<packn

Serverless Machine Learning
with Amazon Redshift ML

Create, train, and deploy machine learning models
using familiar SQL commands

DEBU PANDA | PHIL BATES
BHANU PITTAMPALLY | SUMEET JOSHI

Foreword by Colin Mahony | GM, Amazon Redshift, AWS

<packn

BIRMINGHAM—MUMBAI

Serverless Machine Learning with
Amazon Redshift ML

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief

quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained
in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or

indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate
use of capitals. However, Packt Publishing cannot guarantee the accuracy of

this information.

Group Product Manager: Niranjan Naikwadi

Publishing Product Manager: Ali Abidi
Book Project Manager: Farheen Fathima
Senior Editor: Tazeen Shaikh

Technical Editor: Rahul Limbachiya
Copy Editor: Safis Editing

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni
Production Designer: Prashant Ghare
DevRel Marketing Coordinator: Vinishka Kalra
First published: August 2023

Production reference: 1280823

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 IRB, UK.

ISBN 978-1-80461-928-5

To my wife, Renuka, and my kids, Nistha and Nisheet, who make my
life exciting every day!

— Debu Panda

To my wife, Patty, who encourages me daily, and all those who

supported me in this endeavor.

— Phil Bates

To my wonderful family — my wife, Kavitha, and my daughters, Vibha
and Medha.

— Bhanu Pittampally

To my wife, Leena, my daughter, Ananya, my parents, and my brother,
Neeraj, for their support and encouragement for all these years —

especially my wife, who always supports me in all walks of my life.

— Sumeet Joshi

Foreword

In today’s fast-paced technological landscape, the convergence of serverless
computing and machine learning has transformed the way we approach data
analytics and decision-making. As the demand for scalable solutions
continues to rise, the need for accessible tools that bridge the gap between

complex algorithms and user-friendly interfaces has become paramount.

In Serverless Machine Learning with Amazon Redshift ML, the authors
embark on a journey that empowers users, regardless of prior machine
learning experience, to harness the power of data-driven insights. By
leveraging simple SQL commands, this book will walk you through how to
solve complex problems using different machine learning algorithms with
ease. Gone are the days of steep learning curves and complex coding — this
book paves the way for a new era and describes how Amazon Redshift ML

democratized machine learning.

Through a balanced approach of theory and hands-on exercises, this book
guides you through the fundamentals of machine learning concepts while
showcasing how Amazon Redshift ML serves as the cornerstone of this
revolutionary approach. The authors walk you through the benefits of
serverless computing, demonstrating how it not only enhances the process
of training your machine learning models but also streamlines the entire

process.

Whether you’re a seasoned machine learning professional or are just

starting on your machine learning journey now, this book will provide the

roadmap you need. The authors are authoritative sources on the topics who
defined Redshift ML and work with customers to make them successful
with a variety of use cases, such as product recommendation, churn
prediction, revenue forecasting, and many more. Enjoy your journey to
machine learning and allow the book to unlock the potential of machine
learning in your Amazon Redshift data warehouse one simple SQL

command at a time.
Colin Mahony

GM, Amazon Redshift, AWS

Contributors

About the authors

Debu Panda, a senior manager in product management at AWS, is an
industry leader in analytics, application platforms, and database
technologies, and he has more than 25 years of experience in the I'T world.
Debu has published numerous articles on analytics, enterprise Java, and
databases, and he has presented at multiple conferences, such as re:Invent,
Oracle Open World, and Java One. He is the lead author of EJB 3 in Action
(Manning Publications, 2007 and 2014) and Middleware Management
(Packt Publishing, 2009).

I want to thank the people who supported me, especially my wife,
Renuka, my kids, Nistha and Nisheet, and my parents.

Phil Bates is a senior analytics specialist solutions architect at AWS. He
has more than 25 years of experience implementing large-scale data
warehouse solutions. He is passionate about helping customers through
their cloud journey and leveraging the power of machine learning within
their data warehouse. Phil has written several blogs on Amazon Redshift
ML and presented at re:Invent and AWS summits. He enjoys golf and

hiking and lives with his wife in Roswell, Georgia.

Bhanu Pittampally is a seasoned professional with over 15 years of
invaluable experience in the realm of data and analytics. With an extensive
background in data lakes, data warehouses, and cloud technologies, Bhanu
has consistently demonstrated a deep understanding of the ever-evolving

landscape of data management.

Armed with a wealth of knowledge and two advanced degrees — a master of
science and an MBA — Bhanu combines academic rigor with practical
insight to provide his clients with comprehensive solutions to their intricate

worlds of data.

Sumeet Joshi is a solutions architect/data scientist based out of New York.
He specializes in building large-scale data warehousing and business
intelligence solutions. He has over 19 years of experience in the data

warehousing and analytical space.

About the reviewers

Anand Prakash is a senior data scientist at Amazon, based in Seattle,
USA. He has a strong passion for technology solutions, particularly in ML,
MLOps, and big data. Anand is always eager to learn and grow
professionally, constantly seeking new knowledge and opportunities. He
shares his knowledge on various tech topics through his writing at . He
holds a bachelor’s degree in electronics and communication from the
Northeastern Regional Institute of Science and Technology (NERIST),
Arunachal Pradesh, India.

Anusha Challa’s journey as a data warehousing specialist has allowed her
to work with multiple large-scale customers of Amazon Redshift and AWS
analytics services. Along this path, she’s had the privilege of collaborating
with brilliant minds, while the steadfast support of her cherished family and
friends has been her constant driving force. Keen to fuel her spirit of
continuous learning, she finds inspiration in working with data — a realm
that perpetually evolves and expands — making each step in data

warehousing and ML an exciting journey of exploration and growth.

Guided by insights gained from her master’s degree in ML, she is happy to
contribute a review of this book, which presents diverse methods
integrating data warehousing and ML, thus broadening the horizons of what

data warehouses can encompass.

Table of Contents

Preface

Part 1: Redshift Overview: Getting
Started with Redshift Serverless and an

Introduction to Machine Learning

Introduction to Amazon Redshift
Serverless

What is Amazon Redshift?

Getting_started with Amazon Redshift
Serverless

What is a namespace?

What is a workgroup?

Connecting_to your data warehouse

Using_ Amazon Redshift query editor v2

Loading_sample data

Running_your first query

Summary

2

Data Loading_and Analytics on Redshift
Serverless

Technical requirements

Data loading using Amazon Redshift Query
Editor v2

Creating tables

Loading_data from Amazon S3

Loading data from a local drive

Data loading from Amazon S3 using the COPY
command

Loading data from a Parquet file

Automating file ingestion with a COPY job

Best practices for the COPY command
Data loading using_the Redshift Data API

Creating_table
Loading data using_the Redshift Data API

Summary

3

Applying_Machine Learning_in Your Data
Warehouse

Understanding the basics of ML

Comparing_supervised and unsupervised
learning.

Classification

Regression

Traditional steps to implement ML

Data preparation

Evaluating an ML model

Overcoming_the challenges of implementing ML
today

Exploring the benefits of ML

Application of ML in a data warehouse

Summary

Part 2: Getting_Started with Redshift ML

4

Leveraging_Amazon Redshift ML

Why Amazon Redshift ML?

An introduction to Amazon Redshift ML
A CREATE MODEL overview

AUTO everything

AUTO with user guidance

XGBoost (AUTO OFF)

K-means (AUTO OFF)

BYOM

Summary

S

Building_Your First Machine Learning
Model

Technical requirements
Redshift ML simple CREATE MODEL

Uploading_and analyzing the data

Diving deep into the Redshift ML CREATE
MODEL syntax

Creating your first machine learning model

Evaluating model performance
Checking_the Redshift ML objectives

Running_predictions

Comparing ground truth to predictions

Feature importance

Model performance

Summary

6

Building_Classification Models

Technical requirements

An _introduction to classification algorithms
Diving_into the Redshift CREATE MODEL syntax

Training_a binary classification model using_the
XGBoost algorithm

Establishing the business problem

Uploading_and analyzing the data

Using XGBoost to train a binary classification
model

Running_predictions

Prediction probabilities

Training_a multi-class classification model
using_the Linear Learner model type

Using Linear Learner to predict the customer
segment

Evaluating_the model quality

Running_prediction queries
Exploring other CREATE MODEL options

Summary

l

Building_Regression Models

Technical requirements

Introducing_regression algorithms
Redshift’s CREATE MODEL with user guidance

Creating_a simple linear regression model using
XGBoost

Uploading_and analyzing the data

Splitting data into training and validation sets

Creating_a simple linear regression model

Running_predictions

Creating_multi-input regression models

Linear Learner algorithm

Understanding_model evaluation

Prediction query

Summary

8

Building Unsupervised Models with K-
Means Clustering

Technical requirements

Grouping_data through cluster analysis

Determining the optimal number of clusters

Creating_ a K-means ML model

Creating_a model syntax overview for K-means

clustering

Uploading_and analyzing the data

Creating the K-means model

Evaluating the results of the K-means
clustering

Summary

Part 3: Deploying_Models with Redshift
ML

9

Deep Learning with Redshift ML

Technical requirements

Introduction to deep learning

Business problem

Uploading_and analyzing the data

Prediction goal

Splitting data into training and test datasets

Creating_a multiclass classification model using
MLP

Running_predictions

Summary

10

Creating_a Custom ML Model with
XGBoost

Technical requirements

Introducing XGBoost

Introducing_an XGBoost use case

Defining the business problem

Uploading, analyzing, and preparing _data for
training

Splitting data into train and test datasets

Preprocessing_the input variables

Creating a model using XGBoost with Auto Off

Creating_a binary classification model using
XGBoost

Generating_predictions and evaluating model
performance

Summary

11

Bringing_Your Own Models for Database
Inference

Technical requirements
Benefits of BYOM
Supported model types

Creating_the BYOM local inference model

Creating_a local inference model

Running local inference on Redshift

BYOM using_a SageMaker endpoint for remote

inference

Creating BYOM remote inference

Generating the BYOM remote inference
command

Summary

12

Time-Series Forecasting_in Your Data
Warehouse

Technical requirements

Forecasting_and time-series data

Types of forecasting methods

What is time-series forecasting?

Time trending_data

Seasonality

Structural breaks

What is Amazon Forecast?

Configuration and security

Creating forecasting models using Redshift ML

Business problem

Uploading and analyzing the data

Creating a table with output results

Summary

13

Operationalizing_and Optimizing Amazon

Redshift ML Models

Technical requirements

Operationalizing_your ML models

Model retraining_process without versioning

The model retraining process with versioning

Automating the CREATE MODEL statement for
versioning

Optimizing_the Redshift models’ accuracy

Model quality

Model explainability

Probabilities

Using SageMaker Autopilot notebooks

Summary

Index

Other Books You May Enjoy

Preface

Amazon Redshift Serverless enables organizations to run petabyte-scale
cloud data warehouses quickly and in a cost-effective way, enabling data
science professionals to efficiently deploy cloud data warehouses and
leverage easy-to-use tools to train models and run predictions. This
practical guide will help developers and data professionals working with
Amazon Redshift data warehouses to put their SQL knowledge to work for

training and deploying machine learning models.

The book begins by helping you to explore the inner workings of Redshift
Serverless as well as the foundations of data analytics and types of data
machine learning. With the help of step-by-step explanations of essential
concepts and practical examples, you’ll then learn to build your own
classification and regression models. As you advance, you’ll find out how
to deploy various types of machine learning projects using familiar SQL
code, before delving into Redshift ML. In the concluding chapters, you’ll
discover best practices for implementing serverless architecture with
Redshift.

By the end of this book, you’ll be able to configure and deploy Amazon
Redshift Serverless, train and deploy machine learning models using

Amazon Redshift ML, and run inference queries at scale.

Who this book is for

Data scientists and machine learning developers working with Amazon
Redshift who want to explore its machine-learning capabilities will find this

definitive guide helpful. A basic understanding of

machine learning techniques and working knowledge of Amazon Redshift

1s needed to make the most of this book.

What this book covers

Chapter 1, Introduction to Amazon Redshift Serverless, presents an
overview of Amazon Redshift and Redshift Serverless, walking you
through how to get started in just a few minutes and connect using Redshift
Query Editor v2. You will create a sample database and run queries using

the Notebook feature.

Chapter 2, Data Loading and Analytics on Redshift Serverless, helps you

learn different mechanisms to efficiently load data into Redshift Serverless.

Chapter 3, Applying Machine Learning in Your Data Warehouse, introduces

machine learning and common use cases to apply to your data warehouse.

Chapter 4, Leveraging Amazon Redshift Machine Learning, builds on
Chapter 3. Here, we dive into Amazon Redshift ML, learning how it works

and how to leverage it to solve use cases.

Chapter 5, Building Your First Machine Learning Model, sees you get
hands-on with Amazon Redshift ML and build your first model using

simple CREATE MODEL syntax.

Chapter 6, Building Classification Models, covers classification problems
and the algorithms you can use in Amazon Redshift ML to solve these

problems and learn how to create a model with user guidance.

Chapter 7, Building Regression Models, helps you identify whether a
problem involves regression and explores the different methods available in

Amazon Redshift ML for training and building regression models.

Chapter 8, Building Unsupervised Models with K-Means Clustering, shows
you how to build machine learning models with unlabeled data and make

predictions at the observation level using K-means clustering.

Chapter 9, Deep Learning with Redshift ML, covers the use of deep

learning in Amazon Redshift ML using the MLP model type for data that is

not linearly separable.

Chapter 10, Creating Custom ML Model with XGBoost, shows you how to

use the Auto Off option of Amazon Redshift ML to prepare data in order to

build a custom model.

Chapter 11, Bring Your Own Models for In-Database Inference, goes
beyond Redshift ML models. Up to this point in the book, we will have run
inference queries only on models built directly in Amazon Redshift ML.
This chapter shows how you can leverage models built outside of Amazon

Redshift ML and execute inference queries inside Amazon Redshift ML.

Chapter 12, Time-Series Forecasting in Your Data Warehouse, dives into

forecasting and time-series data using the integration of Amazon Forecast
with Amazon Redshift ML.

Chapter 13, Operationalizing and Optimizing Amazon Redshift ML Models,

concludes the book by showing techniques to refresh your model, create

versions of your models, and optimize your Amazon Redshift ML models.

To get the most out of this book

You will need access to an AWS account to perform code examples in this

book. You will need either to have administrator access or to work with an

administrator to create a Redshift Serverless data warehouse and the IAM

user, roles, and policies used in this book.

Software/hardware covered in the Operating system
book requirements
The AWS CLI (optional) Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type
the code yourself or access the code from the book’s GitHub repository
(a link is available in the next section). Doing so will help you avoid any

potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Serverless-Machine-learning-with-
Amazon-Redshift. If there’s an update to the code, it will be updated in the
GitHub repository.

We also have other code bundles from our rich catalog of books and videos

available at https://github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

code in text: Indicates code words in text, database table names, folder

names, filenames, file extensions, pathnames, dummy URLs, user input,

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift
https://github.com/PacktPublishing/

and Twitter handles. Here is an example: “Mount the downloaded

WebStorm-10+*.dmg disk image file as another disk in your system.”

A block of code i1s set as follows:

cnt = client.execute statement (Database='dev',
Sgl="'Select count(l) from chapter2.orders;"',
WorkgroupName=REDSHIFT WORKGROUP)

query id = cnt["Id"]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:
SHOW MODEL chapter5 buildfirstmodel.customer churn model;

Any command-line input or output is written as follows:

$ pip install pandas

Bold: Indicates a new term, an important word, or words that you see
onscreen. For instance, words in menus or dialog boxes appear in bold.

Here is an example: “Select System info from the Administration panel.”

TIPS OR IMPORTANT NOTES

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,

email us at customercare(@packtpub.com and mention the book title in the

subject of your message.

mailto:customercare@packtpub.com

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit

www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright(@packt.com with a

link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a

book, please visit authors.packtpub.com.

Share Your Thoughts

Once you’ve read Serverless Machine Learning with Amazon Redshift ML,

we’d love to hear your thoughts! Please click here to go straight to the

Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us

make sure we’re delivering excellent quality content.

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books
everywhere? Is your eBook purchase not compatible with the device of

your choice?

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com/
https://packt.link/r/1-804-61928-0

Don’t worry, now with every Packt book you get a DRM-free PDF version

of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code

from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts,

newsletters, and great free content in your inbox daily
Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80461-928-5

2. Submit your proof of purchase

3. That’s 1it! We’ll send your free PDF and other benefits to your email
directly

clbr://internal.invalid/book/OEBPS/B19071_Preface.xhtml

Part 1:Redshift Overview: Getting Started
with Redshift Serverless and an
Introduction to Machine Learning

Reaping the benefits of machine learning across an organization requires
access to data, easy-to-use tools, and built-in algorithms that anyone can use

no matter their level of experience with machine learning.

Part I shows how easy it is to get started with Amazon Redshift Serverless
and Amazon Redshift ML without having to manage data warehouse

infrastructure.

By the end of Part 1, you will know how to run queries using Query Editor
v2 notebooks and different techniques for loading data into Amazon
Redshift Serverless. You will then be introduced to machine learning and
gain an understanding of how you can use machine learning in your data

warehouse.
This part comprises the following chapters:
e Chapter 1, Introduction to Amazon Redshift Serverless
e Chapter 2, Data Loading and Analytics on Redshift Serverless

o Chapter 3, Applying Machine Learning in Your Data Warehouse

Introduction to Amazon Redshift
Serverless

“Hey, whats a data warehouse?” John Doe, CEO and co-founder of
Red.wines, a fictional specialty wine e-commerce company, asked Tathya
Vishleshak*, the company’s CTO. John, who owned a boutique winery, had
teamed up with Tathya for the project. The company’s success surged
during the pandemic, driven by social media and the stay-at-home trend.
John wanted detailed data analysis to align inventory and customer
outreach. However, there was a problem — producing this analysis was

slowing down their online transaction processing (OLTP) database.

“A data warehouse is like a big database where we store different data for a

long time to find insights and make decisions,” Tathya explained.

John had a concern, “Sounds expensive; we re already paying for unused

warehouse space. Can we afford it?”

Tathya reassured him, “You 're right, but there are cloud data warehouses

such as Amazon Redshift Serverless that let you pay as you use.”

Expanding on this, this chapter introduces data warehousing and Amazon
Redshift. We’ll cover Amazon Redshift Serverless basics, such as
namespaces and workgroups, and guide you in creating a data warehouse.
Amazon Redshift can gather data from various sources, mainly Amazon

Simple Storage Service (S3).

As we go through this chapter, you’ll learn about a crucial aspect of this, the
AWS Identity and Access Management (IAM) role, needed for loading
data from S3. This role connects to your Serverless namespace for smooth
data transfer. You’ll also learn how to load sample data and run queries
using Amazon Redshift query editor. Our goal is to make it simple and

actionable, so you’re confident in navigating this journey.

TATHYA VISHLESHAK

The phrase 'Tathya Vishleshak' can be loosely interpreted to reflect the concept of a data
analyst in Sanskrit/Hindi. However, it's important to note that this is not a precise or
established translation, but rather an attempt to convey a similar meaning based on the
individual meanings of the words 'Tathya' and 'Vishleshak' in Sanskrit.

Additionally, Amazon Redshift is used to analyze structured and
unstructured data in data warehouses, operational databases, and data lakes.
It’s employed for traditional data warehousing, business intelligence, real-
time analytics, and machine learning/predictive analytics. Data analysts and
developers use Redshift data with machine learning (ML) models for tasks

such as predicting customer behavior. Amazon Redshift ML streamlines

this process using familiar SQL commands.

The book delves into ML, explaining supervised and unsupervised training.
You’ll learn about problem-solving with binary classification, multi-class
classification, and regression using real-world examples. You’ll also
discover how to create deep learning models and custom models with
XGBoost, as well as use time series forecasting. The book also covers in-
database and remote inferences using existing models, applying ML for

predictive analytics, and operationalizing machine learning models.

The following topics will be covered in this chapter:

e What is Amazon Redshift?
e Getting started with Amazon Redshift Serverless

e Connecting to your data warehouse

This chapter requires a web browser and access to an AWS account.

What is Amazon Redshift?

Organizations churn out vast troves of customer data along with insights
into these customers’ interactions with the business. This data gets funneled
into various applications and stashed away in disconnected systems. A
conundrum arises when attempting to decipher these data silos — a
formidable challenge that hampers the derivation of meaningful insights
essential for organizational clarity. Adding to this complexity, security and
performance considerations typically muzzle business analysts from

accessing data within OLTP systems.

The hiccup is that intricate analytical queries weigh down OLTP databases,
casting a shadow over their core operations. Here, the solution is the data
warehouse, which is a central hub of curated data, used by business
analysts and data scientists to make informed decisions by employing the
business intelligence and machine learning tools at their disposal. These
users make use of Structured Query Language (SQL) to derive insights
from this data trove. From operational systems, application logs, and social
media streams to the influx of [oT device-generated data, customers

channel structured and semi-structured data into organizations’ data

warehouses, as depicted in Figure 1.1, showcasing the classic architecture

of a conventional data warehouse.

)

=

m (8

SQL

Mcuchme Business SQL

Learning :
Intelligence Tools
Tools

Data Warehouse

T 1
E E

D

OLTP ERP CRM Streaming

Figure 1.1 — Data warehouse

Here’s where Amazon Redshift Serverless comes in. It’s a key option
within Amazon Redshift, a well-managed cloud data warehouse offered by
Amazon Web Services (AWS). With cloud-based ease, Amazon Redshift
Serverless lets you set up your data storage without infrastructure hassles or

cost worries. You pay based on what you use for compute and storage.

Amazon Redshift Serverless goes beyond convenience, propelling modern
data applications that seamlessly connect to the data lake. Enter the data
lake — a structure that gathers all data strands under one roof, providing
limitless space to store data at any scale, cost-effectively. Alongside other
data repositories such as data warehouses, data lakes redefine how
organizations handle data. And this 1s where it all comes together — the
following diagram shows how Amazon Redshift Serverless injects SQL-

powered queries into the data lake, driving a dynamic data flow:

Machine Learning Q
Ogg) Tools
SQL Tools
Data Warehouse Data Lake
e 8¢ MR 4
O YUY SRR
\OLTP ERP CRM Streaming Devices Web Sensors Social /

Figure 1.2 — Data lake and data warehouse

So, let’s get started on creating our first data warehouse in the cloud!

Getting started with Amazon Redshift
Serverless

You can create your data warehouse with Amazon Redshift Serverless using
the AWS Command-Line Interface (CLI), the API, AWS
CloudFormation templates, or the AWS console. We are going to use the
AWS console to create a Redshift Serverless data warehouse. Log in to your
AWS console and search for rRedshift in the top bar, as shown in Figure
1.3:

Q Redshif

Search results for ‘Reds'

Services Seeall 9 results)

Features (30)

Amazon Redshift v

Resources ' New i
Fast, Simple, Cost-Effective Data Warehousing

Blogs (1,442)

Documentation (1,818 e
418 o AWS Glue DataBrew v

Knowledge Artcls (30) Visual data preparation tool to clean and normalize data for analytics and machine lear...

Tutorials (19)

Events (16) {31 Athena ‘.

Serverless interactive analytics service

Marketplace (694)

@ RS 1

Managed Relational Database Service

Features

Figure 1.3 — AWS console page showing services filtered by our search for Redshift

Click on Amazon Redshift, which will take you to the home page for the
Amazon Redshift console, as shown in Figure 1.4. To help get you started,
Amazon provides free credit for first-time Redshift Serverless customers.

So, let’s start creating your trial data warehouse by clicking on Try

Amazon Redshift Serverless. If you or your organization has tried

Amazon Redshift Serverless before, you will have to pay for the service

based on your usage:

Analytics

Amazon Redshift
Accelerate your time to insights
with fast, easy, and secure

analytics at scale.

cs on all

s of third-party da

How it works

; ;) I
W5 |ntroduction to Data Warehousing on AWS with Amazo... 0
Copy link

Get to powerful insights fast

The Amazon Redshift serverless experience makes it
easy for customers to run and scale analytics without
having to provision and manage their data
warehouse. Simply load and query data,

Try Amazon Redshift Serverless [2

Provision and manage clusters

With a few clicks, you can create your first Amazon
Redshift provisioned cluster in minutes,

Create cluster

Pricing and cost 2

Figure 1.4 — Amazon Redshift service page in the AWS console

If you have free credit available, it will be indicated at the top of your

screen, as in Figure 1.5:

(et started with Amazon Redshift Serverless

To start using Amazon Redshift Serverless, set up your serverless data warehouse and create a database
You il receive 300,00 reit towards your RedshiftServerlss usage in this account

Conﬁguration Info

0 Use default ettings () Customize sttings

Default settings have been defined to help you get Customize your settings for your specfic needs,
started. You can change them at any time [ater,

Y How it works

Using the default settings Customizing the settings

Amazon Redshift Serverless creates a default Amazon Redshift Serverless creates a default
namespace and workgroup. This configuration uses namespace and workgroup. This configuration
the default settings and becomes active when you becomes active when you associate the default
associate the default workgroup to the default Workgroup to the default namespace.

NAMESpace.

Figure 1.5 — AWS console showing the Redshift Serverless Get started page

You can either choose the defaults or use the customized settings to create
your data warehouse. The customized settings give you more control,
allowing you to specify many additional parameters for your compute
configuration including the workgroup, data-related settings such as the
namespace, and advanced security settings. We will use the customized
settings, which will help us customize the namespace settings for our
Serverless data warehouse. A namespace combined with a workgroup is
what makes a data warehouse with Redshift Serverless, as we will now see

1in more detail.

What is a namespace?

Amazon Redshift Serverless provides a separation of storage and compute
for a data warehouse. A namespace is a collection of all your data stored in
the database such as your tables, views, database users, and their privileges.
You are separately charged for storage based on the size of the data stored
in your data warehouse. For compute, you are charged for the capacity used
over a given duration in Redshift processing hours (RPU) on a per
second-basis. The storage capacity is billed as Redshift managed storage
(RMS) and is billed by GB/month. You can view
https://aws.amazon.com/redshift/pricing/ for detailed pricing for your AWS

Region.

As a data warehouse admin, you can change the name of your data
warehouse namespace while creating the namespace. You can also change

your encryption settings, audit logging, and AWS IAM permissions, as

https://aws.amazon.com/redshift/pricing/

shown in Figure 1.6. The primary reason we are going to use customized

settings is to associate an IAM role with the namespace:

Configuration inf

() Use default settings 0 Customize settings

Default settings have been defined to help you get Customize your settings for your specific needs,
started. You can change them at any time later.

Namespace info

Namespace s a collection of database objects and users. Data properties include database name and password, permissions, and encryption
and security.

Namespace name
Thisis a unique name that defines the namespace.

default

The name must be from 3-64 characters. Valid characters are a-z (lowercase only), 0-9 (numbers), and - (hyphen)

¥ Database name and password

Database name
The name of the first database in the Amazon Redshift Serverless environment,

dev
The name must be 1-64 alphanumeric characters (lowercase only), and it can't be a reserved word.

Admin user credentials

|AM credentials provided as your default admin user credentials. To add a new admin username and password,
customize admin user credentials.

] Customize admin user credentials
To use the default [AM credentials, clear this option,

Figure 1.6 — Namespace configuration

AWS TAM allows you to specify which users or services can access other
services and resources in AWS. We will use that role for loading data from
S3 and training a machine learning model with Redshift ML that accesses

Amazon SageMaker.

If you have already created an IAM role earlier, you can associate with that
IAM role. If you have not created an IAM role, do so now by selecting the

Manage IAM roles option, as shown in Figure 1.7:

Permissions

(5) Associate an AM role so that your serverless endpoint can LOAD and UNLOAD data. You can create an 1AM
role as the default for this configuration that has the AmazonRedshiftAllCommandsFullAccess [4 policy
attached. This policy includes permissions to run SQL commands to COPY, UNLOAD, and query data with
Amazon Redshift Serverless. This policy also grants permissions to run SELECT statements for related
services, such as Amazon 3, Amazon CloudWatch logs, Amazon SageMaker, and AWS Glue. You won't be
able to run these SQL commands without an IAM role attached to your namespace.

Associated [AM roles (0)

Create, associate, or remove an IAM role. You can associate up to 50 1AM roles. You can also choose an IAM role and set it as the
default

Setdefault v | ManagelAMroles ¥

Q Search for associated 1AM role by name, status, or role type

(R

Role

|AM roles [/ v Status v o

No resources
No associated IAM roles

Associate IAM role

Figure 1.7 — Creating an IAM role and associating it via the AWS console

Then, select the Create IAM role option, as shown in Figure 1.8:

Associated IAM roles (0)

Create, associate, or remove an [AM role, You can associate up to 50 IAM roles. You can also choose an AM role and set it as the
default,

Setdefault ¥ | Manage IAM roles A

Q Search for associ SRR or role type
Create 1AM role
(1)
Remove IAM roles
Rol
1AM roles [2 v Status g
type ©

No resources
No associated IAM roles

‘ Associate IAM role l

Encryption and security

AWS KMS encryption Audit logging
AWS owned KMS key off

Figure 1.8 — Selecting the “Create 1AM role” option

You can then create a default IAM role and provide appropriate permissions

to the IAM role to allow it to access S3 buckets, as shown in Figure 1.9:

Create the default 1AM role X

@ Associate an IAM role so that your serverless endpoint can LOAD and
UNLOAD data. You can create an IAM role as the default for this configuration
that has the AmazonRedshiftAllCommandsFullAccess [4 policy attached.
This policy includes permissions to run SQL commands to COPY, UNLOAD,
and query data with Amazon Redshift Serverless. This policy also grants
permissions to run SELECT statements for related services, such as Amazon
53, Amazon CloudWatch logs, Amazon SageMaker, and AWS Glue. You won't
be able to run these SQL commands without an IAM role attached to your
namespace.

Specify an S3 bucket for the IAM role to access
To create a new bucket, visit S3 [2

O No additional 53 bucket
Create the IAM role without specifying $3 buckets.

@ Any S3 bucket

Allow users that have access to your Redshift Serverless data to also access any S3 bucket and its
contents in your AWS account.

O Specific S3 buckets
Specify one or more S3 buckets that the IAM role being created has permission to access.

Cancel Create IAM role as default

Figure 1.9 — Granting S3 permissions to the IAM role

As shown in the preceding figure, select Any S3 bucket to enable Redshift
to read data from and write data to all S3 buckets you have created. Then,
select Create IAM role as default to create the role and set it as the default
IAM role.

(%) The IAM role AmazonRedshift-CommandsAccessRole-20221211T173615 (4 was successfuly created and set
as the default.

Associated [AM roles (1)

Create, associate, or remove an IAM role. You can associate up to 50 1AM roles. You can also choose an [AM role and set it as the
default,

Setdefault v ||| Manage IAM roles v

Q Search for assaciated IAM role by name, status, or role type

T
- Role
. [AMroles [v Status v

type ¥

AmazonRedshift-CommandsAccessRole- .

- 2021211T173615 g bl
Encryption and security
AWS KMS encryption Auditlogging
AWS owned KMS key off

Figure 1.10 — An IAM role was created but is not yet applied

As shown in Figure 1.10, we created the IAM role and associated it with
the namespace as a default role. Let’s next proceed to create a workgroup,

wherein we will set up the compute configuration for the data warehouse.

What is a workgroup?

As we discussed earlier, a namespace combined with a workgroup is what
makes a Redshift Serverless data warehouse. A workgroup provides the
compute resources required to process your data. It also provides the
endpoint for you to connect to the warehouse. As an admin, you need to
configure the compute settings such as the network and security

configuration for the workgroup.

We will not do any customization at this time and simply select the default
settings instead, including the VPC and associated subnets for the

workgroup, as shown in the following screenshot:

Workgroup

Workgroup s collection of compute resources from which an endpoint i created. Compute propertis include network and security
settings

Workgroup name

Qefault

Network and security

Virtual private cloud (VPC) Subnet

pe-14d6acT2 (4 subnet-71900214,
subnet-0c2c0421

VPC security group subnet-foaf37c5,

sg-1283260 (4 subnet-f8486145,
subnet-0bd1ecd
subnet-888d94c1,
Enhanced VPC routing
Off

Figure 1.11 — Default settings and associated subnets for the workgroup

Click on the Save configuration button to create your Redshift Serverless

instance, and your first data warehouse will be ready in a few minutes:

It may take a few minutes to complete. After completing the setup, you can work with your data.
Setting up your Amazon Redshift Serverless.

Ease of use with Amazon Redshift
Serverless

Access and analyze data without the need to set up,

tune, and manage Amazon Redshift clusters.

Figure 1.12 — Redshift Serverless creation progress

Once your data warehouse is ready, you will be redirected to your

Serverless dashboard, as shown in Figure 1.13:

(©) Successfuly setup Amazon Redshift Serverless
Review your cofiguration settings. To query data, go to query editor,

etk

Amazon Redehift Serverless

Serverless dashboard w

Namespace overview nfo
Namespace data from your account

All namespaces ¥

Total snapshots Datashares in my account Datashares requiring authorization Datashares from other accounts Datashares requiring association

(| (|

(

Namespaces / Workgroups ifs

Namespace Status Workgroup Status

default @ Available default @ Avallable

Queries metrics ‘ default ¥ H Last hour ¥ H View details ‘

Warkgroup metrics from your account

Free trial info

Free trial credits remaining
$300.00 out of $300.00

Fiee trial expiration
March 11,2023

Figure 1.13 — Serverless dashboard showing your namespace and workgroup

Now that we have created our data warehouse, we will connect to the data

warehouse, load some sample data, and run some queries.

Connecting to your data warehouse

Your data warehouse with Redshift Serverless is now ready. You can
connect to your data warehouse using third-party tools via
JDBC/ODBC/Python drivers. Other options include the Data API or the
embedded Redshift query editor v2.

Using Amazon Redshift query editor v2

Now that your data warehouse is ready; let’s navigate to the query editor to
load some sample data and run some queries. Select the Query data option
from your dashboard, as shown in Figure 1.13, and you will be navigated to

the query editor, as shown in Figure 1.14.

& Redshift query editor v2 + E Unttled1

Database
toote v Loaddata Limit100 © Explain " kolatedsession @) Cluster orworkgroup * Database

§ Q gl !

Queries

il

Notebooks

) & Serverless: default

f

Charts

0

History

Figure 1.14 — Query editor

In the Redshift query editor v2 console, on the left pane, you will see the
data warehouses, such as the Serverless:default workgroup, that you have
access to. Click on the workgroup (Serverless:default) to connect to the

data warehouse.

Connect to default

Authentication Learn more

0 Federated user

Database user name and password

Database

dev

The database name must be 1-64 characters. Valid characters are lowercase alphanumeric
characters.

Cancel = Create connection

Figure 1.15 — Creating a connection to your workgroup

As shown in the preceding screenshot, select Federated user if you did not
specify any database credentials while creating the namespace, and then
click Create connection. You can leave the database name as dev. You will

be prompted to create a connection only when connecting to the data

warehouse for the first time. If you have created the connection, you will be

connected automatically when you click on the workgroup. Once you are

connected, you will see the databases in the navigator, as shown in Figure

1.16:

& Redshift query editor v2

Database
+Ceate % Loaddats

B 0
Wi v Senverlss: default
Y i dev

Y B simple_data_dev
Notebooks

f

0

History

+ E Untitled1 %

Limit100 = Explain © Isolated session () ~Serverless:default + dev

Figure 1.16 — List of databases

Since we just created our data warehouse for the first time, there is no data

present in it, so let’s load some sample data into the data warehouse now.

Loading sample data

On the left pane, click on the sample data_dev database to expand the

available database:

Redshift query editor v2

+ Create v A, Load data

Serverless: default
ma dev

sample_data_dev

Figure 1.17 — The Redshift query editor v2 navigator that shows the sample data
available

As you can see from the preceding screenshot, three sample datasets are

available for you to load into your data warehouse. Click on the icon

showing the folder with an arrow located to the right of your chosen sample

data notebook to load and open it, as shown in Figure 1.18:

Redshift query editor v2 + = Untitled 1 x

+ Create v Y, Load data Limit

Q O
v 0 Serverless: default @
) m dev
v i sample_data_dev

Open sample notebooks

Figure 1.18 — List of sample databases

You will be prompted to create your sample database. Click on Create to

get started, as shown in Figure 1.19:

Create sample database

You do not have a sample database yet. Do you want us to create a sample database
for you?

Cancel Create

Figure 1.19 — Creating a sample database

The sample data will be loaded in a few seconds and presented in a
notebook with SQL queries for the dataset that you can explore, as shown
in Figure 1.20:

E Redshift query editor v2 + = Uniited1 (] tickit-sample-notebook X

Database

toaer Yloaddta) gl Isolated session @) Serverless default * sample_data_dev *

[i

I v

Wi (VB erelescetlt @ Seles per event

} i dev
v i@ sample_data_dev b Run Limit 100
Notebooks
) I tickit
1 SET search_path to tickit;
i'ii) nane, total price
G 5 f eventid, total price, ntile(1000) over(ord
ntid, sunipricepaid) total price
tickit.sales
@ Y eventid)) Q, tickit,event E
.Lventid = E.eventid
MND percentile = 1
ORDER BY total_price desc;

Total quantity per buyer

b Run Limit 100

irstnane, lastnane, total_quantity
buyerid, sun(qtysold) total_guantity
tickit,sales
BY buyerid

Figure 1.20 — Notebook with sample queries for the tickit database

You can expand the navigation tree on the left side of the query editor to
view schemas and database objects, such as tables and views in your

schema, as shown in Figure 1.21.

Serverless: default
mm dev
mm sample_data_dev
v @ tickit

v mm Tables

E=Sl category

EE date
EEl event

E= listing
E= sales
EEl users

EEl venue

AVATAN VLS 0
Functions 0

Stored procedu... O

Figure 1.21 — Expanding the navigation tree to view schemas and database objects

You can click on a table to view the table definitions, as shown in Figure
1.22:

Redshift query editor v2

4+ Create ~

Yo Serverless: default
dev
sample_data_dev

v [tickit
v mm Tables

E2 category
E2 date

EB sales

Distribution key: listid

Sort key: dateid

Sort type: Compound
Field Type
salesid integer
listid integer
sellerid integer
buyerid integer

eventid integer

., Load data

Figure 1.22 — Table definitions

Right-clicking on a table provides additional Select table, Show table

definition, and Delete options, as shown in Figure 1.23:

Q

v 0 Serverless: default
> = dev
v @ sample_data_dev
v @ tickit
v @ Tables

B2 category
E2 date
E= event
B2 listing
2 sales

F= user: Select table

E2 venu ghow table definition

Views
Delete
Functior _

Stored procedures

Figure 1.23 — Right-clicking on a table to view more options

You can click Run all, as shown in Figure 1.24, to run all the queries in the
sample notebook. The query editor provides a notebook interface to add
annotation, and SQL cells organize your queries in a single document. You

can use annotations for documentation purposes.

P Runall solated session @)~ Serverless:de... v dev

+ /’ x "

Figure 1.24 — The “Run all” option

You will see the results of your queries for each cell. You can download the

results as JSON or CSV files to your desktop, as shown in Figure 1.25:

1 SET search_path to tickit;
SELECT eventname, total price
FROM (SELECT eventid, total_price, ntile(1000) over(order by total_price desc) as percentile
FROM (SELECT eventid, sun(pricepaid) total_price
FROM ~ tickit,sales
GROUP BY eventid)) Q, tickit.event E
WHERE Q.eventid = E,eventid
AND percentile = 1
ORDER BY total_price desc;

Resutt 1 [Result2 () Nbpot v O Chat x

[eventname total price

[J AdranaLecouwrewr 51846

[J' Janet Jackson 51049 GV
[Phantom of the Opera 50301

[ThelittleMermaid 49956

[Citizen Cope 49823

[J Sevendust 48020

[J Electra 47889

(' Mary Poppins 46780

0 Live 46661

JSON

02022, Amazon Web Services, Inc. or its affliates. ~ Privacy Terms Cookie preferences

Figure 1.25 — Options to download query results

Let’s author our first query.

Running your first query

We want to find out the top 10 events by sales in the tickit database. We

will run the following SQL statement in the data warehouse:

SELECT eventname, total price
FROM (SELECT eventid, total price, ntile(1000) over (order by
total price desc) as percentile
FROM (SELECT eventid, sum(pricepaid) total price
FROM tickit.sales
GROUP BY eventid)) Q, tickit.event E
WHERE Q.eventid = E.eventid
AND percentile =1
ORDER BY total price desc
limit 10;

In the query editor, add a new query by clicking on the + sign and selecting
Editor from the menu that appears. If you wanted to create a new notebook,
you could click on Notebook instead, as shown in Figure 1.26:

= Editor

Redshift query editorv2 4 ed2 [tickitsamp
(1 Notebook

tlate v Yloddts [R Lmit100 ~ Explain) lsolat

Q A1 SELECT count(x)

Y,
FROM “sample_data_dev","tickit","sales";

) 0 Serverless defaut

Figure 1.26 — Creating a new query

Now, type the preceding SQL query in the editor and then click on Run.

You will get the results as shown in the following screenshot:

Redshift query editor v2 + E Untiled3 £ Untitled2 X (] tickitsampl Untided1 £ Untitled4

+eate v ¥ Loaddata P Run Limit100 © Explain " Isolated session () Serverless.default * sample data dev *

Q y SELECT eventname, total price
f eventid, total_price, ntile(1000) over(order by total_price desc) as percentile
) b snetessaefalt Q) FROM (S eventid, sun(pricepaid) total price
tickit,sales
BY eventid)) 0, tickit.event E
sventid = E.eventid

T Result1(9)

U eventname fotal_price
[AdignaLecouwrsur 51846

0 Janet Jackson 51049

[J Phantomofthe Opera 50301

[The Little Mermaid 49956

[Citizen Cope 40623

(0 Sevendust 48020

[Elctra 47883

[Mary Poppins 46780

Figure 1.27 — Query with results

As the saying goes, “A picture is worth a thousand words,”” and query
editor allows you to visualize the results to gain faster insight. You can
create a chart easily by clicking on the Chart option and then selecting the

chart you want. Let’s select a scatter plot, as shown in Figure 1.28:

Select Trace Type

= A

Area Histogram

YV H

Funnel Funnel Area OHLG

N

Candlestick Waterfall Line

Figure 1.28 — Using charts in Redshift query editor v2

You can add a chart name and notations for the X and Y axes and export the
chart as PNG or JPG to put in your presentation or to share with your

business partners:

A Resut1(9) 0 OSwedat NBpot v) Chat x

Structure
Event Sales
Traces
v it trace 0
Subplots
Type " Scatler v !
Transforms
G 48k 3 '
Style
d
[
Anotate ¥ 4 . !
[}
[]
% !
W o b e G % %, M G
ﬁ% [b b, e%f,} @%e %ﬁo ll@’?crb % ’}“’qCJ :
@ 5
%, U b b i

Figure 1.29 — Charting options in query editor v2

As you have now seen, you can use Redshift query editor v2 to create your
own database, create tables, load data, and run and author queries and
notebooks. You can share your queries and notebooks with your team

members.

Summary

In this chapter, you learned about cloud data warehouses and Amazon
Redshift Serverless. You created your first data warehouse powered by

Redshift Serverless and loaded some sample data using the query editor.

You also learned how to use the query editor to run queries and visualize

data to produce insights.

In Chapter 2, you will learn the best techniques for loading data and

performing analytics in your Amazon Redshift Serverless data warehouse.

2

Data Loading and Analytics on Redshift
Serverless

In the previous chapter, we introduced you to Amazon Redshift Serverless
and demonstrated how to create a serverless endpoint from the Amazon
Redshift console. We also explained how to connect and query your data
warehouse using Amazon Redshift query editor v In this chapter, we will
dive deeper into the different ways you can load data into your Amazon

Redshift Serverless data warehouse.

We will cover three main topics in this chapter to help you load your data
efficiently into Redshift Serverless. First, we will demonstrate how to load
data using Amazon Redshift query editor v where you will learn how to
load data from your Amazon S3 bucket and local data file onto your

computer using the GUI.

Next, we will explore the cory command in detail, and you will learn how
to load a file by writing a copy command to load the data. We will cover
everything you need to know to use this command effectively and load your

data smoothly into Redshift Serverless.

Finally, we will cover the built-in native API interface to access and load
data into your Redshift Serverless endpoint using Jupyter Notebook. We
will guide you through the process of setting up and using the Redshift
Data API.

The topics are as follows:

e Data loading using Amazon Redshift query editor v

e Data loading from Amazon S3 using the COPY command

e Data loading using the Redshift Data API
The goal of this chapter is to equip you with the knowledge and skills to
load data into Amazon Redshift Serverless using different mechanisms. By
the end of this chapter, you will be able to load data quickly and efficiently
into Redshift Serverless using the methods covered in this chapter, which

will enable you to perform analytics on your data and extract valuable

insights.

Technical requirements
This chapter requires a web browser and access to the following:
e An AWS account
e Amazon Redshift
e Amazon Redshift Query Editor v2
e Amazon SageMaker for Jupyter Notebook

The code snippets in this chapter are available in this book’s GitHub
repository at https://github.com/PacktPublishing/Serverless-Machine-

Learning-with-Amazon-Redshift/tree/main/CodeFiles/chapter2.

The data files used in this chapter can be found in this book’s GitHub
repository: https://github.com/PacktPublishing/Serverless-Machine-

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/CodeFiles/chapter2
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/DataFiles/chapter2

Learning-with-Amazon-Redshift/tree/main/DataFiles/chapter2.

Data loading using Amazon Redshift
Query Editor v2

Query Editor v2 supports different database actions, including data
definition language (DDL), to create schema and tables and load data from
data files with just a click of a button. Let’s take a look at how you can
carry out these tasks to enable easy analytics on your data warehouse. Log
in to your AWS console, navigate to your Amazon Redshift Serverless
endpoint, and select Query data. This will open Redshift query editor v2
in a new tab. Using the steps we followed in Chapter 1, log in to your

database and perform the tasks outlined in the following subsections.

Creating tables

Query editor v2 provides a wizard to execute the DDL commands shown in

Figure 2.1. Let’s create a new schema named chapter2 first:

1. Click on Create and select Schema, as shown here.

= Redshift query editor v2

Database

® Create ~ & Load data l &

-_ & Database
U8 sk Schama o~ shift-dwh
E= Table

/% Function ata_dev

redshift-cluster=1

Q

Notebo:

ﬁ.il'l > redshiftcluster-nkegiygx2ycg

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/DataFiles/chapter2

Figure 2.1 — The creation wizard

Ensure that your Cluster or workgroup and Database parameters are
correctly populated. If not, then select the correct values from the
dropdowns. Give a suitable name for your schema; we will name it

chapter2.

2. Then, click on Create schema, as shown in Figure 2.2:

+}1 Create schema

Cluster or workgroup Database
Serverless: redshift-d... ~ v
Schema
chapter2
The name consists of 1-127 UTF-8 characters (except control characters).
Schema type

® Local External

Cancel Create schema

L

Figure 2.2 — Create schema

Once you have your schema created, navigate to the Create drop-down
button and click on Table. This will open up the Create table wizard.
Select the appropriate values for your workgroup and database, and enter
chapter2 in the Schema field. Give your table the name customer. With
Query Editor v2, you can either enter the column names and their data type
manually, or you can use the data file to automatically infer the column

names and their data type.

Let’s create a table with a data file. We will use customer.csv, which is
available in this book’s GitHub repository at
https://github.com/PacktPublishing/Serverless-Machine-I earning-with-

Amazon-Redshift/tree/main/DataFiles/chapter2. You can download this file

locally to create the table using the wizard.

The file contains a subset of the data from the Tpc-u dataset, available in

this book's GitHub repository: https://github.com/awslabs/amazon-redshift-
utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-
Derived-from-TPCH.

On the Create table wizard, click on Load from CSV under the Columns
tab, and provide a path to the CSV file. Once the file is selected, the schema
will be inferred and automatically populated from the file, as shown in
Figure 2.3. Optionally, you can modify the schema in the Column name,
Data type, and Encoding fields, and under Column options, you can

select different options such as the following:
e Choose a default value for the column.

e Optionally, you can turn on Automatically increment if you want the
column values to increment. If you enable this option, only then can you

specify a value for Auto increment seed and Auto increment step.
e Enter a size value for the column.

e You also have the option to define constraints such as Not NULL,

Primary key, and Unique key.

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/DataFiles/chapter2
https://github.com/awslabs/amazon-redshift-utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-from-TPCH

= Create table

Cluster or workgroup Database Schema Table

Serverless: redshift-d.. * dev ~+ chapter2 * customer

lumns Table detalls

Load from CSV + Addfield Column options

7 Default value
Column name Data type Encoding

c_custkey INTEGER No selection
fi c_name VARCHAR No sslection

il c_address VARCHAR No selection

i Custom Empty string

NULL @ No default value

Not NULL

il c_phone VARCHAR No selection
i c_acctbal DECIMAL No salaction

Automatically increment

il c_mktsegment VARCHAR No selection Slze

A

|
|
|
i c_nationkey INTEGER No selection \ i
|
|
|
|

i c_comment VARCHAR No selection
v

Primary key Unique key

Cancel Reset Open query ineditor ~ Create table

Figure 2.3 — Create table

Additionally, as shown in Figure 2.4, under the Table details tab, you can
optionally set the table properties, such as Distribution key, Distribution
style, Sort key, and Sort type. When these options are not set, Redshift
will pick default settings for you, which are Auto Distribution Key and
Auto Sort Key.

= Create table

Cluster or workgroup Database Schema Table

Serverless: redshift-d.. ¥ dev ¥ chapter2 ¥ customer

Columns Tabl

Optional settings

Distribution key (optional) c_custkey = Sort key (optional)

Distribution style (optional) Sort type (optional)

Other options

Backup = Include the table in automated and manual snapshots.

Cancel Reset Open query in editor ~ Create table

Figure 2.4 — Table details

Amazon Redshift distributes data in a table according to the table’s
distribution style (p1sTstyLE). The data rows are distributed within each
compute node according to the number of slices. When you run a query
against the table, all the slices of the compute node process the rows that are
assigned in parallel. As a best practice

(https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-best-dist-

key.xhtml), select a table’s prsTsTYLE parameter to ensure even distribution

of the data or use automatic distribution.

https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-best-dist-key.xhtml

Amazon Redshift orders data within each slice using the table’s sort key.
Amazon Redshift also enables you to define a table with compound sort
keys, interleaved sort keys, or no sort keys. As a best practice

(https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-sort-

key.xhtml), define the sort keys and style according to your data access
pattern. Having a proper sort key defined on a table can hugely improve

your query performance.
Lastly, under Other options you can select the following:
e Whether to include your table in automated and manual snapshots

e Whether to create a session-based temporary table instead of a

permanent database table

Once you have entered all the details, you can view the DDL of your table
by clicking Open query in editor. You can use this later or even share it

with other users.

Now, let’s create our table by clicking on the Create table button (Figure
2.4).

As you can see, it is easy for any data scientist, analyst, or user to use this
wizard to create database objects (such as tables) without having to write

DDL and enter each column's data type and its length.

Let’s now work on loading data in the customer table. Query Editor v2
enables you to load data from Amazon S3 or the local file on your
computer. Please note that, at the time of writing, the option to load a local

file currently supports only CSV files with a maximum size of 5 MB.

https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-sort-key.xhtml

Loading data from Amazon S3

Query editor v2 enables you to load data from Amazon S3 buckets into an

existing Redshift table.

The Load data wizard populates data from Amazon S3 by generating the
copy command, which really makes it easier for a data analyst or data
scientist, as they don’t have to remember the intricacies of the copy
command. You can load data from various file formats supported by the
cory command, such as CSV, JSON, Parquet, Avro, and Orc. Refer to this
link for all the supported data formats:

https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-

format.xhtml#copy-format.

Let’s look at loading data using the Load data wizard. We will load the
data into our customer table from our data file (customer.csv), which is
stored in the following Amazon S3 location: s3://packt-serverless-ml-

redshift/chapter02/customer.csv.

Note that if you want to use your own Amazon S3 bucket to load the data,
then download the data file from the GitHub location mentioned in the

Technical requirements section.

To download a data file from GitHub, navigate to your repository, select the
file, right-click the View raw button at the top of the file, select Save Link
As... (as shown in the following screenshot), choose the location on your

computer where you want to save the file, and select Save:

https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-format.xhtml#copy-format

¥ main + Serverless-Machine-Learning-with-Amazon-Redshift | DataFiles | chapter2 | customer.csv Gotofile v

|.;.; sumeetjo Add files via upload Latest commit 7683345 on Jan 25 @Histm

A1 contributor
B2 Download 1

Open Link in New Tab
Open Link in New Window
Open Link in Incognito Window

e

Cony Link Address

(Sorry about that, but we can't show {

Capy
Copy Link to Highlight

O ®2023 GitHub, Inc. Terms Privaey Secuily Stalus Docs ContactC Search Google for "View raw’ g Blog About
Print..

) Amazon Enterprise Access

(T Clip Selection to OneMNote
Inspact

Speech)
Services)

Figure 2.5 — Saving the data file

On Query Editor v2, click on Load data, which opens up the data load

wizard.

Under Data source, sclect the Load from S3 radio button. You can browse
the S3 bucket in your account to select the data file or a folder that you
want to load, or you can select a manifest file. For this exercise, paste the

aforementioned S3 file location.

If the data file is in a different region than your Amazon Redshift
Serverless, you can select the source region from the S3 file location
dropdown. The wizard provides different options if you want to load a
Parquet file. Then, select an option from File format, or under File options,
you can select Delimiter if your data is delimited by a different character. If
your file is compressed, then you can select the appropriate compression

from the dropdown, such as gzip, 1zop, zstd, or bzip2.

Under Advanced settings, note that there are two options, Data

conversion parameters and Load operations:

e Under the Data conversion parameters option, you can handle explicit
data conversion settings — for example, a time format (TIMEFORMAT) as
‘MM.DD.YYYY HH:MI:Ss'. Refer to this documentation link for a full list

parameters-data-conversion.xhtml#copy-timeformat.

e Under Load operations, you can manage the behavior of the load
operation — for example, the number of rows for compression analysis
(comprows) as 1,000,000. Refer to this documentation for a full list of

options: https://docs.aws.amazon.com/redshift/latest/dg/copy-

parameters-data-load.xhtml.

As our file contains the header row, please ensure that under Advanced
settings | Data conversion parameters | Frequently used parameters, the

Ignore header rows (as 1) option is checked.

As shown in Figure 2.6, select the Target table parameters and IAM role
to load the data:

https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-conversion.xhtml#copy-timeformat
https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-load.xhtml

Load data

o Loadfrom 83 Load from local fila

S3URI ferless-ml-redshift/chapter02/customer.csv Browse 3

gU-west-1 v This file is a manifest.
File format C + Fileoptions No comprassion +

Advanced settings Data conversion parameters » Load operations »

Target table

Cluster or workgroup Dafabase Schema Table

Serverless: redshift-d.. + dev v chapter v+ customer +

Column mapping

I

[AM role arn:aws:am: olefspectrumrs +
Cancel | Load data

Figure 2.6 — Load data

Once you click on Load data, Query Editor v2 will generate the copy

command in the editor and start loading by running the copy statement.

Now that we have loaded our data, let’s quickly verify the load and check
the data by querying the table, as shown here:

+ [Chapter-2 x

P Run Limit 100 Explain lsolated session € ~ Serverless: redshift-dwh » dev ~

il
rom chapter2.customer limit 10;

B Result1(10)
[c_custkey ¢_name ¢_address ¢_nationkey
(] 147 Customer#000000147 GvviwbVdmesMzuu,C84... 18
395 Customer#000000395 b06rg6CI5W 15
757 Customer#000000757 VFnouow3LhLvEDy 3
819 Customer#000000819 cug3zDy qHUaZMQNEYL...
928 Customer#000000928 A9 UduEb48ffOe27FxMXF
] 931 Customer#000000931 M,IWVafqdRIO, WnAyLLt

995 Customer#000000395 5tCSAsm4qLES0vHARZSI...

1008 Customer#000001008 AfP6tFNz1EudbuoUd HrZ...

1105 Customer#000001105 cZhhOUzv6,VbaaZbFT

1338 Customer#000001338 8Nx5v3cKF MK3gHdMU...

Figure 2.7 — Querying the data

Query Editor v2 enables you to save your queries in the editor for later use.
You can do so by clicking on the Save button and providing a name for the
saved query. For example, if you want to reuse the preceding load data
query (the copy command) in the future and, let’s say, the target table is the
same but the data location on Amazon S3 is different, then you can easily
modify this query and load the data quickly. Alternatively, you can even
parameterize the query to pass, for example, an S3 location as

${s3 location}, as shown in Figure 2.8:

b Run Lk 100 * Boln () koltedsessn) Senveesreife oy v

(ORY dev, chapter?, custoner
FRON 4{s3 Location}
I ROLE

AT 4G (SV DELIMTTER
(Tt
(REHEADER 1
10

fl
l
[N
I REGION A

Figure 2.8 — Saving the query

SHARING QUERIES

With Query Editor v2, you can share your saved queries with your team. This way, many
users can collaborate and share the same query. Internally, Query Editor manages the
query versions, so you can track the changes as well. To learn more about this, refer to this
AWS documentation: https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-

team.xhtml#query-editor-v2-query-share.

Now that we have covered how Query Editor v2 enables users to easily
create database objects and load data using the Ul interface with a click of a
few buttons, let us dive into Amazon Redshift’s cory command to load the

data into your data warehouse.

Loading data from a local drive

Query Editor v2 enables users to load data from a local file on their

computer and perform analysis on it quickly. Often, database users such as

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-team.xhtml#query-editor-v2-query-share

data analysts or data scientists have data files on their local computer that
they want to load quickly into a Redshift table, without moving the file into

a remote location such as Amazon S3.

In order to load the data from a local file, Query Editor v2 requires a
staging Amazon S3 bucket in your account. If it is not configured, then you

will see an error similar to the one seen in the following screenshot:

Load data

Data source

Load from 53 & Load from local file

Figure 2.9 — An error message
To avoid the preceding error, users must do the following configuration:

1. The account users must be configured with the proper permissions, as
follows. Attach the following policy to your Redshift Serverless [AM

role. Replace the resource names as highlighted:

"Version": "2012-10-17",

"Statement": [

"Effect": "Allow",

"Action": [

"s3:ListBucket",

"s3:GetBucketLocation"

1,

"Resource": [

"arn:aws:s3:::<staging-bucket-name>"

}y

"Effect": "Allow",

"Action": [

"s3:PutObject",

"s3:GetObject",

"s3:DeleteObject"

1,

"Resource": [

"arn:aws:s3:::<staging-bucket-name>
[/<optional-prefix>]/S${aws:userid}/*"

}

2. Your administrator must configure the common Amazon S3 bucket in

the Account settings window, as shown here:

1. Click on the settings icon (E) and select Account settings,

as shown in the following screenshot:

— Editor preference

Connections

Figure 2.10 — Account settings

2. In the Account settings window, under General settings | S3 bucket |
S3 URI, enter the URI of the S3 bucket that will be used for staging
during the local file load, and then click on Save. Ensure that your [AM

role has permission to read and write on the S3 bucket:

Account settings

Connection settings

Maximum concurrent connections

10

b4

Authenticate with IAM credentials

Export settings

+ Allow export result set

General settings

+ Show sample databases

53 bucket

S3URl ¢3.//qev2-local-load

Current KM5S key ARN
You are using the default KMS key.

Figure 2.11 — Enter the URI of the S3 bucket under General settings

Refer to this documentation for complete information:

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-

loading xhtml#query-editor-v2-loading-data-local
Creating a table and loading data from a local
CSV file

Let’s create a new table. Navigate to Query Editor v2 and create a supplier

table using the following DDL command:

CREATE TABLE chapter2.supplier (
s _suppkey integer NOT NULL ENCODE raw distkey,
s _name character (25) NOT NULL ENCODE lzo,
s address character varying(40) NOT NULL ENCODE 1lzo,
s nationkey integer NOT NULL ENCODE az64,
s _phone character (15) NOT NULL ENCODE 1lzo,
s _acctbal numeric(l2, 2) NOT NULL ENCODE az6t4,
s _comment character varying(101l) NOT NULL ENCODE lzo,
PRIMARY KEY (s suppkey)
) DISTSTYLE KEY
SORTKEY (s suppkey);

We will load the data into our supplier table from our data file
(supplier.csv), which is stored in the following GitHub location:
https://github.com/PacktPublishing/Serverless-Machine-L.earning-with-
Amazon-Redshift/blob/main/DataFiles/chapter2/supplier.csv.

To download the file on your local computer, right-click on Raw and click

on Save Link as.

In order to load data into the supplier table from Query Editor v2, click on
Load data, which opens up the data load wizard. Under Data source,
select the Load from local file radio button. Click on Browse and select the

supplier.csv file from your local drive. Under the Target table options, set

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-loading.xhtml#query-editor-v2-loading-data-local
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/DataFiles/chapter2/supplier.csv

Schema as chapter2 and Table as supplier. Click on Load data to start
the load:

Load data

Data source

Load from 83 & Load from local file

Load CSV file

File options) No compression »

Advanced settings Data conversion parameters > Load operations)

Target table

Cluster or workgroup Dafabase Schema Table

Serverless: redshift-d.. v dev v chapter2 v supplier v

Cancel

Column mapping

Figure 2.12 — The Load data wizard

Once the data is loaded successfully, you would see a message like the

following:

@& Loading data from a local file succeeded X

Figure 2.13 — The message after successfully loading the data

Verify the data load by running the following SQL query:

select * from chapter2.supplier;

You should be able to see 100 rows loaded from the file:

P Run Limit 100 dev v

Isolated session) ~ Serverless: redshift-dwh v

Explain

1

B Result 1(100)

0 s_suppkey

¥ from chapter2.supplier;

$_name
Supplier#000001726
Supplier#000001775
Supplier#000001889
Supplier#000002017
Supplier#000002082
Supplier#000002102
Supplier#000002540
Supplierf000002615
Suppler#000002652
Supplier#000002757
Supplier#000002769
Supplier#000002791
Supplier#000002820
Supplier#000002953
Supplierf000003091

5 address

TeRYTTITH24sEwordTyA. ..
a6Rpe337dA eQI9RJZ...
aK1ATNNIGeCTUWTBWKR T
5X3IrJUKB SADEGRokgW...
TTkwZySU29TXERptRD...

1kuyUn5qczLOGBGOTAY...
pd9A3WsslyUKKypgdp...

MiGmi2y33D
fAzRSsQBVnxRS0sL7a0. .

CaERkgKvPpralVDTvohs...

TQXYQHHUMYIKDPVWCL...
QN7ZKL2KHGHsX

FrmbShufE41cerFFr2DIGF...
TepTSBpdFanzT graxTx..
INPFRBSLADADKSRYH...

5 nationkey
3

5_phong

13-630-597-4070
22-193-554-4479
29-122-640-8760
11-340-342-7501
26-179-265-4597
21-367-198-9830
30-301-816-1967
30-265-851-2600
14-862-858-2723
19-959-961-5223
238-312-807-5269
20-951-418-1791
17-358-908-6872
26-118-226-8B35
24-761-136-5146

Figure 2.14 — Data load verification

5 accthal
-751.93
923.43
264.01
£990.21
-£64.94
7910.16
1958.59
1047 61
4366.99
1085.89
1704.51
6468.16
6475.21
3935.99
3530.16

2 Export v

s_comment

Iy alongsida of the daringl...
ously bold accounts, fluffl..
olites blleva biithaly fluff...
y final daposits hang. bit...
dolites. carefully final acc...
accounts after the bithely
I biithely reqular reques...
. pending packages haggl...
requests. carefully even ..
gale blithely. reqular &cco...
ackages cajole carefull. ..
across the daposts. biithely
Customer Complaintshe ...
usly final requests integra...

. platelets sleep carefully ...

We have now successfully loaded our data from the Query Editor v2 Load
data wizard, using files from an Amazon S3 bucket and your local
computer. Let’s look into Amazon Redshift’s cory command in the next

section.

Data loading from Amazon S3 using the
COPY command

Data warehouses are typically designed to ingest and store huge volumes of
data, and one of the key aspects of any analytical process is to ingest such
huge volumes in the most efficient way. Loading such huge data can take a
long time as well as consume a lot of compute resources. As pointed out
earlier, there are several ways to load data in your Redshift Serverless data
warehouse, and one of the fastest and most scalable methods is the copy

command.

The copy command loads your data in parallel from files, taking advantage
of Redshift’s massively parallel processing (MPP) architecture. It can load
data from Amazon S3, Amazon EMR, Amazon DynamoDB, or text files on
remote hosts (SSH). It is the most efficient way to load a table in your
Redshift data warehouse. With proper IAM policies, you can securely

control who can access and load data in your database.

In the earlier section, we saw how Query Editor v2 generates the copy
command to load data from the wizard. In this section, we will dive deep
and talk about how you can write the cory command and load data from

Amazon S3, and what some of the best practices are.

Let’s take a look at the copy command to load data into your Redshift data

warehouse:

COPY table-name
[column—-1list]
FROM data source

authorization
[[FORMAT] [AS] data format]
[parameter [argument] [, ...] 1

The copy command requires three parameters:

* table-name: The target table name existing in the database (persistent or

temporary)
e data source: The data source location (such as the S3 bucket)

* authorization: The authentication method (for example, the IAM role)

By default, the copy command source data format is expected to be in
character-delimited UTF-8 text files, with a pipe character (|) as the default
delimiter. If your source data is in another format, you can pass it as a
parameter to specify the data format. Amazon Redshift supports different
data formats, such as fixed-width text files, character-delimited files, CSV,
JSON, Parquet, and Avro.

Additionally, the copy command provides optional parameters to handle
data conversion such as the data format, nu11, and encoding. To get the
latest details, refer to this AWS documentation:
https://docs.aws.amazon.com/redshift/latest/dg/r COPY.xhtml#r COPY-

syntax.

https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.xhtml#r_COPY-syntax

Loading data from a Parquet file

In the earlier section, we worked on loading a CSV file into the customer
table in our database. For this exercise, let’s try to load a columnar data
format file such as Parquet. We will be using a subset of Tec-r data, which
may be found here: https://github.com/awslabs/amazon-redshift-
utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-
Derived-from-TPCH/3TB.

The TPC is an organization focused on developing data benchmark
standards. You may read more about TPC here:

https://www.tpc.org/default5.asp.

The modified data (1ineitem.parquet) is available on GitHub:

https://github.com/PacktPublishing/Serverless-Machine-I earning-with-

Amazon-Redshift/tree/main/DataFiles/chapter2.

The data needed for the copy command is available here: s3://packt-

serverless-ml-redshift/chapter02/lineitem.parquet.

This file contains approximately 6 million rows and is around 200 MB in

size:

1. Let’s first start by creating a table named 1ineitem in the chapter2

schema:

-— Create lineitem table
CREATE TABLE chapter2.lineitem

(1 _orderkey bigint,

https://github.com/awslabs/amazon-redshift-utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-from-TPCH/3TB
https://www.tpc.org/default5.asp
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/DataFiles/chapter2

1 partkey bigint,

1 suppkey integer,
1 linenumber integer,
1 guantity numeric(12,2),

1 extendedprice numeric(12,2),

1 discount numeric(12,2),
1 tax numeric(12,2),
1l returnflag character (1),
1 linestatus character (1),
1 shipdate date,

1 commitdate date,

1 receiptdate date,

1 shipinstruct character(25),
1 shipmode character (10),
1 comment varchar (44))

distkey (1l orderkey) compound sortkey(l orderkey,l shipdate);

2. Now, let’s load the data using the copy command from the

lineitem.parquetfﬂei

COPY chapter2.lineitem

FROM 's3://packt-serverless-ml-
redshift/chapter02/lineitem.parquet’

IAM ROLE default

FORMAT AS PARQUET;

Now that we have loaded our data, let’s quickly verify the load and check
the data by querying the table, as shown in the following screenshot:

Limit 100 Explain Isolated session @) Serverless: redshift-dwh + dev ~

ect * from chapter2.customer limit 10;

Result 1 (10)

[c_custkey ¢_name ¢_address c_nationkey | ¢_phone ¢_acctbal
Customer#000000044 0i,dOSPwDu4jodx, PBSE... 16 26-190-260-5375 7315.94
Customer#000000251 ZofdQmv07C3k hxwtdnc... 13 23-975-623-5943 9586.32
Customer#000000381 w3zVseYDbjBbzLId 3 15-860-208-7093 9931.M1
Customer#000000469 JWOULMa5Qtt 12 22-406-988-6460 6343.64
Customer#000000520 yaOGcIVe92Bi4F6e0Geh... 3 13-612-111-7765 8315.09
Customer#000000601 P3 Dv,ByIITNmLOytBNUZ... 1 11-104-635-9839 9768.21
Customer#000000618 904fhgteQdyFvCkrFm 0 10-675-573-1877 -932.38
Customer#000000740 FCerGpsfsWAsBrQTyqdz... 10 20-2156-156-3727 1733.76
Customer#000000971 229DUY Utsi6mWKI 1 11-256-718-6928 3914.88

Customer#000001053 wDJTteyausmZswQAFQot 26-400-312-6496 -473.85

Figure 2.15 — The query table

In this section, we discussed how the copy command helps load your data in

different formats, such as CSV, Parquet, and JSON, from Amazon S3

buckets. Let’s see how you can automate the copy command to load the data
as soon as it 1s available in an Amazon S3 bucket. The next section on

automating a copy job is currently in public preview at the time of writing.

Automating file ingestion with a COPY

job

In your data warehouse, data is continuously ingested from Amazon S3.
Previously, you wrote custom code externally or locally to achieve this
continuous ingestion of data with scheduling tools. With Amazon Redshift’s
auto-copy feature, users can easily automate data ingestion from Amazon
S3 to Amazon Redshift. To achieve this, you will write a simple SQL

command to create a copy job

(https://docs.aws.amazon.com/redshift/latest/dg/r COPY-JOB.xhtml), and

the copy command will trigger automatically as and when it detects new
files in the source Amazon S3 path. This will ensure that users have the
latest data for processing available shortly after it lands in the S3 path,

without having to build an external custom framework.

To get started, you can set up a copy job, as shown here, or modify the

existing cory command by adding the JoB creaTe parameter:

COPY <table-name>

FROM 's3://<s3-object-path>'

[COPY PARAMETERS...]

JOB CREATE <job-name> [AUTO ON | OFF];

Let’s break this down:

* job-name 1s the name of the job

https://docs.aws.amazon.com/redshift/latest/dg/r_COPY-JOB.xhtml

e auTo oN | off indicates whether the data from Amazon S3 has loaded

automatically into an Amazon Redshift table

As you can see, the copy job is an extension of the copy command, and

auto-ingestion of copy jobs is enabled by default.
If you want to run a copy job, you can do so by running the following
command:

COPY JOB RUN job-name

For the latest details, refer to this AWS documentation:

https://docs.aws.amazon.com/redshift/latest/dg/loading-data-copy-

job.xhtml.

Best practices for the COPY command

The following best practices will help you get the most out of the cory

command:

e Make the most of parallel processing by splitting data into multiple
compressed files or by defining distribution keys on your target tables,

as we did in our example.

e Use a single cory command to load data from multiple files. If you use
multiple concurrent cory commands to load the same target table from
multiple files, then the load is done serially, which is much slower than

a single cory command.

e [f your data file contains an uneven or mismatched number of fields,

then provide the list of columns as comma-separated values.

https://docs.aws.amazon.com/redshift/latest/dg/loading-data-copy-job.xhtml

e When you want to load a single target table from multiple data files and
your data files have a similar structure but different naming
conventions, or are in different folders in an Amazon S3 bucket, then
use a manifest file. You can supply the full path of the files to be loaded
in a JSON-formatted text file. The following is the syntax to use a

manifest file:
copy <table name> from 's3://<bucket name>/<manifest file>'
authorization

manifest;

e For a copy job, use unique filenames for each file that you want to load.
If a file is already processed and any changes are done after that, then
the copy job will not process the file, so remember to rename the

updated file.

So far, we have seen two approaches to data loading in your Amazon
Redshift data warehouse — using the Query Editor v2 wizard and writing an
individual cory command to trigger ad hoc data loading. Let us now look
into how you can use an AWS SDK to load data using the Redshift Data
APL

Data loading using the Redshift Data API

The Amazon Redshift Data API is a built-in native API interface to access
your Amazon Redshift database without configuring any Java Database
Connectivity (JDBC) or Open Database Connectivity (ODBC) drivers.

You can ingest or query data with a simple API endpoint without managing

a persistent connection. The Data API provides a secure way to access your
database by using either IAM temporary credentials or AWS Secrets
Manager. It provides a secure HTTP endpoint to run SQL statements
asynchronously, meaning you can retrieve your results later. By default,
your query results are stored for 24 hours. The Redshift Data API integrates
seamlessly with different AWS SDKs, such as Python, Go, Java, Node.js,
PHP, Ruby, and C++. You can also integrate the API with AWS Glue for an
ETL data pipeline or use it with AWS Lambda to invoke different SQL

statements.

There are many use cases where you can utilize the Redshift Data API, such
as ETL orchestration with AWS Step Functions, web service-based
applications, event-driven applications, and accessing your Amazon
Redshift database using Jupyter notebooks. If you want to just run an
individual SQL statement, then you can use the AWS Command-Line
Interface (AWS CLI) or any programming language. The following is an
example of executing a single SQL statement in Amazon Redshift
Serverless from the AWS CLI:

aws redshift-data execute-statement
--WorkgroupName redshift-workgroup-name
-—-database dev

--sqgl 'select * from redshift table';

Note that, for Redshift Serverless, you only need to provide the workgroup
name and database name. Temporary user credentials are pulled from IAM
authorization. For Redshift Serverless, add the following permission in the
IAM policy attached to your cluster [AM role to access the Redshift Data
API:

redshift-serverless:GetCredentials

In order to showcase how you can ingest data using the Redshift Data API,
we will carry out the following steps using Jupyter Notebook. Let’s create a

notebook instance in our AWS account.

On the console home page, search for amazon sageMaker. Click on the
hamburger icon (=) in the top-left corner, then Notebook, and then
Notebook instances. Click on Create notebook instance and provide the
necessary input. Once the notebook instance is in service, click on Open

Jupyter.

The following screenshot shows a created notebook instance:

Amazon SageMaker X | Amazon SageMaker) Notebock nstances

Noteboak instances PRI A | Creata notebook Instanca
Getting started
studln Q Search naebook nstances ‘ (1) @
StudioLab [
v T v
ik Name Instance Creation time Status Actlons
Rstudio N !
) chapter2 mlt3.medium Jan 06, 2023 2136 UTC ® InSenvice QOpen Jupyter|) Open Jupyterlab
Domaing

SageMaker dashboard
Images
Lifecycle configurations

Search
¥ Governance
¥ Graund Truth

¥ Notebook

Notebook Instances

Gt repositorles

Figure 2.16 — Creating a notebook instance

The Jupyter notebook for this exercise is available at this GitHub location:

https://github.com/PacktPublishing/Serverless-Machine-1 earning-with-

Amazon-Redshift/blob/main/Chapter2.ipynb. Download this notebook to

your local machine and save it in a folder.

The data (orders.parquet) for this exercise is available on GitHub at
https://github.com/PacktPublishing/Serverless-Machine-1 earning-with-
Amazon-Redshift/tree/main/DataFiles/chapter2, as well as this Amazon S3

location: s3://packt-serverless-ml-redshift/chapter2/orders.parquet.

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/Chapter2.ipynb
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/DataFiles/chapter2

We will use a subset of the orders data, which is referenced from the Tec-u
dataset available here: https://github.com/awslabs/amazon-redshift-
utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-
Derived-from-TPCH.

Let’s first open the downloaded notebook (chapter2.ipynb) by following

these steps:

1. On the Jupyter Notebook landing page, click on Upload and open the

previously downloaded notebook.

2. Select the kernel (conda_python3) once the notebook is uploaded.

NOTE

Redshift Serverless requires your boto3 version to be greater than version 1.24.32.

3. Let’s check our boto3 library version, as shown in Figure 2.17.

In [1]: pip show boto3 | grep -i version

Version: 1.26.35
Note: you may need to restart the kernel to use updated packages.

Figure 2.17 — Checking the boto3 version

If you want to install a specific version greater than 1.24.32, then check the

following example:

pip install boto3==1.26.35

Creating table

https://github.com/awslabs/amazon-redshift-utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-from-TPCH

As you can see in the chapter2. ipynb notebook, we have provided step-by-
step instructions to connect to your Redshift Serverless endpoint and

perform the necessary operations:

1. Let’s start by setting up the parameters and importing the necessary

libraries for this exercise. We will set the following two parameters:

e REDSHIFT WORKGROUP: The name of the Redshift Serverless

workgroup

e s3 paTa FILE: The source data file for the load:
import boto3
import time
import pandas as pd

import numpy as np

session = boto3.session.Session ()
region = session.region name
REDSHIFT WORKGROUP = '<workgroup name>'

S3 DATA FILE='s3://packt-serverless-ml-
redshift/chapter2/orders.parquet'

NOTE

Remember to set the parameters as per your settings in the Jupyter notebook.

2. In order to create the table, let’s first prepare our DDL and assign it to a

table_ddl variable:

table ddl = "mv

DROP TABLE IF EXISTS chapter2.orders CASCADE;

CREATE TABLE chapter2.orders

(o_orderkey bigint NOT NULL,

o _custkey bigint NOT NULL encode az64,

o _orderstatus character (1) NOT NULL encode 1lzo,

o _totalprice numeric(12,2) NOT NULL encode azb64,
o orderdate date NOT NULL,

o orderpriority character (15) NOT NULL encode lzo,
o _clerk character (15) NOT NULL encode 1lzo,
o shippriority integer NOT NULL encode az64,

O _comment character varying(79) NOT NULL encode 1zo

distkey (o _orderkey) compound

sortkey (o_orderkey,o orderdate) ;"""

3. Using the boto3 library, we will connect to the Redshift Serverless

workgroup:

client = boto3.client ("redshift-data")

There are different methods that are available to execute different
operations on your Redshift Serverless endpoint. Check out the entire list in
this documentation:
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/service

s/redshift-data.xhtml.

4. We will use the execute_statement method to run an SQL statement,
which can be in the data manipulation language (DML) or DDL. This
method runs a single SQL statement. To run multiple statements, you
can Use BatchExecuteStatement. To get a complete list of different
methods and how to use them, please refer to this AWS documentation:
https://docs.aws.amazon.com/redshift-

data/latest/ APIReference/Welcome.xhtml:

client = boto3.client ("redshift-data")

res = client.execute statement (Database='dev',
Sgl=table ddl, WorkgroupName
=REDSHIFT WORKGROUP)

As you can see from the preceding code block, we will first set the client as
redshift-data and then call execute_statement to connect the Serverless
endpoint, using the patabase name and WworkgroupName. The method uses

temporary credentials to connect to your Serverless workgroup.

We will also pass table dd1 as a parameter to create the table. We will

create the orders table in our chapter2 schema.

5. The Redshift Data API sends back a response element once the action is
successful, in a JSON format as a dictionary object. One of the response

elements is a SQL statement identifier. This value is universally unique

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/redshift-data.xhtml
https://docs.aws.amazon.com/redshift-data/latest/APIReference/Welcome.xhtml

and generated by the Amazon Redshift Data API. As you can see in the
following code, we have captured the response element, 14, from the

output object, res:
query id = res["Id"]

print (query id)

6. In order to make sure that your query is completed, you can use the
describe_statement method and pass your id statement as a parameter.
This method sends out the response, which contains information that
includes when the query started, when it finished, the query status, the

number of rows returned, and the SQL statement.

##Check status of the Query

status_description = client.describe_statement(Id=query_id)
status = status_description["Status"]

print(status)

FINISHED

Figure 2.18 — Checking the query status

As you can see in Figure 2.18, we have captured the status of the statement
that we ran, and it sends out the status as rinisuep. This means that we have
created our table in the database, and you can verify this by writing a simple

SELECT Statement against the table.

Loading data using the Redshift Data API

Now, let’s move forward to load data into this newly created table. You can

use the S3 location for the source data, as mentioned previously. If you use

a different S3 location, then remember to replace the path in the parameter

(S3_DATA FILE):

1. Let’s write a copy command, as shown in the following code block. We
will create the copy command in the 10ad data variable, using the S3

path as a parameter:

load data = f£"""COPY chapter2.orders
FROM '{S3 DATA FILE}'
IAM ROLE default

FORMAT AS PARQUET;"""

2. Next, we will use the execute statement method to run this copy

command and capture the id statement:
res = client.execute statement (Database='dev', Sqgl=load data,

WorkgroupName=REDSHIFT
WORKGROUP)

query id = res["Id"]
print (query id)

Be sure to check whether the status of the query is FINISHED.

3. Once the statement status is defined as rInisuED, we will verify our data

load by running a count query, as shown here:

cnt = client.execute statement (Database='dev',6 Sqgl='Select
count (1) from chapter2?2.orders ;',
WorkgroupName=REDSHIFT WORKGROUP)

query id = cnt["Id"]
We will now print the results:

##Print the count query output
results = client.get_statement_result(Id=query_id)
print(results.get{'Records'))

[[{'longValue': 1500000}]]

Figure 2.19 — Count query results

As you can see in Figure 2.19, we have successfully loaded 1.5 million

TOWS.

In the notebook, we have provided a combined code block to show how you
can convert all these steps into a function, calling it as and when you

require it to load data into a new table.

We also have a GitHub repository (https:/github.com/aws-samples/getting-

started-with-amazon-redshift-data-api/), which showcases how to get

started with the Amazon Redshift Data API in different languages, such as
Go, Java, JavaScript, Python, and TypeScript. You can go through the step-
by-step process explained in the repository to build your custom application

in all these languages, using the Redshift Data API.

Summary

In this chapter, we showcased how you can load data into your Amazon
Redshift Serverless database using three different tools and methods, by

using the query editor v GUI interface, the Redshift cory command to load

https://github.com/aws-samples/getting-started-with-amazon-redshift-data-api/

the data, and the Redshift Data API using Python in a Jupyter notebook. All

three methods are efficient and easy to use for your different use cases.

We also talked about some of the best practices for the cory command to

make efficient use of it.

In the next chapter, we will start with our first topic concerning Amazon
Redshift machine learning, and you will see how you can leverage it in your

Amazon Redshift Serverless data warehouse.

3

Applying Machine Learning in Your Data
Warehouse

Machine Learning (ML) is a routine and necessary part of organizations in
today’s modern business world. The origins of ML date back to the 1940s
when logician Walter Pitts and neuroscientist Warren McCulloch tried to

create a neural network that could map out human thought processes.

Organizations can use their data along with ML algorithms to build a
mathematical model to make faster, better-informed decisions, and the
value of data to organizations today cannot be understated. Data volumes
will continue to grow rapidly and organizations that can most effectively
manage their data for predictive analytics and identify trends will have a
competitive advantage, lower costs, and increased revenue. But to truly
unlock this capability, you must bring ML closer to the data, provide self-
service tools that do not require a deep data science background and
eliminate unnecessary data movement in order to speed up the time it takes

to operationalize ML models into your pipelines.

This chapter will introduce you to ML and discuss common use cases to
apply ML in your data warehouse. You will begin to see the art of the
possible and imagine how you can achieve business outcomes faster and
more easily through the use of Amazon Redshift ML. We will guide you
through the following topics:

e Understanding the basics of ML algorithms

e Traditional steps to implement ML
e Overcoming the challenges of implementing ML

e Exploring the benefits of ML

Understanding the basics of ML

In this section, we will go into more detail about machine learning so that

you have a general understanding of the following areas:
e Supervised versus unsupervised learning
e C(lassification problems

e Regression problems

Let’s start by looking at supervised and unsupervised learning.

Comparing supervised and unsupervised
learning

A supervised learning algorithm is supervised by data that contains the
known outcome you want to predict. The ML model learns from this known
outcome in the data and then uses that learning to predict the outcome of

new data.

This known outcome in the data is also referred to as the label or target. For
example, if you have a dataset containing home sales information, the sales

price would typically be the target.

Supervised learning can be further broken down into classification or

regression problems.

With unsupervised learning the ML model must learn from the data
outcome by grouping data based on similarities, differences, and other

patterns without any guidance or known outcome.

You can use unsupervised algorithms to find patterns in the data. For
example, you can use unsupervised learning to perform customer
segmentation to be more effective in targeting groups of customers. Other

use cases include the following:

e Detecting abnormal sensor readings

e Document tagging
With the rich data that data warehouses contain, you can easily get started
training models using both supervised and unsupervised learning.

Let’s dig into more details on classification and regression problem types.

Classification

Classification problems are tasks to predict class labels, which can be either

binary classification or multi-class classification:

e Binary classification — The outcome can be in one of two possible
classes, for example, to predict whether a customer will churn, whether
an email is spam, or whether a patient is likely to be hospitalized after
being infected by COVID-19.

e Multi-class classification — The outcome can be in one of three or more
possible classes — for example, predict a plant species or which category
a news article belongs to. Other mutli-class classification use cases

include the following:
e Sales forecasting
 Intelligent call routing

e Advertisement optimization

Regression

Regression problems are used when you have a target of continuous values

and want to predict a value based on the input variables.
Regression problems are tasks predicting a continuous numeric value:

e Linear regression: With linear regression, we predict a numerical
outcome such as how much a customer will spend or the predicted
revenue for an upcoming concert or sporting event. See Chapter 7,

Building Regression Models, for more details.

e Logistic regression: Logistic regression is another option to solve a
binary classification problem. We will show some examples of this

technique in Chapter 6, Building Classification Models.

Regression use case examples include the following:
e Price and revenue prediction

e Customer lifetime value prediction

e Detecting whether a customer is going to default on a loan

Now we will cover the steps to implement ML.

Traditional steps to implement ML

In this section, you will get a better understanding of the critical steps

needed to produce an optimal ML model:
e Data preparation

e Machine learning model evaluation

Data preparation

A typical step in ML is to convert the raw data for input to train your model
so that data scientists and data analysts can apply machine learning
algorithms to the data. You may also hear the terms data wrangling or

feature engineering.

This step is necessary since machine learning algorithms require inputs to
be numbered. For example, you may need outliers or anomalies removed
from your data. Also, you may need to fill in missing data values such as
missing records for holidays. This helps to increase the accuracy of your

model.

Additionally, it is important to ensure your training datasets are unbiased.
Machine learning models learn from data and it is important that your

training dataset has sufficient representation of demographic groups.

Here are some examples of data preparation steps:

e Determining the inputs needed for your model — This is the process

of identifying the attributes that most influence the ML model outcome.

e Cleaning the data — Correcting data quality errors, eliminating
duplicate rows and anomalous data. You need to investigate the data and
look for unusual values — this requires knowledge of the domain and

how business logic is applied.

e Transforming the input features — Machine models require inputs to
be numeric. For example, you will use a technique called one-hot
encoding when you have data that is not ordinal — such as country or
gender data. This will convert the categorical value into a binary value,
which creates better classifiers and therefore better models. But as you
will see later, when you use the Auto ML feature of Redshift ML, this

will have been taken care of for you.
e Splitting your data into training, validation, and testing datasets:

* Training dataset — This is a subset of your data that is used to
train your model. As a rule of thumb, this is about 80% of your

overall dataset.

e Validation dataset — Optionally, you may want to create a
validation dataset. This is a ~10% subset of data that is used to
evaluate the model during the process of hyperparameter
tuning. Examples of hyperparameters include the number of
classes (num_c1ass) for multi-class classification and the
number of rounds (num_rounds) in an XGBoost model. Note

that Amazon Redshift ML automatically tunes your model.

o Testing dataset — This is the remaining 10% of your data used
to evaluate the model performance after training and tuning the

model.

Traditionally, data preparation is a very time-consuming step and one of the
reasons machine learning can be complex. As you will see later, Amazon
Redshift ML automates many of the data preparation steps so you can focus

on creating your models.

Evaluating an ML model

After you have created your model, you need to calculate the model’s
accuracy. When using Amazon Redshift ML, you will get a metric to

quantify model accuracy.
Here are some common methods used to determine model accuracy:

e Mean squared error (MSE): MSE is the average of the squared
differences between the predicted and actual values. It is used to
measure the effectiveness of regression models. MSE values are always
positive: the better a model is at predicting the actual values, the smaller
the MSE value is. When the data contains outliers, they tend to

dominate the MSE, which might cause subpar prediction performance.

e Accuracy: The ratio of the number of correctly classified items to the
total number of (correctly and incorrectly) classified items. It is used for
binary and multi-class classification. It measures how close the

predicted class values are to the actual values. Accuracy values vary

between zero and one: one indicates perfect accuracy and zero indicates

perfect inaccuracy.

e F1 score: The F1 score is the harmonic mean of the precision and recall.
It is used for binary classification into classes traditionally referred to as
positive and negative. Predictions are said to be true when they match
their actual (correct) class and false when they do not. Precision is the
ratio of the true positive predictions to all positive predictions
(including the false positives) in a dataset and measures the quality of

the prediction when it predicts the positive class.

e F1_Macro — The F1 macro score applies F1 scoring to multi-class
classification. In this context, you have multiple classes to predict. You
just calculate the precision and recall for each class, as you did for the
positive class in binary classification. F1 macro scores vary between
zero and one: one indicates the best possible performance and zero the

worst.

e Area under the curve (AUC): The AUC metric is used to compare and
evaluate binary classification by algorithms such as logistic regression
that return probabilities. A threshold is needed to map the probabilities
into classifications. The relevant curve is the receiver operating
characteristic curve that plots the true positive rate (TPR) of
predictions (or recall) against the false positive rate (FPR) as a
function of the threshold value, above which a prediction is considered

positive.

Now let’s take a look at a couple of these evaluation techniques in more
detail.

Regression model evaluation example

A regression model’s accuracy is measured by the Mean Square Error
(MSE) and Root Mean Square Error (RMSE). The MSE is the average
squared difference between the predicted values and the actual values in a
model’s dataset and is also known as ground truth. You can square the
differences between the actual and predicted answers and then get the
average to calculate the MSE. The square root of the MSE computes the
RMSE. Low MSE and RMSE scores indicate a good model.

Here is an example of a simple way to calculate the MSE and RMSE so that
you can compare them to the MSE score your model generated. Let’s
assume we have a regression model predicting the number of hotel

bookings by a customer for the next month.

Calculate the MSE and RMSE as follows:

MSE = (AVG(POWER((actual bookings - predicted bookings)
RMSE = (SQRT (AVG (POWER((actual bookings - predicted bookings

You will calculate the MSE and RMSE for a regression model in one of the

exercises in Chapter 7.

A classification model can be evaluated based on accuracy. The accuracy
method is fairly straightforward, where it can be measured by taking the
percentage of the total number of predictions compared to the total number
of correct predictions.

Binary classification evaluation example

A confusion matrix is useful for understanding the performance of
classification models and is a recommended way to evaluate a classification

model. We present the following details for your reference if you want to

know more about this topic. We also have a detailed example in Chapter
10.

A confusion matrix is in a tabular format and contains four cells — Actual
Values make up the x axis and Predicted Values make up the y axis, and
the cells denote True Positive, False Positive, False Negative, and True
Negative. This is good to measure precision, recall, and the area under the

curve (AUC). Figure 3.1 shows a simple confusion matrix:

Actual Values
True Positive False Positive
Predicted Values False Negative True Negative

Figure 3.1 — Simple confusion matrix

In Figure 3.2, we have 100 records in our dataset for our binary

classification model where we are trying to predict customer churn:

Actual Values
10 4
Predicted Values 6 80

Figure 3.2 — Confusion matrix
We can interpret the quality of our predictions from the model as follows:
e Correctly predicted 10 customers would churn

e Correctly predicted 80 customers would not churn

e Incorrectly predicted 4 customers would churn

e Incorrectly predicted 6 customers would not churn
The F1 score is one of the most important evaluation metrics as it considers
the precision and recall rate of the model. For example, an F1 score of .92
means that the model correctly predicted 92% of the time. This method

makes sure predictions on both classes are good and not biased only toward

one class.

Using our confusion matrix example from Figure 3.2, we can calculate

precision:
Precision= 10 10 +4
This could also be written as follows:

Precision = True Positives (True Positives +

False Positives)

We can also calculate recall in a similar way:
Recall= 10 10+ 6

This could also be written as follows:

Recall = True Positives (True Positives +

False Negatives)

The F1 score combines precision and recall — it can be calculated as

follows:

2 x (_precision x recall precision + recall)

We have shown you the common techniques for evaluating ML models. As
we progress through the book, you will see examples of these techniques

that you can apply to your ML evaluation processes.

Now that you have learned the basics of ML, we will discuss some common

challenges of implementing ML and how to overcome those.

Overcoming the challenges of
iImplementing ML today

Data growth is both an opportunity and a challenge, and organizations are
looking to extract more value from their data. Line-of-business users, data
analysts, and developers are being called upon to use this data to deliver
business outcomes. These users need easy-to-use tools and don’t typically
have the skill set of a typical data scientist nor the luxury of time to learn
these skills plus being experts in data management. Central IT departments
are overwhelmed with analytics and data requirements and are looking for
solutions to enable users with self-service tools delivered on top of
powerful systems that are easy to use. Following are some of the main

challenges:

e Data is more diverse and growing rapidly. We have moved from
analyzing terabytes to petabytes and exabytes of data. This data
typically is spread across many different data stores across
organizations. This means data has to be exported and then landed on
another platform to train ML models. Amazon Redshift ML gives you
the ability to train models using the data in place without having to

move it around.

e A lack of expertise in data management impacts the ability to
effectively scale to keep up with volumes of data and an increase in

usage.

e A lack of agility to react quickly to events and customer escalations due
to data silos and the time required to train a model and make it available

for use in making predictions.

e A lack of qualified data scientists to meet today’s demands for machine
learning. Demands are driven by the need to improve customer
experiences, predict future revenues, detect fraud, and provide better

patient care, just to name a few.

Consider the following workflow for creating an ML model:

/)
_/ Defermingor T T et Deploy and
L SN TV S L | VY L |) e

and
N it fhe model model e

Ly

Figure 3.3 — Typical machine learning workflow
Following are the steps to create an ML model, as shown in Figure 3.3:

1. First, we start off with data preparation. This can be a very time-
consuming process and data may come from many different sources.
This data must be cleansed, wrangled, and split into training and test
datasets. It then needs to be exported and then loaded into the

environment for training.

2. Then you must know which ML algorithm you should use or you need
to train your model on. This requires a data scientist who is skilled in
tools such as R or Python and has experience in knowing which
algorithm is best for a particular problem. As you will see in a later
chapter, Amazon Redshift ML can automatically determine the

algorithm for you.

3. Then you will iterate many times through training, tuning, and

validating the model until you find the best model for your use case.

4. Then, after you deploy the model, you need to continuously monitor the
quality of the model and manage the environment including scaling

hardware and applying patches and upgrades as needed.

In order to reduce the time required to build data pipelines for machine
learning, we must bring machine learning closer to the data and reduce
unnecessary data movement. You can use a data architecture, as we talked
about in Chapter 1, Introduction to Redshift Serverless, with the data
warehouse at the center. This also includes your data lake and other
operational data stores, which, taken together, provide a unified view of all

your data that is organized and easily available in a secure manner.

You can build upon the analytic stack that you have built out and enable
your data analysts to build and train their own models. All data warehouse
users can leverage the power of ML with no data science experience. DW
users can create, train, and deploy ML models with familiar SQL
commands. Then, using SQL, they can use those models to analyze the data
accessible from Amazon Redshift. You can also leverage your existing

models in Amazon SageMaker and run inferences on data stores in Amazon

Redshift. Data scientists can leverage Redshift ML to iterate faster by
baselining models directly through Redshift. BI professionals can now run

inference queries directly through tools such as Amazon QuickSight.

Once you implement ML in your organization, you will begin to reap many

benefits, which we will explore further in the next section.

Exploring the benefits of ML
There are three main areas where businesses can see the benefits of ML:

e Increased revenue — With ML, you can leverage your data to quickly
test new ideas in order to improve customer experiences. For example,
using unsupervised learning, you can segment your customers and
discover previously unknown purchase patterns, which can drive new

focused campaigns for specific product or subscription offerings.

e Better operational and financial efficiency — ML increases
automation and agility within your business so that you can respond to
changing market conditions faster. One example is forecasting product
demand more accurately. By being able to better manage inventory,

organizations can see huge cost savings.

e Increased agility to respond to business risks — With ML, you can
make decisions quicker than ever before. Using ML to detect anomalies,
you can quickly take action when your supply chain, product quality,

and other areas of your business face risks.

Application of ML in a data warehouse

Let’s look at a few use cases at a high level to illustrate some of these

benefits. Subsequent chapters will dive into the details:

e Improving customer experience: ML can be used to reduce customer
frustration with long wait times. Chatbots can answer many customer

questions quickly, and in some cases, all of their questions:

e Personalization: ML can be used to better understand the
behaviors and purchase history of customers to make more

relevant offerings to customers based on their interests.

e Sentiment analysis: ML can be used to understand customer
sentiment from social media platforms. This analysis can then
be used for marketing campaigns and customer retention

efforts.

e Predicting equipment maintenance: Consider any company with a
fleet of vehicles or equipment. This could be a package delivery
company or a service provider company that must be maintained
appropriately. Without ML, it is likely that either equipment will be
repaired too soon or too frequently, which leads to higher costs, or
equipment will be repaired too late, which leads to equipment being out

of service.
You can use ML to predict the optimal time when each vehicle or piece of
equipment needs to have maintenance to maximize operational efficiency.

e Financial analysis: Banks and investment companies use ML for

automation, risk analysis, portfolio allocation, and much more:

e Calculating credit scores — ML can quickly calculate credit

scores and approve loans, which reduces risk.

e Fraud detection — ML can quickly scan large datasets to detect
anomalies and flag transactions and automatically decline or
approve a transaction. Depending on the nature of a
transaction, the system can automatically decline a withdrawal

or purchase until a human makes a decision.

e Sports industry: Auto racing teams can use a model to predict the best

strategies for success and the most effective pit strategy:
e Build stronger team rosters by predicting future performance

e Improve player safety by predicting future injuries

e Health care industry: Early detection of health conditions by
combining ML with historical patient and treatment history and

predicting the treatments with the highest probability of success.

These are just some of the benefits of ML. The possibilities are endless and
advances are continually being made. As we go through subsequent
chapters, you’ll see some use cases in action that you can try out on your

own and start building up your ML skill set.

Summary

In this chapter, we walked you through how to apply machine learning to a

data warehouse and explained the basics of ML. We also discussed how to

overcome the challenges of implementing ML so that you can reap the

benefits of ML in your organization.

These benefits contribute to increased revenue, better operational
efficiencies, and better responses to changing business conditions. After this
chapter, you now have a foundational understanding of the use cases and

types of models you can deploy in your data warehouse.

In the next chapter, we will introduce you to Amazon Redshift ML and how

you can start achieving business outcomes.

Part 2:Getting Started with Redshift ML

Part 2 begins with an overview of Amazon Redshift ML, then dives into
how to create various machine learning models using Amazon Redshift
ML.

By the end of Part 2, you will have an understanding of how to create a
model by simply running a SQL command, the difference between
supervised and unsupervised learning, and how to solve classification,

regression, and clustering problems.

This part comprises the following chapters:
o Chapter 4, Leveraging Amazon Redshift Machine Learning
o Chapter 5, Building Your First Machine Learning Model

o Chapter 6, Building Classification Models

o Chapter 7, Building Regression Models

o Chapter 8, Building Unsupervised Models with K-Means Clustering

4

Leveraging Amazon Redshift ML

In the previous chapter, we discussed the overall benefits of machine

learning (ML) and how it fits into your data warehouse.

In this chapter, we will focus specifically on how to leverage Amazon
Redshift ML to solve various use cases. These examples are designed to
give you the foundation you need as you get hands-on training models,
beginning in Chapter 5. We will show the benefits of Redshift ML, such as
eliminating data movement, being able to create models using simple SQL,
and drastically reducing the time it takes to train a new model and make it
available for inference. Additionally, you will learn how Amazon Redshift
ML leverages Amazon SageMaker behind the scenes to automatically

train your models as we guide you through the following main topics:
e Why Amazon Redshift ML?
e An introduction to Amazon Redshift ML

e A CREATE MODEL OVErview

Why Amazon Redshift ML?

Amazon Redshift ML gives you the ability to create and train ML models
with simple SQL commands, without the need to build specialized skills.

This means your data analysts, data engineers, and BI analysts can now

leverage their SQL skills to do ML, which increases agility, since they no

longer need to wait for an ML expert to train their model.

Additionally, since you use your model in the data warehouse, you no
longer need to export data to be trained or import it back into the warehouse

after your model is used to make predictions.

You do not have to worry about managing the governance of data. Data

never leaves your VPC when you export data for training.

You can control who can create models and who can run inference queries

on those models.

Amazon Redshift ML provides a very cost-effective solution for training
and using models. The cost for Amazon SageMaker resources is based on
the number of cells in your training dataset, which is the product of the

number of rows times the number of columns in the training set.

The costs for running prediction queries using Amazon Redshift Serverless

are based on the compute capacity used by your queries.

To learn more about Amazon Redshift Serverless costs refer here

https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-billing. xhtml.

You have the ability to control the costs of model training by limiting how
much data is used to train the model, and by controlling the time for
training. We will show you examples of this later in the A CREATE

MODEL overview section.

When you run a prediction query, all predictions are computed locally in
your Redshift data warehouse. This enables you to achieve very high

throughput and low latency.

https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-billing.xhtml

An introduction to Amazon Redshift ML

By leveraging Amazon Redshift ML, your organization can achieve many
benefits. First of all, you eliminate unnecessary data movement, users can
use familiar SQL commands, and integration with Amazon SageMaker is

transparent.

Let’s define some of the terms that you will see throughout the remaining

chapters:

e CREATE MODEL: This is a command that will contain the SQL that

will export data to be used to train your model.

e Features: These are the attributes in your dataset that will be used as

input to train your model.

e Target: This is the attribute in your dataset that you want to predict.

This 1s also sometimes referred to as a label.

e Inference: This is also referred to as prediction. In Amazon Redshift
ML, this is the process of executing a query against a trained model to

get the predicted value generated by your model.

To be able to create and access your ML models in Amazon Redshift to run
prediction queries, you need to grant permissions on the model object, just

like you would on other database objects such as tables, views, or functions.

Let’s assume you have created the following role to allow a set of users to
create models, called analyst em role. A superuser can grant permissions

to this role as follows:

GRANT CREATE MODEL to role analyst cm role

Users/groups/roles with the crREaTE MoDEL privilege can create a model in
any schema in your serverless endpoint or Redshift cluster if the user has
the creaTE permission on the Schema. A Redshift ML model is part of the
schema hierarchy, similar to tables, views, stored procedures, and user-
defined functions. Let’s assume we have a schema called demo_m1. You can
grant cREATE and usaGe privileges on the demo_m1 schema to the analyst role

using the following GranT statement:

GRANT CREATE, USAGE ON SCHEMA demo ml TO role analyst cm role

Now, let’s assume we have another role to allow a set of users access to run
prediction queries called analyst prediction role. YOu can grant access to

run predictions on models using the following:

GRANT EXECUTE ON MODEL demo ml.customer churn auto model TO role
analyts prediction role

The source data to create a model can be in Redshift or any other source
that you can access from Redshift, including your Amazon Simple Storage
Service (Amazon S3) S3 data lake via Spectrum or other sources using the
Redshift federated query capability. At the time of writing, Amazon Aurora
and Amazon RDS for PostgreSQL and MySQL are supported. More details
are available here:

https://docs.aws.amazon.com/redshift/latest/dg/federated-overview.xhtml.

Amazon Redshift ML and Amazon SageMaker manage all data
conversions, permissions, and resource usage. The trained model is then
compiled by SageMaker Neo and made available as a user-defined function

in Amazon Redshift so that users can make predictions using simple SQL.

https://docs.aws.amazon.com/redshift/latest/dg/federated-overview.xhtml

Once your model is trained and available as a function in Amazon Redshift,

you can run prediction queries at scale and efficiently, locally in Amazon
Redshift.

See the process flow here in Figure 4.1:

B

)

e’
AmazonRedshiftML- ~ Troningdafo AmozonSogeMaler- Amazon SugeMoker — The modelisdeployed os
CREATEMODEL dota’s transuptol00models outomoficalyfonesond ——— afunctionin Amazon
exported o 83 and made picks fhe st ML model Redshi
avalobleto Amozon
SugeMler Autoplo

Figure 4.1 — The Redshift ML CREATE MODEL process flow

Now, let us go into more detail on how you can use the cCREATE MODEL

statement.

A CREATE MODEL overview

The creaTE MopEL statement allows for flexibility when addressing the
various use cases you may need. There are four main types of CREATE MODEL

statements:

e auro everything

e auto with user guidance, where a user can provide the problem type
e auTo OFF, with customized options provided by the user
e Bring your own model (BYOM)

Figure 4.2 illustrates the flexibility available when training models with
Amazon Redshift ML:

Amazon Redshift ML flexibility

RedshiftML ~ Data ~ Model Training Model Predictions Personas
method preparation selection tuning

Auto everything Data analysts

el problem

Advanced
B f % ance

LIsers

XGBoost Data

K-means
(auto off)

Data
analysts/data
scientists

;
(autooff) T . sentists
;

Bring your own . Data
model @ scientists

T User Amazon Redshift ML @ e

g SageMaker

2022, Amazan Web Senvices nc o it affates, All ightsreserved.

Figure 4.2 — Amazon Redshift ML flexibility

In this chapter, we will provide an overview of the various types of CREATE
MODEL Statements. Subsequent chapters will provide in-depth examples of
how to create all the different types of models, load the data to Redshift,

and split your data into training and testing datasets.

In this section, we will walk you through the options available to create
models and the optional parameters available that you can specify. All of
the examples in this chapter are informational to prepare you for the

remaining chapters. You will create your first model in Chapter 5.

AUTO everything

When you execute a crReaTE MopEL command to solve a supervised learning
problem using auto everything, Amazon Redshift ML and Amazon
SageMaker manage all the data preprocessing, model training, and model
tuning for you. Data will be exported from Amazon Redshift to Amazon
S3, where SageMaker will train and tune up to 100 models. SageMaker
Autopilot will automatically determine the algorithm and problem type.
The best-trained model is then compiled by SageMaker Neo and made
available as a user-defined function in Amazon Redshift so that users can

make predictions using simple SQL.

See the following syntax for an auto everything model:

CREATE MODEL model name
FROM { table name | (select query) }
TARGET column name
FUNCTION prediction function name
IAM ROLE { default }
SETTINGS (
S3_BUCKET 'bucket',

[MAX CELLS integer]
)

You simply supply a table name or SQL statement for the data you want to

use in training, along with the TarceT column that you are trying to predict.

Let’s apply this to a simple example. Let’s assume we have a table called
reservation_ history that contains hotel reservation data, and we want to

determine whether guests are likely to cancel an upcoming reservation:

CREATE TABLE reservation history (
customerid bigint ,

city character varying(50),

reservation date timestamp without time zone,
loyalty program character (1),

age bigint,

marital status character (1),

cancelled character (1)

)
DISTSTYLE AUTO;

The creaTE MopEL statement would look like this (note that this is

informational; you do not need to run this):

CREATE MODEL predict guest cancellation
FROM reservation history
TARGET cancelled
FUNCTION predict cancelled reservation
IAM ROLE default
SETTINGS (
S3 BUCKET '<<your-s3-bucket>>"'

In this creaTe MoDEL statement, we only provided the minimum required
parameters, which are 1aM RoLE and s3_BUCkET. The TARGET parameter is
cancelled, Which is what we will try to predict, based on the input we send

to the creaTE MoDEL statement. In this example, we send everything from

the reservation history table. The FuncTION Nname is a description of the
function that will be used later for predictions. The 1amM rRoLE parameter will
be attached to your serverless endpoint and provides access to SageMaker
and an S3 bucket, which will contain the artifacts generated by your crReEaTE

MoDEL statement. Refer to Chapter 2, where we showed how to set up an
IAM role.

Amazon SageMaker will automatically determine that this is a binary
classification model, since our TarceT can only be one of two possible
values. Amazon SageMaker will also choose the best model type. At the
time of writing, the supported model types for supervised learning are as

follows:
* xGBoost: Based on the gradient-boosted trees algorithm

* Linear Learner: Provides an increase in speed to solve either

classification or regression problems

e mrp: A deep learning algorithm using a multilayer perceptron

You will create models using each of these models in subsequent chapters.

AUTO with user guidance

More advanced users with a good understanding of ML may wish to
provide more inputs to a model, such as model _type, problem type,

preprocesors, and objective.

Using our reservation example, we will build on the avro capabilities and

specify a few more parameters:

¢ MODEL TYPE: XGBoost
¢ PROBLEM TYPE binary classification
® Objective: F1

* S3_GARBAGE COLLECT — OFF: If set to oFF, the resulting datasets used to
train the models remain in Amazon S3 and can be used for other

purposes, such as troubleshooting

e MAX RUNTIME — 1800: This is one way to control the costs of model
training by limiting the training time to 1800 seconds; the default is 5400

seconds

By specifying MopeL_typE and/or PrRoBLEM TYPE along with the objective
parameters, you can shorten the amount of time needed to train a model,
since SageMaker does not have to determine these. Here is an example of

the CREATE MODEL statement:

CREATE MODEL predict guest cancellation
FROM reservation history
TARGET cancelled
FUNCTION predict cancelled reservation
IAM ROLE default
MODEL TYPE XGBoost
PROBLEM TYPE BINARY CLASSIFICATION
OBJECTIVE 'F1'
SETTINGS (
S3 BUCKET '<<your-S3-bucket>>",
MAX RUNTIME 1800
)7

NOTE

Increasing MAX RUNTIME and MAX CELLS often improves model quality by allowing

SageMaker to explore more candidates. If you want faster iteration or exploration of your

dataset, reduce MAX RUNTIME and MAX CELLS. If you want improved accuracy of models,
increase MAX RUNTIME and MAX CELLS.

It is a good practice to specify the problem type and objective, if known, to
shorten training time. To improve model accuracy, provide more data if
possible and include any features (input) that can influence the target

variable.

Additionally, you can add your own preprocessors by specifying
transformers. At the time of writing, Amazon Redshift ML supports 10
transformers including oneHotEncoder, Ordinal Encoder, and

StandardScaler. You can find the complete list here:

https://docs.aws.amazon.com/redshift/latest/dg/r _create_model_use_cases.x

html#r_user_guidance create_model.

Amazon Redshift ML stores the trained transformers and automatically
applies them as part of the prediction query. You don’t need to specify them

when generating predictions from your model.

Let’s take, as an example, using oneHotEncoder, Which is used to convert a
categorical value such as country Or gender into a numeric value (binary
vector) so that ML algorithms can better do predictions. Let’s create a
model using one-hot encoding for our input columns, marital status and
loyalty program. Note that this model is an example, and you do not need

to run this statement:

CREATE MODEL predict guest cancellation
FROM reservation history
TARGET cancelled
FUNCTION predict cancelled reservation
IAM ROLE default
MODEL TYPE XGBoost

https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.xhtml#r_user_guidance_create_model

) ;

So far, all the creaTE MoDEL examples we showed use auto on. This is the
default if you do not specify this parameter. Now, let’s move on to how you

can do your own model tuning using auvtro orr with XGBoost.

PROBLEM TYPE BINARY CLASSIFICATION
OBRJECTIVE 'F1'
PREPROCESSORS '[
{"ColumnSet": [
"loyalty program",
"marital status"
1,
"Transformers" : [
"OneHotEncoder"

]

]]

SETTINGS (
S3 BUCKET '<<your-S3-bucket>>",
MAX RUNTIME 1800

XGBoost (AUTO OFF)

As an ML expert, you have the option to do hyperparameter tuning by using
the auto ofF option with the creaTe MopEL statement. This gives you full
control and Amazon Redshift ML does not attempt to discover the optimal

preprocessors, algorithms, and hyperparameters.

Let’s see what the creaTe MopEL syntax looks like using our example

reservation dataset.

We will specify the following parameters:

e auro ofF: Turns off the automatic discovery of a preprocessor, an

algorithm, and hyperparameters
¢ MODEL TYPE!- xgboost
® OBJECTIVE: 'binary:logistic'’
® PREPROCESSORS: 'none'

® HYPERPARAMETERS: DEFAULT EXCEPT (NUM ROUND '100'/)

Refer here for a list of hyperparameters for XGBoost:

https://docs.amazonaws.cn/en_us/redshift/latest/dg/:

r create model use cases.xhtml#r auto off create model

As of this writing, 'none’ 1s the only available option to specify for
PREPROCESSORS When using auto off. Since we cannot specify one-hot

encoding, we can use a case statement with our SQL to apply this:

CREATE MODEL predict guest cancellation
FROM
(Select customerid,
city,
reservation date,
case when loyalty program = 'Y' then 1 else 0 end as
loyalty program vy,

case when loyalty program 'N' then 1 else 0 end as
loyalty program n,

age,

case when marital status = 'Y' then 1 else 0 end as
married,

'N' then 1 else 0 end as

case when marital status
not married,
cancelled
from reservation hitory)
TARGET cancelled

https://docs.amazonaws.cn/en_us/redshift/latest/dg/

FUNCTION predict cancelled reservation
IAM ROLE default
AUTO OFF
MODEL TYPE XGBoost
OBJECTIVE 'binary:logistic'
PREPROCESSORS 'none'
HYPERPARAMETERS DEFAULT EXCEPT (NUM ROUND '100")
SETTINGS (
S3 BUCKET 'bucket',
MAX RUNTIME 1800

) ;

In Chapter 10, you will build an XGBoost model using auro orr and gain a

better understanding of this option.

Now, let’s take a look at another auto orFF option using the K-means

algorithm.

K-means (AUTO OFF)

The K-means algorithm is used to group data together that isn’t labeled.
Since this algorithm discovers groupings in your data, it solves an

“unsupervised’’ learning problem.

Let’s see what a sample creaTe MopeL looks like if we want to group our

reservation history data:

e auto ofF: Turns off the automatic discovery of a preprocessor, an

algorithm, and hyperparameters
® MODEL TYPE: KMEANS

* PREPROCESSORS: OPTIONAL (at the time of writing, Amazon Redshift

supports standScaler, MinMax, and NumericPassthrough for KMEANS)

* HYPERPARAMETERS. DEFAULT EXCEPT (K 'N'), where N is the number of

clusters you want to create

Here is an example of a creaTe MopEL statement. Note that you will not run

this statement:

CREATE MODEL guest clusters
FROM
(Select
city,
reservation date,
loyalty program,
age,
marital status
from reservation hitory)
FUNCTION get guest clusters
IAM ROLE default
AUTO OFF
MODEL TYPE KMEANS
PREPROCESSORS 'none'
HYPERPARAMETERS DEFAULT
EXCEPT (K '5")
SETTINGS (
S3 BUCKET '<<your-S3-bucket>>"
)7

Note that we are creating five clusters with this model. With the K-means
algorithm, it is important to experiment with a different number of clusters.
In Chapter 8, you will get to dive deep into creating K-means models and

determining how to validate the optimal clusters.

Now, let’s take a look at how you can run prediction queries using models
built outside of Amazon Redshift ML.

BYOM

Additionally, you can use a model trained outside of Amazon Redshift with

Amazon SageMaker for either local or remote inference in Amazon
Redshift.

Local inference

Local inference is used when models are trained outside of Redshift in
Amazon SageMaker. This allows you to run inference queries inside of

Amazon Redshift without having to retrain a model.

Let’s suppose our previous example of building a model to predict whether
a customer will cancel a reservation was trained outside of Amazon
Redshift. We can bring that model to Redshift and then run inference

queries.
Our create MopeL sample will look like this:

* model name: This is the name you wish to give the local model in
Redshift

e FrRoM: This 1S job_name from Amazon SageMaker — you can find this in

Amazon SageMaker under Training Jobs

e runcTION: The name of the function to be created along with the input

data types

e rReTURNS: The data type of the value returned by the function:
CREATE MODEL predict guest cancellation local inf
FROM 'sagemaker job name'

FUNCTION predict cancelled reservation local (bigint,
varchar, timestamp, char, bigint, char)

RETURNS char
IAM ROLE default
SETTINGS (

S3 BUCKET '<<your-S3-bucket>>');

Note that the data types in rFuncTION match the data types from our
reservation history table, and rReTurns matches the data type of our

TARGET variable, which 1S cancelled.

You can derive the SageMaker JobName by navigating to the AWS

Management Console and going to SageMaker:

COHSOIE Home Info ‘ Reset to default layout ‘ + Add widgets
@ Introducing 4 new widgets for Console Home. View new widgets | X

Now you can view the Security Hub, Managed instances, Ops summary, and Patch compliance widgets

Recently Visited info : ¢ Welcome to AWS :

=

ﬁ Amazon Redshift Elastic Beanstalk Getting started with AWS (2

Learn the fundamentals and find valuable
Information to get the most out of AWS.

Amazon SageMaker

s

AWS Resource Explorer

=

e Secrets Manager

B " EB Training and certification (2
(0} Learn from AWS experts and advance your
ANS Gl W @ s and kowieg,
Cloudshel
ol What's new with AWS? [3
B AN Buages @ Discover new AWS services, features, and
Regions.

View all services

Figure 4.3 — Console Home

After clicking on Amazon SageMaker, click on Training jobs, as shown

in Figure 4.4:

Domains

SageMaker dashboard
Images
Lifecycle configurations

Search

¥ Jump5Start
Foundation models @

¢ Governance
b Ground Truth
P Notebook

P Processing

¥ Training

Training jobs

Hyperparameter tuning jobs
P Inference
¢ Edge Manager

¢ Augmented Al

Figure 4.4 — Training jobs

Next, note the job name of the model you wish to use for local inference,

which is what you will put in your crReaTE MoDEL statement (see Figure 4.5):

Amazon SageMaker) Traingjobs

Training jobs v

Q) Seath traningjbs

Name 7 Creation time

redshftm-20220924164139763613-0pp2-1-363cbe7 0aT64ch6B0ehed b Sep 24, 20221830 UTC
rediftm-20220924184139763613-Gpn - -becGadcdBbh34eTchad1dbas Sep 24, 20221830 UTC
redftm-20220924184139763613-dpn -1+ 1387e1803cf545db7d0cs08 Sep 24, 20221830 UTC

redsiftm-20220924164139763615-0ppB- 1-eaea2 5a94Sc4ft3bid5aest Sep 24, 20221830 UTC

rediftm-20220924184139763613-don3- - 3cbidan5a9604e5396¢ 704 Sep 24, 20221830 UTC

rdshtml-202209241841397636 13-Gpp6-1-¢672459Tac] et Sep 24, 20221830 UTC

saqemaker-1gboost-2022:0%21- 140248970 Sep 21, 20221402 UTC
redftm-2022092112064744183f4-100-b0e554e5 Sep 21,2022 1300UTC
redsftm-202209211206474418314-099-190fa25e Sep 21,2022 1300UTC
redftm-2022092 112064744183$4-098-05acCcbe Sep 21, 2021238 UTC

v

Duration

3 minutes

3 minutes

3 minutes

3 minutes

3 minutes

3 minutes

5 minutes

afinute

3 minutes

afinute

Create traning Job

Job status

(0 Completed
(0 Completed
(0 Completed
(0 Completed
(0 Completed
(0 Completed
(0 Completed
(0 Completed
(0 Completed

(0 Completed

Figure 4.5 — The training job name

Remote inference

(12345671.) @

7 Warm ool status Time left

O Terminated
O Terminated

O Terminated

Remote inference is useful if you have a model created in SageMaker for an

algorithm that is not available natively in Amazon Redshift ML. For

example, anomaly detection can be done using the Random Cut Forest
algorithm from SageMaker. You can create a model that references the
endpoint of the SageMaker model and then be able to run anomaly

detection in Amazon Redshift.
Our creaTte MopeL sample will look like this:
* model name: The name you wish to give the local model in Redshift

e runcTION: The name of the function to be created along with the input

data types
e RETURNS: The data type of the value returned by the function

e saGeMAKER: The name of the Amazon SageMaker endpoint:

CREATE MODEL random cut forest
FUNCTION remote fn rcf (int)
RETURNS decimal (10, 6)
SAGEMAKER 'sagemaker endpoint'
IAM ROLE default;
Note that the data types in FuncTION are for the input we send, and RETURNS

is the data type of the data we receive when invoking the function.

You can derive the SageMaker endpoint by navigating to the AWS
Management Console, going to SageMaker, and then clicking on

Endpoints:

Search

¥ JumpStart
Foundation models @

» Governance
» Ground Truth
» Notebook

P> Processing

¥ Training
Algorithms
Training jobs

Hyperparameter tuning jobs

¥ Inference

Batch transform jobs

Shadow tests
> Edge Manager
> Augmented Al

P AWS Marketplace

Figure 4.6 — Endpoints

After you click on Endpoints, as shown in Figure 4.6, you can see the

endpoint names, as shown in Figure 4.7:

AmazonSageeler) Encpont

Endpaints Createendpot

Q Searthendoains

'E}I

Name T AN Crationtime ¥ St v Lastupdated

amcaussagemekers-east- 17038019910 endpolnt/sagemaker-tgboost- L0011 1-2006- Sep 21, 2022 144 C N2 m
LT e " Qe
v 03 e e
OEMO-tgb-churmmodel-quality-monitar-2022- - am:awssagemakers-east-1 37058015910 endpoit/Gema-sgb-chum-modekualty-monlor-—~ Sep 13, 0221331 Qb Nov 2, 2002 0411
03131351 0009131391 e e
A awssagemaler.us-east- 1970580189101 endpalnt/Sagemaker1gboost2022:0%08-00-5547 Sep 09, 20220055 o Sepls 20220100
sagemaler-ghoost-1022-03-09-00-654 g sl p Qirenice p
£56 uc It
amawssagemaler.us-east-1.970580 189101 endoalnt randomeutforest-J022:08-27-18:06:58+ Jin 27,2021 1806 o Indn N
randometforest-2022:06-27-18-06-58-56 g " @\nSerwce
566 rt I
amcaussagemekers-east- 7038019910 endpolnt/randomettforest-JOL03-1 504425 Mar 15,2020 1442 C Mg 0
o AL 03148 g u Ol
19 e e
amaussagemeker:e-east- 17058019910 endoolnt randomettforest 2021 1861308 Now 18, 2021 16213 Now 18, 2021 16:17
randometforest-207 11116+ 1613:09-660 g i @m&arvite
60 e e
Dec (3, 200167 o Nvl2 20021632
gboost-2020-12:08-16-27-32-106 amawssagemakerus- st 370580199107 endpeint ghoost-2020-12-03-16-27-32:208 @in&erwce

Figure 4.7 — The endpoint names

Then, note the name of the endpoint for the model you wish to use for

remote inference and put it in your CREATE MODEL statement.

You will dive deep into BYOM in Chapter 11 and get hands-on experience

creating models for both local and remote inference.

Summary

In this chapter, we discussed why Amazon Redshift ML is a good choice to

use data in your data warehouse to make predictions.

By bringing ML to your data warehouse, Amazon Redshift ML enables you
to greatly shorten the amount of time to create and train models by putting
the power of ML directly in the hands of your developers, data analysts, and

BI professionals.

Your data remains secure; it never leaves your VPC. Plus, you can easily

control access to create and use models.

Finally, we showed you different methods of creating models in Redshift
ML, such as using auro, how to guide model training, and an advanced

method to supply hyperparameters.

Now, you understand how ML fits into your data warehouse, how to use
proper security and configuration guidelines with Redshift ML, and how a

model is trained in Amazon SageMaker.

In the next chapter, you will get hands-on and create your first model using
Amazon Redshift ML, learn how to validate the model, and learn how to

run an inference query.

5

Building Your First Machine Learning
Model

In the previous chapter, you learned about Redshift Machine Learning
(ML) benefits such as eliminating data movement and how models can be

created using simple Structured Query Language (SQL) commands.

In this chapter, you are going to build your first machine learning model by
using the standard SQL dialect. Amazon Redshift makes it very easy to use
familiar SQL dialect to train, deploy, and run inferences against machine
learning models. This approach makes it easy for different data personas,
for example, database developers, database engineers, and citizen data
scientists, to train and build machine learning models without moving data
outside of their data warehouse platform and without having to learn a new

programming language.

In this chapter, you will learn about using Amazon Redshift ML simple
CREATE MODEL, which uses the Amazon SageMaker Autopilot
framework behind the scenes, to create your first model. You will also learn
how to evaluate a model to make sure the model performance is good and
that it is usable and not biased. When you are done with this chapter, you
should be familiar with the Redshift ML simple creaTe MopEL command

and different methods used to evaluate your ML model.

In this chapter, to build your first machine learning model, we will go

through the following main topics:

e Redshift ML simple CREATE MODEL

e Evaluating model performance

Technical requirements
This chapter requires a web browser and the following:
e An AWS account.
e An Amazon Redshift Serverless endpoint.
e Amazon Redshift Query Editor v2.
o Completing the Getting started with Amazon Redshift Serverless section

in Chapter 1.

You can find the code used in this chapter here:

https://github.com/PacktPublishing/Serverless-Machine-I earning-with-
Amazon-Redshift/

Data files required for this chapter are located in a public S3 bucket:

s3://packt-serverless-ml-redshift/

Let’s begin!

Redshift ML simple CREATE MODEL

Redshift ML simple CREATE MODEL is a feature in Amazon Redshift
that allows users to create machine learning models using SQL commands,
without the need for specialized skills or software. It simplifies the process

of creating and deploying machine learning models by allowing users to use

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/%0D
https://s3//packt-serverless-ml-redshift/%0D

familiar SQL syntax to define the model structure and input data, and then
automatically generates and trains the model using Amazon SageMaker.
This feature can be used for a variety of machine learning tasks, including

regression, classification, and clustering.

Before we dive into building the first ML model, let us set the stage by
defining a problem statement that will form the basis of our model-building

solution.

We are going to use a customer sales dataset to build the first machine
learning model. Business leaders at the fictitious ABC Company are
grappling with dwindling sales. The data team at ABC Company has
performed descriptive and diagnostic analytics and determined that the
cause of decreasing sales is departing customers. To stop this problem, data
analysts who are familiar with SQL language and some machine learning
concepts have tapped into Redshift ML. Business users have documented
which customers have and have not churned and teamed up with data

analysts.

To solve the business problem, the data analysts start by analyzing the sales
dataset. With Redshift SQL commands, they will write SQL aggregate
queries and create visualizations to understand the trends. The data analyst
team then creates an ML model using the Redshift ML simple cREATE MODEL
command. Finally, the data analysts evaluate the model performance to

make sure the model 1s useful.

Uploading and analyzing the data

The dataset used for this chapter is located here: s3://packt-serverless-ml-

redshift/. We have modified the dataset to better fit the chapter’s

requirements.

DATASET CITATION

This dataset is attributed to the University of California Irvine Repository of Machine
Learning Datasets (Jafari-Marandi, R., Denton, J., Idris, A., Smith, B. K., & Keramati, A.
(2020). Optimum Profit-Driven Churn Decision Making: Innovative Atrtificial Neural Networks

in Telecom Industry. Neural Computing and Applications.

This dataset contains customer churn information. The following table lists

the metadata of the dataset:

Name

Data Type

Definition

state

varchar (2)

US state in which the customer is located

account_length

int

Length of customer account

area_code

int

Area code or zip code of the customer

phone varchar (8) | Phone number of the customer
intl_plan varchar (3) |International plan subscriber
vMail plan varchar (3) | Voicemail plan subscriber

vMail message |int Voicemail message subscriber
day mins float Aggregated daily minutes
day calls int Aggregated daily calls

https://s3//packt-serverless-ml-redshift/

day charge float Aggregated daily charges
total charge float Total charges

eve mins float Evening minutes

eve calls int Evening calls

eve charge float Evening charges

night mins float Nightly minutes

night calls int Nightly calls

night charge float Nightly charges
intl_mins float International minutes
intl_calls int International calls

intl _charge float International charges
cust_serv calls |int Number of calls to customer service

churn

varchar (6)

Whether customer churned or not

record date

date

Record updated date

Table 5.1 — Customer call data

After successfully connecting to Redshift as an admin or database
developer, create the schema and load data into Amazon Redshift as

follows:
1. Navigate to Redshift query editor v2, connect to the

Serverless:default endpoint, and connect to the dev database.

Create a new editor and rename the untitled query editor by saving it as

Chapter5, as shown in Figure 5.1:

Redshittqueryedtors2 4 [} Chpts x

Otater Qludis ¢ mt 100 © Eplan () bobtedsesion) Servrsode,, v dov
0 0

v 5 Sereres dealt i}

) i day

) I sample,ata v

Figure 5.1 — Connecting to query editor v2

2. Create a Redshift schema named chapter5_buildfirstmodel. Redshift
schemas contain tables, views, and other named objects. For this
chapter, tables and machine learning models will be created in this

schema:

Create schema chapter5 buildfirstmodel;

3. Create a Redshift table named customer calils fact. This table is used
to load the dataset that has customer call information. This table is
natively created in Redshift and used for training and validating the
Redshift ML model:

CREATE TABLE IF NOT EXISTS
chapter5 buildfirstmodel.customer calls fact (

state varchar (2),
account length int,
area code int,

phone wvarchar(8),
intl plan varchar(3),
vMail plan varchar(3),
vMail message int,
day mins float,

day calls int,

day charge float,
total charge float,
eve mins float,

eve calls int,

eve charge float,

night mins float,
night calls int,
night charge float,
intl mins float,
intl calls int,

intl charge float,
cust serv calls int,
churn varchar (o),
record date date)

Diststyle AUTO;

4. Load the customer call data into the Redshift table by using the

following command:
COPY chapter5 buildfirstmodel.customer calls fact

FROM 's3://packt-serverless-ml-
redshift/chapter05/customerdime/"

IAM ROLE default
delimiter ',' IGNOREHEADER 1

region 'eu-west-1'";

We use the Redshift cory command to load the data into our table. copy
commands load data in parallel into a Redshift table. You can load terabytes

of data by using the copy command.

5. In the final step, we will analyze the customer churn fact table by
creating a histogram for customer churn. To do this, let’s use the query
editor v2 chart feature to create a histogram chart. In order to create the
histogram, we need to count the number of customers who have
churned and not churned. To get this information, first, run the

following command:

SELECT churn, count (*) Customer Count FROM
chapter5 buildfirstmodel.customer calls fact

GROUP BY churn

Now, click on the Chart option found on the right-hand side in the Result

pane to view the histogram:

| SELECT churn, count(x) Custoner Count FRON chapter_buildfirstnodel custoner calls_fact
Y (h

4 Rkt O St Loty) Cat BV

Structurs f |

i ‘ |

ki Churn Count Histogram
Traces

X

bplts m
Transioms

o Ny)

Anotge ¥ customer coun Xy

Orentain 15 Verfca Harzontal

200

Custormeer Couwunt
.
e
==
=

=1
—
=

False, True,

Customer Churn

Figure 5.2 — Customers churned versus not churned histogram

From the preceding chart, you can see that the customer calls fact table

has 3333 customers, of which 483 have churned.

Now, we analyzed the dataset and found that there are customers who have
churned. The next step is to create a machine learning model. For this, we

will use the Redshift ML simple creaTe mMobEL method.

Diving deep into the Redshift ML
CREATE MODEL syntax

Since this is the first time you are going to use the cREATE MODEL syntax,

let’s refresh the basic constructs of the command here.

Redshift ML provides the easy-to-use cREATE MODEL syntax to create ML
models. In this section, we will focus on a simple form of the crReaTE MoDEL
command. In later chapters, you will learn about other forms of creating

model statements.

Simple crReaTE MODEL is the most basic form of Redshift cREATE MODEL
statement. It is geared toward the personas who are not yet ready to deal
with all the intricacies of the machine learning process. This form of model
creation is also used by experienced personas such as citizen data scientists
for its simplicity in creating a machine learning model. Data cleaning is an
essential step for any ML problem, otherwise, it follows the principle of
garbage in, garbage out. Data cleaning still remains a necessary task,
however, with Redshift ML data transformation, standardization and model

selection won’t be necessary.

We use the following command for simple model creation:

CREATE MODEL model name
FROM { table name | (select query) }
TARGET column name
FUNCTION prediction function name
IAM ROLE { default }
SETTINGS (
S3_BUCKET 'bucket',
[MAX CELLS integer]
)

In the preceding crREATE MODEL syntax, as a user, you specify your dataset —
in our case, customer_calls fact — in the FroM clause. We set the variable
that we are targeting to predict, in our case churn, in the TARGET parameter.
As a user, you also give a name to the function, which you will use in select

queries to run predictions.

For more information about simple creaTE MODEL parameters, please refer to
the Redshift public document here:

https://docs.aws.amazon.com/redshift/latest/dg/r create_model use_cases.x

html#r_simple_ create_model

We’ve learned about the generic simple cREATE MODEL syntax. Now, let’s

create the syntax for our dataset and run it.

Creating your first machine learning
model

Finally, we will now build our first ML model to predict customer churn
events. As this is our first machine learning model, let’s use the simple
creaTE MobDEL command. This option uses Amazon SageMaker Autopilot,

which means, without the heavy lifting of building ML models, you simply

https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.xhtml#r_simple_create_model%0D

provide a tabular dataset and select the target column to predict and
SageMaker Autopilot automatically explores different solutions to find the
best model. This includes data preprocessing, model training, and model

selection and deployment. AutoMode is the default mode:

1. Redshift ML shares training data and artifacts between Amazon
Redshift and SageMaker through an S3 bucket. If you don’t have one
already, you will need to create an S3 bucket. To do this, navigate to the

Amazon S3 console and click on the Create bucket button:

Amazon5) Bucket

) Account snapshot View StorageLns dashbead
s uptated e 15, 2002 by tvage Lens Metrc e generted every 24 ours,Leam mre [/

Buckets (52) o (|l 0 CoMN | Enpty | Delt

Bkt e cotae fordita tore 5. Leammare [/

0, Find bucets by nam (1) @

Figure 5.3 — S3 console

2. On the Create bucket page, under Bucket name, provide a name, for

example, serverlessmachinelearningwithredshift-<your account id>,

where <your account id>1s your AWS account number.

Amazon §3) Buckets) Createbucket

(reate bucket «.

Buckets are containers for data stored in S5, Learn more [/

General configuration

Bucket name

severesmachineleaminguitredshf-1 23456789101

Bucet name musthe oy igue and st ot ot spaces o Lpperas efters S e o bucketnaming [/

AWS Region

US East (N, Virginia) us-cast-1 \

Copy seting from eisting bucket - optiona
Only the bucket settings n the ollowing configuration ae copied,

Choose bucket

Figure 5.4 — Creating an S3 bucket

3. Before we send our dataset to the crREaATE MopEL command, we will split
the dataset into two parts — one is the training dataset, which is used to
train the machine learning model, and the other one is for testing the
model once it is created. We do this by filtering customer records that
have record date of less than '2020-08-01" for training and
record date greater than '2020-07-31' for testing. Run the following

queries to check our record split:

select sum(case when record date <'2020-08-01' then 1 else O
end) as Training Data Set,

sum(case when record date >'2020-07-31' then 1 else 0 end) as
Test Data Set

from chapter5 buildfirstmodel.customer calls fact

In Figure 5.5, we can see we have 2714 records in the training set and 619

records in the test set.

Result 1 (1)

[training_data_set test data set

0 2714 619

Figure 5.5 — Training and test dataset record count

We apply the filtering condition when training and testing the model on our
dataset. In the next step, we are going to create the model using this filter

condition on our dataset.

4. Now run the following code to create customer_churn_model. Make sure
to replace <your account id> with the correct AWS account number.
Please note that since we are going to use simple CREATE MODEL, we set
the max allowed time through the Mmax runTIME parameter. This is the
maximum training time that Autopilot will take. We have set it to 1,800
seconds, which is 30 minutes. If you don’t specify a value for

mMax_RUNTIME it will use the default value of 5,400 seconds (90 minutes):

CREATE MODEL chapter5 buildfirstmodel.customer churn model
FROM (SELECT state,

account length,

area_code,

phone,

intl plan,

vMail plan,

vMail message,

day mins,

day calls,

day charge,

total charge,

eve mins,

eve calls,

eve charge,

night mins,

night calls,

night charge,

intl mins,

intl calls,

intl charge,

cust serv calls,

replace(churn,'.','') as churn

FROM chapter5 buildfirstmodel.customer calls fact

WHERE record date < '2020-08-01"

TARGET churn

FUNCTION predict customer churn

IAM ROLE default

SETTINGS (

S3 BUCKET 'serverlessmachinelearningwithredshift-<your
account id>"',

MAX RUNTIME 1800

Let us understand more about the preceding command:

The serLECT query in the From clause specifies the training data

The TarceT clause specifies which column is the label for which the

CREATE MODEL Statement builds a model to predict

The other columns in the training query are the features (input) used to

predict the churn variable

The predict customer churn function is the name of an inference

function used in seLECT queries to generate predictions

s3_Bucket 1s the location where Redshift ML saves artifacts when

working with SageMaker

Having Max_runTIME set as 1,800 seconds specifies the maximum time

that SageMaker will take to train our model

After you run the creaTe MoberL command, run the following command to

check the status of the model:

SHOW MODEL chapter5 buildfirstmodel.customer churn model;

The Redshift ML creaTeE MoDEL statement is asynchronous, which means

that when the model is under training, the query shows it is completed and

the training is happening in Amazon SageMaker. To find out the status of

the model, run the suow MobEL command.

In the following screenshot, you can see the saow MobEL output shows
Model State as TRAINING:

SHOW MODEL chapterS_buildfirstmodel.customer_churn_model;

Result 1 (23)

U Key

0 Model Name
U Schema Name

0 Owner

Model State

TRAINING DATA:
Query

1 P

) &=

Target Column

O 2=

PARAMETERS:
Model Type

- gE==

Problem Type

O Objective

Value
customer_churn_model
chapter5_buildfirstmodel
|AMR:Admin-OneClick
Mon, 06.06.2022 03:48:37
TRAINING

SELECT STATE, ACCOUNT_LENGTH, AREA_CODE, PHONE, INTL_PLAN, VMAIL_PLAN, VMAIL_MESSAGE....
FROM CHAPTERS_BUILDFIRSTMODEL.CUSTOMER_CALLS_FACT

WHERE RECORD_DATE < '2020-01-01'

CHURN

Figure 5.6 — Model State TRAINING

When the same ssow MopberL command is run after a while, Model State is

displayed as READY, which means data processing, model training, model

selection, and model deployment to Redshift is completed successfully.
From the following screenshot, you can see that Model Status now shows
READY. You can also see the Estimated Cost value, which represents
Amazon SageMaker training hours. This value does not equal the elapsed
training time as it is an accumulation of training time on the SageMaker

instances used.

Key Value

Model Name
Schema Name
Owner
Creation Time
Model State

[| Training Job Status

| walidation:f1_binary

Estimated Cost

(] TRAINING DATA:

Query

(] Target Column

PARAMETERS:

customer_churn_model
chapters_buildfirstmodel
IAMR:Admin-OneClick

Mon, 06.06.2022 20:13:28
READY
MaxAutoMLJobRuntimeReached
0.906950

7.563997

SELECT STATE, ACCOUNT_LENGTH, ARE...
FROM CHAPTERS5_BUILDFIRSTMODEL.C...
WHERE RECORD_DATE < '2020-01-01'
CHURN

Figure 5.7 — Model State READY

Apart from Model State, the ssow MopEL command gives you other useful

information about the model, for example, the query used, Target Column,

Model Type, and Function Name to use when predicting. You can see that
Model Type in our example is xgboost, which tells you that Amazon
SageMaker has chosen the XGBoost algorithm to build the binary

classification model:

| Owner |AMR:Admin
Creation Time Fri, 16.12.2022 20:50:32
Model State READY
validation:f1_binary 0.908080
[] Estimated Cost 18.382750

| TRAINING DATA:
Query SELECT STATE, ACCOUNT_LENGTH, AREA_CODE, PHONE, INTL_PLAN, VMAIL_PLAN, V...
FROM CHAPTERS_BUILDFIRSTMODEL.CUSTOMER_CALLS_FACT
WHERE RECORD_DATE < '2020-01-01'
Target Column CHURN

| PARAMETERS:
Madel Type xgboost
| Problem Type BinaryClassification
Objective F1
AutoML Job Name redshiftml-20221216205032778488
Function Name predict_customer_churn
predict_customer_churn_prob
Function Parameters state account_length area_code phone intl_plan vmail_plan vmail_message day_mins day_c...
Function Parameter T... varchar int4 int4 varchar varchar varchar intd float8 int4 float8 float8 float8 int4 float8 float8 i...

|AM Role default-aws-iam-role

Figure 5.8 — Model State READY continuation

If you read further into the output, Redshift ML has done the bulk of the

work for you, for example, it has selected and set the following parameters:

e Problem Type is set to BinaryClassification. This is true since our
target variable has two distinct values in it, true and false. So, this is a

binary classification problem.

e Validation and Objective is set to F1. F1 score is a recommended
approach when evaluating binary scores since it considers both
precision and recall. Other objectives that SageMaker Autopilot may
select for a binary classification model are accuracy and area under
curve (AUC).

We have created the model successfully as Model State shows as READY.
The next step is to make use of prediction functions. We use them in seLEcT

queries. The next sections show how to do so.

Evaluating model performance

Now we have created the model, let’s dive into the details of its

performance.

When building machine learning models, it is very important to understand
the model performance. You do this to make sure your model is useful and
is not biased to one class over another and to make sure that the model is
not under-trained or over-trained, which will mean the model is either not
predicting classes correctly or is predicting only some instances and not

others.

To address this problem, Redshift ML provides various objectives to
measure the performance of the model. It is prudent that we test the model
performance with the test dataset that we set aside in the previous section.
This section explains how to review the Redshift ML objectives and also

validate the model performance with our test data.

Redshift ML uses several objective methods to measure the predictive

quality of machine learning models.

Checking the Redshift ML objectives

Figure 5.9 shows the suow MobpEL output. It displays two values that are of
interest to us. One is Objective and the other is validation:f1_binary. The
first value to look at is Objective. It is set to F1 for us. F1 or F-score is the
most commonly used performance evaluation metric used for classification
models. It is a measure for validating dataset accuracy. It is calculated from
the precision and recall of the validations where precision is the number of
true positive results divided by the number of all positive results included,
and recall is the number of true positive results divided by the number of all
records that should have been identified as positive. You can learn more

about F-score here: https://en.wikipedia.org/wiki/F-score.

Run the following command in query editor v2:

SHOW MODEL chapter5 buildfirstmodel.customer churn model;

The output in Figure 5.9 shows the value of F1 is found in

validation:f1_binary, which is 0.90. The highest possible value for an F1

https://en.wikipedia.org/wiki/F-score

score is 1 and the lowest is 0. The highest score of 1 would signify perfect

precision and recall by a model. In our case, it is 90%, which is really good.

L] Key
Model Name

Schema Name
Owner

Creation Time
Model State
validation:f1_binary
Estimated Cost

TRAINING DATA:
Query

| Target Column

PARAMETERS:
Model Type
Problem Type
Objective

| AutoML Job Name

Function Name

Value
customer_churn_model

chapter5_buildfirstmodel
IAMR:Admin

Fri, 16.12.2022 20:50:32
READY

0.908080

18.382750

SELECT STATE, ACCOUNT_LEN...
FROM CHAPTERS_BUILDFIRST...
WHERE RECORD_DATE < '2020...
CHURN

xgboost

BinaryClassification

F1
redshiftml-20221216205032778...

predict_customer_churn

Figure 5.9 — Model objective values

We have seen that the model created by Autopilot has a good F-score and is

ready to use to predict whether customers are going to churn or not. In the

next section, we will use the prediction function to generate the prediction

values along with probability scores.

Running predictions

Now let’s invoke our predict_customer_ churn and
predict_customer_churn_prob prediction functions through the serEcT

command. Redshift ML creates two functions for us to use:

e One is created with the same name as the one we gave when creating
the model, in this case, predict customer churn, which returns the class

label or predicted value, for example, o or 1.

e The other function, predict customer churn_prob, in addition to
returning the class label or predicted value, also returns the probability

that the predicted value is correct.

To test these functions, run the following query. In the following query,
you’ll notice that we are using two prediction functions inside a seLECT
command and passing all the input columns that were passed when creating
the ML model. These two functions will return a label and probability score
as output. We are also testing the prediction function by filtering rows
where record date is greater than '2022-07-31'. Since this is an unseen

dataset, it should act as a challenging dataset for our ML model.

It is also important to note that all the predictions are happening locally on a
Redshift cluster. When the seLecT query is run, there are no calls made to

Amazon SageMaker. This makes all predictions free of cost:

SELECT area code ||phone accountid, replace(churn,'.','') as
Actual churn class,
chapter5 buildfirstmodel.predict customer churn (
state,account length,area code, phone,intl plan,
vMail plan, vMail message, day mins, day calls,
day charge, total charge, eve mins, eve calls,

eve charge, night mins, night calls,
night charge, intl mins, intl calls, intl charge,
cust serv calls) AS predicted class,
chapter5 buildfirstmodel.predict customer churn prob (
state, account length, area code, phone, intl plan,
vMail plan, vMail message, day mins, day calls,
day charge, total charge, eve mins, eve calls,
eve charge, night mins, night calls,night charge,
intl mins, intl calls, intl charge, cust serv calls)
AS probability score

FROM chapter5 buildfirstmodel.customer calls fact

WHERE record date > '2020-07-31"

4

You can see the output in the following screenshot:

Result 1 (100)
[accountid actual_churn_class | predicted_class | probability_score
| 415382-4657 False False {'probabilities*:(0.99597979,0.00402024],'labels"{"False","True"]}
415358-1921 False False {"probabilities":[0.99215788,0.00784212], "labels":["False", "True"]}
415330-6626 False False {"probabilities":[0.98575455,0.01424544],"labels":["False","True"]}
415329-9001 False False {"probabilities*:(0.99430490,0.00569507], labels"{"False","True"}
408335-4719 False False {'probabilities":[0.99906099,0.00093898], "labels":["False", "True"]}
415330-8173 False False {'probabilties*:(0.91623491,0.08376508],'labels"{"False","True"}
415351-7269 True True {"probabilities":[0.99852717,0.00147283],'labels":["True","False"]}
408350-8884 False False {'probabilties*:[0.99868357,0.00131640],'labels"{"False","True"}
408393-7984 True True {"probabilities":[0.99562291,0.00417709], "labels":["True","False"]}
510343-4696 False False {'probabilties*:(0.99293268,0.00706731],'labels"{"False","True"]}
408418-6412 False False {"probabiiities*:(0.99657983,0.00342020],'labels"{"False","Trug"}
408383-1121 False False {"probabilities":[0.99966955,0.00033045],"labels":["False","True"]}
| 408360-1596 True True {"probabilities":[0.99825424,0.00174576),'labels":["True","False]}
408395-2854 False False {'probabilities":[0.99945074,0.00054926], "labels":["False", "True"]}
| 408341-9764 False False {'probabilties*:(0.99818569,0.00181429],'labels"{"False","True"]}
415353-3305 False False {'probabilities":[0.99953187,0.00046814],"labels":["False", "True"]}
|

| 415402-1381 False False {'probabilities™{0.96224242,0.03775758],'labels":["False", 'True"]

Figure 5.10 — Running predictions

In the preceding screenshot, observe that the predicted class values and
probability score values for each customer are shown. From the
predicted class column, you can understand that our model is predicting
whether the customer is going to churn or not, and from the

probability score column, you can understand that the model is, for
example, for the first row, 99% confident that the customer with account ID
415382-4657 is not going to churn.

We have witnessed that prediction is working without any issues. In the
next section, let’s check how the model is performing compared to ground
truth.

Comparing ground truth to predictions

Run the following query to compare actual versus predicted customer

churn:

WITH infer data AS (

SELECT area code ||phone accounted,
replace (churn,'.','"') as churn,
chapter5 buildfirstmodel.predict customer churn(

state,

account length,

area_ code,

phone,

intl plan,

vMail plan,

vMail message,

day mins,

day calls,

day charge,

total charge,

eve mins,

eve calls,

eve charge,

night mins,

night calls,

night charge,

intl mins,

intl calls,

intl charge,

cust serv calls) AS predicted

FROM chapter5 buildfirstmodel.customer calls fact

WHERE record date > '2020-07-31"

)
SELECT * FROM infer data where churn!=predicted;

The following screenshot shows the customers where the ML model made a

mistake:

NOTE

Results will vary as each trained model will have slight differences.

Result 1 (44)

| accountid churn predicted

| 408370-7574 True False
[] 510385-3026 True False
|| 415334-1275 True False
[| 408339-3049 True False
[] 415402-5155 True False
L 510334-9505 True False
[1 415405-3916 True False
| 408339-7541 True False
[| 408383-7826 True False
| 415410-6791 True False
| 415400-6257 True False
| 510401-8735 True False
| 408368-1288 True False
[] 415362-5111 True False

Figure 5.11 — Incorrect predictions

We have seen the model predictions and compared them with ground truth.

In the next section, we will learn about feature importance.

Feature importance

Feature importance is a measure of how much each feature contributes to
the model’s predictions. SageMaker Autopilot calculates the importance of
features and Redshift ML provides explain_model functions to retrieve
feature importance. This will help you to understand which features are
strongly related to the target variable, which features are important to the
model and which are not, and from this you can reduce the number of

dimensions that you feed into your machine learning model.

The following is the SQL code that you can run to retrieve the feature

importance of our model:

Select

jsondata.featureimp.explanations.kernel shap.label(O.global shap v
alues as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)

Jjsondata ;

The following is the JSON format output of feature importance. You can

read and understand the importance of each feature.

Iy Iy

th" 0, 6010025166511206,"area_code":0.
"Gay_charge" 0, 1307716%6435415, "day nins" 10,55
"eve_nins", 30232087934672688,"1nt_calls":2.50
"intL_plan"s6, 241876667680464, "night_calls":0,630
"phone" 10, 03049082746947854, "state":0. 033064207156

1386391988, "cust_serv_calls":0,8811129304075697,"day ca
086, "eve_calls" 0, 49055354095206185, "eve charg g':0.12%
f 810308167, 0.8
] L

{'account_leng 11s":0.8
95206185,

Bt " ntl_charge" 0, 10320839610308167, "1nt L_mins™:
116078144116
34095108,

0,601
30nied
3006793
1876667 N “nlgh harg g0, 16776078144116883,"night nins":

1, 2856551438095108,"vnail_nessage":9.215

b {51,
! 95
] 31059
b 490
b ey

0
b
9
b
!

(
@ ;
z z
j I
! 215

Figure 5.12 — Feature importance raw output

For better readability of the feature importance, you may execute the
following SQL code:

select tl.feature imp, tl.value from

(

Select

'account length' as feature imp,
jsondata.featureimp.explanations.kernel shap.labelO.global shap v
alues.account length as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
jsondata

union

select 'area code' as feature imp ,
jsondata.featureimp.explanations.kernel shap.labelO.global shap v
alues.area code as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
jsondata

union

select 'cust serv calls' as feature imp ,
jsondata.featureimp.explanations.kernel shap.labelO.global shap v
alues.cust serv calls as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
jsondata

union

select 'day calls' as feature imp ,
jsondata.featureimp.explanations.kernel shap.labelO.global shap v
alues.day calls as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
jsondata

union

select 'day charge' as feature imp ,
jsondata.featureimp.explanations.kernel shap.label(O.global shap v
alues.day charge as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
jsondata

union

select 'day mins' as feature imp ,

Jjsondata.featureimp.explanations.kernel shap.label(O.global shap v

alues.day mins as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
jsondata

union

select 'eve calls' as feature imp ,
jsondata.featureimp.explanations.kernel shap.labelO.global shap v
alues.eve calls as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
jsondata

union

select 'eve charge' as feature imp ,
jsondata.featureimp.explanations.kernel shap.labelO.global shap v
alues.eve charge as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
jsondata

union

select 'eve mins' as feature imp ,
jsondata.featureimp.explanations.kernel shap.labelO.global shap v
alues.eve mins as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
jsondata

union

select 'intl calls' as feature imp ,
jsondata.featureimp.explanations.kernel shap.label(O.global shap v
alues.intl calls as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
jsondata

union

select 'intl charge' as feature imp ,
jsondata.featureimp.explanations.kernel shap.label(O.global shap v
alues.intl charge as value

from (select explain model (

'chapterb buildfirstmodel.customer churn model')as featureimp)
jsondata

union

select 'intl mins' as feature imp ,

jsondata.featureimp.explanations.kernel shap.label(O.global shap v
alues.intl mins as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
jsondata

union

select 'intl plan' as feature imp ,
Jjsondata.featureimp.explanations.kernel shap.label(O.global shap v
alues.intl plan as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
Jjsondata

union

select 'inight calls' as feature imp ,
jsondata.featureimp.explanations.kernel shap.label(O.global shap v
alues.night calls as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
Jjsondata

union

select 'night charge' as feature imp ,
jsondata.featureimp.explanations.kernel shap.label(O.global shap v
alues.night charge as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
Jjsondata

union

select 'night mins' as feature imp ,
jsondata.featureimp.explanations.kernel shap.labelO.global shap v
alues.night mins as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
Jjsondata

union

select 'phone' as feature imp ,
jsondata.featureimp.explanations.kernel shap.labelO.global shap v
alues.phone as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
Jjsondata

union

select 'state' as feature imp ,
jsondata.featureimp.explanations.kernel shap.labelO.global shap v
alues.state as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
jsondata

union

select 'total charge' as feature imp ,
jsondata.featureimp.explanations.kernel shap.labelO.global shap v
alues.total charge as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
jsondata

union

select 'vmail message' as feature imp ,
jsondata.featureimp.explanations.kernel shap.labelO.global shap v
alues.vmail message as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
jsondata

union

select 'vmail plan' as feature imp ,
jsondata.featureimp.explanations.kernel shap.labelO.global shap v
alues.vmail plan as value

from (select explain model (

'chapter5 buildfirstmodel.customer churn model')as featureimp)
jsondata

) tl

order by value desc

feature_imp
intl_plan
intl_calls
day_calls
total_charge
cust_serv_calls
inight_calls
account_length
day_mins
eve_calls
night_mins
eve_mins
intl_mins
vmail_message
night_charge

area_code

day_charge

eve_charge
intl_charge
vmail_plan

state

phone

value
6.241876667680464
2.5018813460365956
1.7294931653761064
1.2856551438095108
0.8811129394075697
0.6374489643584772
0.6010025166511206
0.5517368262792286
0.49055554095206185
0.4900811661911824
0.30232087934672688
0.2851059575278758
0.21522579719733876
0.16776078144116883
0.13957797386391988
0.1307716966435415
0.12399856192909246
0.10320839870308187
0.08844318137511628
0.033064217156854199
0.03049082746947854

Figure 5.13 — Feature Importance

You can use feature importance to understand the relationship between each

feature and target variable and the features that are not important.

We have seen what features contribute highly to the model, now let’s look

at how model performance metrics are calculated on our test dataset.

Model performance

Let’s use Redshift SQL to compute a confusion matrix to evaluate the
performance of the classification model. Using a confusion matrix, you can
identify true positives, true negatives, false positives, and false negatives,
based on which various statistical measures such as accuracy, precision,
recall, sensitivity, specificity, and finally, F1 score are calculated. You can
read more about the concept of the confusion matrix here:

https://en.wikipedia.org/wiki/Confusion_matrix.

The following query uses a wiTH clause, which implements a common table

expression in Redshift. This query has the following three parts:

e The first part is about the seLecT statement within the wiTa clause,
where we predict customer churn and save it in memory. This dataset is

named infer data.

e The second part, which is below the first seLEcT statement, reads
infer_data and builds the confusion matrix, and these details are stored

in memory in a dataset called confusionmatrix.

* In the third part of the statement, note that the seLecT statement builds
the model performance metrics such as F1 score, accuracy, recall, and

SO On.

https://en.wikipedia.org/wiki/Confusion_matrix

Run the following query to build a confusion matrix for the test dataset:

WITH infer data AS (
SELECT area code ||phone accountid, replace(churn,'.',''") as
churn,
chapter5 buildfirstmodel.predict customer churn (
state, account length, area code, phone,
intl plan, vMail plan, vMail message, day mins,
day calls, day charge, total charge, eve mins,
eve calls, eve charge, night mins, night calls,
night charge, intl mins, intl calls,
intl charge, cust serv calls) AS predicted
FROM chapter5 buildfirstmodel.customer calls fact
WHERE record date > '2020-07-31"),
confusionmatrix as
(
SELECT case when churn ='True' and predicted = 'True' then 1
else 0 end TruePositives,
case when churn ='False' and predicted = 'False' then 1 else 0

end TrueNegatives,

case when churn ='False' and predicted '"True' then 1 else 0 end
FalsePositives,
case when churn ='True' and predicted = 'False' then 1 else 0 end
FalseNegatives

FROM infer data

)
select
sum (TruePositives+TrueNegatives) *1.00/ (count (*)*1.00) as
Accuracy, ——accuracy of the model,
sum (FalsePositives+FalseNegatives) *1.00/count (*)*1.00 as
Error Rate, --how often model is wrong,
sum (TruePositives) *1.00/sum (TruePositives+FalseNegatives) *1.00
as True Positive Rate, --or recall how often corrects are rights,
sum (FalsePositives) *1.00/sum (FalsePositives+TrueNegatives)*1.00
False Positive Rate, --or fall-out how often model said yes when
it is no,
sum (TrueNegatives)*1.00/sum (FalsePositives+TrueNegatives)*1.00
True Negative Rate, --or specificity, how often model said no
when it is yes,
sum (TruePositives)*1.00 / (sum
(TruePositives+FalsePositives)*1.00) as Precision, -- when said

yes how it is correct,
2*((True_Positive_Rate*Precision)/ (True Positive Rate+Precision)
) as F _Score --weighted avg of TPR & FPR

From confusionmatrix

We get the following output:

Result 1(1) 1 Eiport v

[acoracy® emorrate | tuepostierate | fae posiferale | tuenegatierte | precsion | fscome

U 097819623... 002180576, 08GTI428571428... 0.0009824111822047 0.99Q41738BB1T70... 0996138 09212,

Figure 5.14 — Confusion matrix for the test dataset

By looking at the f_score value, you can confirm that the model has
performed well against our test dataset (record date > '2020-07-31").
These records have not been seen by the model before, but 97% of the time,
the model is able to correctly predict the class value. This proves that the
model is useful and correctly predicts both classes — churn and no churn.
This model can now be given to the business units so it can be used to
proactively predict the customers who are about to churn and build

marketing campaigns for them.

Summary

In this chapter, you have learned how to create your first machine learning
model using a simple creaTE MoDEL statement. While doing so, you

explored customer calls fact table data using query editor v2, learned

about the basic syntax of the cReaTE MoDEL statement, created a simple ML
model, learned how to read the model’s output, and finally, used Redshift

SQL to compute some of the model evaluation metrics yourself.

In the next chapter, you will use the basics that you have learned in this

chapter to build various classification models using Redshift ML.

6

Building Classification Models

In this chapter, you will learn about classification algorithms used in
machine learning (ML). You will learn about the various methods that
Redshift offers when you create classification models. This chapter will
provide detailed examples of both binary and multi-class classification
models and show you how to solve business problems with these modeling
techniques. By the end of this chapter, you will be in a position to identify
whether a business problem is a classification or not, identify the right

method that Redshift offers in training, and build a model.

In this chapter, we will go through the following main topics:

An introduction to classification algorithms

Creating a model syntax with user guidance

Training a binary classification model using the XGBoost algorithm

Training a multi-class classification model using the Linear Learner

model type

Technical requirements

This chapter requires a web browser and access to the following:
e An AWS account

¢ An Amazon Redshift Serverless endpoint

e Amazon Redshift Query Editor v2

e Completing the Getting started with Amazon Redshift Serverless section

in Chapter 1

You can find the code used in this chapter here:
https://github.com/PacktPublishing/Serverless-Machine-IL.earning-with-
Amazon-Redshift/.

An introduction to classification
algorithms

Classification is the process of categorizing any kind of entity or class so
that it is better understood and analyzed. The classifying process usually
happens as part of a pre-setup business process (for example, tagging a
product as defective or good after observing it), or through a return process
(for example, tagging a product as defective after the customer returned it
as defective). In either event, the important point is classifying an entity — in

this case, a product into a class (i.e., defective or not).

Figure 6.1 shows data that has been classified into two classes using three
input variables. The figure shows where a pair of Input and Qutput data
points are categorized into two classes. When output labels consist of only

two classes, it is called a binary classification problem:

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/

Supervised classification model

Class A
Input 2, Input 4, Input § —~—-—-= Output A .
Input 1, Input 5, Input 3 = Qutput B . Clasa B
Input 2, Input 4, Input § ————— = Output A & i
Input 1, Input 5, Input 3 = Qutput B :{> . .
Input 1, Input 5, Input 3 = Qutput B
Input 2, Input 4, Input 6 —---——— = 0utput A
Input 2, Input 4, Input § ——-—- = Output A
Input 1, Input 5, Input 3 = Qutput B

Figure 6.1 — Binary classification

If the output variable consists of more than two classes — for example,
predicting whether a fruit is an apple, an orange, or a pear — then it is called
multi-class classification. Figure 6.2 shows data that has been classified
into multiple classes based on a set of three input variables. The figure
shows a multi-class classification chart, illustrating how input and output

pairs are classified into three classes:

Supervised multi-class classification model

Class A Class B
Input 2, Input 4, Input & -—-—-— = Output A
Input 1, Input 5, Input 3 = Output B
Input 2, Input 5, Input 3 --------- = Output C

Input 2, Input 4, Input § -~ = Output A
Input 1, Input 5, Input 3 = Output B
Input 5, Input 7, Input 11 ==<----=- = Qutput C

Input 2, Input 4, Input 6 = Cutput A
Input 1, Input 5, Input 3 = Qutput B Class C
Input 5, Input 7, Input 11 «<--e---- = Qutput C

Figure 6.2 — Multi-class classification

The classification process can also happen on data that does not have

classes defined yet. Let us continue to understand how this is possible.

It 1s not always the case that your entities are grouped or categorized in a
certain way. For example, if you want to analyze your customers’ purchase
history or clickstream activity, or if you want to group similar customers
based on demographics or shopping behavior, then classification algorithms
come in handy to analyze the data and group similar data points into
clusters. This type of classification modeling is called unsupervised

learning.

Establishing classes helps the analysis process — for example, once products
are tagged to a class label, you can easily retrieve a list of defective
products that are returned and then further study the characteristics, such as
store location, the demographics of the customer who returned the product,
and the season when a product was returned most. How and when classes
are defined and established enables businesses to conduct a deep-dive
analysis, not only answering questions such as where and what but also
training an ML model on historical data and classes, and predicting which

class an entity will fall into.

Common use cases where classification models are useful include the

following:
e Customer behavior prediction
e Document or image classification

e Spam filtering

In this chapter, we will show you how to create different classification
models that Redshift offers you. Amazon Redshift provides XGBoost,
multilayer perceptron (MLP), and Linear Learner algorithms to train

and build a classification model.

In this chapter, you will begin the journey of learning about supervised
classification models by building binary classification models, using
XGBoost, and a multi-class classification model, using linear learner. MLP
models will be covered in Clhapter 9, whereas unsupervised classification

modeling will be covered in Chapter §.

Now, we will walk you through the detailed syntax of creating models with
Redshift ML.

Diving into the Redshift CREATE MODEL
syntax

In Chapter 4, we saw different variations of the Redshift cREATE MODEL
command and how a data analyst, citizen data scientist, or data scientist can
operate the crREaTE MobDEL command, with varying degrees of complexity. In
this section, we will introduce you to a citizen data scientist persona, who is
not fully aware of statistics but has good knowledge about identifying what
algorithm to use and what problem type can be applied to a business
problem. In the Redshift ML world, this type of model creation is known as
CREATE MODEL with user guidance.

We are going to explore the model type and problem type parameters of the
CREATE MODEL statement. As part of CREATE MODEL with user guidance,

you also have the option of setting a preprocessor, but we will leave that

topic for Chapter 10.

As an ML model creator, you will decide what algorithm to use and what
problem type to address. Redshift ML still performs the feature engineering
of independent variables behind the scenes. For example, out of 20 features,
Redshift ML will automatically identify the categorical variables and
numeric variables and create one-hot-encoded value or standardization of
numerical variables where applicable, along with various other tasks

required to complete the model training.

In summary, you let Redshift ML handle the bulk of data preparation tasks
for ML. As a model creator, you come up with an algorithm to be used and
a problem type to be solved. By preselecting an algorithm type and problem
type, Redshift ML will reduce the training type, as it trains the model on
other algorithms and problem types. Compared to the full auro CREATE
MODEL statement that we created in Chapter 5, CREATE MODEL with

user guidance takes less time.

As mentioned in the previous section, we will use the XGBoost algorithm
for binary classification and the linear learner algorithm for multi-class

classification.

You can learn more about XGBoost here:

https://docs.aws.amazon.com/sagemaker/latest/dg/XGBoost.xhtml.

And you can learn more about Linear Learner here:

https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.xhtml.

Using a simple creaTE MopEL statement, Redshift ML will use SageMaker

Autopilot to automatically determine the problem type, algorithm, and the

https://docs.aws.amazon.com/sagemaker/latest/dg/XGBoost.xhtml
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.xhtml

best model type to use.

With Redshift ML, you can influence a model by providing user guidance.
You can choose model type, problem type, and objective wWhen you issue
the creaTe MoDEL statement. You can find more details on the syntax and
options here:
https://docs.aws.amazon.com/redshift/latest/dg/r create_model use_cases.x

html.

So far, we have discussed the basics of the Redshift MLL crREaTE MoDEL
syntax and how you can provide guidance, such as model type and

objective, or choose to let Redshift ML automatically choose these for you.

Now, you will learn how to create a binary classification model and specity
the XGBoost algorithm.

Training a binary classification model
using the XGBoost algorithm

Binary classification models are used to solve the problem of predicting one
class of two possible classes — for example, predicting whether it will rain
or not. The goal is to learn about past data points and figure out which one
of the target buckets a particular data point will fall into. The typical use

cases of a binary classification model are as follows:
e Predicting whether a patient suffers from a disease
e Predicting whether a customer will churn or not

e Predicting behavior — for example, whether a customer will file an

appeal or not

https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.xhtml

In the next few sections, we will go through the following steps to achieve
our goal of creating a binary classification model to be used to run inference

queries:
1. Defining the business problem
2. Uploading and analyzing data
3. Creating the model

4. Running prediction queries against the model

Establishing the business problem

To build our binary classification problem, we will take a look at a banking
campaign issue. Banks spend a lot of money on marketing campaigns
targeted toward their customers so that they will subscribe to their products.
It is very important that banks build efficiency into their campaign, and this
can be done by learning the last campaign dataset and predicting future
campaign results. We will work on predicting whether a banking customer

will subscribe to a banking product offer of a term deposit.

Uploading and analyzing the data

We are going to work on a bank marketing dataset in this section. The data
is related to direct marketing campaigns of a Portuguese banking institution.
Imagine you are a marketing analyst and your goal is to increase the amount
of deposits by offering a term deposit to your customers. It is very

important that marketing campaigns target customers appropriately. You

will create a model using Redshift ML to predict whether a customer is
likely to accept the term deposit offer. This dataset is sourced from

https://archive.ics.uci.edu/ml/datasets/bank+marketing.

DATASET CITATION

[Moro et al., 2014] S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the
Success of Bank Telemarketing. Decision Support Systems, Elsevier, 62:22-31, June 2014

The classification goal is to predict whether the client will subscribe

(yes/no) to a term deposit (the y variable).

The dataset has columns such as age, job, marital status, education level,

and employment status.

Metadata about these columns can also be found at the UCI ML repository

website here: https://archive.ics.uci.edu/ml/datasets/bank+marketing.

As you can see from the preceding link, there are 20 independent variables
and 1 dependent variable (y). We can use any or all of these independent
variables as input to our cREATE MoDEL statement to be able to predict the

outcome, y, which indicates whether the customer is likely to accept the
offer.

After successfully connecting to Redshift as an admin or database
developer, create the schema and load data into Amazon Redshift using the

following steps:

1. Navigate to Redshift query editor v2, and connect to the Serverless

endpoint and the dev database.

2. Rename the Untitled query editor by saving it as chape.

https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://archive.ics.uci.edu/ml/datasets/bank+marketing

The following screenshot shows the serverless connection, the database set

to dev, and the query editor page saved as Chapé6:

...—..'_._. . prgm o of
=ee Services Q, Search for services, f

Redshift query editor v2 default Database dev

+ Create = 2, Load data
Chapg* X Untitled 3 Untitled 1

Q o
= Limit 100 Explain
v & Serverless: default

5 P E SCHEMA chapter6_supervisedclassification;
> mm dev

Figure 6.3 — Query Editor v2

3. Now, using the following line of code, create the schema. This schema
is where all the tables and data needed for this chapter will be created

and maintained:
Create schema chapter6 supervisedclassification;

You will see output like this, indicating that your schema is created:

= Result!

Summary

Retumed rows.
Elapsed time
Result set query:

(eqte Schena chaptert_supemvisedclassirication

Figure 6.4 — Schema created

The following code will create the bank_details_training table to store
data to train the model, and the bank_details_inference table to store data
to run the inference queries. Note that we have already split our input
dataset into these two datasets for you. All of the SQL commands used in
this chapter can be found here:

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-

Amazon-Redshift/blob/main/CodeFiles/chapter6/chapter6.sql.

4. Run the following code from GitHub to create the training and inference

tables in Query Editor v2:

CREATE TABLE
chapter6 supervisedclassification.bank details training(

age numeric, "Jjob" varchar marital varchar, education

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter6/chapter6.sql

varchar,
"default" wvarchar, housing varchar, loan varchar,

contact varchar, month varchar, day of week varchar,

y boolean) ;
--create table to store data for running predictions

CREATE TABLE
chapter6 supervisedclassification.bank details inference (

age numeric, "Jjob" varchar marital varchar, education

varchar,
"default" varchar, housing varchar, loan wvarchar,

contact varchar, month varchar, day of week varchar,

y boolean) ;

You will see output like this to verify that your tables have been created

successfully:

Result 1 Result 2

summary

Retumed rows; 0

Elapsed time
Result set query

chaptert_supervisedclassification, bank_detanls_tratning(
Age nuneric,
J0b varchar,
marital varchar,
education varchar,
'default" varchar,
houstng varchar,
Loan varchar,
contact varchar,

Figure 6.5 — Tables created successfully

Now that you have created the tables, run the commands in step 5 using

Query Editor v2 to load the data, using the S3 buckets provided.

5. Load the sample data into the tables created in step 4 by using the

following command, which can be found on GitHub. Note that we use

the copy command to load this data from Amazon S3:

--load data into Dbank details inference

TRUNCATE
chapter6 supervisedclassification.bank details inference;

COPY chapter6 supervisedclassification.bank details inference
from 's3://packt-serverless-ml-redshift/chapter06/bank-
marketing-data/inference-data/inference.csv' REGION 'eu-west-
1' IAM ROLE default CSV IGNOREHEADER 1 delimiter ';';

-- load data into bank details training

TRUNCATE
chapter6 supervisedclassification.bank details training;

COPY chapter6t supervisedclassification.bank details training
from 's3://packt-serverless-ml-redshift/chapter06/bank-
marketing-data/training-data/training.csv' REGION 'eu-west-1"'
IAM ROLE default CSV IGNOREHEADER 1 delimiter ';';

6. Analyze the customer term deposit subscription table by creating a
histogram chart. First, run the following command again using Query
Editor v2:

SELECT y, COUNT (*) Customer Count FROM
chapter6 supervisedclassification.bank details training

GROUP BY y

You can see in the result set that 36548 customers did not choose the bank’s

offer and 4640 did accept. You can also use the chart feature in Query

Editor v2 to create a bar chart. Click on the Chart option found on the
right-hand side in the Result pane:

= Rt 1) Sbgot e O Gt §2

0y custome. count

] e 4640
] fise 548

Figure 6.6 — The subscription results and the Chart option

You will get the following result after choosing Bar for Type, y for the X

value, and customer_count for the Y value:

Resul 1 ()) Savechart @,Exportv (hart 5

Struchure s |
Traces _
v frace(

Subplos

Transforms 0k
2k

e
10k

e ! aone cont RS

Orientaion £ Vertial Horizonta

Figure 6.7 — A chart of customer acceptance

true false

Now that we have our data loaded, we can create our model.

Using XGBoost to train a binary
classification model

In this section, you will specify MobEL_TyPE and PROBLEM TYPE to create a
binary classification model using the XGBoost algorithm. We will now
address the banking campaign problem. The goal of this model is to predict

whether a customer will subscribe to a term deposit or not.

We will set MODEL_TYPE as XGBoost and PROBLEM TYPE as
BINARY CLASSIFICATION. We will use the default 1aM rorE. We also need to
specify the S3 bucket where the model artifacts will be stored and,

additionally, set Max RUNTIME to 3600 (in seconds).

The following is the code to create the model. You will find the complete
code along with all the SQL commands needed for the chapter at
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/blob/main/chapter6.sql:

DROP MODEL chapter6 supervisedclassification.banking termdeposit;
CREATE MODEL
chapter6 supervisedclassification.banking termdeposit
FROM (
SELECT
age ,
"job" ,
marital ,
education ,
"default" ,
housing ,
loan ,
contact ,
month ,
day of week ,
duration,
campaign ,
pdays ,
previous ,
poutcome ,
emp var rate ,
cons price idx ,
cons_conf idx ,
euribor3m ,
nr employed ,
Yy
FROM

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/chapter6.sql

chapter6 supervisedclassification.bank details training)
TARGET y
FUNCTION predict term deposit
IAM ROLE default
MODEL TYPE XGBoost
PROBLEM TYPE BINARY CLASSIFICATION
SETTINGS (
S3 BUCKET '<<your-S3-Bucket',
MAX RUNTIME 9600
)

By setting MODEL_TYPE tO XGBoost and PROBLEM TYPE toO
BINARY CLASSIFICATION, we guide Redshift ML to only search for the best
XGBoost model in this training run. If this is left as default, Redshift ML

checks whether other classification models can be applied to the dataset.

Since the SageMaker AutoPilot algorithm does not have to test other
model types or determine the problem type, the end result will be less
training time. In this example, SageMaker Autopilot takes care of selecting
the objective type, adjusting hyperparameters, and handling the data

preprocessing steps.

To check the status of the model, run the following command:

SHOW MODEL chapter6 supervisedclassification.banking termdeposit;

You will get the following result:

Result 1(22)

O Key Value

(] Model Name banking_termdeposit

[] Schema Name chapterf_supervisedclassification

[] Owner [AMR:Admin-OneClick

[0 Creation Time Tue, 12.07.2022 17:32:09

[] Modal State TRAINING

a

(] TRAINING DATA:

0 Query SELECT AGE, JOB , MARITAL , EDUCATION , "DEFAULT" , HOUSING, LOAN , CONTACT , MONTH , DAY_OF WEEK, C...
d FROM CHAPTERG_SUPERVISEDCLASSIFICATION.BANK_DETAILS_TRAINING

[] Target Column Y

a

[] PARAMETERS:

(] Model Type xgboost

[0 Problem Type BinaryClassification

[Objective Fi

[] AutoML Job Name redshiftml-20220712173209099442

(] Function Nama predict_term_deposit

(] Function Parameters age job marital education default housing loan contact month day_of_week campaign pdays previous poutcome emp_var...
(] Function Parameter T... ~ numeric varchar varchar varchar varchar varchar varchar varchar varchar varchar numeric numeric numeric varchar numeri...
[0 [AMRole default-aws-lam-role

[] 53 Buckst serverlessmachinelearningwithredshift-709512860261

Figure 6.8 — Showing the model output

From the preceding screenshot, we can see that the model is still under
training. Also, note that Redshift ML picks up the Model Type and
Problem Type parameter values from our crReaTE MoDEL statement. Other
parameters, such as the objective, hyperparameters, and preprocessing, are
still auto-handled by Redshift ML.

The predict_term_deposit parameter under Function Name is used to

generate predictions, which we will use in the next section.

Run the srow MopEL command again after some time to check whether
model training is complete. From the following screenshot, you can see that
Model State is READY and F1 has been selected as the objective for
model evaluation. The F1 score 1s 0.646200, or 64%. The closer this

number i1s to 1, the better the model score:

O Key

[J Schema Name
[J Owner

[Creation Time
[J Model State

[validation:f1_binary
[Estimated Cost
O

[] TRAINING DATA:
O Query

O

[Target Column

O
[J PARAMETERS:
[J Model Type

[J Problem Type

[J Objective

) AutoML Job Name
[J Function Name

[

[J Function Parameters

(] Function ParameterT...

| Value

chapter6_supervisedclassification
|JAMR:Admin

Sun, 12.02.2023 19:02:25
READY

0.646200

8.776864

SELECT AGE, "JOB" , MARITAL , EDUCATION,, ...
FROM CHAPTER6_SUPERVISEDCLASSIFICATIO...
Y

xgboost

BinaryClassification

F1
redshiftml-20230212190225621701
predict_term_deposit
predict_term_deposit_prob

age job marital education default housing loan co...

numeric varchar varchar varchar varchar varchar ...

Figure 6.9 — Showing the model output

Let’s run the following query against our training data to validate the F1

SCOre:

WITH infer data
AS
SELECT vy as actual,
chapter6 supervisedclassification.predict term deposit (

age , "job" , marital , education , "default"
, housing , loan , contact , month , day of week
, duration , campaign , pdays , previous , poutcome
, emp var rate , cons price idx , cons_conf idx
, euribor3m , nr employed

) AS predicted,
CASE WHEN actual = predicted THEN 1::INT
ELSE 0::INT END AS correct
FROM chapter6t supervisedclassification.bank details training

)
aggr_data AS (

SELECT SUM(correct) as num correct, COUNT(*) as total FROM
infer data

)
SELECT (num correct::float/total::float) AS accuracy FROM

aggr data;

You can see in the following output that our accuracy is very good at almost

94%:

Result 1 (1)

OO0 accuracy
[] 0.9383801107118578

Figure 6.10 — The accuracy results

Now that the model training is complete, we will use the function created to

run prediction queries.

Running predictions

Let us run some predictions on our inference dataset to see how many
customers are predicted to subscribe to the term deposit. Run the following
SQL statement in Query Editor v2:

WITH term data AS (SELECT
chapter6 supervisedclassification.predict term deposit(age,"job"
ymarital,education, "default",housing, loan,contact,month,day of we
ek,duration, campaign,pdays, previous,poutcome,emp var rate,cons pr
ice idx,cons conf idx,euribor3m,nr employed) AS predicted
FROM chapter6 supervisedclassification.bank details inference)
SELECT
CASE WHEN predicted = 'Y' THEN 'Yes-will-do-a-term-deposit'

WHEN predicted = 'N' THEN 'No-term-deposit'

ELSE 'Neither' END as deposit prediction,
COUNT (1) AS count
from term data GROUP BY 1;

You should get the following output:

Result 1 (2)

O deposit_prediction count

[Yes-will-do-a-term-de... @ 642
[0 MNo-term-deposit 3477

Figure 6.11 — Prediction results

We can see that 642 customers are predicted to accept the offer to subscribe

to the term deposit, and 3477 are predicted to not accept the offer.

Prediction probabilities

Amazon Redshift ML now provides the capability to get the probability of a
prediction for binary and multi-class classification problems. Note that in
the output of the snow MopEL command in Figure 6.9, an additional function
name has been created called predict_term deposit_prob. Run the
following query to check the probability that married customers with
management jobs and between 35 and 45 years of age will accept the term

deposit offer:

SELECT
age,"job" ,marital ,
chapter6 supervisedclassification.predict term deposit prob(
age, "job"
ymarital,education,"default",housing, loan,contact,month,day of we
ek,duration, campaign, pdays, previous, poutcome, emp var rate,cons_pr
ice idx,cons conf idx,euribor3m,nr employed) AS predicted
FROM chapter6 supervisedclassification.bank details inference
where marital = 'married'

and "Jjob" = 'management'

and age between 35 and 40;

You will see the following results:

job marital predicted

management married {'probabilities"{0.99985629,0.00014372),"labels"['f","t"]}
management maried {'probabilities"{0.99926740,0.00073259]"labels"['f","t"]}
management maried {'probabilities"{0.83991116,0.16008882],'labels"['f","t"]}
management married {*probabilities"{0.94584262,0.05415738],"labels"'t",'f"]}
management married {'probabilities™{0.52203691,0.47796309], labels"['f",'t"]}
management married {'probabilities™{0.55414915,0.44585085], labels™['t",'f"]}
management married {*probabilities"(0.75243974,0.24756023),"labels"['f", 't}
management married {*probabilities"(0.98185575,0.01814427),"labels"'f", 't}
management married {'probabilities"{0.55978036,0.44021964],"labels"'t",'f"]}
management maried {'probabilities"{0.99987215,0.00012783),'labels"['f","t"]}
management maried {'probabilities"{0.89849180,0.10150822),"labels"['f","t"]}
management married {*probabilities"{0.88654792,0.11345207),"labels"['f",'t"]}
management married {'probabillties™{0.78575808,0.21424192], "labels™['t",'f"]}
management married {'probabilities"{0.99434894,0.00565108], labels™['f", 't}
management married {*probabilities"[0.99986333,0.00013665], 'labels"['f", 't"]}
management married {*probabilities"(0.99996585,0.00003415],'labels"'f",'t]}
management married {'probabilities"{0.91456062,0.08543941),"labels"['f","t"]}
management maried {'probabilities"{0.59947753,0.40052247), "labels"'t",'f"]}
management maried {'probabilities"{0.99986386,0.00013614),'labels"'f","t"]}

Figure 6.12 — Probability results

You can see in the first row a 0.99985629 probability of a false prediction
and only a 0.00014372 probability of a true prediction.

You can also modify the preceding query to see the probability of the
customers that are predicted to accept the term deposit offer. Run the

following SQL command in Query Editor v2:

SELECT age, "job", marital, predicted.labels[O0],
predicted.probabilities[0]
from
(select
age,"job" ,marital ,

chapter6 supervisedclassification.predict term deposit prob(

age, "job"

ymarital,education, "default",housing, loan,contact,month,day of we
ek,duration, campaign,pdays, previous,poutcome,emp var rate,cons pr
ice idx,cons_conf idx,euribor3m,nr employed) AS predicted

FROM chapter6 supervisedclassification.bank details inference

where marital = 'married'

and "job" = 'management'

and age between 35 and 40) tl
where predicted.labels[0] = 't';

You will see similar results as follows:

Job marita probabillties

management married 0.94584262
management married il 0.55414915
management married & 0.59947753
management married e 0.66548312
management married it 0.99268746
management marriad i 0.66757184
management marriad 0.82543176
management married 0.78575808
management married 0.83733559
management married il (.88043034
management married & 0.55978036

Figure 6.13 — The probability results for customers accepting the term offer

In Chapter 5, you learned how to determine feature importance by running

an explainability report. Run the following query to see which inputs

contributed most to the model prediction:

select
json table.report.explanations.kernel shap.labelO.global shap val
ues from

(select

explain model ('chapter6 supervisedclassification.banking termdepo

sit') as report) as json table;

Take the result and copy it to the editor so that it is easier to read, as shown

in Figure 6.14:

Figure 6.14 — The explainability report

This shows that pdays has the most importance and that poutcome has the

least.

Now that you have built a binary classification model, let us move on and

try building a multi-class classification model.

Training a multi-class classification
model using the Linear Learner model
type

In this section, you will learn how to build a multi-class classification

model in Amazon Redshift ML using the linear learner algorithm.

To do this, we will use a customer segmentation dataset from Kaggle:

https://www.kaggle.com/datasets/vetrirah/customer.

You will use this dataset to train a model to classify customers into one of
four segments (a, B, c, or b). By segmenting customers, you can better
understand the customer and do targeted marketing to customers, with

product offerings that are relevant to them.

https://www.kaggle.com/datasets/vetrirah/customer

Our data has already been split into training and testing sets and is stored in

the following S3 locations:

® s3://packt-serverless-ml-

redshift/chapter06/segmentation/train.csv

® s3://packt-serverless-ml-

redshift/chapter06/segmentation/test.csv

After successfully connecting to Redshift as an admin or database

developer, load data into Amazon Redshift as follows:

1. Navigate to Redshift query editor v2, and connect to the Serverless

endpoint and the dev database.

2. Use the same schema and query editor page you created for the binary
classification exercise (see the Uploading and analyzing the data

section).
Create the train and test tables and load the data using the following SQL
commands in Query Editor v2. These SQL commands can be found at

https://github.com/PacktPublishing/Serverless-Machine-I earning-with-
Amazon-Redshift/blob/main/CodeFiles/chapter6/chapter6.sql:

CREATE TABLE
chapter6 supervisedclassification.cust segmentation train (
id numeric,
gender varchar,
ever married varchar,
age numeric,
graduated varchar,
profession varchar,
work experience numeric,

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter6/chapter6.sql

spending score varchar,

family size numeric,

var 1 varchar,

segmentation varchar
)
DISTSTYLE AUTO;
COPY chapter6 supervisedclassification.cust segmentation train
FROM 's3://packt-serverless-ml-redshift/chapter06/Train.csv'
IAM ROLE DEFAULT FORMAT AS CSV DELIMITER ',' QUOTE '™'
IGNOREHEADER 1 REGION AS 'eu-west-1';
CREATE TABLE
chapter6 supervisedclassification.cust segmentation test (

id numeric,

gender varchar,

ever married varchar,

age numeric,

graduated varchar,

profession varchar,

work experience numeric,

spending score varchar,

family size numeric,

var 1 varchar
)
DISTSTYLE AUTO;
COPY chapter6t supervisedclassification.cust segmentation test
FROM 's3://packt-serverless-ml-redshift/chapter06/Test.csv'
IAM ROLE DEFAULT FORMAT AS CSV DELIMITER ',' QUOTE '"'
IGNOREHEADER 1 REGION AS 'eu-west-1';

Now that the data has loaded, let’s do some analysis of our training data.

3. Analyze the training data by executing the following SQL command:

select segmentation, count (*) from
chapter6 supervisedclassification.cust segmentation train

group by 1;

You should get the following output:

segmentation count
Cc 1970
(] 2268
B
A

1858
1972

Figure 6.15 — Segmentation

Our training dataset has a total of 8,068 customer records. From this
sample, we can see that segments C, B, and A are very similar and that

more customers are in segment D.

We will use the input from the training dataset to predict the customer

segment, using the linear learner algorithm.

Using Linear Learner to predict the
customer segment

Linear learner is a supervised learning algorithm and one of the model

types you can use to solve classification or regression problems.

For multi-class classification problems, we have more than two labels (or
targets) that we will try to predict, compared to exactly two labels for binary
classification problems. We will show you how to use linear learner to solve

regression problems in Chapter 7.

With linear learner, you can achieve a significant increase in speed
compared to traditional hyperparameter optimization techniques, making it

very convenient.

We will provide a training set with data that contains our input or
observations about the data, and the label that represents the value we want
to predict. We can optionally provide certain combinations of preprocessors

to certain sets of columns.

In this section, you will apply user guidance techniques by providing
MODEL_TYPE, PROBLEM TYPE, and oBJECTIVE to create a multi-class
classification model using the linear learner algorithm. The goal of this

model is to predict the segment for each customer.

We will set MODEL_TYPE as LINEAR LEARNER and PROBLEM TYPE as

MuLTICLASS_cLASSIFICATION. We will leave other options as default.

Let us execute the following code in Query Editor v2 to train the model:

CREATE MODEL
chapter6 supervisedclassification.cust segmentation model 11
FROM (
SELECT
id, gender, ever married, age, graduated,profession,
work experience, spending score,family size,
var 1,segmentation
FROM chapter6 supervisedclassification.cust segmentation train
)
TARGET segmentation
FUNCTION predict cust segment 11 IAM ROLE default
MODEL TYPE LINEAR LEARNER
PROBLEM TYPE MULTICLASS CLASSIFICATION
OBJECTIVE 'accuracy'
SETTINGS (
S3 BUCKET '<<your-s3-bucket>>"',
S3 GARBAGE COLLECT OFF,
MAX RUNTIME 9600
) 7

To check the status of the model, run the following command in Query
Editor v2:

SHOW MODEL
chapter6t supervisedclassification.cust segmentation model 11;

You should get the following output:

Value
cust_segmentation_model_l
chapter_supervisedclassification
[AMR:Admin
Tus, 14.02.2023 14:04:46
READY

[validationmulticlass ... = 0.535028

[Estimated Cost 3.154642

SELECT ID, GENDER, EVER_MARRIED, AGE, GRADUATED,PROFESSION, WORK_EXPERIENCE, SPENDING_SCOR...
FROM CHAPTER6_SUPERVISEDCLASSIFICATION.CUST_SEGMENTATION_TRAIN
SEGMENTATION

linear_[earner
MutticlassClassification

Accuracy
redshiftml-20230214140446461427

predict_cust_segment_I

predict_cust_segment_l_prob

Figure 6.16 — Showing the model output

You can see that the model is now in the READY state and that Redshift
ML picks up Model Type and Problem Type parameter values from our

CREATE MODEL Statement.

Now that the model is trained, it is time to evaluate its quality.

Evaluating the model quality

When you issue the creaTE MopEL command, Amazon SageMaker will
automatically divide your data into testing and training in the background
so that it can determine the accuracy of the model. If you look at the
validation:multiclass_accuracy key from the sHow MopEL output, you will
see a value of 0.535028, which means our model can correctly pick the

segment 53% of the time. Ideally, we prefer a value closer to 1.

We can also run a validation query to check our accuracy rates. In the
following query, note that we select the actual segmentation, and then we
use the function that was generated by our crReaTeE MopEL command to get

the predicted segmentation to do the comparison:

select
cast (sum(tl.match)as decimal(7,2)) as predicted matches
,cast (sum(tl.nonmatch) as decimal(7,2)) as predicted non matches
,cast (sum(tl.match + tl.nonmatch) as decimal(7,2)) as
total predictions
,predicted matches / total predictions as pct accuracy
from
(SELECT

id,

gender,

ever married,

age,

graduated,

profession,

work experience,

spending_ score,

family size,
var 1,
segmentation as actual segmentation,
chapter6 supervisedclassification.predict cust segment 11
(id,gender, ever married, age,graduated,profession,work experience,
spending score, family size,var 1) as predicted segmentation,
case when actual segmentation = predicted segmentation then 1
else 0 end as match,
case when actual segmentation <> predicted segmentation then 1
else 0 end as nonmatch
FROM
chapter6 supervisedclassification.cust segmentation train
) tl;

We get the following output:

B Result1(1)

O predicted_matches predicted_non_matches total_predictions pct_accuracy

(] 4291 a7 8068 0.53185423

Figure 6.17 — The model accuracy

This output shows that we are very close to the score of .535028 when we
compare the number of times the model correctly predicted the segment

against the total number of input records.

Now that we have checked the model accuracy, we are ready to run

prediction queries against the test dataset.

Running prediction queries

Now that we have our model and have done validation, we can run our

prediction query against our test set so that we can segment our prospective

customers, based on customer IDs. You can see that we now use our

function against the test table to get the predicted segment:

SELECT

id,

chapter6 supervisedclassification.predict cust segment 11
(id,gender, ever married, age,graduated,profession,work experience,
spending score, family size,var 1) as segmentation

FROM chapter6 supervisedclassification.cust segmentation test;

The first 10 customers are shown here:

id segmentation

458989
458994
458996
459000
459001
4598003
459005
459008
459013
459014

o OO0 mwo m > 0 F

Figure 6.18 — The predicted segment

Let’s see how the new prospective customers are spread across the various

segments:

SELECT
chapter6 supervisedclassification.predict cust segment 11
(id, gender, ever married, age,graduated, profession,work experie
nce, spending score,family size,var 1) as segmentation,
count (*)
FROM chapter6 supervisedclassification.cust segmentation test
group by 1;

We can see here how many prospective customers are in each segment:

2 Result 1 (4)

segmentation count
A 782
C 583
D
B

749
513

Figure 6.19 — The customer count by segment

Now that you have this information, your marketing team is ready to target

their efforts on these prospective customers.

Let’s now take a look at some other options you can use to solve this multi-

class classification problem.

Exploring other CREATE MODEL options

We can also create this model in a couple of different ways, which we will
explore in the following sections. It is important to understand the different
options available so that you can experiment and choose the approach that

gives you the best model.

In the first example, we will not provide any user guidance, such as
specifying MODEL TYPE, PROBLEM TYPE, Or OBJECTIVE. Use this approach if
you are new to ML and want to let SageMaker Autopilot determine this for

you.

Then, in the next example, you can see how you can provide PROBLEM TYPE

and oBJECTIVE. As a more experienced user of ML, you should now

recognize which proBLEM TYPE and oBJECTIVE instances are best for your
use case. When you provide these inputs, it will speed up the model training
process, since SageMaker Autopilot will only train using the provided user

guidance.

Creating a model with no user guidance

In this approach, we let SageMaker Autopilot choose MODEL TYPE,

PROBLEM TYPE, and OBJECTIVE:

CREATE MODEL
chapter6 supervisedclassification.cust segmentation model
FROM (
SELECT
id,
gender,
ever married,
age,
graduated,
profession,
work experience,
spending score,
family size,
var 1,
segmentation
FROM chapter6 supervisedclassification.cust segmentation train
)
TARGET segmentation
FUNCTION predict cust segment IAM ROLE default
SETTINGS (
S3 BUCKET '<<your S3 Bucket>>',
S3 GARBAGE COLLECT OFF,
MAX RUNTIME 9600

)7

Note that we have only provided the basic settings. We did not specify
MODEL_TYPE, PROBLEM_TYPE, OI OBJECTIVE. Amazon Redshift ML and

SageMaker will automatically figure out that this is a multi-class

classification problem and use the best model type. As an additional
exercise, run this cReaTE MopeL command, and then run the ssow MoDEL
command. It will show you the MopEL_TYPE parameter that Amazon
SageMaker used to train the model.

Creating a model with some user guidance

In this example, we will provide proBLEM TYPE and oBJECTIVE, but we will

let Amazon SageMaker determine MODEL_TYPE:

CREATE MODEL
chapter6 supervisedclassification.cust segmentation model ug
FROM (
SELECT
id,
gender,
ever married,
age,
graduated,
profession,
work experience,
spending score,
family size,
var 1,
segmentation
FROM chapter6 supervisedclassification.cust segmentation train
)
TARGET segmentation
FUNCTION predict cust segment ug IAM ROLE default
PROBLEM TYPE MULTICLASS CLASSIFICATION
OBJECTIVE 'accuracy'
SETTINGS (
S3 _BUCKET '<<your S3 Bucket>>',
S3 GARBAGE COLLECT OFF,
MAX RUNTIME 9600
)

In this example, we let Amazon Redshift ML and Amazon SageMaker
determine MobEL_TYPE, and we pass in PROBLEM TYPE and oBJEcTIVE. When
you have some free time, experiment with the different methods of creating
the models, and note the differences you see in the time it takes to train the
model, and also compare the accuracy and other outputs of the seow MoDEL

command.

You can also create multi-class classification models using XGBoost, which

we will cover in Chapter 10.

Summary

In this chapter, we discussed classification models in detail and looked at
their common use cases. We also explained the cREATE MoDEL syntax for
classification models, where you provide guidance to train a model by

supplying the model type and objective.

You learned how to do binary classification and multi-class classification
with Amazon Redshift ML and how to use the XGBoost and linear learner
algorithms. We also showed you how to check the status of your models,
validate them for accuracy, and write SQL queries to run predictions on

your test dataset.

In the next chapter, we will show you how to build regression models using
Amazon Redshift ML.

Building Regression Models

In the previous chapter, we learned about classification models. In this
chapter, we will learn about building linear regression models where we
predict numeric variables. Unlike classification models, linear regression
models are used to predict a continuous numeric value. Similar to the
previous chapter, here also you will learn about various methods that

Redshift provides for creating linear regression models.

This chapter will provide several detailed examples of business problems
that can be solved with these modeling techniques. In this chapter, we will
walk through how you can try different algorithms to get the best regression

model.

By the end of this chapter, you will be in a position to identify whether a
business problem is a linear regression or not and then be able to identify

the right method that Redshift provides to train and build the model.
In this chapter, we will go through the following main topics:
 Introducing regression algorithms
e (Creating a simple regression model using the XGBoost algorithm

e (Creating multi-input regression models

Technical requirements

This chapter requires a web browser and access to the following:
e AWS account
e Amazon Redshift Serverless endpoint

e Amazon Redshift Query Editor v2

You can find the code used in this chapter here:

https://github.com/PacktPublishing/Serverless-Machine-1.earning-with-
Amazon-Redshift/blob/main/CodeFiles/chapter7/chapter7.sql

Introducing regression algorithms

Regression models are used where you are trying to predict a numeric
outcome such as what price an item will sell for. The outcome variable is
your target and your input variables are used to determine the relationship
between the variables so that you can predict the unknown target on sets of

data without the target variable.

You can have a single input variable, also known as simple linear
regression. For example, years of experience and salary usually have a

relationship.

Multiple linear regression is when you have multiple input variables. For
example, predicting the selling price of homes in a particular zip code by
using the relationship between the target (price) and various inputs such as
square footage, number of bedrooms, pool, basement, lot size, and year

built.

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter7/chapter7.sql

A good linear regression model has a small amount of vertical distance

between the line and the data points. Refer to the following figure:

-

U A—
e Best fit
" =
(Target gith
variable) outlier

l‘" /
ol

S

X
({Input
variables)

Figure 7.1 — Linear regression line

Common use cases where regression models are useful are as follows:

e Price and revenue prediction

e Predicting customer lifetime value

e Predicting the weather

e Measuring the effectiveness of marketing campaigns
This chapter will show you how to build regression models in Amazon
Redshift ML using the XGBoost and Linear Learner algorithms, which you

used in Chapter 6. As you will see, you can use the same algorithms on

different machine learning problems.

We have looked at the regression problem; now let’s look at the Redshift

CREATE MODEL command to create a regression model.

Redshift's CREATE MODEL with user
guidance

When using the creaTE MopeL command in Redshift, the system will
automatically search for the best combination of preprocessing and model
for your specific dataset. However, in some cases, you may want additional
control over the model creation process or to incorporate domain-specific

knowledge.

Redshift offers flexibility to guide the cReaTE MODEL process so the time
taken by the AutoML job is reduced.

We are going to explore the model type and problem type parameters of the
CREATE MODEL Statement in this chapter. As part of crReaTE MopEL with user
guidance, you also have the option of setting a preprocessor, but we will

leave that topic for Chapter 10.

When you are guiding the AutoML job, as a machine learning model
creator, you are going to decide what algorithm to use and what problem
type to address. Redshift ML still performs the feature engineering of
independent variables behind the scenes — for example, out of 20 features,
Redshift ML will automatically identify the categorical variables and
numeric variables and create a one-hot-encoded value or standardization of
numerical variables where applicable, along with various other tasks

required to complete the model training.

In summary, you are letting Redshift ML handle the bulk of data
preparation tasks for machine learning. As a model creator, you have the
option to specify the algorithm and problem type to be used in the crREaTE

MODEL statement, which has the benefit of reduced training time, since

SageMaker does not need to spend time determining which algorithm or

problem type to use.

Now that we have learned what creaTe MobEL with user guidance is, let’s

start creating a simple regression model.

Creating a simple linear regression
model using XGBoost

To build our simple linear regression problem, we are going to take a look
at a dataset that includes predicting weight based on height. This dataset has
only one independent variable, which is height in inches, and is used to
predict weight in pounds. Since there is only one independent variable, we

call this the simple linear regression model.

In this section, we will upload the data, analyze it, prepare it for training the
model, and then lastly, we will create the model and run prediction queries

using the function created by the model.

Uploading and analyzing the data

We are going to work on a height and weight dataset in this section.

The dataset contains 25,000 synthetic records of human heights and weights
of 18-year-old participants. This data was generated based on a 1993
Growth Survey, which was conducted on 25,000 children from their birth to
18 years of age. The participants were recruited from Maternal and Child
Health Centers (MCHCs) and schools, and the data collected was used to

develop Hong Kong’s current growth charts for weight, height, weight-for-
age, weight-for-height, and body mass index (BMI).

More details about this dataset can be found here:
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_020108 Heigh
tsWeights.

DATASET CITATION

Hung-Kwan So, Edmund AS Nelson, Albert M Li, Eric MC Wong, Joseph TF Lau, Georgia S
Guldan, Kwok-Hang Mak, Youfa Wang, Tai-Fai Fok, and Rita YT Sung. (2008) Secular
changes in height, weight, and body mass index in Hong Kong Children. BMC Public
Health. 2008; 8: 320. doi: 10.1186/1471-2458-8-320. PMCID: PMC2572616

Leung SS, Lau JT, Tse LY, Oppenheimer SJ. Weight-for-age and weight-for-height
references for Hong Kong children from birth to 18 years. J Paediatr Child Health.
1996,32:103—109. doi: 10.1111/j.1440-1754.1996.tb00904. x.

Leung SS, Lau JT, Xu YY, Tse LY, Huen KF, Wong GW, Law WY, Yeung VT, Yeung WK, et
al. Secular changes in standing height, sitting height and sexual maturation of Chinese—the
Hong Kong Growth Study, 1993. Ann Hum Biol. 1996;23:297-306. doi:
10.1080/03014469600004532.

In the following subsections, we will discuss the prediction goals we are
trying to achieve using this dataset and then analyze the data.

Prediction goal

The goal is to predict the weight of children as a numeric value based on

supplied height as a numeric value.

The dataset has the following columns:

Column Description

Index Sequential number

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_020108_HeightsWeights

Height in Inches Height of a child as a numerical value

Weight in Pounds Weight of a child as a numerical value

Table 7.1 — Data definition

Analyzing the data

After successfully connecting to Redshift as an admin or database
developer, create the schema and load data into Amazon Redshift as

follows:

1. Navigate to Redshift query editor v2 and connect to the Serverless

endpoint and then the dev database.

2. Name the untitled query editor by saving it as Chapter7.

The following screenshot shows a serverless connection, the database set to

dev, and the Redshift query editor page saved as chapter7:

Redshift query editor v2 default Database dev

+ Create b, Load data
Chapter7 X
Q s
= Limit 100 Explain
v & Serverless: default
> m dev schema chapter?_RegressionModel;

[

> mm sample_data_dev

Figure 7.2 — Connecting to the Serverless endpoint

3. Create the schema as follows:

create schema chapter’7 RegressionModel;

4. Create a table using the following code:
--create table to load data
DROP TABLE chapter/ RegressionModel.height weight;

CREATE TABLE chapter7 RegressionModel.height weight

Id integer,
HeightInches decimal (9,2),

weightPounds decimal (9, 2)

5. Load the sample data by using the following command:
TRUNCATE chapter7 RegressionModel.height weight;
COPY chapter7 RegressionModel.height weight

FROM 's3://packt-serverless-ml-
redshift/chapter07/heightweight/HeightWeight.csv'

IAM ROLE default
Csv
IGNOREHEADER 1

REGION AS 'eu-west-1"'";

6. Analyze the height and weight dataset table by creating a histogram
chart.

7. Use the Query Editor v2 Chart feature to create a graph. First, run the
following command and then click on the Chart option found on the

right-hand side in the Results pane:
SELECT * FROM
chapter7 RegressionModel.height weight

ORDER BY 2, 3;

To generate the following chart, you need to add two traces to your chart.
By default, the chart is loaded with one trace, so you need to add one

additional trace. You can add it by clicking on the + Trace button.

The following chart shows both variables. For trace 1, select heightinches
on the y axis, leaving the x axis empty. For trace 2, select weightpounds on
the y axis, leaving the x axis empty. The resulting chart should look like
this:

Heights and Weights

130 = Height
— Weight
120
110

100

Value

0

80

70

fOh—

0 10 20 30 40 50 60 70 80 90

Observations

Figure 7.3 — Weights and heights
As you can see, there is a slight upward trend in weights along with heights.

Now that we have analyzed our dataset, we will split it into training and
validation sets. The training set will be used to train our model and the

validation set will be used to evaluate the model’s accuracy.

Splitting data into training and validation
sets

Since we have only one dataset, let’s write a query that splits data into two

logical sets: training and validation.

To train the model, let’s use the syntax where id%8 is not equal to 0:

SELECT * FROM
chapter7 RegressionModel.height weight Where id%8!=0;

To validate the model, let’s use where id%S8 is equal to 0:

SELECT * FROM
chapter7 RegressionModel.height weight Where 1d%8=0;
We have analyzed and prepared our input data, now let’s create a machine

learning model.

Creating a simple linear regression
model

In this section, you will use creaTe mMobEL with user guidance to create a
simple linear regression model using the XGBoost algorithm. We will
address the weight prediction problem by training a machine learning
model. The goal of this model is to predict a weight based on a given
height.

We set MODEL_TYPE as xgboost and PROBLEM TYPE as regression. We leave

other options as default:

DROP MODEL chapter’7 RegressionModel.predict weight;

CREATE MODEL chapter7 RegressionModel.predict weight

FROM (select heightinches, cast (round(weightpounds,0) as integer)
weightpounds from chapter7 RegressionModel.height weight where
id%8!=0)

TARGET weightpounds

FUNCTION predict weight

IAM ROLE default

MODEL TYPE xgboost

PROBLEM TYPE regression

OBJECTIVE 'mse'

SETTINGS (s3 bucket '<<your-S3-bucket>>',
s3 garbage collect off,
max_runtime 3600) ;

Let’s take a look at the options we provided in the cREATE MODEL statement

and discuss how they affect the actions taken by Amazon SageMaker

In the creaTE MoDEL statement, we are guiding Redshift ML to use XGBoost
as an algorithm by setting MmobeL_typE. The Amazon SageMaker Autopilot

job will not train the model using other supported algorithms — for example,
Linear Learner or multilayer perceptron (MLP). When this option is left
as default, Amazon SageMaker will train the model using all the algorithms

supported by Autopilot.

Next, when we set PROBLEM TYPE tO regression, we are guiding Redshift

ML to search for a model to solve a regression problem type.

We set oBJECTIVE to mse (mean squared error), which is commonly used to
evaluate the performance of a regression model. It is a measure of the
average of the squared differences between the predicted values and the

actual values.

With these three guiding options, we are creating boundaries for Amazon
SageMaker Autopilot. The end result would be less training time bundled
with other benefits of the Autopilot algorithm — for example, adjusting

hyperparameters and data preprocessing steps, which are all auto-handled

by Amazon SageMaker Autopilot.

To check the status of the model, run the following command:

SHOW MODEL chapter7 RegressionModel.predict weight;

The following screenshot shows the output of the srow mMobEL command:

BB Result1 (23)

Key Value

Model Name predict_weight

Schema Name chapter7_regressionmodel
Owner IAMR:Admin

Creation Time Wed, 15.02.2023 13:07:52
Model State TRAINING

TRAINING DATA:

Query SELECT HEIGHTINCHES, CAST(ROUND(WEIGHTPOUNDS,0) AS I...
FROM CHAPTER7_REGRESSIONMODEL.HEIGHT_WEIGHT
WHERE ID%8!=0

Target Column WEIGHTPOUNDS

FARAMETERS:
Model Type xgboost

Problem Type Regression

Objective MSE

AutoML Job Name redshiftml-20230215130752296401
Function Name predict_weight

Function Parameters heightinches

Function Parameter T... numeric

Figure 7.4 — SHOW MODEL output

The model is still under training, but you will notice that Redshift ML is
picking up Model Type, Problem Type, and Objective parameter values

from our CREATE MODEL statement.

The Function Name parameter, predict weight, is used to generate
predictions and is used in the seLEcT statement, which we will cover in the

next section.

Run the sHow MopEL command again after some time to check whether the
model training is complete or not. From the following screenshot, you can
see that model training has finished and MSE has been selected as the
objective for model evaluation. This is auto-selected by the Redshift ML

and is the correct evaluation method for linear regression models:

Key Value

Model Name predict_weight

Schema Name chapter?_regressionmodel

Owner IAMR:Admin-OneClick
Creation Time Wed, 27.07.2022 17:48:25
Model State READY

validation:mse 102.496033

Estimated Cost 4.990489

TRAINING DATA:

Query SELECT HEIGHTINCHES, CAST(ROUND(WEIGHTPOUNDS,0) AS INTEGER,) ...
FROM CHAPTERV_REGRESSIONMODEL.HEIGHT_WEIGHT
WHERE ID%8!=0

Target Column WEIGHTPOUNDS

PARAMETERS:

Model Type xgboost

Problem Type Regression
Objective MSE
AutoML Job Name redshiftml|-20220727174825491549

Function Name predict_weight

Function Parameters heightinches

Function Parameter T... numeric

] 1AM Role default-aws-iam-role

[] S3 Bucket serverlessmachinelearningwithredshift-709512860261
1 Max Runtime 3600

Figure 7.5 - SHOW MODEL output — model ready state

We have trained and created the model; in the next step, we will generate

the predictions.

Running predictions

Since our model has been successfully trained, let’s run some predictions

against unseen datasets.

Run the following query to find records where the model is exactly
predicting weight in pounds for a given height in inches where id¢8=0. By
using WHERE id%8=0, we are looking at ~20% of our dataset. These are
records that were not included in model training. If you recall, in the creaTe

MODEL statement, we specified WHERE id%8 !=0:

SELECT heightinches,
CAST (chapter7 RegressionModel.predict weight (CAST (ROUND (heightinc
hes,0) as integer)) as INTEGER) as Predicted Weightpounds,
CAST (ROUND (weightpounds, 0) as INTEGER) Original Weightpounds ,
Predicted Weightpounds - Original Weightpounds as Difference
FROM chapter7 RegressionModel.height weight WHERE 1d%8=0
AND Predicted Weightpounds - Original Weightpounds = 0;

Here is the output for it:

- Result 1(100)

] heightnches predicted_weightoounds | onginal_weightpounds | ciference

(] 8681 1ol 121
[6631 116 116
0 6728 fol il
(] 8847 140 0
] 688 140 90
0 2% 1@ 16
[1 6688 fol 1ol

Figure 7.6 — Showing predicted weight results

Now, let’s check the MSE and root mean square error (RMSE):

SELECT
ROUND (AVG (POWER ((Original Weightpounds -
Predicted Weightpounds),2)),2) mse
, ROUND (SQRT (AVG (POWER ((Original Weightpounds -
Predicted Weightpounds),2))),2) rmse
FROM
(select heightinches,
cast (chapter7 RegressionModel.predict weight (cast (round (heightinc
hes,0) as integer)) as integer) as Predicted Weightpounds,
cast (round (weightpounds, 0) as integer) Original Weightpounds ,
Predicted Weightpounds - Original Weightpounds as Difference

from chapter7 RegressionModel.height weight where 1d%8=0
) ;

Here is the output:

Result 1 (1)

(] mse

[99.44

Figure 7.7 — MSE and RMSE values

Our MSE value 1s high; it represents data that may have outliers or for
which we do not have enough variables. For example, adding age and

gender may improve the prediction score.

Let’s compare predicted scores and original scores in a line chart:

select heightinches,
cast (chapter7 RegressionModel.predict weight (cast (round (heightinc
hes,0) as integer)) as integer) as Predicted Weightpounds,
cast (round (weightpounds, 0) as integer) Original Weightpounds ,
Predicted Weightpounds - Original Weightpounds as Difference
from chapter7 RegressionModel.height weight where 1d%8=0;

Once a response is returned, click on the Chart option found on the right-
hand side in the Query Editor, add a trace for the line, and select
Predicted_Weightpounds. Add another trace for the line chart and select

Original_Weightpounds, then add a third trace, but this time, select Bar

graph and add a Difference column.

In the following chart, you will notice that the predicted scores are
following the original scores. The difference is shown at the bottom of the

graph, which gives information about the variance or error:

Predicted vs Original weights

= predicted
= griginal

150
B difference

[y
—
=

Weight in pounds
=

Observations

Figure 7.8 — Predicted versus original weights

We have learned about how a simple regression model is created using

Redshift ML. Now let’s learn about the multi-input regression model.

Creating multi-input regression models

In this exercise, you will learn how to build a regression model using

multiple input variables in Amazon Redshift ML.

In this use case, we will use a dataset containing the sales history of online
sporting events. A sporting event management company wants to review
the data for the latest football and baseball seasons to figure out which
games underperformed for revenue, and what the revenue projections look

like for the season.

Your task is to build and train a model to predict revenue for upcoming
events in order to proactively take action to increase ticket sales to ensure

revenue numbers meet the company’s targets.

After successfully connecting to Redshift as an admin or database

developer, load data into Amazon Redshift.

Navigate to Redshift query editor v2 and connect to the Serverless

endpoint and the dev database.

Use the same schema and query editor page you created for the previous

exercise.

Create your input table and load the data using the following SQL

commands:

CREATE TABLE chapter7 RegressionModel.sporting event ticket info
(

ticket id double precision ,

event id bigint,

sport character varying(500),

event date time timestamp without time zone,

home team character varying(500),

away team character varying(500),

location character varying(500),

city character wvarying(500),

seat level bigint,

seat section bigint,

seat row character varying(500),

seat bigint ENCODE az64,

list ticket price double precision,

final ticket price double precision ,

ticketholder character varying(500)

)

DISTSTYLE AUTO;

COPY chapter7 RegressionModel.sporting event ticket info
FROM 's3://packt-serverless-ml-redshift/chapter07/ticket info'
IAM ROLE default

FORMAT AS CSV DELIMITER ', ' QUOTE '"'

REGION AS 'eu-west-1"'";

Let’s analyze our dataset and get a historical trend of ticket sales over the

last few months:

Select extract (month from event date time) as month,

sum(cast (final ticket price as decimal(8,2))) as ticket revenue
From chapter7 RegressionModel.sporting event ticket info

where event date time < '2019-10-27"

group by 1

order by 1;

The output is as follows:

ticket revenue

9452100.91
8745572.16
10319796.7
8729327.06
8457197.08
22048196.31
15344676.75

Figure 7.9 — Ticket revenue by month

We can see that sales are spiky and fall off dramatically in months 7 and 8.

Let’s create a model so we can predict teams that will have lower ticket
revenue. Before creating our model, we need to split the dataset into

training, validation, and testing datasets, respectively.

1. Execute the following code in Query Editor v2 to create the training
table:

CREATE TABLE
chapter7 RegressionModel.sporting event ticket info training

ticket id double precision ,

event id bigint,

(

sport character varying(500),

event date time timestamp without time zone,
home team character varying(500),
away team character varying(500),
location character varying(500),

city character varying(500),

seat level bigint,

seat section bigint,

seat row character varying(500),

seat bigint ENCODE az64,

list ticket price double precision,
final ticket price double precision ,

ticketholder character varying (500)

DISTSTYLE AUTO;

2. The next step is to insert ~70% of the data into the training table:
-—insert ~70% of data into training set

insert

into chapter7 RegressionModel.sporting event ticket info tra

ining

(ticket id ,event id ,sport , event date time, home team ,
away team , location , city , seat level, seat section,

seat row , seat, list ticket price, final ticket price,
ticketholder)

select

ticket id ,event id ,sport , event date time, home team ,
away team , location , city , seat level, seat section,

seat row , seat, list ticket price, final ticket price,
ticketholder

from chapter7 RegressionModel.sporting event ticket info

where event date time < '2019-10-20"';

3. Next, you will create the validation table:

CREATE TABLE
chapter7 RegressionModel.sporting event ticket info validation

(
ticket id double precision ,
event id bigint,
sport character varying(500),
event date time timestamp without time zone,

home team character varying(500),

away team character varying(500),
location character varying(500),

city character varying(500),

seat level bigint,

seat section bigint,

seat row character varying(500),

seat bigint ENCODE az64,

list ticket price double precision,
final ticket price double precision ,

ticketholder character varying(500)

DISTSTYLE AUTO;

4. Next, insert ~10% of the data into the validation table:

insert
into chapter7 RegressionModel.sporting event ticket info wvali
dation

(ticket id ,event id ,sport , event date time, home team ,
away team , location , city , seat level, seat section,

seat row , seat, list ticket price, final ticket price,
ticketholder)

select

ticket id ,event id ,sport , event date time, home team ,
away team , location , city , seat level, seat section,

seat row , seat, list ticket price, final ticket price,
ticketholder

from chapter7 RegressionModel.sporting event ticket info

where event date time between '2019-10-20' and '2019-10-22"' ;

5. Finally, create the testing table:

CREATE TABLE
chapter7 RegressionModel.sporting event ticket info testing (

ticket id double precision ,

event id bigint,

sport character varying(500),

event date time timestamp without time zone,
home team character varying(500),

away team character varying(500),

location character varying(500),

city character varying(500),

seat level bigint,

seat section bigint,

seat row character varying(500),

seat bigint ENCODE az64,

list ticket price double precision,
final ticket price double precision ,

ticketholder character varying(500)

DISTSTYLE AUTO;

6. Next, insert ~20% of the data into the testing table:

insert
into chapter7 RegressionModel.sporting event ticket info tes
ting

(ticket id ,event id ,sport , event date time, home team ,

away team , location , city , seat level, seat section,

seat row , seat, list ticket price, final ticket price,
ticketholder)

select

ticket id ,event id ,sport , event date time, home team ,

away team , location , city , seat level, seat section,

seat row , seat, list ticket price, final ticket price,
ticketholder

from chapter7 RegressionModel.sporting event ticket info

where event date time > '2019-10-22'

We have prepared the dataset to train and test the ML model; now let’s

create a regression model using the Linear Learner algorithm.

Linear Learner algorithm

As we saw in Chapter 6, you can use the Linear Learner model type to
solve classification or regression problems. This is a supervised learning
algorithm. For regression problems, we are trying to predict a numerical
outcome and, in this exercise, we will be using multiple inputs; SageMaker

will choose the best modes based on continuous objectives using MSE.

We provide a training set with data that contains our inputs or observations
about the data and the label, which represents the value we want to predict.

Our goal is to accurately predict future ticket sales.

We set MODEL_TYPE as LINEAR LEARNER, PROBLEM TYPE aS regression, and

OBJECTIVE as mse. We leave out other options as default.

Execute this code in Query Editor v2 to train the model. Be sure to replace
the following S3 bucket using the bucket you created previously. You will
need to input the S3 bucket you created previously to store the Redshift ML

artifacts.

Run the following command to train the regression model:

CREATE MODEL
chapter7 RegressionModel.predict ticket price linlearn from

chapter7 RegressionModel.sporting event ticket info training
TARGET final ticket price

FUNCTION predict ticket price linlearn

IAM ROLE default

MODEL TYPE LINEAR LEARNER

PROBLEM TYPE regression

OBJECTIVE 'mse'

SETTINGS (s3 bucket '<<your-S3-Bucket>>',

s3 garbage collect off,

max_runtime 9600) ;

Once the model state is READY, you are ready to proceed. To check the

status of the model, run the following command:

SHOW MODEL
chapter7 RegressionModel.predict ticket price linlearn;

Note the MSE score you see; it will be similar to the output in Figure 7.10:

[Key Value

Modal Name predict_ticket_price_liniearn

Schema Name chapter?_regressionmodel

Owner IAMR:Admin

Creation Time Wed, 15.02.2023 13:32:14
Model State READY

validation:mse 681.905884

Estimated Cost 5.903461

TRAINING DATA:
Query SELECT*

FROM "CHAPTER7_REGRESSIONMODEL"."SPORTING_EVENT _TICKET_INFO_TRAINING"
Target Column FINAL_TICKET PRICE

PARAMETERS:

Model Type linear_learner

Problem Type Regression
Objective MSE
AutoML Job Name redshiftml-20230215133214851755

Function Name predict_ticket_price_linlearn

Figure 7.10 — SHOW MODEL output

We have now created the ML model; let’s validate its performance.

Understanding model evaluation

You measure the model performance of regression problems through the
MSE and/or RMSE. This is the distance between the predicted numeric
target and the actual numeric answer, also known as ground truth. In our
sHow MODEL output, we see the MSE. We can also calculate this ourselves by

squaring the differences between the actual and predicted values and then

finding the average. Then, take the square root of MSE to get the RMSE.
The lower the MSE and RMSE scores, the better.

As we see from the saow MopEL output, our MSE score is over 681 — let’s
check this and the RMSE score against our validation by running the

following SQL command:

SELECT
ROUND (AVG (POWER ((actual price revenue -
predicted price revenue),2)),2) mse
, ROUND (SQRT (AVG (POWER ((actual price revenue -
predicted price revenue),2))),2) rmse
FROM

(select home team,
chapter7 RegressionModel.predict ticket price linlearn
(ticket id, event id, sport, event date time, home team,
away team,
Location, city, seat level, seat section, seat row, seat,
list ticket price ,ticketholder) as predicted price revenue,
final ticket price as actual price revenue
From
chapter7 RegressionModel.sporting event ticket info validation

) 7

This is the output of the query:

Figure 7.11 — MSE and RMSE values

While the MSE scores seem a little high, we can also run a validation query
to check our accuracy rates. You will notice in the following query that it
uses the function that was generated by our cREATE MoDEL command to get

the predicted price revenue for us to compare to the actual price revenue:

Select home team,

sum (cast (chapter7 RegressionModel.predict ticket price linlearn
(ticket id, event id, sport,

event date time, home team, away team,

Location, city, seat level, seat section, seat row, seat,

list ticket price ,ticketholder) as decimal(8,2))) as
predicted price revenue,

sum(cast (final ticket price as decimal(8,2))) as
actual price revenue,

(predicted price revenue - actual price revenue) as diff,

abs ((predicted price revenue -

actual price revenue)/actual price revenue) * 100 as pct diff
From

chapter7 RegressionModel.sporting event ticket info validation
group by 1

order by 5 desc ;

This is the output of the query:

home_team predicted_price_revenue actual_price_revenue diff pet_diff
Arizona Plranga 1547759.42 999293.1 548466.32 54.88
Minnesota Miners 729309.15 478958.86 250350.29 52.26
New Orleans Chrub 1085761.42 T44172.41 351589.01 47.24
Philadelphia Yellowja... = 418519.98 6919011 -273381.12 39.51
San Francisco Gold 718069.13 522790.97 195278.16 37.35

Los Angeles Angles 129775.16 95822.37 33952.79 35.43
Carolina Cheetah 274939.84 228438.44 46501.4 20.35
St. Louls Nobels 63127.87 56264.75 6863.12 1218
Seattle Ospreys 791826.67 891482.93 -89556.26 11.16
Los Angeles Fordhams 347889.25 314726.17 33173.08 10.54
86508.24 96022.64 -8514.4 9.9

Figure 7.12 — Predicted price versus actual price

Looking at the results, the model is not performing as well as we would

like. You can run the validation query against the training data and see that

the model is not performing very well on the training data either — this is

called underfitting.

One solution would be to add more features, but we have already used all

the available features.

Let’s try running the model again, but this time, we will use the auto option

and let SageMaker pick the algorithm:

CREATE MODEL Chapter7 RegressionModel.predict ticket price auto
from

chapter7 RegressionModel.sporting event ticket info training
TARGET final ticket price

FUNCTION predict ticket price auto

IAM ROLE default

PROBLEM TYPE regression

OBJECTIVE 'mse'

SETTINGS (s3 bucket '<<your-S3-bucket>>',

s3 _garbage collect off,

max_ runtime 9600);

After letting the model train for some time, check the status of the model as
follows:
SHOW MODEL Chapter7 RegressionModel.predict ticket price auto;

This 1s how it appears:

Key Value
Model Name predict_ticket_price_auto

] Schema Name chapter7_regressionmodel

[1 Owner IAMR:Admin

Creation Time Wed, 15.02.2023 17:46:38
Model State READY

validation:mse 0.800670

Estimated Cost 8.401197

TRAINING DATA:

Query SELECT*
FROM "CHAPTERT_REGRESSIONMODEL"."SFORTING_EVEN...

Target Column FINAL_TICKET_PRICE

PARAMETERS:
Model Type xgboost

Problem Type Regression

Obijective MSE

AutoML Job Name redshiftml-20230215174638030561
Function Name predict_ticket_price_auto

Function Parameters ticket_id event_id sport event_date_time home_team away _tea...

Function Parameter T... = float8 int8 varchar timestamp varchar varchar varchar varchar in...

1AM Role default-aws-lam-role

Figure 7.13 — SHOW MODEL output
From the preceding figure, we see that two things stand out:
e The MSE score is much better
e Amazon SageMaker chose to use the XGBoost algorithm

We can check the MSE and RMSE scores for our new model using our

validation dataset as follows:

SELECT
ROUND (AVG (POWER ((actual price revenue -

predicted price revenue),2)),2) mse

, ROUND (SQRT (AVG (POWER ((actual price revenue -
predicted price revenue),2))),2) rmse
FROM

(select home team,
chapter7 RegressionModel.predict ticket price auto (ticket id,
event id, sport, event date time, home team, away team,
Location, city, seat level, seat section, seat row, seat,
list ticket price ,ticketholder) as predicted price revenue,

final ticket price as actual price revenue

From

chapter7 RegressionModel.sporting event ticket info validation

) ;

This 1s the output:

0 mea

] 3.5799999999999996

Figure 7.14 — MSE and RMSE scores

These MSE and RMSE values show that we have a good model.

Let’s run a validation query using the predict_ticket_price_auto function

from the new model:

Select home team,

sum(cast (chapter7 RegressionModel.predict ticket price auto
(ticket id, event id, sport, event date time, home team,
away team,

Location, city, seat level, seat section, seat row, seat,
list ticket price ,ticketholder) as decimal(8,2))) as
predicted price revenue,

sum(cast (final ticket price as decimal(8,2))) as
actual price revenue,

(predicted price revenue - actual price revenue) as diff,

((predicted price revenue -
actual_price_revenue)/actual_price_revenue) * 100 as pct diff
From

chapter7 RegressionModel.sporting event ticket info validation
group by 1

order by 5 desc;

The following is the output for this query:

home_team predicted_price_revenue actual_price_revenue diff pet_diff

[New Orleans Chrub 797229.54 44172.41 13057.13 1.75
Atlanta Kestrels 539584.2 534735.19 4849.01 09
Los Angeles Angles 96690.08 95822.37 867.7 09
St. Louis Nobels 56754.8 56264.75 490.05 0.87
Dallas Horsemen 348109.78 345391.58 2718.2 0.78
Seattle Oceans 140937.7 139886.02 1051.68 0.75
Carolina Cheetah 229954.53 228438.44 1516.09 0.66
New York Behemoths 636323.58 632688.58 3635 0.57
Arizona Silverbacks 120331.11 119670.29 660.82 0.55
Kansas City Regals 96379.57 96022.64 356.93 0.37
Minnesota Pair 106673.41 106376.56 296.85 0.27
New York Janke 133939.1 133591.91 347.19 0.25
San Diego Pastors 93606.3 93448.18 158.12 0.16
New York Meets 97857.3 97812.15 45.15 0.04
Washington Citizens 83148.62 83115.21 33.41 0.04

[] Texas Tejanos 119226.38 119186.13 40.25 0.03

(0 8an Francisco Gold 522960.49 522790.97 169.52 0.03

Figure 7.15 — Predicted price versus actual price

You can see we have much better results when comparing the differences
between the actual and predicted ticket price revenue. We will use this

model to do our prediction queries.

Run the following query to see which inputs contributed most to the model

prediction:

set search path to chapter7 regressionmodel;
select
json table.report.explanations.kernel shap.labelO.global shap val
ues from
(select explain model ('predict ticket price auto') as report) as

json table

To make the result set easier to read, right-click on the result set and choose

Copy rows. You can then paste that into the editor as shown in Figure 7.16:

{"away_team":@.

"ocation":0.0
"seat_row":0.098131604358 "ceat_section"
"ticket 1d":0.47219465702 "ticketholder":0.015

Figure 7.16 — Model explainability report

This shows that 1ist_ticket price contributed the most weight and sport

contributed the least weight.

We have validated the model with a validation dataset, checked the MSE
values, and determined feature importance. Now let’s run the prediction

query against test data.

Prediction query

Now that we have our model and have done validation, we can run our
prediction query against our test dataset to determine which teams and
events will need a proactive approach to increase ticket sales. Let’s check

for teams with a predicted revenue of less than 200K:

select tl.home team, predicted price revenue

from

(Select home team,

sum(cast (chapter7 RegressionModel.predict ticket price auto
(ticket id, event id, sport, event date time, home team,
away team,

Location, city, seat level, seat section, seat row, seat,
list ticket price ,ticketholder) as decimal (8,2))) as
predicted price revenue

From chapter7 RegressionModel.sporting event ticket info testing
group by 1) tl

where predicted price revenue < 200000;

This 1s the result:

[0 home_team predicted_price_revenue

St. Louis Nobels 88861.85
Kansas City Regals 58583.65
Colorado Stones 151493.93
Washington Citizens 79939.99
Los Angeles Angles 115151.41
Oakland Clubs 94642.13
Arizona Silverbacks 93533.08
Detroit Lynx 88446.93
Chicago Snowy Sox 69344.39
Pittsburgh Alleghenys 86476.07
Tampa Bay Sting 55768.95
Chicago Chaps 98611.8
Baltimore Oreos 144523.03
San Francisco Goliaths 123145.88
Cincinnati Maroon 102373.7
MNew York Janke 132508.22

Figure 7.17 — Predicted price against the test dataset

There are 16 teams that are predicted to have reduced ticket revenue. You
can share this information with your marketing teams to create a focused

strategy to ensure ticket revenues can remain on track.

Summary

In this chapter, we discussed regression models in detail and saw how to
create single-input and multi-input regression models. We learned how easy
it is to predict a numeric value. We also learned how to validate regression
models, take actions to improve our model’s accuracy, and do prediction
queries with our regression models. We walked through options for using

XGBoost, Linear Learner and auto options to train your model.

We also saw how we can check and validate the MSE score from the saow

MoDEL output using SQL commands in Redshift.

In the next chapter, we will show you how to create unsupervised models

using the K-means algorithm.

8

Building Unsupervised Models with K-
Means Clustering

So far, we have learned about building machine learning (ML) models
where data is supplied with labels. In this chapter, we will learn about
building ML models on a dataset without any labels by using the K-means
clustering algorithm. Unlike supervised models, where predictions are
made at the observation level, K-means clustering groups observations into
clusters where they share a commonality — for example, similar

demographics or reading habits.

This chapter will provide detailed examples of business problems that can
be solved with these modeling techniques. By the end of this chapter, you
will be in a position to identify a business problem that an unsupervised
modeling technique can be applied to. You will also learn how to build,

train, and evaluate K-means model performance.

In this chapter, we will cover the following main topics:
e Grouping data through cluster analysis
e (Creating a K-means ML model

e Evaluating the results of K-means clustering

Technical requirements

This chapter requires a web browser and access to the following:
e An AWS account
e An Amazon Redshift Serverless endpoint
e Amazon Redshift Query Editor v2

e Complete the Getting started with Amazon Redshift Serverless section

in Chapter 1

You can find the code used in this chapter here:
https://github.com/PacktPublishing/Serverless-Machine-1.earning-with-
Amazon-Redshift/blob/main/CodeFiles/chapter8/chapter8.sql.

Grouping data through cluster analysis

So far, we have explored datasets that contained input and target variables,
and we trained a model with a set of input variables and a target variable.
This is called supervised learning. However, how do you address a dataset
that does not contain a label to supervise the training? Amazon Redshift
ML supports unsupervised learning using the cluster analysis method, also
known as the K-means algorithm. In cluster analysis, the ML algorithm
automatically discovers the grouping of data points. For example, if you
have a population of 1,000 people, a clustering algorithm can group them

based on height, weight, or age.

Unlike supervised learning, where an ML model predicts an outcome based
on a label, unsupervised models use unlabeled data. One type of
unsupervised learning is clustering, where unlabeled data is grouped based

on its similarity or differences. From a dataset with demographic

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter8/chapter8.sql

information about individuals, you can create clusters based on young,
adult, and elderly populations, underweight, normal weight, and overweight
populations, and so on. These groups are calculated based on values — for
example, if two people are young, then they are grouped together. These
groups are called clusters. In the following diagram, you can see that input
variables (Age, Height, and Weight) are grouped into young, adult, and

elder:

Age | Height | Weight A
| 160 [10 0
0 0
0 OO
T 16 [118
aul
OO elder
¥ 163 | A0 :> 0
§ | M| W joung
66 | 162 | 160 4
9 | 1M | 180 Aclustering population bosed on members' age, height,
and weight,
The threg clusters can be young, aduft, and elder.
0 | 178 | 10
1| 166 | 164

Figure 8.1 — A simple cluster example

In the preceding diagram, each individual data point is placed in a cluster,

based on the distance from the center of the cluster, called the centroid. The

distance from the centroid for each data point is calculated using the
Euclidean distance formula. Data points that are closest to a given
centroid have similarities and belong to the same group. In real-world
situations, it is very common to find data points with overlapping clusters
and too many of them. When you encounter too many clusters, then it is a

challenge to identify the right number of clusters for your dataset.
Common use cases for a K-means cluster include the following:

e E-commerce: Grouping customers by purchase history

e Healthcare: Detecting patterns of diseases

e Finance: Grouping purchases into abnormal versus normal

Next, we will show you one of the common methods to help you determine

how many clusters you should use.

Determining the optimal number of
clusters

One popular method that is frequently adopted is the Elbow method. The
idea of the Elbow method 1s to run K-means algorithms with different
values of K — for example, from 1 cluster all the way to 10 — and for each
value of K, calculate the sum of squared errors. Then, plot a chart of the
sum of squared deviation (SSD) values. SSD is the sum of the squared
difference and is used to measure variance. If the line chart looks like an
arm, then the e/lbow on the arm is the value of K that is the best among the
various K values. The method behind this approach is that SSD usually

tends to decrease as the value of K is increased, and the goal of the

evaluation method is also to aim for lower SSD or mean squared deviation
(MSD) values. The elbow represents a starting point, where SSD starts to

have diminishing returns when the K value increases.

In the following chart, you can see that the MSD value, when charted over
different K values, represents an arm, and the e/bow is at value 6. After 6,
there is no significant decrease in the MSD value, so we can pick 6 as the

best cluster value in the following scenario:

Eloow for K-means clusters

== 5D

)

0

Ir

z

, 400

0

T

Kl After 6 clusters there s no signifcant

s (ecrease in mean square distance

0

")

e 0

0

i

E 100

! ! b B 10 12

Cluster

Figure 8.2 — MSD values when charted over different K values

Next, let’s see how we can create a K-means clustering model with Amazon
Redshift ML.

Creating a K-means ML model

In this section, we will walk through the process with the help of a use case.
In this use case, assume you are a data analyst for an e-commerce company
specializing in home improvement goods. You have been tasked with
classifying economic segments in different regions, based on income, so
that you can better target customers, based on various factors, such as
median home value. We will use this dataset from Kaggle:

https://www.kaggle.com/datasets/camnugent/california-housing-prices.

From this dataset, you will use the median_income, latitude, and longitude

attributes so that you can create clusters based on 1ocation and income.

The syntax to create a K-means model is slightly different from what you

will have used up to this point, so let’s dive into that.

Creating a model syntax overview for K-
means clustering

Here is the basic syntax to create a K-means model:

CREATE model model name

FROM (Select statement)

FUNCTION function name

IAM ROLE default

AUTO OFF

MODEL_TYPE KMEANS

PREPROCESSORS (StandardScaler', 'MinMax', 'NumericPassthrough')
HYPERPARAMETERS DEFAULT EXCEPT (K '2')

SETTINGS (S3_BUCKET 'bucket name') ;

A couple of key things to note in the preceding code snippet are the lines in

bold, as they are required when creating K-means models:

https://www.kaggle.com/datasets/camnugent/california-housing-prices

e auro ofFF: This must be turned off, since Amazon SageMaker Autopilot

1s not used for K-means

* MODEL_TYPE KMEANS: YOU must set MODEL_TYPE, as there is no auto-

discovery for K-means

* HYPERPARAMETERS DEFAULT EXCEPT (K '2'): This tells SageMaker how

many clusters to create in this model

Also, note that there are three optional preprocessors available with K-

means. We will explore that in more detail when we create the model.

You can refer to this link for more details on the K-means parameters
available:

https://docs.aws.amazon.com/redshift/latest/dg/r _create_model use_cases.x

html#r_k-means-create-model-parameters.

Now, we will load our dataset in preparation for creating our model.

Uploading and analyzing the data

For this use case, we will use a file that contains housing price information

and summary stats, based on census data.

NOTE

Data is stored in the following S3 location: s3://packt-serverless-ml-

redshift/chapter08/housinghousing prices.csv.

After successfully connecting to Redshift as an admin or database
developer, load data into Amazon Redshift and follow the steps outlined

here.

https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.xhtml#r_k-means-create-model-parameters

1. Navigate to Redshift query editor v2, connect to the Serverless:

default endpoint, and then connect to the dev database.

edshift query edtorv2 t o

0 0ete v Q Lot | (et © Bpin () ot sesson) Serveessdefut v dov v
Q gl

Y B Sereres demo-uonkgoup3

)} [Senetesworgroup?. !

B Sereres demo-workroup)

v i Sess et)
) f datshare domo)
) ey

) i sample_data dev

Figure 8.3 — Connecting via Redshift query editor v2

2. Execute the following steps to create the schema and customer table and

load the data:

create schema chapter8 kmeans clustering;
create table chapter8 kmeans clustering.housing prices (
longitude decimal (10,2),
latitude decimal (10,2),
housing median age integer,
total rooms integer,

total bedrooms integer,

population integer,
households integer,
median income decimal (10,6),
median house value integer,

ocean proximity character varying (50)

diststyle auto;

copy chapter8 kmeans clustering.housing prices from
's3://packt-serverless-ml-
redshift/chapter08/kmeans/housing prices.csv'

Twi

iam role default format as csv delimiter ',' quote

ignoreheader 1 region as 'eu-west-1"';

This dataset contains 2,064,020,640 records. We will use longitude,

latitude, and median_income in our model.

3. Run the following query to examine some sample data:
select * from chapter8 kmeans clustering.housing prices
limit 10;

You should get the following result:

O longitude | latitude | housing_median_age | total_rooms total_bedrooms population households median_income

12223 31.88 4 880 129 322 126 8.3252
-122.22 31.86 21 7099 1108 2401 1138 8.3014
12224 31.85 52 1467 190 496 177 1.2574
-122.25 31.85 52 1274 236 958 218 9.6431
-122.26 37.85 52 1627 260 365 258 3.8462
-122.25 3185 32 919 213 413 183 4.0368
-122.25 31.84 52 2535 489 1094 514 3.6591
-122.25 31.84 52 3104 687 1187 647 312

-122.26 31.84 42 2555 665 1206 2.0804
-122.25 31.84 52 3549 o7 1561 3.6912

Figure 8.4 — Housing prices data

Now that the data is loaded, we are ready to create the model.

Creating the K-means model

Let’s create our model and cluster based on median_income, longitude, and

latitude.

We will create a few models and then use the elbow method to determine

the optimal number of clusters.

To begin with, let’s create our first model with two clusters using the
following SQL. You can then experiment by creating different models by
changing the K value, and then you can learn how the MSD value
diminishes over different K values.

Creating two clusters with a K value of 2

Let’s run the following SQL in Query Editor v2 to create a model with two

clusters:

create model chapter8 kmeans clustering.housing segments k2
from(select
median income,
latitude,
longitude
from chapter8 kmeans clustering.housing prices)
function get housing segment k2
iam role default
auto off
model type kmeans

preprocessors '|[
{
"columnset": ["median income", "latitude","longitude"],
"transformers": ["standardscaler"]

}
] |l
hyperparameters default except (k '2'")
settings (s3 bucket '<your s3 bucket>"');

You can see in this model that we supply values for the preprocessors
parameter. We chose to do this because K-means is sensitive to scale, so we
can normalize with the standardscaler transformer. standardscalar moves

the mean and scale to unit variance.

The hyperparameters parameter is where we specify (x '2') to create two
clusters. Remember to add your S3 bucket, where the created model
artifacts are stored. You will find the model artifacts in s3: s3://<your-s3-
bucket>/redshift-ml/housing segments_k2/. Redshift ML will
automatically append 'redshift-ml'/'your model name' to your S3 bucket.
Now, check the status of the model, using the suow MopEL command in

Query Editor v2:

SHOW MODEL chapter8 kmeans clustering.housing segments k2;

You will see the following output:

[Key

[Mode Name

[J Schema Name
[Owner

) Creation Time
0 Model State

0 trainmsa

[trainprogress

0 train:hroughput
[Estimated Cost
0

] TRAINING DATA

[Query
0

0
(] PARAMETERS:
[Model Type

Value
housing_segments_k2
chapterB_kmeans_clustering
demo

Tue, 24.01.2023 08:55:05
READY

1086200

100.000000
249274187500

0.007156

SELECT MEDIAN_INCOME, LATITUDE, LONGITUDE
FROM CHAPTERS_KMEANS_CLUSTERING HOUSING_PRICES

kmeans

Figure 8.5 — Two clusters

The key things to note are Model State, which indicates that the model is
ready, and train:msd, which is the objective metric. This represents the
mean squared distances between each record in our input dataset and the
closest center of the model. The MSD value is 1.088200, which is a good

Scorc€.

Let’s run a query to get the number of data points in each cluster:

select chapter8 kmeans clustering.get housing segment k2
(median income, latitude, longitude) as cluster, count (*) as
count from FROM chapter8 kmeans clustering.housing prices group
byGROUP BY 1 order byORDER BY 1;

The output is as follows:

[J cluster

00

1

Figure 8.6 — The data points

Clusters are numbered from o to n. Our first cluster has 8719 data points,

and the second cluster has 11921 data points.

In our use case, we want to further segment our customers. Let’s create a
few more models with different numbers of clusters. We can then evaluate
all the SSD values and apply the Elbow method to help us choose the

optimal number of clusters to use for our analysis.

Creating three clusters with a K value of 3

Let’s run the following SQL in Query Editor v2 to create a model with three

clusters:

CREATE model chapter8 kmeans clustering.housing segments k3
FROM (Select
median income,
latitude,
longitude
From chapter8 kmeans clustering.housing prices)
FUNCTION get housing segment k3
IAM ROLE default

AUTO OFF
MODEL TYPE KMEANS
PREPROCESSORS ' [
{
"ColumnSet": ["median income", "latitude","longitude"],
"Transformers": ["StandardScaler"]

}
1!
HYPERPARAMETERS DEFAULT EXCEPT (K '3')
SETTINGS (S3 BUCKET '<your s3 bucket>");

Creating the remaining models with clusters 4,
5, and 6

Repeat the preceding code 3 more times to create models with 4, 5, and 6
clusters, respectively. You will find the code at
https://github.com/PacktPublishing/Serverless-Machine-I earning-with-
Amazon-Redshift/blob/main/CodeFiles/chapter8/chapter8.sql.

It will take ~15 minutes for all the models to finish training. Then, run the
sHow MobDEL command, including the one for the model where x = 2, as

shown here:

SHOW MODEL chapter8 kmeans clustering.housing segments k2;

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter8/chapter8.sql

SHOW MODEL
SHOW MODEL
SHOW MODEL
SHOW MODEL

chapter8 kmeans clustering.housing segments k3;
chapter8 kmeans clustering.housing segments k4;
chapter8 kmeans clustering.housing segments k5;
chapter8 kmeans clustering.housing segments k6;

Now, let’s find the elbow!
Gathering inputs to chart the elbow

Now, from the

output of each suow MopEL command, note the value for

test:msd and build a se1ect statement, as shown in the following code

snippet. Change the value for MSD using the test:mds value for each

model.

As an example, we will use the value 1.088200, which we saw earlier for

train:msd, for the model with two clusters.

Our other output from train:mds from the saow MobEL output is as follows:

e Two clusters: train:msd — 1.088200

Note that your

Select 2 as
Union
Select 3 as
Union
Select 4 as
Union
Select 5 as

Three clusters: train:msd — 0.775993
Four clusters: train:msd — 0.532355
Five clusters: train:msd — 0.437294

Six clusters: train:msd — 0.373781

numbers may be slightly different:

K, 1.088200 as MSD
K, 0.775993 as MSD
K, 0.532355 as MSD

K, 0.437294 as MSD

Union
Select 6 as K, 0.373781 as MSD;

Run the preceding SQL command in Query Editor v2.

By observing the output, we can see that the MSD value is highest for two

clusters and gradually decreases as the number of clusters increases:

msa
1.0882

0.7759493

0.532355
0.4377894
0.373781

Figure 8.7 — msd

In the Result window, click on the Chart option, as shown here:

2 Result1(5) X, Export v Chart 37 ¥

0 k msd
O 2 1.0882

03 0.775993
04 0.532355
05 0.437294
g 6 0.373781

Figure 8.8 — Creating a chart

By choosing k as the x value and msd as the v value, you will get the

following output:

A Resul 1 (5 0 O%edat LBpoty O Gat
/Structure

Traces
v N trace

SUbplot

Toe N Lie
Transloms |

08
06

04

Figure 8.9 — The elbow method chart

From the chart, we can see that when MSD is charted over a line graph, an
arm 1s formed, and the elbow is at 3. This means that there is little
difference in the MSD value with 4 clusters compared to 3 clusters . We can

see that after 3, the curve is very smooth, and the difference between the

MSD value does not drastically change compared to the beginning of the

line.

Let’s see how data points are clustered when we use a function deployed for

our model with three clusters:

select chapter8 kmeans clustering.get housing segment k3
(median income, latitude, longitude) as cluster, count(*) as
count from chapter8 kmeans clustering.housing prices group by 1
order by 1;

We can see the following output from Query Editor v2. The counts

represent the number of data points assigned to each cluster:

(J cluster

0o

[1
0 2

Figure 8.10 — Three clusters

We can also chart this by clicking on the Chart button and observing the

cluster counts represented visually:

Number of data points

Cluster

Figure 8.11 — The cluster data points

Now, let’s see how we can use our model to help make business decisions

based on the clusters.

Evaluating the results of the K-means
clustering

Now that you have segmented your clusters with the K-means algorithm,

you are ready to perform various analyses using the model you created.

Here is an example query you can run to get the average median house

value by cluster:

select avg(median house value) as avg median house value,
chapter8 kmeans clustering

.get housing segment k3 (median income, latitude, longitude) as
cluster

from chapter8 kmeans clustering

.housing prices

group by 2

order by 1;

The output will look like this:

[] avg_meadian_hous... cluster

[178924 0
(] 193582 1
[] 334492

Figure 8.12 — Average median house values

You can also run a query to see whether higher median incomes correspond

to the same clusters with higher home values. Run the following query:

select avg(median income) as median income,

chapter8 kmeans clustering.get housing segment k3 (
median income, latitude, longitude) as cluster

from chapter8 kmeans clustering.housing prices

group by 2

order by 1;

The output will look like this:

(] median income

[J 3.100833
[] 3.685455
(] 6.865946

Figure 8.13 — median_income

When we established our use case, we said this was for an e-commerce
retailer specializing in home improvement products. Another way you
could use this information is to create different marketing campaigns and

tailor your product offerings, based on home values in a given cluster.

Summary

In this chapter, we discussed how to do unsupervised learning with the K-

means algorithm.

You are now able to explain what the K-means algorithm is and what use
cases it is appropriate for. Also, you can use Amazon Redshift ML to create
a K-means model, determine the appropriate number of clusters, and draw

conclusions by analyzing the clusters to help make business decisions.

In the next chapter, we will show you how to use the multi-layer perceptron

algorithm to perform deep learning with Amazon Redshift ML.

Part 3:Deploying Models with Redshift
ML

Part 3 introduces you to more ways to leverage Amazon Redshift ML. You
will learn about deep learning algorithms, how to train a customized model,
and how you can use models trained outside of Amazon Redshift to run

inference queries in your data warehouse.

This part closes with an introduction to time-series forecasting, how to use
it with Amazon Redshift ML, and how you can optimize and easily re-train

your models.
This part comprises the following chapters:
o Chapter 9, Deep Learning with Redshift ML
o Chapter 10, Creating Custom ML Models with XGBoost
o Chapter 11, Bring Your Own Models for In-Database Inference
o Chapter 12, Time-Series Forecasting in Your Data Warehouse

o Chapter 13, Operationalizing and Optimizing Amazon Redshift ML
Models

9

Deep Learning with Redshift ML

We explored supervised learning in Chapters 6 and 7 and unsupervised

learning models in Chapter 8. In this chapter, we will explore deep

learning algorithms, a multilayer perceptron (MLP), which is a
feedforward artificial neural network (ANN), and understand how it
handles data that is not linearly separable (which means the data points in
your data cannot be separated by a clear line). This chapter will provide
detailed steps on how to perform deep learning in Amazon Redshift ML
using MLP. By the end of this chapter, you will be in a position to identify a
business problem that can be solved using MLP and know how to create the

model, evaluate the performance of the model, and run predictions.
In this chapter, we will go through the following main topics:
e Introduction to deep learning

e Business problem

Uploading and analyzing the data

Creating a multiclass classification model using MLP

Running predictions

Technical requirements

This chapter requires a web browser and access to the following:

e AWS account
e Amazon Redshift Serverless endpoint

e Amazon Redshift Query Editor v2

You can find the code used in this chapter here:

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/blob/main/CodeFiles/chapter9/chapter9.sql.

Introduction to deep learning

Deep learning is a type of artificial intelligence (AI) that uses algorithms
to analyze and learn data to draw output similar to the way humans do.
Deep learning can leverage both supervised and unsupervised learning
using artificial neural networks (ANNs). In deep learning, a set of outputs
is generated from the input layers using a feedforward ANN called an MLP.
The MLP utilizes backpropagation to feed the errors from the outputs back
into the layers to compute one layer at a time and iterates until the model
has learned the patterns and relationships in the input data to arrive at a

specific output.

Feature learning is a set of techniques where the machine uses raw data to
derive the characteristics of a class in the data to derive a specific task at
hand. Deep learning models use feature learning efficiently to learn
complex, redundant, and variable input data and classify the specified task.
Thus, it eliminates the need for manual feature engineering for designing
and selecting the input features. Deep learning is very useful when your

datasets cannot be separated by a straight line, known as non-linear data.

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter9/chapter9.sql

For example, in classifying financial transactions as fraudulent or
legitimate, there may not be a clear linear boundary between the two classes
of data. In such cases, deep learning models can learn these variable and
complex non-linear relationships between the features of the input data and

thus improve the accuracy of the target classification.

When working on classification problems, an easy way to determine
whether your dataset is linearly separated is to draw a scatter plot for
classes and see whether two classes can be separated by a line or not. In the
following diagram, the left-hand chart shows that two classes are linearly

separated and the right-hand chart shows that they are not:

Lingarly Separable Non Lingar

Figure 9.1 — Linear versus non-linear datasets

You can create models in Redshift ML when your dataset cannot be linearly
separated by using the MLP algorithm. Common use cases where MLP

algorithms are useful are as follows:

e Speech recognition

e Image recognition

e Machine translation

This chapter will show you how to build deep learning models in Amazon
Redshift ML using the MLP algorithm.

Business problem

We will use a wall-following robot navigation dataset to build a machine
learning model using the MLP algorithm. The robot is equipped with
ultrasound sensors and data is collected as the robot navigates through the
room in a clockwise direction. The goal here is to guide the robot to follow
the wall by giving simple directions such as Move-Forward, Slight-Right-
Turn, Sharp-Right-Turn, and Slight-Left-Turn.

Since there are classes to predict for a given set of sensor readings, this is
going to be a multiclass problem. We will use MLP to correctly guide the
robot to follow the wall. (This data is taken from
https://archive.ics.uci.edu/ml/datasets/Wall-
Following+Robot+Navigation+Data and is attributed to Ananda Freire,
Marcus Veloso, and Guilherme Barreto (2019). UCI Machine Learning
Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of

California, School of Information and Computer Science.)

Please follow the detailed document on the page to gain more

understanding of the use case.

Now, you will upload the data, analyze it, and prepare for training the

model.

https://archive.ics.uci.edu/ml/datasets/Wall-Following+Robot+Navigation+Data
http://archive.ics.uci.edu/ml

Uploading and analyzing the data

We have sensor readings data stored in the following S3 location:
s3://packt-serverless-ml-redshift/chapter09/

After successfully connecting to Redshift as an admin or database

developer, load data into Amazon Redshift:

1. Navigate to Redshift query editor v2 and connect to Serverless:

workgroup2 and then to the dev database:

Redshift query editor v2 D chapd x

+ Create v & Load data b Run Lmit100 ~ Explin () olatedsession @ Serverlessdefault v dev v [e

4
.robot_navigation
tlon;

. \TE apterd_deeplearntng. robot_navigation (
v ¥ Serverless; default 0 id integer,
. 11 UST float,
v i datashare_demo US2 float,
- | US3 float,
)t 4 US4 flot,
5 USS float,

v E= dn

Figure 9.2 — Connect to the dev database

2. Execute the following steps to create the schema and customer table,

and load the data:

create schema chapter9 deeplearning;
create table chapter9 deeplearning.robot navigation (

id bigint identity(0,1),

usl float, us2 float, us3 float, us4 float, usb5 float, us6
float, us7 float, us8 float, us9 float,usl0 float, usll float,
usl?2 float, usl3 float, usld4 float, usl5 float, usle float,
usl7 float, usl8 float, usl9 float, us20 float, us2l float,
us22 float, us23 float, us24 float, direction wvarchar (256)

diststyle auto;

copy chapter9 deeplearning.robot navigation from 's3://packt-
serverless-ml-redshift/chapter09/sensor readings 24.data'’

iam role default
format as csv
delimiter ','
quote '""'

region as 'eu-west-1'

3. Run the following query to examine some sample data:
select * from
chapter9 deeplearning.robot navigation
limit 10;

In Figure 9.3, we can see that our data has been loaded successfully:

Result 1 (10) J, Export » Chart

O id
a1
02
a3
04
a5$
a6
a7
M8

Figure 9.3 — Sample output

From the preceding screenshot, we can see that there are several sensor
readings. Run the following query to see the distribution of the different

directions of the robot’s movements, as shown in Figure 9.4:

select direction, count (*)
from chapter9 deeplearning.robot navigation
group by 1;

To view the results as a bar graph, please click on the toggle Chart button (

Chart) on the Result pane. Under Traces, click on + Trace (

+ Trace
‘—‘) and set Type as Bar, X-axis as Direction, and Y-axis as

Count from the dropdown. Keep Orientation as Vertical.

robot directions

2000

1500

1000

500

Slight-Right-Turn Sharp-Right-Turn Move-Forward Slight-Left-Turn

Figure 9.4 — Graph generated using Query Editor v2

You can notice that there are more Sharp-Right-Turn and Move-Forward
directions than Slight-Right-Turn and Slight-Left-Turn directions. We will

use these inputs to predict the future movement of the robot.

Prediction goal

Since this 1s a multiclass classification problem, the goal of this model is to
predict which direction the robot will take next based on the 24 sensor

readings.

The dataset has one ID column, which uniquely identifies a row of 24
sensor readings named us1, us2, ..., us24, and a direction variable, which
has 4 values in it. The direction variable 1s the class variable that we are

trying to predict.

Now let’s split the dataset into a training dataset, which will be input to our

model, and a test dataset, which we will use to do our predictions.

Splitting data into training and test
datasets

We are going to split our table into two datasets, train and test, with an
approximately 80:20 split. Let’s use the mod function in Redshift to split our
table. The mod function returns the remainder of two numbers. We will pass

in the ID and the number 5.

To train the model, let’s use where mod(id,5) is not equal to o, which
represents our training set of 80%. Run the following command in Query

Editor v2:

select direction, count (*)

from chapter9 deeplearning.robot navigation
where mod (id,5) <> 0

group by 1;

In Figure 9.5, we see the data distribution based on ~80% of the data:

[J direction
[J Slight-Right-Turn
[J Sharp-Right-Turn

[J Move-Forward
[J Slight-Left-Turn

Figure 9.5 — Training dataset distribution

NOTE

You might see a different count than we have shown. We are using Redshift’s Identity
function to generate the values for the id column. To be sure that the identity values are

unique, Amazon Redshift skips some values when creating the identity values. Identity
values are unique but the order might not match. Hence, you might see a different count but
the data is 80% of the total count (5,456 rows).

The Chart function in Query Editor v2 depicts this in a bar chart format as

shown in Figure 9.6:

robot directions

1500
1000
500
0
Sy 5 5
’ f Q a
e, Fhe. g A
7 Uy, ?Er,,} £ Y

Figure 9.6 — Training set bar chart

To test the model, let’s use where mod (id,5) is equal to o, which represents

our test dataset of 20%:

select direction, count (*) from
chapter9 deeplearning.robot navigation
where mod(id,5) = 0

group by 1;

In Figure 9.7, we see the data distribution based on ~20% of the data:

[J direction
(] Slight-Right-Turn
[J Sharp-Right-Turn

[J Move-Forward
[Slight-Left-Turn

Figure 9.7 — Test dataset distribution

The Chart function in Query Editor v2 depicts this in a bar chart format as

shown in Figure 9.8:

robot directions

Figure 9.8 — Test data bar chart

Now that we have analyzed our data and determined how we will split it
into training and test datasets, let’s create our model using the MLP

algorithm.

Creating a multiclass classification model
using MLP

In this exercise, we are going to guide the cREATE MODEL statement to use the
MLP model. You will achieve that by setting the mode1_type parameter to

mLp. The rest of the parameters can be set to default.

Let’s create a model to predict the direction of the robot:

CREATE MODEL chapter9 deeplearning.predict robot direction

from (select

usl ,us?2 , us3 , us4 , usb , us6 ,us7 , us8 , us9 ,
usl0 ,usll ,usl2 ,usl3 ,usl4 ,usl5 ,usl6o ,usl7 ,

usl8 ,usl9 ,us20 ,us2l , us22 ,us23 ,us24 , direction

from chapter9 deeplearning.robot navigation
where mod (id,5) !=0)

target direction

function predict robot direction fn

iam role default

model type mlp

settings (s3 bucket 'replace-with-your-s3-bucket',

max runtime 1800) ;

The creaTE MopEL function is run with a max_runtime value of 1800 seconds.
This means the maximum amount of time to train the model is 30 minutes.
Training jobs often complete sooner depending on the dataset size. Since
we have not set other parameters (for example, objective or problem type),
Amazon SageMaker Autopilot will be doing the bulk of the work to

identify the parameters for us.

Run the stow MopeL command to check whether model training is

completed:

SHOW MODEL chapter9 deeplearning.predict robot direction;

Check Model State in Figure 9.9:

Result 1 (23)

Key Value

Model Name predict_robot_direction

Schema Name chapter9_deeplearning

Owner I1AMR:Admin
Creation Time Sun, 25.09.2022 05:16:33
Model State TRAINING

TRAINING DATA:

Query SELECT US1, US2, US3...
FROM CHAPTER9_DEEP...
WHERE ID%65!=0

Target Column DIRECTION

PARAMETERS:
Model Type

Problem Type
Objective
AutoML Job Name redshiftml|-202209250516...

Function Name predict_robot_direction_fn

Function Parameaters usl us2 us3 usd usS Us6 ...

Function Parameter T... float8 float8 floatd floats ...

1AM Role default-aws-iam-role
53 Bucket 970580199191-chapterd
Max Runtime 1800

Figure 9.9 — SHOW MODEL output

From the preceding screenshot, we can see that the Model State field
shows the status as TRAINING, which means the model 1s still under
training. But notice that Redshift ML has picked up Model Type as mlp;

other parameters such as Problem Type and Objective are empty now, but

after the model has been trained, we will see these values.

Run the srow MopEL command again after some time to check whether
model training is complete or not. From the following screenshot, notice
that model training has finished and Accuracy has been selected as the
objective for model evaluation. This is auto-selected by Redshift ML. Also
notice that Redshift ML correctly recognized this as a multiclass

classification problem:

Now that our model has finished training, let’s run predictions using the

Key

Model Name
Schema Name
Owner
Creation Time
Model State

] Training Job Status

] validation:accuracy

Estimated Cost

TRAINING DATA:
Query

] Target Column

PARAMETERS:
Model Type
Problem Type
Objective

AutoML Job Name

Function Name

Function Parameters

Function Parameter T...

1AM Role

[0 53 Buckst

Value
predict_robot_direction
chapter9_deeplearning
IAMRB:Admin

Sun, 25.09.2022 05:16:33
READY
MaxAutoMLJobRuntimeR...
0.940026

5.096097

SELECT US1, Us2, US3i...
FROM CHAPTERS_DEEP...
WHERE ID%5!=0
DIRECTION

ylle]
MulticlassClassification
Accuracy
redshiftml-202209250516...
predict_robot_direction_fn
us1 us2 us3 us4 us5 usé ...
floats floatd float8 floats ...
default-aws-iam-role
970580199191 -chapter9

Figure 9.10 — SHOW MODEL output

function that was created. In Figure 9.10, Function Name is

predict_robot direction_ fn and we will refer to that in our prediction

query.

Also note the validation:accuracy value of .940026 in Figure 9.10. This

means our model has an accuracy of >94%, which is very good.

NOTE

You might get a different accuracy value due to different hyperparameters selected for the
algorithm in the background, and this can slightly affect accuracy.

Since our model has been successfully trained, let’s run some predictions on

our test dataset.

Running predictions

In this first query, we will be using the function returned by the creaTe
MobEL command to compare the actual direction with our predicted
directions. Run the following query in Query Editor v2 to see how many

times we predicted correctly:

select correct, count (*)
from
(select DIRECTION as actual,
chapter9 deeplearning.predict robot direction fn (
Usl,Us2,Us3,UsS4,U0S5,US6,US7,U0S8,U0S9,U0810,US11,UsS12,
Us13,U0s814,US15,US16,US17,US18,US19,US520,U0S21,US22,U0S23,US24
) as predicted,
CASE WHEN actual = predicted THEN 1::INT
ELSE 0::INT END AS correct
from chapter9 deeplearning.robot navigation
where MOD(id,5) =0
) tl
group by 1;

In Figure 9.11, we see that our model correctly predicted the robot’s

direction 1,033 times.

Please note that your count might be slightly different:

] correct

[1

o

Figure 9.11 — Actual directions versus predicted direction

Now, let’s run a query against the test dataset to predict which direction the
robot will move. Run the following query in Query Editor v2 to return the

first 10 rows:

select 1d, chapter9 deeplearning.predict robot direction fn (
Usl,Us2,Us3,US4,US5,US6,US7,US8,US9,U810,US11,UsS12,
Us13,US14,US15,U0S16,US17,US18,US19,U0S20,US21,US22,US23,US24

) as predicted direction
from chapter9 deeplearning.robot navigation
where MOD (id,5) <> 0
limit 10;

In Figure 9.12, we show the first 10 rows and the direction based on the ID:

=

predicted_direction
Slight-Right-Turn
Slight-Right-Turn
Slight-Right-Turn
Slight-Right-Turn
Slight-Right-Turn
Slight-Right-Turn
Slight-Right-Turn
Sharp-Right-Turn
Sharp-Right-Turn
Sharp-Right-Turn

0
U
U
0
O
U
U
0
O
U
U

Figure 9.12 — Predicted direction by ID

Now, let’s modify the query to summarize our predicted robot movements.

Run the following in Query Editor v2:

select chapter9 deeplearning.predict robot direction fn (

Us1l,Us2,Us3,US4,U0sS5,Us86,US7,U0S8,0S89,US10,US11,Us12,

Us13,Us14,0US15,US16,US17,US18,U0S19,U0820,U521,US22,US23,US24
) as predicted direction, count (*)

from chapter9 deeplearning.robot navigation

where MOD (id,5) <> 0

group by 1;

In Figure 9.13, we can see that Move-Forward is the most popular
direction, followed closely by Sharp-Right-Turn. Please note that your
counts might differ slightly.

[J predicted_direction

[J Slight-Right-Turn
(] Sharp-Right-Turn
[J Move-Forward

[J Slight-Left-Turn

Figure 9.13 — Summary of predicted direction

You have now created a model using the MLP algorithm and run

predictions on the test dataset.

Summary

In this chapter, we discussed deep learning models and why you need them
and showed you how to create an MLP model on sensor-reading data to
predict the next movement of the robot. You learned that non-linear datasets
are suited for deep learning and created a multiclass classification model

using the MLP algorithm.

In the next chapter, we will show you how to create a model with complete

control of hyper-tuning parameters using XGBoost algorithms.

10

Creating a Custom ML Model with
XGBoost

So far, all of the supervised learning models we have explored have utilized
the Amazon Redshift Auto ML feature, which uses Amazon SageMaker
Autopilot behind the scenes. In this chapter, we will explore how to create
custom machine learning (ML) models. Training a custom model gives
you the flexibility to choose the model type and the hyperparameters to use.
This chapter will provide examples of this modeling technique. By the end
of this chapter, you will know how to create a custom XGBoost model and

how to prepare the data to train your model using Redshift SQL.
In this chapter, we will go through the following main topics:

e Introducing XGBoost

e Introducing an XGBoost use case

¢ XGBoost model with Auto off feature

Technical requirements

This chapter requires a web browser and access to the following:
e An AWS account
e An Amazon Redshift Serverless endpoint

e Amazon Redshift Query Editor v2

You can find the code used in this chapter here:

https://github.com/PacktPublishing/Serverless-Machine-I earning-with-
Amazon-Redshift/blob/main/CodeFiles/chapter10/chapter10.sql

Introducing XGBoost

XGBoost gets its name because it is built on the Gradient Boosting
framework. Using a tree-boosting technique provides a fast method for
solving ML problems. As you have seen in previous chapters, you can
specify the model type, which can help speed up model training since

SageMaker Autopilot does not have to determine which model type to use.

You can learn more about XGBoost here:

https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.xhtml.

When you create a model with Redshift ML and specify XGBoost as the
model type, and optionally specify AUTO OFF, this turns off SageMaker
Autopilot and you have more control of model tuning. For example, you
can specify the hyperparameters you wish to use. You will see an example

of this in the Creating a binary classification model using XGBoost section.

You will have to perform preprocessing when you set AUTO to OFF.
Carrying out the preprocessing ensures we will get the best possible model
and is also necessary since all inputs must be numeric when you set AUTO
to OFF, for example, by making sure data is cleansed, categorical variables
are encoded, and numeric variables are standardized. You will also need to
identify the type of problem that you have and select an appropriate model
to train. You will be able to create train and test datasets and evaluate

models yourself. You also have the ability to tune the hyperparameters. In

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter10/chapter10.sql
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.xhtml

summary, you get total control of the end-to-end ML model training and

building.

By using XGBoost with Amazon Redshift ML, you can solve both
regression and classification problems. You also can specify the learning
objective of your model. For example, if you are solving a binary
classification problem, you would choose binary:1logistic as your

objective or use multi:softmax for multi-class classification problems.

At the time of writing this book, the supported learning objectives are
reg:squarederror, reg:squaredlogerror, reg:logistic,
reg:pseudohubererror,reg:tweedie,binary:logistic,binary:hinge,and

multi:softmax.

For more information about these objectives, see the Learning Task
Parameters section of the XGBoost documentation here:
https://xgboost.readthedocs.io/en/latest/parameter.xhtml#learning-task-

parameters.

Now that you have learned what XGBoost is, we will take a look at a use
case where we can apply XGBoost and solve a common business problem

using binary classification.

Introducing an XGBoost use case

In this section, we will be discussing a use case where we want to predict
whether credit card transactions are fraudulent. We will be going through

the following steps:

e Defining the business problem

https://xgboost.readthedocs.io/en/latest/parameter.xhtml#learning-task-parameters

» Uploading, analyzing, and preparing data for training
e Splitting data into training and testing datasets

e Preprocessing the input variables

Defining the business problem

In this section, we will use a credit card payment transaction dataset to
build a binary classification model using XGBoost in Redshift ML. This
dataset contains customer and terminal information along with the date and
amount related to the transaction. This dataset also has some derived fields
based on recency, frequency, and monetary numeric features, along with a
few categorical variables, such as whether a transaction occurred during the
weekend or at night. Our goal is to identify whether a transaction is
fraudulent or non-fraudulent. This use case is taken from

https://github.com/Fraud-Detection-Handbook/fraud-detection-handbook.

Please refer to the GitHub repository to learn more about this data

generation process.

DATASET CITATION

Reproducible Machine Learning for Credit Card Fraud Detection - Practical Handbook, Le
Borgne, Yann-Aél and Siblini, Wissam and Lebichot, Bertrand and Bontempi, Gianluca,
https./github.com/Fraud-Detection-Handbook/fraud-detection-handbook, 2022, Université
Libre de Bruxelles

Now, we will load our dataset into Amazon Redshift ML and prepare it for

model training.

https://github.com/Fraud-Detection-Handbook/fraud-detection-handbook
https://github.com/Fraud-Detection-Handbook/fraud-detection-handbook

Uploading, analyzing, and preparing data
for training

Before we begin, let’s first connect to Redshift as an admin or database
developer and then load data into Amazon Redshift.

In the following steps, you will create a schema for all of the tables and
objects needed for this exercise, which involves creating all the needed

tables, loading data, and creating the views used for data transformations.

Navigate to Query Editor v2, connect to the serverless endpoint, and then

connect to the dev database, as shown in the following screenshot:

+ Create v ¥, Load data P Run © Limit 100 Explain lsolated session @) Serverless:default v dev ~

Q Filter resoure g | CREATE SCHEMA chapter10_xgboost;

» 10 Serverless: workgroup2
v B Serverless: default @)
¥ B2 datashare demo)

) i dev

Figure 10.1 — Connect to Query Editor v2
1. Execute the following step to create the schema. This schema will be
used for all objects and models created in this chapter:
CREATE SCHEMA chapterl0 xgboost;

2. Next, copy the following SQL statement into Query Editor v2 to create
the table for hosting the customer payment transaction history, which

we will load in the subsequent step:

create table chapterl0 xgboost.cust payment tx history

transaction id integer,

tx datetime timestamp,

customer id integer,

terminal id integer,

tx amount decimal (9, 2),

tx time seconds integer,

tx time days integer,

tx fraud integer,

tx fraud scenario integer,

tx during weekend integer,

tx during night integer,

customer id nb tx lday window decimal (9, 2),

customer id avg amount lday window decimal (9,2),

customer id nb tx 7day window decimal (9, 2),

customer id avg amount 7day window decimal (9,2),

customer id nb tx 30day window decimal (9,2),

customer id avg amount 30day window decimal (9,2),

terminal id nb tx lday window decimal (9,2),
terminal id risk lday window decimal(9,2),
terminal id nb tx 7day window decimal (9,2),
terminal id risk 7day window decimal (9,2),
terminal id nb tx 30day window decimal (9,2),

terminal id risk 30day window decimal (9, 2)

3. Now that you have created the table, you can execute the following

command in Query Editor v2 to load the table:
copy chapterl0 xgboost.cust payment tx history

from 's3://packt-serverless-ml-
redshift/chapterl0/credit card transactions transformed balanc
ed.csv'

iam role default
ignoreheader 1

csv region 'eu-west-1"';

4. Now that you have loaded the data, it’s a good practice to sample some
data to make sure our data is loaded properly. Run the following query

to sample 10 records:

select * from
chapterl0 xgboost.cust payment tx history
limit 10;

In the following screenshot, we can see that we have loaded the data

correctly with a sampling of different transaction IDs:

B Result 1(10) ., Export Chart x

[0 transaction_id tx_datetime customer_id terminal_id tx_amount

[] 48262 2022-06-06 02:35:29 2497 9180 43.6
48263 2022-06-06 02:35:40 1534 4771 2.14
48264 2022-06-06 02:36:01 1593 4770 46.14
48265 2022-06-06 02:36:05 4069 7408 155.28
48266 2022-06-06 02:37:01 655 6930 1745
48267 2022-06-06 02:37:11 684 6893 32.33
48268 2022-06-06 02:37:19 3134 2287 15.52

Figure 10.2 — Data sample

As discussed in earlier chapters, the target variable is the value that we are
trying to predict in our model. In our use case, we are trying to predict
whether a transaction is fraudulent. In our dataset, this is the tx_fraud
attribute, which is our target. Let us check our table to see how many

transactions were flagged as fraudulent.

Run the following command in Query Editor v2:

select tx fraud, count (*)
from chapterl0 xgboost.cust payment tx history
group by 1;

We identify fraudulent transactions in our dataset as those with a tx_fraud
value of 1. We have identified 14,681 transactions as fraudulent in our
dataset. Conversely, a tx_fraud value of o indicates that a transaction is not

fraudulent:

B Result 1 (2)

O tx fraud
dJo
[

Figure 10.3 — Fraudulent transactions

Let us look at the trend of fraudulent and non-fraudulent transactions over
the months. We want to analyze whether there are any unusual spikes in

fraudulent transactions.

Run the following SQL command in Query Editor v2:

select to char(tx datetime, 'yyyymm') as yearmonth,

sum(case when tx fraud = 1 then 1 else 0 end) fraud tx,
sum(case when tx fraud = 0 then 1 else 0 end) non_ fraud tx,
count (*) as total tx,

(fraud tx::decimal(10,2) / total tx::decimal(10,2)) *100 as
fraud txn pct

from chapterl(0 xgboost.cust payment tx history

group by yearmonth

order by yearmonth

Notice that fraudulent transactions increased by nearly 8 percent in 202207
over 202206:

E2 Result 1 (6)

yearmonth fraud tx = non_fraud_tx total_tx fraud_txn_pct

202206 1702 4225 2927 28.716045216
202207 2639 4666 7305 36.125941136
202208 2504 4350 6854 36.533411146
202209 2620 3821 6441 40.676913522
202210 2669 4100 6769 39.429753287
202211 2547 4325 6872 37.063445867

Figure 10.4 — Fraudulent transaction trends

Now that we have loaded our data, let’s get our data prepared for model
training by splitting the data into train and test datasets. The training data is
used to train the model and the testing data is used to run our prediction

queries.

Splitting data into train and test datasets

To train the model, we will have transactions that are older than 2022-10-01,

which is ~ 80 percent of the transactions.

To test the model, we will use transactions from after 2022-09-30, which is

20 percent of the transactions.

Preprocessing the input variables

We have a combination of numeric and categorical variables in our input
fields. We need to preprocess the categorical variables into one-hot-encoded
values and standardize the numeric variables. Since we will be using

AUTO OFF, SageMaker does not automatically preprocess the data.

Hence, it is important to transform various numeric, datetime, and

categorical features.

Categorical features (also referred to as nominal) have distinct categories
or levels. These can be categories without an order to them, such as country
or gender. Or they can have an order such as level of education (also

referred to as ordinal).

Since ML models need to operate on numeric variables, we need to apply

ordinal encoding or one-hot encoding.

To make things easier, we have created the following view to take care of
the transformation logic. This view is somewhat lengthy, but actually, what

the view is doing is quite simple:
¢ (alculating the transaction time in seconds and days

e Applying one-hot encoding by assigning o or 1 to classify transactions
as weekday, weekend, daytime, or nighttime (such as

TX_DURING_WEEKEND Ol TX DURING NIGHT)

e Applying window functions to transactions so that we make it easy to

visualize the data in 1-day, 7-day, and 30-day intervals

Execute the following SQL command in Query Editor v2 to create the view

by applying the transformation logic:

create view chapterl0 xgboost.credit payment tx history scaled
as

select

transaction id, tx datetime, customer id, terminal id,

tx _amount ,

((tx _amount - avg(tx amount) over())

/ cast (stddev pop (tx amount) over() as dec(1l4,2))) s tx amount,

tx time seconds ,
((tx time seconds - avg(tx time seconds) over())
/ cast(stddev_pop(tx time seconds) over() as dec(14,2)))
S _tx time seconds,
tx time days ,
((tx time days - avg(tx time days) over())
/ cast(stddev pop(tx time days) over() as dec(14,2)))
s _tx time days,
tx fraud ,
tx during weekend ,

case when tx during weekend 1 then 1 else 0 end as
tx during weekend ind,

case when tx during weekend = 0 then 1 else 0 end

tx during weekday ind,
tx during night,

case when tx during night = 1 then 1 else 0 end as
tx during night ind,
case when tx during night = 0 then 1 else 0 end as

tx during day ind,
customer id nb tx lday window ,

((customer id nb tx lday window -
avg (customer id nb tx lday window) over())
/ cast(stddev_pop(customer id nb tx lday window) over() as
dec(14,2))) s _customer id nb tx lday window,
customer id avg amount lday window ,

((customer id avg amount lday window -
avg (customer id avg amount lday window) over())
/ cast(stddev pop (customer id avg amount lday window) over ()
dec(14,2))) s_customer id avg amount lday window,
customer id nb tx 7day window ,

((customer id nb tx 7day window -
avg (customer id nb tx 7day window) over())
/ cast(stddev_pop(customer id nb tx 7day window) over() as
dec(14,2))) s _customer id nb tx 7day window,
customer id avg amount 7day window ,

((customer id avg amount 7day window -
avg (customer id avg amount 7day window) over())
/ cast(stddev_pop (customer id avg amount 7day window) over ()
dec(14,2))) s customer id avg amount 7day window,
customer id nb tx 30day window ,

((customer id nb tx 30day window -

as

as

avg (customer id nb tx 30day window) over())
/ cast(stddev _pop(customer id nb tx 30day window) over () as
dec(14,2))) s _customer id nb tx 30day window,
customer id avg amount 30day window ,

((customer id avg amount 30day window -
avg (customer id avg amount 30day window) over())
/ cast(stddev pop (customer id avg amount 30day window) over ()
dec(14,2))) s _customer id avg amount 30day window,
terminal id nb tx lday window ,

((terminal id nb tx lday window -
avg (terminal id nb tx lday window) over())
/ cast(stddev _pop(terminal id nb tx lday window) over() as
dec(14,2))) s terminal id nb tx lday window,
terminal id risk lday window ,

((terminal id risk lday window -
avg (terminal id risk lday window) over())
/ cast(stddev_pop(terminal id risk lday window) over () as
dec(14,2))) s _terminal id risk lday window,
terminal id nb tx 7day window ,

((terminal id nb tx 7day window -
avg (terminal id nb tx 7day window) over())
/ cast(stddev_pop(terminal id nb tx 7day window) over() as
dec(14,2))) s _terminal id nb tx 7day window,
terminal id risk 7day window ,

((terminal id risk 7day window -
avg (terminal id risk 7day window) over())
/ cast (stddev pop (terminal id risk 7day window) over () as
dec(14,2))) s _terminal id risk 7day window,
terminal id nb tx 30day window ,

((terminal id nb tx 30day window -
avg (terminal id nb tx 30day window) over())
/ cast(stddev pop(terminal id nb tx 30day window) over() as
dec(14,2))) s _terminal id nb tx 30day window,
terminal id risk 30day window ,

((terminal id risk 30day window -
avg (terminal id risk 30day window) over())

/ cast(stddev _pop(terminal id risk 30day window) over() as
dec(14,2))) s _terminal id risk 30day window
from

chapterl0 xgboost.cust payment tx history;

as

Now that the view is created, let’s sample 10 records.

Execute the following command in Query Editor v2:

SELECT * from chapterl0 XGBoost.credit payment tx history scaled
limit 10;

We can see some of our transformed values, such as tx_time_seconds and

txn_time_days, in the following screenshot:

B Result1(10) A, Export v
tx_time_seconds s_tx_time_seconds t=_time_days s_tx_time_days tx_fraud
441329 -1.4333089198786 -1.4822553834529
441340 -1.4893065181455 -1.4822553834529
441361 -1.4893019330188 -1.4922553834529
441385 -1.4893010596614 -1.4822553834529
441421 -1.49928B8326568 -1.48922553834529
441431 -1.4892866492632 -1.49225536834529
441439 -1.4892849025482 -1.4922553834529
441484 -1.4892750772767 -1.4922553834529

o o o o o o o o
o Qo Qo Q Qo Q9 O O

a
5
2
a
=]
5
5
5

Figure 10.5 — Transformed data
Now, let’s quickly review why we needed to create this view:

e Since we are using XGBoost with Auto OFF, we must do our own data

preprocessing and feature engineering
e We applied one-hot encoding to our categorical variables

e We scaled our numeric variables

Here is a summary of the view logic:
e The target variable we used is Tx_FRAUD

e The categorical variables we used are TXx DURING WEEKEND IND,

TX_DURING WEEKDAY_ IND, TX DURING NIGHT IND, and TX DURING DAY IND

e The scaled numeric variables are s_customer_id nb_tx lday window,
s_customer_ id avg amount lday window,
s_customer_id nb_tx 7day window,
s_customer id avg amount 7day window,s_customer_ id nb tx 30day w
indow, s_customer_id avg amount_30day_ window,
s_terminal_id nb_ tx lday window, s_terminal id risk_lday window,
s_terminal_id nb_ tx 7day window, s_terminal id risk_7day window,
s_terminal id nb tx 30day window, and

s_terminal id risk 30day_ window

You have now completed data preparation and are ready to create your

model!

Creating a model using XGBoost with
Auto Off

In this exercise, we are going to create a custom binary classification model
using the XGBoost algorithm. You can achieve this by setting AUTO off.

Here are the parameters that are available:
« AUTO OFF
e MODEL_TYPE
e OBJECTIVE
e HYPERPARAMETERS

For the complete list of hyperparameter values that are available and their

defaults, please read the documentation found here:

https://docs.aws.amazon.com/redshift/latest/dg/r _create_model_use_cases.x

html#r_auto_off create_model

Now that you have a basic understanding of the parameters available with

XGBoost, you can create the model.

Creating a binary classification model
using XGBoost

Let’s create a model to predict whether a transaction is fraudulent or non-
fraudulent. As you learned in the previous chapters, creating models with
Amazon Redshift ML is simply done by running a SQL command that
creates a function. As inputs (or features), you will be using the attributes
from the view that you created in the previous section. You will specify
tx_fraud as the target and give the function name, which you will use later
in your prediction queries. Additionally, you will specify hyperparameters

to do your own model tuning. Let’s begin!

Execute the following commands in Query Editor v2. The following is a

code snippet; you may retrieve the full code from the following URL:

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-

Amazon-Redshift/blob/main/chapter10.sql

drop model chapterl0 XGBoost.cust cc txn fd xg;
create model chapterl(0 xgboost.cust cc txn fd xg
from (
select
s _tx amount,

tx fraud,

from chapterl0 xgboost.payment tx history scaled

https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.xhtml#r_auto_off_create_model
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/chapter10.sql

where cast (tx datetime as date) between '2022-06-01' and '2022-
09-30"
)
target tx fraud
function fn customer cc fd xg
iam role default
auto off
model type xgboost
objective 'binary:logistic'
preprocessors 'none'
hyperparameters default except (num round '100")
settings (
s3 bucket '<<your-s3-bucket>>"',
s3 garbage collect off,
max_runtime 1500

)
The creaTE MopEL function is going to invoke the XGBoost algorithm and
train a binary classification model. We have set AUTO off, which means
Autopilot is not going to perform any tasks for us. We are customizing the
model to be a binary classifier using preprocessed data. We also set the
num_round hyperparameter value to 100, which is the number of rounds to

run the training.
Now, let’s run seow MoDEL to see whether model training is completed. Run
the following command in Query Editor v2:

SHOW MODEL chapterl0 XGBoost.cust cc txn fd xg;

Note Model State in the following screenshot, which shows your model is

still training:

Key
Owner

Creation Time
Model State

TRAINING DATA:

L] Query

Target Column

PARAMETERS:
Model Type
Training Job Mame
Function Name

Function Parameters

Function Parameter T...

lAM Role
53 Bucket

Max Runtime

HYPERPARAMETERS:

num_round

objective

Value
IAMR:Admin

Mon, 17.10.2022 11:56:58
TRAINING

SELECT S_TX_AMOUNT....
FROM CHAPTER10_XGB...
WHERE CAST(TX_DATET...
AND "2022-09-30'
TX_FRAUD

xgboost
redshiftml-202210171156...
fn_customer_cc_fd_xg
s_tx_amount tx_during_w...
numeric int4 int4 int4 int4...
default-aws-lam-role
970580199101 -chapter10
1500

100
binary:logistic

Figure 10.6 — Show model output

From the preceding screenshot, we notice that the value of Model State 1s
TRAINING, which is self-explanatory — the model is still training. You
will also see that Redshift ML has picked up the parameters we supplied in

the creaTe MoDEL statement — Model Type is set to xgboost. objective is set

to binary:logistic and the num_round parameter is set to 100.

When you have a custom model with AUTO OFF and specify the
hyperparameters, the model can be trained much faster. This model will

usually finish in under 10 minutes.

Run the sHow MopEL command again after 10 minutes to check whether
model training is complete or not. As you can see from the following
screenshot, model training has completed and the train:error field reports
the error rate. Most datasets have a threshold of .5, so our value of 0.051870

is very good, as seen in the following screenshot:

Key Value
Maodel State READY
train:error 0.051870
Estimated Cost 0.007156

TRAINING DATA:

Query SELECT S_TX_AMOUNT, TX_F...
FROM CHAPTER10_XGBOOST....
WHERE CAST(TX_DATETIME A...
AND "2022-09-30'

Target Column TX_FRAUD

FPARAMETERS:

Model Type Xgboost

Training Job Name redshiftml-20221016195754867 ...
Function Name fn_customer_cc_fd_xg

Function Parameters s_tx_amount tx_during_weeken...

Function Parameter T... numeric int4 int4 int4 int4 numer...

IAM Role default-aws-lam-role
53 Bucket 970580199101 -chapter10
Max Buntime 1500

HYPERPARAMETERS:
num_round 100
] obiective binarv:loaistic

Figure 10.7 — SHOW MODEL output

Now, your model is complete and has a good score based on score -

train_error, Which is 0.051870. You are now ready to use it for predictions.

Generating predictions and evaluating
model performance

Run the following query in Query Editor v2, which will compare the actual

tx_fraud value with the predicted tx fraud value:

select

tx fraud ,

fn customer cc fd xg(

s _tx amount,

tx during weekend ind,

tx during weekday ind,

tx during night ind,

tx during day ind,

s customer id nb tx lday window,

s customer id avg amount lday window,
s customer id nb tx 7day window,

s _customer id avg amount 7day window,
s _customer id nb tx 30day window,

s _customer id avg amount 30day window,
s terminal id nb tx lday window,

s terminal id risk lday window,

s terminal id nb tx 7day window,

s _terminal id risk 7day window,

s terminal id nb tx 30day window,

s terminal id risk 30day window)

from chapterl0 xgboost.credit payment tx history scaled
where cast (tx datetime as date) >= '2022-10-01"

The following screenshot shows the sample output. In this screenshot, our

predicted values are the same as the actual values:

tx_fraud fn_customer_cc_fd_xg

o

0
0
0
0
0
0
0

0 0 9 O O O 0 DO D O 9 9 Q O

2o 9 Q Q 9Q

Figure 10.8 — Inference query output

Since we did not get the F1 value for our model from Redshift ML, let’s

calculate it. We will create a view that contains the logic to accomplish this:

-—drop view 1if exists chapterl0 xgboost.fraud tx conf matrix;
create or replace view chapterl0 xgboost.fraud tx conf matrix
as
select
transaction id,tx datetime,customer id,tx amount, terminal id,
tx fraud,
fn customer cc fd xg(
s _tx amount,
tx during weekend ind,
tx during weekday ind,
tx during night ind,
tx during day ind,
s customer id nb tx lday window,
s _customer id avg amount lday window,
s _customer id nb tx 7day window,

s _customer id avg amount 7day window,
s _customer id nb tx 30day window,

s _customer id avg amount 30day window,
s terminal id nb tx lday window,

s _terminal id risk lday window,

s terminal id nb tx 7day window,

s _terminal id risk 7day window,

s _terminal id nb tx 30day window,

s _terminal id risk 30day window)

as prediction,

case when tx fraud =1 and prediction = 1 then 1 else 0 end

truepositives,

case when tx fraud =0 and prediction = 0 then 1 else 0 end
truenegatives,
case when tx fraud =0 and prediction = 1 then 1 else 0 end

falsepositives,

case when tx fraud =1 and prediction 0 then 1 else 0 end
falsenegatives
from chapterl0 xgboost.credit payment tx history scaled

where cast (tx datetime as date) >= '2022-10-01";

Run the following SQL command in Query Editor v2 to check the F1 score

that we calculated in the view:

select

sum (truepositives+truenegatives) *1.00/ (count (*)*1.00) as
accuracy, ——accuracy of the model,

sum (falsepositives+falsenegatives) *1.00/count (*)*1.00 as

error rate, —--how often model is wrong,

sum (truepositives)*1.00/sum (truepositives+falsenegatives) *1.00
as tpr, --or recall how often corrects are rights,

sum (falsepositives)*1.00/sum (falsepositives+truenegatives)*1.00
fpr, --or fall-out how often model said yes when it is no,

sum (truenegatives) *1.00/sum (falsepositives+truenegatives)*1.00
tnr, --or specificity, how often model said no when it is yes,
sum (truepositives) *1.00 / (sum
(truepositives+falsepositives) *1.00) as precision, -- when said
yes how it i1s correct,

2* ((tpr*precision)/ (tpr+precision)) as f score --weighted avg
of tpr & fpr

from chapterl(0 xgboost.fraud tx conf matrix
You can see our accuracy is 90 percent and our F1 score is 87 percent,
which are both very good. Additionally, our confusion matrix values tell us

how many times we correctly predicted True and correctly predicted Faise:

L TES SO _rald

0.907704713730654 0,0822952 8628933609 [[0. 97EET2403560E3086

Figure 10.9 — F1 score

Now, let’s check actual versus prediction counts. Run the following query
in Query Editor v2:

select tx fraud,prediction, count (*)

from chapterl0 xgboost.fraud tx conf matrix

group by tx fraud,prediction;
The output in the following screenshot shows, for a given value, what our
prediction was compared to the actual value and the count of those records.
Our model incorrectly predicted a fraudulent transaction 178 times and

incorrectly predicted a non-fraudulent transaction 1,081 times:

1 Result 1 (4)

tx_fraud prediction
0 0

0 L
L 1
1 0

Figure 10.10 — Confusion matrix

This demonstrates how Redshift ML can help you confidently predict

whether a transaction is fraudulent.

Summary

In this chapter, you learned what XGBoost is and how to apply it to a
business problem. You learned how to specify your own hyperparameters
when using the Auto Off option and how to specify the objective for a
binary classification problem. Additionally, you learned how to do your
own data preprocessing and calculate the F1 score to validate the model

performance.

In the next chapter, you will learn how to bring your own models from

Amazon SageMaker for in-database or remote inference.

11

Bringing Your Own Models for Database
Inference

In this book, we’ve covered the process of training models natively using
Redshift Machine Learning (Redshift ML). However, there may be
instances where you need to utilize models built outside of Redshift. To
address this, Redshift ML offers the Bring Your Own Model (BYOM)
feature, allowing users to integrate their Amazon SageMaker machine
learning models with Amazon Redshift. This feature facilitates making
predictions and performing other machine learning tasks on data stored in

the warehouse, without requiring data movement.

BYOM offers two approaches: local inference and remote inference. In
this chapter, we’ll delve into the workings of BYOM and explore the
various options available for creating and integrating BYOM. You’ll be
guided through the process of building a machine learning model in
Amazon SageMaker, and subsequently, employing Redshift ML’s BYOM
feature to bring that model to Redshift. Moreover, you’ll learn how to apply
these models to the data stored in Redshift’s data warehouse to make

predictions.

By the end of this chapter, you’ll be proficient in bringing Amazon
SageMaker-created models and executing predictions within Amazon
Redshift. Utilizing BYOM, you can deploy models such as XGBoost and a
multilayer perceptron (MLP) to Redshift ML. Once a pre-trained model

is deployed on Redshift ML, you can run inferences locally on Redshift
without relying on a SageMaker endpoint or SageMaker Studio. This
simplicity empowers data analysts to conduct inference on new data using
models created externally to Redshift, eliminating concerns about accessing

SageMaker’s services.

This method significantly speeds up the delivery of machine learning
models created outside of Redshift to the data team. Furthermore, since
Redshift ML interacts with native Redshift SQL, the user experience for the
data team remains consistent with other data analysis work performed on

the data warehouse.

In this chapter, we will go through the following main topics:
e Benefits of BYOM
e Supported model types
e BYOM for local inference

¢ BYOM for remote inference

Technical requirements

This chapter requires a web browser and access to the following:
* An AWS account
e An Amazon Redshift Serverless endpoint
e An Amazon SageMaker notebook

e Amazon Redshift Query Editor v2

e Completing the Getting started with Amazon Redshift Serverless section
in Chapter 1
You can find the code used in this chapter here:

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift

The data files required for this chapter are located in a public S3 bucket:

s3://packt-serverless-ml-redshift/.

Let’s begin!

Benefits of BYOM

With Amazon Redshift ML, you can use an existing ML model built in
Amazon SageMaker and use it in Redshift without having to retrain it. To
use BYOM, you need to provide model artifacts or a SageMaker endpoint,
which takes a batch of data and returns predictions. BYOM is useful in
cases where a machine learning model is not yet available in Redshift ML,
for example, at the time of writing this book, a Random Cut Forest model is
not yet available in Redshift ML, so you can build this model in SageMaker
and easily bring it to Redshift and then use it against the data stored in
Redshift.

Here are some specific benefits of using Redshift ML with your own ML

model:

e Improved efficiency: By using an existing ML model, you can save
time and resources that would otherwise be spent on training a new

model

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift

o Easy integration: Redshift ML makes it easy to integrate your ML
model into your data pipeline, allowing you to use it for real-time

predictions or batch predictions

e Scalability: Redshift ML is built on top of the highly scalable and
performant Amazon Redshift data warehouse, so you can use your ML
model to make predictions on large datasets without worrying about

performance issues

Supported model types

Amazon Redshift ML supports a wide range of machine learning models
through the BYOM feature. Some common types of models that can be
used with BYOM include the following:

e Linear regression models: These models are like number predictors.
They take into account several factors or features and use them to guess
a specific numerical outcome. For example, if you want to predict the
price of a house, a linear regression model would consider factors such
as the size of the house, the number of rooms, and the location to

estimate the house’s price.

e Logistic regression models: These models are binary outcome
predictors. Instead of guessing numbers, they answer yes or no
questions or make (/1 predictions. For instance, if you want to predict
whether a student will pass or fail an exam, a logistic regression model
would consider factors such as the student’s study hours, previous test

scores, and attendance to determine the likelithood of passing the exam.

e Decision tree models: These are used to make predictions based on a
tree-like structure. Think of it like a decision-making tree for
predictions. You start at the top and follow branches based on known
features. At each branch, you make a decision based on a feature and
keep going until you reach a final prediction at the leaves. It’s a step-by-

step process to find the most likely outcome.

* Random forest models: These are ensembles of decision trees. Groups
of decision trees work together. Each tree is trained on a different part of
the data. To make a prediction, all the trees give their answers, and their
predictions are averaged to get the final result. It’s like taking the

opinions of multiple trees to make a more accurate guess.

e Gradient boosting models: These are also ensembles of decision trees,
These are groups of decision trees that work together, but here, unlike in
a random forest model, the trees are trained one after the other, and each
tree tries to fix the mistakes of the previous one. They learn from each
other’s errors and become better as a team. It’s like a learning process

where they keep improving until they make good predictions together.

e Neural network models: These are complex, multi-layered models that
are able to learn complex patterns in data. These models are capable of
learning intricate patterns in data. They operate using a process of
information analysis, discovering underlying correlations similar to the
functioning of interconnected neurons in the human brain. Through
extensive training and exposure to diverse datasets, the model refines its
ability to decipher complex patterns, making it proficient in uncovering

intricate relationships within new data.

e Support vector machines (SVMs): SVMs are powerful classifiers,
acting like incredibly intelligent dividers. Imagine a 3D space with
points representing different things. SVMs determine the most optimal
way to draw a line or plane, called a hyperplane, that perfectly separates
two distinct groups of points. It’s as if they possess an extraordinary
ability to find the perfect boundary, ensuring the two groups are kept as
far apart as possible, such as drawing an invisible but flawless line that

keeps everything perfectly organized on each side.

These are just a few examples of the types of models that can be used with
BYOM in Amazon Redshift. In general, any model that can be represented
as a set of model artifacts and a prediction function can be used with
BYOM in Redshift.

We have learned what Redshift ML BYOM is and its benefits. In the next

section, you will create a BYOM local inference model.

Creating the BYOM local inference model

With BYOM local inference, the machine learning model and its
dependencies are packaged into a group of files and deployed to Amazon
Redshift where the data is stored, allowing users to make predictions on the
stored data. Model artifacts and their dependencies are created when a
model is trained and created on the Amazon SageMaker platform. By
deploying the model directly onto the Redshift service, you are not moving
the data over the network to another service. Local inference can be useful

for scenarios where the data is sensitive or requires low latency predictions.

Let’s start working on creating the BYOM local inference model.

Creating a local inference model

To create the BYOM local inference model, the first step involves training
and validating an Amazon SageMaker model. For this purpose, we will
train and validate an XGBoost linear regression machine learning model on
Amazon SageMaker. Follow the instructions found here to create the

Amazon SageMaker model:

https://github.com/aws/amazon-sagemaker-

examples/blob/main/introduction_to_amazon_algorithms/xgboost_abalone/

xgboost _abalone.ipynb

After you have followed the instructions given at the preceding URL,
validate the model by running prediction functions. Now, let’s move on to
the next steps. After successfully generating the predictions, we will create
the Redshift ML model. Using the same notebook, let’s run a few
commands to set some parameters.

Creating the model and running predictions on
Redshift

Now, validate the model by running prediction functions.

With the model trained and validated in SageMaker, it’s time to import it
into Redshift. In the next section, using the same SageMaker notebook, we
will set up the required parameters to build the Redshift cReaTeE mMoDEL
statement. You will use this statement in Query Editor v2 to create your
model in Redshift ML, enabling you to perform local inference on the data
stored in the Redshift cluster with the integrated SageMaker model.
Setting up the parameters

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_abalone.ipynb

Before setting up the parameters, run the following command in Query

Editor v2 to create the schema for this chapter:

Create schema chapterll byom;

The first step of this process is setting up the following parameter values:
e s3 BUCKET is used to store Redshift ML artifacts.

e mopEL_PaATH is the S3 location of the model artifact of the Amazon
SageMaker model. Optionally, you can print model data using the print

function in Python and look at the artifact location.

e REDSHIFT IAM ROLE 1S the cluster role:

#provide your s3 bucket here

S3 BUCKET='Redshift ML s3 bucket name'

#provide the model path, this is coming from the model data
parameter

MODEL PATH=model data

#Provide Redshift cluster attached role ARN
REDSHIFT IAM ROLE = 'Redshift Cluster IAM Role'

Next, we will generate the cREaTE MoDEL statement that you are going to run

on Redshift.
Generating the CREATE MODEL statement

Execute the code provided here in a Jupyter notebook to automatically

generate the CREATE MODEL statement:

sgl text=("drop model if exists predict abalone age; \
CREATE MODEL chapterll byom.predict abalone age \
FROM '{}' \

FUNCTION predict abalone age (int, int, float,

float, float, float, float, float, float) \

RETURNS int \

IAM ROLE '{}' \

settings(S3 BUCKET '{}') \

mn)

print (sgl text.format (model data,REDSHIFT IAM ROLE, S3 BUCKET))
The output of the preceding statement is the cREATE MoDEL statement that
you are going to run in Query Editor v2. Please copy the statement and head

over to Query Editor v2 to perform the remaining steps.

Running local inference on Redshift

The following is the creaTe MopEL statement. You should have a similar one

generated, where FroM, 1aM RoOLE, and s3_BuckeT have different values:

CREATE MODEL chapterll byom.predict abalone age

FROM 's3://redshift-ml-22-redshiftmlbucket-
lcckvggktpfeO/sagemaker/DEMO-xgboost—abalone-default/single-
xgboost/DEMO-xgboost-regression-2022-12-31-01-45-
30/output/model.tar.gz’

FUNCTION predict abalone age (int, int, float,

float, float, float, float, float, float) RETURNS int IAM ROLE
'arn:aws:iam::215830312345:role/spectrumrs’

settings(S3 BUCKET 'redshift-ml-22-redshiftmlbucket-
lcckvggktpfeO') ;

In the preceding command, the From clause takes model data as input,
which contains the SageMaker model artifacts. When this command is run,
Amazon Redshift ML compiles the model, deploys it to Redshift, and
creates a predict_abalone_age prediction function, which is used in an SQL

command to generate predictions natively in Redshift.

Once the crReaTE MoDEL statement is completed, you can use the show model

command to see the model’s status:

show model chapterll byom.predict abalone age;

Here is the output:

[Key Value

[J' Mode! Name predict_abalong_age

(] Schema Neme public

1 Owner IAMR:Admin

] Creation Time Sat, 31.12.2022 17:39:06

] Model State READY

[

] PARAMETERS:

(1 Model Type ¥gboost

[J 83 Mode! Path 53:/Iredshift-ml-22-redshiftmloucket-cckvagkipfe0/sagemaker/DE...

(] Function Name predict_abalong_age

[Inference Type Local
() Function Parameter ... intd iné float float8 float8 floats float8 float loat8
] 1AM Rolg am:aws.am: 215830370936 role/spectrumrs

Figure 11.1 — Local inference model metadata

Notice that Model State is READY and S3 Model Path is the one we gave
when creating the model. Inference Type is Local, which means the model

type is local inference.

We have successfully created the local inference model; now, let’s prepare a
test dataset to test whether the local inference is working without any
1ssues.

Data preparation

Load the test data from the S3 bucket to a Redshift table to test our local

inference model.

NOTE

Please update IAM ROLE. Do not change the S3 bucket location.

Run the following command to create the table and load the data:

drop table if exists chapterll byom.abalone test;

create table chapterll byom.abalone test

(Rings int, sex int,Length float, Diameter float, Height float,
WholeWeight float, ShuckedWeight float,VisceraWeight float,
ShellWeight float);

copy chapterll byom.abalone test

from 's3://jumpstart-cache-prod-us-east-1/lp-notebooks-
datasets/abalone/text-csv/test/"’

IAM ROLE 'arn:aws:iam::212330312345:role/spectrumrs’

csv ;

Sample the test table to make sure the data is loaded:

select * from chapterll byom.abalone test limit 10;

Here is the sample dataset:

dameter | height | wholeweight

045% 0% 0%
0245 0075 0.149%
042 014 0701
038 0145 09
0.3% 015 041
018 0065 007
051 AT A (!
0505 017 1318
03% 015 034
I 0185 081t

Figure 11.2 — Showing sample records from the test dataset

Now that we have loaded the test data, let’s run the seLEcT command, which
invokes the predict abalone age function.

Inference

Now, call the prediction function that was created as part of the crREaTE

MODEL Statement:

Select original age, predicted age, original age-predicted age as
Error

From (

select predict abalone age (Rings, sex,

Length ,

Diameter ,

Height ,

WholeWeight ,

ShuckedWeight ,

VisceraWeight ,

ShellWeight) predicted age, rings as original age

from chapterll byom.abalone test) a;

Here’s the output of the predictions generated using local inference:

Result 1 (100)

[original_age predicted_age

0 11 12
05 b
09 10
0 12 12
0 11 J
04 5
07 11
09 10

11

Figure 11.3 — Showing actual versus predicted values

We have successfully trained and validated a SageMaker model and then
deployed it to Redshift ML. We also generated predictions using the local
inference function. This demonstrates Redshift’s BYOM local inference

feature.

In the next section, you are going to learn about the BY OM remote

inference feature.

BYOM using a SageMaker endpoint for
remote inference

In this section, we will explore how to create a BYOM remote inference for
an Amazon SageMaker Random Cut Forest model. This means you are
bringing your own machine learning model, which is trained on data
outside of Redshift, and using it to make predictions on data stored in a
Redshift cluster using an endpoint. In this method, to use BYOM for remote
inference, a machine learning model is trained, an endpoint is created in
Amazon SageMaker, and then the endpoint is accessed from within a
Redshift query using SQL functions provided by the Amazon Redshift ML

extension.

This method is useful when Redshift ML does not natively support models,
for example, a Random Cut Forest model. You can read more about

Random Cut Forest here: https://tinyurl.com/348v8nnw.

To demonstrate this feature, you will first need to follow the instructions
found in this notebook (https://github.com/aws/amazon-sagemaker-
examples/blob/main/introduction_to_amazon_algorithms/random_cut_fores

t/random_cut_forest.ipynb) to create a Random Cut Forest machine

https://tinyurl.com/348v8nnw
https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/random_cut_forest/random_cut_forest.ipynb

learning model using Amazon SageMaker to detect anomalies. Please
complete the Amazon SageMaker model training and validate the model to

make sure the endpoint is working and then proceed to the next section.

Creating BYOM remote inference

Once you have validated that the SageMaker endpoint is deployed and
working properly, let’s define a crReaTE MopEL reference point inside
Redshift by specifying the SageMaker endpoint. Using the same notebook,
let’s build the creaTe MopEL statement in Jupyter and run it in Query Editor
v2.

Setting up the parameters
Let’s start by setting up the parameters:
* s3 Bucket 1s used to store Redshift ML artifacts

* SAGEMAKER ENDPOINT is the model endpoint on the SageMaker side to run

inferences against

e REDSHIFT IAM ROLE is the cluster role:

REDSHIFT IAM ROLE = 'arn:aws:iam::215830312345:role/spectrumrs’
SAGEMAKER ENDPOINT = rcf inference.endpoint

Please update REDSHIFT IAM ROLE with your Redshift cluster role.

Generating the BYOM remote inference
command

Let’s generate the cREATE MODEL statement by running the following code:

sgl text=("drop model if exists
chapterll byom.remote random cut forest;\
CREATE MODEL chapterll byom.remote random cut forest)\
FUNCTION remote fn rcf (int)\
RETURNS decimal (10, 6) \
SAGEMAKER' {} "\
IAM ROLE'{}"\
")
print (sgl text.format (SAGEMAKER ENDPOINT, REDSHIFT IAM ROLE))

You have finished the work with the Jupyter notebook. Now you have a
pre-trained model in Amazon SageMaker and the next step is to bring it into
Redshift ML. To do so, access Query Editor v2, connect to the Serverless

endpoint, and run the commands outlined next.

In Query Editor v2, run the following command:

CREATE MODEL chapterll byom.remote random cut forest
FUNCTION remote fn rcf (int) RETURNS decimal (10, 6)
SAGEMAKER'randomcutforest-2022-12-31-03-48-13-259"
IAM ROLE'arn:aws:iam:: 215830312345:role/spectrumrs’

Retrieve the model metadata by running the show model command:

show model chapterll byom.remote random cut forest;

The output is as follows:

[Key Value

[J Model Name remote_random _cut forest

(] Schema Name public

[Owner [AMR:Admin

[Creation Time Sat, 31.12.2022 18:49.21
[J Model State READY

i
(] PARAMETERS:

[Endpoint randomeutforest-2022-12-31-03-48-13-259
(] Function Name remote_fn_rcf

[Inference Type Remote

[Function Parameter T... intd

(] 1AM Role am:awsiam::215830370936:role/spectrumrs

Figure 11.4 — Remote inference model metadata

Notice that in the model metadata, the Model State parameter is set to
READY, indicating that the model is deployed. The Endpoint name is
randomcutforest-2022-12-31-03-48-13-259. Inference Type is set to

Remote inference. When this model is run, Redshift ML sends data stored
in Redshift in batches to SageMaker, where inferences are generated.
Generated predicted values are then sent back to Redshift, which are

eventually presented to the user.

We have successfully deployed the model. In the next section, let’s run
predictions.

The data preparation script

The following code snippet shows the data preparation script that you will
need to run on Redshift. We will create the table that will be used to run

inference on:

COPY chapterll byom.rcf taxi data

FROM 's3://sagemaker-sample-
files/datasets/tabular/anomaly benchmark taxi/NAB nyc taxi.csv'
IAM ROLE 'arn:aws:iam::215830312345:role/spectrumrs' ignoreheader
1 csv delimiter ', "';

NOTE

Please update the IAM_ROLE parameter with your Redshift cluster attached role.

Sample the data to make sure data is loaded:

select * from chapterll byom.rcf taxi data limit 10;

Here’s the output:

{ Result 1(10)

] ride_timestamp nbr_passengers

[] 2014-07-01 00:00:00 10844
[J 2014-07-01 00:30:00 8127
[J 2014-07-01 01:00:00 6210
[J 2014-07-01 01:30:00 4656
[] 2014-07-01 02:00:00 3820
[J 2014-07-01 02:30:00 2873
[J 2014-07-01 03:00:00 2369
[] 2014-07-01 03:30:00 2064
[] 2014-07-01 04:00:00 2221
[J 2014-07-01 04:30:00 2158

Figure 11.5 — Showing sample records from the test dataset

Now that we have the remote inference endpoint and test dataset, let’s
invoke the prediction function.

Computing anomaly scores

Now, let’s compute the anomaly scores from the entire taxi dataset:

select ride timestamp, nbr passengers,
chapterll byom.remote fn rcf (nbr passengers) as score
from chapterll byom.rcf taxi data;

The following is the output of the remote inference predictions:

- Result 1(100)

[ride_timestamp

(] 2014-07-01 00:00:00
[J 2014-07-01 00:30:00
[2014-07-01 01:00:00
[J 2014-07-0101:30:00
[2014-07-01 02:00:00
[2014-07-01 02:30:00
[2014-07-01 03:00:00
[2014-07-01 03:30:00
[2014-07-01 04:00:00
[2014-07-01 04:30:00
[2014-07-01 05:00:00
[2014-07-01 05:30:00
(] 2014-07-01 06:00:00
(] 2014-07-01 06:30:00
[] 2014-07-0107:00:00

nbr_passengers
10844
81271
6210
4656
3620
2873
2369
2064
2001
2158
2515
4364
6526
11039
13857

Score

0948715
0.984757
099229

0.926354
0837195
0.958307
0.995339
AL
1.077583
1065441
0.986209
0.870619
0.878626
0952614
081267

Figure 11.6 — Showing remote function prediction values

The preceding output shows the anomalous score for different days and the

number of passengers.

In the following code snippet, we will print any data points with scores
greater than 3 and standard deviations (approximately the 99.9th percentile)

from the mean score:

with score cutoff as

(select stddev (chapterll byom.remote fn rcf (nbr passengers)) as
std, avg(chapterll byom.remote fn rcf (nbr passengers)) as mean, (
mean + 3 * std) as score cutoff value

From chapterll byom.rcf taxi data)

select ride timestamp, nbr passengers,

chapterll byom.remote fn rcf (nbr passengers) as score

from chapterll byom.3rcf taxi data

where score > (select score cutoff value from score cutoff)

4

The output is as follows:

Result 1 (100)

(] rice_timestamp

] 2014-07-0118:30:00
] 2014-07-0119:00:00
] 2014-07-02 19:30:00
] 2014-07-03 19:00:00
] 2014-07-1128:30:00
[] 2014-07-1418:30:00
(] 2014-07-1519:00:00
] 2014-07-2319:00:00
] 2014-07-23 21:00:00
] 2014-07-25 28:00:00
[] 2014-09-02 03:30:00
] 2014-09-0519:00:00
] 2014-09-05 19:30:00
] 2014-09-05 20:00:00

nbr_passengers
27598
26827
26872
29985
26873
26945
21167
26528
26600
266088
1431
21337
26812
26692

score
2195869
1.830476
1.827087
319337
1.847826
1.864781
1.943336
1126353
1.707489
1.787407
1.992107
2033346
1.81532
1730946

Figure 11.7 — Showing unacceptable anomaly scores

In the preceding results, we see that some days’ ridership 1s way higher and
our remote inference function is flagging them as anomalous. This

concludes the section on bringing remote inference models into Redshift.

Summary

In this chapter, we discussed the benefits and use cases of Amazon Redshift
ML BYOM for local and remote inference. We created two SageMaker
models and then imported them into Redshift ML as local inference and
remote inference model types. We loaded test datasets in Redshift and then
we ran the prediction functions and validated both types. This demonstrates
how Redshift simplifies and empowers the business community to perform
inference on new data using models created outside. This method speeds up
the delivery of machine learning models created outside of Redshift to the

data warehouse team.

In the next chapter, you are going to learn about Amazon Forecast, which

enables you to perform forecasting using Redshift ML.

12

Time-Series Forecasting in Your Data
Warehouse

In previous chapters, we discussed how you can use Amazon Redshift
Machine Learning (ML) to easily create, train, and apply ML models
using familiar SQL commands. We talked about how we can use supervised
learning algorithms for classification or regression problems to predict a
certain outcome. In this chapter, we will talk about how you can use your
data in Amazon Redshift to forecast a certain future event using Amazon

Forecast.

This chapter will introduce you to time-series forecasting on Amazon

Redshift using Amazon Forecast (https://aws.amazon.com/forecast/), a fully
managed time-series forecasting service, using SQL, and without moving
your data or learning new skills. We will guide you through the following

topics:
e Forecasting and time-series data
e What is Amazon Forecast?
e Configuration and security

e Creating forecasting models using Redshift ML

Technical requirements

https://aws.amazon.com/forecast/

This chapter requires a web browser and access to the following:
* An AWS account
e Amazon Redshift
e Amazon Redshift query editor v2

You can find the code used in this chapter here:

https://github.com/PacktPublishing/Serverless-Machine-I earning-with-
Amazon-Redshift/blob/main/CodeFiles/chapterl2/chapter-12.sql.

Forecasting and time-series data

Forecasting is a way of estimating future events, which involves analyzing
historical data and past patterns to derive a possible outcome in the future.
For example, based on historical data, a business can predict their sales

revenue or identify what will happen in the next time period.

Forecasting plays a valuable role in guiding businesses to make informed
decisions about their operations and priorities. Many organizations rely on
data warehouses such as Amazon Redshift to perform deep analytics on
vast amounts of historical and current data, enabling them to drive their
business goals and gauge future success. Acting as a planning tool,
forecasting helps enterprises prepare for future uncertainties by leveraging
past patterns, with the underlying principle that what happened in the past
will likely recur in the future. These predictions are based on analyzing

observations over time within the given timeframe.

Here are some examples of how organizations use forecasting:

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/blob/main/CodeFiles/chapter12/chapter-12.sql

e Financial planning

e Supply and demand planning

e Timing the launch of new products or services

e Resource planning

e Predicting future events, such as sales and revenue earnings

e Reviewing management decisions
Looking at a trend graph helps us predict the trend, but a time-series
forecast gives us a better estimate of how it may continue. We can also
model data that doesn’t show any clear pattern or trend over time. When
there is a pattern, we can look at the entire history of the data to see how it

happened before. If there is no pattern, we can rely more on recent data for

forecasting.

Types of forecasting methods

There are two types of forecasting methods: qualitative and quantitative.

Let’s take a look at what qualitative and quantitative methods are, as

defined at https://aws.amazon.com/what-is/forecast/:

e Qualitative forecasting is subjective and relies on marketing experts’
opinions to make predictions. You can use these methods when there is
not enough historical data. Some examples of qualitative forecasting
methods are market research such as polls and surveys, and the Delphi

method to collect informed opinions and predict trends.

https://aws.amazon.com/what-is/forecast/

e Quantitative forecasting is objective in nature and is used to predict
long-term future trends. It uses historical and current data to forecast
future trends. Some examples of quantitative forecasting methods are
time-series forecasting, econometric modeling, and the indicator

approach.

In this chapter, we will focus on quantitative forecasting using time series
for data, also known as time-series forecasting. Now, let’s look into what

time-series forecasting is.

What is time-series forecasting?

Time-series forecasting is a data science technique that uses ML to study
historical data and predict future trends or behavior in time-series data.
Time-series data is used in many situations, such as weather forecasting,
financial studies, statistics, resource planning, and econometrics. In the
previous chapter, we looked into regression models to predict values using
cross-sectional data, where your input variables are used to determine the
relationship between the variables so that you can predict the unknown

target on sets of data without the target variables.

This data is unique because it arranges data points by time. Time-series data
can be plotted on a graph and these graphs are valuable tools for visualizing
and analyzing the data. In many organizations, data scientists or data
analysts use these graphs to identify forecasting data features or attributes.

Let us look into some examples of time-series data characteristics.

Time trending data

In trending data, the observations are captured at equal time intervals. In
time-series graphs, the y axis is always a unit of time, such as quarter, year,
month, day, hour, minute, or second. In Figure 12.1, we have an example of

the trend of total subscribers by year:

Loy
b
2 |
§80M
J
2 4l
5 i —
'R I I I
FH) I
WM N M Wk W W

Figure 12.1 — Trend of total subscribers per year

Seasonality

In seasonality observations, we can see periodic fluctuations over time, and
these fluctuations are predictable because we understand the behavior and
the cause based on historical patterns. For example, retailers know that sales
will increase during certain holiday periods. In Figure 12.2, we see an
upward spike in sales for November and December, which is expected

because of the holiday season:

>
—
=

R
[—
=

Total Quantity Sold
=
=

A0 Moy 20 WA AN Sep0X0 Oct200 Nov200 Dec2020 Jn202)

Figure 12.2 — Upward spike due to holiday season

Structural breaks

In structural breaks, we have fluctuations that are less predictable and can
occur at any point in time. For example, during a recession or geo-political
disturbances, the economic situation of a country might show structural
breaks. In Figure 12.3, we can see a visualization of economic growth over
time. The dips indicate an event that occurred at certain data points; for

example, the one in 2009 correlates to the mortgage crisis in the US.

Economic Growth 9

Figure 12.3 — Economic growth over time

Let’s take a look into how Amazon Redshift ML uses Amazon Forecast to

generate models using time-series datasets.

What is Amazon Forecast?

Amazon Forecast, like Amazon Redshift ML, requires no ML experience
to use. Time-series forecasts are generated using various ML and statistical
algorithms based on historical data. As a user, you simply send data to
Amazon Forecast and it will examine the data and automatically identify

what is meaningful and produces a forecasting model.

With Amazon Redshift ML, you can leverage Amazon Forecast to create
and train forecasting models from your time-series data and use these
models to generate forecasts. For forecasting, we require a target time-series
dataset. In target time-series forecasting, we predict the future value of a
variable using the past data or previous values, which is often called
univariate time series because the data is sequential over equal time

increments. Currently, Redshift ML supports target time-series datasets with

a custom domain. The dataset in your data warehouse must contain the
frequency or interval at which you capture your data. For example, you

might record and aggregate the average temperature every hour.

Amazon Forecast automatically trains your model based on an algorithm
using Auto ML and provides six built-in algorithms (to learn more about
the built-in algorithms, please check out this resource:

https://docs.aws.amazon.com/forecast/latest/dg/aws-forecast-choosing-

recipes.xhtml#forecast-algos). These forecasting models, known as
predictors, are created using an optimal combination of these algorithms

from your time-series data in Amazon Redshift.

Configuration and security

As Amazon Forecast is a separate fully managed service, you will need to
create or modify your IAM role to include access permissions for your
serverless endpoint or Redshift cluster. Additionally, you should configure a
trust relationship for Amazon Forecast (forecast.amazonaws.com) in the

IAM role to enable the necessary permissions.

You can use the AmazonForecastFullAccess managed policy, which grants
full access to Amazon Forecast and all of the supported operations. You can
attach this policy to your default role but, in your production environments,

you must follow the principle of least-privilege permissions. You may use

more restrictive permissions, such as the following:

"Version": "2012-10-17",
"Statement": [

{

https://docs.aws.amazon.com/forecast/latest/dg/aws-forecast-choosing-recipes.xhtml#forecast-algos
http://forecast.amazonaws.com/

"sid":
"Effect":
"Action": [

"forecast:
"forecast:
"forecast:
"forecast:
"forecast:
"forecast:
"forecast:
"forecast:
"forecast:
"forecast:

"forecast:

"forecast

"forecast:
"forecast:
"forecast:

1,

"Resource":

"Effect": "Allow",
"Action": [
"iam:PassRole"

I

"Resource":"arn:aws:

"VisualEditorQO",
"Allow",

DescribeDataset",
DescribeDatasetGroup",
DescribeAutoPredictor",
CreateDatasetImportJob",
CreateForecast",
DescribeForecast",
DescribeForecastExportJob",
CreateMonitor",
CreateForecastExportJob",
CreateAutoPredictor",

DescribeDatasetImportJob",

:CreateDatasetGroup",

CreateDataset",
TagResource",
UpdateDatasetGroup"

"W

iam::<aws account id>:role/service-

role/<Amazon Redshift cluster iam role name>"

}
]

Creating forecasting models using
Redshift ML

Currently, if you have to perform forecasting in your data warehouse, you
need to export the dataset into external systems and then apply forecasting

algorithms to create output datasets and then import them back into the data

warehouse for your presentation layer or further analysis. With Redshift
ML’s integration with Amazon Forecast, you don’t have to perform all these
steps. You can now create the forecasting models right on your dataset

within your data warehouse.

In Chapter 5, we talked about the basic cREATE MoDEL syntax and its

constructs. Let’s take a look at the creaTe MopEL syntax for forecasting:

CREATE MODEL forecast model name

FROM { table name | (select query) }

TARGET column name

IAM ROLE { default | 'arn:aws:iam::<AWS account-id>:role/<role-
name>"' }

AUTO ON MODEL TYPE FORECAST
[OBJECTIVE optimization metric]
SETTINGS (S3 BUCKET 'bucket',
HORIZON integer,
FREQUENCY forecast frequency,
[, PERCENTILES perc comma delim string],
[S3_GARGABE COLLECT OFF 1)

There are a few things to notice with the creaTE MopEL statement for

forecasting.

First, forecast models do not create inference functions. The reason for this
is that when we train a predictor on Amazon Forecast, we specify in the
training request the number (rorIzoN) and frequency of predictions
(FREQUENCY) We want to make in the future. Because of this, a trained model
has a fixed forecast, so there isn’t a physical model to compile and execute.
A custom CTAS command (which will be discussed later) is used to extract
a forecast from the training output location in S3 into a table locally in
Redshift.

Next, we can specify the optional objective or optimization metric, which is
used to optimize the predictor for under-forecasting and over-forecasting.
Amazon Forecast provides different model accuracy metrics for you to

assess the strength of your forecasting models, which are listed here:

* AverageWeightedQuantileLoss — measures the accuracy of a model at a

specified quantile

e wapE (weighted absolute percentage error) — measures the overall

deviation of forecasted values from the observed value

e RMSE (root mean square error) — the square root of the average of

squared errors

e Mast (mean absolute scaled error) — calculated by dividing the average

error by a scaling factor

e MAPE (mean absolute percentage error) — takes the absolute value of the
percentage error between observed and predicted values for each unit of

time, then averages those values

Lastly, it is important to note that ForecasT does not support any
hyperparameters. Instead, any Forecast-specific settings for training will be
specified using the serrings clause. Currently, the supported settings are as

follows:

e FREQUENCY: Granularity of predictions in a forecast. Valid values are v
(year), M (month), w (week), o (day), & (hour), and min (minute), for

example, # for hourly forecasts or 1min for forecasts every minute).

e HORIZON: The number of time steps in the future to forecast (e.g., 24).

NOTE

FREQUENCY H and HORIZON 24 mean you want hourly forecasts for the next day.

e pERCENTILES (optional): The forecast types are used to train a predictor.
Up to five forecast types or percentiles can be specified. These types
can be quantiles [0.01 to 0.99] or mean. A forecast at the 0.50 quantile

will estimate a lower value 50% of the time.

Now, let’s take a look at one use case where we can use the target time-

series dataset for predicting the target forecast value.

Business problem

For this use case, let’s take the example of an online retail store to forecast
the future demand for certain products in the store. This dataset is taken
from the UCI ML repository and is available here:
https://archive.ics.uci.edu/dataset/352/online+retail. For this exercise, we
have modified the data to resemble more of a target time-series dataset,
containing item id, date, and target value fields. The data spans a two-
year time period starting from December 2018 to November 2020. The
modified data contains the item name, date products were sold, and total

number of products sold.

DATASET CITATION

Online Retail. (2015). UCI Machine Learning Repository. https://doi.org/10.24432/C5BW33.

Uploading and analyzing the data

https://archive.ics.uci.edu/dataset/352/online+retail
https://doi.org/10.24432/C5BW33

After successfully connecting to Redshift as an admin or database
developer, load data into Amazon Redshift and follow the steps outlined

here:

1. Navigate to query editor v2, connect to Serverless endpoint, and

connect to the dev database:

+ (reate ~ Load data b Rin Limit100 = Explain) lsolated session) ~Serverles:forecast-pr.. + dev +

Q
v {p Serverless: forecast-preview

(REATE SCHEMA chapter1?_forecasting;

: chapter1?_forecasting.web_retail_sales

) mdev
ce_Date date, iten_id varchar(500), quantity int);

) [sample_data_dev

Figure 12.4 — Connecting to the dev database

2. Execute the following steps to create the schema and the trade details

table and load the data:

CREATE SCHEMA chapterl2 forecasting;

Create table chapterl? forecasting.web retail sales
(invoice Date date, item id varchar (500), gquantity int);
COPY chapterl2 forecasting.web retail sales

FROM 's3://packt-serverless-ml-
redshift/chapterl2/web retail sales.csv'

IAM ROLE default

FORMAT AS CSV

DELIMITER ',
IGNOREHEADER 1
DATEFORMAT 'YYYY-MM-DD'

REGION AS 'eu-west-1"';

3. Run the following query to examine some sample data:

select * from chapterl2 forecasting.web retail sales;

The result will be similar to this:

invoice_date item_id

2019-08-23 JUMBO SHOPPER VINTAGE RED PAISLEY
2019-08-30 PACK OF 6 BIRDY GIFT TAGS
2019-10-07 REGENCY CAKESTAND 3 TIER
2019-10-19 SMALL POPCORN HOLDER

2019-12-17 CHARLOTTE BAG SUKI DESIGN
2020-02-22 VINTAGE HEADS AND TAILS CARD GAME
2020-08-04 6 RIBBONS RUSTIC CHARM

2020-09-07 PACK OF 72 RETROSPOT CAKE CASES
2020-08-29 HEART OF WICKER LARGE

2020-10-25 PACK OF 12 LONDON TISSUES
2020-11-06 RED RETROSPOT CHARLOTTE BAG

Figure 12.5 — Query results
As you can see in the preceding figure, we have the following:
* invoice_date (date when the item was sold)
e item id (name of the product sold)

e gquantity (number of items sold for that product for each day)

Using this dataset, we will create a model in Amazon Forecast and predict
the demand for the future for the given products. The goal is to analyze
what a particular product’s demand is going to look like in the coming five
days. For accuracy and validation, we will create the model using the data
until October 2020. Once we have the predictor ready, we will then
compare the output values with the actual values in November 2020 to
determine the accuracy of our model. We will also take a look at different
accuracy metrics, such as the average weighted quantile loss (WQL),
WAPE, MAPE, MASE, and RMSE.

Let’s create the model using the creaTE MoDEL statement we discussed at the

beginning of the Creating forecasting models using Redshift ML section.

Objective 1S Set t0 AverageWeightedQuantileLoss (mean of wQL), which is
the accuracy metric for optimization metric. Frequency is set to b (Days),
Horizon IS set to 5, and Percentiles 1S Set to 0.25, 0.50, 0.75, 0.90, and

mean.

If you do not specify the percentiles settings, then Forecast generates the

predictions on p10, p50, and p90 (0.10, 0.50, and 0.90).

Run the following command in query editor v2 to create the model. Note

this will take approximately 90 minutes.

CREATE MODEL forecast sales demand

FROM (select item id, invoice date, quantity

from chapterl2 forecasting.web retail sales where invoice date
< '2020-10-31")

TARGET quantity

IAM ROLE 'arn:aws:your-IAM-Role'

AUTO ON MODEL TYPE FORECAST

OBJECTIVE 'AverageWeightedQuantileLoss'

SETTINGS (S3 BUCKET '<<bucket name>>',

HORIZON 5,

FREQUENCY 'D',

PERCENTILES '0.25,0.50,0.75,0.90,mean',
S3 GARBAGE COLLECT OFF) ;

Run the s#ow MopeL command to see whether model training is complete:

SHOW MODEL forecast sales demand;

The result is as follows:

Key [Value

Model Name:
Schema Name
Owmer
Creation Time
Model State

TRAINING DATA:
Query

Target Column

PARAMETERS:
Model Type
Frequency
Horizon

Percentiles

Optimization Matric

Training Job Name

forecast_sales_demand
chapter12_forecasting
IAMR:Admin

Sat, 19.08.2023 19:16:38
TRAINING

SELECT ITEM_ID, INVOICE_DATE, QUANTITY

FROM CHAPTER12_FORECASTING WEB_RETAIL_SALES
WHERE INVOICE_DATE < '2020-10-31'

QUANTITY

forecast

D

5

0.25, 0.50, 0.75, 0.90, mean
AverageWeightedQuantileLoss
redshiftmi_202308191916838640405

Figure 12.6 — Result of model training

You can also view the status of the predictor using the value of Training
Job Name shown in the preceding screenshot. Navigate to your AWS

console and type 1N Amazon Forecast.

Click on View dataset groups and find the dataset group name by pasting
redshiftml_ 20221224001451333090.

Click on this dataset group name and verify whether Target time series

data is Active, as shown in Figure 12.7.

You can also view the details about your time-series data by clicking View
and seeing the schema, frequency of data registered in your data file,

dataset import details, and so on.

Amazon Forecast » Datasetgroups) redshiftml_20221224001451333090_dataset_group > Dashboard

Dashboard i

Overview

Import your data Train a predictor
Datasets are required to train predictors, which are then usedto Train a predictor, a custom model with underlying Infrastructure
generate forecasts. that Amazon Forecast trains on your datasets.

‘ View predictors ‘

Target time series data @ACtive View Edit

Train predictor
Item metadata data
Related time serles data

Figure 12.7 — Verify the status of target time-series data

Once active, you can view the predictor by clicking View predictors. The

Predictors dialog box will show the training status, as follows:

Predictors (1) info Manage notifications [}

This page gives you an overview of yaur predictors, and pravides infarmation about their status and perfarmance.

Q. Find pedictor name
Predictor name v Tralning status v Forecasttypes v WAPE v RMSE v AutoPredictor Info
(& Create inprogress..
O redshiftm| 20221224001451333000 predictor et . .] True

24 mins est. remaining

Figure 12.8 — Training status in View predictors

Run the smow MopEL command again to see if model training i1s complete:

SHOW MODEL forecast sales demand;

The result is as follows:

Model Name forecast_sales_demand
Schema Name chapter12_forecasting
Owner IAMR:Admin

Creation Time Sat, 19.08.2023 19:16:38
Model State READY

TRAINING DATA:

Query SELECT ITEM_ID, INVOICE_DATE, QUANTITY
FROM CHAPTER12_FORECASTING.WEB_RETAIL_SALES
WHERE INVOICE_DATE < "2020-10-31"

Target Column QUANTITY

PARAMETERS:

Model Type

Frequency D

Horizon 5

Percentiles 0.25, 0.50, 0.75, 0.90, meaan
Optimization Metric AverageWeightedQuantileLoss
Training Job Name redshiftml_20230819191638640405

Figure 12.9 — Status of model training completion

Once the model training is finished and ready, you can then view the

outputs by creating a table on your forecast:

For a retail store, the company needs to ensure that they do not over-
forecast or under-forecast the predicted quantity required in order to
effectively manage inventory and enhance profits. As mentioned earlier,
Redshift ML with Amazon Forecast provides different optimization metrics
that can be used in order to measure the accuracy of a model specified at
different quantiles. For this use case, we have created the model for 0. 25,
0.50, 0.75, 0.90, and mean. If the emphasis is on over-forecasting, then for a
retailer, choosing a higher quantile (0.90) captures the spike in demand in a
much better way for a high-demand item or product. This suggests that
there 1s a 90% probability of success for the product to meet the forecasted

demand. Now, let’s see how to get our forecasted results.

Creating a table with output results

After the model has finished training and is ready, we now create a table in
our schema to hold all the forecast results using a simple CTAS command,

as shown:

create table chapterl2 forecasting.tbl forecast sales demand as
SELECT
FORECAST (forecast sales demand) ;

In this command, forecast () is a pseudo table function that takes the name
of your model as an input parameter. The data is then pulled from the S3

bucket location where your model results are stored.

Let’s take a look at the output from the preceding table by running the

following SQL command:

select * from chapterl2 forecasting.tbl forecast sales demand;

Looking at Figure 12.10, you can see that for each day, Forecast has
generated the output predictions for each distribution point or quantile that

we provided and the mean:

0 id ime p2s pl pis p%0 mean

[white hanging heart t-ight hoider ~ 2020-11-01T00:00:002 202240104675 46.8012008667 71.7090988159 112.0020904541 44.9173049927
L] white hanging heart I-ight holder 2020-11-02700:00:00Z -2.0889434814 34.4102172852 66.7431182661 979138565063 36.0352134705
| white hanging heart I-light holder 2020-11-03T00:00:00Z 23.2653865814 §1.94335937% 7162380526367 1136090335083 49.3352026162
LI white hanging heart I-ight holder ~ 2020-11-04T00:00:00Z 171822776794 431906045837 704421644482 1132993164082 37.2828041345
L white hanging heart t-light holder ~ 2020-11-06T00.00:00 -4.0084266663 16.7009806769 432981262207 61.9549255371 13.0443763733

Figure 12.10 — Output of the table

For products in high demand, the retailer can choose a higher quantile, such
as 0.90 (p90), which better captures spikes in demand, rather than

forecasting at the mean or 0.50 quantile.

Now, let’s take a look at the data of a popular product: JUMBO BAG RED
RETROSPOT.

Run the following SQL query:

select a.item id as product,

a.invoice date,

a.quantity as actual quantity ,

p90::int as p90 forecast,

p90::int - a.quantity as p90 error ,mean::int,

p50::int as p50 forecast

from chapterl2 forecasting.web retail sales a

inner join chapterl2 forecasting.tbl forecast sales demand b

on upper (a.item id) = upper (b.id)

and a.invoice date = to date(b.time, 'YYYY-MM-DD')
AND a.item id = 'JUMBO BAG RED RETROSPOT'

where invoice date > '2020-10-31"

order by 1,2;

Here’s the result:

product invoice_date actual quanity p30 forecast p30_error pA0) forecast
JUMBOBAGREDRETR.. 2020-11:{1 318 4h g 181

JUMBOBAGREDRETR... 2020-11-2 244 20 2 8
JUMBOBAGREDRETR... 2020-11-03 34 . 13
JUMBOBAGRED RETR... 2020-11-04 548 166

Figure 12.11 — Forecast data

To visualize the data, select Chart. For the x axis, choose the invoice date

attribute, and for the y axis, choose p90_forecast:

4 et (] O 0 Soecat) Egot e O Gt B

* Collse A + Trace

Structure
actual_quantity vs, p30_forecast

Traces
v N actual

Subplots

. / == il
e Nlig
Trangfoms /-~ forecadt

Sty 4 Ince_dale

Aoy ¥ ey« [N

OQOuanmtity

Axes To Use

AAS KhoieDde v 4

00 1200 0000 1200 00:00 1200 0000
Nov 1, 2020 Nov 2, 2000 Nov 3, 2020 Nov4, 2020

Figure 12.12 — Forecast chart

If we closely examine the preceding data in Figure 12.11, we can observe
that Line 1 was under-forecasted, while Lines 2 and 3 were very close to the
actual values, and Line 4 was just slightly over-forecasted. In order to test
the forecasting, you can further perform tests with different sets of data or
even on different quantiles. Additionally, a retailer can use this data for
different products, such as products with low demand, and make use of

other quantiles, such as p50 or mean.

The wQL i1s used to calculate the AverageWweightedQuantileLoss metric. The
wQL can be used to manage the costs of over- and under-forecasting. These
metrics will be available to you in the Amazon Forecast console for your
predictor. Generally, to calculate the wQL at 0. 90, sum the values of the
positive values in above p9o error field and multiply them by a smaller
weight of 0.10, and sum the absolute values of the negative values in p90

error and multiply them by o. 90.

To align with your business outcomes, you can create the forecasting
models at different quantiles (Percentiles) in your Amazon Redshift data
warehouse. This gives you the flexibility to measure your business goals

and keep the impacts on cost on the lower side.

Summary

In this chapter, we discussed how you can use Redshift ML to generate
forecasting models using Amazon Forecast by creating the model for
Forecast Mode1l_Type. You learned about what forecasting is and how time-
series data is used to generate different models for different quantiles. We
also looked at different quantiles and talked briefly about different

optimization metrics.

We showed how forecast models can be used to predict the future quantity
sale for a retailer use case and how they can be used to balance the effect of

over-forecasting and under-forecasting.

In the next chapter, we will look at operational and optimization

considerations.

13

Operationalizing and Optimizing Amazon
Redshift ML Models

Now that you have learned how to create many different types of ML
models, we will show you how you can operationalize your model training
pipelines. Once you have moved your model to production, you want to
refresh the model regularly and automate the process to do this.
Additionally, it is important to periodically evaluate your models to

maintain and improve their accuracy.
In this chapter, we will go through the following main topics:
e Operationalizing your ML models

e Optimizing the Redshift model for accuracy

Technical requirements

This chapter requires a web browser and access to the following:
e An AWS account
e An Amazon Redshift Serverless endpoint
e Amazon Redshift Query Editor v2

e An Amazon EC2 Linux instance (optional)

You can find the code used in this chapter here:
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-
Amazon-Redshift/.

Operationalizing your ML models

Once a model is validated and used on a regular basis for running
predictions, it should be operationalized. The reasons for this are to remove
the manual tasks of retraining your models and to ensure that your model
still retains high accuracy after your data distribution has changed over
time, also referred to as data drift. When data drift occurs, you need to

retrain the model using an updated training set.

In the following sections, we will do a simple model retraining, then show

you how you can create a version from an existing model.

Model retraining process without
versioning

To walk through the retraining process, we will use one of our previously

used models.

In Chapter 7, we discussed different regression models, so let’s use the
chapter7_regressionmodel.predict ticket price auto model. This model
solved a multi-input regression problem and SageMaker Autopilot chose
the XGBoost algorithm.

Let’s assume this model is performing well and, based on our data loading

processes, we want to retrain this model weekly.

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/

To retrain this model, we must first remove the existing model and then re-

execute the cReaTE MopEL command as follows:

DROP MODEL chapter7 RegressionMOdel.predict ticket price auto;
CREATE MODEL chapter7 RegressionMOdel.predict ticket price auto
from

chapter7 RegressionModel.sporting event ticket info training
TARGET final ticket price

FUNCTION predict ticket price auto

IAM ROLE default

PROBLEM TYPE regression

OBJECTIVE 'mse'

SETTINGS (s3 bucket <<'your-S3-bucket>>',

s3 _garbage collect off,

max_runtime 9600);

You can set this up to run on a regular schedule using various techniques,
which could include using the Query Editor v2 scheduling feature or
running scripts. For more information on scheduling queries with Query

Editor v2, refer to the following:

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-

schedule-query.xhtml.

The model retraining process with
versioning

This approach of simply dropping and recreating the model might be fine in
some cases, but there i1s no model history available since we are simply
dropping and recreating the model. This makes comparing the newly

trained model to previous versions very difficult, if not impossible.

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-schedule-query.xhtml

At the time of writing, Redshift ML does not have native versioning
capabilities. However, you can still do versioning by implementing a few
simple SQL techniques and leveraging the bring our own model (BYOM)
capability, which you learned about in Chapter 1.

BYOM is great for leveraging pre-built Amazon SageMaker models in
order to run your inference queries in Amazon Redshift and you can also
use BYOM for models that were built using Redshift ML, which means we
can create a version of an existing model that was previously created by
Redshift ML.

Let’s take a quick refresher on the syntax of BYOM for local inference:

CREATE MODEL model name
FROM ('Jjob name' | 's3 path')
FUNCTION function name (data type [, ...])
RETURNS data type
IAM ROLE { default }

[SETTINGS (
S3 BUCKET 'bucket', | --required
KMS KEY ID 'kms string') --optional

17

We need the job name, the data types of the model inputs, and the output.
We can get the information we need for the cREATE MODEL statement by
running the seow MoDEL statement on our existing model. Run the following

command in Query Editor v2:

SHOW MODEL chapter7 regressionmodel.predict ticket price auto;

The result 1s as follows:

B Reslt1 (2] Obgot v Chat 1
Key [Vale |
Model Name predict ticket_price_auto |
Schema Name chapter7_reqressionmodel
Owner [AMR:Admin
Creation Time Thu, 29122022 21:13:11
Model State READY
dddinmse 4TI
TRAINING DATA :

Quey ST
FROM 'CHAPTERT_REGRESSIONMODEL','SPORTING_EVENT_TICKET INFO_TRANNG'
Target Column FINAL_TICKET PRICE
PARAMETERS: _
Model Type Xgboost
Problem Type Regression
Otece e
AutoML Job Name redshiftml-20221229211311236659
Function Name preaict_ticket_ price_auto :
Function Parameters ticket_id event id sport event_date_time home_team away_team location crty seat level seat section s6...

Function Parameter Types

Max Runtime

foat8 intB varchar timestamp varchar varchar varchar varchar int8 int8 varchar nt8 float varchar
Ll

Figure 13.1 — The SHOW MODEL output

The following is the crREATE MODEL statement to create a version of the
current model using the AutoML Job Name value from our ssow MODEL
command. You will also need to include the function parameter types from
Figure 13.1 in runcTtION here and include the data type of Target
Column(FINAL TICKET PRICE). Note that we append the date (yyyymmop) to
the end of the model name and function name to create our version. You can
run the following code in Query Editor v2 to create a version of your

model:

CREATE MODEL
chapter7 regressionmodel.predict ticket price auto 20230624

FROM 'redshiftml-20221229211311236659"

FUNCTION predict ticket price auto 20230624 (floats§,
int8, wvarchar, timestamp, varchar, varchar,
varchar, varchar, int8, int8, wvarchar, int8§,
float8, wvarchar)

RETURNS float8

IAM ROLE default

SETTINGS (

S3 BUCKET '<<your S3 Bucket>>");

Run the following sHow MopEL command:

SHOW MODEL
chapter7 regressionmodel.predict ticket price auto 20230624;

In Figure 13.2, notice that Inference Type shows Local, which designates

this as BYOM with local inference:

Key Value :
‘ Modgl Name | predict ket price_auto 20230624
Schema Name Chapter? reqressionmodel
Onner WA
Creation Time Sat 24.06.2023 14:10:35
T Y
RAIETER
Model Type ¥gooost
| AutoML Jop Name | redshifmk2023051 1225221235425
Function Name precict fiket price auto 20230624
hfeence Tpe L

FUnclion Parameter Types ot nt varchar imestamp varchar varchar varchar vachar nf ntvarchar it f..

e

| am:ans:am: 97038019910 role/service-tolg/AmazonRedshift-CommandsAcoessRo...

Figure 13.2 — The SHOW MODEL output

Now that you have learned how to create a version of a previously trained

Redshift ML model, we will show you how you can automate this process.

Automating the CREATE MODEL
statement for versioning

We have included the scripts here:

https://github.com/PacktPublishing/Serverless-Machine-I earning-with-
Amazon-Redshift/tree/main/CodeFiles/chapter]3.

You can use these scripts and customize them as needed. These contain all
the components needed to automate the process of performing model
versioning. The example in this chapter uses Bash scripts with RSQL
running on an EC2 instance. If you prefer, you can also install RSQL on

Windows or macOS.

You may find more information on using RSQL to interact with Amazon

Redshift here: https://docs.aws.amazon.com/redshift/latest/mgmt/rsql-

query-tool-getting-started.xhtml.

To download all the code for this book, you may run the commands given
in the following link on an EC2 instance running on Linux or Windows or

on your local Windows or Mac machine:

https://github.com/PacktPublishing/Serverless-Machine-Iearning-with-
Amazon-Redshift.git.

Before running the scripts, we need to create the schema and the table
needed to generate the creaTE MopeL command for the model version. You

can run the following steps in Query Editor v2:

1. Create the schema:

Create schema chapterl3;

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/CodeFiles/chapter13.%20
https://docs.aws.amazon.com/redshift/latest/mgmt/rsql-query-tool-getting-started.xhtml
https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift.git

2. Create the table to contain the metadata needed to auto-generate the

CREATE MODEL command:

create table chapterl3.local inf ml model components
(model name varchar (500),

schema name varchar (500),

automlJobName wvarchar (500),

functionName wvarchar (500),

inputs data type varchar (500),

target column varchar (50),

returns data type varchar (50),

model arn varchar (500),

S3 Bucket varchar (200));

3. Initialize the 10cal_inf ml components table.

Note that you will just need to initialize this table once, with the model
name, schema name, the data type of the target value we are predicting, the
Amazon Resource Name (ARN) of the [AM role, and the S3 bucket to be
used for the Redshift ML artifacts. The table will get updated with the

additional data needed as part of the automation script:

insert into chapterl3.local inf ml model components
values

(

'predict ticket price auto',

'chapter7 regressionmodel',

\J ’,l l,V ’,l l,|float8',

'<arn of your IAM ROLE>'

'<your S3 Bucket>)';
Now, we are ready to run the automation script. Figure 13.3 illustrates this
flow using OUr predict_ticket_price_auto model from Chapz‘er /. Step 1
creates the model version by using BYOM and appending the timestamp

and Step 2 drops and creates the new model:

Step Step?

Dropcurrent
predictficket_prie_auto

i

ssue create model command
forprecicficket_price_auto

Createversion of
modelusngBYOM :

predit ficked price_auto ~ preaict_ficket_price_ auto_YYYYMMODHHMMSS ~ preaict ficket_price_ avto

Figure 13.3 — Automation script steps 1 and 2

Let’s walk through the steps in Figure 13.3.

Step 1 — creating a version from the existing
model

You may refer to the stepl_create model version.sh script at

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/CodeFiles/chapter13

Amazon-Redshift/tree/main/CodeFiles/chapter]13 or where you placed the

file after running the git clone command.

The contents of the stepl create model version.sh script are also shown
in the following code snippet. As you can see, it calls other scripts and

commands as follows:

#! /bin/bash

create SHOW MODEL sgl command

./generate show model sgl.sh 'chapter7 regressionmodel.predict t
icket price auto'

#Read SHOW MODEL output and write to file

./show model.sh

#copy SHOW MODEL output to the model info table

aws s3 cp create model.txt s3://<your-s3-bucket>>

#load SHOW MODEL output and prep table to generate create model
./prep create model.sh

#generate sgl to create model version
./generate create model version sqgl.sh

#execute the sgl to create model verson
./execute create model version.sh

Before you execute this script, read through the following subsections as

they contain instructions on some setup steps.

Creating the show_model _sql command

We have a simple script called generate show model sql.sh with code as

shown here:

#!/bin/bash

modelname=8§1

echo $1

echo SHOW MODEL $1 ';' > show model.sqgl

https://github.com/PacktPublishing/Serverless-Machine-Learning-with-Amazon-Redshift/tree/main/CodeFiles/chapter13

This script takes as input the model name. In the script provided, we have
already supplied the model name in the stepl create_model version.sh

driver script. You can modify this as needed for your models.

The script creates a ssow MopeL command that is written to a file called

show_model.sql to be read in the show model.sh script.

Reading the SHOW MODEL output and writing it to a file

This step executes an Amazon Redshift RSQL script called show model. sh,
which reads the show _model.sq1 file and writes the output to a file called

create_model. txt.

Copying the SHOW MODEL output to the model info table

This copies the create model.txt file into an S3 bucket.

Loading the SHOW MODEL output and prepping the table
to generate CREATE MODEL

This step executes another Amazon Redshift RSQL script called

prep_create_model.sh, which perforrns the fOHOWing:
e Creates and loads the model_info table

e Updates 10cal inf ml model components from the model info table so

that the cREATE MODEL statement can be generated for the model version

e Inserts the generated cREATE MODEL statement into the create model sql

table

Generating the SQL to create the model version

This step calls an Amazon Redshift RSQL script called

generate_create_model_version_sql.sh, which reads the create_model

table and writes the SQL to a text file called model version.txt.

Executing the SQL to create the model version

This step calls an Amazon Redshift RSQL script called
execute create model version.sh, Which creates the version of our

previously created model.

Now you can drop and create your model since we have the model version.

Step 2 - retraining your Redshift ML model to
create a version from the existing model

This step calls an Amazon Redshift RSQL script called retrain_model.sh,
which drops and creates our model. It references retrain model.sql, which

you can modify for your needs.

Now that you have learned how to automate the process of retraining your
Redshift ML models, let’s discuss how to optimize the accuracy of your

models.

Optimizing the Redshift models’ accuracy

In this section, we will review best practices for maintaining the optimal

accuracy of your models.

You will need to continually monitor your models over time to ensure the

scores stay stable between model training runs. Consider the new version of

the model we created here:

B Result1(24)

Key Valug

Model Name preclct ficket_price_auto_new
Schema Name chapter7 egressionmode
Ovner admin

Creation Time éThu, 06.04.2023 10:93:0
Model State READY

didorrse 0460
inaedCst G40

TANNGDA:
(uey ST i
FROM CHAPTERT REGRESSONHODEL"‘SPORTNG EVENT TOHET.,
Tl WL TOHET PRCE

PARAVIETERS:

Figure 13.4 — New model output

Create a table similar to this and track each week’s mean square error

(MSE) score from the sHow MoDEL output:

CREATE TABLE chapterl3.model score history (
model name character varying(500),
schema name character varying(500),
score integer,
variance integer,
training date date

)
DISTSTYLE AUTO;

The variance will be the difference in the score of each successive version

of a model.

Check how your models are trending by writing a query like this:

Select model name, score, variance, training date

Order by model name, training date desc;

If variances are not within a reasonable amount, you will need to look at

ways to improve the model scores.

Let’s explore how we can improve the model quality by using more data

and experimenting with different model types and algorithms.

Model quality

The first best practice is to use more data to improve the model’s quality.
Also, you can add more training time to your model by increasing the

MAX RUNTIME parameter.

Ensure you are using a representative dataset for training and create at least

a 10% sample for validation.

Experiment with different model types and algorithms to get the best model.
For example, in Chapter 7, we tried two different algorithms for the multi-
input regression models. On the first one, we tried linear learning and we
got an MSE score of 701:

B Result 1(24)

Key Value =
| Model Name | predict_ticket_price_linlearn
Schema Name public
Owner admin
Creation Time Tue, 02.08.2022 02:01:58
* Model Sate READY
validation:mse 701.492249
*Estinated Cos 667761
| TRAINING DATA:
 Quey *SELECT"
FROM "PUBLIG"."SPORTING_EVENT _TICKET_INFO_TRAINING"
 Taget ol * FINAL_TICKET_PRICE |
 PARAVETERS;
Model Type | linear_learner
Problem Type Regression
* Objectve MSE
AutoML Job Name redshiftml-20220802020158515015
Function Name | predict_ticket_price_linlearn |
Function Parameters ticket id event_id sport event_date_time home_team away tea...

Figure 13.5 — MSE score of the linear learner model type

When we ran it again without specifying the model type, SageMaker
Autopilot chose XGBoost as the model type and it gave a better MSE score
of 0.711260:

AutoML Job Name

redshiftml-20220730183010760167

Key Value =
| Model Name | predict_ticket_price_auto
Schema Name public
Qwner admin
Creation Time Sat, 30.07.2022 18:30:10
Model St READY
vltions 07180
Estimated Cost 6.97679
| TRAINING DATA:
Quy SEECT
| FROM ‘PUBLIC"."SPORTING_EVENT_TICKET_INFO_TRAINL...
Tage Colam AL TICKE_PRICE
 PARAVETERS
Model Type Xgnoost
Problem Type Regression
| Objective | MSE

Figure 13.6 — MSE score of XGBoost model type

Model explainability

The second best practice is to use the explainability report to better

understand which inputs to your model carried the most weight.

Run the following SQL command in Query Editor v2:

select EXPLAIN MODEL
('chapter7 regressionmodel.predict ticket price auto')

This returns Shapley values for the inputs used to train the model:

{"explanations":{"kernel shap":{"labelO":

{"expected value":23.878915786743165,"global shap values":

{"away team":0.050692683450484,"city":0.004979335962039937, "event
_date time":0.05925819534780525,"event 1d":0.31961543069587136,"h
ome team":0.04245607437910639,"1ist ticket price":36.364129559427
869,"location":0.005178670063000977,"seat":0.011496876723927165,"
seat level”:0.011342097571256795, "seat row":0.011987498536296578,
"seat section":12.15498245617505,"sport":0.0029737602051575346,"t
icket id":0.3184045531012407,"ticketholder":0.005226471657467846}
Frh,

"version":"1.0"}

You will notice that 1ist_ticket price has the highest value of 36.364 —
this means it was the highest weighted input. You can experiment by
removing the input columns with very low weights as inputs to your model
training. Check to see whether you still get the same approximate model
score by removing unnecessary columns for the training input and helping

improve training times.

Probabilities

For classification problems, leverage the built-in function that is generated
so that you can see the probability of a given prediction. Refer to Chapter 5

for detailed examples of this.

Let’s now take a look at some useful notebooks that are generated by

Amazon SageMaker Autopilot.

Using SageMaker Autopilot notebooks
Your Autopilot job generates a data exploration notebook and a candidate
definition notebook. To view these notebooks, follow these steps:

1. In the AWS console, search for sageMaker, then choose Amazon

SageMaker:

m s\ saemaler

Search resuls for Sagemaker

TrySearching with longer querie for more relevant resuls

Features () Services

Resources ‘New

doumeratin(3304 | @ Amazn SgeVer ¢
KnowledgeArcls 0 Buld, Train, and Deploy Machine Learing Mocels

Marketplace (256)
Blogs 1030 Features

Events (46)
SageMaker Stulo

Figure 13.7 — Choosing Amazon SageMaker

2. Then, choose Studio:

Amazon SageMaker X @Sagemakergeuspatialcapabilityisnowgenerallyavailableinus-west-Z X

Getting tated

SHudio

StudoLab !
Canvas
RStudio

TensorBoard

Amazon aqealke geosptialcapabilte maket eaer o dat et and machineleaming ML) engner o bt and deploy ML
Model fater using geospatal ata.

AmatonSageMaer) Domang

Domaing e

A domain ncudes an associaed Amazon Elastc Fl System (EFS) volume; a s of authorced users; and vrety ofsecurty, applation, poliy and Amazon Virtual
Private Cloud (VPC) configurations Eachusr i domlnrceve prsonal and prvate home recorywithi he 7S for nebooks, it repoores, and dta s,

b Domain tructure diagram

Figure 13.8 — Choosing Studio

3. Next, choose Open Studio:

Amazon SageMaker X

Geting stated
Studio
Studo b [}

(amvas
RSt

Tensaroard

Oomains

SageMelker dashboar

Aimazon SegeMaer

SaoeMaker Studio R
H

h h ” d Selctuger profle
U y g defal GGQBA7H3634

Oeyelopment environment s
IDE) for machinelaing

Figure 13.9 — Choosing Open Studio

4. Next, choose AutoML:

Home

W v auncher

AutoML

bt Notebooks and compute esources

(reate notebooks,code console, image terminal with custom environment n the actve folde,

Notebook jobs
Image Kernel Instance Startsup sript

Fielins Dita Science Python3 L3 medium No script

Models (
Open image

) 3
sy Create notebook Open (ode console $ i

Figure 13.10 — Choosing AutoML

Change enironment

No propertie

After you choose AutoML, the following screen will show up:

i Data v Autopilot O Show introduction

AutoML
0 Ceate Aol eperment

Experiments

‘) Name Status Modified on Creation on
Notebook jobs

= ir redshiftml-20230215174638030561 Completed ~ Q215/23150... 02/15/23 1246..,
inelines

* Model redshftml-20230215154652357134 Completed ~ 02/1823113.. 02/15/231046..

Deplyments v redshifml-20230215133214851755 Completed 021523421, 02/15/28831..,

Figure 13.11 — List of model names

5. Choose the model name you want to evaluate. You can get this by using
the AutoML job name from your saow MobEL output. In this example, I

used sHOW MODEL On the predict_ticket_price_auto model:

Key

Value

;mme

é%mﬂme

O

Emmmm
§mwam
§MMMM9

§ammmm

TANIG A
émw

%thWm

 AIETER
§mwme

EPWMWW

Ewwm
%Ammmwme

et ket pice o
§mmmmmme
§mwmm
EMMMMMWM%
L=

émmm

EMWW

KTk |
FROM CHAPTERT_REGRESSONODEL' SPORTIG.,
AL TIKET PRCE |

§mmm

EMWWM

I
§mmmmmmmmwmm

Figure 13.12 — The SHOW MODEL output

You will see output like this:

AUTOPILOT JOB

redshiftml-20230215174638030561

Problem type: Regression

‘ Open candidate generation notebook ‘ ‘ Open data exploration notebook @

Trials Job profile

0 Objective
; View model details
redshiftml-2023021517463803056Fb-067-be6380a3 0.801 045 08% 1 XGBoost

Share model | | Deploy model

_\ Trial name Objective: Mse e

redshiftml-20230215... (il 0401 Completed
redshiftml-20230215174638030... 74080461 Completed
redshiftml-20230215174638030.., 4860.609 Completed
redshiftml-20230215174638030.., 4338.162 Completed
redshiftml-20230215174638030.,, 43%6.162 Completed
redshiftml-20230215174638030.. 4338.162 Completed
redshiftml-20230215174638030... 43%.162 Completed

redshiftml-20230215174638030.. 190374 Completed

Figure 13.13 — AutoML best model

In Figure 13.13, you can see a list of models that were trained, and the best
model is highlighted. This also shows the objective of Mse, the values, and
which algorithm was used, and there are links to view the model details, the

candidate generation notebook, and the data exploration notebook.

6. Click on View model details — this is another way you can see feature

importance or explainability:

Job Name; redshiftml-20230215174638030561-aws-auto-ml-job

Model: redshiftml-2023021517463803056Fb-067-be6380a3-aws-rial
Status: Completed

Algorithm: XGBoost

Explainability Performance Artifacts Network

Model explainability

Feature importance
Feature importance Download Feature Reports v

Explaining your model's predictions
Amazon SageMaker Studio helps you understand your machine leaming model by portraying the importance of its features in terms
Metrics of SHAP values. We plot the aggregated SHAP value for each feature across all instances of the dataset.

Hyper parameters Predicted colum: label0

Resource
lst icket_price

seat_section
vent_id
ficket id
home_{eam
vent_date_fime
away_team
soal_fow

seat

soat level

Figure 13.14 — Feature importance

You can also see the hyperparameters used by SageMaker Autopilot:

Mode! explainability

Hyper parameters

Feature importance
Name

SageMakerImageUr

Metrics .
SageMaker magelri ount

Hyper parameters SageMaker nstanceType
SageMakerVolumeSizelnGB
Resource _tuning_objective_metric

alpha

colsample_bytre

efa

eval_metric

gamma

lambda

max_depth

min_child_weight

num_round

Objective

kr.ecrus-east-2.amazonaws.com/sagemaker-...
1
mlm5.12ularge
50
Validationmse
2.8458720704812287e-05
10
0.15396622746081043
Mse,mae,mse r2
0.00038887887474272416
1,0000000000000004e-06
1
20426764620064075
25

regsquarederror

Figure 13.15 — Hyperparameters

7. Now, try clicking on Open data exploration notebook:

Amazon SageMaker Autopilot Data Exploration Report

This report contains insights about the dataset you provided as input to the AutoML job. This data report was generated by
redshiftml-20230215174638030561 AutoML job. To check for any issues with your data and possible improvements that can be made
to it, consult the sections below for guidance. You can use information about the predictive power of each feature in the Data Sample
section and from the correlation matrix in the Cross Column Statistics section to help select a subset of the data that is most
significant for making predictions.

Note: SageMaker Autopilot data reports are subject to change and updates. It is not recommended to parse the report using
automated tools, as they may be impacted by such changes.

Dataset Summary

Dataset Properties

Rows Columns Duplicaterows Target column Missing target values Invalid target values Detected problem type

66748 15 0.00% final_ticket_price 0.00% 000% Regression
Detected Column Types

Numeric Categorical ~Text Datetime Sequence
Column Count 6 1 0 1]

Percentage 4286% 5000% 0.00% 7.14% 0.00%

Report Contents

1. Target Analysis

2. Data Sample

3, Feature Summary
4, Duplicate Rows

5. Cross Column Statistics

Figure 13.16 — Data exploration report

This will show you the data exploration report and you can see things such
as Target Analysis, Feature Summary, Duplicate Rows, and other

statistics.

Here is what Target Analysis showed for our predict ticket price auto

model:

Target Analysis

A Low severity insight; “Outliers in target"

The target column contains a few outliers, which might result from problems in data collection or processing, Even a small number
of outliers can adversely impact the training of a model, producing significant errors when optimizing using the mean squared error
(MSE) or similar loss functions. The result is often poor prediction quality for non-outler rows. f you are interested in predicting
extreme target values well there might be no need for further action, If prediction of extreme values is not important, consider
removing or clipping them, Clipping or removing outliers can be done with Amazon SageMaker Data Wrangler using the *Robust
standard deviation numeric outliers" transform under “Handle outliers",

The column final_ticket_price is used as the target column, See the distribution of values (labels) in the target column below;

Numberof ~ Outliers Invalid Missing Missing

o e b L T Uniques Percentage Percentage Percentage Count

6985 5732 196378 3369% 184 476 5333 06%% 000% 0.00% 0

3000

2000

Target Column Values

Histogram of the target column values. The orange bars contain outliers and the value below them is the outliers average,

Figure 13.17 — Target Analysis

To learn more about the data exploration notebook, you may refer to this
link: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-data-

exploration-report.xhtml.

8. Now, click on Open candidate generation notebook:

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-data-exploration-report.xhtml

Amazon SageMaker Autopilot Candidate Definition Notebook

This notebook was automatically generated by the AutoML job redshiftml-20230215174638030561. This notebook allows you to
customize the candidate definitions and execute the SageMaker Autopilot workflow.

The dataset has 15 columns and the column named final_ticket_price is used as the target column. This is being treated as a
Regression problem. This notebook will build a Regression model that minimizes the "MSE" quality metric of the trained models. The
"MSE" metric stands for mean square error. It minimizes the square distance between the model's prediction and the true answer.

As part of the AutoML job, the input dataset has been randomly split into two pieces, one for training and one for validation. This
notebook helps you inspect and modify the data transformation approaches proposed by Amazon SageMaker Autopilot. You can
interactively train the data transformation models and use them to transform the data. Finally, you can execute a multiple algorithm
hyperparameter optimization (multi-algo HPO) job that helps you find the best model for your dataset by jointly optimizing the data
transformations and machine learning algorithms.

. Available Knobs Look for sections like this for recommended settings that you can change.

Contents

1. Sagemaker Setup

A. Downloading Generated Candidates

B. SageMaker Autopilot Job and Amazon Simple Storage Service (Amazon S3) Configuration
2, Candidate Pipelines

A, Generated Candidates

B. Selected Candidates
3. Executing the Candidate Pipelines

A, Run Data Transformation Steps

B. Multi Algorithm Hyperparameter Tuning
4, Model Selection and Deployment

A. Tuning Job Result Overview

B. Model Deployment

Figure 13.18 — Candidate definition notebook

This notebook contains information about the processing steps, algorithms,
and hyperparameters. To learn more about using the candidate generation
notebook, refer to
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-candidate-

generation-notebook.xhtml.

Summary

In this chapter, you learned techniques to operationalize your models in
Amazon Redshift ML.

We discussed how you can create a version of your model. This is important
to track the quality of your model over time and to be able to run inferences

with different versions.

We then showed you how to optimize your Redshift ML models for
accuracy and how you can use the notebooks generated by Amazon
SageMaker Autopilot to deepen your understanding of tasks that Autopilot
is performing.

We hope you have found this book useful. Our goal when we set out to

write this book was to help you gain confidence in these main areas:

e Gaining a better understanding of machine learning and how to use it to

solve everyday business problems

e Implementing an end-to-end serverless architecture for ingestion,
analytics, and machine learning using Redshift Serverless and Redshift
ML

https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-candidate-generation-notebook.xhtml

e Creating supervised and unsupervised models, and various techniques to

influence your model

e Running inference queries at scale in Redshift to solve a variety of
business problems using models created with Redshift ML or natively

in Amazon SageMaker

We thank you very much for your time and investment in reading this book.
We would welcome your feedback on how we can make Redshift and
Redshift ML better. You can find us on LinkedIn.

Index

As this ebook edition doesn't have fixed pagination, the page numbers

below are hyperlinked for reference only, based on the printed edition of
this book.

A

accuracy 53, 91

Amazon Forecast 224, 22

model accuracy metrics 227
AmazonForecastFullAccess managed policy 225
Amazon Redshift 4
Amazon Redshift Data API 43

data loading 43, 44, 47, 48

) i)

table, creating 45-47

Amazon Redshift ML 63-65, 158

data, analyzing 80-84

data, uploading 80-84

Amazon Redshift query editor v2 14, 25, 26

used, for connecting to data warehouse 14-1

Amazon Redshift Serverless 5-8, 2

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

Amazon Resource Name (ARN) 242

Amazon SageMaker 9, 63, 65

Amazon SageMaker Random Cut Forest model
BYOM remote inference, creating for 213, 21

Amazon Simple Storage Service (Amazon S3) 3, 9, 68
Amazon Web Services (AWS) 5

API 6

area under the curve (AUC) 53, 54, 91

artificial intelligence (AI) 174

artificial neural network (ANN) 174

AWS CloudFormation templates 6

AWS Command Line Interface (AWS CLI) 6, 43
AWS console 6

AWS Identity and Access Management (AWS [IAM) &

B
best practices, COPY command 42

binary classification 50, 106

evaluation example 54, 55

binary classification model

creating, with XGBoost 197-200

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

model performance, evaluating 200-203

predictions, generating 200-203

binary classification model training, with XGBoost 109, 113-116

business problem, establishing 109

data, analyzing 110-113

data, uploading 110-11

prediction probabilities 118-12

predictions, running 117
binary model 105
body mass index (BMI) 134

Bring Your Own Model (BYOM) feature 73, 205, 23

benefits 206

local inference 73-76, 205

remote inference 76-78, 205

business problem 175

data, splitting into training and test data sets 178-18

data upload and analysis 175-177
prediction goal 178
BYOM local inference model

CREATE MODEL statement, generating 210

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

creating 208, 209
parameters, setting up 209
predictions, running on Redshift 209
BYOM local inference model, running on Redshift 210, 211
data preparation 211
inference 21

BYOM remote inference

o0

anomaly scores, computing 217, 21

creating 214

creating, for Amazon SageMaker Random Cut Forest model 213, 21

data preparation script 216, 21

generating 214, 21

parameters, setting up 214-216

C

candidate generation notebook
reference link 256
categorical features 193

centroid 159

classification 50, 106

binary classification 50, 106

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

multi-class classification 51, 106

classification algorithms 106
classification models

use cases 107

cluster analysis 158

data grouping through 158, 15

clusters 158

optimal number, determining 159

confusion matrix 54, 55, 10

reference link 102

COPY command 25, 3

best practices 42

file ingestion, automating with 41, 42

used, for loading data from Amazon S3 3

CREATE MODEL command 64-6

AUTO everything 67, 68

automating, for versioning 241, 242

AUTO with user guidance 68-70

Bring your own model (BYOM) 73

K-means (AUTO OFF) 72, 73

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

reference link, for parameters 85

with user guidance 108, 133

XGBoost (AUTO OFF) 71, 72

) m——

custom binary classification model

creating, XGBoost with Auto Off used 196

D

data
loading, from Parquet file 39, 40
Data API 14
data definition language (DDL) 26
data drift 238
data exploration notebook
reference link 255
data format parameters
reference link 30
data load, with Amazon Redshift Query Editor v2 26
from Amazon S3 30-3

from local drive 34-38

tables, creating 26-3

data manipulation language (DML) 46

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

data warehouse 3, 4, 38

connecting, Amazon Redshift query editor v2 used 14-16
connecting to 14
query, running 21-23
sample data, loading 16-20
data wrangling 52
decision tree models 207
deep learning 174
deep learning algorithms 173

distribution style, for table

reference link 30

E
Elbow method 159

Euclidean distance formula 15

F
F1 macro score 53
F1 score 53, 55

False Negative 54

False Positive 53, 54

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

feature engineering 52
feature importance 97, 101
feature learning 174
features 64
feedforward artificial neural network 173
file ingestion
automating, with COPY job 41, 42
forecasting 222
qualitative forecasting 223
quantitative forecasting 223
time-series forecasting 223

use cases examples, for organizations 222

forecasting models, creating with Redshift ML 226, 227

business problem 228

data, uploading and analyzing 228-233

table, creating with output results 234, 235

G

Gradient Boosting framework 188

gradient boosting models 207

ground truth 53, 148

I
Identity and Access Management (IAM) roles 3
associating, with AWS console 9, 10
S3 permissions, granting to 10, 11

inference 64

K
Kaggle dataset
reference link 160
K-means clustering algorithm
results, evaluating 169, 170

use cases 15

using 157

K-means ML model

creating 160, 163

data analyzing 162

e) s—

data uploading 161, 162

five clusters, creating with K value of 5 166

four clusters, creating with K value of 4 166

inputs gathering, for charting elbow 166-169

model syntax overview, creating 161

six clusters, creating with K value of 6 166
three clusters, creating with K value of 3 165
two clusters, creating with K value of 2 163-165

K-Means parameters

reference link 161

L

label 64
Linear Learner 107, 13

customer segment, predicting with 122-12

multi-class classification model, training with 120-122
reference link 108
linear regression 51
multiple linear regression 132
simple linear regression 132
linear regression models 207
local inference 73

logistic regression 51

logistic regression models 207

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

Machine Learning (ML) 49, 63, 105
basics 50
benefits 57
challenges of implementation 56
challenges of implementation, overcoming 56, 57
classification problems 50
regression problems 51
supervised learning 50
unsupervised learning 50
use cases 58
Machine Learning (ML), implementation steps
data preparation 52
model evaluation 53
machine learning model
creating 85-91

operationalizing 238

performance 102, 103

re-training process, without versioning 23
re-training process, with versioning 239-241

machine learning model performance evaluation 92

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

ground truth, comparing to predictions 95, 96

predictions, running 93-95

Redshift ML objectives, checking 92, 93
massively parallel processing (MPP) architecture 39
Maternal and Child Health Centers (MCHCs) 134
mean squared deviation (MSD) 159

mean squared error (MSE) 53, 138

model accuracy metrics, Amazon Forecast 22

multi-class classification 51, 106

use cases 51

multi-class classification model 105

predictions, running 184-18

multi-class classification model training, with Linear Learner 120-122

create model options, exploring 127

customer segment, predicting 122-12

model, creating with no user guidance 127, 12

model, creating with user guidance 128, 129

model quality, evaluating 124, 12

prediction queries, running 126, 12

multi-input regression models

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

creating 143-147

Linear Learner algorithm 147, 14

performance evaluation 148-154

prediction query 154, 155

multilayer perceptron (MLP) 107, 138, 173, 205
multiclass classification model, creating 181-184

use cases 175

multiple linear regression 132

N
namespace 8
configuration 9
neural network models 208

numeric variables 193

O

online transaction-processing (OLTP) systems 4

P
Parquet file
data, loading from 39, 4

prediction 64

Q

qualitative forecasting 223

quantitative forecasting 223

R

random forest models 207

Redshift CREATE MODEL syntax 108

Redshift Data API 25

Redshift Machine Learning (Redshift ML) 205
benefits, of using with ML model 207
supported model types 207

Redshift managed storage (RMS) 8

Redshift ML CREATE MODEL 80
syntax 84, 85

Redshift ML model

re-training, to create version from existing model 24

Redshift model accuracy optimization 245, 24
model explainability 248, 249
model quality 246, 247
probabilities 249

SageMaker Autopilot notebooks, using 249-25

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

Redshift processing hours (RPU) &
regression 50, 51
linear regression 51
logistic regression 51
use case examples 51
regression model 132
evaluation example 53, 54
use cases 133
remote inference 76
root mean square error (RMSE) 53, 141

RSQL, to interact with Amazon Redshift

reference link 241

S

S3 location
reference link 161

SageMaker Autopilot 67, 188, 238

SageMaker AutoPilot algorithm 115
SageMaker Autopilot notebooks
using 249-255

scheduling queries, with Query Editor v2

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml
clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

reference link 238
seasonality 224
SHOW MODEL output
copying, to model info table 244
loading 244
reading 244
table, prepping to generate create model 244
writing, to file 244
show model sql command
creating 244
simple linear regression 132
simple linear regression model
creating 138-140
creating, with XGBoost 134
data, analyzing 135-137

data, splitting into training and validation set 13

data, uploading 134
prediction goal 135
predictions, running 140-142

sort key

reference link 30
structural breaks 224
Structured Query Language (SQL) 4
sum of squared deviation (SSD) 159

supervised learning 50, 173

support vector machines (SVMs) 208

T
target 64

testing dataset 52
time-series data 222

time-series forecasting 223
time trending data 223
training dataset 52

True Negative 54

True Positive 53, 54

U
underfitting 150

unsupervised learning 50, 107, 173

Vv

clbr://internal.invalid/book/OEBPS/B19071_Index.xhtml

validation dataset 52

version, creating from existing model 243
SHOW MODEL output, copying to model info table 244
SHOW MODEL output, loading 244
SHOW MODEL output, reading 244
SHOW MODEL output, writing to file 244
show model sql command, creating 244
SQL, executing to create model version 245
SQL, generating to create model version 244
table, prepping to generate create model 244

versioning

create model statement, automating for 241, 242

W
weighted quantile loss (wQL) 229

workgroup 12, 1

X

XGBoost 107, 188, 205

binary classification model, training with 109

reference link 108, 188

used, for creating binary classification model 196-200
XGBoost algorithm 238
XGBoost use case 189

business problem, defining 189

data analyzing 189-19

data preparing, for training 189-192

data, splitting into train and test datasets 193

data uploading 189-192

input variables, preprocessing 193-19

<packn

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit

our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks

and Videos from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

e Get a free eBook or video every month

e Fully searchable for easy access to vital information

e Copy and paste, print, and bookmark content
Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at packtpub.com and as a print book customer, you are entitled to a discount

on the eBook copy. Get in touch with us at customercare@packtpub.com

for more details.

http://packtpub.com/
http://packtpub.com/
mailto:customercare@packtpub.com

At www.packtpub.com, you can also read a collection of free technical

articles, sign up for a range of free newsletters, and receive exclusive

discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by
Packt:

http://www.packtpub.com/

Enhancing Deep Learning
with Bayesian Inference

Create more powerful, robust deep learning systems
with Bayesian deep learning in Python

DR. MATT BENATAN | JOCHEM GIETEMA
DR. WMARIAN SCHNEIDER

https://packt.link/9781803246888

Enhancing Deep Learning with Bayesian Inference

Matt Benatan, Jochem Gietema, Marian Schneider

ISBN: 9781803246888

Understand advantages and disadvantages of Bayesian inference and

deep learning
Understand the fundamentals of Bayesian Neural Networks

Understand the differences between key BNN

implementations/approximations

Understand the advantages of probabilistic DNNs in production

contexts
How to implement a variety of BDL methods in Python code
How to apply BDL methods to real-world problems

Understand how to evaluate BDL methods and choose the best method

for a given task

Learn how to deal with unexpected data in real-world deep learning

applications

Natural Language

Understanding with Python

Combine natural language technology, deep learning, and
large language models to create human-like language
comprehension in computer systems

DEBORAH A. DAHL

https://packt.link/9781804613429

Natural Language Understanding with Python

Deborah A. Dahl

ISBN: 9781804613429
e Explore the uses and applications of different NLP techniques
e Understand practical data acquisition and system evaluation workflows
e Build cutting-edge and practical NLP applications to solve problems
e Master NLP development from selecting an application to deployment
e Optimize NLP application maintenance after deployment

e Build a strong foundation in neural networks and deep learning for NLU

Packt is searching for authors like you

If you’re interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their
insight with the global tech community. You can make a general
application, apply for a specific hot topic that we are recruiting an author

for, or submit your own idea.

Share Your Thoughts

Now you’ve finished Serverless Machine Learning with Amazon Redshift
ML, we’d love to hear your thoughts! If you purchased the book from

Amazon, please click here to go straight to the Amazon review page for this

http://authors.packtpub.com/
https://packt.link/r/1-804-61928-0

book and share your feedback or leave a review on the site that you

purchased it from.

Your review is important to us and the tech community and will help us

make sure we’re delivering excellent quality content.

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books
everywhere? Is your eBook purchase not compatible with the device of

your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version

of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code

from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts,

newsletters, and great free content in your inbox daily
Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80461-928-5

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email
directly

https://packt.link/free-ebook/978-1-80461-928-5

<packmh

Serverless Machine Learning
with Amazon Redshift ML

Create, train, and deploy machine learning models
using familiar SQL commands

DEBU PANDA | PHIL BATES
BHANU PITTAMPALLY | SUMEET JOSHI

Foreword by Colin Mahony | GM, Amazon Redshift, AWS

	Serverless Machine Learning with Amazon Redshift ML
	Foreword
	Contributors
	About the authors
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used
	Get in touch
	Share Your Thoughts
	Download a free PDF copy of this book

	Part 1:Redshift Overview: Getting Started with Redshift Serverless and an Introduction to Machine Learning
	Chapter 1: Introduction to Amazon Redshift Serverless
	What is Amazon Redshift?
	Getting started with Amazon Redshift Serverless
	What is a namespace?
	What is a workgroup?

	Connecting to your data warehouse
	Using Amazon Redshift query editor v2
	Loading sample data
	Running your first query

	Summary

	Chapter 2: Data Loading and Analytics on Redshift Serverless
	Technical requirements
	Data loading using Amazon Redshift Query Editor v2
	Creating tables
	Loading data from Amazon S3
	Loading data from a local drive

	Data loading from Amazon S3 using the COPY command
	Loading data from a Parquet file
	Automating file ingestion with a COPY job
	Best practices for the COPY command

	Data loading using the Redshift Data API
	Creating table
	Loading data using the Redshift Data API

	Summary

	Chapter 3: Applying Machine Learning in Your Data Warehouse
	Understanding the basics of ML
	Comparing supervised and unsupervised learning
	Classification
	Regression

	Traditional steps to implement ML
	Data preparation
	Evaluating an ML model

	Overcoming the challenges of implementing ML today
	Exploring the benefits of ML
	Application of ML in a data warehouse

	Summary

	Part 2:Getting Started with Redshift ML
	Chapter 4: Leveraging Amazon Redshift ML
	Why Amazon Redshift ML?
	An introduction to Amazon Redshift ML
	A CREATE MODEL overview
	AUTO everything
	AUTO with user guidance
	XGBoost (AUTO OFF)
	K-means (AUTO OFF)
	BYOM

	Summary

	Chapter 5: Building Your First Machine Learning Model
	Technical requirements
	Redshift ML simple CREATE MODEL
	Uploading and analyzing the data

	Diving deep into the Redshift ML CREATE MODEL syntax
	Creating your first machine learning model
	Evaluating model performance
	Checking the Redshift ML objectives
	Running predictions
	Comparing ground truth to predictions
	Feature importance

	Model performance
	Summary

	Chapter 6: Building Classification Models
	Technical requirements
	An introduction to classification algorithms
	Diving into the Redshift CREATE MODEL syntax

	Training a binary classification model using the XGBoost algorithm
	Establishing the business problem
	Uploading and analyzing the data
	Using XGBoost to train a binary classification model
	Running predictions
	Prediction probabilities

	Training a multi-class classification model using the Linear Learner model type
	Using Linear Learner to predict the customer segment
	Evaluating the model quality
	Running prediction queries
	Exploring other CREATE MODEL options

	Summary

	Chapter 7: Building Regression Models
	Technical requirements
	Introducing regression algorithms
	Redshift’s CREATE MODEL with user guidance

	Creating a simple linear regression model using XGBoost
	Uploading and analyzing the data
	Splitting data into training and validation sets
	Creating a simple linear regression model
	Running predictions

	Creating multi-input regression models
	Linear Learner algorithm
	Understanding model evaluation
	Prediction query

	Summary

	Chapter 8: Building Unsupervised Models with K-Means Clustering
	Technical requirements
	Grouping data through cluster analysis
	Determining the optimal number of clusters
	Creating a K-means ML model
	Creating a model syntax overview for K-means clustering
	Uploading and analyzing the data
	Creating the K-means model

	Evaluating the results of the K-means clustering
	Summary

	Part 3:Deploying Models with Redshift ML
	Chapter 9: Deep Learning with Redshift ML
	Technical requirements
	Introduction to deep learning
	Business problem
	Uploading and analyzing the data
	Prediction goal
	Splitting data into training and test datasets

	Creating a multiclass classification model using MLP
	Running predictions

	Summary

	Chapter 10: Creating a Custom ML Model with XGBoost
	Technical requirements
	Introducing XGBoost
	Introducing an XGBoost use case
	Defining the business problem
	Uploading, analyzing, and preparing data for training
	Splitting data into train and test datasets
	Preprocessing the input variables

	Creating a model using XGBoost with Auto Off
	Creating a binary classification model using XGBoost
	Generating predictions and evaluating model performance

	Summary

	Chapter 11: Bringing Your Own Models for Database Inference
	Technical requirements
	Benefits of BYOM
	Supported model types

	Creating the BYOM local inference model
	Creating a local inference model
	Running local inference on Redshift

	BYOM using a SageMaker endpoint for remote inference
	Creating BYOM remote inference
	Generating the BYOM remote inference command

	Summary

	Chapter 12: Time-Series Forecasting in Your Data Warehouse
	Technical requirements
	Forecasting and time-series data
	Types of forecasting methods
	What is time-series forecasting?
	Time trending data
	Seasonality
	Structural breaks

	What is Amazon Forecast?
	Configuration and security
	Creating forecasting models using Redshift ML
	Business problem
	Uploading and analyzing the data
	Creating a table with output results

	Summary

	Chapter 13: Operationalizing and Optimizing Amazon Redshift ML Models
	Technical requirements
	Operationalizing your ML models
	Model retraining process without versioning
	The model retraining process with versioning
	Automating the CREATE MODEL statement for versioning

	Optimizing the Redshift models’ accuracy
	Model quality
	Model explainability
	Probabilities
	Using SageMaker Autopilot notebooks

	Summary

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts
	Download a free PDF copy of this book

