify dogs versus cats while an unsupervised deep learning method might be used
to cluster the pictures of dogs and cats into different groups. In machine learning, a
lot of solutions that were initially conceived as supervised learning ones, over a period
of time, employed unsupervised learning methods to enrich the data and hence
improve the supervised learning solution.

During the learning phase in unsupervised deep learning, it is expected that the
network will mimic the data and then improve itself based on the errors. In the super-
vised learning algorithm, other methods play the same part as the backpropagation
algorithm. These include, among others,

Boltzmann learning rule
Contrastive divergence
Maximum likelihood
Hopfield learning rule
GAN

Deep belief network (DBN)

In this book, we cover autoencoders and GAN in depth in separate chapters. The rest
of the methods are covered in this chapter.

Next, we study the two most widely used types of neural networks in supervised
learning settings: the convolutional neural network (CNN) and the recurrent neural
network (RNN).

Exercise 8.4

Answer these questions to check your understanding;:
Write in a simple form the major steps in a backpropagation technique.
Backpropagation is preferred in unsupervised learning. True or False?
The objective of deep learning is to maximize the loss function. True or False?

Convolutional neural networks

CNNs s are a class of deep learning models that are primarily used for image and video
processing tasks. They have become a powerful tool in the field of computer vision
due to their ability to automatically detect and learn the pattern from raw images and,
hence, are used for several use cases across multiple domains and functions. We pro-
vide only a brief overview, as there can be an entire book on different types of CNN
solutions.

Key concepts of CNN
The following are the key concepts of CNN:

Input layer—The input to the CNN is generally a tensor representing an image.
As we know, an image is made up of pixels, and each pixel is made up of RGB

8.6 Convolutional neural networks 255

channels. An image is represented by a 3D matrix, which is a width x height
channel.

Convolution layer—This is the core building layer of a CNN. It applies a filter to
the input data, which scans over the image to detect patterns like lines, curves,
texture, edges, etc. The filter size is generally small and usually 3 x 3 or 5 x 5. As
the kernel slides over the input, it performs an element-wise multiplication and
sum, creating a feature map. Multiple filters can be applied to learn different
features, generating multiple feature maps. The entire process is illustrated in
figure 8.13.

3 1 1 2 8 4
1 10| 7|3]|2]68 7
1 0 — A

23|51 |1]3
11 4 | 1 2 6| 5 X 1 0 —1 =
3| 2|18 |7 2 1 0 -1
i 2 6 2 5 ! 3x3 filter

Original data Output 4x4

Result of element-wise
Convolution product and sum of filter
matrix and original data

Figure 8.13 CNN process. The original data is 6 x 6, and the filter applied is 3 x 3, which
results in a 4 x 4 output.

ReLLU activation function—This is applied to add nonlinearity. It helps the net-
work to understand and model more complex and difficult patterns that are
present in the data.

Polling layer—This is used to reduce the spatial dimensions of images while pre-
serving the most significant details. The most common type of pulling is called
max pulling. It takes the maximum value from a region of input. The major
function of the pooling layer is to reduce the computation load and also reduce
overfitting by providing a form of translation in variance.

Output—After we have created several convolutional and pooling layers, we
receive the output. It is generally flattened into a 1D vector and the output is
then passed to the fully connected layer. The main task of the fully connected
layer is to perform high-level classification of the image based on the features
extracted by the previous layers.

Output layer—If the solution is for classification of data points, the output layer
would contain a function like softmax. The softmax function gives respective

256

8.6.2

8.7

8.7.1

CHAPTER 8 Deep learning: The foundational concepts

probabilities for different classes. For example, if you are trying to predict that a
given picture is a cat or a dog, the softmax function will give the probability of
the picture being a dog or a cat.

In CNNs, the same filter is applied across different regions of the image. Thus the
number of parameters is reduced as compared to a traditional fully connected net-
work. Each neuron in the convolutional layer is connected only to a small region of
the input, and so the complexity of the network is also reduced. The network also
automatically trains and learns to detect low-level patterns. An example of a low-level
pattern is edges. The network subsequently progresses to learn more complex pat-
terns like shapes in the deeper layers.

Use of CNN

Call networks are fundamental and foundational to the modern-day competition solu-
tions. They are heavily used for image classification, image processing, speech recog-
nition, developing computer board games, and various other video processing
solutions. Many solutions are developed using CNN—for example, automatic detec-
tion of vehicle license plates, detection of cancerous cells from scans, detection of bro-
ken bones from x-rays, facial recognition solutions, automatic entry handwriting,
recognition solutions, and many other solutions that are having an amazing affect
across our lives.

There are quite a few CNN architectures available, like Inception, ResNet, LeNet,
VGG-16, etc., that are useful for creating computer vision solutions. We now move on
to the second common type of neural network: RNN.

Recurrent neural networks

RNNs are quite a popular class of networks that are designed to recognize patterns in
a sequence of data—for example, time service data or videos, natural languages, or
any other kind of data with this sequence of information. Here RNNs are very useful.
The most significant feature of RNNs is their ability to maintain a memory about the
previous input, which they capture using temporal dependencies and the order in the
dataset. This augments their capability to recognize patterns in the sequential data-
sets, and hence RNN has been found to be a parting solution in multiple domains.

Key concepts of RNN

RNNs are especially designed for sequential datasets, and here the order of the input
display plays a pivotal role. Hence, RNNs are the go-to solution for sequential data
handling.

Unlike a regular neural network, which is also known as a feed-forward neural net-
work, RNNs have recurrent connections. This means that the output from one time
step is fed back as the input to the next time step. This information is persistent across
the sequence. At the same time, the same weight is used across different time steps.

8.7 Recurrent neural networks 257

This makes them very efficient in terms of the number of parameters, as the same net-
work can be applied to every time step of the input sequence.
RNNs work in the following fashion:

The input data is processed sequentially. At each time step ¢ the network
receives an input x;, which is then combined with a hidden state %, ;. This
hidden state is the output from the previous time step and serves as a memory
that carries information from one time step to the next time step.

The hidden state A, is then updated using a nonlinear function:
ht =][(Wxt + U‘ht—l + b)

The final output at each of the time steps can be calculated and used either for
each individual time step or only at the final time step.

Figure 8.14 illustrates the RNN process.

Al A
Figure 8.14 The RNN process. RNNs have internal memory, which allows them to
use information from the previous inputs to influence the current input and outputs.

The most basic version of an RNN is a simple recurrent network, but it struggles with a
long-term dependency because the gradient can either vanish or explode, making it
hard for the network to remember information from far back in the sequence; hence,
it cannot be used for a solution like a chatbot. Long short-term memory (LSTM) is
much more useful here. LSTM is a special type of network designed to mitigate the
vanishing gradient problem and handle long-term dependencies better than plain
vanilla RNNs. They achieve this feat by introducing gates. There are three types of
gates: input, forget, and output gates. These gates regulate the flow of information
through the network and allow it to maintain important information over longer peri-
ods of time. Gated recurrent units are another type of RNN, but LSTM and gated
recurrent units are beyond the scope of this book.

RNNs are very powerful for processing sequences, and their ability to model time
dependencies makes them indispensable in the fields of natural language processing
and time-series analysis. Their use has been pathbreaking for many innovative solu-
tions—for example, predicting the next word in a sentence; translating text from one

258

8.8

8.8.1

CHAPTER 8 Deep learning: The foundational concepts

language to another; processing sequences of video frames to understand behaviors
over time; modeling temporal dependencies like audio signals, which can be used to
recognize speech patterns over time; and many more. RNNs are the power engines
behind GenAl solutions.

Boltzmann learning rule

The Boltzmann learning rule is an unsupervised learning rule used in neural net-
works. It is based on the principle of statistical mechanics of physical systems. It is
seldom used in the context of Boltzmann machines. It adjusts the weights of a neural
network with an objective to minimize the energy of the system, thereby ensuring the
network reaches a stable state.

Concepts of the Boltzmann learning rule
The following are the key concepts of the Boltzmann learning rule:

It is a type of probabilistic RNN where neurons are connected in a fully con-
nected graph.

The neurons in the Boltzmann machine are stochastic units that fire as per a
probability distribution. Thus we can use the Boltzmann learning rule for
dimensionality reduction, pattern recognition, feature extraction, and optimi-
zation tasks.

A Boltzmann machine has an energy function E(v,/) where vis the input visible
unit while 7% is the hidden unit. The energy function determines the cost of a
given state of the network. During the training of the network, we aim to adjust
the weights in such a manner so that the energy of the system is minimized.
The network models the probability of a particular state (v,h) using a Boltz-
mann distribution. It depends on the energy of the state, which is given by
equation 8.7:

—E(s)
A

¢ (8.7)

P(s) =

Here, Zis the partition function, which ensures that the sum of probabilities = 1.
The rule seeks to adjust the weights to keep on decreasing the energy of the sys-
tem during the training of the network, and it happens over time. The weights
are updated by a rule derived from gradient of the energy function with respect
to the weights. The weight update rule is given in equation 8.8:

Awij =1 (<vivj>p0sitive - (vivj>negative) (8.8)

Here, 7 is the learning rate, and (v;%) qara is the correction between the visible
unit v; and hidden unit A; It is computed from the data distribution. It rep-
resents how often they are active together in the hidden unit. (v;2) model is the
correction computed from the model distribution. It represents how often the

8.8.2

8.9

8.9.1

8.9 Deep belief networks 259

visible unit v; and hidden unit A; are active together in the state generated by
the network.

During the training of the model, a learning rule is followed, which is to
make the data distribution match the model distribution. Hence, it reduces the
energy of the system and thereby increases the overall performance.

Key points

There are certain key points we should bear in mind. Energy-based models like the
Boltzmann machine use the Boltzmann learning rule to minimize an energy function
by adjusting the network’s weights:

The network strives to model the probability distribution over its inputs. The
core objective here is to associate the higher energy with less likely configura-
tions. Similarly, the lower energy is associated with more like configurations.
Boltzmann learning is an unsupervised and probabilistic method. It works on
the concept of contrasting the model distribution and data distribution.

The rule is computationally expensive in its basic form; hence, to increase the
training speed, sometimes we utilize methods like contrastive divergence. We
cover contrastive divergence in the next section.

The Boltzmann learning rule is primarily used for unsupervised learning tasks
such as dimensionality reduction, feature extraction, and generative modeling.

The model training is sometimes slower than expected.

In summary, the Boltzmann learning rule is a probabilistic approach to training neu-
ral networks by adjusting weights based on minimizing an energy function, and it pro-
vides a foundation for generative models like Boltzmann machines. However, due to
computational challenges, approximations such as contrastive divergence are often
used to make it practical for real-world applications.

Deep belief networks

A DBN is a type of GAN made up of multiple layers of stochastic, binary latent vari-
ables (hidden units), where each layer is a restricted Boltzmann machine (RBM) or a
variant of it. DBNs were popularized by Geoffrey Hinton (who was awarded the Nobel
Prize in Physics in 2024, shared with John Hopfield) and his collaborators in the mid-
2000s for pretraining deep networks in an unsupervised way.

Key points of DBN
The key points of a DBN are as follows:
RBM

— A DBN consists of several layers of RBMs. A RBM contains a visible layer and
a hidden layer. The visible layer represents the observed data while the hid-
den layer captures the hidden features.

260

CHAPTER 8 Deep learning: The foundational concepts

— Each DBN is trained independently with an objective to model the underly-
ing structure of the data.

The objective of the training in DBN is to optimize the log-likelihood of the
data under the network’s generative model. For each layer, the contrastive
divergence algorithm is used to approximate the gradient of the log-likelihood
with respect to the weights. This allows the network to learn a good set of
weights for each layer.

The contrastive divergence algorithm is a stochastic approximation method

used to estimate the gradient of the log-likelihood of the model. The algorithm

starts with a sample from the visible layer and then performs Gibbs sampling to
update the hidden layer and visible layer iteratively. Contrastive divergence
ensures that the network learns to model the input data distribution efficiently.

Layer-based pretraining:

— DBNSs are typically trained in a layer-wise manner, where each layer is pre-
trained as an RBM. The first RBM has an objective to learn to capture low-
level features from the data.

— Based on this knowledge, each subsequent RBM then learns increasingly
complex, abstract features from the representations learned by the previous
layers. In this manner, the cycle continues.

— This phase involves training each RBM individually using contrastive
divergence.

— This process tunes the weights to capture relevant patterns and features in
the input data, without the need for labeled data.

— Since each layer learns features at increasing levels of abstraction and com-
plexity, it makes the overall solution good enough for complex tasks like
image or speech recognition.

Supervised fine-tuning:

— Once the pretraining is done, the entire network is fine-tuned. It is done in a
supervised fashion using methods like backpropagation or a labeled dataset
with an objective to optimize the network.

— The supervised system adjusts the network weights to minimize the predic-
tion error such as what is done in classification or regression tasks.

— The unsupervised pretraining phase helps initialize the weights in such a way
that the network is less likely to overfit during supervised fine-tuning, as it
starts with a better understanding of the data.

— They are computationally expensive and time-consuming, particularly when
dealing with large datasets or deep architectures.

— Pretraining using RBMs is useful, but fine-tuning the entire DBN can some-
times be difficult, especially if we are dealing with a very deep neural

8.10

8.10 Popular deep learning libraries 261

network. It may necessitate meticulous hyperparameter training and lots of
labeled datasets.

— Similar to other deep learning architectures, DBNs are also prone to the van-
ishing gradient problem, where gradients diminish as they are propagated
backward through many layers. This further complicates the entire training
process.

DBNSs are typically used for unsupervised learning, dimensionality reduction, and fea-
ture learning, but they can also be fine-tuned for supervised tasks such as classification.
DBNSs are used to improve the performance of speech recognition systems by learning
representations of sound features that are invariant to noise and other distortions. As
generative models, DBNs can be used to create new data instances that resemble the
training data. For example, DBNs have been used in generative art, where new images
are created that resemble a set of input images.

DBNSs are a significant milestone in the development of deep learning techniques.
They combine the strengths of generative models like RBMs with deep learning prin-
ciples to create a powerful method for learning complex representations of data.
While newer architectures have emerged and gained prominence, DBNs remain a key
historical and theoretical component of modern Al, influencing the development of
many advanced models. By utilizing unsupervised learning, DBNs can be highly effec-
tive for tasks like dimensionality reduction, generative modeling, and classification.
However, challenges related to training complexity and fine-tuning remain significant
hurdles for widespread adoption.

Popular deep learning libraries
Over the last few chapters, we have used a lot of libraries and packages for implement-
ing solutions. There are quite a few libraries available in the industry for deep learn-
ing. These packages expedite the solution building and reduce the efforts as most of
the heavy lifting is done by these libraries.

The most popular deep learning libraries are

TensorFlow (TF)—Developed by Google, this is arguably one of the most popular
and widely used deep learning frameworks. It was launched in 2015 and since
has been used by a number of businesses and brands across the globe.

Python is mostly used for TF but C++, Java, C#, Javascript, and Julia can also
be used. You have to install the TF library on your system and import the library.

NOTE Go to www.tensorflow.org/install and follow the instructions to
install TF.

TF is one of the most popular libraries and can work on mobile devices like iOS
and Android.

http://www.tensorflow.org/install

262

8.10.1

CHAPTER 8 Deep learning: The foundational concepts

Keras—Keras is a mature API-driven solution and quite easy to use. It is one of
the best choices for starters and is among the best for prototyping simple con-
cepts in an easy and fast manner. Keras was initially released in 2015 and is one
of the most recommended libraries.

NOTE Go to https://keras.io and follow the instructions to install Keras.
Tf.keras can be used as an API.

Serialization/deserialization APIs, call-backs, and data streaming using Python
generators are very mature. Massive models in Keras are reduced to single-line
functions, which makes it a less configurable environment and hence very con-
venient and easy to use.

PyTorch—Facebook’s brainchild PyTorch was released in 2016 and is another
popular framework. PyTorch operates with dynamically updated graphs and
allows data parallelism and distributed learning models. There are debuggers
like pdb or PyCharm available in PyTorch. For small projects and prototyping,
PyTorch can be a good choice.

Sonnet—DeepMind’s Sonnet is developed using and on top of TF. Sonnet is
designed for complex neural network applications and architectures. It works
by creating primary Python objects corresponding to a particular part of the
neural network. Then these Python objects are independently connected to the
computational TF graph. Because of this separation (creating Python objects
and associating them to a graph), the design is simplified.

NOTE Having high-level object-oriented libraries is very helpful, as the
abstraction is allowed when we develop machine learning solutions.

MXNet—Apache’s MXNet is a highly scalable deep learning tool that is easy to
use and has detailed documentation. A large number of languages like C ++,
Python, R, Julia, JavaScript, Scala, Go, and Perl are supported by MXNet.

There are other frameworks too, like Swift, Gluon, Chainer, DL4], etc.; however, we
only discuss the popular ones here. We now examine a short code in TF and Keras. It
is just to test that you have installed these libraries correctly. You can learn more about
TF at https://www.tensorflow.org and Keras at https://keras.io.

Python code for Keras and TF

We implement a very simple code in TF. We simply import the TF library and print
“hello”. We also check the version of TF:

import tensorflow as tf

= tf.constant ('Hello, TensorFlow!')
= tf.Session()

(sess.run(hello))

(

print ("TensorFlow version:", tf. version)

https://keras.io
https://www.tensorflow.org
https://keras.io

8.11

8.11 Concluding thoughts 263

If this code runs for you and prints the version of TF, it means that you have installed
tensorflow correctly:

from tensorflow import keras
from keras import models

If this code runs for you and prints the version of Keras, it means that you have
installed keras correctly.

Concluding thoughts

Deep learning is changing the world we live in. It is enabling us to train and create
really complex solutions that were a mere thought earlier. The effect of deep learning
can be witnessed across multiple domains and industries. Perhaps there are no indus-
tries that have been left unaffected by the marvels of deep learning.

Deep learning is one of the most-sought-after fields for research and development.
Every year, many journals and papers are published on deep learning. Researchers
across prominent institutions and universities (like Oxford, Stanford, etc.) of the
world are engrossed in finding improved neural network architectures. At the same
time, professionals and engineers in reputed organizations (like Google, Facebook,
etc.) are working hard to create sophisticated architectures to improve performance.

Deep learning is making our systems and machines able to solve problems typically
assumed to be in the realm of humans only. We have improved the clinical trials pro-
cess for the pharma sector, fraud detection software, automatic speech detection sys-
tems, and various image recognition solutions; and created more robust natural
language processing solutions, targeted marketing solutions that improve customer
relationship management and recommendation systems, better safety processes, and
so on. The list is quite long and growing day by day.

At the same time, there are still a few challenges. The expectations from deep
learning continue to increase. Deep learning is not a silver bullet or a magic wand to
resolve all problems. It is surely one of the more sophisticated solutions, but it is cer-
tainly not the 100% solution to all business problems. The dataset we need to feed the
algorithms is not always available. There is a dearth of good-quality datasets that are
representative of business problems. Often, big organizations like Google, Meta, or
Amazon can afford to collect such massive datasets. But many times we do find a lot of
quality problems in the data. Having the processing power to train these complex
algorithms is also a challenge. With the advent of cloud computing, though, this prob-
lem has been resolved to a certain extent.

In this chapter, we explored the basics of neural networks and deep learning. We
covered the details around neurons, activation function, different layers of a network,
and loss function. We also covered in detail the backpropagation algorithm—the cen-
tral algorithm used to train a supervised deep learning solution. Then we briefly went
through unsupervised deep learning algorithms. We will cover these unsupervised

264 CHAPTER 8 Deep learning: The foundational concepts

deep learning solutions in greater detail in the later chapters. Figure 8.15 shows the
major activation functions.

Hame Plot Equation Derivative

Tdentity / flz)==z flla)=1
. 0 for x<0 0 for 2#0
| Binary step | flz) = { 1 for >0 filz)= { ?7 for x Z0
| Logistic (aka e . 1 1y
| Soft step) — I(I) 1 +e* ! (1) B f(I)(l a f(z))
| SEEIE 2
Tard _/ f(z) = tanh(z) = s 1 | {g)=1= flz)?
e 1
| ArcTan / Ple)= tan_l(:c) fl(I} = 241
;Er-:ctifi;i f() _ 0 for <0 0 for z<0
-(;z;; t / =Yz for >0 1 for >0
:Parameteric . .
| Rectifled ar for <0 T
| Linear Unit / flz) = { z for x>0 = { z>0
(PReLT)
flx)+a for =<0
1 for >0

(ELD)

| Exponential . I
ale*—1) for z<0
| Linear Unit .__/ f(I) - { (.3‘ for >0

SoftPlus

@ =le(1+) f@)=

Figure 8.15 Major activation functions at a glance (Source: towardsdatascience)

8.12 Practical next steps and suggested readings
The following provides suggestions for what to do next and offers some helpful
reading:
= The book Deep Learning with Python by Francois Chollet is one of the best
resources to clarify the concepts of deep learning. It covers all the concepts of
deep learning and neural networks and is written by the creator of Keras.
= Read the following research papers:

Summary 265

— Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the Knowledge in a
Neural Network. https://arxiv.org/pdf/1503.02531.pdf

— Srivastava, R., Greff, K., and Schmidhuber, J. (2015). Training Very Deep
Networks. https://arxiv.org/pdf/1507.06228

— Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distrib-
uted Representations of Words and Phrases and their Compositionality.
https://arxiv.org/abs/1310.4546

— Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., et al. (2014). Generative
Adversarial Networks. https://arxiv.org/abs/1406.2661

- He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for
Image Recognition. https://arxiv.org/abs/1512.03385

Summary
Deep learning is an advanced form of machine learning based on neural net-
works, and it’s particularly effective with unstructured data like text, images,
audio, and video.

Deep learning finds applications across various sectors, such as

— The medical field and pharmaceuticals—Used for diagnosing medical condi-
tions and expediting drug development

— Banking and finance—Detects fraud and distinguishes fake signatures

— The automobile sector—Powers autonomous driving by recognizing traffic
elements

— Speech and image recognition—Enables technologies like Siri and image-based
systems for medical diagnostics and security

Key concepts for neural networks include

— Artificial neurons (perceptrons)—Simplified models of biological neurons.
Weights and biases play crucial roles in the function of a perceptron.

— Layers—Networks are structured with input, hidden, and output layers. Hid-
den layers extract and learn features critical for decision-making.

— Activation functions—Ciritical for neural network performance and include
sigmoid, TANH, LeLU, and softmax.

Training neural networks involves processes like feed-forward propagation, cal-
culating loss, and employing backpropagation for weight adjustments to maxi-
mize prediction accuracy.

While unsupervised learning relies on unlabeled data, techniques like Boltz-
mann learning and DBNs are central to improving data organization in such
settings.

CNNs are primarily used in image and video processing. CNNs excel in recog-
nizing patterns due to their architecture, featuring layers like convolutional
and polling layers for feature extraction.

https://arxiv.org/pdf/1507.06228
https://arxiv.org/pdf/1503.02531.pdf
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1512.03385

266

CHAPTER 8 Deep learning: The foundational concepts

RNNs are suitable for sequential data. RNNs maintain information across
inputs and are enhanced by LSTMs for long-term dependency challenges. They
are key in natural language processing and time-series analysis.

The Boltzmann learning rule is an unsupervised, probabilistic method used in
neural networks to adjust weights by minimizing an energy function, often aid-
ing in tasks like dimensionality reduction and feature extraction, but computa-
tional challenges require approximations like contrastive divergence.

DBNs are GANSs consisting of layers of RBMs, utilizing unsupervised pretraining
to learn complex data representations and supervised fine-tuning for tasks like
classification, yet they face challenges, including computational expense and
potential overfitting.

DBNSs use layer-wise pretraining to capture abstract features, making them suit-
able for complex applications like image or speech recognition; however, prob-
lems like the vanishing gradient problem and intricate fine-tuning processes
can impede performance.

Despite newer deep learning architectures gaining popularity, DBNs remain
integral to the evolution of Al, playing a critical role in the development of
models for tasks including dimensionality reduction, generative modeling, and
classification, although training complexity continues to be a barrier.

9.1

Autoencoders

This chapter covers

Introducing autoencoders

Training of autoencoders

Types of autoencoders

Python code using TensorFlow and Keras

Out of intense complexities, intense simplicities emerge.
—Winston Churchill

In the preceding chapter, we explored the concepts of deep learning. In this chap-
ter, we start with unsupervised deep learning. Autoencoders are the very first topic.
We will first cover the basics of autoencoders, what are they, and how we train them.
We then get into the different types of autoencoders followed by a Python code on
the implementation. Welcome to the ninth chapter, and all the very best!

Technical toolkit

We will continue to use the same version of Python and Jupyter Notebook as we
have used so far. The codes and datasets used in this chapter have been checked in

267

268

9.2

9.3

CHAPTER 9 Autoencoders

at the GitHub location. You need to install a couple of Python libraries in this chapter:

tensorflow and keras.

Feature learning

Predictive modeling is quite an interesting topic. Across various domains and business
functions, predictive modeling is used for various purposes like predicting the sales
for a business in the next year, the amount of rainfall expected, whether the incoming
credit card transaction is fraud or not, whether the customer will make a purchase or
not, and so on. The use cases are many, and all the aforementioned use cases fall
under supervised learning algorithms.

NOTE The datasets that we use have variables or attributes. They are also
called characteristics or features.

While we wish to create these predictive models, we are also interested in understand-
ing the variables that are useful for making the prediction. Let’s consider a case where
a bank wants to predict if an incoming transaction is fraudulent or not. In such a sce-
nario, the bank will wish to know which factors are significant to identify an incoming
transaction as fraud. Factors that might be considered include the amount of the
transaction, the time of the transaction, the origin/source of the transaction, etc. The
variables that are important for making a prediction are called significant variables.

To create a machine learning—based predictive model, feature engineering is used.
Feature engineering, otherwise known as feature extraction, is the process of extract-
ing features from the raw data to improve the overall quality of the model and
enhance the accuracy as compared to a model where only raw data is fed to the
machine learning model.

Feature engineering can be done using domain understanding, various manual
methods, and a few automated methods too. One such method is known as feature
learning. Feature learning is the set of techniques that help a solution automatically dis-
cover the representations required for feature detection. With the help of feature
learning, manual feature engineering is not required. The effect of feature learning is
much more relevant for datasets where images, text, audio, and video are being used.

Feature learning can be both supervised and unsupervised. For supervised feature
learning, neural networks are the best example. For unsupervised feature learning, we
have examples like matrix factorization, clustering algorithms, and autoencoders. We
have already covered clustering and matrix factorization. In this chapter, we start with
an introduction to autoencoders.

Introducing autoencoders

When we start with any data science problem, data plays the most significant role. A
dataset that has a lot of noise is one of the biggest challenges in data science and
machine learning. There are quite a few solutions available now, and autoencoders
are one of them.

9.4

9.4 Components of autoencoders 269

Simply put, an autoencoder is a type of artificial neural network, and it is used to
learn the data encodings. Autoencoders are typically used for dimensionality reduc-
tion methods. They can also be used as generative models, which can create synthetic
data that is like the old data. For example, if we do not have a good amount of data to
train machine learning, we can use generated synthetic data to train the models.

Autoencoders are feed-forward neural networks, and they compress the input into
a lower dimensional code and then try to reconstruct the output from this representa-
tion. The objective of an autoencoder is to learn the lower dimensional representa-
tion (also sometimes known as encoding) for a high-dimensional dataset. Recall from
the previous chapters principal component analysis (PCA). Autoencoders can be
thought of as a generalization for PCA. PCA is a linear method whereas autoencoders
can learn nonlinear relationships as well. Hence, autoencoders are required for
dimensionality reduction solutions wherein they capture the most significant attri-
butes from the input data.

Components of autoencoders

The architecture of an autoencoder is quite simple to understand. An autoencoder
consists of three parts: an encoder, a bottleneck or a code, and a decoder, as shown in
figure 9.1. In simple terms, an encoder compresses the input data, a bottleneck or
code contains this compressed information, and the decoder decompresses the
knowledge and hence reconstructs this data back to its original form. Once the
decompression has been done and the data has been reconstructed to its encoded
form, the input and output can be compared.

Encoder Decoder

Bottleneck

Figure 9.1 Structure of an
autoencoder with an encoder, a
bottleneck, and a decoder

Let’s study these components in more detail:

Encoder—The input data passes through the encoder. An encoder is nothing
but a fully connected artificial neural network. It compresses the input data into
an encoded representation, and in the process the output generated is reduced

270

9.5

CHAPTER 9 Autoencoders

in size. An encoder compresses the input data into a compressed module
known as a bottleneck.

Bottleneck—The bottleneck can be considered the brain of the encoder. It con-
tains the compressed information representations, and it is the job of the bot-
tleneck to allow only the most important information to pass through.
Decoder—The information received from the bottleneck is decompressed by a
decoder. It re-creates the data back to its original or encoded form. Once the
job of the decoder is done, the actual values are compared with the decom-
pressed values created by the decoder.

There are a few important points about autoencoders to consider:

There is a loss of information in autoencoders when the decompression is done
as compared to the original inputs. So when the compressed data is decom-
pressed, there is a loss as compared to the original data.

Autoencoders are specific to datasets. This means that an algorithm that is
trained on images of flowers will not work on images of traffic signals and vice
versa. This is because the features the autoencoder learned will be specific to
flowers only. So we can say that autoencoders are only able to compress the data
similar to the one used for training.

It is relatively easier to train specialized instances of algorithms to perform well
on specific types of inputs. We just need representative training datasets to train
the autoencoder.

Training of autoencoders

It is important to note that if there is no correlation between the variables in the data,
then it is really difficult to compress and subsequently decompress the input data. For
us to create a meaningful solution, there should be some level of relationship or cor-
relation between the variables in the input data. To create an autoencoder, we require
an encoding method, a decoding method, and a loss function to compare the actual
versus decompressed values.

The process is as follows:

The input data passes through the encoder module.

The encoder compresses the input of a model into a compact bottleneck.

The bottleneck restricts the flow of information and allows only important
information to pass through; hence, a bottleneck is sometimes referred to as
knowledge-representation.

The decoder decompresses the information and re-creates the data back to its
original or encoded form. This encoder-decoder architecture is quite efficient
in getting the most significant attributes from the input data.

The objective of the solution is to generate an output identical to the input. Generally,
the decoder architecture is a mirror image of the coder architecture. This is not man-
datory but is generally followed. We ensure that the dimensionality of the input and
outputs are the same.

9.6

9.7

9.7 Types of autoencoders 271

NOTE If you do not know the meaning of hyperparameter, refer to the
appendix.

We need to define four hyperparameters for training an autoencoder:

Code size—This is perhaps the most significant hyperparameter. It represents
the number of nodes in the middle layer. This decides the compression of the
data and can also act as a regularization term. The less the value of code size,
the more compressed the data.

Parameter—This denotes the depth of the autoencoder. A model that has more
depth is obviously more complex and will have a longer processing time.
Number of nodes per layer—This is the weight used per layer. It generally decreases
with every subsequent layer as the input becomes smaller across the layers. It
increases back in the decoder.

Loss function used—If the input values are in the [0,1] range, binary cross-
entropy is preferred; otherwise, mean squared error is used.

We have covered the hyperparameters used in training autoencoders. The training
process is similar to backpropagation, which we have already covered.

Application of autoencoders

Autoencoders are capable of solving a number of problems inherent to unsupervised
learning. Major applications for autoencoders include

Dimensionality reduction—Sometimes autoencoders can learn more complex
data projections than PCA and other techniques.

Anomaly detection—The error or the reconstruction error (error between the
actual data and the reconstructed data) can be used to detect the anomalies.
Data compression—TIt is difficult to beat the basic solutions like JPEG by training
the algorithm. Moreover, since autoencoders are data specific, they can use
only the types of datasets they have been trained upon. If we wish to enhance
the capacity to include more data types and make it more general, then the
amount of the training data required will be too high, and obviously, the time
required will be high too.

Other applications—These include drug discovery, machine translation, image
denoising, etc.

There are still not a lot of practical implementations of autoencoders in the real
world. This is due to a multitude of reasons like the nonavailability of datasets, infra-
structure, readiness of various systems, etc.

Types of autoencoders

There are five main types of autoencoders. A brief description of the different types of
encoders is given next. We have kept the section mathematically light and skipped the
math behind the scenes as it is quite complex to understand. For curious readers, the
papers listed in section 9.10 can explain the mathematics:

272

CHAPTER 9 Autoencoders

Undercomplete autoencoders—An undercomplete autoencoder is the simplest
form of an autoencoder. It simply takes an input dataset and then reconstructs
the same dataset again from the compressed bottleneck region. By penalizing
the neural network as per the reconstruction error, the model will learn the
most significant attributes of the data. By learning the most important attri-
butes, the model will be able to reconstruct the original data from the com-
pressed state. As we know, there is a loss when the compressed data is
reconstructed; this loss is called reconstruction loss.

Undercomplete autoencoders are unsupervised in nature as they do not
have any target label to train. Such types of autoencoders are used for dimen-
sionality reduction. Recall in chapter 2 we discussed dimensionality reduction
(PCA), and in chapter 6, we discussed the advanced dimensionality reduction
algorithms (t-distributed stochastic neighbor embedding and multidimensional
scaling). See figure 9.2.

Classifier performance

llllllllllll%llllll!!ll

T
Dimensionality (number of features)

Optimal number of features

Figure 9.2 The performance starts to improve with more dimensions but decreases
after some time. The curse of dimensionality is a real problem when it comes to
creating sound data science solutions.

Dimensionality reduction is possible using undercomplete autoencoders as the
bottleneck is created, which is the compressed form of the input data. This
compressed data can be decompressed back with the aid of the network. Recall
in chapter 3 we explained that PCA provides a linear combination of the input
variables. For more details and to refresh your memory on PCA, please refer to
chapter 3. We know that PCA tries to get a low-dimensional hyperplane to

9.7 Types of autoencoders 273

describe the original dataset; undercomplete autoencoders can also learn non-
linear relationships. The difference is shown in figure 9.3.

PCA

Figure 9.3 PCA is linear in
nature while autoencoders
are nonlinear. This is the
core difference between the
two algorithms.

Autoencoder

Interestingly, if all the nonlinear activation functions are removed from the
undercomplete autoencoder and only linear layers are used, the autoencoder is
equivalent to a PCA only. To make the autoencoder generalize and not memo-
rize the training data, an undercomplete autoencoder is regulated and fine-
tuned by the size of the bottleneck. It allows the solution to not memorize the
training data and generalize very well.

NOTE If a machine learning model works very well on the training data but
does not work on the unseen test data, it is called overfitting.

Sparse autoencoders—Sparse autoencoders are similar to undercomplete autoen-
coders except they use a different methodology to tackle overfitting. Conceptu-
ally, a sparse autoencoder changes the number of nodes at each of the hidden
layer and keeps it flexible. Since it is not possible to have a neural network capa-
ble of a flexible number of neurons, the loss function is customized for it. In
the loss function, a term is introduced that captures the number of activated
neurons. The penalty term is proportional to the number of activated neurons.
The higher the number of activated neurons, the higher the penalty. This pen-
alty is called the sparsity function. Using the penalty, it is possible to reduce the
number of activated neurons; hence the penalty is lower, and the network is
able to tackle the problem of overfitting.

Contractive autoencoders—Contractive autoencoders work on a similar concept as
other autoencoders. They consider that the inputs that are quite similar should
be encoded the same. Hence, they should have the same latent space represen-
tation. It means that there should not be much difference between the input
data and the latent space.

274

CHAPTER 9 Autoencoders

Denoizing autoencoders—Denoizing means removing the noise, and that is the
precise task of denoizing autoencoders. They do not take an image as an input;
instead they take a noisy version of an image as an input as shown in figure 9.4.

Original images

Noisy input

Autoencoder output

Figure 9.4 An original image, noisy output, and the outputs from the autoencoder

The process of denoizing the autoencoder is depicted in figure 9.5. The origi-
nal image is changed by adding noise to it. This noisy image is fed to the
encoder-decoder architecture and the output received is compared to the origi-
nal image. The autoencoder learns the representation of the image, which is
used to remove the noise; this is achieved by mapping the input image into a
lower dimensional manifold.

— . a3 Encoder-
k- . decoder

Original image Noisy image Output image

Figure 9.5 The process of denoizing in an autoencoder. It starts with the original image; noise
is added, which results in a noisy image, and then it is fed to the autoencoder.

We can use denoizing autoencoders for nonlinear dimensionality reduction.

Variational autoencoders—A standard autoencoder model represents the input in
a compressed form using the bottleneck. A variation is probabilistic generative

9.8

9.8 Python implementation of autoencoders 275

models (usually Gaussian) over latent variables, which only need neural net-
works as a part of their overall structure. They are trained using expectation-
maximization meta-algorithms. The mathematical details are beyond the scope
of this book.

Python implementation of autoencoders

Let’s create two versions of an autoencoder. The code has been taken from the
official source at the Keras website (https://blog.keras.io/building-autoencoders-in
-keras.html) and has been modified for our usage. The steps are as follows:

Import the necessary libraries:

import keras
from keras import layers

Create our network architecture:

This is the size of our encoded representations
encoding dim = 32 # 32 floats -> compression of factor 24.5, assuming
the input is 784 floats

This is our input image

input_img = keras.Input (shape=(784,))

"encoded" is the encoded representation of the input

encoded = layers.Dense (encoding dim, activation='relu') (input_img)
"decoded" is the lossy reconstruction of the input

decoded = layers.Dense (784, activation='sigmoid') (encoded)

This model maps an input to its reconstruction
autoencoder = keras.Model (input img, decoded)

Add more details to the model:

This model maps an input to its encoded representation
encoder = keras.Model (input_img, encoded)

This is our encoded (32-dimensional) input

encoded_input = keras.Input (shape=(encoding dim,))

Retrieve the last layer of the autoencoder model

decoder layer = autoencoder.layers[-1]

Create the decoder model

decoder = keras.Model (encoded input, decoder layer (encoded_input))

autoencoder.compile (optimizer='adam', loss='binary crossentropy')

Load the datasets:
(x_train,), (x _test, _) = mnist.load data()

Create the train and test the datasets:

x train = x train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.

https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html

276

x_train

x_test

CHAPTER 9 Autoencoders

= x_train.reshape((len(x_train), np.prod(x_train.shape[l:])))
X _test.reshape((len(x test), np.prod(x_test.shapell:])))
print (x_train.shape)
print (x_test.shape)

Fit the model (see figure 9.6):

autoencoder.fit (x _train, x train,

In [9]: 1
2
8
4

5]

epochs=5,

batch size=128,

shuffle=True,

validation data=(x_test, x test))

autoencoder.fit(x train, x train,

epochs=5,
batch size=128,
shuffle=True,

validation data=(x test, x test))

WARNING: tensorflow:From /Users/vaibhavverdhan/anaconda3/lib/python3.6/site-packages/tensorflow/
python/ops/math ops.py:3066: to _int32 (from tensorflow.python.ops.math ops)is deprecated and
will be removed in a future version.
Instructions for updating:

Use tf.cast instead.

Train on 6000 samples, validate on 1000 samples

Epoch 1/5
60000/60000
Epoch 2/5
60000/60000
Epoch 3/5
60000/60000
Epoch 4/5
60000/60000
Epoch 5/5
60000/60000

[

[

]

Out[9]: <keras.callbacks.History at 0x7£852e2bfd30>

Figure 9.6 Fitting the model

Test it on the test dataset:

Encode and decode some digits

Note that we take them from the *test* set

2s

2s

1s

1s

1s

32us/step
26us/step
24us/step
24us/step

25us/step

encoded_imgs = encoder.predict (x_test)

decoded imgs = decoder.predict (encoded imgs)

loss:

loss:

loss:

loss:

loss:

L2271

.1409

.1184

.1072

.1009

val

val

val

val

val

loss:

loss:

loss:

loss:

loss:

.1579

.1252

.1103

.1025

.0974

Plot the results. You can see the original image and final output (see figure 9.7):

Use Matplotlib (don't ask)

import matplotlib.pyplot as plt

n =

10

How many digits we will display
plt.figure(figsize=(20, 4))
for i in range(n):

9.9

9.10

9.10 Practical next steps and suggested readings 277

Display original
ax = plt.subplot(2, n, i + 1)
plt.imshow (x_test[i] .reshape (28, 28))

plt.gray()
ax.get xaxis () .set _visible(False)
ax.get_yaxis () .set_visible (False)

Display reconstruction
ax = plt.subplot(2, n, i + 1 + n)
plt.imshow (decoded imgs[i] .reshape (28, 28))

plt.gray ()

ax.get xaxis().set visible(False)

ax.get _yaxis () .set_visible(False)
plt.show()

zizl/jelalrljals]z
7]zl /jolul/lv]als]7

Figure 9.7 The original image (bottom) and the final outcome (top)

Concluding thoughts

Deep learning is a powerful tool. With a sound business problem and a quality dataset,
we can create a lot of innovative solutions. Autoencoders are only one type of such
solutions.

In this chapter, we started with feature engineering, which allows us to extract the
most significant features from a dataset. Then we moved to autoencoders. Autoencod-
ers are a type of neural network only used to learn efficient coding of unlabeled data-
sets. Autoencoders can be applied to many business problems like facial recognition,
anomaly detection, image recognition, drug discovery, machine translation, and so on.

Practical next steps and suggested readings
The following provides suggestions for what to do next and offers some helpful
reading:
Read the blog at https://mng.bz/qxaw.
Study the following papers:
— Hinton, G. E., Krizhevsky, A., and Wang, S. D. (2011). Transforming Auto-
encoders. https://mng.bz/7p99
— Bank, D., Koenigstein, N., and Giryes, R. (2020). Autoencoders. https://
arxiv.org/abs/2003.05991
— Michelucci, U. (2020). An Introduction to Autoencoders. https://arxiv.org/
abs/2201.03898

https://mng.bz/qxaw
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2003.05991
https://arxiv.org/abs/2201.03898
https://arxiv.org/abs/2201.03898
https://mng.bz/7p99

278

CHAPTER 9 Autoencoders

See the good code and dataset available on the TensorFlow official page.
https://mng.bz/mGQr.

Summary

Predictive modeling is used in various domains to make future predictions
using supervised learning algorithms.

Key aspects of predictive modeling involve identifying significant variables or
features for accurate predictions.

Feature engineering enhances model accuracy by extracting useful features
from raw data.

Feature learning automates feature detection, suitable for datasets like images,
text, and audio.

Autoencoders are a type of neural network used for data encoding, dimension-
ality reduction, and generating synthetic data.

The architecture of autoencoders includes encoder, bottleneck, and decoder
components for data compression and reconstruction.

Autoencoders face information loss, are dataset-specific, and are suitable for
precise applications.

Training autoencoders requires encoding, decoding, and defining hyperparam-
eters such as code size and loss function.

Major applications include dimensionality reduction, anomaly detection, and
data compression, among others.

Types of autoencoders include undercomplete, sparse, contractive, denoizing,
and variational.

Sparse and contractive autoencoders address overfitting using different
methodologies.

A Python implementation of basic autoencoder architecture involves the Keras
library for encoding and decoding data.

https://mng.bz/mGQr
https://mng.bz/mGQr

Generative adversarial
networks, generative Al,

and ChﬂGPT

This chapter covers

= Generative adversarial networks
= Generative Al
= ChatGPT and BERT

Reality is created by mind. We can change our reality by changing our mind.

—Plato

In the last chapter, we discussed autoencoders. We now move to the some of the
most revolutionary technical advancements in recent times. You have probably
heard the terms generative adversarial networks (GANs), generative Al (GenAl),
and ChatGPT in the news. These are certainly game-changers for the industry. In
this penultimate chapter of the book, we discuss these innovations. Welcome to the
tenth chapter, and all the very best!

10.1 AI: A transformation

Al is a transformative field in computer science. It aims to create machines and
solutions that can mimic human intelligence. Al has indeed come a long way since
its birth and is changing our lives in multiple ways.

279

280

10.2

CHAPTER 10 Generative adversarial networks, generative Al, and ChatGPT

The concept of Al can be traced back to the mid-20th century. In 1956, John
McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon organized the
Darmouth Workshop, which is often credited for the birth of Al, as during this work-
shop the term “artificial intelligence” was coined. The researchers wanted to see how
machines can mimic human intelligence and be used for everyday life. In the initial
years, the researchers focused on symbolic Al. This approach involved using symbols
and logic to represent the knowledge and solve the problems. The progress in Al
slowed down during 1970s and 1980s when the funding was reduced. The late 20th
century and the early 21st century saw the resurgence of Al, thanks to the develop-
ment of machine learning techniques like neural networks and deep learning. The
new enabled Al systems started to make predictions and decisions by learning from
the historical data. With the availability of cloud computing, better service, and more
processing power, the training of algorithms was faster, easier, and cheaper, and there
was a shift from rule-driven to data-driven algorithms. With the launch of libraries like
TensorFlow and Keras, creating deep learning networks became something that any-
one with an internet connection could do.

Al has had a significant effect on day-to-day life. For example, we have virtual assis-
tants like Siri and Alexa to make recommendations on streaming platforms and e-
commerce websites. Al has been applied in finance, retail, aviation, life sciences, man-
ufacturing, and many other industries and business functions, improving efficiency
and decision-making processes, increasing customer satisfaction, and decreasing
costs. The integration of Al with robotics has resulted in auto-driving cars, drones,
automation, and digital twins. We now have very intelligent robotic systems that have
the capability to perform very complex tasks. Al has thus far been a boon to the
human race, and with responsible use, it can provide great benefits.

Al continues to grow, and that growth presents a unique set of opportunities and
challenges. There are biases and ethical concerns in Al systems; many activists have
also raised concerns about potential job displacements due to automation. Policymak-
ers and the government along with researchers are working tirelessly to make sure
that Al technologies are used responsibly and developed to serve humans, not work
against them.

GenAl and its significance

GenAl is a transformative field within the broader domains of Al It is a testament to
one of the remarkable achievements we have made in the field of machine learning,
resulting in improvements in computer processing and generation of new content.
You have no doubt seen the examples of Generative Pre-trained Transformer 3 (GPT-
3) and its advanced versions, which are being used in multiple industries and func-
tions.

The significant difference between traditional Al and GenAl is that GenAl solu-
tions can produce data while traditional Al systems perform tasks like predictions,
recommendations, or classifications. GenAl solutions are generally based on

10.2 GenAl and its significance 281

GANs—autoregressive models like the transformer architecture, which empowers
solutions like GPT.

GenAl is useful for multiple business domains and functions. A few of them are as
follows:

Natural language processing-based solutions have immensely benefitted from
GenAl models. GenAl has enabled the development of intelligent chatbots, vir-
tual assistants, summarization of text, query engines, and customized content.
These solutions have been helpful for branding and marketing purposes, cus-
tomer services, research and development, optimizations, and academics. The
use of GenAl for natural language processing (NLP) is huge and is expanding
and improving every day.

The life sciences and healthcare industry has been revolutionized through
GenAl tools. With these tools, the discovery of new drugs, generation of medical
reports, simulation of medical scenarios, training of healthcare professionals,
search of medical journals, and the overall medical research profession has
improved significantly. For example, Al can identify existing drugs that could be
repurposed for new therapeutic uses. By analyzing large datasets, Al can discover
connections between drugs and diseases that were not previously recognized. Al-
driven virtual screening can predict the binding affinity of small molecules to tar-
get proteins. This saves time and resources by reducing the number of com-
pounds that need to be synthesized and tested in the lab. The use of GenAl
within the healthcare industry is immensely beneficial for humans.

Machine learning and data analysis is completely dependent on the quantity and
quality of data available. Many times, there is a scarcity of good-quality datasets.
GenAl is playing a valuable role in the creation of synthetic data to augment and
expand smaller datasets. This process improves the overall quality of the training
dataset and hence improves the performance of the model. Using the synthetic
data, the model becomes less generic, and the risk of overfitting is reduced.
Using GenAl, customer experiences are improving. With GenAl algorithms, a
business is able to create customized recommendations, experiences, content,
and solutions. With this enhanced experience, overall user engagement is
improved, and the customer becomes more satisfied, leading to higher cus-
tomer lifetime value. Certainly, GenAl has been changing the personalization
experience of customers. It can be extended to any business domain like retail,
finance, telecom, or aviation.

GenAlT’s ability to create content like art, music, text, videos, and images is very
useful. It helps professionals in the creative fields by automating multiple steps of
their work. Authors now can use GenAl for innovative ideas, image designers can
use it to create designs, and music directors can use it to create a piece of music.
In the field of research and science, GenAl is helping scientists and researchers
in the simulation of experiments. It can simulate multiple scenarios, model very
complex physical systems, and predict the outcome of the experiments. Cer-

282

10.3

CHAPTER 10 Generative adversarial networks, generative Al, and ChatGPT

tainly, it decreases the amount of time and cost involved in the overall experi-
ment. Researchers and scientists can reach results much faster now.

These are only a few examples of the significance of GenAl; the possibilities are
immense. GenAl is certainly a game-changer with futuristic applications.

Next we compare discriminative and generative models. We have discussed dis-
criminative models throughout the book. Now we will clarify the differences between
discriminative models and GenAl ones.

Discriminative models and GenAl

In the realm of machine learning and Al, discriminative models and generative mod-
els are two fundamental approaches. Both can be used for classification, estimation,
and generation purposes. There are similarities and differences.

Discriminative models create the boundary that separates different classes or cate-
gories of datasets. These types of models are generally helpful for making predictions
and for data classification solutions. Some of the attributes of discriminative models
are as follows:

Discriminative models are generally used in supervised learning solutions. As
you know, supervised learning is for labeled datasets, where we have a target
variable to train an algorithm. Using supervised learning solutions for categori-
cal variables, we can predict the probability for an event to happen or not—for
example, if the customer will churn or not, whether the incoming credit card
transaction is fraud or genuine, and so on. Similarly, using supervised learning
solutions for numeric variables, we can predict an estimated value for a
numeric variable—for example, what the sales of a store next month will be or
the number of calls a call center can expect in the next week. Discriminative
models predict the conditional probability for an output given an input value,
and hence they are a great solution for any kind of classification task.

The most common examples of discriminative models are logistic regression,
decision trees, random forests, support vector machines, and deep learning—
based networks used for image and text classification. There are many discrimi-
native models at our disposable.

For generative models, our purpose is to capture the underlying distribution of the
data they are trained on. They seek to learn how the data is generated and how they
can use that intelligence to generate new data points that are similar to the training
dataset. Some of the salient attributes of the generative models are as follows:

Generative models provide a probability distribution over the entire data space;
they can generate new data points that are similar to the training data. It makes
them very helpful for solutions like synthetic text and image generation.

Generative models are very helpful for unsupervised learning solutions like
dimensionality reduction and clustering. This is because they do not rely on the
presence of explicit labels, and hence they can reveal the underlying patterns

10.4

10.4.1

10.4 Generative adversarial networks 283

present in the dataset. A few examples are hidden Markov models, GANs, and
variational autoencoders.

If we compare discriminative and generative models, we will find the following:

Generative models generally require a bigger dataset for training as they have
to learn the entire data distribution. Discriminative models, however, can work
with smaller labeled datasets too.

Generative models are typically much more complex than discriminative mod-
els. Generative models use the underlying structure of the data and require
more computational time and resources to achieve the solution.

Generative models have been used for content generation and the estimation
of density; discriminative models, on the other hand, are designed for broader
classifications and predictions. Hence, in current scenarios you will find dis-
criminative models are more popular than generative models.

Discriminative models are more efficient and require less computation cost and
memory. Thus they are more popular in the present scenarios for industry.

Both generative and discriminative models have their own set of pros and cons. The
choice depends on the business problem at hand and the dataset available. While dis-
criminative models are much more effective and efficient in classification and predic-
tion, generative models are more versatile and useful for data generation and
exploration. As users, we require an in-depth understanding of these models and
their characteristics. Only then can we choose the right solution for the business prob-
lem at hand.

Generative adversarial networks

GANSs represent a revolutionary deep learning architecture that has made significant
contributions to the field of generative modeling. GANs were introduced by Ian Good-
fellow and his colleagues in 2014 and have since become a cornerstone in various appli-
cations, including image generation, style transfer, data augmentation, and more.

At their core, GANs consist of two neural networks: the generator and the discrim-
inator. The generator is responsible for creating synthetic data, such as images or text,
while the discriminator’s role is to distinguish between real data and data produced by
the generator. In our in-depth explanation, we dissect the GAN architecture, provid-
ing a detailed understanding of its key components, training process, and practical
applications.

The generator network

The generator network is the creative force behind GANS. Its primary role is to pro-
duce synthetic data, mimicking real data as closely as possible. The generator network
takes random noise as input, often sampled from a simple distribution like a Gaussian
or uniform distribution. This noise vector is then passed through a series of layers, typ-
ically consisting of convolutional or transposed convolutional layers in the case of

284

10.4.2

CHAPTER 10 Generative adversarial networks, generative Al, and ChatGPT

image generation or recurrent layers for text generation. The generator’s purpose is
to transform the input noise into data that closely resembles the real data distribution.
See figure 10.1.

Let’s take a closer look at how the generator network operates:

= Input noise—The generator initiates the process with an input noise vector. This
noise vector serves as the seed for generating data. The noise vector is typically
drawn from a simple probability distribution, such as a Gaussian distribution.

= Transformations—The input noise is passed through a series of layers within the
generator. Each layer transforms the input in a way that makes it increasingly
resemble the real data distribution. These transformations are learned through
the training process.

= Generation—As the input noise progresses through the network, it gradually
takes on the characteristics of the target data. This transformation process con-
tinues until the data produced by the generator is presented as the final output.

= Loss function—The quality of the generated data is measured using a loss func-
tion, which quantifies how similar the generated data is to the real data. The
goal of the generator is to minimize this loss, thereby creating data that is as
realistic as possible.

Real Data Discriminator
loss

Discriminator

Generator
Generator loss

Random noise

Figure 10.1 Representation of a GAN

The generator’s ultimate objective is to produce data that is virtually indistinguishable
from authentic data. However, achieving this level of realism is a complex task, and it
relies heavily on the adversarial relationship with the discriminator network.

We now move to the counterpart of the generative network, which is the discrimi-
nator network.

The discriminator network

The discriminator network, as the counterpart of the generator, plays a crucial role in
GANs . Its purpose is to differentiate between real data and fake data. The discrimina-
tor is a binary classifier, trained to assign high probabilities (close to 1) to real data
and low probabilities (close to 0) to fake data.

10.4 Generative adversarial networks 285

Let’s explore the discriminator network in more detail:

Training data—Usually, the discriminator network is exposed to a dataset com-
prising real data. This dataset is primarily used to clean the discriminator, which
allows it to distinguish the authentic data from the synthetic data.
Discrimination—When the discriminator has been trained, we can use it to eval-
uate the datasets. It takes both real data from the training dataset used and the
synthetic data produced by the generator as an input.

Loss calculation—Now the discriminator computes a loss. This loss or error is
based on the ability of the discriminator to distinguish real data from the syn-
thetic data. If the discriminator correctly identifies real data as real and synthetic
data as synthetic, it means the performance is good, and hence the loss is mini-
mized. However, if the discriminator makes some errors, the loss would increase.
Parameters updates—The discriminator’s parameters are adjusted to minimize
the computed loss. These updates are helpful for the discriminator to increase
its accuracy.

With an understanding of the underlying structure behind GANs, we now move to the
heart of the entire process: the training of the network.

10.4.3 Adversarial training

The adversarial training process is the heart of the GAN architectures. The overall
training process is as follows:

Initially, both the generator and the discriminator start with random weights.
The generator produces synthetic data from the random noise and presents it
to the discriminator along with the real dataset.

The discriminator analyzes, assesses, and assigns probabilities to each input.
This is an attempt to correctly distinguish real data from the synthetic data.
The generator is updated based on the feedback from the discriminator. The
objective is to generate data that becomes indistinguishable from the real data
by the discriminator.

The discriminator is updated to improve its ability to differentiate between real
and synthetic data.

This process is continued iteratively. The generator and the discriminator keep
on improving their capabilities. The generator becomes increasingly adept at
producing a realistic dataset while the discriminator becomes more skilled at
the identification process. This iterative and interesting competition drives the
overall solution to a point where the generated data is virtually indistinguish-
able from the authentic dataset.

The overall training process relies on two key loss functions:

Generator loss—This function aims to minimize the discriminator’s ability to dis-
tinguish between real and synthetic datasets. Commonly used loss function

286

10.4.4

10.4.5

CHAPTER 10 Generative adversarial networks, generative Al, and ChatGPT

examples are binary cross entropy loss, which allows the generator to produce
data that the discriminator is more likely to classify as real.

Discriminator loss—The discriminator loss function’s purpose is to maximize its
ability to distinguish real datasets from the synthetic or fake datasets. It aims to
minimize the binary cross-entropy loss while assessing real data and maximizes
when working on generated or synthetic datasets.

GANSs are quite remarkable with this training process. We now move to a few variants
of GAN and some applications.

Variants and applications of GANs

GANS are useful for specific challenges and problems. This has also led to some of the
prominent variants that follow:

Conditional GAN—These models take additional information (e.g., class labels)
as input to control the generated data’s attributes.

Deep convolutional GANs—Optimized for image generation, deep convolutional
GANSs use convolutional layers to generate high-quality images.
CycleGANs—Used for style transfer and image-to-image translation, these mod-
els learn to map images from one domain to another.

BigGAN and StyletGAN—These models produce high-resolution images and
offer advanced control over image styles and attributes.

Next, we briefly cover the latest technological solutions available—for example, Bidi-
rectional Encoder Representations from Transformers (BERT), GPT-3, and others.

BERT, GPT-3, and others

BERT, GPT-3, and other models are prominent examples of advanced NLP tech-
niques that have revolutionized the field of Al. These models have made significant
strides in understanding and generating human-like text and enabling various appli-
cations in language understanding, translation, text generation, and more.

Developed by Google in 2018, BERT is a transformer-based model designed for
understanding the context of words in a sentence. Unlike previous models, which
read text sequentially, BERT can consider the context of each word by processing text
bidirectionally. BERT is pretrained on a massive amount of text data and can be fine-
tuned for specific NLP tasks like sentiment analysis, question answering, and named
entity recognition. BERT’s pretraining has significantly improved the performance of
many NLP tasks, making it a foundational model in the field.

GPT-3, developed by OpenAl, is one of the most famous language models. It was
released in 2020 and is the third iteration of the GPT series. GPT-3 is a generative model
capable of producing human-like text. It is pretrained on a massive corpus of text data
and can generate coherent and contextually relevant text when given a prompt. It can
also perform a wide range of NLP tasks, including text completion, language transla-
tion, and text summarization and can even engage in text-based conversations.

10.5

10.5.1

10.5.2

10.5 ChatGPT and its details 287

Text-to-Text Transfer Transformer (T5) is another transformer-based model, devel-
oped by Google in 2019. It is unique because it frames all NLP tasks as a text-to-text
problem. T5 is pretrained on a variety of text data and can be fine-tuned for various
NLP tasks, including text classification, translation, and summarization, making it a
versatile model for NLP tasks.

XLNet was developed as a successor to BERT and introduced a permutation-based
training approach. It considers all possible permutations of words in a sentence
during training, enabling it to model complex language dependencies more effec-
tively. XLLNet has shown strong performance on various NLP benchmarks and tasks.

RoBERTa is another model that builds upon BERT’s architecture, developed by
Facebook Al 'in 2019. It optimizes BERT’s pretraining methodology and achieves state-
of-the-art results on multiple NLP benchmarks.

The transformer architecture, originally introduced in the paper “Attention Is All
You Need” by Vaswani et al. (https://arxiv.org/abs/1706.03762), forms the founda-
tion of many of these models. It relies on self-attention mechanisms to process and
generate text data.

ChatGPT and its details

ChatGPT is an advanced Al model designed to engage in natural and dynamic conver-
sations with users, making it a pivotal development in the field of Al. Developed by
OpenAl, ChatGPT is built upon the GPT-3.5 architecture, which is known for its
capacity to understand and generate human-like text.

Key features of ChatGPT
The key features of ChatGPT are as follows:

Natural language understanding—ChatGPT comprehends and generates text in a
manner that closely resembles human communication, making interactions
with it feel more intuitive and engaging.

Contextual awareness—The model can maintain context throughout a conversa-
tion, remembering previous messages and providing coherent responses,
enabling more meaningful and flowing dialogues.

Multilingual capabilities—ChatGPT can communicate in multiple languages,
expanding its utility and accessibility to a global audience.

Customization—It can also be fine-tuned to perform specific tasks, such as draft-
ing emails, answering FAQs, or offering tutoring, making it versatile for various
applications.

Applications of ChatGPT
Applications of ChatGPT include the following:

Customer support—ChatGPT can be used to provide 24/7 customer support,
answering queries, troubleshooting problems, and ensuring a high level of user
satisfaction. It can be hence used as a chatbot and can serve as a virtual assis-
tant, helping users with scheduling, reminders, and information retrieval.

https://arxiv.org/abs/1706.03762

288

10.6

CHAPTER 10 Generative adversarial networks, generative Al, and ChatGPT

Research and development—Researchers can employ ChatGPT to sift through vast
amounts of data and generate reports or summaries, saving time and effort.
Content generation—It can assist content creators by generating blog posts, mar-
keting materials, or creative writing prompts.

Education—It can also offer personalized tutoring and answer students’ ques-
tions, enhancing the learning experience.

While there are many applications of ChatGPT, there is an ethical consideration too.
The use of ChatGPT must prioritize user privacy, with measures in place to protect
sensitive information shared during conversations. Monitoring and supervising
ChatGPT’s interactions may be necessary to ensure responsible usage. Developers
must work diligently to reduce biases and the potential to generate false or harmful
information in responses. Developers, organizations, and users should collectively
hold ChatGPT accountable for its actions and output.

Next we discuss the integration of GenAl in some real-world business applications.
This will give you a view on how you can employ these technologies in the pragmatic
business world.

Integration of GenAl

Integrating GenAl into real-world business involves a systematic process that requires
careful planning and consideration. Consider the following step-by-step guide on how
to integrate GenAl effectively:

Set the objectives and business problem definition. First, we should define the specific
objectives and use cases for GenAl within our business priorities. This requires
determining where it can provide the most value—whether that’s customer sup-
port and solutions, data analysis/visualizations, personalization, content gener-
ation, or others.

Evaluate the data available and the infrastructure. Next, we should check the data
available and assess its quality and quantity. High-quality data is essential for
training and maintaining GenAl models. We also must ensure that our IT infra-
structure can support the integration of Al systems.

Select the model. We then choose to develop a custom GenAl model or to use an
existing pretrained model. If we decide to build a custom model, we will have to
consider working with Al development teams or external vendors with exper-
tise in the field. This is a vital step, as we should choose teams that have the
required skills to develop the models. It is better to take recommendations
from the experts in the field.

Perform data collation, preprocessing, and preparation. Data is the protagonist here,
and the next step is to gather and preprocess the data necessary to train the
GenAl model. This may involve cleaning, labeling, and structuring the data for
training. Data preprocessing is a critical step for model accuracy. The data
should be representative of the business problem at hand.

10.7

10.7 Concluding thoughts 289

Train the model. We next train the GenAl model using the preprocessed data.
This process may require powerful hardware and deep learning expertise.
There might be some iterations to the model to align with our specific business
requirements. This step can take a lot of time, depending on the quantity of the
data, the quality of the infrastructure, and the complexity of the solution.

Test, validate, and tweak. We then test the GenAl system to ensure that it func-
tions as expected. This will involve validating its performance on real-world
data and use cases. A few variables to keep in mind are accuracy, response
times, and user experience.

Perform user education and training. GenAl will be used by employees, customers,
or other stakeholders; hence, we have to provide training and educational
materials on how to use the Al system effectively.

Consider compliance and privacy. It is vital to develop guidelines and policies for
the responsible use of GenAl, addressing problems like privacy, bias, and com-
pliance with relevant regulations. We have to ensure that the Al system aligns
with our organization’s ethical standards.

Perform maintenance. As our business grows, the demand on GenAl may increase.
We have to regularly update the model with fresh data to keep it accurate and
effective. We should always plan for scalability and ongoing maintenance. It is
important to implement monitoring systems to track GenAlI’s performance and
user feedback. This information can help us in making continuous improve-
ments and address any problems that arise.

Adapt, innovate, and improve. We should continuously evaluate the return on
investment of this GenAl integration by determining whether the expected
benefits are being realized and adjust as needed. It is important that we stay
abreast of advancements in Al technology and continually adapt and innovate
our GenAl integration to remain competitive and efficient.

Integrating GenAl into your business is a complex process that involves multiple steps
and ongoing efforts. Successful integration requires a clear strategy, a commitment to
responsible Al use, and a focus on delivering value to our organization and its
stakeholders.

Concluding thoughts

GenAl is an exciting and ambitious frontier in Al research. While it represents a long-
term goal, the pursuit of creating highly adaptable and versatile Al systems has the
potential to revolutionize the way we interact with technology and address a wide range
of challenges. However, it also comes with ethical and societal responsibilities that need
careful consideration and regulation as we move forward in Al development.
ChatGPT is a remarkable Al model with the potential to revolutionize human-com-
puter interactions. As it continues to evolve, the responsible use and development of
ChatGPT will be essential to harness its full potential while addressing ethical and
practical concerns. Whether it’s in customer service, content generation, education,

290

10.8

CHAPTER 10 Generative adversarial networks, generative Al, and ChatGPT

or research, ChatGPT is poised to transform the way we engage with Al, bringing us
closer to more intuitive and seamless communication with machines.

Practical next steps and suggested readings
The following provides suggestions for what to do next and offers some helpful
reading:
See the first paper on GANs: Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.
(2014). Generative Adversarial Networks. https://arxiv.org/abs/1406.2661
Study the following papers:
— Kingma, D. P., and Welling, M. (2013). Auto-Encoding Variational Bayes.
https://arxiv.org/abs/1312.6114

— Arici, T., and Celikyilmax, A. (2016). Associative Adversarial Networks.
https://arxiv.org/abs/1611.06953

If you want to study Bayesian GAN, see Saatchi, Y., and Wilson, A. J. (2014).
Bayesian GAN. https://arxiv.org/abs/1705.09558.

Summary

Al seeks to emulate human intelligence and has evolved significantly since the
1956 Dartmouth Workshop, where the term “artificial intelligence” was coined.

Initially focused on symbolic Al, the field slowed during the 1970s and 1980s
but was revitalized in the late 20th century with machine learning advances.
The rise of cloud computing and libraries like TensorFlow shifted Al from rule-
driven to data-driven algorithms, enhancing its accessibility.

Al affects various sectors including finance, aviation, and manufacturing,
improving efficiency, decision-making, and cost reduction.

GenAl distinguishes itself by generating data, underpinning technologies like
GPT, and benefitting domains like NLP and healthcare.

GenAl creates synthetic data, enhancing machine learning models by expand-
ing dataset quality and reducing overfitting risks.

Discriminative models are data classifiers, while generative models learn data
distribution to create new, similar data points.

GANs, featuring generator and discriminator networks, progressively improve
data realism through adversarial training.

GAN variants, such as CycleGAN and StyleGAN, address tasks like style transfer
and high-resolution image generation.

Natural language models like BERT and GPT-3 have advanced NLP capabilities,
offering solutions for translation and conversational Al

ChatGPT, based on GPT-3.5, excels in generating human-like conversational
text, finding use in customer support and content generation.

Integrating generative Al into business requires careful planning, data prepara-
tion, model training, and continual evaluation for success.

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1611.06953
https://arxiv.org/abs/1705.09558

End-toend model
deployment

This chapter covers

= The end-to-end model deployment process
= Maintenance of the model postdeployment
= Python codes for each of the steps

The journey s the destination.

—Dan Eldon

The path to learning never ends. It takes a lot of courage, patience, and hard work
to learn something. We have to be persistent, resourceful, and always looking for
opportunities to learn and excel.

Across all of the chapters so far, you have covered a lot of concepts, techniques,
and algorithms. In this last chapter of the book, we are going to discuss the end-to-
end model deployment process. We will cover various aspects ranging from a busi-
ness problem definition, data cleaning, and exploratory data analysis (EDA) to
model deployment and maintenance. This end-to-end journey is crucial for you to
appreciate the entire process. We will discuss Python codes at all the relevant places.

Welcome to this last chapter, and all the very best!

291

292 CHAPTER 11 End-to-end model deployment

11.1 The machine learning modeling process

Recall in chapter 1 we briefly discussed end-to-end model development. In this sec-
tion, we cover each of the respective steps in detail and the most common problems
we face with each of them and how to tackle them. It will finally lead to the model
deployment phase. Figure 11.1 shows the model development process we follow.

% Data science project steps
Archetype segmentation
Data Data Model

input preprocessing dataset Identify clusters within
data

Text mining using
cosine-similarity

Bayesian belief networks

Identify variable change
implication

Figure 11.1 The complete machine learning modeling process

Identify key factors
in user experience

The steps in the model development process are as follows:

Business problem definition

Data discovery and feasibility analysis
Data cleaning and prepreparation
Exploratory data analysis

Modeling process and business approval
Model deployment

Model documentation

Model maintenance and model refresh

Business outcome

« Extracted segments
based on customer
buying habits

« Variable dependency
graphs and their
implication on sales

Throughout this chapter, we will cover each of these processes in much more detail.

These are all relevant to the modeling process.

11.2 Business problem definition

Your business problem definition is the very first step. It is vital that the business prob-

lem is concise, clear, measurable, and achievable. Many times, in practice, the business

11.2 Business problem definition 293

problem is vaguely defined, such as “decrease the costs or increase the revenue,”
which often leads to poor results throughout the rest of the process. A good business
problem is defined clearly with key performance indicators (KPIs) and parameters
that can be used to measure the effect. A good business problem ensures there is no
ambiguity, the goal is clear, and we can achieve it with the available resources and
within the timeframe.

Some of the most important considerations regarding a business problem are as
follows:

If a business problem is vaguely defined, it is going to cause problems and
should be avoided. For example, all of the businesses and various functions
would want to increase their revenue and profits, reduce costs, optimize various
processes, and so forth. With a vague business problem, we will not have clarity
on the process, which will lead to ambiguity.

The business purpose should be practically achievable. Unrealistic goals like dou-
bling the revenue or halving the cost should not be set. Unrealistic goals mean
that good results might get rejected, as they do not meet the business targets.
The business problem should be measurable if possible. If the business prob-
lem is only qualitative, then it will be of limited help. We won’t be able to under-
stand the real effect of the machine learning model created.

Scope creep is one of the problems we face sometimes. Scope creep happens
when at the start of the project, during project building, the scope is changed
drastically, changing the requirements and time needs of the project without
changing resources and deadlines accordingly.

An effective business problem is defined correctly, completely, and in discussion with
the business teams. It is concise with measurable KPIs and is achievable within a given
timeframe.

NOTE Business stakeholders and subject matter experts should be involved in
defining the business problems. They should be a part of the team from the
start and own the overall process.

A few examples of a good business problem are as follows:

The marketing team in an organization aims to optimize the various costs and
maximize the return on investments. They want to identify the optimal combi-
nations of marketing efforts (email, calls, TV advertising, and meetings) to
increase the return on investment by 1.5% in the next six months.

A manufacturing team faces an increase in the number of defects in the last
three months. The business problem can be to identify all the potential reasons
for such an increase in defects. The team also wishes to know if there is a trend
or pattern. The business goal may be to shortlist the most significant reasons for
defects and reduce them by 2.5% in the next six months.

We have described the attributes of a business problem. We now move to the next
phase, which is data discovery and feasibility.

294 CHAPTER 11 End-to-end model deployment

11.3 Data discovery and feasibility analysis

The data discovery phase is one of the most important steps in the entire model build-
ing process. If there is not enough data, both quantitatively and qualitatively, it might
be very difficult to create the solution we desire. At the same time, having access to
this data is of paramount importance.

During this process, we also do the feasibility analysis for the project:

The data is the protagonist. The very first step is the identification of the data-
sets required for the business problem use case and mechanisms for its access
by all the stakeholders. For this reason, it is advisable that

— The dataset is available from servers or clouds and relevant permissions are
set correctly to the people who need access. The servers can access the data
from a database such as SQL/MySQL/NoSQL/MongoDB.

— If the data is in Excel/.csv/text files, it will be useful to make it available on
the server. In recent times, cloud servers like AWS, Azure, Google Cloud,
etc., are used for storing the data.

It is imperative to check that the dataset is complete and relevant to the busi-
ness problem. The dataset should be representative enough of the business
problem at hand and capture all the variability in the business. The time and
duration of the data is another important dimension we should bear in mind.
For example, if we wish to analyze the business of a telecom operator or a retail
company, we should have enough data (for at least the last year so that we cap-
ture seasonality as well) and variables around sales, transactions, discounts,
products/services purchased, marketing behaviors, historical behaviors,
offline/online purchases, etc.

It is prudent to plan the data refresh at this stage. After all, once the model is
built, we will have to maintain it and refresh it.

During this phase, the most common problems we can face are as follows:

We might find that there are certain missing values, outliers, etc., in the dataset.

We will cover that in detail in the next section.

We must also ensure that correct business rules are applied on the dataset. The

steps to ensure it are

— Get the relevant dataset for the business problem.

— Make some basic analyses like total sales, number of customers, month-wise
trends, discounts, etc.

— Get these KPIs verified by the business stakeholders. If the numbers are
wrong, the business rules are refined.

Only once the data is correct and the numbers are accurate can we move on to the
feasibility analysis for the use case. For the feasibility analysis, we do the following:

Check the data quality in detail. We cover the various aspects in the next
section.

114

11.5

11.5 Duplicate values in the data 295

Analyze the data for any patterns, such as seasonality, etc. We also check if there
are any correlations present among various variables to ensure which variables
are related to each other.

Check for relationships between the business problem and the dataset. This is
followed by an exploratory analysis to identify if there is any significant differ-
ence between various customer groups.

After this step, we go to the data cleaning, preprocessing, and data preparation step.
This is one of the most time-consuming steps we have to do.

Data cleaning and prepreparation

In the last step, we shortlisted the data for the business problem. Now we will go to the
data cleaning and preprocessing phase of the modeling process.

Data in its original form might not be usable enough to be fed to the machine
learning model. We have to create a few additional variables and treat some others. In
the real business world, the dataset is generally “dirty.” There can be many problems
that can be present in the data, which are as follows:

Duplicate values

Categorical variables (may cause some problem for certain algorithms)
Missing values, NULL, or not a number (NaN), etc.

Outliers

Other problems (as described in previous chapters)

Let’s deal with each of these things in turn. The code for this chapter has been
checked in at https://mng.bz/vKY7. You can access the code and datasets there. We
will now work on how to deal with duplicate values in a dataset.

Duplicate values in the data

Duplicates are often a problem in datasets. If there are two rows in the dataset that are
a complete copy of each other, they are duplicates in nature. This problem might
occur during data-capturing time. The problem with duplicates is that the statistics
will be affected—for example, by making some events appear to be more frequent
than they are. When removing duplicates, one needs to pay attention to not removing
genuine data of events that happened twice—for example, a customer purchasing an
item twice at two different times or a customer purchasing two identical items at the
same time versus the transaction of the purchase being recorded twice.

The following are the steps of a simple Python program to remove duplicates (see
figure 11.2):

Import numpy and pandas.

Define a dataframe with some dummy variables.

Print the dataframe.

There is an inbuilt method: drop_duplicates (). Use it to drop the duplicates.
Print the dataframe and find that the duplicate rows have been dropped.

https://mng.bz/vKY7

296 CHAPTER 11 End-to-end model deployment

In [2]: 1 import pandas as pd
import numpy as np

In [3]: 1 df = pd.DataFrame({
2 ‘Brand': ['ABC', 'ABC', 'XYZ', 'XYZ', 'X¥2'l,
'Type': ['Cup', 'Cup', 'Cup’', 'Plate’, 'Plate'l,

4 ‘Quality': [5, 5, §, 1@, 5]
5 1)

In [4]: 1 df
Out[4]:
Brand Type Quality
o ABC Cup 5
1 ABC Cup 5
2 ¥¥YZ Cup 5
3 KYZ Plate 10
4 XYZ Plate 5
In [7]: 1 df = df.drop_duplicates()
In: [81: | 1|df
Outl8]:
Brand Type Quality
o0 ABC Cup 5
2 XYZ Cup 5
3 KYZ Plate 10
4 X¥YZ Plata 5

Figure 11.2 Removing duplicates in a simple Python program

11.6 Categorical variables

The next step is treating the categorical variable. Let’s revisit the definition of categor-
ical variables. Variables like gender, city, product categories, zip codes, etc., are exam-
ples of categorical variables. Categorical variables may not strictly be a problem in the
data, but they can create problems for certain algorithms like k-means clustering.
Recall that for k-means clustering, the distance needs to be calculated between the
data points.

In certain datasets, a categorical variable can have nearly all values as the same. For
example, if the whole dataset is for the UK and a variable is “city,” since a significant
percentage of the population lives in London, then this variable might be of limited
benefit. It will not create any variation in the dataset and will not be useful. Similarly, a
categorical variable like “zip code” can have all the values as distinct and will not add
much to the analysis.

Perhaps the most common method to deal with categorical variables is using one-
hot encoding. In one-hot encoding, as shown in the Python code book, the variable
gets transformed:

Use the same dataset we used in the last code.
There is a built-in method in pandas, get_dummies (), which can be used for
converting categorical variables to numeric ones. See figure 11.3.

11.7

11.7 Missing values in dataset 297

In [8]:| 1 df
Dut[8]:
Brand Type Quality
0 ABC Cup 5
2 XYZ Cup 5
3 XYZ Plate 10
4 XYZ Plate 5
In [9]: '_! one_hot_encoded_data = pd.get_dummies(df, columns = ['Type'])
In [18]: 1 one_hot_encoded_data
Out[1ie]:
Brand Quality Type Cup Type Plate
0 ABC 5 1 0
2 XYZ 5 1 [i]
3 Xz 10 0 1
4 xvz 5 0 1

Figure 11.3 The output of the code when executed

Missing values in dataset

One of the most common challenges in real-world datasets is missing values, which
might be blank, NULL, NaN, etc. It might be due to a data capturing problem or data
transformation. Missing values should be treated to ensure a robust solution. There
can be a few reasons for missing values:

The values were not recorded properly during data capturing. This can be due
to faulty equipment or a manual error when recording the data.

Many times, nonmandatory fields are not entered. For example, a customer
might not enter age while filling out a retail loyalty form.

Survey responses might not be completely filled out—for example, salary
details.

To mitigate the missing values, there are a few options:

First, we should check if the data is missing by design and whether it is a prob-
lem that needs to be addressed. For example, it is possible for a sensor to not
record any temperature values above a certain pressure range. In that case, hav-
ing missing values of temperature is correct.

We should also check if there are any patterns in the missing values with respect
to the other independent variables and with respect to the target variable. For
example, in the dataset used in the next example we can deduce that whenever
the value of temperature is NULL, then the equipment has failed. In such a
case, there is a clear pattern in this data between temperature and the failed
equipment. Hence, it will be the wrong step to delete the temperature or treat
the temperature variable.

298

We now use Python to impute missing values. We will use the builtin method
SimpleImputer and impute the missing values with the mean. The second solution is
for the categorical variables, where the mode is used to replace the missing values. See

CHAPTER 11 End-to-end model deployment

Perhaps the easiest approach to deal with missing values is to delete the rows
that have missing values. Though this is simple and fast, it reduces the size of
the population and can delete very important pieces of information, as
described earlier, or, for example, if a person has a legitimate last name that is
not available. Hence, we should be careful deleting rows.

We can impute the missing values by the mean, median, or mode values. Mean
or median are only possible for continuous variables. Mode can be used for

both continuous and categorical variables.

There are also other popular methods for imputing the missing values like
using k-nearest neighbor and multivariate imputation by chained equation.

figure 11.4.

L import numpy as np

2 from sklearn.impute import SimpleImputer

3 df = SimpleImputer(missing_values=np.nan, strategy='mean')
4 df.fit([[3, 4], Inp.nan, 5], (7, 8]1)

5 SimpleImputer()

6 a = [[np.nan, 4], [5, np.nanl, [7, 6]]

7 print{df.transform{a))

[[5. 4.
[5. 5.66666667]
[7. 6.

In [2]: 1 dimport pandas as pd

df = pd.DataFrame([["q", "w"], [np.nan, "e*], ["
imputer = SimpleImputer(st-ategy="maost_frequent”
4 print(imputer.fit_transforn{df))

[{'gq' 'w']
['g' ‘e']
'g' 'w'l
['a' 'w'l]
3] 1 impert numpy as np
* | from sklearn.experimental import enable_iterative_imputer
% from sklearn.impute import IterativeImputer
£ imputer = IterativeImputer(max_iter=9, random_state=3)
5 | imputer.fit([[2, 31, [4, 51, [5, 61, [np.nan, 41, [&, np.nanll)
& | IterativeImputer{random_state=5)
7 % = [[np.nan, 21, [6, np.nan], [np.nan, 6]]
B
9 print{np.round{imputer.transformix)})
19
[[1. 2.]
[6. 7.1
[5. 6.]1
In [4]: 1 dimport numpy as np

2 from sklearn.impute import KNNImputer

3 nan = np.nan

4 X =1[[1, 2, nan), [3, 4, 3), [nan, 6, 3], (8, 8, 71]
imputer = KNNIrputer{n_neighbors=2, weights="uniform"}
impuater. fit_transform(X)

-3y

Outf4l: array([[1. , 2. , 4 1,
[3: , 8., 3.1,
[5.5, 6. , 5 1,
8. , 8 , 7. 11

Figure 11.4 The output of the code when executed

9", np.nan|, ["a", "w"1], dtype="category")
')

11.8

11.9

11.9 Exploratory data analysis 299

In the next solutions, we will use IterativeImputer and the k-nearest neighbor
algorithm.

Outliers present in the data

Outliers can be a big problem in the data. Consider this: let’s assume that average
rainfall for a city is 50 cm. But one particular year, due to heavy rains, the average rain-
fall is 100 cm. This data point would be an outlier and will completely change the
analysis results should it be included. In the example, depending on whether the year
of heavy precipitation is included or not in the statistical analysis, the results (say, of
likely insurance claims) would be very different.

Therefore, like missing values, outliers may not necessarily be an error. We should
apply business acumen to infer if the data points are really outliers for the problem
under study.

We can detect outliers in the following ways:

If a data point lies beyond the 5th percentile and 95th percentile or 1st percen-
tile and 99th percentile, it can be considered an outlier.

A value that is beyond —1.5 x interquartile range (IQR) and +1.5 x IQR can also
be considered an outlier. Here IQR is given by (value at 75th percentile) —
(value at 25th percentile).

Values beyond one, two, or three standard deviations from the mean can be
termed outliers.

We can create charts and visualize outliers. We can treat outliers by using the following
methods:

A data point beyond the 5th percentile and 95th percentile can be capped at
the 5th percentile and 95th percentile, respectively. Or a data point beyond the
1st percentile and 99th percentile can be capped at the 1st percentile and 99th
percentile, respectively.

Replacement by mean, median, or mode is also used sometimes.

Sometimes taking a natural log of the variable reduces the effect of outliers. But
since a natural log will change the actual values, we should use sound mathemat-
ical models for the problem under investigation to make sure it’s appropriate.

Outliers pose a big challenge to our datasets. They skew the insights we have gener-
ated from the data. Sometimes this skew is appropriate (e.g., the insurance claims of
an outlier heavy precipitation year, which the insurance company needs to take into
account). In any case, it becomes important that we at least highlight outliers in the
dataset and sometimes modify them.

Exploratory data analysis

EDA is one of the most crucial steps before we start modeling. Using EDA, we gener-
ate insights that are quite useful for the business. The insights generated from the
EDA conform to the modeling outputs too.

300 CHAPTER 11 End-to-end model deployment

In EDA, we examine all the variables and understand their patterns, interdepen-
dencies, relationships, and trends. During the EDA phase, we come to know how the
data is expected to behave. We uncover insights and recommendations from the data
at this stage. A strong visualization complements the complete EDA.

NOTE EDA is the key to success; many times, a good EDA can solve the busi-
ness problem.

Next we perform a detailed EDA on a dataset using Python. The entire code is quite
big for a book; hence, the Python notebook has been checked in to the GitHub repos-
itory (https://mng.bz/vKY7) with full explanations and comments.

11.10 Model development and business approval

We have already covered the modeling process in detail throughout the book. This
includes creating the first version of the model and then iterating with different
hyperparameters and with different algorithms.

Throughout the book, we have covered a lot of algorithms on clustering and dimen-
sionality reduction methods. We also covered modeling for the text datasets. During
the model development phase, based on the business problem and dataset at hand, we
choose the candidate algorithms. We always strive to select the best algorithm based on
the accuracy measurement parameters we have discussed in earlier chapters.

The output of the modeling process is the final algorithm that delivers the best
output for the business problem at hand. After a model with satisfactory performance
is found, we should have a discussion with the business stakeholders for their final
feedback. There might be a few iterations required to further improve the model.

Now, you have a model that is statistically significant, useful, and approved by the
business stakeholders. We can move on to the model deployment stage.

11.11 Model deployment

A critical stage in the development of Al and machine learning models is model
deployment. It is the changeover point between the development and production
environments, where the model is used for real-world business purposes. There are
many facets to be considered, like infrastructure concerns, deployment methodolo-
gies, monitoring, and maintenance. We discuss the challenges and recommended
steps related to model deployment, with a methodical and organized strategy to put
the models into production.

11.12 Purpose of model deployment
Model deployment is a crucial process. The primary reasons for model deployment
are given as follows:
Deployment of a model leads to the transformation of insights into actionable

and practical purposes. The model is used for making predictions, optimiza-
tions, recommendations, and suggestions.

https://mng.bz/vKY7

11.13

11.13 Types of model deployment 301

The deployed models are integrated with the business processes and workflows.
This facilitates the automation of various processes and business functions
based on the insights and recommendations made by the model.

Real-time predictions ensure that the business is responding quickly to the ever-
changing business conditions. Real-time predictions are particularly useful for
scenarios like credit card fraud detection in transactions, dynamic pricing, etc.
Optimization and automation are enhanced. Model deployment leads to a
decrease in the efforts of the employees by automating the business functions.
With the help of deployed models, hardware use is optimized, business func-
tions and processes are made more efficient, and the overall return on invest-
ment is increased.

With deployed models, the versioning of the models can be done. This ensures
that the organization can track changes, perform A/B tests, and even perform
rollback if required.

In summary, the purpose of model deployment is to translate the potential of
machine learning models into practical applications, making them an integral part of
business operations and decision-making processes. Deployment enables organiza-
tions to harness the power of Al and data science to derive value from their models in
real-world scenarios.

Types of model deployment

There are several types of model deployments. Based on the requirements and the
strategic objectives, we can choose between them. The various types of deployment
strategies are

Batch deployment—This methodology is used when we have a large dataset that
has been collected over a period of time and we need to use the machine learn-
ing model to assess this data and make predictions in an offline mode. Gener-
ally, the processing is done in large batches. For example, if we want to cluster
the customers of a retail store based on k-means clustering, we can take their
attributes for the last two years and generate a corresponding cluster for each
customer. We can refresh the underlying data after one month, and hence we
can reassign these clusters.

Real-time deployment—Consider this: we want to check if the incoming credit
card transaction is genuine or fraudulent. In such a scenario, we use a real-time
check. The predictions are generated in real time based on the latest informa-
tion available. Generally, to support real-time predictions, we should employ a
multithreaded process so that multiple prediction requests can be handled at
the same time. For example, there can be hundreds of credit card requests
made simultaneously, which our system needs to classify with very little latency.
Edge deployment—Nowadays, people expect smartphones or Internet of Things
devices to have sophisticated features that are a good fit for a machine learning
or Al algorithm. In such a scenario, a deployment in the cloud is possible, but

302

CHAPTER 11 End-to-end model deployment

edge deployment is also used when an internet connection is not available. The
prerequisite for edge deployment is that the machine learning model should be
small in size and require less computation to facilitate running it on the devices
with limited resources.

Canary deployment—In canary deployment, we release the model to a subset of
users before we make a full-scale deployment for all users. This ensures that an
unstable version is not released to all users as we will get the feedback from the
test users in the first phase. This is typically done by large companies with a
huge number of users providing services through the cloud, such as Google or
Facebook.

A/B testing—A/B testing is not actually a model deployment technique, but it
can be used as one and that is why it is listed here. In A/B testing, organizations
want to test how one solution/service/product compares with another. For
example, if the product team wishes to test which of the two offers delivers bet-
ter profitability, they will use A/B testing. The example of two offers can be
“spend $100 and get a 15% discount” or “spend $50 and get a 10% discount.”
In such a scenario, there can be two similar groups of customers that will
receive these offers, and we will check which one delivers better profitability. In
A/B testing deployments, two different models (or the same model with differ-
ent hyperparameters) are tested against each other.

11.14 Considerations while deploying the model

There are quite a few factors we should keep in mind while deploying the model to
ensure smooth and effective transition from development of the model to deployment:

Accuracy monitoring—We should constantly monitor the performance of the
model and improve it if the performance falls below a threshold. We should
cover key metrics like accuracy, resource utilizations, time, and accuracy.
Scalability—A solution should be scalable to other departments or brands. Even
the volume of the data can increase with time.

Security and compliance—This is one consideration that cannot be compromised
at all. Any kind of deployment should be completely secure from any threats
and fully compliant with the existing best practices, policies, and requirements.
Model drift and data drifti—These should be monitored because the overall busi-
ness scenario can change. Customers, their preferences, the market, and the
overall economy may change. There are events like COVID, war, floods, etc.,
and hence there is a data drift. It results in a model’s performance change too.
Hence, we should plan for model drift in advance.
Reproducibility—Reproducibility of the results is an important factor when we
deploy the models. We should be able to replicate the results.

Continuous integration and continuous deployment—These pipelines are required
to automate the testing and the deployment process. This reduces the risk of
errors and ensures smooth deployments.

11.16 Model maintenance and refresh 303

User feedback and successive iterations—These are very important for a successful
project. While planning for the deployment, we should give due diligence to
incorporating users’ feedback and the iterations in the model.

Versioning and rollback—No model is ever final. There are successive iterations to
it. In the infrastructure, there should be a provision to roll back to the previous
version if the new version has any problems or if there are reasons based on the
business requirements.

With this, we have covered all the considerations in model deployment. We will now
deploy a model using Flask. The entire code has been uploaded to the GitHub reposi-
tory (https://mng.bz/vKY7) with full comments and explanations.

11.15 Documentation

Our model is deployed. Now we ensure that all the code snippets are cleaned, are
properly commented, and adhere to best practices. The code files should be checked
in and properly documented. Documentation is often (unfortunately) not given
enough time, but it is a very important step that should not be ignored. Should priori-
ties be set in writing in the documentation, precedence should be given to the aspects
more likely to change and to those that require understanding and interaction with
external stakeholders.

There are quite a few tools for version controlling of the code. Git is perhaps the
most common one. It is a very good practice to ensure that all of our code is checked
in regularly to safeguard ourselves from any potential computer failures. For docu-
mentation, we do have a lot of options available in the industry, ranging from Word to
PowerPoint to Confluence pages, depending on the industry we work in.

11.16 Model maintenance and refresh

So far, we have covered all the stages of model development and deployment. But
once a model is put into production, it needs constant monitoring. We must ensure
that the model is always performing at the desired level of accuracy. To achieve this, it
is advised to have a dashboard or a monitoring system to gauge the performance of
the model regularly. In case of nonavailability of such a system, a monthly or quarterly
check-up of the model can be done.

Once the model is deployed, we can do a monthly health check of the model. It
means that we compare the performance of the model with the expected accuracy. If
the performance is not good, the model requires a refresh. Even though the model
might not be deteriorating, it is still a good practice to refresh the model on new data
points that are constantly created and saved. The model refresh is generally based on
the business problem as well as the business domain for which the model has been
built. For example, in the telecom domain, data updates are faster as customers use
their mobile phones daily. On the other hand, for retail apparel, we don’t expect cus-
tomers to buy clothes every day. Hence, the model for the telecom domain can be
refreshed weekly or biweekly, while for apparel, we can refresh once a quarter or once
every six months.

https://mng.bz/vKY7

304

CHAPTER 11 End-to-end model deployment

Model refresh is quite an important phenomenon. Our business scenarios are
always dynamic in nature. The customers’ preferences and lifestyles will change, and
there’s always some activity being done by the competitor. There are certain scenarios
that are beyond our control, like war, COVID, etc. Hence, we always should strive to
adjust our models to the latest scenario in our business.

Model refresh means that we are retraining the model based on the new data
points we have collected. It ensures that we are capturing the latest trends, back-
grounds, and emerging relationships in the data, and hence our models are able to
predict, optimize, and expedite the latest data points.

With this we have completed all the steps to design a machine learning system:
how to develop it from scratch, how to deploy it, and how to maintain it. It is a long
process that is quite tedious and requires teamwork.

11.17 Concluding thoughts

End-to-end machine learning development is quite a time-consuming one. From
scratch to maintenance, it requires a lot of planning, teamwork, business knowledge,
and effort. In this chapter, we have covered a lot of those steps. There can be other
possible solutions too, which are dependent on the business domain and the
requirements.

With this we come to the close of this book. We all read and feel that in this new
age, data is the new oil, new electricity, new power, and new currency. The field is rap-
idly growing and making its effect felt across the globe. The pace of enhancements
and improvements has opened new job opportunities like data engineers, data scien-
tists, visualization experts, machine learning engineers, MLOps, DevOps, GenAl
experts, and so on, with demand increasing day by day. But there is a dearth of profes-
sionals who fulfill the rigorous criteria for these job descriptions. The need of the
hour is to have data artists who can marry business objectives with analytical problems,
envision solutions to solve the dynamic business problems, adjust to the ever-changing
technical landscape, and yet deliver cost-effective business solutions.

More sophisticated systems are being created every day. We can see examples of
self-driving cars, human chatbots, fraud detection systems, facial recognition solu-
tions, object-detection solutions, optimization and monitoring solutions, etc. The use
of GenAl has further enhanced the effect.

At the same time, there are some risks too, which we should be aware of. The onus
lies on humankind regarding how to harness this power of data. There are instances
where (if we believe the claims made) Al has been used for rigging election results or
DeepFake has been used for morphing pictures of people or profiling people based
on race/color etc. We can use machine learning and Al to spread love or hatred—it is
our choice. And like the cliché goes: with great power comes great responsibility!

We sincerely hope you enjoyed the book. Congratulations, and all the very best for
your next steps!

Summary 305

11.18 Practical next steps and suggested readings

The following provides suggestions for what to do next and offers some helpful
reading:

Go through these two research papers on model deployment:

— Paleyes, A., Urma, R-G., and Lawrence, N. D. (2020). Challenges in Deploy-
ing Machine Learning: a Survey of Case Studies. https://arxiv.org/abs/
2011.09926v2

— Sculley, D., Holt, G., Golovin, D., et al. (2015). Hidden Technical Debt in
Machine Learning Systems. https://mng.bz/4azw

Use the datasets we have developed in the last few chapters and perform EDA
on those datasets.

Summary
The journey of learning is ongoing, requiring courage, patience, and diligence;
understanding the entire process from conceptualization to model deployment
is essential for mastering machine learning.
The end-to-end model deployment process involves key steps such as business
problem definition, data cleaning, and EDA and culminating in model deploy-
ment and maintenance.
The machine learning modeling process includes distinct stages such as busi-
ness problem definition, data discovery and feasibility analysis, data preprepara-
tion, EDA, modeling, deployment, documentation, and maintenance.
Clear and achievable business problem definition is crucial to align goals effec-
tively, prevent scope creep, and ensure that KPIs are measurable to assess the
model’s effect.
Data discovery involves identifying necessary datasets, ensuring access and com-
pleteness, and analyzing feasibility, with particular attention to data relevance,
quality, and representation.
Data cleaning and prepreparation address common problems like duplicates,
categorical variables, missing data, and outliers, utilizing various techniques to
prepare the dataset for effective modeling.
EDA is key to understanding data patterns and relationships and generating
actionable insights, laying the groundwork for successful model development.
The model development phase uses algorithms suitable for the business prob-
lem and requires stakeholder collaboration for refinement.
Model deployment bridges development and production, necessitating consid-
erations for infrastructure, real-time applications, scaling, security, and continu-
ous integration to optimize model utility.
Types of model deployment include batch, real-time, edge, canary, and A/B
testing, each offering different advantages based on strategic objectives and
application contexts.

https://arxiv.org/abs/2011.09926v2
https://arxiv.org/abs/2011.09926v2
https://mng.bz/4azw

306

CHAPTER 11 End-to-end model deployment

Effective deployment involves accuracy monitoring, detecting model and data
drift, securing compliance and data, and ensuring reproducibility and scalability.
Postdeployment, thorough documentation and version control are vital for
code integrity and facilitating future iterations or rollbacks when necessary.
Model maintenance involves regular performance checks and refreshes, adapt-
ing to dynamic business environments and ensuring alignment with evolving
data trends.

Data-driven solutions have vast potential but also an equally high duty of
responsible use. We wrap up this book by stressing the importance of ethical
application.

appendix A
Mathematical foundations

A.1 List of clustering algorithms

A.1.1 Partitioning-based algorithms

k-means

k-medoids (PAM)

CLARA (Clustering Large Applications)

CLARANS (Clustering Large Applications based on Randomized Search)
Mini-Batch k-means

Fuzzy C-Means (FCM)

k-modes

k-prototypes

A.1.2 Hierarchical clustering

Agglomerative Hierarchical Clustering

Divisive Hierarchical Clustering

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)
CURE (Clustering Using Representatives)

Chameleon

ROCK (Robust Clustering using Links)

HIERDENC (Hierarchical Density-Based Clustering)

HAG-S (Hierarchical Agglomerative Clustering with Spatial Constraints)
EAC (Ensemble Agglomerative Clustering)

A.1.3 Density-based algorithms

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
OPTICS (Ordering Points To Identify the Clustering Structure)

307

308 APPENDIX A Mathematical foundations

HDBSCAN (Hierarchical DBSCAN)

DENCLUE (Density-Based Clustering)

Mean Shift

VDBSCAN (Variable Density-Based Spatial Clustering)

DBCLASD (Distribution-Based Clustering of Large Spatial Databases)
LDBSCAN (Labeled DBSCAN)

A.1.4 Grid-based algorithms

STING (Statistical Information Grid)
WaveCluster

SUBCLU (Subspace Clustering)

GRIDCLUS (Grid-based Clustering Algorithm)
OptiGrid

CLIQUE (Clustering in Quest)

A.1.5 Model-based algorithms

Gaussian Mixture Model (GMM)

EM (Expectation Maximization) Algorithm
DBEM (Density-Based EM)

Bayesian Gaussian Mixture Model

Hidden Markov Model (HMM) Clustering
X-Means (Extended k-means)

G-Means (Gaussian Means)

MCLUST (Model-based Clustering using EM)
AUTOCLASS (Bayesian Model-based Clustering)
Mixmod (Mixture Models for Clustering)

A.1.6 Spectral clustering

Ratio Cut Clustering

Normalized Cut Clustering
Multiway Spectral Clustering
Spectral Biclustering

Shi-Malik Clustering

Laplacian Eigenmaps for Clustering

A.1.7 Graph-based clustering

Connected Components Clustering
Markov Clustering (MCL)

Girvan-Newman Clustering

Louvain Method for Community Detection

Infomap Algorithm

A.1 List of clustering algorithms 309

Walktrap Algorithm

Edge Betweenness Clustering

Chinese Whispers Clustering

SPICi (Speed and Performance In Clustering)

SCPS (Spectral Clustering on Perona & Shi’s graph)

A.1.8 Subspace and high-dimensional clustering

PROCLUS (Projected Clustering)

SUBCLU (Subspace Clustering)

ENCLUS (Entropy-Based Subspace Clustering)
ORCLUS (Orthogonal Subspace Clustering)
FSSC (Fast Subspace Clustering)

P3C (Pattern-based Subspace Clustering)
FIRES (Frequent Itemset Clustering)

SNN (Shared Nearest Neighbor Clustering)
High-Dimensional Spectral Clustering

LAC (Locally Adaptive Clustering)

A.1.9 Fuzzy and soft clustering

Fuzzy C-Means

Gustafson-Kessel Algorithm

Fuzzy Min-Max Clustering

Possibilistic C-Means (PCM)

FCM-GA (Fuzzy C-Means with Genetic Algorithms)
FCM-SC (Fuzzy C-Means with Spatial Constraints)
Fuzzy Subspace Clustering

Fuzzy SOM (Self-Organizing Maps)

A.1.10 Constraint-based clustering

COP-k-means (Constrained k-means)
Constrained DBSCAN

C-DBSCAN (ConstraintBased DBSCAN)
PCKMeans (Pairwise Constrained k-means)
Semisupervised k-means

FCM with Must-Link and Cannot-Link Constraints
Hard k-means with Constraints

A.1.11 Evolutionary and genetic clustering

Genetic Algorithm-Based Clustering
GA-KMeans (Genetic Algorithm with k-means)
AGCT (Agglomerative Genetic Clustering)

310

APPENDIX A Mathematical foundations

MEPSO (Multi-Elitist Particle Swarm Optimization for Clustering)
NSGA-IT (Nondominated Sorting Genetic Algorithm-II for Clustering)
ACO-CLUSTER (Ant Colony Optimization for Clustering)

GCUK (Genetic Clustering with Unsupervised k-means)

A.1.12 Neural network-based clustering

Self-Organizing Maps (SOM)

Neural Gas

Growing Neural Gas

Autoencoder-Based Clustering

Deep Embedded Clustering (DEC)
Generative Topographic Mapping (GTM)
DeepCluster (Deep Learning for Clustering)

A.1.13 Other algorithms

A2

A3

A4

Affinity Propagation
Bisecting k-means
Hybrid BIRCH-k-means

What is a centroid?

A centroid is the central point in a cluster. In geometry, it is the arithmetic mean or
the average of all the points in a shape. For example, in a triangle, the centroid is the
point where all the medians intersect (see figure A.1). In any other shape, it would be
simply an average of all the point coordinates.

Figure A.1 Examples
of centroids

L1 vs. L2 norm

The L1 norm is the sum of the absolute value of the entries in a vector; on the other
hand, the L2 norm is the square root of the sum of the squares of the entries in the

vector. It is the core difference between L1 and L2 norm.

Different scaling techniques used in the industry

The data we get can have different units and values. A dataset can have a variable
ranging from 1 to 10 while another variable in the same dataset can range from 1,000

A.5 Time complexity O(n) 311

to 100,000. Normalizing the data allows us to normalize it or limit the data between a
range. It allows us to fit machine learning better on this normalized dataset.
We normalize a dataset to adjust the values of different variables that are at quite

different scales to a common scale. An example is shown in figure A.2.

Dist_ance Time Weight Price ($) Dist_ance Time Weight Price ($)
(miles) (seconds) (tons) (miles) (seconds) | (tons)

1.1 20,000 0.01 100,000 -1.264911064 -0.11 -1.12 -1.70

1.2 25,000 0.02 400,000 -0.632455532 0.17 -1.03 0.12

1.3 5,000 0.2 500,000 0 -0.97 0.57 0.73

1.4 10,000 0.2 400,000 0.632455532 -0.68 0.57 0.12

1.5 50,000 0.25 500,000 1.264911064 1.60 1.01 0.73

Mean 1.3 22000 0.136 380000 0 0 0 0
SD 0.158113883 17535.67792 0.112383273 164316.767 1 1 1 1
Figure A.2 In the first table, we have the mean and standard deviation for each of the variables. Once the data is

normalized, then the mean and standard deviation become zero as shown in the second table.

A5

There are different ways to normalize a dataset. The two most popular ones are

Standardization—This involves using the mean and standard deviation for nor-
malizing a dataset. It is also known as z-transformation. It standardizes all the vari-
ables; the data becomes normally distributed, and all the features become
comparable. The equation used is shown in equation A.1:

T=p

Lstandardized = (A.1)

(o

where pis the mean and o is the standard deviation.

As we can observe in figure A.2, right, all the variables now have a mean of 0
and a standard deviation of 1.

Min-max scaling—This utilizes the maximum and minimum values of a variable
using equation A.2:

X = Tpmin

Lstandardized = (A.2)

Tmax = Tmin
Normalizing a dataset is one of the important steps followed during the machine
learning process.

Time complexity O(n)

Time complexity is a computational concept used to measure and estimate the
amount of time an algorithm will take to complete as a function of the length of the
input. Generally expressed using Big O notation, time complexity is used to classify
the algorithms as per their worst-case or average-case run-time performance.

312

A.6

A7

APPENDIX A Mathematical foundations

Key aspects of time complexity include

Constant time [O (1)]—The algorithm’s run time does not change with the size
of the input.

Logarithmic time [O (log n)]—The run time grows logarithmically as the input
size increases. This often occurs in algorithms that halve the problem size at
each step, like binary search.

Linear time [O(n)]—The run time increases linearly with the size of the input.
Linearithmic time [O (n log n)]—This is common in efficient sorting algorithms
like mergesort and heapsort.

Quadratic time [O (n?)]—The run time grows quadratically with the input size,
often seen in algorithms with nested loops.

Exponential time [O (2"n)]—The run time doubles with each additional element
in the input, typical in some recursive algorithms.

Understanding time complexity helps in evaluating the efficiency of algorithms and
choosing the right one for a given problem.

How to install packages in Python

In Python, generally the pip command is used to install packages. The steps are as
follows:

Open your command-line interface (Terminal, Command Prompt, or Power-
Shell). Type pip install package_name. For example, if you want to install
numpy, type pip install numpy.

If you want to install a specific version, use pip install package_name==
version_number. For example, if you want to install numpy 1.21.0, type pip
install numpy==1.21.0.

Installing from a requirement file, you can create a requirements.text file
with all the packages’ information and then install it: pip install -r
requirements. text.

Sometimes you might have to upgrade a package. Then the command is pip
install -upgrade package_name. An example is pip install --upgrade numpy.

Correlation

Correlation is a statistical and mathematical key performance indicator to measure
the extent to which two variables are related. It is used to decipher the relationship
between variables, indicating whether an increase in one variable tends to result in an
increase (positive correlation) or a decrease (negative correlation) in another.

Key types of correlation are

Positive correlation—As one variable increases, the other also increases. For
example, height and weight often show a positive correlation.

A7.1

A7.2

A.7.3

A.7 Correlation 313

Negative correlation—As one variable increases, the other decreases. For exam-
ple, many times, when the price of an item increases, the demand decreases,
and that is a negative correlation.

No correlation—This is when there is no apparent relationship between the two
variables. For example, the amount of ice cream sold and the number of TVs
sold might show no correlation.

Correlation coefficient

The strength and direction of a correlation are quantified by the correlation coeffi-
cient, typically denoted as 7. It ranges from -1 to 1:

r = I—Perfect positive correlation
r = —]—Perfect negative correlation
r = 0—No correlation

Values between —1 and 1 indicate varying degrees of correlation.

Uses of correlation

Correlation is used in many fields, including the following:

Data analysis—Correlation helps analysts identify relationships between vari-
ables and helps in further analysis or research.

Predictive modeling—In machine learning and predictive modeling, a model’s
performance can be improved if we understand the relationship between the
variables.

Finance—Investors and financial advisors use correlation analysis to assess the
relationships between asset prices, different factors, and reasons to invest,
which helps in investment and portfolio diversification strategies.
Healthcare—Researchers in the health sector collect the data on lifestyle factors
(like diet, smoking, exercise) and demographics and examine correlations
between these factors and health outcomes to identify potential risk factors like
heart attack, diabetes, etc.

Social sciences—In fields like psychology and sociology, correlation is used to
explore relationships between consumer behaviors, population attitudes, and
demographic factors. These studies help uncover relationships in purchasing
patterns, reviews, and feedback.

Important considerations

Keep the following ideas in mind when considering correlation:

Correlation does not imply causation. Just because two variables are correlated
does not mean that one causes the other. There might be other factors involved
too, or it might be a coincidence. For example, we might find that the sale of
ice cream is positively correlated to the number of shark attacks. Hence, we
deduce that ice cream sales affect shark attacks—that is absurd. The real reason
is ice cream sales increase during the summer season, which is when more peo-
ple visit beaches.

314

A8

A9

APPENDIX A Mathematical foundations

There may be outliers. Extreme values can distort correlation coefficients, so
it’s important to be vigilant on the outliers. Many times if we simply visualize the
data with scatter plots, we might get the true relationship.

There may be nonlinear relationships. Correlation coefficients measure linear
relationships. If the true relationship between the two variables is nonlinear,
correlation might not capture it.

Understanding correlation is fundamental in various fields and often one of the very
first steps. It can be useful to uncover insights that help further drive strategic deci-
sions and the overall path ahead.

Time-series analysis

Time-series analysis involves the study of data points that are collected or recorded at
specific time intervals like hourly/daily/weekly/monthly/yearly or others. Itis used for
examining and understanding trends and behaviors, seasonal patterns and relation-
ships, and cyclical behaviors over time periods, and hence understanding the pattern
will be helpful in forecasting. For example, if we want to predict the temperature or rain-
fall or if we wish to predict the demand for an item, it can involve time-series analysis.

Time-series analysis is commonly used in fields like marketing, finance, environ-
mental studies, and geographic and economic forecasting to predict future values
based on historical data. Though there are quite a few techniques, the most common
ones are moving averages, exponential smoothing, and ARIMA. Visualization meth-
ods, like line graphs, are essential for identifying patterns and anomalies within the
data. Overall, time-series analysis is a useful technique for understanding time-based
patterns in the data and for making informed predictions and forecasts.

Mathematical foundation for data representation

There are quite a few mathematical terms one must understand to develop a thor-
ough understanding of algorithms. They are useful for understanding the concepts
and the mathematical foundation and are imperative for dimensionality reduction
methods like principal component analysis and singular value decomposition
explored in chapter 3. These mathematical operations are intuitive enough, and you
might have covered them in your earlier mathematical courses, but it is important
that we refresh the concepts here. The concepts examined are nothing new but are
sometimes complex to interpret and comprehend.

NOTE The coding of these concepts in Python can be tricky sometimes. For-
tunately, there are quite a few robust libraries and packages that provide eas-
ier solutions, and hence we don’t have to worry about the implementation of
these concepts in Python.

We are trying to reduce the number of dimensions of a dataset. A dataset is nothing
but a matrix of values; hence, a lot of the concepts are related to matrix manipulation
methods, their geometrical representation, and performing transformations on such
matrices. The major concepts are studied next.

A9.1

A.9.2

A.9 Mathematical foundation for data representation 315

Scalar and vector

In simple language, if you walk a distance of 5 km it is scalar; if you walk a distance of
5 km in a direction, say north, it is a vector. So we can say that a vector is a mathemati-
cal object that has a magnitude and a direction. Without the direction, it is just a sca-
lar value. We cite a few examples of each in table A.1.

Table A.1 Examples of scalar and vector quantities

Examples of scalar quantities Examples of vector quantities
Length, width, height, distance Displacement
Mass, area, density, volume Weight, force
Pressure, temperature, energy, entropy Lift, drag, thrust
Speed, time, work, power Velocity, acceleration, momentum

In plain words, we can conclude that a vector is a scalar with a direction.

Standard deviation and variance

The purpose of standard deviation and variance is to measure how spread the data is.
Standard deviation is given by equation A.3

Standard deviation o = VZ(z; - y)g (A.3)
n

where x; is each value from the population, x the mean of the population, n is the
population size or the number of observations, and o is the standard deviation of the
population. And variance is given by equation A.4

Variance So = X(x; — xbar) (A.4)

n—

where x;is each value from the population, xbaris the mean value of the observations,
nis the number of observations, and S, is the sample variance.

Suppose we have five children in a class with respective heights of 50, 51, 52, 53, and
54 inches. The average height is (50+51+52+53+54) /5 = 52 inches. See table A.2.

Table A.2 Child height and the calculated difference between the average and height

Difference

(Average — Height)

A 50 52-50=2
B 51 52-51=1

C 52 52-52=0

316

A.9.3

APPENDIX A Mathematical foundations

Table A.2 Child height and the calculated difference between the average and height (continued)

Height Difference
g (Average — Height)
D 53 52-53=-1
E 54 52 -54=-2

Note: Variance o = (2% + 1% + 0% + -1 + —2%)/5 = 10/5 = 2. Standard deviation o = +/(2) = 1.441.

Covariance and correlation

Covariance and correlation are the measurements of the relationship and mutual
dependency between two variables. Covariance is the direction of the linear relation-
ship, while correlation measures the strength and direction of the relationship. See
figure A.3.

X Y X Y X Y
100 1 100 5 100 3
101 2 101 4 101 4
102 3 102 3 102 2
103 4 103 2 103 5
104 5 104 1 104 1

Figure A.3 If X is increasing, then the value of Y is also increasing (left). If X is increasing,
Y is decreasing (middle). There is no observed relationship between X and Y (right).

Figure A.3, left, shows that when X decreases, Y increases, and vice versa in the mid-
dle, while on the right, there seems to be no relationship between the two variables.
Here, covariance will simply denote that there is a positive or a negative or no rela-
tionship between the variables. The magnitude of covariance will be difficult to com-
prehend as it is not a normalized result. Correlation, on the other hand, will be able
to provide a magnitude of the strength too. Correlation can be calculated by dividing
the covariance of the two variables by the product of the standard deviations.

The most popular correlation coefficient is Pearson’s correlation coefficient,
which only considers the linear relationship between two variables. The other widely
used coefficient is Spearman’s rank correlation, which is more sensitive to nonlinear
relationships. We can visualize correlation as shown in figure A.4.

Correlation does not mean causation. This is the most common mistake made
during analysis. For example, consider the statement “There is an increase in sales of
shoes, and at the same time there is a decrease in the rate of drowning deaths”. If the
inference made is that an increase in shoe sales leads to a decrease in drowning
deaths, the result is a completely illogical result. This proves that correlation does not
mean causation.

A.9 Mathematical foundation for data representation 317

” ®
° ®
oo o ©
') ® ®
° . R
e o ®
®
X X

Figure A.4 In the first case, there is a positive correlation between the two variables. In the second case, there
is a negative correlation between the two variables. In the third case, there is no observed relationship between
the two variables.

The indicators are used to test if there is any relationship between two variables in the
datasets. The concept is utilized and referred to in data science quite often. We ana-
lyze the strength of the relationship and decide whether a logical trend exists.

A.9.4 Matrix decomposition, eigenvectors, and eigenvalues

Sometimes in linear algebra we wish to factorize a matrix into a product of matrices;
this process is called matrix decomposition. We use matrix decomposition methods if we
want to represent a matrix into a product of matrices.

Eigenvectors and eigenvalues are components of matrix decomposition. If we have
a square matrix A, then the understanding is as shown in equation A.5

Axv=Axv (A.5)

where vis the eigenvector and A is the eigenvalue.

For example, let’s say we have a matrix, as shown in figure A.5, and we want to get
the eigenvector. Here, -2 is the eigenvalue, and [1 -2 1] is the eigenvector. The eigen-
vector is a nonzero vector that does not change direction during the transformation.
It only scales the original matrix by a factor of A. The eigenvectors and eigenvalues are
utilized for principal component analysis (PCA) implementation.

367 1 3-12+7 -2
337 -2 = | 3-6+7 = 4
565 1 5-12+5 2
1 -2
-2 | -2 = 4
1 2 Figure A.5 Finding eigenvectors

and eigenvalues

318

A.9.5

A.10

APPENDIX A Mathematical foundations

Special matrices

We next define a few special matrices.
A diagonal matrix has all the nondiagonal elements as zero, as shown in figure A.6.

X
0
0

o K O
N © O

Figure A.6 An example of a diagonal matrix

An orthogonal matrix is a square matrix that fulfills the following criteria as shown in
equation A.6

QTQ _ QQ,T =7 (A.6)

where Q is the original matrix, Q" is its transpose, and [is the identity matrix, repre-
sented in figure A.7.

1 0 O
0O 1 O
0O 0 1

Figure A.7 An example of an orthogonal matrix

A matrix is symmetric if its transpose is equal to itself (i.e., Q" = Q).

Hyperparameters vs. parameters

Parameters are the internal values that a model learns from the training of the
machine learning model. They are, for example, coefficients in a regression model or
weights/biases in a neural network. They are set automatically during the training of
the machine learning model.

Hyperparameters, on the other hand, are predefined before the training starts and
control the machine learning model. Examples are the number of clusters (k) in k-
means clustering or the distance metrics used. They are chosen manually and can be
optimized using various techniques like GridSearch CV or Random Search CV.

mdex

A

A/B testing 302
ABS (average basket size) 83
accuracy monitoring 302
ACO-CLUSTER (Ant Colony Optimization for
Clustering) 310
activation functions 243-245
ReL.U (rectified linear unit) 244
sigmoid function 243
softmax function 245
tanh function 243
adjacency matrix 154
adversarial training 285
affinity matrix 156
Affinity Propagation 310
AGCT (Agglomerative Genetic Clustering) 52,
309
Al (artificial intelligence) 279
business intelligence and 13
algorithms
ML (machine learning) 18-29
supervised learning 248
all_records list 123
anomaly detection 271
antecedent 115
Apriori algorithm 119-126
challenges with 125
Python implementation 121-125
artificial neurons 239-241
association rules 111-112
Apriori algorithm 119-126
building blocks of 114-119
case study for 143-145
equivalence class clustering and bottom-up lat-
tice traversal 127-130

F-P algorithm 131-137
practical next steps and suggested readings 147
sequence rule mining 137-142
technical toolkit 112
ATV (average transaction value) 83
AUTOCLASS (Bayesian Model-based
Clustering) 308
Autoencoder-Based Clustering 310
autoencoders 267-268
applications of 271
components of 269
feature learning 268
practical next steps and suggested readings 277
Python implementation of 275
toolkit 268
training 270
types of 271-275

backpropagation 250-253
mathematics behind 251
optimization 253
batch deployment 301
batch gradient descent 246
Bayesian Gaussian Mixture Model 308
BERT (Bidirectional Encoder Representations
from Transformers) 286
bigrams 215
binary data 6
BIRCH (Balanced Iterative Reducing and Cluster-
ing using Hierarchies) 307
Bisecting k-means 310
bivariate analysis 105
blankline tokenization 211

319

320 INDEX

Boltzmann learning rule 258

key points 259
border points 63
bottleneck 270
BOW (bag of words) approach 211
business problem definition 16, 293
business stakeholders and subject matter

experts 14

Cc

C-DBSCAN (ConstraintBased DBSCAN) 309
Calinski-Haranasz index 55
canary deployment 302
case studies, sentiment analysis case study with
Python implementation 222-228
categorical variables 6, 73, 296
Cauchy distribution 192
CBOW (continuous bag of words) 221
central limit theorem 168
centroid-based clustering 37-50
finding optimum value of k& 43
k-means clustering 39-41
k-means clustering implementation using
Python 46-50
measuring accuracy of clustering 42
pros and cons of k-means clustering 44-45
centroids 310
Chameleon 307
ChatGPT 279, 287
applications and key features of 287
Chebyshev distance 38
Chinese Whispers Clustering 309
CLARA (Clustering Large Applications) 307
CLARANS (Clustering Large Applications based
on Randomized Search) 307
class variable 46
classification algorithms 22-24
CLIQUE (Clustering in Quest) 308
clustering 34, 149
centroid-based 37-50
challenges faced in 72
density-based 60-67
fuzzy 160-167
practical next steps and suggested readings 174
spectral 151-158
technical toolkit 33, 150
techniques for 35
clustering algorithms 307-310
clustering techniques 32
case study 68-72
connectivity-based clustering 50-59
practical next steps and suggested readings 74
CNNs (convolutional neural networks) 8, 254
key concepts of 254
use of 256

code size 271
Colab (Google Colaboratory) 33
Computational Network Science (Hexmoor) 174
conditional probability 117
confidence 115-119
overview of 116
connectedness 64
connectivity-based clustering 50-59
hierarchical clustering case study using
Python 57
linkage criterion for distance measurement 53
optimal number of clusters 54
pros and cons of hierarchical clustering 56
types of hierarchical clustering 52
consequents 115
Constrained DBSCAN 309
constraint-based clustering 309
contextual awareness 287
continuous data 7
continuous deployment and integration 302
continuous variable 19
contractive autoencoders 273
contrastive divergence algorithm 260
conviction 115-119
overview of 117-119
COP-k-means (Constrained k-means) 309
core points 63-64
correlation 312, 316
coefficient 84, 313
important considerations 313
uses of 313
cosine distance 39
cost function 181-184
covariance 316
CURE (Clustering Using Representatives) 307
curse of dimensionality 39, 80
customization 287

D

data 5-12
data engineering and management 12
data quality 9-11
defined 5
preparing 295
types of 6-9
data artists 304
data cleaning 207-209, 295
data compression 271
data discovery and feasibility analysis 294
data discovery phase 17
data drift 302
data encoding 208
data engineering team 15
data preprocessing 17

INDEX 321

data representation, mathematics for 314-318
covariance and correlation 316
matrix decomposition, eigenvectors, and
eigenvalues 317
scalar and vector 315
special matrices 318
standard deviation and variance 315
data science team 16
dataframes 49
datasets, missing values in 297
DBCLASD (Distribution-Based Clustering of Large
Spatial Databases) 308
DBEM (Density-Based EM) 308
DBN (deep belief networks) 259-261
key points of 259
DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) 62-67, 307
nuts and bolts of 62
pros and cons of 65
Python solution for 65
steps in 64
DEC (Deep Embedded Clustering) 310
decoder 270
deep learning 236-238
backpropagation 250-253
Boltzmann learning rule 258-259
CNN 254, 256
in unsupervised manner 253
libraries 261-263
neural networks 238-247
practical next steps and suggested readings 264
supervised learning 248-250
technical toolkit 236
DeepCluster (Deep Learning for Clustering) 310
degree matrix 154
DENCLUE (Density-Based Clustering) 308
dendrogram 50
denoizing autoencoders 274
density-based
algorithms 307
clustering 60-67
DBSCAN clustering 62-67
density-based clustering
neighborhood and density 60
density-reachable 64
DevOps team 16
diagonal matrix 318
dimensionality reduction 77, 176, 271
case study 198
case study for 103-106
curse of dimensionality 78-82
manual methods of 83-85
mathematical foundation 82
MDS (multidimensional scaling) 177-184
methods for 82

PCA 86-97
practical next steps and suggested readings 106,
200
pros and cons of 102
Python implementation of MDS 184-188
singular value decomposition (SVD) 97-101
t-SNE 189-196
technical toolkit 78, 177
UMAP 196-198
dimensions 79
discrete data 7
discriminative models 282-284
distance measurement 53, 73
divisive clustering 52, 307
documentation 303
drug discovery 271
Dunn index 43
duplicate values in data 295

E

EAC (Ensemble Agglomerative Clustering) 307
ECLAT (equivalence class clustering and bottom-
up lattice traversal) 127-130
Python implementation 129
EDA (exploratory data analysis) 17, 291, 299
Edge Betweenness Clustering 309
edge deployment 302
eigenvalue decomposition 90
eigenvalues 317
eigenvectors 317
elbow method 43
EM (Expectation Maximization) Algorithm 169,
308
ENCLUS (Entropy-Based Subspace
Clustering) 309
encoder 270
end-to-end model deployment, EDA 299
ETL (export, transform, load) process 12
Euclidean distance 38, 65
evolutionary clustering 309

F

F-P algorithm 131-137

farthest neighbor 53

FCM (fuzzy c-means) algorithm 161-162

Python implementation of 164

FCM with Must-Link and Cannot-Link
Constraints 309

FCM-GA (Fuzzy C-Means with Genetic
Algorithms) 309

FCM-SC (Fuzzy C-Means with Spatial
Constraints) 309

feed-forward propagation 249

322 INDEX

Fielder value and vector 155
filter methods 84
FIRES (Frequent Itemset Clustering) 309
fit_transform method 93
fitted_data dataframe 194
for loop 124, 187
FP tree 131
frequency-based removal of words 208
frequent pattern tree 131
FSSC (Fast Subspace Clustering) 309
Fuzzy C-Means (FCM) 307
fuzzy clustering 36, 160-167, 309
Python implementation of 164
types of 161-164
Fuzzy Min-Max Clustering 309
Fuzzy SOM (Self-Organizing Maps) 309
Fuzzy Subspace Clustering 309

G

G-Means (Gaussian Means) 308
GA-k-means (Genetic Algorithm with k-
means) 309
GANs (generative adversarial networks) 236, 279,
283-287
adversarial training 285
BERT, GPT-3, and others 286
discriminator networks 284
generator networks 284
practical next steps and suggested readings 290
variants and applications of 286
Gath-Geva algorithm 162
Gaussian distribution 167
GCUK (Genetic Clustering with Unsupervised k-
means) 310
GenAl (generative AI) 18, 203, 236, 279-282
discriminative models and 282
for text data 230
integration of 288
generator networks 284
genetic clustering 309
get_dummies() method 296
Girvan-Newman Clustering 308
GK (Gaustafson-Kessel) algorithm 162, 309
GloVe 221
GMM (Gaussian Mixture Model) 150, 167-174,
308
EM technique 169
Python implementation of 171
Google Colaboratory (Colab) 33
GPT-3 (Generative Pre-trained Transformer
3) 286
graph-based clustering 308
greedy approach 52
grid-based algorithms 308

GRIDCLUS (Grid-based Clustering
Algorithm) 308

group average linkage 53

groupby 49

Growing Neural Gas 310

GTM (Generative Topographic Mapping) 310

H

HAG-S (Hierarchical Agglomerative Clustering
with Spatial Constraints) 307
hard clustering 36, 161
Hard k-means with Constraints 309
HDBSCAN (Hierarchical DBSCAN) 308
.head command 122
head variable 46
Hexmoor, Henry 174
hidden layer 242
hierarchical clustering 307
case study using Python 57
linkage criterion for distance measurement 53
optimal number of clusters 54
pros and cons of 56
types of 52
HIERDENC (Hierarchical Density-Based
Clustering) 307
High-Dimensional Spectral Clustering 309
HMM (Hidden Markov Model) Clustering 308
Hughes phenomenon 80
Hybrid BIRCH-k-means 310
hyperparameters 245, 318
hyperspectral images 199

if/else block 20

image denoising 271
independent variables 18, 248
inertia 42

.info command 122

info variable 46

Infomap Algorithm 308
input layer 242, 255
intercluster sum of squares 42
IQR (interquartile range) 299

J

Java 14
Julia 14
junk or unwanted characters 208

K

k-means 307

k-means clustering 39-41
finding optimum value of k£ 43
implementation using Python 46-50
pros and cons of 44-45

k-median clustering 45

K-medoids (PAM) 307

k-medoids clustering 45

K-Modes 307

K-Prototypes 307

Kaiser criteria 93

Keras 177, 262
Python code for 262

keras library 193, 236, 268

KL (Kullback-Liebler) divergence 191-192

kmeans algorithm 172

KNN (k-nearest neighbor) 39

knowledge-representation 270

KPIs (key performance indicators) 10, 293

Kullback-Liebler (KL) divergence 191

L

L1 vs. L2 norm 310
LabelEncoder 99
LAC (Locally Adaptive Clustering) 309
language models 214
Laplacian Eigenmaps for Clustering 308
Laplacian matrix 155
latent variables 170
layer-based pretraining 260
LDA (linear discriminant analysis) 78
LDBSCAN (Labeled DBSCAN) 308
lemma, defined 209
lexicon normalization 209
libraries, deep learning 261-263
library-based cleaning 208
lift 115-119

overview of 117-119
line of best fit 20, 87
linkage criterion 53
LLMs (large language models) 205
loss function 271

adding 249

Louvain Method for Community Detection 308

LSTM (long short-term memory) 257

M

machine translation 271
make_circles method 159
Manhattan distance 38

INDEX 323

manual methods of dimensionality reduction
83-85
algorithm-based methods for reducing
dimensions 85
correlation coefficient 84
manual feature selection 83
market basket analysis 114
Markov assumption 215
mathematics 307
centroids 310
for data representation 314-318
L1vs. L2 norm 310
scaling techniques 311
time complexity O(n) 311
time-series analysis 314
MATLAB 14
matplotlib library 33, 46, 57-58, 78, 150, 184
matrices
decomposition 317
special 318
MCL (Markov Clustering) 308
MCLUST (Model-based Clustering using EM) 308
MDS (multidimensional scaling) 177-184
classic 179
nonmetric 180-184
Python implementation of 184-188
Mean Shift 308
membership 161
MEPSO (Multi-Elitist Particle Swarm Optimization
for Clustering) 310
min-max scaling 311
Mini-Batch k-means 307
mini-batch stochastic gradient descent 246
MinMaxScalar() function 187
missing values in dataset 297
Mixmod (Mixture Models for Clustering) 308
ML (machine learning) 3
Al and business intelligence 13
algorithms 18-29
data 5-12
overview of 14-17
process 292
technical toolkit 4
model deployment 300
duplicate values in data 295
end-to-end 292, 294-297, 300, 302-303, 305
types of 301
model development and business approval 300
model drift 302
model maintenance and refresh 303
model-based algorithms 308
mpl_toolkits library 49
multilingual capabilities 287
Multiway Spectral Clustering 308
MXNet 262

324 INDEX

N

n-gram model 214
NAG (Nesterov accelerated gradient) 247
NaN (not a number) 11
natural language understanding 287
nearest neighbors 53
negative correlation 313
neighborhood 60
network library 150
Neural Gas 310
neural network-based clustering 310
neural networks
activation functions 243-245
artificial neurons and perceptrons 239-241
building blocks of 238-247
for solutions 239
hyperparameters 245
layers in 241-242
optimization functions 246-247
NLP (natural language processing) 202, 281
unsupervised learning for text data, sentiment
analysis case study with Python
implementation 222-228
nltk library 217-219
no correlation 313
noise 64
noisy dataset 73
nominal data 7
normal distribution 167
Normalized Cut Clustering 308
NSGA-II (Nondominated Sorting Genetic Algo-
rithm-II for Clustering) 310
number of nodes per layer 271
numpy library 33, 78, 121, 150, 184
numpy module 177

o

objective function 249
one-hot encoding 73
operations team 15
OPTICS (Ordering Points To Identify the Cluster-
ing Structure) 307
OptiGrid 308
optimization 253
optimization functions 246-247
adaptive optimization algorithms 247
batch gradient descent 246
learning and learning rate 247
mini-batch stochastic gradient descent 246
SGD (stochastic gradient descent) 246
ORCLUS (Orthogonal Subspace Clustering) 309
ordinal data 7
orthogonal matrix 318

outliers 64, 299
output layer 242, 256
overfitting 81

P

P3C (Pattern-based Subspace Clustering) 309

packages, installing in Python 312

pandas library 33, 78, 121, 150

pandas module 177

parameters 271, 318

partitioning-based algorithms 307

Pavia University Dataset 199

PCA (principal component analysis) 78, 86-97,

176, 182, 190, 269

eigenvalue decomposition 90
Python solution using 91-97

PCKMeans (Pairwise Constrained k-means) 309

PCM (Possibilistic C-Means) 309

perceptrons 239-241

perplexity 192

pip command 312

planograms 143

pooling layer 255

positive correlation 312

preparation, cleaning data 295

preprocessing text data 207

principal axis 88

principal components 86

PROCLUS (Projected Clustering) 309

propagation, feed-forward 249

pyECLAT library 129

pyspade library 142

Python 14
Apriori algorithm 121-125
cleaning text data using 216-219
clustering text data using 228
code for Keras 262
code for TF 262
equivalence class clustering and bottom-up lat-

tice traversal 129

FCM (fuzzy c-means) algorithm 164
hierarchical clustering case study using 57
implementation of spectral clustering 158
implementation of t-SNE 193-196
implementing autoencoders 275
implementing GMM 171
installing packages 312
k-means clustering implementation using 46-50
sentiment analysis case study with 222-228
singular value decomposition (SVD) 98-101
solution using PCA 91-97

PyTorch 262

Q

qualitative data 6
quantitative data 7

R

R 14

random_state parameter 48

Ratio Cut Clustering 308

RBM (restricted Boltzmann machine) 259

real-time deployment 301

reconstruction loss 272

Regex (Regular Expression) 216

Regexp tokenization 211

regression algorithms 19-21

reinforcement learning 28

ReL.U (rectified linear unit) 244, 255

reproducibility 302

RGB (red, green, blue) 189

RNNs (recurrent neural networks) 8, 254, 256
key concepts of 256

ROCK (Robust Clustering using Links) 307

rollback, defined 303

S

SAS 14
scalability 302
scalars 315
scaling techniques 311
scipy library 33, 78
SCPS (Spectral Clustering on Perona & Shi’s
graph) 309
seaborn library 150
seaborn module 177
security and compliance 302
Semisupervised k-means 309
semisupervised learning 28
sentiment analysis case study with Python
implementation 222-228
sequence rule mining 137-142
SPADE algorithm 138-142
SGD (stochastic gradient descent) 246
Shape command 46
Shi-Malik Clustering 308
shingles 214
sigmoid function 23, 243
significant variables 268
silhouette value 42
similarity graphs 153
SimpleImputer method 298
skfuzzy library 150
sklearn library 33, 47, 78, 91, 94, 150, 184-185
sklearn module 177

INDEX

SNE (stochastic neighbor embedding) 190

325

SNN (Shared Nearest Neighbor Clustering) 309

soft clustering 36, 161, 309
softmax function 245

SOM (Self-Organizing Maps) 310
Sonnet 262

SPADE (Sequential Pattern Discovery Using Equiv-

alence classes) algorithm 138-142
sparse autoencoders 273
sparsity function 273
special matrices 318
spectral clustering 151-158, 308
building blocks of 153-156
process of 156-158
Python implementation of 158
spectral gap 155
SPICi (Speed and Performance In
Clustering) 309
SPSS 14
square matrices 97
standard deviation 315
standardization 311
STING (Statistical Information Grid) 308
stochastic gradient descent 197
stopping word removal 208
structured dataset 7
SUBCLU (Subspace Clustering) 308-309
subjective interpretations 74
subspace and high-dimensional clustering 309
successive iterations 303
supervised fine-tuning 260
supervised learning 18-24
adding loss function 249
algorithms 248
calculating error 250
classification algorithms 22-24
deep learning in 248-250
feed-forward propagation 249
regression algorithms 19-21
support 115-119
overview of 116

SVD (singular value decomposition) 78, 97-101

Python solution using 98-101

T

t-SNE (t-distributed stochastic neighbor
embedding) 78,177, 189-196
Cauchy distribution 192
Python implementation of 193-196
tanh function 243
target variable 18, 248
technical toolkit 236
tensorflow library 236, 268

326

text data
challenges with 205
cleaning using Python 216-219
clustering using Python 228
extracting features from text datasets 209
GenAlI for 230
preprocessing 207
tokenization 210
unsupervised learning for 202-204, 207-209,
211, 213-214, 219, 221-228, 231
TF (TensorFlow) 261
Python code for 262
TF-IDF (term frequency-inverse document
frequency) 210, 213-214
time complexity O(n) 311
time-consuming 74
time-series analysis 314
tokenization 210
too much data 73
toolkit 268
training
autoencoders 270
data 18, 248
examples 18, 248
transfer functions 243
trigrams 215
tSNE_first_component 194
tSNE_second_component 194

u

INDEX

language models 214
technical toolkit 203
text clustering using Python 228
text data 202, 216-219
use cases for text data 204
user feedback 303

\'

value_counts function 46

variance 315

variational autoencoders 275

VDBSCAN (Variable Density-Based Spatial
Clustering) 308

vectors 315

versioning 303

w

Walktrap Algorithm 309

Ward linkage method 53

WaveCluster 308

WCSS (within the cluster sum of squares) 42
weights 240

Weka 14

Whitespace tokenization 211

word embeddings 219

Word2Vec 221

wordpunct tokenization 211

Ul /visualization team 15
UMAP (Uniform Manifold Approximation and
Projection) 177, 196-198
key points of 198
working with 197
undercomplete autoencoders 272
unigrams 215
univariate analysis 105
unsupervised learning 4, 24-28, 109, 233
BOW approach 211
challenges with text data 205
deep learning in 253
extracting features from text datasets 209
for text data 203-204, 207-210, 213-214, 219,
221-228, 231

wrapper methods 84

X

X variables 92
X-Means (Extended k-means) 308

Y

y_variable 92

Y4

z-transformation 311

Hands-on Python Implementation to Complement
the Machine Learning Concepts

1 Import the necessary libraries:

import keras
from keras import layers

2 Create our network architecture:

This is the size of our encoded representations
encoding dim = 32 # 32 floats -> compression of factor 24.5, assuming
the input is 784 floats

This is our input image

input_img = keras.Input (shape=(784,))

"encoded" is the encoded representation of the input

encoded = layers.Dense (encoding dim, activation='relu') (input_img)
"decoded" is the lossy reconstruction of the input

decoded = layers.Dense (784, activation='sigmoid') (encoded)

This model maps an input to its reconstruction
autoencoder = keras.Model (input_ img, decoded)

PYTHON/DATA

Vaibhav Verdhan Foreword by Ravi Gopalakrishnan

enerative Al, predictive algorithms, fraud detection,

and many other analysis tasks rely on cheap and plenti-

ful unlabeled data. Machine learning on data without
labels—or unsupervised learning—turns raw text, images, and
numbers into insights about your customers, accurate com-
puter vision, and high-quality datasets for training Al models.
This book will show you how.

is a comprehensive guide to unsupervised
learning, offering a deep dive into its mathematical founda-
tions, algorithms, and practical applications. It presents practi-
cal examples from retail, aviation, and banking using fully-
annotated Python code. You'll explore core techniques like
clustering and dimensionality reduction along with advanced
topics like autoencoders and GAN . As you go, you'll learn
where to apply unsupervised learning in business applica-
tions and discover how to develop your own machine learning
models end-to-end.

* Master unsupervised learning algorithms
¢ Real-world business applications
e Curate Al training datasets

e Explore autoencoders and GANS applications

Intended for data science professionals. Assumes knowledge of
Python and basic machine learning.

is a seasoned data science professional with
extensive experience working on data science projects in a
large pharmaceutical company.

The technical editor on this book was Davide Del Vento.

For print book owners, all digital formats are free:
https:// www.manning.com/freebook

/lll MANNING

¢¢An invaluable resource for
anyone navigating the
complexities of unsupervised
learning. A must-have.??

—Ganna Pogrebna
The Alan Turing Institute

¢¢CEmpowers the reader to
unlock the hidden potential
within their data.”?

—Sonny Shergill, Astra Zeneca

¢CA must-have for teams
working with unstructured
data. Cuts through the
fog of theory and delivers
practical solutions.??

—Leonardo Gomes da Silva
onGRID Sports Technology

¢C'The Bible for unsupervised
learning! Full of real-world
applications, clear
explanations, and excellent
Python implementations.??
—Gary Bake
Falconhurst Technologies

FREE
eBook
see first page

ISBN-13: 978-1-61729-872-1

| || '-:nﬂrju

781617 H

9" 781617 " 29872

	Data Without Labels
	Praise for Data Without Labels
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1 Basics
	1 Introduction to machine learning
	1.1 Technical toolkit
	1.2 Data, data types, data management, and quality
	1.2.1 What is data?
	1.2.2 Various types of data
	1.2.3 Data quality
	1.2.4 Data engineering and management

	1.3 Data analysis, ML, AI, and business intelligence
	1.4 Nuts and bolts of ML
	1.5 Types of ML algorithms
	1.5.1 Supervised learning
	1.5.2 Unsupervised algorithms
	1.5.3 Semisupervised algorithms
	1.5.4 Reinforcement learning

	1.6 Concluding thoughts
	Summary

	2 Clustering techniques
	2.1 Technical toolkit
	2.2 Clustering
	2.3 Centroid-based clustering
	2.3.1 K-means clustering
	2.3.2 Measuring the accuracy of clustering
	2.3.3 Finding the optimum value of k
	2.3.4 Pros and cons of k-means clustering
	2.3.5 K-means clustering implementation using Python

	2.4 Connectivity-based clustering
	2.4.1 Types of hierarchical clustering
	2.4.2 Linkage criterion for distance measurement
	2.4.3 Optimal number of clusters
	2.4.4 Pros and cons of hierarchical clustering
	2.4.5 Hierarchical clustering case study using Python

	2.5 Density-based clustering
	2.5.1 Neighborhood and density
	2.5.2 DBSCAN clustering

	2.6 Case study using clustering
	2.6.1 Business context
	2.6.2 Dataset for the analysis
	2.6.3 Suggested solutions
	2.6.4 Solution for the problem

	2.7 Common challenges faced in clustering
	2.8 Concluding thoughts
	2.9 Practical next steps and suggested readings
	Summary

	3 Dimensionality reduction
	3.1 Technical toolkit
	3.2 The curse of dimensionality
	3.3 Dimension reduction methods
	3.3.1 Mathematical foundation

	3.4 Manual methods of dimensionality reduction
	3.4.1 Manual feature selection
	3.4.2 Correlation coefficient
	3.4.3 Algorithm-based methods for reducing dimensions

	3.5 Principal component analysis
	3.5.1 Eigenvalue decomposition
	3.5.2 Python solution using PCA

	3.6 Singular value decomposition
	3.6.1 Python solution using SVD

	3.7 Pros and cons of dimensionality reduction
	3.8 Case study for dimension reduction
	3.9 Concluding thoughts
	3.10 Practical next steps and suggested readings
	Summary

	Part 2 Intermediate level
	4 Association rules
	4.1 Technical toolkit
	4.2 Association rule overview
	4.3 The building blocks of association rules
	4.3.1 Support, confidence, lift, and conviction

	4.4 Apriori algorithm
	4.4.1 Python implementation
	4.4.2 Challenges with the Apriori algorithm

	4.5 Equivalence class clustering and bottom-up lattice traversal
	4.5.1 Python implementation

	4.6 F-P algorithm
	4.7 Sequence rule mining
	4.7.1 Sequential Pattern Discovery Using Equivalence

	4.8 Case study for association rules
	4.9 Concluding thoughts
	4.10 Practical next steps and suggested readings
	Summary

	5 Clustering
	5.1 Technical toolkit
	5.2 Clustering: A brief recap
	5.3 Spectral clustering
	5.3.1 Building blocks of spectral clustering
	5.3.2 The process of spectral clustering

	5.4 Python implementation of spectral clustering
	5.5 Fuzzy clustering
	5.5.1 Types of fuzzy clustering
	5.5.2 Python implementation of FCM

	5.6 Gaussian mixture model
	5.6.1 EM technique
	5.6.2 Python implementation of GMM

	5.7 Concluding thoughts
	5.8 Practical next steps and suggested readings
	Summary

	6 Dimensionality reduction
	6.1 Technical toolkit
	6.2 Multidimensional scaling
	6.2.1 Classic MDS
	6.2.2 Nonmetric MDS

	6.3 Python implementation of MDS
	6.4 t-distributed stochastic neighbor embedding
	6.4.1 Cauchy distribution
	6.4.2 Python implementation of t-SNE

	6.5 Uniform manifold approximation projection
	6.5.1 Working with UMAP
	6.5.2 Using UMAP
	6.5.3 Key points of UMAP

	6.6 Case study
	6.7 Concluding thoughts
	6.8 Practical next steps and suggested readings
	Summary

	7 Unsupervised learning for text data
	7.1 Technical toolkit
	7.2 Text data is everywhere
	7.3 Use cases of text data
	7.4 Challenges with text data
	7.5 Preprocessing the text data
	7.6 Data cleaning
	7.7 Extracting features from the text dataset
	7.8 Tokenization
	7.9 BOW approach
	7.10 Term frequency and inverse document frequency
	7.11 Language models
	7.12 Text cleaning using Python
	7.13 Word embeddings
	7.14 Word2Vec and GloVe
	7.15 Sentiment analysis case study with Python implementation
	7.16 Text clustering using Python
	7.17 GenAI for text data
	7.18 Concluding thoughts
	7.19 Practical next steps and suggested readings
	Summary

	Part 3 Advanced concepts
	8 Deep learning: The foundational concepts
	8.1 Technical toolkit
	8.1.1 Deep learning: What is it? What does it do?

	8.2 Building blocks of a neural network
	8.2.1 Neural networks for solutions
	8.2.2 Artificial neurons and perceptrons
	8.2.3 Different layers in a network
	8.2.4 Activation functions
	8.2.5 Hyperparameters
	8.2.6 Optimization functions

	8.3 How does deep learning work in a supervised manner?
	8.3.1 Supervised learning algorithms
	8.3.2 Step 1: Feed-forward propagation
	8.3.3 Step 2: Adding the loss function
	8.3.4 Step 3: Calculating the error

	8.4 Backpropagation
	8.4.1 The mathematics behind backpropagation
	8.4.2 Step 4: Optimization

	8.5 How deep learning works in an unsupervised manner
	8.6 Convolutional neural networks
	8.6.1 Key concepts of CNN
	8.6.2 Use of CNN

	8.7 Recurrent neural networks
	8.7.1 Key concepts of RNN

	8.8 Boltzmann learning rule
	8.8.1 Concepts of the Boltzmann learning rule
	8.8.2 Key points

	8.9 Deep belief networks
	8.9.1 Key points of DBN

	8.10 Popular deep learning libraries
	8.10.1 Python code for Keras and TF

	8.11 Concluding thoughts
	8.12 Practical next steps and suggested readings
	Summary

	9 Autoencoders
	9.1 Technical toolkit
	9.2 Feature learning
	9.3 Introducing autoencoders
	9.4 Components of autoencoders
	9.5 Training of autoencoders
	9.6 Application of autoencoders
	9.7 Types of autoencoders
	9.8 Python implementation of autoencoders
	9.9 Concluding thoughts
	9.10 Practical next steps and suggested readings
	Summary

	10 Generative adversarial networks, generative AI, and ChatGPT
	10.1 AI: A transformation
	10.2 GenAI and its significance
	10.3 Discriminative models and GenAI
	10.4 Generative adversarial networks
	10.4.1 The generator network
	10.4.2 The discriminator network
	10.4.3 Adversarial training
	10.4.4 Variants and applications of GANs
	10.4.5 BERT, GPT-3, and others

	10.5 ChatGPT and its details
	10.5.1 Key features of ChatGPT
	10.5.2 Applications of ChatGPT

	10.6 Integration of GenAI
	10.7 Concluding thoughts
	10.8 Practical next steps and suggested readings
	Summary

	11 End-to-end model deployment
	11.1 The machine learning modeling process
	11.2 Business problem definition
	11.3 Data discovery and feasibility analysis
	11.4 Data cleaning and prepreparation
	11.5 Duplicate values in the data
	11.6 Categorical variables
	11.7 Missing values in dataset
	11.8 Outliers present in the data
	11.9 Exploratory data analysis
	11.10 Model development and business approval
	11.11 Model deployment
	11.12 Purpose of model deployment
	11.13 Types of model deployment
	11.14 Considerations while deploying the model
	11.15 Documentation
	11.16 Model maintenance and refresh
	11.17 Concluding thoughts
	11.18 Practical next steps and suggested readings
	Summary

	appendix A Mathematical foundations
	A.1 List of clustering algorithms
	A.1.1 Partitioning-based algorithms
	A.1.2 Hierarchical clustering
	A.1.3 Density-based algorithms
	A.1.4 Grid-based algorithms
	A.1.5 Model-based algorithms
	A.1.6 Spectral clustering
	A.1.7 Graph-based clustering
	A.1.8 Subspace and high-dimensional clustering
	A.1.9 Fuzzy and soft clustering
	A.1.10 Constraint-based clustering
	A.1.11 Evolutionary and genetic clustering
	A.1.12 Neural network-based clustering
	A.1.13 Other algorithms

	A.2 What is a centroid?
	A.3 L1 vs. L2 norm
	A.4 Different scaling techniques used in the industry
	A.5 Time complexity O(n)
	A.6 How to install packages in Python
	A.7 Correlation
	A.7.1 Correlation coefficient
	A.7.2 Uses of correlation
	A.7.3 Important considerations

	A.8 Time-series analysis
	A.9 Mathematical foundation for data representation
	A.9.1 Scalar and vector
	A.9.2 Standard deviation and variance
	A.9.3 Covariance and correlation
	A.9.4 Matrix decomposition, eigenvectors, and eigenvalues
	A.9.5 Special matrices

	A.10 Hyperparameters vs. parameters

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Data Without Labels - back

