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Fig. 1Machine learning combines three main components: data, model and loss. Machine learning
methods implement the scientific principle of “trial and error”. Thesemethods continuously validate
and refine a model based on the loss incurred by its predictions about a phenomenon that generates
data.



Preface

Machine learning (ML) influences our daily lives in several aspects.We routinely ask
ML empowered smartphones to suggest lovely restaurants or to guide us through a
strange place.MLmethods have also become standard tools inmany fields of science
and engineering. ML applications transform human lives at unprecedented pace and
scale.

This book portraysML as the combination of three basic components: data, model
and loss. ML methods combine these three components within computationally effi-
cient implementations of the basic scientific principle “trial and error”. This prin-
ciple consists of the continuous adaptation of a hypothesis about a phenomenon that
generates data.

MLmethods use a hypothesis map to compute predictions of a quantity of interest
(or higher level fact) that is referred to as the label of a data point. A hypothesis map
reads in low level properties (referred to as features) of a data point and delivers the
prediction for the label of that data point. ML methods choose or learn a hypothesis
map from a (typically very) large set of candidate maps. We refer to this set as of
candidate maps as the hypospace or model underlying an ML method.

The adaptation or improvement of the hypothesis is based on the discrepancy
between predictions and observed data. ML methods use a loss function to quantify
this discrepancy.

A plethora of different ML methods is obtained by combining different design
choices for the data representation, model and loss. ML methods also differ vastly in
their practical implementations which might obscure their unifying basic principles.

Deep learning methods use cloud computing frameworks to train large models
on large datasets. Operating on a much finer granularity for data and computation,
linear (least squares) regression can be implemented on small embedded systems.
Nevertheless, deep learning methods and linear regression use the same principle of
iteratively updating a model based on the discrepancy between model predictions
and actual observed data.

We believe that thinking about ML as combinations of three components given by
data, model and lossfunc helps to navigate the steadily growing offer for ready-to-use
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ML methods. Our three-component picture allows a unified treatment of ML tech-
niques, such as early stopping, privacy-preserving ML and xml, that seem quite
unrelated at first sight. For example, the regularization effect of the early stop-
ping technique in gradient-based methods is due to the shrinking of the effective
hypospace. Privacy-preserving ML methods can be obtained by particular choices
for the features used to characterize data points (see Sect. 9.5). Explainable ML
methods can be obtained by particular choices for the hypospace and lossfunc (see
Chap. 10).

To make good use of ML tools it is instrumental to understand its underlying
principles at the appropriate level of detail. It is typically not necessary to understand
the mathematical details of advanced optimization methods to successfully apply
deep learning methods. On a lower level, this tutorial helps ML engineers choose
suitable methods for the application at hand. The book also offers a higher level view
on the implementation of ML methods which is typically required to manage a team
of ML engineers and data scientists.

Espoo, Finland Alexander Jung
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Symbols

Sets

a := b This statement defines a to be shorthand for b.
N The set of natural numbers 1, 2, ....
R The set of real numbers x [2].
R+ The set of non-negative real numbers x ≥ 0.
{0, 1} The set consisting of two real number 0 and 1.
[0, 1] The closed interval of real numbers x with 0 ≤ x ≤ 1.

Matrices and Vectors

I The identity matrix having diagonal entries equal to one and
every off diagonal entry equal to zero.

R
n The set of vectors that consist of n real-valued entries.

x = (x1, . . . , xn)
T A vector of length n. The j th entry of the vector is denoted as

x j .
‖x‖2 The Euclidean (or “�2”) norm of the vector x = (x1, . . . , xn)

T

given as ‖x‖2 :=
√∑n

j=1x
2
j .

‖x‖ Some norm of the vector x [1]. Unless specified otherwise, we
mean the Euclidean norm ‖x‖2.

xT The transpose of a vector x that is considered as a single column
matrix. The transpose can be interpreted as a single-rowmatrix
(x1, . . . , xn).

AT The transpose of a matrix A. A square matrix is called
symmetric if A = AT

S
n+ The set of all (psd) n × n matrices.
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xvi Symbols

Machine Learning

i A generic index i = 1, 2, . . . , used to enumerate the data points
within a dataset.

m The number of data points in (the size of) a dataset.
n The number of individual features used to characterize a data point.
x j The j th individual feature of a data point.
x The feature vector x = (x1, . . . , xn)

T of a data point whose entries
are the individual features of the data point.

z Beside the symbol x , we sometimes use as another symbol to denote a
vectorwhose entries are features of a data point.Weneed twodifferent
symbols to denote feature vectors for the discussion feature learning
methods in Chap. 9.

x(i) The feature vector of the i th data point within a dataset.
x (i)
j The j th feature of the i th data point within a dataset.

y The label (quantity of interest) of a data point.
y(i) The label of the i th data point.
(x(i), y(i)) The features and the label of the i th data point within a dataset.
h(·) A hypothesis map that reads in the features x of a data point and

outputs the predicted label y
∧ = h(x).

x j The j-th feature of a data point. The first feature of a given data point
is denoted as x1, the second feature x2 and so on.

L((x, y), h) The loss incurred by predicting the label y of a data point with feature
vector x using the value y

∧ = h(x) obtained from evaluating the
hypothesis h ∈ H at the feature vector x.

Ev The validation error of a hypothesis, which is the average loss
computed on a validation set.

L
∧

(h|D) The emprisk or average loss incurred by the predictions of hypothesis
h for the data points in the dataset D.

Et The trainer of a hypothesis h, which is the average loss incurred by h
on labeled data points that form a training set.

t A discrete-time index t = 0, 1, . . . used to enumerate a sequence to
temporal events (time instants).

t A generic index used to enumerate a finite set of learning tasks within
a multi-task learning problem (see Sect. 7.6).

λ A regularization parameter that is used to scale the regularization
term that is added to the empirical risk in structural risk minimization
(SRM).

λ j (Q) The j th eigenvalue (sorted either ascending or descending) of a psd
matrix Q. We also use the shorthand λ j if the corresponding matrix
is clear from context.

f (·) The activation function used by an artificial neuronwithin an artificial
neural network (ANN).
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Chapter 1
Introduction

Consider waking up one winter morning in Finland and looking outside the window
(see Fig. 1.1). It seems to become a nice sunny day which is ideal for a ski trip. To
choose the right gear (clothing, wax) it is vital to have some idea for the maximum
daytime temperature which is typically reached around early afternoon. If we expect
a maximum daytime temperature of around plus 5 degrees, we might not put on the
extra warm jacket but rather take only some extra shirt for change.

We can use ML to learn a predictor for the maximum daytime temperature for
the specific day depicted in Fig. 1.1. The prediction shall be based solely on the
minimum temperature observed in the morning of that day. ML methods can learn
a predictor in a data-driven fashion using historic weather observations provided by
the Finnish Meteorological Institute. We can download the recordings of minimum
and maximum daytime temperature for the most recent days and denote the resulting
dataset by

D = {
z(1), . . . , z(m)

}
. (1.1)

Each data point z(i) = (
x (i), y(i)

)
, for i = 1, . . . ,m, represents some previous day

for which the minimum and maximum daytime temperature x (i) and y(i) has been
recorded.We depict the data (1.1) in Fig. 1.2. Each dot in Fig. 1.2 represents a specific
day with minimum temperature x and maximum temperature y.

ML methods learn a hypothesis h(x), that reads in the minimum temperature x
and delivers a prediction (forecast or approximation) ŷ = h(x) for the maximum
daytime temperature y. Every practical ML method uses a particular hypothesis
space out of which the hypothesis h is chosen. This hypothesis space of candidates
for the hypothesis map is an important design choice and might be based on domain
knowledge.

In what follows, we illustrate how to use domain knowledge to motivate a choice
for the hypothesis space. Let us assume that the minimum and maximum daytime
temperature of an arbitrary day are approximately related via

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
A. Jung, Machine Learning, Machine Learning: Foundations, Methodologies,
and Applications, https://doi.org/10.1007/978-981-16-8193-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-8193-6_1&domain=pdf
https://doi.org/10.1007/978-981-16-8193-6_1


2 1 Introduction

Fig. 1.1 Looking outside the
window during the morning
of a winter day in Finland

Fig. 1.2 Each dot represents
a specific day that is
characterized by its
minimum daytime
temperature x as feature and
its maximum daytime
temperature y as label. These
temperatures are measured at
some Finnish Meteorological
Institute weather station

x

y

y ≈ w1x + w0 with some weights w1 ∈ R+, w0 ∈ R. (1.2)

The assumption (1.2) reflects the intuition (domain knowledge) that the maximum
daytime temperature y should be higher for days with a higher minimum daytime
temperature x . The assumption (1.2) contains two weightsw1 andw0. These weights
are tuning parameters that allow for some flexibility in our assumption. We require
the weight w1 to be non-negative but otherwise leave these weights unspecified for
the time being. The main subject of this book are ML methods that can be used to
learn suitable values for the weights w1 and w0 in a data-driven fashion.

Before we detail howML can be used to find or learn good values for the weights
w0 in w1 in (1.2) let us interpret them. The weight w1 in (1.2) can be interpreted as
the relative increase in the maximum daytime temperature for an increasedminimum
daytime temperature. Consider an earlier day with recorded maximum daytime tem-
perature of 10 degrees and minimum daytime temperature of 0 degrees. The assump-
tion (1.2) then means that the maximum daytime temperature for another other day
with minimum daytime temperature of +1 degrees would be 10 + w1 degrees. The
second weight w0 in our assumption (1.2) can be interpreted as the maximum day-
time temperature that we anticipate for a day with minimum daytime temperature
equal to 0.
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Fig. 1.3 Three hypothesis
maps of the form (1.3)
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Given the assumption (1.2), it seems reasonable to restrict the MLmethod to only
consider linear maps

h(x) := w1x + w0 with some weights w1 ∈ R+, w0 ∈ R. (1.3)

Sincewe requirew1≥0, themap (1.3) ismonotonically increasingwith respect to the
argument x . Therefore, the prediction h(x) for the maximum daytime temperature
becomes higher with higher minimum daytime temperature x .

The expression (1.3) defines a whole ensemble of hypothesis maps. Each individ-
ual map corresponding to a particular choice forw1 ≥ 0 andw0. We refer to such an
ensemble of potential predictor maps as the model or hypothesis space that is used
by a ML method.

We say that themap (1.3) is parameterized by theweight vectorw = (
w1, w0

)
and

indicate this by writing h(w). For a given weight vector w = (
w1, w0

)T
, we obtain

the map h(w)(x) = w1x + w0. Figure 1.3 depicts three maps h(w) obtained for three
different choices for the weights w.

ML would be trivial if there is only one single hypothesis. Having only a single
hypothesis means that there is no need to try out different hypotheses to find the
best one. To enable ML, we need to choose between a whole space of different
hypotheses. ML methods are computationally efficient methods to choose (learn)
a good hypothesis out of (typically very large) hypothesis spaces. The hypothesis
space constituted by the maps (1.3) for different weights is uncountably infinite.

To find, or learn, a good hypothesis out of the infinite set (1.3), we need to
somehow assess the quality of a particular hypothesis map. ML methods use a loss
function for this purpose. A loss function is used to quantify the difference between
the actual data and the predictions obtained from a hypothesis map (see Fig. 1.4).
One widely-used example of a loss function is the squared error loss (y − h(x))2.
Using this loss function, ML methods learn a hypothesis map out of the model (1.3)
by tuning w1, w0 to minimize the average loss
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x

y

Fig. 1.4 Each dot represents a specific days that is characterized by its minimum daytime temper-
ature x and its maximum daytime temperature y. We also depict a straight line representing a linear
predictor map. A main principle of ML methods is to learn a predictor (or hypothesis) map with
minimum discrepancy between predictor map and data points. Different ML methods use different
types of predictor maps (hypothesis space) and loss functions to quantify the discrepancy between
hypothesis and actual data points

(1/m)

m∑

i=1

(
y(i) − h

(
x (i)

))2
.

The above weather prediction is prototypical for many other ML applications.
Figure 1.4 illustrates the typical workflow of a ML method. Starting from some
initial guess, ML methods repeatedly improve their current hypothesis based on
(new) observed data.

Using the current hypothesis, ML methods make predictions or forecasts about
future observations. The discrepancy between the predictions and the actual obser-
vations, as measured using some loss function, is used to improve the hypothesis.
Learning happens during improving the current hypothesis based on the discrepancy
between its predictions and the actual observations.

ML methods must start with some initial guess or choice for a good hypothesis.
This initial guess can be based on some prior knowledge or domain expertise [1].
While the initial guess for a hypothesis might not be made explicit in some ML
methods, each method must use such an initial guess. In our weather prediction
application discussed above, we used the linear model (1.2) as the initial hypothesis.

1.1 Relation to Other Fields

ML builds on concepts from several other scientific fields. Conversely, ML provides
important tools for many other scientific fields.
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1.1.1 Linear Algebra

Modern ML methods are computationally efficient methods to fit high-dimensional
models to large amounts of data. The models underlying state-of-the-art ML meth-
ods can contain billions of tunable or learnable parameters. To make ML methods
computationally efficientwe need to use suitable representations for data andmodels.

Maybe the most widely used mathematical structure to represent data is the
Euclidean space R

n with some dimension n ∈ N [2]. The rich algebraic and geo-
metric structure of Rn allows us to design of ML algorithms that can process vast
amounts of data to quickly update a model (parameters). Figure 1.5 depicts the
Euclidean space Rn for n = 2, which is used to construct scatterplots.

The scatterplot in Fig. 1.2 depicts data points (representing individual days) as
vectors in the Euclidean space R2. For a given data point, we obtain its associated
vector z = (x, y)T in R

2 by stacking the minimum daytime temperature x and the
maximum daytime temperature y into the vector z of length two.

We can use the Euclidean space Rn not only to represent data points but also to
represent models for these data points. One such class of models is obtained by linear
maps on R

n . Figure 1.3 depicts some examples for such linear maps. We can then
use the geometric structure of Rn , defined by the Euclidean norm, to search for the
best model. As an example, we could search for the linear model, represented by a
straight line, such that the average (Euclidean) distance to the data points in Fig. 1.2
is as small as possible (see Fig. 1.4). The properties of linear structures are studied
within linear algebra [3]. Some important ML methods, such as linear classifier (see
Sect. 3.1) or principal component analysis (see Sect. 9.2) are direct applications of
methods from linear algebra.

Fig. 1.5 The Euclidean
space R2 is constituted by all
vectors (or points)

z = (
z1, z2

)T (with
z1, z2 ∈ R) together with the
inner product
zT z′ = z1z′

1 + z2z′
2

−3 −2 −1 1 2 3

−3
−2
−1

1
2
3

z1

z2

z = z1, z2
)T

z′ = z′
1, z

′
2

)T
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1.1.2 Optimization

Amain design principle for ML methods is the formulation of ML problems as opti-
mization problems [4]. The weather prediction problem above can be formulated as
the problem of optimizing (minimizing) the prediction error for the maximum day-
time temperature. Many ML methods are obtained by straightforward applications
of optimization methods to the optimization problem arising from aML problem (or
application).

The statistical and computational properties of such ML methods can be studied
using tools from the theory of optimization. What sets the optimization problems in
ML apart from “plain vanilla” optimization problems (see Fig. 1.6a) is that we rarely
have perfect access to the objective function to be minimized. ML methods learn a
hypothesis by minimizing a noisy or even incomplete version (see Fig. 1.6b) of the
actual objective which is defined using an expectation over an unknown probability
distribution. Section 4 discusses methods that are based on estimating the objective
function by empirical averages that are computed over a set of data points (forming
a training set).

1.1.3 Theoretical Computer Science

Practical ML methods form a specific subclass of computing systems. Indeed, ML
methods apply a sequence of computational operations to input data. The result of
these computational operations are the predictions delivered to the user of the ML
method. The interpretation of ML as computational systems allows to use tools from
theoretical computer science to study the feasibility and intrinsic difficulty of ML

Fig. 1.6 aA simple optimization problem consists of finding the values of an optimization variable
that results in the minimum objective value. bMLmethods learn (find) a hypothesis by minimizing
a loss that is a noisy and incomplete version of the actual objective
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problems. Even if a ML problem can be solved in theoretical sense, every practical
ML method must fit the available computational infrastructure [5, 6].

The available computational resources, such as processor time, memory and
communication bandwidth, can vary significantly between different infrastructures.
One example for such a computational infrastructure is a single desktop computer.
Another example for a computational infrastructure is a cloud computing service
which distributes data and computation over large networks of physical comput-
ers [7].

The focus of this book is on ML methods that can be understood as numerical
optimization algorithms (see Chaps. 4 and 5). Most of these ML methods amount
to (a large number of) matrix operations such as matrix multiplication or matrix
inversion [8]. Numerical linear algebra provides a vast algorithmic toolbox for the
design of such ML methods [3, 9]. The recent success of ML methods in several
application domains might be attributed to their efficient use of matrices to represent
data and models. Using this representation allows us to implement the resulting ML
methods using highly efficient hard- and software implementations for numerical
linear algebra [10].

1.1.4 Information Theory

Information theory studies the problem of communication via noisy channels
[11–14]. Figure 1.7 depicts the most simple communication problem that consists of
an information source that wishes communicate a message m over an imperfect (or
noisy) channel to a receiver. The receiver tries to reconstruct (or learn) the original
message based solely on the noisy channel output. Twomain goals of information the-
ory are (i) the characterization of conditions that allow reliable, i.e., nearly error-free,
communication and (ii) the design of efficient transmitter (coding and modulation)
and receiver (demodulation and decoding) methods.

It turns out that many concepts from information theory are very useful for the
analysis and design of ML methods. As a point in case, Chap. 10 discusses the
application of information-theoretic concepts to the design of explainable machine
learning methods. On a more fundamental level, we can identify two core communi-
cation problems that arise within ML. These communication problems correspond,
respectively, to the inference (making a prediction) and the learning (adjusting or
improving the current hypothesis) step of a ML method (see Fig.1.4).

We can an interpret the inference step of ML as the problem of decoding the
true label of a data point for which we only know its features. This communication
problem is depicted in Fig. 1.7b. Here the message to be communicated is the true
label of a random data point. This data point is “communicated” over a channel that
only passes through its features. The inference step within a MLmethod then tries to
decode the original message (true label) from the channel output (features) resulting
in the predicted label. A recent line of work used this communication problem to
study deep learning methods [11].
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Fig. 1.7 a A basic communication system involves an information source that emits a message m.
The message is processed by some transmitter and passed through a noisy channel. The receiver
tries to recover the original message m by computing the decoded message m̂. b The inference step
of ML (see Fig. 1.4) corresponds to a communication problem with an information source emitting
a data point with features x and label y. The ML method receives the features x and, in an effort to
recover the true label y, computes the predicted label ŷ. c The learning or adaptation step of ML
(see Fig.1.4) solves a communication problem with some source that selects a true (but unknown)
hypothesis h∗ as the message. The message is passed through an abstract channel that outputs a set
D of labeled data points which are used as the training set by an ML method. The ML method tries
to decode the true hypothesis resulting in the learnt the hypothesis ĥ

A second core communication problem of ML corresponds to the problem of
learning (or adjusting) a hypothesis (see Fig. 1.7c). In this problem, the source
selects some “true” hypothesis as message. This message is then communicated
to an abstract channel that models the data generation process. The output of this
abstract channel are data points in a training set D (see Chap. 4). The learning step
of a ML method, such as empirical risk minimization of Chap. 4, then amounts to
the decoding of the message (true hypothesis) based on the channel output (training
set). There is significant line or research that uses the communication problem in
Fig. 1.7c to characterize the fundamental limits of ML problems and methods such
as the minimum required number of training data points that makes learning feasible
[15–19].

The relevance of information theoretic concepts and methods for ML is boosted
by the recent trend towards distributed or federated ML [20–23]. We can interpret
federated learning (FL) applications as a specific type of network communication
problems [14]. In particular, we can apply network coding techniques to the design
and analysis of federated learning (FL) methods [14].
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1.1.5 Probability Theory and Statistics

Consider the data points z(1), . . . , depicted in Fig. 1.2. Each data point represents
some previous day that is characterized by its minimum and maximum daytime tem-
perature as measured at a specific Finnish Meteorological Institute weather obser-
vation station. It might be useful to interpret these data points as realizations of
i.i.d. random variables with common (but unknown) probability distribution p(z).
Figure 1.8 extends the scatterplot in Fig. 1.2 by adding a contour line of the underlying
probability distribution p(z) [24].

Probability theory offers principled methods for estimating the probability distri-
bution from a set of data points (see Sect. 3.12). Given (an estimate of) the probability
distribution p(z), we can compute estimates for the label of a data point based on its
features.

Having a probability distribution p(z) for a randomly drawn data point z =
(x, y)T , allows us to not only compute a single prediction (point estimate) ŷ of the
label y but rather an entire probability distribution q(ŷ) over all possible prediction
values ŷ.

The distribution q(ŷ) represents, for each value ŷ, the probability or how likely it is
that this is the true label value of the datapoint. By its very definition, this distribution
q(ŷ) is precisely the conditional probability distribution p(y|x) of the label value y,
given the feature value x of a randomly drawn datapoint z = (x, y)T ∼ p(z).

Knowing (an accurate estimate of) the probability distribution p(z) underlying the
datapoints generated in anML application not only allows us to compute predictions
of labels.We can also use p(z) to augment the available dataset by randomly drawing
newdatapoints from p(z) (see Sect. 7.3).A recently popularized class ofMLmethods
that use probabilistic models to generate synthetic data is known as generative
adversarial networks [25].

Fig. 1.8 Each dot represents
a datapoint z = (

x, y
)
that is

characterized by a numeric
feature x and a numeric label
y. We also indicate a
contour-line of a probability
distribution p(z) that could
be used to interpret data
points as realizations of i.i.d.
random variables with
common probability
distribution p(z)

x

y

p(z)
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1.1.6 Artificial Intelligence

ML theory and methods are instrumental for the analysis and design of artificial
intelligence [26]. An artificial intelligence system, typically referred to as an agent,
interacts with its environment by executing (choosing between different) actions.
These actions influence the environment as well as the state of the artificial intelli-
gence agent. The behaviour of an artificial intelligence system is determined by how
the perceptions made about the environment are used to form the next action.

From an engineering point of view, artificial intelligence aims at optimizing
behaviour to maximize a long-term return. The optimization of behaviour is based
solely on the perceptions made by the agent. Let us consider some application
domains where AI systems can be used:

• a forest fire management system: perceptions given by satellite images and local
observations using sensors or “crowd sensing” via some mobile application which
allows humans to notify about relevant events; actions amount to issuing warnings
and bans of open fire; return is the reduction of number of forest fires.

• a control unit for combustion engines: perceptions given by various measurements
such as temperature, fuel consistency; actions amount to varying fuel feed and
timing and the amount of recycled exhaust gas; return is measured in reduction of
emissions.

• a severe weather warning service: perceptions given by weather radar; actions are
preventive measures taken by farmers or power grid operators; return is measured
by savings in damage costs (see https://www.munichre.com/)

• an automated benefit application system for the Finnish social insurance insti-
tute (“Kela”): perceptions given by information about application and applicant;
actions are either to accept or to reject the application along with a justification for
the decision; return is measured in reduction of processing time (applicants tend
to prefer getting decisions quickly)

• a personal diet assistant: perceived environment is the food preferences of the app
user and their health condition; actions amount to personalized suggestions for
healthy and tasty food; return is the increase in well-being or the reduction in
public spending for health-care.

• the cleaning robot Rumba (see Fig. 1.9) perceives its environment using different
sensors (distance sensors, on-board camera); actions amount to choosing different
moving directions (“north”, “south”, “east”, “west”); return might be the amount
of cleaned floor area within a particular time period.

• personal health assistant: perceptions given by current health condition (blood val-
ues, weight,…), lifestyle (preferred food, exercise plan); actions amount to per-
sonalized suggestions for changing lifestyle habits (less meat, more walking,…);
return is measured via the level of well-being (or the reduction in public spending
for health-care).

• a government-system for a country: perceived environment is constituted by cur-
rent economic and demographic indicators such as unemployment rate, budget
deficit, age distribution,…; actions involve the design of tax and employment

https://www.munichre.com/
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Fig. 1.9 A cleaning robot
chooses actions (moving
directions) to maximize a
long-term reward measured
by the amount of cleaned
floor area per day

laws, public investment in infrastructure, organization of health-care system;
return might be determined by the gross domestic product, the budget deficit or
the gross national happiness (cf. https://en.wikipedia.org/wiki/Gross_National_
Happiness).

ML methods are used on different levels by an artificial intelligence agent. On a
lower level, ML methods help to extract the relevant information from raw data. ML
methods are used to classify images into different categories which are then used an
input for higher level functions of the artificial intelligence agent.

ML methods are also used for higher level tasks of an artificial intelligence agent.
To behave optimally, an agent is required to learn a good hypothesis for how its
behaviour affects its environment.We can think of optimal behaviour as a consequent
choice of actions that might be predicted by ML methods.

What sets artificial intelligence applications apart frommore traditionalML appli-
cation is that there is an strong interaction between ML method and the data gen-
eration process. Indeed, artificial intelligence agents use the predictions of an ML
method to select its next action which, in turn, influences the environment which
generates new datapoints. The ML subfield of active learning studies methods that
can influence the data generation [27].

Another characteristic of artificial intelligence applications is that they typically
allow ML methods to evaluate the quality of a hypothesis only in hindsight. Within
a basic (supervised) ML application it is possible for a ML method to try out many
different hypotheses on the same data point. These different hypotheses are then
scored by their discrepancies with a known correct predictions. In contrast to such
passiveML applications, AI applications involve data points for which it is infeasible
to determine the correct predictions.

Let us illustrate the above differences betweenMLand artificial intelligence appli-
cations with the help of a self-driving toy car. The toy-car is equipped with a small
onboard computer, camera, sensors and actors that allow to define the steering direc-
tion. Our goal is to program the onboard computer such that it implements an artificial
intelligence agent that optimally steers the toy-car. This artificial intelligence appli-
cation involves data points that represent the different (temporal) states of the toy car
during its ride. We use a ML method to predict the optimal steering direction for the
current state. The prediction for the optimal steering angle is obtained by a hypoth-
esis map that reads a snapshot from an on-board camera. Since these predictions are

https://en.wikipedia.org/wiki/Gross_National_Happiness
https://en.wikipedia.org/wiki/Gross_National_Happiness
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used to actually steer the car, they influence the future data points (states) that will
be obtained.

Note that we typically do not know the actual optimal steering direction for each
possible state of the car. It is infeasible to let the toy car roam around along any pos-
sible path and then manually label each on-board camera snapshot with the optimal
steering direction (see Fig. 1.12). The usefulness of a prediction can be measured
only in an indirect fashion by using some form of reward signal. Such a reward sig-
nal could be obtained from a distance sensor that allows to determine if the toy car
reduced the distance to a target location.

1.2 Flavours of Machine Learning

MLmethods read in data pointswhich are generatedwithin some application domain.
An individual data point is characterized by various properties. We find it convenient
to divide the properties of data points into two groups: features and labels (see
Sect. 2.1). Features are properties that wemeasure or compute easily in an automated
fashion. Labels are properties that cannot be measured easily and often represent
some higher level fact (or quantity of interest) whose discovery often requires human
experts.

Roughly speaking, ML aims at learning to predict (approximating or guessing)
the label of a data point based solely on the features of this datapoint. Formally, the
prediction is obtained as the function value of a hypothesis map whose input argu-
ment are the features of a datapoint. Since anyMLmethodmust be implementedwith
finite computational resources, it can only consider a subset of all possible hypoth-
esis maps. This subset is referred to as the hypothesis space or model underlying
a ML method. Based on how ML methods assess the quality of different hypothe-
sis maps we distinguish three main flavours of ML: supervised, unsupervised and
reinforcement learning.

1.2.1 Supervised Learning

The main focus of this book is on supervised ML methods. These methods use a
training set that consists of labeled data points (for which we know the correct label
values). We refer to a data point as labeled if its label value is known. Labeled data
points might be obtained from human experts that annotate (“label”) data points with
their label values. There aremarketplaces for renting human labellingworkforce [28].
Supervised ML searches for a hypothesis that can imitate the human annotator and
allows to predict the label solely from the features of a data point.

Figure 1.10 illustrates the basic principle of supervisedMLmethods. These meth-
ods learn a hypothesis with minimum discrepancy between its predictions and the
true labels of the datapoint in the training set. Loosely speaking, supervised ML fits
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Fig. 1.10 Supervised ML
methods fit a (typically
highly non-linear) curve to a
(typically large) set of data
points (x(2), y(2))

(x(1), y(1))

feature x

predictor h(x)

label y

a curve (the graph of the predictor map) to labeled data points in a training set. For
the actual implementing of this curve fitting we need a loss function that quantifies
the fitting error. Supervised ML method differ in their choice for a loss function to
measure the discrepancy between predicted label and true label of a data point.

While the principle behind supervisedML sounds trivial, the challenge of modern
ML applications is the sheer amount of data points and their complexity.MLmethods
must process billions of data points with each single datapoint characterized by a
potentially vast number of features. Consider datapoints representing social network
users, whose features include all media that has been posted (videos, images, text).
Besides the size and complexity of datasets, another challenge for modernMLmeth-
ods is that they must be able to fit highly non-linear predictor maps. Deep learning
methods address this challenge by using a computationally convenient representation
of non-linear maps via artificial neural networks [10].

1.2.2 Unsupervised Learning

Some ML methods do not require knowing the label value of any data point and
are therefore referred to as unsupervised ML methods. Unsupervised methods must
rely solely on the intrinsic structure of data points to learn a good hypothesis. Thus,
unsupervisedmethods do not need a teacher or domain expert who provides labels for
data points (used to form a training set). Chapters 8 and 9 discuss two large families
of unsupervised methods, referred to as clustering and feature learning methods.

Clusteringmethods group data points into few subsets such that data points within
the same subset or cluster are more similar with each other than with data points
outside the cluster (see Figure1.11). Feature learning methods determine numeric
features such that data points can be processed efficiently using these features. Two
important applications of feature learning are dimensionality reduction and data
visualization.
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Fig. 1.11 Clustering
methods learn to predict the
cluster (or group)
memberships of data points
based solely on their
features. Chapter 8 discusses
clustering methods that are
unsupervised in the sense of
not requiring the knowledge
of the true cluster
membership of any data
point
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1.2.3 Reinforcement Learning

In general, ML methods use a loss function to evaluate and compare different
hypotheses. The loss function assigns a (typically non-negative) loss value to a pair of
a data point and a hypothesis. ML methods search for a hypothesis, out of (typically
large) hypothesis space, that incurs minimum loss for any data point. Reinforcement
learning (RL) studies applications where the predictions obtained by a hypothesis
influences the generation of future data points. RL applications involve data points
that represent the states of a (programmable) system (an artificial intelligence agent)
at different time instants. The label of such a data point has themeaning of an optimal
action that the agent should take in a given state. Similar to unsupervised ML, RL
methods must learn a hypothesis without having access to labeled data points.

What sets RL methods apart from supervised and unsupervised methods is that it
not possible for them to evaluate the loss function for different choices of a hypoth-
esis. Consider a RL method that has to predict the optimal steering angle of a car.
Naturally, we can only evaluate the usefulness specific combination of predicted
label (steering angle) and the current state of the car. It is impossible to try out two
different hypotheses at the same time as the car cannot follow two different steering
angles (obtained by the two hypotheses) at the same time.

Mathematically speaking, RL methods can evaluate the loss function only point-
wise, i.e., for the current hypothesis that has been used to obtain the most recent
prediction. These point-wise evaluations of the loss function are typically imple-
mented by using some reward signal [29]. Such a reward signal might be obtained
from a sensing device and allows to quantify the usefulness of the current hypothesis.

One important application domain for RL methods is autonomous driving (see
Fig. 1.12). Consider data points that represent individual time instants t = 0, 1, . . .
during a car ride. The features of the t th data point are the pixel intensities of an
on-board camera snapshot taken at time t . The label of this data point is the optimal
steering direction at time t tomaximize the distance between the car and any obstacle.
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Fig. 1.12 Autonomous driving requires to predict the optimal steering direction (label) based
on an on-board camera snapshot (features) in each time instant. RL methods sequentially adjust
a hypothesis for predicting the steering direction from the snapshot. The quality of the current
hypothesis is evaluated by the measurement of a distance sensor (to avoid collisions with obstacles)

We could use a ML method to learn hypothesis for predicting the optimal steering
direction solely from the pixel intensities in the on-board camera snapshot. The loss
incurred by a particular hypothesis is determined from themeasurement of a distance
sensor after the car moved along the predicted direction. We can evaluate the loss
only for the hypothesis that has actually been used to predict the optimal steering
direction. It is impossible to evaluate the loss for other predictions of the optimal
steering direction since the car already moved on.

1.3 Organization of this Book

Chapter 2 introduces the notions of data, amodel and a loss function as the threemain
components of ML. We will also highlight some of the computational and statistical
aspects that might guide the design choices arising for these three components. A
guiding theme of this book is the depiction of ML methods as combinations of
specific design choices for data representation, the model and the loss function. Put
differently, we aim at mapping out the vast landscape of ML methods in an abstract
three-dimensional space spanned by the three dimensions: data, model and loss.

Chapter 3 details how several well-known ML methods are obtained by specific
design choices for data (representation), model and loss function. Examples range
from basic linear regression (see Sect. 3.1) via support vector machine (see Sect. 3.7)
to deep reinforcement learning (see Sect. 3.14).

Chapter 4 discusses a principle approach to combine the three components within
a practical ML method. In particular, Chap. 4 explains how a simple probabilis-
tic model for data lends naturally to the principle of empirical risk minimization.
This principle translates the problem of learning into an optimization problem. ML
methods based on the empirical risk minimization are therefore a special class of
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optimization methods. The empirical risk minimization principle can be interpreted
as a precise mathematical formulation of the “learning by trial and error” paradigm.

Chapter 5 discusses a family of iterative methods for solving the empirical risk
minimization problem introduced in Chap. 4. These methods use gradients to locally
approximate the objective function used in empirical risk minimization. Some vari-
ants of these gradient-based methods are currently the de-facto standard method for
training deep neural networks [10].

The empirical risk minimization principle of Chap. 4 delivers a hypothesis that
optimally predicts the labels of data points in a training set. However, we would like
to learn a hypothesis the delivers accurate predictions also for data points that do
not belong to the training set. Chapter 6 discusses some basic validation techniques
that allow to probe a hypothesis outside the training set that has been used to learn
(optimize) this hypothesis via empirical risk minimization. Validation techniques are
instrumental for model selection, i.e., to choose the best model from a given set of
candidate models. Chapter 7 presents regularization techniques that aim at replacing
the training error of a candidate hypothesis with an estimate (or approximation) of
its average loss incurred for data points outside the training set.

The focus of Chaps. 3–7 is on supervised ML methods that require a training set
of labeled data points. Chapters 8 and 9 are devoted to unsupervised ML methods
which do not require any labeled data. Chapter 8 presents some basic methods for
clustering data. These methods group or partition data points into coherent groups
which are referred to as clusters. Chapter 9 discusses feature learningmethods that
automatically determine themost relevant characteristics (or features) of a data point.
This chapter also highlights the importance of using only the most relevant features
of a data point, and to avoid irrelevant features, to reduce computational complexity
and improve the accuracy of ML methods (such as those discussed in Chap. 3).

The successful deployment of theMLmethods, such as those discussed inChap. 3,
often depends on their explainability or transparency. Chapter 10 discusses two dif-
ferent approaches to obtain explainable machine learning. These techniques take into
account the individual user background knowledge. By analyzing a user feedback
signal, which are provided for the data points in a training set, these techniques either
compute personalized explanations for a given ML method or choose models that
are intrinsically explainable to the user.

Prerequisites. We assume familiarity with basic notions and concepts of linear
algebra, real analysis, and probability theory. For a review of those concepts, we
recommend [10, Chapter 2–4] and the references therein. A main goal of this book
is to develop the basic ideas and principles behind ML methods using a minimum
of probability theory. However, some rudimentary knowledge about probability dis-
tributions of arbitrary random variables, probability density functions of random
variables defined on Euclidean space Rn and probability mass functions for discrete
random variables is helpful [24].
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Chapter 2
Components of ML

This book portrays ML as combinations of three components (see Fig. 2.1):

• data as collections of individual data points that are characterized by features (see
Sect. 2.1.1) and labels (see Sect. 2.1.2)

• a model or hypothesis space that consists of computationally feasible hypothesis
maps from feature space to label space (see Sect. 2.2)

• a loss function (see Sect. 2.3) to measure the quality of a hypothesis map.

AMLproblem involves specific design choices for data points, its features and labels,
the hypothesis space and the loss function to measure the quality of a particular
hypothesis. Similar to ML problems (or applications), we can also characterize ML
methods as combinations of the three above components.

We detail in Chap. 3 how some of the most popular MLmethods, including linear
regression (see Sect. 3.1) as well as deep learning methods (see Sect. 3.11), are
obtained by specific design choices for the three components. This chapter discusses
in some depth the role of and the individual components ofML and their combination
in ML methods.

2.1 The Data

Data as Collections of Data points. Maybe the most important component of any
ML problem (and method) is data. We consider data as collections of individual data
points which are atomic units of “information containers”. Data points can represent
text documents, signal samples of time series generated by sensors, entire time series
generated by collections of sensors, frames within a single video, random variables,
videos within a movie database, cows within a herd, individual trees within a forest,
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Fig. 2.1 ML methods fit a
model to data via minimizing
a loss function model

lossdata

Fig. 2.2 Snapshot taken at
the beginning of a mountain
hike

individual forests within a collection of forests. Mountain hikers might be interested
in datapoints that represent different hiking tours (see Fig. 2.2).

We use the concept of datapoints in a very abstract and therefore highly flexible
manner. Datapoints can represent very different types of objects that arise in funda-
mentally different application domains. For an image processing application it might
be useful to define datapoints as images.When developing a recommendation system
we might define datapoints to represent customers. In the development of new drugs
we might use data points to represent different diseases. The view in this book is
that the meaning of definition of datapoints should be considered as a design choice.
We might refer to the task of finding a useful definition of data points as “data point
engineering”.

One practical requirement for a useful definition of data points is that we should
have access to many of them. Many ML methods construct estimates for a quantity
of interest (such as a prediction or forecast) by averaging over a set of reference
(or training) datapoints. These estimates become more accurate for an increasing
number of datapoints used for computing the average. A key parameter of a dataset
is the numberm of individual datapoints it contains. The number of datapoints within
a dataset is also referred to as the sample size. Statistically, the larger the sample size
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m the better. However, there might be restrictions on computational resources (such
as memory size) that limit the maximum sample size m that can be processed.

For most applications, it is impossible to have full access to every single micro-
scopic property of a data point. Consider a datapoint that represents a vaccine. A
full characterization of such a datapoint would require to specify its chemical com-
position down to level of molecules and atoms. Moreover, there are properties of a
vaccine that depend on the patient who received the vaccine.

We find it useful to distinguish between two different groups of properties of a
data point. The first group of properties is referred to as features and the second
group of properties is referred to as labels. Depending on the application domain, we
might refer to labels also as a target or the output variable. The features of a data
point are sometimes also referred to as input variables.

The distinction between features and labels is somewhat blurry. The same property
of a data point might be used as a feature in one application, while it might be used as
a label in another application. As an example, consider feature learning for datapoints
representing images. One approach to learn representative features of an image is
to use some of the image pixels as the label or target pixels. We can then learn new
features by learning a feature map that allows us to predict the target pixels.

To further illustrate the blurry distinction between features and labels, consider
the problem of missing data. Assume we have a list of data points each of which is
characterized by several properties that could be measured easily in principles (by
sensors). These properties would be first candidates for being used as features of the
datapoints. However, few of these properties are unknown (missing) for a small set
of datapoints (e.g., due to broken sensors). We could then define the properties which
are missing for some datapoints as labels and try to predict these labels using the
remaining properties (which are known for all data points) as features. The task of
determining missing values of properties that could be measured easily in principle
is referred to as imputation [1].

Figure 2.3 illustrates two key parameters of a dataset. The first parameter is the
sample size m, i.e., the number of individual data points that constitute the dataset.
The second key parameter is the number n of features that are used to characterize
an individual data point. The behaviour of ML methods often depends crucially on
the ratio m/n. The performance of ML methods typically improves with increasing
m/n. As a rule of thumb, we should use datasets for which m/n � 1. We will make
the informal condition m/n � 1 more precise in Chap. 6.

2.1.1 Features

Similar to the definition of datapoints, also the choice of which properties to be
used as their features is a design choice. In general, features are properties of a
datapoint that can be computed ormeasured easily. However, this is a highly informal
characterization since there no universal criterion for the difficulty of computing of
measuring a property of datapoints. The task of choosing which properties to use
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Fig. 2.3 Twomain parameters of a dataset are the number (sample size)m of individual data points
that constitute the dataset and the number n of features used to characterize individual datapoints.
The behaviour of ML methods typically depends crucially on the ratio m/n

as features of data points might be the most challenging part in the application of
ML methods. Chapter 9 discusses feature learning methods that automate (to some
extend) the construction of good features.

In some application domains there is a rather natural choice for the features of
a data point. For data points representing audio recording (of a given duration) we
might use the signal amplitudes at regular sampling instants (e.g., using sampling
frequency 44 kHz) as features. For data points representing images it seems natural
to use the colour (red, green and blue) intensity levels of each pixel as a feature (see
Fig. 2.4).

The feature construction for images depicted in Fig. 2.4 can be extended to other
types of data points as long as they can be visualized efficiently. As a case in point,
we might visualize an audio recording using an intensity plot of its spectrogram (see
Fig. 2.5). We can then use the pixel RGB intensities of this intensity plot as the
features for an audio recording. Using this trick we can transform any ML method
for image data to an ML method for audio data. We can use the scatterplot of a data
set to use ML methods for image segmentation to cluster the dataset (see Chap. 8).

Many important ML application domains generate data points that are charac-
terized by several numeric features x1, . . . , xn . We represent numeric features by
real numbers x1, . . . , xn ∈ R which might seem impractical. Indeed, digital com-
puters cannot store a real number exactly as this would require an infinite number
of bits. However, numeric linear algebra soft- and hardware allows to approximate
real numbers with sufficient accuracy. The majority of MLmethods discussed in this
book assume that data points are characterized by real-valued features. Section 9.3
discusses methods for constructing numeric features of data points whose natural
representation is non-numeric.

We assume that data points arising in a given ML application are characterized
by the same number n of individual features x1. . . . , xn . It is convenient to stack the
individual features of a data point into a single feature vector

x = (
x1, . . . , xn

)T
.
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Fig. 2.4 If the snapshot z(i) is stored as a 512 × 512RGBbitmap,we could use as features x(i) ∈ R
n

the red-, green- and blue component of each pixel in the snapshot. The length of the feature vector
would then be n = 3 · 512 · 512 ≈ 786000

Each data point is then characterized by its feature vector x. Note that stacking the
features of a data point into a column vector x is pure convention. We could also
arrange the features as a row vector or even as a matrix, which might be even more
natural for features obtained by the pixels of an image (see Fig. 2.4).

We refer to the set of possible feature vectors of datapoints arising in some ML
application as the feature space and denote it as X . The feature space is a design
choice as it depends on what properties of a datapoint we use as its features. This
design choice should take into account the statistical properties of the data as well as
the available computational infrastructure. If the computational infrastructure allows
for efficient numerical linear algebra, then using X = R

n might be a good choice.
The Euclidean spaceRn is an example of a feature space with a rich geometric and

algebraic structure [2]. The algebraic structure of Rn is defined by vector addition
and multiplication of vectors with scalars. The geometric structure of Rn is obtained
by the Euclidean norm as a measure for the distance between two elements of Rn .
The algebraic and geometric structure of Rn often enables an efficient search over
R

n to find elements with desired properties. Section 4.3 discusses examples of such
search problems in the context of learning an optimal hypothesis.

Modern information-technology, including smartphones or wearables, allows
us to measure a huge number of properties about datapoints in many application
domains. Consider a datapoint representing the book author “Alex Jung”. Alex uses
a smartphone to take roughly five snapshots per day (sometimes more, e.g., during
a mountain hike) resulting in more than 1000 snapshots per year. Each snapshot
contains around 106 pixels whose greyscale levels we can use as features of the data-
point. This results in more than 109 features (per year!). If we stack all those features
into a feature vector x, its length n would be of the order of 109.

As indicated above, many important ML applications involve datapoints repre-
sented by very long feature vectors. To process such high-dimensional data, modern
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ML methods rely on concepts from high-dimensional statistics [3, 4]. One such
concept from high-dimensional statistics is the notion of sparsity. Section 3.4 dis-
cusses methods that exploit the tendency of high-dimensional data points, which are
characterized by a large number n of features, to concentrate near low-dimensional
subspaces in the feature space [5].

At first sight it might seem that “the more features the better” since using more
features might convey more relevant information to achieve the overall goal. How-
ever, as we discuss in Chap. 7, it can be detrimental for the performance of ML
methods to use an excessive amount of (irrelevant) features. Computationally, using
too many features might result in prohibitive computational resource requirements
(such as processing time). Statistically, each additional feature typically introduces
an additional amount of noise (due to measurement or modelling errors) which is
harmful for the accuracy of the ML method.

It is difficult to give a precise and broadly applicable characterization of the
maximum number of features that should be used to characterize the datapoints. As
a rule of thumb, the number m of (labeled) datapoints used to train a ML method
should be much larger than the number n of numeric features (see Fig. 2.3). The
informal condition m/n � 1 can be ensured by either collecting a sufficiently large
number m of data points or by using a sufficiently small number n of features. We
next discuss implementations for each of these two complementary approaches.

The acquisition of (labeled) datapoints might be costly, requiring human expert
labour. Instead of collecting more raw data, it might be more efficient to generate
new artificial (synthetic) data via data augmentation techniques. Section 7.3 shows
how intrinsic symmetries in the data can be used to augment the raw data with
synthetic data. As an example for an intrinsic symmetry of data, consider datapoints
representing an image.We assign each image the label y = 1 if it shows a cat and y =
−1 otherwise. For each image with known label we can generate several augmented
(additional) images with the same label. These additional images might be obtained
by simple image transformation such as rotations or re-scaling (zoom-in or zoom-
out) that do not change the depicted objects (the meaning of the image). Chapter 7
shows that some basic regularization techniques can be interpreted as an implicit
form of data augmentation.

The informal condition m/n � 1 can also be ensured by reducing the number n
of features used to characterize data points. In some applications, we might use some
domain knowledge to choose the most relevant features. For other applications, it
might be difficult to tell which quantities are the best choice for features. Chapter 9
discusses methods that learn, based on some given dataset, to determine a small
number of relevant features of datapoints.

Beside the available computational infrastructure, also the statistical properties of
datasets must be taken into account for the choices of the feature space. The linear
algebraic structure of Rn allows us to efficiently represent and approximate datasets
that are well aligned along linear subspaces. Section 9.2 discusses a basic method
to optimally approximate datasets by linear subspaces of a given dimension. The
geometric structure of Rn is also used in Chap. 8 to decompose a dataset into few
groups or clusters that consist of similar data points.
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Fig. 2.5 Two visualizations of an audio recording obtained from a line plot of the signal amplitudes
and by the spectrogram of the audio recording

Throughout this book we will mainly use the feature space Rn with dimension n
being the number of features of a datapoint. This feature space has proven useful in
manyMLapplications due to availability of efficient soft- and hardware for numerical
linear algebra. Moreover, the algebraic and geometric structure of Rn reflect the
intrinsic structure of the data generated in many important application domains.
This should not be too surprising as the Euclidean space has evolved as a useful
mathematical abstraction of physical phenomena.

In general there is no mathematically correct choice for which properties of a data
point to be used as its features. Most application domains allow for some design free-
dom in the choice of features. Let us illustrate this design freedomwith a personalized
health-care applications. This application involves data points that represent audio
recordings with the fixed duration of three seconds. These recordings are obtained
via smartphone microphones and used to detect coughing [6].

Audio recordings are typically available a sequence of signal amplitudes at col-
lected regularly at time instants t = 1, . . . , n with sampling frequency ≈ 44 kHz.
From a signal processing perspective, it seems natural to directly use the signal
amplitudes as features, x j = a j for j = 1, . . . , n. However, another choice for the
features would be the pixel RGB values of some visualization of the audio recording.
Figure 2.5 depicts two possible visualizations of an audio signal obtained from a line
plot of the signal amplitudes (as a function of time index t) or an intensity plot of
the spectrogram [7, 8].
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2.1.2 Labels

Besides its features, a data point might have a different kind of properties. These
properties represent a higher-level fact or quantity of interest that is associated with
the data point. We refer to such properties of a data point as its label (or “output”
or “target”) and typically denote it by y (if it is a single number) or by y (if it is
a vector of different label values, such as in multi-label classification). We refer to
the set of all possible label values of data points arising in a ML application is the
label space Y . In general, determining the label of a data point is more difficult (to
automate) compared to determining its features. Many ML methods revolve around
finding efficient ways to predict (estimate or approximate) the label of a data point
based solely on its features.

As already mentioned, the distinction of data point properties into labels and
features is blurry. Roughly speaking, labels are properties of datapoints that might
only be determined with the help of human experts. For datapoints representing
humans we could define its label y as an indicator if the person has flu (y = 1) or not
(y = 0). This label value can typically only be determined by a physician. However,
in another application we might have enough resources to determine the flu status of
any person of interest and could use it as a feature that characterizes a person.

Consider a datapoint that represents some hike, at the start of which the snapshot
in Fig. 2.2 has been taken. The features of this datapoint could be the red, green and
blue (RGB) intensities of each pixel in the snapshot in Fig. 2.2. We stack these RGB
values into a vector x ∈ R

n whose length n is three times the number of pixels in
the image. The label y associated with a datapoint (which represents a hike) could
be the expected hiking time to reach the mountain in the snapshot. Alternatively, we
could define the label y as the water temperature of the lake visible in the snapshot.

Numeric Labels (Regression). For a given ML application, the label space Y
contains all possible label values of data points. In general, the label space is not
just a set of different elements but also equipped (algebraic or geometric) structure.
To obtain efficient ML methods, we should exploit such structure. Maybe the most
prominent example for such a structured label space are the real numbers Y = R.
This label space is useful for ML applications involving data points with numeric
labels that can be modelled by real numbers. ML methods that aim at predicting a
numeric label are referred to as regression methods.

Categorical Labels (Classification). Many important ML applications involve
data points whose label indicate the category or class to which data points belongs
to. ML methods that aim at predicting such categorical labels are referred to as
classification methods. Examples for classification problems include the diagnosis
of tumours as benign or maleficent, the classification of persons into age groups or
detecting the current floor conditions (“grass”, “tiles” or “soil”) for a mower robot.

The most simple type of a classification problems is a binary classification prob-
lem. Within binary classification, each datapoint belongs to exactly one out of two
different classes. Thus, the label of a data point takes on values from a set that contains
two different elements such as {0, 1} or {−1, 1} or {shows cat, shows no cat}.
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We speak of amulti-class classification problem if data points belong to exactly
one out of more than two categories (e.g., image categories “no cat shown” vs. “one
cat shown” and “more than one cat shown”). If there are K different categories we
might use the label values {1, 2, . . . , K }.

There are also applications where data points can belong to several categories
simultaneously. For example, an image can be cat image and a dog image at the
same time if it contains a dog and a cat. Multi-label classification problems and
methods use several labels y1, y2, . . . , for different categories to which a data point
can belong to. The label y j represents the j th category and its value is y j = 1 if the
data point belongs to the j-th category and y j = 0 if not.

Ordinal Labels. Ordinal label values are somewhat in between numeric and
categorical labels. Similar to categorical labels, ordinal labels take on values from
a finite set. Moreover, similar to numeric labels, ordinal labels take on values from
an ordered set. For an example for such an ordered label space, consider data points
representing rectangular areas of size 1 kmby1km.The features x of such a data point
can be obtained by stacking the RGB pixel values of a satellite image depicting that
area (see Fig. 2.4). Beside the feature vector, each rectangular area is characterized
by a label y ∈ {1, 2, 3} where
• y = 1 means that the area contains no trees.
• y = 2 means that the area is partially covered by trees.
• y = 3 means that the area is entirely covered by trees.

Thus we might say that label value y = 2 is “larger” than label value y = 1 and label
value y = 3 is “larger” than label value y = 2.

The distinction between regression and classification problems and methods is
somewhat blurry. Consider a binary classification problem based on data points
whose label y takes on values −1 or 1. We could turn this into a regression problem
by using a new label y′ which is defined as the confidence in the label y being
equal to 1. On the other hand, given a prediction ŷ′ for the numeric label y′ ∈ R we
can obtain a prediction ŷ for the binary label y ∈ {−1, 1} by thresholding, ŷ := 1
if ŷ′ ≥ 0 whereas ŷ := −1 otherwise. A prominent example for this link between
regression and classification is logistic regression which is discussed in Sect. 3.6.
Despite its name, logistic regression is a binary classification method.

We refer to a data point as being labeled if, besides its features x, the value of
its label y is known. The acquisition of labeled data points typically involves human
labour, such as handling a water thermometer at certain locations in a lake. In other
applications, acquiring labelsmight require sending out a teamofmarine biologists to
the Baltic sea [9], running a particle physics experiment at the European organization
for nuclear research (CERN) [10], running animal testing in pharmacology [11].

Let us also point out online market places for human labelling workforce [12].
These market places, allow to upload data points, such as collections of images or
audio recordings, and then offer an hourly rate to humans that label the datapoints.
This labeling work might amount to marking images that show a cat.

Many applications involve datapoints whose features can be determined easily,
but whose labels are known for few datapoints only. Labeled data is a scarce resource.
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Some of the most successful ML methods have been devised in application domains
where label information can be acquired easily [13]. ML methods for speech recog-
nition and machine translation can make use of massive labeled datasets that are
freely available [14].

In the extreme case, we do not know the label of any single datapoint. Even in
the absence of any labeled data, ML methods can be useful for extracting relevant
information from features only. We refer to ML methods which do not require any
labeled datapoints as unsupervised ML methods. We discuss some of the most
important unsupervised ML methods in Chaps. 8 and 9).

As discussed next, many ML methods aim at constructing (or finding) a “good”
predictor h : X → Y which takes the features x ∈ X of a datapoint as its input and
outputs a predicted label (or output, or target) ŷ = h(x) ∈ Y . A good predictor should
be such that ŷ ≈ y, i.e., the predicted label ŷ is close (with small error ŷ − y) to the
true underlying label y.

2.1.3 Scatterplot

Consider datapoints characterized by a single numeric feature x and single numeric
label y. To gain more insight into the relation between the features and label of
a datapoint, it can be instructive to generate a scatterplot as shown in Fig. 1.2. A
scatterplot depicts the datapoints z(i) = (x (i), y(i)) in a two-dimensional plane with
the axes representing the values of feature x and label y.

The visual inspection of a scatterplot might suggest potential relationships
between feature x (minimum daytime temperature) and label y (maximum daytime
temperature). From Fig. 1.2, it seems that there might be a relation between feature
x and label y since data points with larger x tend to have larger y. This makes sense
since having a larger minimum daytime temperature typically implies also a larger
maximum daytime temperature.

To construct a scatterplot for data points with more than two features we can use
feature learning methods (see Chap. 9). These methods transform high-dimensional
datapoints, having billions of raw features, to three or two new features. These new
features can then be used as the coordinates of the datapoints in a scatterplot.

2.1.4 Probabilistic Models for Data

A powerful idea in ML is to interpret each datapoints as the realization of a random
variable (RV). For ease of exposition let us consider datapoints that are characterized
by a single feature x . The following concepts can be extended easily to datapoints
characterized by a feature vector x and a label y.

One of themost basic examples of a probabilisticmodel for datapoints inML is the
i.i.d. assumption. This assumption interprets datapoints x (1), . . . , x (m) as realizations
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of statistically independent random variables with the same probability distribution
p(x). It might not be immediately clear why it is a good idea to interpret data
points as realizations of random variables with the common probability distribution
p(x). However, this interpretation allows us to use the properties of the probability
distribution to characterize overall properties of entire datasets, i.e., large collections
of data points.

The probability distribution p(x) underlying the data points within the i.i.d.
assumption is either known (based on some domain expertise) or estimated from
data. It is often enough to estimate only some parameters of the distribution p(x).
Section 3.12 discusses a principled approach to estimate the parameters of a probabil-
ity distribution from datapoints. This approach is sometimes referred to as maximum
likelihood and aims at finding (parameter of) a probability distribution p(x) such that
the probability (density) of actually observing the available data points is maximized
[15–17].

Two of the most basic and widely used parameters of a probability distribution
p(x) are the expected value or mean [18]

μx = E{x} :=
∫

x ′
x ′ p(x ′)dx ′

and the variance
σ 2
x := E

{(
x − E{x})2}.

These parameters can be estimated using the sample mean (average) and sample
variance,

μ̂x := (1/m)

m∑

i=1

x (i) , and

σ̂ 2
x := (1/m)

m∑

i=1

(
x (i) − μ̂x

)2
. (2.1)

The sample mean and sample variance (2.1) are the maximum likelihood estimators
for the mean and variance of a normal (Gaussian) distribution p(x) (see [19, Chap.
2.3.4]).

Most of theMLmethods discussed in this book aremotivated by the i.i.d. assump-
tion. It is important to note that this i.i.d. assumption is merely a modelling assump-
tion. There is no means to verify if an arbitrary set of data points are “exactly” real-
izations of i.i.d. random variables. However, there are principled statistical methods
(hypothesis tests) if a given set of data point can be well approximated as realiza-
tions of i.i.d. random variables [20]. The only way to ensure the i.i.d. assumption is to
generate synthetic data using a random number generator. Such synthetic i.i.d. data
points could be obtained by sampling algorithms that incrementally build a synthetic
dataset by adding randomly chosen raw data points [21].
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Fig. 2.6 A hypothesis (predictor) h maps features x∈X , of an on-board camera snapshot, to the
prediction ŷ=h(x)∈Y for the coordinate of the current location of a cleaning robot. ML methods
use data to learn predictors h such that ŷ≈ y (with true label y)

2.2 The Model

Consider some ML application that generates data points, each characterized by
features x ∈ X and label y ∈ Y . The informal principle of most (if not every) ML
method is to learn a hypothesis map h : X → Y such that

y ≈ h(x)︸︷︷︸
ŷ

for any data point. (2.2)

The informal goal (2.2) will be made precise in several aspects throughout the rest
of our book. First, we need to quantify the approximation error (2.2) incurred by a
given hypothesis map h. Second, we need to make precise what we actually mean by
requiring (2.2) to hold for “any” data point. We solve the first issue by the concept
of a loss function in Sect. 2.3. The second issue is then solved in Chap. 4 by using a
simple probabilistic model for data.

Let us assume for the time being that we have found a reasonable hypothesis h
in the sense of (2.2). We can then use this hypothesis to predict the label of any
data point for which we know its features. The prediction ŷ = h(x) is obtained by
evaluating the hypothesis for the features x of a data point (see Fig. 2.6. and Fig. 2.7).
It seem natural to refer to a hypothesis map as a predictor map since it is used to
compute predictions for the label.

For ML problems using a finite label space Y (e..g, Y = {−1, 1}, we refer to
a hypothesis also as a classifier. For a finite Y , we can characterize a particular
classifier map h using its different decision regions

R(a) := {x ∈ R
n : h = a} ⊆ X . (2.3)

Each label valuea ∈ Y is associatedwith a specific decision regionR(a) := {x ∈ R
n :

h = a}. For a given label value a ∈ Y , the decision regionR(a) := {x ∈ R
n : h = a}

is constituted by all feature vectors x ∈ X which are mapped to this label value,
h(x) = a.
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Table 2.1 A look-up table defines a hypothesis map h. The value h(x) is given by the entry in the
second column of the row whose first column entry is x . We can construct a hypothesis spaceH by
using a collection of different look-up tables

feature x prediction h(x)

0 0

1/10 10

2/10 3
.
.
.

.

.

.

1 22.3

In principle, ML methods could use any possible map h : X → Y to predict the
label y ∈ Y via computing ŷ = h(x). The set of all maps from the feature space X
to the label space is typically denoted as YX .1 In general, the set YX is way too
large to be search over by a practical ML methods. As a point in case, consider data
points characterized by a single numeric feature x ∈ R and label y ∈ R. The set of
all real-valued maps h(x) of a real-valued argument already contains uncountably
infinite many different hypothesis maps [22].

Practical ML methods can search and evaluate only a (tiny) subset of all possible
hypothesis maps. This subset of computationally feasible (“affordable”) hypothesis
maps is referred to as the hypothesis space or model underlying a ML method. As
depicted in Fig. 2.10, ML methods typically use a hypothesis space H that is a tiny
subset of YX . Similar to the features and labels used to characterize data points,
also the hypothesis space underlying a ML method is a design choice. As we will
see, the choice for the hypothesis space involves a trade-off between computational
complexity and statistical properties of the resulting ML methods.

The preference for a particular hypothesis space often depends on the available
computational infrastructure available to a ML method. Different computational
infrastructures favour different hypothesis spaces. ML methods implemented in a
small embedded system, might prefer a linear hypothesis space which results in algo-
rithms that require a small number of arithmetic operations. Deep learning methods
implemented in a cloud computing environment typically usemuch larger hypothesis
spaces obtained from deep neural networks.

ML methods can also be implemented using a spreadsheet software. Here, we
might use a hypothesis space consisting of maps h : X → Y that are represented by
look up tables (see Table 2.1). If we instead use the programming language Python to
implement a ML method, we can obtain a hypothesis class by collecting all possible
Python subroutines with one input (scalar feature x), one output argument (predicted
label ŷ) and consisting of less than 100 lines of code.

1 The notation YX is to be understood as a symbolic shorthand and should not be understood
literately as a power such as 45.
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Broadly speaking, the design choice for the hypothesis spaceH of a ML method
has to balance between two conflicting requirements.

• It has to be sufficiently large such that it contains at least one accurate predictor
map ĥ ∈ H. A hypothesis spaceH that is too small might fail to include a predictor
map required to reproduce the (potentially highly non-linear) relation between
features and label.
Consider the task of grouping or classifying images into “cat” images and “no
cat image”. The classification of each image is based solely on the feature vector
obtained from the pixel colour intensities. The relation between features and label
(y ∈ {cat, no cat}) is highly non-linear. Any ML method that uses a hypothesis
space consisting only of linear maps will most likely fail to learn a good predictor
(classifier). We say that a ML method is underfitting if it uses a hypothesis space
that does not contain any hypotheses maps that can accurately predict the label of
any data points.

• It has to be sufficiently small such that its processing fits the available com-
putational resources (memory, bandwidth, processing time). We must be able to
efficiently search over the hypothesis space to find good predictors (see Sect. 2.3
and Chap. 4). This requirement implies also that the maps h(x) contained in H
can be evaluated (computed) efficiently [23]. Another important reason for using a
hypothesis spaceH that is not too large is to avoid overfitting (see Chap. 7). If the
hypothesis spaceH is too large, then just by luck wemight find a hypothesis which
(almost) perfectly predicts the labels of data points in a training set which is used
to learn a hypothesis. However, such a hypothesis might deliver poor predictions
for labels of data points outside the training set. We say that the hypothesis does
not generalize well.

2.2.1 Parametrized Hypothesis spaces

Awide range of current scientific computing environments allow for efficient numer-
ical linear algebra. This hard and software allows to efficiently process data that is
provided in the form of numeric arrays such as vectors, matrices or tensors [24].
To take advantage of such computational infrastructure, many ML methods use the
hypothesis space

H(n) :={h(w) :Rn →R :h(w)(x)=xTw with some weight vector w∈R
n}. (2.4)

The hypothesis space (2.4) is constituted by linear maps (functions)

h(w)
(
x
) : Rn → R : x 	→ wT x. (2.5)

The function h(w) (2.5) maps, in a linear fashion, the feature vector x ∈ R
n to the

predicted label (or output) h(w)(x) = xTw ∈ R. For n=1 the feature vector reduces
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Fig. 2.7 A hypothesis h : X → Y takes the feature vector x(t) ∈ X (e.g., representing the snapshot
taken by Rumba at time t) as input and outputs a predicted label ŷ(t) = h(x(t)) (e.g., the predicted
y-coordinate of Rumba at time t). A key problem studied within ML is how to automatically learn
a good (accurate) predictor h such that y(t) ≈ h(x(t))

1

1 h(1)(x)=x

h(0.2)(x)=0.2x

h(0.7)(x)=0.7x

feature x

h(w)(x)

Fig. 2.8 Three particular members of the hypothesis spaceH = {h(w) : R → R, h(w)(x) = w · x}
which consists of all linear functions of the scalar feature x . We can parametrize this hypothesis
space conveniently using the weight w ∈ R as h(w)(x) = w · x

a single feature x and the hypothesis space (2.4) consists of all maps h(w)(x) = wx
with some weight w ∈ R (see Fig. 2.8).

The elements of the hypothesis spaceH in (2.4) are parameterized by the weight
vector w ∈ R

n . Each map h(w) ∈ H is fully specified by the weight vector w ∈ R
n .

This parametrization of the hypothesis space H allows to process and manipulate
hypothesis maps by vector operations. In particular, instead of searching over the
function space H (its elements are functions!) to find a good hypothesis, we can
equivalently search over all possible weight vectors w ∈ R

n .
The search space Rn is still (uncountably) infinite but it has a rich geometric and

algebraic structure that allows us to efficiently search over this space. Chapter 5
discusses methods that use the concept of gradients to implement an efficient search
for good weights w ∈ R

n .
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h(x) < 0, ŷ = −1

decision boundary

h(x) ≥ 0, ŷ = 1

w

Fig. 2.9 A hypothesis h : X →Y for a binary classification problem, with label spaceY = {−1, 1}
and feature spaceX = R

2, can be represented conveniently via the decision boundary (dashed line)
which separates all feature vectors xwith h(x) ≥ 0 from the region of feature vectors with h(x) < 0.
If the decision boundary is a hyperplane {x : wT x = b} (with normal vector w ∈ R

n), we refer to
the map h as a linear classifier

The hypothesis space (2.4) is also appealing because of the broad availability
of computing hardware such as graphic processing units. Another factor boosting
the widespread use of (2.4) might be the offer for optimized software libraries for
numerical linear algebra.

The hypothesis space (2.4) can also be used for classification problems, e.g., with
label space Y = {−1, 1}. Indeed, given a linear predictor map h(w) we can classify
data points according to ŷ=1 for h(w)(x) ≥ 0 and ŷ=−1 otherwise. We refer to
a classifier that computes the predicted label by first applying a linear map to the
features as a linear classifier.

Figure 2.9 illustrates the decision regions (2.3) of a linear classifier for binary
labels. The decision regions are half-spaces and, in turn, the decision boundary is a
hyperplane {x : wT x = b}. Note that each linear classifier corresponds to a particular
linear hypothesis map from the hypothesis space (2.4). However, we can use differ-
ent loss functions to measure the quality of a linear classifier. Three widely-used
examples for ML methods that learn a linear classifier are logistic regression (see
Sect. 3.6), the support vector machine (see Sect. 3.7) and the naive Bayes classifier
(see Sect. 3.8).

In some application domains, the relation between features x and label y of a data
point is highly non-linear. As a case in point, consider data points representing images
of animals. The map that relates the pixel intensities of image to the label indicating
if it is a cat image is highly non-linear. For such applications, the hypothesis space
(2.4) is not suitable as it only contains linear maps. The second main example for a
parametrized hypothesis space studied in this book also contains non-linear maps.
This parametrized hypothesis space is obtained from a parametrized signal flow
diagram which is referred to as an artificial neural network. Section 3.11 will discuss
the construction of non-linear parametrized hypothesis spaces using an artificial
neural network.



2.2 The Model 35

Upgrading a Hypothesis Space via Feature Maps. Let us discuss a simple but
powerful technique for enlarging (“upgrading”) a given hypothesis space H to a
larger hypothesis space H′ ⊇ H that offers a wider selection of hypothesis maps.
The idea is to replace the original features x of a data point with new (transformed)
features z = �(x). The transformed features are obtained by applying a feature map
�(·) ot the original features x. This upgraded hypothesis space H′ consists of all
concatenations of the feature map � and some hypothesis h ∈ H,

H′ := {
h′(·) : x 	→ h

(
�(x)

) : h ∈ H}
. (2.6)

The construction (2.6) used for arbitrary combinations of a feature map �(·) and a
“base” hypothesis spaceH. The only requirement is that the output of the featuremap
can be used as input for a hypothesis h ∈ H. More formally, the range of the feature
mapmust belong to the domain of the maps inH. Examples forMLmethods that use
a hypothesis space of the form (2.6) include polynomial regression (see Sect. 3.2),
Gaussian basis regression (see Sect. 3.5) and the important family of kernal methods
(see Sect. 3.9). The feature map in (2.6) might also be obtained from clustering or
feature learning methods (see Sects. 8.4 and 9.2.1).

For the special case of the linear hypothesis space (2.4), the resulting enlarged
hypothesis space (2.6) is given by all linear maps wT z of the transformed features
�(x). Combining the hypothesis space (2.4) with a non-linear feature map results in
a hypothesis space that contains non-linear maps from the original feature vector x
to the predicted label ŷ,

ŷ = wT z = wT�(x). (2.7)

Non-Numeric Features. The hypothesis space (2.4) can only be used for data-
points whose features are numeric vectors x = (x1, . . . , xn)T ∈ R

n . In some applica-
tion domains, such as natural language processing, there is no obvious natural choice
for numeric features.However, sinceMLmethods based on the hypothesis space (2.4)
are well developed (using numerical linear algebra), it might be useful to construct
numerical features even for non-numeric data (such as text). For text data, there has
been significant progress recently on methods that map a human-generated text into
sequences of vectors (see [25, Chap. 12] for more details). Moreover, Sect. 9.3 will
discuss an approach to generate numeric features for data points that have an intrinsic
notion of similarity.

2.2.2 The Size of a Hypothesis Space

The notion of a hypothesis space being too small or being too large can be made
precise in different ways. The size of a finite hypothesis space H can be defined as
its cardinality |H|which is simply the number of its elements. For example, consider
datapoints represented by 100 × 10=1000 black-and-white pixels and characterized
by a binary label y ∈ {0, 1}. We can model such datapoints using the feature space
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X = {0, 1}1000 and label space Y = {0, 1}. The largest possible hypothesis space
H = YX consists of all maps from X to Y . The size or cardinality of this space is
|H| = 22

1000
.

ManyMLmethods use a hypothesis spacewhich contains infinitelymanydifferent
predictor maps (see, e.g., (2.4)). For an infinite hypothesis space, we cannot use the
number of its elements as a measure for its size. Indeed, for an infinite hypothesis
space, the number of elements is not well-defined. Therefore, we measure the size
of a hypothesis space H using its effective dimension deff (H).

Consider a hypothesis space H consisting of maps h : X → Y that read in the
features x ∈ X and output an predicted label ŷ = h(x) ∈ Y . We define the effective
dimension deff (H) of H as the maximum number D ∈ N such that for any set D ={(
x(1), y(1)

)
, . . . ,

(
x(D), y(D)

)} of D data pointswith different features,we can always
find a hypothesis h ∈ H that perfectly fits the labels, y(i) = h

(
x(i)

)
for i = 1, . . . , D.

The effective dimension of a hypothesis space is closely related to the Vapnik–
Chervonenkis (VC) dimension [26]. The Vapnik–Chervonenkis (VC) dimension is
maybe the most widely used concept for measuring the size of infinite hypothe-
sis spaces [19, 26–28]. However, the precise definition of the Vapnik–Chervonenkis
(VC) dimension are beyond the scope of this book.Moreover, the effective dimension
captures most of the relevant properties of the Vapnik–Chervonenkis (VC) dimen-
sion for our purposes. For a precise definition of the Vapnik–Chervonenkis (VC)
dimension and discussion of its applications in ML we refer to [27].

Let us illustrate our concept for the size of a hypothesis space with two examples:
linear regression and polynomial regression. Linear regression uses the hypothesis
space

H(n) = {h : Rn → R : h(x) = wT x with some vector w ∈ R
n}.

Consider a dataset D = {(x(1), y(1)
)
, . . . ,

(
x(m), y(m)

)} consisting of m data points.
We refer to this number also as the sample size of the dataset. Each data point is
characterized by a feature vector x(i) ∈ R

n and a numeric label y(i) ∈ R.
Let us assume that data points are realizations of realizations of continuous i.i.d.

random variables with a common probability density function. Under this assump-
tion, the matrix

X = (
x(1), . . . , x(m)

) ∈ R
n×m,

which is obtained by stacking (column-wise) the feature vectors x(i) (for i =
1, . . . ,m), is full rank with probability one. Basic results of linear algebra allow
to show that the data points in D can be perfectly fit by a linear map h ∈ H(n) as
long as m ≤ n. As soon as the number m of data points is not strictly larger than
the number of features characterizing each data point, i.e., m ≤ n, we can find (with
probability one) a weight vector ŵ such that y(i) = ŵT x(i) for all i = 1, . . . ,m. The
effective dimension of the linear hypothesis space H(n) is therefore D = n.

As a second example, consider the hypothesis spaceH(n)
poly which is constituted by

the set of polynomials with maximum degree n. The fundamental theorem of algebra
tells us that any set of m data points with different features can be perfectly fit by
a polynomial of degree n as long as n ≥ m. Therefore, the effective dimension of



2.2 The Model 37

YX

H

Fig. 2.10 The hypothesis space H is a (typically very small) subset of the (typically very large)
set YX of all possible maps from feature space X into the label space Y

the hypothesis spaceH(n)
poly is D = n. Section 3.2 discusses polynomial regression in

more detail.

2.3 The Loss

Every ML method uses a (more of less explicit) hypothesis space H which consists
of all computationally feasible predictor maps h. Which predictor map h out of
all the maps in the hypothesis space H is the best for the ML problem at hand? To
answer this questions, ML methods use the concept of a loss function. Formally, a
loss function is a map

L : X × Y × H → R+ : ((
x, y

)
, h

) 	→ L((x, y), h)

which assigns a pair consisting of a data point, with features x and label y, and a
hypothesis h ∈ H the non-negative real number L((x, y), h).

hypothesis h

L((x, y), h)

Fig. 2.11 Some loss function L((x, y), h) for a fixed data point, with features x and label y, and
varying hypothesis h. ML methods try to find (learn) a hypothesis that incurs minimum loss
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The loss value L((x, y), h) quantifies the discrepancy between the true label y
and the predicted label h(x). A small (close to zero) value L((x, y), h) indicates a
low discrepancy between predicted label and true label of a data point. Figure 2.11
depicts a loss function for a given data point, with features x and label y, as a function
of the hypothesis h ∈ H. The basic principle of ML methods can then be formulated
as: Learn (find) a hypothesis out of a given hypothesis spaceH that incurs aminimum
loss L((x, y), h) for any data point (see Chap. 4).

Much like the choice for the hypothesis space H used in a ML method, also
the loss function is a design choice. We will discuss some widely used examples
for loss function in Sects. 2.3.1 and 2.3.2. The choice for the loss function should
take into account the computational complexity of searching the hypothesis space
for a hypothesis with minimum loss. Consider a ML method that uses a hypothesis
space parametrized by a weight vector and a loss function that is a convex and
differentiable (smooth) function of the weight vector. In this case, searching for a
hypothesis with small loss can be done efficiently using the gradient-based methods
discussed in Chap. 5. The minimization of a loss function that is either non-convex
or non-differentiable is typically computationally much more difficult. Section 4.2
discusses the computational complexities of different types of loss functions in more
detail.

Beside computational aspects, the choice of loss function should also take into
account statistical aspects. Some loss functions result in ML methods that are more
robust against outliers (see Sects. 3.3 and 3.7). The choice of loss function might
also be guided by probabilistic models for the data generated in an ML application.
Section 3.12 details how the maximum likelihood principle of statistical inference
provides an explicit construction of loss functions in terms of an (assumed) proba-
bility distribution for data points.

The choice for the loss function used to evaluate the quality of a hypothesis might
also be influenced by its interpretability. Section 2.3.2 discusses loss functions for
hypotheses that are used to classify data points into two categories. It seems natural to
measure the quality of such a hypothesis by the average number of wrongly classified
data points, which is precisely the average 0/1 loss (2.9) (see Sect. 2.3.2). Thus, the
average 0/1 loss can be interpreted as a misclassification (or error) rate. However,
using the average 0/1 loss to learn an accurate hypothesis results in computationally
challenging problems. Section 2.3.2 introduces the logistic loss as a computationally
attractive alternative choice for the loss function in binary classification problems.

The above aspects (computation, statistic, interpretability) result typically in con-
flicting goals for the choice of a loss function. A loss function that has favourable
statistical properties might incur a high computational complexity of the resulting
ML method. Loss functions that result in computationally efficient ML methods
might not allow for an easy interpretation (what does it mean if the logistic loss of a
hypothesis in a binary classification problem is 10−1?). It might therefore be useful
to use different loss functions for the search of a good hypothesis (see Chap. 4) and
for its final evaluation. Figure 2.12 depicts an example for two such loss functions,
one of them used for learning a hypothesis by minimizing the loss and the other one
used for the final performance evaluation.
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hypothesis h

loss for learning a good h

loss (metric) for final evaluation

Fig. 2.12 Two different loss functions for a given data point and varying hypothesis h. One loss
function (solid curve) is used to learn a good hypothesis by minimizing the loss. Another loss
function (dashed curve) is used for the final performance evaluation of the learnt hypothesis. The
loss function used for the final performance evaluation is referred to as a metric

For example, in a binary classification problem, we might use the logistic loss to
search for (learn) an accurate hypothesis using the optimization methods in Chap.
4. The logistic loss is appealing for this purpose as it allows to efficient gradient-
basedmethods (see Chap. 5) to search for an accurate hypothesis. After having found
(learnt) an accurate hypothesis, we use the average 0/1 loss for the final performance
evaluation. The 0/1 loss is appealing for this purpose as it can be interpreted as
an error or misclassification rate. The loss function used for the final performance
evaluation of a learnt hypothesis is sometimes referred to as metric.

2.3.1 Loss Functions for Numeric Labels

ForMLproblems involving data points with numeric labels y ∈ R, i.e., for regression
problems (see Sect. 2.1.2), a widely used (first) choice for the loss function can be
the squared error loss

L((x, y), h) := (
y − h(x)︸︷︷︸

=ŷ

)2
. (2.8)

The squared error loss (2.8) depends on the features x only via the predicted label
value ŷ = h(x). We can evaluate the squared error loss solely using the prediction
h(x) and the true label value y. Besides the prediction h(x), no other properties of
the features x are required to determine the squared error loss. We will slightly abuse
notation and use the shorthand L(y, ŷ) for any loss function that depends on the
features x only via the predicted label ŷ = h(x). Figure 2.13 depicts the squared
error loss as a function of the prediction error y − ŷ.

The squared error loss (2.8) has appealing computational and statistical proper-
ties. For linear predictor maps h(x) = wT x, the squared error loss is a convex and
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prediction error y − h(x)

squared error loss L

Fig. 2.13 A widely used choice for the loss function in regression problems (with data points
having numeric labels) is the squared error loss (2.8). Note that, for a given hypothesis h, we can
evaluate the squared error loss only if we know the features x and the label y of the data point

differentiable function of the weight vector w. This allows, in turn, to efficiently
search for the optimal linear predictor using efficient iterative optimization methods
(see Chap. 5). The squared error loss also has a useful interpretation in terms of a
probabilistic model for the features and labels. Minimizing the squared error loss is
equivalent to maximum likelihood estimation within a linear Gaussian model [28,
Sect. 2.6.3].

Another loss function used in regression problems is the absolute error loss
|ŷ − y|. Using this loss function to guide the learning of a predictor results in meth-
ods that are robust against few outliers in the training set (see Sect. 3.3). However,
this improved robustness comes at the expense of increased computational com-
plexity of minimizing the (non-differentiable) absolute error loss compared to the
(differentiable) squared error loss (2.8).

2.3.2 Loss Functions for Categorical Labels

Classification problems involve data points whose labels take on values from a dis-
crete label space Y . In what follows, unless stated otherwise, we focus on binary
classification problems. Moreover, without loss of generality we assume that labels
values are Y = {−1, 1}. Classification methods aim at learning a classifier that maps
the features x of a data point to a predicted label ŷ ∈ Y .

We implement a classifier by thresholding the value h(x) ∈ R of a hypothesis
that can deliver arbitrary real numbers. We then classify a data point as ŷ = 1 if
h(x) > 0 and ŷ = −1 otherwise. Thus, the predicted label is obtained from the sign
of the value h(x). While the sign of h(x) determines the classification result, i.e.,
the predicted label ŷ, we interpret the absolute value |h(x)| as the confidence in this
classification.
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(1,−1)
(2,−1)

(5, 1) (x=7, y=1)

feature x

predictor h(2)(x) = 2(x−3)

predictor h(1)(x) = 1

label y

Fig. 2.14 A training set consisting of four data points with binary labels ŷ(i) ∈ {−1, 1}.Minimizing
the squared error loss (2.8) would prefer the (poor) classifier h(1) over the (reasonable) classifier
h(2)

In principle, we can measure the quality of a hypothesis when used to classify
data points using the squared error loss (2.8). However, the squared error is typically
a poor measure for the quality of a hypothesis h(x) that is used to classify a data point
with binary label y ∈ {−1, 1}. Figure 2.14 illustrates how the squared error loss of a
hypothesis can be misleading in a binary classification problem.

Figure 2.14 depicts a dataset consisting of m = 4 data points with binary labels
y(i) ∈ {−1, 1}, for i = 1, . . . ,m. The figure also depicts two candidate hypotheses
h(1)(x) and h(2)(x) that can be used for classifying data points. The classifications
ŷ obtained with the hypothesis h(2)(x) would perfectly match the labels of the four
training data points since h(2)

(
x (i)

) ≥ 0 if and if only if y(i) = 1. In contrast, the
classifications ŷ(i) obtained by thresholding h(1)(x) are wrong for data points with
y = −1. Thus, based on the training data, we would prefer using h(2)(x) over h(1)

to classify data points. However, the squared error loss incurred by the (reasonable)
classifier h(2) is much larger than the squared error loss incurred by the (poor) clas-
sifier h(1). The squared error loss is typically a bad choice for assessing the quality
of a hypothesis map that is used for classifying data points into different categories.

Generally speaking, we want the loss function to punish (deliver large values
for) a hypothesis that is very confident (|h(x)| is large) in a wrong classification
(ŷ �= y). Moreover, a good loss function should not punish (deliver small values for)
a hypothesis is very confident (|h(x)| is large) in a correct classification (ŷ = y).
However, by its very definition, the squared loss yields large values if the confidence
|h(x)| is large, no matter if the resulting classification is correct or wrong.

We now discuss some loss functions which have proven useful for assessing
the quality of a hypothesis used to classify data points. Unless noted otherwise, the
formulas for these loss functions are valid only if the label values are the real numbers
−1 and 1, i.e., when the label space isY = {−1, 1}. These formulas need to modified
accordingly if one prefers to use different label values for a binary classification
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problem. For example, instead of the label space Y = {−1, 1}, we could equally
well use the label space Y = {0, 1}, or Y = {�,
} or Y = { “Class 1”, “Class 2”}.

The first loss function that we discuss is direct formalization of the natural require-
ment for a hypothesis to result on correct classifications, i.e., ŷ = y for any data point.
This suggests to learn a hypothesis h(x) by minimizing the 0/1 loss

L((x, y), h) :=
{
1 if y �= ŷ

0 else,
with ŷ = 1 for h(x) ≥ 0, and ŷ = −1 for h(x) < 0.

(2.9)
Figure 2.15 illustrates the 0/1 loss (2.9) for a data point with features x and label
y=1 as a function of the hypothesis value h(x). The 0/1 loss is equal to zero if the
hypothesis yields a correct classification ŷ = y. For a wrong classification ŷ �= y,
the 0/1 loss yields the value one.

The 0/1 loss (2.9) is conceptually appealing when data points are interpreted as
realizations of i.i.d. random variables with the same probability distribution p(x, y).
Given m realizations (x(i), y(i))

}m
i=1 of such i.i.d. random variables,

(1/m)

m∑

i=1

L((x(i), y(i)), h) ≈ p(y �= ŷ) (2.10)

with high probability for sufficiently large sample size m. A precise formulation of
the approximation (2.10) can be obtained from the law of large numbers [18, Section
1]. We can apply the law of large numbers since the loss values L((x(i), y(i)), h) are
realizations of i.i.d. random variables. The average 0/1 loss on the left-hand side of
(2.10) is referred to as the accuracy of the hypothesis h.

In view of (2.10), the 0/1 loss seems a very natural choice for assessing the
quality of a classifier if our goal is to enforce correct classification (ŷ = y). This
appealing statistical property of the 0/1 loss comes at the cost of high computational
complexity. Indeed, for a given data point (x, y), the 0/1 loss (2.9) is neither convex
nor differentiable when viewed as a function of the classifier h. Thus, using the
0/1 loss for binary classification problems typically involves advanced optimization
methods for solving the resulting learning problem (see Sect. 3.8).

To avoid the non-convexity of the 0/1 loss we can approximate it by a convex
loss function. One popular convex approximation of the 0/1 loss is the hinge loss

L((x, y), h) := max{0, 1 − y · h(x)}. (2.11)

Figure 2.15 depicts the hinge loss (2.11) as a function of the hypothesis h(x). While
the hinge loss avoids the non-convexity of the 0/1 loss it still is a non-differentiable
function of the classifier h. Non-differentiable loss functions are typically harder
to minimize, implying a higher computational complexity of the ML method using
such a loss.

Section 3.6 discusses the logistic loss which is a differentiable loss function that
is useful for classification problems. The logistic loss
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hypothesis h(x)

loss L

very confident in ŷ=1 ⇒

logistic loss (for y=1)

squared error (for y=1)

hinge loss (for y=1)

0/1 loss (for y=1)

⇐ very confident in ŷ=−1

Fig. 2.15 The solid curves depict three widely-used loss functions for binary classification prob-
lems. A data point is classified as ŷ = 1 if h(x) ≥ 0 and classified as ŷ = −1 if h(x) < 0. We can
interpret the absolute value |h(x)| as the confidence in the classification. The more confident we are
in a correct classification (ŷ=1), i.e., the more positive h(x), the smaller the loss. Note that each of
the three loss functions for binary classification tends monotonically to 0 for increasing h(x). The
dashed curve depicts the squared error loss (2.8), which increases for increasing h(x)

L((x, y), h) := log(1 + exp(−yh(x))), (2.12)

is used within logistic regression to measure the usefulness of a linear hypothesis
h(x) = wT x.

Consider a specific data point with the feature vector x ∈ R
n and a binary label

y ∈ {−1, 1}. We use a linear hypothesis h(w)(x) = wT x, with some weight vector
w ∈ R

n , to predict the label based on the features x according to ŷ = 1 if h(w)(x) =
wT x > 0 and ŷ = −1 otherwise. Then, both the hinge loss (2.11) and the logistic loss
(2.12) are convex functions of the weight vector w ∈ R

n . The logistic loss (2.12)
depends smoothly on w. It is a differentiable function in the sense of allowing to
define a gradient with respect to w. In contrast, the hinge loss (2.11) is nonsmooth
which makes it more difficult to minimize [29, Chap. 3].

ML methods that use the convex and differentiable logistic loss function, such
as logistic regression in Sect. 3.6, can apply simple gradient-based methods such
as gradient descent (GD) to minimize the average loss (see Chap. 5). In contrast,
we cannot use gradient-based methods to minimize the hinge loss since it is not
differentiable. However, we can apply a generalization of GD which is known as
subgradient descent [30] Subgradient descent is obtained from GD by generalizing
the concept of a gradient to that of a subgradient.

2.3.3 Loss Functions for Ordinal Label Values

There are also loss functions particularly suited for predicting ordinal label values
(see Sect. 2.1). Consider data points representing areal images of rectangular areas
of size 1 km by 1 km. We characterize each data point (rectangular area) by the
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feature vector x obtained by stacking the RGB values of each image pixel (see
Fig. 2.4). Beside the feature vector, each rectangular area is characterized by a label
y ∈ {1, 2, 3} where
• y = 1 means that the area contains no trees.
• y = 2 means that the area is partially covered by trees.
• y = 3 means that the area is entirely covered by trees.

Thus we might say that label value y = 2 is “larger” than label value y = 1 and label
value y = 3 is “larger” than label value y = 2. It might be useful to take the ordering
of label values into account when evaluating the quality of the predictions obtained
by a hypothesis h(x).

Consider a data point with feature vector x and label y = 1 as well as two dif-
ferent hypotheses h(a), h(b) ∈ H. The hypothesis h(a) delivers the predicted label
ŷ(a) = h(a)(x) = 2, while the other hypothesis h(b) delivers the predicted label
ŷ(a) = h(a)(x) = 3. Both predictions are wrong, since they are different from the
true label value y = 1. It seems reasonable to consider the prediction ŷ(a) to be less
wrong than the prediction ŷ(b) and therefore we would prefer the hypothesis h(a)

over h(b). However, the 0/1 loss is the same for h(a) and h(b) and therefore does not
reflect our preference for h(a). We need to modify (or tailor) the 0/1 loss to take into
account the application-specific ordering of label values. For the above application,
we might define a loss function via

L((x, y), h) :=

⎧
⎪⎨

⎪⎩

0 , when y = h(x)
10 , when |y − h(x)| = 1

100 otherwise.

(2.13)

2.3.4 Empirical Risk

The basic idea of ML methods (including those discussed in Chap. 3) is to find
(or learn) a hypothesis (out of a given hypothesis space H) that incurs minimum
loss when applied to arbitrary data points. To make this informal goal precise we
need to specify what we mean by “arbitrary data point”. One of the most successful
approaches to define the notion of “arbitrary data point” is by probabilistic models
for the observed data points.

The most basic and widely-used probabilistic model interprets data points(
x(i), y(i)

)
as realizations of i.i.d. random variables with a common probability dis-

tribution p(x, y). Given such a probabilistic model, it seems natural to measure the
quality of a hypothesis by the expected loss or Bayes risk [15]

E
{
L((x, y), h)} :=

∫

x,y
L((x, y), h)dp(x, y). (2.14)
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The Bayes risk is the expected value of the loss L((x, y), h) incurred when applying
the hypothesis h to (the realization of) a random data point with features x and label
y. Note that the computation of the Bayes risk (2.15) requires the joint probability
distribution p(x, y) of the (random) features and label of data points.

The Bayes risk seems to be reasonable performance measure for a hypothesis
h. Indeed, the Bayes risk of a hypothesis is small only if the hypothesis incurs a
small loss on average for data points drawn from the probability distribution p(x, y).
However, it might be challenging to verify if the data points generated in a particular
application domain can be accurately modelled as realizations (draws) from a prob-
ability distribution p(x, y). Moreover, it is also often the case that we do not know
the correct probability distribution p(x, y).

Let us assume for the moment, that data points are generated as i.i.d. realizations
of a common probability distribution p(x, y) which is known. It seems reasonable
to learn a hypothesis h∗ that incurs minimum Bayes risk,

E
{
L((x, y), h∗)} := min

h∈H
E

{
L((x, y), h)}. (2.15)

A hypothesis that solves (2.15), i.e., that achieves the minimum possible Bayes
risk, is referred to as a Bayes estimator [15, Chap. 4]. The main computational
challenge for learning the optimal hypothesis is the efficient (numerical) solution of
the optimization problem (2.15). Efficientmethods to solve the optimization problem
(2.15) are studied within estimation theory [15, 31].

The focus of this book is on ML methods which do not require knowledge of the
underlying probability distribution p(x, y). One of themost widely used principle for
theseMLmethods is to approximate the Bayes risk by an empirical (sample) average
over a finite set of labeled data D = (

x(1), y(1)
)
, . . . ,

(
x(m), y(m)

)
. In particular, we

define the empirical risk of a hypothesis h ∈ H for a dataset D as

L̂(h|D) = (1/m)

m∑

i=1

L((x(i), y(i)), h). (2.16)

The empirical risk of the hypothesis h ∈ H is the average loss on the data points inD.
To ease notational burden, we use L̂(h) as a shorthand for L̂(h|D) if the underlying
datasetD is clear from the context. Note that in general the empirical risk depends on
both, the hypothesis h and the (features and labels of the) data points in the datasetD.

If the data points used to compute the empirical risk (2.16) are (can be modelled
as) realizations of i.i.d. random variables whose common distribution is p(x, y),
basic results of probability theory tell us that

E
{
L((x, y), h)} ≈ (1/m)

m∑

i=1

L((x(i), y(i)), h) for sufficiently large sample size m.

(2.17)
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The approximation error in (2.17) can be quantified precisely by some of the most
basic results of probability theory. These results are referred to as the law of large
numbers.

Many (if not most) ML methods are motivated by (2.17) which suggests that a
hypothesis with small empirical risk (2.16) will also result in a small expected loss.
The minimum possible expected loss is achieved by the Bayes estimator of the label
y, given the features x. However, to actually compute the optimal estimator wewould
need to know the (joint) probability distribution p(x, y) of features x and label y.

2.3.4.1 Confusion Matrix

Consider a datasetD with data points characterized by feature vectors x(i) and labels
y(i) ∈ {1, . . . , k}. We might interpret the label value of a data point as the index
of a category or class to which the data point belongs to. Multi-class classification
problems aim at learning a hypothesis h such that h(x) ≈ y for any data point.

In principle, we could measure the quality of a given hypothesis h by the average
0/1 loss incurred on the labeled data points in (the training set) D. However, if
the dataset D contains mostly data points with one specific label value, the average
0/1 loss might obscure the performance of h for data points having one of the rare
label values. Indeed, even if the average 0/1 loss is very small, the hypothesis might
perform poorly for data points of a minority category.

The confusion matrix generalizes the concept of the 0/1 loss to application
domains where the relative frequency (fraction) of data points with a specific label
value varies significantly (imbalanced data). Instead of considering only the average
0/1 loss incurred by a hypothesis on a dataset D, we use a whole family of loss
functions. In particular, for each pair of label values p, q ∈ {1, . . . , k}, we define the
loss

L(p→q)
((
x, y

)
, h

) :=
{
1 if y = p and h(x) = q

0 otherwise.
(2.18)

We then compute the average loss (2.18) incurred on the dataset D,

L̂(p→q)(h|D) := (1/m)

m∑

i=1

L(p→q)
(
(x(i), y(i)), h

)
for p, q ∈ {1, . . . , k}. (2.19)

It is convenient to arrange the values (2.19) as a matrix which is referred to as
a confusion matrix. The rows of a confusion matrix correspond to different label
values p of data points. The columns of a confusion matrix correspond to different
values q delivered by the hypothesis h(x). The (p, q)-th entry of the confusionmatrix
is L̂(p→q)(h|D).
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2.3.4.2 Precision, Recall and F-Measure

Consider an object detection application where data points represent images. The
label of data points might indicate the presence (y = 1)or absence (y = −1) of an
object, it is then customary to define the [32]

recall := L̂(1→1)(h|D), and the precision := L̂(1→1)(h|D)

L̂(1→1)(h|D) + L̂(−1→1)(h|D)
.

(2.20)
Clearly, we would like to find a hypothesis with both, large recall and large precision.
However, these two goals are typically conflicting, a hypothesis with a high recall
will have small precision. Depending on the application, we might prefer having a
high recall and tolerate a lower precision.

It might be convenient to combine the recall and precision of a hypothesis into a
single quantity,

F1 := 2 · precision · recall
precision + recall

(2.21)

The F measure (2.21) is the harmonic mean [33] of the precision and recall of a
hypothesis h. It is a special case of the Fβ-score

Fβ := (
1 + β2

) · precision · recall
β2precision + recall

. (2.22)

The F measure (2.21) is obtained from (2.22) for the choice β = 1. It is therefore
customary to refer to (2.21) as the F1-score of a hypothesis h.

2.3.5 Regret

In someMLapplications,wemight have access to the predictions obtained fromsome
referencemethods or experts. The quality of a hypothesis h can then bemeasured via
the difference between the loss incurred by its predictions h(x) and the loss incurred
by the predictions of the experts [34]. This difference, which is referred to as the
regret, measures by how much we regret to have used the prediction h(x) instead of
using (following) the prediction of the expert. The goal of regret minimization is to
learn a hypothesis with a small regret compared to all considered experts.

The concept of regret minimization is useful whenwe do not make any probabilis-
tic assumptions (see Sect. 2.1.4) about the data. Without a probabilistic model we
cannot use the Bayes risk, which is the risk of the Bayes estimator, as a benchmark.

Regret minimization techniques can be designed and analyzed without any such
probabilistic model for the data [35]. This approach replaces the Bayes risk with the
regret relative to given reference predictors (experts) as the benchmark.
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2.3.6 Rewards as Partial Feedback

Some applications involve data points whose labels are so difficult or costly to deter-
mine that we cannot assume to have any labeled data available. Without any labeled
data, we cannot evaluate the loss function for different choices for the hypothesis.
Indeed, the evaluation of the loss function typically amounts to measuring the dis-
tance between predicted label and true label of a data point. Instead of evaluating a
loss function, we must rely on some indirect feedback or “reward” that indicates the
usefulness of a particular prediction [35, 36].

Consider the ML problem of predicting the optimal steering directions for an
autonomous car. The prediction has to be recalculated for each new state of the
car. ML methods can sense the state via a feature vector x whose entries are pixel
intensities of a snapshot. The goal is to learn a hypothesis map from the feature vector
x to a guess ŷ = h(x) for the optimal steering direction y (true label). Unless the
car circles around in small area with fixed obstacles, we have no access to labeled
datapoints or reference driving scenes for which we already know the optimum
steering direction. Instead, the car (control unit) needs to learn the hypothesis h(x)
based solely on the feedback signals obtained from various sensing devices (cameras,
distance sensors).

2.4 Putting Together the Pieces

The main theme of the book is that ML methods are obtained by different combi-
nations of data, model and loss. We will discuss some key principles behind these
combinates in depth in the following chapters. Let us develop some intuition for
how ML methods operate by considering a very simple ML problem. This problem
involves data points that are characterized by a single numeric feature x ∈ R and a
numeric label y ∈ R. We assume to have access to m labeled datapoints

(
x (1), y(1)

)
, . . . ,

(
x (m), y(m)

)
(2.23)

for which we know the true label values y(i).
The assumption of knowing the exact true label values y(i) for any data point

is an idealization. We might often face labelling or measurement errors such that
the observed labels are noisy versions of the true label. Later on, we will discuss
techniques that allow ML methods to cope with noisy labels in Chap. 7.

Our goal is to learn a (hypothesis) map h : R → R such that h(x) ≈ y for any
data point. In other words, given any datapoint with feature x , the function value
h(x) should be an accurate approximation of its label value y. We require the map
to belong to the hypothesis spaceH of linear maps,

h(w0,w1)(x) = w1x + w0. (2.24)
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Fig. 2.16 We can evaluate
the quality of a particular
predictor h ∈ H by
measuring the prediction
error y − h(x) obtained for a
labeled datapoint (x, y)

The predictor (2.24) is parameterized by the slope w1 and the intercept (bias
or offset) w0. We indicate this by the notation h(w0,w1). A particular choice for the
weights w1, w0 defines a linear hypothesis h(w0,w1)(x) = w1x + w0.

Let us use the linear hypothesis map h(w0,w1)(x) to predict the labels of training
data points. In general, the predictions ŷ(i) = h(w0,w1)

(
x (i)

)
will not be perfect and

incur a non-zero prediction error ŷ(i) − y(i) (see Fig. 2.16).
We measure the goodness of the predictor map h(w0,w1) using the average squared

error loss (see (2.8))

f (w0, w1) := (1/m)

m∑

i=1

(
y(i) − h(w0,w1)(x (i))

)2

(2.24)= (1/m)

m∑

i=1

(
y(i) − (w1x

(i) + w0)
)2

. (2.25)

The training error f (w0, w1) is the average of the squared prediction errors incurred
by the predictor h(w0,w1)(x) to the labeled datapoints (2.23).

It seems natural to learn a good predictor (2.24) by choosing the weights w0, w1

to minimize the training error

min
w0,w1∈R

f (w0, w1)
(2.25)= min

w1,w0∈R
(1/m)

m∑

i=1

(
y(i) − (w1x

(i) + w0)
)2

. (2.26)

The optimal weights w′
0, w

′
1 are characterized by the zero-gradient condition,2

∂ f (w′
0, w

′
1)

∂w0
= 0, and

∂ f (w′
0, w

′
1)

∂w1
= 0. (2.27)

2 A necessary and sufficient condition for w′ to minimize a convex differentiable function f (w) is
∇ f (w′) = 0 [37, Sec. 4.2.3].
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Inserting (2.25) into (2.27) and by using basic rules for calculating derivatives, we
obtain the following optimality conditions

(1/m)

m∑

i=1

(
y(i) − (w′

1x
(i) + w′

0)
) = 0, and (1/m)

m∑

i=1

x (i)(y(i) − (w′
1x

(i) + w′
0)

) = 0. (2.28)

Any weights w′
0, w

′
1 that satisfy (2.28) define a predictor h(w′

0,w
′
1) = w′

1x + w′
0

that is optimal in the sense of incurring minimum training error,

f (w′
0, w

′
1) = min

w0,w1∈R
f (w0, w1).

We find it convenient to rewrite the optimality condition (2.28) using matrices
and vectors. To this end, we first rewrite the predictor (2.24) as

h(x) = wT x with w = (
w0, w1

)T
, x = (

1, x
)T

.

Let us stack the feature vectors x(i) = (
1, x (i)

)T
and labels y(i) of training datapoints

(2.23) into the feature matrix and label vector,

X = (
x(1), . . . , x(m)

)T ∈ R
m×2, y = (

y(1), . . . , y(m)
)T ∈ R

m . (2.29)

We can then reformulate (2.28) as

XT
(
y − Xw′) = 0. (2.30)

The entries of any weight vector w′ = (
w′

0, w
′
1

)
that satisfies (2.30) are solutions to

(2.28).

2.5 Exercises

Exercise 2.1 Perfect Prediction Consider data points that are characterized by a
single numeric feature x ∈R and a numeric label y∈ R. We use a ML method to
learn a hypothesis map h : R → R based on a training set consisting of three data
points

(x (1) = 1, y(1) = 3), (x (2) = 4, y(2) = −1), (x (3) = 1, y(3) = 5).

Is there any chance for theMLmethod to learn a hypothesis map that perfectly fits the
training data points such that h

(
x (i)

) = y(i) for i = 1, . . . , 3. Hint: Try to visualize
the data points in a scatterplot and various hypothesis maps (see Fig. 1.3).

Exercise 2.2 Temperature Data Consider a dataset of daily air temperatures
x (1), . . . , x (m) measured at the observation station Utsjoki Nuorgam between
01.12.2019 and 29.02.2020. Thus, x (1) is the daily temperature measured on
01.12.2019, x (2) is the daily temperature measure don 02.12.2019, and x (m) is the
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daily temperature measured on 29.02.2020. You can download this dataset from the
link https://en.ilmatieteenlaitos.fi/download-observations. ML methods often deter-
mine few parameters to characterize large collections of data points. Compute, for
the above temperature measurement dataset, the following parameters

• the minimum A := mini=1,...,m x (i)

• the maximum B := maxi=1,...,m x (i)

• the average C := (1/m)
∑

i=1,...,m x (i)

• the standard deviation D :=
√

(1/m)
∑

i=1,...,m

(
x (i) − C

)2

Exercise 2.3 Deep Learning onRaspberry PIConsider the tiny desktop computer
“RaspberryPI” equipped with a total of 8 Gigabytes memory [38]. On that computer,
we want implement a ML algorithm that learns a hypothesis map that is represented
by a deep neural network involving n = 106 numeric weights (or parameters). Each
weight is quantized using 8 bits (= 1 Byte). How many different hypotheses can
we store at most on a RaspberryPI computer? (You can assume that 1Gigabyte =
109Bytes.)

Exercise 2.4 Ensembles. For some applications it can be a good idea to not
learn a single hypothesis but to learn a whole ensemble of hypothesis maps
h(1), . . . , h(B). These hypotheses might even belong to different hypothesis spaces,
h(1) ∈ H(1), . . . , h(B) ∈ H(B). These hypothesis spaces can be arbitrary except that
they are defined for the same feature space and label space. Given such an ensemble
we can construct a new (“meta”) hypothesis h̃ by combining (or aggregating) the
individual predictions obtained from each hypothesis,

h̃(x) := a
(
h(1)(x), . . . , h(B)(x)

)
. (2.31)

Here, a(·) denotes some given (fixed) combination or aggregation function. One
example for such an aggreation function is the average a

(
h(1)(x), . . . , h(B)(x)

) :=
(1/B)

∑B
b=1 h

(b)(x). We obtain a new “meta” hypothesis space H̃, that consists of all
hypotheses of the form (2.31) with h(1) ∈ H(1), . . . , h(B) ∈ H(B). Which conditions
on the aggregation function a(·) and the individual hypothesis spacesH(1), . . . ,H(B)

ensure that H̃ contains each individual hypothesis space, i.e.,H(1), . . . ,H(B) ⊆ H̃.

Exercise 2.5 HowMany Features? Consider the ML problem underlying a music
information retrieval smartphone app [39]. Such an app aims at identifying a song
title based on a short audio recording of a song interpretation. Here, the feature vector
x represents the sampled audio signal and the label y is a particular song title out of
a huge music database. What is the length n of the feature vector x ∈ R

n if its entries
are the signal amplitudes of a 20-second long recording which is sampled at a rate
of 44 kHz?

Exercise 2.6 Multilabel Prediction. Consider datapoints that are characterized by
a feature vector x ∈ R

10 and a vector-valued label y ∈ R
30. Such vector-valued labels

https://en.ilmatieteenlaitos.fi/download-observations
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arise in multi-label classification problems. We want to predict the label vector using
a linear predictor map

h(x) = Wx with some matrix W ∈ R
30×10. (2.32)

How many different linear predictors (2.32) are there? 10, 30, 40, or infinite?

Exercise 2.7 Average Squared Error Loss as Quadratic Form Consider the
hypothesis space constituted by all linear maps h(x) = wT x with some weight
vector w ∈ R

n . We try to find the best linear map by minimizing the average
squared error loss (the empirical risk) incurred on labeled data points (training
set) (x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m)). Is it possible to represent the result-
ing empirical risk as a convex quadratic function f (w) = wTCw + bw + c? If this
is possible, how are thematrixC, vector b and constant c related to the feature vectors
and labels of the training data?

Exercise 2.8 Find Labeled Data for Given Empirical Risk. Consider linear
hypothesis space consisting of linear maps h(w)(x) = wT x that are parameterized
by a weight vector w. We learn an optimal weight vector by minimizing the aver-
age squared error loss f (w) = L̂

(
h(w)|D)

incurred by h(w)(x) on the training set
D = (

x(1), y(1)
)
, . . . ,

(
x(m), y(m)

)
. Is it possible to reconstruct the datasetD just from

knowing the function f (w)?. Is the resulting labeled training data unique or are there
different training sets that could have resulted in the same empirical risk function?
Hint: Write down the training error f (w) in the form f (w) = wTQw + c + bTw
with some matrix Q, vector b and scalar c that might depend on the features and
labels of the training datapoints.

Exercise 2.9 Dummy Feature Instead of Intercept Show that any hypothesis
map of the form h(x) = w1x + w0 can be obtained as concatenation of a feature
map � : x 	→ z with a map h̃(z) := w̃T z with some weight vector w̃ ∈ R

2.

Exercise 2.10 Approximate Non-Linear Maps Using Indicator Functions for
Feature Maps. Consider an ML application generating datapoints character-
ized by a scalar feature x ∈ R and numeric label y ∈ R. We construct a non-
linear map by first transforming the feature x to a new feature vector z =
(φ1(x), φ2(x), φ3(x), φ4(x)). The components φ1(x), . . . , φ4(x) are indicator func-
tions of intervals [−10,−5), [−5, 0), [0, 5), [5, 10]. In particular, φ1(x) = 1 for
x ∈ [−10,−5) and φ1(x) = 0 otherwise. We construct a hypothesis space H1 by
all maps of the form wT z. Note that the map is a function of the feature x since the
feature vector z is a function of x . Which of the following predictor maps belong to
H1?
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(a) (b)

Exercise 2.11 Python Hypothesis space. Consider the source codes below for
five different Python functions that read in the numeric feature x , perform some
computations that result in a prediction ŷ. How large is the hypothesis space that is
constituted by all maps that can be represented by one of those Python functions.

1 def func1(x):

2 hat_y = 5*x+3

3 return hat_y

4

1 def func2(x):

2 tmp = 3*x+3

3 hat_y = tmp+2*x

4 return hat_y

5

1 def func3(x):

2 tmp = 3*x+3

3 hat_y = tmp -2*x

4 return hat_y

5

1 def func4(x):

2 tmp = 3*x+3

3 hat_y = tmp -2*x+4

4 return hat_y

5

1 def func5(x):

2 tmp = 3*x+3

3 hat_y = 4*tmp -2*x

4 return hat_y

5

Exercise 2.12 A Lot of Features One important application domain for ML meth-
ods is healthcare. Here, data points represent human patients that are characterized
by health-care records. These records might contain physiological parameters, CT
scans along with various diagnoses provided by healthcare professionals. Is it a good
idea to use every data field of a healthcare record as features of the data point?

Exercise 2.13 Over-Parameterization Consider datapoints characterized by fea-
ture vectors x ∈ R

2 and a numeric label y ∈ R. We want to learn the best predictor
out of the hypothesis space

H = {
h(x) = xTAw : w ∈ S}.

Here, we used the matrix A =
(

1 −1
−1 1

)
and the set

S = {
(1, 1)T , (2, 2)T , (−1, 3)T , (0, 4)T

} ⊆ R
2.

What is the cardinality of the hypothesis spaceH, i.e., how many different predictor
maps does H contain?

Exercise 2.14 Squared Error Loss Consider a hypothesis space H constituted
by three predictors h(1)(·), h(2)(·), h(3)(·). Each predictor h( j)(x) is a real-valued
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function of a real-valued argument x . Moreover, for each j ∈ {1, 2, 3}, h( j)(x) = 0
for all x2 ≤ j and h( j)(x) = j otherwise. Can you tell which of these hypothesis
is optimal in the sense of having smallest average squared error loss on the three
(training) datapoints (x = 1/10, y = 3), (0, 0) and (1,−1).

Exercise 2.15 Classification Loss The Fig. 2.15 depicts different loss functions for
a fixed data point with label y = 1 and varying hypothesis h ∈ H. How would Fig.
2.15 change if we evaluate the same lloss functions for another data point z = (x, y)
with label y = −1?

Exercise 2.16 Intercept Term Linear regression methods model the relation
between the label y and feature x of a datapoint as y = h(x) + e with some small
additive term e. The predictor map h(x) is assumed to be linear h(x) = w1x + w0.
The weight w0 is sometimes referred to as the intercept (or bias) term. Assume we
know for a given linear predictor map its values h(x) for x = 1 and x = 3. Can you
determine the weights w1 and w0 based on h(1) and h(3)?

Exercise 2.17 Picture Classification Consider a huge collection of outdoor pic-
tures you have taken during your last adventure trip. You want to organize these
pictures as three categories (or classes) dog, bird and fish. How could you formalize
this task as a ML problem?

Exercise 2.18 MaximumHypothesis space Consider datapoints characterized by
a single real-valued feature x and a single real-valued label y. How large is the largest
possible hypothesis space of predictor maps h(x) that read in the feature value of a
datapoint and deliver a real-valued prediction ŷ = h(x) ?

Exercise 2.19 A Large but Finite Hypothesis space Consider datapoints whose
features are 10 × 10 black-and-white (bw) pixel images. Each datapoint is also char-
acterized by a binary label y ∈ {0, 1}. Consider the hypothesis space which is con-
stituted by all maps that take a bw image as input and deliver a prediction for the
label. How large is this hypothesis space?

Exercise 2.20 Size of Linear Hypothesis space Consider a training set of m data-
points with feature vectors x(i) ∈ R

n and numeric labels y(1), . . . , y(m). The feature
vectors and label values of the training set are arbitrary except that we assume the
feature matrix X = (

x(1), . . .
)
is full rank. What condition on m and n guarantees

that we can find a linear predictor h(x) = wT x that perfectly fits the training set, i.e.,
y(1) = h

(
x(1)

)
, . . . , y(m) = h

(
x(m)

)
.
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Chapter 3
The Landscape of ML

As discussed in Chap. 2, ML methods combine three main components:

• a set of data points that are characterized by features and labels
• a model or hypothesis space H that consists of different hypotheses h ∈ H.
• a loss function to measure the quality of a particular hypothesis h.

Each of these three components involves design choices for the representation of
data, their features and labels, the model and loss function. This chapter details the
high-level design choices used by some of the most popular MLmethods. Figure 3.1
depicts these ML methods in a two-dimensional plane whose horizontal axes rep-
resents different hypothesis spaces and the vertical axis represents different loss
functions.

To obtain a practical MLmethod we also need to combine the above components.
The basic principle of any ML method is to search the model for a hypothesis that
incurs minimum loss on any data point. Chapter 4 will then discuss a principled way
to turn this informal statement into actual ML algorithms that could be implemented
on a computer.

3.1 Linear Regression

Consider data points characterized by feature vectors x ∈ R
n and numeric label

y ∈ R. Linear regression aims at learning a hypothesis out of the linear hypothesis
space

H(n) := {h(w) : Rn →R : h(w)(x)=wT x with some weight vector w ∈ R
n}. (3.1)

Figure 1.3 depicts the graphs of some maps from H(2) for data points with feature
vectors of the form x = (1, x)T . The quality of a particular predictor h(w) is mea-
sured by the squared error loss (2.8). Using labeled data D = {(x(i), y(i))}mi=1, linear
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Fig. 3.1 MLmethods fit a model to data by minimizing a loss function. Different ML methods use
different design choices for data, model and loss

regression learns a predictor ĥ which minimizes the average squared error loss, or
mean squared error, (see (2.8))

ĥ = argmin
h∈H(n)

̂L(h|D)
(2.16)= argmin

h∈H(n)

(1/m)

m
∑

i=1

(y(i) − h(x(i)))2. (3.2)

Since the hypothesis space H(n) is parameterized by the weight vector w (see
(3.1)), we can rewrite (3.2) as an optimization problem directly over the weight
vector w:

ŵ = argmin
w∈Rn

(1/m)

m
∑

i=1

(y(i) − h(w)(x(i)))2

h(w)(x)=wT x= argmin
w∈Rn

(1/m)

m
∑

i=1

(y(i) − wT x(i))2. (3.3)

The optimization problems (3.2) and (3.3) are equivalent in the following sense:
Any optimal weight vector ŵ which solves (3.3), can be used to construct an optimal
predictor ĥ, which solves (3.2), via ĥ(x) = h(ŵ)(x) = (

ŵ
)T
x.
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Fig. 3.2 A scatterplot that
depicts some data points
(x (1), y(1)), . . . ,. The i th
datapoint is depicted by a dot
whose coordinates are the
feature x (i) and label y(i) of
that datapoint
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3.2 Polynomial Regression

Consider an ML problem involving datapoints which are characterized by a single
numeric feature x ∈ R (the feature space is X = R) and a numeric label y ∈ R (the
label space is Y = R). We observe a bunch of labeled datapoints which are depicted
in Fig. 3.2.

Figure 3.2 suggests that the relation x �→ y between feature x and label y is highly
non-linear. For such non-linear relations between features and labels it is useful to
consider a hypothesis space which is constituted by polynomial maps

H(n)
poly = {h(w) : R → R : h(w)(x) =

n
∑

r=1

wr x
r−1, with some w=(w1, . . . , wn)

T ∈R
n}.

(3.4)

We can approximate any non-linear relation y=h(x) with any desired level of accu-
racy using a polynomial

∑n
r=1 wr xr−1 of sufficiently large degree n.1

For linear regression (see Sect. 3.1), we measure the quality of a predictor by the
squared error loss (2.8). Based on labeled data pointsD = {(x (i), y(i))}mi=1, each hav-
ing a scalar feature x (i) and label y(i), polynomial regression minimizes the average
squared error loss (see (2.8)):

min
h∈H(n)

poly

(1/m)

m
∑

i=1

(y(i) − h(w)(x (i)))2. (3.5)

It is customary to refer to the average squared error loss also as the mean squared
error.

1 The precise formulation of this statement is known as the “Stone-Weierstrass Theorem” [1, Thm.
7.26].
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We can interpret polynomial regression as a combination of a feature map (trans-
formation) (see Sect. 2.1.1) and linear regression (see Sect. 3.1). Indeed, any poly-
nomial predictor h(w) ∈ H(n)

poly is obtained as a concatenation of the feature map

�(x) �→ (1, x, . . . , xn)T ∈ R
n+1 (3.6)

with some linear map h̃(w) : Rn+1 → R : x �→ wT x, i.e.,

h(w)(x) = h̃(w)(�(x)). (3.7)

Thus, we can implement polynomial regression by first applying the feature map
� (see (3.6)) to the scalar features x (i), resulting in the transformed feature vectors

x(i) = �
(

x (i)
) = (

1, x (i), . . . ,
(

x (i)
)n−1)T ∈ R

n, (3.8)

and then applying linear regression (see Sect. 3.1) to these new feature vectors.
By inserting (3.7) into (3.5), we obtain a linear regression problem (3.3) with

feature vectors (3.8). Thus, while a predictor h(w) ∈ H(n)
poly is a non-linear function

h(w)(x) of the original feature x , it is a linear function h̃(w)(x) = wT x (see (3.7)), of
the transformed features x (3.8).

3.3 Least Absolute Deviation Regression

Learning a linear predictor by minimizing the average squared error loss incurred on
training data is not robust against the presence of outliers. This sensitivity to outliers
is rooted in the properties of the squared error loss (y − h(x))2. Minimizing the
average squared error forces the resulting predictor ŷ to not be too far away from any
datapoint. However, it might be useful to tolerate a large prediction error y − h(x)
for an unusual or exceptional data point that can be considered an outlier.

Replacing the squared loss with a different loss function can make the learning
robust against outliers. One important example for such a “robustifying” loss function
is the Huber loss [2]

L(
(

x, y
)

, h) =
{

(1/2)(y − h(x))2 for |y − h(x)| ≤ ε

ε(|y − h(x)| − ε/2) else.
(3.9)

Figure 3.3 depicts the Huber loss as a function of the prediction error y − h(x).
The Huber loss definition (3.9) contains a tuning parameter ε. The value of this

tuning parameter defines when a data point is considered as an outlier. Figure 3.4
illustrates the role of this parameter as the width of a band around a hypothesis
map. The prediction error of this hypothesis map for data points within this band are
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Fig. 3.3 The Huber loss
(3.9) resembles the squared
error loss (2.8) for small
prediction error and the
absolute difference loss for
larger prediction errors

Fig. 3.4 The Huber loss
measures prediction errors
via squared error loss for
regular data points inside the
band of width ε around the
hypothesis map h(x) and via
the absolute difference loss
for an outlier outside the
band

measured used squared error loss (2.8). For data points outside this band (outliers)
we use instead the absolute value of the prediction error as the resulting loss.

The Huber loss is robust to outliers since the corresponding (large) prediction
errors y − ŷ are not squared. Outliers have a smaller effect on the average Huber loss
(over the entire dataset) compared to the average squared error loss. The improved
robustness against outliers of the Huber loss comes at the expense of increased
computational complexity. The squared error loss can be minimized using efficient
gradient based methods (see Chap. 5). In contrast, for ε = 0, the Huber loss is non-
differentiable and requires more advanced optimization methods.

The Huber loss (3.9) contains two important special cases. The first special case
occurs when ε is chosen to be very large, such that the condition |y − ŷ| ≤ ε is
satisfied for most datapoints. In this case, the Huber loss resembles the squared error
loss (2.8) (up to a scaling factor 1/2). The second special case is obtained for ε = 0.
In this case, the Huber loss reduces to the scaled absolute difference loss |y − ŷ|.

3.4 The Lasso

We will see in Chap. 6 that linear regression (see Sect. 3.1) typically requires a
training set larger than the number of features used to characterized a data point.
However, many important application domains generate data points with a number
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n of features much higher than the number m of available labeled data points in the
training set. In this high-dimensional regime, where m � n, basic linear regression
will not be able to learn useful weights w for a linear hypothesis.

Section 6.4 shows that for m � n, linear regression will typically learn a hypoth-
esis that perfectly predicts labels of data points in the training set but delivers poor
predictions for data points outside the training set. This phenomenon is referred to as
overfitting and poses a main challenge for ML applications in the high-dimensional
regime.

Chapter 7 discusses basic regularization techniques that allow to prevent ML
methods from overfitting. We can regularize linear regression by augmenting the
squared error loss (2.8) of a hypothesis h(w)(x) = wT x with an additional penalty
term. This penalty term depends solely on the weights w and serves as an estimate
for the increase of the average loss on data points outside the training set. Different
ML methods are obtained from different choices for this penalty term. The least
absolute shrinkage and selection operator (Lasso) is obtained from linear regression
by replacing the squared error loss with the regularized loss

L((x, y), h(w)) = (y − wT x)2 + λ‖w‖1. (3.10)

Here, the penalty term is given by the scaled norm λ‖w‖1. The value of λ can be
chosen based on someprobabilisticmodel that interprets a data point as the realization
of a random variable. The label of this random datapoint is related to its features via

y = wT x + ε.

Here, w denotes some true underlying weight vector and ε is a realization of an a
random variable that is independent of the features x. We need the “noise” term ε
since the labels of datapoints collected in some ML application are typically not
exactly obtained by a linear combination wT x of its features.

The tuning of λ in (3.10) can be guided by the statistical properties (such as the
variance) of the noise ε, the number of non-zero entries in w and a lower bound
on the non-zero values [3, 4]. Another option for choosing the value λ is to try out
different candidate values and pick the one resulting in smallest validation error (see
Sect. 6.2).

3.5 Gaussian Basis Regression

Section 3.2 showed how to extend linear regression by first transforming the feature
x using a vector-valued feature map � : R → R

n . The output of this feature map
are the transformed features �(x) which are fed, in turn, to a linear map h

(

�(x)
) =

wT�(x). Polynomial regression in Sect. 3.2 has been obtained for the specific feature
map (3.6) whose entries are the powers xl of the scalar original feature x . However, it
is possible to use other functions, different from polynomials, to construct the feature
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ŷ = h(w)(x) with h(w)∈H(2)
Gauss

y = h(x)

x

y

0

1

−3 −2 −1 0 1 2 3

Fig. 3.5 The true relation x �→ y (blue) between feature x and label y of data points is highly
non-linear. Therefore it seems reasonable to predict the label using a non-linear hypothesis map
h(w)(x)∈H(2)

Gauss with some weight vector w ∈ R
2

map �. We can extend linear regression using an arbitrary feature map

�(x) = (φ1(x), . . . ,φn(x))
T (3.11)

with the scalarmapsφ j : R → Rwhich are referred to asbasis functions. The choice
of basis functions depends heavily on the particular application and the underlying
relation between features and labels of the observed datapoints. The basis functions
underlying polynomial regression are φ j (x) = x j .

Another popular choice for the basis functions are “Gaussians”

φσ,μ(x) = exp(−(1/(2σ2))(x−μ)2). (3.12)

The family (3.12) of maps is parameterized by the variance σ2 and the mean (shift)
μ. We obtain Gaussian basis linear regression by combining the feature map

�(x) = (

φσ1,μ1(x), . . . ,φσn ,μn (x)
)T

(3.13)

with linear regression (see Fig. 3.5). The resulting hypothesis space is then

H(n)
Gauss = {h(w) : R → R : h(w)(x)=

n
∑

j=1

w jφσ j ,μ j (x)

with weights w = (w1, . . . , wn)
T ∈ R

n}. (3.14)

Different choices for the variance σ2 and shifts μ j of the Gaussian function in
(3.12) results in different hypothesis spaces HGauss. Section 6.3 will discuss model
selection techniques that allow to find useful values for these parameters.

The hypotheses of (3.14) are parameterized by a weight vector w ∈ R
n . Each

hypothesis in HGauss corresponds to a particular choice for the weight vector w.
Thus, instead of searching overHGauss to find a good hypothesis, we can search over
R

n .
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3.6 Logistic Regression

Logistic regression is a method for classifying datapoints which are characterized by
feature vectors x ∈ R

n (feature spaceX = R
n) according to two categories which are

encoded by a label y. It will be convenient to use the label space Y = R and encode
the two label values as y = 1 and y = −1. Logistic regression learns a hypothesis
out of the hypothesis space H(n) (see (3.1)).2 Note that the hypothesis space is the
same as used in linear regression (see Sect. 3.1).

At first sight, it seems wasteful to use a linear hypothesis h(x) = wT x, with some
weight vector w ∈ R

n , to predict a binary label y. Indeed, while the prediction h(x)
can take any real number, the label y ∈ {−1, 1} takes on only one of the two real
numbers 1 and −1.

It turns out that even for binary labels it is quite useful to use a hypothesis map
h which can take on arbitrary real numbers. We can always obtain a predicted label
ŷ ∈ {−1, 1} by comparing hypothesis value h(x) with a threshold. A data point with
features x, is classified as ŷ = 1 if h(x) ≥ 0 and ŷ = −1 for h(x) < 0. Thus, we
use the sign of the predictor h to determine the final prediction for the label. The
absolute value |h(x)| is then used to quantify the reliability of (or confidence in) the
classification ŷ.

Consider two datapoints with feature vectors x(1), x(2) and a linear classifier map
h yielding the function values h(x(1)) = 1/10 and h(x(2)) = 100. Whereas the pre-
dictions for both datapoints result in the same label predictions, i.e., ŷ(1) = ŷ(2) =1,
the classification of the data point with feature vector x(2) seems to be much more
reliable.

Logistic regression uses the logistic loss (2.12) to assess the quality of a par-
ticular hypothesis h(w) ∈ H(n). In particular, given some labeled training set D =
{x(i), y(i)}mi=1, logistic regression tries to minimize the empirical risk (average logis-
tic loss)

̂L(w|D) = (1/m)

m
∑

i=1

log(1 + exp(−y(i)h(w)(x(i))))

h(w)(x)=wT x= (1/m)

m
∑

i=1

log(1 + exp(−y(i)wT x(i))). (3.15)

Once we have found the optimal weight vector ŵ which minimizes (3.15), we
classify a datapoint based on its features x according to

ŷ =
{

1 if h(ŵ)(x) ≥ 0

−1 otherwise.
(3.16)

2 It is important to note that logistic regression can be used with an arbitrary label space which
contains two different elements. Another popular choice for the label space is Y = {0, 1}.
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Since h(ŵ)(x) = (

ŵ
)T
x (see (3.1)), the classifier (3.16) amounts to testing whether

(

ŵ
)T
x ≥ 0 or not.

The classifier (3.16) partitions the feature spaceX =R
n into two half-spacesR1=

{

x : (

ŵ
)T
x≥0

}

and R−1={

x : (

ŵ
)T
x<0

}

which are separated by the hyperplane
(

ŵ
)T
x = 0 (see Fig. 2.9). Any datapoint with features x ∈ R1 (x ∈ R−1) is classified

as ŷ=1 (ŷ=−1).
Logistic regression can be interpreted as amaximum likelihood estimator within a

particular probabilistic model for the datapoints. This probabilistic model interprets
the label y ∈ {−1, 1} of a datapoint as a RV with the probability distribution

p(y = 1;w) = 1/(1 + exp(−wT x))

h(w)(x)=wT x= 1/(1 + exp(−h(w)(x)))). (3.17)

As the notation indicates, the probability (3.17) is parameterized by theweight vector
w of the linear hypothesis h(w)(x)=wT x. Given the probabilistic model (3.17), we
can interpret the classification (3.16) as choosing ŷ to maximize the probability
p(y = ŷ;w).

Since p(y = 1) + p(y = −1) = 1,

p(y = −1) = 1 − p(y = 1)
(3.17)= 1 − 1/(1 + exp(−wT x))

= 1/(1 + exp(wT x)). (3.18)

In practice we do not know theweight vector in (3.17). Rather, we have to estimate
the weight vector w in (3.17) from observed datapoints. A principled approach to
estimate the weight vector is to maximize the probability (or likelihood) of actually
obtaining the dataset D = {(x(i), y(i))}mi=1 as realizations of i.i.d. data points whose
labels are distributed according to (3.17). This yields the maximum likelihood esti-
mator

ŵ = argmax
w∈Rn

p({y(i)}mi=1)

y(i)i.i.d.= argmax
w∈Rn

m
∏

i=1

p(y(i))

(3.17),(3.18)= argmax
w∈Rn

m
∏

i=1

1/(1 + exp(−y(i)wT x(i))). (3.19)

Note that the last expression (3.19) is only valid if we encode the binary labels using
the values 1 and −1. Using different label values results in a different expression.

Maximizing a positive function f (w) > 0 is equivalent to maximizing log f (x),
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argmax
w∈Rn

f (w)=argmax
w∈Rn

log f (w).

Therefore, (3.19) can be further developed as

ŵ
(3.19)= argmax

w∈Rn

m
∑

i=1

− log
(

1+exp(−y(i)wT x(i))
)

= argmin
w∈Rn

(1/m)

m
∑

i=1

log
(

1+exp(−y(i)wT x(i))
)

. (3.20)

Comparing (3.20)with (3.15) reveals that logistic regression is nothing butmaximum
likelihood estimation of the weight vector w in the probabilistic model (3.17).

3.7 Support Vector Machines

Support vector machines are a family of ML methods for learning a hypothesis to
predict a binary label y of a data point based on its features x. Without loss of
generality we consider binary labels taking values in the label space Y = {−1, 1}.
A support vector machine uses the linear hypothesis space (3.1) which consists of
linear maps h(x) = wT x with some weight vector w ∈ R

n . Thus, the support vector
machine uses the same hypothesis space as linear regression and logistic regression
which we have discussed in Sects. 3.1 and 3.6, respectively. What sets the support
vector machine apart from these other methods is the choice of loss function.

Different instances of a support vector machine are obtained by using different
constructions for the features of a data point. Kernel support vector machines use the
concept of a kernel map to construct (typically high-dimensional) features (see Sect.
3.9 and [5]). In what follows, we assume the feature construction has been solved
and we have access to a feature vector x ∈ R

n for each data point.
Figure 3.6 depicts a dataset D of labeled data points, each characterized by a

feature vector x(i) ∈ R
2 (used as coordinates of a marker) and a binary label y(i) ∈

{−1, 1} (indicated by different marker shapes). We can partition dataset D into two
classes

C(y=1) ={x(i) : y(i) =1}, and C(y=−1) ={x(i) : y(i) =−1}. (3.21)

The support vector machine tries to learn a linear map h(w)(x) = wT x that perfectly
separates the two classes in the sense of

h
(

x(i)
)

︸ ︷︷ ︸

wT x(i)

> 0 for x(i) ∈ C(y=1) and h
(

x(i)
)

︸ ︷︷ ︸

wT x(i)

< 0 for x(i) ∈ C(y=−1). (3.22)
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x(5)

x(4)

x(3)

x(6)

“support vector”

ξ
h(w)

x(2)

x(1)

Fig. 3.6 The support vector machine learns a hypothesis (or classifier) h(w) with minimum average
soft-margin hinge loss (3.23).Minimizing this loss is equivalent tomaximizing themargin ξ between
the decision boundary of h(w) and each class of the training set

We refer to a dataset, whose datapoints have binary labels. as linear separable if we
can find at least one linear map that separates in the sense of (3.22). The dataset in
Fig. 3.6 is in early separable.

As can be verified easily, any linear map h(w)(x) = wT x achieving zero average
hinge loss (2.11) on the datasetD perfectly satisfies this dataset (3.22). It seems rea-
sonable to learn a linear map by minimizing the average hinge loss (2.11). However,
one drawback of this approach is that there might be (infinitely) many different linear
maps that achieve zero average hinge loss and, in turn, perfectly separate the data
points in Fig. 3.6. Indeed, consider a linear map h(w) that achieves zero average hinge
loss for theD in Fig. 3.6 (and therefore perfectly separates it). Then, any other linear
map h(w′) with weightsw′ = λw, using an arbitrary number λ > 1 also achieves zero
average hinge loss (and perfectly separates the dataset).

Neither the separability requirement (3.22) nor the hinge loss (2.11) are sufficient
as a sole training criterion. Indeed, there are many (if not most) datasets that are
not linearly separable. Even for a linearly separable dataset (such as the one Figure
3.6), there are infinitely many linear maps with zero average hinge loss. Which one
of these infinitely many different maps should we use? To settle these issues, the
support vector machine uses a “regularized” hinge loss,

L((x, y), h(w)) := max{0, 1 − y · h(w)(x)} + λ‖w‖2
h(w)(x)=wT x= max{0, 1 − y · wT x} + λ‖w‖2. (3.23)

The loss (3.23) augments the hinge loss (2.11) by the term λ‖w‖2. This term is the
scaled (by λ > 0) squared Euclidean norm of the weights w of the linear hypothesis
h used to classify data points. it can be shown that adding the term λ‖w‖2 to the
hinge loss (2.11) has an regularization effect. Loosely speaking, the resulting loss
favours linear maps h(w) that are robust against (small) perturbations of the data
points. The tuning parameter λ in (3.23) controls the strength of this regularization
effect and might therefore also be referred to as a regularization parameter. We will
discuss the basic principles of regularization on a more general level in Chap. 7.
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Let us now develop a useful geometric interpretation of the linear hypothesis
obtained byminimizing the loss function (3.23).According to [5,Chap. 2], a classifier
h(wSVM) that minimizes the average loss (3.23), maximizes the distance (margin) ξ
between its decision boundary and each of the two classes C(y=1) and C(y=−1) (see
(3.21)). The decision boundary is given by the set of feature vectors x satisfying
wT

SVMx = 0,
Making themargin as large as possible is reasonable as it ensures that the resulting

classifications are robust against small perturbations of the features (see Sect. 7.2).
As depicted in Fig. 3.6, the margin between the decision boundary and the classes
C1 and C2 is typically determined by few datapoints (such as x(6) in Fig. 3.6) which
are closest to the decision boundary. These data points have minimum distance to
the decision boundary and are referred to as support vectors.

We highlight that both, the support vector machine and logistic regression use
the same hypothesis space of linear maps. Therefore, both methods learn a linear
classifier h(w) ∈ H(n) (see (3.1)) whose decision boundary is a hyperplane in the
feature spaceX = R

n (see Fig. 2.9). The difference between support vector machine
and logistic regression is in their choice for the loss function used to evaluate the
quality of a hypothesis h(w) ∈ H(n).

The hinge loss (2.11) is (in some sense) the best convex approximation to the
0/1 loss (2.9). Thus, we expect the classifier obtained by the support vector machine
to yield a smaller classification error probability p(ŷ 
= y) (with ŷ = 1 if h(x) ≥ 0
and ŷ = −1 otherwise) compared to logistic regression which uses the logistic loss
(2.12). The support vector machine is also statistically appealing as it learns a robust
hypothesis. Indeed, learning the hypothesis with maximum margin implies that the
resulting classifier is maximally robust against perturbations of the feature vectors
of data points. Section 7.2 discusses the importance of robustness in ML methods in
more detail.

The statistical superiority of the support vector machine comes at the cost of
increased computational complexity. In particular, the hinge loss (2.11) is non-
differentiable which prevents the use of simple gradient-based methods (see Chap.
5) and requires more advanced optimization methods. In contrast, the logistic loss
(2.12) is convex and differentiable. We can therefore use gradient based methods to
minimize the average logistic loss incurred on a training set (see Chap. 5).

3.8 Bayes Classifier

Consider datapoints characterized by features x ∈ X and some binary label y ∈ Y .
We can use any two different label values but let us assume that the two possible
label values are y = −1 or y = 1. We would like to find (or learn) a classifier h :
X → Y such that the predicted (or estimated) label ŷ = h(x) agrees with the true
label y ∈ Y as much as possible. Thus, it is reasonable to assess the quality of
a classifier h using the 0/1 loss (2.9). We could then learn a classifier using the
empirical risk minimization with the loss function (2.9). However, the resulting
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optimization problem is typically intractable since the loss (2.9) is non-convex and
non-differentiable.

Instead of solving the (intractable) empirical risk minimization for 0/1 loss, we
take a different route to construct a classifier. This construction is based on a simple
probabilistic model for the datapoints. Using this model, we can interpret the average
0/1 loss on training data as an approximation for the probability Perr = p(y 
= h(x)).
Any classifier that minimizes this error probability is referred to as a Bayes estimator.
Note that the Bayes estimator depends on the probabilistic model for the data points.
We obtain different glsbayesestimators for different probabilistic models.

One widely used probabilistic model results in a Bayes estimator that belongs
to the linear hypothesis space (3.1). Note that this hypothesis space underlies also
logistic regression (seeSect. 3.6) and the support vectormachine (seeSect. 3.7). Thus,
logistic regression, support vector machine and Bayes estimator are all examples of
a linear classifier (see Fig. 2.9).

A linear classifier partitions the feature space X into two half-spaces. One half-
space consists of all feature vectors x which result in the predicted label ŷ = 1 and
the other half-space constituted by all feature vectors x which result in the predicted
label ŷ = −1. The family of ML methods that learn a linear classifier differ in their
choices for the loss function and, in turn, how they choose these half-spaces. Section
4.5 will discuss ML methods using Bayes estimator in more detail.

3.9 Kernel Methods

Consider a ML (classification or regression) problem with an underlying feature
space X . In order to predict the label y ∈ Y of a datapoint based on its features
x ∈ X , we apply a predictor h selected out of some hypothesis space H. Let us
assume that the available computational infrastructure only allows us to use a linear
hypothesis space H(n) (see (3.1)).

For some applications, using a linear hypothesis h(x) = wT x is not suitable since
the relation between features x and label y might be highly non-linear. One approach
to extend the capabilities of linear hypotheses is to transform the raw features of a
data point before applying a linear hypothesis h.

The family of kernel methods is based on transforming the features x to new
features x̂ ∈ X ′ which belong to a (typically very) high-dimensional spaceX ′ [5]. It is
not uncommon that, while the original feature space is a low-dimensional Euclidean
space (e.g., X = R

2), the transformed feature space X ′ is an infinite-dimensional
function space.

The rationale behind transforming the original features into a new (higher-
dimensional) feature space X ′ is to reshape the intrinsic geometry of the feature
vectors x(i) ∈ X such that the transformed feature vectors x̂(i) have a “simpler”
geometry (see Fig. 3.7).
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X

x(5)
x(4)

x(3)
x(2)

x(1)

X ′

x̂(5)x̂(4)x̂(3)x̂(2)

x̂(1)

Fig. 3.7 The data set D = {(x(i), y(i))}5i=1 consists of 5 datapoints with features x(i) and binary
labels y(i). Left: In the original feature space X , the datapoints cannot be separated perfectly by
any linear classifier. Right: The feature map φ : X → X ′ transforms the features x(i) to the new
features x̂(i) = φ

(

x(i)
)

in the new feature space X ′. In the new feature space X ′ the datapoints can
be separated perfectly by a linear classifier

Kernel methods are obtained by formulating ML problems (such as linear regres-
sion or logistic regression) using the transformed features x̂ = φ(x). A key challenge
within kernel methods is the choice of the feature map φ : X → X ′ which maps the
original feature vector x to a new feature vector x̂ = φ(x).

3.10 Decision Trees

A decision tree is a flowchart-like description of a map h : X → Y which maps the
features x ∈ X of a datapoint to a predicted label h(x) ∈ Y [6]. While decision trees
can be used for arbitrary feature space X and label space Y , we will discuss them
for the particular feature space X = R

2 and label space Y = R.
Figure 3.8 depicts an example for a decision tree. A decision tree consists of

nodes which are connected by directed edges. We can think of a decision tree as a
step-by-step instruction, or a “recipe”, for how to compute the function value h(x)
given the features x ∈ X of a datapoint. This computation starts at the root node and
ends at one of the leaf nodes of the decision tree.

A leaf node m, which does not have any outgoing edges, represents a decision
region Rm ⊆ X in the feature space. The hypothesis h associated with a decision
tree is constant over the regions Rm , such that h(x) = hm for all x ∈ Rm and some
fixed number hm ∈ R.

In general, there are two types of nodes in a decision tree:

• decision (or test) nodes, which represent particular “tests” about the feature vector
x (e.g., “is the norm of x larger than 10?”).

• leaf nodes, which correspond to subsets of the feature space.

The particular decision tree depicted in Fig. 3.8 consists of two decision nodes
(including the root node) and three leaf nodes.
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‖x − u‖ ≤ r?

h(x) = h1

no

‖x−v‖≤r?

h(x)=h2

no

h(x)=h3

yes

yes

R3R2

R1

u v

Fig. 3.8 A decision tree represents a hypothesis h which is constant on subsetsRm , i.e., h(x)=hm
for all x∈Rm . Each subset Rm ⊆X corresponds to a leaf node in the decision tree

‖x − u‖ ≤ r?

h(x) = 1

no

h(x) = 2

yes

‖x − u‖ ≤ r?

h(x) = 1

no

‖x − v‖ ≤ r?

h(x) = 10

no

h(x) = 20

yes

yes

Fig. 3.9 A hypothesis spaceH consisting of two decision trees with depth at most 2 and using the
tests ‖x−u‖≤r and ‖x−v‖≤r with a fixed radius r and vectors u, v ∈ R

n

Given limited computational resources, we can only use decision trees which are
not too deep. Consider the hypothesis space consisting of all decision trees which
use the tests “‖x − u‖ ≤ r” and “‖x − v‖ ≤ r” , with some vectors u and v, some
positive radius r > 0 and depth no larger than 2.3

To assess the quality of a particular decision tree we can use various loss func-
tions. Examples of loss functions used to measure the quality of a decision tree are
the squared error loss (for numeric labels) or the impurity of individual decision
regressions (for discrete labels).

Decision tree methods use as a hypothesis space the set of all hypotheses which
represented by some collection of decision trees. Figure 3.9 depicts a collection of
decision trees which are characterized by having depth at most two. These methods
search for a decision trees such that the corresponding hypothesis has minimum
average loss on some labeled training data (see Sect. 4.4).

A collection of decision trees can be constructed based on a fixed set of “elemen-
tary tests” on the input feature vector, e.g., ‖x‖ > 3, x3 < 1 or a continuous ensemble
of parametrized tests such as {x2 > η}η∈[0,10]. We then build a hypothesis space by
considering all decision trees not exceeding a maximum depth and whose decision
nodes carry out one of the elementary tests.

A decision tree represents a map h : X → Y , which is piecewise-constant over
regions of the feature space X . These non-overlapping regions form a partitioning

3 The depth of a decision tree is the maximum number of hops it takes to reach a leaf node starting
from the root and following the arrows. The decision tree depicted in Fig. 3.8 has depth 2.
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Fig. 3.10 Using a sufficiently large (deep) decision tree, we can construct a map h that perfectly
fits any given labeled dataset {(x(i), y(i))}mi=1 such that h(x(i))= y(i) for i = 1, . . . ,m

of the feature space. Each leaf node of a decision tree corresponds to one particular
region. Using large decision trees, which involve many different test nodes, we can
represent very complicated partitions that resemble any given labeled dataset (see
Fig. 3.10).

This is quite different from ML methods using the linear hypothesis space (3.1),
such as linear regression, logistic regression or the support vector machine. These
methods learn linear hypothesis maps with a rather simple geometry. Indeed, a linear
map is constant along hyperplanes. Moreover, the decision regions obtained from
linear classifiers are always entire half-spaces (see Fig. 2.9).

In contrast, the shape of a map represented by a decision tree can be much more
complicated. Using a sufficiently large (deep) decision tree, we can obtain a hypothe-
sis map that closely approximates any given non-linear map. Using sufficiently deep
decision trees for classification problems allows for highly irregular decision regions.

3.11 Deep Learning

Another example of a hypothesis space uses a signal-flow representation of a hypoth-
esismap h : Rn → R. This signal-flow representation is referred to as artificial neural
network. Figure 3.8 depicts an example for a artificial neural network that is used to
represent a (parameterized) hypothesis h(w) : Rn → R. A feature vector x ∈ R

n is
fed into the input units, each of which reads in one single feature x j ∈ R. The fea-
tures x j are then multiplied with the weights w j, j ′ associated with the link between
the j th input node (“neuron”) with the j ′th node in the middle (hidden) layer. The
output of the j ′-th node in the hidden layer is given by s j ′ =g(

∑n
j=1 w j, j ′x j ) with

some (typically non-linear) activation function f : R → R. The input argument to
the activation function is the weighted combination

∑n
j=1 w j, j ′s j ′ of the outputs s j of

the nodes in a previous layer. For the artificial neural network depicted in Fig. 3.11,
the output of neuron s1 is f (z) with z = w1,1x1 + w1,2x2.
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Fig. 3.11 Artificial neural
network representation of a
predictor h(w)(x) which
maps the input (feature)
vector x = (x1, x2)T to a
predicted label (output)
h(w)(x)
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Fig. 3.12 An artificial
neural network with one
hidden layer defines a
hypothesis space consisting
of all maps h(w)(x) obtained
from all possible choices for
the weights
w = (w1, . . . , w9)
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Two popular choices for the activation function used within artificial neural net-
works are the sigmoid function f (z) = 1

1+exp(−z) or the deep net f (z) = max{0, z}.
Artificial neural networks using many, say 10, hidden layers, is often referred to as a
deep net. ML methods using hypothesis spaces obtained from deep nets are known
as deep learning methods [7].

Remarkably, using some simple non-linear activation function f (z) as the building
block for artificial neural networks allows us to represent an extremely large class of
predictor maps h(w) : Rn → R. The hypothesis space generated by a given artificial
neural network structure, i.e., the set of all predictor maps which can be implemented
by a given artificial neural network and suitable weights w, tends to be much larger
than the hypothesis space (2.4) of linear predictors using weight vectors w of the
same length [7, Chap. 6.4.1.]. It can be shown that an artificial neural network with
only one single (but arbitrarily large) hidden layer can approximate any given map
h : X → Y = R to any desired accuracy [8]. However, a key insight which underlies
many deep learning methods is that using several layers with few neurons, instead
of one single layer containing many neurons, is computationally favourable [9].
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Fig. 3.13 Each single
neuron of the artificial neural
network depicted in Figure
3.12 implements a weighted
summation z = ∑

j w j x j of
its inputs x j followed by
applying a non-linear
activation function f (z)

x1
w1

x2
w2

x3

w3

f(z)

The recent success of ML methods based on artificial neural network with many
hidden layers (whichmakes themdeep)might be attributed to the fact that the network
representation of hypothesis maps is beneficial for the computational implementa-
tion of ML methods. First, we can evaluate a map h(w) represented by an artificial
neural network efficiently using modern parallel and distributed computing infras-
tructure via message passing over the network. Second, the graphical representation
of a parametrized hypothesis in the form of a artificial neural network allows us to
efficiently compute the gradient of the loss function via a (highly scalable) message
passing procedure known as back-propagation [7].

3.12 Maximum Likelihood

For many applications it is useful to model the observed datapoints z(i), with i =
1, . . . ,m, as i.i.d. realizations of a random variable z with probability distribution
p(z;w). This probability distribution is parameterized in the sense of depending on
a weight vectorw ∈ R

n . A principled approach to estimating the vectorw based on a
set of i.i.d. realizations z(1), . . . , z(m) ∼ p(z;w) ismaximum likelihood estimation
[10].

Maximum likelihood estimation can be interpreted as an ML problem with a
hypothesis space parameterized by the weight vector w, i.e., each element h(w) of
the hypothesis space H corresponds to one particular choice for the weight vector
w, and the loss function

L(z, h(w)) := − log p(z;w). (3.24)

A widely used choice for the probability distribution p
(

z;w)

is a multivariate
normal (Gaussian) distribution with meanµ and covariance matrix�, both of which
constitute the weight vector w = (µ, �) (we have to reshape the matrix � suitably
into a vector form). Given the i.i.d. realizations z(1), . . . , z(m) ∼ p

(

z;w)

, the max-
imum likelihood estimates µ̂, ̂� of the mean vector and the covariance matrix are
obtained via

µ̂, ̂� = argmin
µ∈Rn ,�∈Sn+

(1/m)

m
∑

i=1

− log p
(

z(i); (µ, �)
)

. (3.25)
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The optimization in (3.25) is over all possible choices for the mean vectorµ ∈ R
n

and the covariance matrix � ∈ S
n+. Here, Sn+ denotes the set of all positive semi-

definite Hermitian n × n matrices.
The maximum likelihood problem (3.25) can be interpreted as an instance of

empirical riskminimization (4.3) using the particular loss function (3.24). The result-
ing estimates are given explicitly as

µ̂ = (1/m)

m
∑

i=1

z(i), and ̂� = (1/m)

m
∑

i=1

(z(i) − µ̂)(z(i) − µ̂)T . (3.26)

Note that the expressions (3.26) are valid only when the probability distribution
of the datapoints is modelled as a multivariate normal distribution.

3.13 Nearest Neighbour Methods

Nearest neighbour methods are an important family of ML methods that are char-
acterized by a specific construction of the hypothesis space. This family provides
methods for regression problems involving numeric labels (e.g., with label space
Y = R ) as well as for classification problems involving categorical labels (e.g., with
label space Y = {−1, 1}). While nearest neighbour methods can be combined with
arbitrary label spaces, they require the feature space to be a metric space [1] so we
can compute distances between different feature vectors.

A widely used example for a metric feature space is the Euclidean space Rn with
the Euclidean distance ‖x−x′‖ between two vectors x, x′ ∈ R

n . Consider a dataset
D = {(x(i), y(i))}mi=1 of labeled data points, each one characterized by a feature vector
and a label. Nearest neighbour methods use a hypothesis space that consist of piece-
wise maps h : X → Y . The function value h(x), for some feature vector x, depends
only on the (labels of the) k nearest data points in the dataset D. The number k of
nearest neighbours is a design parameter of the method. Nearest neighbour methods
are also referred to as k-nearest neighbour (k-NN)methods tomake their dependence
on the parameter k explicit.

It is important to note that, in contrast to the ML methods in Sects. 3.1–3.11, the
hypothesis space of k-NNdepends on a (training) datasetD. As a consequence, k-NN
methods need to query (read in) the training set whenever the compute a prediction.
In particular, to compute a prediction h(x) for a new data point with features x,
k-NN needs to determine the nearest neighbours in the training set. When using a
large training set (which is typically beneficial for the resulting accuracy of the ML
method) this implies a large storage requirement for k-NNmethods.Moreover, k-NN
methods might be prone to revealing sensitive information with its predictions (see
Exercise 3.7).
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Fig. 3.14 A hypothesis map
h for k-NN with k = 1 and
feature space X = R

2. The
hypothesis map is constant
over regions (indicated by
the coloured areas) located
around feature vectors x(i)

(indicated by a dot) of a
dataset D = {(x(i), y(i))}

x(i)

3.14 Deep Reinforcement Learning

Deep reinforcement learning (DRL) refers to a subset of ML problems and methods
that revolve around the control of dynamic systems such as autonomous driving cars
or cleaning robots [11–13]. A DRL problem involves data points that represent the
states of a dynamic system at different time instants t = 0, 1, . . .. The data points
representing the state at some time instant t is characterized by the feature vector
x(t). The entries of this feature vector are the individual features of the state at time t .
These featuresmight be obtained via sensors, onboard-cameras or otherMLmethods
(that predict the location of the dynamic system). The label y(t) of a data point might
represent the optimal steering angle at time t .

DRLmethods learn a hypothesis h that delivers optimal predictions ŷ(t) := h
(

x(t)
)

for the optimal steering angle y(t). As their name indicates, DRLmethods use hypoth-
esis spaces obtained from a deep net (see Sect. 3.11). The quality of the prediction ŷ(t)

obtained from a hypothesis is measured by the loss L(
(

x(t), y(t)
)

, h) := −r (t) with
a reward signal r (t). This reward signal might be obtained from a distance (collision
avoidance) sensor or low-level characteristics of an on-board camera snapshot.

The (negative) reward signal−r (t) typically depends on the feature vector x(t) and
the discrepancy between optimal steering direction y(t) (which is unknown) and its
prediction ŷ(t) := h

(

x(t)
)

. However, what sets DRL methods apart from other ML
methods such as linear regression (see Sect. 3.1) or logistic regression (see Sect. 3.6)
is that they can evaluate the loss function only point-wise L(

(

x(t), y(t)
)

, h) for the
specific hypothesis h that has been used to compute the prediction ŷ(t) := h

(

x(t)
)

at
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time instant t . This is fundamentally different from linear regression that uses the
squared error loss (2.8) which can be evaluated for every possible hypothesis h ∈ H.

3.15 LinUCB

ML methods are instrumental for various recommender systems [14]. A basic form
of a recommender system amount to chose at some time instant t the most suitable
item (product, song, movie) among a finite set of alternatives a = 1, . . . , A. Each
alternative is characterized by a feature vector x(t,a) that varies between different
time instants.

The data points arising in recommender systems typically represent different
time instants t at which recommendations are computed. The data point at time t is
characterized by a feature vector

x(t) = ((

x(t,1)
)T

, . . . ,
(

x(t,A)
)T )T

. (3.27)

The feature vector x(t) is obtained by stacking the feature vectors of alternatives at
time t into a single long feature vector. The label of the data point t is a vector of
rewards y(t) := (

r (t)
1 , . . . , r (t)

A

)T ∈ R
A. The entry r (t)

a represents the reward obtained
by choosing (recommending) alternative a (with features x(t,a)) at time t . We might
interpret the reward r (t,a) as an indicator if the customer actually buys the product
corresponding to the recommended alternative a.

The ML method LinUCB (the name seems to be inspired by the terms “linear”
and “upper confidence bound” (UCB)) aims at learning a hypothesis h that allows
to predict the rewards y(i) based on the feature vector x(t) (3.27). As its hypothesis
spaceH, LinUCB uses the space of linear maps from the stacked feature vectorsRnA

to the space of reward vectors RA. This hypothesis space can be parametrized by
matrices W ∈ R

A×nA. Thus, LinUCB learns a hypothesis that computes predicted
rewards via

ŷ(t) := Wx(t). (3.28)

The entries of ŷ(t) = (

r̂ (t)
1 , . . . , r̂ (t)

A

)

are predictions of the individual rewards r (t,a).
It seems natural to recommend at time t the alternative a whose predicted reward is
maximum. However, it turns out that this approach is sub-optimal as it prevents the
recommender system from learning the optimal predictor map W.

Loosely speaking, LinUCB tries out (explores) each alternative a ∈ {1, . . . , A}
sufficiently often to obtain a sufficient amount of training data for learning a good
weight matrixW. At time t , LinUCB chooses the alternative a(t) that maximizes the
quantity

r̂ (t)
a + R(t, a) , a = 1, . . . , A. (3.29)



78 3 The Landscape of ML

We can think of the component R(t, a) as a form of confidence interval. It is con-
structed such that (3.29) upper bounds the actual reward r (t)

a with a prescribed level
of confidence (or probability). The confidence term R(t, a) depends on the feature
vectors x(t ′,a) of the alternative a at previous time instants t ′ < t . Thus, at each time
instant t , LinUCB chooses the alternative a that results in the largest upper confi-
dence bound (UCB) (3.29) on the reward (hence the “UCB” in LinUCB). We refer to
the relevant literature on sequential learning (and decision making) for more details
on the LinUCB [14].

3.16 Exercises

Exercise 3.1 Logistic loss and Accuracy Sect. 3.6 discussed logistic regression
as a ML method that learns a linear hypothesis map by minimizing the logistic
loss (3.15). The logistic loss has computationally pleasant properties as it is smooth
and convex. However, in some applications we might be ultimately interested in
the accuracy or (equivalently) the average 0/1 loss (2.9). Can we upper bound the
average 0/1 loss using the average logistic loss incurred by a given hypothesis on a
given training set?

Exercise 3.2 HowMany Neurons? Consider a predictor map h(x)which is piece-
wise linear and consisting of 1000 pieces. Assume we want to represent this map by
an artificial neural network using neurons with one hidden layer of neurons with a
ReLU activation functions. The output layer consists of a single neuron with linear
activation function. How many neurons must the artificial neural network contain at
least?

Exercise 3.3 Linear Classifiers Consider datapoints characterized by feature vec-
tors x ∈ R

n and binary labels y ∈ {−1, 1}. We are interested in finding a good linear
classifier which is such that the feature vectors resulting in h(x) = 1 is a half-space.
Which of the methods discussed in this chapter aim at learning a linear classifier?

Exercise 3.4 Data Dependent Hypothesis space Consider a ML application
involving data points that are characterized by features x ∈ R

6 and a numeric label
y ∈ R. We learn a hypothesis by minimizing the average loss incurred on a training
setD = {(

x(1), y(1)
)

, . . . ,
(

x(m), y(m)
)}

. Which of the following ML methods uses a
hypothesis space that depends on the dataset D?

• logistic regression
• linear regression
• k-NN

Exercise 3.5 Triangle. Consider the artificial neural network in Fig. 3.12 using the
deep net activation function (see Fig. 3.13). Show that there is a particular choice
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Fig. 3.15 A hypothesis map
h : R → R with the shape of
a triangle

x

h(x)

0

1

−3 −2 −1 0 1 2 3

for the weights w = (w1, . . . , w9)
T such that the resulting hypothesis map h(w)(x)

is a triangle as depicted in Fig. 3.15. Can you also find a choice for the weights
w = (w1, . . . , w9)

T that produce the same triangle shape if we replace the deep net
activation function with the linear function f (z) = 10 · z?

Exercise 3.6 Approximate Triangles using Gaussians Try to approximate the
hypothesis map depicted in Fig. 3.15 by an element of HGauss (see (3.14)) using
σ = 1/10, n = 10 and μ j = −1 + (2 j/10).

Exercise 3.7 Privacy Leakage in k-NN Consider a k-NN method for a binary
classification problem. We use k = 1 and a given training set whose data points
characterize humans. Each human is characterized by a feature vector and label that
indicates sensitive information (e.g., some sickness). Assume that you have access to
the feature vectors of the training datapoints but not to the labels. Can you infer the
label value of a training data point based on the prediction you are delivered based
on your feature vector?
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Chapter 4
Empirical Risk Minimization

Chapter 2 discussed three main components of ML (see Fig. 2.1):

• data points characterized by features x ∈ X and labels y ∈ Y ,
• a hypothesis space H of computationally feasible predictor maps X → Y ,
• and a loss function L((x, y), h) which measures the discrepancy between the
predictions of a hypothesis h and actual data points

Ideally we would like to learn a hypothesis h ∈ H such that L((x, y), h) is small for
any datapoint (x, y). However, in practice we can measure the loss only for a finite
set of labeled datapoints, which serves as the training set. How can we know the loss
of a hypothesis h when applied to datapoints outside the training set?

One possible approach to probe a hypothesis outside the training set is by using
a probabilistic model for the data. Maybe the most widely used first choicie for
such a probabilistic model is the i.i.d. assumption. Here, we interpret data points
as realizations of i.i.d. RVs with a common probability distribution p(x, y). The
training set is one particular set of such realizations drawn from p(x, y). Moreover,
we can generate datapoints outside the training set by drawing realizations from the
distribution p(x, y). Given this probability distribution over different realizations of
datapoints allows us to define the risk of a hypothesis h as the expectation of the loss
incurred by h on a random datapoint.

If we would know the probability distribution p(x, y), from which the datapoints
are drawn, we could minimize the risk using probability theory. The optimal hypoth-
esis, which is referred to as a Bayes estimator, can be read off directly from the
posterior probability distribution p(y|x) of the label y given the features x of a
data point. The precise form of the Bayes estimator depends also on the choice for
the lossfunc. When using the squared error loss, the optimal hypothesis (or Bayes
estimator) is given by the posterior mean h(x) = E

{
y|x}.

In most ML application, we do not know the true underlying probability distri-
bution p(x, y) and have to estimate it from data. Therefore, we cannot compute the
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predictor h ∈ H

expected loss (or risk)

empirical risk (or training error)

Fig. 4.1 ML methods learn a hypothesis h ∈ H that incur small loss when predicting the label y
of datapoint based on its features x. Empirical risk minimization approximates the expected loss
or risk by the empirical risk (solid curve) incurred on a finite set of labeled datapoints (the training
set). Note that we can compute the empirical risk based on the observed datapoints. However, to
compute the risk we would need to know the underlying probability distribution which is rarely the
case

Bayes estimator exactly. However, we can approximately compute this estimator
by replacing the exact probability distribution with an estimate or approximation.
Moreover, the risk of the Bayes estimator (which is the Bayes risk) provides a useful
baseline against which we can compare the average loss incurred by aMLmethod on
a set of data points. Sections6.6 shows how to diagnose ML methods by comparing
the average loss of a hypothesis on a training set and a validation set with a baseline.

Section 4.1motivates empirical riskminimization by approximating the risk using
the empirical risk (or average loss) computed for a set of labeled (training) datapoints
(see Fig. 4.1). This approximation is justified by the law of large numbers which
characterizes the deviation between averages of RVs and their expectation. Section
4.2 discusses the statistical and computational aspects of empirical riskminimization.
We then specialize the empirical risk minimization for three particular ML methods
arising from different combinations of hypothesis space and loss functions. Section
4.3 discusses empirical risk minimization for linear regression (see Sect. 3.1). Here,
empirical risk minimization amounts to minimizing a differentiable convex function,
which can be done efficiently using gradient-based methods (see Chap. 5).

We then discuss in Sect. 4.4 the empirical risk minimization obtained for decision
tree models. The resulting empirical risk minimization problems becomes a discrete
optimization problem which are typically much harder than convex optimization
problems. We cannot apply gradient-based methods to solve the empirical risk min-
imization for decision trees. To solve the decision tree empirical risk minimization
we essentially must try out all possible choices for the tree structure [1].
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Section 4.5 considers the empirical risk minimization obtained when learning a
linear hypothesis using the 0/1 loss for classification problems. The resulting empir-
ical risk minimization amounts to minimizing a non-differentiable and non-convex
function. Instead of using computationally expensive methods for minimizing this
function, wewill use a different route via probability theory to construct approximate
solutions to this empirical risk minimization instance.

As explained in Sect. 4.6, many ML methods use the empirical risk minimization
during a training period to learn a hypothesis which is then applied to new datapoints
during the inference period. Section 4.7 demonstrates how an online learningmethod
can be obtained by solving the empirical risk minimization sequentially as new
datapoints come in. Online learningmethods continuously alternate between training
and inference periods.

4.1 The Basic Idea of Empirical Risk Minimization

Consider some ML application that generates datapoints, each of which is charac-
terized by a feature vector x and a label y. It can be useful to interpret data points as
realizations of i.i.d. RVs with a common (joint) probability distribution p(x, y) for
the features x and label y. The probability distribution p(x, y) allows to define the
expected loss or risk of a hypothesis h ∈ H as

E
{
L((x, y), h)}. (4.1)

It seems reasonable to aimat learning a hypothesis h such that its risk (4.1) isminimal,

h∗ := argmin
h∈H

E
{
L((x, y), h)}. (4.2)

We refer to any hypothesis h∗ that achieves the minimum risk (4.2) as a Bayes
estimator [2]. Note that the Bayes estimator h∗ depends on both, the probability
distribution p(x, y) and the loss function. When using the squared error loss (2.8) in
(4.2), the Bayes estimator h∗ is given by the posterior mean of y given the features
x (see [3, Ch. 7]).

Risk minimization (4.2) cannot be used for the design of ML methods whenever
we do not know the probability distribution p(x, y). If we do not know the probability
distribution p(x, y), which is the rule for many ML applications, we cannot evaluate
the expectation in (4.1). One exception to this rule is if the datapoints are synthetically
generated by drawing realizations from a given probability distribution p(x, y).

The idea of empirical risk minimization is to approximate the expectation in (4.2)
with an average loss (the empirical risk) incurred on a given set of data points. As
discussed in Sect. 2.3.4, this approximation is justified by the law of large numbers.
We obtain empirical risk minimization by replacing the risk in the minimization
problem (4.2) with the empirical risk (2.16),
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ĥ = argmin
h∈H

L̂(h|D)

(2.16)= argmin
h∈H

(1/m)

m∑

i=1

L((x(i), y(i)), h). (4.3)

MLmethods solve empirical risk minimization (4.3) to learn (finding) a good predic-
tor ĥ ∈ H by “training” it on the datasetD = {(x(i), y(i))}mi=1. This dataset is referred
to as the training set and contains data point for which we know the label values (see
Sect. 2.1.2). From a mathematical point of view, empirical risk minimization (4.3)
is an optimization problem [4]. The optimization domain in (4.3) is the hypothesis
spaceH of a ML method, the objective or cost function is the empirical risk (2.16).

It is important to remember that empirical risk minimization (4.3) is motivated by
the law of large numbers. The law of large numbers, in turn, is only useful (“kicks
in”) if data points behave like realizations of i.i.d. RVs. This i.i.d. assumption is one
of the most widely used working assumptions for the design and analysis of ML
methods. However, there are many important application domains involving data
points that clearly violate this i.i.d. assumption. One example for non-i.i.d. data are
time series that consist of temporally ordered (consecutive) data points [5, 6]. Each
data point in a time series might represent a particular time period. Another example
for non-i.i.d. data arises in active learning where ML methods actively choose (or
query) new data points [7]. For a third example of non-i.i.d. data, we refer to federated
learning (FL) applications that involve collections (networks) of data generators with
different statistical properties [8–12]. The details of ML methods for non-i.i.d. data
are beyond the scope of this book.

4.2 Computational and Statistical Aspects of ERM

Solving the optimization problem (4.3) provides two things. First, the minimizer ĥ is
a predictor which performs optimal on the training setD. Second, the corresponding
objective value L̂(ĥ|D) (the “training error”) can be used to estimate for the risk or
expected loss of ĥ. However, as we will discuss in Chap. 7, for some datasets D, the
training error L̂(ĥ|D) obtained for D can be very different from the expected loss
(risk) of ĥ when applied to new datapoints which are not contained in D. For any
given hypothesis h, the i.i.d. assumption implies that the training error L̂(h|D) is only
a noisy approximation of the risk E

{
L((x, y), h)}. The empirical risk minimization

solution ĥ is the minimizer of this noisy approximation and therefore in general
different from the Bayes estimator which minimizes the risk. In particular, even if
the hypothesis ĥ delivered by empirical risk minimization (4.3) has small training
error L̂(ĥ|D), it might have unacceptable large risk E

{
L((x, y), ĥ)}.

Many important ML methods use hypotheses that are parametrized by weight
vector w. For each possible weight vector, we obtain a hypothesis h(w)(x). Such
a parametrization is used in linear regression which learns a linear hypotheses



4.2 Computational and Statistical Aspects of ERM 85

h(w)(x) = wT xwith someweight vectorw. Another example for such a parametriza-
tion is obtained from artificial neural networks with the weights assigned to inputs
of individual neurons (see Fig. 3.11).

For MLmethods that use a parameterized hypothesis h(w)(x), we can reformulate
the optimization problem (4.3) as an optimization of the weight vector,

ŵ = argmin
w∈Rn

f (w) with f (w) := (1/m)

m∑

i=1

L((x(i), y(i)), h(w)). (4.4)

The objective function f (w) in (4.4) is the empirical risk L̂
(
h(w)|D)

incurred by the
hypothesis h(w) when applied to the datapoints in the dataset D. The optimization
problems (4.4) and (4.3) are fully equivalent. Given the optimal weight vector ŵ
solving (4.4), the hypothesis h(ŵ) solves (4.3).

We can interpret empirical risk minimization (4.3) as a form of learning by “trial
and error”. An instructor (or supervisor) provides some snapshots z(i) which are
characterized by features x(i) and associated with known labels y(i). The learner then
uses a hypothesis h to guess the labels y(i) only from the features x(i) of all training
data points. We then determine average loss or training error L̂(h|D) that is incurred
by the predictions ŷ(i) = h

(
x(i)

)
. If the error L̂(h|D) is too large, we should try out

another hypothesis map h′ different from h with the hope of achieving a smaller
training error L̂(h′|D).

We highlight that the precise shape of the objective function f (w) in (4.4) depends
heavily on the parametrization of the predictor functions. The parametrization is the
precise rule that assigns a hypothesis map h(w) to a given weight vector w. The
shape of f (w) depends also on the choice for the loss function L((x(i), y(i)), h). As
depicted in Fig. 4.2, the different combinations of parametrized hypothesis space
and loss functions can result in objective functions with fundamentally different
properties such that their optimization is more or less difficult.

The objective function f (w) for the empirical risk minimization obtained for lin-
ear regression (see Sect. 3.1) is differentiable and convex and can therefore be mini-
mized using simple gradient-based methods (see Chap. 5). In contrast, the objective
function f (w) of ERM obtained for least absolute deviation regression and the sup-
port vector machine (see Sects. 3.3 and 3.7) is non-differentiable but still convex.
The minimization of such functions is more challenging but still tractable as there
exist efficient convex optimization methods which do not require differentiability of
the objective function [13].

The objective function f (w) obtained for artificial neural network are typically
highly non-convex with many local minima. The optimization of non-convex objec-
tive function is in general more difficult than optimizing convex objective functions.
However, it turns out that despite the non-convexity, iterative gradient-basedmethods
can still be successfully applied to solve the resulting empirical risk minimization
[14]. Even more challenging is the empirical risk minimization obtained for deci-
sion trees or Bayes estimator. These ML problems involve non-differentiable and
non-convex objective functions.
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smooth and convex

f(w)

smooth and non-convex

nonsmooth and convex nonsmooth and non-convex

Fig. 4.2 Different types of objective functions that arise in empirical riskminimization for different
combinations of hypothesis space and lossfunc

4.3 ERM for Linear Regression

As discussed in Sect. 3.1, linear regression methods learn a linear hypothesis
h(w)(x) = wT x with minimum squared error loss (2.8). For linear regression, the
empirical risk minimization problem (4.4) becomes

ŵ = argmin
w∈Rn

f (w)

with f (w) :=(1/m)
∑

(x,y)∈D
(y−xTw)2. (4.5)

Here,m = |D| denotes the (sample-) size of the training setD. The objective function
f (w) in (4.5) is computationally appealing since it is a convex and smooth func-
tion. Such a function can be minimized efficiently using the gradient-based methods
discussed in Chap. 5.

We can rewrite the empirical risk minimization problem (4.5) more concisely by
stacking the labels y(i) and feature vectors x(i), for i = 1, . . . ,m, into a “label vector”
y and “feature matrix” X,

y = (y(1), . . . , y(m))T ∈ R
m , and

X = (
x(1), . . . , x(m)

)T ∈ R
m×n . (4.6)

This allows us to rewrite the objective function in (4.5) as

f (w) = (1/m)‖y − Xw‖22. (4.7)

Inserting (4.7) into (4.5), allows to rewrite the empirical riskminimizationproblem
for linear regression as

ŵ = argmin
w∈Rn

(1/m)‖y − Xw‖22. (4.8)
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‖y − Xŵ‖

{Xw : w ∈ R
n}

y

Xŵ

Fig. 4.3 The empirical risk minimization (4.8) for linear regression amounts to an orthogonal

projection of the label vector y = (
y(1), . . . , y(m)

)T on the subspace spanned by the columns of the

feature matrix X = (
x(1), . . . , x(m)

)T

The formulation (4.8) allows for an interesting geometric interpretation of linear
regression. Solving (4.8) amounts to finding a vector Xw, with the feature matrix X
(4.6), that is closest (in the Euclidean norm) to the label vector y ∈ R

m (4.6). The
solution to this approximation problem is precisely the orthogonal projection of the
vector y onto the subspace ofRm that is spanned by the columns of the feature matrix
X (see Fig. 4.3).

To solve the optimization problem (4.8), it is convenient to rewrite it as the
quadratic problem

min
w∈Rn

(1/2)wTQw − qTw
︸ ︷︷ ︸

= f (w)

with Q = (1/m)XTX,q = (1/m)XT y. (4.9)

Since f (w) is a differentiable and convex function, a necessary and sufficient condi-
tion for ŵ to be a minimizer f (ŵ)=minw∈Rn f (w) is the zero-gradient condition
[4, Sec. 4.2.3]

∇ f (ŵ) = 0. (4.10)

Combining (4.9) with (4.10), yields the following necessary and sufficient con-
dition for a weight vector ŵ to solve the empirical risk minimization (4.5),

(1/m)XTXŵ = (1/m)XT y. (4.11)

This condition can be rewritten as

(1/m)XT
(
y − Xŵ

) = 0. (4.12)
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We might refer to this condition as “normal equations” as they require the vector

(
y − Xŵ

) = ((
y(1) − ŷ(1)

)
, . . . ,

(
y(m) − ŷ(m)

))T
,

whose entries are the prediction errors for the datapoints in the training set, to be
orthogonal (or normal) to the subspace spanned by the columns of the feature matrix
X.

It can be shown that, for any given feature matrix X and label vector y, there
always exists at least one optimal weight vector ŵ which solves (4.11). The optimal
weight vector might not be unique, i.e., there might be several different weight
vectors achieving the minimum in (4.5). However, every vector ŵ which solves
(4.11) achieves the same minimum empirical risk

L̂(h(ŵ) | D) = min
w∈Rn

L̂(h(w) | D) = ‖(I − P)y‖2. (4.13)

Here, we used the orthogonal projection matrix P ∈ R
m×m on the linear span of the

feature matrixX = (x(1), . . . , x(m))T ∈ R
m×n (see (4.6)). The linear span of a matrix

A = (a(1), . . . , a(m)) ∈ R
n×m , denoted as span

{
A}, is the subspace of Rn consisting

of all linear combinations of the columns a(r) ∈ R
n of A.

If the feature matrix X (see (4.6)) has full column rank, which implies that the
matrix XTX is invertible, the projection matrix P is given explicitly as

P = X
(
XTX

)−1
XT .

Moreover, the solution of (4.11) is then unique and given by

ŵ = (
XTX

)−1
XT y. (4.14)

The closed-form solution (4.14) requires the inversion of the n × n matrix XTX.
Note that formula (4.14) is only valid if the matrix XTX is invertible. The feature

matrixX is determined by the data points obtained in aML application. Its properties
are therefore not under the control of a ML method and it might well happen that the
matrixXTX is not invertible. As a point in case, the matrixXTX cannot be invertible
for any dataset containing fewer data points than the number of features used to
characterize data points (this is referred to as high-dimensional data). Moreover, the
matrixXTX is not invertible if there two co-linear features x j , x j ′ such that x j = βx j ′

holds for any data point with some constant α ∈ R.
Let us now consider a dataset such that the featurematrixX is not full column-rank

and, in turn, the matrix XTX is not invertible. In this case we cannot use (4.14) to
compute the optimalweight vector since the inverse ofXTX does not exist.Moreover,
in this case, there are infinitely many weight vectors that solve (4.11), i.e., the corre-
sponding linear hypothesis map incurs minimum average squared error loss on the
training set. Section 7.3 explains the benefits of using weights with small Euclidean
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norm. The weight vector ŵ solving the linear regression optimality condition (4.11)
and having minimum Euclidean norm among all such vectors is given by

ŵ = (
XTX

)†
XT y. (4.15)

Here,
(
XTX

)†
denotes the pseudoinverse (or the Moore–Penrose inverse) of XTX

(see [15, 16]).
Computing the (pseudo-)inverse of XTX can be computationally challenging for

large number n of features. Figure 2.4 depicts a simpleMLproblemwhere the number
of features is already in the millions. The computational complexity of inverting the
matrix XTX depends crucially on its condition number. We refer to a matrix as ill-
conditioned if its condition number is much larger than 1. In general, MLmethods do
not have any control on the condition number of the matrixXTX. Indeed, this matrix
is determined solely by the (features of the) data points fed into the ML method.

Section 5.4 will discuss a method for computing the optimal weight vector ŵ
which does not require any matrix inversion. This method, referred to as gradient
descent constructs a sequencew(0),w(1), . . . of increasingly accurate approximations
of ŵ. This iterativemethod has twomajor benefits compared to evaluating the formula
(4.14) using direct matrix inversion, such as Gauss-Jordan elimination [15].

First, GD typically requires significantly fewer arithmetic operations compared
to direct matrix inversion. This is crucial in modern ML applications involving large
feature matrices. Second, GD does not break when the matrix X is not full rank and
the formula (4.14) cannot be used any more.

4.4 ERM for Decision Trees

Consider empirical risk minimization (4.3) for a regression problem with label space
Y = R and feature spaceX = R

n and the hypothesis space defined by decision trees
(see Sect. 3.10). In stark contrast to empirical risk minimization for linear regression
or logistic regression, empirical risk minimization for decision trees amounts to a
discrete optimizationproblem. Consider the particular hypothesis spaceH depicted
in Fig. 3.9. This hypothesis space contains a finite number of different hypothesis
maps. Each individual hypothesis map corresponds to a particular decision tree.

For the small hypothesis spaceH in Fig. 3.9, empirical risk minimization is easy.
Indeed, we just have to evaluate the empirical risk (“training error”) L̂(h) for each
hypothesis in H and pick the one yielding the smallest empirical risk. However,
when allowing for a very large (deep) decision tree, the computational complexity of
exactly solving the empirical risk minimization becomes intractable [17]. A popular
approach to learn a decision tree is to use greedy algorithms which try to expand
(grow) a given decision tree by adding new branches to leaf nodes in order to reduce
the average loss on the training set (see [18, Chap. 8] for more details).
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The idea behind many decision tree learning methods is quite simple: try
out expanding a decision tree by replacing a leaf node with a decision node
(implementing another “test” on the feature vector) in order to reduce the overall
empirical risk much as possible.

Consider the labeled dataset D depicted in Fig. 4.4 and a given decision tree for
predicting the label y based on the features x.Wemight first try a hypothesis obtained
from the simple tree shown in the top of Fig. 4.4. This hypothesis does not allow to
achieve a small average loss on the training setD. Therefore, we might grow the tree
by replacing a leaf node with a decision node. According to Fig. 4.4, to so obtained
larger decision tree provides a hypothesis that is able to perfectly predict the labels
of the training set (it achieves zero empirical risk).

One important aspect ofmethods that learn a decision tree by sequentially growing
the tree is the question of when to stop growing. A natural stopping criterionmight be
obtainedfromthe limitations incomputational resources, i.e.,wecanonlyafford touse
decision trees up to certain maximum depth. Besides the computational limitations,
wealso facestatistical limitations for themaximumsizeofdecision trees.MLmethods
that allow for verydeepdecision trees,which represent highly complicatedmaps, tend
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Fig. 4.4 Consider a given labeled dataset and the decision tree in the top row. We then grow the
decision tree by expanding one of its two leaf nodes. The bottom row shows the resulting decision
trees, along with their decision boundaries. Each decision tree in the bottom row is obtained by
expanding a different leaf node of the decision tree in the top row
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to overfit the training set (see Fig. 3.10 and Chap. 7). In particular, Even if a deep
decision tree incurs small average loss on the training set, it might incur large loss
when predicting the labels of data points outside the training set.

4.5 ERM for Bayes Classifiers

The family of ML methods referred to as Bayes estimator uses the 0/1 loss (2.9) to
measuring the quality of a classifier h. The resulting empirical risk minimization is

ĥ = argmin
h∈H

(1/m)

m∑

i=1

L((x(i), y(i)), h)

(2.9)= argmin
h∈H

(1/m)

m∑

i=1

I(h(x(i)) �= y(i)). (4.16)

The objective function in this optimization problem is non-differentiable and non-
convex (see Fig. 4.2). This prevents us from using gradient-based optimization meth-
ods (see Chap. 5) to solve (4.16).

We will now approach the empirical risk minimization (4.16) via a different route
by interpreting the datapoints (x(i), y(i)) as realizations of i.i.d. RVswith the common
probability distribution p(x, y).

As discussed in Sect. 2.3, the empirical risk obtained using 0/1 loss approximates
the error probability p(ŷ �= y) with the predicted label ŷ = 1 for h(x) > 0 and ŷ =
−1 otherwise (see (2.10)). Thus, we can approximate the empirical riskminimization
(4.16) as

ĥ
(2.10)≈ argmin

h∈H
p(ŷ �= y). (4.17)

Note that the hypothesis h, which is the optimization variable in (4.17), enters into
the objective function of (4.17) via the definition of the predicted label ŷ, which is
ŷ = 1 if h(x) > 0 and ŷ = −1 otherwise.

It turns out that if we would know the probability distribution p(x, y), which
is required to compute p(ŷ �= y), the solution of (4.17) can be found easily via
elementary Bayesian decision theory [19]. In particular, the optimal classifier h(x)
is such that ŷ achieves the maximum “a-posteriori” probability p(ŷ|x) of the label
being ŷ, given (or conditioned on) the features x.

Since we typically do not know the probability distribution p(x, y), we have to
estimate (or approximate) it from the observed data points (x(i), y(i)). This estimation
is feasible if the data points can be considered (approximately) as realizations of i.i.d.
RVs with a common joint distribution p(x, y). We can then estimate (the parameters)
of the joint distribution p(x, y) using maximum likelihood methods (see Sect. 3.12).
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For numeric features and labels, a widely-used parametric distribution p(x, y) is the
multivariate normal (Gaussian) distribution. In particular, conditioned on the label
y, the feature vector x is a Gaussian random vector with mean µy and covariance
�,1

p(x|y) = N (x;µy, �). (4.18)

The conditional expectation of the features x, given (conditioned on) the label
y of a data point, is µ1 if y = 1, while for y = −1 the conditional mean of x is
µ−1. In contrast, the conditional covariance matrix � = E{(x − µy)(x − µy)

T |y}
of x is the same for both values of the label y ∈ {−1, 1}. The conditional probability
distribution p(x|y) of the feature vector, given the label y, is multivariate normal. In
contrast, the marginal distribution of the features x is a Gaussian mixture model. We
will revisit Gaussian mixture models later in Sect. 8.2 where we will see that they
are a great tool for soft clustering.

For this probabilistic model of features and labels, the optimal classifier mini-
mizing the error probability p(ŷ �= y) is ŷ=1 for h(x)>0 and ŷ=−1 for h(x)≤0
using the classifier map

h(x) = wT x with w = �−1(µ1 − µ−1). (4.19)

Carefully note that this expression is only valid if the matrix � is invertible.
We cannot implement the classifier (4.19) directly, since we do not know the true

values of the class-specificmeanvectorsµ1,µ−1 and covariancematrix�. Therefore,
we have to replace those unknown parameters with some estimates µ̂1, µ̂−1 and �̂. A
principled approach is to use themaximum likelihood estimates (see (3.26))

µ̂1 = (1/m1)

m∑

i=1

I(y(i) = 1)x(i),

µ̂−1 = (1/m−1)

m∑

i=1

I(y(i) = −1)x(i),

µ̂ = (1/m)

m∑

i=1

x(i),

and �̂ = (1/m)

m∑

i=1

(z(i) − µ̂)(z(i) − µ̂)T , (4.20)

1 We use the shorthand N (x;µ, �) to denote the probability density function

p(x) = 1√
det(2π�)

exp
( − (1/2)(x−µ)T�−1(x−µ)

)

of a Gaussian random vector x with mean µ = E{x} and covariance matrix � = E
{
(x−µ)(x−

µ)T
}
.
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with m1 = ∑m
i=1 I(y(i) = 1) denoting the number of datapoints with label y = 1

(m−1 is defined similarly). Inserting the estimates (4.20) into (4.19) yields the imple-
mentable classifier

h(x) = wT x with w = �̂−1(µ̂1 − µ̂−1). (4.21)

We highlight that the classifier (4.21) is only well-defined if the estimated covariance
matrix �̂ (4.20) is invertible. This requires to use a sufficiently large number of
training datapoints such that m ≥ n.

We derived the classifier (4.21) as an approximate solution to the empirical risk
minimization (4.16). The classifier (4.21) partitions the feature space R

n into two
half-spaces. One half-space consists of feature vectors x for which the hypothesis
(4.21) is non-negative and, in turn, ŷ = 1. The other half-space is constituted by
feature vectors x for which the hypothesis (4.21) is negative and, in turn, ŷ = −1.
Figure 2.9 illustrates these two half-spaces and the decision boundary between them.

The Bayes estimator (4.21) is another instance of a linear classifier like logistic
regression and the support vector machine. Each of these methods learns a linear
hypothesis h(x) = wT x, whose decision boundary (vectors x with h(x) = 0) is a
hyperplane (see Fig. 2.9). However, these methods use different loss functions for
assessing the quality of a particular linear hypothesis h(x) = wx (which defined
the decision boundary via h(x) = 0). Therefore, these three methods typically learn
classifiers with different decision boundaries.

For the estimator �̂ (3.26) to be accurate (close to the unknown covariancematrix)
we need a number of datapoints (sample size) which is at least of the order n2. This
sample size requirementmight be infeasible for applicationswith only fewdatapoints
available.

The maximum likelihood estimate �̂ (4.20) is not invertible whenever m < n. In
this case, the expression (4.21) becomes useless. To copewith small sample sizem <

n we can simplify the model (4.18) by requiring the covariance to be diagonal � =
diag(σ2

1, . . . ,σ
2
n). This is equivalent to modelling the individual features x1, . . . , xn

of a datapoint as conditionally independent, given its label y. The resulting special
case of a Bayes estimator is often referred to as a “naive Bayes” classifier.

Wefinally highlight that the classifier (4.21) is obtained using the generativemodel
(4.18) for the data. Therefore, Bayes estimator belong to the family of generativeML
methods which involve modelling the data generation. In contrast, logistic regression
and the support vector machine do not require a generative model for the datapoints
but aim directly at finding the relation between features x and label y of a data point.
These methods belong therefore to the family of discriminative ML methods.

Generative methods such as those learning a Bayes estimator are preferable for
applications with only very limited amounts of labeled data. Indeed, having a gen-
erative model such as (4.18) allows us to synthetically generate more labeled data
by generating random features and labels according to the probability distribution
(4.18). We refer to [20] for a more detailed comparison between generative and
discriminative methods.
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4.6 Training and Inference Periods

SomeMLmethods repeat the cycle in Figure 1 in a highly irregular fashion. Consider
a large image collection which we use to learn a hypothesis about how cat images
look like. It might be reasonable to adjust the hypothesis by fitting a model to the
image collection. This fitting or training amounts to repeating the cycle in Figure 1
during some specific time period (the “training time”) for a large number.

After the training period, we only apply the hypothesis to predict the labels of
new images. This second phase is also known as inference time and might be much
longer compared to the training time. Ideally, we would like to only have a very
short training period to learn a good hypothesis and then only use the hypothesis for
inference.

4.7 Online Learning

In it most basic form, empirical risk minimization requires a given set of labeled data
points, which we refer to as the training set. However, some ML methods can access
data only in a sequential fashion. As a point in case, consider time series data such as
daily minimum and maximum temperatures recorded by a Finnish Meteorological
Institute weather station. Such a time series consists of a sequence of data points that
are generated at successive time instants.

Online learning studies ML methods that learn (or optimize) a hypothesis incre-
mentally as new data arrives. This mode of operation is quite different from ML
methods that learn a hypothesis at once by solving an empirical risk minimization
problem. These different operation modes corresponds to different frequencies of
iterating the basic ML cycle depicted in Figure 1. Online learning methods start a
new cycle in Figure 1 whenever a new data point arrives (e.g., we have recorded the
minimum and maximum temperate of a day that just ended).

Wenowpresent an online learning variant of linear regression (seeSect. 3.1)which
is suitable for time series data with data points

(
x(t), y(t)

)
gathered sequentially (over

time). In particular, the data points
(
x(t), y(t)

)
become available (are gathered) at a

discrete time instants t = 1, 2, 3 . . ..
Let us stack the feature vectors and labels of all data points available at time t into

feature matrix X(t) and label vector y(t), respectively. The feature matrix and label
vector for the first three time instants are

t = 1 : X(1) := (
x(1)

)T
, y(1) = (

y(1)
)T
, (4.22)

t = 2 : X(2) := (
x(1), x(2))T , y(2) = (

y(1), y(2))T , (4.23)

t = 3 : X(3) := (
x(1), x(2), x(3)

)T
, y(3 = (

y(1), y(2), y(3)
)T

. (4.24)
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As detailed in Sect. 3.1, linear regression aims at learning the weights w of a
linear map h(x) := wT x such that the squared error loss

(
y − h(x)

)
is as small as

possible. This informal goal of linear regression is made precise by the empirical
risk minimization problem (4.5) which defines the optimal weights via incurring
minimum average squared error loss (empirical risk) on a given training set D.
These optimal weights are given by the solutions of (4.12). When the feature vectors
of datapoints in D are linearly independent, we obtain the closed-form expression
(4.14) for the optimal weights.

Inserting the feature matrix X(t) and label vector y(t) (4.22) into (4.14), yields

ŵ(t) = ((
X(t)

)T
X(t)

)−1(
X(t)

)T
y(t). (4.25)

For each time instant we can evaluate the RHS of (4.25) to obtain the weight vector
ŵ(t) that minimizes the average squared error loss over all data points gathered up to
time t . However, computing ŵ(t) via direct evaluation of the RHS in (4.25) for each
new time instant t misses an opportunity for recycling computations done already at
earlier time instants.

Let us now show how to (partially) reuse the computations used to evaluate (4.25)
for time t in the evaluation of (4.25) for the next time instant t + 1. To this end, we
first rewrite the matrix Q(t) := (

X(t)
)T
X(t) as

Q(t) =
t∑

r=1

x(r)
(
x(r)

)T
. (4.26)

Since Q(t+1) = Q(t) + x(t+1)(x(t+1))T , we can use a well-known identity for matrix
inverses (see [21, 22]) to obtain

(
Q(t+1)

)−1 = (
Q(t)

)−1 +
(
Q(t)

)−1
x(t+1)

(
x(t+1)

)T (
Q(t)

)−1

1 − (
x(t+1)

)T (
Q(t)

)−1
x(t+1)

. (4.27)

Inserting (4.27) into (4.25) yields the following relation between optimal weight
vectors at consecutive time instants t and t + 1,

ŵ(t+1) = ŵ(t) − (
Q(t+1))−1

x(t+1)((x(t+1))T ŵ(t) − y(t+1)). (4.28)

Note that neither evaluating the RHS of (4.28) nor evaluating the RHS of (4.27)
requires to actually invert a matrix of with more than one entry (we can think of a
scalar number as 1 × 1 matrix). In contrast, evaluating the RHS (4.25) requires to
invert the matrix Q(t) ∈ R

n×n . We obtain an online algorithm for linear regression
via computing the updates (4.28) and (4.27) for each new time instant t . Another
online method for linear regression will be discussed at the end of Sect. 5.7.
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4.8 Exercise

Exercise 4.1 (Uniqueness in Linear Regression) What conditions on a training
set ensure that there is a unique optimal linear hypothesis maps for linear regression.

Exercise 4.2 (Uniqueness in Linear Regression II) Linear regression uses the
squared error loss (2.8) to measure the quality of a linear hypothesis map. We learn
the weights w of a linear map via empirical risk minimization using a training set
D that consists of m = 100 data points. Each data point is characterized by n = 5
features and a numeric label. Is there a unique choice for the weights w that results
in a linear predictor with minimum average squared error loss on the training setD)?

Exercise 4.3 (A Simple Linear Regression Problem.) Consider a training set of
m datapoints, each characterized by a single numeric feature x and numeric label y.
We learn hypothesis map of the form h(x) = x + b with some bias b ∈ R. Can you
write down a formula for the optimal b, that minimizes the average squared error on
training data

(
x (1), y(1)

)
, . . . ,

(
x (m), y(m)

)
.

Exercise 4.4 (Simple Least Absolute Deviation Problem.) Consider datapoints
characterized by single numeric feature x and label y. We learn a hypothesis
map of the form h(x) = x + b with some bias b ∈ R. Can you write down a for-
mula for the optimal b, that minimizes the average absolute error on training data(
x (1), y(1)

)
, . . . ,

(
x (m), y(m)

)
.

Exercise 4.5 (Polynomial Regression.) Consider polynomial regression for data-
points with a single numeric feature x ∈ R and numeric label y. Here, polynomial
regression is equivalent to linear regression using the transformed feature vectors
x = (

x0, x1, . . . , xn−1
)T
. Given a datasetD = (

x (1), y(1)
)
, . . . ,

(
x (m), y(m)

)
, we con-

struct the feature matrix X = (
x(1), . . . , x(m)

) ∈ R
m×m with its i th column given by

the feature vector x(i). Verify that this feature matrix is a Vandermonde matrix [23]?
How is the determinant of the feature matrix related to the features and labels of data
points in the dataset D?

Exercise 4.6 (Training Error is not Expected Loss.) Consider a training set that
consists of data points

(
x (i), y(i)

)
, for i = 1, . . . , 100, that are obtained as realizations

of i.i.d.RVs.The commonprobability distributionof theseRVs is definedbya random
datapoint (x, y). The feature x of this random datapoint is a standard Gaussian RV
with zero mean and unit variance. The label of a data point is modelled as y =
x + e with Gaussian noise e ∼ N (0, 1). The feature x and noise e are statistically
independent.We evaluate the specific hypothesis h(x) = 0 (which output 0 nomatter
what the feature value x is) by the training error Et = (1/m)

∑m
i=1

(
y(i) − h

(
x (i)

))2
.

(which is the average squared error loss (2.8)).What is the probability that the training
error Et is at least 20% larger than the expected (squared error) lossE

{(
y − h(x)

)2}
?

What is the mean (expected value) and variance of the training error ?
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Exercise 4.7 (OptimizationMethods as Filters.) Let us consider a fictional (idel)
optimizationmethod that can be represented as a filterF . This filterF reads in a real-
valued objective function f (·), defined for all weight vectors w ∈ R

n . The output of
the filter F is another real-valued function f̂ (w) that is defined point-wise as

f̂ (w) =
{
1, if w is a local minimum of f (·)
0, otherwise.

(4.29)

Verify that the filterF is shift or translation invariant, i.e.,F commuteswith a transla-
tion f ′(w) := f (w + w(o)) with an arbitrary but fixed (reference) vector w(o) ∈ R

n .
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Chapter 5
Gradient-Based Learning

In what follows, we consider ML methods that use a parametrized hypothesis space
H. Each hypothesis h(w) ∈ H in this space is characterized by a specificweight vector
w ∈ R

n . Moreover, we considerMLmethods that use a lossfunc L((x, y), h(w)) such
that the average loss or empirical risk

f (w) := (1/m)

m∑

i=1

L((x(i), y(i)), h(w)) (5.1)

depends smoothly on the weight vector w.1 This setting includes linear regression
(see Sect. 3.1) and logistic regression (see Sect. 3.6).

The basic idea of ML methods is to learn a hypothesis whose predictions incur
minimum loss. Section 4.1made this idea precise using the principle of empirical risk
minimization (4.4). empirical riskminimization (4.4) is an optimization problem that
combines the three main components ofML. Indeed, the empirical risk minimization
(4.4) binds together the data points in a training set D, the hypothesis space H and
the lossfunc L((x, y), h). To obtain practical ML methods we need to be able to
efficiently solve empirical riskminimization (4.4)with a finite amount computational
resources. These computational resources include storage capacity, communication
bandwidth (for distributed or clould computing) and processing time (which might
is limited in real-time applications).

This chapter discusses gradient-based methods to solve empirical risk minimiza-
tion (4.4). These are iterative methods that construct a sequence of weight vectors
w(1), . . . ,w(r) such that the corresponding objective values f

(
w(1)

)
, . . . , f

(
w(r)

)

converge to the minimum minw∈Rn f (w). The updates w(r) → w(r+1) between

1 A function f : Rn → R is called smooth if it has continuous partial derivatives of all orders. In
particular, we can define the gradient ∇ f (w) for a smooth function f (w) at every point w.
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f(w)

f w(r)
)
+ w−w(r)

)T∇f w(r)
)

f w(r)
)n

Fig. 5.1 A smooth function f (w) can be approximated locally around a point w(r) using a hyper-
plane whose normal vector n = (∇ f

(
w(r)

)
,−1) is determined by the gradient ∇ f

(
w(r)

)

consecutive weight vectors are based on so called GD steps. Section 5.1 discusses
how the GD steps follows naturally from local linear approximations of the function
f (w) at the current iterate w(r). These local linear approximations are constructed
using the gradient of the function f (w) at the current iterate w(r). Gradient-based
methods have gained popularity recently as an efficient technique for tuning the
weights of deep nets within deep learning methods [1].

5.1 The GD Step

Consider a ML method that uses a parametrized hypothesis space and a smooth
lossfunc such that the resulting empirical risk minimization (4.4) becomes a smooth
optimization problem

min
w∈Rn

f (w). (5.2)

The smooth objective function f : Rn → R is the empirical risk (5.1) incurred by
a hypothesis with weights w ∈ R

n . Our ultimate goal is to find a weight vector ŵ
that minimizes f (w), f

(
ŵ

) = minw∈Rn f (w). However, for now we consider the
simpler task of trying to improve a current guess or approximationw(r) of an optimal
weight vector ŵ. To this end, we approximate the objective function f (w) by a
simpler function. We will use this approximation only locally, in a sufficiently small
neighbourhood of the current guess w(r).

Since f (w) is smooth, elementary calculus allows us to approximate it locally
around some point w(r) using a tangent hyperplane that passes through the
point

(
w(r), f

(
w(r)

))
. The normal vector of this hyperplance is given by n =

(∇ f
(
w(r)

)
,−1) (see Fig. 5.1). The first component of the normal vector is the gradi-

ent of the function f (w) at the pointw(r). Alternatively, we might define the gradient
∇ f

(
w(r)

)
via [2]

f (w) ≈ f
(
w(r)

) + (
w − w(r)

)T∇ f
(
w(r)

)
for w sufficiently close to w(r). (5.3)
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Fig. 5.2 The GD step (5.4)
updates the current weight
vector w(r) by adding the
correction term
−α∇ f (w(r)). The updated
weight vector w(r+1) is
typically an improved
approximation of the optimal
weight vector

∇f(w(r))

−α∇f(w(r))

1

w

f(w)

w(r)w(r+1)

1

2

3

4

Remember that we would like to find a new (better) weight vector w(r+1) that
has smaller value f (w(r+1)) < f

(
w(r)

)
than the current guess w(r). The approx-

imation (5.3) suggests to choose the next guess w = w(r+1) such that
(
w(r+1) −

w(r)
)T∇ f

(
w(r)

)
is negative. We can achieve this by the GD step

w(r+1) = w(r) − α∇ f (w(r)) (5.4)

with a sufficiently small step size α > 0. The step size α needs to be sufficiently
small to ensure the validity linear approximation (5.3). In the context of ML, the
GD step size parameter α is also referred to as learning rate. Indeed, the step size α
determines the amount of progress during a GD step towards learning the optimal
weight vector ŵ. However the interpretation of the step size as learning rate is only
useful for sufficiently small step sizes. Indeed, when increasing the step size beyond
a critical value, the iterates (5.4) depart from the optimal weight vector ŵ.

Gradient-based methods repeat the GD step (5.4) for a sufficient number of itera-
tions (repetitions) to obtain an approximation to the optimal weight vector ŵ. For a
convex differentiable objective function f (w) and sufficiently small step size α, the
iterates f (w(r)) obtained by repeating the gradient descent steps (5.4) converge to a
minimum, i.e., limr→∞ f (w(r)) = f

(
ŵ

)
(see Fig. 5.2).

To implement the GD step (5.4) we need to choose a useful step size α. Moreover,
executing the GD step (5.4) requires to compute the gradient ∇ f (w(r)). Both tasks
can be challenging as discussed in Sects. 5.2 and 5.7. The success of deep learning
methods, which represent predictor maps using artificial neural network (see Sec.
3.11), can be partially attributed to the ability of computing the gradient ∇ f (w(r))

efficiently via an algorithm known as back-propagation [1].
For the particular case of linear regression (see Sect. 5.4) and logistic regression

(see Sect. 5.5), we will present precise conditions on the step size α which guarantee
convergence of GD in Sects. 3.1 and 5.5. Moreover, for linear and logistic regression
we can obtain closed-form expressions for the gradient ∇ f (w) of the empirical risk
(5.1). These closed-form expressions contain the feature vectors and labels of the
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data points in the training set D = {(
x(1), y(1)

)
, . . . ,

(
x(m), y(m)

)}
, which is used to

calculate the empirical risk (5.1).

5.2 Choosing Step Size

The choice of the step size α in the GD step (5.4) has a significant impact on the
performance of Algorithm 1. If we choose the step size α too large, the GD steps
(5.4) diverge (see Fig. 5.3-(b)) and, in turn, Algorithm 1 fails to deliver a satisfactory
approximation of the optimal weight vector w(opt) (see (5.7)).

If we choose the step size α too small (see Fig. 5.3-(a)), the updates (5.4) make
only very little progress towards approximating the optimalweight vector ŵ. In appli-
cations that require real-time processing of data streams, it is possible to repeat the
GD steps only for a moderate number. Thus If the step size is chosen too small, Algo-
rithm 1 will fail to deliver a good approximation within an acceptable computation
time.

The optimal choice of the step size α of GD can be a challenging task. Many
sophisticated approaches for tuning the step size of gradient-based methods have
been proposed [1, Chap. 8]. A discussion and analysis of these approaches is beyond
the scope of this book. We will instead discuss sufficient condition on the step size
which guarantee the convergence of the GD iterations to an optimum of (5.1).

Let us assume that the objective function f (w) (5.1) is convex and smooth.
Then, the GD steps (5.4) converge to an optimum of (5.1) for any step size α
satisfying [3]

α ≤ 1

λmax
(∇2 f (w)

) for all w ∈ R
n. (5.5)

f(w(r))
f(w(r+1)) f(w(r+2))

(a)

f(w(r))
f(w(r+1))

f(w(r+2))(5.4)
(5.4)

(b)

Fig. 5.3 Effect of choosing bad values for the learning rate α in the GD step(5.4). (a) If the steps
size α in the GD step (5.4) is chosen too small, the iterations make very little progress towards the
optimum or even fail to reach the optimum at all. (b) If the learning rate α is chosen too large, the
iterates w(r) might not converge at all (it might happen that f (w(r+1)) > f (w(r))!)
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Here, we use the Hessian matrix ∇2 f (w) ∈ R
n×n of a smooth function f (w)

whose entries are the second-order partial derivatives ∂ f (w)
∂wi∂w j

of the function f (w). It
is important to note that (5.5) guarantees convergence for every possible initialization
w(0) of the GD iterations.

Note that while it might be computationally challenging to determine the max-
imum (in absolute value) eigenvalue λmax

(∇2 f (w)
)
for arbitrary w, it might still

be feasible to find an upper bound U for the maximum eigenvalue. If we know an
upper boundU ≥ λmax

(∇2 f (w)
)
(valid for all w ∈ R

n), the step size α = 1/U still
ensures convergence of the GD iteration.

5.3 When to Stop?

A main challenge in the successful application of GD is to decide when to stop
iterating (or repeating) the GD step (5.4). One widely-used approach is to monitor
the decrease in the objective function f (w) and to stop if the decrease between the
two most recent iterations falls below a threshold. Another stopping criterion is to
use a fixed number of iterations (GD steps). However, for this to be effective we need
some means to determine a sufficient number of iterations.

Let us assume that the objective function f (w) is convex and we know upper and
lower bounds for the eigenvalues of the Hessian∇2 f (w). It is then possible to derive
upper bounds on the sub-optimality f (w(r)) − minw f (w) in terms of the number
of GD steps used to obtain w(r). These upper bounds allow then, in turn, to select
the number of iterations such that the resulting sub-optimality is below a prescribed
threshold.

5.4 GD for Linear Regression

Let us now use GD to implement some of the ML methods discussed in Chap.
3. In particular, we apply GD to linear regression as discussed in Section 3.1 to
obtain a practical ML algorithm. This algorithm learns the weight vector for a linear
hypothesis (see (3.1))

h(w)(x) = wT x. (5.6)

The weight vector is chosen to minimize average squared error loss (2.8)

L̂(h(w)|D)
(4.4)= (1/m)

m∑

i=1

(y(i) − wT x(i))2, (5.7)
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incurred by the predictor h(w)(x) when applied to the labeled dataset D =
{(x(i), y(i))}mi=1. The optimal weight vector ŵ for (5.6) is characterized as

ŵ = argmin
w∈Rn

f (w) with f (w) = (1/m)

m∑

i=1

(
y(i) − wT x(i)

)2
. (5.8)

The optimization problem (5.8) is an instance of the smooth optimization problem
(5.2).We can therefore useGD (5.4) to solve (5.8), to obtain the optimalweight vector
ŵ. To implement GD, we need to compute the gradient ∇ f (w).

The gradient of the objective function in (5.8) is given by

∇ f (w) = −(2/m)

m∑

i=1

(
y(i) − wT x(i)

)
x(i). (5.9)

By inserting (5.9) into the basic GD iteration (5.4), we obtain
Algorithm 1.

Algorithm 1 “Linear Regression via GD”

Input: labeled dataset D = {(x(i), y(i))}mi=1 containing feature vectors x(i) ∈ R
n and labels y(i) ∈

R; GD learning rate α > 0.
Initialize: set w(0) :=0; set iteration counter r :=0
1: repeat
2: r := r + 1 (increase iteration counter)
3: w(r) := w(r−1) + α(2/m)

∑m
i=1

(
y(i) − (

w(r−1))T x(i)
)
x(i) (do a GD step (5.4))

4: until stopping criterion met
Output: w(r) (which approximates ŵ in (5.8))

Let us have a closer look on the update in step 3 of Algorithm 1, which is

w(r) := w(r−1) + α(2/m)

m∑

i=1

(
y(i) − (

w(r−1))T x(i)
)
x(i). (5.10)

The update (5.10) has an appealing form as it amounts to correcting the previous
guess (or approximation) w(r−1) for the optimal weight vector ŵ by the correction
term

(2α/m)

m∑

i=1

(y(i) − (
w(r−1))T x(i))

︸ ︷︷ ︸
e(i)

x(i). (5.11)

The correction term (5.11) is a weighted average of the feature vectors x(i) using
weights (2α/m) · e(i). These weights consist of the global factor (2α/m) (that
applies equally to all feature vectors x(i)) and a sample-specific factor e(i) =
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(y(i) − (
w(r−1))T x(i)), which is the prediction (approximation) error obtained by the

linear predictor h(w
(r−1))(x(i)) = (

w(r−1))T x(i) when predicting the label y(i) from the
features x(i).

We can interpret the GD step (5.10) as an instance of “learning by trial and
error”. Indeed, the GD step amounts to first “trying out” (trial) the predictor h(x(i)) =(
w(r−1))T x(i). The predicted values are then used to correct the weight vector w(r−1)
according to the error e(i) = y(i) − (

w(r−1))T x(i).
The choice of the learning rate α used for Algorithm 1 can be based on the

condition (5.5) with the Hessian ∇2 f (w) of the objective function f (w) underlying
linear regression (see (5.8)). This Hessian is given explicitly as

∇2 f (w) = (1/m)XTX, (5.12)

with the feature matrixX = (
x(1), . . . , x(m)

)T ∈ R
m×n (see (4.6)). Note that the Hes-

sian (5.12) does not depend on the weight vector w.
Comparing (5.12) with (5.5), one particular strategy for choosing the step size

in Algorithm 1 is to (i) compute the matrix product XTX, (ii) compute the max-
imum eigenvalue λmax

(
(1/m)XTX

)
of this product and (iii) set the step size to

α = 1/λmax
(
(1/m)XTX

)
.

While it might be challenging to compute the maximum eigenvalue
λmax

(
(1/m)XTX

)
, it might be easier to find an upper bound U for it.2 Given such

an upper bound U ≥ λmax
(
(1/m)XTX

)
, the step size α = 1/U still ensures con-

vergence of the GD iteration. Consider a dataset {(x(i), y(i))}mi=1 with normalized
features, i.e., ‖x(i)‖ = 1 for all i = 1, . . . ,m. Then, by elementary linear algebra,
one can verify the upper bound U = 1, i.e., 1 ≥ λmax

(
(1/m)XTX

)
. We can then

ensure convergence of the GD iterations w(r) (see (5.10)) by choosing the step size
α = 1.

Time-Data Tradeoffs.The number of iteration required by Algorithm 1 to ensure
a prescribed sub-optimality depends crucially on the condition number of XTX.
What can we say about the condition number? In general, we have not control over
this quantity as the matrix X consists of the feature vectors of arbitrary datapoints.
However, it is often useful tomodel the feature vectors as realizations of i.i.d. random
vectors. It is then possible to bound the probability of the feature matrix having very
small condition number. These bounds can then be used to choose the step-size such
that convergence is guaranteed with sufficiently large probability. The usefulness of
these bounds typically depends on the ratio n/m. For increasing sample-size, these
bounds allow to use larger step-sizes and, in turn, result in faster convergence of GD.
Thus, we obtain a trade-off between convergence time of GD and the number of data
points. Such time-data trade-offs have been studied recently for linear regression
with known structure of the weight vector [4]

2 The problem of computing a full eigenvalue decomposition of XTX has essentially the same
complexity as empirical risk minimization via directly solving (4.11), which we want to avoid by
using the “cheaper” Algorithm 1.
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5.5 GD for Logistic Regression

As discussed in Sect. 3.6, logistic regression learns a linear hypothesis h(ŵ) by min-
imizing the average logistic loss (3.15) obtained for a dataset D = {(x(i), y(i))}mi=1,
with features x(i) ∈ R

n and binary labels y(i) ∈ {−1, 1}. This minimization problem
is an instance of the smooth optimization problem (5.2),

ŵ = argmin
w∈Rn

f (w)

with f (w) = (1/m)

m∑

i=1

log(1+exp(−y(i)wT x(i))). (5.13)

The application of the gradient step (5.4) to solve (5.13), requires computing the
gradient ∇ f (w). The gradient of the objective function in (5.13) is

∇ f (w) = (1/m)

m∑

i=1

−y(i)

1 + exp(y(i)wT x(i))
x(i). (5.14)

By inserting (5.14) into the basic GD iteration (5.4), we obtain
Algorithm 2.

Algorithm 2 “Logistic regression via GD”

Input: labeled dataset D = {(x(i), y(i))}mi=1 containing feature vectors x(i) ∈ R
n and labels y(i) ∈

R; GD learning rate α > 0.
Initialize:set w(0) :=0; set iteration counter r :=0
1: repeat
2: r :=r+1 (increase iteration counter)

3: w(r) := w(r−1)+α(1/m)
∑m

i=1
y(i)

1+exp
(
y(i)

(
w(r−1)

)T
x(i)

)x(i) (do a gradient descent step (5.4))

4: until stopping criterion met
Output: w(r), which approximates a solution ŵ of (5.13))

Let us have a closer look on the update in step (3) of Algorithm 2. This step
amounts to computing

w(r) := w(r−1) + α(1/m)

m∑

i=1

y(i)

1 + exp
(
y(i)

(
w(r−1))T x(i)

)x(i). (5.15)

Similar to the GD step (5.10) for linear regression, also the gradient descent step
(5.15) for logistic regression can be interpreted as an implementation of the trial-
and-error principle. Indeed, (5.15) corrects the previous guess (or approximation)
w(r−1) for the optimal weight vector ŵ by the correction term
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(α/m)

m∑

i=1

y(i)

1 + exp(y(i)wT x(i))︸ ︷︷ ︸
e(i)

x(i). (5.16)

The correction term (5.16) is a weighted average of the feature vectors x(i). The
feature vector x(i) is weighted by the factor (α/m) · e(i). These weighting factors are
a product of the global factor (α/m) that applies equally to all feature vectors x(i).
The global factor is multiplied by a datapoint-specific factor e(i) = y(i)

1+exp(y(i)wT x(i)) ,

which quantifies the error of the classifier h(w
(r−1))(x(i)) = (

w(r−1))T x(i) for a single
data point with true label y(i) ∈ {−1, 1} and features x(i) ∈ R

n .
We can use the sufficient condition (5.5) for the convergence of GD to guide

the choice of the step size α in Algorithm 2. To apply condition (5.5), we need to
determine the Hessian ∇2 f (w) matrix of the objective function f (w) underlying
logistic regression (see (5.13)). Some basic calculus reveals (see [5, Ch. 4.4.])

∇2 f (w) = (1/m)XTDX. (5.17)

Here, we used the feature matrix X = (
x(1), . . . , x(m)

)T ∈ R
m×n (see (4.6)) and the

diagonal matrix D = diag{d1, . . . , dm} ∈ R
m×m with diagonal elements

di = 1

1 + exp(−wT x(i))

(
1 − 1

1 + exp(−wT x(i))

)
. (5.18)

We highlight that, in contrast to the Hessian (5.12) of the objective function arising
in linear regression, the Hessian (5.17) of logistic regression varies with the weight
vectorw. This makes the analysis of Algorithm 2 and the optimal choice for the step
size α more difficult compared to Algorithm 1. At least, we can ensure convergence
of (5.15) (towards a solution of (5.13)) for the step sizeα = 1 if we normalize feature
vectors such that ‖x(i)‖ = 1. This follows from the fact the diagonal entries (5.18)
take values in the interval [0, 1].

5.6 Data Normalization

The convergence speed of the GD steps (5.4), i.e., the number of steps required
to reach the minimum of the objective function (4.5) within a prescribed accuracy,
depends crucially on the condition numberκ(XTX). This condition number is defined
as the ratio

κ(XTX) := λmax/λmin (5.19)

between the largest and smallest eigenvalue of the matrix XTX.
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The condition number is only well-defined if the columns of the feature matrix X
(see (4.6)), which are precisely the feature vectors x(i), are linearly independent. In
this case the condition number is lower bounded as κ(XTX) ≥ 1.

It can be shown that the GD steps (5.4) converge faster for smaller condition
number κ(XTX) [6]. Thus, GDwill be faster for datasets with a featurematrixX such
that κ(XTX) ≈ 1. It is therefore often beneficial to pre-process the feature vectors
using a normalization (or standardization) procedure as detailed in Algorithm 3.

Algorithm 3 “Data Normalization”

Input: labeled dataset D = {(x(i), y(i))}mi=1

1: remove sample means x̂ = (1/m)
∑m

i=1 x
(i) from features, i.e.,

x(i) := x(i) − x̂ for i = 1, . . . ,m

2: normalise features to have unit variance,

x̂ (i)j := x (i)j /σ̂ for j = 1, . . . , n and i = 1, . . . ,m

with the empirical (sample) variance σ̂2
j = (1/m)

∑m
i=1

(
x (i)j

)2

Output: normalized feature vectors {x̂(i)}mi=1

Algorithm 3 transforms the original feature vectors x(i) into new feature vectors
x̂(i) such that the new feature matrix X̂ = (̂x(1), . . . , x̂(m))T is better conditioned than
the original feature matrix, i.e., κ(X̂T X̂) < κ(XTX).

5.7 Stochastic GD

Consider the GD steps (5.4) for minimizing the empirical risk (5.1). The gradient
∇ f (w) of the objective function (5.1) has a particular structure. Indeed, this gradient
is a sum

∇ f (w) = (1/m)

m∑

i=1

∇ fi (w) with fi (w) := L((x(i), y(i)), h(w)). (5.20)

Each component of the sum (5.20) corresponds to one particular data points
(x(i), y(i)), for i = 1, . . . ,m. We need to compute a sum of the form (5.20) for
each new GD step (5.4).

Computing the sum in (5.20) can be computationally challenging for at least two
reasons. First, computing the sum is challenging for very large datasets with m in
the order of billions. Second, for datasets which are stored in different data centres
located all over the world, the summation would require a huge amount of network
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resources. Moreover, the finite transmission rate of communication networks limits
the rate by which the GD steps (5.4) can be executed.

The idea of stochastic gradient descent (SGD) is to replace the exact gradient
∇ f (w) (5.20) by an approximation that is easier to compute than a direct evaluation
of (5.20). The word “stochastic” in the name stochastic GD hints already at the
use of a stochastic approximation g(w) ≈ ∇ f (w). It turns out that using a gradient
approximation g(w) can result in significant savings in computational complexity
while sacrificing only a graceful degradation in the overall optimization accuracy.
The optimization accuracy (distance to minimum of f (w)) depends crucially on the
approximation error or “gradient noise”

ε := ∇ f (w) − g(w). (5.21)

The elementary step of any stochastic GD method is obtained from the gradient
descent step (5.4) by replacing the exact gradient ∇ f (w) with its approximation
g(w),

w(r+1) = w(r) − αr g
(
w(r)

)
, (5.22)

As the notation in (5.22) indicates, stochastic gradient descentmethods use a learning
rate αr that varies between different iterations.

To avoid a detrimental accumulation of the gradient noise (5.21) during the
stochastic gradient descent updates (5.22), many stochastic gradient descent methods
decrease the learning rate α as the iterations proceed. The sequence αr of learning
rate is referred to as a learning rate schedule [1, Chap. 8]. One possible choice for
the learning rate schedule is αr :=1/r [7]. Exercise 5.2 discusses conditions on the
learning rate schedule that guarantee convergence of the updates stochastic gradient
descent to the minimum of f (w).

The approximate (“noisy”) gradient g(w) can be obtained by different random-
ization strategies. The most basic form of stochastic gradient descent constructs the
gradient approximation g using a randomly selected component ∇ fî (w) in (5.20).
The index î is chosen randomly from the set {1, . . . ,m}. The resulting Stochastic
gradient descent method then repeats the update

w(r+1) = w(r) − α∇ fîr (w
(r)), (5.23)

sufficiently often. Every update (5.23) uses a fresh randomly chosen index îr , i.e.,
the indices îr used in different iterations are statistically independent.

Note that (5.23) replaces the summation over all training datapoints in the gradient
descent step (5.4) just by the random selection of a single component of the sum.
The resulting savings in computational complexity can be significant in applications
where a large number of datapoints is stored in a distributed fashion. However, this
saving in computational complexity comes at the cost of introducing a non-zero
gradient noise
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εr
(5.21)= ∇ f (w(r)) − g

(
w(r)

)

= ∇ f (w(r)) − ∇ fîr (w). (5.24)

Mini-BatchStochastic gradient descent.Let us nowdiscuss a variant of stochas-
tic gradient descent that aims at reducting the approximation error (gradient noise)
(5.24) occurring during the basic stochastic gradient descent update (5.23). The idea
is to use more than one randomly selected component ∇ fi (w) (see (5.20)) for con-
structing a gradient approximation. In particular, given a batch size B, we randomly
select a subset B = {i1, . . . , iB} (a “batch”) which is used to construct the gradient
approximation

g
(
w

) = (1/B)
∑

i ′∈B
∇ fi ′(w). (5.25)

Algorithm 4 summarizes mini-batch stochastic gradient descent which uses the gra-
dient approximation (5.25) in the generic stochastic gradient descent update (5.22).

Algorithm 4Mini-Batch stochastic gradient descent
Input: components fi (w), for i = 1, . . . ,m of objective function f (w) = ∑m

i=1 fi (w) ; batch size
B; learning rate schedule αr > 0.

Initialize: set w(0) :=0; set iteration counter r :=0
1: repeat
2: randomly select a batch B = {i1, . . . , iB} ⊆ {1, . . . ,m} of indices that select a subset of

components fi
3: compute an approximate gradient g

(
w(r)

)
using (5.25)

4: r := r + 1 (increase iteration counter)
5: w(r) := w(r−1) − αr g

(
w(r−1)

)

6: until stopping criterion met
Output: w(r) (which approximates argminw∈Rn f (w) ))

Note that Algorithm 4 includes the basic stochastic gradient descent variant (5.23)
as a special case when using batch size B = 1. Another special case of Algorithm 4
is gradient descent (5.4), which is obtained for the batch size B = m.

OnlineLearningwith stochastic gradient descent.The basic stochastic gradient
descent iteration (5.26) assumes that the training data is already collected but so large
that the sum in (5.20) is computationally intractable. Another variant of stochastic
gradient descent is obtained for sequential (time-series) data. In particular, consider
data points that are gathered sequentially, one new datapoint

(
x(t), y(t)

)
at each time

instant t = 1, 2, . . . .. For such sequential data, we can use a slight modification of
the stochastic gradient descent update (5.22) to obtain an online learning method
(see Sect. 4.7). This online stochastic gradient descent algorithm computes, at each
time instant t ,

w(t+1) := w(t) − αt∇ ft+1(w(t)). (5.26)
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5.8 Exercises

Exercise 5.1 (Use Knowledge About Problem Class) Consider the space P of
sequences f = ( f [0], f [1], . . .) that have the following properties

• they are monotone increasing, f [r ′] ≥ f [r ] for any r ′ ≥ r and f ∈ P
• a change point r , where f [r ] �= f [r+1] can only be at integer multiples of 100,
e.g., r =100 or r =300.

Given some unknown function f ∈ P and starting point r0 the problem is to find the
minimum value of f as quickly as possible.We consider iterative algorithms that can
query the function at some point r to obtain the values f [r ], f [r−1] and f [r+1].
Exercise 5.2 (Learning rate Schedule for stochastic gradient descent) Let us
learn a linear hypothesis h(x) = wT x using data points that arrive sequentially at
discrete time instants t = 0, 1, . . .. At time t , we gather a new data point

(
x(r), y(r)

)
.

The data points can be modelled as realizations of i.i.d. copies of a random data
point

(
x, y

)
. The probability distribution of the features x is a standard multivariate

normal distributionN (0, I). The label of a random datapoint is related to its features
via y = wT x + εwith some fixed but unknown “true” weight vectorw. The additive
noise ε ∼ N (0, 1) follows a standard normal distribution.We use stochastic gradient
descent to learn the weight vector w of a linear hypothesis,

w(t+1) = w(t) − αt
((
w(t)

)T
x(t) − y(t)

)
x(t). (5.27)

with learning rate scheduleαt = β/tγ . Note that we compute one stochastic gradient
descent iteration (5.27) for each new time step t . What conditions on the hyper-
parameters β, γ ensure that lim

t→∞w(t) = w in distribution?

Exercise 5.3 (ImageNet.)The “ImageNet” database containsmore than 106 images
[8]. These images are labeled according to their content (e.g., does the image show
a dog?). Let us assume that each image is stored as a file of at least 4 kilobytes. We
want to learn a classifier that allows to predict if an image shows a dog or not. To learn
this classifier we run gradient descent for logistic regression on a small computer
that has 32 kilobytes memory and is connected to the internet with bandwidth of 1
Mbit/s. Therefore, for each single gradient descent update (5.4) it must essentially
download all images in ImageNet. How long would such a single gradient descent
update take?

Exercise 5.4 (Apple orNoApple?) Consider datapoints representing images. Each
image is characterized by the RGB values (value range 0, . . . , 255) of 1024 × 1024
pixels, which we stack into a feature vector x ∈ R

n . We assign each image the label
y = 1 if it shows an apple and y = −1 if it does not show an apple.

We use logistic regression to learn a linear hypothesis h(x) = wT x for classifying
an image according to ŷ = 1 if h(x) ≥ 0. We use a training set of m = 1010 labeled
images which are stored in the cloud. We implement the ML method on our own
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laptop which is connected to the internet with a rate of at most 100 Mbps. Unfortu-
nately we only store at most five images on our computer. How long does one single
gradient descent step take at least?

Exercise 5.5 (Feature Normalization To Speed Up gradient descent) Consider
the dataset with feature vectors x(1) = (100, 0)T ∈ R

2 and x(2) = (0, 1/10)T which
we stack into the matrix X = (x(1), x(2))T . What is the condition number of XTX?
What is the condition number of

(
X̂

)T
X̂with thematrix X̂ = (̂x(1), x̂(2))T constructed

from the normalized feature vectors x̂(i) delivered by Algorithm 3.
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Chapter 6
Model Validation and Selection

Chapter 4 discussed ERM as a principled approach to learning a good hypothesis out
of a hypothesis space or model. ERM based methods learn a hypothesis ĥ ∈ H that
incurs minimum average loss on some labeled data points that serve as the training
set.1 We refer to the average loss incurred by a hypothesis on the training set as the
training error. The minimum average loss achieved by a hypothesis that solves the
ERM might be referred to as the training error of the overall ML method.

ERMmakes sense only if the training error of a hypothesis is a good indicator for
its loss incurred on data points outside the training set.Whether the training error of a
hypothesis is a reliable indicator for its performance outside the training set depends
on the statistical properties of the data points and on the hypothesis space used by
the ML method.

ML methods often use hypothesis spaces with a large effective dimension (see
Sect. 2.2). As an example consider linear regression (see Sect. 3.1) with data points
having a vast number n of features. The effective dimension of the linear hypothesis
space (3.1), which is used by linear regression, is equal to the number n of features.
Modern technology allows to collect a huge number of features about individual data
points which implies, in turn, that the effective dimension of (3.1) is huge. Another
example of high-dimensional hypothesis spaces are deep learning methods whose
hypothesis spaces are constituted by all maps represented by some artificial neural
network with billions of tunable weights.

A high-dimensional hypothesis space is typically very likely to contain a hypoth-
esis that fits perfectly any given training set. Such a hypothesis achieves a very small
training error but might incur a large loss when predicting the labels of data points
outside the training data. The (minimum) training error achieved by a hypothesis
learnt by ERM can be highly misleading. We say that a ML method, such as linear

1 In statistics, the training set is also referred to as a sample.
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regression using too many features, overfits the training data when it learns a hypoth-
esis (e.g., via ERM) that has small training error but incurs much larger loss outside
the training set.

Section 6.1 shows why linear regression will most likely overfit to the training
set as soon as the number of features of a data point exceeds the size of the training
set. Section 6.2 demonstrates how to validate a learnt hypothesis by computing its
average loss on data points which are different from the training set. The data points
used to validate the hypothesis are referred to as the validation set. When a ML
method is overfitting the training set, it will learn a hypothesis whose training error
is much smaller than the validation error. Thus, we can detect if aMLmethod overfits
by comparing its training and validation errors (see Fig. 6.1).

We can use the validation error not only to detect if a ML method overfits. The
validation error can also be used as a qualitymeasure for an entire hypothesis space or
model. This is analogous to the concept of a loss function that allows us to evaluate the
quality of a hypothesis h∈H. Section 6.3 shows how to do model selection based on
comparing the validation errors obtained for different candidate models (hypothesis
spaces).

Section 6.4 uses a simple probabilistic model for the data to study the relation
between training error and the expected loss or risk of a hypothesis. The analysis of
the probabilistic model reveals the interplay between the data, the hypothesis space
and the resulting training and validation error of a ML method.

Section 6.5 presents the bootstrap method as a simulation-based alternative to
the analysis of Sect. 6.4.While Sect. 6.4 assumes a particular probability distribution
of data points, the bootstrap method does not require the specification of a probabil-
ity distribution that underlies the data. The bootstrap method allows us to analyze
statistical fluctuations in the learning process that arise from using different training
sets.

As indicated in Fig. 6.1, for some ML applications, we might have a baseline
level (or benchmark) for the achievable performance of ML methods. Such a base-
line might be obtained from existing ML methods, human performance levels or

training error validation error

some benchmark
(Bayes risk, human
performance,. . .)

Fig. 6.1 To diagnoseMLmethodswe compare the trainingwith validation error. Ideally both errors
are on the same level as the baseline level (if known)
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from a probabilistic model (see Sect. 6.4). Section 6.6 details how the comparison
between training and validation error with some benchmark error level informs pos-
sible improvements of the ML method. These improvements might be obtained by
collecting more data points, using more features of data points or by changing the
model (hypothesis space).

Having a baseline level also allows us to tell if a ML method already provides
satisfactory results. If the training and validation error of a ML method are on the
same level as the error of the theoretically optimal Bayes estimator, there is little
point in modifying the ML method as it already performs (nearly) optimal.

6.1 Overfitting

We now have a closer look at the occurrence of overfitting in linear regression which
is one of the ML method discussed in Sect. 3.1. Linear regression methods learn a
linear hypothesis h(x) = wT x which is parametrized by the weight vector w ∈ R

n .
The learnt hypothesis is then used to predict the numeric label y ∈ R of a data point
based on its feature vector x ∈ R

n .
Linear regression aims at finding aweight vector ŵwithminimumaverage squared

error loss incurred on a training set

D = {(

x(1), y(1)
)

, . . . ,
(

x(m), y(m)
)}

.

The training set consists of m data points
(

x(i), y(i)
)

, for i = 1, . . . ,m, with known
label values y(i). We stack the feature vectors x(i) and labels y(i) of the training data
into the feature matrixX = (x(1), . . . , x(m))T and label vector y = (y(1), . . . , y(m))T .

The ERM (4.13) of linear regression is solved by any weight vector ŵ that solves
(4.11). The (minimum) training error of the hypothesis h(ŵ) is obtained as

̂L(h(ŵ) | D)
(4.4)= min

w∈Rn
̂L(h(w)|D)

(4.13)= ‖(I − P)y‖2. (6.1)

Here, we used the orthogonal projection matrix P on the linear span

span{X} = {

Xa : a ∈ R
n
} ⊆ R

m,

of the feature matrix X = (x(1), . . . , x(m))T ∈ R
m×n .

In many ML applications we have access to a huge number of individual features
to characterize a data point. As a point in case, consider a data point which is a snap-
shot obtained from a modern smartphone camera. These cameras have a resolution
of several megapixels. Here, we can use millions of pixel colour intensities as its
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features. For such applications, it is common to have more features for data points
than the size of the training set,

n ≥ m. (6.2)

Whenever (6.2) holds, the feature vectors x(1), . . . , x(m) ∈ R
n of the data points

in D are typically linearly independent. As a case in point, if the feature vectors
x(1), . . . , x(m) ∈ R

n are realizations of i.i.d. randomvariables with a continuous prob-
ability distribution, these vectors are linearly independent with probability one [1].

If the feature vectors x(1), . . . , x(m) ∈ R
n are linearly independent, the span of

the feature matrix X = (x(1), . . . , x(m))T coincides with R
m which implies, in turn,

P = I. Inserting P = I into (4.13) yields

̂L(h(ŵ) | D) = 0. (6.3)

As soon as the number m = |D| of training data points does not exceed the number
n of features that characterize data points, there is (with probability one) a linear
predictor h(ŵ) achieving zero training error(!).

While the hypothesis h(ŵ) achieves zero training error, it will typically incur a non-
zero average prediction error y − h(ŵ)(x) on data points (x, y) outside the training
set (see Fig. 6.2). Section 6.4 will make this statement more precise by using a
probabilistic model for the data points within and outside the training set.

Note that (6.3) also applies if the features x and labels y of data points are com-
pletely unrelated. Consider a ML problem with data points whose labels y and fea-
tures are realizations of a random variable that are statistically independent. Thus,
in a very strong sense, the features x contain no information about the label of a data
point. Nevertheless, as soon as the number of features exceeds the size of the training
set, such that (6.2) holds, linear regression will learn a hypothesis with zero training
error.

We can easily extend the above discussion about the occurrence of overfitting
in linear regression to other methods that combine linear regression with a feature
map. Polynomial regression, using data points with a single feature z, combines
linear regression with the feature map z �→ �(z) := (

z0, . . . , zn−1
)T

as discussed in
Sect. 3.2.

It can be shown that whenever (6.2) holds and the features z(1), . . . , z(m) of
the training data are all different, the feature vectors x(1) := �

(

z(1)
)

, . . . , x(m) :=
�

(

z(m)
)

are linearly independent. This implies, in turn, that polynomial regression
is guaranteed to find a hypothesis with zero training error whenever m ≤ n and the
data points in the training set have different feature values.
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Fig. 6.2 Polynomial regression learns a polynomial map with degree n − 1 by minimizing its
average loss on a training set (blue crosses). Using high-degree polynomials (large n) results in a
small training error. However, the learnt high-degree polynomial performs poorly on data points
outside the training set (orange dots)

6.2 Validation

Consider an ML method that uses ERM (4.3) to learn a hypothesis ĥ ∈ H out of the
hypothesis space H. The discussion in Sect. 6.1 revealed that the training error of a
learnt hypothesis ĥ can be a poor indicator for the performance of ĥ for data points
outside the training set. The hypothesis ĥ tends to “look better” on the training set
over which it has been tuned within ERM. The basic idea of validating the predictor
ĥ is simple: after learning ĥ using ERM on a training set, compute its average loss
on data points which have not been used in ERM. By validation we refer to the
computation of the average loss on data points that have not been used in ERM.

Assume we have access to a dataset of m data points,

D = {(

x(1), y(1)
)

, . . . ,
(

x(m), y(m)
)}

.

Each data point is characterized by a feature vector x(i) and a label y(i). Algorithm 5
outlines how to learn and validate a hypothesis h ∈ H by splitting the datasetD into
a training set and a validation set (see Fig. 6.3).

The random shuffling in step 1 of Algorithm 5 ensures that the order of the data
points has no meaning. This is important in applications where the data points are
collected sequentially over time and consecutive data points might be correlated. We
could avoid the shuffling step, if we construct the training set by randomly choosing
a subset of size mt instead of using the first mt data points.
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x(1), y(1)
)

x(2), y(2)
)

x(3), y(3)
)

D(train)

x(4), y(4)
)

x(5), y(5)
)

D(val)

Fig. 6.3 We split the datasetD into two subsets, a training setD(train) and a validation setD(val).
We use the training set to learn (find) the hypothesis ĥ with minimum empirical risk̂L(ĥ|D(train)) on
the training set (4.3). We then validate ĥ by computing its average losŝL(ĥ|D(val)) on the validation
setD(val). The average loss ̂L(ĥ|D(val)) obtained on the validation set is the validation error. Note
that ĥ depends on the training setD(train) but is completely independent of the validation setD(val)

Algorithm 5 Validated ERM

Input: model H, loss function L , dataset D = {(

x(1), y(1)
)

, . . . ,
(

x(m), y(m)
)}

; split ratio ρ
1: randomly shuffle the data points in D
2: create the training set D(train) using the first mt =	ρm
 data points,

D(train) = {(

x(1), y(1)), . . . ,
(

x(mt ), y(mt )
)}

.

3: create the validation set D(val) by the mv = m − mt remaining data points,

D(val) = {(

x(mt+1), y(mt+1)), . . . ,
(

x(m), y(m)
)}

.

4: learn hypothesis ĥ via ERM on the training set,

ĥ := argmin
h∈H

̂L
(

h|D(train)) (6.4)

5: compute the training error

Et := ̂L
(

ĥ|D(train)) = (1/mt )

mt
∑

i=1

L((x(i), y(i)), ĥ). (6.5)

6: compute the validation error

Ev := ̂L
(

ĥ|D(val)) = (1/mv)

m
∑

i=mt+1

L((x(i), y(i)), ĥ). (6.6)

Output: learnt hypothesis ĥ, training error Et , validation error Ev
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6.2.1 The Size of the Validation Set

The choice of the split ratio ρ ≈ mt/m in Algorithm 5 is often based on trial and
error. We try out different choices for the split ratio and pick the one resulting in the
smallest validation error. It is difficult to make a precise statement on how to choose
the split ratio which applies broadly [2]. This difficulty stems from the fact that the
optimal choice for ρ depends on the precise statistical properties of the data points.

To obtain a lower bound on the required size of the validation set, we need a
probabilistic model for the data points. Let us assume that data points are realizations
of i.i.d. random variables with the same probability distribution p(x, y). Then the
validation error Ev (6.6) becomes a realization of a random variable. The expectation
(or mean) E{Ev} of this RV is precisely the risk E{L((x, y), ĥ)} of ĥ (see (4.1)).

The random validation error Ev fluctuates around its mean. We can quantify this
fluctuations using the variance

σ2
Ev

:= E
{(

Ev − E{Ev}
)2}

.

Note that the validation error is the average of the realizations L((x(i), y(i)), ĥ) of i.i.d.
random variables. The probability distribution of the random variable L((x, y), ĥ)

is determined by the probability distribution p(x, y), the choice of loss function and
the hypothesis ĥ. In general, we do not know p(x, y) and, in turn, also do not know
the probability distribution of L((x, y), ĥ).

Ifweknowanupper boundU on thevarianceof the (random) loss L((x(i), y(i)), ĥ),
we can bound the variance of Ev as

σ2
Ev

≤ U/mv.

We can then, in turn, ensure that the variance σ2
Ev

of the validation error Ev does not
exceed a given threshold η, say η = (1/100)E2

t , by using a validation set of size

mv ≥ U/η. (6.7)

The lower bound (6.7) is only useful if we can determine an upper bound U
on the variance of the random variable L((x, y), ĥ) where

(

x, y
)

is a random
variable with probability distribution p(x, y). An upper bound on the variance of
L((x, y), ĥ) can be derived using probability theory if we know an accurate proba-
bilistic model p(x, y) for the data points. Such a probabilistic model might be pro-
vided by application-specific scientific fields such as biology or psychology. Another
option is to estimate the variance of L((x, y), ĥ) using the sample variance of the
actual loss values L((x(1), y(1)), ĥ), . . . , L((x(m), y(m)), ĥ)obtained for the datasetD.
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fold 1 D(val)=D1

fold 2 D(val)=D2

fold 3 D(val)=D3

fold 4 D(val)=D4

fold 5 D(val)=D5

dataset D = x(1), y(1)
)
, . . . , x(m), y(m)

)}

Fig. 6.4 Illustration of k-fold CV for k = 5. We evenly partition the entire dataset D into k = 5
subsets (or folds)D1, . . . ,D5. We then repeat the validated ERMAlgorithm 5 for k = 5 times. The
bth repetition uses the bth fold Db as the validation set and the remaining k−1(= 4) folds as the
training set for ERM (4.3)

6.2.2 k-Fold Cross Validation

Algorithm 5 uses the most basic form of splitting a given dataset D into a training
and a validation set. Many variations and extensions of this basic splitting approach
have been proposed and studied (see [3] and Sect. 6.5). One very popular extension
of the single split into training and validation set is known as k-fold cross-validation
(CV) [4, Sec. 7.10]. We summarize k-fold CV in Algorithm 6 below.

Figure 6.4 illustrates the key principle behind k-fold CV which is to divide the
entire dataset evenly into k subsets which are referred to as folds. The learning
(via ERM) and validation of a hypothesis out of a given hypothesis space H is then
repeated k times. During each repetition, we use one fold as the validation set and the
remaining k − 1 folds as a training set. We then average the training and validation
error over all repetitions.

The average (over all k folds) validation error delivered by k-fold CV is a more
robust estimator for the expected loss or risk (4.1) compared to the validation error
obtained from a single split. Consider a small dataset and using a single split into
training and validation set. Wemight then be very unlucky and choose data points for
the validation set which are outliers and not representative of the overall distribution
of the data.

6.2.3 Imbalanced Data

The simple validation approach discussed above requires the validation set to be a
good representative for the overall statistical properties of the data. This might not be
the case in applications with discrete valued labels and some of the label values being
very rare. We might then be interested in having a good estimate of the conditional
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Algorithm 6 k-fold CV ERM

Input: model H, loss function L , dataset D = {(

x(1), y(1)
)

, . . . ,
(

x(m), y(m)
)}

; number k of folds
1: randomly shuffle the data points in D
2: divide the shuffled dataset D into k folds D1, . . . ,Dk of size B = 	m/k
,
D1={(

x(1), y(1)), . . . ,
(

x(B), y(B)
)}, . . . ,Dk ={(

x((k−1)B+1), y((k−1)B+1)), . . . ,
(

x(m), y(m)
)}
(6.8)

3: for fold index b = 1, . . . , k do
4: use bth fold as the validation set D(val) = Db
5: use rest as the training set D(train) = D \ Db
6: learn hypothesis ĥ via ERM on the training set,

ĥ(b) := argmin
h∈H

̂L
(

h|D(train)) (6.9)

7: compute the training error

E (b)
t := ̂L

(

ĥ|D(train)) = (1/
∣

∣D(train)
∣

∣)
∑

i∈D(train)

L((x(i), y(i)), h). (6.10)

8: compute validation error

E (b)
v := ̂L

(

ĥ|D(val)) = (1/
∣

∣D(val)
∣

∣)
∑

i∈D(val)

L((x(i), y(i)), ĥ). (6.11)

9: end for
10: compute average training and validation errors

Et := (1/k)
k

∑

b=1

E (b)
t , and Ev := (1/k)

k
∑

b=1

E (b)
v

11: pick a learnt hypothesis ĥ := ĥ(b) for some b ∈ {1, . . . , k}
Output: learnt hypothesis ĥ; average training error Et ; average validation error Ev

risks E{L((x, y), h)|y = y′} where y′ is one of the rare label values. This is more
than requiring a good estimate for the risk E{L((x, y), h)}.

Consider data points characterized by a feature vector x and binary label y ∈
{−1, 1}. Assume we aim at learning a hypothesis h(x) = wT x to classify data points
via ŷ = 1 if h(x) ≥ 0 while ŷ = −1 otherwise. The learning is based on a datasetD
which contains only one single (!) data point with y = −1. If we then split the dataset
into training and validation set, it is with high probability that the validation set does
not include any data point with y = −1. This cannot happen when using k-fold CV
since the single data point must be in one of the validation folds. However, even
using k-fold CV for such an imbalanced dataset is problematic since we evaluate the
performance of a hypothesis h(x) using only one single data point with y = −1. The
validation error will then be dominated by the loss of h(x) incurred on data points
with the (majority) label y = 1.

When learning and validating a hypothesis using imbalanced data, it might be
useful to generate synthetic data points to enlarge the minority class. This can be
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done using data augmentation techniques which we discuss in Sect. 7.3. Another
option is to use a loss function that takes the different frequency of label values into
account.

Consider an imbalanced dataset of size m = 100, which contains 90 data points
with label y = 1 but only 10 data points with label y = −1. We might then
put more weight on wrong predictions obtained for the minority class (of data
points with y = −1). This can be done by using a much larger value for the loss
L((x, y = −1), h(x) = 1) than for the loss L((x, y = 1), h(x) = −1). Remember,
the loss function is a design choice and can be freely set by the ML engineer.

6.3 Model Selection

Chapter 3 illustrated how many well-known ML methods are obtained by different
combinations of a hypothesis space or model, loss function and data representation.
While for many ML applications there is often a natural choice for the loss function
and data representation, the right choice for the model is typically less obvious. This
chapter shows how to use the validation methods of Sect. 6.2 to choose between
different candidate models.

Consider data points characterized by a single numeric feature x ∈ R and numeric
label y ∈ R. If we suspect that the relation between feature x and label y is non-
linear, we might use polynomial regression which is discussed in Sect. 3.2. Poly-
nomial regression uses the hypothesis space H(n)

poly with some maximum degree n.
Different choices for the maximum degree n yield a different hypothesis space:
H(1) = H(0)

poly,H(2) = H(1)
poly, . . . ,H(M) = H(M−1)

poly .
Another ML method that learns non-linear hypothesis map is Gaussian basis

regression (see Sect. 3.5). Here, different choices for the variance σ and shifts μ of
the Gaussian basis function (3.12) result in different hypothesis spaces. For example,
H(1) = H(2)

Gauss with σ = 1 and μ1 = 1 and μ2 = 2, H(2) = H(2)
Gauss with σ = 1/10,

μ1 = 10, μ2 = 20.
Algorithm 7 summarizes a simple method to choose between different candidate

modelsH(1),H(2), . . . ,H(M). The idea is to first learn and validate a hypothesis ĥ(l)

separately for each modelH(l) using Algorithm 6. For each modelH(l), we learn the
hypothesis ĥ(l) via ERM (6.4) and then compute its validation error E (l)

v (6.6). We

then choose the hypothesis ĥ(l̂) from those modelH(l̂) which resulted in the smallest
validation error E (l̂)

v = minl=1,...,M E (l)
v .

The “work-flow” of Algorithm 7 is quite similar to the work-flow of ERM. The
idea of ERM is to learn a hypothesis out of a set of different candidates (the hypothesis
space). The quality of a particular hypothesis h is measured using the (average) loss
incurred on some training set. We use a similar principle for model selection but on
a higher level. Instead of learning a hypothesis within a hypothesis space, we choose
(or learn) a hypothesis space within a set of candidate hypothesis spaces. The quality
of a given hypothesis space is measured by the validation error (6.6). To determine
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the validation error of a hypothesis space, we first learn the hypothesis ĥ ∈ H via
ERM (6.4) on the training set. Then, we obtain the validation error as the average
loss of ĥ on the validation set.

The final hypothesis ĥ delivered by the model selection Algorithm 7 not only
depends on the training set used in ERM (see (6.9)). This hypothesis ĥ has also been
chosen based on its validation error which is the average loss on the validation set in
(6.11). Indeed, we compared this validation error with the validation errors of other
models to pick the model H(l̂) (see step 10) which contains ĥ. Since we used the
validation error (6.11) of ĥ to learn it, we cannot use this validation error as a good
indicator for the general performance of ĥ.

To estimate the general performance of the final hypothesis ĥ delivered by Algo-
rithm 7 we must try it out on a test set. The test set, which is constructed in step 3
of Algorithm 7, consists of data points that have neither been used within training
(6.9) or validation (6.11) of the candidate modelsH(1), . . . ,H(M). The average loss
of the final hypothesis on the test set is referred to as the test error. The test error is
computed in the step 12 of Algorithm 7.

Algorithm 7Model Selection

Input: list of candidate models H(1), . . . ,H(M), loss function L , dataset D =
{(

x(1), y(1)
)

, . . . ,
(

x(m), y(m)
)}

; number k of folds, test fraction ρ
1: randomly shuffle the data points in D
2: determine size m′ := 	ρm
 of test set
3: construct test set

D(test) = {(

x(1), y(1)), . . . ,
(

x(m′), y(m′))}

4: construct the set used for training and validation,

D(trainval) = {(

x(m′+1), y(m′+1)), . . . ,
(

x(m), y(m)
)}

5: for model index l = 1, . . . , M do
6: run Algorithm 6 using H = H(l), dataset D = D(trainval), loss function L and k folds
7: Algorithm 6 delivers hypothesis ĥ and validation error Ev

8: store learnt hypothesis ĥ(l) := ĥ and validation error E (l)
v := Ev

9: end for
10: pick model H(l̂) with minimum validation error E (l̂)

v =minl=1,...,M E (l)
v

11: define optimal hypothesis ĥ = ĥ(l̂)

12: compute test error

E (test) := ̂L
(

ĥ|D(test)) = (1/
∣

∣D(test)
∣

∣)
∑

i∈D(test)

L((x(i), y(i)), ĥ). (6.12)

Output: hypothesis ĥ; training error E (l̂)
t ; validation error E (l̂)

v , test error E (test).

Sometimes it is beneficial to use different loss functions for the training and
the validation of a hypothesis. As an example, consider the ML methods logistic
regression and the support vector machine which have been discussed in Sects. 3.6
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and 3.7, respectively. Both methods use the same model which is the space of linear
hypothesis maps h(x) = wT x. The main difference between these two methods is
the choice for the loss function used to measure the quality of a hypothesis. Logistic
regression minimizes the (average) logistic loss (2.12) on the training set to learn
the hypothesis h(1)(x) = (

w(1)
)T
x with a weight vector w(1). The support vector

machine instead minimizes the (average) hinge loss (2.11) on the training set to learn
the hypothesis h(2)(x) = (

w(2)
)T
x with a weight vector w(2). It would be difficult to

compare the hypotheses h(1)(x) and h(2)(x) using different loss functions to compute
their validation errors. For a comparison, we could instead compute the validation
errors for h(1)(x) and h(2)(x) using the average 0/1 loss (2.9) (“accuracy”).

Algorithm 7 requires as one of its inputs a given list of candidate models. The
longer this list, the more computation is required from Algorithm 7. Sometimes it
is possible to prune the list of candidate models by removing models that are very
unlikely to have minimum validation error.

Consider polynomial regression which uses as the model the spaceH(r)
poly of poly-

nomials with maximum degree r (see (3.4)). For r = 1, H(r)
poly is the space of poly-

nomials with maximum degree one (which are linear maps), h(x) = w2x + w1.
For r = 2, H(r)

poly is the space of polynomials with maximum degree two, h(x) =
w3x2 + w2x + w1.

The polynomial degree r parametrizes a nested set of models,

H(1)
poly ⊂ H(2)

poly ⊂ . . . .

For each degree r , we learn a hypothesis h(r) ∈ H(r)
poly with minimum average loss

(training error) E (r)
t on a training set (see (6.5)). To validate the learnt hypothesis h(r),

we compute its average loss (validation error) E (r)
v on a validation set (see (6.6)).

Figure 6.5 depicts the typical dependency of the training and validation errors
on the polynomial degree r . The training error E (r)

t decreases monotonically with
increasing degree r . To understand why this is the case, consider the two specific
choices r = 3 and r = 5 with corresponding models H(3)

poly and H(5)
poly. Note that

H(3)
poly ⊂ H(5)

poly since any polynomial with degree not exceeding 3 is also a polyno-
mial with degree not exceeding 5. Therefore, the training error (6.5) obtained when
minimizing over the larger model H(5)

poly can only decrease but never increase com-

pared to (6.5) using the smaller model H(3)
poly

Figure 6.5 indicates that the validation error E (r)
v (see (6.6)) behaves very different

compared to the training error E (r)
t . Starting with degree r = 0, the validation error

first decreases with increasing degree r . As soon as the degree r is increased beyond
a critical value, the validation error starts to increase with increasing r . For very large
values of r , the training error becomes almost negligible while the validation error
becomes very large. In this regime, polynomial regression overfits the training set.
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Fig. 6.5 The training error and validation error obtained from polynomial regression using different
values r for the maximum polynomial degree

Fig. 6.6 A hypothesis ĥ which is a polynomial with degree not larger than r = 9. The hypothesis
has been learnt by minimizing the average loss on the training set. Note the fast rate of the change
of ĥ for feature values x ≈ 0

Figure 6.6 illustrates the overfitting of polynomial regression when using a max-
imum degree that is too large. In particular, Fig. 6.6 depicts a learnt hypothesis
which is a degree 9 polynomial that fits very well the training set, resulting in a very
small training error. To achieve this low training error the resulting polynomial has
an unreasonable high rate of change for feature values x ≈ 0. This results in large
prediction errors for validation data points with feature values x ≈ 0.
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6.4 A Probabilistic Analysis of Generalization

More Data Beats Clever Algorithms?; More Data Beats Clever Feature Selection?
A key challenge in ML is to ensure that a hypothesis that predicts well the labels

on a training set (which has been used to learn that hypothesis) will also predict well
the labels of data points outside the training set.We say that aMLmethod generalizes
if a small loss on the training set implies small loss on data points outside the training
set.

To study the generalization of linear regression methods (see Sect. 3.1), we will
use a probabilistic model for the data. We interpret data points as i.i.d. realizations of
random variables that have the same distribution as a random data point z = (x, y).
The random feature vector x is assumed to have zero mean and covariance being the
identity matrix, i.e., x ∼ N (0, I). The label y of a random data point is related to its
features x via a linear Gaussian model

y = w̄T x + ε, with noise ε ∼ N (0,σ2). (6.13)

We assume the noise variance σ2 fixed and known. This is a simplifying assumption
as in practice, we would need to estimate the noise variance from data [5]. Note that,
within our probabilistic model, the error component ε in (6.13) is intrinsic to the
data and cannot be overcome by any ML method. We highlight that the probabilistic
model for the observed data points is just a modelling assumption. This assumption
allows us to study some fundamental behaviour ofMLmethods. There are principled
methods (“tests”) that allow to determine if a given dataset can be accuratelymodelled
using (6.13) [6].

We predict the label y from the features x using a linear hypothesis h(x) that
depends only on the first r features x1, . . . , xr . Thus, we use the hypothesis space

H(r) = {h(w)(x) = (wT , 0)x with w ∈ R
r }. (6.14)

The design parameter r determines the size of the hypothesis spaceH(r) and, in turn,
the computational complexity of learning the optimal hypothesis in H(r).

For r < n, the hypothesis space H(r) is a proper subset of the space of linear
predictors (2.4) used within linear regression (see Sect. 3.1). Note that each element
h(w) ∈ H(r) corresponds to a particular choice of the weight vector w ∈ R

r .
The quality of a particular predictor h(w) ∈ H(r) is measured via the mean squared

error ̂L(h(w) | D(train)) incurred on the labeled training set D(train) = {x(i), y(i)}mt
i=1.

Within our toymodel (see (6.13), (6.15) and (6.16)), the trainingdata points (x(i), y(i))

are i.i.d. copies of the data point z = (x, y).
The data points in the training dataset and any other data points outside the training

set are statistically independent. However, the training data points (x(i), y(i)) and any
other data point (x, y) are drawn from the same probability distribution, which is a
multivariate normal distribution,

x, x(i) i.i.d. with x, x(i) ∼ N (0, I) (6.15)
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and the labels y(i), y are obtained as

y(i) = w̄T x(i) + ε(i), and y = w̄T x + ε (6.16)

with i.i.d. noise ε, ε(i) ∼ N (0,σ2).
As discussed in Chap. 4, the training error ̂L(h(w) | D(train)) is minimized by the

predictor h(ŵ)(x) = ŵT Ir×nx, with weight vector

ŵ = (XT
r Xr )

−1XT
r y (6.17)

with feature matrix Xr and label vector y defined as

Xr =(x(1), . . . , x(mt))T In×r ∈R
mt×r , and

y=(

y(1), . . . , y(mt)
)T ∈R

mt . (6.18)

It will be convenient to tolerate a slight abuse of notation and denote both, the
length-r vector (6.17) as well as the zero padded length-n vector (ŵT , 0)T , by ŵ.
This allows us to write

h(ŵ)(x) = ŵT x. (6.19)

We highlight that the formula (6.17) for the optimal weight vector ŵ is only valid
if the matrix XT

r Xr is invertible. However, it can be shown that within our toy model
(see (6.15)), this is true with probability one whenever m t ≥ r . In what follows, we
will consider the case of having more training samples than the dimension of the
hypothesis space, i.e., m t > r such that the formula (6.17) is valid (with probability
one). The case m t ≤ r will be studied in Chap. 7.

The optimal weight vector ŵ (see (6.17)) depends on the training data D(train) via
the feature matrix Xr and label vector y (see (6.18)). Therefore, since we model the
training data as random, the weight vector ŵ (6.17) is a random quantity. For each
different realization of the training dataset, we obtain a different realization of the
optimal weight ŵ.

The probabilistic model (6.13) relates the features x of a data point to its label
y via some (unknown) true weight vector w̄. Intuitively, the best linear hypothesis
would be h(x) = ŵT x with weight vector ŵ = w̄. However, in general this will not
be achievable since we have to compute ŵ based on the features x(i) and noisy labels
y(i) of the data points in the training dataset D.

In general, learning the weights of a linear hypothesis by ERM (4.5) results in a
non-zero estimation error

�w := ŵ − w̄. (6.20)

The estimation error (6.20) is the realization of a random variable since the learnt
weight vector ŵ (see (6.17)) is itself a realization of a random variable.

Bias and Variance.As we will see below, the prediction quality achieved by h(ŵ)

depends crucially on the mean squared estimation error



128 6 Model Validation and Selection

Eest := E{‖�w‖22} = E
{∥

∥ŵ − w̄
∥

∥

2
2

}

. (6.21)

We can decompose the MSE Eest into two components. The first component is the
bias which characterizes the average behaviour, over all different realizations of
training sets, of the learnt hypothesis. The second component is the variance which
quantifies the amount of random fluctuations of the hypothesis obtained from ERM
applied to different realizations of the training set. Both components depend on the
model complexity parameter r .

It is not too difficult to show that

Eest = ‖w̄ − E{ŵ}‖22
︸ ︷︷ ︸

“bias”B2

+E‖ŵ − E{ŵ}‖22
︸ ︷︷ ︸

“variance”V

(6.22)

The bias term in (6.22), which can be computed as

B2 = ‖w̄ − E{ŵ}‖22 =
n

∑

l=r+1

w̄2
l , (6.23)

measures the distance between the “true hypothesis” h(w̄)(x) = w̄T x and the hypoth-
esis space H(r) (see (6.14)) of the linear regression problem.

The bias (6.23) is zero if w̄l = 0 for any index l = r + 1, . . . , n, or equivalently
if h(w̄) ∈ H(r). We can ensure that for every possible true weight vector w̄ in (6.13)
only if we use the hypothesis spaceH(r) with r = n.

When using the model H(r) with r < n, we cannot guarantee a zero bias term
since we have no access to the true underlying weight vector w̄ in (6.13). In general,
the bias term decreases with an increasing model size r (see Fig. 6.7). We highlight
that the bias term does not depend on the variance σ2 of the noise ε in our toy model
(6.13).

Let us now consider the variance term in (6.22). Using the properties of our toy
model (see (6.13), (6.15) and (6.16))

V = E{‖ŵ − E{ŵ}‖22} = σ2tr
{

E{(XT
r Xr )

−1}}. (6.24)

By (6.15), the matrix (XT
r Xr )

−1 is random and distributed according to an inverse
Wishart distribution [7]. For m t > r + 1, its expectation is given as

E{(XT
r Xr )

−1} = 1/(m t − r − 1)Ir×r . (6.25)

By inserting (6.25) and tr{Ir×r } = r into (6.24),

V = E{‖ŵ − E{ŵ}‖22} = σ2r/(m t − r − 1). (6.26)

As indicated by (6.26), the variance term increases with increasing model com-
plexity r (see Fig. 6.7). This behaviour is in stark contrast to the bias term which
decreases with increasing r . The opposite dependency of bias and variance on the
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bias

variance

model complexity r

Eest

Fig. 6.7 The estimation error Eest incurred by linear regression can be decomposed into a bias term
B2 and a variance term V (see (6.22)). These two components depend on the model complexity r
in an opposite manner resulting in a bias-variance trade-off

model complexity is known as the bias-variance trade-off. Thus, the choice of
model complexity r (see (6.14)) has to balance between a small variance and a small
bias.

Generalization.Consider the linear hypothesis h(x) = ŵT xwith the weight vec-
tor (6.17) which results in a minimum training error. We would like this predictor to
generalize well to data points which are different from the training set. This gener-
alization capability can be quantified by the expected loss or risk

Epred = E
{(

y − ŷ
)2}

(6.13)= E{�wT xxT�w} + σ2

(a)= E{E{�wT xxT�w | D}} + σ2

(b)= E{�wT�w} + σ2

(6.20),(6.21)= Eest + σ2

(6.22)= B2 + V + σ2. (6.27)

Step (a) uses the law of total expectation [8] and step (b) uses that, conditioned on
the dataset D, the feature vector x of a new data point is a random vector with zero
mean and a covariance matrix E{xxT } = I (see (6.15)).

According to (6.27), the average (expected) prediction error Epred is the sum of
three components: (i) the bias B2, (ii) the variance V and (iii) the noise variance σ2.
Figure 6.7 illustrates the typical dependency of the bias and variance on the model,
which is parametrized by the model complexity r . which also coincides with our
notion of effective model dimension (see Sect. 2.2).

The bias and variance, whose sum is the estimation error Eest, can be influenced
by varying the model complexity r which is a design parameter. The noise variance
σ2 is the intrinsic accuracy limit of our toy model (6.13) and is not under the control
of the ML engineer. It is impossible for any ML method - no matter how advanced
it is - to achieve, on average, a prediction error smaller than the noise variance σ2.
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Wefinally highlight that our analysis of bias (6.23), variance (6.26) and the average
prediction error (6.27) only applies if the observed data points are well modelled as
realizations of random vectors according to (6.13), (6.15) and (6.16). The usefulness
of this model for the data arising in a particular application has to be verified in
practice by statistical model validation techniques [9, 10].

The qualitative behaviour of estimation error in Fig. 6.7 depends on the definition
for themodel complexity.Our concept of effective dimension (seeSect. 2.2) coincides
with most other notions of model complexity for the linear hypothesis space (6.14).
However, for more complicated models such as deep nets it is often not obvious how
the model complexity is related to more tangible quantities such as total number of
tunable weights or artificial neurons.

In general, the model complexity or effective model dimension is not directly
proportional to number of tunable weights but also depends on the specific learning
algorithm such as stochastic gradient descent. Therefore, for deep nets, if we would
plot estimation error against number of tunableweightswemight observe a behaviour
of estimation error fundamentally different from the shape in Fig. 6.7. One example
for such un-intuitive behaviour is known as “double descent phenomena” [11].

An alternative approach for analyzing bias, variance and average prediction error
of linear regression is to use simulations. Here, we generate a number of i.i.d. copies
of the observed data points by some random number generator [12]. Using these i.i.d.
copies, we can replace exact computations (expectations) by empirical approxima-
tions (sample averages).

6.5 The Bootstrap

basic idea of bootstrap: use empirical distribution (histogram) of data points as their
probability distribution; we can then sample any amount of new data points from
that distribution (using sampling with replacement)

Consider learning a hypothesis ĥ ∈ H byminimizing the average loss incurred on
a dataset D = {(x(1), y(1)

)

, . . . ,
(

x(m), y(m)
)}. The data points

(

x(i)), y(i)
)

are mod-
elled as realizations of i.i.d. random variables. Let use denote the (common) proba-
bility distribution of these random variables by p(x, y).

If we interpret the data points
(

x(i)), y(i)
)

as realizations of random variables, also

the learnt hypothesis ĥ is a realization of a random variable. Indeed, the hypothesis
ĥ is obtained by solving an optimization problem (4.3) that involves realizations
of random variables. The bootstrap is a method for estimating (parameters of) the
probability distribution p(ĥ) [4].

Section 6.4 used a probabilistic model for data points to derive analytically (some
parameters of) the probability distribution p(ĥ). While the analysis in Sect. 6.4 only
applies to the specific probabilistic model (6.15), (6.16), the bootstrap can be used
for data points drawn from an arbitrary probability distribution.
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The core idea behind the bootstrap is to use the empirical distribution or histogram
p̂(z) of the available data pointsD to generate B new datasetsD(1), . . .. Each dataset
is constructed such that is has the same size as the original datasetD. For each dataset
D(b), we solve a separate ERM (4.3) to obtain the hypothesis ĥ(b). The hypothesis
ĥ(b) is a realization of a random variable whose distribution is determined by the
empirical distribution p̂(z) as well as the hypothesis space and the loss function used
in the ERM (4.3).

6.6 Diagnosing ML

compare training, validation and benchmark error. benchmark can be a Bayes risk
when using a probabilistic model (such as the i.i.d. assumption), or human perfor-
mance or risk of some other ML methods (“experts” in regret framework)

In what follows, we assume that data points can (to a good approximation) be
interpreted as realizations of i.i.d. random variables (see Sect. 2.1.4). This “i.i.d.
assumption” underlies ERM (4.3) as the guiding principle for learning a hypothesis
with small risk (4.1). This assumption also motivates to use the average loss (6.6) on
a validation set as an estimate for the risk.

Consider a ML method which uses Algorithm 5 (or Algorithm 6) to learn and
validate the hypothesis ĥ ∈ H. Besides the learnt hypothesis ĥ, these algorithms also
deliver the training error Et and the validation error Ev . As we will see shortly, we
can diagnoseMLmethods to some extend just by comparing training with validation
errors. This diagnosis is further enabled if we know a benchmark (or reference) error
level E (ref).

One important source of a benchmark error level E (ref) are probabilistic models
for the data points (see Sect. 6.4). Given a probabilistic model, which specifies
the probability distribution p(x, y) of the features and label of data points, we can
compute the minimum achievable expected loss or risk (4.1). Indeed, the minimum
achievable risk is precisely the expected loss of the Bayes estimator ĥ(x) of the label
y, given the features x of a data point. The Bayes estimator ĥ(x) is fully determined
by the probability distribution p(x, y) of the features and label of a (random) data
point [13, Chap.4].

Example. Let us derive the minimum achievable risk for data points with sin-
gle numeric feature and label and being realizations of a Gaussian random vector
z ∼ N (0,C). Here, the optimal estimator of the label y given the feature x is the
conditional expectation of the (unobserved) label y given the (observed) feature x .
The resulting MSE is equal to the posterior variance of y, given x which is given by
the K−1

y,y with the entry Ky,y of the precision matrix K = C−1.
A further potential source for a benchmark error level E (ref) is anotherMLmethod.

This other ML method might be computationally too expensive to be used for a ML
application. However, we could still use its error level measured in illustrative test
scenarios as a benchmark.
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Finally, a benchmark can be obtained from the performance of human experts.
If we want to develop a ML method that detects certain type of skin cancers from
images of the skin, a benchmarkmight be the current classification accuracy achieved
by experienced dermatologists [14].

We can diagnose a ML method by comparing the training error Et with the
validation error Ev and (if available) the benchmark E (ref).

• Et ≈ Ev ≈ E (ref): The training error is on the same level as the validation error
and the benchmark error. There is not much to improve here since the validation
error is already on the desired error level. Moreover, the training error is not much
smaller than the validation error which indicates that there is no overfitting. It
seems we have obtained a ML method that achieves the benchmark error level.

• Ev � Et : The validation error is significantly larger than the training error. It
seems that the ERM (4.3) results in a hypothesis ĥ that overfits the training set.
The loss incurred by ĥ on data points outside the training set, such as those in
the validation set, is significantly worse. This is an indicator for overfitting which
can be addressed either by reducing the effective size of the hypothesis space or
by increasing the effective number of training data points. To reduce the effective
hypothesis space we can either use a smaller hypothesis space, e.g., using fewer
features in a linear model (3.1), using smaller maximum depth of decision trees
(Sect. 3.10) or by using a smaller artificial neural network (Sect. 3.11). Another
way to reduce the effective size of a hypothesis space is to use regularization
techniques from Chap. 7.

• Et ≈ Ev � E (ref): The training error is on the same level as the validation error and
both are significantly larger than the benchmark error. Since the training error is
not much smaller than the validation error, the learnt hypothesis seems to not over-
fit the training data. However, the training error achieved by the learnt hypothesis
is significantly larger than the benchmark error level. There can be several rea-
sons for this to happen. First, it might be that the hypothesis space used by the
ML method is too small, i.e., it does not include a hypothesis that provides a good
approximation for the relation between features and label of a data point. The rem-
edy for this situation is to use a larger hypothesis space, e.g., by including more
features in a linear model, using higher polynomial degrees in polynomial regres-
sion, using deeper decision trees or having larger artificial neural networks (deep
nets). Another reason for the training error being too large is that the optimization
algorithms used to solve ERM (4.3) is not working properly. When using gradient
based optimization (see Sect. 5.4) to solve ERM, one reason for Et � E (ref) could
be that the step size α in the gradient descent step (5.4) is chosen too small or
too large (see Fig. 5.3-(b)). This can be solved by adjusting the step-size by trying
out several different values and using the one resulting in minimum training and
validation error. Another option is to use some probabilistic model for data points
derive optimal values for the step-size based on such a model (see Sect. 6.4).
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• Ev � Et : The validation error is significantly larger than the training error. The
idea of ERM (4.3) is to approximate the risk (4.1) of a hypothesis by its average
loss on a training set D = {(x(i), y(i))}mi=1. The mathematical underpinning for
this approximation is the law of large numbers which characterizes the average of
i.i.d. random variables. The quality of this approximation requires two conditions.
First, the data points used for computing the average loss should be such that
they would be typically obtained as realizations of i.i.d. random variables with
a common probability distribution. Second the number of data points used for
computing the average loss must be sufficiently large. Thus, if data points cannot
be modelled as realizations of i.i.d. random variables or if the size of the training
or validation set is too small, the interpretation (comparison) of validation and
training errors is difficult. In particular, it might then be that the validation set
consists of data points for which any predictor incurs small average loss. Here, we
might try to increase training and validation sets by collecting more labeled data
points or using data augmentation (see Sect. 7.3). If we already have quite large
training and validation sets, one should verify if data points conform to the i.i.d.
assumption that is required for the ERM to deliver a hypothesis with small risk.
There are principled methods to test if an i.i.d. assumption is satisfied (see [15]
and references therein).

6.7 Exercises

Exercise 6.1 (Validation Set Size.) Consider a linear regression problem with data
points characterized by a scalar feature and a numeric label. Assume data points
are realizations of i.i.d. Gaussian random variables with zero-mean and covariance
matrixC. Howmany data points do we need to include in the validation set such that
with probability of at least 0.8 the validation error does not deviate by more than 20
percent from the expected loss or risk?

Exercise 6.2 (Validation Error Smaller Than training error?) Linear regression
determines a linear hypothesis map by minimizing the average squared error on a
training set. The resulting linear predictor is then validated on a validation set which
is different from the training set. Can you construct a training set and validation set
such that the validation error is strictly smaller than the training error?

Exercise 6.3 (When is Validation Set Too Small?)The usefulness of the validation
error as an indicator for the performance of a hypothesis depends on the size of the
validation set. Experiment with different ML methods and datasets to find out the
minimum required size for the validation set.
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Chapter 7
Regularization

Keywords Data Augmentation · Robustness · Semi-Supervised Learning ·
Transfer Learning · Multitask Learning

Many ML methods use the principle of ERM (see Chap. 4) to learn a hypothesis
out of a hypothesis space by minimizing the average loss (training error) on a set of
labeled data points (training set). Using ERM as a guiding principle for MLmethods
makes sense only if the training error is a good indicator for its loss incurred outside
the training set.

Figure 7.1 illustrates a typical scenario for a modern ML method which uses a
large hypothesis space. This large hypothesis space includes highly non-linear maps
which can perfectly resemble any dataset of modest size. However, there might
be non-linear maps for which a small training error does not guarantee accurate
predictions for the labels of data points outside the training set.

Chapter 6 discussed validation techniques to verify if a hypothesis with small
training error will predict also well the labels of data points outside the training set.
These validation techniques, including Algorithms 5 and 6, probe the hypothesis
ĥ ∈ H delivered by ERM on a validation set. The validation set consists of data
points which have not been used for the training set of ERM (4.3). The validation
error, which is the average loss of the hypothesis on the data points in the validation
set, serves as an estimate for the average error or risk (4.1) of the hypothesis ĥ.

This chapter discusses regularization as an alternative to validation techniques.
In contrast to validation, regularization techniques do not require having a separate
validation set which is not used for the ERM (4.3). This makes regularization attrac-
tive for applications where obtaining a separate validation set is difficult or costly
(where labelled data is scarce).

Instead of probing a hypothesis ĥ on a validation set, regularization techniques
compute estimate the loss increasewhen applying ĥ to data points outside the training
set. The loss increase is estimated by adding a regularization term to the training error
in ERM (4.3).
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Fig. 7.1 The non-linear
hypothesis map ĥ perfectly
fits the training set and has
vanishing training error.
Despite perfectly fitting the
training set, the hypothesis ĥ
delivers the trivial (and
useless) prediction
ŷ = ĥ(x) = 0 for any
datapoint that is not in the
vicinity of the data points in
the training set

label y

feature x

(x(i), y (i))

ĥ(x)

Section 7.1 discusses the resulting regularized ERM, which we will refer to as
structural risk minimization (SRM). It turns out that the SRM is equivalent to ERM
using a smaller (pruned) hypothesis space. The amount of pruning depends on the
weight of the regularization term relative to the training error. For an increasing
weight of the regularization term, we obtain a stronger pruning resulting in a smaller
effective hypothesis space.

Section 7.2 constructs regularization terms by requiring the resulting ML method
to be robust against (small) random perturbations of the data points in a training set.
Here, we replace each data point of a training set by the realization of a RV that
fluctuates around this data point. This construction allows to interpret regularization
as a (implicit) form of data augmentation.

Section 7.3 discusses data augmentation methods as a simulation-based imple-
mentation of regularization. Data augmentation adds a certain number of perturbed
copies to each data point in the training set. One way to construct perturbed copies
of a data point is to add (the realization of) a random vector to its features.

Section 7.4 analyzes the effect of regularization for linear regression using a
simple probabilistic model for data points. This analysis parallels our previous study
of the validation error of linear regression in Sect. 6.4. Similar to Sect. 6.4, we reveal
a trade-off between the bias and variance of the hypothesis learnt by regularized
linear regression. This trade- off was traced out by a discrete model parameter (the
effective dimension) in Sect. 6.4. In contrast, regularization offers a continuous trade-
off between bias and variance via a continuous regularization parameter.

Semi-supervised learning (SSL) uses (large amounts of) unlabeled data points to
support the learning of a hypothesis from (a small number of) labeled data points
[1]. Section 7.5 discusses SSLmethods that use the statistical properties of unlabeled
data points to construct useful regularization terms. These regularization terms are
then used in SRM with a (typically small) set of labeled data points.

Multitask learning exploits similarities between different but related learning tasks
[2].We can formally define a learning task by a particular choice for the loss function
(loss function) (see Sect. 2.3). The primary role of a loss function is to score the
quality of a hypothesis map. However, the loss function also encapsulates the choice
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for the label of a data point. For learning tasks defined for a single underlying data
generation process it is reasonable to assume that the same subset of features is
relevant for those learning tasks. One example for such related learning tasks is a
multi-label classification problem (see Section) where each individual label of a data
point represents an separate learning task. Section 7.6 shows how multitask learning
can be implemented using regularization methods. The loss incurred in different
learning tasks serves mutual regularization terms in a joint SRM for all learning
tasks.

Section 7.7 shows how regularization can be used for transfer learning. Like
multitask learning also transfer learning exploits relations between different learning
tasks. In contrast to multitask learning, which jointly solves the individual learning
tasks, transfer learning solves the learning tasks sequentially. The most basic form
of transfer learning is to fine tune a pre-trained model. A pre-trained model can be
obtained via ERM (4.3) in a (“source”) learning task for which we have a large
amount of labeled training data. The fine-tuning is then obtained via ERM (4.3) in
the (“target”) learning task of interest for which we might have only a small amount
of labeled training data.

7.1 Structural Risk Minimization

Section 2.2 defined the effective dimension deff (H) of a hypothesis space H as the
maximum number of data points that can be perfectly fit by some hypothesis h ∈ H.
As soon as the effective dimension of the hypothesis space in (4.3) exceeds the
number m of training data points, we can find a hypothesis that perfectly fits the
training data. However, a hypothesis that perfectly fits the training data might deliver
poor predictions for data points outside the training set (see Fig. 7.1).

Modern MLmethods typically use a hypothesis space with large effective dimen-
sion [3, 4]. Two well-known examples for such methods is linear regression (see
Sect. 3.1) using a large number of features and deep learning with ANNs using a
large number (billions) of artificial neurons (see Section 3.11). The effective dimen-
sion of these methods can be easily on the order of billions (109) if not larger [5]. To
avoid overfitting during the naive use of ERM (4.3) we would require a training set
containing at least as many data points as the effective dimension of the hypothesis
space. However, in practice we often do not have access to training sets containing
billions of labeled data points.

It seems natural to combat overfitting of a ML method by pruning its hypothesis
spaceH. We pruneH by removing some of the hypothesis inH to obtain the smaller
hypothesis spaceH′ ⊂ H. We then replace ERM (4.3) with the restricted (or pruned)
ERM

ĥ = argmin
h∈H′

̂L(h|D) with pruned hypothesis spaceH′ ⊂H. (7.1)
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The effective dimension of the pruned hypothesis spaceH′ is typically much smaller
than the effective dimension of the original (large) hypothesis spaceH, deff

(H′) �
deff (H). For a given size m of the training set, the risk of overfitting in (7.1) is much
smaller than the risk of overfitting in (4.3).

Example.Consider linear regression which the hypothesis space (3.1) constituted
by linear maps h(x) = wT x. The effective dimension of (3.1) is equal to the number
of features, deff (H) = n. The hypothesis space H might be too large if we use a
large number n of features, leading to overfitting. We prune (3.1) by retaining only
linear hypotheses h(x) = (

w′)T xwithweight vectorsw′ satisfyingw′
3 = w′

4 = . . . =
w′

n = 0. Thus, the hypothesis space H′ is constituted by all linear maps that only
depend on the first two features x1, x2 of a data point. The effective dimension ofH′
is dimension is deff

(H′) = 2 instead of deff (H) = n.
Pruning the hypothesis space is a special case of a more general strategy which

we refer to as SRM [6]. The idea behind SRM is to modify the training error in ERM
(4.3) to favour hypotheses which are more smooth or regular in a specific sense.
By enforcing a smooth hypothesis, a ML methods becomes less sensitive, or more
robust, to small perturbations of the training data points. Section 7.2 discusses the
intimate relation between the robustness (against perturbations of the training set) of
a ML method and its ability to generalize to data points outside the training set.

We measure the smoothness of a hypothesis using a regularizer R(h) ∈ R+.
Roughly speaking, the valueR(h) measures the irregularity or variation of a predic-
tor map h. The (design) choice for the regularizer depends on the precise definition
of what is meant by regularity or variation of a hypothesis. Section 7.3 discusses
how a particular choice for the regularizerR(h) arises naturally from a probabilistic
model for data points.

We obtain SRM by adding the scaled regularizer λR(h) to the ERM (4.3),

ĥ = argmin
h∈H

[

̂L(h|D) + λR(h)
]

(2.16)= argmin
h∈H

[

(1/m)

m
∑

i=1

L((x(i), y(i)), h) + λR(h)
]

. (7.2)

We can interpret the penalty termλR(h) in (7.2) as an estimate (or approximation) for
the increase, relative to the training error on D, of the average loss of a hypothesis ĥ
when it is applied to data points outsideD. Another interpretation of the term λR(h)

will be discussed in Sect. 7.3.
The regularization parameter λ allows us to trade between a small training error

̂L(h(w)|D) and small regularization term R(h), which enforces smoothness or reg-
ularity of h. If we choose a large value for λ, irregular or hypotheses h, with large
R(h), are heavily “punished” in (7.2). Thus, increasing the value of λ results in the
solution (minimizer) of (7.2) having smaller R(h). On the other hand, choosing a
small value for λ in (7.2) puts more emphasis on obtaining a hypothesis h incurring
a small training error. For the extreme case λ = 0, the SRM (7.2) reduces to ERM
(4.3).
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λ = 0

H(λ=0)

λ = 1

H(λ=1)

λ = 10

H(λ=10)

Fig. 7.2 Adding the scaled regularizer λR(h) to the training error in the objective function of SRM
(7.2) is equivalent to solving ERM (7.1) with a pruned hypothesis space H(λ)

The pruning approach (7.1) is intimately related to the SRM (7.2). They are, in a
certain sense,dual to each other. First, note that (7.2) reduces to the pruning approach
(7.1) when using the regularizerR(h) = 0 for all h ∈ H′ , andR(h) = ∞ otherwise,
in (7.2). In the other direction, for many important choices for the regularizerR(h),
there is a restriction H(λ) ⊂ H such that the solutions of (7.1) and (7.2) coincide
(see Fig. 7.2). The relation between the optimization problems (7.1) and (7.2) can
be made precise using the theory of convex duality (see [7, Ch. 5] and [8]).

For a hypothesis space H whose elements h ∈ H are parameterized by a weight
vector w ∈ R

n , we can rewrite SRM (7.2) as

ŵ(λ) = argmin
w∈Rn

[

̂L(h(w)|D) + λR(w)
]

= argmin
w∈Rn

[

(1/m)

m
∑

i=1

L((x(i), y(i)), h(w)) + λR(w)
]

. (7.3)

For the particular choice of squared error loss (2.8), linear hypothesis space (3.1)
and regularizer R(w) = ‖w‖22, SRM (7.3) specializes to

ŵ(λ) = argmin
w∈Rn

[

(1/m)

m
∑

i=1

(

y(i) − wT x(i)
)2 + λ‖w‖22

]

. (7.4)

The special case (7.4) of SRM (7.3) is known as ridge regression [9].
Ridge regression (7.4) is equivalent to (see [8, Ch. 5])

ŵ(λ) = argmin
h(w)∈H(λ)

(1/m)

m
∑

i=1

(

y(i) − h(w)(x(i))
)2

(7.5)

with the restricted hypothesis space
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H(λ) := {h(w) : Rn → R : h(w)(x) = wT x,

with some weights (weights) w satisfying ‖w‖22 ≤ C(λ)} ⊂ H(n). (7.6)

For any given value λ of the regularization parameter in (7.4), there is a number
C(λ) such that solutions of (7.4) coincide with the solutions of (7.5). Thus, ridge
regression (7.4) i is equivalent to linear regression using a pruned version H(λ) of
the linear hypothesis space (3.1). The pruned hypothesis space H(λ) (7.6) depends
varies continuously with the regularization parameter λ.

Another popular special case of ERM (7.3) is obtained for the regularizerR(w) =
‖w‖1 and known as the Lasso [10]

ŵ(λ) = argmin
w∈Rn

[

(1/m)

m
∑

i=1

(

y(i) − wT x(i)
)2 + λ‖w‖1

]

. (7.7)

Ridge regression (7.4) and the Lasso (7.7) have fundamentally different computa-
tional and statistical properties. Involving a smooth and convex objective function,
ridge regression (7.4) can be implemented using efficient GD methods. The objec-
tive function of Lasso (7.7) is also convex but non-smooth and therefore requires
advanced optimization methods. The increased computational complexity of Lasso
(7.7) comes at the benefit of typically delivering a hypothesis with a smaller risk than
those obtained from ridge regression [4, 10].

7.2 Robustness

Section 7.1 motivates regularization as a soft variant of model selection. Indeed,
the regularization term in SRM (7.2) is equivalent to ERM (7.1) using a pruned
(reducing) hypothesis space. We now discuss an alternative view on regularization
as a means to make ML methods robust.

The ML methods discussed in Chap. 4 rest on the idealizing assumption that we
have access to the true label values and feature values of labeled data points (the
training set). These methods learn a hypothesis h ∈ H with minimum average loss
(training error) incurred for data points in the training set. In practice, the acquisition
of label and feature values might be prone to errors. These errors might stem from
the measurement device itself (hardware failures or thermal noise) or might be due
to human mistakes such as labelling errors.

Let us assume for the sake of exposition that the label values y(i) in the training
set are accurate but that the features x(i) are a perturbed version of the true features
of the i th data point. Thus, instead of having observed the data point

(

x(i), y(i)
)

we could have equally well observed the data point
(

x(i) + ε, y(i)
)

in the training
set. Here, we have modelled the perturbations in the features using a RV ε. The
probability distribution of the perturbation ε is a design parameter that controls
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robustness properties of the overall ML method. We will study a particular choice
for this distribution in Sect. 7.3.

A robust ML method should learn a hypothesis that incurs a small loss not only
for a specific data point

(

x(i), y(i)
)

but also for perturbed data points
(

x(i) + ε, y(i)
)

.
Therefore, it seems natural to replace the loss L(

(

x(i), y(i)
)

, h), incurred on the i th
data point in the training set, with the expectation

E
{

L(
(

x(i) + ε, y(i)
)

, h)
}

. (7.8)

The expectation (7.8) is computed using the probability distribution of the pertur-
bation ε. We will show in Sect. 7.3 that minimizing the average of the expectation
(7.8), for i = 1, . . . ,m, is equivalent to the SRM (7.2).

Using the expected loss (7.8) is not the only possible approach to make a ML
method robust. Another approach to make aMLmethod robust is known as bagging.
The idea of bagging is to use the bootstrap method (see Sect. 6.5 and [9, Chap. 8]) to
construct a finite number of perturbed copies D(1), . . . ,D(B) of the original training
set D.

We then learn (e.g, using ERM) a separate hypothesis h(b) for each perturbed
copy D(b), b = 1, . . . , B. This results in a whole ensemble of different hypotheses
h(b) which might even belong to different hypothesis spaces. For example, one the
hypotheis h(1) could be a linear map (see Sect. 3.1) and the hypothesis h(2) could be
obtained from an ANN (see Sect. 3.11).

Thefinal hypothesis delivered by bagging is obtained by combining or aggregating
(e.g., using the average) the predictions h(b)

(

x
)

delivered by each hypothesis h(b),
for b = 1, . . . , B in the ensemble. The ML method referred to as random forest
uses bagging to learn an ensemble of decision trees (see Sect. 3.10). The individual
predictions obtained from the trees in a random forest are combined (e.g., using an
average in regression or a majority vote in binary classification) to obtain a final
prediction [9].

7.3 Data Augmentation

MLmethods using ERM (4.3) are prone to overfitting as soon as the effective dimen-
sion of the hypothesis spaceH exceeds the numberm of training data points. Sections
6.3 and 7.1 approached this by modifying either the model or the loss function by
adding a regularization term. Both approaches prune the hypothesis spaceH under-
lying a ML method to reduce the effective dimension deff (H). Model selection does
this reduction in a discrete fashionwhile regularization implements a soft “shrinking”
of the hypothesis space.

Instead of trying to reduce the effective dimension we could also try to increase
the number m of training data points used in ERM (4.3). We now discuss how to
synthetically generate new labeled data points by exploiting known structures that
are inherent to a given application domain.
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The data arising in manyML applications exhibit intrinsic symmetries and invari-
ances at least in some approximation. The rotated image of a cat still shows a cat. The
temperature measurement taken at a given location will be similar to another mea-
surement taken 10 milliseconds later. Data augmentation exploits such symmetries
and invariances to augment the raw data with additional synthetic data.

Let us illustrate data augmentation using an application that involves data points
characterized by features x ∈ R

n and number labels y ∈ R. We assume that the
data generating process is such that data points with close feature values have the
same label. Equivalently, this assumption is requiring the resulting MLmethod to be
robust against small perturbations of the feature values (see Sect. 7.2). This suggests
to augment a data point

(

x, y
)

by several synthetic data points

(

x + ε(1), y
)

, . . . ,
(

x + ε(B), y
)

, (7.9)

with ε(1), . . . , ε(B) being realizations of independent and identically distributed
(i.i.d.) (i.i.d.) random vectors with the same probability distribution p(ε).

Given a (raw) dataset D = {(

x(1), y(1)
)

, . . . ,
(

x(m), y(m)
)} we denote the associ-

ated augmented dataset by

D′ = {(

x(1,1), y(1)
)

, . . . ,
(

x(1,B), y(1)
)

,
(

x(2,1), y(2)
)

, . . . ,
(

x(2,B), y(2)
)

,

. . .
(

x(m,1), y(m)
)

, . . . ,
(

x(m,B), y(m)
)}. (7.10)

The size of the augmented dataset D′ is m ′ = B × m. For a sufficiently large aug-
mentation parameter B, the augmented sample size m ′ is larger than the effective
dimension n of the hypothesis spaceH. We then learn a hypothesis via ERM on the
augmented dataset,

ĥ = argmin
h∈H

̂L(h|D′)

(7.10)= argmin
h∈H

(1/m ′)
m

∑

i=1

B
∑

b=1

L((x(i,b), y(i,b)), h)

(7.9)= argmin
h∈H

(1/m)

m
∑

i=1

(1/B)

B
∑

b=1

L((x(i) + ε(b), y(i)), h). (7.11)

We can interpret data-augmented ERM (7.11) as a data-driven form of regu-
larization (see Sect. 7.1). The regularization is implemented by replacing, for
each data point

(

x(i), y(i)
) ∈ D, the loss L((x(i), y(i)), h) with the average loss

(1/B)
∑B

b=1 L((x(i) + ε(b), y(i)), h) over the augmented data points that accompany
(

x(i), y(i)
) ∈ D.
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Note that in order to implement (7.11) we need to first generate B realizations
ε(b) ∈ R

n of i.i.d. random vectors with common probability distribution p(ε). This
might be computationally costly for a large B, n. However, when using a large aug-
mentation parameter B, we might use the approximation

(1/B)

B
∑

b=1

L((x(i) + ε(b), y(i)), h) ≈ E
{

L((x(i) + ε, y(i)), h)
}

. (7.12)

This approximation is made precise by a key result of probability theory, known as
the law of large numbers. We obtain an instance of ERM by inserting (7.12) into
(7.11),

ĥ = argmin
h∈H

(1/m)

m
∑

i=1

E
{

L((x(i) + ε, y(i)), h)
}

. (7.13)

The usefulness of (7.13) as an approximation to the augmented ERM (7.11)
depends on the difficulty of computing the expectationE

{

L((x(i) + ε, y(i)), h)
}

. The
complexity of computing this expectation depends on the choice of loss function and
the choice for the probability distribution p(ε).

Let us study (7.13) for the special case linear regression with squared error loss
(2.8) and linear hypothesis space (3.1),

ĥ = argmin
h(w)∈H(n)

(1/m)

m
∑

i=1

E
{(

y(i) − wT
(

x(i) + ε
))2}

. (7.14)

We use perturbations ε drawn a multivariate normal distribution with zero mean and
covariance matrix σ 2I,

ε ∼ N (0, σ 2I). (7.15)

We develop (7.14) further by using

E{(y(i) − wT x(i)
)

ε} = 0. (7.16)

The identity (7.16) uses that the data points
(

x(i), y(i)
)

are fixed and known (deter-
ministic) while ε is a zero-mean random vector. Combining (7.16) with (7.14),

E
{(

y(i) − wT
(

x(i) + ε
))2} = (

y(i) − wT x(i)
)2+∥

∥w
∥

∥

2
2 E

{∥

∥ε
∥

∥

2
2

}

= (

y(i) − wT x(i)
)2 + n

∥

∥w
∥

∥

2
σ 2. (7.17)

where the last step used E
{∥

∥ε
∥

∥

2
2

} (7.15)= nσ 2. Inserting (7.17) into (7.14),
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ĥ = argmin
h(w)∈H(n)

(1/m)

m
∑

i=1

(

y(i) − wT x(i)
)2 + n

∥

∥w
∥

∥

2
σ 2. (7.18)

We have obtained (7.18) as an approximation of the augmented ERM (7.11) for the
special case of squared error loss (2.8) and the linear hypothesis space (3.1). This
approximation uses the law of large numbers (7.12) and becomes more accurate for
increasing augmentation parameter B.

Note that (7.18) is nothing but ridge regression (7.4) using the regularization
parameter λ = nσ 2. Thus, we can interpret ridge regression as implicit data aug-
mentation (7.10) by applying random perturbations (7.9) to the feature vectors in the
original training set D.

The regularizer R(w) = ‖w‖22 in (7.18) arose naturally from the specific choice
for the probability distribution (7.15) of the random perturbation ε(i) in (7.9) and
using the squared error loss. Other choices for this probability distribution or the loss
function result in different regularizers.

Augmenting data points with random perturbations distributed according (7.15)
treat the features of a data point independently. For application domains that generate
data points with highly correlated features it might be useful to augment data points
using random perturbations ε (see (7.9)) distributed as

ε ∼ N (0,C). (7.19)

The covariance matrixC of the perturbation ε can be chosen using domain expertise
or estimated (see Sect. 7.5). Inserting the distribution (7.19) into (7.13),

ĥ = argmin
h(w)∈H(n)

[

(1/m)

m
∑

i=1

(

y(i) − wT x(i)
)2 + wTCw

]

. (7.20)

Note that (7.20) reduces to ordinary ridge regression (7.18) for the choice C = σ 2I.

7.4 Statistical and Computational Aspects
of Regularization

The goal of this section is to develop a better understanding for the effect of the
regularization term in SRM (7.3). We will analyze the solutions of ridge regression
(7.4) which is the special case of SRM using the linear hypothesis space (3.1) and
squared error loss (2.8). Using the feature matrix X=(

x(1), . . . , x(m)
)T

and label
vector y=(y(1), . . . , y(m))T , we can rewrite (7.4) more compactly as

ŵ(λ) = argmin
w∈Rn

[

(1/m)‖y − Xw‖22 + λ‖w‖22
]

. (7.21)
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The solution of (7.21) is given by

ŵ(λ) = (1/m)((1/m)XTX + λI)−1XT y. (7.22)

For λ=0, (7.22) reduces to the formula (6.17) for the optimal weights in linear
regression (see (7.4) and (4.5)). Note that for λ > 0, the formula (7.22) is always
valid, evenwhenXTX is singular (not invertible). Forλ > 0 the optimization problem
(7.21) (and (7.4)) has the unique solution (7.22).

To study the statistical properties of the predictor h(ŵ(λ))(x) = (

ŵ(λ)
)T
x (see

(7.22)) we use the probabilistic toy model (6.13), (6.15) and (6.16) that we used
already in Sect. 6.4. We interpret the training data D(train) = {(x(i), y(i))}mi=1 as real-
izations of i.i.d. RVs whose distribution is defined by (6.13), (6.15) and (6.16).

We can then define the average prediction error of ridge regression as

E (λ)
pred := E

{(

y − h(ŵ(λ))(x)
)2}

. (7.23)

As shown in Sect. 6.4, the error E (λ)
pred is the sum of three components: the bias, the

variance and the noise variance σ 2 (see (6.27)). The bias of ŵ(λ) is

B2 = ∥

∥(I − E{(XTX + mλI)−1XTX})w∥

∥

2
2. (7.24)

For sufficiently large size m of the training set, we can use the approximation

XTX ≈ mI (7.25)

such that (7.24) can be approximated as

B2 ≈ ∥

∥(I−(I+λI)−1)w
∥

∥

2
2

=
n

∑

l=1

λ

1 + λ
w2

l . (7.26)

Let us compare the (approximate) bias term (7.26) of regularized linear regression
with the bias term (6.23) of ordinary linear regression (which is the extreme case of
ridge regression with λ = 0). The bias term (7.26) increases with increasing regular-
ization parameter λ in ridge regression (7.4). In many relevant settings, the increase
in bias is outweighed by the reduction in variance. The variance typically decreases
with increasing λ as shown next.

The variance of ridge regression (7.4) satisfies

V = (σ 2/m2)×
tr
{

E{((1/m)XTX+λI)−1XTX((1/m)XTX+λI)−1}}. (7.27)
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Fig. 7.3 The bias and
variance of regularized linear
regression depend on the
regularization parameter λ in
an opposite manner resulting
in a bias-variance trade-off

bias of ŵ(λ)

variance of ŵ(λ)

regularization parameter λ

Inserting the approximation (7.25) into (7.27),

V ≈ σ 2(1/m)(n/(1+λ)). (7.28)

According to (7.28), the variance of ŵ(λ) decreases with increasing regularization
parameter λ of ridge regression (7.4). This is the opposite behaviour as observed for
the bias (7.26), which increases with increasing λ. The approximate variance formula
(7.28) suggests to interpret the ratio (n/(1+λ)) as the effective number of features
used by ridge regression. Increasing the regularization parameter λ decreases the
effective number of features.

Figure 7.3 illustrates the trade-off between the bias B2 (7.26) of ridge regression,
which increases for increasing λ, and the variance V (7.28) which decreases with
increasing λ. Note that we have seen another example for a bias-variance trade-off in
Sect. 6.4. This trade-off was traced out by a discrete (model complexity) parameter
r ∈ {1, 2, . . .} (see (6.14)). In stark contrast to discrete model selection, the bias-
variance trade-off for ridge regression is traced out by the continuous regularization
parameter λ ∈ R+.

The main statistical effect of the regularization term in ridge regression is to
balance the bias with the variance to minimize the average prediction error of the
learnt hypothesis. There is also a computational effect or adding a regularization
term. Roughly speaking, the regularization term serves as a pre-conditioning of the
optimization problem and, in turn, reduces the computational complexity of solving
ridge regression (7.21).

The objective function in (7.21) is a smooth (infinitely often differentiable) convex
function.We can therefore useGD to solve (7.21) efficiently (seeChap. 5). Algorithm
8 summarizes the application of GD to (7.21). The computational complexity of
Algorithm 8 depends crucially on the number of GD iterations required to reach a
sufficiently small neighbourhood of the solutions to (7.21). Adding the regularization
term λ‖w‖22 to the objective function of linear regression speeds up GD. To verify
this claim, we first rewrite (7.21) as the quadratic problem
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min
w∈Rn

(1/2)wTQw − qTw
︸ ︷︷ ︸

= f (w)

with Q = (1/m)XTX + λI,q = (1/m)XT y. (7.29)

This is similar to the quadratic optimization problem (4.9) underlying linear regres-
sion but with a different matrix Q. The computational complexity (number of itera-
tions) required by GD (see (5.4)) applied to solve (7.29) up to a prescribed accuracy
depends crucially on the condition number κ(Q) ≥ 1 of the psd matrix Q [11]. The
smaller the condition number κ(Q), the fewer iterations are required byGD.Amatrix
with small condition number is also referred to as being “well-conditioned”.

The condition number of the matrix Q in (7.29) is given by

κ(Q) = λmax((1/m)XTX) + λ

λmin((1/m)XTX) + λ
. (7.30)

According to (7.30), the condition number tends to one for increasing regularization
parameter λ,

lim
λ→∞

λmax((1/m)XTX) + λ

λmin((1/m)XTX) + λ
= 1. (7.31)

Thus, the number of required GD iterations in Algorithm 8 decreases with increasing
regularization parameter λ.

Algorithm 8 Regularized Linear regression via GD

Input: dataset D = {(x(i), y(i))}mi=1; GD step size α > 0.
Initialize:set w(0) :=0; set iteration counter k :=0
1: repeat
2: r := r + 1 (increase iteration counter)
3: w(r) := (1 − αλ)w(r−1) + α(2/m)

∑m
i=1(y

(i) − (

w(r−1))T x(i))x(i) (do a GD step (5.4))
4: until stopping criterion met
Output: w(r) (which approximates ŵ(λ) in (7.21))

7.5 Semi-Supervised Learning

Consider the task of predicting the numeric label y of a data point z = (

x, y
)

based

on its feature vector x=(

x1, . . . , xn
)T ∈ R

n . At our disposal are two datasets D(u)

and D(l). For each data point in D(u) we only know the feature vector. We therefore
refer to D(u) as “unlabelled data”. For each data point in D(l) we know both, the
feature vector x and the label y. We therefore refer to D(l) as “labeled data”.
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SSL methods exploit the information provided by unlabelled dataD(u) to support
the learning of a hypothesis based on minimizing its empirical risk on the labelled
(training) data D(l). The success of SSL methods depends on the statistical proper-
ties of the data generated within a given application domain. Loosely speaking, the
information provided by the probability distribution of the features must be relevant
for the ultimate task of predicting the label y from the features x [1].

Let us design a SSL method, summarized in Algorithm 9 below, using the data
augmentation perspective from Sect. 7.3. The idea is the augment the (small) labeled
dataset D(l) by adding random perturbations for the features vectors of data point in
D(l). This is reasonable for applications where feature vectors are subject to inherent
measurement or modelling errors. Given a data point with vector x we could have
equally well observed a feature vector x + ε with some small random perturbation
ε ∼ N (0,C). To estimate the covariance matrix C, we use the sample covariance
matrix of the feature vectors in the (large) unlabelled dataset D(u). We then learn a
hypothesis using the augmented (regularized) ERM (7.20).

Algorithm 9 A Semi-Supervised Learning Algorithm

Input: labeled dataset D(l) = {(x(i), y(i))}mi=1; unlabeled dataset D(u) = {̃x(i)}m′
i=1

1: compute C via sample covariance on D(u),

C := (1/m′)
m′
∑

i=1

(

x̃(i)−x̂
)(

x̃(i)−x̂
)T with x̂ := (1/m′)

m′
∑

i=1

x̃(i). (7.32)

2: compute (e.g. using GD steps (5.4))

ŵ := argmin
w∈Rn

[

(1/m)

m
∑

i=1

(

y(i) − wT x(i))2 + wTCw
]

. (7.33)

Output: hypothesis ĥ(x) = (

ŵ)T x

7.6 Multitask Learning

We can identify a learning task with the loss function L((x, y), h) that is used to
measure the quality of a particular hypothesis h ∈ H. Note that the loss obtained for
a given data point also depends on the definition for the label of a data point. For
the same data points, we obtain different learning tasks from different choices or
definitions for the label of a data point. Multitask learning exploits the similarities
between different learning tasks to jointly solve them.

Example. Consider a data point z representing a hand-drawing that is collected
via the online game https://quickdraw.withgoogle.com/. The features of a data point
are the pixel intensities of the bitmap which is used to store the hand-drawing. As

https://quickdraw.withgoogle.com/
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label we could use the fact if a hand-drawing shows an apple or not. This results in
the learning task T (1). Another choice for the label of a hand-drawing could be the
fact if a hand-drawing shows a fruit at all or not. This results in another learning task
T (2) which is similar but different from the task T (1).

The idea of multitask learning is that a reasonable hypothesis h for a learning task
should also do well for a related learning tasks. Thus, we can use the loss incurred
on similar learning tasks as a regularization term for learning a hypothesis for the
learning task at hand. Algorithm 10 is a straightforward implementation of this idea
for a given dataset that gives rise to T related learning tasks T (1), . . . , T (T ). For each
individual learning task T (t ′) it uses the loss on the remaining learning tasks T (t),
with t 
= t ′, as regularization term in (7.34).

Algorithm 10 A Multitask Learning Algorithm

Input: dataset D = {z(1), . . . , z(m)} with T associated learning tasks with loss functions
L(1), . . . , L(T ), hypothesis space H

1: learn a hypothesis ĥ via

ĥ := argmin
h∈H

T
∑

t=1

m
∑

i=1

L(t)(z(i), h
)

. (7.34)

Output: hypothesis ĥ

The applicability of Algorithm 10 is somewhat limited as it aims at finding a
single hypothesis that does well for all T learning tasks simultaneously. For certain
application domains it might be more reasonable to not learn a single hypothesis
for all learning tasks but to learn a separate hypothesis h(t) for each learning task
t = 1, . . . , T . However, these separate hypotheses typically might still share some
structural similarities.1 We can enforce different notion of similarities between the
hypotheses h(t) by adding a regularization term to the loss functions of the tasks.

Algorithm 11 generalizes Algorithms 10 by learning a separate hypothesis for
each task t while requiring these hypotheses to be structurally similar. The structural
(dis-)similarity between the hypotheses is measured by a regularization term R.

7.7 Transfer Learning

Regularization is also instrumental for transfer learning to capitalize on synergies
between different related learning tasks [13, 14]. Transfer learning is enabled by
constructing regularization terms for a learning task by using the result of a previous

1 One important example for such a structural similarity in the case of linear predictors h(t)(x) =
(

w(t)
)T x iswhen theweight vectorsw(T ) have a small joint support

⋃

t=1,...,T supp(w(t)). Requiring
the weight vectors to have a small joint support is equivalent to requiring the stacked vector w̃ =
(

w(1), . . . ,w(T )
)

to be block (group) sparse [12].
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Algorithm 11 A Multitask Learning Algorithm

Input: dataset D = {z(1), . . . , z(m)} with T associated learning tasks with loss functions
L(1), . . . , L(T ), hypothesis space H

1: learn a hypothesis ĥ via

ĥ(1), . . . , ĥ(T ) := argmin
h(1),...,h(T )∈H

T
∑

t=1

m
∑

i=1

L(t)(z(i), h(t)) + λR(

h(1), . . . , h(T )
)

. (7.35)

Output: hypotheses ĥ(1), . . . , ĥ(T )

leaning task. While multitask learning methods solve many related learning tasks
simultaneously, transfer learning methods operate in a sequential fashion.

To illustrate the idea of transfer learning consider two learning tasks which differ
in their intrinsic difficulty. We consider a learning task to be easy if it involves if
we can easily gather large amounts of labeled (training) data for that task. Consider
the learning task T (1) of predicting whether an image shows a cat or not. For this
learning task we can easily gather a large training setD(1) using via image collections
of animals. Another (related) learning task T (2) is to predicting whether an image
shows a cat of a particular breed, with a particular body height and with a specific
age, we might not be able to collect many labeled data points.

7.8 Exercises

Exercise 7.1 Ridge Regression is a Quadratic Problem. Consider the linear
hypothesis space consisting of linearmaps parameterized byweightsw.We try to find
the best linear map byminimizing the regularized average squared error loss (empiri-
cal risk) incurred on some labeled data points (x(1), y(1)), (x(2), y(2)), . . ., (x(m), y(m)).
As the regularizer we use ‖w‖2, yielding the following learning problem

min
w∈Rn

f (w) = (1/m)

m
∑

i=1

(

y(i) − wT x(i)
) + ‖w‖22.

Is it possible to rewrite the objective function f (w) as a convex quadratic function
f (w) = wTCw + bw + c? If this is possible, how are the matrix C, vector b and
constant c related to the feature vectors and labels of the training data?

Exercise 7.2 Regularization orModel Selection. Consider data points, each char-
acterized by n = 10 features x ∈ R

n and a single numeric label y. We want to learn a
linear hypothesis h(x) = wT x by minimizing the average squared error on the train-
ing set D of size m = 4. We could learn such a hypothesis by two approaches. The
first approach is to split the dataset into a training set and a validation set. Then we
consider all models that consists of linear hypotheses with weight vectors having at
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most two non-zero weights. Each of these models corresponds to a different subset
of two weights that might be non-zero. Find the model resulting in the smallest val-
idation errors (see Algorithm 5). Compute the average loss of the resulting optimal
linear hypothesis on some data points that have neither been used for training nor for
validation. Compare this average loss (“test error”) with the average loss obtained
on the same data points by the hypothesis learnt by ridge regression (7.4).
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Chapter 8
Clustering

So farwe focused onMLmethods that use theERMprinciple and lean a hypothesis by
minimizing the discrepancy between its predictions and the true labels on a training
set. These methods are referred to as supervised methods as they require labeled
data points for which the true label values have been determined by some human
(who serves as a “supervisor”). This and the following chapter discuss ML methods
which do not require any labeled data point. These methods are often referred to as
“unsupervised” since they do not require a supervisor to provide the label values for
any data point.

The basic idea of clustering is that the data points arising in a ML application can
be decomposed into few subsets which we refer to as clusters. Clustering methods
learn a hypothesis for assigning each data point either to one cluster (see Sect. 8.1) or
several clusters with different degrees of belonging (see Sect. 8.2). Two data points
are assigned to the same cluster if they are similar to each other. Different clustering
methods use different measures for the “similarity” between data points. For data
points characterized by (numeric) Euclidean feature vectors, the similarity between
data points can be naturally defined in terms of theEuclidean distance between feature
vectors. Section8.3 discusses clusteringmethods that use notions of similarity which
do not require to characterize data points by Euclidean feature vectors (Fig. 8.1).

There is a strong conceptual link between clusteringmethods and the classification
methods discussed in Chap.3. Both type of methods learn a hypothesis that reads in
the features of a data point an outputs a prediction for some quantity of interest. In
classification methods, this quantity of interest is some generic label of a data point.
For clustering methods, this quantity of interest is the index of the cluster to which
a data point belongs to. A main difference between clustering and classification is
that clustering methods do not require knowledge of the true label (cluster index) of
any data point.

Classification methods learn a good hypothesis via minimizing their average loss
incurred on a training set of labeled data points. In contrast, clustering methods do
not have access to a single labeled data point. To find the correct labels (cluster

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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Fig. 8.1 Each circle
represents an image which is
characterized by its average
redness xr and average
greenness xg. The i th image
is depicted by a circle
located at the point

x(i) = (
x (i)
r , x (i)

g
)T ∈ R

2. It
seems that the images can be
grouped into two clusters
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x(7)

xg
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assignments) clustering methods rely solely on the intrinsic geometry of the data
points. We will see that clustering methods use this intrinsic geometry to define an
empirical risk incurred by a candidate hypothesis. Like classification methods, also
clustering methods use an instance of the ERM principle (see Chap. 4) to find a good
hypothesis (clustering).

This chapter discusses two main flavours of clustering methods:

• hard clustering (see Sect. 8.1)
• and soft clustering methods (see Sect. 8.2).

Hard clustering methods learn a hypothesis h that reads in the feature vector x of a
data point and delivers a predicted cluster index ŷ = h(x) ∈ {1, . . . , k}. Thus, hard
clustering assigns each data point to one single cluster. Section8.1 will discuss one
of the most widely-used hard clustering algorithms which is known as k-means.

In contrast to hard clustering methods, soft clustering methods assign each data
point to several clusters with different degrees of belonging. These methods learn
a hypothesis that delivers a vector ŷ = (

ŷ1, . . . , ŷk
)T

with entry ŷc ∈ [0, 1] being
the predicted degree of the data point belonging to the cluster with index c. Hard
clustering is an extreme case of soft-clustering with requiring degrees of belonging
taking values in {0, 1} and allowing only one of them to be non-zero.

The main focus of this chapter is on methods that require data points being rep-
resented by numeric feature vectors (see Sects. 8.1 and 8.2). These methods define
the similarity between data points using the Euclidean distance between their feature
vectors. Some applications generate data points for which it is not obvious how to
obtain numeric feature vectors such that their Euclidean distances reflect the similar-
ity between data points. It is then desirable to use a more flexible notion of similarity
which does not require to determine (useful) numeric feature vectors of data points.
Maybe the most fundamental concept to represent similarities between data points is
a similarity graph. The nodes of the similarity graph are the individual data points of
a dataset. Similar data points are connected by edges (links) that might be assigned
some weight that quantifies the amount of similarity. Section8.3 discusses clustering
methods that use a graph to represent similarities between data points.
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8.1 Hard Clustering with k-Means

Consider a dataset D which consists of m data points that are indexed by i =
1, . . . ,m. We can access the data points only via their numeric feature vectors
x(i) ∈ R

n , for i = 1, . . . ,m. It will be convenient for the following discussion if
we identify a data point with its feature vector. In particular, we refer by x(i) to the
i th data point. Hard clustering methods decompose (or cluster) the dataset into a
given number k of different clusters C(1), . . . , C(k). Hard clustering assigns each data
point x(i) to one and only one cluster C(c) with the cluster index c ∈ {1, . . . , k}.

Let us define for each data point its label y(i) ∈ {1, . . . , k} as the index of the
cluster to which the i th data point actually belongs to. The cth cluster consists of all
data points with y(i) = c,

C(c) := {
i ∈ {1, . . . ,m} : y(i) = c

}
. (8.1)

We can interpret hard clustering methods as methods that compute predictions ŷ(i)

for the cluster (“correct”) assignments y(i). The predicted cluster assignments result
in the predicted clusters

Ĉ(c) := {
i ∈ {1, . . . ,m} : ŷ(i) = c

}
, for c = 1, . . . , k. (8.2)

We now discuss a widely used clustering method, known as k-means. This method
does not require the knowledge of the label or (true) cluster assignment y(i) for any
data point inD. Thismethod computes predicted cluster assignments ŷ(i) based solely
from the intrinsic geometry of the feature vectorsx(i) ∈ R

n for all i = 1, . . . ,m. Since
it does not require any labeled data points, k-means is often referred to as being an
unsupervised method. However, note that k-means requires the number k of clusters
to be given as an input (or hyper-) parameter.

The k-means method represents the cth cluster Ĉ(c) by a representative feature
vector μ(c) ∈ R

n . It seems reasonable to assign data points inD to clusters Ĉ(c) such
that they are well concentrated around the cluster representatives μ(c). We make this
informal requirement precise by defining the clustering error

L̂
({μ(c)}kc=1, {ŷ(i)}mi=1 | D) = (1/m)

m∑

i=1

∥∥∥x(i) − μ(ŷ(i))
∥∥∥
2
. (8.3)

Note that the clustering error L̂ (8.3) depends on both, the cluster assignments ŷ(i),
which define the cluster (8.2), and the cluster representatives μ(c), for c = 1, . . . , k.

Finding the optimal cluster means {μ(c)}kc=1 and cluster assignments {ŷ(i)}mi=1 that
minimize the clustering error (8.3) is computationally challenging. The difficulty
stems from the fact that the clustering error is a non-convex function of the cluster
means and assignments. While jointly optimizing the cluster means and assignments
is hard, separately optimizing either the cluster means for given assignments or
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Fig. 8.2 The flow of
k-means. Starting from an
initial guess or estimate for
the cluster means, the cluster
assignments and cluster
means are updated
(improved) in an alternating
fashion

vice-versa is easy. In what follows, we present simple closed-form solutions for
these sub-problems. The k-means method simply combines these solutions in an
alternating fashion.

It can be shown that for given predictions (cluster assignments) ŷ(i), the clustering
error (8.3) is minimized by setting the cluster representatives equal to the cluster
means [1]

μ(c) := (
1/|Ĉ(c)|)

∑

ŷ(i)=c

x(i). (8.4)

To evaluate (8.4) we need to know the predicted cluster assignments ŷ(i). The crux
is that the optimal predictions ŷ(i), in the sense of minimizing clustering error (8.3),
depend themselves on the choice for the cluster representativesμ(c). In particular, for
given cluster representative μ(c) with c = 1, . . . , k, the clustering error is minimized
by the cluster assignments

ŷ(i) ∈ argmin
c∈{1,...,k}

∥
∥x(i) − μ(c)

∥
∥. (8.5)

Here, we denote by argminc′∈{1,...,k} ‖x(i) − μ(c′)‖ the set of all cluster indices c ∈
{1, . . . , k} such that ‖x(i) − μ(c)‖ = minc′∈{1,...,k} ‖x(i) − μ(c′)‖.

Note that (8.5) assigns the i th data point to those cluster C(c) whose cluster mean
μ(c) is nearest (in Euclidean distance) to x(i). Thus, if we knew the optimal cluster
representatives, we could predict the cluster assignments using (8.5). However, we do
not know the optimal cluster representatives unless we have found good predictions
for the cluster assignments ŷ(i) (see (8.4)).

To recap: We have characterized the optimal choice (8.4) for the cluster repre-
sentatives for given cluster assignments and the optimal choice (8.5) for the cluster
assignments for given cluster representatives. It seems natural, starting from some ini-
tial guess for the cluster representatives, to alternate between the cluster assignment
update (8.5) and the update (8.4) for the cluster means. This alternating optimiza-
tion strategy is illustrated in Fig. 8.2 and summarized in Algorithm 12. Note that
Algorithm 12, which is maybe the most basic variant of k-means, simply alternates
between the two updates (8.4) and (8.5) until some stopping criterion is satisfied.
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Algorithm 12 “k-means”

Input: dataset D = {x(i)}mi=1; number k of clusters; initial cluster means μ(c) for c = 1, . . . , k.
1: repeat
2: for each data point x(i), i =1, . . . ,m, do

ŷ(i) := argminc′∈{1,...,k} ‖x(i) − μ(c′)‖ (update cluster assignments) (8.6)

3: for each cluster c=1, . . . , k do

μ(c) := 1

|{i : ŷ(i) = c}|
∑

i :ŷ(i)=c

x(i) (update cluster means) (8.7)

4: until stopping criterion is met

5: compute final clustering error E (k) := (1/m)
∑m

i=1

∥
∥∥x(i) − μ(ŷ(i))

∥
∥∥
2

Output: cluster means μ(c), for c = 1, . . . , k, cluster assignments ŷ(i) ∈ {1, . . . , k}, for i =
1, . . . ,m, final clustering error E (k)

Algorithm 12 requires the specification of the number k of clusters and initial
choices for the cluster means μ(c), for c = 1, . . . , k. Those quantities are hyper-
parameters that must be tuned to the specific geometry of the given dataset D. This
tuning can be based on probabilistic models for the dataset and its cluster structure
(see Sect. 2.1.4 and [2, 3]). Alternatively, if Algorithm 12 is used as pre-processing
within an overall supervised ML method (see Chap.3), the validation error (see
Sect. 6.3) of the overall method might guide the choice of the number k of clusters.

Choosing Number of Clusters. The choice for the number k of clusters typically
depends on the role of the clustering method within an overall ML application. If
the clustering method serves as a pre-processing for a supervised ML problem, we
could try out different values of the number k and determine, for each choice k,
the corresponding validation error. We then pick the value of k which results in the
smallest validation error. If the clustering method is mainly used as a tool for data
visualization, we might prefer a small number of clusters. The choice for the number
k of clusters can also be guided by the so-called “elbow-method”. Here, we run
the k-means Algorithm 12 for several different choices of k. For each value of k,
Algorithm 12 delivers a clustering with clustering error

E (k) = L̂
({μ(c)}kc=1, {ŷ(i)}mi=1 | D)

.

We then plot the minimum empirical error E (k) as a function of the number k of
clusters. Figure8.3 depicts an example for such a plot which typically starts with a
steep decrease for increasing k and then flattening out for larger values of k. Note
that for k ≥ m we can achieve zero clustering error since each data point x(i) can
be assigned to a separate cluster C(c) whose mean coincides with that data point,
x(i) = μ(c).

Cluster-Means Initialization. We briefly mention some popular strategies for
choosing the initial cluster means in Algorithm 12. One option is to initialize the
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Fig. 8.3 The clustering error
E (k) achieved by k-means
for increasing number k of
clusters
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cluster means with realizations of i.i.d. random vectors whose probability distri-
bution is matched to the dataset D = {x(i)}mi=1 (see Sect. 3.12). For example, we
could use a multivariate normal distributionN (x; μ̂, �̂) with the sample mean μ̂ =
(1/m)

∑m
i=1 x

(i) and the sample covariance �̂ = (1/m)
∑m

i=1(x
(i)−μ̂)(x(i)−μ̂)T .

Alternatively, we could choose the initial cluster means μ(c) by selecting k different
data points x(i) from D. This selection process might combine random choices with
an optimization of the distances between cluster means [4]. Finally, the cluster means
might also be chosen by evenly partitioning the principal component of the dataset
(see Chap.9).

Interpretation as ERM. For a practical implementation of Algorithm 12we need
to decide when to stop updating the cluster means and assignments (see (8.6) and
(8.7). To this end it is useful to interpret Algorithm 12 as a method for iteratively
minimizing the clustering error (8.3). As can be verified easily, the updates (8.6) and
(8.7) always modify (update) the cluster means or assignments in such a way that the
clustering error (8.3) is never increased. Thus, each new iteration of Algorithm 12
results in cluster means and assignments with a smaller (or the same) clustering error
compared to the cluster means and assignments obtained after the previous iteration.
Algorithm 12 implements a form of ERM (see Chap. 4) using the clustering error
(8.3) as the empirical risk incurred by the predicted cluster assignments ŷ(i). Note
that after completing a full iteration of Algorithm 12, the cluster means

{
μ(c)

}k
c=1 are

fully determined by the cluster assignments
{
ŷ(i)

}m
i=1 via (8.7). It seems natural to

terminate Algorithm 12 if the decrease in the clustering error achieved by the most
recent iteration is below a prescribed (small) threshold.

Clustering and Classification. There is a strong conceptual link between Algo-
rithm 12 and classification methods (see e.g. Sect. 3.13). Both methods essentially
learn a hypothesis h(x) that maps the feature vector x to a predicted label ŷ = h(x)
from a finite set. The practical meaning of the label values is different for Algo-
rithm 12 and classification methods. For classification methods, the meaning of the
label values is essentially defined by the training set (of labeled data points) used for
ERM (4.3). On the other hand, clustering methods use the predicted label ŷ = h(x)
as a cluster index.
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Another main difference between Algorithm 12 and most classification methods
is the choice for the empirical risk used to evaluate the quality or usefulness of
a given hypothesis h(·). Classification methods typically use an average loss over
labeled data points in a training set as empirical risk. In contrast, Algorithm 12
uses the clustering error (8.3) as a form of empirical risk. Consider a hypothesis
that resembles the cluster assignments ŷ(i) obtained after completing an iteration
in Algorithm 12, ŷ(i) = h

(
x(i)

)
. Then we can rewrite the resulting clustering error

achieved after this iteration as

L̂
(
h|D) = (1/m)

m∑

i=1

∥∥∥∥∥
x(i) −

∑
i ′ :h(x(i))=h(x(i ′)) x

(i ′)
∑

i ′ :h(x(i))=h(x(i ′))

∥∥∥∥∥

2

. (8.8)

Note that the i th summand in (8.8) depends on the entire dataset D and not only on
the feature vector x(i).

Some Practicalities. For a practical implementation of Algorithm 12 we need to
fix three issues.

• Issue 1 (“tie-breaking”): We need to specify what to do if several different cluster
indices c∈{1, . . . , k} achieve the minimum value in the cluster assignment update
(8.6) during step 2.

• Issue 2 (“empty cluster”): The cluster assignment update (8.6) in step 3 of
Algorithm 12 might result in a cluster c with no data points associated with it,
|{i : ŷ(i) = c}| = 0. For such a cluster c, the update (8.7) is not well-defined.

• Issue 3 (“stopping criterion”): We need to specify a criterion used in step 4 of
Algorithm 12 to decide when to stop iterating.

Algorithm 13 is obtained from Algorithm 12 by fixing those three issues [5]. Step 3
of Algorithm 13 solves the first issue mentioned above (“tie breaking”), arising
when there are several cluster clusters whose means have minimum distance to a
data point x(i), by assigning x(i) to the cluster with smallest cluster index (see (8.9)).
Step 4 of Algorithm 13 resolves the “empty cluster” issue by computing the variables
b(c) ∈ {0, 1} for c = 1, . . . , k. The variable b(c) indicates if the cluster with index c
is active (b(c) = 1) or the cluster c is inactive (b(c) = 0). The cluster c is defined
to be inactive if there are no data points assigned to it during the preceding cluster
assignment step (8.9). The cluster activity indicators b(c) allows to restrict the cluster
mean updates (8.10) only to the clusters cwith at least one data point x(i). To obtain a
stopping criterion, step 7 Algorithm 13monitors the clustering error E (r) incurred by
the clustermeans and assignments obtained after r iterations. Algorithm13 continues
updating cluster assignments (8.9) and cluster means (8.10) as long as the decrease
is above a given threshold ε ≥ 0.

For Algorithm 13 to be useful we must ensure that the stopping criterion is met
within a finite number of iterations. In other words, wemust ensure that the clustering
error decrease can be made arbitrarily small within a sufficiently large (but finite)
number of iterations. To this end, it is useful to representAlgorithm13 as a fixed-point
iteration
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Algorithm 13 “k-Means II” (slight variation of “Fixed Point Algorithm” in [5])

Input: datasetD = {x(i)}mi=1; number k of clusters; tolerance ε ≥ 0; initial clustermeans
{
μ(c)

}k
c=1

1: Initialize. set iteration counter r := 0; E (0) := 0
2: repeat
3: for all data points i =1, . . . ,m,

ŷ(i) := min{argminc′∈{1,...,k} ‖x(i) − μ(c′)‖} (update cluster assignments) (8.9)

4: for all clusters c=1, . . . , k, update the activity indicator

b(c) :=
{
1 if |{i : ŷ(i) = c}| > 0

0 else.

5: for all c=1, . . . , k with b(c) = 1,

μ(c) := 1

|{i : ŷ(i) = c}|
∑

{i :ŷ(i)=c}
x(i) (update cluster means) (8.10)

6: r := r + 1 (increment iteration counter)

7: E (r) := L̂
({μ(c)}kc=1, {ŷ(i)}mi=1 | D)

(evaluate clustering error (8.3))

8: until r > 1 and E (r−1) − E (r) ≤ ε (check for sufficient decrease in clustering error)

9: E (k) := (1/m)
∑m

i=1

∥∥
∥x(i) − μ(ŷ(i))

∥∥
∥
2
(compute final clustering error)

Output: cluster assignments ŷ(i) ∈{1, . . . , k}, cluster means μ(c), clustering error E (k).

{ŷ(i)}mi=1 �→ P{ŷ(i)}mm=1. (8.11)

The operatorP , which depends on the datasetD, reads in a list of cluster assignments
and delivers an improved list of cluster assignments aiming at reducing the associated
clustering error (8.3). Each iteration of Algorithm 13 updates the cluster assignments
ŷ(i) by applying the operatorP . Representing Algorithm 13 as a fixed-point iteration
(8.11) allows for an elegant proof of the convergence of Algorithm 13 within a finite
number of iterations (even for ε = 0) [5, Thm. 2].

Figure8.4 depicts the evolution of the cluster assignments and cluster means
during the iterations Algorithm 13. Each subplot corresponds to one iteration of
Algorithm 13 and depicts the cluster means before that iteration and the clustering
assignments (via the marker symbols) after the corresponding iteration. In particular,
the upper left subplot depicts the cluster means before the first iteration (which are
the initial cluster means) and the cluster assignments obtained after the first iteration
of Algorithm 13.

Consider running Algorithm 13 with tolerance ε = 0 (see step 8) such that the
iterations are continued until there is no decrease in the clustering error E (r) (see
step 7 of Algorithm 13). As discussed above, Algorithm 13 will terminate after a
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Fig. 8.4 The evolution of cluster means (8.7) and cluster assignments (8.6) (depicted as large dot
and large cross) during the first four iterations of k-means Algorithm 13

finite number of iterations. Moreover, for ε = 0, the delivered cluster assignments{
ŷ(i)

}m
i=1 are fully determined by the delivered clustered means

{
μ(c)

}k
c=1,

ŷ(i) = min{ argmin
c′∈{1,...,k}

‖x(i) − μ(c′)‖}. (8.12)

Indeed, if (8.12) does not hold one can show the final iteration r would still decrease
the clustering error and the stopping criterion in step 8 would not be met.

If cluster assignments and cluster means satisfy the condition (8.12), we can
rewrite the clustering error (8.3) as a function of the cluster means solely,

L̂
({

μ(c)
}k
c=1|D

) := (1/m)

m∑

i=1

min
c′∈{1,...,k} ‖x

(i) − μ(c′)‖2. (8.13)

Even for cluster assignments and cluster means that do not satisfy (8.12), we can still
use (8.13) to lower bound the clustering error (8.3),

L̂
({

μ(c)
}k
c=1|D

) ≤ L̂
({μ(c)}kc=1, {ŷ(i)}mi=1 | D)

.

Algorithm 13 iteratively improves the cluster means in order to minimize (8.13).
Ideally, we would like Algorithm 13 to deliver cluster means that achieve the global
minimum of (8.13) (see Fig. 8.5). However, for some combination of dataset D and
initial cluster means, Algorithm 13 delivers cluster means that form only a local
optimum of L̂

({
μ(c)

}k
c=1|D

)
which is strictly worse (larger) than its global optimum

(see Fig. 8.5).
The tendency of Algorithm 13 to get trapped around a local minimum of (8.13)

depends on the initial choice for cluster means. Therefore, it is often useful to repeat
Algorithm 13 several times, with each repetition using a different initial choice for
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̂L {µ(c)}kc=1 | D
)

local minimum

global minimum

Fig. 8.5 The clustering error (8.13) is a non-convex function of the cluster means {μ(c)}kc=1.
Algorithm 13 iteratively updates cluster means to minimize the clustering error but might get
trapped around one of its local minimum

the cluster means. We then pick the cluster assignments {ŷ(i)}mi=1 obtained for the
repetition that resulted in the smallest clustering error E (k) (see step 9).

8.2 Soft Clustering with Gaussian Mixture Models

Consider a dataset D = {x(1), . . . , x(m)} that we wish to group into a given number
of k different clusters. The hard clustering methods of Sect. 8.1 deliver (predicted)
cluster assignments ŷ(i) as the index of the cluster to which data point x(i) is assigned
to. These cluster assignments ŷ provide rather coarse-grained information. Two data
points x(i), x( j) might be assigned to the same cluster c although their distances to
the cluster mean μ(c) might be very different. Intuitively, these two data points have
a different degree of belonging to the cluster c.

For some clustering applications it is desirable to quantify the degree by which
a data point belongs to a cluster. Soft clustering methods use a continues range,
such as the closed interval [0, 1], of possible values for the degree of belonging. In
contrast, hard clustering methods use only two possible degrees of belonging, either
full belonging or no belonging to a cluster. While hard clustering methods assign a
given data point to precisely one cluster, soft clustering methods typically assign a
data point to several different clusters with non-zero degree of belonging.

This chapter discusses soft clustering methods that compute, for each data point
x(i) in the dataset D, a vector ŷ(i) = (

ŷ(i)
1 , . . . , ŷ(i)

k

)T
. We can interpret the entry

ŷ(i)
c ∈ [0, 1] as the degree by which the data point x(i) belongs to the cluster C(c).
For ŷ(i)

c ≈ 1, we are quite confident in the data point x(i) belonging to cluster C(c). In
contrast, for ŷ(i)

c ≈ 0, we are quite confident in the data point x(i) being outside the
cluster C(c).

Awidely used soft-clusteringmethod uses a probabilisticmodel for the data points
D = {x(i)}mi=1. Within this model, each cluster C(c), for c = 1, . . . , k, is represented
by a multivariate normal distributions [6]
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N (
x; μ(c),�(c)) = 1√

det{2π�} exp
( − (1/2)

(
x−μ(c))T (

�(c))−1(x−μ(c))), for c = 1, . . . , k.

(8.14)
The probability distribution (8.14) is parameterized by a cluster-specific mean vec-
tor μ(c) and an (invertible) cluster-specific covariance matrix �(c).1 We interpret a
specific data point x(i) as a realization drawn from the probability distribution (8.14)
of a specific cluster c(i),

x(i) ∼ N (
x;μ(c),�(c)

)
with cluster index c = c(i). (8.15)

We can think of c(i) as the true index of the cluster to which the data point x(i) belongs
to. The variable c(i) selects the cluster distributions (8.14) from which the feature
vector x(i) has been generated (drawn). We will therefore refer to the variable c(i)

as the (true) cluster assignment for the i th data point. Similar to the feature vectors
x(i) we also interpret the cluster assignments c(i), for i = 1, . . . ,m as realizations of
i.i.d. RVs.

In contrast to the feature vectors x(i), we do not observe (know) the true cluster
indices c(i). After all, the goal of soft clustering is to estimate the cluster indices c(i).
We obtain a soft-clustering method by estimating the cluster indices c(i) based solely
on the data points inD. To compute these estimates we assume that the (true) cluster
indices c(i) are realizations of i.i.d. RVs with the common probability distribution
(or probability mass function)

pc := p(c(i) = c) for c = 1, . . . , k. (8.16)

The (prior) probabilities pc, for c = 1, . . . , k, are either assumed known or estimated
from data [6, 7]. The choice for the probabilities pc could reflect some prior knowl-
edge about different sizes of the clusters. For example, if cluster C(1) is known to be
larger than cluster C(2), we might choose the prior probabilities such that p1 > p2.

The probabilistic model given by (8.15), (8.16) is referred to as a a GMM. This
name is quite natural as the common marginal distribution for the feature vectors
x(i), for i = 1, . . . ,m, is a (additive) mixture of multivariate normal (Gaussian) dis-
tributions,

p(x(i)) =
k∑

c=1

p(c(i) = c)
︸ ︷︷ ︸

pc

p(x(i)|c(i) = c)
︸ ︷︷ ︸
N (x(i);μ(c),�(c))

. (8.17)

As already mentioned, the cluster assignments c(i) are hidden (unobserved) RVs. We
thus have to infer or estimate these variables from the observed data points x(i) which
realizations or i.i.d. RVs with the common distribution (8.17).

1 Note that the expression (8.14) is only valid for an invertible (non-singular) covariance matrix �.
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The GMM (see (8.15) and (8.16)) lends naturally to a rigorous definition for the
degree y(i)

c by which data point x(i) belongs to cluster c.2 Let us define the label
value y(i)

c as the “a-posteriori” probability of the cluster assignment c(i) being equal
to c ∈ {1, . . . , k}:

y(i)
c := p(c(i) = c|D). (8.18)

By their very definition (8.18), the degrees of belonging y(i)
c always sum to one,

k∑

c=1

y(i)
c = 1 for each i = 1, . . . ,m. (8.19)

We emphasize that we use the conditional cluster probability (8.18), conditioned on
the dataset D, for defining the degree of belonging y(i)

c . This is reasonable since the
degree of belonging y(i)

c depends on the overall (cluster) geometry of the data setD.
The definition (8.18) for the label values (degrees of belonging) y(i)

c involves
the GMM parameters {μ(c),μ(c), pc}kc=1. Since we do not know these parameters
beforehand we cannot evaluate the conditional probability in (8.18). A principled
approach to solve this problem is to evaluate (8.18) with the true GMM parameters
replaced by some estimates {μ̂(c), �̂

(c)
, p̂c}kc=1. Plugging in the GMM parameter

estimates into (8.18) provides us with predictions ŷ(i)
c for the degrees of belonging.

However, to compute the GMM parameter estimates we would have already needed
the degrees of belonging y(i)

c . This situation is similar to hard clustering where ultime
goals is to jointly optimize cluster means and assignments (see Sect. 8.1).

Similar to the spirit of Algorithm 4 for hard clustering, we solve the above
dilemma of soft clustering by an alternating optimization scheme. This scheme
alternates between updating (optimizing) the predicted degrees of belonging ŷ(i)

c ,
for i = 1, . . . ,m and c = 1, . . . , k, given the current GMM parameter estimates

{μ̂(c), �̂
(c)

, p̂c}kc=1 and then updating (optimizing) these GMM parameter estimates
based on the updated predictions ŷ(i)

c . We summarize the resulting soft clustering
method in Algorithm 4. Each iteration of Algorithm 4 consists of an update (8.22)
for the degrees of belonging followed by an update (step 3) for the GMM parameters
(Fig. 8.6).

To analyzeAlgorithm14 it is helpful to interpret (the features of) data points x(i) as
realizations of i.i.d. RVs distributed according to a GMM (8.15)–(8.16). We can then
understand Algorithm 14 as a method for estimating the GMM parameters based on
observing realizations drawn from the GMM (8.15)–(8.16). A principled approach
to estimating the parameters of a probability distribution is the maximum likelihood
method (see Sect. 3.12 and [7, 8]). The idea is to estimate the GMM parameters by
maximizing the probability (density)

2 Remember that the degree of belongings y(i)
c are considered as (unknown) label values for data-

points. The choice or definition for the labels of data points is a design choice. In particular, we can
define the labels of data points using a hypothetical probabilistic model such as the GMM.



8.2 Soft Clustering with Gaussian Mixture Models 165

Fig. 8.6 The GMM (8.15),
(8.16) yields a probability
distribution (8.17) which is a
weighted sum of multivariate
normal distributions
N (μ(c),�(c)). The weight of
the cth component is the
cluster probability
p(c(i) = c)

µ(1)

Σ(1)

µ(2)

Σ(2)
µ(3)

Σ(3)

p
(D; {μ(c),�(c), pc}kc=1

)
(8.20)

of actually observing the data point in the dataset D.
It can be shown that Algorithm 14 is an instance of a generic approximate maxi-

mum likelihood technique referred to as expectation maximization expectation max-
imization (EM) (see [9, Chap. 8.5] for more details). In particular, each iteration of
Algorithm 14 updates the GMM parameter estimates such that the corresponding
probability density (8.20) does not decrease [10]. If we denote the GMM parameter
estimate obtained after r iterations of Algorithm 14 by θ (r) [9, Sect. 8.5.2],

p
(D; θ (r+1)) ≥ p

(D; θ (r)) (8.21)

Algorithm 14 “A Soft-Clustering Algorithm” [1]

Input: dataset D = {x(i)}mi=1; number k of clusters, initial GMM parameter estimates

{μ̂(c), �̂
(c)

, p̂c}kc=1
1: repeat

2: for each i = 1, . . . ,m and c = 1, . . . , k, update degrees of belonging

ŷ(i)
c := p̂cN (x(i); μ̂(c), �̂

(c)
)

∑k
c′=1 p̂c′N (x(i); μ̂(c′), �̂

(c′)
)

(8.22)

3: for each c ∈ {1, . . . , k}, update GMM parameter estimates:

• p̂c :=mc/m with effective cluster size mc :=
m∑

i=1
ŷ(i)
c (cluster probability)

• μ̂(c) := (1/mc)
m∑

i=1
ŷ(i)
c x(i) (cluster mean)

• �̂
(c) := (1/mc)

m∑

i=1
ŷ(i)
c

(
x(i)−μ̂(c)

)(
x(i)−μ̂(c)

)T (cluster covariance matrix)

4: until stopping criterion met
Output: predicted degrees of belonging ŷ(i) = (ŷ(i)

1 , . . . , ŷ(i)
k )T for i = 1, . . . ,m.
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As for Algorithm 12, we can also interpret Algorithm 4 as an instance of the ERM
principle discussed in Chap.4. Indeed, maximizing the probability density (8.20) is
equivalent to minimizing the empirical risk

L̂
(
θ | D) := − log p

(D; θ
)
with GMM parameters θ := {μ(c),�(c), pc}kc=1

(8.23)
The empirical risk (8.23) is the negative logarithm of the probability (density) (8.20)
of observing the dataset D as i.i.d. realizations of the GMM (8.17). The monotone
increase in the probability density (8.21) achieved by the iterations of Algorithm 4
translate into a monotone decrease of the empirical risk,

L̂
(
θ (r) | D) ≤ L̂

(
θ (r−1) | D)

with iteration counter r. (8.24)

The monotone decrease (8.24) in the empirical risk (8.23) achieved by the iter-
ations of Algorithm 14 naturally lends to a stopping criterion. Let E (r) denote the
empirical risk (8.23) achieved by the GMM parameter estimates θ (r) obtained after
r iterations in Algorithm 14. We stop iterating as soon as the decrease E (r) − E (r+1)

achieved by the r + 1th iteration of Algorithm 4 falls below a given (positive) thresh-
old ε > 0.

Similar to Algorithm 12, also Algorithm 14 might get trapped in local minima
of the underlying empirical risk. The GMM parameters delivered by Algorithm 14
might only be a local minimum of (8.23) but not the global minimum (see Fig. 8.5 for
the analogous situation in hard clustering). As for hard clustering Algorithm 12, we
typically repeat Algorithm 14 several times. During each repetition of Algorithm 14,
we use a different (randomly chosen) initialization for the GMMparameter estimates
θ = {μ̂(c), �̂

(c)
, p̂c}kc=1. Each repetition of Algorithm 14 results in a potentially dif-

ferent set of GMM parameter estimates and degrees of belongings ŷ(i)
c . We then use

the results for that repetition that achieves the smallest empirical risk (8.23).
Let us point out an interesting link between soft clustering methods based on

GMM (see Algorithm 14) and hard clustering with k-means (see Algorithm 12).
Consider the GMM (8.15) with prescribed cluster covariance matrices

�(c) = σ 2I for all c ∈ {1, . . . , k}, (8.25)

with some given variance σ 2 > 0. We assume the cluster covariance matrices in
the GMM to be given by (8.25) and therefore can replace the covariance matrix
updates in Algorithm 14 with the assignment �̂

(c) := σ 2I. It can be verified easily
that for sufficiently small variance σ 2 in (8.25), the update (8.22) tends to enforce
ŷ(i)
c ∈ {0, 1}. In other words, each data point x(i) becomes then effectively associated
with exactly one single cluster c whose cluster mean μ̂(c) is nearest to x(i). For
σ 2 → 0, the soft-clustering update (8.22) in Algorithm 14 reduces to the (hard)
cluster assignment update (8.6) in k-meansAlgorithm12.We can interpretAlgorithm
12 as an extreme case of Algorithm 14 that is obtained by fixing the covariance
matrices in the GMM to σ 2I with a sufficiently small σ 2.
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Combining GMM with linear regression. Let us now sketch how Algorithm
14 could be combined with linear regression methods. The idea is to first compute
the degree of belongings to the clusters for each data point. We then learn separate
linear predictors for each cluster using the degree of belongings as weights for the
individual loss terms in the training error. To predict the label of a new data point, we
first compute the predictions obtained for each cluster-specific linear hypothesis and
then average them using the degree of the new data point belonging to each cluster.

8.3 Connectivity-Based Clustering

The clustering methods discussed in Sects. 8.1 and 8.2 can only be applied to data
points which are characterized by numeric feature vectors. These methods define
the similarity between data points using the Euclidean distance between the fea-
ture vectors of these data points. As illustrated in Fig. 8.7, these methods can only
produce “Euclidean shaped” clusters that are contained either within hyper-spheres
(Algorithm 12) or hyper-ellipsoids (Algorithm 14).

Some applications generate data points for which the construction of useful
numeric features is difficult. Even if we can easily obtain numeric features for data
points, the Euclidean distances between the resulting feature vectorsmight not reflect
the actual similarities betweendata points.As a case in point, consider data points rep-
resenting text documents.We could use the histogram of a respecified list of words as
numeric features for a text document. In general, a small Euclidean distance between
histograms of text documents does not imply that the text documents have similar
meanings. Moreover, groups or clusters of similar text documents might have highly
complicated shapes in the space of feature vectors that cannot be grouped within
hyper-ellipsoids. For datasets with such “non-Euclidean” cluster shapes, k-means or
GMM are not suitable as clustering methods. We should then replace the Euclidean
distance between feature vectors with another concept to determine or measure the
similarity between data points.

Connectivity-based clustering methods do not require any numeric features of
data points. These methods cluster data points based on explicitly specifying for

µ(1)

(a)

Σ(1)

µ(2)

Σ(2)µ(3)
Σ(3)

µ(1)

Σ(1)

µ(2)

Σ(2)µ(3)

(b)

Σ(3)

Fig. 8.7 a Cartoon of typical cluster shapes delivered by k-means Algorithm 13. b Cartoon of
typical cluster shapes delivered by soft clustering Algorithm 14
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Fig. 8.8 Connectivity-based clustering can be obtained by constructing features x(i) that are
(approximately) identical for well-connected data points. a A similarity graph for a dataset D
consists of nodes representing individual data points and edges that connect similar data points. b
Feature vectors of well-connected data points have small Euclidean distance

any two different data points if they are similar and to what extend. A convenient
mathematical tool to represent similarities between the data points of a dataset D
is a weighted undirected graph G = (V, E)

. We refer to this graph as the similarity
graph of the datasetD (see Fig. 8.8). The nodes V in this similarity graph G represent
data points in D and the undirected edges connect nodes that represent similar data
points. The extend of the similarity is represented by the weights Wi, j for each edge
{i, j} ∈ E .

Given a similarity graph G of a dataset, connectivity-based clustering methods
determine clusters as subsets of nodes that are well connected within the cluster but
weakly connected between different clusters. Different concepts for quantifying the
connectivity between nodes in a graph yield different clustering methods. Spectral
clustering methods use eigenvectors of a graph Laplacian matrix to measure the
connectivity between nodes [11, 12]. Flow-based clustering methods measure the
connectivity between two nodes via the amount of flow that can be routed between
them [13]. Note that we might use these connectivity measures to construct mean-
ingful numerical feature vectors for the nodes in the empirical graph. These feature
vectors can then be fed into the hard-clustering Algorithm 13 or the soft clustering
Algorithm 14 (see Fig. 8.8).

The density-based clustering algorithm DBSCAN considers two data points i, i ′
as connected if one of them (say i) is a core node and the other node (i ′) can be
reached via a sequence (path) of connected core nodes

i (1), . . . , i (r) , with {i, i (1)}, {i (1), i (2)}, . . . , {i (r), i ′} ∈ E .
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x(1)
x(2)

< ε

Fig. 8.9 DBSCAN assigns two data points to the same cluster if they are reachable. Two data points
x(i), x(i ′) are reachable if there is a path of data points from x(i ′) to x(i). This path consists of a
sequence of data points that are within a distance of ε. Moreover, each data point on this path must
be a core point which has at least a given number of neighbouring data points within the distance ε

DBSCAN considers a node to be a core node if it has a sufficiently large number
of neighbours [14]. The minimum number of neighbours required for a node to be
considered a core node is a hyperparameter of DBSCAN.When DBSCAN is applied
to data points with numeric feature vectors, it defined two data points as similar if the
Euclidean distance between their feature vectors does not exceed a given threshold
ε (see Fig. 8.9).

In contrast to k-means and GMM, DBSCAN does not require the number of clus-
ters to be specified. The number of clusters is determined automatically byDBSCAN
and depends on its hyperparameters. DBSCAN also performs an implicit outlier
detection. The outliers delivered by DBSCAN are those data points which do not
belong to the same cluster as another data point.

8.4 Clustering as Preprocessing

In applications it might be beneficial to combine clustering methods with supervised
methods such as linear regression. As a point in case consider a dataset that consists
of data points obtained from two different data generation processes. Let us denote
the data points generated by one process by D(1) and the other one by D(2). Each
datapoint is characterized by features and a label. While there would be an accurate
linear hypothesis for predicting the label of data points in D(1) and another linear
hypothesis for D(2) these two are very different.

We could try to use clustering methods to assign any given data point to the
correspondingdata generation process. Ifwe are lucky, the resulting clusters resemble
(approximately) the two data generation processes D(1) and D(2). Once we have
successfully clustered the data points, we can learn a separate (tailored) hypothesis
for ach cluster.More generally, we can use the predicted cluster assignments obtained
from the methods of Sects. 8.1–8.3 as additional features for each data point.
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Let us illustrate the above ideas by combiningAlgorithm12with linear regression.
We first group data points into a given number k of clusters and then learn separate
linear predictors h(c)(x) = (

w(c)
)T
x for each cluster c = 1, . . . , k. To predict the

label of a new data point with features x, we first assign to the cluster c′ with the
nearest cluster mean. We then use the linear predictor h(c′) assigned to cluster c′ to
compute the predicted label ŷ = h(c′)(x).

8.5 Exercises

Exercise 8.1 Monoticity of k-means Updates Show that the cluster means and
assignments updates (8.7) and (8.6) never increase the clustering error (8.3).

Exercise 8.2 How to choose k in k-means? Discuss strategies for choosing the
number k of clusters which is used as a hyper-parameter for k-means.

Exercise 8.3 Local Minima. Consider applying the hard clustering Algorithm 13
to the dataset (−10, 1), (10, 1), (−10,−1), (10,−1) with initial cluster means
(0, 1), (0,−1) and tolerance ε = 0. For this initialization, will Algorithm 13 get
trapped in a local minimum of the clustering error (8.13)?

Exercise 8.4 Image Compression with k-means Apply k-means to image com-
pression. Consider image pixels as data points whose features are RGB intensities.
We obtain a simple image compression format by, instead of storing RGB pixel val-
ues, storing the cluster means (which are RGB triplets) and the cluster index for each
pixel.

Exercise 8.5 Compression with k-means Consider m = 10000 data points with
feature vectors x(1), . . . , x(m) length two. We apply k-means to cluster the data set
into two clusters. How many bits do we need to store the clustering? For simplicity,
we assume that any real number can be stored perfectly as a floating point numbers
(32 bit).
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Chapter 9
Feature Learning

“Solving Problems By Changing the Viewpoint.”

Chapter 2 discussed features as those properties of a data point that can be measured
or computed easily. Sometimes the choice of features follows naturally from the
available hard and software. For example, we might use the numeric measurement
z ∈ R delivered by a sensing device as a feature. However, we could augment this
single feature with new features such as the powers z2 and z3 or adding a constant
z + 5. Each of these computations produces a new feature. Which of these additional
features are most useful?

Feature learning methods automate the choice of finding good features. These
methods learn a hypothesis map that reads in some representation of a data point
and transforms it to a set of features. Feature learning methods differ in the precise
format of the original data representation as well as the format of the delivered
features. The focus of this chapter in on feature learning methods that require data
points being represented by d numeric raw features and deliver a set of n new numeric
features. We will denote the set of raw and new features by z = (

z1, . . . , zd
)T ∈ R

d

and x = (
x1, . . . , xn

)T ∈ R
n , respectively.

Many ML application domains generate data points for which can access a huge
number of raw features. Consider data points being snapshots generated by a smart-
phone. It seems natural to use the pixel colour intensities as the raw features of the
snapshot. Since modern smartphone have Megapixel cameras, the pixel intensities
would provide us with millions of raw features. It might seem a good idea to use
as many (raw) features of a data point as possible since more features should offer
more information about a data point and its label y. There are, however, two pitfalls
in using an unnecessarily large number of features. The first one is a computational
pitfall and the second one is a statistical pitfall.

Computationally, using very large feature vectors x ∈ R
n (with n being billions),

might result in excessive resource requirements (bandwidth, storage, time) of the
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resultingMLmethod. Statistically, using a large number of features makes the result-
ing ML methods more prone to overfitting. For example, linear regression will typi-
cally overfit when using feature vectors x∈R

n whose length n exceeds the number
m of labeled data points used for training (see Chap. 7).

Both from a computational and a statistical perspective, it is beneficial to use
only the maximum necessary amount of features. The challenge is to select those
features which carry most of the relevant information required for the prediction of
the label y. Finding the most relevant features out of a huge number of (raw) features
is the goal of dimensionality reduction methods. Dimensionality reduction methods
form an important sub-class of feature learning methods. Formally, dimensionality
reduction methods learn a hypothesis h(z) that map a long raw feature vector z ∈ R

d

to a short new feature vector x ∈ R
n with d � n.

Beside avoiding overfitting and coping with limited computational resources,
dimensionality reduction can also be useful for data visualization. Indeed, if the
resulting feature vector has lengthn = 2,wedepict data points in the two-dimensional
plane in form of a scatterplot.

We will discuss the basic idea underlying dimensionality reduction methods in
Sect. 9.1. Section9.2 presents one particular example of a dimensionality reduction
method that computes relevant features by a linear transformation of the raw feature
vector. Section9.4 discusses a method for dimensionality reduction that exploits the
availability of labelled data points. Section9.6 shows how randomness can be used
to obtain computationally cheap dimensionality reduction.

Most of this chapter discusses dimensionality reduction methods that determine
a small number of relevant features from a large set of raw features. However, some-
times it might be useful to go the opposite direction. There are applications where it
might be beneficial to construct a large (even infinite) number of new features from
a small set of raw features. Section9.7 will showcase how computing additional
features can help to improve the prediction accuracy of ML methods.

9.1 Basic Principle of Dimensionality Reduction

The efficiency of ML methods depends crucially on the choice of features that are
used to characterize data points. Ideally we would like to have a small number of
highly relevant features to characterize data points. If we use too many features
we risk to waste computations on exploring irrelevant features. If we use too few
features we might not have enough information to predict the label of a data point.
For a given number n of features, dimensionality reduction methods aim at learning
an (in a certain sense) optimal map from the data point to a feature vector of length n.

Figure9.1 illustrates the basic idea of dimensionality reduction methods. Their
goal is to learn (or find) a “compression” map h(·) : Rd → R

n that transforms a
(long) raw feature vector z ∈ R

d to a (short) feature vectorx = (x1, . . . , xn)T := h(z)
(typically n � d).
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Fig. 9.1 Dimensionality reduction methods aim at finding a map h which maximally compresses
the raw datawhile still allowing to accurately reconstruct the original data point from a small number
of features x1, . . . , xn

The new feature vector x = h(z) serves as a compressed representation (or code)
for the original raw feature vector z. We can reconstruct the raw feature vector using
a reconstruction map r(·) : Rn → R

d . The reconstructed raw features ẑ := r(x) =
r(h(z)) will typically by different from the original raw feature vector z. Thus, we
will obtain a non-zero reconstruction error

ẑ︸︷︷︸
=r(h(z)))

−z. (9.1)

Dimensionality reduction methods learn a compression map h(·) such that
the reconstruction error (9.1) is minimized. In particular, for a dataset D ={
z(1), . . . , z(m)

}
, we measure the quality of a pair of compression map h and recon-

struction map r by the average reconstruction error

L̂
(
h, r |D) := (1/m)

m∑

i=1

L(z(i), r
(
h
(
z(i)

))
). (9.2)

Here, L(z, r
(
h
(
z(i)

)
)denotes a loss function that is used tomeasure the reconstruction

error r
(
h
(
z(i)

))

︸ ︷︷ ︸
ẑ

−z. Different choices for the loss function in (9.2) result in different

dimensionality reductionmethods. Onewidely-used choice for the loss is the squared
Euclidean norm

L(z, g
(
h
(
z
))
) := ∥∥z − g

(
h
(
z
))∥∥2

2. (9.3)

Practical dimensionality reduction methods have only finite computational
resources. Any practical method must therefore restrict the set of possible compres-
sion and reconstruction maps to small subsetsH andH∗, respectively. These subsets
are the hypothesis spaces for the compressionmap h ∈ H and the reconstructionmap
r ∈ H∗. Feature learning methods differ in their choice for these hypothesis spaces.

Dimensionality reduction methods learn a compression map by solving
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ĥ = argmin
h∈H

min
r∈H∗ L̂

(
h, r |D)

(9.2)= argmin
h∈H

min
r∈H∗(1/m)

m∑

i=1

L(z(i), r
(
h
(
z(i)

))
). (9.4)

We can interpret (9.4) as a (typically non-linear) approximation problem. The optimal
compression map ĥ is such that the reconstructionr(ĥ(z)), with a suitably chosen
reconstruction map r , approximates the original raw feature vector z as good as
possible. Note that we use a single compression map h(·) and a single reconstruction
map r(·) for all data points in the dataset D.

We obtain variety of dimensionality methods by using different choices for the
hypothesis spaces H,H∗ and loss function in (9.4). Section9.2 discusses a method
that solves (9.4) for H,H∗ constituted by linear maps and the loss (9.3). Deep
autoencoders are another family of dimensionality reduction methods that solve
(9.4) withH,H∗ constituted by non-linear maps that are represented by deep neural
networks [1, Chap. 14].

9.2 Principal Component Analysis

Wenow consider the special case of dimensionality reductionwhere the compression
and reconstruction map are required to be linear maps. Consider a data point which
is characterized by a (typically very long) raw feature vector z ∈ R

d of length d.
The length d of the raw feature vector might be easily of the order of millions. To
obtain a small set of relevant features x = (

x1, . . . , xn
)T ∈ R

n , we apply a linear
transformation to the raw feature vector,

x = Wz. (9.5)

Here, the “compression” matrixW ∈ R
n×d maps (in a linear fashion) the (long) raw

feature vector z ∈ R
d to the (shorter) feature vector x ∈ R

n .
It is reasonable to choose the compression matrix W ∈ R

n×D in (9.5) such that
the resulting features x ∈ R

n allow to approximate the original data point z ∈ R
d as

accurate as possible. We can approximate (or recover) the data point z ∈ R
d back

from the features x by applying a reconstruction operatorR ∈ R
d×n , which is chosen

such that
z ≈ Rx

(9.5)= RWz. (9.6)

The approximation error L̂
(
W,R | D)

resulting when (9.6) is applied to each
data point in a dataset D = {z(i)}mi=1 is then

L̂
(
W,R | D) = (1/m)

m∑

i=1

‖z(i) − RWz(i)‖2. (9.7)
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One can verify that the approximation error L̂
(
W,R | D)

can only by minimal if
the compression matrix W is of the form

W = WPCA := (
u(1), . . . ,u(n)

)T ∈ R
n×d , (9.8)

with n orthonormal vectors u( j), for j = 1, . . . , n. The vectors u( j) are the eigenvec-
tors corresponding to the n largest eigenvalues of the sample covariance matrix

Q := (1/m)ZTZ ∈ R
d×d . (9.9)

Here we used the data matrix Z=(
z(1), . . . , z(m)

)T ∈R
m×d .1 It can be verified eas-

ily, using the definition (9.9), that the matrix Q is psd. As a psd matrix, Q has an
eigenvalue decomposition (EVD) of the form [2]

Q = (
u(1), . . . ,u(d)

)
⎛

⎜
⎝

λ(1) . . . 0

0
. . . 0

0 . . . λ(d)

⎞

⎟
⎠

(
u(1), . . . ,u(d)

)T

with real-valued eigenvalues λ(1) ≥ λ(2) ≥ . . . ≥ λ(d) ≥ 0 and orthonormal eigen-
vectors {ur }dr=1.

The feature vectors x(i) are obtained by applying the compression matrix WPCA

(9.8) to the raw feature vectors z(i). We refer to the entries of the vector x(i), obtained
via the eigenvectors of Q (see (9.2)), as the principal components (PC) of the raw
feature vectors z(i). Algorithm 15 summarizes the overall procedure of determining
the compression matrix (9.8) and computing the vectors x(i) whose entries are the PC
of the raw feature vectors. This procedure is known asprincipal component analysis
(PCA). Note that the length n(≤ d) of the mew feature vector x, which is also the
number of PCs used, is an input (or hyper) parameter of Algorithm 15. The number
n can be chosen between the two extreme cases n = 0 (maximum compression)
and n = d (no compression). We finally note that the choice for the orthonormal
eigenvectors in (9.8) might not be unique. Depending on the sample covariance
matrix Q, there might different sets of orthonormal vectors that correspond to the
same eigenvalue of Q. Thus, for a given length n of the new feature vectors, there
might be several different matricesW that achieve the same (optimal) reconstruction
error L̂(PCA).

From a computational perspective, Algorithm 15 essentially amounts to perform-
ing an EVD of the sample covariance matrix Q (see (9.9)). Indeed, the EVD of Q
provides not only the optimal compression matrixWPCA but also the measure L̂(PCA)

for the information loss incurred by replacing the original data points z(i) ∈ R
d

with the smaller feature vector x(i) ∈ R
n . In particular, this information loss is mea-

sured by the approximation error (obtained for the optimal reconstruction matrix
Ropt = WT

PCA)

1 Some authors define the datamatrix asZ=(
z̃(1), . . . , z̃(m)

)T ∈R
m×D using “centered” raw feature

vectors z̃(i) − m̂ obtained by subtracting the average m̂ = (1/m)
∑m

i=1 z
(i).
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Algorithm 15 Principal Component Analysis (PCA)

Input: dataset D = {z(i) ∈ R
d }mi=1; number n of PCs.

1: compute the EVD (9.2) to obtain orthonormal eigenvectors
(
u(1), . . . ,u(d)

)
corresponding to

(decreasingly ordered) eigenvalues λ(1) ≥ λ(2) ≥ . . . ≥ λ(d) ≥ 0

2: construct compression matrixWPCA := (
u(1), . . . ,u(n)

)T ∈ R
n×d

3: compute feature vector x(i) = WPCAz(i) whose entries are PC of z(i)

4: compute approximation error L̂(PCA) = ∑d
r=n+1 λ(r) (see (9.10)).

Output: x(i), for i = 1, . . . ,m, and the approximation error L̂(PCA).

Fig. 9.2 Reconstruction
error L̂(PCA) (see (9.10)) of
PCA for varying number n
of PCs
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L̂(PCA) := L̂
(
WPCA, Ropt︸︷︷︸

=WT
PCA

| D) =
d∑

r=n+1

λ(r). (9.10)

As depicted in Fig. 9.2, the approximation error L̂(PCA) decreases with increasing
number n of PCs used for the new features (9.5). For the extreme case n=0, where
we completely ignore the raw feature vectors z(i), the optimal reconstruction error
is L̂(PCA) = (1/m)

∑m
i=1 ‖z(i)‖2. The other extreme case n=d allows to use the raw

features directly as the new features x(i)=z(i), which amounts to no compression at
all, and trivially results in a zero reconstruction error L̂(PCA)=0.

9.2.1 Combining PCA with Linear Regression

One important use case of PCA is as a pre-processing step within an overall ML
problem such as linear regression (see Sect. 3.1). As discussed in Chap.7, linear
regressionmethods are prone to overfittingwhenever the data points are characterized
by feature vectors whose length D exceeds the numberm of labeled data points used
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for training. One simple but powerful strategy to avoid overfitting is to preprocess
the original feature vectors (they are considered as the raw data points z(i) ∈ R

d ) by
applying PCA in order to obtain smaller feature vectors x(i) ∈ R

n with n < m.

9.2.2 How to Choose Number of PC?

There are several aspects which can guide the choice for the number n of PCs to be
used as features.

• for data visualization: use either n = 2 or n = 3
• computational budget: choose n sufficiently small such that the computational
complexity of the overall MLmethod does not exceed the available computational
resources.

• statistical budget: consider using PCA as a pre-processing step within a linear
regression problem (see Sect. 3.1). Thus, we use the output x(i) of PCA as the
feature vectors in linear regression. In order to avoid overfitting, we should choose
n < m (see Chap.7).

• elbow method: choose n large enough such that approximation error L̂(PCA) is
reasonably small (see Fig. 9.2).

9.2.3 Data Visualisation

If we use PCA with n = 2, we obtain feature vectors x(i) = WPCAz(i) (see (9.5))
which can be depicted as points in a scatterplot (see Sect. 2.1.3). As an example,
consider data points z(i) obtained from historic recordings of Bitcoin statistics. Each
data point z(i) ∈ R

d is a vector of length d = 6. It is difficult to visualise points in
an Euclidean space Rd of dimension d > 2. Therefore, we apply PCA with n = 2
which results in feature vectors x(i) ∈ R

2. These new feature vectors (of length 2)
can be depicted conveniently as a scatterplot (see Fig. 9.3).

9.2.4 Extensions of PCA

There have been proposed several extensions of the basic PCA method:

• Kernel PCA [3, Chap. 14.5.4]:ThePCAmethod ismost effective if the raw feature
vectors of data points are nearby a low-dimensional linear subspace of Rd . Kernel
PCA extends PCA to handle data points that are located near a low-dimensional
manifold which might be highly non-linear. This is achieved by applying PCA to
transformed feature vectors instead of the original feature vectors. Kernel PCA
first applies a (typically non-linear) feature map to the original feature vectors
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Fig. 9.3 A scatterplot of
data points with feature

vectors x(i) = (
x (i)1 , x (i)2

)T

whose entries are the first
two PCs of the Bitcoin
statistics z(i) of the i th day
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x(i) resulting in new feature vectors z(i) (see Sect. 3.9). We then apply PCA to the
transformed feature vectors z(i), for i = 1, . . . ,m.

• Robust PCA [4]: In its basic form, PCA is sensitive to outliers which are a small
number of data points with fundamentally different statistical properties than the
bulk of data points. This sensitivity might be attributed to the properties of the
squared Euclidean norm (9.3) which is used in PCA to measure the reconstruction
error (9.1). We have seen in Chap.3 that linear regression (see Sect. 3.1 and 3.3)
can bemade robust against outliers by replacing the squared error loss with another
loss function. In a similar spirit, robust PCA replaces the squared Euclidean norm
with another norm that is less sensitive to having very large reconstruction errors
(9.1) for a small number of data points (which are outliers).

• Sparse PCA [3, Chap. 14.5.5]: The basic PCAmethod transforms the raw feature
vector z(i) of a data point to a new (shorter) feature vector x(i). In general each entry
x (i)j of the new feature vectorswill depend on every raw feature.More precisely, the

new feature x (i)j depends on all raw features z(i)j ′ for which the corresponding entry
Wj, j ′ of the matrixW = WPCA (9.8) is non-zero. For most datasets, all entries of
the matrix WPCA will typically be non-zero.
In some applications of linear dimensionality reduction we would like to construct
new features that depend only on a small subset of raw features. Equivalently we
would like to learn a linear compression map W (9.5) such that each row of W
contains only few non-zero entries. To this end, sparse PCA enforces the rows of
the compression matrix W to contain only a small number of non-zero entries.
This enforcement can be implement either using additional constraints on W or
by adding a penalty term to the reconstruction error (9.7).

• Probabilistic PCA [5, 6]: We have motivated PCA as a method for learning an
optimal linear compression map (matrix) (9.5) such that the compressed feature
vectors allows to linearly reconstruct the original raw feature vector withminimum
reconstruction error (9.7). Another interpretation of PCA is that of a method that
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learns a subspace of Rd that best fits the set of raw feature vectors z(i), for i =
1, . . . ,m. This optimal subspace is precisely the subspace spanned by the rows of
WPCA (9.8).
Probabilistic principal component analysis (PPCA) interprets the raw feature
vectors z(i) as realizations of i.i.d. RVs. These realizations are modelled as

z(i) = WT x(i) + ε(i), for i = 1, . . . ,m. (9.11)

Here,W ∈ R
n×d is some unknown matrix with orthonormal rows. The rows ofW

span the subspace around which the raw features are concentrated. The vectors x(i)

in (9.11) are realizations of i.i.d. RVs whose common probability distribution is
N (0, I). The vectors ε(i) are realizations of i.i.d. RVs whose common probability
distribution is N (0,σ2I) with some fixed but unknown variance σ2. Note that
W and σ2 parametrize the joint probability distribution of the feature vectors
z(i) via (9.11). Probabilistic principal component analysis (PPCA) amounts to
maximum likelihood estimation (see Sect. 3.12) of the parametersW and σ2. This
maximum likelihood estimation problem can be solved using computationally
efficient estimation techniques such as EM [6, Appendix B]. The implementation
of PPCA via EM also offers a principled approach to handlemissing data. Roughly
speaking, the EM method allows to use the probabilistic model (9.11) to estimate
missing raw features [6, Sect. 4.1].

9.3 Feature Learning for Non-numeric Data

We have motivated dimensionality reduction methods as transformations of (very
long) raw feature vectors to a new (shorter) feature vector x such that it allows
to reconstruct z with minimum reconstruction error (9.1). To make this requirement
precisewe need to define ameasure for the size of the reconstruction error and specify
the class of possible reconstructionmaps. PCAuses the squaredEuclidean norm (9.7)
to measure the reconstruction error and only allows for linear reconstruction maps
(9.6).

Alternatively, we can view dimensionality reduction as the generation of new
feature vectors x(i) that maintain the intrinsic geometry of the data points with their
raw feature vectors z(i). Different dimensionality reduction methods using different
concepts for characterizing the “intrinsic geometry” of data points. PCA defines the
intrinsic geometry of data points using the squared Euclidean distances between
feature vectors. Indeed, PCA produces feature vectors x(i) such that for data points
whose raw feature vectors have small squared Euclidean distance, also the new
feature vectors x(i) will have small squared Euclidean distance.

Some application domains generate data points for which the Euclidean distances
between raw feature vectors does not reflect the intrinsic geometry of data points.
As a point in case, consider data points representing scientific articles which can be
characterized by the relative frequencies of words from some given set of relevant
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words (dictionary). A small Euclidean distance between the resulting raw feature
vectors typically does not imply that the corresponding text documents are similar.
Instead, the similarity between two articles might depend on the number of authors
that are contained in author lists of both papers. We can represent the similarities
between all articles using a similarity graph whose nodes represent data points which
are connected by an edge (link) if they are similar (see Fig. 8.8).

Consider a dataset D = (
z(1), . . . , z(m)

)
whose intrinsic geometry is character-

ized by an unweighted similarity graph G = (V := {1, . . . ,m} E)
. The node i ∈ V

represents the i th data point, with raw feature vector z(i). Two nodes are connected
by an undirected edge if the corresponding data points are similar. We would like to
find short feature vectors x(i), for i = 1, . . . ,m, such that two data points i, i ′, whose
feature vectors x(i), x(i

′) have small Euclidean distance, are well-connected to each
other. To make this requirement precise we need to define a measure for how well
two nodes of an undirected graph are connected. We refer the reader to literature on
network theory for an overview and details of various connectivity measures [7].

Let us discuss a simple but powerful technique to map the nodes i ∈ V of an
undirected graph G to (short) feature vectors x(i) ∈ R

n . This map is such that the
Euclidean distances between the feature vectors of two nodes reflect their connec-
tivity within G. This technique uses the Laplacian matrix LinR(i) which is defined
for an undirected graph G (with node set V = {1, . . . ,m}) element-wise

Li, j :=

⎧
⎪⎨

⎪⎩

−1 , if {i, j} ∈ E
d(i) , if i = j

0 otherwise.

. (9.12)

Here, d(i) := ∣∣{ j : {i, j} ∈ E}∣∣ denotes the degree, or the number of neighbours, of
node i ∈ V . It can be shown that the Laplacian matrix L is psd [8, Proposition 1].
Therefore we can find an orthonormal set of eigenvectors

u(1), . . . ,u(m) ∈ R
m (9.13)

with corresponding (ordered in a non-decreasing fashion) eigenvaluesλ1 ≤ . . . ≤ λm

of L.
It turns out that, for a prescribed number n of numeric features, the entries

u(1)i , . . . , u(n)i of the first n eigenvectors (9.13) result in feature vectors whose
Euclidean distances reflect the connectivities of data points in the similarity graph G.
For a more precise statement of this informal claim we refer to the excellent tutorial
[8]. Thus, we obtain a feature learning method for (non-numeric) data points via
using the eigenvectors of the graph Laplacian associated with the similarity graph
of the data points. Algorithm 16 summarizes this feature learning method which
requires the similarity graph of the dataset and the desired number of new features
as input. Note that Algorithm 16 does not make any use of the Euclidean distances
between raw feature vectors and uses solely the similarity graph G for determining
the intrinsic geometry of D.
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Algorithm 16 Feature Learning for Non-Numeric Data

Input: dataset D = {z(i) ∈ R
d }mi=1; similarity graph G; number n of features to be constructed for

each data point.
1: construct the Laplacian matrix L of the similarity graph (see ((9.12)))
2: compute EVD of L to obtain n orthonormal eigenvectors (9.13) corresponding to the smallest

eigenvalues of L
3: for each data point i , construct feature vector

x(i) := (
u(1)i , . . . , u(n)i

)T ∈ R
n (9.14)

Output: x(i), for i = 1, . . . ,m

9.4 Feature Learning for Labeled Data

We have discussed PCA as a linear dimensionality reduction method. PCA learns a
compression matrix that maps raw features z(i) of data points to new (much shorter)
feature vectors x(i). The feature vectors x(i) determined by PCA depend solely on
the raw feature vectors z(i) of the data points in a given dataset D. In particular,
PCA determines the compression matrix such that the new features allow for a linear
reconstruction (9.6) with minimum reconstruction error (9.7).

For some application domains we might not only have access to raw feature vec-
tors but also to the label values y(i) of the data points in D. Indeed, dimensionality
reductionmethods might be used as pre-processing step within a regression or classi-
fication problem that involves a labeled training set. However, in its basic form, PCA
(see Algorithm 15) does not allow to exploit the information provided by available
labels y(i) of data points z(i). For some datasets, PCA might deliver feature vectors
that are not very relevant for the overall task of predicting the label of a data point.

Let us now discuss a modification of PCA that exploits the information provided
by available labels of the data points. The idea is to learn a linear construction map
(matrix) W such that the new feature vectors x(i) = Wz(i) allow to predict the label
y(i) as good as possible. We restrict the prediction to be linear,

ŷ(i) := rT x(i) = rTWz(i), (9.15)

with some weight vector r ∈ R
n .

While PCA ismotivated byminimizing the reconstruction error (9.1), we now aim
at minimizing the prediction error ŷ(i) − y(i). In particular, we assess the usefulness
of a given pair of constructionmapW and predictor r (see (9.15)), using the empirical
risk
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L̂
(
W, r | D) := (1/m)

m∑

i=1

(
y(i) − ŷ(i)

)2

(9.15)= (1/m)

m∑

i=1

(
y(i) − rTWz(i)

)2
. (9.16)

to guide the learning of a compressing matrixW and corresponding linear predictor
weights r (9.15).

The optimal matrix W that minimizes the empirical risk (9.16) can be obtained
via the EVD (9.2) of the sample covariance matrix Q (9.9). Note that we have used
the EVD of Q already for PCA in Sect. 9.2 (see (9.8)). Remember that PCA uses
the n eigenvectors u(1), . . . ,u(n) corresponding to the n largest eigenvalues of Q. In
contrast, to minimize (9.16), we need to use a different set of eigenvectors in the
rows of W in general. To find the right set of n eigenvectors, we need the sample
cross-correlation vector

q := (1/m)

m∑

i=1

y(i)z(i). (9.17)

The entry q j of the vector q estimates the correlation between the raw feature z(i)j
and the label y(i). We then define the index set

S := { j1, . . . , jn} such that
(
q j

)2
/λ j ≥ (

q j ′
)2
/λ j ′ for any j ∈ S, j ′ ∈ {1, . . . , d} /∈ S. (9.18)

It can then be shown that the rows of the optimal compression matrix W are the
eigenvectors u( j) with j ∈ S. We summarize the overall feature learning method in
Algorithm 17.

Algorithm 17 Linear Feature Learning for Labeled Data

Input: dataset
(
z(1), y(1)

)
, . . . ,

(
z(m), y(m)

)
with raw features z(i) ∈ R

d andnumeric labels y(i) ∈ R

; number n of new features.
1: compute EVD (9.10) of the sample covariance matrix (9.9) to obtain orthonormal eigenvec-

tors
(
u(1), . . . ,u(d)

)
corresponding to (decreasingly ordered) eigenvalues λ(1) ≥ λ(2) ≥ . . . ≥

λ(d) ≥ 0
2: compute the sample cross-correlation vector (9.17) and, in turn, the sequence

(
q1

)2
/λ1, . . . ,

(
qd

)2
/λd (9.19)

3: determine indices i1, . . . , in of n largest elements in (9.19)

4: construct compression matrixW := (
u(i1), . . . ,u(in )

)T ∈ R
n×d

5: compute feature vector x(i) = Wz(i)

Output: x(i), for i = 1, . . . ,m, and compression matrix W.

The main focus of this section was on regression problems involving data points
with numeric labels. Given the raw features and labels of the data point in the dataset
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D, Algorithm 17 determines new feature vectors x(i) that allow to linearly predict
a numeric label with minimum squared error. A similar approach can be used for
classification problems involving data points with discrete labels. The resulting lin-
ear feature learning methods are known as linear discriminant analysis or Fisher
discriminant analysis [3].

9.5 Privacy-Preserving Feature Learning

Many important application domains of ML involve sensitive data that is subject to
data protection law [9]. Consider a health-care provider (such as a hospital) holding
a large database of patient records. From a ML perspective this databases is nothing
but a (typically large) set of data points representing individual patients. The data
points are characterized bymany features including personal identifiers (name, social
security number), bio-physical parameters as well as examination results. We could
apply ML to learn a predictor for the risk of particular disease given the features of
a data point.

Given large patient databases, the MLmethods might not be implemented locally
at the hospital but using cloud computing. However, data protection requirements
might prohibit the transfer of raw patient records that allow to match individuals
with bio-physical properties. In this case we might apply feature learning methods
to construct new features for each patient such that they allow to learn an accurate
hypothesis for predicting a disease but do not allow to identify sensitive properties
of the patient such as its name or a social security number.

Let us formalize the above application by characterizing each data point (patient
in the hospital database) using raw feature vector z(i) ∈ R

d and a sensitive numeric
property π(i). We would like to find a compression map W such that the resulting
features x(i) = Wz(i) do not allow to accurately predict the sensitive property π(i).
The prediction of the sensitive property is restricted to be a linear π̂(i) := rT x(i) with
some weight vector r.

Similar to Sect. 9.4 we want to find a compression matrixW that transforms, in a
linear fashion, the raw feature vector z ∈ R

d to a new feature vector x ∈ R
n . However

the design criterion for the optimal compression matrixW was different in Sect. 9.4
where the new feature vectors should allow for an accurate linear prediction of the
label. In contrast, here we want to construct feature vectors such that there is no
accurate linear predictor of the sensitive property π(i).

As in Sect. 9.4, the optimal compression matrix W is given row-wise by the
eigenvectors of the sample covariance matrix (9.9). However, the choice of which
eigenvectors to use is different andbasedon the entries of the sample cross-correlation
vector

c := (1/m)

m∑

i=1

π(i)z(i). (9.20)
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We summarize the construction of the optimal privacy-preserving compression
matrix and corresponding new feature vectors in Algorithm 18.

Algorithm 18 Privacy Preserving Feature Learning

Input: dataset
(
z(1), y(1)

)
, . . . ,

(
z(m), y(m)

)
with raw features z(i) ∈ R

d and (numeric) sensitive
property π(i) ∈ R ; number n of new features.

1: compute the EVD (9.10) of the sample-covariance matrix (9.9) to obtain orthonormal eigen-
vectors

(
u(1), . . . ,u(d)

)
corresponding to (decreasingly ordered) eigenvalues λ1 ≥ λ2 ≥ . . . ≥

λd ≥ 0
2: compute the sample cross-correlation vector (9.20) and, in turn, the sequence

(
c1

)2
/λ1, . . . ,

(
cd

)2
/λd (9.21)

3: determine indices i1, . . . , in of n smallest elements in (9.21)
4: construct compression matrixW := (

u(i1), . . . ,u(in )
)T ∈ R

n×d

5: compute feature vector x(i) = Wz(i)

Output: privacy-preserving feature vectors x(i), for i = 1, . . . ,m, and compression matrix W.

Algorithm 18 learns a mapW to extract privacy-preserving features out of the raw
feature vector of a data point. These new features are privacy-preserving as they do
not allow to accurately predict (in a linear fashion) a sensitive property π of the data
point. Another formalization for the preservation of privacy can be obtained using
information-theoretic concepts. This information-theoretic approach interprets data
points, their feature vector and sensitive property, as realizations of RVs. It is then
possible to use the mutual information between new features x and the sensitive
(private) property π as an optimization criterion for learning a compression map
h (Sect. 9.1). The resulting feature learning method (referred to as privacy-funnel)
differs from Algorithm 18 not only in the optimization criterion for the compression
map but also in that it allows it to be non-linear [10, 11].

9.6 Random Projections

Note that PCA involves an EVD of the sample covariance matrixQ (9.9). The com-
putational complexity (e.g., measured by number of multiplications and additions)
for computing this EVD is lower bounded by min{D2,m2} [12, 13]. This compu-
tational complexity can be prohibitive for ML applications with n and m being of
the order of millions (which is already the case if the features are pixel values of a
512 × 512 RGB bitmap, see Sect. 2.1.1).

There is a computationally cheap alternative to PCA (Algorithm 15) for finding a
useful compressionmatrixW in (9.5). This alternative is to construct the compression
matrixW entry-wise

Wi, j := a(i, j) with i.i.d. ai, j ∼ p(a). (9.22)
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The entries of the matrix (9.22) are realizations of i.i.d. RVs ai, j with some common
probability distribution p(a). Different choices for the probability distribution p(a)
have been studied in the literature [14]. The Bernoulli distribution is used to obtain
a compression matrix with binary entries. Another popular choice for p(a) is the
multivariate normal (Gaussian) distribution.

Consider data points whose raw feature vectors z are located near a s-dimensional
subspace ofRd . The feature vectors x obtained via (9.5) using a randommatrix (9.22)
allows to reconstruct the raw feature vectors z with high probability whenever

n ≥ Cs log d. (9.23)

The constant C depends on the maximum tolerated reconstruction error η (such that
‖̂z − z‖22 ≤ η for any data point) and the probability that the features x (see )(9.22))
allow for a maximum reconstruction error η [14, Theorem 9.27.].

9.7 Dimensionality Increase

The focus of this chapter is on dimensionality reduction methods that learn a feature
map delivering new feature vectors which are (significantly) shorter than the raw
feature vectors. However, it might sometimes be beneficial to learn a feature map that
delivers new feature vectors which are longer than the raw feature vectors. We have
already discussed two examples for such feature learning methods in Sects. 3.2 and
3.9. Polynomial regression maps a single raw feature z to a feature vector containing
the powers of the raw feature z. This allows to use apply linear predictor maps to
the new feature vectors to obtain predictions that depend non-linearly on the raw
feature z. Kernel methods might even use a feature map that delivers feature vectors
belonging to an infinite-dimensional Hilbert space [15].

Mapping raw feature vectors into higher-dimensional (or even infinite-
dimensional) spacesmight be useful if the intrinsic geometry of the data points is sim-
pler when looked at in the higher-dimensional space. Consider a binary classification
problem where data points are highly inter-winded in the original feature space (see
Fig. 3.7). Loosely speaking, mapping into higher-dimensional feature space might
“flatten-out” a non-linear decision boundary between data points. We can then apply
linear classifiers to the higher-dimensional features to achieve accurate predictions.

9.8 Exercises

Exercise 9.1 Computational Burden of Many Features Discuss the computa-
tional complexity of linear regression. How much computation do we need to com-
pute the linear predictor that minimizes the average squared error on a training set?
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Exercise 9.2 Power Iteration The key computational step of PCA amounts to an
EVDof the psdmatrix (9.9). Consider an arbitrary initial vector u(r) and the sequence
obtained by iterating

u(r+1) := Qu(r)/
∥∥Qu(r)

∥∥. (9.24)

Under what (if any) conditions for the initialization u(r) can be ensure that the
sequence u(r) converges to the eigenvector u(1) of Q corresponding to its largest
eigenvalue λ1

Exercise 9.3 LinearClassifierswithHigh-Dimensional FeaturesConsider a training
set D consisting of m = 1010 labeled data points

(
z(1), y(1)

)
, . . . ,

(
z(m), y(m)

)
with

raw feature vectors z(i) ∈ R
4000 and binary labels y(i) ∈ {−1, 1}. Assume we have

used a feature learning method to obtain the new features x(i) ∈ {0, 1}n with n = m
and such that the only non-zero entry of x(i) is x (i)i = 1, for i = 1, . . . ,m. Can you
find a linear classifier that perfectly classifies the training set?
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Chapter 10
Transparent and Explainable ML

The successful deployment of ML methods depends on their transparency (or
explainability). We refer to techniques that aim at making ML method transpar-
ent (or explainable) as explainable ML. Providing explanations for the predictions
of a ML method is particularly important when these predictions inform decision
making [1]. Explanations for automated decisionmaking system have become a legal
requirement [2].

Even for applications where predictions are not directly used to inform far-
reaching decisions, providing explanations is important. The human end users have
an intrinsic desire for explanations that resolve the uncertainty about the prediction.
This is known as the “need for closure” in psychology [3, 4]. Beside legal and psy-
chological requirements, providing explanations for predictions might also be useful
for validating and verifying ML methods. Indeed, the explanations provided for
preditions might point the user (domain expert) to incorrect modelling assumptions
underlying the ML method.

ExplainableML is challenging since explanations must be tailored (personalized)
to human end-users with varying backgrounds and in different contexts [5]. The user
background includes the formal education as well as the individual digital literacy.
Some users might have received university-level education in ML, while other users
might have no relevant formal training (such as an undergraduate course in linear
algebra). Linear regression with few features might be perfectly interpretable for
the first group but be considered a “black box” for the latter. To enable tailored
explanations we need to model the user background as relevant for understanding
the ML predictions.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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This chapter discusses explainable ML methods that have access to some user
signal or feedback for some data points. Such a user signal might be obtained in
various ways, including answers to surveys or bio-physical measurements collected
via wearables or medical diagnostics. The user signal is used to determine (to some
extent) the end-user background and, in turn, to tailor the delivered explanations for
this end-user.

Existing explainableMLmethods can be roughly divided into two categories. The
first category is referred to as “model agnostic” (or “black box explainable ML” [1]).
Model agnosticmethods do not require knowledge of the detailedwork principles of a
MLmethod. In particular, these methods do not require knowledge of the hypothesis
space used by a ML method. They earn how to explain the predictions of a ML
method by observing its predictions for a set of data points [6]. A second category of
explainable ML methods (referred to as “white-box” methods [1])uses ML methods
that are considered as intrinsically explainable. The intrinsic explainability of a ML
method depends crucially on its choice for the hypothesis space (see Sect. 2.2).
This chapter discusses one recent method from each of the two explainable ML
categories [7, 8]. The common theme of both methods is the use of information-
theoretic concepts to measure the usefulness of explanations [9].

Section 10.1 discusses a recently proposed model-agnostic approach to explain-
able ML that constructs tailored explanations for the predictions of a given ML
method [7]. This approach does not require any details about the internal mechanism
of a ML method whose predictions are to be explained. Rather, this approach only
requires a (sufficiently large) training set of data points for which the predictions of
the ML method are known. To tailor the explanations to a particular user, we use
the values of a user (feedback) signal provided for the data points in the training set.
Roughly speaking, the explanations are chosen such that they maximally reduce the
“surprise” or uncertainty that the user has about the predictions of the ML method.

Section 10.2 discusses an example for a ML method that uses a hypothesis space
that is intrinsically explainable [8]. This explainable hypothesis space is obtained by
pruning an arbitrary hypothesis space such as linearmaps (see Sect. 3.1) or non-linear
maps represented by either a deep neural network (see Sect. 3.11) or decision trees
(see Sect. 3.10). This pruning is implemented via adding a regularization term to
ERM (4.3), resulting in an instance of SRM (7.2) which we refer to as empirical risk
minimization (EERM). The regularization term favours hypotheses that are explain-
able to a user. Similar to the method in Sect. 10.1, the explainability of a map is
quantified by information theoretic quantities. For example, if the original hypothe-
sis space is the set of linear maps using a large number of features, the regularization
term might favour maps that depend only on few features that are interpretable.
Hence, we can interpret EERM as a feature learning method that aims at learning
relevant and interpretable features (see Chapter 9).
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10.1 A Model Agnostic Method

Consider a ML application involving data points with features x = (
x1, . . . , xn

)T ∈
R

n and label y ∈ R and some ML method that, given some labelled training data

(
x(1), y(1)

)
,
(
x(2), y(2)

)
, . . . ,

(
x(m), y(m)

)
, (10.1)

learn a predictor (map)

h(·) : Rn → R : x �→ ŷ = h(x). (10.2)

The precise working principle of this ML method for how to learn this hypothesis h
is not relevant in what follows.

The learnt predictor h(x) is applied to the features of a data point to obtain the
predicted label ŷ :=h(x). The prediction ŷ is then delivered to a human end-user.
Depending on the ML application, this end-user might be a streaming service sub-
scriber [10], a dermatologist [11] or a city planner [12].

Human users ofMLmethods often have some conception ormodel for the relation
between features x and label y of a data point. This intrinsic model might vary
significantly between users with different (social or educational) background. We
will model the user understanding of a data point by a “user summary” u ∈ R. The
summary is obtained by a (possibly stochastic) map from the features x of a data
point. For ease of exposition, wewill focus on summaries obtained by a deterministic
map

u(·) : Rn → R : x �→ u := u(x). (10.3)

However, our approach also covers stochastic maps characterized by a conditional
probability distribution p(u|x).

The (user-specific) quantity u is determined by the features x of a data point.
We might think of the value u for a specific data point as a signal that reflects how
the human end-user interprets (or perceives) the data point, given her knowledge
(including formal education) and the context of theMLapplication.Wedonot assume
any knowledge about the details for how the signal value u is formed for a specific
data point. In particular, we do not know any properties of the map u(·) : x �→ u.

Our approach is quite flexible as it allows for very different forms of user sum-
maries. The user summary could be the prediction obtained from a simplified model,
such as linear regression using few features that the user anticipates as being relevant.
Another example for a user summary u could be a higher-level feature, such as eye
spacing in facial pictures, that the user considers relevant [13].

Note that, since we allow for an arbitrary map in (10.3), the user summary u(x)
obtained for a random data point with features xmight be correlated with the predic-
tion ŷ = h(x). As an extreme case, consider highly knowledgable users that are able
to predict the labels of data points form their features as well as the ML method. In
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Fig. 10.1 An explanation e
provides additional
information I (ŷ, e|u) to a
user u about the prediction ŷ

user u consumig
prediction ŷ

ML method

prediction ŷexplanation e

this case, the maps (10.2) and (10.3) might be nearly identical. However, in general
the predictions delivered by the learnt hypothesis (10.2) will be different from the
user summary.

We formalize the act of explaining a prediction ŷ = h(x) as presenting some
additional quantity e to the user (see Figure 10.1). This explanation e can be any
artefact that helps the user to understand the prediction ŷ, given her understanding u
of the data point. Loosely speaking, the aim of providing explanation e is to reduce
the uncertainty of the user u about the prediction ŷ [4].

Our approach is quite flexible in that it allows formany different forms of explana-
tions. An explanation could be a subset of features of a data point (see [14] and Sect.
10.1.2). More generally, explanations could be obtained from simple local statistics
(averages) of features that are considered related, such as near-by pixels in an image
or consecutive samples of an audio signal. Instead of individual features, carefully
chosen data points can also serve as an explanation [15, 16].

For the sake of exposition, our focus will be on explanations obtained via a deter-
ministic map

e(·) : Rn → R : x �→ e := e(x), (10.4)

from the features x of a data point. However, our approach can be generalizedwithout
difficulty to handle explanations obtained by a (stochastic) map. In the end, we only
require the specification of the conditional probability distribution p(e|x).

The explanation e (10.4) depends only on the features x but not explicitly on
the prediction ŷ. However, our method for constructing the map (10.4) takes into
account the properties of the predictor map h(x) (10.2). In particular, Algorithm 19
below requires as input the predicted labels ŷ(i) for a set of data points (that serve as
a training set for our method).

To obtain comprehensible explanations that can be computed efficiently, we must
typically restrict the space of possible explanations to a small subset F of maps
(10.4). This is conceptually similar to the restriction of the space of possible predictor
functions in aMLmethod to a small subset of maps which is known as the hypothesis
space.
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10.1.1 Probabilistic Data Model for XML

In what follows, we model data points as realizations of i.i.d. RVs with common
(joint) probability distribution p(x, y) of features and label (see Sect. 2.1.4). Mod-
elling the data points as realizations of RVs implies that the user summary u, predic-
tion ŷ and explanation e are also RVs. The joint distribution p(u, ŷ, e, x, y) conforms
with the Bayesian network [17] depicted in Figure 10.2. Indeed,

p(u, ŷ, e, x, y) = p(u|x) · p(e|x) · p(ŷ|x) · p(x, y). (10.5)

We measure the amount of additional information provided by an explanation e
for a prediction ŷ to some user u via the conditional mutual information (MI) [9, Ch.
2 and 8]

I (e; ŷ|u) := E

{
log

p(ŷ, e|u)
p(ŷ|u)p(e|u)

}
. (10.6)

The conditional MI I (e; ŷ|u) can also be interpreted as a measure for the amount
by which the explanation e reduces the uncertainty about the prediction ŷ which is
delivered to some user u. Providing the explanation e serves the apparent human
need to understand observed phenomena, such as the predictions from a ML
method [4].

data point
(x, y)

some user

explanation
e

user
signal u prediction

ŷ = h(x)

Fig. 10.2 A simple probabilistic graphical model (a Bayesian network [18, 19]) for explainable
ML. We interpret data points (with features x and label y) along with the user summary u, e and
predicted label ŷ as realizations of RVs. These RVs satisfy conditional independence relations
encoded by the directed links of the graph [19]. In particular, given the data point, the predicted
label ŷ obtained from a “black box” ML method, the explanation e obtained from our method and
the user summary u are conditionally independent. This conditional independence is trivial if all
these quantities are obtained from deterministic maps applied to the features x of the data point
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10.1.2 Computing Optimal Explanations

Capturing the effect of an explanation using the probabilistic model (10.6) offers a
principled approach to computing an optimal explanation e. We require the optimal
explanation e∗ to maximize the conditional MI (10.6) between the explanation e and
the prediction ŷ conditioned on the user summary u of the data point.

Formally, an optimal explanation e∗ solves

I (e∗; ŷ|u) = sup
e∈F

I (e; ŷ|u). (10.7)

The choice for the subset F of valid explanations offers a trade-off between com-
prehensibility, informativeness and computational cost incurred by an explanation
e∗ (solving (10.7)).

The maximization problem (10.7) for obtaining optimal explanations is similar
to the approach in [6]. While [6] uses the unconditional MI between explanation
and prediction, (10.7) uses the conditional MI given the user summary u. Thus,
our approach provides personalized explanations that are tailored to the user, as
characterized by her summary u.

Let us illustrate the concept of optimal explanations (10.7) using a linear regression
method. We model the features x as a realization of a multivariate normal random
vector with zero mean and covariance matrix Cx ,

x ∼ N (0,Cx ). (10.8)

The predictor and the user summary are linear functions

ŷ := wT x, and u := vT x. (10.9)

We construct explanations via subsets of individual features x j that are considered
most relevant for a user to understand the prediction ŷ (see [20, Definition 2] and
[21]). Thus, we consider explanations of the form

e := {xi }i∈E with some subset E ⊆ {1, . . . , n}. (10.10)

The complexity of an explanation e is measured by the number |E | of features that
contribute to it. We limit the complexity of explanations by a fixed (small) sparsity
level,

|E | ≤ s(	 n). (10.11)

Modelling the feature vector x as Gaussian (10.8) implies that the prediction ŷ and
user summary u obtained from (10.9) is jointly Gaussian for a given E (10.4). Basic
properties of multivariate normal distributions [9, Ch. 8], allow to develop (10.7) as
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max
E⊆{1,...,n}

|E|≤s

I (e; ŷ|u)

= h(ŷ|u) − h(ŷ|u, E)
= (1/2) logCŷ|u − (1/2) log detCŷ|u,D(train)

= (1/2) logσ2
ŷ|u − (1/2) logσ2

ŷ|u,D(train) . (10.12)

Here, σ2
ŷ|u denotes the conditional variance of the prediction ŷ, conditioned on the

user summary u. Similarly, σ2
ŷ|u,E denotes the conditional variance of ŷ, conditioned

on the user summary u and the subset {x j } j∈E of features. The last step in (10.12)
follows from the fact that ŷ is a scalar random variable.

The first component of the final expression of (10.12) does not depend on the
index set E used to construct the explanation e (see (10.10)). Therefore, the optimal
choice for E solves

sup
|E|≤s

−(1/2) logσ2
ŷ|u,E . (10.13)

The maximization (10.13) is equivalent to

inf
|E|≤s

σ2
ŷ|u,E . (10.14)

In order to solve (10.14), we relate the conditional variance σ2
ŷ|u,E to a particular

decomposition
ŷ = ηu +

∑

j∈E
β j x j + ε. (10.15)

For an optimal choice of the coefficients η and β j , the variance of the error term in
(10.15) is given by σ2

ŷ|u,E . Indeed,

min
η,β j∈R

E
{(
ŷ − ηu −

∑

j∈E
β j x j

)2} = σ2
ŷ|u,e. (10.16)

Inserting (10.29) into (10.14), an optimal choice E (of feature) for the explanation
of prediction ŷ to user u is obtained from

inf
|E|≤s

min
η,β j∈R

E
{(
ŷ − ηu −

∑

j∈E
β j x j

)2}
(10.17)

= min
‖β‖0≤s

E
{(
ŷ − ηu − βT x

)2}
. (10.18)

An optimal subset Eopt of features defining the explanation e (10.10) is obtained from
any solution βopt of (10.18) via

Eopt = suppβopt. (10.19)
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Under a Gaussian model (10.8), Sect. 10.1.2 shows how to construct optimal
explanations via the (support of the) solutions βopt of the sparse linear regression
problem (10.18). To obtain a practical algorithm for computing (approximately) opti-
mal explanations (10.19), we approximate the expectation in (10.18) with an average
over the training data points

(
x(i), ŷ(i), u(i)

)
. This resulting method for computing

personalized explanations is summarized in Algorithm 19.

Algorithm 19 XML Algorithm

Input: explanation complexity s, training samples
(
x(i), ŷ(i), u(i)

)
for i = 1, . . . ,m

1: compute β̂ by solving

β̂ ∈ argmin
η∈R,‖β‖0≤s

m∑

i=1

(
ŷ(i)−ηu(i)−βT x(i)

)2 (10.20)

Output: feature set Ê := suppβ̂

Note that Algorithm 19 is interactive since the user has to provide samples u(i) of
its summary for the data points with features x(i). Based on the user input u(i), for
i = 1, . . . ,m, Algorithm 19 learns an optimal subset E of features (10.10) that are
used for the explanation of predictions.

The sparse regression problem (10.20) becomes intractable for large feature length
n. However, if the features are weakly correlated with each other and the user sum-
mary u, the solutions of (10.20) can be found by efficient convex optimization meth-
ods. Indeed, for a wide range of settings, sparse regression (10.20) can be solved via
a convex relaxation, known as the least absolute shrinkage and selection operator
(Lasso) [22],

β̂ ∈ argmin
η∈R,β∈Rn

m∑

i=1

(
ŷ(i)−ηu(i)−βT x(i)

)2+λ‖β‖1. (10.21)

We have already a good understanding of choosing the Lasso parameter λ in (10.21)
such that its solutions coincide with the solutions of (10.20) (see, e.g., [22]).

10.2 Explainable Empirical Risk Minimization

Section 7.1 discussed SRM (7.1) as a method for pruning the hypothesis space H
used in ERM (4.3). This pruning is implemented either via a (hard) constraint as in
(7.1) or by adding a regularization term to the training error as in (7.2). The idea of
SRM is to avoid (prune away) hypothesis maps that perform good on the training set
but poorly outside (they do not generalize). Here, we will use another criterion for
steering the pruning and construction of regularization terms. In particular, we use
the (intrinsic) explainability of a hypotheses maps as a regularization term.
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Tomake the notion of explainability precise wewill use the probabilistic model of
Sect. 10.1.1.We interpret data points as realizations of i.i.d.. RVswith common (joint)
probability distribution p(x, y) of features x and label y. A quantitative measure the
intrinsic explainability of a hypothesis h ∈ H is the conditional (differential) entropy
[9, Ch. 2 and 8]

H(ŷ|u) := −E

{
log p(ŷ|u)

}
. (10.22)

The conditional entropy (10.22) indicates the uncertainty about the prediction ŷ,
given the user summary û = u(x). Smaller values H(ŷ; u) correspond to smaller
levels of uncertainty in the predictions ŷ that is experienced by user u.

We obtain Explainable empirical risk minimization (explainable empirical risk
minimization) by requiring a sufficiently small conditional entropy (10.22) of a
hypothesis,

ĥ ∈ argmin
h∈H

L̂
(
h
)

s.t. H(ŷ|û) ≤ η. (10.23)

The random variable ŷ = h(x) in the constraint of (10.23) is obtained by applying the
predictor map h ∈ H to the features. The constraint H(ŷ|û) ≤ η in (10.23) enforces
the learnt hypothesis ĥ to be sufficiently explainable in the sense that the conditional
entropy H(ĥ|û) ≤ η does not exceed a prescribed level η.

Let us now consider the special case of EERM (10.23) for the linear hypothesis
space

h(w)(x) := wT x with some weight vector w ∈ R
n. (10.24)

Moreover, we assume that the features x of a data point and its user summary u are
jointly Gaussian with mean zero and covariance matrix C,

(
xT , û

)T ∼ N (0,C). (10.25)

Under the assumptions (10.24) and (10.25) (see [9, Ch. 8]),

H(û|ŷ) = (1/2) logσ2
ŷ|û . (10.26)

Here, we used the conditional variance σ2
ŷ|û of ŷ given the random user summary

u = u(x). Inserting (10.26) into the generic form of EERM (10.23),

ĥ ∈ argmin
h∈H

L̂(h) s.t. logσ2
ŷ|û ≤ η. (10.27)
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By the monotonicity of the logarithm, (10.27) is equivalent to

ĥ ∈ argmin
h∈H

L̂(h) s.t. σ2
ŷ|û ≤ e(η). (10.28)

To further develop (10.16), we use the identity

min
η∈R

E
{(
ŷ − ηu

)2} = σ2
ŷ|û . (10.29)

The identity (10.29) relates the conditional variance σ2
ŷ|û to the minimum mean

squared error that can be achieved by estimating ŷ using a linear estimator ηû with
some η ∈ R. Inserting (10.29) and (10.24) into (10.28),

ĥ ∈ argmin
w∈Rn ,η∈R

L̂(h(w)) s.t. E
{ (

wT x
︸ ︷︷ ︸
(10.24)= ŷ

−ηû
)2} ≤ e(η). (10.30)

The inequality constraint in (10.30) is convex [23, Ch. 4.2.]. For squared error loss,
the objective function L̂(h(w)) is also convex. Thus, for linear least squares regression,
we can reformulate (10.30) as an equivalent (dual) unconstrained problem [23, Ch.
5]

ĥ ∈ argmin
w∈Rn ,η∈R

E(h(w)) + λE
{(
wT x − ηû

)2}
. (10.31)

By convex duality, for a given threshold e(η) in (10.30), we can find a value for
λ in (10.31) such that (10.30) and (10.31) have the same solutions [23, Ch. 5].
Algorithm 20 below is obtained from (10.31) by approximating the expectation
E

{(
wT x − ηû

)2}
with an average over the training data points

(
x(i), ŷ(i), û(i)

)
for

i = 1, . . . ,m.

Algorithm 20 Explainable Linear Least Squares Regression

Input: explainability parameter λ, training examples
(
x(i), ŷ(i), ûi)

)
for i = 1, . . . ,m

1: solve

ŵ ∈ argmin
η∈R,w∈Rn

m∑

i=1

(
ŷ(i)−wT x(i)

)2
︸ ︷︷ ︸
empirical risk

+λ (wT x(i) − ηû(i))2
︸ ︷︷ ︸
explainablity

(10.32)

Output: weights ŵ of explainable linear hypothesis
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10.3 Exercises

Exercise 10.1 (Convexity of Explainable Linear Regression) Rewrite the opti-
mization problem (10.32) as an equivalent quadratic optimization problem
minv vTQv + vTq. Identify the matrix Q and the vector q.
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Glossary

k-means The k-means algorithm is a hard clustering method. It aims at assigning
data points to clusters such that they have minimum average distance from the
cluster centre.

activation function Each artificial neuronwithin anANNconsists of an activation
function that maps the inputs of the neuron to a single output value. In general,
activation function is a non-linear map of the weighted sum of neuron inputs (this
weighted sum is the activation of the neuron).

artificial intelligence Artificial intelligence aims at developing systems that
behave rational in the sense of maximizing a long-term reward.

artificial neural network artificial neural artificial neural network is a graphical
(signal-flow) representation of a map from features of a data point at its input to
a predicted label at its output.

bagging bagging (or “bootstrap aggregation”) is a generic technique to improve or
robustify a givenMLmethod. The idea is to use the bootstrap to generate perturbed
copy of a given training set and then apply the original ML method to learn a
separate hypothesis for each perturbed copy of the training set. The resulting
set of hypotheses is then used to predict the label of a data point by combining
or aggregating the individual predictions of each hypothesis. For numeric label
values (regression) this aggregation could be obtained by the average of individual
predictions.

Bayes estimator A hypothesis whose Bayes risk is minimal [1].
Bayes risk The Bayes risk of a given (fixed) hypothesis is the expectation of its

loss incurred on (the realizations of) a random data point [1].
classifier A classifier is a hypothesis h(x) that is used to predict a finite-valued

label. Strictly speaking, a classifier is a hypothesis h(x) that can take only a finite
number of different values. However, we are sometimes sloppy and use the term
classifier also for a hypothesis that delivers a real number which is then used in
a simple thresholding to determine the predicted label value. For classifier, text,
in a binary classification problem with label values y ∈ {−1, 1}, we refer to a
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linear hypothesis h(x) = wT x as classifier if it is used to predict the label value
according to ŷ = 1 when h(x) ≥ 0 and ŷ = −1 otherwise.

clustering Clustering refers to the problem ot determining for each data point
within clustering, text dataset to which cluster it belongs to. A cluster can be
defined and represented in various ways, e.g., using representative data points
(“cluster means”) or an entire probability distribution (see GMM).

condition number The condition number κ(Q) of a psd matrix Q is the ratio of
largest to smallest eigenvalue of a psd matrix Q.

convex A set C in Rn is called convex if it contains the line segment between any
two points of that set. A function is called convex if its epigraph is a convex set
[2].

data A set of data points.
data augmentation Data augmentation methods add synthetic data points to an

existing set of data points. These synthetic data points might be obtained by per-
turbations (adding noise) or transformations (rotations of images) of the original
data points.

data point A data point is any object that conveys information [3]. Data points
might be students, radio signals, trees, forests, images, RVs, real numbers or
proteins. We characterize data points using two fundamentally different groups of
properties. One group of properties is referred to as features and can be measured
or computed in an automated fashion. Another group of properties is referred to
as labels. The label of a data point represents a higher-level facts or quantities of
interest. In contrast to features, determining the data point of a data point typically
requires human experts (domain experts). Roughly speaking, ML is the study and
design of methods for predicting the label of a data point based solely on its
features.

dataset With a slight abuse of notation we use the terms “dataset“ or “set of data
points” to refer to an indexed list of data points z(1), . . . ,. Thus, there is a first
data point z(1), a second data point z(2) and so on. Strictly speaking a dataset is a
list and not a set [4].

decision region Consider a hypothesis map h that can only take values from a
finite set Y . We refer to the set of features x ∈ X that result in the same output
h(x) = a as a decision region of the hypothesis h.

decision tree A decision tree is a flow-chart like representation of a hypothesis
map h.More formally, a decision tree is a directed graphwhich reads in the feature
vector x of a data point at its root node. The root node then forwards the data point
to one of its children nodes based on some elementary test on the features x. If
the receiving children node is not a leaf node, i.e., it has itself children nodes, it
decision tree another test. Based on the test result, the data point is further pushed
to one of its neighbours. This testing and forwarding of the data point is repeated
until the data point ends up in a leaf node (having no children nodes). The leaf
nodes represent sets (decision regions) constituted by feature vectors x that are
mapped to the same function value h(x).

deep net We refer to a an ANN with a large number of hidden layers as a deep
ANN or deep net.
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deep net The rectified linear unit or “ReLU” is a popular choice for the activation
function of a neuron within an ANN. It is defined as g(z) = max{0, z} with z
being the weighted input of the neuron.

effective dimension The effective dimension deff (H) of an infinite hypothesis
space H is a measure of its size. Roughly speaking the effective dimension is
equal to the number of independent tunable parameters or weights of the model.
These parameters might be the weights used by linear map or the weights and
bias terms of a ANN.

eigenvalue We refer to a number λ ∈ R as eigenvalue of a squarematrixA ∈ R
n×n

if there is a non-zero vector x ∈ R
n \ {0} such that Ax = λx.

eigenvalue decomposition The task of computing the eigenvalues and corre-
sponding eigenvectors of a matrix.

eigenvector An eigenvector of a matrix A is a non-zero,text vector x ∈ R
n \ {0}

such that Ax = λx with some eigenvalue λ.
empirical risk The empirical risk of a given hypothesis on a given set of datapoints

is the average loss of the hypothesis computed over all datapoints in that set.
empirical risk minimization Empirical risk minimization is the optimization

problem of empirical risk the hypothesis with minimum average loss (empiri-
cal risk) on a given set of data points (the training set). Many ML methods are
special cases of empirical risk minimization.

Euclidean space The Euclidean spaceRn of dimension n refers to the space of all
vectors x = (

x1, . . . , xn
)
, with real-valued entries x1, . . . , xn ∈ R, whose geom-

etry is defined by the inner product xT x′ = ∑n
j=1 x j x ′

j between any two vectors
x, x′ ∈ R

n [9].
expectation maximization Expectation maximization is generic technique for

estimating the parameters of a probabilistic model from data [10–12]. In general,
this technique delivers an approximation to the maximum likelihood estimate for
the model parameters.

explainable empirical risk minimization An instance of structural risk mini-
mization that adds a regularization term to the training error in ERM. The reg-
ularization term is chosen to favour hypotheses that are intrinsically explainable
for a user.

explainable machine learning Explainable ML methods aim at complementing
predictions with explanations for how the prediction has been obtained.

feature map A map that transforms some raw features into a new feature vector.
The new feature vector might be preferable over the raw features for several
reasons. It might be possible to use linear hypothesis with the new feature vectors.
Another reason could be that the new feature vector is much shorter and therefore
avoids overfitting or can be used for a scatterplot.

feature space The feature space of a givenMLapplication ormethod is constituted
by all potential values that the feature vector of a data point can take on. Within
this book the most frequently used choice for the feature space is the Euclidean
space R

n with dimension n being the number of individual features of a data
point.
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features Those properties of a data point that can be measured or computed in an
automated fashion. For example, if a data point is a bitmap image, then we could
use the red-green-blue intensities of its pixels as features. Features are sometimes
referred to as “variables”, “attributes” or “predictors” []. However, this book uses
the term predictor in a different sense, i.e., as a hypothesis map used to predict a
numeric label.

federated learning (FL) Federated learning is an umbrella term for ML methods
that train models in a collaborative fashion using decentralized data and compu-
tation.

Finnish Meteorological Institute The Finnish Meteorological Institute is a gov-
ernment agency responsible for gathering and reporting weather data in Finland.

Gaussian mixture model Gaussian mixture models (GMM) are a family of prob-
abilistic models for data points. Within a GMM, the feature vector x of a data
point is interpreted as being drawn from one out of k different multivariate nor-
mal (Gaussian) distributions indexed by c = 1, . . . , k. The probability that the
feature vector x is drawn from the c-th Gaussian distribution is denoted pc. The
Gaussian Mixture is parametrized by the probability pc of x being drawn from
the c-th Gaussian distribution as well as the mean vectors µ(c) and covariance
matrices �(c) for c = 1, . . . , k.

gradient descent Gradient descent is an iterativemethod for finding theminimum
of differentiable function f (w).

Hilbert space A Hilbert space is a linear vector space that is equipped with an
inner product betweenpairs of vectors.One important example for aHilbert spaces
is the Euclidean spaces Rn , for some dimension n, which consists of Euclidean
vectors u = (

u1, . . . , un
)T

along with the inner product uT v.
Huber loss The Huber loss is a mixture of the squared error loss and the absolute

value of the prediction error.
hypothesis A map (or function) h : X → Y from the feature space X to the label

space Y . Given a data point with features x we use a hypothesis map to estimate
(or approximate) the label y using the predicted label ŷ = h(x). ML is about
learning (finding) a hypothesis map such that ŷ ≈ h(x) for any data point.

hypothesis space Every practical ML method uses a specific hypothesis space,
which we typically denote by H. The hypothesis space of a ML method is a
subset of all possiblemaps from the feature space to label space. The choice for the
hypothesis space should take into account available computational infrastructure
of statistical aspects. If the computational infrastructure allows for efficient matrix
operations hypothesis space we expect a linear relation between feature values
and label, a good first candidate for the hypothesis space is the space of linear
maps.

i.i.d. independent and identically distributed; e.g., “x, y, z are i.i.d. RVs” means
that the joint probability distribution p(x, y, z) of the RVs x, y, z factors into the
product p(x)p(y)p(z) of the marginal probability distributions of the variables
x, y, z which are identical.
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i.i.d. assumption The i.i.d. assumption interprets data points of a dataset as the
realizations of i.i.d. random variables.

label A higher level fact or quantity of interest associated with a data point. If a
data point is an image, its label might be the fact that it shows a cat (or not).

label space Consider a ML application that involves data points characterized by
features and labels. The label space of a given ML application or method is con-
stituted by all potential values that the label of a data point can take on. A popular
choice for the label space in regression problems (or methods) is Y = R. Binary
classification problems (or methods) use label spaces that consist of two different
elements, e.g., Y = {−1, 1}, Y = {0, 1} or Y = {“cat image”, “no cat image”}

law of large numbers The law of large numbers refers to the convergence of the
partial sums of i.i.d. RVs to the (common) expectation these RVs.

learning rate Consider an iterative method for finding or learning a good choice
for a hypothesis. Such an iterative method repeats similar computational (update)
steps that adjust or modify the current choice for the hypothesis to obtain an
improved hypothesis. A prime example for such an iterative learning method is
GD and its variants (see 5). We refer by learning rate to any parameter of an
iterative learning method that controls the extent by which the current hypothesis
might be modified or improved in each iteration. A prime example for such a
parameter is the step size used GD.Within this book we use the term learning rate
mostly as a synonym for the step size of (a variant of) GD.

least absolute deviation regression Least absolute deviation regression uses the
average of the absolute precondition errors to find a linear hypothesis.

linear classifier Aclassifierh(x)maps the feature vectorx ∈ R
n of a data point to a

predicted label ŷ ∈ Y out of a finite set of label valuesY .We can characterize such
a classifier equivalently by the decision regionsR((a)) := {x ∈ R

n : ŷ = (a)}, for
every possible label value a ∈ Y . Linear classifiers are such that the boundaries
between the regions R(a) are hyperplanes in Rn .

linear regression Linear regression aims at learning a linear regression map to
predict a numeric label based on numeric features of a data point. The quality of a
linear hypothesis map is typically measured using the average squared error loss
incurred on a set of labeled data points (the training set).

logistic loss Consider a data point that is characterizedby the featuresx and logistic
loss binary label y ∈ {−1, 1}. We use a hypothesis h to predict the label y solely
from the features x. The logistic loss incurred by a specific hypothesis h is defined
as (2.12).

logistic regression Logistic regression aims at learning a linear hypothesis map
to predict a binary label based on numeric features of a data point. The logistic
regression of a linear hypothesis map (classifier) is measured using its average
logistic loss on some labeled data points (the training set).

loss With a slight abuse of language, we use the term loss either for loss function
itself or for its value for a specific pair of data point and hypothesis.

loss function A loss function is a map

L : X × Y × H → R+ : ((
x, y

)
, h

) �→ L((x, y), h)
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which assigns a pair consisting of a datapoint, with features x and label y, and
a hypothesis h ∈ H the non-negative real number L((x, y), h). The loss value
L((x, y), h) quantifies the discrepancy between the true label y and the predicted
label h(x). Smaller (closer to zero) values L((x, y), h)mean a smaller discrepancy
between predicted label and true label of a data point. Figure 2.11 depicts a loss
function for a given data point, with features x and label y, as a function of the
hypothesis h ∈ H.

maximum Given a set of real numbers, the maximum is the largest of those num-
bers.

mean The expectation of a real-valued random variable.
metric Ametric refers to a loss function that used solely for the final performance

evaluation of a learnt hypothesis. Themetric is typically a loss function that allows
for easy metric, text (such as the 0/1 loss (2.9)) but is not suitable for being used
withinERMto learn a hypothesis. For learning a hypothesis viaERM,we typically
prefer loss functions that depend smoothly on the (parameters of the) hypothesis.
Examples for such smooth loss functions are the squared error loss (2.8) and the
logistic loss (2.12).

minimum Given a set of real numbers, the minimum is the smallest of those
numbers.

model We use the term model as a synonym for hypothesis space
multi-label classification Multi-label classificationproblems andmethods involve

data points that are characterized by several individual labels.
non i.i.d. data A dataset that cannot be well modelled as realizations of i.i.d. RVs.
non-i.i.d. See non-i.i.d. data.
nonsmooth We refer to a function as non-smooth if is not smooth [5].
outlier ManyMLmethods are motivated by the i.i.d. assumption which interprets

data points as i.i.d. realizations of RVs with a common probability distribution.
The i.i.d. assumption is typically useful when the statistical properties of the data
generation process are stationary (time-invariant). In some applications the data
might consists of a majority of “regular” data points that conform with an i.i.d.
assumption and a small number of data points that have fundamentally different
statistical properties compared to the bulk of regular data points. We refer to a
data point that substantially deviates from the statistical properties of the majority
of data points as an outlier.,

parameters The parameters of ML model are tunable (learnable or adjustable)
quantities that allow to choose between different hypothesis maps. For example,
the linear model H := {h : h(x) = w1x + w2} consists of all hypothesis maps
h(x) = w1x + w2 with a particular choice for the parameters w1, w2. Another
example of parameters are the weights assigned to the connections of an artificial
neural network.

positive semi-definite A symmetric matrixQ = QT ∈ R
n×n is referred to as pos-

itive semi-definite if xTQx ≥ 0 for every vector x ∈ R
n .

predictor We refer to a hypothesis whose function values are real numbers as a
predictor. Given a data point with features x, the predictor value
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h(x) ∈ R is used as a prediction (estimate/guess/approximation) for the true
numeric label y ∈ R of the data point.

principal component analysis The principal component analysis determines a
given number of new features that are obtained by a linear transformation (map)
of the raw features.

probabilistic principal component analysis Probabilistic principal component
analysis combines PCA with a probabilistic model for data. This probabilistic
model allows to interpret the goal of PCA as the estimation of the parameters of
an underlying probabilistic model for the data generation process.

random forest A random forest is an ensemble of decision trees, each one learnt
or fitted to a perturbed copy of the original dataset.

random variable Formally, a random variable is a map from a set of elementary
events to a set of values. The set of elementary events is equippedwith a probability
measure. A real-valued random variable maps elementary events to real numbers
R. A discrete random variable maps elementary events to a finite set such as
{−1, 1} or {cat, no cat}. A vector-valued random variable maps elementary events
to the Euclidean space Rn with some dimension n ∈ N.

regularization The term regularization refers to different techniques for modify-
ing ERM to learn a hypothesis that performs well also outside the training set
used in ERM. One specific approach to regularization is by adding a penalty or
regularization term to the ERM objective function (which is the average loss on
the training set).

sample Afinite sequence (list) of data points z(1), . . . , z(i) that is obtained or inter-
preted as the realizations ofm i.i.d. RVs with the common probability distribution
p(z). The length m of the sequence is referred to as the sample size.

sample size The number of individual data points contained in a dataset that is
obtained from realizations of i.i.d. RVs.

scatterplot A visualization technique that depicts data points by markers in a
two-dimensional plane.

semi-supervised learning Semi-supervised learning methods use (large amounts
of) unlabeled data points to support the learning of a hypothesis from (a small
number of) labeled data points [6].

smooth We refer to a real-valued function as smooth if it is differentiable and its
gradient is continuous [5, 7].

soft clustering Soft clustering refers to the problem ot determining for each data
point within a dataset, the degree of belonging to a particular cluster.

stochastic gradient descent (SGD) Stochastic gradient descent is obtained from
GD by replacing the gradient of the objective function by a noisy (or stochastic)
estimate.

structural risk minimization Structural riskminimization is the problem of find-
ing the hypothesis that optimally balances the average loss (empirical risk) on a
training set with a structural risk term. The regularization term penalizes a hypoth-
esis that is not robust against (small) perturbations of the data points in the training
set.
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support vector machine A ML method that learns a linear map such that the
classes are maximally separated in the feature space (“maximum margin”). This
maximum margin condition is equivalent to minimizing a regularized variant of
the hinge loss (2.11).

training error Consider aMLmethod that aims at learning a hypothesish ∈ H out
of a hypothesis space.We refer to the average loss or empirical risk of a hypothesis
h ∈ H on a dataset as training error if it is used to choose between different
hypotheses. The principle of ERM is find the hypothesis h∗ ∈ H with training
error training error. Overloading the notation a bit, we might refer by training
error also to the minimum empirical risk achieved by the optimal hypothesis
h∗ ∈ H.

training set A set of data points that is used in ERM to train a hypothesis ĥ. The
average loss training set ĥ on the training set is referred to as the training error.
The comparison between training and validation error informs adaptations of the
ML method (such as using a different hypothesis space).

validation error Consider a hypothesis ĥ which is obtained by ERM on a training
set. The average validation error of ĥ on a validation set which is different from
the training set, is referred to as the validation error.

validation set A set of data points that has not been used as training set in ERM to
train a hypothesis ĥ. The average loss of ĥ on the validation set is referred to as the
validation error and used to diagnose the ML method. The comparison between
training and validation error informs adaptations of theMLmethod (such as using
a different hypothesis space).

Vapnik–Chervonenkis (VC) dimension The VC dimension is maybe the most
widely used concept for measuring the size of infinite hypothesis spaces. For a
precise definition of the VC dimension and discussion of its applications in ML
we refer to [8].

variance The expectation E
{(
x − E{x})2} of the squared difference between a

real-valued random variable and its expectation.
weights Weuse the termweights synonymously for afinite set of parameterswithin

a model. For example, the linear model consists of all linear maps h(x) = wT x
that read in a feature vector x = (

x1, . . . , xn
)T

of a data point. Each specific
linear map is characterized by specific choices for the parameters for weights
w = (

w1, . . . , wn
)T
.
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