End-to-end machine learning for microcontrollers
with examples

End-to-end machine learning for microcontrollers
with examples

Applied
TinyML

End-to-end machine learning for
microcontrollers with examples

Ricardo Cid

‘I’l"'

www.bpbonline.com

https://www.bpbonline.com/

First Edition 2025
Copyright © BPB Publications, India

eISBN: 978-93-65891-799

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any
form or by any means or stored in a database or retrieval system, without the prior written permission
of the publisher with the exception to the program listings which may be entered, stored and executed
in a computer system, but they can not be reproduced by the means of publication, photocopy,
recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true and correct to the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but the
publisher cannot be held responsible for any loss or damage arising from any information in this
book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but
BPB Publications cannot guarantee the accuracy of this information.

To View Complete
BPB Publications Catalogue
Scan the QR Code:

www.bpbonline.com

https://www.bpbonline.com/

Dedicated to

My dear daughters:
Dianna
and

Luna

About the Author

Ricardo Cid is a mechanical engineer specialized in mechatronics who has
been working with embedded systems for more than 20 years. At school, he
was already helping a team at the engineering institute (UNAM) connect a
washing machine to the internet even before the term IoT was coined (to
this day, he has not figured out why connecting a washing machine to the
internet 1s necessary). After finishing school, he moved to NYC to design
stage robots for artists in his free time while working as the head of
engineering for a very successful company in the travel industry, where he
pioneered creating systems in the early days of the cloud, acquiring
extensive experience in big data and massive traftic volumes.

Around 20135, he took a six-month residency at the Museum of Arts and
Design at Columbus Circle with a project that earned him multiple awards,
consisting of creating 3D-printed mechanisms that danced to music.
Because of his unique skill set, which included mechanical engineering,
electronics, enterprise software, APIs, cloud, and big data, one of the
biggest and most prestigious real estate portfolios in NYC offered him the
unique opportunity to build a smart building operating system from scratch,
using more than 15 skyscrapers as a sandbox.

During that amazing gig, Ricardo experimented with massive amounts of
data and conceived a series of applications for a then-new type of
technology called machine learning. Ricardo and his team conceived
dozens of prototypes, some of them never saw the light, but they laid the
foundation for a series of algorithms that eventually saved hundreds of
megawatts in multiple buildings across the U.S., including those of the
federal government and the largest bank in the world.

At the end of his sixth anniversary at that company, Ricardo realized there
was a massive opportunity to bring much of that intelligence to edge
devices, avoiding critical cybersecurity and reliability single points of

failure. In 2023, Ricardo created a design studio exclusively dedicated to
architecting and building edge solutions that run ML models in constrained
environments.

About the Reviewer

Martin Yaneyv is a highly accomplished software engineer with nearly a
decade of experience across diverse industries, including aerospace and
medical technology. Over his illustrious career, Martin has carved a niche
for himself in developing and integrating cutting-edge software solutions
for critical domains such as air traffic control and chromatography systems.
Renowned as an esteemed instructor and computer science professor at
Fitchburg State University, he possesses a deep understanding of the full
spectrum of OpenAl APIs and exhibits mastery in constructing, training,
and fine-tuning Al systems. As a widely recognized author, Martin has
shared his expertise to help others navigate the complexities of Al
development. With his exceptional track record and multifaceted skill set,
Martin continues to propel innovation and drive transformative
advancements in the field of software engineering.

Acknowledgement

I would like to thank, first of all, you, the reader, for picking up this book. I
hope that by the end of it, you are inspired to create awesome systems and
gadgets that inspire more people to join you in this adventure.

I would also like to express my gratitude to my entire family for supporting
me during the creation of this book. They actively participated in the data
acquisition of many of the use cases by driving me around while I was
holding an accelerometer, placing sensors in the refrigerator for me, playing
notes on the piano to test the classification model, taking pictures of their
hand signals, holding a sensor while they jumped to simulate free fall, and
many more. We did this together.

Nothing could have happened without the BPB team, to whom I am
eternally grateful. From believing in the book concept, being patient during
the revisions, accepting my changes, guiding me through the process, and
helping me get to the finish line; all with the best attitude and kindness
there could be.

And finally, I need to recognize the entire TinyML ecosystem and its
awesome community. All the tools, all the SDKs, books, blog posts, etc are
pure gold, thank you. Special thanks to Nordic, Bluetooth, Arduino and
Edge Impulse.

Preface

The idea for this book was born from my fascination with the intersection
of machine learning and embedded systems. In the last few years, [have
seen how Al has transformed industries. Many of the most powerful
applications remain locked within cloud servers and large computing
infrastructures. My goal with this book is to help bridge that gap by
showing readers that it is possible to bring intelligence to edge devices and
make TinyML accessible to engineers, makers, and innovators who want to
deploy machine learning in real world, low power environments.

TinyML is the latest frontier for Al and ML models, as its constraints are
everywhere. Memory is scarce, and computing is smaller by orders of
magnitude compared to traditional computing used to train and run the
models. Therein, however, lies one of the greatest opportunity windows in
many years. When you think about the future, you do not imagine just text
editors that help you write a letter but an interactive physical world,
appliances and stand-alone devices transacting with people in the most
natural way, friendly furniture, smart clothing, and personalized gadgets.
All of that is the great promise of TinyML. It is our once-in-a-lifetime
opportunity to not only live in the future but to create it.

Another important aspect about this book is its breadth. The principles of
each concept are explained lightly; however the variety of domains covered
is wide. Instead of focusing solely on the data science aspect of the TinyML
models, we include system design (requirements are mapped to an
hypothetical business problem that needs to be solved), data acquisition
challenges (rather than just assuming the existence of a ready made data set
available on the internet), feature extraction (which is directly impacted by
data quality, a real issue in production environments), model design
(understanding how the model works under the hood is critical in
constrained environments where resource waste is not an option), electronic
component configuration (using existing electronic components instead of

just running in simulators), networking (since real world solutions are often
distributed across a surface rather than confined to a single location), power
considerations (as connection to the electric grid cannot be assumed), and
bill of materials research (because cost is a fundamental metric in real-life
systems).

Chapter 1: Foundation and Methodology - This chapter walks the reader
through the concepts and terminology used throughout the book. It also
established the scope of each one of the use cases in this book.

Chapter 2: Sound Classification - This chapter focuses on identifying the
features that define sounds according to their specific use cases. We utilize
Mel Frequency Cepstral Coefficients (MFCC) for human voices, which
excel in recognizing linguistic attributes such as inflection rhythm and
silences. Fourier Coefficients are employed for transient sounds to delineate
the sound by its power distribution across frequencies, which is essential for
capturing the unique energy profile of each sound. Periodic tones are
analyzed through spectrum analysis to uncover their distinctive frequency
signatures. We employ Convolutional Neural Networks to leverage the
spatial representation of sound (across time and magnitude) for pattern
recognition, training the model to convert the output layer into a probability
distribution used to classify the sound sample.

Chapter 3: Movement Classification - In exploring movement
classification, we gather data from three orthogonally placed accelerometers
to accurately describe object movement. By breaking down the
accelerometer readings into thirteen distinct features and segmenting the
wave into small time windows, we calculate metrics such as root mean
square, kurtosis, spectral kurtosis, and skewness. These metrics reveal
critical aspects of movement, from the average power indicating the
movement's energy to kurtosis and skewness, offering insights into the
frequency and suddenness of movements. The rich dataset feeds into a
dense neural network, enabling precise classification of movements ranging
from gentle to vigorous.

Chapter 4: Image Classification - Focusing on image classification, we
acquire images through a direct connection to a digital camera interfaced
with a microcontroller. Preprocessing steps include adjusting the image to a
square format and, if color is not critical, converting it to 8-bit grayscale to

streamline object recognition models' application. Images are resized to a
standard size to accommodate the neural network's capacity. Rather than
training from scratch, we apply industry standard TinyML models and a
technique called transfer learning to efficiently train the model with our
dataset, achieving a fast and accurate system applicable across various
machine vision scenarios.

Chapter 5: Object Tracking - This chapter introduces tracking, a
technique often paired with Image Classification to consistently identify an
object across sequential video frames. Whether tracking moving or static
objects, the method involves first classifying objects with a Convolutional
Neural Network and then comparing their sequential positions to deduce if
they are the same based on proximity. Successful tracking assigns
consistent IDs to objects, maintaining identity even through temporary
classification lapses or visual obstructions, showcasing the robustness of a
good tracking algorithm.

Chapter 6: Sensor Fusion - Sensor Fusion is examined as an advanced
method of combining data from multiple sources to generate new insights.
We categorize sensor fusion into complementary, competitive, and
cooperative types. Complementary fusion brings together different data
perspectives of the same event, while competitive fusion seeks reliability
through redundancy in data acquisition. Cooperative fusion merges data
from unrelated events to synthesize new information, highlighting the
technique's versatility in enhancing system perception.

Chapter 7: Deep Learning Regression - This chapter explores using deep
neural networks to infer numerical values from one or more data sources.
We demonstrate how integrating feature engineering with deep learning can
expand the realm of regression applications. We discuss developing control
systems using regression models with multiple inputs and outputs that apply
continuous learning and adaptation to current conditions. This chapter
illustrates how regression can forecast future conditions based on historical
data, opening new possibilities for predictive analytics.

Chapter 8: Anomaly Detection - This chapter examines the anomaly
detection method, which aims to identify occurrences that deviate from
expected patterns. Distinguishing itself from classification, anomaly

detection focuses on detecting behaviors or events previously unseen by the
model.

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/mé6t6yc9

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Applied-TinyML. In case there’s an
update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.bpbonline.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

https://rebrand.ly/m6t6yc9
https://github.com/bpbpublications/Applied-TinyML
https://github.com/bpbpublications
mailto:errata@bpbonline.com
https://www.bpbonline.com/
mailto:business@bpbonline.com
https://www.bpbonline.com/

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be
grateful if you would provide us with the location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or
contributing to a book, please visit www.bpbonline.com. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insights with the global
tech community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site
that you purchased it from? Potential readers can then see and use your unbiased opinion to make
purchase decisions. We at BPB can understand what you think about our products, and our
authors can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

mailto:business@bpbonline.com
https://www.bpbonline.com/
https://www.bpbonline.com/
https://discord.bpbonline.com/

Table of Contents

1. Foundation and Methodology
Introduction
Structure
Objectives
TinyML in Al
Level of experience and knowledge required to use TinyML
Designing and building a TinyML application
Step 1: Defining the problem
Step 2: Concept development
Creating the concept
Step 3: Data acquisition
Sensors
User interface
Drivers
Step 4: Feature engineering
Feature engineering for images
Feature engineering for accelerometer readings
Feature engineering for soundwaves
Feature engineering for timeseries from sensors
Step 5: Model creation
Choosing an algorithm
Splitting the data
Training the model
Evaluating the model
Tuning and optimizing the model

Deploying the model
Monitor and update
Step 6: Integrating the ML model with the application code
Step 7: Hardware, electronics and connectivity
Data versus information
Sending data between devices
Connection schematic
Step 8: Networking
Comparison between a mesh and a LAN network
Implementation strategy
Step 9: Power management
Step 10: Materials and costs

Conclusion

2. Sound Classification
Introduction
Structure
Objectives
Acquiring data to train the model
Balanced, diverse, and sufficient datasets
Extracting features from an acoustic signal
Processing
Selecting the right processing block for the job
Model

Training the model

Use case: Spectrogram based processing
Classifying instrument notes
Data acquisition
Processing
Model
System implementation

Source code
Network

Power analysis
Bill of materials

Use case: MEF based processing
Detecting noisy people in a business location

Data acquisition
Processing
Model
System implementation
Source code
Network
Power analysis
Bill of materials

Use case: MFCC based processing
Voice activated switches
Data acquisition
Processing
Model
System implementation
Source code
Network
Power analysis
Bill of materials
Conclusion

References

3. Movement Classification
Introduction
Structure

Objectives

Capturing training data from accelerometers

Extracting features from accelerometers
Spectral power
Kurtosis
Skewness

Creating the classification model

Use case: Correct usage detection
Tool usage tracker
Data acquisition
Processing
Model
System implementation
Source code

Network
Power analysis
Bill of materials

Use case: Free fall detection
Worker fall detection
Data acquisition
Processing
Model
System implementation
Source code
Network
Power analysis
Bill of materials

Use case: Movement profiling
Car driving style tracker
Data acquisition
Processing
Model

System implementation
Source code

Network

Power analysis

Bill of materials

Conclusion

References

4. Image Classification
Introduction
Structure
Objectives
Capturing training data for image classification
Extracting features from the images
Image classification model

Use case: Gesture detection
Using hand signs to unlock a door

Data acquisition
Processing
Model
System implementation
Source code
Network
Power analysis
Bill of materials

Use case: Face detection
People detector
Data acquisition
Processing
Model

System implementation

Source code
Network

Power requirements
Bill of materials

Use case: Object recognition
Component sorting
Data acquisition
Processing
Model
System implementation
Source code
Network
Power requirements
Bill of materials

Conclusion

References

5. Object Tracking

Introduction

Structure

Objectives

Tracking a single object
Things to consider

Tracking multiple things at once
Assignment
Track maintenance
Gating
Applications

Use case: Object counting

Conveyor belt counting
Data acquisition

Processing

Model

System implementation
Source code

Network

Power analysis

Bill of materials

Use case: People counting
People counting in supermarket

Data acquisition
Processing
Model
System implementation
Source code
Network
Power analysis
Bill of materials

Use case: Event detection
Car tracking
Data acquisition
Processing
Model
System implementation
Source code
Network
Power analysis
Bill of materials

Conclusion

References

6. Sensor Fusion

Introduction

Structure

Objectives

Types of sensor fusion
Sensor fusion algorithm
Kalman filters

Use case: Scoring
Degree of comfort score for shelters

Data acquisition
Processing
System implementation
Source code
Network
Power analysis
Bill of materials

Use case: Profiling
Temperature profiling in a commercial building

Data acquisition
Processing
System implementation
Source code
Network
Power analysis
Bill of materials

Use case: Correction
Accelerometer and gyroscope for drones
Data acquisition
Processing
System implementation
Source code

Power analysis
Bill of materials

Conclusion

References

7. Deep Learning Regression
Introduction
Structure
Objectives

Non linearity
Inputs and outputs

Preparing data for regression
Training the regression model

Use case: Controlling
Greenhouse control

Data acquisition
Processing
Model
System implementation
Source code
Network
Power analysis
Bill of materials

Use case: Forecasting
Thermostat temperature prediction

Data acquisition
Processing
Model
System implementation
Source code
Network

Power analysis
Bill of materials

Use case: Estimating
Weight estimation from images

Data acquisition
Processing
Model
System implementation
Source code
Network
Power analysis
Bill of materials

Conclusion

References

8. Anomaly Detection
Introduction
Structure
Objectives
Types of anomalies
Precision versus recall
Distance calculation
Feature importance

K-means clustering and anomaly detection
Steps to detect an anomaly

Use case: Movement anomalies
Rowing machine anomaly
Data acquisition
Processing

Model

System implementation
Source code

Network

Power analysis

Bill of materials

Use case: Sound anomalies
Machine sound anomaly
Data acquisition
Processing
Model
System implementation
Source code
Network
Power analysis
Bill of materials

Use case: Anomalies across a period of Time
Room temperature anomaly
Data acquisition
Processing
Model
System implementation
Source code
Network
Power analysis
Bill of materials

Conclusion

References

Index

CHAPTER 1
Foundation and Methodology

Introduction

If asked what can analyze its surroundings, understand ongoing events, and
respond without external help, your likely response would be a living
organism, particularly an animal. This is correct, but you could also
accurately say an Applied TinyML system. A TinyML application gathers
data, analyzes it, extracts insights, and reacts to the environment at or near
the data source. This method offers significant advantages: it ensures privacy
by keeping data local, enables real-time decision-making without cloud
delays, eliminates single points of failure by distributing decision-making,
reduces communication costs, and creates a scalable system with thousands
of devices working towards a goal. Additionally, distributing computation
lowers power consumption, making battery or solar power feasible for off-
the-grid use.

In this chapter, we begin with an overview of data acquisition, discussing
ideal data types and frequencies, peripherals, labeling techniques, and noise
reduction. Next, we guide you through processing, feature selection, and
extraction. We then examine machine learning (ML) model types, suitable
architectures, and hyperparameter tuning for enhanced accuracy. After
obtaining the model’s refined result, we show how to write a program to use
or communicate this result, including issuing commands to actuators and
displays.

In distributed applications, data acquisition, processing, and actuation rarely
occur on the same device, requiring a network for device communication.
You will learn to use a pub/sub paradigm for scalable, decentralized
communication. Finally, understanding power consumption and selecting
appropriate power sources is essential, as is preparing a bill of materials to
ensure your project’s financial and maintenance viability.

Structure

The chapter covers the following topics:
* TinyML in Al
* Designing and building a TinyML application

Objectives

The goal of this chapter is to introduce the terminology and concepts
covered throughout the book. We begin with an overview of TinyML and its
role within artificial intelligence (AI), then explore what constitutes a
TinyML application. We outline the steps to create one, from defining the
problem and developing the concept, to deciding on data acquisition,
selecting features, creating the model, and crucially, deploying it while
considering hardware, network, and power usage.

TinyML in Al

TinyML applications operate on devices with limited computational capacity
and low power requirements. However, these constraints are technological,
not goal oriented. If we could integrate the power of a graphic processing
unit (GPU) into a microcontroller lasting a decade on one battery, the
objective would remain a self-sufficient entity operating at the Edge. Thus,
the industry often refers to these applications as EdgeML.

In a standalone application, each design decision affects every subsystem.
The data’s size and frequency determine the sensor type, exchange protocol,
transmission network, processing microcontroller, storage memory, display
interface, and power source.

TinyML 1s a subset of Al specifically tailored to apply Al's capabilities to

the smallest and most energy-efficient hardware. While AI encompasses
many technologies and applications, TinyML focuses on making a subset of
these technologies work in the most resource-constrained scenarios.

The core concept behind minimizing Al model sizes lies in the realization
that you can train models in powerful machines but deploy them in
significantly lower-power microcontrollers. Typically, the training of
TinyML models occurs on powerful cloud-based GPUs, utilizing vast
datasets amounting to hundreds of gigabytes. Through employing various
optimization strategies that reduce the model's dimensionality and accept
minor, often imperceptible, losses in accuracy, the model's size can be
reduced to just a few megabytes. This size reduction makes it feasible to
deploy the models onto microcontrollers. However, this approach applies
only to specific models with certain types of inputs and outputs. Despite
these limitations, the research community remains exceptionally vibrant,
frequently publishing new white papers introducing advanced Al models
into the TinyML sphere. The progression began with sound classification for
microphone activation, extended to image classification, followed by
anomaly detection, and eventually to compact language models.

Level of experience and knowledge required to use TinyML

The landscape of TinyML application development is transforming, making
it more accessible and intuitive than ever before. Historically, modeling and
implementing physical behaviors into applications required a deep
understanding of mathematics and seasoned software engineering skills.
However, ML has created a new, more natural methodology for development
that is easier to understand and mirrors the human learning process. Just as
individuals acquire language skills through trial and error rather than
memorization of grammatical rules, ML models learn from examples. By
presenting a dataset and indicating the desired outcome, the Model
iteratively adjusts through multiple attempts, improving its accuracy over
time.

This evolution in the development paradigm is significantly lowering the
barriers to entry in the field of TinyML. By equipping non-technical
individuals with user-friendly tools for data collection, modular processing
components, model training interfaces, and practical usage examples, ML

technology 1s becoming accessible to a broader audience. This
democratization of technology empowers anyone interested in learning and
applying ML, paving the way for widespread adoption and innovation across
diverse domains. The implications of this shift are profound, offering the
promise of unleashing creative solutions and applications by people who
were previously excluded from the technological development process due
to the complexity of traditional methods.

Designing and building a TinyML application

A TinyML application is a solution that tackles a practical problem that
exists in a business, organization, or location. This book teaches readers how
to define, design, plan, budget, and build TinyML applications.

A TinyML application has elements of data science, software, ML,
electronics, networking, power management, and user interfaces (UI),
among many others. It is, nevertheless, possible to simplify its components
as abstract building blocks.

The best way to stay on track is to follow a methodology that allows us to
see the big picture, eliminate unnecessary complexity, and tackle one aspect
of the system at a time while staying focused on creating something valuable
that delivers value.

Throughout this book, we use a 10-step method to define the problem,
develop concepts that could become a solution, select the suitable model,
select the right features, use the right tools to train the model, test it, and
integrate all this into an embedded solution that can be deployed to a real
environment.

The method's steps are as follows:
1. Define the problem

. Concept development

. Data acquisition

. Feature engineering

. Model creation

. Integrating the ML model

N N L B~ W N

. Hardware, electronics and connectivity

8. Networking
9. Power management
10. Materials and costs
These steps have been explained in detail in the further sections.

Step 1: Defining the problem

This step involves delineating the current situation, essential requirements,
and metrics for success while remaining open to various potential solutions.
You should be able to answer the following ten questions before starting any
project. The document with the answers will guide the design decision-
making in the following steps and validate the final implementation:

First, we define the problem:
* What is the current state?
* What is the desired state?

* What obstacles are preventing the transition from the current to the
desired state?

* In what manner will this solution be utilized?

Next, we identify the data available for addressing the problem and establish
a metric for tracking your progress:

 What data is accessible to tackle this issue?

* What output would you like the system to produce to demonstrate its
effectiveness?

* Does the solution require any changes to the environment?
Finally, we specify the constraints of the solution:
* Where must the solution be implemented?

* Is it necessary for the solution to operate on an independent power
source?

* Must the solution offer real-time updates?
* What is the allocated time and money budget for this solution?

Recognizing that this document is dynamic and will evolve over time is
crucial. As the project advances through its various phases, you may realize
that your initial goals could be more ambitious and require refinement or that

the data you intended to use is challenging to obtain, needing an alternative
approach. Additionally, changes in the project's location or shifts in
environmental conditions may occur. View these developments as part of an
iterative process where adjustments are acceptable and expected. The key is
to remain focused on addressing the problem at hand.

Step 2: Concept development

In this step, we sketch a preliminary diagram showcasing a potential solution
leveraging TinyML technology. This phase is inherently iterative, often
requiring multiple iterations to align with expected metrics, functionality,
and operational costs.

The core idea behind concept development is to generate multiple options to
reduce the risk of choosing a suboptimal solution, which is achieved by
exploring the solution space. To do this, we draft at least three different ways
to solve the same problem. You need at least three, not only one, because
usually, the first concept is the recipient of all our biases and assumptions of
a solution, which is not necessarily the optimal one but, in most cases, based
on personal preferences. The second concept will allow you to explore new
approaches to solve the same problem. The third concept will be a good mix
between the first and second concepts.

Creating the concept

The best way to create a concept is to represent its functionality in blocks.
Each block should do one and one thing only. Each block can be represented
as a black box with an input and an output.

Methodology

You can translate an idea like this one, there should be a people counting
sensor on each one of the three doors communicating wirelessly to an LED
panel showing the total people count, into a diagram.

Draw a diagram with as many boxes (or blocks) as components, name each,
and list its main characteristics (color, type, voltage, etc.). Indicate what data
1s moving between blocks by writing it using the arrows that link the blocks
(temperature signal, inference results, image, etc.). Try to estimate the cost
of each component. Write the number by the blocks.

Once you have a couple of different concept diagrams, qualify them against
each other by comparing their commonalities:

* Create a spreadsheet that lists the total cost of components. Is the
project cost within a reasonable budget?

* Are components easy to find?

Do you know how to implement every component?

Is this the solution that uses the least number of components?

Is this the solution that solves the problem the best way?

Step 3: Data acquisition

Edge computing is the act of bringing computation to the data instead of data
to the computation. Edge devices are naturally well-positioned to acquire
data via cameras, microphones, accelerometers, or any other available
Sensor.

The components that make data acquisition possible are sensors, Ul and
drivers.

Sensors

A sensor is a device that converts physical signals into electrical signals. A
physical signal could be anything from changes in acceleration, temperature,
sound, or the light that produces an image. Among the most relevant sensors
for TinyML applications are microphones, cameras, displacement, position,
and proximity sensors, temperature sensors, light sensors, velocity and
motion sensors, IR sensors, touch sensors, UV sensors, and air quality
sensors. The characteristics you need to consider when selecting a sensor for
your application are:

* Range: Minimum and maximum limits of the input.

What are the minimum and maximum values your application needs to
acquire from this sensor? Sensors are usually designed to capture a
range that is used by typical use cases (e.g.: Most temperature sensors
cover the range of temperatures that a thermostat can operate on).
However, if your application needs to capture corner cases like sub-zero
temperatures or temperatures in an oven, your choices might be limited
to a couple of sensors. Additionally, you want most of the readings in

your application to fall in the middle of the range of the sensor, this is to
have some room for your system to capture all readings without
saturating. Saturation happens when your sensor tries to read out of its
range, the output will not show the real temperature but the limit
temperature your sensor can read which might cause your application to
draw incorrect conclusions.

Accuracy: Degree to which the reading conforms to the correct value.

What is the risk of getting a wrong value every so often in your
application? A sensor’s accuracy is usually directly proportional to its
price. In most cases, average accuracy is more than enough for your
application. Accuracy is essential when false positives are much more
expensive than false negatives. In other words, if missing an event is
more costly than having a false alarm, you want to invest in an accurate
Sensor.

Sensitivity: The ability of a system or instrument to detect small
changes in the reading.

Does your application care about slight variations in the readings?
Sensitivity measures a sensor's ability to discern and extract meaningful
information from faint stimuli, defined as the minimum signal level at
which it can operate effectively. Two main constraints limit a sensor's
sensitivity; the first is its resolution, defined as the most minor change a
sensor has been designed to perceive. The second constraint is the noise
the sensor components allow to be introduced to the signal. Sensors
with higher resolution and good shielding against noise are generally
more expensive. Ask yourself if your application needs high sensitivity
before investing in one.

Stability: Ability of a sensor to maintain consistent output over time
despite external changes or disturbances.

Will your application operate in an unpredictable environment? A
sensor should be able to measure one and one thing only, disregarding
what is happening around it. The degree to which a sensor is not
affected by other factors is its stability. Consider this characteristic if
you want to design your system once and install it in multiple
environments. An example is a car counting system that should work
everywhere. You want to ensure the count is the same on a rainy or

sunny day, whether inside a garage or outdoors. You can only measure
this parameter by trial and error, as every environment differs. You can
always use a complementary sensor to reduce the error using sensor
fusion (refer to Chapter 7, Deep Learning Regression).

* Repeatability: Ability of a sensor to consistently produce the same
results under unchanged conditions over repeated trials.

Is your application trying to detect change over long periods? Or will
the readings be used as a point of reference? Every sensor should
always return the same result if it measures the same event.
Repeatability characterizes the error that a sensor introduces to the
reading over time. Knowing this error is essential to countering it by
using filters, periodically resetting the sensor, or accounting for it in the
result.

* Response time: Duration a system or component takes to react to a
given input and produce an output.

How fast does your application need to respond to changes? This
parameter is essential when the readings are part of a control system that
must react to an event quickly. A delay in the response time can be
caused by a phenomenon called hysteresis that impedes the sensor to
change state caused by a temporary resistance to change in its
components. A different cause for delay is the use of filters. Many
sensors clean their data before returning it. Passing the signal through a
filter comes with the cost of a delay. The better the filter, the shorter the
delay, and the better the results.

* Ruggedness: Sensor's durability and ability to operate reliably under
extreme environmental and mechanical stresses.

Will the application be outdoors or in a rough environment? This
characteristic concerns every sensor installed in a real implementation.
Ruggedness has many dimensions. The obvious one is the mechanical
stress a device needs to endure, but there is also electrical and thermal
stress. Will the sensor survive a power surge? Will it melt on a
scorching day?

User interface

Not all inputs are acquired using a sensor; in many instances, a user pressing

a button, activating a switch, moving a slider, or rotating a dial is what the
system uses to trigger a process, infer data, or issue control commands to
actuators. The difference between a user input and a sensor is not clearly
defined. For example, an optical switch is a proximity sensor that flushes a
toilet. TinyML has created even more examples where the Ul is expanded
thanks to classification and regression models. For example, a classification
and tracking sensor that detects and recognizes faces could replace a keypad
that authenticates users.

There are many types of basic user input devices, such as buttons, switches,
sliders, dials, and keypads. Like sensors, they share the same characteristics:
range, accuracy, sensitivity, stability, repeatability, response time, and
ruggedness.

The outputs of the UI components are similar to those of sensors and can be
either analog or digital. Similarly, once their signal reaches the
microcontrollers, it is converted to an 8-bit or 16-bit digital signal.

Drivers

Drivers are software components in charge of receiving the signal from the
sensor and making it readily available to the software running the TinyML
model.

Drivers play a crucial role in facilitating communication between computing
systems and sensors. Each driver has unique capabilities tailored to specific
needs. Some drivers are designed to interface with sensors using well-
established protocols (I2C, UART, ISP), ensuring seamless data
transmission. However, custom-built drivers are required to enable
communication when sensors operate on proprietary or non-standard
protocols.

Driver data handling varies significantly. While some drivers are designed to
receive a continuous stream of data passively, others actively request data
from the sensor. Additionally, certain drivers can convert analog signals into
digital format, making the data more accessible for digital processing.

Some drivers offer advanced data management features beyond basic data
transmission. They may aggregate data to provide a comprehensive
overview, buffer data to prevent loss during connection interruptions or use
moving windows to calculate and output an average of recent readings.

Other drivers can handle data in packages, ensuring structured and efficient
data processing.

Security and data integrity are also vital considerations. Some drivers can
receive encrypted data, maintaining the confidentiality and security of the
transmitted information. Acknowledgment of received data is another
feature that ensures the data transmission process is reliable and errors are
promptly identified.

Some drivers offer additional processing capabilities to enhance data quality
and usability. They can correct errors, interpolate missing data to maintain
continuity, filter out noise to improve signal clarity and translate or convert
data into more useful formats. Furthermore, some drivers have resampling
features that allow the adjustment of data sampling rates to match the
application's requirements.

There are many parts and variations in a driver architecture. However, there
are three main steps:

1. The driver communicates with the sensor and brings the bytes to
memory.

2. The driver interprets the bytes and translates them into a format the
system can use.

3. It takes care of the additional functionality (if any) such as buffering,
encrypting, correcting, filtering, resampling, etc.

Drivers are located inside the microcontroller and are usually written in the
same language as the system’s primary language. They are also often
referred to as libraries of the sensor.

Step 4: Feature engineering

Feature engineering is the process of selecting, modifying, or creating new
features from raw data to improve the performance of ML models. It
involves using domain knowledge to extract and transform the most relevant
information from the data, making it more suitable for modeling. Effective
feature engineering can significantly enhance model accuracy by providing
the most pertinent, insightful data representations, which might not be
immediately apparent in the raw data. This step is crucial because the quality
and relevance of the features used directly influence the model's ability to

learn and make accurate predictions or decisions.

Feature engineering for images

Feature engineering for images involves the process of transforming raw
image data into a structured format that an ML model can understand and
use to make predictions or classifications. This process is crucial because it
helps highlight the important elements of an image that distinguish one
category from another, enhancing the model's learning efficiency and
predictive accuracy. Here is how feature engineering for images typically
unfolds:

* Preprocessing: This initial step involves cleaning and normalizing the
images. Cleaning could mean removing corrupted images or those that
do not meet certain criteria. Normalization usually involves scaling
pixel values to a standard range, often between 0 and 1, to reduce
variability between images and help the model learn more effectively.

* Size reduction: Images are often resized to a uniform dimension before
being fed into an ML model. This not only ensures consistency across
the dataset but also reduces the computational load. The choice of size
depends on the model's requirements and the balance between retaining
enough detail for accurate classification and minimizing computational
demands.

* Color space conversion: Depending on the application, converting
images from one color space to another (e.g., from RGB to grayscale or
HSV) can be beneficial. For some tasks, color may not be relevant, and
converting 1mages to grayscale can simplify the model without
significantly impacting performance. For other applications, different
color spaces might highlight relevant features more effectively than the
standard RGB.

* Augmentation: Image augmentation artificially increases the size and
diversity of the training dataset by applying a series of random
transformations to the images, such as rotation, scaling, flipping, and
cropping. This helps the model generalize better and reduces the risk of
overfitting, especially when the available dataset is limited.

Feature engineering for accelerometer readings

Feature engineering for accelerometer readings involves processing raw
time-series data from accelerometers to extract meaningful attributes
(features) that effectively capture the underlying patterns of motion.
Accelerometers, which measure acceleration forces in one or more
directions, generate data that can be rich in information but challenging to
interpret directly. The goal of feature engineering in this context is to
transform this data into a form that makes it easier for ML models to
recognize patterns, such as walking, running, or other physical activities.

The process starts with preprocessing the raw accelerometer data, which
may include filtering to remove noise and normalizing the data to a
consistent scale. Given the time-series nature of accelerometer data, it is
common to segment the continuous stream into smaller, fixed-size windows.
This segmentation is crucial because it allows the model to analyze discrete
chunks of data, making it easier to identify and classify short-term patterns
of movement.

For each window of data, a variety of statistical and time-domain features
are typically extracted. These can include basic statistics like the mean,
median, standard deviation, and range of the acceleration signals, which
provide a summary of the data's central tendency and variability. More
complex features, such as the root mean square (RMS), signal magnitude
area (SMA), and zero-crossing rate, help capture the energy, intensity, and
frequency of movements. Additionally, frequency-domain features, obtained
through techniques like Fourier Transform, offer insights into the dominant
frequencies of motion, which can be indicative of specific types of activities.

Feature engineering for soundwaves

Feature engineering for sound inputs in ML is a critical process that involves
transforming raw audio signals into a set of descriptive features that capture
the essential characteristics of the sound. Given that audio signals are
complex and can contain a wide range of frequencies, durations, and
intensities, extracting meaningful features is essential for training ML
models to perform tasks such as speech recognition, music genre
classification, or environmental sound detection.

The process begins with preprocessing the audio data, which may include
normalization to ensure consistency in volume levels across different

recordings and possibly converting the audio into a uniform format and
sampling rate. Noise reduction techniques might also be applied to clean up
the recordings and improve the quality of the features extracted.

A fundamental step in feature engineering for sound is the extraction of
relevant features from the audio waveforms. Time-domain features, such as
zero-crossing rate (the rate at which the signal changes from positive to
negative and vice versa) and energy (the sum of squares of the signal values,
normalized by the length of the signal), capture basic properties of the
sound. However, much of the useful information in an audio signal is better
represented in the frequency domain or as a combination of time and
frequency domains.

Spectral features, extracted through techniques like the Fourier Transform,
provide insights into the distribution of power across different frequencies
within a sound. Common spectral features include spectral centroid
(indicating the center of mass of the spectrum), spectral bandwidth (the
width of the spectrum), and spectral roll-off (the frequency below which a
certain percentage of the total spectral energy is contained). Another
powerful set of features are the Mel-Frequency Cepstral Coefficients
(MFCCs), which mimic the human ear's response to different frequencies
and are particularly effective for speech and music processing.

In addition to these, more advanced feature extraction methods can explore
the modulation of sound signals, harmonic patterns, and even the use of deep
learning models like Convolutional Neural Networks (CNNs) to
automatically learn optimal features from spectrograms (visual
representations of the spectrum of frequencies of a signal as it varies with
time).

Feature engineering for timeseries from sensors

Feature engineering for time series data captured from sensors involves
transforming the sequential data collected over time into a structured format
that ML models can effectively use for prediction, classification, or anomaly
detection tasks. Given the ubiquity of sensors in domains such as industrial
monitoring, healthcare, environmental tracking, and wearable technology,
the ability to accurately interpret sensor data through feature engineering is
critical for extracting meaningful insights and making informed decisions.

The process typically begins with preprocessing steps to ensure data quality
and consistency. This may include cleaning the data to remove noise or
irrelevant signals, normalizing to standardize the range of data values,
handling missing values through imputation, and potentially segmenting the
continuous data stream into manageable, discrete windows of time. These
windows can then be analyzed individually, enabling the model to recognize
patterns over specific intervals.

For each window or segment of the time series, a variety of features can be
extracted:

Statistical features: Basic statistical measures such as the mean,
median, standard deviation, variance, minimum, and maximum values
provide a summary of the data's central tendency and dispersion. These
features are easy to compute and can give a quick overview of the data's
characteristics within each window.

Temporal features: Including lag features (values at previous time
steps) and moving averages can help capture the temporal dependencies
and trends in the data, essential for forecasting and trend analysis.

Frequency domain features: Applying Fourier Transform or Wavelet
Transform converts the time series into the frequency domain, allowing
the extraction of features related to the dominant frequencies and
cyclical patterns in the sensor data. This is particularly useful for
identifying periodic behaviors or distinguishing between different types
of signal modulation.

Autocorrelation features: The autocorrelation function, which
measures how the data points in the series correlate with each other at
different lags, can reveal the presence of repeating patterns or
seasonality in the data.

Domain-specific features: Leveraging domain knowledge to create
features specific to the application or sensor type can significantly
enhance model performance. For instance, in wearable technology,
features capturing the intensity and frequency of human activity, such as
steps per minute or heart rate variability, can be particularly informative.

Derivative and integral features: Calculating the derivative (rate of
change) or integral (cumulative sum) of the time series can highlight

changes in the sensor readings over time or the accumulation of a
quantity, respectively.

Feature selection follows feature extraction, where the most informative and
relevant features are identified and retained for model training, while
redundant or irrelevant features are removed. This selection process is
crucial for improving model accuracy, reducing overfitting, and enhancing
computational efficiency.

Step 5: Model creation

With the data acquired and the features defined, the next step is to decide
which model is better suited to perform the task and help us fulfill our goal.

A machine learning system is a mathematical construct that learns patterns
from data. It adjusts its structure and parameters through training to
minimize errors between its predictions and actual outcomes. Once trained,
an ML model can make predictions or decisions based on new, unseen data.
These models are central to ML and can range from simple linear regression
to complex deep neural networks, depending on the task and the amount of
data available. They are used across various applications, including image
recognition, natural language processing, and predictive analytics, adapting
and improving their performance as they are exposed to more data. The tasks
to prepare a model involve choosing an algorithm, splitting the data, training
the model, evaluating the model, monitoring and updating the model.

Choosing an algorithm

Select an appropriate ML algorithm based on the problem type, the nature of
the data, and the desired outcome. Classification helps you identify classes,
regression allows you to infer quantities, and anomaly detection finds
uncommon patterns in your data. Let us look at these in detail:

* Sound classification: It is a process where ML models are trained to
identify and categorize sounds into predefined classes or labels. By
analyzing audio data, these models learn to recognize patterns and
features that distinguish different sounds, such as human speech, music,
environmental noises, or animal sounds. This involves extracting
relevant features from the audio signals, such as frequency components,
amplitude, and temporal characteristics, and feeding them into neural

networks.
o Applications: Voice recognition, surveillance for unusual sounds,
noise monitoring, etc.

Movement classification: It involves training ML models to recognize
and categorize types of physical movements or activities based on
sensor data. This process typically uses data from accelerometers,
gyroscopes, or other motion sensors embedded in devices. The models
learn from patterns in the sensor data, such as movement, speed,
direction, and acceleration.

o Applications: Health and fitness tracking, driving styles, Free
falling object detection, etc.

Image classification: This is a technique where ML models are trained
to identify and categorize images into predefined classes or categories.
This process involves analyzing visual data, extracting relevant features
from the images, such as textures, colors, shapes, and spatial
relationships, and using these features to teach the model how to
differentiate between various types of images. Deep learning models,
particularly CNNs, are commonly used for this task due to their
effectiveness in handling complex image data.

o Applications: Facial recognition systems, medical imaging
diagnosis, object detection, content categorization, etc.

Regression: ML based regression is a predictive modeling technique
for estimating the relationships between a dependent variable and one or
more independent variables. The goal is to understand how the
dependent variable changes as the independent variables are varied.
Unlike classification, which predicts discrete labels, regression predicts
continuous outcomes. Various types of neural networks are employed to
model and predict these continuous outcomes, making regression a
versatile tool for analyzing and forecasting numerical data.

o Applications: Prediction of sensor values, real-time control, weight
estimation, etc.
Anomaly detection: This is a technique for identifying unusual

patterns or outliers in data that do not conform to expected behavior.
This is achieved by training ML models on data representing normal

operations or states, allowing them to learn the underlying patterns and
distributions. Once trained, the model can detect deviations from these
patterns in new data, signaling potential anomalies.

o Applications: Outlier detection, water leak detection, intrusion.

Splitting the data

The rationale behind splitting datasets i1s a foundational practice in ML
designed to evaluate the performance of models accurately and prevent
overfitting. The dataset is split into training, validation and testing subsets
and 1s used as follows:

* Training set: This data set is used to train the model, allowing it to
learn the underlying patterns and relationships in the data. Based on the
feedback from this data set, the model's parameters are adjusted to
minimize errors.

* Validation set: The model is tested against the validation set after
training. This data set is not used for training but serves to evaluate how
well the model generalizes to new data. It is crucial to tune the model's
hyperparameters and make decisions about the model architecture
without touching the test set. Using a validation set helps detect
overfitting early on, as performance on this set can indicate when the
model starts to learn the noise in the training data rather than the actual
signal.

» Testing set: This is the final, untouched set of data used to evaluate the
model's performance after it has been trained and validated. Testing the
model on this separate set provides an unbiased assessment of its
generalization ability to new, unseen data. To ensure the accuracy of this
evaluation, this data must be only used once, at the end of the process.

Training the model

The training process of a ML model is a crucial phase where the model
learns to make predictions or decisions based on data. Initially, the model is
fed a large set of training data, including the input features (data points) and
the corresponding target values (labels or outcomes). This data set is
representative of the real-world scenarios the model is expected to handle.
The training process aims to adjust the model's parameters (e.g., weights in

neural networks) so that its predictions closely match the target values in the
training set.

Training involves an iterative process where the model makes predictions
based on the training data, and adjustments are made to its parameters based
on the accuracy of these predictions. The difference between the model's
predictions and the actual target values is calculated using a loss function,
which measures the model's error. An optimization algorithm, such as
gradient descent, is then used to minimize this error by iteratively adjusting
the model's parameters. This process is repeated over many cycles (or
epochs) until the model's performance on the training data reaches an
acceptable level of accuracy or until further improvements become
negligible.

Monitoring the model's performance on the training data and a separate
validation set is vital during training. This helps to ensure that the model is
learning to generalize from the training data to new, unseen data rather than
merely memorizing the training set (a problem known as overfitting).
Various techniques, such as regularization and dropout (for neural networks),
can be employed during training to prevent overfitting and improve the
model's ability to generalize. Once the training process is complete, the
model's final performance is evaluated using a separate test set, which
provides an unbiased assessment of how well the model will perform in real-
world applications.

Evaluating the model

The evaluation process of a ML model is a crucial step that follows the
training phase, aiming to measure how well the model performs on unseen
data. This step is essential for assessing the model's generalization capability,
which is its ability to apply what it has learned to new, similar problems.
Evaluation involves using specific metrics appropriate for the type of ML
task (classification, regression, clustering). For example, classification tasks
might use accuracy, precision, recall, F1 score, and the area under the ROC
curve (AUC-ROC). In contrast, regression tasks could use mean squared
error (MSE), root mean squared error (RMSE) or mean absolute error
(MAE).

The process typically involves a separate data set known as the testing set,

which the model has not seen during its training phase. This ensures that the
evaluation reflects the model's performance under real-world conditions. In
many cases, cross-validation techniques are also employed to ensure that the
evaluation is not biased by how the data was split into training and testing
sets. Cross-validation involves dividing the dataset into several subsets, then
training and evaluating the model multiple times, using a different subset as
the test set and the remaining data for training. The final performance is
averaged across all these iterations, providing a more robust estimate of the
model's performance.

Tuning and optimizing the model

A ML model's tuning and optimization process is critical in enhancing its
performance by systematically adjusting its parameters and configuration.
After an initial model is trained and evaluated, tuning involves
experimenting with various hyperparameters that control the learning
process and model architecture. Hyperparameters include learning rate, the
complexity of the model (such as the number of layers in a neural network),
regularization strength, and many others, depending on the type of algorithm
being used.

Optimization uses techniques like grid search, random search, or more
sophisticated methods such as Bayesian optimization. Grid search evaluates
the model performance for a comprehensive combination of
hyperparameters within a specified range, while random search randomly
selects combinations, providing a quicker but less exhaustive exploration.
On the other hand, Bayesian optimization uses the results of previous
evaluations to intelligently choose the next set of hyperparameters to
evaluate, often leading to more efficient finding of the optimal configuration.

The process is inherently iterative, requiring multiple rounds of training and
evaluation to identify the set of hyperparameters that yield the best
performance according to the chosen metrics (e.g., accuracy, precision, recall
for classification tasks, or MSE, RMSE for regression tasks).

Additionally, model optimization may involve feature engineering and
selection to improve model input quality or explore different model
architectures. The goal of the tuning and optimization process is to arrive at
a well-performing model that fits the training data well and effectively

generalizes to new, unseen data.

Deploying the model

Deploying a ML model to an Edge device with limited connectivity presents
unique challenges that require careful planning and optimization to ensure
the model operates effectively within the constraints of the device. The
process begins with optimizing the ML model to suit the Edge device's
limited processing power, memory, and storage capabilities. Techniques such
as model pruning, quantization, and knowledge distillation reduce the
model's size and computational demands while maintaining its predictive
performance. This optimization phase may involve using specialized tools
and frameworks designed for Edge deployment, like TensorFlow Lite or
PyTorch Mobile, which can convert the model into a more efficient format
for execution on low-power devices.

Once the model is optimized, it is packaged for deployment, often alongside
a minimal runtime environment that facilitates model inference on the Edge
device. The deployment process must consider the device's operating
system, hardware specifications, and the software stack required to run the
model. Given the limited connectivity, the model 1s designed to perform
inference locally, process data directly on the device, and make decisions
without constantly communicating with a server. This not only conserves
bandwidth but also ensures the device can operate independently, even in the
absence of a network connection. When connectivity is available, a strategy
for data synchronization is implemented, allowing the device to update
model parameters, send aggregated insights, or download new models and
updates as needed.

Monitor and update

Monitoring and maintenance mechanisms are also crucial components of the
deployment process. These systems can be designed to operate with minimal
data transmission, focusing on essential metrics that indicate the model's
performance and the device's health. Updates to the model, driven by
changes in data or improvements in the algorithm, are carefully managed to
minimize bandwidth usage and disruption. Often, differential updates are
employed to transmit only the changes since the last version.

Step 6: Integrating the ML model with the application code

Application code refers to the set of computer programs or software
instructions written to perform specific tasks, functions, or operations within
a software application. This code forms the backbone of any application and
dictates its behavior, functionalities, and interactions with users, other
applications, and hardware resources.

Integrating an ML model into application code effectively turns a static
application into a dynamic, Al-enhanced system capable of learning from
data, making decisions, and adapting to new information over time. The
integration involves writing code within the application that interacts with
the ML model. This includes loading the model into the application
environment, preparing or preprocessing input data in the format the model
expects (for e.g., scaling images, encoding categorical data), and invoking
the model to make predictions. After receiving predictions, the application
may need to post-process the results (e.g., decoding output, applying
thresholds) before presenting them or acting based on them.

Step 7: Hardware, electronics and connectivity

A TinyML application is a ML system that runs on low-power, resource-
constrained devices such as microcontrollers.

A TinyML application can do the following:
* Connect to sensors and other input peripherals.

Run stand-alone ML models.

Execute application code.

Control switches, motors, and other actuators
* Communicate with other devices
* Run on batteries, solar power, or low-voltage power sources

In its simplest form, a TinyML application consists of a single device that
acquires its data, runs a model, and performs an action with the resulting
information.

In cases where the data sources are spread across a wide area, like a
warehouse or a hotel, keeping the TinyML application in one single device
(e.g., one sensor in every area analyzing readings independently) is

challenging. Furthermore, it is not only difficult to achieve but not even
recommended. The resource-constrained nature of the devices will not be
able to sustain the analysis of multiple sources, let alone run a couple of ML
Models and control several actuators on a single device. The solution to this
scalability issue is to spread computation across multiple devices.

Using multiple devices requires us to think about data differently. The legacy
paradigm, which would require capturing and forwarding raw sensor data to
the cloud for further examination, cannot and should not be replicated in an
Edge-based system. The fundamental shift is based on the principle that data
and information are not the same. Data captured by sensors should be
processed locally, and only information should be shared between different
devices.

Data versus information

Data and information are related concepts, but they differ significantly in
meaning and Function within the context of processing and analysis.

Data refers to raw, unprocessed facts and figures without any context. It can
come in various forms, such as numbers, text, images, or sounds, and is
typically collected from measurements, observations, or responses. Data on
its own may not convey direct meaning; for example, a list of numbers
representing temperatures over a period is just data without context.

Information, on the other hand, is data that has been processed, organized, or
structured to add context and make it meaningful and useful. After analyzing
data, interpreting it, and putting it into context, information is what you get.
Using the previous example, if the collected temperature data is organized to
show trends over time, such as an anomaly, it becomes information that can
inform decisions.

Sending data between devices

Information requires only a few bytes and can be transmitted at intervals less
frequently than raw data. For that reason, for devices limited by resources,
transmitting information is substantially more manageable in terms of
memory and battery usage than sending raw data.

Sending and receiving a few bytes at low frequencies is the key to running a
network of devices for a TinyML application with constrained resources

(low memory, small computation capacity, and, in many cases, battery-
powered).

Low-energy network technology exists for many use cases. LoRa enables
low-energy communication for very long ranges, LTE-M enables low-energy
communication using cellular infrastructure, and Bluetooth Mesh enables
low-energy communication in local area networks, to mention a few. By
design, each of these technologies has incredibly low bandwidth. The fewer
bytes that need to be sent out, the less energy, memory, and computation you
need. This makes low energy networks a perfect match for TinyML
applications.

Using a network requires extra hardware. A microcontroller can run a
TinyML model and manage its wireless network communication
simultaneously; however, it is not recommended. A secondary
microcontroller is the way to go for network communication. Most examples
in this book use an Arduino as the primary microcontroller to run the
TInyML model and an NRF52840 Dongle as a secondary microcontroller to
receive and send wireless messages using a Bluetooth Low Energy Mesh
Network.

Connection schematic

The following figure illustrates how devices and components in a TinyML
application can be interconnected with a low energy network:

BLE Mesh (Subscribe to CH1)

ﬁ c:mesh

- BLE Mesh {Publish to CH1)

Hc:mesh

Accelerometer

SDCard

vart [l citinymi 3 3

’m

40 3W

Figure 1.1: Connection diagram

Across this book, devices are portrayed as blocks with connection pins
corresponding to their physical footprint. Connections are described with
lines that start at a pin in the device transmitting information and end at a pin
in the device receiving information. Refer to the following conventions:

* Blocks: Each device shows the following characteristics by its diagram
block.

o Name: Unique name of the device (e.g., Temperature Room 5).
o Type: What the device is (e.g., Temperature Sensor).

o Technical characteristics: Relevant device specs (e.g., 10mA
@5V).

* Connections: Each connection shows its characteristics along its line.

o Data: A reference to the data it is transporting (e.g., Raw
Temperature Data).

o Protocol: The protocol used in communication (e.g., [2C, UART,
etc.).

o Direction: Arrow showing what component is receiving the
application data.

o Network: If the connection involves a wireless network, the line is
dotted, and its characteristics are explicitly stated (e.g., Channel,
Frequency, Subscription, etc.).

* Firmware: If Firmware or a model is to be loaded onto a device, the
device block explicitly shows its reference.

o Firmware: Name of the executable to be loaded into the device
(e.g., Tiny_3-2.hex).

o TinyML model: Name of the model to be loaded on the
microcontroller (e.g., Temp_Anomaly_1).

Step 8: Networking

Networking is not a topic you might think of when considering designing
and building a TinyML application. As seen in the last section, networking is
only necessary when the project needs to be split into multiple devices
because of its size, complexity, or distribution across a space. Each device
performs a specialized function and communicates its results with the rest of

the devices using a network.

Low-energy mesh networks are best suited for applications requiring low
power consumption and extensive coverage with a large number of small,
interconnected devices. In contrast, traditional LAN networks are geared
towards environments demanding high-speed data transfer, stability, and
higher power consumption.

Comparison between a mesh and a LAN network

A low energy mesh network is a type of wireless communication network
designed to connect devices with minimal power consumption in a reliable
way. A local area network (LAN) is a network that connects computers and
devices within a limited geographical area, such as a home, school, or office
building, to share resources and information.

The characteristics of a mesh network are as follows:

* Design principle: A low energy mesh network is based on technology
designed for short-range communication between devices. It employs a
mesh networking architecture, allowing devices to communicate with
each other directly or indirectly through other devices in the network,
forming a mesh of interconnected nodes.

* Purpose and use cases: A low-energy mesh network primarily aims at
low-power, low-bandwidth applications. It is ideal for Internet of
Things (IoT) scenarios, smart business automation, and applications
requiring extended coverage across multiple devices without a central
router or extensive power consumption.

* Power efficiency: A low energy mesh network is highly power-
efficient, making it suitable for battery-operated devices.

* Range and speed: While a low energy mesh network extends its range
by allowing messages to hop between devices, its speed is relatively low
compared to traditional LAN networks, as it is optimized for small data
packets.

Scalability: A low-energy mesh network can support thousands of
nodes, facilitating large-scale device networks.

The characteristics of a LAN network are as follows:
* Design principle: Traditional LANs are usually based on Ethernet

(wired) or Wi-Fi (wireless) technologies, which are designed for high-
speed data transmission over relatively short distances.

* Purpose and use cases: LAN networks are suited for office, home, and
industrial networks where high data throughput and reliable
connectivity for computers, servers, and other network devices are
required.

* Power efficiency: Power efficiency is less of a concern for traditional
LANSs, especially wired ones, as they often rely on continuous power
sources.

* Range and speed: Traditional LANs offer higher data transfer speeds
and a stable connection but are typically limited in range to the confines
of a building or immediate geographic area without additional
networking hardware like repeaters or bridges.

* Scalability: While LANs can support many devices, scalability is often
constrained by the capacity of the central router or switch and the
complexity of managing an extensive network.

Implementation strategy

The strategy consists of not having to select a single technology but
leveraging the advantages of each type of network. Low energy mesh
networks are usually utilized in the outer part of the Edge to communicate
with sensors and actuators scattered around the area covered by the TinyML
application. One of the low energy mesh nodes can be used as a gateway to
have commands and status updates jump to a wider area network. Depending
on the project, the wider area network can be a Wi-Fi connection or a wired
LAN; if those networks are unavailable or difficult to access, an LTE-M
network can reach the internet. A LoRA gateway is used to send out and
receive data at long distances if a cellular connection is not an option
because of cost or availability.

Notice that we are not creating a pipeline to send large amounts of data.
There are small packets of data jumping networks and eventually reaching
their destination. A little lag is acceptable because all we receive are status
updates; the action takes place in the microcontrollers in real-time. Data is
being acquired, classification is happening, anomalies are detected, and
control commands are sent out to actuators on the spot. There is no need to

call a cloud or remote system every time a decision needs to be made.

BLE mesh

The low-energy mesh network technology used in this book is Bluetooth
Low Energy Mesh Network (BLE Mesh). There are a couple of other
excellent options, like ZigBee or Thread. Feel free to explore them all and
select the one you feel most comfortable with for your projects.

The BLE mesh network employs a Publish-Subscribe (Pub/Sub) model to
facilitate communication between devices within the network. This model is
a fundamental part of BLE mesh's design, enabling efficient, scalable, and
flexible message distribution without requiring direct device-to-device
connections.

In the Pub/Sub model, network devices are configured as publishers,
subscribers, or both. Publishers send messages to a specific topic without
knowing which devices will receive them. Subscribers listen for messages
published on topics they are interested in. In the context of BLE Mesh, a
topic 1s often represented by a "group address" that subscribers can register
to receive messages from.

When a device (publisher) has data to share, such as a sensor reading or a
status update, it publishes this information on a predetermined topic. All
devices (subscribers) that have subscribed to that topic automatically receive
the published message. This mechanism allows for the decoupling of devices
within the network, meaning that devices do not need to maintain
information about other devices' network addresses. Instead, they
communicate based on shared interests (topics), leading to a highly flexible
and dynamically reconfigurable system.

The Pub/Sub model in BLE mesh is particularly advantageous for IoT and
smart environments, where devices may frequently join or leave the
network, and the system's configuration can change over time. It simplifies
sending commands or disseminating information across a wide range of
devices, from lighting systems and temperature sensors to alarms and
automated machinery, enabling complex interactions and behaviors to be
programmed with relative ease.

Each use case in this book contains a table specifying each device's publish
and subscription configurations using the BLE mesh network. The source
code includes a ReadMe document with detailed instructions on configuring

the node.

Step 9: Power management

Power management in TinyML implementations is a critical aspect that
ensures ML models can operate effectively on low-power, resource-
constrained devices like microcontrollers and embedded systems. Given that
TinyML applications are often deployed in battery-powered or energy-
harvesting environments, such as IoT devices, wearables, and remote
sensors, optimizing power consumption is essential to extend the operational
lifetime of these devices and maintain functionality.

Power management in TinyML involves several strategies and techniques:

» Efficient model design: Designing lightweight ML models requiring
less computation and memory. Techniques like model pruning,
quantization, and knowledge distillation help reduce the model's
complexity without significantly impacting its accuracy.

* Duty cycling: Implementing duty cycling by alternating between active
and sleep modes is a common strategy. The device actively performs
computations, such as data collection, inference, and communication,
only during the active phase and enters a low-power sleep mode for the
rest of the time.

* Energy-aware algorithms: Developing algorithms that are aware of
the energy consumption and adapt their behavior based on the available
power. For example, an algorithm might reduce the frequency of
inferences or data transmissions under low battery conditions.

* Hardware optimization: Leveraging hardware features that consume
little power, such as specialized low-power processing units for ML
tasks, efficient sensor management, and energy-efficient communication
protocols.

* Selective sensing and processing: Implementing strategies to
selectively collect and process data based on predefined criteria or the
detection of significant events, thus avoiding unnecessary computations
and data transmissions.

* Adaptive computing: Dynamically adjusting the computational
workload based on the task's complexity and the device's current energy

state. This may involve choosing between different models or adjusting
the model parameters to balance power consumption and performance.

Effective power management in TinyML implementations requires a holistic
approach. This approach combines hardware and software optimizations to
minimize energy consumption while delivering computational and inference
capabilities. By doing so, TinyML applications can achieve long-term,
autonomous operation, unlocking the potential for intelligent, connected
devices everywhere, even in the most power-constrained environments.

Step 10: Materials and costs

In a TinyML implementation, a bill of materials (BOM) is a detailed
inventory that lists all the components required to build and deploy a
TinyML device or system. The BOM plays a crucial role in outlining the
specific hardware and possibly software components needed to support ML
functionalities for each one of the devices.

The BOM for a TinyML implementation typically includes microcontrollers,
sensors, actuators, power sources (like batteries or solar panels), connectivity
modules (such as Bluetooth or WiFi components for data transmission), and
any additional components required for the device's physical assembly and
operation. It may also detail specific component versions or models to
ensure compatibility and performance.

Furthermore, the TinyML BOM can extend beyond hardware to include
software licenses or services necessary for the device's operation,
development tools, and ML model deployment. This comprehensive
document is instrumental for project planning, cost estimation, procurement,
and assembly processes, ensuring that all parts are accurately specified and
accounted for. It facilitates the efficient and effective realization of TinyML
projects by providing a clear and organized overview of all necessary
materials and resources.

Conclusion

This chapter introduced the concept of TinyML and its significance as a
subset of Al It provided an explanation of applied TinyML and detailed the
steps involved in developing an application. These steps include defining the

problem, developing the concept, acquiring data, selecting features,
designing the model, integrating it with a real application, selecting
appropriate hardware, determining the need of network communication,
understanding power requirements, and calculating the materials and costs
associated with the project.

In the upcoming chapters, the reader will learn how to classify sounds,
images, and movement; combine sensors to create new readings; perform
regression using neural networks; and detect anomalies, all using TinyML.

CHAPTER 2
Sound Classification

Introduction

In this chapter, you will learn how to categorize and identify different types of
sounds or audio signals automatically. Your system will be able to distinguish
between various kinds of noise, music genres, human speech, animal sounds,
environmental sounds, and more. Sound classification occurs in three main
stages: acquisition, subtracting features from the soundwave, and running the
soundwave features against a classification model. The output of this process is
an array of numbers that indicates the probability of the sound being similar to
one of the classes the model has been trained with.

However, before we can run inferences against real-time microphone input, we
need to acquire data to train the model, select the best way to extract features
from the type of sound we have captured, select the type and architecture of the
model we will use to classify the data, and lastly, train the model iteratively
until we get the performance and accuracy that we require.

Structure

This chapter covers the following topics:
* Acquiring data to train the model
» Balanced, diverse, and sufficient datasets
* Model

» Use case: Spectrogram based processing

* Use case: MEF based processing
» Use case: MFCC based processing

Objectives

By the end of this chapter, the reader will know how to acquire a balanced and
sufficient data set for audio classification. The reader will also learn how to
extract features from a raw soundwave. Additionally, the chapter discusses the
architecture of a Neural Network specialized in sound classification. The reader
will become familiar with all the steps and moving parts required to deploy a
TinyML-based sound classification system in a real environment.

Acquiring data to train the model

Before capturing your data, you need to decide what your objectives are. In
specific, you need to decide what are the different classes you want your model
to recognize. Classification belongs to a category of machine learning models
called supervised learning. Supervised learning implies that your model can
only recognize known classes. For example, you cannot ask your model to
recognize the sound of an animal that you do not have sound samples of.

There are many ways to obtain data to train your model. You can either use
existing datasets or record your own. The former is more convenient if you
know where to look for it; the internet is an excellent source of sound. Look for
video platforms where people upload videos of everything imaginable. The
main issue with using pre-recorded sounds you did not produce is that they
might not reflect real sounds and noise situations your system will have to
interact with. In other words, your model will work great in a controlled
environment but fail in a real installation.

Since this book is about applied TinyML, and our objective is to create systems
that run in real conditions (not only in controlled environments), it is
recommended to capture your data in the location where you are going to
install the system. Its advantages are the following: The white noise of the
space is included in the training, the location of the microphones near the sound
source could introduce unexpected noise (e.g. a refrigerator humming or the
background sound of a crowded street), the soundwave might include atypical
patterns, sounds or delays that you would not get from a studio produced
sample that you downloaded from the internet.

There are great tools out there that make data acquisition a breeze. For this
book, we used the Edge Impulse data acquisition client, which we can run from
any smartphone. It captures, labels, and uploads all the samples for us. Refer to
the following figure:

RAW DATA

g.4biugiab.s1

Figure 2.1: Edge Impulse data visualization tool

Balanced, diverse, and sufficient datasets

The main objective of a training dataset is to help the model generalize.
Generalization is the characteristic that allows the model to reliably and
accurately infer a class from unseen data.

A good training data set is balanced, diverse, and sufficient. Balanced means
that all the classes are equally represented. Let us say you are trying to classify
the sounds of a dog and a cat. If you train the model mostly with dog sounds,
the model will know more nuances about the sounds dogs make. The model
will indeed declare the sound belongs to a cat when it is obvious. When there is
a sound that could be either one of them, it will lean towards declaring the
sound as coming from a dog, as it might know that dogs make a similar sound
and will not know that cats do it as well. A diverse dataset shows many
instances of the same class that are different but maintain characteristics that
define them as part of the same group. Using the dog and cat example, a
diverse data set will include sound samples from many types of dogs and cats.
A sufficient data set is large enough to allow the model to reach generalization.
The rule of thumb is that more data is better. However, there 1s an inflection
point of diminishing returns where more data would not make more difference.

If you find yourself in that situation and still do not have the level of accuracy
that you need after adding a substantial amount of data, you should reconsider
your approach (maybe placing the microphones in a different place).

Extracting features from an acoustic signal

You can think of the features of an acoustic signal as a series of numbers that
characterize a specific sound and allow the model to remember and find
patterns in it. When a system runs in a real scenario, the microcontroller
transforms the soundwave into numbers in real-time. Those numbers are fed
into the model. The model will return a score of how similar the sound is to
other sounds it was trained with. If the score is high enough, we can assume
that the incoming sound is similar to the sound the model trained with.

Processing

The process of turning a soundwave into features consists of a series of
sequential processing steps. The more specialized the features we are trying to
extract, the more steps are required. There are 3 main sets of feature sets used
in sound classification: Spectrogram, Mel Filter Extraction (MFE), and Mel
Filter Cepstral Coefficients (MFCC). The steps used to obtain each one of
the feature sets is shown in the following figure:

Processing
con‘&é?sion Preemphasis Windowing DFT F”tg]-%lank log() IDFT Eynamic Normalization

H Spectrogram '

()

Figure 2.2: Processing steps

* Analog to digital conversion: This process is the act of turning an analog
soundwave into a digital signal. The way it is done is that once every
sixteen-thousandths of a second (that is, 16KHz), the microcontroller will
read the voltage in one of its pins (the one connected to the microphone).
Then, it will translate that voltage into a digital number stored in a memory

register. If the register is 8 bits, the soundwave can only have 256 levels,
zero being no sound and 256 being the loudest level. 16 bits is better, as
every reading can be expressed in 65,536 levels.

You may wonder why it is important to have more levels to express a
soundwave. Think about a low-resolution image that you have downloaded
from the internet. It is frustrating that you cannot see much detail even if
you zoom in. It works the same with sound. If you capture a soundwave in
low resolution, your model would not be able to recognize many details in
your sound and might struggle to differentiate between two similar sounds.
Having said this, remember we are in the universe of TinyML, where
resources are incredibly constrained. Your use case might be fine with 8-bit
soundwaves.

Analog

%

Do t'n'n:
ADC

Digital F T
X T

“'ﬁ_é}_dé_.b" B

time

Figure 2.3: Analog to digital conversion

* Pre-emphasis: Due to the nature of sound waves, the lower tones tend to
carry more energy, while the higher tones tend to carry less energy. Both
are equally important. To avoid the model being biased towards tones with
higher energy levels (that it can listen to more clearly), we modify the high
tones to have a similar amount of energy. That is why this process is called
emphasis. We emphasize the higher tones.

* Windowing: We have about 16 thousand samples per second. We group
400 of those readings to create a window of 25 milliseconds and then store
them for further processing. Then, we advance 10 ms and perform the
same operation again. This will give us about 100 windows per second of

soundwave. Refer to the following figure:

Figure 2.4: Windowing

* Discrete Fourier Transform: It transforms the time-based signal into the
frequency distribution of the given window. The result of The Discrete
Fourier Transform (DFT) provides a unique footprint of the sound that
we are analyzing. The output of a DFT is also known as a spectrogram. If
you align multiple spectrograms across time on the X-axis and align the
frequencies on the Y-axis, you get a graph that represents the soundwave
sample. If you are classifying sounds with a fixed pitch or a sound that has
continuous frequencies (e.g. the sound of a machine, a musical instrument,
or ambient noise), a spectrogram is enough to train the model.

Note: In this case, the features represent the magnitude of the sound at different frequencies ¢
time.

However, if you want to make a classification that emulates human
perception (like animal sounds or voices) you might want to focus on
eliminating data from your signal that is not relevant to the human ear. The
following figure shows a sample of a spectrogram:

8000
7429
6858
62B6
5715
™ 5143
= 4572
E 4000
o 3429
2858
2286
1715
1143
572

0.0 011 022 034 045 D056 067 0.79 0.9 1.01
Time [sec]

Figure 2.5: Spectrogram (source: Edge Impulse)

* Mel filter bank: It filters out information that human perception does not
consider important. It does so by comparing the signal with something
called the Mel scale. The Mel scale specifies what frequencies are ignored
by the human ear at different levels. If you align all the different Mel
scales one after the other, you create a bank of scales as shown in the
following figure:

Power spectrum

RENRNRRENRNANEND |. i K

Frequency bins

A
%
\

Triangular band-pass filters

Ff\;\\fh\’ﬁ/r\/\\ /\\/\\

(
/ "x \ "
ﬁ"x/\ V V V

12 M
Mel-scale power spectrum

Figure 2.6: Mel filter bank

This step filters out all the data that the human ear does not consider
relevant, according to the Mel filter bank (MFB). The output of this step
is like a spectrogram but oriented to human perception. It is incredibly
useful to train models that focus on sounds that the human perception
considers relevant. Among all the sounds that are of interest to humans,
spoken word is the most important. As you might imagine, there is a way
to obtain features that specialize exclusively in human language. Figure

2.7 shows a spectrogram after filtering data not relevant to human
language:

7482 T =

6536 - g e g iy & SRS gl

4959 1= i - ol gl L T LY
§ 3725 A ? ;."". - 3 - _l-"' 1)

E 2761 " I -- - - o -
= . | . =
3 2007 o

.y . .- " *.- | r) I .
1417 'h..-ug ﬂ.ﬁ.p Farrh “gr .S ae -ﬂ"--"";'.ﬁ.

c
3 |
g 956 o =
[’

595 B = y A

313
92
45

0.0 0.11 0.22 0.34 0.45 0.56 0.67 0.79 0.9 1.01
Time [sec]

Figure 2.7: Spectrogram after the Mel filter bank (source: Edge Impulse)

Log function: It removes the logarithmic nature of the MFB output that
humans are less sensitive to.

Cepstrum inverse discrete fourier transformation (IDFT): It brings
back the signal to the time domain with the signals already decomposed.
By having the signals already separated, we can cherry-pick the signals we
want to ignore (For example, signals that show pitch in a voice are
irrelevant as we want to create a general model that disregards the pitch of
the person) and select those that define voice recognition features. This
step extracts 12 cepstral features and reconstructs the signal with them.
The following figure shows a sample of the reconstructed signal:

f(x)

flw)

i i]
L]

M/r 2M/r M

Figure 2.8: Decomposed signals after inverse discrete fourier transformation

Dynamic features: This step focuses on obtaining information about
context and pronunciation. It is done by adding a 13th feature to the
cepstral features that define how much energy there is in the frame. Once
we have the 13 features, we want to see how they change in time. We do
this by differentiating the 13 features against time (first derivative). This
helps us identify closures, gaps, and silences in the spoken language
soundwave being analyzed. While the first derivative shows the rate of
change of the features, the second derivative shows the rate of change of
the change in the features. In an abstract way, this works as a mechanism
to not only know how intonation changes (whether it is going up, down, or
flat) but also how fast it changes. Intonation is a fundamental characteristic

of any language.
The first and second derivatives can be explained as follows:

The signal carrying a spoken word takes on different shapes depending on
the sound it represents. The shape of silence differs from that of a vowel,
and so on. Mathematically, a model identifies the shape of a curve by
analyzing changes in its slope over time. To reveal a curve’s slope, we use
its first derivative, a concept familiar from high school calculus. By
deriving the 13 features and feeding them into the model, we effectively
communicate the shape of the curve. The 13 derivatives are added to the
features that we will send to the model.

Since derivatives express the rate of change, this second derivative no
longer describes the shape of the curve itself but rather how the shape
evolves over time. In the context of speech, if a word is always pronounced
exactly the same way, its shape remains consistent. However, when the
word is pronounced with variation, such as when asking a question, where
pitch rises at the end, the shape remains similar but changes dynamically.
The second derivative captures these nuances, providing insights into tone
and speed of pronunciation, which can help the model detect sentiment or
intention. The 13 second derivatives are added to the features that we will
send to the model.

Between the 13 cepstral features and the 26 dynamic features, we have 39
features. This group of 39 features is known as MFCC. The following
figure shows the 13 cepstral features in time:

N | H
| . N
W ' .I
L - o I.
” S o

211 0.3 034 045 -1 088 oTe a9
Time [sec)

Figure 2.9: Cepstral features in time (source: Edge Impulse)

e Cepstral mean and variance normalization: This final step, as its name

indicates, normalizes the characteristics of the sample to account for
variations during the recording.

Selecting the right processing block for the job

Processing a soundwave delivers three different feature sets that can be fed into
a deep Neural Network. The first and the most basic one, the spectrogram, is
the simplest yet diverse of them all as it expresses sound as is. It retains the
most information from the original sound wave.

Unless you are trying to classify a voice or a sound as perceived by the
human ear, use the spectrogram. In the second place, we have the audio MFE.
As described in the last section, this group of features is a human perception-
oriented spectrogram. All the information in the soundwave that would be
ignored by the human ear has been eliminated, and anything left has been
emphasized. Use the audio MFE if you want the classifier to differentiate
sounds like you would. The third set of features is the MFCC, which
specializes in human language. Its features express not only an analysis of the
word in terms of frequencies but also their context across different frames in
time, intonation, word separation, silences, and pronunciation. Use the MFCC
for any language-related classification (like wake words). Figure 2.10 shows
the decision process to select the right processing block:

How to p \, .
select the »(" Human *® 5[Audio
Processing Voice? (MFCC)
block
no
v
5 d A
based on Y Audio
human > (MFE)
perception?
no
L 4
" Sounds ™
’ witha ™ yes
continuous » Spectrogram
frequency?

Figure 2.10: Selection of the process block

Model

The architecture of a machine learning model for sound classification typically
uses convolutional layers as its core building blocks. A model can have many
layers, each one with different filters, activations, and functions. Arzo
Mahmood et al. in their 2021 paper called Speech Recognition based on
Convolutional Neural Networks and MFCC Algorithm, proposed a simple yet
powerful architecture with two convolutional layers, multiple dropouts, and one
dense layer as shown in Figure 2.11. This architecture i1s widely used in
TinyML projects that need to classify sound because of its simplicity, accuracy,
and lightweight profile:

[
()
(o
D=
&
if & 7
&
RELU Dropout RELU Dropout
o *—9 0 0 99— — @ L Lo}
Reshape ConviD MaxPool ConviD MaxPool Flatten Dense Softmax

Figure 2.11: Architecture of a convolution neural network specialized in sound classification

The first layer takes the output from the processing stage and reshapes it from
its original size to fit the Convolutional Neural Network input (shown in Figure
2.12). Assuming we are using a 128 x 50 spectrogram where every frame is
0.02 seconds with a stride of 0.01 seconds. 128 represents the number of
frequency bands returned by the Fourier transform. 50 represents the number of
frames in this sample.

Spectrogram

6,435

128x50=6,436

99

65

Reshape

Figure 2.12: Reshaping the spectrogram to fit the CNN input layer
If we use an MFE, its dimensions should be 40x99. The 40 represents the

number of filters in the filter bank. The 99 represents the number of frames in
the sample. Figure 2.13 shows a representation of the reshape layer:

MFE

Y Jr"“""l".

rﬂv!”
A W

'.ig.!r.r"l |I"|'r;;} —
vy OV

= 3,960

99

40x99=3,960

29

40

Reshape

Figure 2.13: Reshaping the MFE features to fit the CNN input layer

If we use an MFCC, its dimensions are 13x50. The 13 represents the thirteen
cepstral features. The 50 represents the number of frames in the sample as

shown in Figure 2.14:

MFCC

1IN 50
ﬂ 650 13

Reshape

13x50=650

Figure 2.14: Reshaping the MFCC features to fit the CNN input layer
Now that we have all the processing stage features in the right shape, we run a
1D convolution with a kernel of 3 and step of 1 through the eight filters to
discover different spatial characteristics of the input.

Note: This technique is borrowed from the CNNs convolutional layers from image classification.
In them, the filters accentuate (or filter out) characteristics like horizontal lines, shapes, etc.

Spectrograms and MFCCs are visual representations of sounds. In this case, the
shapes represent frequencies, silences, intonation, volume, etc. In other words,
by turning sounds into images, we can use the image classification toolbox
effectively to classify sounds as well. After the convolution, we run the output
through an activation layer called Rectified linear unit (ReLLU) that turns any
negative number to zero. Figure 2.15 shows a representation of the first
convolutional layer:

Convolution 10 Relu
Activation

Figure 2.15: First convolution layer

After that, we run the data through a max pooling layer with a stride of 2. This
layer reduces the size of the array by selecting its most representative values.
Immediately after, we run the data through a dropout function (0.25). What the
dropout does is randomly remove features to avoid overfitting. Think about it
as a way to force the network to look for alternatives on how to recognize a
pattern. By doing so, you make the network more general and reliable. Figure
2.16 shows a representation of the MaxPool and Dropout layers:

7

— (] s 0.25) —

MaxFool Dropout

Figure 2.16: MaxPool and Dropout layers

What happens after the dropout is a duplicate of the last four steps: We run the
convolution again (now with 16 filters), the ReLU, MaxPool, and the dropout
layer. In the end, we flatten the 3D matrix to obtain a vector of 400 features.
Figure 2.17 shows a representation of the Second Convolution, MaxPool and
Dropout layers:

a2 16
16 16 16
. SR 1 > (0.25) " —
50 50 25 25
1 1 1
1 1
1

Relu
Activation MaxPool

Convolution 1D
Dropout Flatten

Figure 2.17: Second Convolution, MaxPool and Dropout layers

We connect each one of the 400 features in parallel to the input of a dense
layer. This layer is used to iteratively create a function that returns a desired
output giving an input. We create this function by running data through it
several times, analyzing how far the result is from the desired output,
modifying its coefficients to reduce the error, and trying repeatedly until the

error is acceptable. With the help of the Softmax function, we turn the output of
the dense layer into a probability distribution. Figure 2.18 shows a
representation of the Dense network and Softmax function:

400

Dense SoftMax

Figure 2.18: Dense network and Softmax function
This output distribution indicates the probability of an input belonging to a
known class. The classes represent each one of the labels in the dataset that we
used to train the model. If the probability is high enough (>90%), you can
assume the model has successfully classified the sound as belonging to that
class.

Training the model

The training process goes as follows: you have a set of data samples (training
set) that you pass through a processing block to extract its features. Those
features are fed to a model; the model improves by learning from its errors and
modifying its weights to return a desired output giving a labeled input. All the
training samples run through the model a predetermined number of times
(epochs, also known as training cycles). In the end, you will have the first
version of your trained model. Figure 2.19 shows the iterative training process:

Training Cycles

Backpropagation

m :: El

Processing Modal Ulassification Trained
being results Model
trained

Training Set

Figure 2.19: Training process

To know the performance of your new classification model, you run it through
a set of samples that you separated from the training set (validation set). The
validation set helps you get an unbiased evaluation and fine-tune the model.
You can analyze the performance using a confusion matrix. The confusion
matrix helps you calculate the model's precision, recall, specificity, and
accuracy. Figure 2.20 shows the validation dataset being processed and run
through the trained model to return results that are validated with the help of
the confusion matrix and accuracy metrics.

W =)

0 Model

: : Performance
o . Trained Classification A)

Validation Set Processing Madel results

.. Confusion
Matrix
L1

Figure 2.20: Validation process

Precision and recall can be explained with a simple example. Assume you must
classify dogs from cats, and you are asked to be very precise. To do that, you
have to be incredibly conservative and only choose those images where there is
no doubt a dog is in the picture. By doing so, you might leave some dogs out of
your selection because they look like cats. In this case, your precision is high,
but your recall is very low. On the other hand, if you are asked to have a high
recall, you will prioritize including every single dog at the expense of maybe
including some cats in the results. Only the project's goals can determine
whether you need higher precision or higher recall. Using another example,
assume we need to identify the sound of a water leak to avoid costly damages.
Our model must have very high recall at the expense of creating some false
water leak alarms (false positives). On the other hand, let us say you are
building a word-activated switch. It would aggravate the user to give a voice
command and have the system do something else. In that instance, the model
needs to prioritize precision over recall. Usually, the sweet spot is not on the
extremes but somewhere in between.

You can determine precision, recall, and accuracy quantitatively with a results
table called the confusion matrix. The confusion matrix is a key evaluation tool
in classification tasks that provides a detailed breakdown of a model’s
performance by showing the number of correct and incorrect predictions across

different classes. Refer to the following figure:

Confusion Matrix

" 0 15
@ 0 12
- D ¢
- Ve
S 0 3
-6
" 0

g =D

A B c (W] E
Predicliod Laba

Figure 2.21: Example of confusion matrix

A confusion matrix works as follows: Columns represent predicted classes, and
rows represent actual classes. Every cell in the table, contains a number. That
number indicates how many times the model predicted a sample as belonging
to the class represented by the column when it actually belonged to the class
represented by the row. When the column and row are the same, the prediction
is correct, as the predicted class 1s the same as the actual class; this is a true
positive (TP). When the model classifies a sample as belonging to a class but is
incorrect, we have a false positive (FP). When the model fails to classify a
sample correctly, we have a false negative (FN) and when a model declares
that a sample does not belong to a class correctly, we have a true negative
(TN).

You can manually calculate your model's accuracy, precision, sensitivity (also
known as recall), negative predictive value, and specificity but it is better to
automate that part. In the cases used in this book, we used the Edge Impulse
classifier tool for that purpose.

How do you know your model is good enough if you only train it once? Maybe
your accuracy is 90%, and you think it is good enough, but you would not
know if you did not try different approaches. Training your model more than
once, adjusting parameters, labels, processing blocks, layers, etc. in every

iteration is the best way to converge to the optimal model. Refer to the
following figure:

Vi

Fol
to 1

V2
V3

Madel

] 0 Perfarmance
— " Trained Classification A) [Validation Set)
Validation Set Processing Madel results

Figure 2.22: Iterative training process

lowing is a list of things you might want to check in every training iteration
mprove accuracy:

Check the feature clustering graph. Are the clusters clearly defined? If
they are not, then why? Play samples of both classes and try to understand
why they are similar. You could place the microphone differently or isolate
the external sound to achieve better results.

Is your data diverse enough? Check that your data has different
background noises for the model to learn to differentiate them from the
common denominator, which is the sound you want to classify. Are you
generating the sound from different sources? You might be overfitting the
model if you do not.

Are you using a few or too many training cycles? Too many training
cycles would not kill your model, but it might take a significant amount of
time that you could use to try new things. Too few training cycles might
not let your model converge to a stable state. Pay attention to the console's
output while you are training your model. You might be able to converge
to the same result in a fraction of the time.

Do you need to reduce your recall? You might be getting a lot of correct
classifications at the expense of a lot of false positives. You should create a
new class to focus on the similar sound you want to differentiate. By
providing more data about the misclassified sound, you are helping the
model understand the subtle differences in classifying it differently. You
can always group many classes as other in your software after the
classification.

Is using data augmentation changing your results radically? If that is the
case, your original data set might not be as diverse as you thought. Do not

use data augmentation as a replacement to capture original data from
where your system will run (assuming it is possible). Data augmentation
might not be able to emulate the actual conditions your TinyML system
might have to run under.

« Are you using the right data processing block? MFCCs are not better than
spectrograms or MFEs just because they are more complex. Learn the
differences and try them all.

e Is your data balanced? Pay attention to the columns in your confusion
matrix that are not showing good results. Why is that? Figure out if your
model gets enough quality data for the classes that are not doing well.

After running the training process multiple times, adjusting parameters, trying
different process blocks, adjusting labels, troubleshooting poor classification
results, improving the data set, etc., you will have more information to make an
educated decision about which one of the trained models to pick based on your
project needs. You should not just select the model with the highest accuracy.
Pay attention to its precision and sensitivity (recall) metrics also; they should
be aligned with the goals of the specific project you are working on. As a
general rule, if the risk of misclassification is low, use the one with higher
recall. If the risk of misclassification is high, use the one with higher precision.

Once you are satisfied with the accuracy, precision and sensitivity, we run the
selected model through the testing dataset, which will give us the model's error
rate after we have selected the final model. The difference between validation
and testing is that because we used the validation set to select the final model,
the model itself is biased by the validation set itself. The Test set offers a clean
slate with never-seen data for the model to reveal its actual accuracy (given the
existing dataset), as shown in the following figure:

i Confusion
Matrix
g (Testing Set)

TR Tm % TIRLEERnnn II1IIIHIIIIIIIIIIllIlIIiIlIll’ _.

Medel
Testing Set Pracessing Trained Classification L % T;;:?ir? agrﬁ
Model results ?

Figure 2.23: Testing process
Finally, we load the model to the microcontroller and test it in a real-life

scenario. Just then, you will be able to know the true accuracy of the model. If
you are not satisfied with the results, identify areas of improvement, implement
changes, re-train the model, and test again. Refer to the following figure:

Live

Microphone
Maodel
. {)/0 Performance
&J | LIVE
Processing Trained Classification
Model results

Figure 2.24: Live process

Use case: Spectrogram based processing

A musical tone is a sound characterized by a regular, repeating waveform with
a stable pitch, amplitude, and timbre. It is typically continuous, periodic, and
relatively simple compared to complex sounds or noise. This kind of signal is
well-suited for spectrogram-based processing.

Classifying instrument notes

Problem definition: The stage designer of a music band has requested your
help to build a series of stage props that change color depending on the note
played by a specific instrument.

Solution: The proposed solution is a pitch classifier trained to recognize seven
different notes of a grand piano (A3, B3, C3, D3, E3, F3, G3). The segment of
the concert where the instrument will control the light props is a full song. The
song is a sequence of low-tempo notes that play one after the other. The
microphone will be placed near the piano before the concert starts. Sound
classification will take place in the device while the music is being performed.
Once a note has been recognized, the block will translate the note to a pre-
defined hexadecimal color and will publish it as a message to a dedicated
network channel, as shown in the following figure:

RGE Light 1

Microphone + ML

Musical Instrument

RGE Light 3

Figure 2.25: Solution concept showing data capture and control blocks

Each one of the blocks controlling the RGB lights blocks subscribed to the
channel will receive the color and proceed to generate the signal to control each
one of the independently addressable RGB lights in the NeoPixel strip
connected to it.

While the light effect does not need to be extremely precise (a music note can
be lost here and there), the effect of lights following the music is necessary. The
designer would like changes to take no less than a second. This rate of change
allows the blocks to communicate reliably with a low-energy wireless mesh
network.

Data acquisition

In order to capture the training data set, each note in the instrument will be
played under multiple environmental circumstances typical of a live
performance venue. Training data will have the following elements: People and
other instruments playing in the background and a silent room. The idea is to

generalize the conditions under which the instrument is played while creating a
model that will learn to recognize the specific sounds of the instrument and
ignore everything else, as shown in the following figure:

G3 Other
12.5% 12.5%
F3 A3 —
12.5% 12,56 Variations
(for each label)
With:
Ez’% 353% People Talking 120s
) ’ Background music 120s
Instruments playing 120s
White Noise 120s
D3 C3 <Nothing Added> 120s
12.5% 12.5%
600 s
70% (600 x 15 samples)
Train Test Validate
13.360 x 15 samples) (960 x 15 samples) (480 x 15 samples)
Figure 2.26: Data acquisition facts (classifying notes)
Processing

We use the spectrogram processing block to obtain the features from the
musical instrument soundwave since it is a constant frequency sound. Notice
how the different pitches are clustered, some closer than others. In Figure 2.27,
the Other label is very distant from the musical instrument pitch clusters:

B:B3 o ?
o) 5{0
D:D3 D M %B
E:E3 A A EFP
F:F2
G:G3 A’f
X: OTHER

€

g Eg
DEEE ~EE
eEg E

Figure 2.27: Cluster diagram of training set showing different pitches

Model

We are using the classification CNN, which specializes in sounds, as explained
at the beginning of this chapter (Figure 2.11). It has two 1D convolution layers,
two dropouts of 0.25 each, and one dense layer activated at the output by a
Softmax function. To train this model with the 4,800 samples we acquired from
the musical instrument, we ran 100 epochs at a learning rate of 0.005 with a
batch size of 32. In earlier iterations of the training of this model, we used the
MFE processor with poor results. Once we switched to spectrogram, the
accuracy of the model went up to 96%, as shown in the following figure:

PROCESSING LEARNING RUN
70% o] 100
Training samples [Spectrogram) Teaining Cycles
8 absis m e TRAIN
o Claysirltla.lion CHN
10% 128 100%
Validation samples Features Accuracy
8 Labels [Spectrogram) = VALIDATE
)
} m =
S o Classification CNN
4,800
SMpes
0 128
8 Tt"at?n?w/réglu Features a5, 89%
Labels & Labels (Spectrogram) "_‘“U”('r‘ TEST
—_— i Ia:s;ﬂcmlon(NN
Live] 81.3%
. Microphone (Spectrogram) Accuracy LIVE

Classification CHN

Figure 2.28: Training, validation, testing and live deployment statistics (classifying notes)

Edge Impulse estimated the Inference time for this model at 0.03 seconds. If we
add the processing time (0.1 sec) plus additional firmware overhead, we will
get to approximately 0.15 seconds to run one inference. That means we can run
up to 6 inferences per second. This is important as the note needs to be
approximately 1/6 of a second long to be detected. Additionally, it would be
beneficial to the system’s stability to require a series of similar consecutive
classifications before declaring the formal identification of a sound pitch.

It is important to test all assumptions and real performance in real conditions.
Once you test this model with a real instrument, you will be able to adjust the
model and its parameters.

System implementation

The solution consists of two types of blocks. The first type (Block 1) is in
charge of acquiring the sound and classifying it. The second type (Blocks 1,2
and 3) is in charge of controlling the lights. Refer to the following figure:

Y ¥ Y

BLE Mesh

RGE Lights REA Lighls RGE Lights

Figure 2.29: Connection diagram (Classifying notes)

Block 1 (acquisition block) uses two microcontrollers: The first is an Arduino
Nano 33 BLE to capture the data from the microphone listening to the piano,
process the data, and run the sound classification TinyML model. The second is
an NRF52840 Dongle that receives color-changing commands from the
Arduino and publishes them to a predetermined channel in the mesh network
for other nodes to use.

Blocks 2, 3, and 4 (actuator blocks) are identical and use two microcontrollers
each. The first is an NRF52840 Dongle that receives the messages from block 1
via the channel it is subscribed to in the mesh network. Once it receives and
opens the message, it sends the color-changing command to the second
microcontroller, the Arduino 33 BLE. The Arduino 33 BLE is specifically used
to control the NeoPixel strip, as the timing needed is extremely precise. The
Arduino communicates with the NeoPixels via its 1-wire interface (plus
power).

Blocks 2, 3, and 4 require two power sources: one to feed the microcontrollers
and the other to feed the NeoPixels. Given the power requirements of the bright
LEDs in the NeoPixel lights, blocks 2, 3, and 4 need to be connected to a
permanent power source. A 120vAC to SVDC converter (not shown) is needed.

Source code

Refer to the following table:

c:tinyml 2 1 Code location: Arduino
Nano 33 BLE @ Block 1

Saund Classification Model Capture the sound, process it,

Pre- ! Past- Local i
PIOCEsS | procass Main an.d .run the TmyML model
ing ing Seript | with it.

Pseudocode:

1. The microphone captures a
soundwave from the
musical instrument. Data
is sent to the processing
functions.

2. In the processing block, the
soundwave is sliced in
small windows,
transformed to
frequencies, converted to a
spectrogram, and sent to
the TinyML model to run.

3. The TinyML model runs
the inference with the
provided data and returns
an array of results. Results
are sent to the post
processing functions.

4., The post processing
functions resample the
TinyML model output,
remove outliers, and
transform data to a color-

Ay -

P>

changing command.
Output is sent to the main
script.

5. The main script prepares a
message (A) with the
color-changing command
and sends it out to the
network microcontroller
along with the channel it
needs to publish it to.

Table 2.1 : Application logic (classifying notes)

Network

The blocks are connected via a wireless BLE mesh network which works with
Publisher/Subscriber communication, a messaging pattern where senders
(publishers) of messages do not directly send messages to specific receivers
(subscribers). Instead, the messages are categorized into channels, and
subscribers express interest in one or more channels. Subscribers then receive
messages related to the channels they have subscribed to without needing to

know the publishers of those messages. This decouples the producers of
information from the consumers, allowing for greater scalability and flexibility.

The music venue is an open space that guarantees clear communication
between devices. The messages published by Block 1 are not sound samples
but color commands (less than 2 bytes of data). Blocks 2, 3, and 4 are
subscribed to the same channel where Block 1 publishes the commands. Refer
to the following table:

Block(s) Action Channel
1 Publishes to CHI1
2,3,and 4 Subscribes to CH1

Table 2.2: Mesh network configuration (Classifying notes)

This architecture allows the set designer to add other components, like
MidiPlayers, to publish signals to the channels that the light controllers are
listening to so that they can also control the lights. Additionally, the
architecture allows the addition of more lights to the show, if necessary, without
adding overhead to the network or existing blocks.

Power analysis

Each type of Block has different power requirements. Block 1 runs real-time
Neural Network inference and must communicate to the light controllers
wirelessly. Block 2 must receive wireless messages and power the lights.

Here 1s block 1:

Power . Latent Active
Device : Notes
source consumption consumption
Arduino 0.032A <1A
P1 Nano 33
BLE Sense @sv @sv
NRF52 0.04mA 3mA Active when
P1 publishing messages
Dongle @5v @5v as a client.

Table 2.3: power profile, Block 1

We need at least a 1A power source for Block 1 @5V. It cannot be battery-
operated. Must connect to a permanent source of power (wall outlet).

Blocks 2, 3, and 4 are subscribed to the same channel where Block 1 publishes

the commands:

Power . Latent Active
Device Notes
source consumption consumption
P NRF52 0.04mA 0.3mA Active when receiving
Dongle @5v @5v messages as a server.
Arduino 0.034mA <1A Manages timing for
P2 Nano 33 @5V @5V NeoPixels
BLE
Neopixels 0.001mA 1A Each NeoPixel draws
P3 60mA at full brightness.
60x @5v @5V 20mA is typical.

Table 2.4: Power profile, Blocks 2,3 and 4

We need a 2A power source for Blocks 2,3,4 (one for each). Given the power
requirements of bright neopixels, this block must connect to a permanent
source of power (wall outlet).

Bill of materials

The bill of materials for this project considers off-the-shelf components with
general availability. Refer to the following table:

Description QTY Unit cost Total
Arduino Nano 33 BLE Sense 1 $45 $45
Arduino Nano 33 BLE 3 $30 $90
NRF52840 Dongle 4 $12 $48
Neopixel Strip (60x) 3 $99 $297
Power Source 1A @5v 2 $10 $20

Table 2.5: Bill of materials (classifying notes)
The approximate cost of materials is $500.

Use case: MEF based processing

This use case demonstrates an application of the MEF based processing block
that disregards any characteristic from the signal that is not significant to
human voice perception.

Detecting noisy people in a business location

Problem definition: The owner of a popular restaurant is concerned that
patrons waiting in line might be too noisy for the neighbors in the same
building. The owner would like the manager to receive a visual cue when the
noise caused by patrons waiting outside is too loud. The noise detector should
ignore other street sounds, such as big trucks passing by.

Solution: The solution consists of a data acquisition block that captures sounds
outside of the restaurant, processes and classifies them to decide whether
patrons are speaking or being loud. In order to achieve this, the block needs to
detect not only human conversations but also its loudness level. Once the block
detects an event, it sends out a command to an alert light that will be visible to
the restaurant manager for remediation actions to be taken. Refer to the
following figure:

) I

Microphone + ML
RGE Light

Figure 2.30: Solution concept showing the data acquisition block and the alerting component

Data acquisition

The data set i1s formed primarily by two classes: Noisy people and traffic
noises. The original data set of noisy people was created from party and bar
recordings found on the internet. The issue is that it does not reflect the actual
sound of people being loud while waiting in line to get to this restaurant in
particular. Luckily, we could go to the restaurant and record the sounds that we
needed directly from the source to train the model. The model for the second
class is trained with sound samples of cars passing by. The position of the
microphone, the intensity of the sound, and the type of vehicles and their
patterns were very different in the actual location. For this reason, we also
captured samples of traffic sounds outside the restaurant. It is important to
stress the fact that your model will be as good as the data that you provide. For
the rest of the use case, we will use the first version of the data (the poorly

captured data from online videos) for you to see the effects of it across the
system. Refer to the following figure:

Noisy People Traffic Noises

50%, 3005 \ '_‘____’/ 50%, 300s
600 s

70% 20% 109%
Train Test Validate
(420 15 samples) [120x 1ssamples) (60 x 15 samples)

Figure 2.31: Data acquisition facts (Noise detection)

Processing

We are using the MEF processing block because human perception of noise
needs to be detected. Notice how data is clustered in the feature clustering
graph (Figure 2.32); however, both classes are present in most clusters. This is
somewhat problematic as sounds of noisy people and street noise should differ.

Note: The data being used was captured from online videos of people at parties and cars recorded

at street intersections. Because this data was originally created for different purposes under
different conditions, it is causing the processing to perform poorly.

A:Noisy People
B: Street Noise

BN Bhage 0Bl
!
i

AR

Figure 2.32: Cluster diagram of training set showing different noise types

Model

The CNN sound classifier model, specialized in sound, presented at the
beginning of this chapter, is used to classify between loud people and street
sounds. The model uses two convolutional layers with 8 and 16 filters (3x3) to
recognize specific features, ReLU activation to eliminate negative values, two
MaxPooling layers with a stride of two to compress the size of the sample, two
dropout layers to reduce overfitting, and a dense layer at the end activated by a
Softmax function to normalize the results into a probability distribution. To
show the effect of bad data, we are training this model with poorly captured
samples. What is interesting is that while the validation process shows an
accuracy of 93.2%, it sharply drops when it runs against the test data set to
47.32%. After analyzing the confusion matrix, we realize that sounds from
noisy people are often confused by street noise.

The solution to this problem is to capture better-quality data from the place
where the system will be installed. Our tests showed that by doing so, we can
get an accuracy north of 90% in live situations. Refer to the following figure:

PROCESSING LEARNING RUN
128
70% Features 1 00
Training sarmples (Spectrogram) Tralning Cyctes
B Labels r- ; TRAIN
Im elly

T Classification CHN

10%

alidation samples an%:%s 11\2\9&??
8 Labels (Spectrogram)) VALIDATE
i
Y m £
L = 2 Classiication CHN
4,800
samples
20% 128
\ é‘ Testing samples Features 9?89%
bers (Spectrogram) COLTaCY

B Labels o 5 1 TEST
m =
= Classification CNN

: 128
e Featares 81.3%
Microphone {Spectrogram] Aceuracy LIVE

¢ m >

Classification CNM

Figure 2.33: Training, validation, testing and live deployment statistics (noise detection)

The inference time is predicted to be about 0.2 seconds. Combining the
processing and the inference time plus the overall overhead, the system will
take about 0.5 seconds on each sample. Given the fact that noise levels caused
by patrons will not change dramatically in a short amount of period, analyzing
two samples per second is more than enough. The solution will be programmed
to calculate a rolling average of the last 60 seconds before it declares a loud
noise event.

System implementation

The solution consists of two types of blocks connected via a BLE mesh
network. The first type are the acquisition blocks (Block 1 and Block 2) that are
positioned in different parts of interest around the business location where
noise events need to be detected. The second type is a central block (Block 3)
that is subscribed to the acquisition blocks and keeps track of their state. If any
block publishes a noise event, the central block activates a visual alert, as
shown in the following figure:

BLE Mesh BLE Mesh
L OBLL Mesh

Hc:mest' nc:me:h PR
[ﬁ [ﬁ
UART Httlinynll_z_ﬁ UAR] nr_:linyrnl_l_b
’P] 'P]

v

RGB Lights

Figure 2.34: Connection diagram (Noise detection)
Blocks 1, and 2 (acquisition blocks) are identical. They use two microcontroller
boards. The first is an Arduino Nano 33 BLE to capture the data from the
microphone, process it, and run the TinyML model. The second is an
NRF52840 Dongle to retrieve the inference results from the Arduino, buffer
them and publish them to the mesh network for other nodes to use.

Block 3 (actuator block) also uses two microcontrollers. The first is an
NRF52840 Dongle to receive messages from the network, and the second is an
Arduino 33 BLE to translate the received information to a Hex color and send a
command to the NeoPixels to transition to that color.

Source code

Refer to the following table:

kil % 4 Code location: Arduino
B Nano 33 BLE @ Blocks 1,2

Capturing outdoor sound,

processing it, and running it

through the TinyML model to

detect noisy people

Pseudocode:

1. The microphone captures

environmental sounds from
outside the buisness

Sound Classification Model location. Data is sent to the

Pre o) Past Local Processing functions.
PHOHCESS Process [LET . . .
ing | % ing | Script 2. The soundwave is sliced in

small windows, transformed

to frequencies, converted to

an MFE, flattened, and sent

, to the TinyML model to run.

:' 3. The TinyML model runs the

o inference with the provided
data and returns an array of
results. Results are sent to
the post-processing
functions.

4. The post-processing
functions detect people
conversations, their duration
and their loudness level. A
combination of those three
factors determine whether
an alarm message should be
issued. If that is the case,
the main script is notified.

5. Main script gets the

messages and sends them

A via UART to the network

microcontroller.

Table 2.6: Pseudocode (noise detection)

Network

The three blocks use a BLE mesh network to send and receive messages. Each
acquisition block publishes to a different channel. Block 3 subscribes to each
one of the channels. This is necessary as Block 3 must be able to know what
block sent the message to keep track of its state. By doing so, the color in the
alert light can be different depending on the zone that the noise event has been
detected. Refer to the following table:

Block(s) Action Channel
1 and 2 Publishes to CH1, CH2
3 Subscribes to CH1, CH2

Table 2.7 : Network configuration (noise detection)

Power analysis

Since this is a permanent installation, it is recommended that all Blocks be

connected to a permanent power source; however, if it is necessary and
assuming there is enough daylight and we provide a large battery, the data
acquisition blocks could be solar powered. We would need to make a couple of
adjustments like reducing the inference frequency and number of messages that
the blocks send to the central block.

For Blocks 1 and 2:

Power . Latent Active
Device Notes
source consumption consumption
Arduino Active when running the
Nano 33 0.032mA <1A TinyML model. The
P1 :
BLE @5V @5V microphone needs to be
Sense always on.
Pl NRF52 0.040mA 3mA Active when publishing
Dongle @5v @5v messages as a client.

Table 2.8: Power Profile, Blocks 1 and 2
We need at least a 1A power source for Block 1.

For Block 3:
Latent Active

LEDGEs DeVice Notes

source consumption consumption
P2 NRF52 0.040mA 0.3A Active when receiving

Dongle @5v @5v messages as a Server.
P2 Iﬁ;ﬁ?gg 0.034mA 0.ImA Active when switching
BLE @5V @5V the light alert.

Table 2.9 : Power profile, Block 3
We need a 1A power source for Block 3.

Bill of materials

The bill of materials for this project considers off-the-shelf components with
general availability. Refer to the following table:

Description QTY Unit cost Total

Arduino Nano 33 BLE Sense 2 $45 $90

NRF52840 Dongle 3 $12 $36

Arduino Nano 33 BLE 1 $30 $30

Power Source 1A @5v 3 $10 $40

Table 2.10: Bill of materials (noise detection)
The approximate cost of materials is $196.

Use case: MFCC based processing

In cases where the model needs to recognize human language, MFCC based
processing is used to extract features relative to cadence, intonation and other
characteristics that help the model differentiate and recognize words.

Voice activated switches

Problem definition: An adult care facility has found it incredibly useful for its
patients to be able to give voice command instructions to turn on and off lights
at night using a device like Alexa. The issue is that those devices require
constant internet connection and are complicated to fix if they get
misconfigured (which happens often). The facility manager is looking for a
reliable stand-alone alternative solution that does not require an internet
connection or subscriptions to a web service.

Solution: The spoken commands are captured by a microphone-enabled data
acquisition block. The acquisition block's CNN recognizes two commands:
Lights on and Lights off. Once a command has been recognized, the block
sends a message to the switches to turn on or off, as shown in the following
figure:

® =
Command
) Switch 1
Microphone + ML

Voice command |

Switch 2

Figure 2.35: Solution concept showing a simple setup for voice-activated switches

Data acquisition

The training set consists of 4 classes. Lights On, Lights Off, Noise and
Unknown. The samples for Lights On and Lights Off have been captured from
20 difterent volunteers. They have been asked to repeat the voice command at
different speeds, intonation, and pitch. Noise in the background is typical of a
home, like a loud TV, other people talking, music, and kitchen sounds, which
are present during the recording of different samples. The samples in the Noise
class contain the same background sounds but without the voice commands.
The Unknown class is a group of random collections of sounds like horns, cars,
animals, etc. Refer to the following figure:

Lights On B Lights Off

25%, 20min \ . 259%, 20min

4800 s

Unknown_— 7 Noise

2% 20 min 25%, 20 min
70% 20% 10%
Train Test Validate
(3360 % 15 samples) (960 x 15 samples) (480 x 15 samples)

Figure 2.36: Data acquisition facts (Voice activation)

Processing

The processing block selected for this use case is the MFCC algorithm, as its
cepstral and dynamic features have been specifically designed to characterize
human language. Notice how both Lights off and Lights on voice command
classes are clearly defined in the feature clustering graph. This kind of
visualization is a 2D representation of the sound samples. In this type of graph,
horizontal distance is more significant than vertical distance. Both clusters are
spread horizontally and much closer vertically. You need to take into
consideration that even if the TinyML model can recognize the cluster limits if
the person giving the voice command has a specific way of talking that makes
both commands sound more similar than the training data, we might be getting
more false positives and false negatives. Refer to the following figure:

A: Lights off

B:Lights on B B BE ggB BBBBBBBBB BBBB B Baﬁgﬂ BBB
Bapias oy g £oh 5 I;.;B

C: Noise E gB PpR B B Bgpap éﬁ' B
D Unknown BBp 5%3: BBR] I? BBB Bgl B 8 ﬂ BBBB [?;E ?33 .
5 E?BB 8. B BBy § =il o Do ,Pop O, LIS B2s% ooh EBEBB e
BEL Potieestes i 5 Eogwbjg DD P pgo Bo o 8 BR% " pp b
Bb B%R, p0? ED PO o’ P h " 0PP B 8ok hoe
g
B g° Kb Dé." o c By
gBB[?BB E g Dy ¢« wE €L g By © B%‘g
Bebnth Cef e B Bg
thiveg A c o §Cct St fete 8858
B 688 X € Clc %C sl el C Bg B
858 cce T i e CCSEESCeec ¢ cc c
A A Ccc et CEE cacesSe &
A a A g% O E_QECC ce c Ap?& £
Ap AC cC ' (]':C C € 8@5 ¢ %C C C Mﬁm p' A A?gﬁﬂ %A
C-cFCe & ettt ¢ A .
A cc il cccfccc p c A:-\Aﬁ?
A
%%‘% A A HQA 4,
fiﬁ At a UpAn AARA TAN
p.q,e{‘ K\F}\'n‘ A HA A A A A Ap A

A
A Mg A A o ARANR
T i »ﬁﬁm il

Figure 2.37: Cluster diagram showing clearly differentiated activation word groupings

The processing time is approximately 0.2 seconds. A long time is expected as
we are using the MFCC, which is the specialized processing with the most
steps.

Model

We use the classification model specialized in spoken language, that we
introduced at the beginning of this chapter. It is important to mention that the
original white paper that introduced this model (see reference at the end of this
chapter) was focused on CNNs and MFCCs, which is an excellent fit for this
use case. A reshaping function converts the data to a matrix of 13x50. The
output of a 1D convolution layer with eight filters with a kernel size of 3 is
activated by a ReLU function. Then, the features are input to a MaxPooling
layer to select its most representative values, reducing its size by half in the
process. A dropout function is applied to the features to reduce overfitting by
randomly and temporarily removing features during training to create new
paths to solve the same problem differently. Immediately after, we apply the
second 1D convolution layer and similar MaxPooling and dropout functions. In
the end, we find a fully connected layer that helps the model shape the function
that relates input against labeled output. The final stage is a Softmax function
that helps us normalize the output. The accuracy during the validation is 89.7%,
but it drops to 73.58% during training. We need to be north of 90% to make this
a viable product. The question is: Should the model adjust to every single mode
of talking, or should the user adjust to a specific speed and intonation while
giving the voice command? While the former is ideal, the latter is not that

inconvenient and reflects the way people interact with devices similar to Alexa.
Try to remember how you talk to a commercial voice-activated assistant. Do
you always use the same speed and tone in your voice when doing so?

The following figure shows the split of the data to train, validate and test the
model:

PROCESSING LEARNING RUN
13
70% Features 100
Training samples IMFSC) Training Cycles
4 Labels ”'m & - ” TRAIN
oo
Classification CHN
0,
0% 13 89.7%
Validation sampdes Features Accuracy
4 Labels (MFCC) VALIDATE
) m X
= Classification CNMN
4800
samples
20% 13
ﬂ;l Testing samples Features 73.58%
Labels 4 (MFCC) Accuracy
Labels ; - TEST
m 2
(_l:nngc-a-m.:n(wl\.l
. 13
. Live Features 71 ‘U%
Microphone IMFCC) Aecuracy LIVE
\J m =

Classification CNN

Figure 2.38: Training, validation, testing and live deployment statistics (voice activation)

The inference time to run a sample through the processing and inference stages
is about 0.2 seconds. This is short enough for the model to run at least five
samples per second. This allows the voice command to be repeated in case it
does not work without causing a processing backlog.

System implementation

The implementation consists of a block that acquires the sound sample and
issues the on or off commands and as many off-the-shelf Bluetooth enabled
switches as the implementation requires. While this example assumes all the
switches will go on or off at the same time, it would not be complicated to
implement different activation words for each switch. Refer to the following

figure:

BLE Mesh BLE Mesh
Microphaons (/l |
-_.i_é
BLE Swilch BIF Switch
s " e
i1 s 1 2 ()
|
M
’ V) Q)

oo Lene

Figure 2.39: Connection diagram (Voice activation)

Block 1 (acquisition block) uses two microcontrollers: The first is an Arduino
Nano 33 BLE Sense to capture the data from the microphone, process it and
run the TinyML model. The second is a NRF52840 Dongle to retrieve the
inference results from the Arduino, buffer them, and publish them to the mesh
network for other nodes to use it.

Blocks 2 and 3 are off-the-shelf BLE mesh-enabled switches that handle the
complexity and risk of handling higher voltages (120v, 220v). They follow the
BLE-mesh network provisioning and configuration protocol like any other
building block. They acquire their energy from the power line directly.

Block 1 actively listens to voice commands, and when a valid one is detected, it
sends an on or off command to blocks 2 and 3. Block 1 keeps track of the state
of the switches but can also ask the actuator blocks for their current state in
case it needs to double check.

Source code

Refer to the following table:

Code location: Arduino Nano

c:edgeml 2 6 33 BLE @ Block 1

Capturing voice commands
Pseudocode
1. The microphone captures room

Sound Classification Model

sounds. Data is sent to the

[Loca processing functions.

| Seript | 2. The soundwave is sliced in
small windows, transformed to
frequencies, converted to
MFCC features, flattened, and
sent to the TinyML model to
run.

3. The TinyML model runs the

2 inference with the provided data

and returns an array of results.

Results are sent to the post-

processing functions.

: 4. If a known voice command is

recognized, a message is

prepared, and state is saved.

i 5. The main script gets the

message and sends it via UART

to the network microcontroller.

P
PIOCEss PIOCe5S

Pre- | | e
g L z! NG

A

Table 2.11: Application logic (voice activation)

Network

The blocks communicate using a BLE mesh network. This use case
underscores the importance of using the Standard Models established by the
BLE Mesh Specification. The switches and the acquisition block do not have
the same manufacturer and are still able to communicate between them thanks
to the standard messages. The generic OnOff Server/Client model is used in
this use case. Refer to the following table:

Block(s) Action Channel
1 Publishes to CH1
2.3 Subscribes to CH1

Table 2.12 : Network configuration (voice activation)

Power analysis

We are controlling high voltage (120-220v) with low voltage (5v-3.3v). The
Wireless mesh network provides an air gap implementation that decouples the
data acquisition and the TinyML model performed in low voltage from the

electric switches. It is recommended to use off-the-shelf Bluetooth-controlled
electric switches from well-known brands instead of trying to implement your

own.
For block 1:
Latent Active
Power Device Notes
st consumption consumption
Arduino Active when running the
Nano 33 0.032mA <IA TinyML model. The
P1 .
BLE @5V @5V microphone needs to be
Sense always on.
- NRF52 0.040mA 3mA Active when publishing
Dongle @5v @5v messages as a client.

Bill of materials

The bill of materials for this project considers off-the-shelf components with

Table 2.13 : Power profile
We need at least a 1A power source for Block 1.

general availability. Refer to the following table:

Description QTY Unit cost Total
Arduino Nano 33 BLE Sense 1 $45 $45
NRF52840 Dongle 1 $12 $12
120v Switch 1 $20 $20
Smart Light 1 $10 $10

Table 2.14: Bill of materials (voice activation)
The approximate cost of materials is $87.

Conclusion

Sound classification opens the door to previously impossible use cases, but
implementing a successful system requires a comprehensive understanding of
various aspects: the types of sounds that can be classified, how to create a
training set, feature extraction from sound samples, the types of features and
their applications, the inner workings of a convolutional network specialized in

sound classification, troubleshooting models, and calculating execution time.
Additionally, it is crucial to consider factors surrounding the model, such as
power consumption, communication between elements, and the overall cost of
implementation.

In the next chapter, we use the techniques learned in this chapter to analyze a
different type of signal to classify movement, in this case accelerometer and
gyroscope signals.

References

https://www.researchgate.net/publication/348432098 Speech_recogniti
on_based_on_Convolutional _neural _networks and MFCC _algorithm
/link/5ffed38aa6fdccdcb84de010/download

* https://studio.edgeimpulse.com/

* https://gilberttanner.com/blog/arduino-nano-33-ble-sense-overview/

. https://medium.com/@MuhyEddin/feature-extraction-is-one-of-the-
most-important-steps-in-developing-any-machine-learning-or-deep-
94cf33a5dd46

. Sound classification use case l:
https://studio.edgeimpulse.com/public/289478/live

. Sound classification use case 2:
https://studio.edgeimpulse.com/public/291172/live

. Sound classification use case 3:
https://studio.edgeimpulse.com/public/277828/live

Join our book’s Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings
around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://www.researchgate.net/publication/348432098_Speech_recognition_based_on_Convolutional_neural_networks_and_MFCC_algorithm/link/5ffed38aa6fdccdcb84de010/download
https://studio.edgeimpulse.com/
https://gilberttanner.com/blog/arduino-nano-33-ble-sense-overview/
https://medium.com/@MuhyEddin/feature-extraction-is-one-of-the-most-important-steps-in-developing-any-machine-learning-or-deep-94cf33a5dd46
https://studio.edgeimpulse.com/public/289478/live
https://studio.edgeimpulse.com/public/291172/live
https://studio.edgeimpulse.com/public/277828/live
https://discord.bpbonline.com/

CHAPTER 3
Movement Classification

Introduction

Movement classification refers to the process of using algorithms to
automatically recognize and categorize different types of physical
movements based on sensor data, typically from accelerometers or
gyroscopes. Movement classification involves capturing motion data, such
as changes in acceleration or orientation, and using machine learning models
to classify these patterns into predefined categories, like walking, running,
jumping, or other complex movements. Movement classification is widely
used in areas such as activity recognition for fitness trackers, fall detection in
healthcare, gesture control in smart devices, and even robotics, where
machines must interpret human motion or autonomously analyze their own
movement. The goal is to create models that can accurately predict the type
of movement based on patterns learned from the data.

Structure

The chapter covers the following topics:
e Capturing training data from accelerometers
e Extracting features from accelerometers
e Creating the classification model
e Use case: Correct usage detection

e Use case: Free fall detection
e Use case: Movement profiling

Objectives

In this chapter, you will explore the essential data required for movement
classification and the techniques for extracting meaningful features from that
information. You will learn how to train a movement classification model
using the processed data and implement a real-world example of a
movement classification model. Each step will guide you through the
process of turning raw sensor data into a functional machine learning model
capable of accurately recognizing and classifying various types of
movement.

Capturing training data from accelerometers

The basic principle of capturing movement data and using it to train a model
is simple: You attach an array of accelerometers to a body that is performing
a movement that you want to learn from, you capture many samples of the
same movement under different conditions and you use that set to train a
model, then, you load the trained model into a microcontroller and send real-
time accelerometer readings to it, after that, the microcontroller reads and
processes the movement signals and recognizes when a move is made. In
order to train a model to recognize specific movements, you first need to
capture the movement data. This process involves recording movement
through accelerometers and then labeling the data for supervised learning.
However, there are several challenges in capturing movement data. One
challenge i1s i1solating the specific movement from other unrelated
movements. This can be done in a controlled environment when the
movement can be triggered on command, but in many cases, it is not easy to
isolate the movement, especially when it is unpredictable or very short.

Labeling the accelerometer time series data can also be complicated,
especially when the events are unpredictable and continuous. For example,
when trying to capture data for a model that recognizes reckless driving, it is
not easy to label sudden stops or careless lane changes in real time. One
approach is to use a dashboard camera in the car to record the entire ride and

then label the accelerometer data in post-production.

Additionally, capturing movement on command may not reflect natural
movement accurately. Even seemingly easy-to-capture movement events,
like recording how a tool is used by an operator, can differ when captured in
a controlled session versus regular day-to-day usage. In conclusion, it is
important to capture movement data in actual conditions, even though it may
be more challenging to do so.

Extracting features from accelerometers

You can compress movement data from a sample of three-axis accelerometer
time series into 39 features. Each axis (X, y, z) uses 13 features. For each
axis, 8 features describe spectral power, while the remaining 5 are root mean
square, kurtosis, spectral kurtosis, skewness, and spectral skewness.

The 8 spectral power features describe the power per hertz for each of the
following frequency bands:

1.95 - 5.86 Hz, 5.86 - 9.77 Hz, 9.77 - 13.67 Hz, 13.67 - 17.58 Hz, 17.58 -
21.48 Hz, 21.48 - 25.39 Hz, 25.39 - 29.3 Hz, 29.3 - 33.2 Hz

Spectral power

The following figure illustrates the distribution of power (energy released
over time) across frequencies that characterizes a sample movement:

Spectral power (log)

Figure 3.1: Example of energy levels per frequency (red:x, green:y, blue.z)

The reason the bands span up to 33.2 Hz is because the acquisition

frequency is twice that of its highest frequency (66.5 Hz). According to the
Nyquist-Shannon sampling theorem, your capture rate needs to be at least
twice as much as the largest frequency you want to capture. In other words,
you can only capture and fully reconstruct frequencies (with the help of
DTF) that are half or less of your capture rate. The highest frequency that
you can capture is called the bandwidth. We are splitting the bandwidth into
eight equal parts, each 3.91 Hz wide. We could have partitioned it into any
arbitrary number of parts. If we did that, we would just need to adjust the
neural network input layer to have as many inputs for the spectral power
features as partitions. The goal is to calculate the power contained in every
band. If we had no partitions, we could tell the neural network the whole
power content of the signal, but we are doing that already with the feature
called root mean square by calculating the area under the curve, which is
proportional to the power. In this case, we want to be more specific.
Showing a distribution of power across the frequencies helps us understand
and characterize the signal much better by knowing at what frequencies the
body is moving most significantly. To do this, we multiply the readings by
themselves (hence the square) to avoid negative numbers that would cancel
the signal when averaging it. We are doing the same as we did with the
whole signal to calculate RMS, but in this case, for the decomposed signals
specific to the partitioned frequencies. If we leave it at that, the signals will
not be aligned. Higher frequency bands will show incorrectly as if they had
more power, even though they have lower levels. The reason is that, because
of the high frequency, the energy is squeezed horizontally and shown as a
taller vertical column because the base of the column is smaller (Figure 3.2).
In order to normalize this, we divide the power of every band by its
frequency. Now, we have a normalized characterization of power for each
band that we can feed into the network. Refer to the following figure:

Note: RMS at higher frequencies shows taller because the base of the partitions is smaller
although the power in the sample is the same.

== Auto Power Data THz

ddieannes Auto Power Data 4Hz

(@]
Amplitude IRMS)

Auto Power Data 8Hz

-
===

2000 2050 2100 2150 2200 2250 2300 2350

Hz
Figure 3.2: RMS at different frequencies

Kurtosis

Kurtosis indicates the tailedness of the distribution, while skewness shows
whether the curve leans to the left or right in relation to a normal
distribution.

Kurtosis can be interpreted as the degree of outliers in your data. If your data
has many outliers, it means that your accelerometers are capturing a lot of
sudden and instantaneous jerky movements. It is important to determine
whether these movements are noise or part of the phenomena you want to
capture.

The different types of kurtosis and their shape characteristics are illustrated
in Figure 3.3. Positive kurtosis is taller than the normal distribution with
thinner tails, while negative kurtosis is shorter than the normal distribution
with thicker tails.

Positive Kurtosis

Mormal Distribution

Negative Kurtosis

Figure 3.3: Positive kurtosis, zero kurtosis and negative kurtosis

Spectral kurtosis, similar to tailedness in the time domain, pertains to the
presence of outlier frequencies in your data in the frequency domain. An
outlier frequency signifies an occurrence that is not frequent, but when it
does occur, it exhibits a significantly different frequency than usual. To
illustrate spectral kurtosis, consider a salesperson who typically sells one
item per month but occasionally sells three items in a single day. The
frequency between these events is notably different, but such instances are
infrequent. If these uncommon days occur almost never (once in a lifetime),
it results in negative kurtosis, also known as a thin tail. If these occurrences
are uncertain but are expected to happen occasionally, it results in zero
kurtosis, as even normal distributions include outliers. However, if they start
happening more frequently than normal, it results in positive kurtosis, also
known as a thick tail. When applied to accelerometer data, although the time
scale is measured in milliseconds instead of months and years, the
underlying concept remains the same.

The following heatmap (Figure 3.4) displays spectral kurtosis with respect to
frequency and window length. A positive spectral kurtosis for a given
frequency and level indicates that outliers are more common under those
conditions.

1o

~d

o

L

Spectral
Kurtosis

Lt

[

=]

0
a
[
8
12
16
Window 4
Length 12 4
48
64
96
128 -
192
256
o 100 200 300 400 500

Frequency (Hz}

Figure 3.4: Spectral kurtosis heatmap (frequency versus level)

Skewness

To understand the physical meaning of skewness in terms of movement,
consider the range of movement of an object. In a normal distribution, most
of the samples belong to the middle section of the movement range, with
fewer samples at the extremes. Now, imagine a scenario where most of the
movement belongs to the top of the range. This illustrates negative
skewness. Conversely, if most of the samples belong to the lower range of
the movement, then you have a positive skew.

The following figure shows normal distributions with negative and positive

skews:

A Negative Skew A Positive Skew

>

Figure 3.5: Negative versus positive skew

The concept of spectral skewness differs from regular skewness. It indicates
that the distribution of frequencies tends to lean more towards either the low
or high frequencies while leaving the median frequency behind. This can be
interpreted as the body making either repetitive fast movements (such as
high vibration) or repetitive slow movements (like swinging), with most of
the movements occurring at a middle frequency.

It 1s easy to understand the skewness of a frequency distribution by
examining its frequency diagram, as shown in the following figure:

Third Spectral Moment (Skewness)
120

100
80
60
40

20

-1.5 -1 05 0 05 1 15 2 25 3 35
Frequency (x10011)

Figure 3.6: Positive skew in a frequency distribution

Creating the classification model

The architecture of the TinyML model for classifying movement includes an
input layer with 39 neurons, two hidden dense layers of sizes 20 and 10
activated by a ReLU function, and an output layer with as many classes as
needed for the events being classified.

The first layer is a fully connected dense layer where all 39 features are
connected to the hidden layer of 20 neurons. L1 regularization function (with
delta=0.00001), also known as Lasso Regression, helps prevent overfitting
in cases where there are a large number of features by eliminating
unimportant features. This is important because models with a large number
of features tend to overfit (7).

The ReLU activation is used to introduce non-linearity into the neural
network. The reason for needing non-linearity in movement is that it is
necessary to show not only how fast the position is changing, but also how
fast the rate at which the position is changing is changing (this is not a typo).
A linear function can only show a rate of change, but to show the rate of
change of a rate of change, a nonlinear function is necessary.

The following figure illustrates the input layer, the dense layer and the
regularization and ReLU functions:

: ._\JE_ .

Accelerometer Input Dense L1 RelU
Raw Data Regularization

Figure 3.7: Input, dense layer, L1 regularization function and ReL U activation function

The second dense layer compresses the 20 outputs of the ReLU function by
connecting them to a 10-neuron layer. After this, the output undergoes L1
regularization (with delta=0.0001) and is then passed through a second
ReLU activation function. Multiple ReLU activation functions help in

creating a more accurate regression curve, allowing the model to generalize
better.

Figure 3.8 shows the second dense layer and the regularization and ReLU
functions:

20

Dense L1 RelU
Regularization

Figure 3.8: Dense layer, L1 regularization function and ReLU function

The final layer in the network is the classification layer. It takes the output
from the second layer and converts it into a set of numbers, with each
number representing a specific class. A high number indicates that the object
might belong to that class. These numbers are not normalized, so they are
passed through the SoftMax activation function, which normalizes the
results and turns them into a probabilistic distribution. This distribution
serves as the output of the model.

Figure 3.9 illustrates the classification layer receiving the output of the
second ReLU and producing a set of results normalized by the SoftMax
function. Here, C represents the number of classes. A post-processing
algorithm 1identifies the largest number in the set and declares the
classification result based on specific conditions. These conditions include
determining whether there is a clear winner and whether a series of
consecutive classification events all indicate the same winner. This process
is crucial for ensuring result stability.

O
O——:_.T*E?"O C |:| —
Oé- - C 1

Dense SoftMax

Figure 3.9: Dense classification layer and Softmax function

Use case: Correct usage detection

This use case demonstrates how movement classification can be applied to
distinguish between normal vibrations and rotations versus those that signal
a malfunction or improper use of the equipment. By analyzing sensor data
from accelerometers and gyroscopes, the system can identify patterns that
correspond to expected operational behavior and detect anomalies that may
indicate wear, structural issues, or misuse.

Tool usage tracker

Problem definition: A toolmaker has asked for assistance in designing a
TinyML model that can detect whether a person is using a tool correctly.
They plan to integrate this model into various power tools. The initial focus
is on a handheld power drill. The model should be able to identify both
correct and incorrect tool operation in all directions (vertical, horizontal,
inclined, etc.). The toolmaker wants the model to alert the operator if the
angle at which the drill bit penetrates the material remains consistent.

Solution: The proposed solution involves a small microcontroller mounted
on the handheld power tool. This microcontroller runs a TinyML model that
can recognize whether the drill is being used properly. The correct
movement is a straight motion, while any oscillatory movement that is not
aligned with the drill bit is considered incorrect. The microcontroller
mounted on the power tool provides a visual indication to the operator by
projecting a red light onto the work surface using a directional LED.
Additionally, there is a secondary microcontroller responsible for publishing

drill events to a mesh network.

The following figure shows a conceptual diagram of the proposed solution:

Command Track Player
(e == \‘\

.
1i— S
- o
.

N

RGB Light 3

Accelerometer + ML

Figure 3.10: Solution concept (Tool usage tracker)

An auditory alarm and a visual indicator are connected to the drill messages
in a wireless mesh network. If an incorrect usage message is received, a
sound is played through the speaker, and the alert light flashes an
intermittent visual signal. The solution should function properly regardless
of the angle at which the tool is used.

Data acquisition

We have chosen a handheld power drill for this specific purpose. Drill bits
are designed to cut material in the same direction as their longitudinal axis.
Trying to cut a material in any other direction will cause damage to the drill
bit and the internal parts of the power drill. A common incorrect use of the
tool is attempting to enlarge an already drilled hole by moving the drill
around the hole in a cone shape. Another common incorrect use is trying to
move the drill in a zig-zag shape to cut material. To gather the dataset, we
drilled approximately 600 holes into three different materials (wood, paper,
and aluminum). Each material was drilled in four different directions:

horizontal (90°), bottom-up (360°), top-down (180°), and inclined (45°). Half
of the holes were drilled at a constant angle aligned to the direction of the
drill bit (labeled as correct drilling), and the other half of the holes were
drilled using cone and zig-zag motions while advancing the drill bit into the
material with a moving angle not constantly aligned to the normal of the
surface.

The following figures show samples of acceleration along the three axes
when the drill is used correctly and incorrectly:

. oA “ g 'ﬁ‘\i.' A ._J'\.'JLV'J'\‘A'\' '-‘(V"f\f""'-\/ v""J‘V'V\ \J'n.u-""b"".'.r"l*

A

D —_ P A Pl g) # ~ P— - P WY - o ™ e Y, e
i T P T L AT Y L W b P ¥ P e e i e I\ e -~

Figure 3.11: Sample of acceleration readings during correct drilling
e Correct drilling: This graph illustrates a material being perforated
vertically. The negative acceleration (accY) represents the gravitational
pull aligned to the drill bit, and the jagged lines are caused by the drill's
vibration.

Figure 3.12: Sample of acceleration readings during incorrect drilling

e Incorrect drilling: The accelerometer (accY) indicates the negative
acceleration due to gravitational pull, while accX and accZ show the
oscillatory movement in a cone shape on the XZ plane, perpendicular to
the drill axis, with a period of about 500 ms or a frequency of 2Hz.

The following figure shows the characteristics of the training dataset, which

includes samples of both correct and incorrect drilling instances in various

materials:

Correct drilling—_
50%

P

Drilling Wood 3005

Drilling Paper 300s |

Drilling Aluminum 300s

900 s
(300 x 35 samples®)

("} Each material has been drilled
at : 909, 180°, 360° and 45°

Train

(420 x 35 samples)

_— Incorrect drilling

b 50%
Drilling Wood 300s
1800 s Drilling Paper 300s
Drilling Aluminum 300s
900 s
(300 x 35 samples®)
70% 20% 10%

N

Test Validate

(120 x 35 samples) (60 x 35 samples)

Figure 3.13: Training, testing and validation dataset (Tool usage tracker)

Processing

Data from three input axes is captured at a frequency of 62.5Hz. It is then
trimmed in 2000 ms windows and sent to the spectral analysis block to
extract 13 features per axis. Out of the 39 features, the most important ones
for this use case are the spectral power at 1.95 - 5.86 Hz in the X and Z axes.
These features characterize the power from events that occur approximately
every 500 ms to 100 ms on the XZ plane, which is about the same frequency
at which the operator moves the drill in a cone shape and zigzag
perpendicular to the drill bit. Movements on the XZ plane should not occur
during drilling.

The most important features in this use case are the ones that differentiate
the two classes. Both classes are clearly defined in the clustering diagram
(Figure 3.14). It is evident that the incorrect class is slightly more spread out
as it characterizes different incorrect movements. Some movements are very
close to the correct movement but are still distinguishable.

A CORRECT
B INCORRECT

Figure 3.14: Clustering diagram showing correct and incorrect classes

Model

During the training process, 1800 seconds of training data are used to
generate 4,160 training windows. Each training window has a size of 2000
ms and is incremented by 200 ms. These windows undergo processing to
obtain 39 features, which are then fed into a three-layer dense neural
network for training. An error score is calculated at the output, and the
weights in the neural network are adjusted using backpropagation at a
learning rate of 0.0005 for every iteration. This process is repeated 30 times
to complete an epoch. After training, the model is evaluated using a
validation dataset, resulting in an accuracy of 95.6% and a loss of 0.09. To
further improve accuracy, adjustments can be made to the learning rate,
number of training cycles, the architecture of the neural network, and the
training data. It is also recommended to try different processing blocks and
to store different versions of the model for comparison.

The following figure shows how training data is distributed and used across
the different stages (training, validation, and testing), the steps that each
stage goes through, and the relevant results at the end of each stage:

70%
Tralning samphes
2 Labels
10%
Validation samples
2 Labels
600
samplis
2 T&(%’I?(?J?plﬂt
Labelc

2 Labels

Live
Accelerometer

A

PROCESSING

39

Features

[5peetral Analysis)

— A

39

Features

(Spectral Anatysis)

.y

39

Features
{Spectral Analysis)

.|

v s

39

Featunes

(Spectral Analysis)

o

LEARNING RUN

30

Training Cycles

a

=

a
3 Dense Layor MN

95.6%

Accurscy

3 Do Layer NN

83.01%

Accuracy

3 Dense Layer NN

71.2%
Accuracy
. :‘5({
3 Dense Layer CNN

Figure 3.15: Training, validation and testing metrics (Tool usage tracker)

System implementation

TRAIN

VALIDATE

TEST

LIVE

The following figure shows a connection diagram with the three main
building blocks and the connections between them. Additionally, it displays
their inputs, outputs, and power sources:

¥ I ;

BLL WMesh (Subscribe to: CHTY

Hc:mcsh

" UBLE Mesh Fublish to: CH1,CHZ)

H ncmcsh

{ BLE Mesh [Subscribe to: CHZ)

Accelercmeter

5D Ca

RGB Lights

Figure 3.16: Connection diagram (Tool usage tracker)

Block 1 (Acquisition block) utilizes two microcontrollers. The first one is an
Arduino Nano 33 BLE Sense that captures data from its three
accelerometers, processes it, and runs the movement classification TinyML
model. A red LED is connected to the GPIOs of this microcontroller to
signal the operator about incorrect use. When an incorrect movement is
detected for over five consecutive windows, two messages are prepared to be
sent to the network. The first message contains the command that activates
the alert light in block two, and the second message contains the command
that activates the sound alarm in block three. These messages are sent to the
second microcontroller (NRF52840 Dongle), which publishes them to the
mesh network.

Block 2 (Actuator block) uses an NRF52840 Dongle to receive messages
from block one via the mesh network. Incoming messages are sent to the
Arduino 33 BLE, which is responsible for activating the alert light using the
NeoPixel protocol.

Block 3 (Actuator block) also uses an NRF52840 Dongle to receive
messages from block one. A signal is sent to the Adafruit feather with the
track player wing to play an alert soundtrack stored on its SD card.

Source code

The trained model and the logic that captures the data from the tool
vibrations, processes it, feeds it to the model, verifies and validates the
output is loaded to the Block 1. In the following table, the pseudocode
explains step by step how data is handed to different parts of the firmware
and its resulting command sent out to the network for the visual alert and
audible alert to act on it:

c:edgeml 3 1 Code location: Arduino

Nano 33 BLE @ Block 1
Movement Classification Model Capturing the data,
Pre- | e Post. (ocat | processing it and running
o (o] e [the TinyML model.
Pseudocode

1. Three accelerometers

capture movement in
1 three dimensions. Data

A is sent to the processing

functions.

3 2. In the processing block,

the accelerometer data is

sliced in small windows,
transformed to

3 frequencies, converted

to spectral features, and

sent to the TinyML
model to run.

4 3. The TinyML model runs

the inference with the

provided data and
returns an array of
results. Results are sent

ﬁ to the post processing

functions.

4. The post processing
function waits for a
series of positive
identifications of an
incorrect movement
before it notifies the
user via the local LED.

5. The main script prepares
a message (A) to the
light alert and another
message (B) to the track
player. It sends
messages to the network
microcontroller along

with the channels they
need to be published to.

Table 3.1 : Pseudocode for block I (Tool usage tracker)

Network

The blocks communicate wirelessly using a BLE-Mesh network that
operates under a pub/sub paradigm. Channel configuration is performed
during the initial setup. 7able 3.2 shows Block 1 publishing the color and
intensity commands on channel 1, to which Block 2 (the light actuator) is
subscribed. Additionally, Block 1 also publishes the sound command on
channel 2, to which Block 3 (the track player) is subscribed.

Block(s) Action Channel
1 Publishes to CHI1
1 Publishes to CH2
2 Subscribes to CHI1
3 Subscribes to CH2

Table 3.2 : BLE Mesh network configuration (Tool usage tracker)

Power analysis

The power profile of each block is shown in the following table:

Block 1: Data capture, inference and feedback

Power . Latent Active
Device Notes
SIS consumption consumption
Arduino 0.032A <1A
P1 Nano 33
BLE Sense @5V @sv
NRF52 0.04mA 3mA Active when
P1 publishing messages
Dongle @5v @5sv as a Client.

Table 3.3 : Power profile for block 1 (Tool usage tracker)
Ideally, we should be able to tap into the power tool battery for energy.

Block 2: Visual alert

Power . Latent Active
Device Notes
source consumption consumption
P NRF52 0.04mA 0.3mA Active when receiving
Dongle @5v @5v messages as a server.
Arduino 0.034mA <1A Manages timing for
P2 Nano 33 NeoPixels
BLE @5V @5V X
NeoPixels 0.001mA 1A Each NeoPixel draws
P3 60mA at full brightness.
60x @5v @5V 20maA is typical.

(wall outlet).
Block 3: Audio alert

Table 3.4 : Power profile for block 2 (Tool usage tracker)

We need a 2A power source for block 2. Given the power requirements of
bright NeoPixels, this block must connect to a permanent source of power

Power . Latent Active
Device . . Notes
source consumption consumption
Active when
P NRF52 0.040mA 0.3A receiving
Dongle @5v @5v messages as a
server.
Adafruit
- NRF52840 0.034mA 0.6A Active when
Feather+track @5V @5V playing a track.
player

requirements of a 4 Ohm 3W speaker at 5v are 0.6A.

Bill of materials

An approximate cost and quantity of the materials needed to build the

Table 3.5 : Power profile for block 3 (Tool usage tracker)
We need a 1A power source for blocks 4 and 5 (one for each). The current

prototype in this use case is presented in the following table:

Description

‘ QTY

‘ Unit cost

Total

Arduino Nano 33 BLE Sense 1 $45 $45
Arduino Nano 33 BLE 2 $30 $60
Adafruit NRF52840 Feather 1 $45 $45
Adafruit Music Maker FeatherWing 1 $25 $25
NRF52840 Dongle 3 $12 $36
Neopixel Strip (60x) 1 $99 $99
Power Source 1A @5v 3 $30 $20

Table 3.6 : Bill of materials (Tool usage tracker)
Approximate cost of materials is $330.

Use case: Free fall detection

Detecting free-fall events has numerous safety applications across various
fields, including industrial monitoring, wearable technology, and accident
prevention. Free fall, characterized by the sudden acceleration of an object
due to gravity, can be identified using movement classification techniques
that analyze sensor data from accelerometers and gyroscopes.

Worker fall detection

This use case focuses on the classification of sudden and abrupt movements
such as a rapid vertical drop followed by immobility, to create an end-to-end
solution for detecting falls.

Problem definition: A major construction company is looking to implement
a system that can detect if a worker has tripped or fallen at the construction
site. This system should enable quick response and provide medical
assistance from the on-site medical team. All workers are required to wear a
vest and a helmet that can accommodate a small device running a TinyML
model. The solution needs to be battery-powered (lasting at least a full day)
and capable of wireless communication with the foreman's office to alert
them in the event of a fall. The system should be able to support hundreds of
devices, one for each construction worker.

Solution: The proposed solution involves using a microcontroller to run a

movement classification model. This model will receive data from an array
of accelerometers that are mounted on a wearable device, such as a vest, pin,
hat, or wristband. The TinyML classification model will be able to detect
when the device is in free-fall and will immediately send a message to the
network to report the event. When a free-fall message is received, a sound
alarm and a light alert, both connected to the wearable device, will be
activated.

The following figure shows the proposed solution and the connections
between its components:

Track Player L*

N

RGB Light 3

Accelerometer + ML

Figure 3.17: Solution concept (Worker fall detection)

Data acquisition

To collect the free-falling training data set, we utilized a data capture device
equipped with the Edge Impulse data capture client and a set of
accelerometers (three axes) attached to various bodies of different shapes

and weights, and allowed them to free fall in a controlled environment.
Additionally, we engaged a professional dancer (with an accelerometer
attached to her body) to simulate free falls in a studio. Not surprisingly, we
discovered that acceleration is independent of mass. However, certain forces,
such as rotation during a free fall, generate centrifugal acceleration, which is
also detected by the accelerometers. When a static body lies on a flat
surface, the accelerometer reading will show two components being equal to
zero, but one of them will show a reading close to the gravitational
acceleration of 9.81m/s"2, which is the acceleration due to gravity on planet
Earth. All the readings go to zero when that body is in free fall. This is a
specific characteristic of the accelerometer's physical implementation; it
does not mean the acceleration disappears. However, it is useful for
detecting free fall, as the neural network we are using will observe the shape
of the curve transitioning from gravitational acceleration to zero in the axis
pointing to the center of the earth. The labels for this supervised learning
data set are: Free fall simple, free fall spinning, free fall throw, and Static.

The following series of figures shows samples representing different free-
fall scenarios: simple free fall, throw free fall, and spinning free fall.
Additionally, a graph of a static object is presented for comparison:

Figure 3.18: Simple (vertical) free fall

e Sample of free fall simple: The acceleration in the Z direction (accZ)
shows as -9.81m/s"2, representing the gravitational acceleration of the
Earth. It is important to note how the Z acceleration approaches zero
during free fall.

Figure 3.19: Parabolic throw and free fall

Sample of free fall throw (parabolic trajectory with horizontal and
vertical components due to gravitational pull). Notice how accY shows
the acceleration and deceleration that characterizes the throw,

independent of the free fall component on accZ.

Figure 3.20: Spinning free fall
e Sample of free fall spinning: The Y-axis acceleration (accY) is
influenced by the body's rotation, while the Z-axis acceleration

represents free fall independently.

Figure 3.21: Static body (no free fall)

e Sample of static body: The accX and accY are zero, while the accZ
shows a constant gravitational pull.

Figure 3.22 shows the configuration of the training, testing, and validation
datasets. The datasets are divided into two classes: Freefall and Other. Each
class consists of different subgroups of data. In the Freefall class, we
captured 30 seconds of vertical freefall, 30 seconds of throw freefall, and 30
seconds of spinning freefall. In the Other class, the dataset includes any
movement that is not free fall, such as standing, walking, and running (30
seconds each). The entire dataset is then split into three parts: 70% for the
training dataset, 20% for the testing dataset, and 10% for the validation
dataset.

Freefall
50%

Other

50%

Vertical Freefall 30s Standing 30s

Throw Freefall 30s Walking 30s
Spinning Freefall 30s Running 30s
90s 90s

(180 x 0.55 samples®) (180 x 0.55 samples*)

70% 20% 10%
Train Test Validate
{126 x 0.5s samples) (36 x 0.55 samples) (18 x 0.5s samples)

Figure 3.22: Training, testing and validation datasets (Worker fall detection)

Processing

The raw accelerometer data is used to generate 39 features from each
window. During a free fall event, there is an abrupt change from a stationary
state with gravitational pull in one axis to another stationary state where all
acceleration readings drop to zero. It is crucial to note that acceleration does

not actually disappear during a free fall event; the zero acceleration readings
result from the sensor's electronic and mechanical components lacking a
reference point during free fall. The neural network identifies a free fall
event when all readings reach zero. This transition from one stationary state
to another occurs within a small window of about 30ms. Given that our
samples are 500ms long and our processing block takes chunks of about
100ms to extract the 39 features, there's a high likelihood that many of those
chunks will indicate a stationary event rather than the switch from a static
state to a free fall state, which 1s what we aim to detect with our model. To
address this, the processing window needs to cover the entire event. We
adjust the processing window to 500ms and run the processing block to
obtain the following cluster diagram. The lower cluster, which shows both
classes together, includes freefall, walking, and running samples. This makes
sense, as walking and running movements are similar to an inverted
pendulum with a free fall component. Nevertheless, as you will see, the
model can differentiate between them without a problem.

Figure 3.23 shows similar movements clustered together. Notice how all the
freefall events are grouped together, while the Other category forms three
distinct clusters. This 1s because the Other category includes standing,
walking, and running events, which are quite different. However, they are
grouped under the same class for the purposes of this use case.

A: FREE FALL

B: OTHER o ﬂﬁ:ﬁ%%

Figure 3.23: Cluster diagram of Freefall versus other events

Model

The features obtained from the processing block are input to the three dense
layer model at a learning rate of 0.001 for 40 epochs. This yielded an
accuracy of 96.4% and a loss of 0.16, which was reached in epoch 33. We
experimented with running the training for 60 epochs, but nothing changed;
the same accuracy was reached on Epoch 33. It is important to always check
if you're using enough training cycles or if you could have used less. When
we modified the learning rate to 0.002 (faster), the accuracy converged to
96% in half of the training cycles, around 16. From this, we can learn that
the quality of the data and the model architecture have a greater impact on
accuracy than the number of epochs and the learning rate. The training
cycles and learning rate are directly connected to the resources and time
needed to train the model.

The following figure shows how training data is distributed and used across
the different stages (training, validation, and testing), the steps that each
stage goes through, and the relevant results at the end of each stage:

PROCESSING LEARNING RUN

39
70’% Faatures 6 0
Training samples (Spicteal Analysis) Tralning Cycles
2 Labela = o TRAIN
= ‘A : : i "
3 Dense Layer NN
Leaming rate: 0.001
10% 39
Validation samples Features 95\?::22?
D Labsels (pecal Aralystn Loss: 012 VALIDATE

A —4 =

3 Dense Layer NN

360
samiphes 3 g
2 Tﬂa?::%pm Features 94.6%
Labls 3 Labels l’SDL'(.tm!Artlnh] j#-ccm.au?')' TEST

d]
e | %

3 Uense Layer NN

i 39
ve Features 93.2%
Accelerometer (Spectral Analysis) ALcuacy LIVE

I =0 %

2 Dense Layer CHN

Figure 3.24: Training, validation, testing and deployment stages (Worker fall detection)

System implementation

The following figure shows a connection diagram with the three main
building blocks and the connections between them. Additionally, it displays
their inputs, outputs, and power sources:

Figure 3.25: Connection diagram (Worker fall detection)

Block 1, the acquisition block, utilizes two microcontrollers. The first
microcontroller is an Arduino Nano 33 BLE Sense, which captures free fall
motion using its three accelerometers (X, Y, Z). The accelerometer data is
then sent to an embedded processing block and fed into a TinyML model
running on the Arduino microcontroller. The classification process takes
approximately 1ms and uses 1.4k of RAM. If a free fall is detected, the
Arduino sends an event to the NRF52840 Dongle. The dongle then prepares
two messages: one for the light alert to turn on and another for the sound
alarm to go off, and sends out the messages via the mesh network.

Block 2, the actuator block, uses an NRF52840 Dongle to receive messages
from Block 1 via the mesh network. It subscribes to the channel where Block
1 sends messages to light alerts. Upon receiving a message, it sends the
message payload to the Arduino controlling the NeoPixel lights. The
Arduino reads the payload, which contains a command to set the alert lights
for a predetermined period.

Block 3, another actuator block, also relies on an NRF52840 Dongle to
receive messages from Block 1. In this case, the message instructs what
track to play and for how long. The dongle then sends the command to the
feather connected to the track player wing, which plays a preselected alarm
track via the 4 Ohm 3W speakers connected to its output.

Source code

The trained model and the logic that detects the free falls, is loaded to the

block 1. In the following table, the pseudocode explains step by step how
data is handed to different parts of the firmware and the resulting messages
sent out to the network to alert of the incident:

Code location: Arduino

ciedgeml 5 2 Nano 33 BLE @ Block 1

Mawermnent Classification Maodel Capturing and classifying
o [Post- | Local free falling events.
| % | |process
NS

Pre-
process

ing

| Main
[ing | scrigt Pseudocode

1. The accelerometer
captures the movement
in three dimensions

1 (X,Y,Z) and sends it to
l the processing block.

2. In the processing block,

3) the movement data is

sliced into small

windows, turned into 39

features, and sent to the

3 TinyML model to run.

3. The TinyML model
runs the inference with
the provided data and
returns an array of
results. Results are sent
to the post-processing
functions.

4. The post processing

A functions wait for at

least two free fall
consecutive events to be
reported to issue a free
fall notice to the main
script.

1. The main script
prepares a message to
the light alert block
specifying color and
duration. It also
prepares a message for
the sound alert block
specifying what track to
play and how long to
play it. It sends both
messages to the network
block to publish them to
the mesh network.

Table 3.7 : Pseudocode (Worker fall detection)

Network

The blocks communicate wirelessly using a BLE-Mesh network that
operates under a pub/sub paradigm. Channel configuration is performed
during the initial setup. 7able 3.8 shows multiple instances of Block 1 (each
representing a free-fall sensor) publishing the free-fall events to channel 1, to
which Block 2 (the visual alert) is subscribed. Additionally, Block 3 (the
audio alert) is also subscribed to the free-fall events.

Block(s) Action Channel
1 Publishes to CHI
1 Publishes to CH2
2 Subscribes to CH1
3 Subscribes to CH2

Table 3.8 BLE Mesh network configuration (Worker fall detection)

Power analysis

The power profile of each block is shown in the following table:
Block 1

Power . Latent Active
Device Notes
source consumption consumption
Arduino 0.032A <1A
P1 Nano 33
BLE Sense @sv @5V
NRF52 0.04mA 3mA Active when
P1 publishing messages
Dongle @5v @5v as a client.

Table 3.9 : Power profile for block 1 (Worker fall detection)
This block must be battery-operated as it will be embedded into a wearable.
Block 2

Power ‘ Device

Latent

source

consumption

Active Notes
consumption

P NRF52 0.04mA 0.3mA Active when receiving
Dongle @5v @5v messages as a server.
Arduino 0.034mA <1A Manages timing for
P2 Nano 33 NeoPixel
BLE @5V @SV eoPixels.
NeoPixels 0.001mA 1A Each NeoPixel draws
P3 60mA at full brightness.
60x @5v @sv 20mA is typical.

Table 3.10: Power profile for block 2 (Worker fall detection)

We need a 2A power source for block 2. Given the power requirements of
bright NeoPixels, this block must connect to a permanent power source (wall
outlet).

Block 3
Latent Active
Power Device Notes
S consumption consumption
NRF52 0.040mA 0.3A Active when
P2 receiving messages
Dongle @5v @5v as a server.
Adafruit
- NRF52840 0.034mA 0.6A Active when
Feather+ @5V @5V playing a track.
track player

Table 3.11 : Power profile for block 3 (Worker fall detection)
We need a 1A power source for Block 3. The current requirements of a 4

Ohm 3W speaker at 5v are 0.6A.
Bill of materials

An approximate cost and quantity of the materials needed to build the
prototype in this use case is presented in the following table:

Description QTY Unit cost Total

Arduino Nano 33 BLE Sense 1 $45 $45

Arduino Nano 33 BLE 3 $30 $90

Adafruit NRF52840 Feather 1 $45 $45
Adafruit Music Maker FeatherWing 1 $25 $25
NRF52840 Dongle 4 $12 $48
Neopixel Strip (60x) 1 $99 $99
Power Source 1A @5v 4 $30 $120

Table 3.12: Bill of materials (Worker fall detection)
Approximate cost of materials is $472.

Use case: Movement profiling

Movement classification enables the detection of specific motion patterns
that serve as indicators of particular behaviors. By analyzing data from
sensors such as accelerometers and gyroscopes, machine learning models
can identify and differentiate between various types of movement, from
subtle gestures to more complex activities.

Car driving style tracker

This use case focuses on the classification of vehicle movement, including
acceleration, braking, cornering, and speed changes, to build an end-to-end
solution for monitoring driving behavior and performance in real-time.

Problem definition: An insurance company is conducting an experiment to
determine whether providing real-time feedback to drivers can reduce the
risk of accidents. The company is willing to offer a significant discount on
their insurance policy to drivers who are willing to use a device that provides
real-time feedback on their driving style. The device will be equipped with a
small speaker mounted on the dashboard, which will emit a beep if the
driving behavior is considered dangerous or outside the normal limits.

Solution: The proposed solution involves using a microcontroller running a
TinyML model equipped with embedded accelerometers to detect driving
events and their intensity. The microcontroller communicates serially with a
track player that produces discrete beeps when the driver is not operating the
car carefully. The beeps can be heard by the driver in a nonintrusive and
non-distracting manner.

The following figure shows a conceptual diagram of the proposed solution:

Accalerometer + ML Track Player "u,\\ o

Figure 3.26: Solution concept (Car driving style tracker)

Data acquisition

The objective of this use case is to determine whether the car is being driven
recklessly. To gather the training data, we have installed a device with a set
of three accelerometers on the dashboard of the test car. The Y-axis is
aligned with the direction of the car. A negative reading on the Y-axis
indicates acceleration, while a positive reading indicates deceleration. The
X-axis 1s perpendicular to the car's direction and parallel to the road surface.
A negative reading on the X-axis represents the centrifugal forces resulting
from a right turn, while a positive reading indicates a left turn. The Z-axis is
normal to the driving surface and aligned with the earth’s gravitational
acceleration of 9.81m/s"2. When a car is in motion, it is subject to various
forces, some of which may be stronger than the gravitational pull (1G). For
instance, if you are traveling at approximately 15 km/h and need to make a
sudden stop to avoid hitting someone, you will experience the equivalent of
about 1G but in the Y-axis. This is safe but not a pleasant experience, and it

should not occur frequently if you are a good driver. The device records
accelerometer data when the car is moving and stops when the car is parked
and turned off.

Figure 3.27 shows the characteristics of the training dataset, which includes
samples of different instances of sudden stops and normal driving. The
dataset is divided in three parts: Training dataset (70%), test dataset (20%)
and validation (10%).

Sudden Stops y Normal Driving
e \ y .f/ 50%

Turns 34s
200 S Acceleration 33s

Deceleration 33s

100)\ . 100s

(50 x 25 samples®) A] (50 x 25 samples®)
70% 20% 10%
Train Test Validate
(70 x 25 samples) (20 x 25 samples) (10 x 25 samples)

Figure 3.27: Training, testing and validation dataset(Car driving style tracker)

If you are a reckless driver, you might take more risks such as running amber
lights, not allowing others to merge into your lane, or trying to weave
between cars. While most of the time the driver may get away with it,
occasionally they will have to make a sudden stop to avoid a collision.
Initially, we tried to classify driving behaviors like changing lanes, speeding
up, and slowing down to identify different driving styles. However, we
discovered that sudden stops are a common factor across all driving styles
that indicate dangerous driving. As a result, we created a binary dataset with
50% of the samples representing sudden stops and the other 50%
representing regular driving maneuvers that do not exceed 0.5G (such as

normal turns, acceleration, and deceleration).

Processing

A sudden stop at 15 km/h is a short-lived event lasting between 500 and
1000ms on average. When a vehicle is traveling at lower speeds, the
deceleration peak lasts longer compared to higher speeds. Therefore, this
model is not suitable for detecting real crashes at higher speeds.

A processing window of 2000 ms is sufficient to display a sudden stop
event. The processing block analyzes 39 features from the three
accelerometer time series. Notably, for this specific use case, the most
important features are the spectral power for the Y axis. In essence, the
model analyzes the energy released on the Y-axis to detect a sudden
deceleration event. Refer to the following figure:

Figure 3.28: Sample of a sudden stop

Notice how the accelerations in the X and Z directions are constant, while
the acceleration in the Y direction shows a deceleration that peaks at about
10 m/s"2.

Figure 3.29 clearly indicates a distinct separation of both classes. The
vertical spread demonstrates the diversity of the dataset, but it is important to
note that the close horizontal separation also reflects how similar the regular
driving events are to the sudden stop events.

A: SUDDEN STOP
B: DRIVING B 8 B

B B A
B AR 2B A
B B _ A A ARA A A Ay

B A AAB:&RAAA% Ap A ’{x

Figure 3.29: Cluster diagram showing separation between sudden stop events and normal driving
events

Model

We process 100 samples, extracting 39 features. These features are then
input into a three-layer neural network for 30 training cycles at a learning
rate of 0.0005.

The first layer is a fully connected layer with 20 neurons, receiving input
from all 39 features. The output undergoes L1 regularization and is activated
by a ReLLU function before being sent to the second dense layer. The second
layer consists of ten neurons, also with L1 regularization and ReLU
activation. The final dense layer has two neurons, one for each class, and is
activated by a SoftMax function to produce a probability distribution for the
inference result.

The model takes 1 ms to run on a Cortex M4 processor operating at SOMHz.

The following figure shows how training data is distributed across the
different stages (training, validation and testing), the steps that each stage
goes through, and the relevant results at the end of each stage:

70%
Training samples
2 Labels
10%
Validation samples
2 Labels
100
samples
7 20%
ot Testing samples
Labets 2 Labels
Live

Meeelerometer

PROCESSING

39
Foatures
[Spectral Analysis)

s

39

Features
[Spectral Analysish

—

39

Features
{Spectral Analysis)

=

39

Features
[Speateal Analysis)

LEARNING

Traiming Cycles
s
o
o
 Dense Layer NN
Learning rate: 0.0005

e |
-}

RUN

97.0%

Accuracy
Loss: 0,10

=

3 Dense Layer NN

86.7%

Acturacy

&3

3 Dense Layer NN

93.2%

Accuracy

¢

3 Dense Layer CNN

TRAIN

VALIDATE

TEST

LIVE

Figure 3.30: Training, validation, testing and deployment stages (Car driving style tracker)

System implementation

The following figure shows a connection diagram between its two building

blocks. Additionally, it displays their inputs, outputs and power sources:

: BLE Mesh (Publish to CH1)

Accelerometer
&
|

S0 Card
P .

Sanak
==
A

P1 E P2

40 3W

Figure 3.31: Connection diagram (Driving style tracker)

Block 1 (Acquisition block) utilizes two microcontrollers. The first
microcontroller is an Arduino 33 BLE Sense, which is equipped with
embedded accelerometers to capture, process, and analyze the car's
movement through its M4 ARM processor. The output of the analysis is then
received by a local script, which prepares a track player command to be sent
to the second microcontroller board, an NRF52840 Dongle. This command
is then published to a local mesh network for Block 2 to pick up. While
having a mesh network inside a car may seem like unnecessary over-
engineering, it opens up numerous possibilities, such as custom car
dashboards, real-time communication with the cloud, and black box record-
keeping.

Block 2 (Actuator block) also utilizes the same track player components as
other use cases in this book. It includes an NRF52840 dongle to subscribe
and receive sudden stop messages from Block 1. Additionally, it
incorporates an Adafruit wing and a track player feather connected to a 4
Ohm 3W speaker. This setup provides auditory feedback to the car driver.

The auditory feedback is a subtle beep, similar to other auditory cues that the
car provides to alert the driver about events requiring attention, such as
fastening a seatbelt, turning on lights, and detecting cars in blind spots.

Source code

The trained model and the logic that processes the data from the data
captured by the accelerometers mounted in the car is loaded to the block 1.
In Table 3.13, the pseudocode explains step by step how data in captured,
processed, handled to the model, its results analyzed by the post-processing
stage and communicated to its peripheral block (block 2).

Code location:
ccedgeml 3 3 Arduino Nano 33
BLE @ Block 1

Movernent Classification Model Recognizing sudden
|r=rr- W W stop events
I;::;u%:-] !:_lr;:u-:.ee-:- | -':':T:;:r Pseudocode
——— 1. The three
accelerometers
(X,Y,Z) capture
the car
1
movement and
] send it to the
processing
5 functions.

2. The processing
block extracts
39 spectral

3 features from

each sample. It

feeds them to
the TinyML
model

3. The TinyML
model
recognizes
sudden stops
while the car is

moving and

A outputs results

to the

postprocessing
functions.

4. The post
processing

w1

function runs a
series of checks
before declaring
an actual sudden
stop. A
command to
play a sound in
the track player
is prepared and
sent to the local
main script.

5. The local main
script
communicates
the event to the
microcontroller
in charge of
network
communication.

Table 3.13: Pseudocode for block 1 (Car driving style tracker)

Network

The blocks communicate wirelessly using a BLE-Mesh network that
operates under a pub/sub paradigm. The following table shows one to one
communication between blocks via the channel 1. Block 1 publishes
commands to the track player to play feedback sounds to the driver:

Block(s) Action Channel
1 Publishes to CH1
2 Subscribes to CH1

Table 3.14: Mesh network configuration (Car driving style tracker)

Power analysis

The power profile of each block is shown in the following table:

Block 1
Latent Active
AT Device Notes
Source consumption consumption
P1 Arduino 0.032A <1A
Nano 33

BLE Sense @5V @5V

NRF52 0.04mA 3mA Active when
P1 publishing messages
Dongle @5v @>5v as a client.

Table 3.15: Power profile for block 1 (Car driving style tracker)

A model running inference every second will consume about 0.5Amps.
While the block can run on batteries, it would be ideal to power it from a car
power source. That way, the system would become a fixture in the car same
as any other electronic component on the dashboard.

Block 2
Latent Active
LEONICTE Device Notes
source consumption consumption
Active when
P NRF52 0.040mA 0.3A receiving
Dongle @5v @5v messages as a
server.
Adafruit
- NRF52840 0.034mA 0.6A Active when
Feather+ @5V @5V playing a track.
track player

Table 3.16 : Power profile for block 2 (Car driving style tracker)

We need a 1A power source for Block 2. The current requirements of a 4
Ohm 3W speaker at 5v are 0.6A. Same as Block 1, this block should be
powered by a car power source.

Bill of materials

An approximate cost and quantity of the materials needed to build the
prototype in this use case is presented in the following table:

Description QTY Unit cost Total
Arduino Nano 33 BLE Sense 1 $45 $45
Adafruit NRF52840 Feather 1 $45 $45

Adafruit Music Maker FeatherWing 1 $25 $25

NRF52840 Dongle 3 $12 $36

Power Source 1A @5v 2 $30 $60

Table 3.17 : Bill of materials (Car driving style tracker)
Approximate cost of materials is $211.

Conclusion

Movement classification is incredibly useful to detect events that were
impossible to detect with traditional sensors. Movement classification and
small battery-operated ML models that run independently are a great fit with
systems that cannot afford a permanent connection to the internet because
they are remote or in constant movement. The relative low cost of
implementation mainly due to a reduction in size and moving parts enables
solutions with hundreds of classifiers (e.g.: worker fall detection) all of them
independently detecting events. Technologies like low energy mesh
networks and LTE-M, share low energy and low data design principles with
movement classification implementations enabling more complex solutions.

In the next chapter, we will explore image classification, a fundamental task
in computer vision that enables machines to recognize and categorize objects
within images. The reader will learn how Convolutional Neural Networks
(CNNs), which have been applied to sound and movement classification in
previous sections, were originally designed for image recognition.

References

e https://www.quora.com/Why-is-the-Nyquist-Shannon-sampling-
rate-exactly-2-times-the-maximum-frequency-Where-is-the-proof-
for-that-constant-2

e https://github.com/jeandeducla/ML-Time-Series

e https://towardsdatascience.com/over-fitting-and-regularization-
64d16100f45¢

e https://www.adafruit.com/product/3436 Music Maker FeatherWing
w/ Amp - MP3 OGG WAV MIDI Synth Player - Stereo 3W
Amplifier

https://www.quora.com/Why-is-the-Nyquist-Shannon-sampling-rate-exactly-2-times-the-maximum-frequency-Where-is-the-proof-for-that-constant-2
https://github.com/jeandeducla/ML-Time-Series
https://towardsdatascience.com/over-fitting-and-regularization-64d16100f45c
https://www.adafruit.com/product/3436

e https://community.sw.siemens.com/s/article/what-is-a-power-
spectral-density-psd

e Nerijus Kudarauskas (2007) Analysis of emergency braking of a
vehicle,

Transport, 22:3, 154-159, DOI: 10.1080/16484142.2007.9638118
* https://doi.org/10.1080/16484142.2007.9638118

e https://towardsdatascience.com/intuitions-on-11-and-12-
regularisation-235f2db4c261

e https://crlab.cs.columbia.edu/humanoids 2018 proceedings/media/f
iles/0065.pdf

e Movement classification use case 1:
https://studio.edgeimpulse.com/public/289478/live

e Movement classification use case 2:
https://studio.edgeimpulse.com/public/300899/live

e Movement classification use case 3:
https://studio.edgeimpulse.com/public/301063/live

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://community.sw.siemens.com/s/article/what-is-a-power-spectral-density-psd
https://doi.org/10.1080/16484142.2007.9638118
https://towardsdatascience.com/intuitions-on-l1-and-l2-regularisation-235f2db4c261
https://crlab.cs.columbia.edu/humanoids_2018_proceedings/media/files/0065.pdf
https://studio.edgeimpulse.com/public/289478/live
https://studio.edgeimpulse.com/public/300899/live
https://studio.edgeimpulse.com/public/301063/live
https://discord.bpbonline.com/

CHAPTER 4
Image Classification

Introduction

Image classification is one of the most popular applications in TinyML. It
provides the ability to detect and count objects of practically any type. Just as
a thermometer can sense temperature, a camera working together with an
image classification model can sense the presence of specific objects and the
occurrence of certain events. This opens the possibility of creating a new
generation of sensors that provide invaluable and never-seen-before data to a
system for further analysis, decision-making, and actuation. Running image
classification in the same device that is capturing the image is a perfect match
for applications that guarantee privacy, as pixels are never sent out to any
external system. Furthermore, the stand-alone nature of the model allows us
to eliminate dependencies related to internet connection and cloud
infrastructure.

Structure

The chapter covers the following topics:

Capturing training data for image classification

Extracting features for the images

Image classification model
Use case: Gesture detection

e Use case: Face detection
e Use case: Object recognition

Objectives

This chapter guides the reader through the end-to-end process of
implementing image classification in a constrained environment. It begins by
demonstrating how to capture the training data, followed by identifying the
key features and explaining how to extract them automatically. Next, the
chapter discusses the inner workings of a neural network specialized in image
classification. The implementation details are then covered step by step,
starting with the electronic components, the pseudocode for the firmware
logic, the network configuration, and the power requirements. Finally, the
chapter concludes with an overview of the bill of materials.

Capturing training data for image classification

Training an object recognition model can be challenging and time-
consuming, as it requires both a large, diverse dataset to accurately learn and
distinguish features, and significant computational power to achieve a stable
and reliable model. Fortunately, it is possible to reuse already trained Neural
Networks by replacing their specialized layers with new ones that classify
different objects. Such a process is called Transfer Learning, and it allows
you to train a model for your needs with a reduced set of images, as you are
only training the specialized layers instead of the whole network from
scratch. In most cases, you only need a smartphone to capture around 100
images per class (a class is a type of object you want to recognize). Tools like
Edge Impulse provide a web-based client that will automatically help you
snap a picture and upload it to their cloud. You can also use any camera to
collect the images and load them directly to any computer performing
processing and training.

Extracting features from the images

The process of extracting features from an image might be familiar to
anybody who has ever worked with an image on a computer. The first step is
to crop the image to a square shape (1:1); this might feel unnecessary as all

cameras return a rectangular image however, resizing to a square shape helps
simplify the computation, creates consistency in the input, and enables the
reutilization of pre-trained models. The second step is to resize the image to a
smaller size (e.g., 96x96, 160x160, or 320x320 pixels). While some detail
and texture data are lost in the image size reduction, the shape and contours
of the image should still be clearly delineated. Neural Networks mainly learn
how to recognize objects by their contours. As you can see in the following
example, you can still recognize a flamingo even in the 96x96 image, as
shown here:

320x320 160x160 96x96

Figure 4.1: Different versions of the same image at different sizes

The following (optional) step is to decide whether color is essential for the
use case classification. If it is (e.g., you want to classify birds by their color),
you need to send a color image to the neural network. The number of features
in a color image is the total number of pixels times the number of channels.
A color image has three channels (Red, Green, and Blue). However, in most
cases where color is irrelevant, you can reduce the number of features by
turning the image to grayscale. In that case, the number of features is the total
number of pixels in the image. Each pixel expresses its brightness with a
number from 0 to 255 (8bits).

The relationship between the number of channels, dimensions, and the total
number of features in images 1s shown in the following table:

Image type Channels Dimensions Total pixels or features

Color image 3 320x320 307,200

Color image 3 160x160 76,800

Color image 3 96x96 27,648
Grayscale image 1 320x320 102,400
Grayscale image 1 160x160 25,600
Grayscale image 1 96x96 9,216

Table 4.1 : Relationship between number of channels, dimensions and
number of features

The final step is to send the array of numbers containing the series of pixel
levels to the neural network's input layer. The neural network will have as
many inputs as pixels in the image. For that reason, it is important to resize
all images to a predetermined size during the processing stage.

Image classification model

The array of pixel information sent from the processing Block is known as a
Feature Map. If you want to obtain a specific characteristic from that map
(like horizontal lines or color in specific), you pass the Feature Map through
a filter. After passing the data through the filter, you obtain a Modified
Feature Map highlighting the characteristics that such filter specializes in.
This is similar to what happens when you wear polarized sunglasses; your
eyes get a modified version of the light that would reach your eyes. It is
called polarized because you only receive the light aligned in one direction,
filtering out everything else. In the same way, the first layers of the model
filter out basic shapes like lines, curves, or corners of a shape using filters
specialized in lines, curves, and corners.

The effect of the Convolution Kernel filter on an input image where the
edges are emphasized is clearly shown in the before and after in the
following figure:

Input image Convolution Feature map
Kernel

Figure 4.2: Example of the effects of a convolution kernel filter

Once that is done, you pass the Modified Feature Map through another set of
filters. Such filters are specialized in more complex characteristics built from
the basic ones and so on. A good example is a filter dedicated to squares. We
would be unable to detect squares if we did not filter for lines first, as squares
are made of lines. The result is a new but even more specialized Modified
Feature Map at every step. You can guess what happens next: we run such a
map through another set of specialized filters; in this case, the filters detect
basic objects. This progression is effective because the earlier layers of the
network focus on identifying basic features like edges and lines, which are
essential for constructing more complex shapes that the later layers analyze
to detect basic objects. The next step is to create a layer that detects objects
made from a combination of objects (like a car or a face).

The progression from detecting low-level features to medium and high-level
features is shown in the following figure:

Low level features Mid level features High level features
- % - T | g 2 by
I I { P | o~) | N » e S IR el B
s | o | <D - Py | 2 | 2B

Edges, dark spots Eyes, ears, nose Facial structure

Figure 4.3: Low level, mid-level and high-level features

The process of applying a filter to a Feature Map is called convolution. A
convolution runs the filter through all sections of the Feature Map in a way
similar to a long multiplication to generate a new Modified Feature Map.

Pooling is used to detect variations in position and rotation to improve
detection capabilities. This allows the model to detect specific characteristics
without being centered or rotated. Normalization standardizes pixel values by
scaling them to a consistent range, typically between 0 and 1. This helps the
model process and compare pixel data more efficiently, enhancing its ability
to learn patterns and improve overall performance. Dropout is used to ignore
some neurons randomly and temporarily to force the network to learn
different ways to infer the same object, avoiding overfitting.

Multiple activation functions, specifically ReLU, introduce non-linearity to
the model at every step. Think about introducing non-linearity as a way to
help the model represent natural objects and actual events more accurately.
We need this because we live in a non-linear world where almost nothing
behaves like a predictable straight line.

So far, we can extract features, normalize them, and make them non-linear.
What is next is to classify them. We connect the specialized Feature Map to a
dense layer to do that. In other words, every feature in the map is assigned an
input neuron. Every neuron will be connected to the next layer in the same
way, and a random weight will be given to each one of those connections.
Using backpropagation, we run all the samples already labeled through the
entire pipeline (feature extraction and classification) to obtain an error score
that tells us how far we are from inferring the object correctly. This will hint
at what weights we need to modify to reduce the error in the next run. We do
this repeatedly with all the training sets as many times for a couple of dozen
training cycles. If we see the error going down, we are on the right path; we
keep running training cycles until the error no longer changes. At that point,
we had reached a stable version of the model. We should have separated a
small group of samples from the training data set that we will use to validate
the model. Because the model has never seen the validation samples, it will
give us a good idea of the real accuracy of the model.

So far, we have described a classic Convolutional Neural Network used to
classify images. However, those models usually have several megabytes in
size and are very expensive to train. They would not fit in a highly

constrained system like a microcontroller. Also, investing many resources to
create a model for every use case would not make sense. There are many
different techniques to reduce the cost of training a model, its size, and
processing requirements. The first is called Transfer Learning. As you have
learned, basic filters extract characteristics like lines and curves, but more
advanced filters extract shapes, objects, and specific classes. The trick here is
to reuse the layers that recognize basic geometric characteristics and shapes
and focus only on training the model on the last specialized layers. Since we
are only training the last layers, we can have a smaller training set (of about
100 images) per class instead of millions of images. The technique to reduce
size and memory requirements in the model is called depth wise-separable
convolution. DSC reduces the complexity of a convolution by splitting the
operation into two more simple convolutions. One is called depthwise
convolution, and the other is called pointwise convolution. The first performs
lightweight filtering by applying a single filter per input channel. The second
one 1is responsible for building new features by computing linear
combinations by running 1x1 convolutions across each one of the input
channels. The result is the same number of features that a regular convolution
would have returned, except that doing it with DSC is nine times faster (it
uses about 11% of the computational power of a traditional convolution
layer). The first model that proposed this architecture was MobileNetV1,
created by Google. This was incredibly important as it placed image
classification within reach of microcontroller-based applications.

Eventually, MobileNetV2 was released with further optimizations, namely
inverted residuals and linear bottlenecks. They work together to optimize
memory efficiency, which is also incredibly limited in microcontrollers.

Use case: Gesture detection

Gesture recognition is the process of recognizing dynamic or static body
movements, particularly hand signs or motions, through computer vision.
The system interprets meaning from body language or hand positions,
allowing it to understand gestures that convey intent or information. This
technology is commonly used in applications that require interaction or
semantic understanding, such as interpreting sign language, recognizing
commands, or detecting actions like waving.

Using hand signs to unlock a door

Problem definition: A lock maker is designing a new contactless product
that unlocks a door when the user shows a sequence of hand signs to the
camera. If the sequence is correct, the lock moves the latch to a position that
lets the user open the door. The camera and the door lock cannot be wired
directly as the door needs to run freely from the door frame. For that reason,
a wireless connection between the camera and the lock is necessary.

Solution: A camera embedded in the wall will capture a continuous flow of
images of people standing in front of the door. A model connected to the
camera input in the same device will detect whether the person is doing a
hand sign. If a hand sign is recognized, the microcontroller will classify it,
store the event in memory, and wait for the next hand sign to be performed.
The sequence of hand signs events is stored in a buffer in the same order they
were detected. The microcontroller has been programmed in advance to
recognize a pre-determined sequence of hand-sign events. If there is a match
between the captured and pre-determined sequences, the lock declares a
matching event and will publish a message to the second Block, commanding
the lock to change its status to unlocked. The microcontroller attached to the
lock will receive the message and send a positive signal to the NPN
transistor. This will cause current to flow through the solenoid, generating a
magnetic field that will move the metal core to a displaced position,
compressing the spring around it.

The flow of information from hand signs, camera capture, on-device
classification and wireless communication to the actuator device is shown in
the concept following figure:

0

N

2

Camera Solenoid Lock

Hand Signs

Figure 4.4: Concept diagram (gesture detection)

The metal core is directly connected to the bolt of the door. The bolt is
retracted from the frame by moving the core and will no longer Block the
door from opening. The lock stays retracted as long as the solenoid’s
magnetic field is active. However, if power is lost or the microcontroller
stops sending signals, the spring mechanism will automatically push the bolt
back into the locked position, ensuring security. However, the
microcontroller will stop sending the signal after a couple of seconds,
causing the transistor to close the gate, stopping the current flow through the
solenoid, causing the magnetic field to disappear, and making the bolt go
back to its original position thanks to the decompression of the spring.

Data acquisition

The model will be trained to recognize seven different hand signs: Fist, horn,
index, ok, pinky, thumb, and two. A hand sign is performed by a three-
dimensional object (the human hand). The same hand sign looks different
from different angles. In many instances, two different hand signs look the
same depending on the angle from which they are being observed. For
example, the horn sign looks very similar to the index sign if observed from
the thumb side. Because the model will be trained on flat pictures that only
show two dimensions, the third dimension is often flattened and, in some
cases, hidden. For this reason, we had to devise the convention that the model
would be limited to recognizing hand signs that show the palm facing
forward. We captured 60 images of each class under the same light
conditions to control for everything but the shape of the hand. This helped us
recognize that the pinky hand sign is the most difficult to identify as it is
similar to the horn. We recommend not using the pinky hand sign for a live
prototype.

The following figure illustrates the balanced composition of the training set,
featuring pictures of the seven different hand gestures that the model will
recognize:

. Fist
; Plnky F //ED images, 14.2%
60 images, 14.2%

Horn

Th um b ""_-_-_-—:[-5 images, 14.2%

&0 images, 14.2%
420 images

o :'.l

L

Two — —— |Index
KT B " .
60 images, 14.2% ?{", . 60 images, 14.2%
\'\':L;{_“I y
60 images, 14.2%
70% 20% 10%
Train Validate Test
(294 images) (B4images) (42 images)

Figure 4.5: Training set (gesture detection)

All samples show a left hand; however, using augmentation, the picture was
flipped and shown as a right hand. Augmentation helps the model generalize
better by showing multiple variations of the same class.

Processing

The images coming from the camera are trimmed to a square ratio and
downsized to 48x48 pixels. During the validation process, we discovered that
the model shows better accuracy if we use the color version of the image.
This gives a total of 48x48x3 = 6,912 features that will be sent to the input
layer of the model. Notice in Figure 4.6 how clusters of different hand signs
are clearly defined. However, the index and the two hand signs are very
close. This 1s caused by the fact that the two hand signs have the same shape
as the index, except that it has an extra finger. In the top part of the graph,
you can see the same situation between the pinky and the horn signs, which
have similar shapes. The ok and the fist signs are clearly defined and separate
from any other class as they are very specific and characteristic.

A=FIST
B: HORN

£ NDEK L
o: 0K " tEFkEF

o Y phigm W @aa‘r@
G:TWO A Aetin
My

‘@f‘“‘% g
i Fp s F (s *F
TGWH%E”C% ||{F i‘-,_rc th,;{‘%-é

e fﬁ‘eﬁﬁﬁgﬁr{c{:
lEW I: s E‘:}ECE E%:

=
e

Figure 4.6 Cluster diagram (gesture detection)

Model

The model has been trained with 420 images to achieve an accuracy of
90.2%. The model was trained with half of the images in its first version but
only achieved 60% accuracy. This shows the importance of having enough
quality data in the training set. Another factor that affected the accuracy to a
great degree is the Learning Rate. In the first version, we used 0.05, but it
never converged. Instead, the error validation error oscillated from 0.3 to
0.08 even when we increased the number of training cycles to 120. It took us
up to 8 iterations to adjust hyperparameters to achieve more than 90%
accuracy in the validation. The inference time in an Arduino Nicla Vision
(Cortex M7 480MHZ) is 22ms. This allows approximately 45 frames per
second. The post-processing stage will create a count based on the results
higher than 0.8 scores in each frame and declare an identification if a class is
present in more than 90% of the frames for every given second as shown in
the following figure:

420

Labks

70%

Training samgles
7 Lahels

10%

Valdation samples
7 Labels

20%

Testing samples
7 Labels

Live
Camera

PROCESSING

6912

Features
(488 RGE)

&

6912

Featuics
(48248 RGH)

&

6912
Features
[48x48 RGB)

&

6912

Features
(4848 RGE)

&

LEARNING RUN

“90

Training Cyeles
Lessming ate: 0001

E oY
-]
o

FOMO MobileNetVz

90.2%

Accuracy

FOMO Mabilehety2

FOMO MobileMet V2

81.3%

Accuracy

FOMO MobileNetv2

TRAIN

VALIDATE

TEST

LIVE

Figure 4.7: Training, validation, testing and production model metrics (Gesture detection)

System implementation

As shown in the following figure, the application consists of two building

blocks:

: BLE Mesh (Publish to: CH1) © BLE Mesh {Subscribe to: CH1)

Live Camera

g c:edgeml_4_| (| 1000uF

Capacitor

= =

Solenoid Lock

Figure 4.8: Connection diagram (Gesture detection)

e The first one is an acquisition block containing two microcontroller
boards. The first is an Arduino Nicla Vision with a Cortex M7 480MHZ
MCU performing the image capture and running the TinyML model. If a
hand sign is positively identified, it stores it in a buffer that keeps track
of the order of events. It has been programmed in advance with a small
array of authorized sequences. The program continuously monitors if the
buffer of events contains one of the authorized sequences. If that is the
case, the Arduino Nicla Vision sends a message with an Open-Door
command to the second microcontroller board, an NRF52840 Dongle in
charge of networking. The Dongle sends the command out in a Mesh
Network message by publishing it to a channel dedicated to door
commands.

e The second block, which 1s subscribed to the channel dedicated to door
commands, receives the message from Block 1 via its NRF52840Dongle
and sends it down to the Arduino Nano 33 for further processing. The
Arduino Nano knows how to handle an Open Door command. It outputs

a 1 in the pin connected to an NPN transistor's base. The transistor
operates like a gate that allows low-current pins to control high-current
components. Specifically, the pin is controlling a lock that requires up to
0.65Amps to generate a magnetic field with enough force to compress
the spring that is restricting the movement of the iron core of the
solenoid, moving the lock to an open position that will allow the user to
push the door and open it. The lock displacement will only last one
second before the microcontroller switches the pin to 0, sending the lock
back to its closed position.

Source code

The logic in block 1 is presented as a step by step numbered process in the

following table:

ccedgeml 4 1

Code location:
Arduino Nano
33 BLE @
Block 1

Capturing the
data, processing it
and running the
EdgeML model.
Pseudocode

1. A camera
captures
images of
people
standing
before the
door. Images
are sent to the
Processing
functions.

2. In the
Processing
Block, the
image is
resized and
reshaped.
Resulting
pixels are sent
to the model.

3. The EdgeML
model runs
the inference

Image Classification Model

Pra- Post- Local
process process Main
Ing ing Script
@
(3)
)

with the
provided data
and returns an
array of
results.
Results are
sent to the
post-
processing
functions.

. The Post

Processing
function
validates that
the hand sign
is present in
front of the
camera by
analyzing
multiple
frames. Once
a hand sign is
identified, the
event is stored
in a buffer.
The program
compares
buffer
contents with
authorization
sequences. If
it finds a
match it sends
command
payload to the
local main
script for
further
handling.

. Local Main

Script
communicates
with network
MCU the
command.

Network

Table 4.2 : Block 1 logic (Gesture detection)

We are using a BLE-Mesh Network with elements using pub-sub protocol to
send and receive messages.

Block(s) Action Channel
1 Publishes to CH1
2 Subscribes to CH1

Table 4.3 : Network configuration (Gesture detection)

Power analysis

The power requirements per block is as follows:

Block 1:
Latent Active
Power Device Notes
SLdbres consumption consumption
Arduino 0.032A <1A
P1 Nicla
Vision @sv @5V
NRF52 0.04mA 3mA Active when
P1 publishing messages
Dongle @sv @sv as a client.

Table 4.4 : Power requirements for Block 1 (Gesture detection)

While the camera could run on a battery for a while, since this Block is going

to become a permanent fixture, it would be best if we feed it from a
permanent power source.

Block 2:
Latent Active
Power Device Notes
source consumption consumption
NRF52 0.04mA 0.3mA Active when
P2 recelving messages
Dongle @5v @5v as a Server.
Arduino 0.034mA <lA Activates Solenoid
P2 Nano 33 Lock
BLE @5V @5V oc

Table 4.5 : Power requirements for Block 2 (Gesture detection)

We need a 1A power source for Block 2. Given the power requirements of
the Solenoid, this Block must connect to a permanent power source (wall
outlet).

Bill of materials

The bill of materials offers an approximation of the cost of the project:

Description QTY Unit cost Total
Arduino Nicla Vision 1 $85 $85
Arduino Nano 33 BLE 1 $30 $30
NRF52840 Dongle 2 $12 $24
Solenoid Lock 1 $12 $12
Power Source 1A @5v 2 $10 $20

Table 4.6 : Bill of materials (Gesture detection)
The approximate cost of materials is $171.

Use case: Face detection

Image classification is used to detect faces while preserving privacy. The
model identifies patterns consisting of facial contours and generic features
such as eyes, mouth, nose, and hair. Detecting the identity of a specific
person (face recognition), however, requires a completely different model
and is outside the scope of this chapter.

People detector

Problem definition: A hotel front desk in NYC helps guests check in, book
transfers to the airport, purchase theater tickets, and recommend tours, among
other things. To improve their service, they need a way to detect anybody
standing in front of the desk instantly. This will help the staff interrupt
whatever they are doing around the lobby and address the guests
immediately. This will guarantee the best service possible. As part of the
solution, the client has suggested that the staff could be paged silently using a
haptic bracelet.

Solution: As part of the solution, a camera that will be positioned to capture

people getting close to the desk without detecting people passing by in the
background. The camera will send every frame it captures to a processing
Block to determine if there is a face in the image. If there is a face detected, a
message will be sent to the Haptic pins.

The following figure shows the most relevant components and the flow of
information: The faces, the camera, the wireless communication and the
haptic pin actuator:

&0

Figure 4.9: Concept diagram (People detector)
The haptic pins are battery-operated devices that front desk staff carry in their
pockets or pin to their jackets. This is similar to a sound-based alarm except
that it is silent and only perceptible by staff wearing the pin. The haptic pin
has a microcontroller capable of subscribing to Mesh Network messages and
a small battery that will power the haptic motor controlled by the
microcontroller. The pin’s battery should last at least 8 hours.

Data acquisition

For this use case, we used the existing dataset called The Images of Groups
Dataset created by A. Gallagher, T. Chen for the IEEE Conference on
Computer Vision and Pattern Recognition, 2009. We manually labeled faces
using the Edge Impulse Labeling queue.

Using a single label to train the model is called Unary Classification or Class-
Modeling, and it is very common. The goal is to identify objects of a specific

class among others by learning from a dataset that exclusively includes
objects of that class. It is more difficult than training multi-class models as
there is no point of comparison between different classes. 400 face images
have been used to train the model. Refer to the following figure:

Face
100%

400 images

70% 20% 10%
Train Validate Test
(280 images] (B0 images] (40 images)

Figure 4.10: Training dataset (People detector)

Processing

As part of the processing process, we crop the image to a square ratio and
resize it to 96x96 pixels. While we originally turned the face images to
grayscale, we discovered that leaving them in color (RGB) improved the
model's accuracy. It is possible that the different skin tones help the model
differentiate faces from the background. The number of features per image is
96x96x3 = 27,648. Notice in the diagram how the samples representing a
single class show together in a cluster. The model will create a limit around
the cluster and classify everything inside it as a face. This is very similar to
how anomaly detection works. You will see more about it in the following
chapters.

The cluster diagram for Unary Classification in the following figure is still a
useful way to verify that all samples are relatively close to each other
forming a cluster:

A: FACE

Ap: Mo A ph A iﬂ.f‘
A Ay ﬂA;f:; AR B 0 A
AR A Aiﬁ ﬂ;A ?ﬂTA SAARAA 2. A AA
A A Aa A
A A;AAAA’”‘ AL Ah PR AN A A
A
& A A ‘?A Aﬁ,ﬂ.ﬂ Al A
A/),‘Pfh f,‘A A AA L aA A A A A JAA AA
A A O
Al AR AN A A A AR AR R fA
ALA A A A
AR Aﬁ'zﬁh At hoa AL aTAA TR
A A A ‘qAAﬁA%‘M A,&Af‘
A AAAY JA M;f Ay A
PO

Figure 4.11: Cluster diagram (People detector)

Model

The model used is MobileNetV2. The input layer takes 27,648 features in its
input layer. This model is trained with 90 epochs at a learning rate of 0.001
and batch size of 32. The original dataset to train this model contained
samples with multiple faces. The way the model scores success is to compare
the number of faces found vs the number of faces labeled in the sample. If,
for example, the model finds 3 out of 6 faces it is considered 50% accurate
for that sample in specific. However, because the goal of the project is to
detect people in front of the desk and not to infer the exact amount of people
in the group accurately, our accuracy, in reality, is 100% as people were
successfully detected. To avoid this issue, we modified the dataset to train
and validate single faces. By doing so, we achieve something unexpected:
Because the model is looking for a single face close enough to the camera, it
ignores people passing by in the background. The camera no longer needs to
be positioned at a closed angle. The inference time using an Arduino Nicla
Vision is 52ms, providing 20 frames per second, allowing us to create a
voting algorithm at the model's output. If the person stays in front of the
camera for more than 1 second (for more than 20 frames in a row), the
program will declare the person is in front of the desk and start
communicating the event to the service desk personnel. Refer to the

following figure:

PROCESSING LEARNING RUN
70% e 90
Training sampies (96x06 BGE) |[:d."m':3cl’:iﬂ

1 Labsets n - TRAIN

o
FOMO MobileNetvV2

10%
Validation samples 2|Zﬂ?:1‘8 8."%:;%26
e 1 Labels (St RGR) VALIDATE
3 PUMU“Mw!uNuwz

400
3 20% 27648

1 Testing)qr?plg-; Features 71 .4%
Labels (95x%6 RGB) Accuracy

1 Labals

: TEST
3 >

FOMO MabileNety2

27648

Live Features ""%
Camera (9696 RGE) Aecuracy LIVE

P
L=
sl

FOMO MobilehetV2

Figure 4.12: Training, validation, testing and production model metrics (People detector)

System implementation

The application is designed to have two main components. The first one,
called Block 1, is responsible for capturing and processing images. The
second one, called Block 2, is designed to receive notifications when a
person stands in front of the camera. Once the person is detected, a haptic
motor 1s activated to notify the user. There are multiple Block 2 components
in the system, with at least one per person that needs to be notified. Refer to
the following figure:

:'BLE Mesh (Publish to: CH) * BLE Mesh (Subscribe to: CH1)

B : B

Live Camera

39(0) Resistor

L 1000uF
Capacitor

I

¥ r1 P

Figure 4.13: Connection diagram (People detector)

To ensure that the communication between Block 1 and Block 2 is seamless,
the BLE Mesh Network is utilized. Block 1 publishes the message once to a
dedicated channel, and every Block 2 component subscribed to that channel
will receive the message. This approach ensures that the notification is
delivered to the intended recipient without any delays or issues.

Block 1 uses two microcontroller boards; the first one, an Arduino Nicla
Vision, captures the image, processes it, and runs it through the Face
Classification EdgeML model that has been downloaded to its memory. The
output of the model is sent to the postprocessing functions that use a voting
mechanism that wait for more than 20 consecutive positive face
identifications before sending out a command to the second microcontroller
board. The second board is an NRF52840 Dongle in charge of network
communication. The command it receives from the Nicla Vision is wrapped
in a Mesh Network message and published to a predefined channel that all
the instances of Block 2 are subscribed.

Block 2 uses two microcontroller boards; the first one is an NRF52840

Dongle in charge of connecting to the BLE Mesh Network and subscribing to
the channel that Block 1 uses to send out commands. When a person is
detected by Block 1, a message with a payload is received by Block 2, and
the payload contains the command that needs to be executed. The NRF52840
Dongle does not process the command, but it sends it to the second board, an
Arduino Nano 33. The Arduino outputs a signal that opens the transistor gate
and lets current pass to the Haptic Motor, making it vibrate, notifying the
user wearing it to be alerted without making any sound.

Source code

The logic in Block 1 is presented conceptually in the following table:

Code location:
c:edgeml 4 2 Arduino Nano 33
BLE @ Block 1

Image Classification Model Capturing the data,
(Pre [Post- | [Local processing, and running
e process f Main the EdgeML model.
ing) ing | | Seript

3 — Pseudocode

1. Camera captures
frames and sends
; them to the
g processing Block.
2. In the Processing
Block, the frame is
E) reshaped and
resized. Features
are sent to the
EdgeML model.
3 3. The EdgeML model
runs the inference
with the provided
data and returns an
4 array of two results
(face or
background).
4. The Post Processing
function waits for a
series of positive
A face detections
before notifying the
main script.
5. The main script
prepares the
command for Block

2 to activate haptic
motors and
delegates it to the
network
microcontroller to
publish it.

Table 4.7 : Block 1 logic (People detector)

Network

The Camera (Block 1) publishes to a channel that every haptic pin (Block 2)
1s listening to. This is a simple example of the benefits of using a network

that allows one publisher and multiple subscribers.

Block(s) Action Channel
1 Publishes to CHI1
2 Subscribes to CH1

Power requirements

The power requirements per Block are as follows:

Table 4.8 : Network configuration (People detector)

Block 1:
Latent Active
Power Device Notes
source consumption consumption
Arduino 0.032A <1A
Pl Nicla
Vision @sv @5V
P1 NRF>2 0.04mA 3mA Active when publishing
Dongle @5v @5v messages as a client.

Table 4.9 : Block 1 power requirements (People detector)

If running on battery, a 200 mAh Li-Po battery is recommended for reliable

operation.
Block 2:
P Latent Active
ower Device Notes
source consumption consumption

P2 NRF52 0.04mA 0.3mA Active when receiving
Dongle @sv @sv messages as a Server.
Arduino 0.034mA <1A
P2 Nano 33 Activates Haptic Motor
BLE @5V @5V

Table 4.10: Block 2 power requirements (People detector)

We need a 1A power source for Block 2. Given the power requirements of
the Solenoid, this Block must connect to a permanent source of power (wall
outlet).

Bill of materials

The bill of materials offers an approximation of the cost of the project.

Description QTY Unit cost Total
Arduino Nicla Vision 1 $85 $85
Arduino Nano 33 BLE 1 $30 $30
NRF52840 Dongle 2 $12 $24
LilyPad Wave Board 1 $9 $9
NPN Transistor 800mA 1 $0.5 $0.5
390hm Resistor 1 $0.5 $0.5
Power Source 1A @5v 2 $10 $20

Table 4.11 : Bill of materials (People detector)
Approximate cost of materials (One Camera, One Haptic Kit): $169

Use case: Object recognition

Object recognition in computer vision refers to the ability of an Al system to
identify and classify objects within images or video frames. It involves
detecting the presence, location, and category of one or more objects by
analyzing visual features such as shape, color, texture, and spatial
relationships.

Component sorting

Problem definition: A company that sells DIY kits buys surplus electronic
components at discount from component factories. The problem is that the
surplus components come mixed up in boxes. You have been commissioned
to create a system that sorts components. Assume components are already
placed in a conveyor belt. The solution needs to recognize the component and
move a lever to direct the component to the bucket to which it belongs.

Solution: The application consists of two stages. The first one captures an
image of the conveyor belt with the components to be classified, then it runs
an inference to determine the class of the component, and finally, determines
the position the lever needs to be moved to, based on the classification. The
second stage is the actuator. It receives the command that specifies the
position, which is then translated into a signal sent to a servo motor. The
servomotor moves the lever, which actuates the arm that sends the
component to its bucket. The flow of information is shown in the following
figure:

Camera
ServoMotor

Components

Figure 4.14: Concept diagram (Component sorting)

While the first prototype has only one camera and one actuator. Having
multiple cameras in future versions will help the system see the components
from different angles. One of the cameras could be listening to the
classification results, and based on a voting algorithm, it could make the final
decision on what command to send to the actuator. On the actuator part, the
application could use more than one servo motor to create more complex
movements that allow a more diverse set of parts to be classified. For this
reason, it is convenient to use a wireless Mesh Network that helps cameras

and actuators communicate with a simple Publish/Subscribe paradigm that
allows one-to-many and many-to-one communication.

Data acquisition

A set was built to resemble the light conditions and background textures of
the conveyor belt that will be used in the real environment. There are five
different classes of components. However, this number is expected to
increase as the real number of different components is much higher. Every
class in the training dataset contains 50 samples with images taken from
different angles, distances, and shadows. The samples have been labeled
manually. There is only one piece per sample since we do not require the
model to identify groups of components. Refer to the following figure:

Potentiometer

/ 50 image 5, 20%

LED

S0 images, 20%

; I .
Joint — . 250 images ,____._-———Tegﬁgsefzﬁm
||I -

50 images, 20% =

L\
)
A 4

Button —
50 images, 20%

70% 20% 10%
Train Validate Test
(175 images) (50images] (25images)

Figure 4.15: Training dataset (Component sorting)

Processing

Every sample is trimmed to a 1:1 (square) ratio and resized to 96x96 pixels.
Because we will rely on the component colors to differentiate from different

models, we leave the image in color (RGB). The number of features per
sample is 96 x 96 x 3 = 27,648. An Arduino Nicla Vision (Cortex M7 at
480MHz) can execute the processing in less than 1 millisecond. Notice in the
diagram below (cluster diagram) how the LED and the Joint clusters are
clearly separated while the potentiometer, temp sensor, and button are much
closer as they have many shapes in common. Nevertheless, the clusters are
clearly defined. Refer to the following figure:

A:BUTTON

B: JOINT _ EEEE
CLED MEEEEFFE“EEFE
D: POTENTIOMETER D,0D ,
E: TEMP SEMSOR EED okp ,;!{\ Aa 1A
sellh £ %DD eEMAEEECE R ana
Bo'oy Adhs B gk il P £ EE
? %B ATA ED E o LYY E
g8 e il A eEeE DDDIS) AR RRAA R
A D Ak
C_CCC BEB h E[B DDOD D EE Dﬁmﬁx
e &£ C) DE.E oD A4
Qe C o & E oo
g rEED 3
A
sBag, L&
gb e
B
B
g8 i
a6Bg
Figure 4.16: Cluster diagram (Component sorting)
Model

The model used to classify the components is MobileNetV2, with an alpha of
0.35. Alpha is also known as the width multiplier, and it is used to control the
number of channels or channel depth. If you remember from the explanation
on MobileNet at the beginning of this chapter, the convolution is separated
into two parts: a Depthwise convolution and a pointwise convolution. Alpha
affects the former. Alpha is by default equal to 1. By changing it to 0.35, you
are indicating that you want the depth to be about '3, which means your
convolution will be shallower and, for that reason, filter less effectively. This
is only needed if you are trying to optimize for memory and convolutional
power, which is what we are trying to do here. Only if you are not getting the
results that you want and you have tried other things like increasing the
amount of training cycles and making the Learning Rate smaller, then feel
free to bring alpha closer to 1. For this model, we tried many things, but it
became stable at around 60 cycles. We tried to make the Learning Rate larger

to shorten the training time, but we only got the error to be all over the place.
This model performs an inference in 86ms (Cortex M7 at 480MHz), which
allows us to get about ten inferences per second. The conveyor will be
moving at 0.1m/s; the camera covers an area of about 0.25c¢m, and the model
will only have two frames to make a correct classification. For future
versions of the model, it might be convenient to upgrade to a Cortex M55 at
400MHz, which would run the inference in 1ms (two orders of magnitude
faster), giving the application 200 frames to correctly classify the component.
The following figure shows the training, validation and test metrics:

PROCESSING LEARNING RUN
27648
70 % Features 60
wning simpe oo Tusngces
5 Labels
® : o . TRAIN
FOMO MobileMeti2
10% 27648 89.7%
Validation samples Features Accuracy
’ 5 Labels (9696 RGE) o VALIDATE
g S * 3
- FOMO Mabiletety2
250
g 20% 27648
0
L ? ’ Testing samgles Features 803%
abels P (9696 RGE) f\c{urac-y —
FDMC:-;‘IOD!IENWE
Live 27048 77.1%
Camara (Sex9G AGE) .Ac(ura(y LIVE

_ 2 =

FOMO MobileMetV2

Figure 4.17: Training, validation, testing and production model metrics (Component sorting)

System implementation

The application consists of two Blocks: the following figure capture and
classification on one side and the servo motor on the other:

© BLE Mesh (Subscribe to: CH1}

Live Camera

B Pl P2 Lim

Figure 4.18: Connection diagram (Component sorting)

Block 1 uses two microcontroller boards, the Arduino Nicla Vision to capture
the image in real-time, extract the features, run the model, and perform
validation of results to declare a positive event that is communicated to the
microcontroller board (NRF52840Dongle) in charge of preparing the
message and to publish it to the BLE Mesh Network.

Block 2 uses two microcontroller boards as well, the first one in charge of all
things Mesh Network and the second in charge of controlling the servo
motor. The angle of the servo motor is controlled via a PWM signal output
from the Arduino Nano 33. The servo motor has its own power source to
avoid current peaks that could reset the two microcontrollers.

Source code

The logic in Block 1 is presented conceptually in the following table:

c: edgeml 4 2 Code location:
Arduino Nano 33

BLE @ Block 1

Image Classification Model Capturing frame,
(Pre- | Post- | Local detecting components,
B % ey i sending command out to
§ L 1

control servo motor.
Pseudocode
1. A camera captures

0 frames to be
g processed.
2. The Processing
7 Block reshapes and
resizes the image and
prepares the features
to be sent to the

3 model.

3. Image features are
run through the
model to infer what
component in
specific is being
detected.

4. The post-processing
functions use a

A voting algorithm to

declare a positive

classification of a

component in

specific. If that is the
case, they
communicate to the
main script for
further action.

5. The main script
prepares the
command to be sent
to the servomotor
controller. It sends
the payload to the
microcontroller in
charge of network
communication.

Table 4.12 : Block I logic (Component sorting)

Network

The camera node classifies the image and publishes the class to channel 1.
The actuator receives the message in almost real time as it is subscribed to

the same channel.

Block(s) Action Channel
1 Publishes to CHI1
2 Subscribes to CH1

Table 4.13 : Network configuration (Component sorting)

Power requirements

The power requirements per Block are as follows:

Block 1:
Latent Active
A Device Notes
source consumption consumption
Arduino 0.032A <1A
P1 Nicla
Vision @sv @sv
. NRF52 0.04mA 3mA Active when publishing
Dongle @5v @5v messages as a client.

Table 4.14 : Power requirements, Block 1 (Component sorting)

If running on battery, a 200 mAh Li-Po battery is recommended for reliable
operation.

Block 2:
Latent Active
Power Device Notes
source consumption consumption
NRF52 0.04mA 0.3mA Active when
P2 receiving messages
Dongle @5v @5sv as a server.
P Arduino 0.034mA <l1A Activates Servo
Nano 33 BLE @5V @5V Motor

Table 4.15: Power requirements, Block 2 (Component sorting)

We need a 1A power source for Block 2. Given the power requirements of

the Servo Motor, this Block must connect to a permanent source of power
(wall outlet).

Bill of materials

The bill of materials offers an approximation of the cost of the project:

Description QTY Unit cost Total
Arduino Nicla Vision 1 $85 $85
Arduino Nano 33 BLE 1 $30 $30
NRF52840 Dongle 2 $12 $24
Servo Motor 1 $15 $15
NPN Transistor 800mA 1 $0.5 $0.5
390hm Resistor 1 $0.5 $0.5
Power Source 1A @5v 2 $10 $20

Table 4.16 : Bill of materials (Component sorting)
Approximate cost of materials (One Camera, One Haptic Kit): $175

Conclusion

In this chapter, we explored the elements that make image classification
work, including preparing the images, extracting their features, feeding them
into a convolutional network, and converting the results into a statistical
distribution that identifies the most probable class, referred to as the
classification result.

Running image classification on a microcontroller introduces a new range of
solutions where the detected event is not a physical phenomenon (like
temperature) but the presence of a shape or movement. Moreover, on-site
image classification eliminates the need to send images to a central server for
processing, enabling solutions that prioritize privacy, data tenancy, and
cybersecurity. The simplicity of a locally running solution also reduces
infrastructure requirements, significantly lowering costs.

In the next chapter, we will discuss the principles of tracking and learn how
to apply them.

References

e https://techzeero.com/arduino-tutorials/vibration-motor-with-
arduino/

e https://towardsdatascience.com/review-mobilenetvl-depthwise-
separable-convolution-light-weight-model-a382df364b69

o https://paperswithcode.com/method/mobilenetv2
e https://www.sparkfun.com/products/11008
e http://chenlab.ece.cornell.edu/people/Andy/ImagesOfGroups.html

e Image classification use case l:
https://studio.edgeimpulse.com/public/321804/live

e Image classification use case 2:
https://studio.edgeimpulse.com/public/323408/live

e Image classification use case 3:
https://studio.edgeimpulse.com/public/322173/live

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://techzeero.com/arduino-tutorials/vibration-motor-with-arduino/
https://towardsdatascience.com/review-mobilenetv1-depthwise-separable-convolution-light-weight-model-a382df364b69
https://paperswithcode.com/method/mobilenetv2
https://www.sparkfun.com/products/11008
http://chenlab.ece.cornell.edu/people/Andy/ImagesOfGroups.html
https://studio.edgeimpulse.com/public/321804/live
https://studio.edgeimpulse.com/public/323408/live
https://studio.edgeimpulse.com/public/322173/live
https://discord.bpbonline.com/

CHAPTER 3
Object Tracking

Introduction

Object tracking is the process of identifying and following the movement of
one or more objects across a sequence of frames in a video feed. Unlike
image classification, which focuses on identifying objects in a single frame,
object tracking ensures that detected objects are consistently identified and
their trajectories are maintained over time across multiple frames. This is
essential in scenarios where understanding the behavior, interactions, or
movement patterns of objects is critical, such as in surveillance, autonomous
vehicles, sports analytics, or robotics. Object tracking bridges the gap
between static image analysis and dynamic real-world applications, enabling
systems to make decisions based on continuous observations rather than
isolated snapshots.

Structure

This chapter covers the following topics:

Tracking a single object

Tracking multiple things at once

Use case: Object counting

Use case: People counting
Use case: Event detection

Objectives

This chapter is a natural progression from image classification, now applied
to video feeds. The principles remain the same, as each video frame is
processed independently. What is new is the tracking algorithm, which
maintains object positions across frames. The goal of this chapter is for the
reader to understand the principles of tracking and learn how to apply them
in real-life applications.

Tracking a single object

Tracking consists of identifying the same object in a sequence of video
frames. The path the object takes is known as a track. To identify the object,
we use an object detection model (as discussed in the previous chapter); to
track the object across frames, we use a tracking model.

Figure 5.1 demonstrates the principle of tracking by visually representing
the object’s path. This path allows the model to predict the object’s next
position based on previous readings. When a new frame is captured, the
model searches for the object within the predicted area. For example, if the
path is straight, the model expects the object to continue in a straight line. If
the path curves, the model anticipates the object will follow the curve.

Prediction e

P:e_r;llnlc_l‘u::m
A

Track

A

Track

A

Figure 5.1: Prediction of the next position
The way tracking works is straightforward. It first guesses where the object
will be in the future, using a set of rules or a model. Then, it looks at the next
frame and adjusts its initial guess to be more in line with what is happening.

Things to consider

Following things is hard because we might not have direct access to what we
are tracking. We must rely on radar or cameras instead of built-in sensors
like GPS. The goal is to get the best possible picture of where the object is
by combining different types of sensor information.

One of the biggest challenges in tracking is ensuring we are following the
right object and not getting fooled by something else nearby (false positives)
or failing to detect an object (false negatives). The accuracy of the TinyML
object detection model plays a vital role in this aspect.

Predicting where an object will go next is especially tough when we cannot
control it. We must consider all sorts of things, like how fast it is moving,
any changes in direction, and even unexpected factors like the wind. Our
tracking tools use a mix of math, educated guesses, and smart corrections
when things do not go as expected.

Tracking multiple things at once

When tracking multiple objects, we need to assign each object to a different
track, create new tracks for newly detected objects, and delete tracks when
an object leaves the frame.

Assignment

We must ensure to match the right sensor data to the correct object,
especially when they are close together or it is hard to tell them apart.

This puzzle of figuring out which piece of data belongs to which object is
known as the data association problem crucial for ensuring accurate
tracking in complex scenarios. And to keep things interesting, the number of
objects we are tracking can change. New ones might appear, or old ones
might vanish, requiring us to adjust our tracking setup constantly.

The assignment is based on the prediction from the tracking model of where
the object should be. The model computes the probability of every object
belonging to every track and assigns them based on the most likely option.

Shown in Figure 5.2 is a visual example of the assignment challenge where
two objects are being tracked (circles), the new reading, represented by a
triangle belongs to track B because it is located within the predicted space B:

Prediction A

Track B ., _ New Reading
. s s ‘,«-' {assign to B?)
Prediction B

Figure 5.2: Track assignment

Track maintenance

Track maintenance involves observing, matching observations to objects,
and maintaining an up-to-date list of what we are tracking. It keeps tracks in
a healthy state. If a track has not gotten any object associated with it in a
couple of frames, it might be time to eliminate it.

Observe how the track has a series of missing matches in the following

figure:

Predictions
“LLE ™
-* »
TLIT ..'Iill'..".' t+.
I-’ :ip o L] “
- L] ™ " a -
- - * L] ™]
Track s e . oo 1
L [i] i ¥
- L] L] L] []
L] - ol # L] Ll
™ ™~ L] i‘i '4‘
-
(} . i AN .”

Mo matches for a series of predictions
(delete Track?)

Figure 5.3: Track maintenance

If there is a new object that cannot be associated with an existing track, it
might be time to create a new track. This is shown in the following figure:

Prediction
o* LN ...
L] L

Track - ’

New Reading
No track nearby
(new Track?)

Figure 5.4: Track creation

However, we cannot just eliminate and create tracks freely; sometimes, the
track does not receive associations because the model has failed to identify
the object in a couple of frames. In other instances, an obstacle temporarily
occludes the object (Blocked visually). On the other hand, if the model
identifies something incorrectly, the best option is to wait for a couple of
identifications before creating a track.

Gating

The strategy to optimize track maintenance, i.e., to save memory and
computational power, is called gating. It is like setting up a fence around
each object we are tracking. Only the data within the fence gets considered,
helping us focus on what is close and ignore the rest.

Take a look at the following figure, there is a rectangle around an area of
interest. Objects will only be tracked within that area:

Only track readings within the gate
Figure 5.5: Gating

Applications

Once our system can identify objects and create reliable tracks with them,
there are many applications we can enable with it. Few of them are listed as
follows:

e Counting: We can count objects by detecting the intersection between
the track and a predetermined area or limit. For example, we can count
how many objects are transported on a conveyor belt.

e Detecting events: We can detect when an object enters an area or
crosses a limit by following its track. For example, we can detect when
a player crosses the field's boundary.

e Timing: We can count how much time an object has spent in a frame.
For example, we could track how much time a car has spent in a parking
lot.

Use case: Object counting

An incredibly useful application of image tracking is counting moving
objects. This requires a specialized classification model that is both highly

accurate and fast at detecting the objects being counted. The model provides
the locations of objects in the frame, which the tracking algorithm uses to
assign tracks to each moving object. Conditions can then be set to trigger a
count (e.g., when an object crosses a boundary), allowing the tracking
system to output a real-time count.

Conveyor belt counting

Problem definition: A factory in Long Island City produces a series of
baked products. While their production manager has a process to count the
number of items produced based on the number of boxes at the end of the
line, it has been detected that items get lost, fall aside, or are removed by
employees along the production line. The production manager would like to
count the number of items at different stages of the production line to
understand the wastage and develop solutions to reduce it.

Solution: To address the problem, the production manager is considering
implementing a new strategy: To count the number of items at various points
along the production line. This approach will provide quantitative metrics
and detailed insights into the production flow, enabling the identification of
stages exhibiting higher loss rates. This plan involves the installation of
cameras at key intervals along the production line. These cameras are tasked
with counting the number of items as they pass through each production
stage. The following figure shows the concept diagram of the solution:

Figure 5.6: Concept diagram (Conveyor belt counting)

Because this solution will be installed in a food facility, the device will be
encased in a transparent, airtight container. This is an ideal use case for a
wireless and battery-operated sensor network. The device consists of a
digital camera sending frames to a microcontroller. The microcontroller will
extract the frame features and feed them to an object recognition model
paired with a tracking algorithm that follows the objects and increases the
count when they cross a predetermined limit in the conveyor belt. The count
of that specific device is passed to a secondary microcontroller in charge of
wireless communication. The secondary MCU packages and publishes the
count to a channel that sends counts from that device. The count of all the
devices placed at different positions in the production line is received
wirelessly by a central MCU that shows all the counts in a display for the
operator and line manager to make decisions based on the available data.

Data acquisition

Under ideal conditions, a production line operates in a controlled
environment where illumination remains consistent, objects move at a
predictable speed, and their shapes are uniform. However, real-world
scenarios often differ. A well-prepared training set for counting objects on a
conveyor belt should account for normal states as well as corner cases, such
as overlapping objects or objects in different orientations. It is essential to
capture the training dataset from a location and angle similar to the final
position of the cameras.

A regular camera will acquire data at about 25 frames per second. Including
all frames in the training set may be unnecessary, as moving objects look the
same as they move through the band. A better approach is to create a
collection of objects in different positions, orientations, light conditions, and
groupings. The model will thus learn how to recognize the object from
diverse scenarios. Regardless of where the model is used along the
production line, it is essential to train it with the same objects against
varying backgrounds. This training will help the model learn to recognize
the objects independently from the background. If, in the future, the texture
or color of the band (the background) changes for a reason, the model will
still work. Since we use transfer learning, we do not need to train the model
from scratch. However, we still need around 500 images of the same class to

create a stable model. In the following figure, we show that we have created
a data set with a balanced number of regular and corner cases:

Tortilla

100% \ 500

video frames

70% 20% 10%
Train Test Validate
(350 images) (100 images) (50 images)

Figure 5.7: Training set (Conveyor belt counting)

Processing

Preparing images for a production line counting system begins with
adjusting the image to a square ratio. This initial step ensures that the square
encompasses the entire width of the conveyor belt, which is crucial for
accurate counting. It is also essential to eliminate potential noise sources
within the image, such as individuals passing by or moving fans, as these
can affect the system's accuracy.

Following the initial adjustment, the image's dimensions are reduced to a

more manageable size, typically around 96 pixels on each side. This
reduction is vital for processing efficiency. However, if the results from the

trained model are unsatisfactory, it may be necessary to consider larger
dimensions, such as 160x160 or 320x320 pixels, to improve accuracy.

The final consideration in this setup is whether to use color images. While
color images can provide additional detail, they also increase the
computational load due to the three-color channels they contain. Converting
images to grayscale is advantageous for most applications as it reduces the
features to a third, requiring less computational power. This simplification is
particularly effective unless the products counted on the conveyor belt have
distinct color characteristics crucial for differentiation. In scenarios where
specific color attributes are essential for distinguishing products or when
multiple counters are tracking different objects, maintaining the color
information becomes necessary. The following cluster diagram shows the
grouping of different samples in the data set:

A:TORTILLA

A A K
.& ,f‘){"ﬁ A
A AR A "
,n'lq ;f' A My
A
A han fy
. A A A
A AA A :&\
A Pa -ﬁ:q‘!" A A o A
A Al A
pﬂ*"\ﬂ. A AR ﬁ-a'-ﬁ'. A A
'y A,f"'a' A'b' A
AR A A A, M, A

Figure 5.8: Cluster diagram (Conveyor belt counting)

Model

Multiple counting devices are being deployed throughout the entire line to
achieve the highest level of accuracy in the production line counting system

and minimize the issues associated with confusing waste for missed counts.
This setup allows for a comparison of counts to ensure accuracy. However, a
significant challenge in this process is ensuring that the model can process
all frames quickly enough to keep up with the production line's pace.

Several strategies are being implemented to address these challenges
effectively. Let us look at them in detail:

e The model is trained using high-quality data encompassing various real-
life conditions, lighting situations, and product orientations. This
comprehensive training approach enhances the model's ability to
accurately recognize and count objects under diverse conditions.

e A quantized 8-bit version of the model is utilized to optimize processing
speed without significantly compromising accuracy. This version
reduces the computational load, enabling faster processing times.

e The model is designed to use the minimum necessary number of
features by utilizing the smallest possible frame size and number of
channels. This approach is carefully balanced to ensure that while
inference times are improved, the model's accuracy remains high during
the validation phases.

e The base of the counting system model is built on the MobileNetV2
architecture, known for its efficiency and effectiveness in mobile and
embedded vision applications.

e Furthermore, the system employs the faster objects, more objects
(FOMO) algorithm to accurately generate coordinates for the identified
objects.

This combination of strategies and technologies ensures that the counting
system can operate swiftly and accurately, addressing the need for speed in
processing frames and the imperative for high accuracy in counts.

The Figure 5.9 shows the metrics obtained during the training, validation,
testing and deployment of the conveyor belt counting tracking model. Notice
the 70/10/20 split of the sample set. Also, pay attention to the number of
features (27,648), the amount of training cycles (60) and the difference
between the F1 score (97.5%) and the accuracy (98.86%) in the validation
and testing stage. The high F1 score accuracy might reflect overfitting
however the test showing also a high score shows consistency without bias.
Please be aware that only a real deployment will show the real accuracy of

the model.

PROCESSING LEARMING RUN
27,648
70% 60
Training samples (9696 ROR) l'l.‘:::g\giy:ﬁ:
1 tabet g o TRAIN
[| P

FOMO MobileMetv2

10%
validation samples Zzzgia 93;(5025
; 1 Labet (96456 AGE) : VALIDATE
- D &
FOMO MobileNetv2
500
et) 20% 27,648
AU : 98.86%
1 ks i :9:;:-':25:- Accuracy
Label 1 Labet im % " TEST
&
FOMO MobdlaMetvd
Live gl 9%
Camera 18856 AGR) Arcuracy LIVE
R A
Ee ® =
FOMD Mobalohay2

Figure 5.9: Training, validation and testing metrics (Conveyor belt counting)

System implementation

The production line counter system is designed with a two-Block
architecture to ensure efficient and accurate counting of objects on a
conveyor belt, culminating in showing results on a prominent LED display
as shown in the following figure:

:EI-F Mesh (Pubilish tos CH2) BLE Mesh (Subseribe to: CH1CH2)

Pl - Pl F1

7 Segment Display

Figure 5.10: Connection diagram (Conveyor belt counting)

The first Block of this system focuses on video capture and processing. It
utilizes an Arduino Nicla Vision, a powerful device capable of capturing
video from the conveyor belt and processing these video frames into
features. These features are then used to train and run a Convolutional
Neural Network (CNN) on the same device to generate object counts. In
addition to video processing capabilities, this Block includes a secondary
microcontroller that handles wireless network communications.
Communication between the primary video processing unit and the
secondary communication unit 1is facilitated through Universal
Asynchronous Receiver-Transmitter (UART). After processing, the
secondary unit publishes the count to a Bluetooth Low Energy (BLE) Mesh
Network, assigning each count to a specific channel corresponding to its
counter. This setup allows for a scalable system where multiple counters
transmit data simultaneously to the aggregator.

The second Block of the system is centered around data aggregation and
display. It employs an Arduino Nano 33 BLE equipped with a secondary
microcontroller (NRF52840) for receiving counts from the various counters
across the production line. By subscribing to each counter unique channel,
the Arduino can gather and compare counts from different sources to
establish the master count. This finalized count is displayed on a 4-digit, 7-
segment LED display, which updates with every new count. The connection
to the display is made through Inter-Integrated Circuit (I2C), a serial

communication protocol that allows multiple devices to communicate with
the Arduino.

Given the system's deployment in a factory setting, where power access is
ubiquitous, both Blocks of the counter system are powered by a 5V power
source connected to the electric grid. The power sources ensure the system
remains operational without interruption, providing reliable and accurate
counting results in a real-time manufacturing environment.

Source code

Table 5.1 presents the pseudocode for the program that handles object
tracking and counting on the conveyor belt. The process is divided into four
stages: capturing the image, extracting its features, running the classification,
and executing the tracking algorithm.

Code location:

c:tinyml 5 1 Arduino Nano 33 BLE
@ Block 1
Image Classification Maodel Capt'jlrir.lg Vid?o frames,
— —— o [| classifying objects,
e L% _ ling " | don tracking and counting.

Pseudocode
1. A camera captures
video frames from the
0 conveyor belt. Frames
g are sent to the
processing Block.
3 2. In the processing
Block, the image is
resized and reshaped.

The resulting features
3 are sent to the model

3. The TinyML model
runs the inference
with the provided data
and returns an array of
identified objects. The
array is sent to the
tracking algorithm.

5 4. The tracking algorithm

' A checks whether each
identified item is
close enough to an
identified object in the

last step. If there is a
match, the new item
acquires the same ID
as the old item. By
doing this, the ID
persists, and tracking
takes place.

5. The counting
algorithm checks
whether a tracked
object has crossed a
predetermined line. If
the check is positive,
a counting event is
declared. A count
increase is sent to the
secondary MCU for
publishing events to
the Mesh Network.

Table 5.1 : Pseudocode (Conveyor belt counting)

Network

The two components in this use case are wirelessly connected via a pub/sub
Mesh Network. Wireless communication 1s essential since the facility
handles food. The counting component is enclosed in an insulated
transparent box and communicates in real-time with the large number
counter located in a different part of the facility. Both components operate on
the same channel. In future implementations with additional sensors along
the production line, each counting device would send updates through
separate channels, all of which the main counter would be subscribed to.
Refer to the following table:

Block(s) Action Channel
1 Publishes to CH1
2 Subscribes to CH1

Table 5.2 : Network configuration (Conveyor belt counting)

Power analysis

Block 1 performs real-time image classification and tracking while also

publishing high-frequency messages with the latest count. For these reasons,
powering the component with a battery would be impractical, as it would
require frequent recharging. Instead, a low-voltage power line is necessary to
supply power to the sensor. Considering the industrial setting, it is
reasonable to assume that providing power to this device will not be a
significant challenge. Refer to the following table:

Power . Latent Active
Device Notes
source consumption consumption
Arduino 0.032A <1A
P1 Nicla
Vision @5V @5V
P1 NRFS52 0.04mA 3mA Active when publishing
Dongle @5V @sV messages as a client.

Table 5.3 : Power profile for Block 1 (Conveyor belt counting)

Block 2 is in charge of driving a 7-segment display showing the count in real
time. Given the fact that the display uses big bright numbers and that it will
be permanently installed on a wall, it makes sense to also connect it to the
electric grid. It is important to mention that the low energy consumption of
LEDs could give you the option to make this Block battery operated as well.
Refer to the following table:

Power . Latent Active
Device Notes
source consumption consumption
P NRF52 0.04mA 0.3mA Active when receiving
Dongle @5V @5V messages as a server.
Sends data to a big 7-
Arduino 0.034mA <1A segment display. The
P2 Nano 33 display is powered
BLE @sV @5V directly from a 5v power
source.

Table 5.4 : Power profile for Block 2 (Conveyor belt counting)

Bill of materials

This bill of materials show the approximate cost of a proof of concept that

includes two Block 1 components and one 7 segment display:

Description QTY Unit cost Total
Arduino Nicla Vision 2 $85 $170
Arduino Nano 33 BLE 1 $30 $30
NRF52840 Dongle 3 $12 $36
Big 7 segment Display 1 $90 $90
Power Source 1A @5v 2 $10 $20

Table 5.5: Bill of materials (Conveyor belt counting)
Approximate cost of materials is $346.

Use case: People counting

A highly useful application is the simultaneous tracking of multiple different
objects. The complexity arises not only from predicting the object’s next
position based on its trajectory (as shown in the previous use case) but also
from ensuring that the object remains the same throughout its trajectory. This
is achieved using a multiclass model capable of generating a unique ID for
each classified object, which the tracking algorithm uses to link its trajectory
consistently.

People counting in supermarket

Problem definition: A prominent supermarket chain faces a challenge
impacting customer satisfaction; prolonged waiting times at the checkout
registers. This issue has been identified as a critical factor contributing to a
decline in the overall quality of service provided to shoppers. The
supermarket's management team is exploring a new approach to optimize the
checkout process to address this.

The proposed solution involves closely monitoring the flow of customers
entering and leaving the store. The management can gain valuable insights
into customer traffic patterns by accurately counting the number of
individuals coming into the store and those leaving. This data is crucial for
estimating the total number of customers in the store at any given time.

Understanding the approximate customer count inside the store is
instrumental in determining the required number of open registers. The goal
is to have a proportional relationship between the number of customers and
the number of active checkout lanes. By achieving this balance, the
supermarket aims to significantly reduce waiting times at the registers,
thereby enhancing the shopping experience for its customers and improving
overall service quality. Implementing this customer counting system will
enable the supermarket to adjust its checkout operations based on real-time
customer traffic, leading to a more efficient and satisfactory service.

Solution: The solution consists of a set of cameras mounted on the frame of
every entrance and exit door. The cameras are installed on the highest part of
the frame, pointing down to the floor, covering an area of a couple of square
meters. The cameras use a wide-angle lens to cover a greater distance at a
short focal point. The camera sends video frames to the microcontroller. The
MCU processes the frames and runs a person classification model. The
embedded tracking algorithm uses its results to count the number of people
crossing the door. The result is sent to a secondary microcontroller
wirelessly, sending the count to a central microcontroller, which receives the
counts of all the supermarket cameras. The main job of the central MCU is
to make sense of all the data and come up with the official count of people in
the supermarket. Based on that information, the real-time people count will
be displayed for the floor manager to decide whether to open more registers.
Refer to the following figure:

'ﬁ Peopie Tracking + Counter

i .

Figure 5.11: Concept diagram (People counting)

Data acquisition

When acquiring data to train a person recognition model, you should
consider the specific conditions the model will find when it is used in a real
scenario. In the case of a camera installed on the frame of an entrance door,
the objects that need to be recognized (the humans) will be observed from a
top-down perspective. Training a model with pictures from a different
perspective, e.g., a full-body view, might deliver unexpected results. We
captured the training set from a camera installed on the door frame for this
use case. Additionally, the model should be trained to recognize people
dressed for different seasons. A person wearing a simple shirt might look
different from someone wearing a hat, a coat, or a scarf. If you use a shot
that shows people of different sizes because of perspective, provide enough
samples in your training data set to teach the model how to recognize them.
An example is having a camera pointing to the street; the frames will contain
people walking on the closest sidewalk and from the sidewalk across the
street.

The process of data acquisition also needs to cater to the tracking algorithm.
For this use case, the camera is positioned at an angle that prevents people
from Blocking each other, given that the camera is high up on the doorframe.

Most importantly, the acquired frames must be aligned to the door frame
itself as the counting algorithm will use an imaginary line parallel to the
door frame to create the boundary that will be used to count objects
(humans) once they cross it.

The training set for this use case has been acquired in a commercial space in
New York City. The office has a unique entrance that employees and clients
use to enter and exit the business. The door is located at street level. To
avoid capturing people passing by, the camera is pointing into the inside of
the space. The camera is at an angle of approximately 30° from the door.
This covers an area of about 2x2 meters. We captured 5 video segments of
15 minutes each at different times of the day. Then, we transferred the video
to Final Cut Pro, where we trimmed and resized the frames. The result was
five sequences at 25FPS. That is 112,500 frames. Not all the video frames
were helpful in training, as many contained no persons walking by. After
eliminating those, we kept a subset of the video frames that showed people
walking by. We focused on having a diverse set of people rather than the

same person walking in different positions. The dataset has 600 frames with
hundreds of combinations of people walking alone or in groups. The
following figure demonstrates this division of people:

People

365

video frames

70% 20% 10%
Train Test Validate
(256 iImages) (73 images) (36 images)

Figure 5.12: Training dataset (People counting)

Processing

Extracting the features from the frames is straightforward. First, the
processing functions trim the image to a square format and resize it to 90x90
pixels. As indicated in the last section, this was done with the Final Cut Pro
when the video was prepared to obtain the training data set. You do not need
to use a specialized video software to do that. Instead, you can take
snapshots of the frames you consider worthy of the dataset and have a
Python script or Edge Impulse resize and trim them for you. We trained the
model with both color images and grayscale. There was no significant
difference. We selected the grayscale as it requires three times less memory
and processing power. To augment the data, we created new samples by

flipping them (horizontally and vertically) and mirroring them.

The process will generate 8,100 features, one per pixel. Features will be fed
to the fully connected input layer of the Convolutional Neural Network we
will train.

Figure 5.13 shows only one cluster in the clustering graph, which is okay as
we have only one class (person). It would be interesting to extend the model
in the future for specialized classes like children or wheelchairs.

M PEOPLE

A
AR, A ApfA, aA A o
AW A oA A PaA
AL M p A po AR A A AP
AA A A A AA A
Aé”‘ A A A s A
AR RAa poa A A A
Apg M A
A A A
A, A AL K A
A A A ﬁA&A 'ﬁ‘A
A g, A4 Fis a
AﬁnAﬂ.’lﬂA A ACA A
A, Al A
ﬁA A A;\ A p‘ i
A A AA AA M 4L A Ak
A A A N A
A A Ay A
AAAA A AT 3 AR "Aaaa
A% ah A A g
AA A A A AR A
Aefly Ap LN
A A
A A
A Aihn
" A
A VARY

Figure 5.13: Cluster diagram (People counting)

Model

The model used in this case is based on MobileNet V2, a prevalent object
recognition model used in devices with minimal memory and a CPU. To
reuse MobileNet V2 in our specific case, we rely on a technique called
transfer learning, where we remove the specialized layers in charge of
recognizing particular objects and replace them with a layer that will
recognize and classify our use case. To do this, we will re-train the model
with our training dataset so that it can adjust the weights for the new
specialized layers. Additionally, the FOMO algorithm is used to indicate the
position of the detected objects by their centroid, which saves a lot of
memory and makes the model go much faster as it does not need to infer the

area covered by the object, but just its location in the frame.

Figure 5.14 presents key metrics for this use case. The sample set is divided
into three parts: 70% for training, 10% for validation, and 20% for testing.
The 95.6% F1 score during validation suggests that the model performs very
well on the validation dataset. However, the 86.67% accuracy during testing
is significantly lower than the validation F1 score, which may indicate that
the model does not generalize well to new data. This discrepancy could be
due to overfitting or data imbalance. If the validation dataset is too similar to
the training set, the model may appear to perform well during validation but
struggle with truly unseen data. To mitigate this, we could increase the
dataset size and improve its diversity.

70%
Training samples
1 Label
10%
Validation samples
1 Label
365
images.
1 20%

Testing samples
Labels
1 Label

Live
Camera

PROCESSING

9,216

Features
(@06 RGE)

-

9,216

Features
(9606 RGE)

e

9,216

Frratures
(9696 RGE)

e

9,216

Features
(9636 RGE)
&

s

LEARNING

60

Training Cycles
Lemming Rate: 0001

.

P
*To
p

FOMO Mobilehoty2

RUN

95.6%

F1 Score

E

- il
FOMO MebileNetv2

87.67%

Accuracy

FOMO MobileMetV2

FOMO Mobilehet\2

Figure 5.14: Training, validation and testing metrics (People counting)

System implementation

TRAIN

VALIDATE

TEST

LIVE

The solution is implemented in two Blocks: the first one counts objects, and

the second one displays the count. The Blocks are connected wirelessly and
powered independently as shown in the following implementation diagram:

S

BLE Mesh (Subscribe to: CH1)

Live Camera

m

7 Segment Display

Figure 5.15: Connection diagram (People counting)
There are two types of Blocks, given as follows:

e The first is a data capture Block that contains the camera, the
microcontroller running the people counting algorithm, and a secondary
microcontroller in charge of communicating the count increments to
other devices in a wireless local network.

e The second Block contains a microcontroller in charge of receiving the
people count increments from every door in the supermarket and
passing them to the main microcontroller that calculates the total
number of people in the space. The second Block communicates the
count to the supermarket manager via a small OLED display.

We use the Arduino Nicla a low energy and compact device known for its
ability to capture high-quality video, run local machine learning models, and

perform custom functions such as object tracking for people counting.

The model is obtained from Edge Impulse, where training and testing occur.
The tracking and counting algorithm is written in MicroPython using the
OpenMV IDE. Once a count event has occurred, the Arduino Nicla sends the
count increment to the secondary microcontroller (NRF52840 dongle) to
publish to a BLE Mesh Network. The Mesh Network has been configured to
have as many channels as doors with a people counter installed. The device
publishes the count to the channel assigned to its door. The door counters do
not keep track of their total count of the day; instead, they only report how
many people have entered and left the place in the last 10 seconds. We refer
to it as count increment.

We use an NRF52840 dongle for the second Block to obtain all incoming
counts. The dongle is subscribed to all the channels doors use to send count
increments. While having multiple channels is not strictly needed, as all the
doors could send their counts in the same channel without a problem, having
a channel dedicated to each door allows for easier troubleshooting and
identification of the origin of the counts. Once a count increment has been
received, the dongle sends it to the main microcontroller (an Arduino BLE
33). The Arduino keeps track of all the door counts in an array in its memory
and stores it in a non-volatile SD card connected via 12C. If the Arduino
must reset, the initialization functions will pull the latest count from the SD
card. The OLED display used to communicate the total count is connected to
the Arduino using an I2C interface. It is refreshed every 10 seconds,
displaying the total sum of all doors.

Source code

The pseudocode in Table 5.6 shows the 5 stages of the data transformation.
The first one is the raw image capture, the second is the extraction of its
features, the third i1s the classification run, the fourth one consists of
assigning a track to the identified objects, and the last one checks whether
the conditions have been met to consider a tracking event a count.

Code location: Arduino
c:tinyml 5 2 Nano 33 BLE @ Block
1

Capturing video frames,
identifying objects, tracking

Image Classification Model and Counting.

Prociess | Track Detec Pseudocode
ing | ng tion
i) 1. A camera captures

video frames from the
camera mounted on the
door. Frames are sent to
g U the processing Block.

2. In the processing Block,
the image is resized
and reshaped. The

resulting features are
sent to the model.

3 3. The TinyML model
runs the inference with
the provided data and
returns an array of

A identified objects. The
array is sent to the
tracking algorithm.

4. The tracking algorithm
checks whether each
A identified item is close

enough to an identified
object in the last step.
If there 1s a match, the
new item acquires the
same ID as the old
item. By doing this, the
ID persists, and
tracking takes place.

5. The counting algorithm
checks whether a
tracked object has
crossed a
predetermined line. If
the check is positive, a
counting event is
declared. A count
increase is sent to the
secondary MCU for
publishing events to the
Mesh Network.

Table 5.6 : Pseudocode for Block I (People counting)

Network

People-counting devices must be installed in strategic locations that provide

an optimal angle for the counting model. In many cases, this location is on
the ceiling. Running a wired connection is often impractical, making
wireless communication essential. For privacy reasons, these devices must
process images locally and output only a numerical count rather than
transmitting raw images. Given the low bandwidth requirements, a wireless
Mesh Network capable of handling just a few kilobytes per second is
sufficient, enough to transmit count data but not images. The counting
device, represented by Block 1, publishes messages to a shared channel that
the data consumer is subscribed to. Refer to the following table:

Block(s) Action Channel
1 Publishes to CHI1
2 Subscribes to CH1

Table 5.7 : Network configuration (People counting)

Power analysis

The same space and location constraints described in the network section
also apply to power supplies. Accessing hard-to-reach devices for battery
replacement 1s impractical. However, a viable solution is to extend a low-
voltage line from an electrical register used for lighting, providing a
permanent power source for the device. Refer to the following table:

Power . Latent Active
Device Notes
source consumption consumption
Arduino 0.032A <1A
P1 Nicla
Vision @sv @sv
NRF52 0.04mA 3mA Active when
P1 publishing messages
Dongle @5V @5V as a client.

Table 5.8 : Power profile for Block I (People counting)

Block 2 and the 7-segment display acquire power from a power source
connected to the electric grid:

Power Device Latent

source

Active ‘ Notes

consumption consumption

P NRF52 0.04mA 0.3mA Active when receiving
Dongle @5V @5V messages as a server.
Sends data to a big 7-
Arduino 0.034mA <1A segment display. The
P2 Nano 33 display is powered
BLE @5V @5V directly from a 5v power
source.

Table 5.9 : Power profile for Block 2 (People counting)

Bill of materials

The following bill of materials accounts for the installation of a single
people counter and a single 7-segment display, both communicating
wirelessly and powered by the electric grid:

Description QTY Unit cost Total
Arduino Nicla Vision 1 $85 $85
Arduino Nano 33 BLE 1 $30 $30
NRF52840 Dongle 2 $12 $24
Big 7 segment Display 1 $90 $90
Power Source 1A @5v 2 $10 $20

Table 5.10: Bill of materials (People counting)
Approximate cost of materials is $249.

Use case: Event detection

An advanced application of image tracking is to flag events that can only be
detected across a series of frames. The key is to detect the states before and
after the event occurs and then issue a classification event. This can be
thought of as classification across time, which differs from classifying a
single image, as discussed in Chapter 4, Image Classification.

Car tracking
Problem definition: The police department is trying to detect drivers who

cross a double line, violating the transit code. They have identified a
highway exit where this behavior has been the cause of many accidents. The
solution should track the trajectory of the car where the car crosses the
double line from an outer lane into the exit lane. When the event occurs, the
solution should send a signal to a traffic camera. The camera will take a
picture that will serve as evidence for the transit violation ticket issued to the
driver.

To effectively address this issue, a monitoring solution is being proposed.
The core of this system revolves around tracking the movement of vehicles,
specifically focusing on instances where a car veers across a double line
from an outer lane into the exit lane. This maneuver is dangerous and illegal,
making it a critical intervention point. The following figure illustrates the
violation:

Teaffas

i Vialations

Hatifer
Obdect Teacking + Counter .

H Traffis Syiteen AM

Figure 5.16: Concept diagram (Car tracking)
The proposed solution involves a mechanism that triggers a response when
such an event is detected. Upon recognizing a vehicle crossing the double
line, the system automatically sends a signal to a strategically placed traffic

camera. Upon receiving the signal, this camera will photograph the
offending vehicle.

The photograph taken by the camera serves a crucial role in the enforcement
process. It will be used as concrete evidence of the traffic violation, aiding in
issuing a transit violation ticket to the driver. This approach not only aids in
penalizing those breaking the law but also serves as a deterrent to prevent
future incidents. By implementing this solution, the police aim to reduce
accidents at the identified highway exit and promote safer driving practices.

Solution: The solution consists of one or more auxiliary cameras detecting
when a car crosses a double line and a central microcontroller in charge of
sending a digital signal to the police department traffic camera that will take
the photograph included in the traffic violation. Implementing the traffic
camera is out of the scope of this use case. Instead, we focus on the auxiliary
cameras that work together to signal when the violation event occurs. In a
way, the system we are creating can be abstracted as a sensor that detects
violations. The separation is essential as we could modify the internal
workings of the system to improve its accuracy (e.g., adding a sonar to
corroborate the event) without having to reimplement the interface with the
traffic camera.

Data acquisition

The data we acquire for this dataset must help us achieve three different
goals. 1. To recognize cars, 2. To track cars, 3. To follow trajectories.

To achieve the first goal, the model needs to recognize the changes in the car
shape as it moves through the video frame. If the shot is looking at the street
from a perspective where the car is becoming larger as it gets closer, the
dataset must have a balanced mix of vehicles of many sizes from that
perspective. On the other hand, if the video frame shows a side shot where
the car moves from one side to the other without modifying its apparent size,
the dataset needs to consider the effects of a moving object on any given
instant. Is the car going to look blurry? Or is your model fast enough to
capture the event at all? For example, if the vehicle moves across the frame
in less than one second and your model can only process 7 frames per
second, you only have a little room for error. The module would need to be
accurate enough to avoid missing three classifications in a row to be able to

at least detect the car before, during, and after it crosses the boundary.

A common error during data acquisition for model training on a tracking
implementation is to capture and train the model with objects moving at a
rate that does not take into consideration the actual performance of the
microcontroller. The model's training and verification results will look great
when running on a regular computer. Still, when deployed in the device in
tandem with the tracking algorithm, the results might not work.

Cameras that detect traffic events are generally outdoors. The device must
likely be installed in a pole or under the bridge to protect it from tampering.
The remote access to the camera installation place makes capturing training
data difficult. This hurdle makes an excellent opportunity to consider
generating a synthetic training dataset. Synthetic datasets are computer-
generated variations of a specific phenomenon. To create such a dataset, you
need to use a photo editor to cut images of cars that match the camera's
perspective and paste them on top of a picture of an empty street. Generate
as many variations as possible and train the model with the synthetic dataset.
The dataset should have a good variety of types of cars to increase accuracy
and reduce overfitting. If done correctly, a synthetic dataset should not be
easily noticeable from one generated in an actual situation.

For this use case, we generated 290 images, which was enough to reach an
F1 score of 95.2%. Refer to the following figure:

290

video frames

Fl% 20% 10%

-

Train Test Validate

{203 images) (58 images] (2% images)

Figure 5.17: Training dataset (Car tracking)

The camera angle affects the tracking directly, so avoid perspectives where
other cars can Block cars. A car's trajectory should be visible 100% from
entering the frame, crossing the double line, and leaving it.

We labeled each car independently under a single class. In future
implementations, we might create different classes for buses, motorcycles,
and vans.

Processing

Processing a synthetic dataset is not different from any other. Everything
starts with a reshape to a square format and a subsequent resize. After a
couple of attempts, we discovered that a size of 96x96 pixels was enough for
the model to recognize the cars consistently. The additional dataset
augmentation has been automatically implemented via Edge Impulse.

Each video frame is converted to 27,648 features. That is 9,216 features per
channel (RGB). The following cluster diagram groups similar images based
on their features. Each sample represents a different car. The fact that they
are clustered closely together is a positive sign, as it indicates that the model
can effectively distinguish cars from other objects. Refer to the following
figure:

A
AR A ph
A A A
A CAR Ay P A AR ,u.iA
K A A A
A A A i
A
A s AD AAA Eﬁﬁ‘n"" A
A A KA A A A
A.f‘;ﬁ{\ A A 4
oA A A A A
A A p A A A e A Aﬂ "'",,I
A A A Any Aal s
A Al A AR K OBATRT
A A ﬁAA A " A ARA
A A A A
sl Ay A A A
A A A A
Ay A A A
A A A
A A A
A A & A A Fb". A A
AAL, A
A J{:'Rﬁ. Ah
A A A A
A
Apa . A At A A
A s Al A
A A

Figure 5.18: Clustering diagram (Car tracking)

Model

The model for this use case is based on the MobileNetV2 model proposed by
Google Research, which, as of the writing of this book, is the golden
standard for object detection in resource-constrained devices. The strategy is
similar to the other use cases in this book: To strip the specialized layers
from MobileNetV2 and replace them with a customized layer that is trained
with the training set of this use case. The technique used is called Transfer
Learning. To give a sense of perspective, training an object recognition from
scratch would require a dataset with millions of images and hundreds of
computation hours.

The FOMO MobileNetV2 model demonstrates strong performance in
validation (95.2% F1 score) but exhibits lower accuracy during testing
(88.52%), indicating a possibility of overfitting and suggesting the need for
further evaluation of the model's generalization capabilities. Since this is a
single-class model, the high validation score indicates that the model has
learned to classify cars well on seen data, but its generalization to new,
unseen images is weaker. The relatively small dataset (290 images)
compared to the high feature count (27,648) might contribute to this, as the
model could be memorizing patterns instead of learning robust generalizable
features. To improve generalization, we could consider increasing dataset
size, applying data augmentation, or adding regularization techniques like
dropout or weight decay. Additionally, reviewing the test set for data
distribution differences from training could help identify biases affecting
performance. Refer to the following figure:

PROCESSING LEARNING RUM

27,648
70% Features 60 :
Irdanmeg samples (06456 RGE) flf.!fl;'g,.ci'égf
1 Label 1 = TRAIN
FOMO MobileNetv2
0
10% 27,648 95.2%
Validation samples Foatures F1 Score
f 1 Label (96195 RGE) VALIDATE
= = =)
o FOMO MabileMet'2
290
iy 37 648
1 Tm%?s?:[: alies Fe:ﬂures 88.52%
Lokl T Label i jﬁLCUHCY TEST

FOMO MobileMelv2

; 27,648
Live Fl‘:‘llull:i _..%
Camera (96x96 REE) Agcuracy LIVE

= o)

FOMO MobileNetV2

Figure 5.19: Training, validation and testing metrics (Car tracking)

Leveraging an existing model to require just a couple hundred images and a
dozen computation minutes is truly an incredible feat. Because we do not
need to know the exact area the object occupies, we optimize the response
time further using the FOMO algorithm, which determines the object's
centroid. With this optimization, we only get one coordinate per recognized
object, making the math to determine whether the centroid has crossed the
boundary much easier.

System implementation

The system consists of two different Blocks. The first one contains the
camera that captures the video frames, the model that classifies the cars, and
the algorithm that tracks and counts the number of times a vehicle crosses a
double line. The second Block subscribes to the notifications from the first
Block and sends a signal to the traffic system when a traffic violation occurs.
The following figure shows the connection between both Blocks, the
peripherals and their power sources:

EBLE Mesh (Publish to: CHT) i BLE Mesh (Subscribe to: CHT)

a cmesh E c:mesh

Live Camera

nc:edgeml 53

’m

Traffic System API

Figure 5.20: Connection diagram (Car tracking)

The first Block (the data acquisition Block) is implemented with an Arduino
Nicla Vision capable of performing the video frame capture and inference
and running the tracking algorithm. A secondary microcontroller mounted
on an NRF52840 dongle receives the notification from the Arduino Nicla via
UART that a traffic violation event has occurred. The dongle prepares the
payload with the notification contents and publishes the message to the
Mesh Network.

The second Block (the proxy Block) receives messages from the Mesh
Network via an NRF52840 Dongle subscribed to the same channel used by
the data acquisition Block to send the violation notifications. The dongle is a
full-featured microcontroller that can be re-programmed to send a signal to
the traffic controller. For this reason, this use case does not require a primary
microcontroller like the other use cases. The dongle is capable of
communicating via UART, 12C, or SPI. It can also output a custom signal if
it is required. If the interface requires a different higher voltage (like 5
volts), a buck and MOSFET gate can provide reasonable output in real time.
The dongle also features a multicolor LED that will be used to show the

communication status for troubleshooting purposes. It will show green if
connected to the Mesh Network, blue if a message is received, and red if
there is a problem.

Source code

The pseudocode for the Block 1 shows the sequence to infer whether there
has been a violation. It starts with the video frame acquisition, followed by
the feature extraction, the image classification run and the feed of its results
to the tracking model that keeps track of all the cars in the frame detecting if
a violation has been incurred. If that is the case, a signal is sent out.

Code location: Arduino

c:tinyml_5_3 Nano 33 BLE @ Block 1
Image Classification Model Capturlng VldC‘EO frames, .
: identifying objects, tracking
m [%] g Detre. and detecting traffic
i ' violations.
Pseudocode

1. A camera captures frames
1 from the street video

g feed. Frames are sent to

the processing Block.

2 2. In the processing Block,

the image is resized and

reshaped. The resulting

features are sent to the
model.

3. The TinyML model runs
the inference with the

) provided data and returns

an array of identified

cars. The array is sent to

the tracking algorithm.

: 4. The tracking algorithm

A checks whether each

identified car is close

enough to a previously
identified car from the
last step. If there is a
match, the vehicle
acquires the same ID as
the previous one. By
doing this, the ID
persists, and car tracking
takes place.

5. The counting algorithm
checks whether a tracked
car has crossed a double
line. The double line is
hard coded to the
software as two
coordinates. The check is
performed geometrically
by calculating the
distance between the line
and the object. If there is
a cross, a traffic Violation
has been detected, and a
message is sent to the
network MCU to publish
a notification message.

Table 5.11 : Pseudocode (Car tracking)

Network

A component mounted at the top of a pole is an excellent example of an
ideal use case for a wireless network. Since the device does not need to
capture images, relying instead on a specialized camera for that function, a
low-bandwidth network, such as a low-power Mesh Network, is sufficient.
The component will transmit messages to a receiver device installed next to
the traffic camera. Refer to the following table:

Block(s) Action Channel
1 Publishes to CH1
2 Subscribes to CH1

Table 5.12 : Mesh network configuration (Car tracking)

Power analysis

The component mounted at the top of the pole is also an ideal candidate for a
solar-powered device. However, given the critical nature of the operation
(ensuring that all violations are penalized without exception), a permanent
power source is recommended. If the device is installed on a traffic pole,
power is likely included in the original specifications, making it reasonable
to assume that extending a low-voltage line to the device would be feasible.

Refer to the following table:
I I I I I I

Power Device Latent Active Notes
source . .
consumption consumption
Arduino 0.032A <1A
P1 Nicla
Vision @5V @5V
Pl NRF52 0.04mA 3mA Active when publishing
Dongle @5v @5v messages as a client.

For the receiver Block, given the fact that it will be installed in close
proximity to the traffic camera, we can also assume that power will be

Table 5.13 : Power profile, Block 1 (Car tracking)

available to it:

Power . Latent Active
Device Notes
source consumption consumption
P2 NRF52 0.04mA 0.3mA Active when receiving
Dongle @5v @5v messages as a server.
- Sends data to a proprietary
P2 {3;111;12(3) 0.034mA <lA Traffic system application
BLE @5V @5V programmable interface
(API)

Table 5.14: Power profile, Block 2 (Car tracking)
Block 2 acquires power from a power source connected to the electric grid.

Bill of materials

The following bill of materials considers a minimal implementation of one
violation detecting device and a receiver. Both of them powered directly

from the electric grid.

Description QTY Unit cost Total
Arduino Nicla Vision 1 $85 $85
Arduino Nano 33 BLE 1 $30 $30
NRF52840 Dongle 2 $12 $24
Power Source 1A @5v 2 $10 $20

Table 5.15: Bill of materials (Car tracking)

Approximate cost of materials is $159.

Conclusion

In this chapter, we explored how running image classification multiple times
per second while tracking detected objects and their locations enables a new
set of solutions for detecting events over time. These solutions include
counting objects from a video feed, tracking people, and detecting traffic
violations. In the following chapters, we build upon this knowledge to detect
anomalies.

References

e Tracking use case l:
https://studio.edgeimpulse.com/public/339554/live

e Tracking use case 2:
https://studio.edgeimpulse.com/public/344166/live

e Tracking use case 3:
https://studio.edgeimpulse.com/public/340135/live

* FOMO: Object detection for constrained devices
https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-
blocks/object-detection/fomo-object-detection-for-constrained-
devices

Join our book’s Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://studio.edgeimpulse.com/public/339554/live
https://studio.edgeimpulse.com/public/344166/live
https://studio.edgeimpulse.com/public/340135/live
https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices
https://discord.bpbonline.com/

CHAPTER 6
Sensor Fusion

Introduction

Sensor fusion combines data from multiple sensors to create a more accurate
or informative set of information than each sensor could provide
individually. This definition can be extended to include creating derived data
that would be unattainable using individual sensors alone.

With the advent of advanced machine learning technologies and models
trained on a vast array of data sources, it could be argued that employing a
Neural Network to synthesize new data is a form of sensor fusion. However,
we will focus on explicit sensor fusion, where data is fused before it is sent
to the Neural Network. Once we have generated new data with sensor
fusion, we can use it to train a model and infer data from it.

Two main challenges arise in sensor fusion: dependability and time
synchronization. Dependability refers to the system's ability to provide a
reliable data stream consistently. It is crucial to consider and plan for
scenarios where one or more sensors might fail or produce inaccurate data.
We must establish strategies for detecting and correcting such issues while
keeping sensor fusion reliable. Time synchronization is equally critical, as
the data from various sources must be correlated in time. Without proper
synchronization, there is a risk of generating misleading information, as
asynchronous data might not truly reflect the interactions or the sequence of
events among various readings.

Structure

The chapter covers the following topics:
e Types of sensor fusion
e Sensor fusion algorithm
e Kalman filters
e Use case: Scoring
» Use case: Profiling
e Use case: Correction

Objectives

The main objectives of this chapter are to identify opportunities for
implementing sensor fusion by understanding the various approaches used in
combining data from multiple sensors. Learn the steps involved in the sensor
fusion algorithm to enhance accuracy and reliability in applications.
Additionally, explore the concept of a Kalman filter and its significance in
sensor fusion, as it plays a crucial role in estimating and refining sensor data
for improved performance.

Types of sensor fusion

Sensor fusion is a departure from the methodologies discussed in previous
chapters, where data is typically captured from a single sensor, processed to
extract features and input into a Neural Network for inference and insight
derivation. Sensor fusion introduces an additional complexity: it involves the
integration of readings from multiple sensors to create a unified
representation of a specific environmental characteristic.

A standard categorization of sensor fusion identifies three distinct
configurations: complementary, competitive, and cooperative. In a
complementary configuration, sensors collaborate rather than compete, each
contributing unique data to form a more comprehensive view of the
environment. This approach does not just add data; it enriches the overall
context. Use case 1 shows this configuration by providing readings of
temperature and relative humidity present in living and working spaces that

help define the comfort index of an indoor space.

The competitive configuration is designed for reliability and redundancy.
Multiple sensors can measure the same property or provide similar
information in this setup. This redundancy ensures that if one sensor fails or
provides inaccurate data, the system can still function correctly by relying on
data from the remaining sensors. Use case 2 shows this configuration by
capturing temperature with multiple sensors to generate the thermal profile
of an indoor space.

The following figure illustrates the three different approaches to sensor
fusion and highlights their distinctions:

Ervironment Ernvancnemngent Ermvinananent
I".I ,"I Semvsor B \ ! I-"
| 1 | \ |
Vo4 + ¥ v v

!
Sensor A Sensor Al Sensor A2 Sensor A 1 Sensor B

Complementary Competitive Cooperative
Fusion Fusion Fusian

v v ¥

Rahabde &
Complete . Emarging
Data FI;TI: * Data

Figure 6.1: Sensor fusion types

Lastly, the cooperative configuration involves different sensors contributing
varied data that, when combined, can deduce information that would be
impossible to measure directly. This collaborative approach leverages the
strengths of diverse sensors to create a detailed and multifaceted
understanding of the environment. Each configuration offers unique
advantages and is suited to different tasks and objectives within the broader
scope of sensor fusion. The Correction use case in this chapter shows this
approach by leveraging the unique qualities of a gyroscope and an
accelerometer data to calculate the roll and pitch angle of an object that is
more accurate than that acquired independently by each sensor.

Sensor fusion algorithm

Sensor fusion algorithms integrate data from multiple sensors to produce
more accurate, reliable, and comprehensive information than what is
available from any single sensor. The steps involved in a sensor fusion
algorithm typically include the following:

1. Data collection: Gathering raw data from various sensors, each of
which may measure different aspects of the environment or object of
interest (e.g., temperature, motion, distance).

2. Pre-processing: Cleaning and preparing the data for fusion. This step
may involve filtering noise, scaling, and converting data into compatible
formats or units. It is crucial for ensuring the quality and consistency of
the input data.

3. Data alignment: Aligning data in time and space. Since data may come
from sensors with different sampling rates or at different positions,
aligning data is essential for accurate fusion. This may involve
interpolation, timestamp matching, and spatial transformations.

4. Data association: Determining which data points across sensors
correspond to the same phenomenon or object. This step is crucial in
environments with multiple entities or when sensors measure
overlapping areas.

5. Estimation and integration: Combining data from multiple sources to
estimate the state of the environment or object. sensor fusion can be
done through various mathematical models and algorithms, such as
Kalman filters, Bayesian networks, or Neural Networks. The goal is to
leverage the strengths of each sensor to improve overall accuracy and
reliability.

6. Post-processing: Further refining the fused data, if necessary, this step
might include smoothing the results, applying thresholds, or extracting
higher-level information from the raw fused data.

7. Feedback loop: In some sensor fusion systems, there is a feedback loop
where the outcome of the fusion process is used to adjust the parameters
of the sensors or the fusion algorithm itself, enhancing future data
collection and processing.

It i1s important to note that using multiple sensors in a TinyML application

does not automatically qualify it as a sensor fusion system. For a system to
be considered as employing sensor fusion, the integrated data from multiple
sensors must culminate in a new, unified representation of the information.
This distinction is crucial in understanding and categorizing different multi-
sensor applications.

The following figure illustrates how sensor fusion produces information that
differs from the simple aggregation of two sensors:

Emvironiment

Q o
Sensod A \ Lensor B ensor A / sensor 8

Sensor
Fusion
Algorithm

|

Environrment

¥
v
Sonsor ;
Fusion Multisersor
Integraton
EdgeML Model EdgedL Model

Figure 6.2: Sensor fusion versus multiple sensors aggregation

Kalman filters

Kalman filters are great to smooth and correct curves, but their real value is
in estimating system parameters such as position, velocity, or sensor bias,
which cannot be measured or observed directly or with a high level of

accuracy. Sensors are typically unpredictable, noisy, and slow to detect
changes. Therefore, you cannot assume that a sensor's readings reflect a
system's real state. A Kalman filter can turn a few raw readings and
knowledge about the system into a more accurate value you can trust.

A real-life application of Kalman filters is in NASA’s Mars Rovers, such as
Perseverance and Curiosity, which rely on them for accurate navigation,
sensor fusion, and motion tracking in the harsh and unpredictable Martian
environment. Since GPS 1is not available on Mars, the rovers must estimate
their position, velocity, and orientation using onboard sensors while
accounting for sensor noise, delays, and uncertainties.

The Kalman filter is like an intelligent assistant that helps you make the best
guess about the current state of something you are interested in tracking,
such as the location of a moving car or the temperature in a room, even when
your measurements have some errors or noise.

A Kalman filter combines measurement data with prior knowledge to
produce an accurate estimate of a system’s state. The process begins by
capturing one or more measurements, which are assumed to contain
inaccuracies due to the limitations of the components. In the prediction step,
the current state and uncertainty are estimated using a mathematical model
of the system and prior knowledge, such as physics-based principles or
statistical data. In the update step, this prediction is refined by incorporating
new measurements while accounting for uncertainties in both the prediction
and the data. By continuously comparing new readings against prior
knowledge and previous estimates, the filter maintains an optimal balance
between the predicted and measured states. This dynamic process ensures an
improved and continuously evolving output estimate. The sequence of the
prediction and update steps is illustrated in the following figure:

Environment

l Sensor B
‘I‘
/

Sensor
Fusion
Algorithm

Physical
Model

A

3

Fused
Data

‘ Measurement

|

Prior]

| ’ i’redictk:n} Update Output]
kiuwledge | step |k Step l ; estimate
r J

—

KALMAN FILTER

Figure 6.3: Sensor fusion algorithm

As an example, imagine you are trying to guess the speed of a bicycle as it
moves past you while you have a slightly blurry vision. Each time you see
the bike, you guess how fast it is going, but because of your blurry vision,
you are not entirely sure if your guess is accurate. Here is where the Kalman
filter steps in to help you make a better guess.

As mentioned before, the Kalman filter works in two main steps: Prediction

and update:

1. Prediction: Based on what you already know about the bicycle's
behavior (like its previous speed and direction), you predict its current
speed and position. This is like saying, based on how fast it was going a
moment ago, | think it should be here now.

2. Update: Then, you take a new observation or measurement of the
bicycle's position. Because of your blurry vision, this measurement is
not perfect. The Kalman filter combines your prediction with this new,
noisy measurement to make a new and improved guess about the
bicycle's speed and position. It does this by weighing its confidence in
the prediction and the measurement. If your prediction is usually
reliable, it will trust it more; if the measurements are generally accurate,

1t will lean more on them.

The beauty of the Kalman filter is in how it balances these two things (the
predictions and the measurements) to adjust its guesses. Over time, as it gets
more information, it becomes better at predicting the state of whatever it is
tracking. It is like gradually adjusting your glasses to see the bicycle more
clearly, helping you make more accurate guesses about its speed, even if
each measurement is not perfect.

Use case: Scoring

Sensor fusion is often employed in situations where directly measuring a
metric 1s not possible. In this use case, there are multiple levels of sensor
fusion: the first level combines the readings from individual sensors, while
the second level integrates the indices from multiple areas into a single
aggregated score.

Degree of comfort score for shelters

Problem definition: A shelter located in New York City is taking proactive
steps to enhance the living conditions of its guests by focusing on the degree
of comfort monitoring within its premises. The primary objective is to
ensure that guests enjoy a comfortable experience throughout their stay. The
shelter has decided to implement a system that measures comfort based on a
combination of humidity and temperature (Humidex Index). This system is
designed to communicate the comfort conditions clearly and concisely to
various stakeholders, including the guests and staff.

The Humidex Score is a comprehensive metric that provides a singular
numerical value representing the overall degree of comfort within the
shelter. This index 1s calculated based on humidity and temperature levels
present in a room. These factors play a significant role in determining the
shelter's health, comfort, and safety conditions, making their monitoring
crucial.

To ensure a thorough assessment of the degree of comfort, Humidex must be
calculated in each room and common area within the shelter. The Humidex
scores should be provided to the operations staff in near real time, allowing
for targeted actions to improve comfort in a timely fashion where necessary.

A general comfort-building score has also been requested to offer a location-
based performance scorecard. The building-level score will be published
publicly to stakeholders for transparency and accountability.

Solution: The solution consists of a network of standalone clusters of
sensors. Each set contains all the sensors necessary to capture the data and
perform sensor fusion to generate the Humidex index for each space in the
shelter. Refer to the following figure:

Figure 6.4: Concept diagram (Degree of comfort)

Each cluster will transmit sensor fusion output to a centralized device that
will aggregate them using a weighted average to generate the building-level
comfort score, effectively executing sensor fusion at that level.

Data acquisition

Each room (to be monitored) will have a device capable of capturing
humidity and temperature readings. The device is a microcontroller that
communicates with each one of the sensors by polling every 20 seconds.
Each sensor reading is filtered after acquisition using a simple Kalman filter
corrected by the comfort index generated in the last reading. The
microcontroller keeps two buffers in parallel (one per metric). Each buffer
holds the last two readings of each metric. The buffers allow the metrics
from the different sensors to arrive at slightly different times. In the case of a
faulty sensor, if fresh data does not make it to its buffer for more than two
readings, it will be flushed to avoid misleading results. In the event of a
missing sensor, we could be misleading the user into believing the comfort

index is okay if we do not emphasize that data is missing. Therefore, the
node will output an error value if at least one sensor is missing instead of
trying to compensate for the missing ones. Please notice that while
technically speaking, we could try to infer the missing sensor with the rest of
the readings (check Chapter 7, Deep Learning Regression to learn how to do
it) because this is an application that could affect the health of a person, it is
preferable to return an error.

The training set includes an equal number of space temperature and relative
humidity readings, as shown in Figure 6.5:

Space Temperature i Relative Humidity

48 houwrs . 3 Rooms e A8 hiours, 3 Rooms

———__ 144hours —

100%

Test
(144 hours)

Figure 6.5: Training data set (Degree of comfort)

Processing

Once the metrics have been captured and available in the buffers, we
calculate the comfort index. The frequency at which this calculation is run is
extremely low (1/60 Hz) if you compare it to the frequencies we used for
sound or movement analysis (Chapter 2, Sound Classification and Chapter
3, Movement Classification). The reason is that we are only interested in
events that span more than a few minutes. The humidity % could drop and
rise instantaneously because of specific events like somebody momentarily

opening a window. However, the goal of the project is to provide insight to
the operations team in charge of improving the living conditions of the
shelter on situations they can address. Such teams are so busy that they will
not be able to attend and troubleshoot transient events. Instead, if they see a
trend where the comfort index starts getting worse in a room, they will
compare it against neighboring spaces and be able to isolate the root of the
problem. For that reason, capturing data every 30 seconds and running
calculations every minute or so is sufficient for the goals of this application.

The standard Humidex ranges and their corresponding degree of comfort are
listed in the following figure:

HUMIDEX RANGE DEGREE OF COMFORT
16-29 Comfort
30-39 No Comfort
40-45 | Some Discomfort
46-54 Great Discomfort
55-60 Dangerous

61-65 Heat Stroke

Figure 6.6: Humidex range and degree of comfort

Humidex is a measurement of how hot humans feel. It is intended to express
how the combined effects of warm temperature and humidity are perceived.
It is an equivalent of the Wind Chill Factor but for warm environments.

The formula to calculate it requires only two inputs, relative humidity and
temperature, as shown in the following equation:

h=T4+ g X (6.112 X 10?'5"23?E+'1‘ X % - 1(})

Calculating a new piece of information from a function that does not change
in time is the most straightforward way of doing sensor fusion. Simple,
however, does not mean it is easy; data from multiple sources must be

available simultaneously and not be corrupt.

Once we obtain the comfort index from each one of the rooms, it is time to
generate the building level comfort score. We could feel tempted to average
the Indoor Air Quality Index (IAQI) from all rooms and output that.
However, we need to consider the goals of the building level score, which
are to communicate to stakeholders how comfortable the shelter is in real
time. Comfort is based on human perception. Let us assume that the score is
equivalent to the results from a poll performed by asking all the guests to
rate their comfort level from 0 to 5. We must give more weight to larger
groups' rooms to reflect this in the equation. The same goes for common
areas that everybody shares. Comfortable common areas also affect the
perception of the entire population. We will add a factor that will be
multiplied by the humidex index of every room. The following equation will
calculate the factor:

Fn=G/R

Where G is the number of guests living in that room, and R is the average
room size for that shelter.

For example, a room for six people in a shelter where the average room size
is four and weighs 6/4 = 1.5. A space for four people in the same shelter
weighs 4/4 = 1. A room for two people in the same shelter weighs 2/4 = 0.5.

The comfort index for those three bedrooms, assuming the first room has a
score of 15, the second a score of 23, and the third a score of 40, would be.

(1.5 x 15) + (1 x 23) + (0.5 x 40))/3 = 21.8

This raw Degree of Comfort score calculation is performed in the device
that receives the comfort indices from the sensor devices scattered around
the shelter. To obtain the final output, we pass the building score through a
Kalman filter which will consider past readings. The output is a corrected
version of the Degree of Comfort score for the building.

System implementation

The system 1s composed of two primary components. The initial component
(Block 1) is dedicated to data acquisition. In contrast, the second (Block 2) is
the aggregation component, tasked with collating data from each room to
compute an overall score for the entire building as shown in the following
figure:

|||||||||||

Figure 6.7: Connection diagram (Degree of comfort)

The data acquisition components are powered by an Arduino Nano 33 BLE
Sense, equipped with a Relative Humidity (RH) sensor and a temperature
sensor. This setup allows for direct data collection without the need for
external devices. Each room to be monitored will have its instance of this
data acquisition unit. Each calculates the humidex index independently and
sends the score to the central aggregation component.

The aggregation component utilizes an Arduino Nano 33 BLE and gathers
data from each room. It does this by tuning into the specific channels on
which the rooms broadcast their data within a BLE Mesh Network, allowing
for a direct stream of information from every monitored room. Each room is
assigned a unique channel, facilitating the aggregation unit's ability to
discern the source of data not by the content of the messages but through the
channels they are received on. To manage memory efficiently, the
aggregation unit keeps only the recent two scores from each data acquisition
unit.

For simplicity, the overall score calculated for the building is displayed on
an OLED screen connected to the aggregation component.

Source code

Presenting the pseudocode of an algorithm helps you understand the
fundamental principles of the software without being tied to the specifics of
any programming language. Once the pseudocode is clear, it can be
implemented on different platforms or used as a basis to generate code with

the help of Al. A highly effective way to present pseudocode is by using
columns to represent specific components and arrows to indicate the flow of
information between them. In the following tables, the main components are
the data buffer, which captures and holds the data, and the sensor fusion
component, which executes the Kalman filter:

Code location: Arduino Nano

c:tinyml 6 1a 33 BLE @ Block 1-3

Data
Buffer

Capturing RH and temperature and

calculating the comfort index.

- Pseudocode

1. The microcontroller polls the
relative humidity and
temperature sensors. Readings

- are received and stored in a

L buffer.

2. The sensor fusion function

pulls the readings from the
0 / 5 buffer and calculates the
0

-)
| Sernsor
Fuslon
1

@ humidex index.

3. The index is sent to the
networking microcontroller for
the message to be sent to the
aggregator.

A

Table 6.1 : Pseudocode (Degree of comfort)

Code location: Arduino
Nano 33 BLE @ Block 4

c:tinyml 6 _1b

Receiving data from every room,
calculating the building wide
comfort score.

Pseudocode

1. The device subscribes to the
channels of every room,
receives synchronous
messages, and organizes
inputs in an array.

2. The general comfort score is

calculated using a weighted
average.

3. Data is sent to the driver in
charge of the OLED display.

The score is displayed.

Table 6.2 : Source code (Degree of comfort)

Network

The Blocks communicate asynchronously using a subscription-publication
paradigm. Blocks 1-3 are data producers while Block 4 is a data consumer.
This can be implemented in various types of low energy mesh networks like

BLE Mesh. Refer to the following table:

Block(s) Action Channel
1-3 Publish to CH1-CH3
4 Subscribes to CHI1-CH3

Table 6.3: Asyncrhronous communication between Blocks (Degree of

comfort)
Power analysis
For Block 1:
Latent Active
Power Device Notes
source consumption consumption
P1 Arduino 0.032A <1A
Nano 33

BLE Sense @5V @5V

NRF52 0.04mA 3mA Active when
P1 publishing messages
Dongle @5v @5v as a client.

Table 6.4: Power requirements for Block 1 (Degree of comfort)

Block 1 can be powered by a battery if the refresh rate is kept low enough
(e.g., capturing and calculating the index only once an hour). However, the
battery would eventually deplete and require replacement, creating an
operational burden for the facility team. An alternative is to power the sensor
directly using a 5V power source from the electrical installation. While this
provides a permanent solution, it requires the involvement of an electrician,
which could increase the capital expenses of the installation.

For Block 2:

Power . Latent Active
Device Notes
source consumption consumption
P2 NRF52 0.04mA 0.3mA Active when receiving
Dongle @5v @5v messages as a server.
P2 32?11;11312 0.034mA <1A Executes sensor fusion
BLE @5V @5V for the general score

Table 6.5: Power requirements for Block 2 (Degree of comfort)
A permanent 1A power source is required for Block 2, as it needs to actively
listen for messages from the various data capture components (Block 1)
distributed throughout the building.

Bill of materials

The following table provides an approximate reference for the quantity and
cost of elements needed to create a proof of concept that calculates the
Comfort score from a sample of 10 rooms:

Description QTY Unit cost Total

Arduino Nano 33 BLE Sense 10 $45 (n=10 for pilot program) $450

Arduino Nano 33 BLE 1 $30 $30

NRF52840 Dongle 10+1 $12 $132

OLED Display 1 $5 $5

Power Source 1A @5v 10+1 $30 $330

Table 6.6: Bill of materials (Degree of comfort)
Approximate cost of materials is $947.

Use case: Profiling

A great use case for sensor fusion is augmenting existing readings with
inferred readings. This may be necessary when it is physically impossible to
place a sensor in a specific location (e.g., measuring the temperature inside a
rocket engine) or when installing too many sensors is economically
unfeasible.

Temperature profiling in a commercial building

Problem definition: The owner of a recently renovated commercial building
wants to create a temperature profile of each floor before commissioning a
new heating, ventilation, and air conditioning (HVAC) implementation.
They require a detailed understanding of the temperature distribution across
each building floor to achieve this. The HVAC designer working on this
project has enlisted your expertise to install a temporary network of wireless
sensors. These sensors should help capture a comprehensive temperature
profile that shows the temperature distribution on the floor plan and its rate
of change in time across the day.

Given that this is a temporary setup, it is essential to maintain cost-
effectiveness while deploying the sensor network. The primary challenge is
creating a representative temperature profile for each floor without installing
an excessive number of sensors. The number of sensors and their placement
within the floor plan must be carefully considered. On one hand, we don’t
need a sensor in every corner and crevice, as sensor fusion allows us to infer
data for unmeasured areas. On the other hand, sensor fusion cannot generate
data where no input exists, so at least one or two sensors must capture
temperature variations in every space being profiled.

The following figure illustrates the concept being developed in this use case:

multiple sensors placed in different areas of the location and a sensor fusion
Block that generates the inferred readings:

! ! !

| ' e i
|

i x x OLED Display
=

|

|

i

Figure 6.8: Concept diagram (Temperature profiling)

Solution: The solution involves installing a wireless sensor network that
captures temperature data across every floor. There are two advantages to
creating independent setups per floor. The first one is that the sensor fusion
algorithm will be more straightforward as it will not have to handle grouping
and managing data from different floors. Typically, air handling units control
every floor independently, so having a temperature profile per floor makes
sense. The second reason is that low-powered sensor networks struggle to
cross thick concrete floors. Having standalone setups per floor eliminates
this problem, avoiding the need for complex network architectures. Once we
have a setup for one floor, we can replicate it on as many floors as needed.

Each temperature sensor will be placed strategically, representing a
particular temperature zone of the floorplan. For example, one of the sensors
would be placed by the windows, another in the kitchen, and another by the
entrance.

The sensor fusion solution's analytical part uses a Kalman filter to estimate
the actual floor temperature by combining multiple readings and estimating
the temperature rate of change for every zone. This is useful for designers to
understand what parts of the floor loose or gain temperature faster than the
others.

Data acquisition

Acquiring multiple readings of the same floor brings up the interesting
challenge of simultaneously keeping all the devices synchronized to output
the same timestamp. Microcontrollers do not have dedicated real-time
clocks (RTCs) for accurate long-term timekeeping; instead, they have
timers. These timers count the number of machine cycles from the
microcontroller and infer the length of a second from it. If you have a point
of reference in time, you can add seconds using the MCU timers. The
problem is that this is, at best, an approximation; the time will often drift
away because the microcontroller is using its cores for other tasks. A
dedicated clock called RTC is added as a peripheral to each microcontroller
to address this issue. A real time clock uses a dedicated crystal to measure
the passing of time with high accuracy and usually has an integrated battery
that allows it to keep track of time even if the microcontroller is reset or
turned off. Once you have the RTCs in place, you need to ensure that all the
RTCs have the same time and date. To do that, one of the sensors broadcasts
its timestamp every minute. The rest of the sensors will update their RTC
based on that timestamp.

Each sensor stores its raw readings and timestamps on an SD card for
analysis after the temperature profiling has been completed. The training set
consists of 1,008 hours of readings from six different areas on a commercial
building floor. Refer to the following figure:

Space Temperature

168 hours , 6 areas \ Test Dataset
1,008 hours

100%

Test
(1,008 hours)

Figure 6.9: Training set (Temperature profiling)

Processing

In this use case, we will use the Kalman filter to calculate the true
temperature (remember that sensors are noisy) and the rate of temperature
change in the measured zone. A zone with a high-temperature change rate
cannot hold temperature easily. On the contrary, an area with a low rate of
temperature change indicates a space where temperature does not swing so
easily. The analysis does not try to explain why this is the case; it just shows
it is happening. A more thorough thermodynamic analysis, which is outside
the scope of this book, might reveal the root cause of the temperature swings
that the nearby windows, insulation, floor materials, or geometry of the
space could be causing. Notice how the Kalman filter is helping us calculate
states that cannot be measured directly.

Temperature and rates of change states will be calculated independently for
every zone. The location of a sensor represents a zone.
The sensor fusion algorithm works as follows:

1. We combine each sensor reading with its immediate neighbors using a

multiple-input Kalman filter. This works by making one prediction per
reading and as many corrections as sensors participating in the

aggregation. This way, every sensor contributes independently to
calculate the true temperature state. Figure 6.10 shows the raw readings.
The output is a single timeseries that represents the corrected
temperature for a given space. We will input that timeseries to the next
step. Refer to the following figure:

Temperatune 1

Temperatune 2

Temperature 3 o

Figure 6.10: Multiple sensor input (Temperature profiling)

2. Using the output from the previous step, we calculate the rate of
temperature change by determining the derivative of temperature over
time. This is achieved by calculating the difference between the current
and predicted temperatures and dividing it by the time interval between
the two states. A Kalman filter is used for this process, where the State
Transition Matrix incorporates the differential equation that translates
the rate of change predictions into the current state, which is then
corrected using the latest measurements. Figure 6.11 illustrates the
output of the first stage of fusion (Fusion 1) and its derivative (Fusion
2). The physical interpretation of the derivative is the room’s ability to
retain temperature. Engineers use this information to design HVAC
equipment and make architectural improvements.

Fusizn 2 (Rate of Temperature Change)

L] Fusion 1 (Fused Temperatures)

Figure 6.11: Fused temperature and rate of change (Temperature profiling)

System implementation

Refer to the following figure:

' i ¥
BLE Mtk (Publik 1o CH)LCHZ] : BLE Mesh {admanibee te£H1)

CHED Dispilay

Figure 6.12: Connection diagram (Temperature profiling)

This use case is implemented using several data acquisition units that
communicate with each other to exchange temperature readings. This
collaboration enables local sensor fusion with the aggregated data saved to
an SD card.

Each unit has a temperature sensor and an SD card module for data logging
connected to the main microcontroller board via the I12C protocol. A timer in
the main script triggers the scheduled temperature readings from the sensor.
Additionally, a secondary microcontroller, the NRF52840, is integrated via
Universal Asynchronous Receiver-Transmitter (UART) to handle the
publication of the raw temperature data as soon as it is collected.

Furthermore, this secondary microcontroller is set up to receive updates
from adjacent sensors, forwarding any new data to the primary
microcontroller. This incoming data is then stored in a circular buffer, which
the sensor fusion algorithm utilizes to calculate the most current temperature
and its rate of change.

Source code

In the following table, the main components are the data processing
component, which captures and holds the data, and the sensor fusion
component, which executes the multi-sensor Kalman filter:

Code location: Arduino

:tinyml_6_2
c:tinyml 6_ Nano 33 BLE @ Block 1
Capturing local temperature,
Data Sersor 5D capturing neighboring
Meighbor sensors Buffer Fusion Card temperature, and performing

sensor fusion, storing results
in SD Card.

Pseudocode

1. The microcontroller
(1) receives data from
neighbor sensors and

Local sensor ..
stores it in a buffer.

2. Sensor fusion algorithm
2 fuses local temperature
R readings with neighbor
sensor data.

3. Sensor fusion algorithm
estimates the rate of
3) temperature change.

4. Results are stored on an
SD card.

Table 6.7 : Pseudocode (Temperature profiling)

Network

The wireless network is particularly important for this use case, as it is a
temporary network. This enables a proof of concept to be installed and begin
generating insights on the same day. Block 1 consists of sensors that capture
readings from other sibling Block 1 sensors.

Block(s) Action Channel
1 Publishes to <Own assigned Channel>
1 Subscribes to <Neighbor Channels>

Table 6.8: Network configuration (Temperature profiling)

Power analysis

Due to the temporary nature of the profiling network, the Block 1 must
operate on batteries. Polling data at 1Hz, storing it on an SD card, and
publishing messages to a mesh network are all power-intensive operations.
However, certain optimizations can be implemented to extend battery life,
such as using a larger battery, reducing the frequency or putting the node to
sleep between readings.

Power . Latent Active
Device Notes
source consumption consumption
Arduino Arduino will be polling
Nano 33 0.032A <1A tempgrature sensors and
P1 BLE storing data on an SD
Sense @sv @sv Card continuously (1Hz)
continuously (1Hz)
The dongle will publish
Pl NRF52 0.04mA 3mA and receive messages from
Dongle @5v @5v subscriptions at about
1Hz.

Table 6.9: Power profile (Temperature profiling)

Bill of materials

Assuming a temperature profiling network consisting of 9 sensors and a data
aggregator, the following table provides an approximate bill of materials,

including microcontrollers, sensors, power sources, and SD loggers.

Description QTY Unit cost Total
Arduino Nano 33 BLE 10 $30 $300
NRF52840 Dongle 10 $12 $120
Temperature Sensor 10 $6 $60
SD Card Logger 10 $19 $190
128 Mb SD Card 10 $5 $50

Table 6.10: Bill of materials (Temperature profiling)
Approximate cost of materials is $720.

Use case: Correction

A common application of sensor fusion is using a complementary sensor to
correct errors and drift in a calculation. This is achieved by calculating the
same metric two different ways (one for each sensor type) and then giving
more weight to one or the other based on the uncertainties associated with
each. These uncertainties are represented as covariances in the filter’s
mathematical model.

Accelerometer and gyroscope for drones

Problem definition: A consumer electronics company is developing a new
product: a compact flying drone equipped with a camera. This innovative
drone incorporates an advanced Inertial Measurement Unit (IMU),
essential for its operation. The IMU provides precise readings of the drone's
motion, including acceleration and gyroscope data across three axes (X, Y,
and Z). These measurements are crucial for understanding and controlling
the drone's movements in real time.

The sensor fusion component in this use case is self-contained in the drone
informing its navigation systems. The following concept diagram shows no
communication or links to an external device:

Imartial
Measurement

o

Dirone

Figure 6.13: Concept diagram (Gyroscope correction)

One of the primary uses of the gyroscope readings is to determine the
drone's attitude, which refers to its orientation in space at any given moment.
Accurate attitude information is vital for stable flight and effective
maneuvering. However, the design team encountered a significant challenge
during the testing phase. They observed that the angle readings from the
gyroscope began to drift over time during the flight. As the flight progressed,
the drift became more severe, eventually making the readings unreliable and
the drone unusable.

Solution: The team is exploring a sensor fusion solution to address this
angle drift issue. sensor fusion is a method that combines data from multiple
sensors to improve the accuracy of the overall system. In this case, the
proposed solution involves using the accelerometer readings to correct the
drift experienced in the gyroscope data. By integrating the accelerometer
data with the gyroscope readings, the team aims to achieve a more stable and
accurate measurement of the drone's pitch and roll angles. This correction is
essential to ensure the drone's reliable performance and operational stability.

The readings on an inertial measurement unit will be sent to a

microcontroller running a Kalman filter that will correct the gyroscope
readings with real-time data from a set of accelerometers. The output will be
a corrected signal indicating the actual Roll and Pitch angles. The signal
will be sent to the drone's central controller.

Data acquisition

There are six data points of interest coming from the IMU: The X, Y, and Z
gyroscope readings and the X, Y, and Z readings of the accelerometers. The
frequency of acquisition is 62,5Hz (one reading every 16ms) as shown in the
Figure 6.14. We are using the Arduino Nano 33 BLE Sense LSM9DS1 IMU
and performing the real-time calculations. Sensor fusion allows us to
disregard the raw data and only save the last state of the Kalman filter.

|
| ‘ ‘ Roll Anglé Eﬁccelef[:-meler Raw

Pitch Angle (Accelerometer Raw)

Figure 6.14: High frequency roll and pitch readings

The test dataset is conformed from 6 data points: X, Y and Z accelerometers
and X, Y and Z gyroscopes as shown in the following figure:

X Gyroscope

/ 15 x 100 samples

X Accelerometer
15 x 100 samples

Test Datasct
Y Accelerometer — Y Gyroscope
15% 100 samples 600 Samples is x}:l}n samﬁm
o . k
b -
Z Accelerometer //%i“wﬁ j \ Z Gyroscope
15X 100 samples = 15 % 100 samples
100%
Test
{800 samples)
Figure 6.15: Training dataset (Gyroscope correction)
Processing

A notable limitation of gyroscopes is their lack of a stable reference point,
leading to a measurement drift over time. While precise in detecting any
form of acceleration, accelerometers can produce misleading rotation angles
due to their sensitivity to all movements. However, accelerometers benefit
from a reliable reference point: the constant gravitational pull of the Earth.

We will employ sensor fusion techniques to counteract each sensor type's
shortcomings. This approach will generate a refined set of roll and pitch
angles by harnessing the gyroscope's accuracy and accelerometer's stable
reference point, effectively mitigating drift and enhancing the overall
precision.

Before we can use the gyroscope and the accelerometer’s readings in the
Kalman filter, we must perform several transformations.

First, we must translate the gyroscope’s raw data to physical units by
dividing the readings by 131. The digital signal from the gyroscope returns a
signed 16-bit integer with values between -32768 and +32767. According to
the IMU spec, that range represents -250 to 250 degrees/second values. In

other words, if we divide 32767/250, we get 131.072, the value of 1
degree/second. Notice that the gyroscope does not return an angle but an
angular speed. Later, we will transform that speed to an angle the filter can
use.

The next step is to calculate the roll and pitch angles from the accelerometer
readings that we will use to correct the gyroscope angles. We could calculate
the total acceleration vector (using the Pythagorean theorem with its
components) and then calculate the angle from the component to the X and
Z axis. A more straightforward way to do it is to use the arcTan()
function, where we can input the component values directly. The result will
be in radians. Multiply the result by 180/Pi to convert it to degrees.

The first step of the Kalman filter consists of estimating the pitch and roll
angles from the gyroscope input. It converts the angular speed to an angle.
Assuming that the body is not accelerating during the small period between
readings, it multiplies the rate by the time between this reading and the next
to obtain the traveled angle. The roll angle corresponds to the angle traveled
around the X-axis, and the pitch angle corresponds to the angle traveled
around the Z-axis. To understand this better, let us look at the following
figure:

Toll Angle (After iKalman iter)

Pitch Angle (After Kalman Filter)

Figure 6.16: Roll and pitch angles after Kalman filter

The Kalman filter then estimates the measurement error covariance and the
estimation error covariance matrices. In other words, it figures out who it
should trust more: the estimations obtained from the gyroscope data or the
readings obtained from the accelerometer. It outputs its decision in the form
of a factor called Kalman Gain. The Kalman Gain will give more weight to
one or the other but still consider both sets of angles. The output is the true
roll and pitch angles of the drone obtained from fusing the gyroscope and
accelerometer as shown in the following figure:

Rell Angle (Accelerpmeter Raw)

Pitch Angle {Accelerometer Raw)

Figure 6.17: True pitch and roll angles

System implementation

The implementation consists of a single Block containing an Arduino Nano
33 BLE receiving its IMU's accelerometer and gyroscope readings. Refer to
the following figure:

Accelerometer
(X,Y,.Z)

Gyrﬂscupe %i’ifll"il{|il-‘1‘.| 6 3

(X.Y.Z)

-
.

UART B P1

Figure 6.18: Connection diagram (Gyroscope correction)

The sensor fusion algorithm runs in the Arduino microcontroller
(NRF52840), and its outputs are sent to the drone using a UART interface.
This setup is simple because we need to make it as light as possible, as it
adds to the overall weight of the drone.

Source code

The pseudocode highlights three main components. The first is the data
buffer, which in this case captures readings at a high frequency, unlike the
previous use cases. The preprocessing component operates at the same
frequency to capture input but does not necessarily output features at the
same frequency. In some cases, it may return an averaged window to reduce
the output frequency. This is critical because not all sensors generate data at
the same frequency. The sensor fusion component requires normalized data
(e.g., both accelerometer and gyroscope readings must have the same order

of magnitude and frequency to avoid bias). Once the sensor fusion
component processes the data, it calculates and returns the true roll and pitch
in the output. Refer to the following table:

Code location: Arduino

4

b'.LUIL:'UlllUl.UI -I

i hd]

¥

Gyioscope
(%2}

c:tinyml 6 3 Nano 33 BLE @ Block
1
= | Capturing accelerometer
Lists s i |ensar and gyroscope data
Buffer e ﬁl | Fusion 8y P .

ik

A

performing sensor fusion
algorithm, communicating
result to the drone.

Pseudocode

1. The microcontroller
receives the
accelerometer’s and
gyroscope’s readings.

2. The algorithm prepares
the data for the sensor
fusion algorithm.

3. The sensor fusion
algorithm uses the
Kalman filter to
calculate roll and pitch
angles.

4. Roll and pitch angles
are sent to the drone via
UART.

Table 6.11 : Pseudocode (Gyroscope correction)

Power analysis

For Block 1: Because this is a self-contained component, it will depend on
the drone battery to operate. Navigation systems require real time angle
calculations, this would not allow for certain power optimizations like sleep
modes or low frequencies. Refer to the following table:

Power . Latent Active
Device Notes
ALLEE consumption consumption
P1 Arduino 0.034mA <1A IMU is active 100% of
Nz];nfE33 @sv @sv the time
UART sends data in real

time.

Table 6.12: Power analysis (Gyroscope correction)

Bill of materials

Components like the Arduino Nano 33 BLE come with embedded
gyroscopes and accelerometers.

Description QTY Unit cost Total

Arduino Nano 33 BLE 1 $30 $30

Table 6.13: Bill of materials (Gyroscope correction)
Approximate cost of materials is 30.

Conclusion

This chapter introduced the concept of sensor fusion by explaining the inner
workings of the Kalman filter. However, there are many other specialized
filters that may be better suited for specific cases. The use cases demonstrate
the diversity of real-life sensor fusion applications, including the chaining of
sensor fusion, the augmentation of readings, and the ability to correct
metrics in real time.

In the next chapter, we will discuss Deep Learning regression, which, similar
to sensor fusion, is able to use one or multiple inputs to generate one or more
numeric values.

References

e O. Univ.-Prof. Dr. Hermann Kopetz Institut fur Technische Informatik
182
https://mobile.aau.at/~welmenre/papers/elmenreich _Dissertation_se
nsorFusionInTimeTriggeredSystems.pdf

e H. F. Durrant-Whyte. Toward a Fully Decentralized Architecture for
Multi-Sensor Data Fusion. In IEEE International Conference on
Robotics and Automation, volume 2, pages 1331-1336, Cincinnati, OH,
USA, 1990.

e Humidex,
https://www.ccohs.ca/oshanswers/phys agents/humidex.html

https://mobile.aau.at/~welmenre/papers/elmenreich_Dissertation_sensorFusionInTimeTriggeredSystems.pdf
https://www.ccohs.ca/oshanswers/phys_agents/humidex.html

e Kalman filter, Alex Becker,
https://www.kalmanfilter.net/kalman1d.html

e Sensor fusion use case 1:
https://studio.edgeimpulse.com/public/350891/live

e Sensor fusion use case 2:
https://studio.edgeimpulse.com/public/350888/live

e Sensor fusion use case 3:

https://studio.edgeimpulse.com/public/350887/live

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://www.kalmanfilter.net/kalman1d.html
https://studio.edgeimpulse.com/public/350891/live
https://studio.edgeimpulse.com/public/350888/live
https://studio.edgeimpulse.com/public/350887/live
https://discord.bpbonline.com/

CHAPTER 7
Deep Learning Regression

Introduction

Deep learning regression is a machine learning technique that uses deep Neural
Networks to predict continuous values. In this approach, the algorithm learns to
map input data to a continuous output (e.g., real numbers) rather than classifying
data into categories.

This technique is named after its similarity to traditional regression methods, such
as linear regression or polynomial regression. These methods establish a
mathematical equation to transform an independent variable (X) into a dependent
variable (Y) using a set of data samples.

Figure 7.1 illustrates the three steps involved in performing regression. First, we
acquire a training dataset that represents the behavior we want to model. Next, we
generate a model that captures and codifies that behavior. Finally, we use the trained
model to infer new data points.

¥ ¥

Y Training Maodel obtained Infarred
A dataset A using Regression y data
"
A s - 5
/ =
£
T P x > x } %

Figure 7.1: Regression

Structure

The chapter covers the following topics:
e Non linearity

Preparing data for regression

Training the regression model

Use case: Controlling

Use case: Forecasting

Use case: Estimating

Objectives

The main objective of this chapter is to help you understand how deep learning
regression can be used to create systems capable of learning non-linear
relationships directly from data. This serves as a fundamental building Block for
teaching a system almost anything from a set of examples. We will demonstrate this
concept by teaching a greenhouse controller to manage its environment,
implementing a thermostat that can predict future conditions, and determining the
weight of an object using an image.

Non linearity

In deep learning regression, each neuron in the dense layers represents a linear
equation defined by a weight (the slope) and a bias (the Y-axis intercept). These
linear equations form the foundation of the network, computing a weighted sum of
inputs. However, to capture more complex relationships and patterns in the data, the
output of this weighted sum is passed through an activation function, typically a
Rectified Linear Unit (ReLU). While the weighted sum itself is a linear equation,
the activation function introduces non-linearity, enabling the model to learn intricate
patterns beyond simple linear relationships. A helpful metaphor for understanding
this concept is a metal chain: while each link is straight, the entire chain can assume
almost any shape (as shown in Figure 7.2). Similarly, while individual neurons
perform simple linear computations, the collective network can model complex,
non-linear functions with the help of their activation functions.

——

Figure 7.2: Non-linear functions

The training process involves passing all the data samples through the network
multiple times. With each pass, the weights and biases of the neurons are adjusted
to reduce the difference between the predicted and actual values (as shown in
Figure 7.3). This iterative process is akin to refining a complex mathematical
equation. The result is a trained Neural Network, a sophisticated model capable of
predicting a wide range of values based on inputs. This network represents not just
a single equation but a compilation of many, working in concert to effectively map
inputs to outputs.

e e 2PN

Figure 7.3: Training process

Inputs and outputs

Deep learning models are not limited to a single output. They can be designed to
produce multiple outputs simultaneously, which is particularly beneficial for control
scenarios requiring various actions based on environmental inputs. For instance, a
deep learning regression model in a greenhouse can simultaneously adjust lights,
fans, and water supply by analyzing factors like temperature, humidity, and light
conditions. This multi-output capability enables a more integrated and responsive
approach to managing and controlling complex systems.

Let us look at the following table to illustrate each type of regression based on
inputs and outputs:

One to
one

regression

Sensor Model
/\/ ’
Environment Inference
Model
Many to y
one i
Environment y Fros EEE— Inference
regression {
Madal
Many to Tf_u_, »
many ~
Environment Inference
regression j':-*
=3

Table 7.1: Types of regression based on inputs and outputs

Preparing data for regression

Deep learning regression models can process diverse data types, including time
series, shapes, images, and sound waves. However, before these varied inputs can
be used, they must be converted into a numerical format compatible with Dense
Neural Networks. If the resulting features come in different orders of magnitude,

you should scale them. Scaling in machine learning refers to adjusting the range or
distribution of variable values. This step is crucial because it ensures that features
contribute equally to the analysis, preventing features with larger magnitudes from
dominating the model's decision-making process. Scaling can enhance the model’s
stability and increase overall algorithm performance.

In the following figure, the left column shows readings before scaling, while the
right column shows readings after scaling:

BEFORE SCALING AFTER SCALING

Figure 7.4: Scaling

Once the data has been scaled there are two main approaches to represent these
features. A) as a single value: Each number is treated as a value, such as an integer
or a normalized floating-point number. This approach is simpler, reduces
dimensionality, and works well. B) As a bit-level representation. In this approach,
each number is broken down into individual binary features (Os and 1s). This
approach preserves the fine-grained details of the data and allows the model to
capture relationships at the bit level, which may be critical for certain applications,
such as cryptographic or hash-based data. Regardless of the chosen representation,
it is essential to normalize or scale the features to a similar range (e.g., 0 to 1 or -1
to 1) to ensure the model performs efficiently and avoids numerical instability.
Preparing the data requires converting all the input variables to a matrix that
contains all the inputs in a row. Each row becomes one training sample. Then you
would tag each row with the solution. The solution can be a single number (for one

to one or many to one regressions) or a vector (for one to many or many to many
regressions).

Training the regression model

A deep learning regression model differs significantly from a classification-oriented
model. The key distinction is that, instead of producing categorical probabilities, the
output is a continuous numeric value. As a result, no additional transformation is
applied after the output layer to normalize values. The model directly generates
numerical predictions that align with the scale of the label values used during
training.

It is typical to use the mean square error to determine the regression error during
training. In a deep learning regression, the most critical layers of the network are
the dense layers. As part of the optimization process, you can include more hidden
layers or make them wider. Refer to the following figure:

3,000

L | 3,000 0
1
RELU RELU
Input © ® & *—o *—o & O Output
Dense Dense Dense

Figure 7.5: Regression Deep Neural Network

In traditional regression models, managing multiple inputs and outputs often
presents a significant challenge due to the complexity of the relationships between
variables. However, this complexity is much more manageable in a deep-learning
regression approach. One needs to increase the number of neurons in the network's
input layer to accommodate multiple inputs. Each additional neuron can process an
extra feature. Similarly, the number of neurons in the output layer is expanded to
handle multiple outputs. Each of these neurons is responsible for generating one of
the desired outputs. This straightforward scalability is one of the critical advantages
of deep learning regression, making it a flexible and powerful tool for handling
complex, multi-dimensional data.

Use case: Controlling

A novel approach to control is to use deep learning regression to determine control
metrics based on a set of inputs. The model is trained in advance with examples that
demonstrate how outputs should behave given specific inputs, similar to teaching
by example. In traditional control systems, this knowledge is encoded as explicit
rules (e.g., ‘if this, then that’). However, these systems struggle to handle corner
cases or unforeseen scenarios without predefined rules. In contrast, deep learning
regression generalizes from its training data, allowing it to infer patterns and make
predictions for new inputs, including some corner cases. While this approach
reduces reliance on manual rule creation, its effectiveness depends on the quality
and diversity of the training data.

Greenhouse control

Problem definition: The team operating a hydroponic farm is embarking on an
ambitious project to enhance their farming practices. Their objective is to
implement automation across various aspects of the farm, including irrigation,
lighting, fresh air intake, and room temperature control. The farm is already
equipped with multiple light, temperature, and humidity sensors.

In pursuit of this automation, the team is exploring an innovative approach that
minimizes the need for extensive coding and mathematical modeling. They want to
develop a system that can learn to manage these environmental factors by observing
manual operations. The challenge lies in the vast number of possible settings’
combinations for these environmental factors, making it impractical to teach the
system every possible scenario manually.

The ideal solution is a system that can learn and adapt based on limited examples.
The system could extrapolate and make informed decisions in similar situations by
learning from these examples. Despite this automated decision-making capability,
the team emphasizes the importance of maintaining control. They intend to
establish predefined limits to prevent the system from making adjustments that
could potentially jeopardize the farm's production.

Additionally, the team desires real-time notifications regarding the actions planned
by the system. This feature would allow them to monitor the system's decisions and
intervene, if necessary, especially when they believe a different approach might be
more beneficial. Integrating these features would automate farm operations and
ensure the team retains oversight, balancing efficiency with precision and care.

Solution: The system consists of sensor groups that capture ambient conditions for
each one of the areas of interest in the hydroponic farm where plants are grown.

Each sensor group reads temperature, Relative humidity (RH), and ambient light
situation. Additionally, the system can capture the actuators' position and status that
affect the zones' readings, namely, whether windows are open or closed, whether
fans are running or not, whether lights are on or off, and whether the irrigation
system is operating (see Figure 7.6):

Window & a

Lights

Lighits

Lights

Lights

Tormp,
RH,

ALS

Figure 7.6: Concept diagram (Greenhouse control)

It is important to stress that the actuators do not have a 1:1 relationship with the
area metrics measured by each one of the sensor groups. Instead, you can think of
this problem as a black box where the actuators are the inputs, and the area metrics
are the outputs. The model will perform a deep learning regression that will be able
to output the area metrics based on the inputs.

Conversely, the model will perform a deep learning regression that can output the
actuator settings to obtain a set of desired metric readings. Since a greenhouse is a
dynamic system (it changes with time), we do not rely on absolute measurements
but rates of change. In other words, the regression will output the rates of change
(how fast the metrics are changing) when actuators are set in a specific
configuration.

A secondary function that uses a control function will help the system establish the
path to a desired state based on the regression's outputs.

Data acquisition

For this use case, we need to capture cause-and-effect relationships within the
environment to generate sufficient data for creating a regression model. Sensors and
encoders capture the state of the actuators responsible for controlling air and light
from outside, as well as illumination from interior lights. Meanwhile, a group of
environmental sensors measures metrics such as temperature, RH, and ambient light
levels for each area of interest in the hydroponic farm.

The goal is to capture 3,300 examples of cause-and-effect relationships during a
well-run day (this becomes the positive sample). Each example will include six
variables: Temperature, Window Status, Relative Humidity, Fan Status,
Ambient Light Conditions, and Light Status. Ideally, we should have samples of
good days and bad days for the system to have a diverse set of examples to learn
from. In order to do this, you can cause problems intentionally, and have an expert
operator fix the situation while you are capturing the input and output metrics.
Refer to the following figure:

Window Status

/ 15 % 3,300 samples

Temperature

15 x 3,300 samples .-“\._\

Test Dataset

3,300 Setu ps Fan Status

15 % 3,300 samples

Relative Humidity

15 x 3,300 samples ;
6 parallel sources

Ambient Light Conditions / \ Light Status

15 x 3,300 samples == 15 % 3,300 samples
709 20% 10%
Train Test Validate
12,310 setups) {660 samples) 1330 samiples)

Figure 7.7: Training set (Greenhouse control)
The system is influenced by three types of actuators:

e Ceiling window: This actuator opens and closes to allow fresh air and sunlight
into the interior space. The window’s position affects multiple sensors,
including temperature and RH (by introducing outside air) and ambient light
(by letting sunlight in).

e Fans: A series of fans facilitates air circulation, with sensors detecting each
fan’s status through an intelligent switch. For simplicity, we assume the fan

speed remains constant. The fans primarily impact temperature and RH
readings.

e Interior lights: These LED lights are controlled by an intelligent switch that
reports their on/off state. Unlike the other actuators, the lights do not influence
temperature or RH readings.

The system operates at a low frequency, with one reading every 30 seconds being
sufficient. Changes in temperature and light lasting less than a minute are
inconsequential for this use case.

Each zone generates three time series: one for temperature, one for RH, and one for
ambient light. Thus, the total number of time series to be aggregated is three times
the number of zones.

On the actuator side, each device being tracked generates a time series of states. For
instance, if a fan is on, the time series will show a value of 1 for every reading, and
if the fan 1s off, it will show a 0.

All time-series data is sent to a central aggregator device, where the regression
process takes place. To ensure data from all devices is synchronized, each device is
equipped with a real-time clock (RTC). A main RTC periodically broadcasts
synchronization messages to the other devices, typically once per minute. This
synchronization ensures that all devices align their RTCs with the broadcasted
timestamp. As a result, every recorded data point is timestamped consistently across
all devices, maintaining precise synchronization throughout the system.

Processing

Once all the data has reached the aggregator device that will handle the regression,
we need to process it slightly to simplify calculations. The steps are given as
follows:

1. Ensure that all the time series are at the same frequency. If they are not, we can
run a simple resampling step. Be careful to detect significant gaps in the data. If
that is the case, you could also extrapolate or predict its values with a
regression model, which is out of the scope of this use case.

2. Normalize the data. Deep learning networks work better when all the data
exists in the same order of magnitude.

3. Eliminate outliers. You can use a Kalman filter (Chapter 6, Sensor Fusion) or
establish maximum and minimums for the type of reading and replace any
reading beyond the limits.

Figure 7.8 shows how the deep learning model organizes similar input samples
based on their features. Data points close to each other indicate that the model

perceives them as having similar feature characteristics, which may result in similar
regression solutions.

MIN:-1.1
MAX /A3
&s’s
5
T
5%
] 43‘1:4 44 4
: _1-1_1.1_111.; 1191 4.1444355441 4
,1‘_‘]-|'11 008! 11 00 000 r O
9000060000090000% 00, | 3333%"3444444:]
r?nﬂﬂﬂnonnnf1 §°n° 0)111'1 R 3 57 34
LU LEELARE R 3333? i
3593 33;33333
11 11117
111] 111]:11 i 1
11111 111 11 222225,
ARREY 225 2222225222222
Mg g 2%22222252 222222122
22 22 2.22%222 222
Figure 7.8: Cluster diagram (Greenhouse control)
Model

The question we want the regression model to answer is: given the current state of
the system, if we modify the inputs (or leave them unchanged), what will the
system’s state be in the next step?

In this context, the system refers to a zone in the hydroponic farm. The system state
represents that zone’s temperature, RH, and light conditions. The inputs include
anything that could influence the system’s state in the near future, such as the status
of windows, fans, lights, outdoor temperature, light conditions, and even the
system’s current state. The next step refers to a specific (but predictable) point in
time when the system’s readings will be taken again to determine its new state.
Using regression, we aim to predict this future state.

Additionally, we could approach the problem from the opposite perspective: given
the current state of the system, if we wanted the system to move closer to a desired
state in the next step, what inputs would we need to adjust?

This regression model does not provide a complete path to the destination but helps
move one step closer with each iteration. The process involves running the
regression model to determine the next step, executing the recommended actions,
and then rerunning the model based on the updated state. This step-by-step
approach ensures the system remains responsive to disturbances or external factors,
preventing divergence.

Understanding how to manipulate inputs to achieve a desired output is highly
useful, it is akin to knowing how to operate a car. However, just as a car requires a
map or GPS to guide turns, this model also needs a guiding framework. To achieve
this, we pair the regression model with a traditional control algorithm, such as a
Proportional-Integral-Derivative (PID) controller. In this setup, the PID function
defines a goal (or setpoint) for each metric, calculates how far the current state is
from the objective, and determines the corrections needed to minimize the error.
The regression model translates these corrections into specific actions for the
actuators, enabling the system to achieve its goals one step at a time.

To make accurate recommendations, it is essential to analyze the direction and
speed at which the metrics change over time. This is done by calculating the rate of
change, which involves subtracting the previous value of a metric from its current
value and dividing the result by the time elapsed between measurements. This
calculation provides the rate and direction of the metric’s change over time.

This raises an important question: should the model be trained using a system’s
absolute values or its rates of change? The answer is both. Absolute values anchor
the model to the initial conditions, while rates of change anchor it to the behavior
from that point forward. The more diverse and richer the input data, the better the
model’s performance.

The input features for the fully connected layer of the deep Neural Network consist
of time-series data, including readings from ambient sensors (temperature, RH,
ambient light) and actuators (windows, fans, lights). These features also include
their rates of change over time (derivatives). The data is labeled with respect to the
target outputs. As a result, when the system’s current conditions and the desired rate
of change for the next step are provided as input, the model outputs a set of
instructions specifying which actuators to adjust to achieve the desired outcome.

The deep learning regression model, using a 20-10 dense network, demonstrates a
strong performance with a low validation loss of 0.07 and a high testing accuracy of
98.64%. The low loss indicates that the model is effectively minimizing the error
between predicted and actual values on the validation dataset, while the high testing
accuracy suggests the model generalizes well to unseen data. This balance between
validation loss and testing accuracy indicates that the model is not overfitting and
has learned the underlying patterns in the data effectively. The architecture appears
well-suited for the problem, and the dataset likely provides sufficient coverage of
the input-output relationships needed for accurate predictions. Refer to the
following figure:

PROCESSING LEARNING RUN

3,000
?0% Feabes 1 OU
Trainy i e ITAHALS| f::!ﬂ:dljls\t.la::
1.1t063 TRAIN
Driigie Mirtweint ki 20-10
Ambiant Light
10% 0.07
™) ... 3,000 et
Felative > Temperature 1Litebd (TR P VALIDATE
Humidity | :;{
‘ r},u A D Hotwesrk 310
3,300 wcues 20% 3,000
Teuting samghes Festures 9864%
-Lite63 [TAALY Azcuriy TEST
sbels =1.1 10 6.3 f =l
Drrier Nstwark 20-H0
Lhie F 3 =%
eatures
% Data (TRHASI Accuracy LIVE
WL

[rense Netwark 20-10

Figure 7.9: Training, validation and testing metrics (Greenhouse control)

System implementation

The implementation consists of two different types of building Blocks. The first is
an acquisition Block that captures temperature, RH, and light intensity. There are as
many acquisition Blocks as areas of interest in the hydroponic farm. The second
one is the aggregator Block that receives data from all the acquisition Blocks and
performs the deep learning regression and the PID control iterations. The rest of the
Blocks are actuator Blocks that control lights, fans and window position. The full
setup 1s shown in the following figure:

LD Diplay

g ")

Figure 7.10: Connection diagram (Greenhouse control)

The acquisition Block is built with an Arduino Nano 33 BLE Sense, which has a
temperature sensor, a RH sensor, and a light intensity sensor on the same board.
This Block uses the NRF52840 Dongle as a secondary microcontroller board in
charge of all network functions, sending the data to the aggregator and updating the
RTC.

Source code

Block 1 serves two main functions: capturing data from three different sensors
(Temperature, Relative Humidity, and Ambient Light Situation), and removing
noise from the data before sending it to the aggregator. The pseudocodes are shown
in the following tables:

Code location: Arduino Nano 33

c:tinyml 7_1la BLE @ Block 1

' Capturing the data and sending it out to

| Data Kalmarn

| Butfer Filtgs the aggregator.
Pseudocode
1. The Block acquires temperature, RH
and light intensity readings.
) 2. Noise is removed from data.
‘ 0 / 3. Data is sent to the central aggregator.
Q

A

Table 7.2: Pseudocode for Block 1 (Greenhouse control)

Block 2 aggregates data from all greenhouse sensors, processes it, runs it through
the regression model to determine actuator actions, refines those actions using a
PID function, and sends out the resulting control commands.

Code location: Arduino Nano 33

c:tinyml_7_1b BLE @ Block 2

Receiving data from all sensors and
actuators, running control function
and performing regression.

Pseudocode

1. Data from all sensors (ambient
metrics and actuator status) is
received.

2. Data is resampled, normalized
and filtered.

Raiyadsion vcdil 3. Regression is run to translate

o = Vo , inputs to actuator actions

Data - PO

Al peesing 5% ot 4. PID function is executed to figure
out the best path to run the

actuator commands.

5. Control commands are sent to
actuators.

o

> - b

A
A
A

Table 7.3: Pseudocode for Block 2 (Greenhouse control)

Network

The constantly changing conditions inside the greenhouse and the need to
reposition equipment to optimize measurements and actuator effects make a strong
case for using a wireless network to connect the sensors and actuators. A wireless
network also simplifies the addition of new components for an easy integration. The
data acquisition Blocks publish their data to a shared channel that the aggregator
subscribes to, while control commands are published on a separate channel
monitored by the actuators. Each message payload includes an identifier to specify
the target actuator.

Block(s) Action Channel
1 Publishes to CH1
2 Subscribes to CH1
2 Publishes to CH2
Actuators Subscribe to CH2

Table 7.4: Network configuration (Greenhouse control)

Power analysis

The data acquisition Blocks can be powered by batteries since readings are
generated at a very low frequency (approximately once per minute). The Block
remains in a sleep mode during the intervals between readings.

Power Device Latent Active Notes

source . .
consumption consumption

Arduino 0.032A <1A Arduino will be polling
P1 Nano 33 temperature, RH and light
BLE Sense @sv @sv intensity sensors.
NRF52 0.04mA 3mA Dongle is in charge of
P1 publishing and receiving
Dongle @sv @5v messages from the network.

Table 7.5: Power profile for Block 1 (Greenhouse control)

The regression Block must remain always on, as it continuously listens to the
acquisition channel. Once it receives data, it processes it and runs it through the
regression model, which is a power-intensive operation. For these reasons, Block 2
must be powered directly from the electric grid.

Power Latent Active
Device Notes
EOUNEN consumption consumption
The Dongle is in charge of
P2 NRF52 0.04mA 3mA consuming the messages
Dongle @5v @5v from all Data Acquisition
Blocks.
Arduino 0.032A <1A Arduino will be aggregating
P2 Nano 33 data and running the
BLE Sense @sv @5V Regression model.

The actuator Blocks are responsible for receiving control commands from Block 2.

Table 7.6: Power profile for Block 2 (Greenhouse control)

They are powered by the same power source as the actuator they control.

Power . Latent Active
Device Notes
source consumption consumption
Actuator is in charge of turning
Al Light 0.025A lights in the hydroponic farm.
Switch @5V There are as many as light
groups.
A2 Fan Switch 0.025A Actuator is in charge of turning
@5V the fan on and off.
Window 0.5A Actuator is in charge of
A3 opening and closing motor
Actuator @5V activated windows.

Table 7.7: Power profile for actuator Blocks (Greenhouse control)

Bill of materials

This bill of materials considers 3 data acquisition zones, 2 fans, 1 window and 4

lights:
Description QTY Unit cost Total
Arduino Nano 33 BLE 10 $30 $300
NRF52840 Dongle 10 $12 $120
Window Actuator 1 $120 $120
Fan Switch 2 $20 $40
Light Switch (Relay) 4 $10 $40
Power Sources 10 10 $100

Table 7.8: Bill of materials (Greenhouse control)
Approximate cost of materials is $720.

Use case: Forecasting

The ability to forecast a variable is a transformative capability for control systems.
Instead of relying on reactive strategies that involve correcting a system’s state after
the fact, often requiring significant effort to counteract inertia, forecasting enables
early adjustments to guide the system toward the desired state. This proactive
approach can lead to substantial energy savings and streamline the control process.
However, the effectiveness of this approach depends on the accuracy of the
forecasts and the system’s specific dynamics.

Thermostat temperature prediction

Problem definition: An appliance company has asked you to design an innovative
thermostat that aims to revolutionize indoor temperature regulation. Unlike
traditional thermostats, which adjust the temperature based on current readings, this
new model proactively manages the climate by predicting future temperature
changes within a room.

Solution: The solution consists of a standalone device that captures temperature
and RH and runs an inference model to predict the temperature and RH of the room
in the next 20, 40, and 60 minutes. The device interacts with the HVAC like a
regular thermostat, which uses three cables, two for power and a third for a switch.
To show the room's current state and offer a way for the user to change the setpoint
(the desired temperature), the device communicates wirelessly with a Ul Block
dedicated to interface with the user. The UI can also show the temperature of
multiple thermostats at once. The following figure shows the conceptual

connections between the Blocks:

Controller

Figure 7.11: Concept diagram (Temperature prediction)

The thermostat must be capable of accurately forecasting the room's temperature for
the upcoming hour. This capability hinges on the thermostat's ability to learn and
adapt to the specific environment in which it is placed. As part of its initial setup,
the thermostat is designed to gather temperature data from the room over a few
days. This critical data collection phase allows the thermostat to understand the
room's unique thermal characteristics and patterns.

Once the thermostat has accumulated sufficient data, it can make informed
predictions about future temperature fluctuations. By proactively adjusting the
heating or air conditioning systems in anticipation of these changes, the thermostat
can maintain a comfortable indoor climate more efficiently.

The potential benefits of this predictive approach are substantial. This advanced
thermostat could lead to energy savings of up to 20% in heating and cooling costs.
Such savings not only reduce expenses for homeowners but also contribute to
broader energy conservation efforts. This innovative thermostat represents a
significant leap forward in climate control technology, combining convenience,
efficiency, and environmental responsibility.

Data acquisition

The temperature’s data is captured at 1/60 Hz (once a minute) from the internal
temperature and RH sensors and passed through a simple Kalman filter to remove
signal noise. To train the model, we have captured 24 hours of data from the room

where the thermostat will be located. The following figure shows the proportions
used to train, test and validation:

Room
Temperature
100%

— 8 1,440

Minutes

70% 20% 10%
Train Test Validate
(1,008 minutes) (288 minutes) (144 minutes)

Figure 7.12: Training dataset (Temperature prediction)

Processing

The acquired data is split into chunks of 8 seconds and is labeled with the space
temperature that the room will have 20 minutes later. Each different label will
define a new class (just like in traditional classification). The temperature range of
the room determines the number of classes. If we wanted to predict the temperature
of a narrower range, we would need a temperature sensor that guarantees that the
decimals are accurate enough. The cluster diagram shown in Figure 7.13 illustrates
that similar inputs produce similar outputs. The pattern formed by the samples
represents the multidimensional relationships that the regression model needs to
learn and capture.

Min:0 poo0

Max 9 999 ¢ ﬂﬂﬂgﬂ
gg'g
8333 s% qju‘ 1
|
Y14y,
“tengasgss 5333338333 ',
.77 111222222223
77
77777 22
????? 22
7 33333 32222227
7975 779 ?????????;I?
B3333 3333333,

BHEG6A 566 656 a 333

6 sse66065° f

333333 3333
é By
5 44
5555 55555555 5 355555685cccs gaqq4a4ad
a5 [
355555555555
Figure 7.13: Cluster diagram (Temperature prediction)
Model

We use a deep-learning model with an input layer of 8 nodes. Each one of the nodes
will receive a reading from the sample. Remember that the sample is 8 seconds
long, with one reading every second. The input layer is fully connected to a 20-
neuron dense layer, subsequently connected to another 10-neuron dense layer
(Figure 7.14). The output is a single node fully connected layer that will return the
regression value.

1,000
| 20 10
1
RELU RELU
Input © ® e *—@ *—@ @ O Output
Dense Dense Dense

Figure 7.14: Regression model (Temperature prediction)
We are going to parallelize the input by providing a sequence of readings over time

as the input. In other words, we will send the entire sample at once instead of only
its most recent reading. This approach is equivalent to instructing the model to learn

from the shape of the curve, enabling it to infer the future state.

An essential aspect of the Dense Layered Neural Networks is that they always
return numbers, which is what we need for regressions. Since the last layer has only
one node, calculating the error in every iteration is as easy as comparing the label
with the output of that last layer. During training, the weights of each dense layer
are adjusted automatically to reduce that error using a process called
backpropagation. With enough data and iterations, the model learns to recognize
patterns and infer future temperatures from data previously unseen. It is important
to emphasize that because we trained the model with temperature data from a
specific room, it only knows how to predict temperature from that room.

The results of training, validation and testing in Figure 7.15 show that the
validation stage achieves a loss of 0.03, indicating that the model has a low error on
the validation dataset. In the testing stage, the model demonstrates 100% accuracy,
suggesting it is perfectly predicting outputs on the test dataset. However, this
unusually high accuracy for a regression problem raises potential concerns about
overfitting, as the model may have learned patterns specific to the test data rather
than generalizing to unseen data.

PROCESSING LEARNING RUN

70% iy 100

||||||
23 Trainang Cycles
Lisrarng Rate: 0,000

09 D ol TRAIN

Dense Network 20-10

Temperature 1 0% 1 .000 0.03
Validation samples Faatures Mean squarid error
09 (Temperatuie) VALIDATE
é Dense Networl k 20-10
1,440
uuuuuu s 20% 1,000

Testing samphes Faatures

0 ® 9 Tempefatuie) TEST
tabeis: 010 9 D e
b

Dense Network 20-10

ik Featurs —%
Data [Temperature)) Accuracy LIVE

Dense Network 20-10

Figure 7.15: Training, validation and testing metrics (Temperature prediction)

System implementation

This solution has two different Blocks. Block 1 is the acquisition and regression
device, and Block 2 is the user interface (UI). The following figure shows the
various components of each Block, along with their connections and power sources:

BLE Mesn | Submscribe 1o: CH1|

BLE Meahy (Puibslich to: CHTY + BLE Mesh{Publich toc CHIY

Room Room
Thermostat Thermostat

Figure 7.16: Connection diagram (Temperature prediction)

The application's requirements specify that it needs to have a way for users to
establish setpoints per room and to provide visibility on the current and predicted
state of the room temperatures. For that reason, the implementation of this solution
assumes that every smart thermostat captures data and performs regression in the
same device but, at the same time, sends out its status to a central display for the
user to read the information and set room temperatures.

Block 1 uses an Arduino Nano 33 BLE Sense to capture the room temperature and
run the regression model. A secondary microcontroller (NRF52840) sends
messages to the Block 2 via a BLE Mesh Network. No additional sensors or
peripherals are needed, as the Arduino board has an integrated temperature sensor.

Block 2 subscribes to all the Block 1 devices around the location and shows their
status using an 12C OLED display. The user navigates across the OLED interface
using a Dial/Button peripheral connected via I2C. One of the screens in the
interface allows the user to enter the desired temperature per room. The Block 2
sends a command to the Block 1 (via the Mesh Network) to adjust the setpoint.

Block 1 features a PID control function that controls the heating/cooling unit (via
its thermostat pins) proactively using the predicted temperature and the setpoint
temperature established by the user.

Source code

The process goes as follows: The temperature is captured, the temperature is
predicted and actions are recommended to reach the setpoint. In parallel, the current
readings and the forecast are sent to a component that shows the metrics to the user
via a display. If the user decides to change the setpoint, the user enters the new
setpoint and its value is sent back to all the thermostats. The thermostats now plan
their strategy around the new setpoint.

Table 7.9 illustrates the logic to capture data, perform inference and issue a control
command. There are four main components in the logic of Block 1. The first is the
Kalman filter, which removes noise from the readings. The second involves feature
extraction, followed by running the data through the regression model, and finally,
adjusting the output using a PID control function.

Code location: Arduino
c:tinyml 7 2a Nano 33 BLE @ Block
1

Capturing the
temperature, performing

Pro- | PID ;
cending (%j |C0r‘|'[r0| regressm'n, . '
— communicating readings

a G and results to the central

Regression Model

Kalman
Filtes

UL

Pseudocode

Z: 1. Temperature sensor

captures reading.

3 2. Value is passed

through a simple

Kalman filter to

remove noise and

outliers.

3 3. Convert readings to

& features and feed
them to the
regression model.

4. Pass regression result
to PID control to
determine actions
needed to get to
setpoint.

5. Send out readings and

predictions to Block
2.

Table 7.9: Pseudocode for Block I to control temperature (Temperature prediction)

Table 7.10 illustrates the logic that helps display the metrics to the user. There are
two main components in the logic of Block 2: the data buffer, which maintains a
short memory of the temperatures reported to the thermostat, and the display driver,
which serves as the main UL It is important to note that this Block is purely for

informational purposes and does not generate control commands.

c:tinyml_7 2b

Code location: Arduino Nano 33 BLE
@ Block 2

Data
Buffer

Qa

A
A

|[}isp|qa;.l
Driver

Receiving readings from all thermostats,
displaying results to user.
Pseudocode
1. Receive readings and predictions
from all the thermostats that the
device is subscribed to.
2. Translate data to a display buffer.
3. Refresh buffer to show new data in
OLED display.

Table 7.10: Pseudocode for Block 2 to display setpoint (Temperature prediction)
The following table shows the logic that allows the user to enter a new setpoint and

send it to the thermostats:

c:tinyml_7 2c

Code location: Arduino Nano 33
BLE @ Block 2

L
Petiphesal

i
Diriver

® O

User
Input
(setpoint)

A

User sets a new setpoint. Sending
new value to the thermostat.
Pseudocode
1. User modifies the setpoint of a
thermostat using a Dial/Button
interface.
2. The peripheral driver converts
user input to a command.
3. Block 2 publishes a command to
the channel the target Block 1 is
subscribed to.

Table 7.11 : Pseudocode for Block 2 to acquire setpoint (Temperature prediction)
The following table shows the logic to acquire and store the setpoint for further

actions:

c:tinyml 7 2d

Code location: Arduino Nano 33 BLE
@ Block 1

Receiving new setpoint
Pseudocode
1. Setpoint set command is received from
Block 2.
2. Setpoint is loaded to volatile memory
for PID function to use it to calculate

control commands.

e e 3. Additionally, setpoint is saved to
permanent memory (SD Card) for

backup in case of a power loss.

Table 7.12: Pseudocode for Block 1 to acquire setpoint (Temperature prediction)

Network

Assuming 3 rooms with a standalone smart thermostat. It is safe to assume that it
would be impractical to lay cable between all the components. For that reason a
wireless network is the best option. Multiple components communicating between
each other also make the case for an asynchronous communication network. We use
a wireless mesh network where the thermostats publish their state in their own
channel. The UI device that serves the purpose of showing the metrics and
acquiring setpoint changes from the user subscribes to each thermostat channel.
Additionally, all thermostats are subscribed to the channel where the setpoint is
published by the UI device. Refer to the following table:

Block(s) Action Channel

la,1b,1c Publish to CH1,CH2,CH3
2 Subscribes to CH1,CH2,CH3
2 Publishes to CH4

la,1b,1c Subscribe to CH4

Table 7.13: Network configuration (Temperature prediction)

Power analysis

The power for Blocks 1a, 1b, and 1c would come from the electrical register box
where the thermostat 1s installed. This differs from traditional thermostats, which
are typically battery-operated, due to the higher energy demands required for
running regression models and wirelessly communicating with the Ul device. Refer
to the following table:

‘ Power ‘ Device Latent Active Notes

source consumption consumption
Arduino 0.032A < 1A Arduino will be pol'hng
P1 Nano 33 temperature, running
BLE Sense @5V @5V regression and controlling
heating and cooling units.
NRF52 0.04mA 3mA Dongle is in charge of
P1 publishing and receiving
Dongle @5v @5v messages from the network.

Table 7.14: Power analysis, Block 1 (Temperature prediction)
Similar to Block 1, the UI device (Block 2) needs to be installed in an electrical
register box. While it could be powered by a battery, relying on batteries for a
thermostat controller would be impractical due to the need for frequent recharging.

Power . Latent Active
Device Notes
SOUICE consumption consumption
Arduino Receives readings from all
P2 Nano 33 0.032A <1A thermostats, generates Ul for
BLE Sense @5V @5V user to read state and write
setpoints
NRF52 0.04mA 3mA Dongle is in charge of
P2 publishing and receiving
Dongle @sv @sv messages from the network

Table 7.15: Power analysis, Block 2 (Temperature prediction)

Bill of materials

The bill of materials considers 3 rooms with thermostats and one display unit:

Description QTY Unit cost Total
Arduino Nano 33 BLE 4 $30 $120
NRF52840 Dongle 4 $12 $48
OLED Display 1 $10 $10
Dial/Button 40 $40 $40
Power Sources 4 10 $40

Table 7.16: Bill of materials (Temperature prediction)
Approximate cost of materials is $258.

Use case: Estimating

Regression has been traditionally constrained to numeric inputs. Deep learning and
convolutional networks open the possibility to multi-modal regressions. It is now
possible to infer a number from an image, from a sound or even from an oral
description. The following use case explores the concept of multi factor verification
which illustrates a way to verify a measurement in multiple ways.

Weight estimation from images

Problem definition: A grain market is looking to automate its checkout process
without increasing the risk of financial loss. It has been determined that the system
should be able to verify the weight of the grains by using an alternative method in
addition to the measurement returned by the weight balance. The solution should
also be able to classify and infer the product's weight in almost real time to avoid
delays in the checkout process. The following figure shows a conceptual diagram of
the solution:

Camera

N

P

Controdles

Digital Balance

Figure 7.17: Concept diagram (Weight estimation)
Solution: The market is planning to introduce a dual-function verification system.
The primary function of this system is to classify the type of grain being weighed

accurately. This classification process is crucial to ensure that each grain variety is
correctly identified and associated with the appropriate product code, thereby

preventing the recurrence of past errors. The system's second function involves
estimating the grain pile's weight using an image-based regression model. This
estimation will be based on images captured at the register. By analyzing these
images, the system can independently assess the grain's weight, offering a reliable
cross-check against the readings from the balances.

If a discrepancy in weight is detected, the system will activate a Service light that
will notify a human assistant for further assistance. Additionally, a secondary light
will indicate to the user to wait while the inference takes place, continue with the
next item, or wait for a service assistant to help with the transaction.

Data acquisition

The data required to run the regression, and the classification models are images
from a digital camera at the top of the self-check-out register. Images are captured
at a ratio of 10Hz. The microcontroller does not store the history of images in
memory. The model should be able to perform the inference and regression at a
speed sufficient to avoid backlog. If a backlog takes place, newer images will
overwrite old ones. Either way, once the classification results are back and
approved, the user can move to the next item.

For the pilot of this use case, only one type of grain is used. As shown in Figure
7.18, the training set consists of 50 images per weight and class. The weight starts
at Og and gets incremented every 50g in every class up to 1000g. The data set
contains 1000 images. Since this is a controlled environment, the supermarket
requires the user to weigh the grains using a standard tray. Using the same tray
makes the image-based regression much more accurate.

Grain
Images

A wrights x 50 irmages

2,000

images

70% 20% 10%
Train Test Validate

{1,400 images) (A0 irmages) (20)

Figure 7.18: Training dataset (Weight estimation)

Processing

As with the Image Classification problem in Chapter 3, Movement Classification,
we need to prepare the image before sending it to the model. First, we make it
square, then scale it to 160x160. This use case is inspired by Aditya
Mangalampalli's blog post, which describes how reducing images to 96x96 makes
them too blurry for the model to be effective.

If light conditions are right, they will enhance the grain's color and details. All
three-color channels are necessary, as color plays a significant role in grain
classification.

The total number of features sent to the classification and regression models is
76,800. Every pixel is a feature (160x160x3 = 76,800). The following figure shows
groupings of similar outputs which means that similar inputs return similar outputs
which is what we are looking for:

MIN: 10
MAK - 230

Figure 7.19: Cluster diagram (Weight estimation)

Model

Since we are using an image, it makes sense to use a Convolutional Neural
Network to exploit the picture's spatial relationships.

The Neural Network consists of an input layer with 76,800 features fully connected
to a 2-dimensional convolutional layer with 32 neurons. The kernel size of that
layer is 3x3. We used padding to keep the same size after every convolution.
Outputs are normalized and run through a ReLu activation function to introduce
non-linearity. The following figure shows the diagram of the network:

78800

/4
' |

1%

LJ _.//: _| |
RELU RELU
o—e—9 L —8 L 2 & 9 0
Conv2D MaxPool2D Conv2D MaxPool2D Flatten Dropout Dense

Figure 7.20: Image regression Neural Network (Weight estimation)

Immediately after the first convolutional layer, we have a MaxPooling layer that
reduces the size of the parameters, by two, by keeping the value with the maximum
value from every other pixel.

The second 2-dimensional convolutional layer has 16 neurons and a kernel of 3x3.
It has the same parameters as the first convolutional layer: the same padding,
normalization, and ReLu activation.

A MaxPool layer reduces the parameters' size in half. Then, the whole matrix is
flattened, meaning all the parameters are made of a very long one-dimensional
array. After that, we drop one of every four readings (we turn them to zero) to
reduce overfitting. Notice that the dropping function will only be applied during
training.

The last layer (the output layer) has a single node. This layer returns the inference
result. The value is compared against the label using a root mean square function.
During training, this error is communicated to the hidden layers to adjust their
weights and improve in the following training iteration.

Something important to notice is that while all the labels could be integers, the
output of the inference might have decimal points. Remember that every neuron
represents a linear equation at the end of the day. Linear equations are multiplied by
their slope and added to the offset. Returning decimals in the results is entirely
normal. This is a characteristic of the regression function, which returns values
between known points.

Figure 7.21 shows the results of training, validation and testing. It is shown that the
model struggles to generalize effectively, as indicated by a high validation loss
(135.12) and extremely low testing accuracy (1.22%). This suggests potential
overfitting or insufficient learning due to the high feature-to-data ratio, with 76,800
features extracted from only 2,000 images. The CNN architecture, with just two
convolutional layers, may be too simple for the task, and the dataset might lack
sufficient diversity or size to capture variations in grain pile appearances.

Improving the model architecture, increasing or augmenting the dataset, and
optimizing feature representation could help address these issues and enhance
performance.

PROCESSING LEARNING RUMN

70% 76,800

Iraining samples {Tem perature)

0-400 |:|

TRAIN

Temperature 76,800
Features
(Temperature; . VALIDATE
i .-z_[52:3.1].
0 Canw (153,11
2,000
Tosges 20% 76,800
Tasting samples - Fraslures
{ ture;
0_\400 l2mperature, .) . TEST

Labels: O t0 400 D

L
0 Conv (32,3.1],
20 Canv [1£3,1)

ve 76,800

leature
Data {Temperatura) LIVE

Figure 7.21: Training, validation and testing metrics (Weight estimation)

System implementation

The implementation as shown in Figure 7.22, consists of two Blocks. Block 1
captures data and processes the image-based regression. Results of the regression
are sent out to a device (Block 2) connected to the balance weighing the grains.
Block 2 compares both readings and determines whether there is a tolerable weight
discrepancy or not. If the difference is significant, Block 2 sends an I12C command
to an external light in charge of notifying a human service specialist in the store to
handle the conflict.

© BLE Mesh (Subscribe to: CH1)

Live Camera

P1 P

Electronic Balance API

Figure 7.22: Connection diagram (Weight estimation)

Block 1 is implemented with a Nicla Vision running the regression model and
notifying a secondary microcontroller (52840Dongle) in charge of publishing the
conflict status to the network.

Block 2 is implemented using a combination of a 52840 Dongle and an Arduino
Nano BLE 33. The former receives messages from Block 1 instances and sends its
payload to the latter. The Arduino in Block 2 also keeps the state of all the events
by storing them on an SD Card. The SD logger is an external component that
receives commands and data via an 12C bus.

Source code

The logic in this use case consists of acquiring the weight of a product in two
different ways, comparing them and alerting somebody if there is a significant
difference.

The pseudocode for Block 1 shows a preprocessing component that extracts
features from the data captured by the camera connected to the device. These
features are then sent to the regression model, and the resulting inference is passed
to a post-processing stage, which waits for a series of similar readings before
outputting the final result. Refer to the following tables:

c:itinyml 7 3a Code location: Arduino Nano 33 BLE @
Block 1

Regrresaian
Mook

o™ P

{ o |
otess
\ E | |ing

AL

Capturing image. Performing image-based
regression
Pseudocode
1. A camera captures an image of the checkout
tray.
2. Image is processed, features are generated.
3. Image is run through regression model.

4. Result of regression is validated and sent
out to device connected to balance for
weight comparison.

Table 7.17: Pseudocode for Block 1 (Weight estimation)
The pseudocode for Block 2 illustrates the process of acquiring the value from the
inference, obtaining the reading from the weighing balance, performing a
comparison, and triggering an alert if a conflict is detected.

c:tinyml 7 3b

Code location: Arduino Nano 33 BLE
@ Block 2

Data
Buffer

Com
parison|

ot
hcation]
|

A

Capturing balance from weight measuring
device. Receiving result of inference.
Performing comparison, notifying conflict

Pseudocode

1. Reading from the inference is received
via the Mesh network.

2. Reading from the electronic balance is
acquired.

3. The algorithm normalizes both
measurements and sends both readings
to the Comparison function.

4. The algorithm compares
measurements and determines whether
there is a significant weight difference
(conflict).

5. If there is a conflict, alert lights are
activated.

Table 7.18 : Pseudocode for Block 2 (Weight estimation)

Network

A wireless mesh network enables the communication between both Blocks. The
Block one in charge of capturing the image and inferring the weight of the product,
publishes a message to a channel that the comparison Block is subscribed to.

Block(s)

Action

Channel

1 Publishes to CHI1

2 Subscribes to CHI1

Table 7.19: Network configuration (Weight estimation)

Power analysis

Any device performing computer vision continuously like in this use case consumes
a considerable amount of energy. It is recommended to connect it directly to the
electric grid. The commercial setting where this balance will be installed is likely to
provide an easy connection without big installation costs.

B . Latent Active
Device Notes
source consumption consumption
Arduino 0.032A <1A
P1 Nicla
Vision @sv @sv
. NRF52 0.04mA 3mA Active when publishing
Dongle @5v @S5v messages as a client.

Table 7.20: Power requirements Block 1 (Weight estimation)

Same as with Block 1, the Block 2 should be powered directly but the electric grid.
This device will be placed in close proximity to the balance.

Power . Latent Active
Device Notes
source consumption consumption
P2 NRFS2 0.04mA 0.3mA Receives regression results
Dongle @5v @5v from Block 1.
Arduino Receives readings from
P2 Nano 33 0.034mA <la balance and regression.
BLE @5V @5V Compares results. Notifies
about conflict.

Table 7.21: Power requirements Block 2 (Weight estimation)

Bill of materials

This bill of materials considers a simple setup of one camera-based inference Block
and one validation Block with a visual alert peripheral.

Description QTY Unit cost Total

Arduino Nicla Vision 1 $85 $85

Arduino Nano 33 BLE 2 $30 $60
NRF52840 Dongle 2 $12 $24
Alert Light 1 $20 $20
Power Source 1A @5v 2 $10 $20

Table 7.22: Bill of materials (Weight estimation)

Approximate cost of materials is $209.

Conclusion

This chapter introduces an alternative approach to traditional regression and
demonstrates three distinct applications of deep learning regression. The first
involves replacing traditional control systems, the second focuses on transforming
reactive devices into proactive ones through forecasting and prediction, and the
third explores how regression can be applied to non-numeric inputs.

In the next chapter, you will learn what is anomaly detection and its many
applications.

References

Paradiso, R., Proietti, S. Light-Quality Manipulation to Control Plant Growth
and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and
the Opportunities of Modern LED Systems. J Plant Growth Regul 41, 742—780
(2022). https://doi.org/10.1007/s00344-021-10337-y

Li, Y.; Li, T.; Lv, W.; Liang, Z.; Wang, J. Prediction of Daily Temperature Based
on the Robust Machine Learning Algorithms. Sustainability 2023, 15, 9289.
https://doi.org/10.3390/sul 5129289 https://www.mdpi.com/2071-
1050/15/12/9289

141 - Regression using Neural Networks and comparison to other models
https://www.youtube.com/watch?v=2yhLEx2FKoY

Estimate Weight From a Photo Using Visual Regression in Edge Impulse,
Aditya Mangalampalli. https://edgeimpulse.com/blog/estimate-weight-from-
a-photo-using-visual-regression-in-edge-impulse/

Regression use case 1: https://studio.edgeimpulse.com/public/368122/live
Regression use case 2: https://studio.edgeimpulse.com/public/368150/live
Regression use case 3: https://studio.edgeimpulse.com/public/368559/live

https://doi.org/10.1007/s00344-021-10337-y
https://www.mdpi.com/2071-1050/15/12/9289
https://www.youtube.com/watch?v=2yhLEx2FKoY
https://edgeimpulse.com/blog/estimate-weight-from-a-photo-using-visual-regression-in-edge-impulse/
https://studio.edgeimpulse.com/public/368122/live
https://studio.edgeimpulse.com/public/368150/live
https://studio.edgeimpulse.com/public/368559/live

CHAPTER 8
Anomaly Detection

Introduction

Anomaly detection is a technique used in data analysis to identify patterns
that differ significantly from expected behavior. In TinyML systems, these
unusual patterns, referred to as anomalies, outliers, or exceptions, may arise
due to various reasons such as hardware failure, system disturbance, or novel
occurrences due to new or unknown environmental conditions. Anomaly
detection 1s particularly useful in edge devices, where early detection and
immediate resolution are critical in real-time applications. To detect
anomalies, statistical, machine learning, or deep learning methods are used
to build models that understand the normal behavior of a system and can
then identify deviations. Figure 8.1 illustrates a common method for
anomaly detection based on distance. In a multidimensional space where
multiple parameters define behavior, similar data points tend to form a
cluster representing typical behavior. An anomaly is identified as a point that
deviates significantly from this cluster, with a large enough distance to be
considered separate from the normal pattern. The distance is also known as
the anomaly score.

Anomaly
Score

s
4

\ / Anomaly

Reference
Data

Figure 8.1: Anomaly score

Structure

The covers the following topics:
e Types of anomalies
e Precision versus recall
e Distance calculation
e Feature importance
e K-means clustering and anomaly detection
e Use case: Movement
e Use case: Sound
e Use case: Time

Objectives

The objective of this chapter is to introduce you to the concept of anomalies,
what they are and how are they detected. By the end of this chapter, you will
learn the types of anomalies, the theory behind them and the implementation
details to design a system that can flag them in a real time scenario. You will
also understand the difference between precision and recall, what are the
different ways to calculate distance and how do you determine what features

to pay attention to find an anomaly.

Types of anomalies

Anomalies can be categorized into two types: Univariate and multivariate.
Univariate anomalies are detectable from a single variable. On the other
hand, multivariate anomalies require the simultaneous analysis of multiple
correlated variables. For example, a household's power consumption may
seem normal at first, but it may be atypical when additional factors such as
seasonality indicate excessive energy usage on days that do not require
heating or cooling.

Figure 8.2 portraits anomalies in different dimensions. Each dimension
represents a variable that contributes to determining whether an anomaly is
present.

Anomaly Anamaly

Feference o / Vo K‘*-_‘_ i)
L3 v = — N
Aerpemaly L bt
1 Variable 2 Variables 3 Variables
(Univariate) (Multivariate) (Multivariate)

Figure 8.2: Univariate and multivariate anomalies

Anomalies can be detected through two main methods: distance and
statistical approach. The distance approach involves measuring the
separation between regular readings and the point in question, with greater
separation indicating a higher probability of anomaly. On the other hand, the
statistical approach calculates probability distributions from the data and
identifies points with low probability as anomalies. The following figure is
an abstraction of both types of anomalies.

Probability
- =i Distribution

7« N
/ \
! B | Distance
I |
\ / Anomaly
% &
. A
s -
R Low Law
Reference Probability Probability
Data (Anomalies) (Anomalies)
DISTAMNCE STATISTICAL

Figure 8.3: Distance and statistical based anomaly detection

Beyond univariate and multivariate anomalies, there is a third category
known as collective anomalies. These anomalies are characterized not by
singular data points but by a collection of points over a period of time. For
instance, consider an event typically occurring once daily that suddenly
begins to occur multiple times. While no individual occurrence is anomalous
in isolation, the frequency and pattern indicate an anomaly. This collective
nature highlights a different aspect of anomalous behavior, focusing on the
unusual aggregation of events rather than isolated incidents.

Precision versus recall

Balancing recall and precision are crucial in the realm of anomaly detection.
Overemphasizing one can negatively impact the other. For example, if you
use a TinyML application for defect detection using an embedded camera, a
system with high recall will detect all real anomalies but may also
misidentify non-defective items as anomalous. This approach is useful when
avoiding defective outputs is critical, even if it means discarding some good
items. On the other hand, a system with high precision ensures that flagged
items are truly defective but may miss some defects. This approach is
preferable when cost optimization is crucial, and replacing defective items is
easy. Figure 8.4 shows both cases. In the high recall low precision diagram,
all the positive samples (blue triangles) are inside the anomaly threshold at
the expense of also including anomalies (white triangles). In the low recall
high precision diagram, the anomaly threshold only includes positive
samples and no anomalies at the expense of leaving some positive samples

out.

Anomaly
Thre_shg!d

- =y Anamaly

-~ ~ 'Fh{g§h:2|d
/ & Anomaly % el = Angmaly
Y - R
/ \ i b
/] “ \
| i P \
\ I II
' | ! ' !
| |
\ Anomaly 1. | Anomaly
)
\ #I \ !“
\ \ ! Ancmaly s N r Anamaly
% £ - - &
\ - - SeTiT -
High Recall Low Recall
Low Precision High Precision

Figure 8.4: High recall, low precision versus low recall, high precision

In practical applications within TinyML, anomaly detection is often
employed alongside a classifier model. Initially, the classifier attempts to
categorize the data into known patterns. However, due to the inherent design
of classifiers, they will assign even unfamiliar patterns to a class. This is
where anomaly detection plays a crucial role. It evaluates the data and
assigns an anomaly score, indicating the degree of deviation from
established classes. Should this score surpass a certain threshold, the system
overrides the initial classification and relabels the data as an anomaly. This
tandem approach ensures that the system identifies known patterns and is
adept at flagging new, potentially significant deviations.

Distance calculation

Calculating distance is a crucial tool for measuring the deviation of data
points from normal patterns or expected behavior. By determining the
distance between a particular data point and the rest of the dataset, we can
identify anomalies as those that significantly diverge from most of the data.
This quantification helps anomaly detection algorithms systematically
evaluate the uniqueness or unusual nature of individual data points, enabling
the identification of potential anomalies. Additionally, distance metrics

provide a means to reduce the dimensionality of high-dimensional data, thus
making it easier to visualize and understand complex datasets.

When calculating distance, it is necessary to measure the deviation or
dissimilarity of a data point from the expected behavior or reference
distribution. The techniques used to calculate distance depend on the type of
data and the anomaly detection algorithm being used. The following are
some common approaches to calculating distance:

e Euclidean distance: This is a simple metric that calculates the straight-
line distance between two points in an n-dimensional space. It is
particularly useful for numerical data. In a two-dimensional space
Figure 8.5, the Euclidean distance between points (x1, y1) and (x2, y2)
is calculated as V((x2 - xI)? + (v2 - y1)?). This metric assumes that the
features are independent and equally weighted. Refer to the following

figure:
Anomaly
Distance
V(A? + BY)
-~ - i . B
/
/ \
/ \
l l
\ / A
N i
™ P
s -

Figure 8.5: Euclidian distance

e Mahalanobis distance: This is a generalized form of Euclidean
distance that accounts for correlations between features and different
scales. It is especially useful when the data is not spherical or when
features are correlated. The Mahalanobis distance (Figure 8.6) 1is

calculated as the distance of a point from the center of a distribution
divided by the spread of the distribution along each dimension.

Anomaly
r A
o !
-~
- !
< /
P
s
s s
! -
ra
| -~
o
\ -

Figure 8.6: Mahalanobis distance
e Manhattan distance (city Block distance): This metric calculates the
distance between two points by summing the absolute differences
between their coordinates (as shown in Figure 8.7). It is useful when
dealing with non-continuous data or when there are grid-like structures,
such as images or text data.

Anomaly

Figure 8.7: Manhattan distance

The choice of distance metric depends on the nature of the data, the
underlying distribution, and the specific requirements of the anomaly
detection task. Different algorithms and methods may utilize different
distance metrics to detect anomalies effectively.

Feature importance

Determining the importance of features is crucial in detecting anomalies as it
helps to identify the most influential attributes in distinguishing between
normal and anomalous behavior within a dataset. By knowing which
features contribute the most to the detection of anomalies, it becomes easier
to select the most relevant attributes, thereby reducing computational
complexity and enhancing detection accuracy. Additionally, understanding
feature importance aids in interpreting and explaining the detected
anomalies, providing insights into the underlying factors driving anomalous
behavior. This process optimizes anomaly detection models by focusing on
key features and enhances their robustness by excluding irrelevant attributes,
ultimately leading to more effective and efficient anomaly detection systems.
Figure 8.8 is an example screenshot from Edge Impulse showing of a list of
features ordered by feature importance:

Feature importance @ All data +

accX RMS

accX Peak 1 Height

accZ Spectral Power 2.0 - 5.0

accY Spectral Power 2.0-5.0

accX Peak 1 Freq

Figure 8.8: Feature importance example (source: Edge Impulse)

K-means clustering and anomaly detection

K-means clustering is a technique used for unsupervised clustering, where it
groups similar data points into pre-defined clusters. Although it is not
specifically designed for detecting anomalies, K-means clustering can be
adapted for this purpose by calculating the distance from centroids. After

clustering data into clusters using K-means, anomalies can be identified as
data points that are far from the centroids of all clusters. If a data point is
distant from any cluster centroid, it may be considered an anomaly. The
sensitivity of anomaly detection is influenced by the distance metric used,
such as Euclidean distance. Figure 8.9 is an example of the output of K-
mean clustering. Each round area is a cluster. The samples that are not inside
a cluster are considered anomalies.

® training data

acc RMS
L]
a8

accx RMS

Figure 8.9: K-mean clustering (source: Edge Impulse)

Steps to detect an anomaly

To systematically detect an anomaly, we assess how far a given piece of
information deviates from what is considered normal. This involves plotting
the data in a multidimensional space and measuring its distance to the
nearest cluster. Let us look at the key steps in this anomaly detection
process:

1. From the reference data that shows nominal behavior, create the clusters
that define its space using k-means. Calculate the centroids of each
cluster (Figure 8.10).

—} I.f -u/‘ Hﬂ“_‘_ .] : Y L = -,
] s ! T
; P \ 1 + i .
. [1 1 o x
~ (N 1 A 1 Fi]
e , T T
kY Fa k. Bt | r
w L ’
-~ T - ~ e 3 -~
Define Reference Data Create Clusters Calculate Centroids
(k-Means)

Figure 8.10: Process to calculate centroids

2. Every new data point is evaluated. Calculate its distance to each one of
the cluster centroids (Figure 8.11).

+

+ D2 D1 Anomaly
Candidate

D3

D4 :
Distance

34

Figure 8.11: Distance calculation

3. Determine whether the data point is an anomaly by selecting the
shortest distance and comparing it against the anomaly threshold. If the
distance is greater than the threshold, you have found an anomaly.

Use case: Movement anomalies

A popular use case for anomaly detection is to provide instantaneous
feedback to a system or user to indicate that something is not okay. This can
be extended to navigation systems, control systems, manufacturing,
ergonomics or any process that can benefit from real time correction.

Rowing machine anomaly
Problem definition: A gym wants to monitor the performance of its athletes

by tracking quantitative metrics generated during their workout. The rowing
machine is one of the most used machines at the gym, but it is also
frequently misused, which can result in reduced exercise benefits and
injuries. The gym owner desires to provide instant feedback to the user
without the need for a trainer.

Solution: To address this issue, a small accelerometer gyroscope will be
installed in the handle of the rowing machine. This device will detect if the
athlete is using the machine incorrectly and send a wireless message to a
status light in front of the user. If the machine is being used correctly, there
will be no indication. However, if a stroke is ineffective, a red light indicator
will light up, prompting the athlete to correct their posture. The following
figure depicts a conceptual diagram showing the components of this
solution:

Conbrolles
Al Elerormele AccEedomeles + ML Ancmaly Indicalos

Figure 8.12: Concept diagram (Movement anomalies)

Data acquisition

We installed an Inertial Measurement Unit inside the tubular handle of a
rowing machine to collect the data. The device has a Logger that captures
the time series from six different readings: The X, Y, and Z axis from the
accelerometers and gyroscopes. We worked with five athletes and collected
40 minutes of data, with each athlete performing the same sequence, starting
at 50% and increasing by 10% every minute. A video of each athlete was
filmed to cross-reference each stroke with its label (regular versus
defective). The data is split into three subsets: 70% is the training set, 20% is
the testing set, and 10% is the validation set shown in the following figure:

Rowing Stroke

(Nominal)
Minutes
15 Strokes per Minute: 600s
20 Strokes per Minute: 600s
25 Strokes per Minute: 600s
30 Strokes per Minute: 800s
24005
T0% 20% 10%
Train Test Validate
(28 minutes) [B minutes) (4 rbnutes)

Figure 8.13: Training dataset (Movement anomalies)

Processing

The dataset is split into samples of 1000ms, with each sample containing six
time series, each with 13 features. This adds up to 78 features per sample. Of
the 13 features, eight describe spectral power, and the other five are RMS,
kurtosis, spectral kurtosis, skewness, and spectral skewness. The anomaly
detection model works in tandem with a classification model. The cluster
diagram in Figure 8.14, shows the cluster with samples that demonstrate the
correct use of the rowing machine. Notice how we do not have samples of

incorrect use of the machine. That is going to be detected by the anomaly
detection model.

Rowing Stroke: A A{A
‘“ﬂn 'ﬁ
; AR
A Nag
A A,}‘
A
AR g
AA Ay,
AN ﬁﬁ’“ ,u.m.,,,{}\ A
ﬂ.ﬁﬂ) A
A A ”‘A"fmﬂ”‘h A
ARV A A
AA ﬂ% M A A

Figure 8.14: Cluster diagram (Movement anomalies)

Model

A classification model is used to identify between two classes, correct and
incorrect. It involves two dense layers, the first with 20 parameters and the
second with ten parameters. Each layer has a ReLU function at the output.
At the output of the second layer, we have a SoftMax activation layer that
converts the output values into a probability distribution that shows what
class is more probable. We declare the class with higher probability as the
inference.

If we leave it as is, this would be a supervised version of anomaly detection.
However, we would not be able to detect incorrect movement that has never
been seen before. For this reason, a second stage uses a modified version of
K-means clustering to determine a score for each point based on the
distance between the reading and the centroid of the rest of the samples.

According to the model scorecard shown in Figure §8.15, the model
demonstrates strong generalization, with high testing accuracy (94.86%) and
low validation loss (0.27), indicating its effectiveness in distinguishing
between normal and anomalous rowing machine usage without overfitting.
The use of K-means clustering with 32 clusters and a threshold of 0.3 adds
robustness by capturing deviations not perfectly aligned with the model’s

predictions. However, this approach assumes well-defined clusters, which
could lead to missed anomalies near the threshold or false positives if the
training data does not fully represent normal usage scenarios. To optimize
performance, it is important to fine-tune the threshold based on live data
feedback and ensure the training dataset covers a wide range of normal

behaviors to enhance generalization further.

PROCESSING LEARNING RUN
39
70% 22 30
Traming sampies (LR] .I.",I.-:.I::-Jr..f."nd':;
-20 to 20 mis)
[lensa Metwork 20100
Accelerometer 1 09’0 0.27 Loss
Teainirg sampet 1 Seoee
=20 to 20 [meen
o
> 3
o
Dense Network 20-10
40 Pinbes
20%
Training samplet 9486%
-20t0 20 (s el
3
Dorrse Retwork 20:10
Live . 39 -G
eMunes
Data N Accuracy

Derse Netwark 20-10

AMOMALY
SCORING

32

Chusters

K

mears

Threshald: 0.1

32

Chugters

K

meaen

Threshold: 0.3

32

Chusters

y K

e

Thecsheld: &3

Figure 8.15: Training, validation and testing metrics (Movement anomalies)

System implementation

TRAIN

VALIDATE

TEST

LIVE

The implementation consists of two Blocks: the movement tracker and the
status notifier as shown in Figure 8.16. The first Block is located inside the
rowing machine's tubular handle, while the latter is attached to the screen

that shows the machine metrics to the user.

i BLE Mesh {Publish to CH1) £ BLE Mesh (Publish to: CH1,CH2)

nc:mesh ac:mEsh

Accelerometer |

Figure 8.16: Connection diagram (Movement anomalies)

The first Block has been implemented using an Arduino Nano 33 BLE
powered by a small 600MHa battery. The Arduino -captures the
accelerometer and gyroscope readings and sends them to the microcontroller.
The microcontroller contains, among other things, the model trained to
recognize the two movement classes (Correct and incorrect). A function
reads the model output and calculates the anomaly score using the k-means
function. If the anomaly score exceeds a predetermined threshold, the MCU
issues an event to a secondary microcontroller attached to the Arduino. The
secondary MCU i1s an NRF52840 dongle that sends status messages to the
mesh network. An external antenna is implemented in the microcontroller to

allow the signal to escape the metal cage formed by the rowing machine
handle.

The second Block receives the message containing the machine's status and
activates a pin connected to a red light-emitting diode (LED). The red LED
communicates to the user that the model in the first Block detected an
anomaly in the movement.

Source code

The process that needs to be programmed into the Block 1 is an infinite loop

that 1s continuously capturing accelerometer readings, classifying them and
then calculating their anomaly score. If the score is high enough, the Block 1
will publish an alert message. Refer to the following table:

Code location: Arduino Nano

c:tinyml_8_1 33 BLE @ Block 1

Capturing data, processing it,
classifying movement, generating
anomaly score.

Classification
Modsd

P \ "
Mieans
] A

Pro

ce wiru;; Pseudocode

1. Device captures
accelerometer readings.

2. The readings are converted
into 39 features.

3. The model classifies the
features.

e
o

. The anomaly score is
calculated. If there is an

- anomaly, a message is sent
A out to the Mesh Network.

Table 8.1: Pseudocode for Block 1 (Movement anomalies)

Network

Since the anomaly detector will be inside of the handle, the only feasible
solution is to get its messages wirelessly. The components use a wireless
mesh network where the data producer (the anomaly detection) publishes
messages to a channel that the data consumer (the alerting component) is
subscribed to. Using a mesh network seems to be an overkill however it
allows for upgrades to the system. An upgrade example is to create a central
node that would detect anomalies from all rowing machines that are being
used at the same time during a class.

Block(s) Action Channel
1 Publishes to CHI1
2 Subscribes to CHI1

Table 8.2 : Network configuration (Movement anomalies)

Power analysis

The nature of the use case requires the anomaly detection component (Block
1) to be battery operated since it will be housed inside of the rower handle.

Power . Latent Active
Device Notes
e consumption consumption
Arduino 0.032A <1A
P1 Nano 33
BLE Sense @sv @5V
NRF52 0.04mA 3mA Active when
P1 publishing messages
Dongle @sv @sv as a client.

Table 8.3 : Power profile of Block 1 (Movement anomalies)

For Block 2 batteries would also be useful to keep the anomaly detection
components integrated to the rowing machine. To optimize the battery, a
movement sensor can be used to wake up the component during use and
letting it sleep when idle.

Power . Latent Active

Device . . Notes

source consumption consumption

P NRF52 0.04mA 0.3mA Active when receiving
Dongle @5v @5v messages as a Server.

i 0.034mA <1A .

P2 Arduino Nano m Drives Status LED

33 BLE @5V @5V

Table 8.4 : Power profile of Block 2 (Movement anomalies)

Bill of materials

The bill of materials considers one sensor and one alerting component.

Description QTY Unit cost Total
Arduino Nano 33 BLE Sense 1 $45 $45
Arduino Nano 33 BLE 1 $30 $30
NRF52840 Dongle 2 $12 $24
LiPo Batteries 2 $30 $60

Table 8.5 : Bill of materials (Movement anomalies)

Approximate cost of materials is $159.

Use case: Sound anomalies

Detecting anomalies does not need to be a binary event, instead, you can
classify the event first, and then use a specialized classification model to
determine whether that event is an anomaly of not. The following use case
shows the implementation of a system that classifies an event first and then
performs a targeted anomaly detection.

Machine sound anomaly

Problem definition: A small workshop specializes in making car
replacement parts and owns a CNC router that cuts aluminum pieces. The
owner of the workshop has noticed that the experienced operators can
identify when something is not right with the machine by the sound it
produces while cutting materials. However, since the workshop is
operational 24*7, it is impossible to have an operator by the machine all the
time. To prevent material loss, the workshop wants to find a way to
automatically shut down the machine when it does not sound right so that an
operator can inspect it.

Solution: A microphone will be placed near the machine to capture real-time
sounds. The sounds will be sent to a sound classification model on the
device to classify them. The sound sample will also be analyzed by an
anomaly scoring function to determine if it deviates from the typical
operating sound. If the score goes beyond a set limit, the MCU will send a
message to a switch to turn off the machine and alert the operator. The
following figure shows a concept diagram that illustrates the closed loop
between the microphone and the machine emergency switch:

Microphone 4l o

I (11

Switch

Figure 8.17: Concept diagram (Sound anomalies)

Data acquisition

To train the model, we generated a dataset by recording the machine under
normal conditions. The recorded sounds encompass all known states that are
considered normal. The following nominal states were considered: machine
cutting Material A, machine cutting Material B, machine running empty.
Figure 8.18 shows that the training set includes ten minutes of each state. As
we are not training the classification model to recognize anomalies, no
anomalous sounds are required.

Cutting

Material B Running Empty
10 minutes, 33%
10 minutes, 33% /
30
Minutes
Cutting

Material A
10 minutes, 33%

70% 20% 10%

Train Validate Test

(27 rirsibes) {6 rrinLrtes) {3 rrvinutes)

Figure 8.18: Training set (Sound anomalies)

Processing

The audio signal is divided into one-second segments, with each segment
consisting of 50 frames. Each frame represents a duration of 0.02 seconds
and has a stride of 0.01 seconds. The frames are then transformed into
frequencies using a Fourier Transform (FT), which results in 128
frequencies per frame. Therefore, each sample has a total of 6,400 features
(50 x 128). The cluster diagram (as shown in Figure 8.19) shows clearly
defined groups of samples:

C
A: MATERIAL 1 C~CeCcC
B: MATERIAL 2 Ccctccﬂé&cccc
C:RUNNING EMPTY ccc
0o
AR A
AA "*ﬂn

aff 12 opiel

EB;EBB%

Figure 8.19: Cluster diagram (Sound anomalies)

Model

We utilize a Convolutional Neural Network comprising of eight layers.
The first layer reshapes the spectrogram to fit the convolutional layers. The
first convolutional layers use a kernel of 3x3 with eight filters activated by a
ReLU function. MaxPool layers are utilized to decrease the size of the array
by selecting its most representative values. Dropout layers minimize
overfitting (for detailed information on how this model operates, refer to
Chapter 2, Sound Classification). At the end, a Softmax function converts
the network output into a probability distribution that displays the likelihood
that the sample is typical.

However, the problem with classification models is that they must assign a
probability to every sample, even if it needs to be corrected. For that reason,
we have the second stage, a modified K-means algorithm. A fundamental
feature of K-means is determining distances to respect a centroid. The
modified K-means algorithm determines how far each sample is from the
regular class. The result is a score. The higher the score, the farther the
sample is, and the higher the probability that an anomaly has been detected.

The scorecard in Figure 8.20 shows that the model achieves perfect
validation loss (0.0) and testing accuracy (100%), which suggests it has
learned the dataset extremely well but raises concerns about potential
overfitting, especially if the data lacks diversity or if the training and testing
sets are too similar. The use of Mel filter banks for feature extraction is
robust and appropriate for audio data, while the inclusion of K-means
clustering with a threshold of 0.3 adds an additional layer of refinement for
anomaly detection. However, the model’s perfect performance is unusual for
real-world scenarios, particularly in anomaly detection, which often involves
noisy or edge-case data. This indicates the need for further validation with
diverse live data to ensure generalization and effectiveness in capturing
subtle anomalies.

70%

Traliting semples

Sound

10%

Tealniemg samphs

A0 nicures

20%

Training sampbey

Live
Data

=

PROCESSING

760

Med Filter Bank

760

Mel Fifter Bank

760

Whel Filter Bank

760

Ml Filter Buank

LEARNING

100

Trainin: g Cyelas
Leasing Rale 1505

Corwvolutional MN

RUN

0.0 Loss

F1 Scone

2
=
Corvalutional NN

Cosrvobuticnal NK

%
Accuracy
:—ﬂ:"

o
el

Convolutional NN

ANOMALY
SCORING

Threshold: @3

32

Clusters
K
o

Theeshold 0.3

32

Clusters

Threlald: 03

Figure 8.20: Training, validation and testing metrics (Sound anomalies)

System implementation

TRAIN

VALIDATE

TEST

LIVE

The implementation consists of three Blocks. The first Block is responsible
for listening to and processing the machine's sounds to determine if there is
an anomaly, while the second Block is responsible for turning the machine
off if an anomalous situation is detected. The third Block generates visual
and auditive alerts for the operator in the event of an anomaly. The following

figure shows the connections between the Blocks:

& BLL Mesh

Figure 8.21: Connection diagram (Sound anomalies)

Block 1 is implemented with an Arduino Nano 33 BLE Sense with an
integrated microphone. Sounds are captured and then sent to the
microcontroller, which runs a TinyML classification model to determine the
class the sound sample belongs to. Immediately after that, a K-means
function assigns an anomaly score to the sample. If the anomaly score
exceeds a predetermined threshold, the device sends a message announcing
the anomaly. The network communication is implemented via a NRF52840
Dongle that communicates with the primary microcontroller via UART.
Block 1 acts as a BLE Mesh Server, publishing to a channel dedicated to
anomaly detection messages.

Block 2 of the machine monitors for anomaly messages and shuts down the
machine using a relay switch to avoid locking it. It also has an on/off switch
that allows the operator to enable or disable anomaly detection shutdown
manually. This Block is implemented using an Arduino Nano 33 board in
conjunction with a NRF52840 Dongle to receive network messages.

Block 3 (optional, not shown in the diagram) is responsible for notifying the
operator of an anomaly event. It listens to the anomaly messages sent by
Block 1 and activates a light and sound alert when an anomaly is detected.
The Block uses an Arduino Nano 33 board to communicate with the light
alert through the 12C protocol. It generates sound via its 12S output, which is
amplified directly from a secondary power source. Block 3 also employs a

NRF52840 Dongle to subscribe to the anomaly notification channel in the
Mesh Network.

Source code

The logic implemented in Block one consists of capturing the sound,
extracting its features and then classifying the sound. Based on the class, the
sample is sent to the specialized anomaly detection model. Refer to the
following table:

Code location: Arduino Nano 33

c:tinyml 8 2 BLE @ Block 1
W Capturing sound sample, processing
Model sample, classifying sample, scoring
- v for .anon}aly, sending anomaly
cessing L% | Means nOtlﬁcatlon.
) Pseudocode

1. The sound is captured by the
microphone.

2. The sound is processed and
converted to features.

3. The model output is sent to the
anomaly detection function.

r- 4. The K-means function

A determines the anomaly score
of the sample for a specific
class. If an anomaly is taking
place, a message is sent out to
the network with an alert.

Table 8.6 : Pseudocode for Block I (Sound anomalies)

Network

In order to avoid extra cables in a high-risk environment, a wireless network
is a viable option. In this use case, a wireless mesh network is used. Only if
the Block 1 detects the anomaly a message is published to a channel that the
Block 2 is subscribed to. Once the message has been validated by the Block
2, the emergency switch is activated. Refer to the following table:

Block(s) Action Channel

1 Publishes to CH1

2 Subscribes to ‘ CHI1 ‘

Table 8.7 : Mesh network configuration (Sound anomalies)

Power analysis

Block 1 is powered from the electric grid to avoid interruptions given the
criticality of the mission:

Power . Latent Active
Device Notes
source consumption consumption
Arduino
Nano 33 0.032A <1A
P1
BLE @5V @5V
Sense
P1 NRF52 0.04mA 3mA Active when publishing
Dongle @5v @5v messages as a client.

Table 8.8: Power profile, Block 1 (Sound anomalies)

Block 2 1s also powered by the electric grid to ensure that all messages are
received, especially in the event that the machine needs to be shut down.

Power . Latent Active
Device Notes
source consumption consumption
NRF52 0.04mA 0.3mA Active when
P2 receiving messages as
Dongle @5v @5v a server.
Arduino 0.034mA <1A Drives shut-down
P2 Nano 33 tch
BLE @SV @SV Switc

Table 8.9 : Power profile, Block 2 (Sound anomalies)

Bill of materials
This bill of materials considers one sound anomaly detection Block and one

emergency switch.
Description QTY Unit cost Total

Arduino Nano 33 BLE Sense 1 $45 $45

Arduino Nano 33 BLE 1 $30 $30

NRF52840 Dongle 2 $12 $24

Power Source 1A @5v 2 $30 $60

Table 8.10: Bill of materials (Sound anomalies)
Approximate cost of materials is $159.

Use case: Anomalies across a period of Time

Some events are not anomalies if they happen instantaneously, however they
will become an anomaly if the event stays in a state for a certain period of
time. In order to detect this type of anomaly, you need to input a time series
to the anomaly detection model instead of a single point in time. The
following use case illustrates a situation where an anomaly across time is
detected with the help of sensors and short-term memory.

Room temperature anomaly

Problem definition: A commercial real estate company is facing complaints
from tenants about rooms being too hot or too cold. Typically, by the time a
complaint is received, the tenant is already upset, and it takes longer to solve
the problem as the room has been outside the comfort threshold for a while.
The building operator wants to detect temperature anomalies in real-time, so
they can provide a quick response and solution before the tenant is even
aware of the issue. However, the current system only has a few temperature
sensors per floor, making it difficult to identify anomalies in specific areas or
rooms. Therefore, the company needs a solution that can detect temperature
anomalies in every room in real-time.

Solution: The proposed solution comprises of sensors that can capture the
temperature in their surroundings and detect any unusual activity or anomaly
using a combination of a classifier model and an anomaly scoring system.
Each room on the floor will be able to communicate with a central device
placed in the middle of the floor that can send a signal over the internet to
the cloud, which in turn will alert the building's operators in case of any
irregularities detected by the sensors. The concept diagram (as shown in
Figure 8.22) shows the general idea of the solution with sensors connected

together via a network in which one of the nodes has the ability to send the
data out to the cloud.

Ageggaton £ lowd

Figure 8.22: Concept diagram (Room temperature anomalies)

Data acquisition

To ensure accurate monitoring of commercial spaces, it is recommended to
capture space temperatures in every area that will be monitored for
anomalies. This allows for the creation of explicit models for each space,
rather than relying on a generic anomaly detection model that processes data
in the cloud. By running TinyML models on the edge, anomalies can be
detected locally. Room temperature does not change instantly, for that
reason, capturing temperature data every minute is sufficient. The initial
model is trained with 24 hours of data, but future versions could be trained
with data from multiple days under varying weather conditions. The data
partition is shown in the following figure:

Room

Temperature
1008
Minutes
70% 209 10%
Train Test Validate
(1,008 minutes) (288 minutes) 1144 minutes)

Figure 8.23: Test dataset (Room temperature anomalies)

Processing

The temperature signal is a series of measurements taken at 1/60Hz
frequency. To measure the rate of change of temperature over time, we
buffer the last ten readings. Before we feed the readings into the TinyML
model, we need to check for gaps, changes in frequency (such as receiving
three readings instead of one), and outlier values that may be caused by a
faulty sensor rather than an actual temperature anomaly. To do this, we use a
Kalman filter that follows simple physics rules to determine the accuracy of
the reading. If the sensor does not provide the data in Celsius degrees, we
convert the raw byte data to Celsius. The ten most recent readings are
resampled at a frequency of 1Hz (one data point per second) and sent to the
TinyML model, resulting in 600 features.

Model

We use a tandem configuration of a classification model and k-means
function to identify anomalies in room temperature. The classification model

takes in the 600 features that represent the last 10 minutes of room
temperature and feeds them into a fully connected dense layer. The next
layer is a dense layer with 20 parameters, which is activated with a ReLU
function. The third layer is another dense layer with 10 parameters, also
activated with a ReLU function. Finally, the output is passed through a
SoftMax function, which transforms the output of the dense network into a
probability distribution. This distribution shows the likelihood that the
sample represents normal behavior.

After this initial classification, we then run the sample through the K-means
function to determine its anomaly score. This score is determined by
calculating the distance between the cluster centroid representing normal
operations and the sample based on its most essential features. This process
allows us to identify any anomalies in the room temperature readings.

As shown in Figure 8.24, the model demonstrates strong performance in
identifying temperature anomalies, with a low validation loss of 0.27 and a
high testing accuracy of 94.86%, indicating it is well-trained and capable of
generalizing to unseen data. The use of K-means clustering with 32 clusters
and a threshold of 0.3 enhances the model’s ability to refine anomaly
detection by classifying points based on their proximity to cluster centers.
The compact representation of the time series into 7 meaningful features
suggests effective feature engineering, reducing dimensionality while
preserving critical information. However, while the metrics are promising,
the model’s ability to detect subtle or edge-case anomalies should be
validated further during live deployment to ensure robustness in diverse,
real-world scenarios.

70%

Trainineg samles

Room Temperature

10%

a Tralndng samples

40 s

20%

Training seenples

Live
Data

Figure 8.24: Training, validation and testing metrics (Room temperature anomalies)

System implementation

PROCESSING

LEARNING

Do Network 20-10

RUN

0.27 Loss

F1 Scare

Dnse Netwerk 20-10

Dense Metwark 70-10

%

ALLUTaY

Derser Network 2010

ANOMALY
SCORING

32

Chuzters

K

masm

Threshald:0.3

32

Clusters
K
e

Thresheld: 0.3

32

Cluslons

K

.

Theeshold: 0.3

TRAIN

VALIDATE

TEST

LIVE

The system comprises of two different types of Blocks. Block 1 is
responsible for capturing temperature readings and determining their
anomaly score. You can replicate Block 1 as many times as there are rooms
in the space that you want to cover using this solution. On the other hand,
you only need one Block 2, which receives the status (not the readings) of all
the Block 1 devices. It then sends this information to an alert system using
an internet connection. The flow of information via the wireless network is
shown in the figure implementation figure:

BLE Mesh (Publish tocCHT) BLE Mesh (Publish toc CH1)

m P1 Pl

LTE-M
Metwork

Figure 8.25: Connection diagram (Room temperature anomalies)

Block 1 is built with an Arduino Nano 33 BLE Sense, which has an
integrated temperature sensor and an ARM-M microcontroller capable of
running both the TinyML classification model and the K-means function.
Block 1 uses a secondary microcontroller (NRF52840 Dongle) to transmit
messages to a Bluetooth Mesh Network.

Block 2 is built with a Thingy9160 that features dual processors. The first
one (an NRF52840) receives status messages from the BLE Mesh Network,
and the second one (NRF9160) connects to the NRFCloud using an LTE-M
connection.

Source code

The logic implemented in Block one consists of capturing the temperature at
regular intervals, storing it in a buffer and then sending a series of readings
to the classification and anomaly detection models at once. Refer to the
following table:

Code location: Arduino Nano

c:tinyml 8 3 33 BLE @ Block 1

Capture temperature, process
readings, classify sample,
determine anomaly score.
Pseudocode

1. Temperature is captured by

Classification sensors and then saved to
Model volatile memory.

E K 2. Temperature history is
iy L converted to features.

3. The classification model
classifies the sample.

4. The anomaly score is
determined. Status message is
sent out to network.

Pro
cessing

—> A

Table 8.11: Pseudocode for Block 1 (Room temperature anomalies)

Network

The distributed nature of this solution requires the use of a wireless network.
Since the anomaly detection process takes place in the device, there is no
need to send out every temperature reading. The only messages that go out
are flags that indicate that an anomaly is present. The low bandwidth nature
of this solution is a good match for a low energy mesh network. All
messages are published to the same channel. The aggregator node can
identify the message sender by an id in the metadata.

Block(s) Action Channel
1 Publishes to CH1
2 Subscribes to CH1

Table 8.12: Mesh network configuration (Room temperature anomalies)

Power analysis

This solution offers the optionality to power sensors (Block 1) directly from
the electric grid of using a battery.

Power . Latent Active
Device Notes
RO consumption consumption
P1 Arduino 0.032A <1A
Nano 33 @sv @sv

BLE Sense

NRF52 0.04mA 3mA ‘Active when
P1 publishing messages as
Dongle @5v @5v a client.

Table 8.13: Power profile Block 1 (Room temperature anomalies)

The aggregation Block (Block 2) will require a power source connected to
the electric grid as it will perform long range communication with the cloud.

Power . Latent Active
Device Notes
SOMIC consumption consumption
P NRF9150 0.04mA 0.3mA Active when receiving
Thingy @5v @5v messages as a server.

Table 8.14: Power profile Block 2 (Room temperature anomalies)

Bill of materials

This bill of materials considers two anomaly detectors (covering two rooms)
and one aggregator Block.

Description QTY Unit cost Total
Arduino Nano 33 BLE Sense 2 $45 $90
NRF9160 Thingy 1 $150 $150
Power Source 1A @5v 2 $30 $60

Table 8.15 : Bill of materials (Room temperature anomalies)
Approximate cost of materials is $300.

Conclusion

The ability to detect abnormal events or readings has countless applications.
In this chapter, we introduced the concept of distance calculation as a
method to determine how close something is to being normal. However, this
is just one approach to anomaly detection. Another powerful method is
statistics-based anomaly detection, which offers a rich framework for
identifying unusual events. Additionally, convolutional networks can be used
to analyze the shape of a curve or figure to determine if something is amiss.

This chapter only scratches the surface of this vast topic, and we encourage
readers to explore it further.

References
e Anomaly detection use case l:
https://studio.edgeimpulse.com/public/378012/live
e Anomaly detection use case 2:
https://studio.edgeimpulse.com/public/378013/live
e Anomaly detection use case 3:

https://studio.edgeimpulse.com/public/378014/live

https://studio.edgeimpulse.com/public/378012/live
https://studio.edgeimpulse.com/public/378013/live
https://studio.edgeimpulse.com/public/378014/live

Index

A

Accelerometers 64
Accelerometers, architecture 64, 65
Accelerometers, features
Kurtosis 66
Skewness 68
Spectral Power 65-67
Acoustic Signal 27
Acoustic Signal, steps
Digital Conversion 28
Discrete Fouries Transform 30
Dynamic Features 32
IDFT 31
Log Function 31
Mel Filter Bank 30
Pre-Emphasis 29
Windowing 29
Anomalies 220
Anomalies, architecture 224
Anomalies, configuring 221
Anomalies, steps 226

B
BLE-Mesh Network 76
BLE-Mesh Network, concepts
Bill of Materials 78
Power Analysis 77, 78

D

Data Acquisition 6
Data Acquisition, components
Drivers 8, 9
Sensors 6
User Interface 8
Deep Learning Regression 190, 191
Deep Learning Regression, training 191, 192
Distance Calculation 223
Distance Calculation, approaches

Euclidean Distance 223
Mahalanobis Distance 223
Manhattan Distance 224

E

Event Detection 149

Event Detection, concepts
Bill of Materials 157
Data Acquisition 150, 151
Model 152, 153
Network 156
Power Analysis 156
Processing 152
Source Code 155
System, implementing 154

F

Feature Engineering 9
Feature Engineering, ability
Accelerometer Readings 10
Images 9
Soundwaves 11
Time Series 11
Free Fall Detection 78
Free Fall Detection, architecture 78, 79
Free Fall Detection, concepts
Bill of Materials 87
Data Acquisition 79-81
Model 83
Network 86
Power Analysis 86, 87
Processing 82
Source Code 85
System, implementing 84, 85

G

Generalization 27
Generalization, characteristics
Acoustic Signal 27
Processing Block 33
Gesture Recognition 104
Gesture Recognition, architecture 104, 105
Gesture Recognition, solutions
Bill of Materials 111
Data Acquisition 105, 106
Model 107

Network 110

Power Analysis 110

Processing 106

Source Code 109

System Implementation 107
Greenhouse Control 192, 193
Greenhouse Control, solutions

Bill of Materials 201

Data Acquisition 194, 195

Model 196, 197

Network 200

Power Analysis 200

Processing 195, 196

Source Code 199

System, implementing 198
Gyroscope Correction 178, 179
Gyroscope Correction, concepts

Bill of Materials 184

Data Acquisition 180

Power Analysis 184

Processing 181, 182

Source Code 183

System, implementing 183

H
Humidex Score 165
Humidex Score, concepts
Bill of Materials 171
Data Acquisition 166
Network 170
Power Analysis 171
Processing 166-168
Source Code 169
System, implementing 168, 169

I

Image Classification 100
Image Classification, configuring 101-104
Image Classification, extracting 100, 101
Image Classification, solutions

Bill of Materials 117

Data Acquisition 112

Model 113, 114

Network 116

Power Requirements 117

Processing 113

Source Code 116

System, implementing 114, 115
Images, features

Augmentation 10

Color Space Conversion 10

Preprocessing 10

Size Reduction 10

K

Kalman Filters 163, 164

Kalman Filters, steps
Prediction 164
Update 164

K-Means Clustering 225

M
Machine Learning (ML) 13
MEF Based Processing 48
MEF Based Processing, architecture 48
MEF Based Processing, concepts
Bill of Materials 54
Data Acquisition 49
Model 50, 51
Network 53
Power Analysis 54
Processing 50
Source Code 52
System, implementing 51, 52
Mesh Network 21
Mesh Network, characteristics
Design Principle 21
Power Efficiency 21
Purpose/Use Cases 21
Range/Speed 21
Scalability 21
MFCC 34
MFCC, configuring 34-37
MFCC, training 37-39
ML, tasks
Classification Algorithm 13
Data, splitting 14
Edge Device, deploying 16
Model, evaluating 15
Model, training 15
Model, tuning 16
Monitor/Update 17
Movement Anomalies 226
Movement Anomalies, solutions

Bill of Materials 232

Data Acquisition 227

Model 228, 229

Network 231

Power Analysis 231

Processing 228

Source Code 230

System, implementing 230
Movement Classification 88
Movement Classification, architecture 88
Movement Classification, solutions

Bill of Materials 96

Data Acquisition 89, 90

Model 91, 92

Network 94

Power Analysis 95

Processing 90, 91

Source Code 94

System, implementing 92, 93

N

Networking, types
BLE Mesh 22
Mesh Network 21

0]

Object Counting 131
Object Counting, concepts
Bill of Materials 140
Data Acquisition 133
Model 135
Network 138
Power Analysis 139
Processing 134
Source Code 137
System, implementing 136, 137
Object Detection 128
Object Detection, applications
Counting 131
Events, detecting 131
Timing 131
Object Detection, architecture 128
Object Detection, terms
Assignment 129
Gating 130
Track Maintenance 129, 130
Object Recognition 118

Object Recognition, architecture 118
Object Recognition, concepts

Bill of Materials 124

Data Acquisition 119

Model 120

Network 123

Power Requirements 124

Processing 119

Source Code 123

System, implementing 121, 122

P

People Counting 140
People Counting, architecture 140, 141
People Counting, concepts
Bill of Materials 149
Data Acquisition 141, 142
Model 143, 144
Network 147
Power Analysis 148
Processing 143
Source Code 146
System, implementing 145, 146
Power Management 23
Power Management, strategies
Adaptive Computing 23
Duty Cycling 23
Efficient Model Design 23
Energy-Aware Algorithms 23
Hardware Optimization 23
Selective Sensing 23
Profiling 171
Profiling, architecture 172, 173
Profiling, concepts
Bill of Materials 178
Data Acquisition 173
Network 177
Power Analysis 177
Processing 174, 175
Source Code 176
System, implementing 176

R

ReLU Activation 69, 70

Room Temperature Anomaly 239

Room Temperature Anomaly, concepts
Bill of Materials 244

Data Acquisition 240
Model 240, 241

Network 243

Power Analysis 243
Processing 240

Source Code 242

System, implementing 242

S

Sensor Fusion 160
Sensor Fusion, architecture 160, 161
Sensor Fusion, steps
Data Alignment 161
Data Association 162
Data Collection 161
Estimation/Integration 162
Feedback Loop 162
Post-Processing 162
Pre-Processing 161
Sensors 6
Sensors, characteristics
Accuracy 6
Range 6
Repeatability 7
Response Time 7
Ruggedness 8
Sensitivity 7
Stability 7
Sound Anomalies 232
Sound Anomalies, concepts
Bill of Materials 238
Data Acquisition 233
Model 234, 235
Network 237
Power Analysis 237
Processing 234
Source Code 237
System, implementing 236
Spectrogram 41
Spectrogram, architecture 41, 42
Spectrogram, concepts
Bill of Materials 48
Data Acquisition 42
Model 44
Network 46, 47
Power Analysis 47
Processing 43
Source Code 46

System, implementing 45

T

Temperature Prediction 202
Temperature Prediction, concepts
Bill of Materials 210
Data Acquisition 203
Model 204, 205
Network 209
Power Analysis 209
Processing 204
Source Code 207, 208
System, implementing 206
Time Series 12
Time Series, features
Autocorrelation Features 12
Derivative/Integral Features 12
Domain-Specific Features 12
Frequency Domain Features 12
Statistical Features 12
Temporal Features 12
TinyML 2, 3
TinyML, architecture 3
TinyML Data, acquiring 26
TinyML, steps
Bill Of Materials (BOM) 24
Concept Development 5
Data Acquisition 6
Feature Engineering 9
Hardware/Electronic 17
Machine Learning (ML) 13
ML Model, integrating 17
Networking 20
Power Management 23
Problem, defining 4, 5
Tool Usage Tracker 71
Tool Usage Tracker, concepts
Data Acquisition 71, 72
Model 74
Processing 73
Source Code 76
System, implementing 75

\%

Voice Activated Switches 55

Voice Activated Switches, concepts
Bill of Materials 61

Data Acquisition 56

Model 57, 58

Network 60

Power Analysis 60

Processing 56

Source Code 60

System Implementation 58, 59

W
Weight Estimation 210, 211
Weight Estimation, concepts
Bill of Materials 217
Data Acquisition 211, 212
Model 213, 214
Network 216
Power Analysis 217
Processing 212
Source Code 215, 216
System, implementing 214

	Cover
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Table of Contents
	1. Foundation and Methodology
	Introduction
	Structure
	Objectives
	TinyML in AI
	Level of experience and knowledge required to use TinyML

	Designing and building a TinyML application
	Step 1: Defining the problem
	Step 2: Concept development
	Creating the concept

	Step 3: Data acquisition
	Sensors
	User interface
	Drivers

	Step 4: Feature engineering
	Feature engineering for images
	Feature engineering for accelerometer readings
	Feature engineering for soundwaves
	Feature engineering for timeseries from sensors

	Step 5: Model creation
	Choosing an algorithm
	Splitting the data
	Training the model
	Evaluating the model
	Tuning and optimizing the model
	Deploying the model
	Monitor and update

	Step 6: Integrating the ML model with the application code
	Step 7: Hardware, electronics and connectivity
	Data versus information
	Sending data between devices
	Connection schematic

	Step 8: Networking
	Comparison between a mesh and a LAN network
	Implementation strategy

	Step 9: Power management
	Step 10: Materials and costs

	Conclusion

	2. Sound Classification
	Introduction
	Structure
	Objectives
	Acquiring data to train the model
	Balanced, diverse, and sufficient datasets
	Extracting features from an acoustic signal
	Processing

	Selecting the right processing block for the job

	Model
	Training the model

	Use case: Spectrogram based processing
	Classifying instrument notes
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Use case: MEF based processing
	Detecting noisy people in a business location
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Use case: MFCC based processing
	Voice activated switches
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Conclusion
	References

	3. Movement Classification
	Introduction
	Structure
	Objectives
	Capturing training data from accelerometers
	Extracting features from accelerometers
	Spectral power
	Kurtosis
	Skewness

	Creating the classification model
	Use case: Correct usage detection
	Tool usage tracker
	Data acquisition
	Processing
	Model
	System implementation
	Source code

	Network
	Power analysis
	Bill of materials

	Use case: Free fall detection
	Worker fall detection
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Use case: Movement profiling
	Car driving style tracker
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Conclusion
	References

	4. Image Classification
	Introduction
	Structure
	Objectives
	Capturing training data for image classification
	Extracting features from the images
	Image classification model
	Use case: Gesture detection
	Using hand signs to unlock a door
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Use case: Face detection
	People detector
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power requirements
	Bill of materials

	Use case: Object recognition
	Component sorting
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power requirements
	Bill of materials

	Conclusion
	References

	5. Object Tracking
	Introduction
	Structure
	Objectives
	Tracking a single object
	Things to consider

	Tracking multiple things at once
	Assignment
	Track maintenance
	Gating
	Applications

	Use case: Object counting
	Conveyor belt counting
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Use case: People counting
	People counting in supermarket
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Use case: Event detection
	Car tracking
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Conclusion
	References

	6. Sensor Fusion
	Introduction
	Structure
	Objectives
	Types of sensor fusion
	Sensor fusion algorithm
	Kalman filters
	Use case: Scoring
	Degree of comfort score for shelters
	Data acquisition
	Processing
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Use case: Profiling
	Temperature profiling in a commercial building
	Data acquisition
	Processing
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Use case: Correction
	Accelerometer and gyroscope for drones
	Data acquisition
	Processing
	System implementation
	Source code
	Power analysis
	Bill of materials

	Conclusion
	References

	7. Deep Learning Regression
	Introduction
	Structure
	Objectives
	Non linearity
	Inputs and outputs

	Preparing data for regression
	Training the regression model
	Use case: Controlling
	Greenhouse control
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Use case: Forecasting
	Thermostat temperature prediction
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Use case: Estimating
	Weight estimation from images
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Conclusion
	References

	8. Anomaly Detection
	Introduction
	Structure
	Objectives
	Types of anomalies
	Precision versus recall
	Distance calculation
	Feature importance
	K-means clustering and anomaly detection
	Steps to detect an anomaly

	Use case: Movement anomalies
	Rowing machine anomaly
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Use case: Sound anomalies
	Machine sound anomaly
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Use case: Anomalies across a period of Time
	Room temperature anomaly
	Data acquisition
	Processing
	Model
	System implementation
	Source code
	Network
	Power analysis
	Bill of materials

	Conclusion
	References

	Index

