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welcome 
Thank you for purchasing the MEAP for Ensemble Methods for Machine Learning. 

Modern machine learning has become synonymous with Deep Learning. However, Deep 
Learning is often too big a hammer for many applications, requires large data sets and 
computational resources that are out of reach for most of us: students, engineers, data 
scientists and analysts and casual enthusiasts.  

Ensemble methods are another powerful way to build effective and robust models for real-
world applications in many areas including finance, medicine, recommendation systems, 
cybersecurity and many more. This book is intended to be a tutorial on the practical aspects of 
implementing and training deployable ensemble models.  

This book is intended for a broad audience: anyone creating ML algorithms - data scientists 
who are interested in using these algorithms for building models; engineers who are involved 
in building applications and architectures; or students, Kagglers, casual enthusiasts who want 
to learn more about this fascinating and exciting area of machine learning. 

On this journey, we’ll adopt an immersive approach to ensemble methods aimed at 
fostering intuition and demystifying the technical and algorithmic details. You will learn how to 
(1) implement a basic version from scratch to gain an under-the-hood understanding, and (2)
use sophisticated, off-the-shelf implementations (such as scikit-learn) to ultimately get the
best out of your models. Every chapter also comes with its own case study: a practical 
demonstration of how to use different ensemble methods on real-world tasks. 

It is impossible to provide a detailed introduction to the diverse area of machine learning in 
one book. Instead, this book assumes basic knowledge of machine learning and that you have 
used or played around with at least one fundamental ML technique such as decision trees.  

A basic working knowledge of Python is also assumed. Examples, visualizations and 
chapter case studies all use Python and Jupyter notebooks. Knowledge of other commonly 
used Python packages such as Numpy (for mathematical computations), Pandas (for data 
manipulation) and matplotlib (for visualization) is useful, but not necessary. In fact, you can 
learn how to use these packages through the examples and case studies. 

Finally, this book is dedicated to you, and your feedback will be invaluable in improving it. 
Please post any questions, comments, corrections and suggestions in the  liveBook's Discussion 
Forum for this book.  

—Gautam Kunapuli 
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1 
Ensemble Learning: Hype 

or Hallelujah? 

This chapter covers 

• Defining and framing the ensemble learning problem
• Motivating the need for ensembles in different applications
• Understanding how ensembles handle fit vs. complexity
• Implementing our first ensemble with ensemble diversity and model aggregation

In October 2006, Netflix announced a $1 million prize for the team that was able to improve 
movie recommendations over their own proprietary recommendation system, Cinematch, by 
10%. The Netflix Grand Prize was one of the first ever open data science competitions and 
attracted tens of thousands of teams.  

The training set consisted of 100 million ratings that 480 thousand users had given to 17 
thousand movies. Within three weeks, 40 teams had already beaten Cinematch’s results. By 
September 2007, over 40 thousand teams had entered the contest and a team from AT&T 
Labs took the 2007 Progress Prize by improving upon Cinematch by 8.42%. 

As the competition progressed and the 10% mark remained elusive, a curious phenomenon 
emerged among the competitors. Teams began to collaborate and share knowledge about 
effective feature engineering, algorithms and techniques. Inevitably, they began combining 
their models, blending individual approaches into powerful and sophisticated ensembles of 
many models. These ensembles combined the best of various diverse models and features and 
proved to be far more effective than any individual model.  

In June 2009, nearly two years after the contest began, BellKor’s Pragmatic Chaos, a merger 
of three different teams edged out another merged team, The Ensemble (which was a merger 
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of over 30 teams!), to improve upon the baseline by 10% and take the $1 million prize. Just 
edged out is a bit of an understatement as BellKor’s Pragmatic Chaos managed to submit their 
final models barely 20 minutes before The Ensemble got their models in1. In the end, both 
teams achieved a final performance improvement of 10.06%.  

While the Netflix competition captured the imagination of data scientists, machine learners 
and casual data science enthusiasts worldwide, its lasting legacy has been to establish 
Ensemble Methods as a powerful way to build practical and robust models for large-scale, real-
world applications. Among the individual algorithms used are several that have become 
staples of collaborative filtering and recommendation systems today: k-nearest neighbors, 
matrix factorization and restricted Boltzmann machines. However, Andreas Töscher and 
Michael Jahrer of BigChaos, co-winners of the Netflix Prize, summed up2 their keys to success: 

“During the nearly 3 years of the Netflix competition, there were two main factors which improved the 
overall accuracy: the quality of the individual algorithms and the ensemble idea. 
…the ensemble idea was part of the competition from the beginning and evolved over time. In the 
beginning, we used different models with different parametrization and a linear blending.  
…[Eventually] the linear blend was replaced by a nonlinear one...” 

In the years since, the use of ensemble methods has exploded, and they have emerged as a 
state-of-the-art technology for machine learning.  

The next two sections provide a gentle introduction to what ensemble methods are, why they 
work and where they are applied. Then, we will look at a subtle but important challenge 
prevalent in all machine-learning algorithms: the fit vs. complexity tradeoff.  

Finally, we jump into training our very first ensemble method and see in a hands-on manner 
how ensemble methods overcome this fit vs. complexity tradeoff and improve overall 
performance. Along the way, we will familiarize ourselves with several key terms that form the 
lexicon of ensemble methods and will be used throughout the book. 

1.1 Ensemble Methods: The Wisdom of the Crowds 
What exactly is an ensemble method? Let’s get an intuitive notion of what they are and how 
they work by considering the allegorical case of Dr. Randy Forrest. We can then go on to 
frame the ensemble learning problem. 

Dr. Randy Forrest is a famed and successful diagnostician, much like his idol Dr. Gregory 
House of TV fame. His success, however, is due not only to his exceeding politeness (unlike 
his cynical and curmudgeonly idol), but also his rather unusual approach to diagnosis.  

You see, Dr. Forrest works at a teaching hospital and commands the respect of a large 
number of doctors-in-training. Dr. Forrest has taken care to assemble a team with a diversity 

1 https://www.netflixprize.com/leaderboard.html 
2 The BigChaos Solution to the Netflix Grand Prize, Andreas Töscher, Michael Jahrer and Robert M. Bell. 
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of skills. His residents excel at different specializations: one is good at cardiology (heart), 
another at pulmonology (lungs), and yet another at neurology (nervous system) and so on. All 
in all, a rather diversely skillful bunch, each with their own strengths. 

Every time Dr. Randy Forrest gets a new case he solicits the opinions of all his residents and 
collects possible diagnoses from all of them. He then democratically decides the final diagnosis 
as the most common one from among all those proposed.  

Figure 1.1  The diagnostic procedure followed by Dr. Randy Forrest every time he gets a new case is to get 
opinions from his residents. His residents offer their diagnoses: either that the patient has cancer or has no 
cancer. Dr. Forrest then selects the majority answer as the final diagnosis put forth by his team. 

Dr. Forrest embodies a diagnostic ensemble: he aggregates his residents’ diagnoses into a 
single diagnosis representative of the collective wisdom of his team. As it turns out, Dr. 
Forrest is right more often than any individual resident is.  

Why? Because he knows that his residents are pretty smart, and a large number of pretty 
smart residents are all unlikely to make the same mistake. Here, Dr. Forrest relies on the 
power of model aggregating or model averaging: he knows that the average answer is most 
likely going to be a good one. 

Still, how does Dr. Forrest know that all his residents are not wrong? He can’t know that for 
sure, of course. However, he has guarded against this undesirable outcome all the same. 
Remember that his residents all have diverse specializations.  

Because of their diverse backgrounds, training, specialization and skills, it is possible, but 
highly unlikely that all his residents are wrong. Here, Dr. Forrest relies on the power of 
ensemble diversity, or the diversity of the individual components of his ensemble. 
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Dr. Randy Forrest, of course, is an ensemble method, and his residents (who are in training) 
are the machine-learning algorithms that make up the ensemble. The secrets to his success, 
and indeed the success of ensemble methods as well, are:  

• ensemble diversity, so that he as a variety of opinions to choose from, and 
• model aggregation, so that he can combine them into a single final opinion. 

Any collection of machine-learning algorithms can be used to build an ensemble: literally, a 
group of machine learners. But why do they work? James Surowiecki, in The Wisdom of 
Crowds, describes human ensembles or wise crowds thus: 

“If you ask a large enough group of diverse and independent people to make a prediction or estimate a 
probability, the average of those answers will cancel out errors in individual estimation. Each person's 
guess, you might say, has two components: information and errors. Subtract the errors, and you're left 
with the information.” 

This is also precisely the intuition behind ensembles of learners: it is possible to build a wise 
machine-learning ensemble by aggregating individual learners.  

 
An ensemble method is a machine-learning algorithm that aims to improve predictive performance on a task by 
aggregating the predictions of multiple estimators or models. In this manner, an ensemble method learns a meta-
estimator.  
 

The key to success with ensemble methods is ensemble diversity. Informally, ensemble 
diversity refers to the fact that individual ensemble components, or machine-learning models, 
are different from each other.  

Training such ensembles of diverse individual models is a key challenge in ensemble learning, 
and different approaches achieve this in different ways. 

1.2 Why You Should Care About Ensemble Learning 
What can you do with ensemble methods? Are they really just hype or are they hallelujah? As 
we see in this section, they can be used to train and deploy predictive models to build robust 
and effective models for many different applications. 

One palpable success of ensemble methods is their domination of data science competitions 
(alongside deep learning), where they have been generally successful on different types of 
machine-learning tasks and application areas.  

Anthony Goldbloom, CEO of Kaggle.com, revealed in 2015 that the three most successful 
algorithms for structured problems were XGBoost, Random Forest and Gradient Boosting, all 
ensemble methods. Indeed, the most popular way to tackle data science competitions these 
days is to combine feature engineering with ensemble methods. Structured data is generally 

©Manning Publications Co. To comment go to liveBook 

4

https://livebook.manning.com/#!/book/ensemble-methods-for-machine-learning/discussion
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion


highly organized in tables, relational databases and other formats most of us are familiar with, 
and the type of data that ensemble methods have proven to be very successful on. 

Unstructured data, in contrast, does not always have table structure. Images, Audio, video, 
waveform and text data are typically unstructured, which deep learning approaches -- 
including automated feature generation -- have demonstrated with great success. While we 
focus on structured data for most of this book, ensemble methods can be combined with deep 
learning for unstructured problems as well. 

Beyond competitions, ensemble methods drive data science in several areas including financial 
and business analytics, medicine and healthcare, cybersecurity, education, manufacturing, 
recommendation systems, entertainment and many more.  

In 2018, Olson et al3 conducted a comprehensive analysis of 13 popular machine-learning 
algorithms and their variants. They ranked each algorithm’s performance on 165 benchmark 
data sets (Figure 1.2). Their goal was to emulate the standard machine-learning pipeline to 
provide advice on how to select a machine-learning algorithm. 

 
Figure 1.2  Which machine learning algorithm should I use for my data set? The mean ranking of the 
performance of several different machine-learning algorithms on 165 different data sets is shown here. Figure 
reproduced from Olson et al (2018). SVC = support vector classification, SGD = stochastic gradient descent, 
KNN = k-nearest neighbor, PAC = passive-aggressive classifier, NB = naïve Bayes classifier. 

On average, ensemble methods (1: Gradient Tree Boosting, 2: Random Forest, 4: Extra 
Trees) outperformed individual classifiers and classical ensemble approaches (9: AdaBoost). 

3 Data-driven advice for applying machine learning to bioinformatics problems, Randal S. Olson, William La Cava, Zairah Mustahsan, Akshay Varik, and 
Jason H. Moore, Pacific Symposium on Machine Learning (2018). 
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These results demonstrate exactly why ensemble methods (specifically, tree-based 
ensembles) are considered state-of-the-art.  

If your goal is to develop state-of-the-art analytics from your data, or to eke out better 
performance and improve models you already have, this book is for you. If your goal is to 
start competing more effectively in data science competitions, for fame and fortune, or to just 
improve your data science skills, this book is also for you. If you’re excited about adding 
powerful ensemble methods to your machine-learning arsenal, this book is definitely for you. 

To drive home this point, we will build our first ensemble method: a simple model combination 
ensemble. Before we do, let’s dive into the tradeoff between fit and complexity that most 
machine-learning methods have to grapple with, as it will help us understand why ensemble 
methods are so effective.  

1.3 Fit vs. Complexity in Individual Models 
In this section, we look at two popular machine-learning methods: decision trees and support 
vector machines. As we do so, we’ll try to understand how their fitting and predictive behavior 
changes as they learn increasingly complex models. This section also serves as a refresher of 
the training and evaluation practices we usually follow during modeling. 

Machine learning tasks are typically: 

• supervised learning tasks, with a data set of labeled examples, where data has been 
annotated. For example, in cancer diagnosis, each example will be an individual 
patient, with label/annotation “has cancer” or “does not have cancer”. Labels can be 
0−1 (binary classification), categorical (multiclass classification) or continuous 
(regression).  

• unsupervised learning tasks, with a data set of unlabeled examples, where the data 
lacks annotations. This includes tasks such as grouping examples together by some 
notion of “similarity” (clustering) or identifying anomalous data that does not fit the 
expected pattern (anomaly detection). 

Let’s say that we’re looking at the Boston Housing data set, which describes the median value 
of owner-occupied homes in 506 U.S. census tracts in the Boston area. The machine-learning 
task is to learn a regression model to predict the median home value in a census tract using 
different variables. The Boston Housing data set is available from scikit-learn: 

from sklearn.datasets import load_boston 
from sklearn.preprocessing import StandardScaler 
X, y = load_boston(return_X_y=True) 
 
X = StandardScaler().fit_transform(X) 
y = StandardScaler().fit_transform(y.reshape(−1, 1)) 

A data set is generally represented as a table, where each row is a data point or an example. 
Each example is characterized by features (also known as independent variables, or 
attributes) and a label (also known as a dependent variable, annotation or response).  
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In the Boston Housing data set, there are 13 attributes associated with each training example 
(that is, census tract), including crime rate (CRIM), nitric oxides concentration (NOX) and 
property-tax rate (TAX). The raw features (before standard scaling) are shown below. 

Figure 1.3  Median home price prediction is a regression task, where we want to learn a model to predict the 
label (median value of a home in a census tract, shaded column) given the attributes, or features of the census 
tract. Each row of this table is a training example, characterized by 13 features and a label (price). 

1.3.1 Regression with Decision Trees 
One of the most popular machine-learning models is the decision tree4, which can be used for 
classification as well as regression tasks. A decision tree is made of up of decision nodes and 
leaf nodes, and each decision node tests the current example for a specific condition (for 
example, is age > 50?), and funnels it to the right path or the left path based on the answer
(see Figure 1.4, right)  

Figure 1.4  Decision trees partition the feature space into axis-parallel rectangles. When used for classification, 
the tree checks for conditions on the features in the decision nodes, funneling the example to the left or right 
after each test. Ultimately, the example filters down to a leaf node, which will give its classification label. The 
partition of the feature space according to this decision tree is shown on the left.  

4 For more details about learning with decision trees, see Chapters 3 (classification) and 9 (regression) of Machine Learning in Action by Peter Harrington 
(Manning, 2012).  
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Once an example reaches a leaf node, the prediction corresponding to the leaf node is 
returned. For classification tasks, the leaf value is a class label, while for regression tasks, the 
leaf returns a regression value. 

A decision tree of depth 1 is called a decision stump and is the simplest possible tree. A 
decision stump contains a single decision node and two leaf nodes. A shallow decision tree 
(say, depth 2 or 3) will have a small number of decision nodes and leaf nodes and is a simple 
model. Consequently, it is only able to represent simple functions.  

On the other hand, a deeper decision tree will have many more decision nodes and leaf nodes 
and is a more complex model. A deeper decision tree, thus, will be able to represent richer 
and more complex functions.  

Fit vs. Complexity in Decision Trees 

We’ll randomly split the data set into a training set (with 67% of the data) and a test set (with 
33%) of the data. We choose these split fractions in order to illustrate the effects of the 
complexity vs. fit more clearly. 

TIP  During modeling, we often have to split the data into a training and a test set. How big should these sets

be? If the fraction of the data that makes up the training set is too small, the model will not have enough data. 

If the fraction of the data that makes up the test set is too small, there will be higher variation in our 

generalization estimates of how well the model performs on future data. A good rule of thumb (known as the 

Pareto principle) is to start with an 80%-20% train-test split. 

For different depths d = 1 to 10, we learn a tree on the training set and evaluate it on the test 
set. When we look at the training errors and the test errors for different depths, we can 
identify the depth of the “best tree”. We characterize “best” in terms of an evaluation metric. 
For regression problems there are several evaluation metrics: mean square error, mean 
absolute deviation, coefficient of determination, etc.  

We will use coefficient of determination, also known as the R2 score, which measures the 
proportion of the variance in the labels (y) that is predictable from the features (x).  

Coefficient of Determination 

The coefficient of determination (R2) is a measure of regression performance. R2 is the proportion of variance in the 

true labels that is predictable from the features.  

R2 depends on two quantities: (1) the total variance in the true labels, or total sum of squares (TSS), and (2) the mean 

squared error, or the residual sum of squares (RSS) between the true and predicted labels. We have R2. = 1 − RSS / 

TSS. A perfect model will have zero prediction error, or RSS = 0 and its corresponding R2. = 1. Really good models

have R2. values close to 1. A really bad model will have high prediction error and high RSS. This means that for really

bad models, we can have negative R2. 
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One last thing to note is that we are splitting the data into a training set and test set 
randomly, which means that it is possible that we get very lucky or very unlucky in our split. 
To avoid the influence of randomness, we repeat our experiment 5 times and average the 
results across the runs. The pseudo-code for our experiment is shown below: 

for run = 1:5, 
 (Xtrn, ytrn), (Xtst, ytst)=split data (X), labels (y) into training and test subsets randomly 

   for d = 1:10, 
  tree[d] = train a decision tree of depth d on the training subset (Xtrn, ytrn) 

   train_scores[run, d] = compute R2 score of tree[d] on the training set (Xtrn, ytrn) 
   test_scores[run, d] = compute R2 score of tree[d] on the training set (Xtst, ytst) 

mean_train_score = average train_scores across runs 
mean_test_score = average test_scores across runs 

The following code snippet does precisely this, and then plots the training and test scores. 
Rather than explicitly implement the pseudocode above, the listing below uses the scikit-
learn function sklearn.model_selection.ShuffleSplit to automatically split the data into
20 different training and test subsets, and sklearn.model_selection. validation_curve to
determine R2 scores for varying decision tree depths. 

from sklearn.tree import DecisionTreeRegressor 
from sklearn.model_selection import ShuffleSplit 
from sklearn.model_selection import validation_curve 

subsets = ShuffleSplit(n_splits=5, test_size=0.33, random_state=23) #A 

model = DecisionTreeRegressor() 
trn_scores, tst_scores = validation_curve(model, X, y, \ #B 

  param_name='max_depth', param_range=range(1, 11), \ 
  cv=subsets, scoring='r2') 

mean_train_score = np.mean(trn_scores, axis=1) 
mean_test_score = np.mean(tst_scores, axis=1)  

#A set up 5 different random splits of the data into train and test sets 
#B for each split, train decision trees of depths  from 1 to 10 and then evaluate on the test set 

Remember that our ultimate goal is to build a machine-learning model that generalizes well, 
that is, a model that performs well on future, unseen data. Our first instinct then, will be to 
train a model that achieves the smallest training error. Such models will typically be quite 
complex in order to fit as many training examples as possible. 

 After all, a complex model will likely fit our training data well and have a small training error. 
Presumably, a model that achieves the smallest training error should also generalize well in 
the future and predict unseen examples equally well.  

Now, let’s look at the results to see if this is the case. Remember that an R2 score close to 1 
indicates a very good regression model, scores further away from 1 indicate worse models.  
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Deeper decision trees are more complex and have greater representational power. It is 
unsurprising, then, to see that deeper trees fit the training data better. This is clear from 
Figure 1.5: as tree depth (model complexity) increases, the training score approaches R2=1. 
Thus, more complex models achieve better fits on the training data.  

What is surprising, however, is that the test score does not keep decreasing with complexity. 
In fact, beyond max_depth=4, test scores remain fairly consistent. What this suggests is that a
tree of depth 8 might fit the training data better than a tree of depth 4, but both trees will 
perform roughly identically when they try to generalize and predict on new data! 

Figure 1.5  Comparing decision trees of different depths on the Boston Housing regression data set using R2 as 
the evaluation metric. Higher R2 scores mean that the model achieves lower error. An R2 score close to 1 means 
that the model achieves nearly zero error.  

As decision trees become deeper, they become more complex and achieve lower training 
errors. However, their ability to generalize to future data (estimated by test scores) does not 
keep decreasing. This is a rather counter-intuitive result: the model with the best fit on the 
training set is not necessarily the best model for predictions when deployed in the real world.  

It is tempting to argue that we got unlucky when we partitioned the training and test set 
randomly. However, we ran our experiment with 5 different random partitions and averaged 
the results to avoid precisely this. Let us repeat this experiment with another approach: 
support vector regression5.  

5 For more details on Support Vector Machines for classification, see Chapter 6 of Machine Learning in Action by Peter Harrington (Manning, 2012). For 
SVMs for regression, see A Tutorial on Support Vector Regression by Alex J. Smola and Bernhard Scholköpf, as well as the documentation pages of 
sklearn.SVM.SVR().
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1.3.2 Regression with support vector machines 
Like decision trees, support vector machines (SVMs) are a great off-the-shelf baseline 
modeling approach, and most packages come with a robust implementation of SVMs.  

You may have used SVMs for classification, where it is possible to learn nonlinear models of 
considerable complexity using kernels such as the RBF (or Gaussian) and polynomial kernels. 
SVMs have also been adapted for regression, and as in the classification case, they try to find 
a model that trades-off between regularization and fit during training. Explicitly, SVM training 
tries to find a model to minimize  

The regularization term measures the flatness of the model: the more it is minimized, the 
more linear and less complex the learned model is.  

The loss term measures the fit to the training data through a loss function (typically, mean 
squared error): the more it is minimized, the better the fit to the training data. The 
regularization parameter C trades-off between these two competing objectives: 

• a small value of C means the model will focus more on regularization and simplicity and
less on training error, which causes the model to have higher training error and
underfit;

• a large value of C means the model will focus more on training error, learn more
complex models, which causes the model to have lower training errors and possibly
overfit.
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Figure 1.6  Support vector machine with a polynomial kernel of degree 3. Small values of C result in more linear 
(flatter) model, while large values of C, but more nonlinear and curvy models. 

We can see the effect of increasing the value of C on the learned models in Figure 1.6. In 
particular, we can visualize the tradeoff between fit and complexity. 

CAUTION   SVMs identify “support vectors”, a smaller working set of training examples that the model

depends on. Counting the number of support vectors is not an effective way to measure of model complexity 

as small values of C restrict the model more, forcing it to use more support vectors in the final model.  

Fit vs. Complexity in Support Vector Machines 

Much like max_depth in DecisionTreeRegressor(), the parameter C in support vector
regression, SVR() can be tuned to obtain models with different behaviors. Again, we are faced
with the same question: which is the best model? To answer this, we can repeat the same 
experiment as with Decision Trees: 
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from sklearn.svm import SVR 

model = SVR(degree=3) 
trn_scores, tst_scores = validation_curve(model, X, y.ravel(), 
param_name='C', 
  param_range=np.logspace(-2,4,7), 

   cv=subsets, scoring='r2') 
mean_train_score = np.mean(trn_scores, axis=1) 
mean_test_score = np.mean(tst_scores, axis=1)  

In this code snippet, we train an SVM with a degree 3 polynomial kernel. We try seven values 
of C: 10−3,10−2,10−1,1,10,102 and 103 and visualize the train and test scores as before. 

Figure 1.7  Comparing SVM regressors of different complexities on the Boston Housing data set using R2 as the 
evaluation metric. As with decision trees, highly complex models (corresponding to higher C values) achieve 
fantastic fit on the training data, but don’t actually generalize well. 

Again, rather counter-intuitively, the model with the best fit on the training set is not 
necessarily the best model for predictions when deployed in the real world. Every machine-
learning algorithm, in fact, exhibits this behavior: 

• overly simple models tend to not fit the training data properly, and tend to generalize
poorly on future data; a model that is performing poorly on training and test data is
underfitting;

• overly complex models can achieve very low training errors but tend to generalize
poorly on future data too; a model that is performing very well on training data, but
poorly on test data is overfitting;

• the best models trade-off between complexity and fit, sacrificing a little bit of each
during training so that they can generalize most effectively when deployed.
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As we will see in the next section, ensemble methods are an effective way of tackling the issue 
of fit vs. complexity.  

THE BIAS-VARIANCE TRADEOFF 
What we have informally seen above as the fit vs. complexity tradeoff is more formally known as the bias-variance 
tradeoff.  

The bias (error) of a model is the error arising from the impact of modeling assumptions (such as a preference for 
simpler models). The variance of a model is the error arising from sensitivity to small variations in the data set.  

Highly complex models (low bias) will overfit the data and be more sensitive to noise (high variance), while simpler 
models (high bias) will underfit the data and be less sensitive to noise (low variance). This trade-off is inherent in every 
machine-learning algorithm. Ensemble methods seek to overcome this issue by combining several low-bias models to 
reduce their variance or combining several low-variance models to reduce their bias. 
 

1.4 Our First Ensemble 
In this section, we see that we can overcome the fit vs. complexity issues of individual models 
by training an ensemble, our first. Recall from the allegorical Dr. Forrest that an effective 
ensemble performs model aggregation on a set of diverse of component models. Here: 

1. We train a set of diverse base estimators (also known as base learners) using diverse 
base learning algorithms on the same data set. That is, we count on the significant 
variations in how each learning algorithm to produce a diverse set of base estimators. 

2. For a regression problem (such as the Boston Housing data), the predictions of 
individual base estimators are continuous. We can aggregate the results into one final 
ensemble prediction by simple averaging of the individual predictions. 

We use the following regression algorithms to produce base estimators from our data set: 
kernel ridge regression, support vector regression, decision tree regression, k-nearest 
neighbor regression, Gaussian processes and multi-layer perceptrons (neural networks).  

Once we have the trained models, we use each one to make individual predictions and then 
aggregate the individual predictions into a final prediction. This is shown in the figure below. 
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Figure 1.8  Predictions using model averaging, illustrated. 

First, we split the overall data set into a training set (67%) and a test set (33%). 

Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, test_size=0.33) 

The code for training individual base estimators is shown below. 

Listing 1.1 Training diverse base estimators 

from sklearn.kernel_ridge import KernelRidge 
from sklearn.svm import SVR 
from sklearn.tree import DecisionTreeRegressor 
from sklearn.neighbors import KNeighborsRegressor 
from sklearn.gaussian_process import GaussianProcessRegressor 
from sklearn.neural_network import MLPRegressor 

estimators = {'krr': KernelRidge(kernel='rbf', gamma=0.1), #A 
  'svr': SVR(gamma=0.1), 
  'dtr': DecisionTreeRegressor(max_depth=8), 
  'knn': KNeighborsRegressor(n_neighbors=3), 
  'gpr': GaussianProcessRegressor(alpha=1e−1), 
  'mlp': MLPRegressor(alpha=25, max_iter=1000)} 

for name, estimator in estimators.items(): 
    estimator = estimator.fit(Xtrn, ytrn) #B 

#A  initialize hyperparameters of each individual base estimator 
#B  train the individual base estimators 
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We have now trained six diverse base estimators using six different base learning algorithms. 
Given new data, we can aggregate the individual predictions into a final prediction 

Listing 1.2 Aggregating base estimator predictions 

n_estimators, n_samples = len(estimators), Xtst.shape[0] 
y_individual = np.zeros((n_samples, n_estimators)) 
for i, (model, estimator) in enumerate(estimators.items()): #A 
    y_individual[:, i] = estimator.predict(Xtst)  #B 

y_final = np.mean(y_individual, axis=1) #C 

#A  initialize individual predictions 
#B  individual predictions  using the base estimators 
#C  aggregate (average) individual predictions 

One way to understand the benefits of ensembling is if we look at all possible combinations of 
models for predictions. That is, we look at the performance of one model at a time, then all 
possible ensembles of two models (there are 15 such combinations), then all possible 
ensembles of three models (there are 20 such combinations) and so on. For ensemble size 1 
to 6, we plot the test set performances of all these ensemble combinations.  

Figure 1.9  Prediction performance vs. ensemble size. 

As we aggregate more and more models, we see that the ensembles generalize increasingly 
better. The most striking result of our experiment, though, is that the performance of the 
ensemble of all 6 estimators is often better than the performances of each individual 
estimator.   
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Finally, what of fit vs. complexity? It is difficult to characterize the complexity of the 
ensemble, as different types of estimators in our ensemble have different complexities. 
However, we can characterize the variance of the ensemble. 

Recall that variance of an estimator reflects its sensitivity to the data. A high variance 
estimator is highly sensitive and less robust, often because it is overfitting. In Figure 1.10, we 
show the variance of the ensembles from Figure 1.9, which is the width of the band. 

 
Figure 1.10  The mean performance of the ensemble combinations increases, showing that bigger ensembles 
perform better. The standard deviation (square root of the variance) of performance of the ensemble 
combinations decreases, showing that the overall variance decreases!  

As ensemble size increases, the variance of the ensemble decreases! This is a consequence of 
model aggregation or averaging. We know that averaging “smooths out the rough edges”. In 
the case of our ensemble, averaging individual predictions smooths out mistakes made by 
individual base estimators, replacing them instead with the wisdom of the ensemble: from 
many, one. The overall ensemble is more robust to mistakes, and unsurprisingly, generalizes 
better than any single base estimator. 

Each component estimator in the ensemble is an individual, like one of Dr. Forrest’s residents. 
It makes predictions based on its own experiences (introduced during learning). At prediction 
time, when we have six individuals, we will have six predictions, or six opinions. For “easy 
examples”, the individuals will mostly agree. For “difficult examples”, the individuals will differ 
amongst each other, but on average, are more likely to be closer to the correct answer6. 

6    There are cases when this breaks down. In the UK version of Who Wants To Be A Millionaire? a contestant successfully made it as far as £125,000 (or 
about $160,000), when he was asked which novel begins with the words: '3 May. Bistritz. Left Munich at 8:35PM.' After using the 50/50 lifeline, he was 
left with only two choices: Tinker Tailor Soldier Spy and Dracula. Knowing he could lose £93,000 if he got it wrong, he asked the studio audience. 81% of 
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In this simple scenario, we trained six “diverse” models by using six different learning 
algorithms. Ensemble diversity is critical to the success of the ensemble as it ensures that the 
individual estimators are different from each other and don’t all make the same mistakes.  

As we will see in this book, different ensemble methods take different approaches to train 
diverse ensembles. This is a key challenge for ensemble methods have to somehow ensure 
diversity from a single data set. 

1.5 Summary 
This chapter introduced ensemble methods and motivations for using them. 

• Ensemble learning aims to improve predictive performance by training multiple models
to train a meta-estimator. The component models of an ensemble are called base
estimators or base learners.

• Ensemble methods leverage the power of “the wisdom of crowds”, which relies on the
principle that the collective opinion of a group is more effective than any single
individual in the group.

• Ensemble methods are widely used in several application areas including financial and
business analytics, medicine and healthcare, cybersecurity, education, manufacturing,
recommendation systems, entertainment and many more.

• Most machine-learning algorithms contend with a fit vs. complexity (also called bias-
variance) tradeoff, which affects their ability to generalize well to future data. Ensemble
methods use multiple models to overcome this tradeoff.

• An effective ensemble requires two key ingredients: (1) ensemble diversity and (2)
model aggregation for the final predictions.

In the next few chapters, we explore several popular ensemble methods. 

the audience voted for Tinker Tailor Soldier Spy. The audience was overwhelmingly confident… and unfortunately for the contestant, overwhelmingly 
wrong. As we will see in the book, we look to avoid this situation by making certain assumptions about the “audience”, in our case, the base estimators. 
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2 
Homogeneous Parallel 

Ensembles: Bagging and Random 
Forests 

This chapter covers 

• Training homogeneous parallel ensembles
• Implementing and understanding how Bagging works
• Implementing and understanding how Random Forest works
• Training variants with pasting, random subspaces, random patches and ExtraTrees
• Using bagging and random forests in practice

In Chapter 1, we introduced ensemble learning and created our first rudimentary ensemble. 
To recap, an ensemble method relies on the notion of “wisdom of the crowd”: the combined 
answer of many diverse models is often better than any one individual answer.  

We begin our journey into ensemble learning methods in earnest with parallel ensemble 
methods. We begin with this type of ensemble methods because, conceptually, parallel 
ensemble methods are easy to understand and implement.  

Parallel ensemble methods, as the name suggests, train each component base estimator 
independently of the others, which means that they can be trained in parallel. As we will see, 
parallel ensemble methods can be further distinguished as homogeneous and heterogeneous 
parallel ensembles depending on the kind of learning algorithms they use.  

In this chapter, we will learn about homogeneous parallel ensembles, whose component 
models are all trained using the same machine-learning algorithm. This is in contrast to 
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heterogeneous parallel ensembles (covered in the next chapter), whose component models 
are trained using different machine-learning algorithms.  

The class of homogeneous parallel ensemble methods includes two popular machine-learning 
methods, one or both of which you might have come across and even used before: bagging 
and random forest.  

Recall that the two key components of an ensemble method are: ensemble diversity and 
model aggregation. Since homogeneous ensemble methods use the same learning algorithm 
on the same data set, how can they generate a set of diverse base estimators? They do this 
through random sampling of either the training examples (as bagging does) or features (as 
some variants of bagging do) or both (as random forest does). 

Some of the algorithms introduced in this chapter, such as random forest are widely used in 
medical and bioinformatics applications. In fact, random forest is still a strong off-the-shelf 
baseline algorithm to try on a new data set, owing to its efficiency (it can be parallelized or 
distributed easily over multiple processors).  

We will begin with the most basic parallel homogeneous ensemble: bagging. Once we 
understand how bagging achieves ensemble diversity through sampling, we look at the most 
powerful variant of bagging: random forest.  

We will also learn about other variants of bagging (pasting, random subspaces, random 
patches) and random forests (ExtraTrees). These variants are often effective for big data or in 
applications with high-dimensional data. 

2.1 Parallel Ensembles 
First, we concretely define the notion of a parallel ensemble. This will help us put the 
algorithms in this chapter and the next into a single context, so that we can easily see the 
similarities between them, and their differences. 

Recall Dr. Randy Forrest, our ensemble diagnostician from Chapter 1. Every time Dr. Forrest 
gets a new case he solicits the opinions of all his residents. He then decides the final diagnosis 
from among those proposed by his residents (Figure 2.1, top). Dr. Forrest’s diagnostic 
technique is successful because of two reasons. 

1. He has assembled a diverse set of residents, with different medical specializations, 
which means they think differently about each case. This is works out well for Dr. 
Forrest as it puts several different perspectives on the table for him to consider. 

2. He aggregates the independent opinions of his residents into one final diagnosis. Here, 
he is democratic and selects the majority opinion. However, he can also aggregate his 
residents’ opinions in other ways. For instance, he can weight the opinions of his more 
experienced residents higher. This reflects that he trusts some residents more than 
others, based on factors such as experience or skill, that mean they are right more 
often than other residents on the team.  

Dr. Forrest and his residents are a parallel ensemble (Figure 2.1. bottom). Each resident in our 
example above is a component base estimator (or base learner) that we have to train. Base 
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estimators can be trained using different base algorithms (leading to heterogeneous 
ensembles) or the same base algorithm (leading to homogeneous ensembles). 

Figure 2.1  Dr. Randy Forrest’s diagnostic process is an analogy of a parallel ensemble method. 

In this chapter, we explore two popular parallel, homogeneous ensemble methods: bagging 
and random forests, and their variants. If we want to put together an effective ensemble 
similar to Dr. Forrest’s we have to address two problems. 

1. How do we create a set of base estimators with “diverse opinions” from a single data
set? That is, how can we ensure ensemble diversity during training?

2. How can we aggregate decisions, or predictions, of each individual base estimator into
a final prediction? That is, how can we perform model aggregation during prediction?

We will see exactly how to do both in the next section. 
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2.2 Bagging: Bootstrap Aggregating 
Bagging, short for bootstrap aggregating, was introduced by Leo Breiman in 1996. The name 
refers to how bagging achieves ensemble diversity (through bootstrap sampling) and performs 
ensemble prediction (through model aggregating). 

Bagging is the most basic homogeneous parallel ensemble method we can construct. 
Understanding bagging will be helpful in understanding the other ensemble methods in this 
chapter. These methods further enhance the basic bagging approach in different ways: to 
either improve ensemble diversity or overall computational efficiency. 

Bagging uses the same base machine-learning algorithm to train base estimators. So how can 
we get multiple base estimators from a single data set and a single learning algorithm, let 
alone diversity? By training base estimators on replicates of the data set.  

Figure 2.2  Bagging, illustrated. Bagging uses bootstrap sampling to generate similar but not exactly identical 
subsets (observe the replicates above) from a single data set. Models are trained on each of these subsets 
resulting in similar but not exactly identical base estimators. During prediction, the individual base estimator 
predictions are aggregated into a final ensemble prediction. Also observe that training examples may repeat in 
the replicated subsets; this is a consequence of bootstrap sampling. 

Bagging consists of two steps as illustrated in Figure 2.3: 

1. during training, bootstrap sampling, or sampling with replacement is used to generate
replicates of the training data set that are different from each other but drawn from the
original data set; this ensures that base learners trained on each of the replicates are
also different from each other;
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2. during prediction, model aggregation is used to combine the predictions of the
individual base learners into one ensemble prediction. For classification tasks, the final
ensemble prediction is determined by majority voting, for regression tasks, by
averaging.

2.2.1 Intuition: Resampling and Model Aggregation 
The key challenge for ensemble diversity is that we need to create (and use) different base 
estimators using the same learning algorithm and the same data set. We’ll now see how to (1) 
generate “replicates” of the data set, which in turn, can be used to train base estimators, and 
(2) combine predictions of base estimators.

Bootstrap Sampling: Sampling with Replacement 

We’ll use random sampling to easily generate subsets of smaller size from the original data 
set. In order to generate replicates of the data set of the same size, we will need to perform 
sampling with replacement, otherwise known as bootstrap sampling.  

When sampling with replacement, some objects that were already sampled have a chance to 
be sampled a second time (or even a third, or fourth, and so on) because they were replaced. 
In fact, some objects may be sampled many times, while some objects may never be 
sampled. 

Figure 2.3  Bootstrap sampling illustrated on a data set of 6 examples. By sampling with replacement, we can 
get a bootstrap sample of size 6, but containing only 4 unique objects, but with repeats. Performing bootstrap 
sampling several times produces several replicates of the original data set all of them with repeats. 

Thus, bootstrap sampling naturally partitions a data set into two sets: a bootstrap sample 
(with training examples that were sampled at least once) and an out-of-bag (oob) sample 
(with training examples that were never sampled even once).  

We can use each bootstrap sample for training a different base estimator. Since different 
bootstrap samples will contain different examples repeating different number of times, each 
base estimator will turn out to be somewhat different from the others. 

The Out-of-Bag Sample 

Should we just throw away the out-of-bag sample? That’s rather wasteful. Observe though, if 
we train a base estimator on the bootstrap sample, the oob sample is held out. Sound 
familiar?  
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The oob sample is effectively a held-out set and can be used to evaluate the ensemble without 
the need for a separate validation set or even a cross-validation procedure. This is great, 
because it allows us to utilize data more efficiently during training. The error estimate 
computed using out-of-bag instances is called the out-of-bag error or the oob score.  

It is very easy to generate bootstrap samples with replacement using numpy. Suppose we have
a data set with 50 training examples (say, patient records with unique ids from 0 to 49). We 
can generate a bootstrap sample, also of size 50 (same size as the original data set) for 
training (replace=True to sample with replacement).

>>> import numpy as np 
>>> bag = np.random.choice(range(0, 50), size=50, replace=True) 
>>> np.sort(bag) 
array([ 1,  3,  4,  6,  7,  8,  9, 11, 12, 12, 14, 14, 15, 15, 21, 21, 21, 

 24, 24, 25, 25, 26, 26, 29, 29, 31, 32, 32, 33, 33, 34, 34, 35, 35, 
 37, 37, 39, 39, 40, 43, 43, 44, 46, 46, 48, 48, 48, 49, 49, 49]) 

Can you spot the repeats in this bootstrap sample? This bootstrap sample now serves as one 
replicate of the original data set and can be used for training. The corresponding oob sample is 
all the examples not in the bootstrap sample. 

>>> oob = np.setdiff1d(range(0, 50), bag) 
>>> oob 
array([ 0,  2,  5, 10, 13, 16, 17, 18, 19, 20, 22, 23, 27, 28, 30, 36, 38, 

 41, 42, 45, 47]) 

It is easy to verify that there is no overlap between the bootstrap subset and the oob subset. 
This means that the oob sample can be used as a “test set”. 

To summarize: after one round of bootstrap sampling, we get one bootstrap sample (for 
training a base estimator) and a corresponding oob sample (to evaluate that base estimator).  

When we repeat this step many times, we will have trained several base estimators and will 
also have estimated their individual generalization performances through individual oob errors. 
The averaged oob error is a good estimate of the performance of the overall ensemble. 

0.632 Bootstrap 
When sampling with replacement, the bootstrap sample will contain roughly 63.2% of the data set, while the oob

sample will contain the other 36.8% of the data set. 
We can show this by computing the probabilities of a data point being sampled. If our data set has n training 

examples, the probability of picking one particular data point x in the bootstrap sample is 1/n. The probability of not 

picking x in the bootstrap sample (that is, picking x in the oob sample) is 1-(1/n). 

For n data points, the overall probability of being selected in the oob sample is (1− (1/n))n  ≈  e−1  =  0.368  (for

sufficiently large n). 

Thus, each oob sample will contain (approximately) 36.8% of the training examples, and the corresponding

bootstrap sample will contain (approximately) the remaining 63.2% of the instances.
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Model Aggregation 

Bootstrap sampling generates diverse replicates of the data set, which allows us to train 
diverse models independently of each other. Once trained, we can use this ensemble for 
prediction. The key is to combine their (sometimes differing) opinions into a single final 
answer.  

We’ve seen two examples of model aggregation: majority voting and model averaging. For 
classification tasks, majority voting is used to aggregate predictions of individual base 
learners. The majority vote is also known as the statistical mode. The mode is simply the most 
frequently occurring element and is a statistic similar to the mean or the median.  

We can think of model aggregation as averaging: it smooths out imperfections among the 
chorus and produces a single answer reflective of the majority. If we have a set of robust base 
estimators, model aggregation will smooth out mistakes made by individual estimators. 

Ensemble methods use a variety of aggregation techniques depending on the task including 
majority vote, mean, weighted mean, combination functions and even another machine-
learning model! In this chapter, we will stick to majority voting as our aggregator. We will 
explore some other aggregation techniques for classification in Chapter 3. 

2.2.2 Implementing Bagging 
We can implement our own version of bagging easily. This illustrates the simplicity of bagging 
and provides a general template for how other ensemble methods in this chapter work. Each 
base estimator in our bagging ensemble is trained independently using the following steps: 

1. Generate a bootstrap sample from the original data set
2. Fit a base estimator to the bootstrap sample

Independently here means that the training stage of each individual base estimator takes 
place without consideration of what is going on with the other base estimators.  

We use decision trees as base estimators; the maximum depth can be set using the parameter 
max_depth. We will need two other parameters: n_estimators, the ensemble size and
max_samples, the size of the bootstrap subset, that is, the number of training examples to
sample (with replacement) per estimator. 

Our naïve implementation trains each base decision tree sequentially. If it takes 10 seconds to 
train a single decision tree, and we are training an ensemble of 100 trees, it will take our 
implementation 10 sec. x 100 = 1000 seconds of total training time.  

Listing 2.1 Bagging with Decision Trees: Training 

from sklearn.tree import DecisionTreeClassifier 

def bagging_fit(X, y, n_estimators, max_depth=5, max_samples=200): 
    n_examples = len(y) 
    estimators = [DecisionTreeClassifier(max_depth=max_depth)  

 for _ in range(n_estimators)] #A  
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    for tree in estimators: 
        bag = np.random.choice(n_examples, max_samples, replace=True)  #B 
        tree.fit(X[bag, :], y[bag])  #C 
         
    return estimators 

#A  Create a list of untrained base estimators 
#B  Generate a bootstrap sample 
#C  Fit a tree to the bootstrap sample 

This function will return a list of DecisionTreeClassifier objects. We can use this ensemble 
for prediction, which is implemented in the listing below. 

Listing 2.2 Bagging with Decision Trees: Prediction 

from scipy.stats import mode 
 
def bagging_predict(X, estimators): 
    all_predictions = np.array([tree.predict(X) for tree in estimators])  #A 
    ypred, _ = mode(all_predictions, axis=0)  #B 
    return np.squeeze(ypred) 

#A  Predict each test example using each estimator in the ensemble 
#B  Make final predictions by majority voting  

We can test our implementation on 2d data and visualize the results. Our bagging ensemble 
has 500 decision trees, each of depth 12 and trained on bootstrap samples of size 200.  

>>> from sklearn.datasets import make_moons 
>>> from sklearn.model_selection import train_test_split 
>>> from sklearn.metrics import accuracy_score 
 
>>> X, y = make_moons(n_samples=300, noise=.25, random_state=0) #A 
>>> Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, test_size=0.33) 
>>> bag_ens = bagging_fit(Xtrn, ytrn, n_estimators=500, 
...                      max_depth=12, max_samples=200) 
>>> ypred = bagging_predict(Xtst, bag_ens) #B 
 
>>> accuracy_score(ytst, ypred) 
0.9191919191919192 

#A  Create a 2d data set 
#B  Make final predictions by majority voting 

The size of the original data set is 300, though we train base estimators on smaller subsets of 
200. Such subsampling can be useful for large data sets, where it might not be a good idea to 
train 500 decision trees, each using the full data set. 

We can now see what a bagged ensemble looks like, compared to a single tree. 

©Manning Publications Co. To comment go to liveBook 

26

https://livebook.manning.com/#!/book/ensemble-methods-for-machine-learning/discussion
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion


Figure 2.4  A single decision tree (left) overfits the training set and can be sensitive to outliers (observe the thin 
spiky parts of the decision boundary). A bagging ensemble (right) smooths out the overfitting effects and 
misclassifications of several such base estimators and often returns a robust answer.  

Bagging can learn fairly complex and nonlinear decision boundaries. Even if individual decision 
trees (and generally, base estimators) are sensitive to outliers, the ensemble of base learners 
will smooth out individual variations and will be more robust.  

This smoothing behavior of bagging is due to model aggregation. When we have many highly 
nonlinear classifiers, each trained on a slightly different replicate of the training data, each 
may overfit, but they don’t all overfit the same way. 

Thus, when we aggregate their predictions, it smooths out the errors and the ensemble 
performance is improved! Much like an orchestra, the final result is a smooth symphony that 
can easily overcome the mistakes of any individual musician in it.  

2.2.3 Bagging with scikit-learn 
Now that we are armed with under-the-hood understanding of bagging works, we look at how 
to use scikit-learn’s BaggingClassifier package. scikit-learn’s implementation
provides additional functionality including support for parallelization, ability to use other base 
learning algorithms beyond decision trees and most importantly, out-of-bag evaluation. 

Listing 2.3 Bagging with scikit-learn

from sklearn.tree import DecisionTreeClassifier 
from sklearn.ensemble import BaggingClassifier 

base_estimator = DecisionTreeClassifier(max_depth=10)  #A 
bag_ens = BaggingClassifier(base_estimator=base_estimator,n_estimators=500, 

 max_samples=100, oob_score=True)  #B 
bag_ens.fit(Xtrn, ytrn) 
ypred = bag_ens.predict(Xtst) 

#A  Set the base learning algorithm along with hyper-parameters 
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#B  Use out-of-bag sample to estimate generalization error 

BaggingClassifier supports out-of-bag evaluation and will return the oob accuracy if we set
oob_score=True. Recall that for each bootstrap sample, we also have a corresponding out-of-
bag sample that contains all the data points that were not selected during sampling.  

Thus, each oob sample is a surrogate for “future data” as it is not used to train the 
corresponding base estimator. After training, we can query the learned model to obtain the 
out-of-bag score or oob score: 

>>> bag_ens.oob_score_ 
0.9658792650918635 

The oob score is an estimate of the bagging ensemble’s predictive (generalization) 
performance, here 96.6%. In addition to the oob samples, we have ourselves also held out a 
test set. We compute another estimate of this model’s generalization on the test set: 

>>> accuracy_score(ytst, ypred) 
0.9521276595744681 

The test accuracy is 95.2%, which is pretty close to the oob score. We used decision trees of 
maximum depth 12 as base estimators. Deeper decision trees are more complex, which allows 
them to fit (and even overfit) the training data. 

TIP Bagging is most effective with complex and nonlinear classifiers that tend to overfit the data. Such

complex, overfitting models are unstable, that is highly sensitive to small variations in the training data.  

To see why, consider that individual decision trees in a bagged ensemble have roughly the same complexity. 

However, due to bootstrap sampling, they have been trained on different replicates of the data set, and overfit 

differently. Put another way, they all overfit by roughly the same amount, but in different places.  

Bagging works best with such models because its model aggregation smooths out the overfitting mistakes 

made by the individual unstable base estimators, leading to a more robust and stable ensemble.  

We can visualize the smoothing behavior of BaggingClassifier by comparing its decision
boundary to its component base DecisionTreeClassifiers.
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Figure 2.5  Bootstrap sampling leads to different base estimators overfitting differently, while model 
aggregation averages out individual mistakes and produces smoother decision boundaries.  

2.2.4 Faster Training with Parallelization 
Bagging is a parallel ensemble algorithm as it trains each base learner independently of other 
base learners. This means that training bagging ensembles can be parallelized if you have 
access to computing resources such as multiple cores or clusters.  

BaggingClassifier supports the speed up of both training and prediction through the n_jobs 
parameter. By default, this parameter is set to 1 and bagging will run sequentially. 
Alternately, you can specify the number of concurrent processes BaggingClassifier should 
use with by setting n_jobs: 

bag_ens = BaggingClassifier( 
    base_estimator=DecisionTreeClassifier(), n_estimators=100,  
    max_samples=100, oob_score=True,  
    n_jobs=−1)  #A 
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#A  If set to −1, BaggingClassifier uses all CPUs 

The figure below compares the training efficiency of sequential (with n_jobs=1) with 
parallelized bagging (n_jobs=−1) on a machine with 6 cores. This shows that bagging can be 
effectively parallelized and training times significantly improved. 

 
Figure 2.6  Bagging can be parallelized to increase training efficiency. 

2.3 Random Forests 
We have seen how bagging uses random sampling with replacement, or bootstrap sampling, 
for ensemble diversity. Now, we look at random forests, a special extension of bagging that 
introduces additional randomization to further promote ensemble diversity. 

Until the emergence of gradient boosting (Chaps. 5 and 6), random forests were state-of-the-
art and were widely utilized. They are still a popular go-to method for many applications, 
especially bioinformatics. Random forests can be an excellent off-the-shelf baseline for your 
data, as they are computationally efficient to train. They can also rank data features by 
importance, which makes them particularly suited for high-dimensional data analysis. 

2.3.1 Randomized Decision Trees 
“Random forest” specifically refers to an ensemble of randomized decision trees constructed 
using bagging. Random forests perform bootstrap sampling to generate a training subset 
(exactly like bagging), and then use randomized decision trees as base estimators.   

Randomized decision trees are trained using a modified decision-tree learning algorithm, 
which introduces randomness when growing our trees. This additional source of randomness 
increases ensemble diversity and generally leads to better predictive performance. 
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The key difference between a standard decision tree and a randomized decision tree is in how 
a decision node is constructed. In standard decision tree construction, all available features 
are evaluated exhaustively to identify the best feature to split on. Since decision-tree learning 
is a greedy algorithm, it will choose the highest scoring features to split on.  

When bagging, this exhaustive enumeration (combined with greedy learning) means that it is 
often possible the same small number of dominant features are repeatedly used in different 
trees. This makes the ensemble less diverse.  

To overcome this limitation of standard decision tree learning, random forests introduce 
randomness in tree learning. Specifically, instead of considering all the features to identify the 
best split, a random subset of features is evaluated to identify the best feature to split on.  

Thus, random forests use a modified tree learning algorithm, which first randomly samples 
features before creating a decision node. The resulting tree is a randomized decision tree.  

Example: Randomization in Tree Learning 

Consider tree learning on a data set with six features (here, {f1,f2,f3,f4,f5,f6}). In standard tree 
learning, all six features are evaluated, and the best splitting feature is identified (say, f3).  

In randomized decision tree learning, we first identify a random subset of features (say, { 
f2,f3,f4,f5}) and then choose the best from among them (which is, say, f5). Thus, randomization 
has inherently forced the tree learning to identify a different feature. 

Figure 2.7  Random forests use a modified tree learning algorithm, where a random feature subset is first 
chosen before the best splitting criterion for each decision node is identified.  

Ultimately, this randomization occurs every time a decision node is constructed. Thus, even if 
we used the same data set, we will obtain a different randomized tree each time we train. 

When randomized tree learning (with random sampling of features) is combined with 
bootstrap sampling (with random sampling of training examples), we obtain an ensemble of 
randomized decision trees, known as a random decision forest or simply random forest. 
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The random forest ensemble will be more diverse than bagging, which only performs 
bootstrap sampling. Next, we will see how to use random forests in practice. 

2.3.2 Random Forests with scikit-learn 
scikit-learn provides an efficient implementation of random forests that also supports out-
of-bag estimation and parallelization. Since random forests are specialized to use decision 
trees as base learners, RandomForestClassifier also takes DecisionTreeClassifier

parameters such as max_leaf_nodes and max_depth to control tree complexity. The listing
below demonstrates how to call RandomForestClassifier.

Listing 2.4 Random Forests with scikit-learn

from sklearn.ensemble import RandomForestClassifier 

rf_ens = RandomForestClassifier(n_estimators=500, max_depth=10, #A 
    oob_score=True, n_jobs=−1) #B #C 

rf_ens.fit(Xtrn, ytrn) 
ypred = rf_ens.predict(Xtst) 

#A  Control complexity of base decision trees 
#B  Parallelize, if possible 
#C  Use out-of-bag sample to estimate generalization error 

Figure 2.8  illustrates a random forest classifier, along with several component base 
estimators.  

2.3.3 Feature Importances 
One benefit of using random forests is that they also provide a natural mechanism for scoring 
features based on their importance. This means that we can rank features to identify the most 
important ones and drop low impact features, thus performing feature selection!  

Feature Selection 
Feature selection, also known as variable subset selection, is the procedure of identifying the most impactful or 
relevant data features/attributes. Feature selection is an important step of the modeling process, especially for high-
dimensional data.  

Dropping the least relevant features often improves generalization performance and minimizes overfitting. It also 
often improves computational efficiency of training. These issues are consequences of the curse of dimensionality, 
where the large number of features inhibits the model’s ability to generalize effectively.  

See The Art of Feature Engineering: Essentials for Machine Learning by Pablo Duboue to learn more about feature 
selection and engineering.  
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Figure 2.8  Random forest (top left) compared to individual base learners (randomized decision trees). Much like 
bagging, the random forest ensemble also produces a smooth and stable decision boundary. Also observe the 
effect of randomization on the individual trees, which are far spikier than regular decision trees.  

We can obtain the feature importances for the simple two-dimensional data set after fitting a 
random forest ensemble with the query, rf_ens.feature_importances_:

>>> for i, score in enumerate(rf_ens.feature_importances_): 
  print('Feature x{0}: {1:6.5f}'.format(i, score)) 

Feature x0: 0.47017 
Feature x1: 0.52983 

The feature scores for the simple two-dimensional data set suggest that both features are 
roughly equally important. In the case study towards the end of the chapter, we will compute 
and visualize the feature importances for a data set from a real task: breast cancer diagnosis. 

Note that feature importances sum to one and are effectively feature weights. Less important 
features have lower weights and can often be dropped without significantly affecting the 
overall quality of the final model, while improving training and prediction times. 
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CAUTION   If two features are strongly correlated or dependent, then intuitively, we know that it is sufficient

to use either one of them in the model. However, the order in which the features are used can affect feature 

importance.  

For instance, when classifying abalone (sea snails), the features size and weight are highly correlated

(unsurprising, since bigger snails will be heavier). This means that including them in a decision tree will add 

roughly the same amount of information, and cause the overall impurity to decrease by roughly the same 

amount. Thus, we expect that their mean impurity decrease scores will be the same. 

However, say we select weight first as a splitting variable. Adding this feature to the tree removes

information contained in both size and weight features. This means that the feature importance of size

is reduced because any impurity that size could decrease was already previously decreased by adding

weight. This results in imbalanced feature importances. Random feature selection mitigates this problem a

little, but not consistently. 

In general, you must proceed with caution when interpreting feature importances in the presence of feature 

correlations, so that you don’t miss the whole story in the data.  

2.4 More Homogeneous Parallel Ensembles 
We have seen two important parallel homogeneous ensemble methods: bagging and random 
forest. We now explore a few variants that were developed for large data sets (for example, 
recommendation systems) or high-dimensional data (for example, image or text databases). 

These include bagging variants such as pasting, random subspaces and random patches and 
an extreme random forest variant called ExtraTrees. All these methods introduce 
randomization in different ways in order to ensure ensemble diversity. 

2.4.1 Pasting 
Bagging uses bootstrap sampling, or sampling with replacement. If, instead, we sample 
subsets for training without replacement, we have a variant of bagging known as pasting.  

Pasting was designed for very large data sets, where sampling with replacement is not 
necessary. Instead, since training full models on data sets of such scale is difficult, pasting 
aims to take small pieces of the data by sampling without replacement.  

Pasting exploits the fact that, with a very large data set, sampling without replacement can 
inherently generate ensemble diversity. Pasting also ensures that each training subsample is a 
small piece of the overall data set and can be used to train a base learner efficiently.  

Model aggregation is still used to make a final ensemble prediction. However, since each base 
learner is trained on small pieces of the large data set, we can view model aggregation as 
pasting the predictions of the base learners together for a final prediction.  
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BaggingClassifier can easily be extended to perform pasting by setting bootstrap=False
and making it subsample small subsets for training by setting max_samples to a small fraction,
say max_samples=0.05.

2.4.2 Random Subspaces and Random Patches 
It is possible to make the base learners even more diverse by randomly sampling the features 
as well. Instead of sampling training examples, if we generate subsets by sampling features 
(with or without replacement), we obtain a variant of bagging called Random Subspaces. 

BaggingClassifier supports bootstrap sampling of features through two parameters:
bootstrap_features (default: False) and max_features (default: 1.0, or all the features),
which are analogous to the parameters bootstrap (default: False) and max_samples for
sampling training examples. 

bag_ens = BaggingClassifier( 
    base_estimator=SVC(), n_estimators=100, 
   max_samples=1.0, bootstrap=False,     #A 

    max_features=0.5, bootstrap_features=True) #B 

#A  Use all the training samples 
#B   Bootstrap sample 50% of features 

Figure 2.9  Bagging compared to random subspaces and random patches. 

If we randomly sample both training examples and features (with or without replacement), we 
obtain a variant of bagging called Random Patches. 

bag_ens = BaggingClassifier( 
    base_estimator=SVC(), n_estimators=100, 
    max_samples=0.75, bootstrap=True,  #A 
   max_features=0.5, bootstrap_features=True)  #B 

#A  Bootstrap sample 75% of examples 
#B  Bootstrap sample 50% of features 

Note that in the examples above, the base estimator is the support vector classifier, 
sklearn.svm.SVC. In general, random subspaces and random patches can be applied to any
base learner to improve estimator diversity. As with bagging, in practice, increasing diversity 
tends to increase bias slightly. 
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TIP   In practice, these variants of bagging can be especially effective for big data. For example, since random 

subspaces and random patches sample features, they can be used to train base estimators more efficiently 

for data with lots of features, such as image data.  

Alternately, since pasting samples without replacement, it can be used to train base estimators more 

efficiently when you have a big data set with a lot of training instances. 

The key difference between random forests and bagging variants such as random subspaces 
and random patches is where the feature sampling occurs. Random forests exclusively use 
randomized decision trees as base estimators. Specifically, they perform feature sampling 
inside the tree learning algorithm each time they grow the tree with a decision node.  

Random subspaces and random patches, on the other hand, are not restricted to tree learning 
and can use any learning algorithm as a base estimator. They randomly sample features once 
outside before calling the base learning algorithm for each base estimator. 

2.4.3 ExtraTrees 
Extremely randomized trees take the idea of randomized decision trees to the extreme by 
selecting not just the splitting variable from a random subset of features (see Figure 2.9) but 
also the splitting threshold!  

Say we have selected the feature f5 to split on. In typical decision tree learning, we next 
search for the best threshold (τ) to split on. This leads to a decision node of the form f5 ≤ τ. 
Instead, when training extremely randomized trees, the threshold τ is also selected randomly. 

This extreme randomization is so effective, in fact, that we can construct an ensemble of 
extremely randomized trees directly from the original data set without bootstrap sampling! 
This means that we can construct an ExtraTrees ensemble very efficiently. 

TIP   In practice, ExtraTrees ensembles are well suited for high-dimensional data sets with a large number of 

continuous features.   

scikit-learn provides an ExtraTreesClassifier that supports out-of-bag estimation and 
parallelization, much like BaggingClassifier and RandomForestClassifier.  Note that 
ExtraTrees typically do not perform bootstrap sampling (bootstrap=False, by default), as we 
are able to achieve base estimator diversity through extreme randomization.  

CAUTION   scikit-learn provides two very similarly named classes: sklearn. 

tree.ExtraTreeClassifier and sklearn.ensemble.ExtraTreesClass ifier.  

sklearn.tree.ExtraTreeClassifier provides an implementation of extremely randomized trees, and 

should only be used with ensemble methods. sklearn.ensemble.ExtraTreesClassifier provides 

the implementation of the ExtraTrees ensemble method discussed above. 
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2.5 Case Study: Breast Cancer Diagnosis  
Our first case study explores a medical decision-making task: breast cancer diagnosis. We will 
see how to use scikit-learn’s homogeneous parallel ensemble modules in practice.  
Specifically, we will train and evaluate the performance of three homogeneous parallel 
algorithms, each characterized by increasing randomness: bagging with decision trees, 
random forests and ExtraTrees. 

Doctors make many decisions regarding patient care everyday: tasks such as diagnosis (what 
disease does the patient have?), prognosis (how will their disease progress?), treatment 
planning (how should the disease be treated?), to name a few. They make these decisions 
based on a patient’s health records, medical history, family history, test results and so on. 

The specific data set we will use is the Wisconsin Breast Cancer (WDBC) data set, a common 
benchmark data set in machine learning. Since 1993, the WDBC data has been used to 
benchmark the performance of dozens of machine-learning algorithms.  

The machine-learning task is to train a classification model that can diagnose patients with 
breast cancer. By modern standards and in the era of big data, this is a small data set. It is, 
however, perfectly suited to show the ensemble methods we’ve seen so far in action.  

2.5.1 Loading and pre-processing 
The WDBC data set was originally created by applying feature extraction techniques on patient 
biopsy medical images. More concretely, for each patient, the data describe the size and 
texture of the cell nuclei of cells extracted during biopsy. 

WDBC is available in scikit-learn and can be loaded as shown below. 

>>> from sklearn.datasets import load_breast_cancer 
>>> dataset = load_breast_cancer()   

 
Figure 2.10  The WDBC data set consists of 569 training examples, each described by 30 features. A few of the 
30 features for a small subset of patients, along with each patient’s diagnosis (training label) are shown above. 
diagnosis=1 indicates malignant and diagnosis=0 indicates benign. 

It is always good practice to standardize the training data, especially since the scales of the 
features are vastly different. Standardization is a pre-processing step that rescales features to 
have a mean of 0 and standard deviation of 1.  
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Data is pre-processed this way so that all the features are scaled similarly before learning, 
while preserving information in each column. This ensures that one feature does not 
numerically dominate another simply because of their different scales. 

>>> from sklearn.preprocessing import StandardScaler 
>>> X, y = dataset['data'], dataset['target'] 
>>> X = StandardScaler().fit_transform(X) 

2.5.2 Bagging, Random Forests and ExtraTrees 
Once we have pre-processed our data set, we will train and evaluate bagging with decision 
trees, random forests and ExtraTrees in order to answer the following questions: 

1. How does the ensemble performance change with ensemble size? That is, what
happens when our ensembles get bigger and bigger?

2. How does the ensemble performance change with base learner complexity? That is,
what happens when our individual base estimators become more and more complex. In
this case study, since all three ensemble methods considered use decision trees as
base estimators, one “measure” of complexity is tree depth, with deeper trees being
more complex.

Ensemble size vs. ensemble performance 

First, we look at how training and testing performance change with ensemble size. That is, we 
compare the behavior of the three algorithms as the parameter n_estimators increases.

As always, we follow good machine learning practices and split the data set into a training set 
and a hold-out test set randomly. Our goal will be to learn a diagnostic model on the training 
set and evaluate how well that diagnostic model does using the test set.  

Recall that since the test set is held-out during training, the test error is generally a useful 
estimate of how well we will do on future data, that is, generalize. However, since we don’t 
want our learning and evaluation to be at the mercy of randomness, we will repeat this 
experiment 20 times and average the results.   

Listing 2.5 Training and test errors with increasing ensemble size 

max_leaf_nodes = 8 #A 
n_runs = 20 
n_estimator_range = range(2, 20, 1) 

bag_trn_error = np.zeros((n_runs, len(n_estimator_range)))  #B 
rf_trn_error = np.zeros((n_runs, len(n_estimator_range))) 
xt_trn_error = np.zeros((n_runs, len(n_estimator_range))) 

bag_tst_error = np.zeros((n_runs, len(n_estimator_range)))  
rf_tst_error = np.zeros((n_runs, len(n_estimator_range)))  
xt_tst_error = np.zeros((n_runs, len(n_estimator_range))) 

for run in range(0, n_runs): 
    X_trn, X_tst, y_trn, y_tst = train_test_split(X, y, test_size=0.25) #C 
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    for j, n_estimators in enumerate(n_estimator_range): 

 tree = DecisionTreeClassifier(max_leaf_nodes=max_leaf_nodes) #D 
  bag = BaggingClassifier(base_estimator=tree, 

 n_estimators=n_estimators, 
 max_samples=0.5, n_jobs=−1) 

  bag.fit(X_trn, y_trn) 
  bag_trn_error[run, j] = 1 - accuracy_score(y_trn, bag.predict(X_trn)) 
  bag_tst_error[run, j] = 1 - accuracy_score(y_tst, bag.predict(X_tst)) 

  rf = RandomForestClassifier(max_leaf_nodes=max_leaf_nodes, #E 
   n_estimators=n_estimators, n_jobs=−1) 

  rf.fit(X_trn, y_trn) 
  rf_trn_error[run, j] = 1 - accuracy_score(y_trn, rf.predict(X_trn)) 
  rf_tst_error[run, j] = 1 - accuracy_score(y_tst, rf.predict(X_tst)) 

  xt = ExtraTreesClassifier(max_leaf_nodes=max_leaf_nodes, #F 
 bootstrap=True, n_estimators=n_estimators, 

n_jobs=−1) 
  xt.fit(X_trn, y_trn) 
  xt_trn_error[run, j] = 1 - accuracy_score(y_trn, xt.predict(X_trn)) 
  xt_tst_error[run, j] = 1 - accuracy_score(y_tst, xt.predict(X_tst)) 

#A Every base decision tree in every ensemble will have at most 8 nodes 
#B Initialize arrays to store training and test errors 
#C Perform 20 runs, each with a different split of train/test data 
#D Train and evaluate bagging for this 
#E Train and evaluate random forests for 
#F Train and evaluate ExtraTrees for this 

Figure 2.11  Training and test performance of bagging, random forest and ExtraTrees as ensemble size 
increases. Bagging used decision trees as the base estimator, random forest used randomized decision trees 
and ExtraTrees used extremely randomized trees. 

We can now visualize the averaged training and test errors on the WDBC data set. 
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As expected, the training error for all the approaches decreases steadily as the number of 
estimators increases. The test error also decreases with ensemble size and then stabilizes. As 
the test error is an estimate of the generalization error, our experiment confirms our intuition 
about the performance of these ensemble methods in practice.  

Finally, all three approaches greatly outperform single decision trees (where the plot begins). 
This shows that, in practice, even if single decision trees are unstable, ensemble of decision 
trees are robust and can generalize well. 

Base learner complexity vs. ensemble performance 

Next, we compare the behavior of the three algorithms as the complexity of the base learners 
increases. There are several ways to control the complexity of the base decision trees: 
maximum depth, maximum number of leaf nodes, impurity criteria, etc. Here, we compare the 
performance of the three ensemble methods as with complexity as determined by 
max_leaf_nodes. This comparison can be performed in a manner similar to the previous one.

Figure 2.12  Training and test performance of bagging, random forest and ExtraTrees as base learner 
complexity increases. Bagging used decision trees as the base estimator, random forest used randomized 
decision trees and ExtraTrees used extremely randomized trees. 

Recall that highly complex trees are inherently unstable and sensitive to small perturbations in 
the data. This means that, in general, if we increase the complexity of the base learners, we 
will need a lot more of them to successfully reduce the variance of the ensemble overall. Here, 
however, we have fixed n_estimators=10.

One key consideration in determining the depth of the base decision trees is computational 
efficiency. Learning deeper and deeper trees will take more and more time, but will not 
produce the significant improvement in predictive performance. For instance, base decision 
trees of depths 24 and 32 perform roughly similarly. 
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2.5.3 Feature importances with Random Forests 
Finally, we see how we can use feature importances to identify the most predictive features 
for breast cancer diagnosis using the random forest ensemble. Such analysis adds 
interpretability to the model and can be very helpful in communicating and explaining such 
models to domain experts such as doctors. 

Feature Importances from Label Correlations 

First, let’s peek into the data set to see if we can discover some interesting relationships 
among the features and the diagnosis. This type of analysis is typical when we get a new data 
set, as we try to learn more about it. Here, our analysis will try to identify which features are 
most correlated with each other and with the diagnosis (label), so that we can check if
random forests can do something similar.  

In the code below, we use the pandas and seaborn packages to visualize feature and label
correlations.  

Listing 2.6 Visualizing correlations between features and labels 

import pandas as pd 
import seaborn as sea 
import matplotlib.pyplot as plt 

df = pd.DataFrame(data=dataset['data'], columns=dataset['feature_names']) #A 
df['diagnosis'] = dataset['target'] 

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 8)) 
cor = np.abs(df.corr()) 
sea.heatmap(cor, annot=False, cbar=False, cmap=plt.cm.Reds, ax=ax[0]) 

f = ['mean radius', 'mean perimeter', 'mean area', \ #B 
 'worst radius', 'worst perimeter', 'worst area', \ 
 'radius error', 'perimeter error', 'area error', 'diagnosis'] 

cor_zoom = np.abs(df[f].corr()) 
sea.heatmap(cor_zoom, annot=True, cbar=False, cmap=plt.cm.Reds, ax=ax[1]) 
fig.tight_layout() 

#A  Convert the data into a pandas dataframe  
#B  Compute and plot the correlation between the features and label (diagnosis) 

The output of this listing is shown in Figure 2.13. There are several features that are highly 
correlated with each other. For example, mean radius, mean perimeter and mean area. There 
are several features that are also highly correlated with the label, that is, the diagnosis as 
benign or malignant. Let’s identify the 10 features most correlated with the diagnosis label:  

>>> label_corr = cor.iloc[:, −1] 
>>> label_corr.sort_values(ascending=False)[1:11] 

worst concave points   0.793566 
worst perimeter   0.782914 
mean concave points  0.776614 
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worst radius   0.776454 
mean perimeter    0.742636 
worst area   0.733825 
mean radius  0.730029 
mean area    0.708984 
mean concavity    0.696360 
worst concavity   0.659610 

Thus, our correlation analysis is telling us that the 10 features above are the most highly 
correlated with the diagnosis. That is to say, these features are likely most helpful in breast 
cancer diagnosis. 

Figure 2.13  (Absolute) feature correlations between all 30 features and diagnosis (left) and a smaller subset of 
features and diagnosis (right).  

Feature Importances using Random Forests 

Random forests can also provide feature importances. The listing below illustrates this. 
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Listing 2.7 Feature importances in the WDBC data set using random forests 

X_trn, X_tst, y_trn, y_tst = train_test_split(X, y, test_size=0.15) 
n_features = X_trn.shape[1] 

rf = RandomForestClassifier(max_leaf_nodes=24, n_estimators=50, n_jobs=−1) #A 
rf.fit(X_trn, y_trn) 
err = 1 - accuracy_score(y_tst, rf.predict(X_tst)) 
print('Prediction Error = {0:4.2f}%'.format(err*100)) 

importance_threshold = 0.02 #B 
for i, (feature, importance) in enumerate(zip(dataset['feature_names'], 

  rf.feature_importances_)): 

    if importance > importance_threshold: 
  print('[{0}] {1} (score={2:4.3f})'.format(i, feature, importance)) #C 

#A  Train a random forest ensemble  
#B Set an importance threshold, all the features above the threshold are important 
#C  Print the “important” features, i.e., those that are above the importance threshold 

The listing above depends on an importance_threshold, which is set to 0.02 here. Typically,
such a threshold is set by inspection such that we get a target feature set, or using a separate 
validation set to identify such that overall performance does not degrade. 

For the WDBC data set, the random forest identifies the following features as being important. 
Observe that there is a considerable overlap between important features identified by 
correlation analysis and random forests, though their relative rankings are different. 

[0] mean radius (score=0.077)
[1] mean texture (score=0.020)
[2] mean perimeter (score=0.045)
[3] mean area (score=0.041)
[5] mean compactness (score=0.026)
[6] mean concavity (score=0.036)
[7] mean concave points (score=0.120)
[13] area error (score=0.020)
[20] worst radius (score=0.193)
[22] worst perimeter (score=0.138)
[23] worst area (score=0.054)
[26] worst concavity (score=0.027)
[27] worst concave points (score=0.096)

Finally, we can plot the feature importances as identified by the random forest ensemble. 
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Figure 2.14  The random forest ensemble can score features by their importance. This allows us to perform 
feature selection, by only using features with the highest scores.  

CAUTION Note that feature importances will often change between runs owing to randomization during tree 

construction. Note also that if two features are highly correlated, random forests will often distribute the 

feature importance between both of them, leading to their overall weights appearing smaller than they 

actually are.  

2.6 Summary 
In this chapter, we explored several parallel, homogeneous ensemble methods. Parallel 
ensemble methods train their base estimators independently of each other. Homogeneous 
ensemble methods use the same base learning algorithm to train their base estimators.  

1. Parallel homogeneous ensembles promote ensemble diversity through randomization:
random sampling of training examples, of features, or even introducing randomization
in the base learning algorithm.

2. Bagging is a simple ensemble method that relies on (1) bootstrap sampling (or
sampling with replacement) to generate diverse replicates of the data set and training
diverse models, and (2) model aggregation to produce an ensemble prediction from a
set of individual base learner predictions.

3. Bagging and its variants work best with any unstable estimators (unpruned decision
trees, SVMs with nonlinear RBF kernels, deep neural networks, etc.), which are models
of higher complexity and/or nonlinearity.

4. Random forests are a variant of bagging, specifically designed to use randomized
decision trees as base learners. Increasing randomness increases ensemble diversity
considerably, allowing the ensemble to decrease the variance, though at the cost of a
slight increase in bias.

5. Pasting, a variant of bagging, samples training examples without replacement and can
be effective on data sets with a very large number of training examples.
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6. Other variants of bagging such as random subspaces (sampling features) and random 
patches (sampling both features and training examples) can be effective on data sets 
with high dimensionality.  

7. Random forests provide feature importances to rank the most important features from 
a predictive standpoint. 

In the next chapter, we will continue with parallel ensemble methods, and move on to another 
type: parallel heterogeneous ensembles. 
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3 
Heterogeneous Parallel 

Ensembles: Combining Strong 
Learners 

This chapter covers 

• Combining base learning models by performance-based weighting
• Combining base learning models with meta-learning: stacking
• Avoiding overfitting by ensembling with cross validation
• A large-scale, real-world text-mining case study with heterogeneous ensembles

In the previous chapter, we introduced two parallel ensemble methods: bagging and random 
forest. These methods (and their variants) train homogeneous ensembles, where every base 
estimator is trained using the same base learning algorithm. For example, in bagging 
classification, all the base estimators are decision tree classifiers. In this chapter, we continue 
exploring parallel ensemble methods, this time focusing on heterogeneous ensembles. 

Heterogeneous ensemble methods use different base learning algorithms to directly ensure 
ensemble diversity. For example, a heterogeneous ensemble can consist of three base 
estimators: a decision tree, a support vector machine (SVM) and an artificial neural network. 
These base estimators are still trained independently of each other.  

The earliest heterogeneous ensemble methods such as stacking were developed as far back as 
1992. However, these methods really came to the fore during the Netflix Prize competition in 
the mid-2000s. The top 3 teams, including the one that eventually won the $1 million prize, 
were ensemble teams, and their solutions were a complex blend of hundreds of different base 
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models. This success was a striking and very public demonstration of the effectiveness of 
many of the methods we will be discussing in this chapter. 

Inspired by this success, stacking and blending have become widely popular. With sufficient 
base estimator diversity, these algorithms can often boost performance on your data set and 
are a powerful ensembling tool in any data analyst’s arsenal.  

Another reason for their popularity is that they can easily combine existing models, which 
allows us to use previously trained models as base estimators. For example, say you and a 
friend were working independently on a data set for a Kaggle competition. You trained an 
SVM, while your friend trained a logistic regression model. While your individual models are 
doing ok, you both figure that you may do better if you put your heads (and models) together. 
You build a heterogeneous ensemble with these existing models without having to train them 
all over again. All you need to figure out would be a way to combine your two models. 

Figure 3.1  Homogeneous ensembles (Chapter 2), such as bagging and random forests, use the same learning 
algorithm to train base estimators, and achieve ensemble diversity through random sampling. Heterogeneous 
ensembles (this chapter) use different learning algorithms to achieve ensemble diversity. 

Heterogeneous ensembles come in two flavors, depending on how they combine individual 
base estimator predictions into a final prediction (see Figure 3.1):  

1. weighting methods, which assign individual base estimator predictions a weight that
corresponds to its strength; better base estimators are assigned higher weights and
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influence the overall final prediction more; the predictions of individual base estimators 
are fed into a pre-determined combination function, which makes the final predictions.  

2. meta-learning methods, which use a learning algorithm to combine the predictions of
base estimators; the predictions of individual base estimators are treated as meta-data
and passed to a second-level meta-learner, which is trained to make final predictions.

We begin by introducing weighting methods, which combine classifiers by weighting the 
contribution of each one based on how effective it is. 

3.1 Base estimators for heterogeneous ensembles 
In this section, we will set up a learning framework for fitting heterogeneous base estimators 
and getting predictions from them. This is the first step in building heterogeneous ensembles 

for any application and corresponds to training the individual base estimators H1, H2, …, Hm in 
Figure 3.1 (bottom).  

We will train our base estimators using a simple two-dimensional data set so we can explicitly 
visualize the decision boundaries and behavior of each base estimator as well as the diversity 
the estimators. Once trained, we can construct a heterogeneous ensemble using a weighting 
method (Section 3.2) or a meta-learning method (Section 3.3).   

from sklearn.datasets import make_moons 
from sklearn.model_selection import train_test_split 
X, y = make_moons(600, noise=0.25, random_state=13)     #A 
X, Xval, y, yval = train_test_split(X, y, test_size=0.25) #B 
Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, test_size=0.25) 

#A  Set aside 25% of the data for validation  
#B Set aside a further 25% of data for hold out-testing 
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Figure 3.2  Synthetic data set with two classes: 300 examples each in Class 0 (•) and Class 1 (▪). 

3.1.1 Fitting base estimators 
Our first task is to train the individual base estimators. Unlike homogeneous ensembles, we 
can use any number of different learning algorithms and parameter settings to train base 
estimators. The key is to ensure that we choose learning algorithms that are different enough 
to produce a diverse collection of estimators.  

The more diverse our set of base estimators, the better the resulting ensemble will be. For this 
scenario, we use six popular machine-learning algorithms, all of which are available in 
scikit-learn: DecisionTreeClassifier, SVC, GaussianProcessClassifier, 
KNeighborsClassifier, RandomForestClassifier and GaussianNB.  
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Figure 3.3  Fitting six base estimators using scikit-learn. 

The listing below initializes six base estimators (described in Figure 3.3 above) and trains
them. Note the individual parameter settings used to initialize each base estimator (for 
example, max_depth=5 for DecisionTreeClassifier or n_neighbors=3 for
KNeighborsClassifier). In practice, these parameters have to be chosen carefully. For this
simple data set, we can guess or just use the default parameter recommendations. 

Listing 3.1. Fitting different base estimators 

from sklearn.tree import DecisionTreeClassifier 
from sklearn.svm import SVC 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.gaussian_process import GaussianProcessClassifier 
from sklearn.gaussian_process.kernels import RBF 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.naive_bayes import GaussianNB 

estimators = [('dt', DecisionTreeClassifier(max_depth=5)), #A 
  ('svm', SVC(gamma=1.0, C=1.0, probability=True)), 
  ('gp', GaussianProcessClassifier(RBF(1.0))), 
 ('3nn', KNeighborsClassifier(n_neighbors=3)), 
 ('rf',RandomForestClassifier(max_depth=3, 

  n_estimators=25)), 
  ('gnb', GaussianNB())] 

def fit(estimators, X, y): 
    for model, estimator in estimators: 

  estimator.fit(X, y) #B 
    return estimators 

#A Initialize several base learning algorithms 
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#B Fit base estimators on the training data using these different learning algorithms 

We train our base estimators on the training data 

>>> estimators = fit(estimators, Xtrn, ytrn) 

Once trained, we can also visualize how each base estimator behaves on our data set. It 
appears we were able to produce some pretty decently diverse base estimators.  

Figure 3.4  Base estimators in our heterogeneous ensemble. Each base estimator was trained using a different 
learning algorithm, which generally leads to a diverse ensemble. Note that due to randomized data generation, 
the estimators you get, and their performances may be different. 

Aside from ensemble diversity, one other aspect that is immediately apparent from the 
visualization of individual base estimators is that they all don’t perform equally well on a held-
out test set. In Figure 3.4, 3-nearest neighbor (3nn) has the best test set performance, while 
Gaussian naïve Bayes (gnb) has the worst.  

For instance, DecisionTreeClassifier (dt) produces classifiers that partition the feature
space into decision regions using axis-parallel boundaries (because each decision node in the 
tree splits on a single variable). Alternately, the support vector machine (svm) classifier SVC
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uses an RBF kernel, which leads to smoother decision boundaries. Thus, while both learning 
algorithms can learn nonlinear classifiers, they are nonlinear in different ways. 

Kernel Methods 
Support vector machines are an example of a kernel method, a type of machine-learning algorithm that can use kernel 
functions. A kernel function can efficiently measure the similarity between two data points implicitly in a high-
dimensional space without explicitly transforming the data into that space. A linear estimator can be turned into a 
nonlinear estimator by replacing inner product computations with a kernel function. Commonly used kernels include 
the polynomial kernel and the Gaussian (also known as the radial basis function or RBF) kernel. See Chapter 12 of The 
The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.) by Hastie, Tibshirani and Friedman 
for details. 

3.1.2 Individual predictions of base estimators 
Given test data to predict (Xtst), we can get the predictions of each test example using each
base estimator. In our scenario, given that we have six base estimators, each test example 
will have six predictions, one corresponding to each base estimator. 

Figure 3.5  Individual predictions of a test set with the six trained six base estimators in scikit-learn. 

Our task now is to collect the predictions of each test example by each trained base estimator 
into an array. In the listing below, the variable y is the structure that holds the predictions and
is of size n_samples * n_estimators. That is, the entry y[15, 1] will be the prediction of the
2nd classifier (SVC) on the 16th test example (indices in Python begin from 0).

Listing 3.2. Individual predictions of base estimators 

import numpy as np 

def predict_individual(X, estimators, proba=False):   #A 
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    n_estimators = len(estimators) 
    n_samples = X.shape[0] 

    y = np.zeros((n_samples, n_estimators)) 
    for i, (model, estimator) in enumerate(estimators): 

  if proba: 
   y[:, i] = estimator.predict_proba(X)[:, 1]  #B 

  else: 
   y[:, i] = estimator.predict(X)    #C 

    return y 

#A this flag allows us to predict the labels directly or the probability over the labels 
#B if true, predict probability of Class 1 (returns a number between 0 and 1) 
#C otherwise, directly predict if Class 1 (returns 0 or 1) 

Observe that our function predict_individual has a flag proba. When we set proba=False,
predict_individual returns the predicted labels according to each estimator; the predicted

labels take the values ypred = 0 or ypred = 1, and tell us that the estimator has predicted that 
example belongs to Class 0 or Class 1 respectively.  

When we set proba=True, however, each estimator will return the class prediction
probabilities instead via each base estimator’s predict_proba() function:

   y[:, i] = estimator.predict_proba(X)[:, 1] 

Classification Probability 
Most classifiers in scikit-learn can return the probability of a label rather than the label directly. Some of them, 
such as SVC, should be explicitly told to do so (notice that we set probability=True when initializing SVC), while 
others are natural probabilistic classifiers and can represent and reason over class probabilities. These probabilities 
represent each base estimator’s confidence in its prediction.  

We can use this function to predict the test examples: 

>>> y_individual = predict_individual(Xtst, estimators, proba=False) 
>>> y_ individual 
array([[0., 0., 0., 0., 0., 0.], 

 [1., 1., 1., 1., 1., 1.], 
   ... 

 [1., 1., 1., 1., 1., 1.], 
 [1., 1., 1., 1., 1., 1.]]) 

Each row contains six predictions, each one corresponding to the prediction of each base 
estimator. We sanity check our predictions: Xtst has 113 test examples, and y_individual
has six predictions for each of them, which gives us a 113 x 6 array of predictions. 

>>> Xtst.shape 
(113, 2) 
>>> y_individual.shape 
(113, 6) 
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When proba=True, predict_individual returns the probability that an example belongs to Class 

1, P(ypred = 1). For two-class (binary) classification problems such as this one, the probability 

that the example belongs to Class 0 is simply  1 − P(ypred  =  1), as the example can only 
belong to one or the other and probabilities over all possibilities sum to 1. 

>>> y_individual = predict_individual(Xtst, estimators, proba=True) 
>>> np.set_printoptions(precision=2) 
>>> y_individual 
array([[0.00e+00, 5.77e-02, 1.69e-01, 3.33e-01, 1.26e-01, 1.66e-02], 

 [1.00e+00, 9.81e-01, 9.43e-01, 1.00e+00, 9.87e-01, 9.97e-01], 
  ... 
 [0.00e+00, 1.21e-02, 7.30e-02, 0.00e+00, 1.28e-02, 2.66e-03], 
 [9.51e-01, 8.63e-01, 7.38e-01, 1.00e+00, 8.67e-01, 9.46e-01]]) 

In the first row of the output above, the third entry is 0.169. This indicates that our third base 
estimator, the GaussianProcessClassifier, is 16.9% confident that the first test example
belongs to Class 1. Conversely, the GaussianProcessClassifier is 83.1% confident that the
first test example belongs to Class 0. 

Such prediction probabilities are often called soft predictions. Soft predictions can be 
converted to hard (0−1) predictions by simply picking the class label with the highest 
probability; in this example, according to the GaussianProcessClassifier, the hard
prediction would be y=0, since P(y = 0) > P(y = 1). 

For the purpose of building a heterogeneous ensemble, we can either use the predictions 
directly or their probabilities. Using the latter typically produces a smoother output. 

CAUTION The prediction function above is specifically written for two-class, that is, binary classification

problems.  It can be extended to multi-class problems, if care is taken to store the prediction probabilities for 

each class. That is, for multi-class problems, you will need to store the individual prediction probabilities in an 

array of size n_samples * n_estimators * n_classes. 

We have now set up the basic infrastructure we need to create a heterogeneous ensemble. We 
have trained six classifiers, and we have a function that gives us their individual predictions on 
a new example. The last and, of course, the most important step is how we can combine these 
individual predictions. There are two ways of doing this: by weighting or by meta-learning.  

3.2 Combining predictions by weighting 
What do weighting methods aim to do? Let us return to the performance of the 3-nearest 
neighbor classifier (3nn) and the Gaussian naïve Bayes classifier (gnb) on our simple 2d data 
set (see Figure 3.6). Imagine we were trying to build a very simple heterogeneous classifier 
using these two as base estimators.  
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Figure 3.6  Two base estimators can have very different behaviors on the same data set. A weighting strategy 
should reflect their performance by weighting better performing classifiers higher.  

Let’s say we compare the behavior of these two classifiers using test error as our evaluation 
metric. The test error can be evaluated using the examples in Xtst, which was held-out during 
training; this gives us a good estimate of how the models will behave on future, unseen data. 

 3nn has a test error rate of 5.31%, while gnb has a test error rate of 13.27%. Intuitively, we 
would trust the 3nn classifier more on this data set than the gnb classifier. However, this does 
not mean that gnb is useless and should be discarded. For many examples, it can reinforce the 
decision made by 3nn. What we don’t want it to do is contradict 3nn when it is not confident of 
its predictions. 

This notion of base estimator confidence can be captured by assigning them weights. When we 
are looking to assign weights to base classifiers, we should do so in a manner consistent with 
this intuition, such that the final prediction is influenced more by the stronger classifiers and 
less by the weaker classifiers. 

Say we are given a new data point x, and the individual predictions are y3nn and ygnb. A simple 
way to combine them would be to weight them based on their performance. The test set 

accuracy of 3nn is α3nn = 1 − 0.0531 = 0.9469, and the test accuracy of gnb is αgnb = 1 − 0.1327 = 
0.8673. The final prediction can be computed as: 

The estimator weights w_3nn and w_gnb are proportional to their respective accuracies and 

the higher accuracy classifier will have the higher weight. In this example, we have w3nn = 
0.522 and wgnb = 0.478. We have combined the two base estimators using a simple linear 
combination function (technically, a convex combination, since all the weights are positive and 
sum to one).  
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Let’s continue with the task of classifying our 2d two-moons data set and explore various 
weighting and combination strategies. This will typically consist of two steps (see Figure 3.7): 

1. assign weights (wclf) to each classifier (clf) in some way, reflecting its importance; 

2. combine the weighted predictions (wclf ⋅ yclf) using a combination function hc. 

 
Figure 3.7  Each base classifier is assigned an importance weight that reflects how much its opinion contributes 
to the final decision. Weighted decisions of each base classifier are combined using a combination function. 

We now look at several such strategies that generalize this intuition above for both hard and 
soft predictions. 

3.2.1 Majority Vote 
We are already familiar with one type of weighted combination from the previous chapter: the 
majority vote. We briefly revisit it here to show that it is but one of many combination 
schemes and to put it into the general framework of combination methods.  

Majority voting can be viewed as a weighted combination scheme: each base estimator is 
assigned an equal weight: that is, if we have m base estimators, each base estimator has a 

weight  wclf = 1⁄m. The (weighted) predictions of the individual base estimators are combined 
using the majority vote. 

Like bagging, this strategy can be extended to heterogeneous ensembles as well. In the 
general combination scheme presented in Figure 3.7, to implement this weighting strategy, we 

set wclf=1⁄m and hc =  majority vote, which is the statistical mode. 

©Manning Publications Co. To comment go to liveBook 
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion

56

https://livebook.manning.com/#!/book/ensemble-methods-for-machine-learning/discussion
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion


Figure 3.8  Combining by majority voting. Bagging can be viewed as a simple weighting method applied to a 
homogeneous ensemble. All classifiers have equal weights and the combination function hc  is the majority 
vote. We can adopt the majority voting strategy for heterogeneous ensembles as well. 

The listing below combines the individual predictions y_individual from a heterogeneous set
of base estimators using majority voting. Note that since the weights of the base estimators 
are all equal, we do not explicitly compute them. 

Listing 3.3. Combine predictions using majority vote 

from scipy.stats import mode 

def combine_using_majority_vote(X, estimators): 
    y_individual = predict_individual(X, estimators, proba=False) 
    y_final = mode(y_individual, axis=1) 
    return y_final[0].reshape(−1, ) #A 

#A  reshape the vectors to ensure it returns one prediction per example 

We can use this function to make predictions on the test data set, Xtst, using our previously
trained base estimators:

>>> from sklearn.metrics import accuracy_score 
>>> ypred = combine_using_majority_vote(Xtst, estimators) 
>>> tst_err = 1 - accuracy_score(ytst, ypred) 
>>> tst_err 
0.07964601769911506 

This weighting strategy produces a heterogeneous ensemble with test error 7.96%. 

3.2.2 Accuracy weighting 
Recall our motivating example at the start of this section, where we were trying to build a very 
simple heterogeneous classifier using 3-nearest neighbor (3nn) and Gaussian naïve Bayes 
(gnb) as base estimators. In that example, our intuitive ensembling strategy was to weight 
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each estimator by its performance, specifically, the accuracy score. That was a very simple 
example of accuracy weighting.  

Here, we generalize this procedure to more than two estimators as in Figure 3.8. In order to 
get unbiased performance estimates for the base classifiers, we will use a validation set. 

Why Do We Need A Validation Set?  

When we generated our data set, we partitioned it into a training set, a validation set and a 
hold-out test set. The three subsets are mutually exclusive, that is, they don’t have any 
overlapping examples. So, which of these three should we use to obtain unbiased estimates of 
the performance of each individual base classifier? 

It is always good machine-learning practice to not reuse the training set for performance 
estimates. Why? Since we’ve already seen this data, the performance estimate will be biased.  

This is like seeing a previously-seen homework problem on your final exam. It doesn’t really 
tell the professor that you’re performing well because you’ve learned the concept. It just tells 
the professor that you are good at that specific problem.  

Using training data to estimate performance doesn’t tell us if a classifier can generalize well; it 
just tells us how well it does on examples it’s already seen. To get an effective and unbiased 
estimate, we will need to evaluate performance on data the model has never seen before. 

We can get unbiased estimates using either the validation set or the hold-out test set. 
However, the test set will often be used to evaluate the final model performance, that is, the 
performance of the overall ensemble.  

Here, we are interested in estimating the performance of each base classifier. It is for this 
reason that we use the validation set: we use it to obtain unbiased estimates of each base 
classifier’s performance: accuracy. 

Accuracy Weights Using a Validation Set 

Once we have trained each base classifier (clf), we evaluate its performance on a validation 

set. Let αt be the validation accuracy of the t-th classifier, Ht. The weight of each base 
classifier is then computed as 

The denominator is a normalization term: the sum of all the individual validation accuracies. 
This computation ensures that a classifier’s weight is proportional to its accuracy and all the 
weights sum to 1.  

Given a new example to predict x, we can get the predictions of the individual classifiers, yt 
(using predict_individual). Now, the final prediction can be computed as weighted sum of
the individual predictions 
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This procedure is illustrated in the figure below. 

Figure 3.9  Combining by performance weighting. Each classifier is assigned a weight proportional to its 
accuracy. The final prediction is computed as a weighted combination of the individual predictions.  

The listing below implements combination by accuracy weighting. It should be noted that, 
while the individual classifier predictions will have values 0 or 1, the overall final prediction will 
be a real number between 0 and 1, as the weights are fractions. This fractional prediction can 
be converted to a 0−1 final prediction easily by thresholding the weighted predictions on 0.5. 

For example, a combined prediction of y_final=0.75 will be converted to y_final=1 (because
0.75 > the 0.5 threshold), while a combined prediction of y_final=0.33 will be converted to
y_final=0 (because 0.33 < the 0.5 threshold). Ties, while extremely rare, can be broken
arbitrarily. 

Listing 3.4. Combine using accuracy weighting 

def combine_using_accuracy_weighting(X, estimators, Xval, yval): #A 
    n_estimators = len(estimators) 
    yval_individual = predict_individual(Xval, estimators, proba=False) #B 

    wts = [accuracy_score(yval, yval_individual[:, i]) 
 for i in range(n_estimators)] #C 

wts /= np.sum(wts) #D 

ypred_individual = predict_individual(X, estimators, proba=False) 
y_final = np.dot(ypred_individual, wts)  #E 

return np.round(y_final) #F 

#A pass the validation set 
#B get individual predictions on the validation set 
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#C set the weight for each baseclassifier as its accuracy score 
#D normalize the weights 
#E  compute the weighted combination of individual labels efficiently 
#F convert the combined prediction into a 0−1 label by rounding 

We can use this function to make predictions on the test data set, Xtst, using our previously
trained base estimators:

>>> ypred = combine_using_accuracy_weighting(Xtst, estimators, Xval, yval) 
>>> tst_err = 1 - accuracy_score(ytst, ypred) 
>>> tst_err 
0.026548672566371723 

This weighting strategy produces a heterogeneous ensemble with test error 2.65%. 

3.2.3 Entropy weighting 
The entropy weighting approach is another performance-based weighting approach, except 
that it uses entropy as the evaluation metric to judge the value of each base estimator. 
Entropy is a measure of uncertainty or impurity in a set; a more disorderly set will have higher 
entropy.  

Entropy 
Entropy, or information entropy to be precise, was originally devised by Claude Shannon to quantify the “amount of 
information” conveyed by a variable. This is determined by two factors: (1) the number of distinct values the variable 
can take, and (2) the uncertainty associated with each value. 

Consider that three patients: Ana, Bob and Cam are in the doctor’s office awaiting the doctor’s diagnosis of a 
disease. Ana is told with 90% confidence she is healthy (10% chance she is sick). Bob is told with 95% confidence that 
he is ill (that is, 5% chance he is healthy). Cam is told that his test results are inconclusive, that is, 50%-50%.  

Ana has received good news and there is little uncertainty in her diagnosis. Even though Bob has received bad news, 
there is little uncertainty in his diagnosis as well. Cam’s situation has the highest uncertainty: he has received neither 
good nor bad news, and is in for more tests.  

Entropy quantifies this notion of uncertainty across various outcomes. Entropy-based measures are commonly used 
during decision-tree learning to greedily identify the best variables to split on, and as loss functions in deep neural 
networks.  

Instead of using accuracy to weight classifiers, we can use entropy. However, since lower 
entropies are desirable, we need to ensure that base classifier weights are inversely 
proportional to their corresponding entropies. 

Computing entropy over predictions  

Let’s say that we have a test set of 10 examples and a base estimator returned a vector of 
predicted labels: [1, 1, 1, 0, 0, 1, 1, 1, 0, 0]. This set has 6 predictions of y = 1 and 4
predictions of y = 0. These label counts can be equivalently expressed as label probabilities: 
the probability of predicting y = 1 is P(y = 1) = 6 ⁄ 10 = 0.6 and the probability of predicting y=0 

©Manning Publications Co. To comment go to liveBook 
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion

60

https://livebook.manning.com/#!/book/ensemble-methods-for-machine-learning/discussion
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion


is P( y= 0)=4⁄10 = 0.4. With these label probabilities, we can compute the entropy over this set 
of predictions as 

E = −P(y = 0)  log2P(y=0) − P(y=1)  log2P(y = 1) 

In this simple case, we will have E  = −0.4⋅log0.4-0.6⋅log0.6=0.971.  

Alternately, consider that a second base estimator returned a vector of predicted labels: [1, 
1, 1, 1, 0, 1, 1, 1, 1, 1]. This set has 9 predictions of y=1 and 1 prediction of y=0. The 
label probabilities in this case are P(y = 1) = 9⁄10=0.9 and P(y = 0) = 1⁄10 = 0.1. The 
entropy in this case will be E = −0.1⋅log0.1−0.9 ⋅ log0.9 = 0.469. This set of predictions has a 
lower entropy because it is purer (mostly all predictions are y=1). Another way of viewing this 
is to say that the second classifier is less uncertain about its predictions. 

The listing below can be used to compute the entropy of a set of discrete values. 

Listing 3.5. Computing entropy 

def entropy(y): 
    _, counts = np.unique(y, return_counts=True)  #B 
    p = np.array(counts.astype('float') / len(y))  #C 
    ent = -p.T @ np.log2(p)  #A 
 
    return ent 

#A compute entropy as a dot product 
#B compute label counts 
#C convert counts to probabilities 

Entropy Weighting with a Validation Set 

Let Et be the validation entropy of the t-th classifier, Ht. The weight of each base classifier is 

 
here are two key differences between entropy weighting and accuracy weighting:  

1. the accuracy of a base classifier is computed using both the true labels ytrue and the 
predicted labels ypred. In this manner, the accuracy metric measures how well a 
classifier performs. A classifier with high accuracy is better. 

2. the entropy of a base classifier is computed using only the predicted labels ypred, and 
the entropy metric measures how uncertain a classifier is about its predictions. A 
classifier with low entropy (uncertainty) is better. Thus, individual base classifier 
weights are inversely proportional to their corresponding entropies. 

As with accuracy weighting, the final predictions need to be thresholded at 0.5. The following 
listing implements combining with entropy weighting. 
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Listing 3.6. Combine using entropy weighting 

def combine_using_entropy_weighting(X, estimators, Xval):  #A 
    n_estimators = len(estimators) 
    yval_individual = predict_individual(Xval, estimators, proba=False)  #B 

    wts = [1/entropy(yval_individual[:, i]) #C 

    for i in range(n_estimators)]  
  wts /= np.sum(wts)   #D 

    ypred_individual = predict_individual(X, estimators, proba=False) 
    y_final = np.dot(ypred_individual, wts)   #E 

    return np.round(y_final)   #F#A pass only the validation examples 
#B  get individual predictions on the validation set 
#C set the weight for each base classifier as its inverse entropy 
#D normalize the weights 
#E compute the weighted combinationof individual labels efficiently 
#F convert the combined prediction into a 0−1 label by rounding 

We can use this function to make predictions on the test data set, Xtst, using our previously
trained base estimators:

>>> ypred = combine_using_entropy_weighting(Xtst, estimators, Xval) 
>>> tst_err = 1 - accuracy_score(ytst, ypred) 
>>> tst_err 
0.03539823008849563 

This weighting strategy produces a heterogeneous ensemble with test error 3.54%. 

3.2.4 Dempster-Shafer Combination 
The methods we’ve seen so far combine predictions of individual base estimators directly. 
(notice that we’ve set the flag proba=False when calling predict_individual). When we set
proba=True in predict_individual, each classifier returns its individual estimate of the

probability of belonging to Class 1.  That is, when proba=True, instead of returning ypred = 0

or ypred = 1, each estimator will return P(ypred = 1). 

This probability reflects a classifier’s belief in what the prediction should be and offers a more 
nuanced view of the predictions. While the methods described above can also work with 
probabilities, the Dempster-Shafer method is another way to fuse these base estimator beliefs 
into an overall final belief, or prediction probability.  

Dempster-Shafer Theory For Label Fusion 

Dempster-Shafer Theory is a generalization of probability theory that supports reasoning 
under uncertainty and with incomplete knowledge. While the foundations of DST are beyond 
the scope of this book, the theory itself provides a way to fuse beliefs and evidence from 
multiple sources into one single belief.  
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DST uses a number between 0 and 1 to indicate belief in a proposition, such as “the test 
example x  belongs to Class 1”.  This number is known as a basic probability assignment (BPA) 
and expresses the certainty that the text example  x  belongs to Class 1. BPA values closer to 
1 characterize decisions made with more certainty. The BPA allows us to translate an 
estimator’s confidence to a belief over the true label. 

Let’s say a 3-nearest neighbor classifier (3nn) is used to classify a test example x, and it 

returns P(ypred  = 1 | 3nn) = 0.75. Now, Gaussian naïve Bayes (gnb) is also used to classify the 

same test example and returns P(ypred  = 1 | gnb) = 0.6. According to DST, we can compute the 
basic probability assignment for the proposition “test example x belongs to Class 1 according 
to both 3nn and gnb”.  We do this by fusing their individual prediction probabilities: 

BPA(ypred  = 1 | 3nn,gnb) = 1-(1- P(ypred  = 1 | 3nn)) ⋅ (1-P(ypred  = 1 | gnb)) 
  =1-(1-0.75)⋅(1-0.6)=0.9. 

We can also compute the basic probability assignment for the proposition “test example x 
belongs to Class 0 according to both 3nn and gnb”: 

BPA(ypred  = 0 | 3nn, gnb) = 1− (1− P(ypred  = 0 | 3nn)) ⋅ (1−P(ypred  = 0 | gnb)) 
  =1− (1−0.25)⋅(1-0.4)=0.55. 

Based on these scores, we are more certain that the test example x belongs to Class 1. The 
BPAs can be thought of as certainty scores, with which we can compute our final belief of 
belonging to Class 0 or Class 1. 

The unnormalized belief that “test example x belongs to Class 1” is computed as 

These unnormalized beliefs can be normalized using the normalization factor Z= Bel(ypred  = 

1)+Bel(ypred = 0)+1, to give us Bel(ypred  = 1)= 0.8 and Bel(ypred  = 0)=0.11. We can use these 
beliefs to get the final prediction: the class with the highest belief; for this test example, the 

Dempster-Shafer method produces a final prediction of ypred = 1. 

Combining using Dempster-Shafer 

The listing below implements this approach. 

Listing 3.7. Combining using Dempster-Shafer 

def combine_using_Dempster_Schafer(X, estimators): 
    p_individual = predict_individual(X, estimators, proba=True)  #A 
    bpa0 = 1.0 - np.prod(p_individual, axis=1) 
    bpa1 = 1 - np.prod(1 - p_individual, axis=1) 
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    belief = np.vstack([bpa0 / (1 - bpa0), bpa1 / (1 - bpa1)]).T  #B 
    y_final = np.argmax(belief, axis=1)  #C 
    return y_final 

#A get individual predictions on the validation set 
#B Stack the beliefs for Class 0 and Class 1 side-by-side for every test example 
#C select the final label as the class with the highest belief 

We can use this function to make predictions on the test data set, Xtst, using our previously
trained base estimators:

>>> ypred = combine_using_Dempster_Schafer(Xtst, estimators) 
>>> tst_err = 1 - accuracy_score(ytst, ypred) 
>>> tst_err 
0.07079646017699115 

We have seen four methods of combining predictions into one final prediction. Two use the 
predictions directly, while two use prediction probabilities. We can visualize the decision 
boundaries produced by these weighting methods.  

Figure 3.10  Decision boundaries of different weighting methods. 
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3.3 Combining predictions by meta-learning  
In the previous section, we saw one approach to constructing heterogeneous ensembles of 
classifiers: weighting. We weighted each classifier by its performance and used a pre-
determined combination function to combine predictions of each classifier. In doing so, we had 
to carefully design the combination function to reflect our performance priorities. 

Now, we will look at another approach to constructing heterogeneous ensembles: meta-
learning. Instead of carefully designing a combination function to combine predictions, we will 
learn a combination function over individual predictions. That is, the predictions of the base 
estimators are given as inputs to a second-level learning algorithm. Thus, rather than 
designing one ourselves, we will learn a second-level meta-classification function. 

Meta-learning methods have been widely and successfully applied to a variety of tasks in 
chemometrics analysis, recommendation systems, text classification and spam filtering. For 
recommendation systems, meta-learning methods, stacking and blending, were brought to 
prominence after they were used by several top teams during the Netflix prize competition. 

3.3.1 Stacking 
Stacking is the most common meta-learning method and gets its name because it stacks a 
second classifier on top of its base estimators. The general stacking procedure has two steps: 

1. level 1: fit base estimators on the training data; this step is the same as before and 
aims to create a diverse, heterogeneous set of base classifiers. 

2. level 2: construct a new data set from the output of the base classifiers, which become 
meta-features; meta-features can either be the predictions or the probability of 
predictions.  

Let us return to our simple example, where we construct a simple heterogeneous ensemble 
from a 3-nearest neighbor classifier (3nn) and a Gaussian naïve Bayes classifier (gnb) on our 
2d synthetic data set. After training the classifiers (3nn and gnb), we create new features, 
called meta-features from classifications of these two classifiers. 

 
Figure 3.11  The probability of prediction of each training example according to 3nn and gnb are meta-features. 
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The darker a data point is, the more confident its prediction. Each training example now has two meta-features, 
one each from 3nn and gnb. 

Since we have two base classifiers, we can use each one to generate one meta-feature in our 
meta-example. In this example, we use the prediction probabilities of 3nn and gnb as meta-

features. Thus, for each training example, say xi, we obtain two meta features: yi3nn and yignb, 

the prediction probabilities of xi according to 3nn and gnb respectively. 

These meta-features become meta-data for a second-level classifier. Contrast this stacking 
approach to combination by weighting. For both approaches, we use obtain individual 
predictions using the function predict_individual. For combination by weighting, we use
these predictions directly in some pre-determined combination function. In stacking, we use 
these predictions as a new training set to learn a combination function. 

Stacking can use any number of level 1 base estimators. Our goal, as always, will be to ensure 
that there is sufficient diversity among these base estimators. The figure below shows the 
stacking schematic for the six popular algorithms we have used previously to explore 
combining by weighting: DecisionTreeClassifier, SVC, GaussianProcess Classifier,
KNeighborsClassifier, RandomForestClassifier and GaussianNB.

Figure 3.12  Stacking with six level 1 base estimators produces a meta-dataset of six meta-features that can be 
used to train a level 2 meta-classifier (here, logistic regression). 

The level 2 estimator here can be trained using any base learning algorithm. Historically, 
linear models such as linear regression and logistic regression have been used. An ensembling 
method that use such linear models in the second level is called linear stacking. Linear 
stacking is generally popular because it is fast: learning linear models is generally 
computationally efficient, even for large data sets. Often, linear stacking can also be an 
effective exploratory step in analyzing your data set.  
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However, stacking can also employ powerful nonlinear classifiers in its second level, including 
SVMs and artificial neural networks. This allows the ensemble to combine meta-features in 
complex ways, though at the expense of interpretability inherent in linear models. 

NOTE As of this writing, scikit-learn (v 0.22) contains unstable versions of StackingClassifier 

and StackingRegressor, and it is currently unknown when these will be available for general use. In the

following subsections, we implement our own stacking algorithms. However, if you want to play around with 

the beta versions of these ensemble methods, you will need to install the development version of scikit-

learn. 

Let’s revisit the task of classifying our 2d two-moons data set. We will implement a linear 
stacking procedure, which consists of the following steps: (1) train individual base estimators 
(level 1), (2a) construct meta-features and (2b) train a linear regression model (level 2).  

We have already developed most of the framework we need to quickly implement linear 
stacking. We can train individual base estimators using fit (Listing 3.1) and obtain meta-
features from predict_individual (Listing 3.2). The listing below uses these functions to fit a
stacking model with any level 2 estimator. Since the level 2 estimator uses generated features 
or meta-features, it is also called a meta-estimator. 

Listing 3.8: Stacking with a second estimator 

def fit_stacking(level1_estimators, level2_estimator, 
 X, y, use_probabilities=False): 

    fit(level1_estimators, X, y)#A 

    X_meta = predict_individual(X, estimators=level1_estimators, 
 proba=use_probabilities) #B 

    level2_estimator.fit(X_meta, y) #C 

    final_model = {'level−1': level1_estimators, 
 'level-2': level2_estimator, #D 
  'use-proba': use_probabilities}  

    return final_model 

#A  train level 1 base estimators 
#B get meta features as individual predictions or prediction probabilities (proba=True/False) 
#C train level 2 meta-estimator 
#D save the level 1 estimators and level 2 estimator in a dictionary  

This function can learns using either the predictions directly as the meta-data (use_proba 
=False) or using the prediction probabilities as the meta-data (use_proba=False).
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Figure 3.13  Final models produced by stacking with logistic regression using either predictions (left) or 
prediction probabilities (right) as meta-features.  

The level 2 estimator here can be any classification model. Logistic regression is a common 
choice, which leads the ensemble to stack level 1 predictions using a linear model.  

It is also possible to use a nonlinear model as a level 2 estimator. In general, any learning 
algorithm can be used to train a level2_estimator over the meta-features. A learning
algorithm such as an SVM with RBF kernels or an artificial neural network can learn powerful 
nonlinear models at the second level and potentially improve performance even more. 

Prediction proceeds in two steps: (1) for each test example, get the meta-features using the 
trained level 1 estimators and create a corresponding test meta-example, and (2) for each 
meta-example, get the final prediction using the level 2 estimator. 

Listing 3.9: Making predictions with a stacked model 

def predict_stacking(X, stacked_model): 
    level1_estimators = stacked_model['level−1'] #A 
    use_probabilities = stacked_model['use-proba'] 

    X_meta = predict_individual(X, estimators=level1_estimators, 
 proba=use_probabilities) #B 

    level2_estimator = stacked_model['level-2'] 
    y = level2_estimator.predict(X_meta) #C 

    return y 

#A get level 1 base estimators 
#B get meta-features using the level 1 base estimators 
#C get level 2 estimator and use it to make the final predictions on the meta-features 
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In the example below, we use the same six base estimators from the previous section in
level 1 and logistic regression as the level 2 meta-estimator: 

>> from sklearn.linear_model import LogisticRegression
>> meta_estimator = LogisticRegression(C=1.0, solver='lbfgs')
>>> stacking_model = fit_stacking(estimators, meta_estimator,
...                               Xtrn, ytrn, use_proba=True)
>>> ypred = predict_stacking(Xtst, stacking_model)
>>> tst_err = 1 - accuracy_score(ytst, ypred)
>>> tst_err
0.056548672566371723

In the snippet above, we used the prediction probabilities as meta-features. This linear 
stacking model obtains a test error of 5.65%. 

This simple stacking procedure is often effective. However, it does suffer from one significant 
drawback: overfitting, especially in the presence of noisy data. The effects of overfitting can 
be observed in the figure below. In the case of stacking, the overfitting is because we used the 
same data set to train all the base estimators. 

Figure 3.14  Stacking can overfit the data. There is clear evidence of overfitting here: the decision boundaries 
are highly jagged and have small islands, where the classifiers have attempted to fit individual, noisy examples. 

To guard against overfitting, we can incorporate k-fold cross validation such that each base 
estimator is not trained on the exact same data set. You may have previously encountered 
and used cross validation for parameter selection and model evaluation.  

Here, we use cross validation to partition the data set into subsets so that different base 
estimators are trained on different subsets. This often leads to more diversity and robustness, 
while decreasing the chances of overfitting. 
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3.3.2 Stacking with cross validation 
Cross validation is a model validation and evaluation procedure that is commonly employed to 
simulate out-of-sample testing, tune model hyper-parameters and test the effectiveness of 
machine-learning models.  

The prefix “k-fold” is used to describe the number of subsets we will be partitioning our data 
set into. For example, in 5-fold cross validation, data is (often randomly) partitioned into 5 
non-overlapping subsets. This gives rise to 5 folds, or combinations of these subsets for 
training and validation, shown below. 

More concretely, in 5-fold CV, let’s say the data set D is partitioned into 5 subsets: D1,D2, 
D3,D4 and D5. These subsets are disjoint, that is, any example in the data set appears in only 
one of the subsets. The third fold will comprise of the training set trn3 = {D1,D2,D4,D5} (all 
subsets except D3) and the validation set val3={D3} (only D3). This fold allows us to train and 
validate one model. Overall, 5-fold CV will allow us to train and validate five models. 

Figure 3.15  k-fold cross validation (here, k=5) generates k different splits of the data set into a training set and 
a validation set. This simulates out-of-sample validation during training.  

In our case, we will use the cross-validation procedure slightly differently, in order to ensure 

robustness of our level 2 estimator. Instead of using the validation sets valk for evaluation, we 
will use them for generating meta-feature for the level 2 estimator. The precise steps for 
combining stacking with cross validation are as follows: 

1. Randomly split the data into k equal-sized subsets;
2. Train k models for each base estimator using the training data from the corresponding

k-th fold, trnk;
3. Generate k sets of meta-examples from each trained base estimator using the

validation data from the corresponding k-th fold, valk;
4. Retrain each level 1 base estimator on the full data set.

The first 3 steps of this procedure are illustrated below. 
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Figure 3.16  Stacking with k-fold cross validation. k versions of each level−1 base estimator are trained using 
the training sets within each fold and k subsets of meta-examples are generated from the validations sets in 
each fold for the level-2 estimator. 

A key part of stacking with cross validation is to split the data set into training and validation 
sets for each fold. scikit-learn contains many utilities to perform precisely this, and the one 
we will use is called model_selection.StratifiedKFold. The StratifiedKFold class is a 
variation of model_selection.KFold class that returns stratified folds. This means that the 
folds preserve the class distributions in the data set when generating folds.  

For example, if the ratio of positive examples to negative examples in our data set is 2:1, 
StratifiedKFold will ensure that this ratio is preserved in the folds as well. Finally, it should 
be noted that rather than creating multiple copies of the data set for each fold (which is very 
wasteful in terms of storage), StratifiedKFold actually returns indices of the data points in 
the training and validation subsets of each fold. 

The listing below demonstrates how to perform stacking with cross-validation. 

Listing 3.10: Stacking with cross validation 

from sklearn.model_selection import StratifiedKFold 
 
def fit_stacking_with_CV(level1_estimators, level2_estimator,  
                         X, y, n_folds=5, use_probabilities=False): 
    n_samples = X.shape[0] 
    n_estimators = len(level1_estimators) 
    X_meta = np.zeros((n_samples, n_estimators))  #A  
 
    splitter = StratifiedKFold(n_splits=n_folds, shuffle=True) 
    for trn, val in splitter.split(X, y):  #B  
 
        level1_estimators = fit(level1_estimators, X[trn, :], y[trn]) 
        X_meta[val, :] = predict_individual(X[val, :], 
                                           estimators=level1_estimators,   
                                           proba=use_probabilities) 
 
    level2_estimator.fit(X_meta, y)   #C  
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    level1_estimators = fit(level1_estimators, X, y) 

    final_model = {'level−1': level1_estimators,  #D 
  'level-2': level2_estimator, 
  'use-proba': use_probabilities} 

    return final_model 

We can use this function to train a stacking model with cross validation, 

>>> stacking_model = fit_stacking_with_CV(estimators, meta_estimator, 
...  Xtrn, ytrn, n_folds=5, 
...  use_probabilities=True) 
>>> ypred = predict_stacking(Xtst, stacking_model) 
>>> tst_err = 1 - accuracy_score(ytst, ypred) 
>>> tst_err = 1 - accuracy_score(ytst, ypred) 
>>> tst_err 
0.04424778761061943 

#A  initialize meta-data matrix 
#B  train level 1 estimators and then meta features  for the level 2 estimators as individual predictions 
#C  train level 2 meta-estimator 
#D  save the level 1 estimators and level 2 estimator in a dictionary  

With cross validation, stacking obtains a test error of 4.42%. As before, we can visualize our 
stacked model. We see that the decision boundary is smoother, less jagged and less prone to 
overfitting overall. 

Figure 3.17  Stacking with CV is more robust to overfitting. 

TIP In our running example scenario, we have 6 base estimators; if we choose to perform stacking with 5-fold 

CV, we will have to train 6 × 5 = 30 models totally. Each base estimator is trained on (k−1)/k fraction of the

data set. For smaller data sets, the corresponding increase in training time is modest, and is often well worth 

the cost. For larger data sets, this training time can be significant.  
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If a full cross-validation-based stacking model is too prohibitively expensive to train, then it is usually sufficient 

to hold-out a single validation set, rather than several cross-validation subsets. This procedure is known as 

blending. 

We can now see meta-learning in action on a large-scale, real-world classification task with 
our next case study: sentiment analysis. 

3.4 Case Study: Sentiment Analysis 
Sentiment analysis is a natural language processing (NLP) task widely used to identify and 
analyze opinion in text. In its simplest form, it is mainly concerned with identifying the affect 
or the polarity of opinion as positive, neutral or negative. Such “voice of the customer” 
analytics are a key part of brand monitoring, customer service and market research.  

This case study explores a supervised sentiment analysis task for movie reviews. The data set 
we will use is the Large Movie Review Dataset1, which was originally collected and curated 
from IMDB.com for NLP research by a group at Stanford University2. It is a large, publicly 
available data set that has become a text mining/machine learning benchmark over the last 
few years and has also featured in several Kaggle competitions3. 

The data set contains 50,000 movie reviews split into training (25k) and test (25k) sets. Each 
review is also associated with a numerical rating from 1−10. This data set, however, only 
considers strongly opinionated labels, that is, reviews that are strongly positive about a movie 
(7−10) or strongly negative about a movie (1-4). These labels are condensed into binary 
sentiment polarity labels: strongly positive sentiment (Class 1) and strongly negative 
sentiment (Class 0). Here’s an example of a positive review (label = 1) from the data set: 

What a delightful movie. The characters were not only lively but alive, 
mirroring real every day life and strife within a family. Each character 
brought a unique personality to the story that the audience could easily 
associate with someone they know within their own family or circle of close 
friends. 

And an example of a negative review (label = 0): 

This is the worst sequel on the face of the world of movies. Once again it 
doesn't make since. The killer still kills for fun. But this time he is 
killing people that are making a movie about what happened in the first movie. 
Which means that it is the stupidest movie ever. Don't watch this. If you 
value the one precious hour during this movie then don't watch it.  

1 https://ai.stanford.edu/~amaas/data/sentiment/     
2 Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. (2011). Learning Word Vectors for Sentiment Analysis. 

ACL 2011. 
3 https://www.kaggle.com/c/word2vec-nlp-tutorial    
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Note the misspelling of “sense” as “since” above. Real-world text data can be highly noisy due 
to such spelling, grammatical and linguistic idiosyncrasies, which makes these problems very 
challenging for machine learning. To begin, download and unzip this data set. 

3.4.1 Pre-processing 
The data set is pre-processed to bring each review from an unstructured, free-text form to a 
structured, vector representation. Put another way, pre-processing aims to bring this corpus 
(collection) of text files into a term-document matrix representation. 

This typically involves steps such as removing special symbols, tokenization (chopping it up 
into tokens, typically individual words), lemmatization (recognizing different usages of the 
same word, e.g., organize, organizes, organizing), and count-vectorization (counting the 
words that appear in each document). The last step produces a bag-of-words (BoW) 
representation of the corpus. In our case, each row (example) of the data set will be a review, 
and each column (feature) will a word. 

The example below illustrates this representation when the sentence “this is a terrible terrible 
movie” is converted to a bag-of-words representation with the vocabulary consisting of the 
words {this, is, a, brilliant, terrible, movie}.  

Figure 3.18  Text is converted to a term-document matrix, where each row is an example (corresponding to a 
single review) and each column is a feature (corresponding to a word in the review). The entries are word counts, 
making each example a count vector. Stop word removal improves representation and often also improves 
performance. 

Since the word “brilliant” does not occur in the review, its count is 0, while most of the other 
entries are 1 corresponding to the fact that they appear once in the review. This reviewer 
apparently thought the movie was doubly terrible, this is captured in our count features as the 
entry for the feature “terrible” is 2. 
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Fortunately, this data set has already been pre-processed by count vectorization. These pre-
processed term-document count features, our data set, can be found in 
/train/labeledBow.feat and /test/labeledBow.feat. Both the train and test sets are of
size 25,000 × 89,527. There are, thus, about 90k features, each feature being a word, 
meaning that the entire set of reviews used about 90k unique words. We pre-process the data 
further with two additional steps. 

Stop-word removal 

This step aims to remove common words such as “the”, “is”, “a”, “an”. Traditionally, stop word 
removal can reduce the dimensionality of the data, (to make processing faster), and can 
improve classification performance. This is because words like “the” are often not really 
informative for information retrieval and text-mining tasks. 

WARNING Care should be taken with certain stop words such as “not”, as this common word significantly

affects the underlying semantics and sentiment. For example, if we don’t account for negation and apply stop-

word removal on the sentence “not a good movie”, we get “good movie”, which completely changes the 

sentiment.  

Here, we do not selectively account for such stop words, and rely on the strength of other expressive words 

such as “awful”, “brilliant” and “mediocre” to capture sentiment. However, performance on your own data set 

can be improved by careful feature engineering based on an understanding the vocabulary as well as how 

pruning (or maybe even augmenting) it will affect your task. 

The Natural Language ToolKit (nltk) is a powerful Python package that provides many tools
for NLP. In the code listing below, we use nltk’s standard stop word removal tool. The entire
vocabulary for the IMDB data set is available in the file imdb.vocab, sorted by their frequency,
from most common to least common.   

We can directly apply stop word removal on this set of features to identify which words we will 
keep. In addition, we only keep the 5000 most common words in order for our running time to 
be more manageable. 

Listing 3.11. Drop stop words from the vocabulary 

import nltk 
import numpy as np 

def prune_vocabulary(data_path, max_features=5000): 
    with open('{0}/imdb.vocab'.format(data_path), 'r', encoding='utf8') \ 

as vocab_file: 
  vocabulary = vocab_file.read().splitlines() #A 

    nltk.download('stopwords') 

    stopwords = set(nltk.corpus.stopwords.words("english"))  #B 
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    to_keep = [True if word not in stopwords #C 
   else False for word in vocabulary] 

    feature_ind = np.where(to_keep)[0] 

    return feature_ind[:max_features] #D 

#A load the vocabulary file 
#B convert the list of stop words to a set for faster processing 
#C remove stop words from the vocabulary 
#D keep the top 5000 words 

Tf-Idf Transformation 

Our second pre-processing step converts the count features to tf-idf features. These features 
represent the term frequency-inverse document frequency, a statistic that weights each 
feature in a document (in our case, a single review) relative to how often it appears in that 
document as well as how often it appears in the entire corpus (in our case, all the reviews). 

Intuitively, tf-idf weights words by how often they appear in a document, but also adjusts for 
how often they appear overall. This is to ensure that some words are generally used more 
often than others. We can use scikit-learn’s pre-processing toolbox to convert our count
features to tf-idf features using the TfidfTransformer.

Listing 3.12. Extract tf-idf features and save the data set 

import h5py 
from sklearn.datasets import load_svmlight_files 
from scipy.sparse import csr_matrix as sp 
from sklearn.feature_extraction.text import TfidfTransformer 

def preprocess_and_save(data_path, feature_ind): 
    data_files = ['{0}/{1}/labeledBow.feat'.format(data_path, data_set) 

 for data_set in ['train', 'test']] #A 
    [Xtrn, ytrn, Xtst, ytst] = load_svmlight_files(data_files) 
    n_features = len(feature_ind) 

    ytrn[ytrn <= 5], ytst[ytst <= 5] = 0, 0 #B 
    ytrn[ytrn > 5], ytst[ytst > 5] = 1, 1 

    tfidf = TfidfTransformer() 
    Xtrn = tfidf.fit_transform(Xtrn[:, feature_ind])#C 
    Xtst = tfidf.transform(Xtst[:, feature_ind]) 

    with h5py.File('{0}/imdb-{1}k.h5'.format(data_path, 
 round(n_features/1000)), 'w') as db: 

  db.create_dataset('Xtrn', 
 data=sp.todense(Xtrn), compression='gzip') 

  db.create_dataset('ytrn', data=ytrn, compression='gzip') 
  db.create_dataset('Xtst', 

 data=sp.todense(Xtst), compression='gzip') 
  db.create_dataset('ytst', data=ytst, compression='gzip') #D 

#A load train and test data 
#B convert sentiments to binary labels 
#C convert count features  to tf-idf features 
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#D  save the pre-processed data sets in the HDF5 binary data format 

The code listing above creates and saves training and test sets, each of which is of size 25,000 
reviews  × 5,000 tf-idf features.  

3.4.2 Dimensionality Reduction 
We continue to process the data with dimensionality reduction, which aims to represent the 
data more compactly. The main purpose of applying dimensionality reduction is to avoid the 
“curse of dimensionality”, where algorithm performance deteriorates as the dimensionality of 
the data increases. 

 We adopt the popular dimensionality reduction approach of principal components analysis 
(PCA), which aims to compress and embed the data into a lower-dimensional feature space in 
a manner that preserves as much of the variance as possible. This ensures that we are able to 
extract a lower-dimensional representation without too much loss of information.  

This data set contains thousands of examples as well as features, which means that applying 
PCA on the entire data set will likely be highly computationally intensive and very slow. To 
avoid loading the entire data set into memory and to process the data more efficiently, we 
perform Incremental PCA instead. 

Incremental PCA breaks the data set down into chunks, which can be easily loaded into 
memory. It should be noted that, while this chunking reduces the number of samples (rows) 
loaded into memory substantially, for each row it still loads all the features (columns).  

scikit-learn provides the class sklearn.decomposition.IncrementalPCA, which is far more
memory efficient. The listing below performs PCA to reduce the dimension of the data to 500 
dimensions. 

Listing 3.13. Perform dimensionality reduction using Incremental PCA 

from sklearn.decomposition import IncrementalPCA 

def transform_sentiment_data(data_path, n_features=5000, n_components=500): 
    db = h5py.File('{0}/imdb-{1}k.h5'.format(  #A 

data_path, round(n_features/1000)), 'r') 

    pca = IncrementalPCA(n_components=n_components) 
    chunk_size = 1000 
    n_samples = db['Xtrn'].shape[0]   #B 
    for i in range(0, n_samples // chunk_size): 

  pca.partial_fit(db['Xtrn'][i*chunk_size:(i+1) * chunk_size]) 

    Xtrn = pca.transform(db['Xtrn'])  #C 
    Xtst = pca.transform(db['Xtst']) 

    with h5py.File('{0}/imdb-{1}k-pca{2}.h5'.format(data_path, 
 round(n_features/1000), n_components), 'w') as db2: 

  db2.create_dataset('Xtrn', data=Xtrn, compression='gzip') 
  db2.create_dataset('ytrn', data=db['ytrn'], compression='gzip') 
  db2.create_dataset('Xtst', data=Xtst, compression='gzip') 
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  db2.create_dataset('ytst', data=db['ytst'], compression='gzip')  #D 

#A load pre-processed train and test data 
#B  apply Incremental PCA to thedata in manageable chunks 
#C  reduce the dimension of both the train and 
#D save the pre-processed data sets in the HDF5 binary data format 

Note that IncrementalPCA is fit using only the training set. Recall that the test data must
always be held-out and should only be used to provide an accurate estimate of how our 
pipeline will generalize to future, unseen data. 

This means that we cannot use the test data during any part of pre-processing or training and 
can only use it for evaluation. 

3.4.3 Stacking classifiers 
Our goal now is to train a heterogeneous ensemble with meta-learning. Specifically, we will 
use ensemble several base estimators by blending them. Recall that blending is a variant of 
stacking, where, instead of using cross validation, we use a single validation set. 

First, we load the data using the function below: 

def load_sentiment_data(data_path,n_features=5000, n_components=1000): 

    with h5py.File('{0}/imdb-{1}k-pca{2}.h5'.format(data_path, 
 round(n_features/1000), n_components), 'r') as db: 

  Xtrn = np.array(db.get('Xtrn')) 
  ytrn = np.array(db.get('ytrn')) 
  Xtst = np.array(db.get('Xtst')) 
  ytst = np.array(db.get('ytst')) 

    return Xtrn, ytrn, Xtst, ytst 

Next, we use five base estimators: RandomForestClassifier with 100 randomized decision
trees, ExtraTreesClassifier with 100 extremely randomized trees, Logistic Regression,
Bernoulli naïve Bayes (BernoulliNB) and a linear SVM trained with stochastic gradient
descent (SGDClassifier).

from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier 
from sklearn.linear_model import LogisticRegression, SGDClassifier 
from sklearn.naive_bayes import BernoulliNB 

estimators = [('rf', RandomForestClassifier(n_estimators=100, n_jobs=−1)), 
  ('xt', ExtraTreesClassifier(n_estimators=100, n_jobs=−1)), 
  ('lr', LogisticRegression(C=0.01, solver='lbfgs')), 
  ('bnb', BernoulliNB()), 
  ('svm', SGDClassifier(loss='hinge', penalty='l2', alpha=0.01, 

   n_jobs=−1, max_iter=10, tol=None))] 

The Bernoulli naïve Bayes classifier learns linear models but is especially effective for count-
based data arising from text-mining tasks such as ours. Logistic regression and SVM with 
SGDClassifier both learn linear models. Random forests and extra trees are two
homogeneous ensembles which produce highly nonlinear classifiers using decision trees as 
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base estimators. This is a diverse set of base estimators, containing a good mix of linear and 
nonlinear classifiers.  

To blend these base-estimators into a heterogeneous ensemble with meta-learning, we use 
the following procedure: 

1. Split the training data into a training set (Xtrn, ytrn) with 80% of the data and a
validation set (Xval, yval), with the remaining 20% of the data

2. Train the each of the level−1 estimators on the training set, (Xtrn, ytrn)
3. Generate meta-features Xmeta with the trained estimators using Xval;
4. Augment the validation data with the meta-features: [Xval, Xmeta]; this augmented

validation set will have 500 original features + 5 meta-features
5. Train the level-2 estimator with the augmented validation set ([Xval, Xmeta], yval)

The key to our combining by meta-learning procedure is meta-feature augmentation: we 
augment the validation set with the meta-features produced by the base estimators. 

This leaves one final decision: the choice of the level-2 estimator. Previously, we used simple 
linear classifiers. For this classification task, we utilize a neural network.  

Neural networks and deep learning 
Neural networks are one of the oldest machine-learning algorithms. There has been a significant resurgence of interest 
in neural networks, especially deep neural networks, owing to their widespread success in many applications.  

For a quick refresher on Neural Networks and Deep Learning, see Chapter 2 of Probabilistic Deep Learning with 
Python, Keras and TensorFlow Probability by Oliver Dürr, Beate Sick and Elvis Murina (Manning Early Access Program, 
2019). 

We will use a shallow neural network as our level-2 estimator. This will produce in a highly 
nonlinear meta-estimator that can combine the predictions of the level−1 classifiers.  

from sklearn.neural_network import MLPClassifier 
meta_estimator = MLPClassifier(hidden_layer_sizes=(128, 64, 32), 

    alpha=0.001) 

The listing below implements our strategy: 

Listing 3.14. Blending models with a validation set 

from sklearn.model_selection import train_test_split 

def blend_models(level1_estimators, level2_estimator, 
   X, y , use_probabilities=False):  

    Xtrn, Xval, ytrn, yval = train_test_split(X, y, test_size=0.2) #A 

    n_estimators = len(level1_estimators) 
    n_samples = len(yval) 
    Xmeta = np.zeros((n_samples, n_estimators)) 
    for i, (model, estimator) in enumerate(level1_estimators): #B 

  estimator.fit(Xtrn, ytrn) 
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  Xmeta[:, i] = estimator.predict(Xval) 

    Xmeta = np.hstack([Xval, Xmeta]) #C 

    level2_estimator.fit(Xmeta, yval) #D 

    final_model = {'level−1': level1_estimators, 
  'level-2': level2_estimator, 
  'use-proba': use_probabilities} 

    return final_model 

#A split into training and validation sets 
#B  initialize and fit the base estimators on the training data 
#C  augment the validation set with the newly generated meta-features 
#D  fit the level-2 meta-estimator 

We can now fit a heterogeneous ensemble on the training data and then evaluate it on both 
the training and test data to compute the training and test error: 

>>> stacked_model = blend_models(estimators, meta_estimator, Xtrn, ytrn) 

>>> ypred = predict_stacking(Xtrn, stacked_model) 
>>> trn_err = (1 - accuracy_score(ytrn, ypred)) * 100 
7.8359999999999985 

>>> ypred = predict_stacking(Xtst, stacked_model) 
>>> tst_err = (1 - accuracy_score(ytst, ypred)) * 100 
17.196 

Our model achieves a training error of 8.47% and a test error of 16.91%. So how well did we 
actually do? Did our ensembling procedure help at all? To answer these questions, we 
compare the performance of the ensemble to the performance of each base estimator in the 
ensemble. 

The figure below shows the training and test errors of the individual base estimators as well as 
the stacking/blending ensemble. Some individual classifiers achieve a training error of 0%, 
which means they are likely overfitting the training data. This affects their performance as 
evidenced by the test error. 

Overall, stacking/blending these heterogeneous models produces a test error of 17.2%, which 
is better than all the other models. In particular, let’s compare this result to logistic 
regression, which achieves a test error of 18%. Recall that the test set contains 25,000 
examples, which means that our stacked model classifies (approximately) another 200 
examples correctly!  

On the whole, the performance of the heterogeneous ensemble is better than a lot of the base 
estimators that contribute to it. This is an example of how heterogeneous ensembles can 
improve upon the overall performance of the underlying individual base estimators. 

TIP Remember that any linear or nonlinear classifier can be used as a meta-estimator. Common choices

include decision trees, kernel support vector machines, and even other ensembles! 
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Figure 3.19  Comparing the performance of each individual base classifier with the meta-classifier ensemble. 
Stacking/blending improves classification performance by ensembling diverse base classifiers. 

3.5 Summary 
In this chapter, we explored the learning of parallel, heterogeneous ensembles. These 
ensemble methods promote ensemble diversity through heterogeneity, that is, they use 
different base learning algorithms to train the base estimators. Since different algorithms view 
the training data differently, and attempt to induce models in substantially different ways, the 
resulting models will often be naturally diverse.  

1. Weighting methods assign individual base estimator predictions a weight that
corresponds to their performance; better base estimators are assigned higher weights
and influence the overall final prediction more.

2. Weighting methods use a predefined combination function to combine the weighted
predictions of the individual base estimators. Linear combination functions (such as
weighted sum) are often effective and easy to interpret. Nonlinear combination
functions can be also be used, though the added complexity may lead to overfitting.

3. Meta-learning methods learn a combination function from the data, in contrast to
weighting methods, where we have to make one up ourselves.

4. Meta-learning methods create multiple layers of estimators. The most common meta-
learning method is stacking, so called because it literally stacks learning algorithms in a
pyramid-like learning scheme.

5. Simple stacking creates two levels of estimators. The base estimators are trained in the
first level, and their outputs are used to train a second-level estimator called a meta-
estimator. More complex stacking models with many more levels of estimators are
possible.
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6. Stacking can often overfit, especially in the presence of noisy data. To avoid overfitting, 
stacking is combined with cross validation to ensure that different base estimators see 
different subsets of data set for increased ensemble diversity. 

7. Stacking with cross validation, though it reduces overfitting, can also be 
computationally intensive, leading to long training times. To speed up training, while 
guarding against overfitting, a single validation set can be used. This procedure is 
known as blending.  

8. Any machine-learning algorithm can be used as a meta-estimator in stacking. Logistic 
regression is most common and leads to linear models. Nonlinear models, obviously, 
have greater representative power, but also are at greater risk for overfitting. 

9. Both weighting and meta-learning approaches can use either the base estimator 
predictions directly, or the prediction probabilities. The latter typically leads to a 
smoother, more nuanced model. 

Beyond classification tasks, it is possible to construct heterogeneous ensembles for regression 
and unsupervised learning tasks such as clustering.   
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4 
Sequential Ensembles: Boosting 

This chapter covers 

• Training sequential ensembles of weak learners
• Implementing and understanding how AdaBoost works
• Using AdaBoost in practice
• Implementing and understanding how LogitBoost works

The ensembling strategies we have seen thus far have been parallel ensembles. These include 
homogeneous ensembles such as bagging and random forests (where the same base learning 
algorithm is used to train base estimators) and heterogeneous ensemble methods such as 
stacking (where different base learning algorithms are used to train base estimators).  

Now, we will explore a new family of ensemble methods: sequential ensembles. Unlike parallel 
ensembles, which exploit the independence of each base estimator, sequential ensembles 
exploit the dependence of base estimators.  

More specifically, during learning, sequential ensembles train a new base estimator in such a 
manner that it minimizes mistakes made by the base estimator trained in the previous step.  

The first sequential ensemble method we will investigate is boosting. Boosting aims to 
combine weak learners, or “simple” base estimators. Put another way, boosting literally aims 
to boost the performance of a collection of weak learners.  

This is in contrast to algorithms like bagging, which combine “complex” base estimators, also 
known as strong learners. Boosting commonly refers to AdaBoost, or adaptive boosting. This 
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approach was introduced by Freund and Schapire in 19951, for which they eventually won the 
prestigious Gödel Prize for outstanding papers in theoretical computer science.  

Since 1995, boosting has emerged as a core machine-learning method. Boosting is 
surprisingly simple to implement, computationally efficient and can be used with a wide 
variety of base-learning algorithms. Prior to the re-emergence of deep learning in the mid-
2010s, boosting was widely applied to computer vision tasks such as object classification and 
natural language processing tasks such as text filtering. 

For most of this chapter, we will focus on AdaBoost, a popular boosting algorithm that is also 
quite illustrative of the general framework of sequential ensemble methods. Other boosting 
algorithms can be derived by changing aspects of this framework, such as the loss function. 
Such variants are usually not available in packages and must be implemented. We also 
implement one such variant: LogitBoost. 

Figure 4.1  Differences between parallel and sequential ensembles: (1) base estimators in parallel ensembles 
are trained independently of each other, while in sequential ensembles they are trained to improve upon the 

1 Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and 
System Sciences, 55(1):119-139, 1997. 
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predictions of the previous base estimator; (2) sequential ensembles typically use weak learners as base 
estimators. 

4.1 Sequential Ensembles of Weak Learners 
There are two key differences between parallel and sequential ensembles: 

• Base estimators in parallel ensembles can usually be trained independently, while in
sequential ensembles, the base estimator in the current iteration depends on the base
estimator in the previous iteration. This is shown in Figure 4.1, where (in iteration t)
the behavior of base estimator Mt−1 influences the sample St and the next model Mt.

• Base estimators in parallel ensembles are typically strong learners, while in sequential
ensembles they are typically weak learners. Sequential ensembles aim to combine
several weak learners into one strong learner.

Intuitively, we can think of strong learners as professionals: highly confident people who are 
independent and sure about their answers. Weak learners, on the other hand, are like 
amateurs: not so confident and unsure about their answers. How can we get a bunch of not-
so-confident “amateurs” to come together? By “boosting” them, of course. Before we see how 
exactly, let’s characterize what weak learners are. 

Weak Learners 

While the precise definition of the strength of learners is rooted in machine-learning theory, 
for our purposes, a strong learner is a “good” model (or estimator). 

In contrast, a weak learner is a very simple model that doesn’t perform that well. The only 
requirement of a weak learner (for binary classification) is that it perform better than random 
guessing. Or put another way, its accuracy should be slightly better than 50%.  Decision trees 
are often used as base estimators for sequential ensembles. Boosting algorithms typically use 
decision stumps, or decision trees of depth 1 (see below). 

Figure 4.2  Decision stumps (trees of depth 1, left) are commonly used as weak learners in sequential ensemble 
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methods such as boosting. As tree depth increases, it becomes a stronger classifier, and its performance 
improves. However, it is not possible to arbitrarily increase the strength of classifiers as they will begin to overfit 
during training, which decreases their prediction performance when deployed. 

Sequential ensemble methods such as boosting aim to combine several weak learners into a 
single strong learner. These methods literally “boost” weak learners into a strong learner.  

TIP A weak learner is a simple classifier that is easy and efficient to train. Sequential ensemble methods are

generally agnostic to the underlying base learning algorithms, meaning that you can use any classification 

algorithm as a weak learner. In practice, weak learners such as shallow decision trees and shallow neural 

networks are common.  

Recall Dr. Randy Forrest’s ensemble of interns from Chapter 2. In a parallel ensemble of 
knowledgeable medical personnel, each intern can be considered a strong learner. To 
understand how different the philosophy of sequential ensembles is, we turn to Freund and 
Schapire, who describe boosting as a “a committee of blockheads that can somehow arrive at 
highly reasoned decisions”.  

This would be akin to the situation where Dr. Randy Forrest sent away his interns and decided 
to crowd-source medical diagnoses instead. While this is certainly a far-fetched (and 
unreliable) strategy for diagnosing a patient, it turns out that “garnering wisdom from a 
council of fools” works surprisingly well in machine learning. This is the underlying motivation 
for sequential ensembles of weak learners.    

4.2 AdaBoost: ADAptive BOOSTing 
In this section, we begin with an important sequential ensemble: AdaBoost. AdaBoost is 
simple to implement code and computationally efficient to use. As long as the performance of 
each weak learner in AdaBoost is slightly better than random guessing, the final model 
converges to a strong learner. 

However, beyond applications, understanding how AdaBoost works is also key to 
understanding two state-of-the-art sequential ensemble methods we will look at next: 
gradient boosting and Newton boosting. 

A BRIEF HISTORY OF BOOSTING 
The origins of boosting lie in computational learning theory, when learning theorists Leslie Valiant and Michael Kearns 
posed the following question in 1988: can one can “boost” a weak learner to a strong learner? This question was 
answered affirmatively two years later by Rob Schapire, in his now landmark paper called “The Strength of Weak 
Learnability”.  

The earliest boosting algorithms were limited because weak learners did not adapt to fix the mistakes made by 
weak learners trained in previous iterations. Freund and Schapire’s AdaBoost, or adaptive boosting algorithm, proposed 
in 1994, ultimately addressed these limitations. Their original algorithm endures to this day and has been widely 
applied in several application domains including text mining, computer vision and medical informatics. 
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4.2.1 Intuition: Learning with Weighted Examples 
AdaBoost is an adaptive algorithm: at every iteration, it trains a new base estimator that fixes 
the mistakes made by the previous base estimator. Thus, it needs some way to ensure that 
the base learning algorithm prioritizes misclassified training examples. AdaBoost does this by 
maintaining weights over individual training examples.  

Intuitively, weights reflect the relative importance of training examples. Misclassified examples 
have higher weights, while correctly classified examples have lower weights.  

When we train the next base estimator sequentially, the weights will allow the learning 
algorithm to prioritize (and hopefully fix) mistakes from the previous iteration. This is the 
“adaptive” component of AdaBoost, which ultimately leads to a powerful ensemble. 

CAUTION When implementing ensemble methods that use weights on training examples, care must be

taken to ensure that the base learning algorithm can actually utilize these weights. Most weighted 

classification algorithms utilize modified loss functions in order to prioritize correct classification of examples 

with higher weights.  

Let’s visualize the first few iterations of boosting. Each iteration performs the same steps: 

1. train a weak learner (here, a decision stump) that learns a model to ensure training
examples with higher weights are prioritized;

2. update the weights of the training examples such that misclassified examples are
assigned higher weights; the worse the error, the higher the weight.

Initially (iteration t − 1), all examples are initialized with equal weights. The decision stump 
trained in iteration 1 is a simple, axis-parallel classifier with an error rate of 15%. 

Figure 4.3  Initially (iteration 1), all the training examples are weighted equally (and hence plotted with the 
same size on the left). The decision stump learned on this data set is shown on the right. The correctly classified 
examples are colored gray, while the misclassified examples are darker.  
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The next decision stump (in iteration 2) to be trained must correctly classify the examples 
misclassified by the previous decision stump (in iteration 1). Thus, mistakes are weighted 
higher, which enables the decision tree algorithm to prioritize them during learning. 

 
Figure 4.4  At the start of iteration 2, training examples misclassified in iteration 1 (darker points in Figure 4.3, 
right) are assigned higher weights. This is visualized on the left, where each example’s size is proportional to its 
weight. Since weighted examples have higher priority, the new decision stump in the sequence (right) ensures 
that these are now correctly classified. 

The decision stump trained in the second iteration does indeed correctly classify the training 
examples with higher weights, though it makes mistakes of its own. In the third iteration, a 
third decision stump can be trained that aims to rectify these mistakes. 

 
Figure 4.5  At the start of iteration 3, training examples misclassified in iteration 2 (darker points in Figure 4.4, 
right) are assigned higher weights. Note that misclassified points also have different weights. The new decision 
stump in the sequence trained in this iteration (right) ensures that these are now correctly classified. 
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After three iterations, we can combine the three individual weak learners into a strong learner, 
shown below. Some useful points to note: 

• Observe the weak estimators learned in the three iterations. They are all different from 
each other and classify the problem in diversely different ways. Recall that at each 
iteration, base estimators are trained on the same training set but with different 
weights. Reweighting allows AdaBoost to train a different base estimator at each 
iteration, one that is often different from an estimator trained at the previous 
iterations. 

Thus, adaptive reweighting, or updating adaptively, promotes ensemble diversity. 

• The resulting ensemble of weak (and linear) decision stumps is stronger (and 
nonlinear). More precisely, each base estimator had training error rates of 15%, 26% 
and 27%, while their ensemble has an error rate of 7%.  

 
Figure 4.6  The three weak decision stumps from above can be boosted into a stronger ensemble. 

The algorithm is called “boosting” as it boosts the performance of weak learners into a more 
powerful and complex ensemble, a strong learner.  

4.2.2 Implementing AdaBoost 
First, we will implement our own version of AdaBoost. As we do so, we’ll keep the following 
key properties of AdaBoost in mind: 

1. AdaBoost uses decision stumps as base estimators, which can be trained extremely 
quickly, even with a large number of features. Decision stumps are weak learners. 
Contrast this to bagging, which uses deeper decision trees, which are strong learners. 

2. AdaBoost keeps track of weights on individual training examples. This allows AdaBoost 
to ensure ensemble diversity by reweighting training examples. We saw how 
reweighting helped AdaBoost learn different base estimators in the example above. 
Contrast this to bagging and random forests, which use resampling. 
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3. AdaBoost keeps track of weights on individual base estimators. This is similar to
combination methods, which weight each classifier differently

AdaBoost is fairly straightforward to implement. The basic algorithmic outline at the t-th 
iteration can be described by the following steps: 

1. Train a weak learner ht(x) using the weighted training examples, (xi,yi,Di)

2. Compute the training error ϵt of the weak learner ht(x)
3. Compute the weight of the weak learner αt that depends on ϵt
4. Update the weights of the training examples

5. Increase the weight of misclassified examples to Di

6. Decrease the weight of correctly classified examples to Di ⁄

At the end of T iterations, we have weak learners ht along with the corresponding weak 

learner weight αt. The overall classifier after t iterations is just a weighted ensemble: 

This form is a weighted linear combination of base estimators, similar to the linear 
combinations used by homogeneous ensembles we’ve seen previously, such as combination 
methods or stacking. The main difference from those methods is that the base estimators 
used by AdaBoost are weak learners. 

Two key questions we now need to answer are: (1) how do we update the weights on the 

training examples, Di; and (2) how do we compute the weight of each base estimator, αt?  

AdaBoost uses the same intuition as the combination methods we have seen previously in 
Chapter 3, with combination methods. Recall that weights are computed to reflect base 
estimator performance: base estimators with better performance (say, accuracy) should have 
higher weights than those with worse performance.  

Weak Learner Weights (αt) 

At each iteration t, we obtain a base estimator ht(x)  The training error ϵt  of ht(x) is a simple 
and immediate measure of its performance. AdaBoost computes its weight as  

Why this particular formulation? Let’s look at the relationship between αt and the error ϵt, by 

visualizing how αt changes with increasing error ϵt (Figure 4.7). Recall our intuition: better 
performing base estimators (those with lower errors) must be weighted higher so that their 
contribution to the ensemble prediction is higher.  
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Conversely, the weakest learners are the ones which perform the worst. Sometimes, they are 
barely better than random guessing. Put another way, in a binary classification problem, they 
would only be slightly better than flipping a coin to decide the answer.  

Figure 4.7  AdaBoost assigns stronger learners (which have lower training errors) higher weights, and weaker 
learners (which have higher training errors) lower weights. 

Concretely, the weakest learners have error rates only slightly better than 0.5 (or 50%). 

These weakest learners have the lowest weights, αt ≈ 0 The strongest learners achieve a 
training errors close to 0.0 (or 0%). These learners have the highest weights. 

Training Example Weights (Di) 

The base estimator weight (αt) can also be used to update the weights of each training 
example. AdaBoost updates example weights as 

When examples are correctly classified, the new weight is decreased by 

. Stronger base estimators will decrease the weight more because 
they are more confident in their correct classification. 

Similarly, when examples are misclassified, the new weight is increased by 

. In this manner, AdaBoost ensures that misclassified training examples 
receive higher weights, which then be fixed in the next iteration, t+1.  

For example, let's say we have two training examples x1 and x2, both with weights D1=D2= 
0.75. The current weak learner ht has weight αt  = 1.5. Let’s say x1 is correctly classified by ht; 
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hence its weight should decrease by a factor of . The new weight will be 

. 

Conversely, x1 is misclassified by ht; hence its weight should increase by a factor of . The 

new weight will be . This is illustrated in the figure below. 

 
Figure 4.8. In iteration t, two training examples x1 and x2 have the same weights. x1 is correctly classified, while 
x2 is misclassified by the current base estimator ht(x). As the goal in the next iteration is to learn a classifier 
ht−1(x) that fixes the mistakes of ht(x), AdaBoost increases the weight of the misclassified example x2, while 
decreasing the weight of the correctly classified example x1. This allows the base learning algorithm to prioritize 
x2 during training in iteration t+1. 

Training With AdaBoost 

The AdaBoost algorithm is easy to implement. The listing below shows training for boosting. 

Listing 4.1 Training an ensemble of weak learners using AdaBoost 

from sklearn.tree import DecisionTreeClassifier 
from sklearn.metrics import accuracy_score 
 
def fit_boosting(X, y, n_estimators=10): 
    n_samples, n_features = X.shape 
    D = np.ones((n_samples, ))  #A 
    estimators = []  #B 
 
    for t in range(n_estimators): 
        D = D / np.sum(D) #C                    
 
        h = DecisionTreeClassifier(max_depth=1)   
        h.fit(X, y, sample_weight=D)#D         
 
        ypred = h.predict(X)    
        e = 1 - accuracy_score(y, ypred, sample_weight=D)  #D 
        a = 0.5 * np.log((1 - e) / e)                
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  m = (y == ypred) * 1 + (y != ypred) * −1    #E 
  D *= np.exp(-a * m) 

  estimators.append((a, h))  #F 

 return estimators 

#A non-negative weights, initialized to 1 
#B  initialize an empty ensemble 
#C  normalize the weights so they sum to 1 
#D train weak learner (ht) with weighted examples 

#E  compute the training error (ϵt) and the weight (αt) of the weak learner 
#F  update the example weights: increase for misclassified examples, decrease for correctly classified examples 
#G  save the weak learner and its weight 

Once we have a trained ensemble, we can use it to make predictions. The listing below shows
how to predict new test examples using the boosted ensemble. Observe that this is identical to 
making predictions with other weighted ensembles methods such as stacking. 

Listing 4.2 Making predictions with AdaBoost 

def predict_boosting(X, estimators): 
    pred = np.zeros((X.shape[0], )) #A 

    for a, h in estimators: 
  pred += a * h.predict(X) #B 

    y = np.sign(pred)  #C 

    return y 
We can use these functions to fit and predict on a data set. 
>>> from sklearn.datasets import make_moons 
>>> X, y = make_moons(n_samples=200, noise=0.1) 
>>> y  = (2 * y) – 1   #D 

>>> from sklearn.model_selection import train_test_split 
>>> Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, test_size=0.25) 
>>> estimators = fit_boosting(Xtrn, ytrn) 
>>> ypred = predict_boosting(Xtst, estimators) 

>>> from sklearn.metrics import accuracy_score 
>>> tst_err = 1 - accuracy_score(ytst, ypred) 
>>> tst_err 
0.040000000000000036 

#A initialize all the predictions to 0 
#B  make weighted prediction for each example 
#C  convert weighted predictions to −1/1 labels 
#D  convert labels from 0/1 to −1/1 

The test error of the ensemble learned by our implementation using 10 weak stumps is 4%. 
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CAUTION The boosting algorithm we have implemented requires negative examples and positive examples 

to be labeled −1 and 1 respectively. In the example above, since the function make_moons returns labels y 

with negative examples and positive examples labeled 0 and 1 respectively, we convert them to −1 and 1 with 

y = (2 ∗ y)  –  1.  

Alternatively, if we stick to 0 and 1, then the final classification can be obtained by applying a threshold 

(typically, 0.5) to the aggregated prediction. These steps are not necessary when using implementations 

provided by most machine-learning packages such as scikit-learn as they automatically preprocess a 

variety of training labels. 

We visualize the performance of AdaBoost as the number of base estimators increases in the 
figure below. As we add more and more weak learners into the mix, the overall ensemble is 
increasingly boosted into a stronger, more complex and more nonlinear classifier. 

While AdaBoost is generally more resistant to overfitting, like many other classifiers, 
overtraining a boosting algorithm can also result in overfitting, especially in the presence of 
noise. We will see how do deal with such situations in Section 4.3. 

 
Figure 4.9  As the number of weak learners increases, the overall classifier is boosted into a strong model, 
which becomes increasingly nonlinear and is able to fit (and possibly overfit) the training data. 
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4.2.3 AdaBoost with scikit-learn 
Now that we understand the intuition of how the AdaBoost classification algorithm works, we 
look at how to use scikit-learn’s AdaBoostClassifier package. scikit-learn’s
implementation provides additional functionality including support for multi-class classification, 
as well as other base learning algorithms beyond decision trees. 

There are three important arguments that the AdaBoostClassifier package takes for both
binary as well as multi-class classification tasks: 

1. base_estimator, the base learning algorithm AdaBoost uses to train weak learners. In
our implementation, we used DecisionTreeClassifier. However, it is possible to use
other weak learners such as shallow decision trees, shallow artificial neural networks
and stochastic gradient-descent-based classifiers.

2. n_estimators, the number of weak learners that will be trained sequentially by
AdaBoost, and

3. learning_rate, an additional parameter that progressively shrinks the contribution of
each successive weak learner trained for the ensemble

4. smaller values of learning_rate make the weak learner weights αt  smaller. Smaller αt

means the variation in the example weights Di decreases, and less diverse weak
learners; larger values of learning_rate have the opposite effect and increase
diversity in weak learners.

The learning_rate parameter has a natural interplay and tradeoff with n_estimators.
Increasing n_estimators increases the number of iterations, which in turn, allows the training

example weights Di to keep growing. The unconstrained growth of example weights can be 
controlled by the learning_rate.

The example below illustrates AdaBoostClassifier in action on a binary classification data
set. First, we load the breast cancer data and split into training and test sets. 

>>> from sklearn.datasets import load_breast_cancer 
>>> from sklearn.model_selection import train_test_split 
>>> X, y = load_breast_cancer(return_X_y=True) 
>>> Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, test_size=0.25) 

We will use shallow decision trees of depth 2 as base estimators for training. 

>>> shallow_tree = DecisionTreeClassifier(max_depth=2) 
>>> ensemble = AdaBoostClassifier(base_estimator=shallow_tree, 

 n_estimators=20, learning_rate=0.75) 
>>> ensemble.fit(Xtrn, ytrn) 

After training, we can use the boosted ensemble to make predictions on the test set. 

>>> ypred = ensemble.predict(Xtst) 
>>> from sklearn.metrics import accuracy_score 
>>> err = 1 - accuracy_score(ytst, ypred) 
>>> err 
0.07692307692307687 
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AdaBoost achieves test error rate of 7.69% on the breast cancer data set. 

Multi-class Classification 

scikit-learn’s AdaBoostClassifier also supports multi-class classification, where data
belongs to more than two classes. This is because scikit-learn contains the multi-class
implementation of AdaBoost called Stagewise Additive Modeling using Multi-class Exponential 
loss, or SAMME. 

SAMME is a generalization of Freund and Schapire’s adaptive boosting algorithm (that we 
implemented in Section 4.2.2) from two to multiple classes. In addition to SAMME, 
AdaBoostClassifier also provides a variant called SAMME.R.

The key difference between these two algorithms is that SAMME.R handles real-valued 
predictions from base estimator algorithms, that is, class probabilities, while vanilla SAMME 
handles discrete predictions, that is, class labels.  

Does this sound familiar? Recall from Chapter 3 that there are two types of combination 
functions: those that use the predicted class labels directly, and those that can use predicted 
class probabilities. This is precisely the difference between SAMME and SAMME.R as well. 

The example below illustrates AdaBoostClassifier in action on a multi-class classification
data set. First, we load the iris data and split into training and test sets.

>>> from sklearn.datasets import load_iris 
>>> from sklearn.utils.multiclass import unique_labels 
>>> X, y = load_iris(return_X_y=True) 
>>> Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, test_size=0.25) 
>>> unique_labels(y) 
array([0, 1, 2]) 

As before, we can train and evaluate the AdaBoost on this multiclass data set. 

>>> ensemble = AdaBoostClassifier(base_estimator=shallow_tree, 
 n_estimators=20,  
 learning_rate=0.75, algorithm='SAMME.R') 

>>> ensemble.fit(Xtrn, ytrn) 
>>> ypred = ensemble.predict(Xtst) 
>>> err = 1 - accuracy_score(ytst, ypred) 
>>> err 
0.0699300699300699 

AdaBoost achieves a test error of 6.99% on the (3-class) iris data set. 

4.3 AdaBoost in Practice 
In this chapter, we look at some practical challenges we might expect to encounter when 
using AdaBoost and strategies we can use to ensure that we train robust models. AdaBoost’s 
adaptive procedure makes it susceptible to outliers, or data points that are extremely noisy. In 
this section, we will see examples of how this problem can affect the robustness of AdaBoost 
and what we can do to mitigate it. 
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At the core of AdaBoost is its ability to adapt to mistakes made by previous weak learners. 
This adaptive property, however, can also be a disadvantage when outliers are present.  

OUTLIERS 
Outliers are data points characterized by a high amount of noise. They are often the result of measurement or input 
errors and are prevalent in real data to varying degrees. Standard preprocessing techniques such as normalization 
often simply rescale the data and do not remove outliers, which allows them to continue to impact algorithm 
performance. This can be addressed by pre-processing the data to specifically detect and remove outliers. 

For some tasks (for example, detecting network cyberattacks) the very thing we need to detect and classify (a 
cyberattack) will be an outlier, also called an anomaly, and extremely rare. In such situations, the goal of our learning 
task will be itself be anomaly detection. 

AdaBoost is especially susceptible to outliers. Outliers are often misclassified by weak learners. 
Recall that AdaBoost increases the weight of misclassified examples. This means that the 
weight assigned to outliers continues to increase. When the next weak learner is trained 

1. it continues to misclassify the outlier, in which case AdaBoost will increase its weight
further, which in turn, causes succeeding weak learners to misclassify, fail and keep
growing its weight, or

2. it correctly classifies the outlier, in which case AdaBoost has just overfit the data.

This is illustrated in the next figure. 
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Figure 4.10  Consider a data set with an outlier (circled, top left). In iteration 1, it has the same weight as all the 
examples. As AdaBoost continues to sequentially train new weak learners, the weights of other data points 
eventually decrease as they are eventually correctly classified. The weight of the outlier continues to increase, 
ultimately resulting in overfitting.  

Outliers force AdaBoost to spend a disproportionate amount of effort on training examples that 
are noisy. Put another way, outliers tend to confound AdaBoost and make it less robust.  

4.3.1 Learning Rate 
Now, we look at ways in which we can train robust models with AdaBoost. The first aspect we 
can control is learning rate, which adjusts the contribution of each estimator to the ensemble.  

For example, a learning rate of 0.75 tells AdaBoost to decrease the overall contribution of each 
base estimator by a factor of 0.75. When there are outliers, a high learning rate will cause 
their influence to grow proportionally quickly, which can absolutely kill the performance of 
your model. Therefore, one way to mitigate the effect of outliners is to lower the learning rate.  

As lowering the learning rate shrinks the contribution of each base estimator, controlling the 
learning rate is also known as shrinkage and is a form of model regularization to minimize 

overfitting. Concretely, at iteration t, the ensemble Ft−1 is updated to Ft as 

Ft (x) = Ft−1(x) + η ⋅ αt ⋅ ht (x) 
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Here, αt is the weight of weak learner ht (computed by AdaBoost) and η is the learning rate, a 
user-specified shrinkage hyperparameter in the range 0 < η ≤ 1.  

A slower learning rate means that it will often take more iterations (and consequently, more 
base estimators) to build an effective ensemble. More iterations also mean more 
computational effort and longer training times. Often, however, slower learning rates may 
produce a robust model that generalizes better and may well be worth the effort.  

An effective way to select the best learning rate is with a validation set or cross validation 
(CV). The listing below uses 10-fold cross validation to identify the best learning rate in the 
range [0.1,0.2,…,1.0]. We can observe the effectiveness of shrinkage on the breast cancer 
data: 

>>> from sklearn.datasets import load_breast_cancer 
>>> X, y = load_breast_cancer(return_X_y=True) 

We use stratified k-fold CV, as we did with stacking. Recall that stratified means that the folds 
are created in such a way that the class distribution is preserved across the folds. This also 
helps with imbalanced data sets, as stratification ensures data from all classes is represented.   

Listing 4.3 Cross validation to select the best learning rate 

from sklearn.tree import DecisionTreeClassifier 
from sklearn.ensemble import AdaBoostClassifier 
from sklearn.metrics import accuracy_score 
from sklearn.model_selection import StratifiedKFold 
import numpy as np 
 
n_learning_rate_steps, n_folds = 10, 10 
learning_rates = np.linspace(0.1, 1.0, num=n_learning_rate_steps) #A 
splitter = StratifiedKFold(n_splits=n_folds, shuffle=True) 
trn_err = np.zeros((n_learning_rate_steps, n_folds)) 
val_err = np.zeros((n_learning_rate_steps, n_folds)) 
stump = DecisionTreeClassifier(max_depth=1)  #B   
 
for i, rate in enumerate(learning_rates):  #C   
    for j, (trn, val) in enumerate(splitter.split(X, y)):  #D   
        model = AdaBoostClassifier(algorithm='SAMME', base_estimator=stump, 
                                   n_estimators=10, learning_rate=rate) 
 
        model.fit(X[trn, :], y[trn])  #E   
 
        trn_err[i, j] = 1 - accuracy_score(y[trn],  
                                           model.predict(X[trn, :])) 
        val_err[i, j] = 1 - accuracy_score(y[val],  
                                           model.predict(X[val, :]))  #F   
 
trn_err = np.mean(trn_err, axis=1) 
val_err = np.mean(val_err, axis=1)  #G   

#A  set up stratified 10-fold CV and  initialize the search space 
#B  use decision stumps as weak learners 
#C  for all choices of learning rates 
#D  for train, validation sets 
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#E  fit a model to training data in this fold 
#F  compute validation error for this fold 
#G  average the errors across the folds 

We plot the results of this parameter search in Figure 4.11, which shows how the training and 
validation errors change as the learning rate increases. The number of base learners is fixed to 
10. While the average training error continues to decrease with increasing learning rate, the 
best average validation error is achieved for learning_rate=0.6. 

 
Figure 4.11  Average training and validation errors for different learning rates. The validation error for 
learning_rate=0.6 is lowest, and, in fact, lower than the default learning_rate=1.0. 

4.3.2 Early Stopping and Pruning 
Besides the learning_rate, the other important consideration for practical boosting is the 
number of base learners, n_estimators. It might be tempting to try to build an ensemble with 
a very large number of weak learners. However, this does not always translate to the best 
generalization performance. 

In fact, it is often the case that we can achieve roughly the same performance with fewer base 
estimators than we think we might need. Identifying the least number of base estimators in 
order to build an effective ensemble is known as early stopping.  

Maintaining fewer base estimators, can help control overfitting. Additionally, early stopping 
can also decrease training time as we end up having to train fewer base estimators.  

The listing below uses a cross validation procedure identical to the one above to identify the 
best number of estimators. The learning rate here is fixed to 1.0. 

©Manning Publications Co. To comment go to liveBook 
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion

100

https://livebook.manning.com/#!/book/ensemble-methods-for-machine-learning/discussion
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion


Listing 4.4 Cross validation to select the best number of weak learners 

n_estimator_steps, n_folds = 5, 10 
 
number_of_stumps = np.arange(5, 50, n_estimator_steps) #A  
splitter = StratifiedKFold(n_splits=n_folds, shuffle=True) 
 
trn_err = np.zeros((len(number_of_stumps), n_folds)) 
val_err = np.zeros((len(number_of_stumps), n_folds)) 
 
stump = DecisionTreeClassifier(max_depth=1)  #B  
for i, n_stumps in enumerate(number_of_stumps):  #C 
    for j, (trn, val) in enumerate(splitter.split(X, y)):  #D   
        model = AdaBoostClassifier(algorithm='SAMME', base_estimator=stump, 
            n_estimators=n_stumps, learning_rate=1.0) 
        model.fit(X[trn, :], y[trn])  #E   
 
        trn_err[i, j] = 1 - accuracy_score(y[trn],  
                                           model.predict(X[trn, :])) 
        val_err[i, j] = 1 - accuracy_score(y[val],  
                                           model.predict(X[val, :]))  #F 
 
trn_err = np.mean(trn_err, axis=1) 
val_err = np.mean(val_err, axis=1)  #G 

#A  set up stratified 10-fold CV and  initialize the search space  
#B  use decision stumps as weak  earners 
#C  for all estimator sizes 
#D  for train, validation sets 
#E  fit a model to training data in this fold 
#F  compute validation error for this fold 
#G  average the errors across the folds 

The results of this search for the best number of estimators is shown in Figure 4.12. 

The average validation error suggests that it is sufficient to use as few as 20 decision trees to 
achieve comparable predictive performance on this data set. In practice, we can stop training 
early once the performance on the validation set reaches an acceptable level. 
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Figure 4.12  Average training and validation errors for different numbers of base estimators (decision stumps, in 
this case). The validation error for n_estimators=20 is lowest. 

Early stopping is also known as pre-pruning, as we terminate training before exploring all 
possible values of n_estimators, and often leads to faster training times.

If we are not concerned about training time but want to be more judicious in selecting the 
number of base estimators, we can also consider post-pruning. Post-pruning means that we 
train a very large ensemble, and then drop the worst base estimators. 

For AdaBoost, post-pruning drops all weak learners whose weights (αt) are below a certain 
threshold. We can access the individual weak learners as well as their weights after training an 
AdaBoostClassifier through the fields model.estimators_ and model.estimator_ weights_.
To prune the contribution of the least significant weak learners (those whose weight is below a 
certain threshold), we can simply set their weights to zero:

model.estimator_weights_[model.estimator_weights_ <= threshold] = 0.0 

As before, a cross validation can be used to select a good threshold.  Always remember that 
there is typically a tradeoff between AdaBoost’s parameters, learning_rate and
n_estimators. Lower learning rates typically require more iterations (hence more weak
learners), while higher learning rates require fewer iterations (and fewer weak learners).  

To be most effective, the best values of these parameters should be identified together 
through grid search combined with cross validation. An example of this is shown in the case 
study, which we look at next. 
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Outlier Detection and Removal 
While the procedures above are generally effective on noisy data sets, training examples with high amounts of noise 
(that is, outliers) can still cause significant issues. In such cases, it is often advisable to pre-process the data set to 
remove these outliers entirely.  

4.4 Case Study: Handwritten Digit Classification 
One of the earliest machine-learning applications is on handwritten digit classification. In fact, 
this task has been studied so extensively since the early 1990s that we might consider it the 
“Hello World!” of object recognition.  

This task originated with the United States Postal Service’s attempts to automate digit 
recognition to accelerate mail processing by rapidly identifying zip codes. Since then, several 
different handwritten data sets have been created, and are widely used to benchmark and 
evaluate various machine-learning algorithms. 

In this case study, we will use scikit-learn’s digits data set to illustrate the effectiveness 
of AdaBoost. The data set consists of 1797 scanned images of handwritten digits from 0 to 9. 
Each digit is associated with a unique label, which makes this a 10-class classification 
problem. There are roughly 180 digits per class. 

The digits themselves are represented as 16 x 16 normalized greyscale bitmaps, which when 
flattened results in a 64-dimensional vector for each handwritten digit. The training set is of 
size 1797 examples x 64 features. We can load the data set directly from scikit-learn:  

>>> from sklearn.datasets import load_digits 
>>> X, y = load_digits(return_X_y=True) 

 
Figure 4.1. A snapshot of the digits data set used in this case study. 
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4.4.1 Dimensionality Reduction with t-SNE 
While AdaBoost can effectively handle the dimensionality of the digits data set (64 features), 
we will (rather aggressively) look to reduce the dimensionality to 2. The main reason for this is 
to be able to visualize the data as well as the models learned by AdaBoost. 

We’ll use a nonlinear dimensionality reduction technique known as t-distributed stochastic 
neighbor embedding or t-SNE. t-SNE is a highly effective pre-processing technique for the 
digits data set and extracts an effective embedding in a two-dimensional space. 

t-SNE 

Stochastic neighbor embedding, as its name suggests, uses neighborhood information to 
construct a lower dimensional embedding. Specifically, it exploits the similarity between two 

examples xi and xj. In our case, xi  and xj are two example digits from the data set and are 64-
dimensional. The similarity between two digits can be measured as 

sim(xi, xj )=exp((−|| xi − xj ||2) ⁄ (2  σi2 )) 

where || xi − xj ||2 is the squared distance between xi  and xj and σi2 is a similarity parameter. 

You may have seen this form of similarity function in other areas of machine learning, 
especially in the context of support vector machines, where it is known as the radial-basis 
function kernel or the Gaussian kernel. 

The similarity between, xi  and xj can be converted to a probability pj|i that xj is a neighbor of 

xi. The probability is just a normalized similarity measure, where we normalize by the sum of

similarities of all points in the data set xk with xi:

Let’s say that the 2-dimensional embedding of these two digits is given by zi and zj. Then it is 

natural to expect that two similar digits xi and xj will continue to be neighbors even embedding 

into zi and zj respectively. The probability of zj is a neighbor of zi can be measured similarly: 

where we assume that the variance in the 2-dimensional (z-space) is 1/√2. 

Then, we can identify the embeddings of all the points by ensuring that qj|i, the probabilities in 

the 2-dimensional embedding space (z-space) are well-aligned with pj|i in the 64-dimensional 
original digit space (x-space). Mathematically, this is achieved my minimizing the KL-

divergence between the distributions qj|i and pj|i. 
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With scikit-learn, the embeddings can be computed very easily:

>>> from sklearn.manifold import TSNE 
>>> Xemb = TSNE(n_components=2).fit_transform(X) 

So, what does this data set look like when embedded into a two-dimensional space? 

Figure 4.14  Visualization of the 2d embedding of digits data set produced by t-SNE, which is able to embed and 
separate the digits, effectively clustering them.  

Train-Test Split 

As always, it is important to hold aside a part of the training data for evaluation and to 
quantify the predictive performance of our models on future data. We split the lower-
dimensional data Xemb and the labels into training and test sets.

>>> from sklearn.model_selection import train_test_split 
>>> Xtrn, Xtst, ytrn, ytst = train_test_split(Xemb, y, 

  test_size=0.2, stratify=y) 

Observe the use of stratify=y, to ensure that the ratios of the different digits in train and
test sets are identical. 

4.4.2 Boosting 
We will now train an AdaBoost model for this digit classification task. Recall from our earlier 
discussion that AdaBoost requires us to first decide the type of base estimator. We continue to 
use decision stumps. 

>>> stump = DecisionTreeClassifier(max_depth=2) 
>>> ensemble = AdaBoostClassifier(algorithm='SAMME', base_estimator=stump) 
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In the previous section, we saw how to use cross validation for selecting the best value of 
learning_rate and n_estimators individually. In practice, we have to identify the best 
combination of learning_rate and n_estimators.  For this, we will employ a combination of 
k-fold cross validation and grid search.  

The basic idea is to consider different combinations of learning_rate and n_estimators and 
evaluate what their performance would be like via cross validation. First, we select various 
parameter values we want to explore. 

>>> parameters_to_search = {'n_estimators': [200, 300, 400, 500], 
                            'learning_rate': [0.6, 0.8, 1.0]} 

Next, we make a scoring function to evaluate the performance of each parameter 
combination. For this task, we use the balanced accuracy score, which is essentially just the 
accuracy score weighted by each class. This scoring criterion is effective for multi-class 
classification problems such as this one, and also for imbalanced data sets. 

>>> from sklearn.metrics import balanced_accuracy_score, make_scorer 
>>> scorer = make_scorer(balanced_accuracy_score, greater_is_better=True) 

Now, we set up and run the grid search to identify the best parameter combination with the 
GridSearchCV class. Several arguments to GridSearchCV are of interest to us to us. The 
parameter cv=5 specifies 5-fold cross validation and n_jobs=−1 specifies that the job should 
use all available cores for parallel processing (see Chapter 2). 

>>> from sklearn.model_selection import GridSearchCV 
>>> search = GridSearchCV(ensemble, param_grid=parameters_to_search, 
                          scoring=scorer,  
                          cv=5, n_jobs=−1, refit=True) 
>>> search.fit(Xtrn, ytrn) 

The final parameter in GridSearchCV is set to refit=True. This tells GridSearchCV to train a 
final model using all the available training data using the best parameter combination it has 
identified. 

TIP  For many data sets, it may not be computationally efficient to exhaustively explore and validate all 

possible hyperparameter choices with GridSearchCV. For such cases, it may be more computationally 

efficient to use RandomizedSearchCV, which samples a much smaller subset of hyperparameter 

combinations to validate. 

After training, we can look up the scores for every parameter combination and even pull out 
the best results. 

>>> best_combo = search.cv_results_['params'][search.best_index_] 
>>> best_score = search.best_score_ 
>>> print('The best parameter settings are {0}, with score = {1}.'.format( 
                    best_combo, best_score)) 
The best parameter settings are {'learning_rate': 0.6, 'n_estimators': 200}, with 

score = 0. 0.9826321839080459. 
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The best model is also available (because we set refit=True). Note that this model is trained
using the best_combo parameters using the entire training data (Xtrn, ytrn) by
GridSearchCV. This model is available in search.best_estimator_ and can be used for
making predictions on the test data: 

>>> ypred = search.best_estimator_.predict(Xtst) 

How well did this model do? We can first look at the classification report: 

>>> from sklearn.metrics import classification_report 
>>> print('Classification report:\n{0}\n'.format(classification_report(ytst, ypred))) 

Classification report: 
  precision    recall  f1-score   support 

  0    1.00    1.00      1.00  36 
  1    0.97    0.94      0.96  36 
  2    1.00    1.00      1.00  35 
  3    0.97    0.78      0.87  37 
  4    1.00    1.00      1.00  36 
  5    0.97    0.97      0.97  37 
  6    1.00    1.00      1.00  36 
  7    1.00    1.00      1.00  36 
  8    0.94    0.97      0.96  35 
  9    0.77    0.92      0.84  36 

    accuracy     0.96    360 
   macro avg  0.96    0.96      0.96    360 
weighted avg    0.96    0.96      0.96    360 

AdaBoost does quite well on most digits. It seems that it struggles most with 3s and 9s, which 
both have lower F1-scores. We can also look at the confusion matrix, which will give us a good 
idea which letters are being confounded with others. 

>>> from sklearn.metrics import confusion_matrix 
>>> print("Confusion matrix: \n {0}".format(confusion_matrix(ytst, ypred))) 

Confusion matrix: 
 [[36  0  0  0  0  0  0  0  0  0] 
 [ 0 34  0  0  0  0  0  0  1  1] 
 [ 0  0 35  0  0  0  0  0  0  0] 
 [ 0  0  0 29  0  0  0  0  0  8] 
 [ 0  0  0  0 36  0  0  0  0  0] 
 [ 0  0  0  0  0 36  0  0  0  1] 
 [ 0  0  0  0  0  0 36  0  0  0] 
 [ 0  0  0  0  0  0  0 36  0  0] 
 [ 0  1  0  0  0  0  0  0 34  0] 
 [ 0  0  0  1  0  1  0  0  1 33]] 

Each row of the confusion matrix corresponds to the true labels (digits to 0 to 9) and each 
column corresponds to the predicted labels. The (3, 9) entry in the confusion matrix (last row, 
sixth column) indicates that several 3s are misclassified as 9s by AdaBoost. 

Finally, we can plot the decision boundaries of the trained AdaBoost model, shown below. 
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Figure 4.15  The decision boundaries learned by AdaBoost on the embeddings of the digits data set. 

This case study illustrates how AdaBoost can boost the performance of weak learners into a 
powerful strong learner that can achieve good performance on a complex task. Before we end 
the chapter, we look at another boosting algorithm, LogitBoost. 

4.5 LogitBoost: Boosting with the Logistic Loss 
We now move on to a second boosting algorithm called LogitBoost. The development of 
LogitBoost was motivated by the desire to bring loss functions from established classification 
models (such as logistic regression) into the AdaBoost framework.  

In this manner, the general boosting framework can be applied to specific classification 
settings in order to train boosted ensembles with properties similar to those classifiers. 

Logistic vs. Exponential Loss Functions 

Recall from Section 4.2.2, that AdaBoost updates weights αt of weak learners with 

Where does this come from? This expression is a consequence of the fact that AdaBoost 
optimizes the exponential loss. In particular, the exponential loss of an example (x,y) with 

respect to a weak learner ht(x) is given by 

L(x;αt) = exp(−αt⋅y⋅ ht (x)), 
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where y is the true label and ht(x) is the prediction made by ht. LogitBoost, or Logistic 
Boosting, differs from AdaBoost in three important ways. First, LogitBoost optimizes the 
logistic loss,  

L(x; αt) = log(1 + exp(−αt ⋅ y ⋅ ht(x))) 

The logistic loss penalizes mistakes differently than the exponential loss (see figure below). 

 
Figure 4.16   Comparing the exponential loss and the logistic loss functions. 

You may have seen the logistic loss in other machine-learning formulations, most notably 
logistic regression.  The exact 0−1 loss (also known as the misclassification loss) is an 
idealized loss function that returns 0 for correctly classified examples and 1 for misclassified 
examples. However, this loss is difficult to optimize as it is not continuous. In order to build 
feasible machine learning algorithms, different methods use different surrogates.  

The exponential loss function and the logistic loss function both penalize correctly classified 
examples similarly. Training examples which are correctly classified with greater confidence 
have corresponding losses close to zero.  

The exponential loss penalizes misclassified examples far more harshly than the logistic loss, 
which makes it more susceptible to outliers and noise. The logistic loss is more measured. 

Regression As A Weak Learning Algorithm For Classification 

The second key difference is that AdaBoost works with predictions, while LogitBoost works 
with prediction probabilities. More precisely, AdaBoost works with the predictions of the overall 
ensemble F(x), while LogitBoost works with prediction probabilities, P(x).  

The probability of predicting a training example x as a positive example is given by 
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while the probability of predicting x as a negative example is given by P(y = 0 | x) = 1 − P(y = 1 | 
x). This fact directly influences our choice of base estimator. 

The third key difference is, since AdaBoost works directly with discrete predictions (−1 or 1, 
for negative and positive examples), it uses any classification algorithm as the base learning 
algorithm. LogitBoost, instead, works with continuous prediction probabilities. Consequently, it 
uses any regression algorithm as the base learning algorithm. 

Implementing LogitBoost 

Putting all of these together, the LogitBoost algorithm performs the following steps within each 

iteration. The probability P(yi = 1| xi) is abbreviated Pi. 

1. Compute the working response, or how much the prediction probability differs from the 
true label,  

 
2. Update the example weights, Di = Pi (1 − Pi) 
3. Train a weak regression stump ht(x) on the weighted examples (xi,zi,Di) 

Update the ensemble, Ft+1(x) = Ft(x) + ht(x) 
4. Update the example probabilities 

 
As we can see from Step 3 above, LogitBoost, like AdaBoost, is an additive ensemble. This 
means that it ensembles base estimators and combines their predictions additively. The 
LogitBoost algorithm is also easy to implement, as the listing below shows. 

Listing 4.5 LogitBoost for classification 

import numpy as np 
from sklearn.tree import DecisionTreeRegressor 
from sklearn.metrics import accuracy_score 
from scipy.special import expit 
 
def fit_logitboosting(X, y, n_estimators=10): 
    n_samples, n_features = X.shape 
    D = np.ones((n_samples, )) / n_samples             
    p = np.full((n_samples, ), 0.5)  #A                      
    estimators = []                                    
 
    for t in range(n_estimators): 
        z = (y - p) / (p * (1 - p))  #B 
        D = p * (1 - p)  #C 
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  h = DecisionTreeRegressor(max_depth=1)  #D 
h.fit(X, z, sample_weight=D)
estimators.append(h) #E

  if t == 0: 
   margin = np.array([h.predict(X) 

   for h in estimators]).reshape(−1, ) 
  else: 

   margin = np.sum(np.array([h.predict(X) 
   for h in estimators]), axis=0) 

  p = expit(margin)  #F 

    return estimators 

#A  initialize example weights, pred probabilities 
#B  compute working responses 
#C  compute new example weights 
#D  use decision tree regression as base estimators for classification problem  
#E  Append weak learner to ensemble Ft+1   (x)=Ft (x)+ht (x)

#F  update prediction probabilities, 

The predict_boosting function described in Listing 4.2 can be used to make predictions with
the LogitBoost ensembles as well. However, LogitBoost requires training labels to be in 0/1 
form while AdaBoost requires them to be in −1/1 form. Thus, we modify that function slightly 
to return 0/1 labels. 

Listing 4.5 LogitBoost for prediction 

def predict_logit_boosting(X, estimators): 
    pred = np.zeros((X.shape[0], )) 

    for h in estimators: 
  pred += h.predict(X) 

    y = (np.sign(pred) + 1) / 2  #A 

    return y 

#A convert −1/1 predictions to 0/1 

As with AdaBoost, we can visualize how the ensemble trained by LogitBoost evolves over 
several iterations in Figure 4.17. Contrast this figure with Figure 4.9, which shows the 
evolution of the ensemble trained by AdaBoost over several iterations. 
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Figure 4.17  LogitBoost uses decision tree regression to train regression stumps as weak learners to 
sequentially optimize the logistic loss.  

4.6 Summary 
In this chapter, we were introduced to sequential ensemble methods of weak learners. 

1. AdaBoost, or Adaptive Boosting is a sequential ensemble algorithm that uses weak 
learners as base estimators.  

2. In classification, a weak learner is a simple model that performs only slightly better 
than random guessing, that is 50% accuracy. Decision stumps and shallow decision 
trees are examples of weak learners. 

3. AdaBoost maintains and updates weights over training examples. It uses reweighting 
both to prioritize misclassified examples and to promote ensemble diversity. 

4. AdaBoost is also an additive ensemble in that is makes final predictions through 
weighted additive (linear) combinations of the predictions of its base estimators. 

5. AdaBoost is generally robust to overfitting as it ensembles several weak learners. 
However, it is sensitive to outliers owing to its adaptive reweighting strategy, which 
repeatedly increases the weight of outliers over iterations. 

6. The performance of AdaBoost can be improved by finding a good tradeoff between the 
learning rate and number of base estimators 

7. Cross validation with grid search is commonly deployed to identify the best parameter 
tradeoff between learning rate and number of estimators. 

©Manning Publications Co. To comment go to liveBook 
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion

112

https://livebook.manning.com/#!/book/ensemble-methods-for-machine-learning/discussion
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion


8. Under the hood, AdaBoost ultimately optimizes the exponential loss function.
9. LogitBoost is another boosting algorithm that optimizes the logistic loss function. It

differs from AdaBoost in two other ways

We have now seen two boosting algorithms that handle two different loss functions. Is there a 
way to generalize boosting to different loss functions and for different tasks such as 
regression?  

It turns out that the answer to this question is an emphatic “Yes!”, as long as the loss function 
is differentiable (and you can compute its gradient). This is the intuition behind gradient 
boosting, which we will look into in the next two chapters. 
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5 
Sequential Ensembles: Gradient 

Boosting 

This chapter covers 

• Using gradient descent to optimize loss functions for training models

• Implementing and understanding how gradient boosting works

• Training fast gradient-boosting models with histogram-based splitting for tree learning

• Introducing LightGBM: a powerful framework for gradient boosting

• Avoiding overfitting with LightGBM in practice

• Using custom loss function with LightGBM

The last chapter introduced boosting: where we train weak learners sequentially and “boost” them 

into a strong ensemble model. An important sequential ensemble method introduced in the last 

chapter is adaptive boosting, or AdaBoost.  

AdaBoost is a foundational boosting model that trains a new weak learner to fix the 

misclassifications of the previous weak learner. It does this by maintaining and adaptively updating 

weights on training examples. These weights reflect the extent of misclassification and indicate 

priority training examples to the base learning algorithm.  

In this chapter we look at an alternative to weights on training examples to convey 

misclassification information to a base learning algorithm for boosting: loss function gradients.  

Recall that we use loss function to measure how well a model is fitting each training example in 

the data set. The gradient of the loss function for a single example is called the residual and, as we 

will see shortly, captures the error between true and predicted labels. This error or residual, of 

course, measures the amount of misclassification. 
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In contrast to AdaBoost, which uses weights as a surrogate for residuals, gradient boosting uses 

these residuals directly! Thus, gradient boosting is another sequential ensemble method that aims 

to train weak learners over residuals (that is, gradients).  

The framework of gradient boosting can be applied to any loss function, which means that any 

classification, regression or ranking problem can be “boosted” using weak learners. This flexibility 

has been a key reason for the emergence and ubiquity of gradient boosting as a state-of-the-art 

ensemble approach.  

Several powerful packages and implementations of gradient boosting are available (LightGBM, 

CatBoost, XGBoost) and provide the ability to train models on big data efficiently via parallel 

computing and GPUs.  

This chapter is organized as follows. To gain a deeper understanding of gradient boosting, we 

will need a deeper understanding of gradient descent. So, we kick off the chapter with an example 

of gradient descent can be used to train a machine learning model (Section 5.1). 

Section 5.2 aims to provide intuition for learning with residuals, which is at the heart of gradient 

boosting. Then, we implement our own version of gradient boosting and step through it to 

understand how it combines gradient descent and boosting at every step to train a sequential 

ensemble.   

Section 5.2 also introduces histogram-based gradient boosting, which essentially bins the 

training data for tree learning in order to significantly accelerate learning and scaling to larger data 

sets. 

Section 5.3 introduces LightGBM, a free and open-source gradient boosting package and 

important tool for building and deploying real-world ML applications. In Section 5.4, we further see 

how we can avoid overfitting with strategies such as early stopping and adapting the learning rate 

to train effective models with LightGBM and how to extend LightGBM to custom loss functions.  

All of this leads us into a demonstration of how to use gradient boosting on a real-world task: 

document retrieval, which will be the focus of our chapter-concluding case study (Section 5.5). 

Document retrieval, a form of information retrieval is a key task in many applications, one we have 

all used at some time or another (for example, web search engines).  

To understand gradient boosting, we will first have to understand gradient descent, a simple yet 

effective approach that is widely used for training many machine-learning algorithms. This will help 

us contextualize the role gradient descent plays inside gradient boosting, both conceptually and 

algorithmically.  

5.1 Gradient Descent for Minimization

We now delve into gradient descent, an optimization approach at the heart of many training 

algorithms. Understanding gradient descent will allow us to understand how the gradient boosting 

framework ingeniously combines this optimization procedure with ensemble learning. 

Optimization, or the search for the “best”, is at the heart of many applications. Indeed, at the heart 

of all machine learning, is our search for the best model.  

NOTE Learning problems are often cast as optimization problems. For example, training is essentially finding the 

“best” fitting model given the data. If the notion of “best” is characterized by a loss function, then training is cast as a 

minimization problem as the best model corresponds to the lowest loss. Alternately, if the notion of “best” is 
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characterized by a likelihood function, then training is cast as a maximization problem as the best model 

corresponds to the highest likelihood (or probability). Unless specified, we will characterize model quality or fit using 

loss functions, which will require us to perform minimization.  

Loss functions explicitly measure the fit of a model on a data set. Most often, we measure loss with 

respect to the true labels, by quantifying the error between the predicted and true labels. Thus, the 

“best” model will have the lowest error, or loss. 

You may be familiar with loss functions such as cross entropy (for classification) or mean 

squared error (for regression). We will revisit cross entropy in Section 5.4.2 and mean squared 

error in Section 7. Given a loss function, training is the search for the “optimal” model that 

minimizes the loss. This is illustrated in the figure below.   

Figure 5.1. An optimization procedure for finding the “best” model. Machine learning algorithms search for the best 

model among a set of all possible candidate models. The notion of “best” is quantified by the loss function, which 

evaluates the quality of a selected candidate using the labels and the data. Thus, machine-learning algorithms are 

essentially optimization procedures. Here, the optimization procedure sequentially identifies increasingly better 

models f1, f2 and the final model: f3.  

One example of such a search we may be familiar with is grid search for parameter selection during 

training of, say decision trees. With grid search We choose among many modeling choices: number 

of leaves, maximum tree depth, etc. systematically and exhaustively over a grid of parameters.  

Another, more effective optimization technique is gradient descent, which uses first derivative 

information, or gradients to guide our search. In this section, we look at two examples of gradient 

descent. The first is a simple illustrative example to understand and visualize the basics of how 

gradient descent works.  

The second example demonstrates how gradient descent can be used on an actual loss function 

with data to train a machine-learning model.  
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5.1.1 Gradient Descent with an Illustrative Example

We will use the Branin function, a commonly used example function, to illustrate how gradient 

descent works, before moving on to a more concrete case grounded in machine learning (Sec 

5.1.2). The Branin function is a function of two variables (w1 and w2), defined as follows: 

f(w1, w2) = a (w2 - b w1
2 + c w1 - r)2 + s (1 - t) cos (w1) + s, 

where a = 1, b = 5.1 / 4π2, c = 5 / π, r = 6, s = 10 and t = 1 / 8π are fixed constants, which we will not 

worry about. We can visualize this function by plotting a three-dimensional plot of w1 vs. w2 vs. 

f(w1, w2). The figures below illustrate the three-dimensional surface plot as well as the contour plot 

(the top view). 

Figure 5.2. The surface plot (left) and contour plot (right) of the Branin function. We can visually verify that this 

function has four minima, which are the centers of the elliptical regions in the contour plot. 

Visualization of the Branin function shows us that it takes the smallest values at four different 

locations, which are called local minimizers or minima. So how can we identify these local minima? 

There is always the brute force approach: we can make a grid over the variables w1 and w2 and 

evaluate f(w1, w2) at every possible combination exhaustively. There are several problems with this. 

First, how coarse or fine should our grid be? If our grid is too coarse, we may miss the minimizer in 

our search. If our grid is too fine, then we will have a very large number of grid points to search 

over, making our optimization procedure very slow. 

Second, and more worryingly, this approach ignores all the extra information inherent in the 

function itself, which could be quite helpful in guiding our search. For instance, the first derivatives, 

or the rates of change of f(w1, w2) with respect to w1 and w2 can be very helpful. 
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UNDERSTANDING AND IMPLEMENTING GRADIENT DESCENT  

The first derivative information is known as the gradient of f(w1, w2) and is a measure of the (local) 

slope of the function surface. More importantly, the gradient points in the direction of steepest 

ascent, that is, moving in the direction of steepest ascent will lead us to bigger values of f(w1, w2). 

If we want to use gradient information to find the minimizers, then we have to travel in the 

opposite direction of the gradient! This is precisely the simple, yet highly effective principle behind 

gradient descent: keep going in the direction of the negative gradient, and you will end up at a 

(local) minimizer. 

We can formalize this intuition in the pseudo-code below, which describes the steps of gradient 

descent. As we see below, gradient descent is an iterative procedure that steadily moves towards a 

local minimizer by moving in the direction of steepest descent: the negative gradient. 

initialize: wold = some initial guess, converged=False 
while not converged: 

1. compute the negative gradient at wold and normalize to unit length (direction, g)

2. compute the step length using line search (distance, α)

3. update the solution: wnew = wold + distance * direction = wold + α ⋅ g
4. if change between wnew and wold is below some specified tolerance:

converged=True, so break 

5. wold = wnew, get ready for the next iteration

The gradient descent procedure is fairly straightforward. First, we initialize our solution (and call it 

wold); this can be a random initialization or perhaps a more sophisticated guess. Starting from this 

initial guess, we compute the negative gradient, which tells us which direction we want to go.  

Next, we compute a step length, which tells us the distance or how far we want to go in the 

direction of the negative gradient. Computing the step length is an important step, as it ensures 

that we don’t overshoot our solution.  

The step length computation is another optimization problem, where we wish to identify a scalar 

α > 0 such that traveling along the gradient g for a distance of α produces the biggest decrease in 

the loss function. Formally, this is known as a line search problem and is often used to efficiently 

select step lengths during optimization. 

NOTE Many optimization packages and tools (such as scipy.optimize used in this chapter) provide exact and 

approximate line search functions which can be used to identify step lengths. Alternately, step length can also be set 

according to some pre-determined strategy, often for efficiency.  

In machine learning, the step length is often called the learning rate, and is represented by the Greek letter eta (η). 

With a direction and distance, we can take this step and update our solution guess to wnew. Once we 

get there, we check for convergence. There are several tests for convergence; here, we assume 

convergence if the solution doesn’t change much between consecutive iterations. 

If converged, then we’ve found a local minimizer. If not, then we iterate again from wnew. 

The listing below shows how to perform gradient descent. 

118
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import numpy as np 
from scipy.optimize import line_search 

def gradient_descent(f, g, x_init, max_iter=100, args=()):  #A 
 converged = False  #B 
 n_iter = 0 

 x_old, x_new = np.array(x_init), None 
 descent_path = np.full((max_iter + 1, 2), fill_value=np.nan) 
 descent_path[n_iter] = x_old 

 while not converged: 
 n_iter += 1 
 gradient = -g(x_old, *args)  #C 
 direction = gradient / np.linalg.norm(gradient)  #D 

 step = line_search(f, g, x_old, direction, args=args)  #E 

 if step[0] is None:  #F 
 distance = 1.0 

 else: 
 distance = step[0] 

 x_new = x_old + distance * direction  #G 
 descent_path[n_iter] = x_new 

 err = np.linalg.norm(x_new - x_old)  #H 
 if err <= 1e-3 or n_iter >= max_iter: 

 converged = True  #I 

 x_old = x_new  #J 

 return x_new, descent_path 

#A gradient descent requires a function f and its gradient g  

#B initialize gradient descent to not converged 

#C compute the negative gradient 

#D normalize gradient to unit length 

#E compute step length using line search 

#F if line search fails, make it 1.0 

#G compute the update 

#H compute change from previous iteration 

#I converged if change is small or max. iterations reached 

#J get ready for the next iteration 

We can test drive this gradient descent procedure on the Branin function. To do this, in addition to 

the function itself, we will also need its gradient. We can compute the gradient explicitly by 

dredging up the basics of calculus (if not the memories of it).  

The gradient is a vector with two components: the gradient of f with respect to w1 and w2 

respectively. With this gradient we can compute the direction of steepest increase everywhere: 

Listing 5.1. Gradient Descent 
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We can implement the Branin function and its gradient as shown below: 

def branin(w, a, b, c, r, s, t): 
 return a * (w[1] - b * w[0] ** 2 + c * w[0] - r) ** 2 + 

 s * (1 - t) * np.cos(w[0]) + s 

def branin_gradient(w, a, b, c, r, s, t): 
 return np.array([2 * a * (w[1] - b * w[0] ** 2 + c * w[0] - r) * 

 (-2 * b * w[0] + c) - s * (1 - t) * np.sin(w[0]), 
 2 * a * (w[1] - b * w[0] ** 2 + c * w[0] - r)]) 

In addition to the function and the gradient, Listing 5.1 also requires an initial guess x_init. Here, 

we will initialize gradient descent with winit = [-4, -5]’. Now, we can call the gradient descent 

procedure. 

a, b, c, r, s, t = 1, 5.1/(4 * np.pi**2), 5/np.pi, 6, 10, 1/(8 * np.pi) 
w_init = np.array([-4, -5]) 
w_optimal, w_path = gradient_descent(branin, branin_gradient, 

 w_init, args=(a, b, c, r, s, t)) 

Gradient descent returns an optimal solution w_optimal and the optimization path w_path, the 

sequence of intermediate solutions that the procedure iterated through on its way to the optimal 

solution.  

Figure 5.3. The figure on the left shows the full descent path of gradient descent, starting from [-4, -5] (blue square) 

and converging to one of the local minima (red circle). The figure on the right shows the zoomed in version of the 

same descent path as gradient descent approaches the solution. Note that the gradient steps become smaller and 

the descent algorithm tends to zig-zag as it approaches the solution. 
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And voila! In the figure above, we see that gradient descent is able to reach one of the four local 

minimizers of the Branin function. There are several important things to note about gradient 

descent. 

PROPERTIES OF GRADIENT DESCENT 

First, observe that the gradient steps become smaller and smaller as we approach one of the 

minimizers. This is because gradients vanish at minimizers. More importantly, gradient descent 

exhibits zig-zagging behavior. This is because the gradient doesn’t point at the local minimizer 

itself, it points in the direction of steepest ascent (or descent, if negative). 

The gradient at a point essentially captures local information, that is, the nature of the function 

close to that point. Gradient descent chains several such gradient steps to get to a minimizer. 

When the gradient descent has to pass through steep valleys, it’s tendency to use local information 

causes it to bounce around the valley walls as it moves towards the minimum. 

Second, gradient descent converged to one of the four local minimizers of the Branin function. 

Can you get it to converge to a different minimizer? Yes! By changing the initialization. The figure 

below illustrates various gradient descent paths for different initializations.  

The sensitivity of gradient descent to initialization is illustrated in Figure 5.4, where different 

random initializations cause gradient descent to converge to different local minimizers. This 

behavior may be familiar to those of you who have used k-means clustering: different initializations 

will often produce different clusterings, each of which is a different local solution. 

Figure 5.4. Different initializations will cause gradient descent to reach different local minima. 

An interesting challenge with gradient descent is in identifying the appropriate initialization as 

different initializations lead gradient descent to different local minimizers. From an optimization 

perspective, it is not always easy to identify the correct initialization beforehand. 
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However, from a machine-learning perspective, it may be the case that the different local 

solutions demonstrate the same generalization behavior. That is, the locally optimal learned models 

all have similar predictive performance.  

This situation is commonly encountered with neural networks and deep learning, which is why 

training procedures for many deep models are initialized from pre-trained solutions. 

TIP The sensitivity of gradient descent to initialization depends on the type of function being optimized. If the 

function is convex or cup-shaped everywhere, then any local minimizer that gradient descent identifies will always be 

a global minimizer too! This is the case with models learned by support vector machine (SVM) optimizers. However, a 

good initial guess is still important as it may cause the algorithm to converge faster.  

Many real-world problems are typically non-convex and have several local minima. Gradient descent will converge to 

one of them, depending on initialization and shape of the function in the locality of the initial guess. The objective 

function of k-means clustering is non-convex, which is why different initializations produce different clusterings. 

See Algorithms for Optimization by Kochenderfer and Wheeler (MIT Press, 2019) for a solid and hand-on introduction 

to optimization. 

5.1.2 Gradient Descent over Loss Functions for Training

Now that we understand the basics of how gradient descent works on a simple example (the Branin 

function), let’s build a classification task from scratch using a loss function of our own. Then, we 

will use gradient descent to train a model. First, we create a 2d classification problem: 

from sklearn.datasets import make_blobs 
X, y = make_blobs(n_samples=200, n_features=2, 

 centers=[[-1.5, -1.5], [1.5, 1.5]]) 

Figure 5.5. A (nearly) linearly separable two-class data set over which we will learn a classifier. The positive examples 

have labels y = 1 and the negative examples have labels y = 0. 
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We specifically create a linearly separable data set (with some noise, of course) so that we can 

train a linear separator or classification function. This will keep our loss function formulation simple, 

and our gradients easy to calculate.  

The classifier we wish to train, hw(x), takes two-dimensional data points x = [x1, x2]’ and returns 

a prediction using a linear function 

hw(x) = w1x1 + w2x2 

The classifier is parameterized by w = [w1, w2]’, which we have to learn using the training examples. 

In order to learn, we will need a loss function over the true label and predicted label. We will use 

the familiar squared loss (or squared error) that measures the cost as for an individual, labeled 

training example (x, y) 

The squared loss function computes the loss between the prediction of the current candidate model 

(hw) on a single training example (x) and its true label (y). For the n training examples in the data 

set, the overall loss can be written as 

The expression for the overall loss is just the sum of the individual losses of the n training 

examples in the data set.  

The expression to the far right above is simply the vectorized version of the overall loss, which 

uses dot products instead of loops. In the vectorized version, the boldface y is an n × 1 vector of 

true labels, X is a n × 2 data matrix, where each row is a two-dimensional training example, and w 

is a 2 × 1 model vector that we want to learn. 

As before, we will need the gradient of the loss function: 

We can implement the vectorized versions as they are more compact and more efficient as they 

avoid explicit loops for summation. 

def squared_loss(w, X, y): 
 return 0.5 * np.sum((y - np.dot(X, w))**2) 

def squared_loss_gradient(w, X, y): 
 return -np.dot(X.T, (y - np.dot(X, w))) 
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TIP If you are alarmed at the prospect of hand-computing gradients, despair not, for there are other alternatives that 

can numerically approximate the gradients and are used for training many machine-learning models including deep 

learning and gradient boosting. 

These alternatives rely on auto-differentiation, which is based on first principles of numerical calculus and linear 

algebra, to compute approximate gradients. An easy-to-use auto-gradient tool is the function 

scipy.optimize.approx_fprime available in the scipy scientific package. 

A far more powerful auto-differentiation tool is JAX (https://github.com/ google/jax), which is 

free, open source and in research project status as of the time of writing this book. JAX is intended for computing 

gradients of complex functions representing deep neural networks with many layers. It can differentiate through 

loops, branches and even recursion, and has GPU support for large-scale gradient computations.  

What does our loss function look like? We can visualize it as before. 

Figure 5.6. The overall squared loss over the entire training set, visualized. 

As before, we perform gradient descent, this time initializing at w = [0.0, -0.99]’ using the code 

snippet below, with the gradient descent path shown in Figure 5.7. 

w_init = np.array([0.0, -0.99]) 
w, path = gradient_descent(squared_loss, squared_loss_gradient, 

 w_init, args=(X, y)) 
print(w) 
[0.17390066 0.11937649] 
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Gradient descent has learned a final learned model w* = [0.174, 0.119]. We visualize the linear 

classifier learned by our gradient descent procedure in Figure 5.7. In addition to visually confirming 

that the gradient descent procedure learned a useful model, we can also compute training 

accuracy. 

Recall that a linear classifier hw(x) = w1x1 + w2x2 returns real-valued predictions, which we need 

to convert to 0 or 1. This is straightforward: we simply assign all positive predictions (examples 

above the line) to the class ypred = 1 and negative predictions (examples below the line) to the class 

ypred = 0. 

ypred = (np.dot(X, w) >= 0).astype(int) 
from sklearn.metrics import accuracy_score 
accuracy_score(y, ypred) 
0.995 

Success! The training accuracy learned by our implementation of gradient descent is 99.5%. 

Figure 5.7. (left) Gradient descent over our squared loss function starting at w_init (blue square) and converging at 

the optimal solution (red circle). (right) The learned model w* = [0.174, 0.119] is a linear classifier that fits the 

training data quite well as it separates both the classes. 

Now that we understand how gradient descent uses gradient information sequentially to 

minimize a loss function during training, let’s see how we can extend it with boosting to train a 

sequential ensemble. 

5.2 Gradient Boosting: Gradient Descent + Boosting

In gradient boosting, we aim to train a sequence of weak learners that approximate the gradient at 

each iteration. Gradient boosting and its successor Newton boosting are currently considered state-

of-the-art ensemble methods and are widely implemented and deployed for several tasks in diverse 

application areas. 
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We will first look at the intuition of gradient boosting and contrast it with another familiar 

boosting method: AdaBoost. Armed with this intuition, as before, we will implement our own 

version of gradient boosting to visualize what is really going on under the hood. 

Then, we will look at two gradient boosting approaches available in scikit-learn: the 

GradientBoostingClassifier, and its more scalable counterpart HistogramGradient 

BoostingClassifer. This will set us up nicely for LightGBM, a powerful and flexible implementation 

of gradient boosting widely used for practical applications. 

5.2.1 Intuition: Learning with Residuals

The key component of sequential ensemble methods, such as AdaBoost and gradient boosting, is 

that they aim to train a new weak estimator at each iteration to fix the errors made by the weak 

estimator at the previous iteration. However, AdaBoost and gradient boosting train new weak 

estimators on poorly classified examples in rather different ways. 

ADABOOST VS. GRADIENT BOOSTING 

AdaBoost identifies high-priority training examples by weighting them such that misclassified 

examples have higher weights than correctly classified ones. In this way, AdaBoost can tell the 

base learning algorithm which training examples it should focus on in the current iteration. 

In contrast, gradient boosting uses residuals or errors (between the true and predicted labels) 

to tell the base learning algorithm which training examples it should focus on in the next iteration.  

What exactly is a residual? For a training example, it is simply the error between the true label 

and the corresponding prediction. Intuitively, a correctly classified example must have a small 

residual and a misclassified example must have a large residual. 

More concretely, if a classifier h makes a prediction h(x) on a training example x, a naïve way of 

computing the residual would be to directly measure the difference between them 

residual(true, predicted)=residual(y, h(x))= y - h(x). 

Recall the squared loss function we were using previously: floss(y, x) = ½ (y – h(x))2. The gradient of 

this loss f with respect to our model h is  
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Figure 5.8. Comparing AdaBoost (left) to gradient boosting (right). Both approaches train weak estimators that 

improve classification performance on misclassified examples. AdaBoost uses weights, with misclassified examples 

being assigned higher weights. Gradient boosting uses residuals, with misclassified examples having higher residuals. 

The residuals are nothing but negative loss gradients. 

The negative gradient of the squared loss is exactly the same as our residual! This means that the 

gradient of the loss function is a measure of the misclassification and is the residual.  

Training examples that are badly misclassified will have large gradients (or residuals, or errors) 

as the gap between the true and predicted labels will be large. Training examples that are correctly 

classified will have small gradients. 

Thus, analogous to AdaBoost, we have a measure of how badly each training example is 

misclassified. How can we use this information to train a weak learner?  

WEAK LEARNERS TO APPROXIMATE GRADIENTS  

Continuing our analogy with AdaBoost, recall that once it assigns weights to all the training 

examples, we have a weight-augmented data set (xi, yi, Di) with i = 1, … , n, of weighted examples. 

Thus, training a weak learner in AdaBoost is an instance of a weighted classification problem. With 

an appropriate base classification algorithm, AdaBoost trains a weak classifier. 

In gradient boosting, we no longer have weights Di. Instead, we have residuals (or negative 

loss gradients), ri and a residual-augmented data set (xi, -ri). Instead of classification labels (yi = 0 

or 1) and example weights (Di), each training example now has an associated residual, which can 

be viewed as a real-valued label.  

Thus, training a weak learner in gradient boosting is an instance of a regression problem, which 

requires a base learning algorithm such as decision tree regression. When trained, weak estimators 

in gradient boosting can be viewed as approximate gradients.  

The figure below illustrates how gradient descent differs from gradient boosting and how 

gradient boosting is conceptually similar to gradient descent. The key difference between the two is 

that gradient descent directly uses the negative gradient, while gradient boosting trains a weak 

regressor to approximate the negative gradient. 
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Figure 5.9. Comparing gradient descent (left) to gradient boosting (right). At iteration t, gradient descent updates the 

model using the negative gradient, -gt. At iteration t, gradient boosting approximates the negative gradient by training 

a weak regressor, ht on the negative residuals -ri
t. The step length αt in gradient descent is equivalent to the

hypothesis weight of each base estimator in a sequential ensemble. 

NOTE Gradient boosting aims to fit a weak estimator to residuals, which are real-valued. Thus, gradient boosting will 

always need to use a regression algorithm as a base learning algorithm and learn regressors as weak estimators. 

This will be the case even when the loss function corresponds to binary or multi-class classification, regression or 

ranking. 

We now have all the ingredients to formalize the algorithmic steps of gradient boosting. 

GRADIENT BOOSTING IS GRADIENT DESCENT + BOOSTING 

To summarize, gradient boosting combines gradient descent and boosting. 

• Like AdaBoost, gradient boosting trains a weak learner to fix the mistakes made by the

previous weak learner. Adaboost uses example weights to focus learning on misclassified

examples, while gradient boosting uses example residuals to do the same.

• Like gradient descent, gradient boosting updates the current model with gradient

information. Gradient descent uses the negative gradient directly, while gradient boosting

trains a weak regressor over the negative residuals to approximate the gradient.

Finally, both gradient descent and gradient boosting are additive algorithms, that is, they generate 

sequences of intermediate terms that are additively combined to produce the final model. This is 

apparent in the figure below.  
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Figure 5.10. Both gradient descent (left) and gradient boosting (right) produce a sequence of updates. In gradient 

descent, each iteration additively updates the current model with the new negative gradient (-gt). In gradient boosting, 

each iteration additively updates the current model with the new approximate weak gradient estimate (the regression 

tree, ht). 

At each iteration, AdaBoost, gradient descent and gradient boosting all update the current model 

using an additive expression of the form: 

new model = old model + (step length) * (update direction), 

or more formally, 

F(t+1) (x)=Ft(x) + αt ⋅ ht(x) 

We can unravel the expression above for iterations t, t – 1, t – 2, … , 0 to obtain the overall update 

sequence AdaBoost, gradient descent and gradient boosting produce:  

F(t+1) (x) = F0 (x) + α1 ⋅ h1(x) + α2 ⋅ h2(x) + ⋯ + α(t-1) ⋅ h(t-1)(x) + αt ⋅ ht(x). 

The key differences between the three algorithms are in how we compute the updates ht and the 

hypothesis weights (also known as step lengths) αt. We can summarize the update steps of all 

three algorithms in Table 5.1. 

Table 5.1. Comparing AdaBoost, gradient descent and gradient boosting. 

Algorithm Loss function Base learning algo. Update dir ht(x). Step length αt 

AdaBoost for 

classification 

Exponential Classification with 

weighted examples 

Weak classifier Computed in 

closed form 

Gradient 

descent 

User-specified None Gradient vector Line search 

Gradient User-specified Regression with Weak regressor Line search 
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boosting examples & residuals 

Why is Gradient Boosting = Gradient Descent + Boosting? Because it generalizes the boosting 

procedure from the exponential loss function used by AdaBoost to any user-specified loss function. 

In order for gradient boosting to flexibly adapt to wide variety of loss functions, it adopts two 

general procedures: (1) approximate gradients using weak regressors and, (2) compute the 

hypothesis weights (or step lengths) using line search.  

5.2.2 Implementing Gradient Boosting

As before, we will put our intuition to practice by implementing our own version of gradient 

boosting. The basic algorithm can be outlined with the following pseudocode: 

initialize: F = f0, some constant value 
for t = 1 to T: 

1. compute the negative residuals for each example,

2. fit a weak decision tree regressor ht(x) using the training set (xi, ri)i=1
n

3. compute the step length (αt) using line search

4. update the model: F = F + αt ⋅ ht(x)

This training procedure is almost the same as that of gradient descent except for a couple of 

differences: (1) instead of using the negative gradient, we use an approximate gradient trained on 

the negative residuals, and (2) instead of checking for convergence, the algorithm terminates after 

a finite number of iterations T. The listing below implements this pseudo-code specifically for the 

squared loss.  

Listing 5.2 Gradient Boosting for the squared loss 

def fit_gradient_boosting(X, y, n_estimators=10): 
 n_samples, n_features = X.shape   #A 
 n_estimators = 10 
 estimators = []  #B 
 F = np.full((n_samples, ), 0.0)   #C 

 for t in range(n_estimators): 
 residuals = y – F   #D 
 h = DecisionTreeRegressor(max_depth=1) 
 h.fit(X, residuals)  #E 

 hreg = h.predict(X)  #F 
 loss = lambda a: np.linalg.norm(y - (F + a * hreg))**2  #G 
 step = minimize_scalar(loss, method='golden')  #H 
 a = step.x 

 F += a * hreg  #I 
 estimators.append((a, h))  #J 

 return estimators 

#A get dimensions of the data set 

#B initialize an empty ensemble 
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#C predictions of the ensemble on the training set 

#D   compute residuals as negative gradients of the squared loss 

#E   fit weak regression tree (ht) to the examples and residuals 

#F get predictions of the weak learner, ht  

#G set up the loss function as a line search problem 

#H find the best step length using the golden section search 

#I update the ensemble predictions 

#J update the ensemble  

Once the model is learned, we can make predictions as with the AdaBoost ensemble. Note that, 

just like our AdaBoost implementation previously, this model returns predictions of -1/1 rather than 

0/1 

Listing 5.3: Predictions using gradient boosted model 

def predict_gradient_boosting(X, estimators): 
 pred = np.zeros((X.shape[0], ))   #A 

 for a, h in estimators: 
 pred += a * h.predict(X)  #B 

 y = np.sign(pred)  #C 

 return y 

#A initialize all the predictions to 0 

#B aggregate individual predictions from each regressor 

#C convert weighted predictions to -1/1 labels 

We can test drive this implementation on a simple two-moons classification example. Note that we 

convert the training labels from 0/1 to -1/1 to ensure that we learn and predict correctly. 

from sklearn.datasets import make_moons 
X, y = make_moons(n_samples=200, noise=0.15, random_state=13) 
y = 2 * y – 1  #A 
from sklearn.model_selection import train_test_split 
Xtrn, Xtst, ytrn, ytst = train_test_split(X, y,  #B 

 test_size=0.25, random_state=11) 

estimators = fit_gradient_boosting(Xtrn, ytrn) 
ypred = predict_gradient_boosting(Xtst, estimators) 

from sklearn.metrics import accuracy_score 
tst_err = 1 - accuracy_score(ytst, ypred)   #C 
tst_err 
0.06000000000000005 

#A convert training labels to -1/1 

#B split into train and test sets 

#C train and get test error 

The prediction of this model is 6%, which is pretty good. 

VISUALIZING GRADIENT BOOSTING ITERATIONS 

Finally, to comprehensively nail down our understanding of gradient boosting, let us step through 

the first few iterations to see how gradient boosting uses residuals to boost classification.  
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In our implementation, we initialize our predictions to be F(xi) = 0 This means that in the first 

iteration, the negative residuals for examples in Class 1 will be ri = 1 – 0 = 1, and the residuals for 

the examples in Class 0 will be ri = -1 – 0 = -1. This is evident in the figure below. 

In the first iteration, all the training examples have high residuals (either +1 or -1), and the 

base learning algorithm (decision tree regression) has to train a weak regressor taking all these 

residuals into account. The trained regression tree (h1) is shown in Figure 5.11 (right).  

Figure 5.11. Iteration 1: residuals (left) and the weak regressor trained over the residuals (right). 

The current ensemble consists of only one regression tree: F = α1h1. We can also visualize the 

classification predictions of h1 and the ensemble F. The resulting classifications achieve an overall 

error rate of 16%, as shown in the following figure. 

Figure 5.12. Iteration 1: Predictions of the weak learner (h1) and the whole ensemble (F). Since this is the first 

iteration, the ensemble consists of only one weak regressor. 
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In iteration 2, we compute the residuals again. Now, the residuals begin to show more separation, 

which reflects how well they are classified by the current ensemble. The decision tree regressor 

attempts to fit the residuals again (Figure 5.13, right), though this time, it focuses on examples 

that have been misclassified previously. 

Figure 5.13. Iteration 2: residuals (left) and the weak regressor trained over the residuals (right). 

The ensemble now consists of two regression trees: F = α1h1 + α2h2. We can now visualize the 

classification predictions of the newly trained regressor h2 and the overall ensemble F.  

Figure 5.14. Iteration 2: Predictions of the weak learner (h2) and the overall ensemble (F). 

The weak learner trained in iteration 2 has an overall error rate of 39.5%. Yet the first two weak 

learners have already boosted the ensemble performance up to 91% accuracy, that is 9% error. 

This process continues in iteration 3. 
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Figure 5.15. Iteration 3: residuals (left) and the weak regressor trained over the residuals (right). 

In this manner, gradient boosting continues to sequentially train and add base regressors to the 

ensemble. The figure below shows the model learned after 10 iterations; the ensemble consists of 

10 weak regressor estimators and has boosted overall training accuracy to 97.5%! 

Figure 5.16. Final gradient boosting ensemble after 10 iterations. 

There are several publicly available and efficient implementations of gradient boosting that you 

can use for your machine-learning tasks. For the rest of this section, we will focus on the most 

familiar: scikit-learn. 

5.2.3 Gradient Boosting with scikit-learn

We will now look at how to use two scikit-learn classes: GradientBoosting Classifier and a 

new (currently experimental) version called HistogramGradient BoostingClassifier, which 
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trade exactness for speed to train models significantly faster than GradientBoostingClassifier. 

This makes it ideally suited for larger data sets.  

scikit-learn’s GradientBoostingClassifier essentially implements the same gradient-

boosting algorithm that we have ourselves implemented in this section. Its usage is similar to other 

scikit-learn classifiers such as AdaBoostClassifier. There are two key differences from 

AdaBoostClassifier, however: 

• Unlike AdaBoostClassifier, which supports several different types of base estimators,

GradientBoostingClassifier is only supports tree-based ensembles. This means that it

will always use decision trees as base estimators, and there is no mechanism to specify

other types of base learning algorithms.

• AdaBoostClassifier optimizes the exponential loss (by design).

GradientBoostingClassifier allows the user to select either the logistic or exponential loss

functions. The logistic loss (also known as cross entropy) is a commonly used loss function

for binary classification (and also has a multi-class variant).

NOTE Training a GradientBoostingClassifier with the exponential loss is essentially equivalent to training 

an AdaBoostClassifier.  

In addition to selecting the loss function, we can also set additional learning parameters. These 

parameters are often selected by cross validation, much like any other machine-learning algorithm 

(see Chapter 4.3 for parameter selection in AdaBoostClassifier). 

• We directly can control the complexity of the base tree estimators with max_depth and

max_leaf_nodes. Higher values mean that the base tree-learning algorithm has greater

flexibility in training more complex trees. The caveat here, of course, is that deeper trees or

trees with more leaf nodes tend to overfit the training data.

• n_estimators caps the number of weak learners that will be trained sequentially by

GradientBoostingClassifier and is essentially the number of algorithm iterations.

• Like AdaBoost, gradient boosting also trains weak learners (ht in iteration t) sequentially and

constructs an ensemble incrementally and additively: Ft(x) = Ft-1(x) + η ⋅ αt ⋅ ht(x).  Here, αt is

the weight of weak learner ht (or the step length) and η is the learning rate. The learning

rate is a user-defined learning parameter that lies in the range 0 < η ≤ 1. Recall that a slower

learning rate means that it will often take more iterations to train an ensemble. It may be

necessary to opt for slower learning rates in order to make successive weak learners more

robust to outliers and noise. Learning rate is controlled by the learning_rate parameter.

Let’s look at an example of gradient boosting in action on the breast cancer data set. We train and 

evaluate a GradientBoostingClassifier model using the breast cancer data set. 

from sklearn.datasets import load_breast_cancer 
from sklearn.model_selection import train_test_split 
X, y = load_breast_cancer(return_X_y=True) 
Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, test_size=0.25)  #A 

from sklearn.ensemble import GradientBoostingClassifier 
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ensemble = GradientBoostingClassifier(max_depth=1,  #B 
 n_estimators=20, 
 learning_rate=0.75) 

ensemble.fit(Xtrn, ytrn) 

#A load the data set and split into training and test sets 

#B train a GB model with these learning parameters 

And how well did this model do? 

ypred = ensemble.predict(Xtst) 
err = 1 - accuracy_score(ytst, ypred) 
print(err) 
0.020979020979020935 

This gradient boosting classifier achieves 2.1% test error, which is pretty good. A key limitation of 

GradientBoostingClassifier, however, is its speed; while effective, it does tend to be rather 

slow on large data sets. 

The efficiency bottleneck, as it turns out, is in tree learning. Recall that gradient boosting has to 

learn a regression tree at each iteration as a base estimator. For large data sets, the number of 

splits a tree-learner has to consider becomes prohibitively large. 

This has led to the emergence of histogram-based gradient boosting, which aims to speed up 

base estimator tree learning, allowing gradient boosting to scale up to large data sets. 

5.2.4 Histogram-based Gradient Boosting

To understand the need for histogram-based tree learning, we have to revisit how a decision tree 

algorithm learns a regression tree. In tree-learning, we learn a tree in a top-down fashion, one 

decision node at a time.  

The standard way to do this is by pre-sorting the feature values, enumerating all possible splits 

and then evaluating all of them in order to find the best split. Let’s say have 1 million (106) training 

examples each of dimension 100. 

Standard tree learning will enumerate and evaluate 100 million splits (106 × 100 = 108) to 

identify a decision node! This is clearly untenable.  

One alternative is to re-organize the feature values into a small number of bins. In the 

hypothetical example above, suppose we binned each feature column into 100 bins. Now, to find 

the best split, we have to only search over 10 thousand splits (100 × 100 = 104), which can speed up 

training rather dramatically! 

Of course, this means that we are trading-off exactness for speed. However, it is usually the 

case that there is a large amount of redundancy or repeated information in many (big) data sets, 

which we “compress” by binning the data into smaller buckets. The figure below illustrates this 

tradeoff.  
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Figure 5.17. (left) A simple 1-dimensional regression problem with 50 data points. (center) Standard tree learning 

evaluates every possible split, which is illustrated a line between each pair of data points. The best split is the one 

with the lowest split criterion (here, squared loss). (right) Histogram-based binning first puts the data into 5 buckets, 

and then evaluates the splits between each pair of data buckets. Again, the best split is the one with the lowest split 

criterion (also squared loss). 

In the figure above, we contrast the behaviors of standard decision tree learning and histogram-

based tree learning. In standard tree learning, each split considered is between two successive 

data points (figure center); for 50 data points, we have to evaluate 49 splits. 

In histogram-based splitting, we first bin the data (figure right, into 5 bins). Now, each split 

considered is between two successive data buckets; for 5 bins, we only have to evaluate 4 splits! 

Now imagine how this would scale to millions of data points. 

scikit-learn 0.21 introduced an experimental version of gradient boosting called 

HistogramGradientBoostingClassifier that implements histogram-based gradient boosting such 

that its training time is significantly improved.  

The snippet below shows how to train and evaluate Histogram GradientBoostingClassifier 

on the breast cancer data set.  

from sklearn.experimental import enable_hist_gradient_boosting 
from sklearn.ensemble import HistGradientBoostingClassifier   #A 

ensemble = HistGradientBoostingClassifier(max_depth=2, 
 max_iter=20, 
 learning_rate=0.75) 

ensemble.fit(Xtrn, ytrn)  #B 

ypred = ensemble.predict(Xtst) 
err = 1 - accuracy_score(ytst, ypred) 
print(err) 
0.013986013986013957 

#A enable experimental mode  (this is current as of v.0.21) 

#B train a histogram-based GB model with these learning parameters 

On the breast cancer data set, HistGradientBoostingClassifier achieved a test error of 1.4%. 

scikit-learn's histogram-based boosting implementation itself is inspired by another popular 

gradient boosting package: LightGBM. 
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5.3 LightGBM: A Framework for Gradient Boosting

LightGBM, or Light Gradient Boosted Machines, is an open source gradient boosting framework that 

was originally developed and released by Microsoft.  

At its core, LightGBM is essentially a histogram-based gradient boosting approach. However, it 

also has several modeling and algorithmic features that enable it to handle large-scale data. In 

particular, LightGBM offers the following advantages: 

• Algorithmic speedups such as gradient based one-sided sampling and exclusive feature

bundling that result in faster training and lower memory usage; these are described in more

detail in Section 5.3.1;

• Support for a large number of loss functions for classification, regression and ranking as well

as application-specific custom loss functions (Section 5.3.2);

• Support for parallel and GPU learning, which enables it handle large-scale data sets

(parallel/GPU-based machine learning is out-of-scope for this book).

We will also delve into how to apply LightGBM to some practical learning situations to avoid 

overfitting (Section 5.4.1), and ultimately a case study on a real-world data set (Section 5.4).  

It will be impossible to detail all the features available in LightGBM in this limited space, of 

course. Instead, this section and the next introduce LightGBM and illustrate its usage and 

applications in practical settings. This should enable readers to springboard further into advanced 

use cases of LightGBM for their applications through its documentation. 

5.3.1 What Makes LightGBM “Light”?

Recall from our earlier discussion that the biggest computational bottleneck in scaling gradient 

boosting to large (with many training examples) or high-dimensional (with many features) data 

sets is tree learning, specifically, identifying optimal splits in the regression tree base estimators. 

As we saw in the previous section, histogram-based gradient boosting attempts to address this 

computational bottleneck. This works reasonably well for medium-sized data sets.  However, 

histogram-bin construction can itself be slow if we have a very large number of data points or a 

large number of features, or both. 

In this section, we will look at two key conceptual improvements that LightGBM implements 

that often lead to significant speedups in training times in practice. The first, Gradient-based One-

Side Sampling (GOSS), aims to reduce the number of training examples, while the second, 

Exclusive Feature Bundling (EFB), aims to reduce the number of features. 

GRADIENT-BASED ONE-SIDE SAMPLING (GOSS) 

A well-known approach to dealing with a very large number of training examples is to downsample 

the data set, that is, randomly sample a smaller subset of the data set. We have already seen 

examples of this in other ensemble approaches such as pasting (which is bagging without 

replacement, see Chapter 2). 

There are two problems with randomly downsampling the data set. First, not all examples are 

equally important; as in AdaBoost, some training examples are more important than others 

depending on the extent of their misclassification. Thus, it is imperative that downsampling not 

throw away high-importance training examples.  
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Second, sampling should also ensure that some fraction of correctly classified examples is also 

included. This is important in order to not overwhelm the base learning algorithm with just 

misclassified examples, which will inevitably lead it to overfit. 

This is addressed by downsampling the data smartly using a procedure called Gradient-based 

One-Side Sampling or GOSS. Briefly, GOSS performs the following steps: 

1. Similar to AdaBoost that uses sample weights, GOSS uses the gradient magnitude.

Remember that the gradient indicates how much more the prediction can be improved: well-

trained examples have small gradients, while under-trained (typically, misclassified or

confusing) examples have large gradients.

2. Select the top a% of examples with the largest gradients; call this subset top

3. Randomly sample b% of the remaining examples; call this subset rand

4. Assign weights to examples in both sets: , 

5. Train a base regressor over this sampled data: (data, -gradients, w)

The weights computed in the Step 4 ensure that there is a good balance between undertrained and 

well-trained samples. Overall, such sampling also fosters ensemble diversity, which ultimately leads 

to better ensembles. 

EXCLUSIVE FEATURE BUNDLING (EFB) 

Aside from a large number of training examples, big data also often provides the challenge of very 

high dimensionality, which can adversely affect histogram construction and slow down the overall 

training process. 

Similar to downsampling training examples, if we are able to downsample the features as well, 

it is possible to gain (sometimes very big) improvements in training speed. This is especially so 

when feature space is sparse, and features are mutually exclusive.  

One common example of such a feature space is when we apply one-hot vectorization to 

categorical variables. For instance, consider a categorical variable that takes 10 unique values. 

When one hot vectorized, this variable is expanded to 10 binary variables, of which only one is 

non-zero and all others are zero. This makes the 10 columns corresponding to this feature highly 

sparse. 

Exclusive feature bundling (EFB) exploits this sparsity and aims to merge mutually exclusive 

columns into one column to reduce the number of effective features. At a high-level, EFB performs 

two steps: 

1. Identify features that can be bundled together by measuring conflicts or the number of times

both features are non-zero. The intuition here is that if two features are often simultaneously

zero, they are low conflict and can be bundled together.

2. Merge the identified low conflict features into a feature bundle. The idea here is to preserve

information carefully when merging non-zero values, which is typically done by adding

offsets to feature values to prevent overlaps.

By merging features in this manner, EFB effectively reduces the overall number of features base 

estimator algorithms have to consider, which often makes training much faster. 
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5.3.2 Gradient Boosting with LightGBM

LightGBM is available for various platforms including Windows, Linux and MacOS, and can either be 

built from scratch or installed using tools such as pip. Its usage syntax is quite similar to scikit-

learn’s.  

Continuing with the breast cancer data set from Section 5.2.3, we can learn a gradient 

boosting model using LightGBM as follows: 

from lightgbm import LGBMClassifier 
gbm = LGBMClassifier(boosting_type='gbdt', n_estimators=20, max_depth=1) 
gbm.fit(Xtrn, ytrn) 

Here, we instantiate an instance of LGBMClassifier and set it to train an ensemble of 20 

regression stumps (that is, the base estimators will be regression trees of depth 1). The other 

important specification here is boosting_type. LightGBM can be trained in four modes:  

• boosting_type=’rf’ trains traditional random forest ensembles (see Section 2.4)

• boosting_type=’gbdt’ trains an ensemble using traditional gradient boosting (see Section

5.2)

• boosting_type=’goss’ trains an ensemble using Gradient One-Side Sampling (GOSS, see

Section 5.3.1)

• boosting_type=’dart’ trains an ensemble using DART, or Dropout meets Multiple Additive

Regression Trees (which will be described in Section 5.4)

The last three gradient boosting modes essentially tradeoff between training speed and predictive 

performance, and we will explore this in our case study. For now, how well does the model we just 

trained using boosting_type='gbdt' do? 

from sklearn.metrics import accuracy_score 
ypred = gbm.predict(Xtst) 
accuracy_score(ytst, ypred) 
0.9473684210526315 

Our first LightGBM classifier achieves 94.7% accuracy on the test set held out from the breast 

cancer data set. Now that we’ve familiarized ourselves with the basic functionality of LightGBM, let 

us look at how we can train models for real-world use cases with LightGBM. 

5.4 LightGBM in Practice

In this section, we describe how to train models in practice using LightGBM. As always, this means 

ensuring that LightGBM models do not overfit and generalize well. As with AdaBoost, we look to set 

the learning rate (Section 5.4.1) or employ early stopping (Section 5.4.2) as a means to control 

overfitting. Specifically,   

• by selecting an effective learning rate, we try to control the rate at which the model learns

so that it doesn’t rapidly fit, and then overfit the training data. We can think of this a

proactive modeling approach, where we try to identify a good training strategy so that it

leads to a good model.

• by enforcing early stopping, we try to stop training as soon as we observe that the model is

starting to overfit. We can think of this as a reactive modeling approach, where we
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contemplate terminating training as soon as we think we have a good model. 

Finally, we also explore one of the most powerful functionalities of LightGBM: its support for 

custom loss functions. Recall that one of the major benefits of gradient boosting is that it is a 

general procedure, widely applicable to many loss functions.  

While LightGBM provides support for many standard loss functions for classification, regression 

and ranking, sometimes it may be necessary to train with application-specific loss functions. In 

Section 5.4.3, we will see precisely how we can do this with LightGBM. 

5.4.1 Learning Rate

When using gradient boosting, as with other machine-learning algorithms, it is possible to overfit 

on the training data. This means that, while we achieve very good training set performance, this 

doesn’t result in a similar test set performance. That is, the model we’ve trained fails to generalize 

well. LightGBM, like scikit-learn, provides us with the means to control model complexity before 

overfitting.  

LEARNING RATE VIA CROSS VALIDATION 

LightGBM allows us to control the learning rate through the learning_rate training parameter (a 

positive number that has a default value of 0.1).  

This parameter also has a couple of aliases: shrinkage_rate and eta, which are other terms 

for the learning rate commonly used in machine-learning literature. Though all of these parameters 

have the same effect, care must be taken to set only one of them. 

How can we figure out an effective learning rate for our problem? As with any other learning 

parameter, we can use cross validation. Recall that we also used cross validation to select the 

learning rate for AdaBoost in the previous chapter. 

LightGBM plays nicely with scikit-learn, and we can combine the relevant functionalities from 

both packages to perform effective model learning. 

In the listing below, we combine scikit-learn's StratifiedKFold class to split the training 

data into 10 folds of training and validation sets. StratifiedKFold ensures that we preserve class 

distributions, that is, the fractions of different classes across the folds. 

Once the cross validation folds are set up, we can train and validate models on these 10 folds 

for different choices of learning rates: 0.1, 0.2, …, 1.0. 

Listing 5.4. Cross Validation with LightGBM and scikit-learn 

from sklearn.model_selection import StratifiedKFold 
import numpy as np 

n_learning_rate_steps, n_folds = 10, 10  #A 
learning_rates = np.linspace(0.1, 1.0, num=n_learning_rate_steps) 

splitter = StratifiedKFold(n_splits=n_folds, shuffle=True, random_state=42)   #B 

trn_err = np.zeros((n_learning_rate_steps, n_folds))  #C 
val_err = np.zeros((n_learning_rate_steps, n_folds))  #C 
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for i, rate in enumerate(learning_rates):   #D 
 for j, (trn, val) in enumerate(splitter.split(X, y)): 

 gbm = LGBMClassifier(boosting_type='gbdt', n_estimators=10, 
 max_depth=1, learning_rate=rate) 

 gbm.fit(X[trn, :], y[trn]) 
 trn_err[i, j] = (1 - accuracy_score(y[trn],  #D 

 gbm.predict(X[trn, :]))) * 100 
 val_err[i, j] = (1 - accuracy_score(y[val], 

 gbm.predict(X[val, :]))) * 100 

trn_err = np.mean(trn_err, axis=1)  #E 
val_err = np.mean(val_err, axis=1)  #E 

#A    initialize learning rates & num. CV folds 

#B split data into training and validation folds 

#C to save training & validation errors 

#D Train a LightGBM classifier for each fold with different learning rates 

#E save training and validation errors 

#F average training & validation  

errors across folds 

We can visualize the training and validation errors for different learning rates as shown below. 

Figure 5.18. Averaged training and validation errors of LightGBM across 10 folds of the breast cancer data set. 

Unsurprisingly, as the learning rate increases, the training error continues to decrease, suggesting 

that the model first fits and then begins to overfit the training data. The validation error does not 

show the same trend.  

It decreases initially, and then increases; a learning rate of 0.4 produces the lowest validation 

error. This, then, is the best choice of learning rate. 

CROSS VALIDATION WITH LIGHTGBM 

LightGBM provides its own functionality to perform cross validation (CV) with given parameter 

choices through a function called cv.  
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Listing 5.5. Cross Validation with LightGBM 

from lightgbm import cv, Dataset 

trn_data = Dataset(Xtrn, label=ytrn)  #A 
params = {'boosting_type': 'gbdt', 'objective': 'cross_entropy' 

 'learning_rate': 0.25,   #B 
 'max_depth': 1} 

cv_results = cv(params, trn_data, 
 num_boost_round=100, 
 nfold=5, 
 stratified=True, shuffle=True) 

#A   put data into a LightGBM Dataset object 

#B   specify learning parameters 

#C   perform 5-fold CV, each with 100 estimators 

In the listing above, we perform 5-fold CV over 100 boosting rounds (thus eve ntually training 100 

base estimators). Setting stratified=True ensures that we preserve class distributions, that is, 

the fractions of different classes across the folds. Setting shuffle=True randomly shuffles the 

training data before splitting into folds. 

We can visualize the training objective as training progresses. In the listing above, we train our 

classification model by optimizing cross entropy, set via 'objective': 'cross_entropy'. This is 

shown in the figure below: as we add more base estimators to our sequential ensemble, the 

average 5-fold cross entropy objective decreases. 

Figure 5.19. The average cross entropy across the folds decreases with increasing iterations, as we add more base 

estimators to the ensemble. 

5.4.2 Early Stopping

Another way of reining in overfitting behavior is through early stopping. As we’ve seen with 

AdaBoost, the idea of early stopping is pretty straightforward. As we train sequential ensembles, 

we train one base estimator at each iteration.  
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This process continues until we reach the user-specified ensemble size (in LightGBM, there are 

several aliases to specify this: n_estimators, num_trees, num_rounds). 

As the number of base estimators in the ensemble increases, the complexity of the ensemble also 

increases, which eventually leads to overfitting. To avoid this, what if, instead of training the 

model, we stopped before we reached the limit of ensemble size? 

This is precisely early stopping. We keep track of overfitting behavior by means of a validation 

set. Then, we train until we see no improvement in validation performance for a certain pre-

specified number of iterations. 

For example, let’s say that we have started training an ensemble of 500 base estimators. We 

keep a close eye on the validation error as we grow our ensemble, resolving that if the validation 

error does not improve over a window of m iterations or early stopping rounds, we will terminate 

training. 

In LightGBM, we can incorporate early stopping if we specify a value for the parameter 

early_stopping_rounds. As long as the overall validation score (say accuracy) improves over the 

last early_stopping_rounds, LightGBM will continue to train. However, if the score has not 

improved after early_stopping_rounds, LightGBM terminates. 

As with AdaBoost, LightGBM also needs us to explicitly specify a validation set as well as a 

scoring metric for early stopping. In the listing below, we use the AUC (area under the receiver-

operator curve) as the scoring metric to determine early stopping.  

The AUC is an important evaluation metric for classification problems and can be interpreted as 

the probability that the model will rank a randomly chosen positive example higher than a 

randomly chosen negative example. Thus, high values of AUC are preferred as it means that the 

model is more discriminative. 

Listing 5.6. Early Stopping with LightGBM 

from sklearn.model_selection import train_test_split 
Xtrn, Xval, ytrn, yval = train_test_split(X, y, test_size=0.2,  #A 

 shuffle=True, random_state=42) 

gbm = LGBMClassifier(boosting_type='gbdt', n_estimators=50, 
 max_depth=1, early_stopping=5)  #B 

gbm.fit(Xtrn, ytrn, eval_set=[(Xval, yval)], eval_metric='auc')  #C 

#A split data into train & validation sets 

#B early stopping if no change in val. score after 5 rounds 

#C use AUC as the validation  scoring metric for early stopping 

Let’s look at the output produced by LightGBM. In the listing above, we set n_estimators=50, 

which means training will add one base estimator per iteration. 

Training until validation scores don't improve for 5 rounds 
[1] valid_0's auc: 0.885522 valid_0's binary_logloss: 0.602321 
[2] valid_0's auc: 0.961022 valid_0's binary_logloss: 0.542925 
...
[27] valid_0's auc: 0.996069 valid_0's binary_logloss: 0.156152 
[28] valid_0's auc: 0.996069 valid_0's binary_logloss: 0.153942 
[29] valid_0's auc: 0.996069 valid_0's binary_logloss: 0.15031 
[30] valid_0's auc: 0.996069 valid_0's binary_logloss: 0.145113 
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[31] valid_0's auc: 0.995742 valid_0's binary_logloss: 0.143901 
[32] valid_0's auc: 0.996069 valid_0's binary_logloss: 0.139801 
Early stopping, best iteration is:
[27] valid_0's auc: 0.996069 valid_0's binary_logloss: 0.156152 

First, observe that training terminates after 32 iterations, meaning that LightGBM did indeed 

terminate before going all the way to training a full set of 50 base estimators. Next, note that the 

best iteration was 27, which had a score (in this case, AUC) of 0.996069.  

Over the next 5 (early_stopping_rounds) iterations, from 28 to 32, LightGBM observed that 

adding additional estimators did not improve the validation score significantly. This triggers the 

early stopping criterion, causing LightGBM to terminate and return an ensemble with 32 base 

estimators. 

We also visualize the training and validation errors as well as the ensemble size for different 

choices of early_stopping_rounds. 

Figure 5.20. (left) Training and validation errors for different values of early_stopping_rounds. (right) Ensemble 

sizes for different values of early_stopping_rounds. 

Small values of early_stopping_rounds make LightGBM very "impatient" and aggressive in that it 

does not wait too long to see if there is any improvement before stopping learning early. This leads 

to underfitting; in the figure above, for instance, setting early_stopping_rounds to 1 leads to an 

ensemble of just 5 base estimators, hardly enough to even fit the training data properly!  

Large values of early_stopping_rounds make LightGBM too passive in that it waits for longer 

periods to see if there is any improvement. The choice of early_stopping_rounds ultimately 

depends on your problem: how big it is, what your performance metric is, and the complexity of 

the models you are willing to tolerate. 
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5.4.3 Custom Loss Functions

Recall that one of the most powerful features of gradient boosting is that it is applicable to a wide 

variety of loss functions. This means that it is also possible for us to design our own, problem-

specific loss functions to handle specific properties of our data set and task. 

Perhaps our data set is imbalanced, meaning that different classes have different amounts of data. 

In such situations, rather than high accuracy, we might require high recall (fewer false negatives, 

for example, in medical diagnosis) or high precision (fewer false positives, for example, in spam 

detection). In many such scenarios, it is often necessary to design our own problem-specific loss 

functions.  

NOTE For more details on evaluation metrics such as precision and recall, as well metrics for other machine 

learning tasks such as regression and ranking, see Evaluating Machine Learning Models by Alice Zheng (O’Reilley, 

2015). 

With gradient boosting generally, and LightGBM specifically, once we have a loss function, we can 

rapidly train and evaluate models that are targeted towards our problem. In this section, we will 

explore how to use LightGBM for a custom loss function called the focal loss. 

THE FOCAL LOSS 

The focal loss was introduced for dense object detection, or the problem of object detection at a 

large number of densely packed windows in an image. Ultimately, such object detection tasks come 

down to a foreground vs. background classification problem, which is highly imbalanced as there 

are often many more windows with background than foreground objects of interest. 

The focal loss, in general, was designed for, and well-suited for classification problems with 

such class imbalances. It is a modification of the classical cross-entropy loss that puts more focus 

on harder-to-classify examples, while ignoring the easier examples.  

More formally, recall that the standard cross entropy loss between a true label and a predicted 

label can be computed as  

Lce (ytrue, ypred) = - ytrue log(ppred) - (1 - ytrue) log(1 - ppred) 

where ppred is the probability of positive prediction, that is, prob(ypred = 1) = ppred. Note that, for a 

binary classification problem, since the only other label is y = 0, the probability of negative 

prediction will be prob(ypred = 0) = 1 - ppred. 

The focal loss introduces a modulating factor to each term in the cross-entropy loss 

Lfo (ytrue, ypred) = - ytrue log(ppred) ⋅ (1 - ppred)γ - (1 - ytrue) log(1 - ppred) ⋅ ( ppred)γ 

The modulating factor suppresses the contribution of well-classified examples, forcing a learning 

algorithm to focus on poorly classified examples. The extent of this "focus" is determined by a 

user-controllable parameter, γ > 0. To see how modulation works, let’s compare the cross-entropy 

loss with the focal loss with γ = 2: 

• well-classified example: let’s say the true label: ytrue = 1, with high predicted label probability,
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ppred = 0.95. The cross-entropy loss is Lce = -1 log0.95 – 0 log0.05 = 0.0513, while the focal loss is 

Lfo = -1 log0.95 0.052 – 0 log0.05 0.952 = 0.0001. The modulating factor in the focal loss, thus, 

downweights the loss if an example is well-classified.  

• poorly classified example: let’s say the true label: ytrue = 1, with low predicted label

probability, ppred = 0.05. The cross-entropy loss is Lce = -1 log0.05 – 0 log0.95 = 2.9957, while the

focal loss is Lfo = -1 log0.05 0.952 – 0 log0.95 0.052 = 2.7036. The modulating factor affects the

loss for this example far less as it is poorly classified.

This effect can be seen below, where the focal loss is plotted for different values of γ. For bigger 

values of γ, well-classified examples (with high probability of y=1) have lower losses, while poorly 

classified examples have higher losses.  

Figure 5.21. The focal loss visualized for various values of y. When y = 0, the original cross-entropy loss is recovered. 

As y increases, the part of the curve corresponding to "well-classified" examples becomes longer, reflecting the loss 

function's focus on poor classification. 

GRADIENT BOOSTING WITH THE FOCAL LOSS 

In order to use the focal loss to train gradient boosted decision trees, we have to provide LightGBM 

with two functions: 

• the actual loss function itself, which will be used for function evaluations and scoring during

learning and,

• the first derivative (gradient) and second derivative (Hessian) of the loss function, which will

be used for learning the constituent base estimator trees.

LightGBM uses the Hessian information for learning at leaf nodes. For the moment, let us put this 

small detail out of our mind, and revisit it in the next chapter. 
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The listing below shows how we can define custom loss functions. The function, focal_loss is 

the loss itself, defined as described above. The function, focal_loss_metric, turns focal_loss 

into a scoring metric for use with LightGBM. 

The function focal_loss_objective returns the gradient and the Hessian of the loss function 

for LightGBM to use in tree learning. This function is rather unintuitively suffixed with ‘objective’ 

to be consistent with LightGBM’s usage, as will become apparent below. 

Listing 5.7. Defining Custom Loss Functions 

from scipy.misc import derivative 

def focal_loss(ytrue, ypred, gamma=2.0):  #A 
 p = 1 / (1 + np.exp(-ypred)) 
 loss = -(1 - ytrue) * p**gamma * np.log(1 - p) 

- ytrue * (1 - p)**gamma * np.log(p)
 return loss 

def focal_loss_metric(ytrue, ypred):  #B 
 return 'focal_loss_metric', np.mean(focal_loss(ytrue, ypred)), False 

def focal_loss_objective(ytrue, ypred): 
 func = lambda z: focal_loss(ytrue, z) 
 grad = derivative(func, ypred, n=1, dx=1e-6)  #C 
 hess = derivative(func, ypred, n=2, dx=1e-6)  #C 
 return grad, hess 

#A define the focal loss function 

#B wrapper function that returns a LightGBM-compatible scoring metric 

#C auto-differentiation is used to compute gradient & Hessian 

Care must be taken to ensure that the loss function, metric and objective are all vector-compatible, 

that is, that they can take array-like objects ytrue and ypred as inputs. 

In Listing 5.7, we have used scipy’s derivative functionality to approximate the first and 

second derivatives. It is also possible to explicitly analytically derive and implement the first and 

second derivatives for some loss functions. Once we have defined our custom loss function, it is 

straightforward to use it with LightGBM:  

gbm_focal_loss = LGBMClassifier(objective=focal_loss_objective,  #A 
 learning_rate=0.25, 
 n_estimators=20, max_depth=1) 

gbm_focal_loss.fit(Xtrn, ytrn, 
 eval_set=[(Xval, yval)], eval_metric=focal_loss_metric)  #B 

accuracy_score(yval, gbm_focal_loss.predict(Xval)) 
0.9736842105263158 

#A set objective to ensure that LightGBM uses the gradients of the focal loss for learning 

#B set metric to ensure that LightGBM uses the focal loss for evaluation 

GBDT with focal loss achieves a validation score of 97.37% on the breast cancer data set. 
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5.5 Case Study: Document Retrieval

Document retrieval is the task of retrieving documents from a database to match a user’s query. 

For example, a paralegal at a law firm might need to search for information about previous cases 

from legal archives in order to establish precedent and research case law.  

Or perhaps a graduate student might need to search for articles from a journal’s database 

during the course of a literature survey of work in a specific area.  

You may also have seen a feature called “related articles” on many websites that list articles 

that may be related to the article you’re currently reading. There are many such use cases for 

document retrieval in a wide range of domains, where a user searches for specific terms and the 

system must return a list of documents relevant to the search.  

This challenging problem has two key components: first, find the documents that match the 

user’s query, and second, rank the documents according to some notion of “relevance” to present 

to the user. 

In this case study, the problem is set up as a 3-class classification problem of identifying the 

relevance rank/class (least, moderately or highly relevant) given a query-document pair. We 

explore the performance of different LightGBM classifiers for this task.  

5.5.1 The LETOR Data Set

The data set we will use for this case study is called the LEarning TO Rank (LETOR) ver. 4.0, which 

was itself created from a large corpus of webpages called GOV2. The GOV21 data set is a collection 

of about 25 million webpages extracted from the .gov domain.  

The LETOR 4.02 data collection is derived from the GOV2 corpus and is made freely available by 

Microsoft Research. The collection contains several data sets, and we will use the data set that was 

originally developed for the Million Query track of the 2008 Text Retrieval Conference (TREC), 

specifically, MQ2008.rar.  

Each training example in the MQ2008 data set corresponds to a query-document pair. The data 

itself is in LIBSVM format, and several examples are shown below. Each row in the data set is a 

labeled training example in the format:  

<relevance label> qid:<query id> 1:<feature 1 value> 2:<feature 2 value> 3:<feature 3 value> ... 
46:<feature 46 value> # meta-information 

Every example has 46 features extracted from a query-document pair, and a relevance label.  The 

features include: 

• low-level content features extracted from the body, anchor, title, and URL; these include

features commonly used in text mining such as term frequency, inverse document

frequency, document length and various combinations,

• high-level content features extracted from the body, anchor and title; these features are

extracted using two well-known retrieval systems: Okapi BM25 and language-model

approaches for information retrieval (LMIR),

• hyperlink features extracted from hyperlinks using several different tools such as Google

PageRank and variations,

1 http://ir.dcs.gla.ac.uk/test_collections/access_to_data.html  
2 https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/#!letor-4-0  
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• hybrid features containing both content and hyperlink information.

The label for each query-document example is a relevance rank that takes 3 unique values: 0 

(least relevant), 1 (moderately relevant), 2 (highly relevant). In our case study, these are treated 

as class labels, making this an instance of a 3-class classification problem. Some examples of the 

data are shown below.   

0 qid:10032 1:0.130742 2:0.000000 3:0.333333 4:0.000000 5:0.134276 ... 45:0.750000 46:1.000000 
#docid = GX140-98-13566007 inc = 1 prob = 0.0701303 

1 qid:10032 1:0.593640 2:1.000000 3:0.000000 4:0.000000 5:0.600707 ... 45:0.500000 46:0.000000 
#docid = GX256-43-0740276 inc = 0.0136292023050293 prob = 0.400738 

2 qid:10032 1:0.056537 2:0.000000 3:0.666667 4:1.000000 5:0.067138 ... 45:0.000000 46:0.076923 
#docid = GX029-35-5894638 inc = 0.0119881192468859 prob = 0.139842 

Much more detail can be found in the documentation and references provided with the LETOR 4.0 

data collection. We load first load this data set and split into training and test sets: 

from sklearn.datasets import load_svmlight_file 
from sklearn.model_selection import train_test_split 

query_data_file = './data/ch05/MQ2008/Querylevelnorm.txt' 
X, y = load_svmlight_file(query_data_file) 

Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, 
 test_size=0.2, random_state=42) 

print(Xtrn.shape, Xtst.shape) 
(12168, 46) (3043, 46) 

We now have a training set with 12K examples and a test set with 3K examples. 

5.5.2 Document Retrieval with LightGBM

We will learn four models using LightGBM. Each of these models represents a tradeoff between 

speed and accuracy: 

• random forest: our now familiar parallel homogeneous ensemble of randomized decision

trees; this method will serve as a baseline approach;

• gradient boosted decision trees (GBDT): this is the standard approach to gradient boosting

and represents a balance between models with good generalization performance and training

speed;

• gradient boosting with gradient one-side sampling (GOSS): this variant of gradient boosting

downsamples the training data and is ideally suited for large data sets; due to

downsampling, it may lose out on generalization, but is typically very fast to train;

• Dropout meets Multiple Additive Regression Trees (DART): this variant incorporates the

notion of dropout from deep learning, where neural units are randomly and temporarily

dropped during backpropagation iterations to mitigate overfitting. Similarly, DART randomly

and temporarily drops base estimators from the overall ensemble during gradient fitting

iterations to mitigate overfitting. DART is often the slowest of all the gradient boosting

options available in LightGBM.
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We will train a model using each of these four approaches. Each of the four models share the 

following learning parameters. Specifically, observe that all the models are trained using the multi-

class logistic loss, a generalization of the binary logistic loss function that is used in logistic 

regression. The number of early_stopping_rounds is set to 25. 

fixed_params = {'early_stopping_rounds': 25, 
 'eval_metric' : 'multi_logloss', 
 'eval_set' : [(Xtst, ytst)], 
 'eval_names': ['test set'], 
 'verbose': 100} 

Beyond these parameters that are common to all models, we will also need to identify other 

learning parameters such as learning rate (to control the rate of learning) or the number of leaf 

nodes (to control the complexity of the base estimator trees).  

These parameters are selected using scikit-learn’s randomized cross validation module: 

RandomizedSearchCV. Specifically, we perform 5-fold cross validation over a grid of various 

parameter choices; however, instead of exhaustively evaluating all possible learning parameter 

combinations the way GridSearchCV does, RandomizedSearchCV samples a smaller number of 

model combinations for faster parameter selection. 

num_random_iters = 20 
num_cv_folds = 5 

The listing below is used to train random forests using LightGBM 

rf_params = {'bagging_fraction': [0.4, 0.5, 0.6, 0.7, 0.8], 
 'bagging_freq': [5, 6, 7, 8], 
 'num_leaves': randint(5, 50)} 

ens = lgb.LGBMClassifier(boosting='rf', n_estimators=1000, 
 max_depth=-1, metric='multi_logloss', 
 random_state=42) 

cv = RandomizedSearchCV(estimator=ens, 
 param_distributions=rf_params, 
 n_iter=num_random_iters, 
 cv=num_cv_folds, 
 refit=True, 
 random_state=42, verbose=True) 

cv.fit(Xtrn, ytrn, **fixed_params) 

Similarly, LightGBM is also trained with boosting=’gbdt’, boosting=’goss’ and boosting=’dart’ 

with code similar to the listing below. 

gbdt_params = {'num_leaves': randint(5, 50), 
 'learning_rate': [0.25, 0.5, 1, 2, 4, 8, 16], 
 'min_child_samples': randint(100, 500), 
 'min_child_weight': [1e-2, 1e-1, 1, 1e1, 1e2], 
 'subsample': uniform(loc=0.2, scale=0.8), 
 'colsample_bytree': uniform(loc=0.4, scale=0.6), 
 'reg_alpha': [0, 1e-1, 1, 10, 100], 
 'reg_lambda': [0, 1e-1, 1, 10, 100]} 

ens = lgb.LGBMClassifier(boosting='gbdt', n_estimators=1000, 
 max_depth=-1, metric='multi_logloss', 
 random_state=42) 
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cv = RandomizedSearchCV(estimator=ens, 
 param_distributions=gbdt_params, 
 n_iter=num_random_iters, 
 cv=num_cv_folds, 
 refit=True, 
 random_state=42, verbose=True) 

cv.fit(Xtrn, ytrn, **fixed_params) 

The CV-based learning parameter selection procedure explores several different values for the 

following parameters: 

• num_leaves, which limits the number of leaf nodes and hence base estimator complexity to

control overfitting,

• min_child_samples and min_child_weight, which limits each leaf node either by size or by

the sum of Hessian values to control overfitting,

• subsample and colsample_bytree, which specify the fractions of training examples and

features to sample from the training data respectively, to accelerate training,

• reg_alpha and reg_lambda, which specify the amount of regularization of the leaf node

values, to control overfitting as well.

For each of these approaches, we are interested in looking at two performance measures: the test 

set accuracy and overall model development time, which includes parameter selection and training 

time. These are shown in the figure below. The key takeaways are: 

• GOSS and GBDT perform similarly. However, GOSS runs faster than GBDT. This will be much

more pronounced for increasingly larger data sets, especially those with hundreds of

thousands of training examples.

• DART achieves best training performance. However, this comes at a cost: significantly

increased training time. Here, for instance, DART has a running time of close to 20 minutes,

compared to random forest (2 min.), GBDT and GOSS (under half a minute).

• It should be noted that LightGBM supports both multi-CPU as well as GPU processing, which

may be able to significantly improve running times.
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Figure 5.22. (left) Comparing test set accuracy of random forest, GBDT, GOSS and DART; (right) comparing the overall 

training times of random forest, GBDT, GOSS and DART. All algorithms trained using LightGBM. 

5.6 Summary

In this chapter, we were introduced to sequential ensemble methods of weak learners. 

• Gradient descent is often used to minimize a loss function to train a machine learning model.

• Residuals, or errors between the true labels and model predictions, can be used to

characterize correctly classified and poorly classified training examples. This is analogous to

how Unlike AdaBoost uses weights.

• Gradient boosting combines gradient descent and boosting to learn a sequential ensemble of

weak learners.

• Weak learners in gradient boosting are regression trees that are trained over the residuals of

the training examples and approximate the gradient.

• Gradient boosting can be applied to a wide variety of loss functions arising from

classification, regression or ranking tasks.

• Histogram-based tree learning trades off exactness for efficiency, allowing us to train

gradient boosting models very rapidly and scaling up to larger data sets.

• Learning can be sped up even further by smartly sampling training examples (Gradient One-

Side Sampling, GOSS) or smartly bundling features (Exclusive Feature Bundling, EFB).

• LightGBM is a powerful, publicly available framework for gradient boosting that incorporates

both GOSS and EFB.

• As with AdaBoost, we can avoid overfitting in gradient boosting by choosing an effective

learning rate or via early stopping. LightGBM provides support for both.

• In addition to a wide variety of loss functions for classification, regression and ranking,

LightGBM also provides support for incorporation of our own custom, problem-specific loss

functions for training.
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In this chapter we have dived into the deep end of the current state-of-the-art in ensemble 

methods with gradient boosting. In the next chapter, we will move on to another powerful state-of-

the-art: Newton boosting. 
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6 
Sequential Ensembles: Newton 

Boosting 

This chapter covers 

• Using Newton descent to optimize loss functions for training models
• Implementing and understanding how Newton boosting works
• Learning with regularized loss functions
• Introducing XGBoost: a powerful framework for Newton boosting
• Avoiding overfitting with XGBoost in practice

In Chapters 4 and 5 we saw two approaches to constructing sequential ensembles. In 
Chapter 4, we introduced a new ensemble method called adaptive boosting (AdaBoost), 
which uses weights to identify the most misclassified examples. In Chapter 5 we introduced 
another ensemble method called “gradient boosting,” which uses gradients (residuals) to 
identify the most misclassified examples.  

The fundamental intuition behind both of these boosting methods is to target the most 
misclassified (essentially, the “worst” behaving) examples at every iteration and improve 
classification by doing better with them. 

In this chapter, we introduce a third boosting approach: Newton boosting, that combines 
the advantages of both and uses weighted gradients (or weighted residuals) to identify the 
most misclassified examples. 

As with gradient boosting, the framework of Newton Boosting can be applied to any loss 
function, which means that any classification, regression, or ranking problem can be 
“boosted” using weak learners. In addition to this flexibility, packages such as XGBoost are
now available that can scale Newton Boosting to big data through parallelization.  

Unsurprisingly, today, Newton boosting is considered by many practitioners to be a 
state-of-the-art ensemble approach. 
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 As Newton boosting builds upon Newton descent, we kick off the chapter with examples 
of Newton descent, and how can be used to train a machine learning model (Section 6.1). 

Section 6.2 aims to provide intuition for learning with weighted residuals, the key 
intuition behind Newton boosting. As always, we implement our own version of Newton 
boosting to understand how it combines gradient descent and boosting to train a sequential 
ensemble. 

Section 6.3 introduces XGBoost, a free and open-source gradient and Newton boosting 
package, a widely used tool for building and deploying real-world ML applications. In Section 
6.4, we further see how we can avoid overfitting with strategies such as early stopping and 
adapting the learning rate with XGBoost.  

Finally, we will reuse the real-world study from Chapter 5, document retrieval, in Section 
6.5 to compare the performance of XGBoost to LightGBM, its variants and random forests. 

The origins and motivation for devising Newton boosting are analogous to those of the 
gradient boosting algorithm: the optimization of loss functions. Gradient descent, which 
gradient boosting is based on, is a first-order optimization method, in that it uses first 
derivatives during optimization.  

Newton’s method, or Newton descent, is a second-order optimization method, in that it 
uses both first and second derivative information during optimization. That is, unlike gradient 
descent that uses only gradient information to do compute the next (gradient) step, 
Newton’s method uses gradient and second derivative information together to compute a 
Newton step. When combined with boosting, we obtain the ensemble method of Newton 
boosting. 

We begin this chapter by trying to understand how Newton’s method inspires a powerful 
and widely used ensemble method.  

6.1 Newton’s Method for Minimization 
Iterative optimization methods such as gradient descent and Newton’s method perform 

an update within each iteration: next = current + step * direction.  
In gradient descent (Figure 6.1, left), first derivative information only allows us to 

construct a local linear approximation at best. While this gives us a descent direction, 
different step lengths can give us vastly different estimates, and ultimately slow down 
convergence. 

Incorporating second derivative information, as Newton descent does, allows us to 
construct a local quadratic approximation! This extra information leads to a better local 
approximation, resulting in better steps and faster convergence. 

NOTE The approach described in this chapter, Newton’s method for optimization, is derived from a more 

general root-finding method, also called Newton’s method.  We will often use the term Newton descent to 

refer to Newton’s method for minimization. 
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Figure 6.1. Comparing gradient descent (left) and Newton’s method (right). Gradient descent only uses local 
first-order information near the current solution, which leads to a linear approximation of the function being 
optimized. Newton’s method uses both local first- and second-order information near the current solution, 
leading to a quadratic (parabolic) approximation of the function being optimized. This provides a better 
estimate of the next step. 

More formally, gradient descent computes the next update as  

 
Where αt is the step length and (-f'(wt)) is the negative gradient, or the negative of the first 
derivative. Newton’s method computes the next update as 

 
Where f''(wt) is the second derivative, and the step length αt is typically set to 1. 

THE SECOND DERIVATIVE AND THE HESSIAN MATRIX 

For univariate functions (i.e., functions in one variable), the second derivative is easy to 
compute: we simply differentiate the function twice. For instance, for the function f(w)= x5, 
the first derivative is f'(x)= ∂f⁄∂x=5x4 and the second derivative is f''(x)= ∂f⁄∂x ∂y =20x3. 

For multivariate functions, or functions in many variables, the calculation of the second 
derivative is a little more involved. This is because we now have to consider differentiating 
the multivariate function with respect to pairs of variables. 

To see this, consider a function in three variables: f(x,y,z). The gradient of this function 
is straightforward to compute: we differentiate the function f with respect to each of the 
variables x,y and z (where w.r.t. is with respect to): 
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To compute the second derivative, we have to further differentiate each entry of the gradient 
with respect to x,y and z again. This produces a matrix known as the Hessian: 

The Hessian matrix is a symmetric matrix, because the order of differentiation does not 
change the result meaning that 

and so on, for all pairs of variables in f. In the multivariate case, the extension Newton’s 
method is given by, 

Where ∇f(wt) is the gradient vector of the multivariate function f and -∇f(wt)-1 is the inverse 
of the Hessian matrix. Inverting the second-derivative Hessian matrix is the multivariate 
equivalent of dividing by the term f''(wt). 

For large problems with many variables, inverting the Hessian matrix can become quite 
computationally expensive, slowing down overall optimization. As we will see in Section 6.2, 
Newton boosting circumvents this issue by computing second derivatives for individual 
examples and avoids inverting the Hessian. 

For now, let us continue to explore the differences between gradient descent and 
Newton’s method. We return to the two examples we used in Section 5.1: the simple 
illustrative Branin function and the squared-loss function. We will use these examples to 
illustrate the differences between gradient descent and Newton descent. 
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6.1.1 Newton’s Method with an Illustrative Example 
Recall from Chapter 5 that the Branin function is a function of two variables (w1 and w2), 
defined as follows: 

 
Where a=1, b=5.1 /4π2, c=5 /π, r=6, s=10, and t=1 /8π are fixed constants. This 
function is show below and has four minimizers at the centers of the elliptical regions. 

 
Figure 6.2. The surface plot (left) and contour plot (right) of the Branin function. We can visually verify that this 
function has four minima, which are the centers of the elliptical regions in the contour plot. 

We will take our gradient descent implementation from the previous section and modify it to 
implement Newton’s method. The modified pseudo-code is shown below.  

There are two key differences: 1. we compute the descent direction using the gradient 
and the Hessian, that is, using both the first and second-derivative information, and 2. we 
drop the computation of the step length, that is, we assume that the step length is 1. 
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The key steps in this pseudo-code are Steps 1 and 2, where the descent direction is 
computed using the inverse Hessian matrix (second derivatives) and the gradient (first 
derivatives). Note that, as with gradient descent, the Newton descent direction is negated. 

Step 3 is simply included to explicitly illustrate that, unlike gradient descent, Newton’s 
method does not require the computation of a step length. Instead the step length can be set 
ahead of time, much like a learning rate. Once the descent direction is identified, Step 4 
implements the Newton update: wt+1=wt+(-∇2f(wt)-1∇f(wt)). 

After we compute each update, similar to gradient descent, we check for convergence; 
here, our convergence test is to see how close wnew and wold are to each other. If they are 
close enough, we terminate, and if not, we continue on to the next iteration. The listing 
below implements Newton’s method. 

Listing 6.1 Newton descent 

def newton_descent(f, g, h, x_init, max_iter=100, args=()):  #A 
    converged = False  #B 
    n_iter = 0 
 
    x_old, x_new = np.array(x_init), None 
    descent_path = np.full((max_iter + 1, 2), fill_value=np.nan)    
    descent_path[n_iter] = x_old 
 
    while not converged: 
        n_iter += 1 
        gradient, hessian = g(x_old, *args), h(x_old, *args)       #C 
        direction = -np.dot(np.linalg.inv(hessian), gradient)      #D 
         
 
        distance = 0.5  #E 
        x_new = x_old + distance * direction                       #F 
        descent_path[n_iter] = x_new 
 
        err = np.linalg.norm(x_new - x_old)                        #G 
        if err <= 1e-3 or n_iter >= max_iter:                       
            converged = True  #H 
 
        x_old = x_new                                              #I 
 
    return x_new, descent_path  
 

#A Newton descent requires a function f, its gradient g, and its Hessian h 
#B initialize Newton descent to not converged 
#C compute the gradient and the Hessian 
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#D compute the Newton direction 
#E set step length to 0.5 
#F compute the update 
#G compute change from previous iteration 
#H converged if change is small or max. iterations reached 
#I get ready for the next iteration 

Note that the step length is set to 0.5 to control the rate of descent (more on this below).  
Let’s take our implementation of Newton descent for a spin. We have already 

implemented the Branin function and its gradient in the previous section. This 
implementation is shown here again: 

def branin(w, a, b, c, r, s, t): 
    return a * (w[1] - b * w[0] ** 2 + c * w[0] - r) ** 2 +  
           s * (1 - t) * np.cos(w[0]) + s 
 
 
def branin_gradient(w, a, b, c, r, s, t): 
    return np.array([2 * a * (w[1] - b * w[0] ** 2 + c * w[0] - r) *  
                    (-2 * b * w[0] + c) - s * (1 - t) * np.sin(w[0]), 
                    2 * a * (w[1] - b * w[0] ** 2 + c * w[0] - r)]) 

We also need the Hessian (second derivative) matrix for Newton descent. We can compute it 
by analytically differentiating the gradient (first derivative) vector: 

 
This can also be implemented as shown below: 

def branin_hessian(w, a, b, c, r, s, t): 
    return np.array([[2 * a * (- 2 * b * w[0] + c)** 2 - 
                      4 * a * b * (w[1] - b * w[0] ** 2 + c * w[0] - r) -  
                      s * (1 - t) * np.cos(w[0]),  
                      2 * a * (- 2 * b * w[0] + c)], 
                     [2 * a * (- 2 * b * w[0] + c),  
                     2 * a]]) 
 

As with gradient descent, Newton descent (Listing 6.1) also requires an initial guess x_init. 
Here, we will initialize gradient descent with winit=[2,-5]. Now, we can call the Newton 
descent procedure. 

a, b, c, r, s, t = 1, 5.1/(4 * np.pi**2), 5/np.pi, 6, 10, 1/(8 * np.pi) 
w_init = np.array([2, -5]) 
w_optimal, w_path = newton_descent(branin, branin_gradient,  
                                          w_init, args=(a, b, c, r, s, t)) 

Newton descent returns an optimal solution w_optimal and the optimization path w_path. So 
how does Newton descent compare to gradient descent? In the figure below, we plot both 
the solution paths of both optimization algorithms together. 
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The result of this comparison is pretty striking: Newton descent is able to exploit the 
additional local information about the curvature of the function provided by the Hessian 
matrix to take a more direct path to the solution.  

In contrast, gradient descent only has the first-order gradient information to work with 
and takes a roundabout path to the same solution.  

 
Figure 6.3. We compare the solution paths of Newton descent and gradient descent starting from [2, -5] 
(blue square) and both converging to one of the local minima (red circle). Newton descent (solid line) 
progresses towards the local minimum in a more directly compared to gradient descent (dotted line). This is 
because Newton descent uses a more informative second-order local approximation with each update, while 
gradient descent only uses a first-order local approximation. 

PROPERTIES OF NEWTON DESCENT 

We note a couple of important things about Newton descent and its similarities to gradient 
descent. First, unlike gradient descent, Newton’s method computes the descent step exactly 
and does not require a step length.  

In our example, we set the step length α=0.5 for Newton’s method; this allows us to 
control the rate of descent and ensure convergence to a local minimum.  

Keep in mind that our purpose is to extend Newton descent to Newton boosting. From 
this perspective, the step length can be interpreted as a learning rate. Choosing an effective 
learning rate (say, using cross validation like we did for AdaBoost or gradient boosting) is 
very much akin to choosing a good step length. Instead of selecting a learning rate to 
accelerate convergence, in boosting algorithms, we select the learning rate to help us avoid 
overfitting and to generalize better to the test set and future data.  

Another important point to keep in mind is that, like gradient descent, Newton descent is 
also sensitive to our choice of initial point. Different initializations will lead Newton descent to 
different local minimizers. 

A bigger issue is that, in addition to local minimizers, our choice of initial point can also 
lead Newton descent to converge to saddle points. This is a problem faced by all descent 
algorithms and is illustrated in Figure 6.4. 

©Manning Publications Co. To comment go to liveBook 
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion

162

https://livebook.manning.com/#!/book/ensemble-methods-for-machine-learning/discussion
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion


A saddle point mimics a local minimizer: at both locations, the gradient of the function 
becomes zero. However, saddle points are not true local minimizers: the saddle-like shape 
means that it is curving upwards in one direction and curving downwards in another. This is 
in contrast to local minimizers which are bowl-shaped.  

However, both local minimizers and saddle points have zero gradients. This means that 
descent algorithms cannot distinguish between them and sometimes converge to saddle 
points instead of minimizers. 

 
Figure 6.4. A saddle point of the Branin function lies between two minimizers, and like the minimizers, it too 
has a zero gradient at its location. This causes all descent methods to converge to saddle points. 

The existence of saddle points and local minimizers depends on the functions being 
optimized, of course. For our purposes, most common loss functions are often convex and 
“well-shaped”, meaning that we can safely use Newton descent and Newton boosting. 

Care should be taken, however, to ensure convexity when creating and using custom loss 
functions. Handling such non-convex loss functions is an active and ongoing research area.  

6.1.2 Newton Descent over Loss Functions for Training 
So how does Newton descent fare on a machine learning task? To see this, we can revisit the 
simple 2d classification problem from Section 5.1.2 on which we have previously trained a 
model using gradient descent. The task is a binary classification problem, with data 
generated as shown below. 

from sklearn.datasets import make_blobs 
X, y = make_blobs(n_samples=200, n_features=2,  
                  centers=[[-1.5, -1.5], [1.5, 1.5]]) 
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Figure 6.5. A (nearly) linearly separable two-class data set over which we will learn a classifier. The positive 
examples have labels y=1 and the negative examples have labels y=0. 

Recall that we would like to train a linear classifier hw(x)= w1x1+w2x2, takes two-dimensional 
data points x=[x1,x2]’ and returns a prediction. As in Section 5.1.2, we will use the squared 
loss function for this task. 

The linear classifier is parameterized by weights w=[w1+w2]’, that we have learned. The 
weights, of course, have to be learned such that they minimize some loss over the data to 
achieve the best training fit. 

The squared loss measures the error between true labels yi and their corresponding 
predictions hw(xi) as shown below, 

 
Here, X is an n x d data matrix of n training examples with d features each and y is a d x 1 
vector of true labels. 

The expression on the far right is a compact way of representing the loss over the entire data 
set using vector and matrix notation.  

For Newton descent, we will need the gradient and Hessian of this loss function. These 
can be obtained by differentiating the loss function analytically, just as with the Branin 
function. In vector-matrix notation, these can also be compactly written as: 

 
The implementations of the loss function, its gradient and Hessian are shown below: 
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def squared_loss(w, X, y): 
    return 0.5 * np.sum((y - np.dot(X, w))**2) 
 
def squared_loss_gradient(w, X, y): 
    return -np.dot(X.T, (y - np.dot(X, w))) 
 
def squared_loss_hessian(w, X, y): 
    return np.dot(X.T, X) 

Now that we have all the components of the loss function, we can use Newton descent to 
compute an optimal solution, i.e., “learn a model”.  

We initialize both gradient descent and Newton descent with w=[0.0, 0.99]'. 

w_init = np.array([0.0, -0.99]) 
w_gradient, path_gradient = gradient_descent(squared_loss, 
                                             squared_loss_gradient,  
                                             w_init, args=(X, y)) 
w_newton, path_newton = newton_descent(squared_loss,  
                                       squared_loss_gradient, 
                                       squared_loss_hessian,  
                                       w_init, args=(X, y)) 
print(w_gradient) 
[0.13643511 0.13862275] 
 
print(w_newton) 
[0.13528094 0.13884772] 
 

The squared loss function we are optimizing is convex and has only one minimizer. Both 
gradient descent and Newton descent essentially learn the same model, though the 
terminate as soon as they reach the threshold 10-3, roughly the third decimal place.  

We can easily verify that this learned model achieves a training accuracy of 99.5%. 

ypred = (np.dot(X, w_newton) >= 0).astype(int) 
from sklearn.metrics import accuracy_score 
accuracy_score(y, ypred) 
0.995 
 

While both gradient descent and Newton descent learn the same model, they arrive there in 
decidedly different ways, as the figure below illustrates. 
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Figure 6.6. The solution paths of Newton descent (solid line) vs. gradient descent (dotted line) as well as the 
models produced by Newton and gradient descent. Gradient descent takes 20 iterations to learn this model, 
while Newton descent takes 12 iterations.  

The key takeaway is that Newton descent is a powerful optimization method in the family of 
descent methods. It converges to solutions much faster as it takes local second-order 
derivative information (essentially curvature) into account in constructing descent directions. 

This additional information about the shape of the objective (or loss) function being 
optimized greatly aids convergence. This comes at a computational cost however: with more 
variables, the second derivative, or the Hessian, which holds the second-order information 
becomes increasingly difficult to manage, especially as it has to be inverted. 

As we see in the next section, Newton boosting avoids computing or inverting the entire 
Hessian matrix by using an approximation with pointwise second derivatives, essentially 
second derivatives computed and inverted per training example, which keeps training 
efficient. 

6.2 Newton Boosting: Newton’s Method + Boosting 
We begin our deep dive into Newton boosting by gaining an intuitive understanding of how 
Newton boosting differs from gradient boosting. We’ll compare the two methods side by side 
to see exactly what Newton boosting adds to each iteration. 

6.2.1 Intuition: Learning with Weighted Residuals 
As with other boosting methods, Newton boosting learns a new weak estimator every 
iteration such that it fixes the misclassifications or errors made by the previous iteration.  

AdaBoost identifies and characterizes misclassified examples that need attention by 
assigning weights to them: badly misclassified examples are assigned higher weights. A 
weak classifier trained on such weighted examples will focus on them more during learning. 

Gradient boosting characterizes misclassified examples that need attention through 
residuals. A residual is simply another means to measure the extent of misclassification and 
is computed as the gradient of the loss function. 

Newton boosting does both and uses weighted residuals! The residuals in Newton boosting 
are computed in exactly the same way as in gradient boosting: using the gradient of the loss 
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function (the first derivative). The weights, on the other hand, are computed using the 
Hessian of the loss function (the second derivative). 

NEWTON BOOSTING IS NEWTON DESCENT + BOOSTING 

As we saw in Chapter 5, each gradient boosting iteration mimics gradient descent. At 
iteration t, gradient descent updates the model ft using the gradient of the loss function 
(∇L(ft)= gt): 

 
Rather than compute the overall gradient directly gt, gradient boosting learns a weak 
estimator (htGB) over the individual gradients, which are also residuals. That is, a weak 
estimator is trained over the data and corresponding residuals (xi,gt(xi))ni=1. The model is 
then updated as 

 
Similarly, Newton boosting mimics Newton descent. At iteration t, Newton descent updates 
the model ft using the gradient of the loss function  ((∇2L(ft)= gt, as with gradient descent) 
and the Hessian of the loss function (∇2L(ft)=Het): 

 
Computing the Hessian can often be very computationally expensive. Newton boosting 
avoids the expense of computing the gradient or the Hessian by learning a weak estimator 
over the individual gradients and Hessians. 

For each training example, in addition to the gradient residual, we have to incorporate 
the Hessian information as well, all the while ensuring that the overall weak estimator we 
want to train approximates Newton descent.  

How do we do this? Observe that the Hessian matrix is inverted in the Newton update 
(Het-1). For a single training example, the second (functional) derivative will be a scalar (a 
single number instead of a matrix). 

This means that the term Het-1gt  becomes gt(xi)/Het(xi); these are simply the residuals 
gt(xi) weighted by the Hessians gt(xi)/Het(xi). 

Thus, for Newton boosting, we train a weak estimator (htNB) using Hessian-weighted 
gradient residuals: (xi,gt(xi)/Het(xi))ni=1. And voila, we can update our ensemble in exactly 
the same way as gradient boosting: 

 
In summary, Newton boosting uses Hessian-weighted residuals, while gradient boosting uses 
unweighted residuals. 
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WHAT DO THE HESSIANS ADD? 

So, what kind of additional information do these Hessian-based weights add to boosting?  

Mathematically, Hessians, or second derivatives, correspond to the curvature or how “curvy” 
a function is. In Newton boosting, we weight gradients by second-derivative information for 
each training example xi,  

 
A large value of the second derivative Het(xi) implies that the curvature of the function is 
large at xi. At these curvy regions, the Hessian weight decreases the gradient, which, in 
turn, leads Newton boosting to take smaller, more conservative steps.  

Conversely, if the second derivative Het(xi) is small, then the curvature at xi is small, 
meaning that the function is rather flat. In such situations, the Hessian weight allows Newton 
descent to take large, bolder steps so it can traverse the flat area faster.  

Thus, second derivatives combined with first-derivative residuals can capture the notion 
of “misclassification” very effectively. Let’s see this in action over a commonly used loss 
function: the logistic loss, which measures the extent of the misclassification: 

 
The logistic loss is compared to the squared loss function in Figure 6.7 (left). 

 
Figure 6.7. (left) Logistic loss vs. squared loss function; (center) negative gradient and Hessian of the logistic 
loss; (right) Hessian-scaled scale negative gradient of the logistic loss. 

In Figure 6.7 (center), we look at the logistic loss function and its corresponding gradient 
(first derivative) and Hessian (second derivative). All of these are functions of the 
misclassification margin: the product of the true label (y) and the prediction (f(x)). 

If y and f(x) have opposite signs, then we have that y∙f(x)<0. In this case, the true 
label does not match the predicted label and we have a misclassification.  
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Thus, the left part of the logistic loss measures the extent of the misclassification, which 
the right part of the loss function corresponds to correctly classified examples, whose loss is 
nearly zero, as we expect. 

The second derivative achieves its highest values around 0, which corresponds to the elbow 
of the logistic loss function. This is not surprising since we can see that the logistic loss 
function is curviest around the elbow and flat to the left and right of the elbow.  

In Figure 6.7 (right), we can see the effect of weighting the gradients. For well classified 
examples (y∙f(x)>0), the overall gradient as well as weighted gradient are zero. This means 
that these examples will not participate in the boosting iteration. 

On the other hand, for misclassified examples (y∙f(x)<0), the overall weighed gradient 
g(xi)/He(xi) increases steeply with misclassification. In general, it increases far more steeply 
than the unweighted gradient. 

Now, we can answer the question of what the Hessians do. They incorporate local 
curvature information to ensure that training examples that are badly misclassified get 
higher weights.  

This is illustrated in the figure below. 

 
Figure 6.8. Unweighted residuals (left) used by gradient boosting compared to Hessian-weighted residuals 
(right) used by Newton boosting. Positive values of misclassification margin (y∙f(x)>0) indicate correct 
classification. For misclassifications we have y∙f(x)<0. For badly misclassified examples, the Hessian-
weighted gradients capture the notion “badly classified” more effectively than unweighted gradients.  

The more badly misclassified a training example is, the further to the left it will be in Figure 
6.8. Hessian-weighting of residuals ensures that training examples that are further to the left 
will get higher weights.  

This is in sharp contrast to gradient boosting, which is unable to differentiate training 
examples as effectively as it only uses unweighted residuals. 
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To summarize: Newton boosting aims to use both first derivative (gradient) information 
as well as second derivative (Hessian) information to ensure that misclassified training 
examples receive focus based on the extent of the misclassification. 

6.2.2 Intuition: Learning with Regularized Loss Functions 
Before proceeding, let’s introduce the notion of regularized loss functions. A regularized loss 
function contains an additional smoothing term along with the loss function, making it more 
convex, or bowl-like.  

Regularizing a loss function introduces additional structure to the learning problem, which 
often stabilizes and accelerates learning algorithms. Regularization also allows us to control 
the complexity of the model being learned and improves overall robustness and 
generalization capabilities of the model.  

Essentially, a regularized loss function explicitly captures the fit vs. complexity tradeoff 
inherent in most machine-learning models (see Chapter 1.3). 

A regularized loss function is of the form: 

 
The regularization term measures the flatness (the opposite of “curviness”) of the model: the 
more it is minimized, the less complex the learned model is.  

The loss term measures the fit to the training data through a loss function: the more it is 
minimized, the better the fit to the training data. The regularization parameter λ trades-off 
between these two competing objectives: 

• a large value of λ means the model will focus more on regularization and simplicity 
and less on training error, which causes the model to have higher training error and 
underfit, 

• a small value of λ means the model will focus more on training error, learn more 
complex models, which causes the model to have lower training errors and possibly 
overfit. 

Thus, a regularized loss function allows us to tradeoff between fit and complexity during 
learning, ultimately leading to models that generalize well in practice.  

As we saw in Section 1.3, there are several ways to introduce regularization and control 
model complexity during learning. For example, limiting the maximum depth of trees or the 
number of nodes prevents trees from overfitting. 

Another common approach is through L2 regularization, which amounts to introducing a 
penalty over the model directly. That is, if we have a model f(x), L2 regularization 
introduces a penalty over model by f(x)2: 
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The loss functions of many common ML approaches can be expressed in this form. In 
Chapter 5, we implemented the gradient boosting algorithm for the unregularized squared 
loss function 

 
between the true label λ and the predicted label f(x). In the above setting, unregularized 
loss functions simply have the regularization parameter λ=0.1. 

We have already seen an example of a regularized loss function (Section 1.3.2): support 
vector machines (SVMs), which use the regularized hinge loss function.  

 
In this chapter, we consider the regularized logistic loss function, which is commonly used in 
logistic regression: 

 
which augments the standard logistic loss log(1 +(e)-yf(x), with a regularization term 
λf(x)2. 

The figure below illustrates the regularized logistic loss for λ=0.1. Observe how the 
regularization term makes the loss function’s profile curvier and more bowl-like.  

The regularization parameter λ trades off between fit vs. complexity: as λ is increased, 
the regularization effect will increase, making the overall surface more convex and ignore the 
contributions of the loss function. Since the loss function affects the fit, over-regularizing the 
model will lead to underfitting. 
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Figure 6.9. (left) The standard logistic loss function vs. (right) the regularized logistic loss function, which is 
curvier and has a better-defined minimum. 

The gradient and Hessian of the regularized logistic loss function can be computed as the 
first and second derivatives with respect to the model’s prediction (f(x)) 

 
The listing below implements functions to compute the regularized logistic loss, with the 
value of the parameter λ=0.1. 

Listing 6.2 Regularized logistic loss, its gradient and Hessian with λ=0.1 

def log_loss_func(y, F): 
    return np.log(1 + np.exp(-y * F)) + 0.1 * F**2 
     
def log_loss_grad(y, F): 
    return -y / (1 + np.exp(y * F)) + 0.2 * F 
     
def log_loss_hess(y, F): 
    return np.exp(y * F) / (1 + np.exp(y * F))**2 + 0.2 
 

These functions can now be used compute the residuals and corresponding Hessian weights 
that we will need for Newton boosting. 
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6.2.3 Implementing Newton Boosting 
In this section, we will develop our own implementation of Newton boosting. The basic 
algorithm can be outlined with the following pseudocode: 

 
Unsurprisingly, this training procedure is the same as gradient boosting, with the only 
change being the computation of Hessian-weighted residuals in steps 1 and 2.  

Since the general algorithmic framework for gradient and Newton boosting is the same, 
we can combine implement them together. The listing below extends Listing 5.2 to 
incorporate Newton boosting, which it uses for training only when the flag use_Newton=True. 

Listing 6.3 Newton boosting for the regularized logistic loss 

def fit_gradient_boosting(X, y, n_estimators=10, use_newton=True): 
    n_samples, n_features = X.shape  #A 
    estimators = []  #B 
    F = np.full((n_samples, ), 0.0)  #C 
     
    for t in range(n_estimators): 
        if use_newton:  #D 
            residuals = -log_loss_grad(y, F) / log_loss_hess(y, F) 
        else: 
            residuals = -log_loss_grad(y, F)  #E 
             
        h = DecisionTreeRegressor(max_depth=1) 
        h.fit(X, residuals)  #F 
     
        hreg = h.predict(X)  #G 
        loss = lambda a: np.linalg.norm(y - (F + a * hreg))**2  #H 
        step = minimize_scalar(loss, method='golden')  #I 
        a = step.x 
         
        F += a * hreg  #J 
         
        estimators.append((a, h))  #K 
     
    return estimators 
 

#A get dimensions of the data set 
#B initialize an empty ensemble 
#C predictions of the ensemble on the training set 
#D if Newton boosting, compute Hessian-weighted residuals 
#E else compute unweighted residuals for gradient boosting 
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#F fit weak regression tree (h_t) to the examples and residuals 
#G get predictions of the weak learner, ht 

#H set up the loss function as a line search problem 
#I find the best step length using the golden section search 
#J update the ensemble predictions 
#K update the ensemble 

Once the model is learned, we can make predictions exactly as with AdaBoost or gradient 
boosting, since the ensemble learned is a sequential ensemble.  

The listing below is the same prediction function used by these previously introduced 
methods, repeated here for convenience. 

Listing 6.4: Predictions of Newton boosting 

def predict_gradient_boosting(X, estimators): 
    pred = np.zeros((X.shape[0], ))  #A 
 
    for a, h in estimators: 
        pred += a * h.predict(X)  #B 
 
    y = np.sign(pred)  #C 
 
    return y 

#A initialize all the predictions to 0 
#B aggregate individual predictions from each regressor 
#C convert weighted predictions to -1/1 labels 

Let’s compare the performance our implementations of gradient boosting (from the previous 
chapter) and Newton boosting (from above). 

from sklearn.datasets import make_moons 
X, y = make_moons(n_samples=200, noise=0.15, random_state=13) 
y = 2 * y – 1  #A 
 
 
from sklearn.model_selection import train_test_split 
Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, test_size=0.25, 
                                          random_state=11)  #B 
 
estimators_nb = fit_gradient_boosting(Xtrn, ytrn, n_estimators=25, 
                                      use_newton=True)  #C 
ypred_nb = predict_gradient_boosting(Xtst, estimators_nb) 
print('Newton boosting test error = {0}'. 
              format(1 - accuracy_score(ypred_nb, ytst))) 
 
estimators_gb = fit_gradient_boosting(Xtrn, ytrn, n_estimators=25,  
                                      use_newton=False)  #D 
ypred_gb = predict_gradient_boosting(Xtst, estimators_gb) 
print('Gradient boosting test error = {0}'. 
              format(1 - accuracy_score(ypred_gb, ytst))) 

#A convert training labels to -1/1 
#B split into train and test sets 
#C Newton boosting 
#D gradient boosting 
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We see that Newton boosting produces a test error of around 8% compared to gradient 
boosting, which achieves 12%. 

Newton boosting test error = 0.07999999999999996 
Gradient boosting test error = 0.12 

VISUALIZING GRADIENT BOOSTING ITERATIONS 

Now that we have our joint gradient-and-Newton boosting implementation (Listing 6.3), we 
can compare the behaviors of both these algorithms. First, note that they both train and 
grow their ensembles in roughly the same way. 

The key difference between them is in the residuals they use for ensemble training. To 
summarize, gradient boosting uses the (negative) gradients directly as residuals, which 
Newton boosting uses the (negative) Hessian-weighted gradients. 

Let’s step through the first few iterations to see what the impact of Hessian-weighting is. 
In the first iteration, both gradient and Newton boosting are initialized with F(xi)=0. 

Both gradient and Newton boosting use residuals as a means to measure the extent of 
misclassification so that the most misclassified training examples can get more attention in 
the current iteration. 

In Figure 6.10, the very first iteration, the impact of Hessian weighting is immediately 
observable. Using second derivative information to weight the residuals increases the 
separation between the two classes, making them easier to discriminate between. 

This behavior can also be seen in the second (Figure 6.11) and third (Figure 6.12) iterations, 
where Hessian weighting enables greater stratification of misclassifications, enabling the 
weak learning algorithm to construct more effective weak learners. 

In summary, Newton boosting aims to use both first derivative (gradient) information as 
well as second derivative (Hessian) information to ensure that misclassified training 
examples receive increased attention dependent on the extent of the misclassification. 

 

Figure 6.10. Iteration 1: (left) negative gradients as residuals in gradient boosting vs. (right) Hessian-weighted 
negative gradients as residuals in Newton boosting. 
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Figure 6.11. Iteration 2: (left) negative gradients as residuals in gradient boosting vs. (right) Hessian-weighted 
negative gradients as residuals in Newton boosting. 

The figure below illustrates how Newton boosting grows the ensemble and decreases the 
error steadily over successive iterations. 

 
Figure 6.12. Iteration 3: (left) negative gradients as residuals in gradient boosting vs. (right) Hessian-weighted 
negative gradients as residuals in Newton boosting. 
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Figure 6.13. Newton boosting over 20 iterations. 

6.3 XGBoost: A Framework for Newton Boosting 
XGBoost, or eXtreme Gradient Boosting, is an open source gradient boosting framework that 
originated as a research project by Tianqi Chen. It gained widespread recognition and 
adoption, especially in the data science competition community, after its success in the Higgs 
Machine Learning Challenge. 

It has, since, evolved into a powerful boosting framework that provides parallelization 
and distributed processing capabilities allowing it to scale to very large data sets. Today, 
XGBoost is available in many languages including Python, R and C/C++ and is deployed on 
several data-science platforms such as Apache Spark and H20. 

XGBoost has several key features that make it applicable in a wide variety of domains as 
well as for large-scale data: 

• Newton boosting on regularized loss functions to directly control the complexity of the 
regression tree functions (weak learners) that constitute the ensemble (Section 
6.3.1); 

• Algorithmic speedups such as weighted quantile sketch, a variant of the histogram-
based split finding algorithm (that LightGBM uses) for faster training (Section 6.3.1); 

• Support for a large number of loss functions for classification, regression, and 
ranking, as well as application-specific custom loss functions, similar to LightGBM; 

• Block-based system design that stores data in memory in smaller units called blocks; 
this allows for parallel learning, better caching, and efficient multi-threading (these 
details are out-of-scope for this book). 
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It will be impossible to detail all the features available in XGBoost in this limited space. 
Instead, this section and the next introduce XGBoost, its usage and applications in practical 
settings.  

This should enable readers to springboard further into advanced use cases of XGBoost for 
their applications through its documentation. 

6.3.1 What Makes XGBoost “Extreme”?  
In a nutshell, XGBoost is extreme because of Newton boosting with regularized loss 
functions, efficient tree learning and a parallelizable implementation.  

In particular, the success of XGBoost lies in the fact that its algorithms feature conceptual 
and algorithmic improvements specifically designed for tree-based learning. 

In this section, we’ll focus on how XGBoost improves robustness and generalizability of 
tree-based ensembles and how it does so efficiently. 

REGULARIZED LOSS FUNCTIONS FOR LEARNING 

In Section 6.2.2, we saw several examples of L2-regularized loss functions of the form: 

 
If we only consider tree-based learners for weak models in our ensemble, there are other 
ways to directly control the complexity of the trees during learning. XGBoost does this by 
introducing a further regularization term to limit the number of leaf nodes: 

 
How does this control the complexity of a tree? Recall that each split in a binary decision tree 
has two children. It’s easy to check that a binary tree of depth d will have (d+1)/2 leaf nodes. 

Thus, by limiting the number of leaf nodes, this additional term will force tree learning to 
train shallower trees, which in turn makes the trees weaker and less complex. 

XGBoost uses this regularized objective function in many ways. For instance, during tree-
learning, instead of using scoring function such as Gini criterion or entropy for split-finding, 
XGBoost uses the regularized learning objective described above. Thus, this criterion is used 
to determine the structure of the individual trees, the weak learners in the ensemble. 

XGBoost also uses this objective to compute the leaf values themselves, which are 
essentially the regression values that gradient boosting ensembles. Thus, this criterion is 
used to determine the parameters of the individual trees as well. 

An important caveat before we move on: the additional regularization term allows direct 
control over model complexity and downstream generalization. This comes as a price, 
however, in that we now have an extra parameter γ to worry about.  
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Since γ is a user-defined parameter, we have to set this value, along with λ and many 
others. These will often have to be selected by cross validation and can add to the overall 
model development time and effort. 

(WEIGHTED) QUANTILE-BASED NEWTON BOOSTING 

Even with a regularized learning objective, the biggest computational bottleneck is in scaling 
learning to large data sets, specifically, in identifying optimal splits for during learning of the 
regression tree base estimators. 

The standard approach to tree learning exhaustively enumerates all possible splits in the 
data. As we’ve seen in Section 5.2.4, this is not a good idea for large data sets. Efficient 
modifications such as histogram-based splitting bin the data instead so that we evaluate far 
fewer splits.  

Implementations such as LightGBM incorporate further improvements such as sampling 
and feature bundling to speed up tree learning. XGBoost also aims to bring these notions into 
its implementation. However, there is one key consideration unique to XGBoost.  

Packages such as LightGBM implement gradient boosting, while XGBoost implements 
Newton boosting. This means that XGBoost’s tree learning has to consider Hessian-weighted 
training examples, unlike LightGBM where all the examples are weighted equally! 

XGBoost’s approximate split finding algorithm, called weighted quantile sketch, aims to 
find ideal split points using quantiles in the features. This is analogous to histogram-based 
splitting, which uses bins, employed by gradient boosting algorithms. 

The details of weighted quantile sketch and its implementation are considerable and cannot 
be covered here owing to limited space. However, our key takeaways are as follow: 

• Conceptually, XGBoost also uses approximate split-finding algorithms; these 
algorithms consider additional information unique to Newton boosting (such as 
Hessian weights). Ultimately they are similar to histogram-based algorithms and aim 
to bin the data.  

Unlike other histogram-based algorithms that bucket data into evenly sized bins, 
XGBoost bins data into feature-dependent buckets. At the end of the day, XGBoost 
trades off exactness for efficiency by adapting clever strategies for split finding. 

• From an implementation standpoint, XGBoost pre-sorts and organizes data into blocks 
both in memory and on disk. Once this is done, XGBoost further exploits this 
organization by caching access patterns, block compression and chunking the data 
into easily accessible shards. These features significantly improve the efficiency of 
Newton boosting, allowing it to scale to very large data sets.  

6.3.2 Newton Boosting with XGBoost 
We kick off our explorations of XGBoost with the breast cancer data set, which we have used 
several times in the past as a pedagogical data set.  
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from sklearn.datasets import load_breast_cancer 
from sklearn.model_selection import train_test_split 
X, y = load_breast_cancer(return_X_y=True) 
Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, test_size=0.2, 

                                          shuffle=True, random_state=42) 

For Python users, especially those who are familiar with scikit-learn, XGBoost provides a 
familiar interface that is designed to look and feel like scikit-learn. Using this interface, it 
is very easy to setup and train an XGBoost model: 

from xgboost import XGBClassifier 
ens = XGBClassifier(n_estimators=20, max_depth=1,   
                    objective='binary:logistic') 
ens.fit(Xtrn, ytrn) 

We set the loss function to be the logistic loss, the number of iterations (with one estimator 
trained per iteration) to 20, and maximum tree depth to be 1. This results in an ensemble of 
20 decision stumps (trees of depth 1).  

It is also similarly easy to predict labels on test data and evaluate model performance: 

from sklearn.metrics import accuracy_score 
ypred = ens.predict(Xtst) 
accuracy_score(ytst, ypred) 
0.9649122807017544 

Alternately, it is also possible to use XGBoost’s native interface, which was originally 
designed to read data in the LibSVM format, which is well-suited for storing sparse data with 
lots of zeros efficiently.  

In this format (which was introduced in the case study in Section 5.4), each line of the data 
file contains a single training example represented as: 

<label> qid:<example id> 1:<feature 1 value> 2:<feature 2 value> … k:<feature k value> ... 
# other information as comments 

XGBoost uses a data object called DMatrix to group data and corresponding labels together. 
DMatrix objects can be created by reading data directly from files or from other array-like 
objects. Here, we create two DMatrix objects called trn and tst to represent the train and 
test data matrices. 

import xgboost as xgb 
trn = xgb.DMatrix(Xtrn, label=ytrn) 
tst = xgb.DMatrix(Xtst, label=ytst) 

We also set up the training parameters using a dictionary and train an XGBoost model using 
the DMatrix trn and the parameters. 

params = {‘max_depth’: 1, ‘objective’:’binary:logistic’} 
ens2 = xgb.train(params, trn, num_boost_round=20) 

Care must be taken while using this model for prediction, however. Models trained with 
certain loss functions will return prediction probabilities rather than the predictions directly. 
The logistic loss function is one such case. 
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These prediction probabilities can be converted to binary classification labels 0/1 by 
thresholding at 0.5. That is, all test examples with prediction probability ≥0.5 are classified 
into Class 1 and the rest into Class 0: 

ypred_proba = ens2.predict(tst) 
ypred = (ypred_proba >= 0.5).astype(int) 
accuracy_score(ytst, ypred) 
0.9649122807017544 

Finally, XGBoost supports three different types of boosting approaches, which can be set 
through the booster parameter: 

• booster=’gbtree’ is the default setting and implements Newton boosting using trees 
as weak learners trained using tree-based regression 

• booster=’gblinear’ implements Newton boosting using linear functions as weak 
learners trained using linear regression 

• booster=’dart’ trains an ensemble using DART, or Dropout meets Multiple Additive 
Regression Trees (this was previously described in Section 5.4) 

• it is possible to train (parallel) random forest ensembles using XGBoost. By carefully 
setting the training parameters to ensure training example and feature subsampling, 
tree boosting can learn a random forest. This is generally only useful when you wish 
to leverage XGBoost’s parallel and distributed training architecture to explicitly train 
parallel ensembles. 

6.4 XGBoost in Practice 
In this section, we describe how to train models in practice using XGBoost. As with AdaBoost 
and gradient boosting, we look to set the learning rate (Section 6.4.1) or employ early 
stopping (Section 6.4.2) as a means to control overfitting. To recap,   

• by selecting an effective learning rate, we try to control the rate at which the model 
learns so that it doesn’t rapidly fit, and then overfit the training data. We can think of 
this a proactive modeling approach, where we try to identify a good training strategy 
so that it leads to a good model.  

• by enforcing early stopping, we try to stop training as soon as we observe that the 
model is starting to overfit. We can think of this as a reactive modeling approach, 
where we contemplate terminating training as soon as we think we have a good 
model. 

6.4.1 Learning Rate 
Recall from Section 6.1 that the step length is analogous to the learning rate and is a 
measure of each weak learner’s contribution to the entire ensemble. The learning rate allows 
greater control over how quickly the complexity of the ensemble grows.  

Therefore, it is essential that we identify the best learning rate for our data set in practice 
so that we can avoid overfitting and generalize well after training. 
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LEARNING RATE VIA CROSS VALIDATION 
As we’ve seen in the last section, XGBoost provides an interface that plays nicely with 

scikit-learn. In this subsection, we see how we can combine functionalities of both 
packages to effectively perform parameter selection using cross validation. 

While we use cross validation to set the learning rate here, cross validation can be used 
to select other learning parameters such as maximum tree depth, number of leaf nodes and 
even loss function specific parameters. 

We combine scikit-learn's StratifiedKFold class to split the training data into 10 
folds of training and validation sets. StratifiedKFold ensures that we preserve class 
distributions, that is, the fractions of different classes across the folds. 

First we initialize the learning rates we are interested in exploring: 

import numpy as np 
learning_rates = np.concatenate([np.linspace(0.02, 0.1, num=5), 
                                 np.linspace(0.2, 1.8, num=9)]) 
n_learning_rate_steps = len(learning_rates) 
print(learning_rates) 
[0.02 0.04 0.06 0.08 0.1  0.2  0.4  0.6  0.8  1.  1.2  1.4  1.6  1.8 ] 

Next, we setup StratifiedKFold to split the training data into 10 folds: 

from sklearn.model_selection import StratifiedKFold 
n_folds = 10 
splitter = StratifiedKFold(n_splits=n_folds, shuffle=True, random_state=42) 

In the listing below, we perform cross validation by training and evaluating models on each 
of the 10 folds with XGBoost.  

Listing 6.5. Cross Validation with XGBoost and scikit-learn 

trn_err = np.zeros((n_learning_rate_steps, n_folds)) 
val_err = np.zeros((n_learning_rate_steps, n_folds)) #A 
 
 
for i, rate in enumerate(learning_rates):  #B 
    for j, (trn, val) in enumerate(splitter.split(X, y)): 
        gbm = XGBClassifier(n_estimators=10, max_depth=1, 
                            learning_rate=rate, verbosity=0) 
        gbm.fit(X[trn, :], y[trn]) 
 
        trn_err[i, j] = (1 - accuracy_score(y[trn],   #C 
                                            gbm.predict(X[trn, :]))) * 100 
        val_err[i, j] = (1 - accuracy_score(y[val],  
                                            gbm.predict(X[val, :]))) * 100 
         
trn_err = np.mean(trn_err, axis=1) #D 
val_err = np.mean(val_err, axis=1) #D 

#A to save training & validation errors 
#B Train a XGBoost classifier for each fold with different learning rates 
#C save training and validation errors 
#D average training & validation errors across folds 
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When applied to the breast cancer data set (see Section 6.3.2), we obtain the averaged 
training and validation errors for this data set. We visualize these for different learning rates 
below. 

As learning rate decreases, XGBoost’s performance degrades as the boosting process 
becomes increasingly more conservative and exhibits underfitting behavior.  

 
Figure 6.14. Averaged training and validation errors of XGBoost across 10 folds of the breast cancer data set. 

As learning rate increases, XGBoost’s performance, once again, degrades as the boosting 
process becomes increasingly more aggressive and exhibits overfitting behavior. The best 
value among our parameter choices appears to be learning_rate=1.2, and generally in the 
region between 1.0 and 1.5. 

CROSS VALIDATION WITH XGBOOST 

Beyond parameter selection, cross validation can also be useful to characterize model 
performance. In the listing below, we use XGBoost’s built-in CV functionality to characterize 
how XGBoost’s performance changes as we increase the number of estimators in the 
ensemble. 

We use the XGBoost.cv function to perform 10-fold cross validation. Observe that 
XGBoost.cv is called in nearly the same way as XGBoost.train from the previous section. 

Listing 6.6. Cross Validation with XGBoost 

import xgboost as xgb 
trn = xgb.DMatrix(Xtrn, label=ytrn) 
tst = xgb.DMatrix(Xtst, label=ytst) 
 
params = {'learning_rate': 0.25, 'max_depth': 2,  
          'objective': 'binary:logistic'} 
cv_results = xgb.cv(params, trn, num_boost_round=60,  
                    nfold=10, metrics={'error'}, seed=42)  
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In this listing, the model performance is characterized by error, which is passed to 
XGBoost.cv using the argument metrics={‘error’}.  

 
Figure 6.15. The average error across the folds decreases with increasing iterations, as we add more and more 
base estimators into the ensemble 

Another interesting observation from the plot above is that training as well as validation 
performance stop improving meaningfully at around 35 iterations. This suggests that there is 
no significant performance improvement to be gained by prolonging training beyond this 
point. 

The brings us, rather neatly, to the notion of early stopping, which we have encountered 
before with both AdaBoost and gradient boosting. 

6.4.2 Early Stopping 
As the number of base estimators in the ensemble increases, the complexity of the ensemble 
also increases, which eventually leads to overfitting. To avoid this, what if, instead of training 
the model, we stopped before we reached the limit of ensemble size? 

Early stopping with XGBoost works pretty similarly to LightGBM, where we specify a value 
for the parameter early_stopping_rounds. The performance of the ensemble is scored after 
each iteration on a validation set, which is split from the training set for the purpose of 
identifying a good early stopping point. 

As long as the overall score (say accuracy) improves over the last 
early_stopping_rounds, XGBoost will continue to train. However, when the score does not 
improve after early_stopping_rounds, XGBoost terminates training.  

The listing below illustrates early stopping using XGBoost. Note that train_test_split is 
used to create an independent validation set that is used by XGBoost to identify an early 
stopping point. 
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Listing 6.7: Early Stopping with XGBoost 

from sklearn.model_selection import train_test_split  
Xtrn, Xval, ytrn, yval = train_test_split(X, y, test_size=0.2, 
                                          shuffle=True, random_state=42) 
ens = XGBClassifier(n_estimators=50, max_depth=2,   
                    objective='binary:logistic') 
ens.fit(Xtrn, ytrn, early_stopping_rounds=5,  
        eval_set=[(Xval, yval)], eval_metric='auc') 

The three key parameters above for early stopping are the evaluation set that is used to 
determine the early stopping point are early_stopping_rounds=5, eval_set=[(Xval, 
yval)] and the evaluation metric: eval_metric='auc'.  

With these parameters, training terminates after 11 rounds even though n_estimators 
was initialized to 50 in XGBClassifier. Thus, early stopping can greatly improve training 
times, while ensuring that model performance does not degrade excessively. 

[0] validation_0-auc:0.95480 
[1] validation_0-auc:0.96725 
[2] validation_0-auc:0.96757 
[3] validation_0-auc:0.99017 
[4] validation_0-auc:0.99099 
[5] validation_0-auc:0.99181 
[6] validation_0-auc:0.99410 
[7] validation_0-auc:0.99640 
[8] validation_0-auc:0.99476 
[9] validation_0-auc:0.99148 
[10] validation_0-auc:0.99050 
[11] validation_0-auc:0.99050 

6.5 Case Study Redux: Document Retrieval 
To conclude this chapter, we revisit the case study from Chapter 5 that addressed the task of 
document retrieval, which identifies and retrieves documents from a database to match a 
user’s query. In Chapter 5, we compared several gradient boosting approaches available in 
LightGBM. 

In this chapter, we will train Newton boosting models using XGBoost on the document 
retrieval task and compare the performance of XGBoost and LightGBM. In addition to this 
comparison, this case study also illustrates how to set up randomized cross validation for 
effective parameter selection in XGBoost over large data sets. 

6.5.1 The LETOR Data Set 
We use the LEarning TO Rank (LETOR) ver. 4.0 data set, which is made freely available by 
Microsoft Research. Each training example corresponds to a query-document pair, with 
features describing the query, the document, and the matches between them. Each training 
label is a relevance rank: least relevant, moderately relevant, or highly relevant. 

This problem is set up as a 3-class classification problem of identifying the relevance 
class (least, moderately, or highly relevant) given a training example: a query-document 
pair.  
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For purposes of convenience and consistency, we will use the functionalities provided by 
XGBoost’s scikit-learn wrapper along with modules from scikit-learn itself. 

First let’s load the LETOR data set. 

from sklearn.datasets import load_svmlight_file 
from sklearn.model_selection import train_test_split 
import numpy as np 
 
query_data_file = './data/ch05/MQ2008/Querylevelnorm.txt' 
X, y = load_svmlight_file(query_data_file) 
 

Next, let’s split this into train and test sets. 

Xtrn, Xtst, ytrn, ytst = train_test_split(X, y,  
                                          test_size=0.2, random_state=42) 

6.5.2 Document Retrieval with XGBoost 
As we have a 3-class (multiclass) classification problem, we train a tree based XGBoost 
classifier using the softmax loss function.  

The softmax loss is a generalization of the logistic loss function to multiclass classification 
and is commonly used in many multi-class learning algorithms including multinomial logistic 
regression and in deep neural networks. 

xgb = XGBClassifier(booster='gbtree', objective='multi:softmax') 

As with LightGBM, XGBoost also requires that we set several learning parameters such as 
learning rate (to control the rate of learning) or the number of leaf nodes (to control the 
complexity of the base estimator trees).  

These parameters are selected using scikit-learn’s randomized cross validation 
module: RandomizedSearchCV. Specifically, we perform 5-fold cross validation over a grid of 
various parameter choices; however, instead of exhaustively evaluating all possible learning 
parameter combinations the way GridSearchCV does, RandomizedSearchCV samples a 
smaller number of model combinations for faster parameter selection. 

num_random_iters = 20 
num_cv_folds = 5 

We can explore several different values of some key parameters described below: 

• learning_rate, which controls the overall contribution of each tree to the overall 
ensemble, 

• max_depth, which limits tree depth to accelerate training and decrease complexity, 
• min_child_weight, which limits each leaf node by the sum of Hessian values to 

control overfitting, 
• colsample_bytree, which specifies the fraction of features to sample from the 

training data respectively, to accelerate training, 
• reg_alpha and reg_lambda, which specify the amount of regularization of the leaf 

node values, to control overfitting as well. 
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The code below specifies the ranges of values for these parameters we are interested in 
searching over to identify an effective training parameter combination. 

from scipy.stats import randint, uniform 
xgb_params = {'max_depth': randint(2, 10),  
              'learning_rate': 2**np.linspace(-6, 2, num=5), 
              'min_child_weight': [1e-2, 1e-1, 1, 1e1, 1e2], 
              'colsample_bytree': uniform(loc=0.4, scale=0.6), 
              'reg_alpha': [0, 1e-1, 1, 10, 100], 
              'reg_lambda': [0, 1e-1, 1, 10, 100]} 

As mentioned above, the grid over these parameters produces too many combinations to 
evaluate efficiently. Thus, we adopt randomized search with cross validation and randomly 
sample a much smaller number of parameter combinations. 

cv = RandomizedSearchCV(estimator=xgb,  
                        param_distributions=xgb_params, 
                        n_iter=num_random_iters, 
                        cv=num_cv_folds,   
                        refit=True, 
                        random_state=42, verbose=1) 
cv.fit(Xtrn, ytrn, eval_set=[(Xtst, ytst)],  
                   eval_metric='merror', verbose=False) 

Observe that we have set refit=True in RandomizedSearchCV, which enables the training of 
one final model using the optimal parameter combination identified by RandomizedSearchCV. 

After training, we compare the performance of XGBoost with four models trained by 
LightGBM in Section 5.5:  

• random forest: parallel homogeneous ensemble of randomized decision trees; 
• gradient boosted decision trees (GBDT): this is the standard approach to gradient 

boosting and represents a balance between models with good generalization 
performance and training speed; 

• gradient boosting with gradient one-side sampling (GOSS): this variant of gradient 
boosting downsamples the training data and is ideally suited for large data sets; due 
to downsampling, it may lose out on generalization, but is typically very fast to train; 

• Dropout meets Multiple Additive Regression Trees (DART): this variant incorporates 
the notion of dropout from deep learning, where neural units are randomly and 
temporarily dropped during backpropagation iterations to mitigate overfitting. DART is 
often the slowest of all the gradient boosting options available in LightGBM. 

XGBoost uses regularized loss functions and Newton boosting. In contrast, random forest 
does not use any gradient information, while GBDT, GOSS and DART use gradient boosting. 

 As before, we compare performance of all algorithms using test set accuracy (left) and 
overall model development time (right), which includes cross-validation-based parameter 
selection as well as training time. 
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Figure 6.16. (left) Comparing test set accuracy of random forest, GBDT, GOSS and DART; (right) comparing the 
overall training times of random forest, GBDT, GOSS and DART (all trained using LightGBM). 

From the figure above, the key takeaways from this experiment are: 

• On training performance, XGBoost performs comparably to DART, GOSS and GBDT 
and outperforms random forest. On test set performance XGBoost is second only to 
DART.  

• On training time, the overall model development time of XGBoost is significantly 
smaller than DART. This suggests that there is an application-dependent tradeoff to 
be made here between the need for the additional performance improvement and the 
accompanying computational overhead incurred.  

• Finally, it should be noted that these results are dependent on various choices made 
during modeling such as learning parameter ranges and randomization. Further 
performance gains are possible with careful feature engineering, loss function 
selection and leveraging distributed processing for efficiency. 

6.6 Summary 
In this chapter, we were introduced to a new sequential ensemble approach: Newton 
boosting. Some key takeaways: 

• Newton descent is another optimization algorithm, similar to gradient descent.  
• Newton descent uses second-order (Hessian) information to accelerate optimization in 

comparison to gradient descent, which only uses first-order (gradient information). 
• Newton boosting combines Newton descent and boosting to learn a sequential 

ensemble of weak learners. 
• Newton boosting uses weighted residuals to characterize correctly classified and 

poorly classified training examples. This is analogous to both how AdaBoost uses 
weights and gradient boosting uses residuals. 

• Weak learners in Newton boosting are regression trees that are trained over the 
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weighted residuals of the training examples and approximate the Newton step. 
• Like gradient boosting, Newton boosting can be applied to a wide variety of loss 

functions arising from classification, regression, or ranking tasks.  
• Optimizing a regularized loss function helps control the complexity of the weak 

learners in the learned ensemble, prevent overfitting and improve generalization. 
• XGBoost is a powerful, publicly available framework for tree-based Newton boosting 

that incorporates Newton boosting, efficient split finding, and distributed learning. 
• XGBoost optimizes a regularized learning objective consisting of the loss function (to 

fit the data) and two regularization functions: L2-regularization and number of leaf 
nodes. 

• As with AdaBoost and gradient boosting, we can avoid overfitting in Newton boosting 
by choosing an effective learning rate or via early stopping. XGBoost supports both.  

• XGBoost implements an approximate split-finding algorithm called weighted quantile 
sketch, which is similar to histogram-based split finding, but adapted and optimized 
for efficient Newton boosting. 

• In addition to a wide variety of loss functions for classification, regression, and 
ranking, XGBoost also provides support for incorporation of our own custom, problem-
specific loss functions for training. 
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Learning with Continuous and Count 
Labels 

This chapter covers 

• An introduction to regression in machine learning
• Understanding loss and likelihood functions for regression
• Understanding when to use different loss and likelihood functions
• Adapting parallel and sequential ensembles for regression problems
• Using ensembles for regression in practical settings

Many real-world modeling, prediction and forecasting problems are best framed and solved 
as regression problems. Regression has a rich history predating the advent of machine 
learning and has long been a part of the standard statistician’s toolkit.  

Regression techniques have been developed and widely applied in many areas. Here are 
just a few examples: 

• Weather forecasting: to predict the precipitation tomorrow using data from today,
including temperature, humidity, cloud cover, wind and more.

• Insurance analytics: to predict the number of automobile insurance claims over a
period of time, given various vehicle and driver attributes.

• Financial forecasting: to predict stock prices using historical stock data and trends.
• Demand forecasting: predict the residential energy load for the next three months

using historical, demographic and weather data.

Whereas Chapters 2-6 introduced ensembling techniques for classification problems, in this 
chapter, we will see how to adapt ensembling techniques to regression problems. 

Consider the task of detecting fraudulent credit card transactions. This is a classification 
problem because we’re aiming to distinguish between two types of transactions: fraudulent 
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(with class label, say 1) and not fraudulent (with class label, say 0). The labels (or targets) 
we want to predict in classification are categorical (0, 1, …) and represent different 
categories. 

On the other hand, consider the task of predicting a cardholder’s monthly credit card 
balance. This is an instance of a regression task. Unlike classification, the labels (or targets) 
we want to predict take continuous values (e.g., $650.35). 

Consider yet another task of predicting the number of times a cardholder uses their card 
every week. This is also an instance of a regression task, though with a subtle difference. 
The labels, or targets we want to predict are counts.  

We typically distinguish between continuous regression and count regression as it doesn’t 
always make sense to model counts as continuous values (for instance, what does it even 
mean to predict that a cardholder used their card 7.62 times?) 

In this chapter, we will learn about these types of problems and others that can be 
modeled with regression, and how we can train regression ensembles.   

Section 7.1 introduces regression formally, shows some commonly used regression 
models, and how regression can be used to model continuous and count-valued labels (and 
even categorical labels) under a single framework called the Generalized Linear Model. 

Sections 7.2 (parallel ensembles for regression) and 7.3 (sequential ensembles for 
regression) show how we can adapt ensemble methods to regression problems.  

Section 7.3 introduces loss and likelihood functions for continuous and count-valued 
targets and provides guidelines on when and how to use them. We conclude with a case 
study in Section 7.4, this time from the realm of demand forecasting.  

7.1 A Brief Review of Regression 
This section reviews the terminology and background material for regression. We begin with 
the more familiar and traditional framing of regression as learning with continuous labels.  

We will then learn about Poisson regression, an important technique for learning with 
count labels, and logistic regression, another important technique for learning with 
categorical labels. 

In particular, we will see that linear, Poisson and logistic regression are all individual 
variations within a framework called Generalized Linear Models or GLMs. 

We also briefly review two important nonlinear regression methods: decision tree 
regression and artificial neural networks, as they are both often used as base estimators or 
meta-estimators in ensemble methods. 

7.1.1 Linear Regression for Continuous Labels 
The most fundamental regression method is linear regression, where the model to be trained 
is a linear, weighted combination of the input features, that is 

 
The linear regression model f(x) takes an example x as input and is parameterized by 

191

©Manning Publications Co. To comment go to liveBook 
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion

https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion


feature weights, w and the intercept (sometimes also known as the bias) w0. This model is 
trained by identifying the weights that minimize the (mean) squared error between the true 
labels (wi) and predicted labels (f(xi)) over all n training examples, where  

 
The (mean) squared error is nothing but the (mean) squared loss. Since we minimize the 
loss function to learn the model, linear regression is also known by another name that may 
be familiar to you: ordinary least squares (OLS) regression. 

Recall from Section 6.2 (and also from Chapter 1) that most machine-learning problems 
can be cast as combinations of regularization and loss functions, where the regularization 
function controls model complexity, and the loss function controls model fit: 

 
λ, of course, is the regularization parameter that trades off between fit and complexity and 
must be determined and set by the user, typically through practices such as cross validation. 

Optimizing (specifically, minimizing) this learning objective essentially amounts to 
training a model. From this perspective, ordinary least squares regression can be framed as 
an unregularized learning problem where only the squared-loss function is optimized,  

 
Is it possible to use different regularization functions to come up with other linear regression 
methods? Absolutely, and this is precisely what the statistics community has been up to for 
the better part of the last century.  

COMMON LINEAR REGRESSION METHODS 

Let’s see some common linear regression methods in practice through scikit-learn’s 
linear_model subpackage, which implements several linear regression models.  

We’ll use a synthetic data set, where the true underlying function is given by f(x) = -
25x + 3.2. This is a univariate function, or a function of one variable (for our purposes, one 
feature). In practice, we will often not know the true underlying function, of course. The 
following code snippet generates a small, noisy data set of 100 training examples. 
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n = 100 
X = np.random.uniform(low=-4.0, high=4.0, size=(n, 1)) 
f = lambda x: -2.5 * x + 3.2 
y = f(X) + np.random.normal(scale=0.15 * np.max(y), size=(n, 1)) 
   

We can visualize this data set in the figure below. 

 
Figure 7.1. Data for a synthetic regression problem to which we fit several linear regression models, generated 
by the univariate (one-dimensional), noisy function f(x) = -2.5 x + 3.2 (shown by the red line) 

Different regularization methods serve different modeling needs and can handle different 
types of data issues. The most common data issue that linear regression models must 
contend with is that of multicollinearity. 

Multicollinearity in data arises when one feature depends on others, that is, when the 
features are correlated with each other. For example, in medical data, patient weight and 
blood pressure are often highly correlated. In practical terms, this means that both features 
convey nearly the same information, and it should be possible to train a less complex model 
by selecting and using only one of them. 

To understand the impact of different regularization methods, we’ll explicitly create a 
data set with multicollinearity using our recently generated univariate data. Specifically, we 
will create a data set with two features, where one feature is dependent on the other:  

X = np.concatenate([X, 3*X + 0.25*np.random.uniform(size=(n, 1))], axis=1) 

This produces a data set of two features, where the second feature is 3 times the first (with 
some added random noise, to keep it more realistic). We now have a two-dimensional data 
set, where the second feature is highly correlated with the first. As before, we’ll split the data 
set into training (75%) and test (25%) sets: 
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from sklearn.model_selection import train_test_split 
Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, test_size=0.25) 

We now train four commonly used linear regression models: 

• Ordinary least squares (OLS) regression, with no regularization (as seen above) 
• Ridge regression, which uses L2-regularization 
• LASSO, which uses L1-regularization, and 
• Elastic net, which uses a combination of L1 and L2-regularization 

The listing below initializes and trains all 4 models.  

Listing 7.1 Linear regression models 

from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet 
from sklearn.metrics import mean_squared_error, mean_absolute_error 
 
models = ['OLS Regression', 'Ridge Regression', 'LASSO', 'Elastic Net'] 
regressors = [LinearRegression(),    #A 
              Ridge(alpha=2.0), 
              Lasso(alpha=2.0), 
              ElasticNet(alpha=2.0, l1_ratio=0.5)] 
 
for (model, regressor) in zip(models, regressors): 
    regressor.fit(Xtrn, ytrn)    #B 
    ypred = regressor.predict(Xtst)    #C  
    mse = mean_squared_error(ytst, ypred)  #D  
    mad = mean_absolute_error(ytst, ypred) 
 
    print('{0}\'s test set performance: MSE = {1:4.3f}, MAD={2:4.3f}' 
          .format(model, mse, mad)) 
    print('{0} model: {1} * x + {2}\n'    #E 
          .format(model, regressor.coef_, regressor.intercept_)) 
 

#A initialize four common linear regression models 
#B train regression model 
#C get predictions on the test set 
#D compute the test error using MSE and MAD  
#E print the regression weights 

The unregularized OLS model will serve as our baseline for comparing the others. 

OLS Regression's test set performance: MSE = 2.622, MAD=1.230 
OLS Regression model: [[-15.97039936   4.49467661]] * x + [2.50949892] 

We’ll use two metrics to evaluate the performance of each model: mean squared error (MSE) 
and mean absolute deviation (MAD). This model has MSE of 2.622 and MAD of 1.23. 

The next linear regression model, ridge regression, uses L2-regularization, which is just 
the sum-of-squares of the weights, that is,  
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So, what does L2-regularization do? Learning involves minimizing the learning objective; 
when the regularization term, or sum of squares is minimized, it pushes individual weights to 
zero. This is known as shrinkage of the model weights, which reduces model complexity. 

The squared loss term in the objective is critical because, without it, we would learn a 
degenerate model with all-zero weights. Thus, a ridge regression model trades off complexity 
to fit, the balance of which is controlled by appropriately setting the parameter λ > 0. 

Listing 7.1 produces the following ridge regression model (with λ = 2.0): 

Ridge Regression's test set performance: MSE = 2.364, MAD=1.139 
Ridge Regression model: [[-0.55652638 -0.64978444]] * x + [3.17809807] 

The effect of regularization and the resultant shrinkage is immediately evident when we 
compare the weights learned by L2-regularized ridge regression: [-0.557, -0.65] to those 
learned by unregularized OLS regression: [-15.97, 4.494]. 

What’s more, the ridge regression model improves test set performance as evidenced by 
the improvement in MSE (2.622 to 2.364) and MAD (1.230 to 1.139) between the two. 

Another popular linear regression method is Least Absolute Shrinkage and Selection 
(LASSO), which is rather similar to ridge regression except that it uses L1-regularization to 
control model complexity. That is, the learning objective with L1-regression becomes 

 
L1-regularization is the sum of absolute values of the weights, rather than the sum of 
squares in L2-regularization. The effect, overall, is similar to L2-regularization, except that L1-
regularization shrinks the weights for less predictive features. In contrast, L2-regularization 
shrinks the weights for all the features uniformly. 

Put another way, L1-regularization pushes the weights of less informative features down 
to zero, which makes it well suited for feature selection. L2-regularization pushes the weights 
of all features down together, which makes it well suited for handling correlated and 
covariant features. 

Listing 7.1 produces the following LASSO model (with λ = 20): 

LASSO's test set performance: MSE = 2.327, MAD=1.135 
LASSO model: [-0.         -0.79667616] * x + [3.19674495] 

Contrast the LASSO model’s weights: [0, -0.797], to those learned by ridge regression: [-
0.557, -0.65]: LASSO has actually learned a zero-weight for the first feature!  
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We can see that L1-regularization induces model sparsity. That is, LASSO performs 
implicit feature selection during learning to identify a small set of features needed to build a 
less complex model, while maintaining or even improving performance. 

Put another way, there are two clear benefits of the model trained by LASSO compared to 
the one trained by OLS. First, LASSO achieves a smaller test error (2.327 vs. 2.622 MSE, 
1.135 vs. 1.23 MAE), which means it will generalize and perform better on future data.  

Second, the LASSO model only depends on one feature, while the OLS model requires 
two. This makes the LASS model less complex than the OLS model. While this may not mean 
much for this toy data set, this has significant scalability implications when deployed for a 
data set that has thousands of features. 

Recall that our synthetic data set was carefully constructed to have two highly correlated 
features. LASSO has identified this and determined that it does not require both and hence 
learned a zero weight for one, effectively, zeroing out its contribution to the final model. 

The final linear regression model we will look at is called the Elastic Net, a celebrated, widely 
used, and well-studied model. Elastic net regression uses a combination of both L1 and L2-
regularization: 

 
The proportions of L1 and L2-regularizers in the overall regularization are controlled by 
parameters, a,b ≥ 0, while the parameter λ>0 still controls the tradeoff between the overall 
regularization and the loss function. 

Note that in elastic net, rather than set a and b directly, we instead need to set alpha = 
a + b and l1_ratio = a /(a + b). Listing 7.1 produces the following elastic net model: 

Elastic Net's test set performance: MSE = 2.326, MAD=1.135 
Elastic Net model: [-0.         -0.80058507] * x + [3.19729763] 

As we see from the results, the elastic net model still has the sparsity inducing 
characteristics of LASSO (observe the first learned weight is zero), while incorporating the 
robustness of ridge regression to correlations in the data (compare the test set performances 
of ridge regression and elastic net).  

The table below summarizes several common linear regression models, all of which can 
be cast into the squared loss + regularization framework above. 
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Table 7-1. Four popular linear regression methods: they all use the squared-loss function, though different 
approaches to regularization that contributes to model robustness and sparsity. 

During model training, these (regularized) loss functions are often optimized through 
+gradient descent, Newton descent or their variants as seen in Chapters 5.1 and 6.1. 

All the linear regression methods in Table 1 use the squared loss. Other regression 
methods can be derived using different loss functions. We’ll see examples in Section 7.3, and 
again in the Chapter case study in 7.4. 

7.1.2 Poisson Regression for Count Labels 
The previous section introduced regression as a machine-learning approach suited for 
modeling problems with continuous-valued targets (labels). There are often situations, 
however, where we have to develop models where the labels are counts. 

In health informatics, for instance, we may wish to build a model to predict the number 
(essentially, the count) of doctor visits given patient data. In insurance pricing, a common 
problem is that of modeling claim frequency, to predict the count of how many insurance 
claims we can expect for different types of insurance policies.  

In urban planning, we may want to model different count variables for census regions, 
such as household size, number of crimes, number of births and deaths, and many more. 

In all of these problems, we are still interested in building a regression model of the form 
y = f(x), but the target label y is no longer a continuous value, but a count. 

ASSUMPTIONS OF CONTINUOUS-VALUED REGRESSION MODELS 

One approach is to simply treat counts as continuous values, but this does not always work. 
For one, continuous-valued predictions of count variables cannot always be interpreted 

meaningfully. Consider that we were predicting the number of doctor visits per patient: a 
prediction of 2.3 visits is not really helpful: is it two visits or three?  

197

©Manning Publications Co. To comment go to liveBook 
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion

https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion


What is worse, a continuous-valued predictor may even predict negative values that may 
be completely meaningless. What does -4.7 visits to a doctor even mean? This discussion 
shows that continuous and count-valued targets mean completely different things and should 
be treated differently. 

First, let’s look at how linear regression fits continuous-valued targets. Figure 7.2 (left) 
shows a (noisy) univariate data set, where the continuous-valued label (y) depends on a 
single feature (x). 

A linear regression model assumes that for an input x, the prediction errors or residuals 
(y – f(x) are distributed according to the normal distribution. In Figure 7.2 (left), we overlay 
several such normal distributions on the data and labels and the linear regression model (the 
dotted line).  

To put it simply, linear regression tries to fit a linear model such the errors have a normal 
distribution. The normal distribution, also called the Gaussian distribution, is a probability 
distribution, or a mathematical description of the spread and shape of the possible values a 
(random) variable can take.  

As we can see in Figure 7.2 (right), the normal distribution is a continuous-valued 
distribution and reasonable choice for continuous-valued labels. 

 
Figure 7.2. Linear regression (left) fits continuous-valued targets by assuming that the spread of the targets 
can be modeled by the continuous-valued normal distribution (right). More precisely, linear regression 
assumes that the predictions f(x) for an example x are distributed according to the normal distribution. 

But what of count data? In Figure 7.3, we visualize the difference between our data set from 
Figure 7.2 with continuous-valued targets (left) and count-valued targets (right).  
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Figure 7.3. Visualizing the differences between continuous-valued targets (left) and count-valued targets (right) 
shows us that linear regression will not work well as the distribution (spread and shape) of the count labels is 
quite different from that of continuous labels. 

We begin to see some rather stark differences between continuous-valued and count-valued 
labels. Intuitively, a regression model designed for continuous targets would struggle to build 
a viable model with count-valued targets. 

This is because regression models for continuous targets assume that the residuals have 
a certain shape: the normal distribution. As we see below, count-valued targets are not 
normally distributed, but, in fact, often follow a Poisson distribution. 

Because count-valued labels are fundamentally different from continuous-valued labels, a 
regression approach designed for continuous-valued labels will not generally work well on 
count-valued labels. 

NEW ASSUMPTIONS FOR COUNT-VALUED REGRESSION MODELS 

Can we keep the general framework of linear regression, then, but extend it to be able to 
handle count-valued data? We can indeed:  

• We will have to change how we link the label (prediction target) to the input features. 
Linear regression relates labels to features through a linear function: y = β0 + β’x. For 
count labels, we will introduce a link function g(y) into the model: g(y) = β0 + β’x, in 
particular, the log-link function: ln(y) =  β0 + β’, or by inverting the log, y = eβ0 + β’x  

• We will have to change our assumptions on how we think the predictions f(x) are 
distributed. Linear regression assumes the normal distribution for continuous-valued 
labels. For count-valued labels, we will need the Poisson distribution. 

The Poisson distribution is a discrete probability distribution, so it is well suited to 
handle discrete count-valued labels and is expresses the probability of how many 
events can occur in a fixed interval of time. 

Figure 7.4 illustrates both the need for a log-link function as well as the Poisson distribution 
for developing regression models for count-valued data. 
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First, observe the mean (average) trend of the count labels (y) in relation to the 
regression data (x) in Figure 7.4 (left), illustrated by the dashed line. Intuitively, this is a 
gentle exponential trend, and shows how the features (x) can be linked to the labels (y). 

Second, observe how the Poisson distributions overlaid on the visualization model the 
nature of counts (discrete) as well as their spread far better than the normal distribution.  

A regression model with these underlying changes is allows us to model count-valued 
targets and is, appropriately called, Poisson regression. 

To recap, Poisson regression still uses a linear model to capture impact of the various 
input features from the examples. However, it introduces a log-link function and the Poisson 
distribution assumption to effectively model count-labeled data. 

The Poisson regression approach described above is an extension of ordinary linear 
regression, meaning that it has no regularization. Unsurprisingly, however, we can add 
different regularization terms to induce robustness or sparsity, as we saw in Section 7.1.  

 
Figure 7.4. Poisson regression (left) fits count-valued targets by assuming that the spread of the targets can be 
modeled by the discrete-valued Poisson distribution (right). More precisely, Poisson regression assumes that 
the predictions f(x) for an example x are distributed according to the Poisson distribution. 

scikit-learn’s implementation of Poisson regression is part of the sklearn. linear_model 
subpackage. It implements Poisson regression with L2-regularization, where the impact of 
regularization can be controlled through the argument alpha.  

Thus, the parameter alpha is the regularization parameter, analogous to the parameter 
in ridge regression. Setting alpha=0 causes the model to learn an unregularized Poisson 
regressor, which, as with unregularized linear regression, cannot handle feature correlations 
as effectively.  

In the following example, we call Poisson regression with alpha=0.01, which trains a 
regression model for count labels, that is also robust to feature correlations in the data! 
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from sklearn.linear_model import PoissonRegressor 
poiss_reg = PoissonRegressor(alpha=0.01) 
poiss_reg.fit(Xtrn, ytrn) 
ypred = poiss_reg.predict(Xtst) 
mse = mean_squared_error(ytst, ypred)   
mad = mean_absolute_error(ytst, ypred) 
print('Poisson regression test set performance:  
       MSE={0:4.3f}, MAD={1:4.3f}'.format(mse, mad)) 

This snippet, executed on the data in Figure 7.4, results in the following output: 

Poisson regression test set performance: MSE = 3.963, MAD=1.594 

We can train a ridge regression model on this synthetic data set with count-valued features. 
Remember that ridge regression uses the mean-squared error as the loss function, which is 
unsuited for count variables. We see that this is indeed the case: 

Ridge regression test set performance: MSE = 4.219, MAD=1.610 

7.1.3 Logistic Regression for Classification Labels 
In the previous section, we saw that it is possible to extend linear regression to count-valued 
labels with an appropriate choice of link function and target distribution. 

What other label types can we handle? Can this idea (of adding link functions and 
introducing other types of distributions) be extended to categorical labels?  

Categorical (or class) labels are used to describe classes in binary classification problems 
(0 or 1) or multiclass classification problems (0, 1, 2)?  

The question, then, is can we apply a regression framework to a classification problem? 
Amazingly, yes! For simplicity, let’s focus on binary classification, where labels can take only 
two values: 0 or 1.  

• We will have to change how we link the target label to the input features. For 
class/categorical labels, we use the logit link function g(y)=ln(y-1)).  

Thus, the model we will learn will be ln � 𝑦𝑦
1−𝑦𝑦

� =  𝛽𝛽0 + 𝜷𝜷′𝒙𝒙. This may seem like a rather 

arbitrary choice at first, but a slightly deeper look demystifies this choice.  

First, by inverting the logit function, we have the equivalent link 𝑦𝑦 = 1 �1 + 𝑒𝑒−(𝛽𝛽0+𝜷𝜷′𝒙𝒙)�⁄  
between the labels y and the data x. That is, y is modeled with the sigmoid function, 
also known as the logistic function! Thus, using the logit-link function in a regression 
model turns it into logistic regression, a well-known classification algorithm! 

Second, let’s rewrite the ratio y/(1-y) as y: (1-y), which we interpret as the odds of y 
being Class 0 to being Class 1. These odds are exactly the same as the odds offered in 
gambling and betting. The logit-link function is simply the logarithm of the odds, or 
log-odds. This link function, essentially, is providing a measure of likelihood of the 
class being 0 or 1.  

• Linear regression assumed the normal distribution for continuous-valued labels, 
Poisson regression assumed the Poisson distribution for count-valued labels. Logistic 
regression assumes the Bernoulli distribution for binary class labels. 
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The Bernoulli, like the Poisson distribution, is another discrete probability distribution. 
However, rather than describing counts of events, the Bernoulli distribution models 
the outcomes of yes/no questions. This is ideally suited for the binary classification 
case, where we ask the question, “Does this example belong to Class 0 or Class 1?” 

Putting all this together, we visualize logistic regression analogously to linear regression or 
Poisson regression in Figure 7.5.  

Figure 7.5 (left) shows a binary classification data set, where the data has only one 
feature and the targets belong to one of two categories. In this case, the binary labels follow 
the Bernoulli distribution, and the sigmoid link function (dotted line) allows us to relate the 
data (x) to the labels (y) nicely. Figure 7.5 (right) shows us a closer look at the Bernoulli 
distribution. 

 
Figure 7.5. Logistic regression (left) fits 0/1-valued targets by assuming that the spread of the targets can be 
modeled by the discrete-valued Bernoulli distribution (right). Observe how the prediction probabilities (the 
heights of the bars) of Class 0 and Class 1 change with the data. 

Logistic regression, of course, is one of many different classification algorithms, though one 
with a close connection to regression. This segue into classification problems is only intended 
to highlight the various types of problems the general regression framework can handle. 

7.1.4 Generalized Linear Models 
The Generalized Linear Model (GLM) framework includes different combinations of link 
functions and label probability distributions (and many other models) to create problem-
specific regression variants.  

Linear regression, Poisson regression, logistic regression and many other models are all 
different GLM variants. A (regularized) GLM regression model has four components: 

• a probability distribution (formally, from the exponential family of distributions), 
• a linear model η = β0 + β’x 
• a link function g(y) = η, and  
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• a regularization function, R(β). 

Why do we care about GLMs? First, they’re obviously a cool modeling approach that allows us 
to handle several different types of regression problems in one unified framework.  

Second, and more importantly, GLMs are often used as weak learners in sequential 
models, especially in many gradient boosting packages such as XGBoost. 

Third, and most important, GLMs allow us to think about problems in a principled 
manner; in practice, this means that during data set analysis, as we begin to get a good 
sense of the labels and their distribution, we can see which GLM variant best suits the 
problem at hand. 

The table below shows different GLM variants, link function-distribution combinations and 
the types of labels they’re best suited for. Some of these approaches such as Tweedie 
regression may be new to you, and we will get into them more in Sections 7.3 and 7.4.  

 
Table 7-2. Generalized Linear Models for different types of labels. 

The last method, Tweedie regression, is a particularly important GLM variant that is widely 
used for regression modeling in agriculture, insurance, weather, and many other areas.  

7.1.5 Nonlinear Regression 
Unlike linear regression, where the model to be learned is cast as a weighted sum of the 
features, f(x) = w0 + w1x1 +…+ wdxd, in nonlinear regression, the model to be learned can be 
made up of any combination of features and functions of features. 

For example, a polynomial regression model of three features can be constructed from 
weighted combinations of all possible feature interactions: 
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From a modeling perspective, nonlinear regression poses two challenges: 

1. Which feature combinations should we use? In the example above, with 3 features, we 
have 23 = 8 feature combinations, each with its own weight. In general, with d 
features, we would have 2d feature combinations to consider and as many weights to 
learn. Doing this exhaustively can be extremely computationally expensive. And the 
above example doesn’t even include any higher order terms (e.g., x2

2 x3). 

2. Which nonlinear functions should we use? All sorts of functions and combinations 
beyond polynomials are admissible: trigonometric, exponential, logarithmic, and many 
other types of functions, and even many more combinations. Searching through this 
space of functions exhaustively is simply computationally infeasible.  

While many different nonlinear regression techniques have been proposed, studied, and 
used, two approaches are especially relevant in the modern context: decision trees and 
neural networks. We’ll discuss them both briefly below, though we will focus more on 
decision trees as they are the building blocks of most ensemble methods. 

Tree-based methods use decision trees to define the space of nonlinear functions to 
explore. During learning, decision trees are grown using the same loss functions as described 
previously, such as the squared loss. Each time a new decision node is added, it introduces a 
new feature interaction/combination into the tree.  

Thus, decision trees induce feature combinations greedily and recursively during learning 
via the loss function as a scoring metric. As the tree grows, its nonlinearity (or, complexity) 
also increases. The learning objective of decision trees, then, can be written as: 

 
On the other hand, artificial neural networks use layers of neurons to successively induce 
increasingly complex feature combinations at each layer. The nonlinearity of a neural 
network increases with network depth, which directly influences the number of network 
weights that must be learned. 

 
The scikit-learn package provides many nonlinear regression approaches. Let’s take a quick 
look at how we can train decision tree and neural network regressors for a simple problem.  
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As before, let’s generate a simple, univariate data set to visualize these two regression 
approaches. The data are generated according to the function f(x) = e-0.5x sin(1.25πx – 1.44), 
which is the true nonlinear relationship between the data x and the continuous labels y: 

n = 150 
X = np.random.uniform(low=-1.0, high=5.0, size=(n, 1)) 
g = lambda x: np.exp(-0.5*x) * np.sin(1.25 * np.pi * x - 1.414) 
y = g(X)   
y += np.random.normal(scale=0.08 * np.max(y), size=(n, 1))  
y = y.reshape(-1, ) 

 
Figure 7.6. (left) The true function relating labels to data (red curve) and the generated data samples; (right) 
two nonlinear regression models fit to this synthetic data set: decision tree and neural network regressors. 

Split into train and test sets: 

Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, test_size=0.25) 

Now train a decision tree regressor of maximum depth 5: 

from sklearn.tree import DecisionTreeRegressor 
dt = DecisionTreeRegressor(max_depth=5) 
dt.fit(Xtrn, ytrn) 
 
ypred_dt = dt.predict(Xtst) 
mse = mean_squared_error(ytst, ypred_dt) 
mad = mean_absolute_error(ytst, ypred_dt) 
print('Decision Tree''s test set performance: MSE = {0:4.3f}, MAD={1:4.3f}'.format(mse, 

mad)) 

The learned decision tree is shown in Figure 7.6 (right). A decision tree with a univariate 
(single-variable) split function learns axis-parallel fits, which is reflected in the decision-tree 
model in the figure: the model is made up of segments that are parallel to the x- or y-axes. 

In similar fashion, we can train an artificial neural network for regression, also known as a 
multilayer perceptron (MLP) regressor.  
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from sklearn.neural_network import MLPRegressor 
ann = MLPRegressor(hidden_layer_sizes=(50, 50, 50),  
                   alpha=0.001, max_iter=1000) 
ann.fit(Xtrn, ytrn.reshape(-1, )) 
ypred_ann = ann.predict(Xtst) 
mse = mean_squared_error(ytst, ypred_ann) 
mad = mean_absolute_error(ytst, ypred_ann) 
 
print('Neural Network''s test set performance: MSE = {0:4.3f}, 
       MAD={1:4.3f}'.format(mse, mad)) 

This neural network is made up three hidden layers, each containing 50 neurons, which is 
specified during network initialization through hidden_layer_sizes=(50, 50, 50).  

MLPRegressor uses the piecewise-linear rectifier function (relu(x) = max(x,0)) as the 
activation for each neuron. The regression function learned by the neural network is in Figure 
7.6 (right). Since the neural network activation functions were piecewise linear, the final 
learned neural network model is nonlinear, though made up of several linear components, 
hence, piecewise. 

Comparing the performance of both networks, we see that they are quite similar: 

Decision Trees test set performance: MSE = 0.043, MAD=0.156 
Neural Networks test set performance: MSE = 0.047, MAD=0.177 

Finally, ensemble methods for regression are typically train nonlinear regression models 
(except with specific choices of base estimators), much like the ones discussed in this 
subsection.  

7.2 Parallel Ensembles for Regression 
In this section, we revisit parallel ensembles, both homogeneous (Chapter 2) and 
heterogeneous (Chapter 3) and see how they can be applied to regression problems.  

Before we dive into how, let us refresh ourselves on how parallel ensembles work. The 
figure below illustrates a generic parallel ensemble, where base estimators are regressors. 

 
Figure 7.7. Parallel ensembles train multiple base estimators independently of each other, and then combine 
their predictions into a joint ensemble prediction. Parallel regression ensembles simply use regression 
algorithms such as decision tree regression as base learning algorithms. 
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Parallel ensemble methods train each component estimator independently of the others, 
which means that they can be trained in parallel. Parallel ensembles typically use strong 
learners, or high-complexity, high-fit learners as base learners. This is in contrast to 
sequential ensembles, which typically use weak learners, or low-complexity, low-fit learners 
as base learners. 

As with all ensemble methods, ensemble diversity among the component base estimators 
is the key. Parallel ensembles achieve this in two ways: 

• With homogeneous ensembles, where the base learning algorithm is fixed, but the 
training data is randomly subsampled to induce ensemble diversity. In Section 7.2.1, 
we look at two such approaches: random forest and ExtraTrees. 

• With heterogeneous ensembles, where the base learning algorithm is changed for 
diversity, while the training data is fixed. In Section 7.2.2, we look at two such 
approaches: fusing base estimator predictions with a combining function (or 
aggregator) and stacking base estimator predictions by learning a second-level 
estimator (or meta-estimator).  

We focus on a problem with continuous-valued labels called AutoMPG, which is a popular 
regression data set, often used as a benchmark to evaluate regression methods. 

The regression task is to predict the fuel efficiency of various car models or MPG (miles 
per gallon). The features consist of various engine-related attributes such as number of 
cylinders, displacement, horsepower, weight and acceleration.  

The data set is available from the UCI Repository; it is also available with the source 
code.  The listing below shows how to load the data and split into training and test sets.  

It also includes a pre-processing step, where the data is centered and rescaled such that 
each feature has a mean of 0 and standard deviation of 1. This step, called normalization or 
standardization, ensures that all the features are in the same range of values and improves 
the performance of downstream learning algorithms.  

Listing 7.2. Loading and pre-processing the AutoMPG data set 

import pandas as pd 
data = pd.read_csv('./data/ch07/autompg.csv')    #A 
 
labels = data.columns.get_loc('MPG')  
features = np.setdiff1d(np.arange(0, len(data.columns), 1), labels)    #B 
 
from sklearn.model_selection import train_test_split 
trn, tst = train_test_split(data, test_size=0.2, random_state=42)    #C 
 
from sklearn.preprocessing import StandardScaler 
preprocessor = StandardScaler().fit(trn)    #D 
trn, tst = preprocessor.transform(trn), preprocessor.transform(tst) 
 
Xtrn, ytrn = trn[:, features], trn[:, labels]    #E 
Xtst, ytst = tst[:, features], tst[:, labels] 

#A load the data set using Pandas 
#B get column indices for labels and features 
#C split the data set into train and test sets 
#D data preprocessing: normalize both training and test data and labels 
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#E further split train and test data into X (features) and y (labels) 

We’ll be using this data set as a running example for this and the next section. 

7.2.1 Random Forest and ExtraTrees 
Homogeneous parallel ensembles are some of the oldest ensemble methods and are 
generally variants of bagging. Chapter 2 introduced homogeneous ensemble methods in the 
context of classification. To recap, each base estimator in the bagging ensemble can be 
trained independently using the following steps: 

1. Generate a bootstrap sample (or sampling with replacement, which means an example 
can be sampled multiple times) from the original data set 

2. Fit a base estimator to the bootstrap sample; since each bootstrap sample will be 
different, the base estimators will be diverse. 

We can follow the same for regression ensembles. The only difference is in how the individual 
base estimator predictions are aggregated. For classification, we use majority voting; for 
regression, we use the mean (essentially, the average prediction), though others such as the 
median can also be used.  

NOTE Each base estimator in bagging is a fully trained strong estimator. This means that, if the bagging 

ensemble contains 10 base regressors, it will take 10 times as long to train. Of course, this training 

procedure can be parallelized over multiple CPU cores; however, the overall computational resources needed 

for full-blown bagging is often prohibitive. 

As bagging can be rather computationally expensive to train, two important tree-based and 
randomized variants are used:  

• Random forest is essentially bagging with randomized decision trees as base 
estimators. That is to say: random forests perform bootstrap sampling to generate a 
training subset (exactly like bagging), and then use randomized decision trees as base 
estimators. 

Randomized decision trees are trained using a modified decision-tree learning 
algorithm, which introduces randomness when growing trees. Specifically, instead of 
considering all the features to identify the best split, a random subset of features is 
evaluated to identify the best feature to split on.  

• ExtraTrees, or extremely randomized trees, randomized trees take the idea of 
randomized decision trees to the extreme by selecting not just the splitting variable 
from a random subset of features but also the splitting threshold. This extreme 
randomization is so effective, in fact, that we can construct an ensemble of extremely 
randomized trees directly from the original data set without bootstrap sampling! 

Randomization has two important and beneficial consequences. Once, as we expect, is that it 
improves training efficiency and reduces the computational requirements. The other is that it 
improves ensemble diversity! 
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Random forest and ExtraTrees can be adapted to regression by modifying the underlying 
learning algorithm to train regression trees to make continuous-valued predictions rather 
than classification trees. 

Regression trees use different splitting criteria during training compared to classification 
trees. In principle, any loss function for regression can be used as the splitting criterion. 
However, two commonly implemented splitting criteria are mean-squared error (MSE) and 
mean-absolute error (MAE). We will look at other loss functions for regression in Section 7.3. 

The listing below shows how we can use scikit-learn’s RandomForestRegressor and 
ExtraTreesRegressor to train regression ensembles for the AutoMPG data set. Two versions 
of each method are trained: one using MSE and one using MAE as the train criterion. 

Listing 7.3. Random Forest and ExtraTrees for Regression 

from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor 
from sklearn.metrics import mean_squared_error, mean_absolute_error 
 
ensembles = {    #A 
    'Random Forest MSE': RandomForestRegressor(criterion='mse'), 
    'Random Forest MAE': RandomForestRegressor(criterion='mae'), 
    'ExtraTrees MSE': ExtraTreesRegressor(criterion='mse'), 
    'ExtraTrees MAE': ExtraTreesRegressor(criterion='mae')}  
 
results = pd.DataFrame()    #B 
ypred_trn = {} 
ypred_tst = {} 
 
for method, ensemble in ensembles.items():     
    ensemble.fit(Xtrn, ytrn)    #C 
 
    ypred_trn[method] = ensemble.predict(Xtrn)    #D 
    ypred_tst[method] = ensemble.predict(Xtst) 
 
    res = {'Method-Loss': method,    #E 
            'Train MSE': mean_squared_error(ytrn, ypred_trn[method]), 
            'Train MAE': mean_absolute_error(ytrn, ypred_trn[method]),  
            'Test MSE': mean_squared_error(ytst, ypred_tst[method]), 
            'Test MAE': mean_absolute_error(ytst, ypred_tst[method])} 
 
    results = results.append(res, ignore_index=True)    #F 

#A initialize Random Forest and ExtraTrees with different loss functions 
#B create data structures to store model predictions & evaluation results 
#C train the ensemble 
#D get ensemble predictions on both train & test sets 
#E evaluate train & test set performance with MAE and MAE 
#F save results 

All models are also evaluated using MSE and MAE as the evaluation criterion. These 
evaluation metrics are added to the results variable: 

      Method-Loss  Test MAE  Test MSE  Train MAE  Train MSE 
0   Random Forest MSE    0.2085    0.0953     0.0914     0.0163 
1   Random Forest MAE    0.2272    0.0982     0.0979     0.0191 
2      ExtraTrees MSE    0.1960    0.0765     0.0000     0.0000 
3      ExtraTrees MAE    0.2014    0.0758     0.0000     0.0000 
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In the example above, we used the default parameter settings for both RandomForest 
Regressor and ExtraTreesRegressor. For instance, each trained ensemble is of size 100 as 
n_estimators=100, by default.  

As with any other machine-learning algorithm, we have to identify the best model 
hyperparameters (such as n_estimators), through a grid search or randomized search. 
There are several examples of this in the case study in Section 7.4. 

7.2.2 Combining Regression Models   
Another classical ensembling approach, especially when we have multiple models is to simply 
combine their predictions. This is essentially one of the simplest heterogeneous parallel 
ensembling approaches 

Why combine regression models? It is quite common, during the data exploration phase, 
to experiment with different ML algorithms. This means that we often have several different 
models available to us for ensembling.  

For example, in Section 7.2.1, we trained four different regression models. Since we have 
the predictions of four different models, can we not combine them into one ensemble 
prediction? 

Happily, yes! But what combination functions should we use?  

• For continuous-valued targets, use combining functions/aggregators such as weighted 
mean, median, min or max. In particular, the median is especially effective when 
combining heterogenous predictions where the models are in greater disagreement.  

For example, if we have 5 models in the ensemble predicting [0.29, 0.3, 0.32, 0.35, 
0.85]. Most of the models agree, though there is one outlier, 0.85. The mean of these 
predictions is 0.42, while the median is 0.32. Thus, the median tends to discard the 
influence of the outliers (and behaves similarly to majority voting), while the mean 
tends to include them. This is because the median is simply (and literally) the middle 
value, while the mean is the averaged value. 

• For count-valued targets, use combining functions/aggregators such as mode and 
median. We can think of the mode, in particular, as the generalization of majority 
voting to counts. The mode is simply the most common answer. 

For example, if we have 5 models in the ensemble predicting [12, 15, 15, 15, 16], the 
mode is 15. In case of conflicts, where there are equal counts, we can use random 
selection to break ties. 

The listing below illustrates the use of four simple aggregators for continuous-valued data. In 
this listing, we use the four regressors trained in Listing 7.3 as the (heterogeneous) base 
estimators whose values we’ll combine: RandomForestRegressor and ExtraTreesRegressor, 
each trained with MSE and MAE as the loss function/split criterion. 
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Listing 7.4. Aggregators for Continuous-Valued Labels 

import numpy as np 
agg_methods = ['Mean', 'Median', 'Max', 'Min'] 
aggregators = [np.mean, np.median, np.max, np.min]    #A 
 
results = pd.DataFrame()    #B 
ypred_trn_values = np.array(list(ypred_trn.values()))    #C 
ypred_tst_values = np.array(list(ypred_tst.values())) 
 
for method, aggregate in zip(agg_methods, aggregators): 
    yagg_trn = aggregate(ypred_trn_values, axis=0)    #D 
    yagg_tst = aggregate(ypred_tst_values, axis=0) 
     
    res = {'Aggregator': method,    #E 
            'Train MSE': mean_squared_error(ytrn, yagg_trn), 
            'Train MAE': mean_absolute_error(ytrn, yagg_trn),  
            'Test MSE': mean_squared_error(ytst, yagg_tst), 
            'Test MAE': mean_absolute_error(ytst, yagg_tst)} 
    results = results.append(res, ignore_index=True) 

#A different combining functions for continuous-valued predictions 
#B data structure model predictions & evaluation results 
#C collect predictions of the four ensembles trained in Listing 7.3 
#D aggregate predictions of the four ensembles trained in Listing 7.3 
#E collect and save results 

Again, all models are also evaluated using MSE and MAE as the evaluation criterion. These 
evaluation metrics are added to the results variable: 

  Aggregator  Test MAE  Test MSE  Train MAE  Train MSE 
0       Mean    0.2055    0.0826     0.0469     0.0043 
1     Median    0.2026    0.0804     0.0396     0.0034 
2        Max    0.2280    0.1063     0.0573     0.0101 
3        Min    0.1985    0.0763     0.0527     0.0119 

7.2.3 Stacking Regression Models 
Another way to combine the predictions of different (heterogeneous) regressors is through 
stacking or meta-learning.  

Instead of making up a function ourselves (such as the mean or median), we train a 
second-level model to learn how to combine the predictions of the base estimators. This 
second-level regressor is known as the meta-learner or the meta-estimator.  

The meta-estimator is often a nonlinear model that can effectively combine the 
predictions of the base estimators in a nonlinear manner. The price we pay for this added 
complexity is that stacking can often overfit, especially in the presence of noisy data.  

To guard against overfitting, stacking is often combined with k-fold cross validation such 
that each base estimator is not trained on the exact same data set. This often leads to more 
diversity and robustness, while decreasing the chances of overfitting. 

In Listing 3.1, we implemented a stacking model for classification from scratch. An 
alternate implementation uses scikit-learn’s StackingClassifier and StackingRegressor. This is 
illustrated for regression problems in Listing 7.5 below.   

Here, we train four nonlinear regressors: kernel ridge regression (a nonlinear extension 
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of ridge regression), support vector regression, k-nearest neighbor regression and 
ExtraTrees. 

We use an artificial neural network as a meta-learner, which allows us to combine predictions 
of various heterogeneous regression models in a learnable and highly nonlinear fashion. 

Listing 7.5. Stacking Regression Models 

from sklearn.ensemble import StackingRegressor 
from sklearn.neural_network import MLPRegressor 
from sklearn.kernel_ridge import KernelRidge 
from sklearn.svm import SVR 
from sklearn.tree import DecisionTreeRegressor 
from sklearn.neighbors import KNeighborsRegressor 
from sklearn.gaussian_process import GaussianProcessRegressor 
 
estimators = [('Kernel Ridge, KernelRidge(kernel='rbf', gamma=0.1)),    #A 
              ('Support Vector Machine', SVR(kernel='rbf', gamma=0.1)), 
              ('K-Nearest Neighbors', KNeighborsRegressor(n_neighbors=3)), 
              ('ExtraTrees', ExtraTreesRegressor(criterion='mae'))] 
 
meta_learner = MLPRegressor(hidden_layer_sizes=(50, 50, 50),     #B 
                max_iter=1000) 
 
stack = StackingRegressor(estimators, final_estimator=meta_learner, cv=3) 
stack.fit(Xtrn, ytrn)    #C 
 
ypred_trn = stack.predict(Xtrn)    #D 
ypred_tst = stack.predict(Xtst) 
print('Train MSE = {0:5.4f}, Train MAE = {1:5.4f}\n' \ 
      'Test MSE = {2:5.4f}, Test MAE = {3:5.4f}'.format( 
      mean_squared_error(ytrn, ypred_trn), 
      mean_absolute_error(ytrn, ypred_trn), 
      mean_squared_error(ytst, ypred_tst), 
      mean_absolute_error(ytst, ypred_tst)))  
 

#A initialize first level (base) regressors 
#B initialize second level (meta) regressor 
#C train a stacking regressor with 3-fold cross validation 
#D compute train & test errors 

The stacking regression produces the following output: 

Train MSE = 0.0464, Train MAE = 0.1547 
Test MSE = 0.0969, Test MAE = 0.2297 

It should be noted here that default parameters were used with the individual base 
regressors. The performance of this stacking ensemble can further be improved with 
effective hyperparameter tuning of the base estimator models, which improves the 
performance of each ensemble component, and hence the ensemble overall. 
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7.3 Sequential Ensembles for Regression 
In this section, we revisit sequential ensembles, specifically gradient boosting (with 
LightGBM, Chapter 5) and Newton boosting (with XGBoost, Chapter 6) and see how they can 
be adapted to regression problems. 

 
Figure 7.8. Unlike parallel ensembles which train base estimators independently of each other, sequential 
ensembles such as boosting train successive base estimators to identify and minimize the errors made by the 
previous base estimator.  

Both these approaches are very general in that they can be trained on a wide variety of loss 
functions. This means that they can easily be adapted to different types of problem settings, 
allowing for problem-specific modeling of continuous-valued and count-valued labels. 

Before we dive into how, let us refresh ourselves on how parallel ensembles work. The 
figure below illustrates a generic sequential ensemble, where base estimators are regressors. 

Unlike parallel ensembles, sequential ensembles grow the ensemble one estimator at a 
time, where successive estimators aim to improve upon the predictions of the previous ones. 

Each successive base estimator uses the residual as a means of identifying which training 
examples need attention in the current iteration.  In regression problems, the residual tells 
the base estimator how much the model is underestimating or overestimating the prediction. 
This is illustrated in the figure below. 
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Figure 7.9. A linear regression model and its predictions (green squares) fit to a data set (red circles). The 
residuals are a measure of the error between the true label ( yi) and predicted label f(xi). The size of the 
residual of each training example indicates the extent of the error in fitting, while the sign of the residual 
indicates whether the model is under or overestimating. 

Residuals convey two important pieces of information to the base learners. For each training 
example, the magnitude of the residual can be interpreted in a straightforward manner: 
bigger residuals mean more errors. 

The sign of the residual also conveys important information. A positive residual suggests 
that the current model’s prediction is underestimating the true value, that is, the model has 
to increase its prediction. A negative residual suggests that the current model’s prediction is 
overestimating the true value, that is, the model has to decrease its prediction. 

The loss function and, more importantly, its derivatives allow us to measure the residual 
between the current model’s prediction and the true label. By changing the loss function, we 
are essentially changing how we prioritize different examples. 

Both gradient boosting and Newton boosting use shallow regression trees as weak base 
learners. Weak learners (contrast with bagging and its variants, which use strong learners) 
are essentially low-complexity, low-fit models.  

By training a sequence of weak learners to fix the mistakes of the previously learned 
weak learners, both methods boost the performance of the ensemble in stages: 

• Gradient boosting uses the negative gradient of the loss function as the residual to 
identify training examples to focus on.  

• Newton boosting uses Hessian-weighted gradients of the loss function as the residual 
to identify training examples to focus on. The Hessians (second derivatives) of the 
loss functions incorporate local “curvature” information, to increase the weight on 
training examples with higher loss values.  

Loss functions, then, are a key ingredient in developing effective sequential ensembles. 

7.3.1 Loss and Likelihood Functions for Regression 
In this section, we’ll take a look at some common (and uncommon) loss functions for 
different types of labels: continuous valued, continuous valued but positive, and count 
valued.  
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Each of these loss functions penalizes errors differently, and will result in learning models 
with different properties, much like how different regularization functions produced models 
with different properties (in Section 7.1). 

Many loss functions are ultimately derived from how we assume the residuals are 
distributed. We have already seen this in Section 7.1, where we assume that the residuals of 
continuous-valued targets can be modeled using the Gaussian distribution, count-valued 
targets can be modeled using the Poisson distribution and so on. 

Here, we formalize that notion. Note that some loss functions do not have a closed-form 
expression. In such cases, it is useful to visualize the negative log of the underlying 
distribution. This term, called the negative log-likelihood, is sometimes optimized instead of 
the loss function, and ultimately has the same effect in the final model. 

We consider three types of labels and their corresponding loss functions. These are 
visualized in the figure below. 

 
Figure 7.10. Loss and log-likelihood functions for three different types of targets: continuous-valued (left), 
positive continuous valued (center) and count-valued (right). 

CONTINUOUS-VALUED LABELS 

There are several well-known loss functions for continuous-valued targets. Two of the most 
common are the mean squared error (MSE): ½ (y-f(x))2 and the mean absolute error (MAE): 
|y-f(x)|. The MSE directly corresponds to assuming a Gaussian distribution over the residuals 
(the MAE corresponds to assuming the Laplacian distribution over the residuals). 

The MSE penalizes errors far more heavily than the MAE, as is evident from the loss 
values at the extremes in the figure above. This makes the MSE highly sensitive to outliers.  

The MSE is also a doubly differentiable loss function, which means that we can compute 
both the first and second derivatives. Thus, we can use it for both gradient boosting (which 
uses residuals) and Newton boosting (which uses Hessian-boosted residuals). The MAE is not 
doubly differentiable, meaning it cannot be used in Newton boosting. 

The Huber loss is a hybrid of the MSE and the MAE and switches its behavior between the 
two at some user-specified threshold α: 
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For residuals smaller than α, the Huber loss behaves like the MSE, and beyond the threshold, 
like the (scaled) MAE (see Figure 7.10). This makes the Huber loss ideal in situations where 
we desire to limit the influence of outliers. 

Note that the Huber loss cannot be directly used with Newton boosting as it contains the 
MAE as one of its components. For this reason, Newton boosting implementations use a 
smooth approximation called the pseudo-Huber loss: 

 
The pseudo-Huber loss, for all intents and purposes, behaves like the Huber loss, though is 
an approximate version that is outputs ½ (y-f(x))2 for residuals (y-f(x)) close to zero. 

CONTINUOUS-VALUED POSITIVE LABELS 

In some domains such as insurance claims analytics, the target values that we wish to 
predict only take positive values. For example, the claim amount is continuous-valued, but 
can only be positive. 

In such situations, where the Gaussian distribution is not appropriate, we can use the 
gamma distribution. The gamma distribution is a highly flexible distribution that can fit many 
target distribution shapes. This makes it ideally suited for modeling problems where the 
target distributions have long tails: that is outliers that cannot be ignored. 

The gamma distribution does not correspond to a closed-form loss function. In Figure 
7.10 (center), we plot the negative log-likelihood instead, which functions as a surrogate loss 
function. First, observe that the loss function is only defined for positive real values (x-axis). 

Next, observe how the log-likelihood function only gently penalizes errors to the further 
right. This allows the underlying models to fit to right-skewed data. 

COUNT-VALUED LABELS 

Beyond continuous-valued labels, some regression problems require us to fit count-valued 
targets. We have already seen examples of this in Section 7.1, where we learned that 
counts, which are discrete-valued, can be modeled using the Poisson distribution. 

Like the gamma distribution, the Poisson distribution also doesn’t correspond to a closed-
form loss function. Figure 7.10 (right) illustrates the negative log-likelihood of the Poisson 
distribution, which can be used to build regression models (called Poisson regression). 
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HYBRID LABELS 

In some problems, the underlying labels cannot be modeled by a single distribution. For 
example, in weather analytics, if we want to model rainfall we can expect that: (a) on most 
days we will have no rain at all, (b) on some days, we will have varying degrees of rainfall, 
and (c) on some rare occasions, we will have very heavy rainfall. 

The figure below illustrates the distribution of rainfall data, where we have a big “point mass” 
or spike at 0 (corresponding to most days that receive no rainfall). In addition, this 
distribution is also right skewed as there are a small number of days with very high rainfall. 

 
Figure 7.11. Modeling some types of labels require combinations of distributions, called compound 
distributions, to effectively model them. One such compound distribution is the Tweedie distribution. 

To model this problem, we need a loss function corresponding to a hybrid distribution, 
specifically a Poisson-gamma distribution: the Poisson distribution to model the big point 
mass at 0, and the gamma distribution to model the right-skewed, positive continuous data. 

For such labels, we can use a powerful family of probability distributions called the 
Tweedie distributions, which are parameterized by a parameter p. Different values of p, give 
rise to different distributions: 

• p = 0, Gaussian (normal) distribution 
• p = 1, Poisson distribution 
• 1 < p < 2, Poisson-gamma distributions for different p 
• p = 2, gamma distribution 
• other distributions are possible with other values of p. 

For our purposes, we are mostly interested in using 1 < p < 2, to create a hybrid Poisson-
gamma loss functions.  

Both LightGBM and XGBoost come with support for the Tweedie distribution, and has led 
to their widespread adoption in domains such as weather analytics, insurance analytics and 
health informatics. We will see how to use this in our case study in Section 7.4. 
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7.3.2 Gradient Boosting with LightGBM and XGBoost 
Now, armed with the knowledge of various loss functions, let’s see how we can apply 
gradient boosting regressors to the AutoMPG data set.  

GRADIENT BOOSTING WITH LIGHTGBM 

First, let’s apply standard gradient boosting: LightGBM’s LGBMRegressor with the Huber loss 
function. There are several LightGBM hyperparameters that we further have to select. These 
parameters control various components of LightGBM: 

• loss function parameters: alpha is the Huber loss parameter, the threshold where it 
switches from behaving like the MSE to behaving like the MAE loss.  

• learning control parameters: such as learning_rate to control the rate at which the 
model learns so that it doesn’t rapidly fit, and then overfit the training data; such as 
subsample to randomly sample a smaller fraction of the data during training to induce 
additional ensemble diversity and improve training efficiency. 

• regularization parameters: lambda_l1 and lambda_l2 are the weights on the L1 and 
L2 regularizations functions respectively; these correspond to a and b in the elastic net 
objective (see Table 7.1) 

• tree learning parameters: max_depth, which limits the maximum depth of each weak 
tree in the ensemble 

There are other hyperparameters in each category, that further allow for finer-grained 
control over training. We select hyperparameters using a combination of randomized search 
(since an exhaustive grid search would be too slow) and cross validation. The listing below 
shows an example of this with LightGBM. 

In addition to hyperparameter selection, the listing below also implements early stopping, 
where training is terminated if no performance improvement is observed on an evaluation 
set. 
  

218

©Manning Publications Co. To comment go to liveBook 
https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion

https://livebook.manning.com/book/ensemble-methods-for-machine-learning/discussion


Listing 7.6. LightGBM with Huber loss 

from lightgbm import LGBMRegressor 
from sklearn.model_selection import RandomizedSearchCV 
 
parameters = {'alpha': [0.3, 0.9, 1.8],    #A 
              'max_depth': np.arange(2, 5, step=1),  
              'learning_rate': 2**np.arange(-8., 2., step=2), 
              'subsample': [0.6, 0.7, 0.8], 
              'lambda_l1': [0.01, 0.1, 1], 
              'lambda_l2': [0.01, 0.1, 1e-1, 1]} 
 
lgb = LGBMRegressor(objective='huber', n_estimators=100)    #B 
param_tuner = RandomizedSearchCV(lgb, parameters, n_iter=20, cv=5,    #C 
                                 refit=True, verbose=1) 
 
param_tuner.fit(Xtrn, ytrn,    #D 
                eval_set=[(Xtst, ytst)], eval_metric='mse', verbose=False) 
 
ypred_trn = param_tuner.best_estimator_.predict(Xtrn)    #E 
ypred_tst = param_tuner.best_estimator_.predict(Xtst) 
print('Train MSE = {0:5.4f}, Train MAE = {1:5.4f}\n' \ 
      'Test MSE = {2:5.4f}, Test MAE = {3:5.4f}'.format( 
      mean_squared_error(ytrn, ypred_trn),  
      mean_absolute_error(ytrn, ypred_trn), 
      mean_squared_error(ytst, ypred_tst),  
      mean_absolute_error(ytst, ypred_tst))) 

#A ranges of hyperparameters that we would like to search over 
#B initialize a LightGBM regressor 
#C since GridSearchCV will be slow, search over 20 random parameter combinations with 5-fold CV 
#D fit the regressor with early stopping 
#E compute train and test errors 

This produces the following output 

Fitting 5 folds for each of 20 candidates, totalling 100 fits 
Train MSE = 0.0476, Train MAE = 0.1497 
Test MSE = 0.0951, Test MAE = 0.2250 

NEWTON BOOSTING WITH XGBOOST 

We can repeat this training and evaluation with XGBoost’s XGBRegressor. Since Newton 
boosting requires second derivatives, which cannot be computed for the Huber loss, XGBoost 
does not provide this loss directly.  

Instead, XGBoost provides a pseudo-Huber loss, which is a differentiable approximation 
of the Huber loss, which we will use here. Again, as with LightGBM, we have to set several 
different hyperparameters. Many of XGBoost’s parameters correspond exactly to LightGBM’s 
parameters, though they have different names: 

• learning control parameters: such as learning_rate to control the rate at which the 
model learns so that it doesn’t rapidly fit, and then overfit the training data; such as 
colsample_bytree to randomly sample a smaller fraction of the data during training 
to induce additional ensemble diversity and improve training efficiency. 

• regularization parameters: reg_alpha and reg_lambda are the weights on the L1 and 
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L2 regularizations functions respectively; these correspond to a and b in the elastic net 
objective (see Table 7.1) 

• tree learning parameters: max_depth, which limits the maximum depth of each weak 
tree in the ensemble 

The listing below shows how we can train an XGBRegressor, including a randomized 
hyperparameter search. 

Listing 7.7. Using XGBoost with pseudo-Huber Loss   

from xgboost import XGBRegressor 
parameters = {'max_depth': np.arange(2, 5, step=1),    #A 
              'learning_rate': 2**np.arange(-8., 2., step=2), 
              'colsample_bytree': [0.6, 0.7, 0.8], 
              'reg_alpha': [0.01, 0.1, 1], 
              'reg_lambda': [0.01, 0.1, 1e-1, 1]} 
 
xgb = XGBRegressor(objective='reg:pseudohubererror')    #B 
param_tuner = RandomizedSearchCV(xgb, parameters, n_iter=20,    #C 
                                 cv=5, refit=True, verbose=1) 
 
param_tuner.fit(Xtrn, ytrn, eval_set=[(Xtst, ytst)],    #D 
                eval_metric='rmse', verbose=False) 
 
ypred_trn = param_tuner.best_estimator_.predict(Xtrn)    #E 
ypred_tst = param_tuner.best_estimator_.predict(Xtst) 
print('Train MSE = {0:5.4f}, Train MAE = {1:5.4f}\n' \ 
      'Test MSE = {2:5.4f}, Test MAE = {3:5.4f}'.format( 
      mean_squared_error(ytrn, ypred_trn),  
      mean_absolute_error(ytrn, ypred_trn), 
      mean_squared_error(ytst, ypred_tst),  
      mean_absolute_error(ytst, ypred_tst))) 

#A ranges of hyperparameters that we would like to search over 
#B initialize a XGBoost regressor 
#C since GridSearchCV will be slow, search over 20 random parameter combinations with 5-fold CV 
#D fit the regressor with early stopping 
#E compute train and test errors 

This produces the following output: 

Fitting 5 folds for each of 20 candidates, totalling 100 fits 
Train MSE = 0.0499, Train MAE = 0.1597 
Test MSE = 0.0956, Test MAE = 0.2242 

The LightGBM (gradient boosting) model trained with the Huber loss achieves test MSE of 
0.0951, while the XGBoost (Newton boosting) model trained with the pseudo-Huber achieves 
a similar test MSE of 0.0956.  

This illustrates that the pseudo-Huber loss is a reasonable substitute for the Huber loss 
when the situation calls for it. We will shortly see how we can use LightGBM and XGBoost 
with other loss functions discussed in this Section on the task of bike demand prediction, the 
Chapter case study. 
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7.4 Case Study: Demand Forecasting 
Demand forecasting is an important problem that arises in many business contexts, where 
the goal is to predict the demand for a certain product or commodity. Accurately predicting 
demand is critical for downstream supply chain management and optimization: to ensure 
that there is enough supply to meet needs and not too much that there is waste. 

Demand forecasting is often cast as a regression problem of using historical data and 
trends to build a model to predict future demand. The target labels can be continuous or 
count-valued.  

For example, in energy demand forecasting, the label to predict (energy demand in 
gigawatt hours) is continuous-valued. Alternately, in product demand forecasting, the label 
to predict (number of items to be shipped) is count-valued. 

In this section, we study the problem of Bike Rental Forecasting. As we see below, the 
nature of the problem (and especially, the targets/labels) is quite similar to those arising in 
the areas of weather prediction and analytics, insurance and risk analytics, health 
informatics, energy demand forecasting, business intelligence and many others. 

We analyze the data set and then build progressively more complex models, beginning 
with single linear models, then moving on to ensemble nonlinear models. At each stage, we 
will perform hyperparameter tuning to select the best hyperparameter combinations. 

7.4.1 The UCI Bike Rental Data Set 
The Bike Rental data set1 was the first of several similar publicly available data sets that 
tracks the usage of bicycle sharing services in major metropolitan areas. These data sets are 
made publicly available through the UCI Machine Learning Repository. 

This data set, first made available in 2013, tracks hourly and daily bicycle rentals of 
Capital Bike Sharing in Washington DC. In addition, the data set also contains several 
features describing the weather as well as the time of day and day of the year.  

The overall goal of the problem is to predict the bike rental demand depending on the 
time of day, the season, and the weather. The demand is measured in total number of users, 
a count! The total number of users is further composed of casual and registered users.  

The number of registered users appears to be fairly consistent across the year, since 
these are users who presumably use bike sharing as a regular transportation option rather 
than a recreational activity. This is akin to commuters who have a monthly/annual bus pass 
for their daily commutes as opposed to, say tourists, who only buy bus tickets as needed. 

Keeping this in mind, we construct a derived data set for our case study that can be used 
to build a model to forecast the rental bike demand of casual users. 

Problem: Predict the number of casual bike rental users depending on the time of day, season and 
weather. 

The (modified) data set for this case study is available with the code and can be loaded thus: 
  

 
1 Fanaee-T, H., Gama, J. Event labeling combining ensemble detectors and background knowledge. Progress in Artificial Intelligence 2, 113–127 (2014). 
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import pandas as pd 
data = pd.read_csv('./data/ch07/bikesharing.csv') 

We can look at the statistics of the data set with 

data.describe() 

 
Figure 7.12. Statistics of the bike rental data set. The column ‘casual’ is the prediction target (label). 

The data set contains several continuous weather features: temp (normalized temperature), 
atemp (normalized ‘feels like’ temperature), hum (humidity) and windspeed. The categorical 
feature weathersit describes the type of weather seen at that time with four categories  

• 1: Clear, Few clouds, Partly cloudy, Partly cloudy 
• 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist 
• 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Rain + Scattered 

clouds 
• 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog 

The data set also contains discrete features: season (1:winter, 2:spring, 3:summer, 4:fall), 
mnth (1 to 12 for Jan through Dec) and hr (hour from 0 to 23) to describe the time. In 
addition, the binary features holiday, weekday and workingday encode whether the day in 
question is a holiday or a weekday or working day. 

PREPROCESSING THE FEATURES 

Let’s preprocess this data set by normalizing the features, that is, we ensure that each 
feature is zero mean, unit standard deviation.  

Normalization is not always the best approach to deal with discrete features. For now 
though, let’s use this simple preprocessing and keep our focus on ensembles for regression. 
In Chapter 8, we delve more into preprocessing strategies for these types of features. 

The listing below shows our preprocessing steps: it splits the data into training (80% of 
the data) and test sets (remaining 20% of the data) and applies normalization to the 
features. 

As always, we’ll hold out the test set from the training process so that we can evaluate 
the performance of each of our trained models on the test set.  
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Listing 7.8. Preprocessing the Bike Rental Data Set 

labels = data.columns.get_loc('casual')     #A 
features = np.setdiff1d(np.arange(0, len(data.columns), 1), labels)    #B 
 
 
from sklearn.model_selection import train_test_split 
trn, tst = train_test_split(data, test_size=0.2, random_state=42) 
Xtrn, ytrn = trn.values[:, features], trn.values[:, labels]    #C 
Xtst, ytst = tst.values[:, features], tst.values[:, labels] 
 
from sklearn.preprocessing import StandardScaler 
preprocessor = StandardScaler().fit(Xtrn)    #D 
Xtrn, Xtst = preprocessor.transform(Xtrn), preprocessor.transform(Xtst) 
 

#A get column index for the label 
#B get column indices for the features 
#C split into train & test sets 
#D pre-process features by normalizing 

COUNT-VALUED TARGETS 

The target label we want to predict is casual, the number of casual users, which is count-
valued, ranging from 0 to 367.  

We plot the histogram of these targets below (left). This data set has a large point mass 
at 0, indicating that on many days, there are no casual users. Further, we can see that this 
distribution has a long tail, which makes it right skewed. 

We can further analyze these labels by applying a log transformation, that is, we 
transform each count label y to log(1+y), where we add 1 to avoid taking the logarithm of 
zero count data. This is shown in the figure below (right). 

 
Figure 7.13. Histogram of count-valued targets, the number of casual users (left); histogram of the count 
targets after log transformation (right). 

This gives us two great insights regarding how we might want to model the problem: 
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• the distribution of the log-transformed count target looks very similar to the 
histogram of rainfall in Figure 7.11, which suggests that a Tweedie distribution might 
be appropriate for modeling this problem. Recall that a Tweedie distribution with 
parameter 1 < p < 2 can model a compound Poisson-gamma distribution: the Poisson 
distribution to model the big point mass at 0, and the gamma distribution to model 
the right-skewed, positive continuous data. 

• the log transformation itself suggests a connection between the target and the 
features. If we were to model this regression task as a Generalized Linear Model 
(GLM), we would have to use the log-link function. We would like to extend this notion 
to ensemble methods (which are usually nonlinear).  

As we will see shortly, LightGBM and XGBoost provide support for modeling both the log link 
(and other link functions) and distributions such as Poisson, gamma, and Tweedie. This 
allows them to emulate the intuition of GLMs to capture the nuances of the data set, while 
going beyond the limitations of GLMs of being restricted to learning only linear models. 

7.4.2 Generalized Linear Models and Stacking 
Let’s first train individual general linear regression models that capture the intuitions gleaned 
above. In addition, we will also stack these individual models to combine their predictions. 
We will train three individual regressors: 

• Tweedie regression with the log link function, which uses the Tweedie distribution to 
model the positive, right-skewed targets. We use scikit-learn’s Tweedie 

Regressor, which requires that we choose two parameters: alpha, parameter for the 
L2-regularization term and power, which should be between 1 and 2. 

• Poisson regression with the log link function, which uses the Poisson distribution to 
model count variables. We use scikit-learn’s PoissonRegressor, which requires 
that we choose only one parameter: alpha, parameter for the L2-regularization term. 
It should be noted that setting power=1 in TweedieRegressor is equivalent to using 
PoissonRegressor. 

• Ridge regression, which uses the normal distribution to model continuous variables. 
This, in general, is not well-suited for this data and is included as a baseline, as it is 
one of the most common methods we will encounter in the wild. 

The listing below demonstrates how we can train these regressors, with the hyperparameter 
search through exhaustive grid search combined with cross validation.  
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Listing 7.9. Training GLMs for Bike Rental Prediction 

from sklearn.model_selection import GridSearchCV 
from sklearn.metrics import mean_squared_error,  
                            mean_absolute_error, r2_score 
from sklearn.linear_model import Ridge, PoissonRegressor, TweedieRegressor 
 
 
parameters = {'GLM: Linear': {'alpha': 10 ** np.arange(-4., 1.)},    #A 
              'GLM: Poisson': {'alpha': 10 ** np.arange(-4., 1.)}, 
              'GLM: Tweedie': {'alpha': 10 ** np.arange(-4., 1.),  
                               'power': np.linspace(1.1, 1.9, num=5)}}   #B 
 
 
glms = {'GLM: Linear': Ridge(),    #C 
        'GLM: Poisson': PoissonRegressor(max_iter=1000),  
        'GLM: Tweedie': TweedieRegressor(max_iter=1000)} 
 
best_glms = {}    #D 
results = pd.DataFrame() 
 
for glm_type, glm in glms.items(): 
    param_tuner = GridSearchCV(glm, parameters[glm_type],     #E 
                               cv=5, refit=True, verbose=2) 
    param_tuner.fit(Xtrn, ytrn) 
     
    best_glms[glm_type] = param_tuner.best_estimator_    #F 
    ypred_trn = best_glms[glm_type].predict(Xtrn) 
    ypred_tst = best_glms[glm_type].predict(Xtst) 
     
    res = {'Method': glm_type,    #G 
            'Train MSE': mean_squared_error(ytrn, ypred_trn), 
            'Train MAE': mean_absolute_error(ytrn, ypred_trn),  
            'Train R2': r2_score(ytrn, ypred_trn),  
            'Test MSE': mean_squared_error(ytst, ypred_tst), 
            'Test MAE': mean_absolute_error(ytst, ypred_tst), 
            'Test R2': r2_score(ytst, ypred_tst)} 
    results = results.append(res, ignore_index=True) 
 

#A ranges of hyperparameters for ridge, Poisson & Tweedie regressors 
#B Tweedie regression has an additional parameter: power 
#C initialize GLMs 
#D to save individual GLMs after cross validation 
#E perform grid search for each GLM with 5-fold CV 
#F get the final refit GLM model and compute train & test predictions 
#G compute and save 3 metrics for each GLM: MAE, MSE, R2 score 

If we print(results), we will see what the three models have learned. We evaluate the 
train and test set performance using metrics: MSE, MAE and R2 score. Recall that the R2 
score (or the coefficient of determination) is the proportion of the target variance that is 
explainable from the data.  

R2 score ranges from negative infinity to 1, with higher scores indicating better 
performance. MSE and MAE range from 0 to infinity, with lower errors indicating better 
performance. 
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       Method  Test MAE  Test MSE  Test R2  Train MAE  Train MSE  Train R2 
  GLM: Linear    23.981 1,270.218    0.447     24.959  1,368.679     0.444 
 GLM: Poisson    20.622 1,227.512    0.466     21.716  1,353.968     0.450 
 GLM: Tweedie    20.643 1,253.274    0.455     21.747  1,384.024     0.438 

The test set performance immediately confirms one of our intuitions: classical regression 
approaches, which assume a normal distribution over the data fare the worst. Poisson or 
Tweedie distributions, however, show promise. 

We now have trained our first 3 ML models: let us ensemble them by stacking them. The 
code below shows how, using artificial neural network (ANN) regression. While the GLMs we 
trained are linear, this stacked model will be nonlinear! 

Listing 7.10. Stacking GLMs for Bike Rental Prediction 

from sklearn.neural_network import MLPRegressor 
from sklearn.ensemble import StackingRegressor 
 
base_estimators = list(best_glms.items())    #A 
meta_learner = MLPRegressor(hidden_layer_sizes=(25, 25, 25),    #B  
                            max_iter=1000, activation='relu') 
 
stack = StackingRegressor(base_estimators, final_estimator=meta_learner) 
stack.fit(Xtrn, ytrn)    #C 
 
ypred_trn = stack.predict(Xtrn)    #D 
ypred_tst = stack.predict(Xtst) 
     
res = {'Method': 'GLM Stack',     #E 
        'Train MSE': mean_squared_error(ytrn, ypred_trn), 
        'Train MAE': mean_absolute_error(ytrn, ypred_trn),  
        'Train R2': r2_score(ytrn, ypred_trn),  
        'Test MSE': mean_squared_error(ytst, ypred_tst), 
        'Test MAE': mean_absolute_error(ytst, ypred_tst), 
        'Test R2': r2_score(ytst, ypred_tst)} 
results = results.append(res, ignore_index=True) 

#A GLMs with the best parameter settings from Listing 7.9, are base estimators 
#B 3-layer neural network is the meta estimator 
#C train the stacking ensemble 
#D make train and test predictions 
#E compute and save 3 metrics for this model: MAE, MSE, R2 score 

Now, we can compare the results of stacking with the individual models 

       Method  Test MAE  Test MSE  Test R2  Train MAE  Train MSE  Train R2 
    GLM Stack    18.476   944.036    0.589     19.129    975.831     0.604 

The stacked GLM ensemble already improves test set performance noticeably, indicating that 
nonlinear models are the way to go. 

7.4.3 Random Forest and ExtraTrees 
Now, let’s train some more parallel ensembles for the bike rental prediction task using 
scikit-learn’s RandomForestRegressor and ExtraTreesRegressor.  
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Both modules only support MSE and MAE as the loss function, of which we will stick to 
the more standard MSE loss. We will train two individual regressors, with similar 
hyperparameter sweeps for each of them. 

NOTE Mean Squared Error is not always a good choice of loss function for count-valued targets. The 

example below only serves to demonstrate how to use scikit-learn’s ensemble modules for regression.  

What we really want is to train random forests to emulate Poisson regression for the count-valued targets we 

have in this case study. scikit-learn (currently) does not have this functionality. It is still possible to use other 

packages such as LightGBM to train such random forest regressors. Recall from Section 5.5 that LightGBM 

has random forest training mode! As we will see below, LightGBM also supports Poisson regression with a 

log link function. This means that it is possible to use LightGBM to train a more effective random forest 

ensemble for this problem by changing the loss function. Try it! 

For random forests and ExtraTrees, we are looking to identify the best choice of two 
hyperparameters: ensemble size (n_estimators) and the maximum depth of each base 
estimator (max_depth). The listing below demonstrates how we can train these regressors, 
with hyperparameter search through exhaustive grid search combined with cross validation, 
similar to what we did for GLMs. 

Listing 7.11: Random Forest and ExtraTrees for Bike Rental Prediction 

from sklearn.ensemble import RandomForestRegressor 
from sklearn.ensemble import ExtraTreesRegressor 
 
parameters = {'n_estimators': np.arange(200, 600, step=100),    #A 
              'max_depth': np.arange(4, 7, step=1)} 
 
ensembles = {'Random Forest': RandomForestRegressor(criterion='mse'),    #B 
             'ExtraTrees': ExtraTreesRegressor(criterion='mse')} 
              
for ens_type, ensemble in ensembles.items(): 
    param_tuner = GridSearchCV(ensemble, parameters,    #C 
                               cv=5, refit=True, verbose=2) 
    param_tuner.fit(Xtrn, ytrn) 
         
    ypred_trn = param_tuner.best_estimator_.predict(Xtrn)    #D 
    ypred_tst = param_tuner.best_estimator_.predict(Xtst) 
     
    res = {'Method': ens_type,     #E 
            'Train MSE': mean_squared_error(ytrn, ypred_trn), 
            'Train MAE': mean_absolute_error(ytrn, ypred_trn),  
            'Train R2': r2_score(ytrn, ypred_trn),  
            'Test MSE': mean_squared_error(ytst, ypred_tst), 
            'Test MAE': mean_absolute_error(ytst, ypred_tst), 
            'Test R2': r2_score(ytst, ypred_tst)} 
    results = results.append(res, ignore_index=True) 
 

#A ranges of hyperparameters for both random forest and ExtraTrees 
#B both ensembles use MSE as the training criterion 
#C hyperparameter tuning with grid search and 5-fold CV 
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#D get train and test predictions for each ensemble 
#E compute and save 3 metrics for each ensemble: MAE, MSE and R2 score 

Compare the results of these parallel ensemble models with stacking and individual GLM 
models. In particular, observe the sharp improvement in performance compared to single 
models, which demonstrates the power of ensemble methods, even when trained on 
suboptimal loss functions. 

  Method  Test MAE  Test MSE  Test R2  Train MAE  Train MSE  Train R2 
 Random Forest  12.279   488.183    0.788   12.529    496.213     0.799 
   ExtraTrees  13.657   556.447    0.758   13.865    563.810     0.771 

Can we get similar or better performance with gradient and Newton boosting methods? Let’s 
find out. 

7.4.4 XGBoost and LightGBM 
Finally, let’s train sequential ensembles using both XGBoost and LightGBM on this data set. 
Both packages have support for a wide variety of loss functions: 

• Some of the loss & likelihood functions that XGBoost supports are the MSE, pseudo-
Huber loss and the Gamma, Poisson and Tweedie losses with the log link function.
Note again that XGBoost implements Newton boosting, which requires computing
second derivatives; this means that XGBoost cannot implement the MAE or Huber
losses directly. Instead, XGBoost provides support for the pseudo-Huber loss.

• Like XGBoost, LightGBM supports the MSE and the Gamma, Poisson and Tweedie
losses with the log link function. However, since it implements gradient boosting
which only requires first derivatives, it directly supports the MAE and the Huber loss.

For both models, we will need to tune for several hyperparameters that control various 
aspects of ensembling (such as learning rate and early stopping), regularization (such as 
weights on the L1 and L2 regularizations) and tree learning (such as maximum tree depth).  

Many of the previous models we trained only require tuning of a small number of 
hyperparameters, which allowed us to identify them through a grid search procedure.  

Grid search becomes prohibitively computationally expensive and time consuming and 
should be avoided in instances such as this. Instead of an exhaustive grid search, 
randomized search can be an efficient alternative.  

In randomized hyperparameter search, we sample a smaller number of random 
hyperparameter combinations from the full list. If necessary, we can further fine tune once 
we’ve identified a good combination to see if we can refine and improve our results further. 
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Listing 7.12: XGBoost for Bike Rental Prediction 

from xgboost import XGBRegressor 
from sklearn.model_selection import RandomizedSearchCV 

parameters = {'max_depth': np.arange(2, 7, step=1),  #A 
  'learning_rate': 2**np.arange(-8., 2., step=2), 
  'colsample_bytree': [0.4, 0.5, 0.6, 0.7, 0.8], 
  'reg_alpha': [0, 0.01, 0.1, 1, 10], 
  'reg_lambda': [0, 0.01, 0.1, 1e-1, 1, 10]} 

ensembles =  #B 
   {'XGB: Squared Error': XGBRegressor(objective='reg:squarederror'), 

 'XGB: Pseudo Huber': XGBRegressor(objective='reg:pseudohubererror'), 
 'XGB: Gamma': XGBRegressor(objective='reg:gamma'), 
 'XGB: Poisson': XGBRegressor(objective='count:poisson'), 
 'XGB: Tweedie': XGBRegressor(objective='reg:tweedie')} 

for ens_type, ensemble in ensembles.items(): 
   if ens_type == 'XGB: Tweedie':    #C 

  parameters['tweedie_variance_power'] = np.linspace(1.1, 1.9, num=9) 

   param_tuner = RandomizedSearchCV(ensemble, parameters, n_iter=50,    #D 
  cv=5, refit=True, verbose=2) 

   param_tuner.fit(Xtrn, ytrn, eval_set=[(Xtst, ytst)],  #E 
   eval_metric='poisson-nloglik', verbose=False) 

   ypred_trn = param_tuner.best_estimator_.predict(Xtrn)    #F 
   ypred_tst = param_tuner.best_estimator_.predict(Xtst) 

   res = {'Method': ens_type,    #G 
   'Train MSE': mean_squared_error(ytrn, ypred_trn), 
   'Train MAE': mean_absolute_error(ytrn, ypred_trn), 
   'Train R2': r2_score(ytrn, ypred_trn), 
   'Test MSE': mean_squared_error(ytst, ypred_tst), 
   'Test MAE': mean_absolute_error(ytst, ypred_tst), 
   'Test R2': r2_score(ytst, ypred_tst)} 

   results = results.append(res, ignore_index=True) 

#A ranges of hyperparameters for all XGBoost loss functions 
#B initialize XGBoost models, each with a different loss function 
#C for the Tweedie loss, we have an additional hyperparameter: power 
#D hyperparameter tuning using randomized search with 5-fold CV 
#E select the best model using negative Poisson log-likelihood 
#F train & test predictions 
#G compute and save 3 metrics for each XGBoost ensemble: MAE, MSE, R2 score 
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NOTE The listing above uses early stopping to terminate training early if there is no noticeable performance 

improvement on an evaluation set. When we last employed early stopping on the AutoMPG data set (Listing 

7.6), we used the MSE as the evaluation metric to track performance improvement. 

Here, we use the negative Poisson log-likelihood (eval_metric='poisson-nloglik'). Recall from our 

discussion in Section 7.3.1 that negative log-likelihood is often used as a surrogate for loss functions without 

a closed form. In this case, since we are modeling count targets (which follow a Poisson distribution) it may 

be more appropriate to measure model performance with negative Poisson log-likelihood.  

It would’ve also been appropriate to compare test set performances of different models with this metric 

alongside MSE, MAE and R2 as we’ve been doing. However, this metric is not always available or exposed in 

most packages.  

The performance of XGBoost with different loss functions is shown below. 

        Method  Test MAE  Test MSE  Test R2  Train MAE  Train MSE  Train R2 
XGB: Sq. Error     9.789   264.919    0.885      8.138    172.371     0.930 
XGB: Ps. Huber    11.469   397.092    0.827     10.355    365.967     0.851 
    XGB: Gamma     9.625   306.216    0.867      9.254    287.669     0.883 
  XGB: Poisson     9.125   259.739    0.887      8.333    199.904     0.919 
  XGB: Tweedie     8.760   243.668    0.894      7.135    149.316     0.939 

These results are dramatically improved, with XGBoost trained with Poisson and Tweedie 
losses performing the best. 

We can repeat a similar experiment with LightGBM. The implementation for this (which 
can be found in the companion code) is quite similar to how we trained LightGBM models for 
the AutoMPG data set in Listing 7.6 and XGBoost models for the Bike Rental data set in 
Listing 7.11 above. The performance of LightGBM with MSE, MAE, Huber, Poisson and 
Tweedie losses is shown below. 

       Method  Test MAE  Test MSE  Test R2  Train MAE  Train MSE  Train R2 
  LGBM: Sq Error     9.476   256.803    0.888      8.243    181.150     0.926 
 LGBM: Abs Error     9.756   321.206    0.860      9.071    302.753     0.877 
  LGBM: Huber    12.235   707.681    0.692     12.561    752.741     0.694 
   LGBM: Poisson     9.120   252.658    0.890      8.706    218.423     0.911 
LGBM: Tweedie     9.094   258.478    0.888      8.419    212.384     0.914 

LightGBM’s performance is similar to that of XGBoost, with Poisson and Tweedie losses, 
again, performing the best, with XGBoost edging LightGBM out slightly. 

Figure 7.14 summarizes the test set performance (with R2 score) of all the models we 
have trained for the bike rental demand prediction tasks. We note the following: 

• Individual GLMs perform far worse than any ensemble method. This is unsurprising 
since ensemble methods combine the power of many individual models into a final 
prediction. Furthermore, many of the ensemble regressors are nonlinear and fit the 
data better, while all GLMs are linear and limited. 

• The appropriate choice of loss functions is critical to training a good model. In this 
case, LightGBM and XGBoost models trained with Tweedie fit and generalize best. This 
is because the Tweedie loss captures the distribution of the bike demand, which are 
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count-valued targets. 
• Packages such as LightGBM and XGBoost provide loss functions such as the Tweedie, 

while scikit-learn’s ensemble method implementations (random forest, XtraTrees) 
only support MSE and MAE losses (at the time of this writing). It’s possible to push 
the performance of these methods up further by adopting losses such as the Tweedie, 
but this would require custom loss implementations.  

 
Figure 7.14. The test set performance (with the R2 score metric) of the various ensemble methods for 
regression as we progressed through our analysis and modeling. Gradient and Newton boosting ensembles   
are the current state-of-the-art. Among these methods, performance can further be improved through a 
judicious choice of loss function and systematic parameter selection. 

7.5 Summary 
In this chapter, we learned about the types of problems that can be modeled with regression, 
and how we can train regression ensembles. Some key takeaways: 

• Regression can be used to model continuous-valued, count-valued and even discrete 
valued targets. 

• Classical linear models such as ordinary least squares, ridge regression, LASSO and 
elastic net all use the squared loss function, but different regularization functions. 

• Poisson regression uses a linear model with a log-link function and the Poisson 
distribution assumption on the targets to effectively model count-labeled data 

• Gamma regression uses a linear model with a log-link function and the gamma 
distribution assumption on the targets to effectively model continuous, but positively 
valued and right-skewed data 

• Tweedie regression uses a linear model with a log-link function and the Tweedie 
distribution assumption to model compound distributions on data arising in many 
practical applications such as insurance, weather and health analytics. 

• Classical mean-squared regression, Poisson regression, gamma regression, Tweedie 
regression (and even logistic regression) are all different variants of Generalized 
Linear Models (GLMs). 
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• Random Forest and ExtraTrees use randomized regression tree learning to induce
ensemble diversity.

• Common statistical measures such as mean and median can be used to combine the
predictions of continuous targets and mode and median to combine predictions of
count targets.

• Artificial neural network regressors are good choices for meta-estimators when
learning stacking ensembles.

• Loss functions such as mean-squared error, mean average deviation and Huber loss
are well-suited for continuous valued labels

• The gamma likelihood function is well-suited for continuous valued, but positive labels
(that is, they don't take negative values)

• The Poisson likelihood function is well-suited for count valued labels.
• Some problems contain a mix of these labels and can be modeled with a Tweedie

likelhood function.
• LightGBM and XGBoost provide support for modeling both the log link (and other link

functions) and distributions such as Poisson, gamma, and Tweedie.
• Hyperparameter selection, either through exhaustive grid search (slow, but thorough)

or randomized search (fast, but approximate) is essential for good ensemble
development in practice.
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8 
Learning with Categorical Features 

This chapter covers 

• An introduction to categorical features in machine learning

• Preprocessing categorical features using supervised and unsupervised encoding

• Understanding how ordered boosting works

• Introducing CatBoost: a powerful ordered boosting framework for categorical variables

• Handling high-cardinality categorical features

Data sets for supervised machine learning consist of features that describe objects, and labels 

that describe the targets we are interested in modeling. At a high level, features, also known 

as attributes or variables, are usually classified into two types: continuous and categorical.  

A categorical feature is one that takes a discrete value from a set of finite, non-numeric 

values, called categories. Categorical features are ubiquitous and appear in nearly every data 

set and in every domain. For example,  

• Demographic features such as gender or race are common attributes in many modeling

problems in medicine, insurance, finance, advertising, recommendation systems and

many more. For instance, the United States Census Bureau’s race attribute is a

categorical feature that admits 5 choices or categories: (1) American Indian or Alaska

Native, (2) Asian, (3) Black or African American, (4) Native Hawaiian or Other Pacific

Islander, (5) White.

• Geographical features such as US State or ZIP code are also categorical features. The

feature US State is a categorical variable with 50 categories. The feature ZIP code is

also a categorical variable, with 41,692 unique categories (!) in the United States, from

00501, belonging to the Internal Revenue Service in Holtsville, NY, to 99950 in

Ketchikan, AK.
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Categorical features are usually represented as strings or in specific formats (such as ZIP 

codes, which have to be exactly 5 digits long and can start with zeroes).  

Since most machine-learning algorithms require numeric inputs, categorical features must 

be encoded or converted to numeric form before training. The nature of this encoding must be 

carefully chosen to capture the true underlying nature of the categorical features. 

In the ensemble setting, there are two approaches to handling categorical features: 

• Approach 1: Pre-process categorical features using one of several “standard” or 

general-purpose encoding techniques available in libraries such as scikit-learn, and 

then train ensemble models with packages such as LightGBM or XGBoost with the pre-

preprocessed features. 

• Approach 2: Use an ensemble method, such as CatBoost, that is designed to handle 

categorical features while training ensembles directly and carefully. 

Section 8.1 covers Approach 1. It introduces commonly used preprocessing methods for 

categorical features, and how we can use them in practice (using the category_encoders 

package) with any machine learning algorithm, including ensemble methods.  

Section 8.1 also discusses two common problems: training-to-test-set leakage and train-

to-test distribution shift, or prediction shift, which affects our ability to accurately evaluate the 

generalization ability of our models to future, unseen data.  

Section 8.2 covers Approach 2 and introduces a new ensemble approach called Ordered 

Boosting, which is an extension of boosting approaches we’ve already seen but specially 

modified to address leakage and shift and designed for categorical features. This section also 

introduces the CatBoost package and shows how we can use it to train ensemble methods on 

data sets with categorical features.  

We explore both approaches in a real-world case study in Section 8.3, where we compare 

random forest, LightGBM, XGBoost and CatBoost on an income prediction task. 

Finally, many general-purpose approaches do not scale well to high-cardinality categorical 

features (where the number of categories is very high, such as ZIP code) or in the presence 

of noise, or so-called “dirty” categorical variables. Section 8.4 shows how we can effectively 

handle such high-cardinality categories with the dirty-cat package. 

8.1 Encoding Categorical Features 

This section reviews the different types of categorical features introduces two classes of 

standard approaches to handling them: unsupervised (specifically, ordinal and one-hot 

encoding) and supervised encoding (specifically, with target statistics). 

This section reviews the different types of categorical features and introduces some 

standard methods of handling them. 

Encoding techniques, like machine-learning methods, are either unsupervised and 

supervised. Unsupervised encoding methods use only the features to encode categories, while 

supervised encoding methods use both features and targets. 

We will also see how supervised encoding techniques can lead to degraded performance in 

practice owing to a phenomenon called target leakage. This will help us understand the 

motivations behind the development of the ordinal boosting approach, which we will explore 

in Section 8.3. 
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8.1.1 Types of Categorical Features 

A categorical feature contains information about a category or group that a training example 

belongs to. The values, or categories that make up such variables are often represented using 

strings or other non-numeric tags. 

Broadly, categorical features are of two types: ordinal, where an ordering exists between 

the categories and nominal, where no ordering exists between the categories.  

Let’s look closely at nominal and ordinal categorical features in the context of a hypothetical 

fashion task, where the goal is to train a machine-learning algorithm to predict the cost of a 

t-shirts. Each t-shirt is described by two attributes: color and size (Figure 8.1.). 

 

Figure 8.1. Training examples, in this case, t-shirts are described using two categorical features: color and size. 

Categorical features can be either (1) nominal, where there is no ordering between the various categories, or 

(2) ordinal, where there exists an ordering between the categories. The third feature in this data set, cost, is a 

continuous, numeric variable. 

The feature color takes three discrete values: red, blue, and green. No ordering exists 

between these categories, which makes color a nominal feature. Since it doesn’t matter how 

we order color’s values, the ordering red-blue-green is equivalent to other ordering 

permutations such as blue-red-green or green-red-blue.  

The feature size takes four discrete values: S, M, L, and XL. Unlike, color, however, there 

is an implicit ordering between the sizes: S < M < L < XL. This makes size an ordinal feature.  

While we can order sizes any way we want, ordering them in increasing order, S-M-L-XL or 

in decreasing order of size, XL-L-M-S is most sensible. 

Understanding the domain and the nature of each categorical feature is an important 

component of deciding how to encode them. 
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8.1.2 Ordinal and One-Hot Encoding 

Categorical variables such as color and size have to be encoded, that is, converted to some 

sort of numeric representation prior to training a machine-learning model.  

Encoding is a type of feature engineering and must be done with care as an inappropriate 

choice of encoding can affect model performance and interpretability.  

In this section, we will look at two commonly used unsupervised methods of encoding 

categorical variables are: ordinal encoding and one-hot encoding. They are unsupervised as 

they do not use the targets (labels) for encoding. 

ORDINAL ENCODING  

Ordinal encoding simply assigns each category a number. For example, the nominal feature 

color can be encoded by assigning {‘red’: 0, ‘blue’: 1, ‘green’: 2}. Since the 

categories don’t have any implicit ordering, we could have also encoded by assigning other 

permutations such as {‘red’: 2, ‘blue’: 0, ‘green’: 1}. 

On the other hand, since size is already an ordinal variable, it makes sense to assign 

numeric values to preserve this ordering. For size, either encoding with {‘S’: 0, ‘M’: 1, 

‘L’: 2, ‘XL’: 3} (increasing) or {‘S’: 3, ‘M’: 2, ‘L’: 1, ‘XL’: 0} (decreasing) 

preserves the inherent relationship between the size categories. 

scikit-learn’s OrdinalEncoder can be used to create ordinal encodings. Let’s encode the 

two categorical features (color and size) in the data set from Figure 8.1 (denoted by X 

below).  

import numpy as np 
X = np.array([['red', 'M'], 
              ['green', 'L'], 
              ['red', 'S'], 
              ['blue', 'XL'], 
              ['blue', 'S'], 
              ['green', 'XL'], 
              ['blue', 'M'], 
              ['red', 'L']]) 

We will specify our encoding for color assuming it can take four values: red, yellow, green, 

blue (even though we only see red, green, and blue in our data). We will also specify the 

ordering for size: XL, L, M, S. 

from sklearn.preprocessing import OrdinalEncoder 
encoder = OrdinalEncoder(categories=[['red', 'yellow', 'green', 'blue'], #A 
                                     ['XL', 'L', 'M', 'S']])    #B 
Xenc = encoder.fit_transform(X)    #C 

#A specify that there are four possible colors 

#B specify that size should be organized in decreasing order 

#C encode categorical features only using this specification 

Now, we can look at the encodings for these features: 

encoder.categories_ 
[array(['red', 'yello', 'green', 'blue'], dtype='<U5'), 
 array(['XL', 'L', 'M', 'S'], dtype='<U5')] 
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This encoding assigns numeric values to color as {‘red’: 0, ‘yellow’: 1, ‘blue’: 2, 

‘green’: 3} and to size as {‘XL’: 0, ‘L’: 1, ‘M’: 2, ‘S’: 3}. This encoding transforms 

these categorical features to numeric values: 

Xenc 
array([[0., 2.], 
       [2., 1.], 
       [0., 3.], 
       [3., 0.], 
       [3., 3.], 
       [2., 0.], 
       [3., 2.], 
       [0., 1.]]) 

Compare the encoded color (the first column of Xenc) with the raw data (the first column 

of X). All the entries red are encoded as 0, green as 2 and blue as 3. As there are no entries, 

yellow, we have no encodings of value 1 in this column. 

Note that ordinal encoding imposes an inherent ordering between variables. While this is 

ideal for ordinal categorical features, it may not always make sense for nominal categorical 

features. 

ONE-HOT ENCODING 

One-hot encoding is a way to encode a categorical feature without imposing any ordering 

among its values and is more suited for nominal features.  

Why use one-hot encoding? If we use ordinal encoding for nominal features, it would 

introduce an ordering that does not exist between the categories in the real-world, thus 

misleading the learning algorithm into thinking there was one. Unlike ordinal encoding, which 

encodes each category using a single number, one-hot encoding encodes each category using 

a vector of 0s and 1s. The size of the vector depends on the number of categories.  

For example, if we assume that color is a 3-valued category (red, blue, green), it will be 

encoded as a length-3 vector. One such one-hot encoding can be {‘red’: [1, 0, 0], 

‘blue’: [0, 1, 0], ‘green’: [0, 0, 1]}. 

Observe the position of the 1s: red corresponds to the first encoding entry, blue 

corresponds to the second and green to the third. 

If we assume that color is 4-valued category (red, yellow, blue, green), one-hot encoding 

will produce length-4 vectors for each category.  

Since size takes 4 unique values, one-hot encoding produces length-4 vectors for each 

size category as well. One such one-hot encoding can be {‘S’: [1, 0, 0, 0], ‘M’: [0, 

1, 0, 0], ‘L’: [0, 0, 1, 0], ‘XL’: [0, 0, 0, 1]}.  

scikit-learn’s OneHotEncoder can be used to create one-hot encodings. As before, let’s 

encode the two categorical features (color and size) in the data set from Figure 8.1. 
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from sklearn.preprocessing import OneHotEncoder 
encoder = OneHotEncoder(categories=[['red', 'green', 'blue'],    #A  
                                     ['XL', 'L', 'M', 'S']])    #B 
Xenc = encoder.fit_transform(X)    #C 

#A specify that there are three possible colors 

#B specify that there are four possible sizes 

#C encode categorical features only using this specification 

Now, we can look at the encodings for these features: 

encoder.categories_ 
[array(['red', 'green', 'blue'], dtype='<U5'), 
 array(['S', 'M', 'L', 'XL'], dtype='<U5')] 

This encoding will introduce 3 one-hot features (first 3 columns in Xenc) to replace the 

color feature (first column in X) and 4 one-hot feature (last 4 columns in Xenc) to replace the 

size feature (last column in X). 

Xenc.toarray() 
array([[1., 0., 0., 0., 1., 0., 0.], 
       [0., 1., 0., 0., 0., 1., 0.], 
       [1., 0., 0., 1., 0., 0., 0.], 
       [0., 0., 1., 0., 0., 0., 1.], 
       [0., 0., 1., 1., 0., 0., 0.], 
       [0., 1., 0., 0., 0., 0., 1.], 
       [0., 0., 1., 0., 1., 0., 0.], 
       [1., 0., 0., 0., 0., 1., 0.]]) 

Each individual category has its own column now (3 for each color category and 4 for each 

size category), and any ordering between them has been lost.  

Since one-hot encoding removes any inherent ordering between categories, it is an ideal 

choice to encode nominal features.  

This choice, however, comes with a cost: we have blown up the size of our data set. The 

original data set was 8 examples x 2 features. With ordinal encoding, it remained 8 x 2, though 

a forced ordering was imposed upon the nominal feature, color. With one-hot encoding, the 

size became 8 x 7, and the inherent ordering in the ordinal feature, size, was removed. 

8.1.3 Encoding with Target Statistics 

We now shift our focus to encoding with target statistics, or target encoding, which is an 

example of a supervised encoding technique. In contrast to unsupervised encoding methods, 

supervised encoding methods use labelsto encode categorical features. 

The idea behind encoding with target statistics is fairly straightforward: for each category, 

we compute a statistic such as the mean over the targets (that is, labels) and replace the 

category with this newly-computed numerical statistic. Encoding with label information often 

helps overcome the drawbacks of unsupervised encoding methods. 

Unlike one-hot encoding, target encoding doesn’t create any additional columns meaning 

the dimensionality of the overall data set remains the same after encoding. Unlike ordinal 

encoding, target encoding doesn’t introduce spurious relationships between the categories. 
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GREEDY TARGET ENCODING 

In the example fashion data set from the previous section, recall that each training example 

is a t-shirt with two attributes: color and size and the target to predict is cost. Let’s say that 

we would like to encode the color feature with target statistics. This feature has three 

categories: red, blue, and green that need to be encoded. 

Figure 8.2Error! Reference source not found. illustrates how encoding with target 

statistics works for the category red.  

 

Figure 8.2. The category red of the feature color is replaced by its target statistic, the average (mean) of all 

the target values (cost) corresponding to the examples whose color is red. This is called greedy target 

encoding as all the training labels have been used for encoding,  

There are three t-shirts x1, x3 and x8 whose color is red. Their corresponding target values 

(cost) are 8.99, 9.99 and 25.00. The target statistic is computed as the mean of these values: 

(8.99 + 9.99 + 25.00) / 3 = 14.66. 

Thus, each instance of red is replaced by its corresponding target statistic: 14.66. The other 

two categories, blue and green, can similarly be encoded with their corresponding target 

statistics, 16.82 and 13.99. 

More formally, the target statistic for the k-th category of the j-th feature can be computed 

using the formula 

 

Here, the notation I(xi
j = k) denotes an indicator function, which returns 1 if true and 0 if 

false. For example, in our fashion data set, I(x1
color = red) = 1, whereas I(x4

color = red) = 0. 
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This formula for computing target statistics actually computes a smoothed average rather 

than just the average. Smoothing is performed by adding a parameter a > 0 to the denominator. 

This is to ensure that categories with a small number of values (and hence small denominators) 

do not end up with target statistics that are scaled differently to other categories. 

The constant p in the numerator is typically the average target value of the entire data set, 

and serves as a prior, or as a means of regularizing the target statistic. 

This target encoding approach is called greedy target encoding, as it uses all the available 

training data to compute the encodings. As we see below, a greedy encoding approach leaks 

information from the training to the test set. This is problematic because a model identified as 

high-performing during training and testing will often actually perform poorly in deployment 

and production. 

INFORMATION LEAKAGE AND DISTRIBUTION SHIFT 

Many pre-processing approaches are affected by one or both of two common practical issues: 

training-to-test-set information leakage and train-test distribution shift. Both issues affect our 

ability to evaluate our trained model and accurately estimate how it will behave on future, 

unseen data, that is, how it will generalize.  

A key step in machine-learning model development is the creation of a hold-out test set, 

which is used to evaluate trained models. The test set is completely held-out from every stage 

of modeling (including pre-processing, training, and validation) and used purely for evaluating 

model performance. 

The reason for this is to simulate model performance on unseen data; to do this effectively, 

we have to ensure that no part of the training data makes its way into test data. When this 

happens during modeling it is called information leakage from the training to test set. 

Data leakage occurs when information about the features leaks into the test set, while 

target leakage occurs when information about the targets (label) leaks into the test set. 

Greedy target encoding leads to target leakage, as illustrated in Figure 8.3. In this example, 

a data set of 12 data points is partitioned into a training and test set. The training set is used 

to perform greedy target encoding of the category red of the feature color. 

More specifically, the target encoding from the training set is used to transform both the 

training and the test set, leading to information leakage about the targets from the training 

set to the test set, making this an instance of target leakage. 
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Figure 8.3. Target leakage from the training to test set illustrated. All the targets (labels) of in the training set 

are greedily used to create an encoding for red, which is used to encode this category in both the training and 

test sets, leading to target leakage. 

Another requirement of the train-test split is to ensure that the training and test sets have 

similar distributions, that is, they have similar statistical properties. This is often achieved by 

randomly sampling the hold-out test set from the overall set.  

However, pre-processing techniques such as greedy target encoding can introduce 

disparities between the training and test sets, leading to a prediction shift between the training 

and test sets. 

This is illustrated in Figure 8.4. As before, the category red for the feature color is encoded 

using greedy target statistics. This encoding is computed as the mean of the targets 

corresponding to color == red in the training data and is 14.66. 

However, if we compute the mean of the targets corresponding to color == red in the 

test data only, the mean is 10.47. This discrepancy between the training and test sets is a by-

product of greedy target encoding, which causes the test set distributions to become shifted 

from the training set distribution. 

Put another way, the statistical properties of the test set are now no longer similar to that 

of the training set, which has an inevitable and cascading influence on our model evaluation. 

Both target leakage and prediction shift introduce a statistical bias into the performance 

metrics we use to evaluate the generalization performance of our trained models. Often, they 

overestimate generalization performance and make the trained model look better than it 

actually is, which causes a problem when this model is deployed and fails to perform according 

to expectations. 
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Figure 8.4. Distribution shift between the training and test sets illustrated. Since the target encoding for the 

test set is computed using the training set, it can lead to a shift in the distribution and statistical properties of 

the test set (yellow) compared to the training set (red).  

HOLD-OUT & LEAVE-ONE-OUT TARGET ENCODING 

The best (and simplest) way to eliminate both target leakage and prediction shift is to hold-

out a part of the training data for encoding. Thus, in addition to the training and hold-out test 

sets, we would also need to create a hold-out encoding set! 

This approach, called hold-out target encoding, is illustrated in Figure 8.5. Here, our data 

set from Figure 8.3 and Figure 8.4 is split into three sets, each with four data points: a training 

set, a hold-out encoding set and a hold-out test set.  
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Figure 8.5. Hold-out encoding partitions the available data into three sets: training and test, as usual, and a 

third hold-out test set to be used exclusively for encoding with target statistics. This avoids both target leakage 

and distribution shift. 

The hold-out encoding set is used to compute the target encoding for both the training and 

test sets. This ensures that the independence of training and test sets and eliminates target 

leakage. Further, since the same target statistic is used for both training and test sets, it also 

avoids prediction shift. 

A key drawback of hold-out target encoding is its data inefficiency. In order to avoid 

leakage, once the hold-out encoding set is used to compute the encoding, it needs to be 

discarded, which means that a good chunk of the total data available for modeling can be 

wasted. 

One (imperfect) alternative is to use leave-one-out (LOO) target encoding, which is 

illustrated in Figure 8.6. LOO encoding works similarly to LOO cross-validation, except that the 

left-out example is being encoded rather than being validated.  

In Figure 8.6, we see that to perform LOO target encoding for the red example x5, we 

compute the target statistic using the other two red training examples x1 and x8, while leaving 

out x5. This procedure is repeated for the other two red training examples x1 and x8 in turn. 

Since the test set and the training set do not overlap, it’s not possible to leave out test 

examples while encoding with training examples. Thus, we can apply greedy target encoding 

as before for the test set. 

As we can see, the LOO target encoding procedure aims to emulate hold-out target 

encoding, while being significantly more data efficient. However, it should be noted that this 

overall procedure does not fully eliminate target leakage and prediction shift issues. 
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Figure 8.6. Leave-one-out target encoding is applied to the training data to avoid creating a wasteful hold-out 

encoding set. Instead of holding out a subset of the data, only the example being encoded is held out. Test 

data is encoded using greedy target encoding as before. 

As we will see in Section 8.2, another encoding strategy called ordered target statistics 

aims to further mitigate the issues of target leakage and prediction shift, while ensuring both 

data as well as computational efficiency. 

8.1.4 The category_encoders Package 

This section provides examples of how to put together end-to-end encoding and training 

pipelines for data sets with categorical features. The subpackage sklearn.preprocessing 

provides some common encoders such as OneHotEncoder and OrdinalEncoder. 

We will, instead, use the  category_encoders1 pacjage, which provides many more 

encoding strategies including for greedy and leave-one-out target encoding. 

category_encoders is scikit-learn compatible, which means that it can be used with other 

ensemble method implementations that provide sklearn-compatible interfaces (such as 

LightGBM and XGBoost) discussed in this book. 

We will use the Australian Credit Approval data set from the UCI Machine Learning 

repository2. A clean version of this data set is available along with the source code, which we 

will use to demonstrate category encoding in practice. 

The data set contains 6 continuous, 4 binary features and 4 categorical features, and the 

task is to determine whether to approve or deny a credit card application, that is, binary 

classification. 

First, let’s load the data set and look at the feature names and the first few rows. 

 
1 https://contrib.scikit-learn.org/category_encoders/ 
2 https://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval 
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import pandas as pd 
df = pd.read_csv('./data/ch08/australian-credit.csv') 
df.head() 

 

Figure 8.7. The Australian credit data set from the UCI repository. Attribute names have been changed to 

protect confidentiality of the individuals represented in the data set. 

The feature names are of the form f1-bin, f2-cont or f5-cat, indicating the column index 

and whether the feature is binary, continuous, or categorical.  

To protect applicant confidentiality, the category strings and names have been replaced 

with integer values. That is, the categorical features have already been processed with ordinal 

encoding!  

Let’s separate the columns into the data set and the targets and further split into training 

and test sets as usual. 

X, y = df.drop('target', axis=1), df['target'] 
from sklearn.model_selection import train_test_split 
Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, test_size=0.2) 

Furthermore, let’s explicitly identify the categorical and continuous features we’re 

interested in pre-processing: 

cat_features = ['f4-cat', 'f5-cat', 'f6-cat', 'f12-cat'] 
cont_features = ['f2-cont', 'f3-cont', 'f7-cont', 'f10-cont',  
                 'f13-cont', 'f14-cont'] 

We will pre-process the continuous and categorical features in different ways. The 

continuous features will be standardized: that is, each column of continuous features is 

rescaled to have zero mean and unit standard deviation. This rescaling ensures that different 

columns do not have drastically different scales, which can mess up downstream learning 

algorithms. 

The categorical features will be pre-processed using one-hot encoding. For this, we will use 

the OneHotEncoder from the category_encoders package. 

We will create two separate pre-processing pipelines, one for continuous features and one 

for categorical features.  
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import category_encoders as ce 
from sklearn.preprocessing import StandardScaler 
from sklearn.pipeline import Pipeline 
 
preprocess_continuous = Pipeline(steps=[('scaler', StandardScaler())])  
preprocess_categorical = Pipeline(steps=[('encoder',  
                                  ce.OneHotEncoder(cols=cat_features))])   

Note that ce.OneHotEncoder requires us to explicitly specify the categorical features, 

without which it will apply encoding to all the columns. 

Now that we have two separate pipelines, we need to put these together to ensure that the 

correct pre-processing is applied to the correct feature type. We can do this with scikit-

learn’s ColumnTransformer, which allows us to apply different steps to different columns. 

from sklearn.compose import ColumnTransformer 
ct = ColumnTransformer( 
         transformers=[('continuous',   #A 
                            preprocess_continuous, cont_features), 
                       ('categorical',   #B 
                            preprocess_categorical, cat_features)],  
                       remainder='passthrough')  #C 

#A preprocess continuous features here 

#B preprocess categorical features here 

#C keep the remaining features as-is 

Now, we can fit a pre-processor on the training set and apply the transformation to both the 

training and test sets 

Xtrn_one_hot = ct.fit_transform(Xtrn, ytrn) 
Xtst_one_hot = ct.transform(Xtst) 

Observe how the test set is not used to fit the pre-processor pipeline. This is a subtle but 

important practical step to ensure that the test set is held-out and there is no inadvertent data 

or target leakage due to pre-processing. Now, let’s see what one-hot encoding has done to our 

feature set size: 

print('Num features after ONE HOT encoding = {0}'.format( 
                                                   Xtrn_one_hot.shape[1])) 
Num features after ONE HOT encoding = 38 

Since one-hot encoding introduces one new column for each category of a categorical 

feature, the overall number of columns as increased from 14 to 38! 

Now let’s train and evaluate a RandomForestClassifier on this pre-processed data set 
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from sklearn.ensemble import RandomForestClassifier 
model = RandomForestClassifier(n_estimators=200,  
                               max_depth=6, criterion='entropy') 
model.fit(Xtrn_one_hot, ytrn) 
 
from sklearn.metrics import accuracy_score 
ypred = model.predict(Xtst_one_hot) 
print('Model Accuracy using ONE HOT encoding = {0:5.3f}%'. 
       format(100 * accuracy_score(ypred, ytst))) 
 
Model Accuracy using ONE HOT encoding = 84.058% 

Our one-hot encoding strategy learned a model whose hold-out test accuracy is 84%.  

In addition to OneHotEncoder and OrdinalEncoder, the category_encoders package also 

provides many other encoders.  

Two of encoders of interest to us are the greedy TargetEncoder and the 

LeaveOneOutEncoder, which can be used in exactly the same way as OneHotEncoder above. 

Specifically, we simply replace OneHotEncoder with TargetEncoder in 

preprocess_categorical = Pipeline(steps=[('encoder', 
                             ce.TargetEncoder(cols=cat_features,                                                                                           
                                              smoothing=10.0))])   

TargetEncoder takes one additional parameter, smoothing, a positive value that combines 

the effect of smoothing and prior (see Section 8.1.2). Higher values force higher smoothing 

and can counter overfitting. After pre-processing and training, we have 

Num features after GREEDY TARGET encoding = 14 
Model Accuracy using GREEDY TARGET encoding = 82.609% 

Unlike, one-hot encoding, greedy target encoding does not add any new columns, which 

means that the overall dimensions of the data set remain unchanged.  

We can use LeaveOneOutEncoder in a similar way: 

preprocess_categorical = Pipeline(steps=[('encoder', 
                             ce.LeaveOneOutEncoder(cols=cat_features, 
                                                   sigma=0.4))])  

The sigma parameter is a noise parameter that aims to decrease overfitting. The user 

manual recommends using values between 0.05 to 0.6. After pre-processing and training, we 

again have 

Num features after LEAVE-ONE-OUT TARGET encoding = 14 
Model Accuracy using LEAVE-ONE-OUT TARGET encoding = 84.058% 

As with TargetEncoding, the number of features remain unchanged due to preprocessing. 

8.2 CatBoost: A Framework for Ordered Boosting 

CatBoost is another open source gradient boosting framework developed by Yandex. CatBoost 

introduces three major modifications to classical Newton boosting approach.  

First, it is specialized to categorical features, unlike other boosting approaches that are 

more general. Second, it uses ordered boosting as its underlying ensemble learning approach, 
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which allows it to address data leakage and prediction shift implicitly during training. Third, it 

uses oblivious decision trees as base estimators, which often leads to faster training times. 

8.2.1 Ordered Target Statistics and Ordered Boosting 

CatBoost handles categorical features in two ways: (a) by encoding categorical features as 

described before with target statistics, and (b) by cleverly creating categorical combinations 

of features (and encoding them with target statistics as well). While these features enable 

CatBoost to seamlessly handle categorical features, they do introduce other downsides that 

must be addressed. 

As we’ve seen before, encoding with target statistics introduces target leakage and more 

importantly, a prediction shift in the test set. The most ideal way to handle this by creating a 

hold-out encoding set.  

Holding out training examples for just encoding and nothing else is rather wasteful of data, 

meaning that this approach is rarely used in practice. The alternative, leave-one-out encoding, 

is more data-efficient, but does not completely mitigate prediction shift. 

In addition to issues with encoding features, gradient and Newton boosting both reuse data 

between iterations, leading to a gradient distribution shift, which ultimately causes a further 

prediction shift. That is to say, even if we didn’t have categorical features, we would still have 

a prediction shift problem, which would bias our estimates of model generalization! 

CatBoost addresses this central issue of prediction shift by using permutation for ordering 

training examples to (1) compute target statistics for encoding categorical variables (called 

ordered target statistics), and (2) train its weak estimators (called ordered boosting). 

ORDERED TARGET STATISTICS 

At its heart, the ordering principle is simple and elegant and consists of two steps: 

1. reorder the training examples according to a random permutation 

2. to compute target statistics for the i-th training example, use the previous i-1 training 

examples according to this random permutation 

This is illustrated in Figure 8.8 for eight training examples. First, the examples are 

permuted into a random ordering: 4, 7, 1, 8, 2, 6, 5, 3. Now, to compute target statistics for 

each training example, we assume that we can only see these examples sequentially.  

For example, to compute the target statistics for example 2, we can only use examples in 

the sequence that we have “previously seen”: 4, 7, 1 and 8. Then, to compute the target 

statistics for example 6, we can only use examples in the sequence that we have previously 

seen, now: 4, 7, 1, 8, and 2. And so on. 
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Figure 8.8. Ordered target statistics first permutes the examples into a random sequence, using only the 

previous examples in the ordered sequence to compute the target statistics. 

Thus, to compute the encoding for the i-th training example, ordered target statistics never 

uses its own target value; this behavior is similar to leave-one-out target encoding. The key 

difference between the two is that ordered target statistics uses the notion of a “history”. 

One downside to this approach is that training examples that occur early in a randomized 

sequence are encoded with far fewer examples.  

To compensate for this in practice and increase robustness, CatBoost maintains several 

sequences, or “histories” which are, in turn, randomly chosen. This means that CatBoost 

recomputes target statistics for categorical variables at each iteration. 

ORDERED BOOSTING  

CatBoost is fundamentally a Newton boosting algorithm (see Chapter 6), that is, it uses both 

the first and second gradient of the loss function to train its constituent weak estimators. 

As mentioned previously, there are two sources of prediction shift: variable encoding and 

gradient computations themselves. To avoid prediction shift due to gradients, CatBoost 

extends the idea of ordering to training its weak learners. Another way to think about this is: 

Newton boosting + ordering = CatBoost. 

 

Figure 8.9. Ordered boosting also permutes the examples into a random sequence and uses only the previous 

examples in the ordered sequence to compute the gradients (residuals).  
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Figure 8.9 illustrates ordered boosting, analogous to ordered target statistics. For example, 

to compute the residuals and gradients for example 2, ordered boosting uses a model only 

trained on the examples in the sequence that it has “previously seen”: 4, 7, 1 and 8.  

As with ordered target statistics, CatBoost uses multiple permutations to increase 

robustness. These residuals are now used to train its weak estimators. 

8.2.2 Oblivious Decision Trees 

Another key difference between Newton boosting implementations such as XGBoost and 

CatBoost are the base estimators. XGBoost uses standard decision trees as weak estimators, 

while CatBoost uses oblivious decision trees. 

Oblivious decision trees use the same splitting criterion in all the nodes across an entire 

level/depth of the tree. This is illustrated in the figure above, which compares a standard 

decision tree with 4 leaf nodes with an oblivious decision tree with 4 leaf nodes. 

 

Figure 8.10. Comparing standard and oblivious decision trees, each with 4 leaf nodes. Observe that the 

decision nodes at depth 2 of the oblivious decision tree are both the same (size < 15). This is a key feature 

of oblivious decision trees: only one split criterion is learned for each depth.  

In this example, observe that the second level of the oblivious tree (bottom right), uses 

the same decision criterion, size < 15, at each node in the second level.  
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While this is a simple example, note already that we only need to learn 2 split criteria for 

the oblivious tree, as opposed to the standard decision tree. This makes oblivious trees easier 

and more efficient to learn, which has the effect of speeding up overall training. 

In addition, oblivious trees are balanced and symmetric, making them less complex and 

thus, less prone to overfitting.  

8.2.3 CatBoost in Practice 

In this section, we will see how we can create a learning pipeline with CatBoost. We will also 

look at an example of how to set the learning rate and employ early stopping as a means to 

control overfitting. To recap,   

• by selecting an effective learning rate, we try to control the rate at which the model 

learns so that it doesn’t rapidly fit, and then overfit the training data. We can think of 

this a proactive modeling approach, where we try to identify a good training strategy 

so that it leads to a good model.  

• by enforcing early stopping, we try to stop training as soon as we observe that the 

model is starting to overfit. We can think of this as a reactive modeling approach, where 

we contemplate terminating training as soon as we think we have a good model. 

We will use the Australian Credit Approval data that we used in Section 8.1.4. The listing 

below provides a simple illustration of how to use CatBoost. 

Listing 8.1. Using CatBoost 

import pandas as pd 
df = pd.read_csv('./data/ch08/australian-credit.csv')    #A 
cat_features = ['f4-cat', 'f5-cat', 'f6-cat', 'f12-cat']    #B 
 
X, y = df.drop('target', axis=1), df['target'] 
 
from sklearn.model_selection import train_test_split 
Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, test_size=0.2)    #C 
 
from catboost import CatBoostClassifier 
ens = CatBoostClassifier(iterations=5, depth=3,     #D 
                         cat_features=cat_features)    #E 
ens.fit(Xtrn, ytrn) 
ypred = ens.predict(Xtst) 
print('Model Accuracy using CATBOOST = {0:5.3f}%'. 
      format(100 * accuracy_score(ypred, ytst))) 

#A Load the data set as a pandas dataframe 

#B Explicitly identify the categorical features 

#C Prepare data for training & evaluation 

#D Train an ensemble of 5 oblivious trees, each of depth 3 

#E Make sure CatBoost knows which features are categorical 

This listing trains and evaluates a CatBoost model: 

Model Accuracy using CATBOOST = 83.333% 
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CROSS VALIDATION WITH CATBOOST 

CatBoost provides support for many different loss functions for regression and classification 

tasks, and many features to control various aspects of training.  

This includes hyperparameters to control overfitting by controlling the complexity of the 

ensemble (iterations, with one tree trained per iteration) and the complexity of the base 

estimators (depth of the oblivious decision trees).  

In addition to these, another key parameter is the learning_rate. Recall that the learning 

rate allows greater control over how quickly the complexity of the ensemble grows. Therefore, 

identifying an “optimal” learning rate for our data set in practice can help avoid overfitting and 

generalize well after training. 

As with previous ensemble approaches, we will use 5-fold cross validation to search over 

several different hyper-parameter combinations to identify the best model. The listing below 

illustrates how to perform cross validation with CatBoost 

Listing 8.2. Cross Validation with CatBoost 

params = {'depth': [1, 3], 
          'iterations': [5, 10, 15],  
          'learning_rate': [0.01, 0.1]}   #A 
 
ens = CatBoostClassifier(cat_features=cat_features)    #B 
grid_search = ens.grid_search(params, Xtrn, ytrn,     #C 
                              cv=5, refit=True)     #D 
 
print('Best parameters: ', grid_search['params']) 
ypred = ens.predict(Xtst) 
print('Model Accuracy using CATBOOST = {0:5.3f}%'. 
      format(100 * accuracy_score(ypred, ytst))) 

#A Create a grid of possible parameter combinations 

#B Explicitly identify the categorical features 

#C Use CatBoost’s built-in grid search functionality 

#D Perform 5-fold cross validation and then refit a model using the best parameters identified after grid search 

This listing evaluates the (2 x 3 x 2 = 12) parameter combinations specified in params using 

5-fold cross validation to identify the best parameter combination and (re)fits trains a final 

model with them. 

Best parameters:  {'depth': 3, 'iterations': 15, 'learning_rate': 0.1} 
Model Accuracy using CATBOOST = 82.609% 

EARLY STOPPING WITH CATBOOST 

As with other ensemble methods, with each successive iteration, CatBoost adds a new base 

estimator to the ensemble. This causes the complexity of overall ensemble to steadily increase 

during training until the model begins to overfit the training data. 

As with other ensemble methods, it is possible to employ early stopping with CatBoost, 

where we monitor the performance of CatBoost with the help of an evaluation set to stop 

training as soon as there is no significant improvement in performance. 
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In the listing below, we initialize CatBoost to train 100 trees. As we will see below, with 

early stopping, it is possible to terminate training early, thus ensuring a good model as well as 

training efficiency. 

Listing 8.3. Early Stopping with CatBoost 

ens = CatBoostClassifier(iterations=100, depth=3,   #A 
                         cat_features=cat_features, 
                         loss_function='Logloss') 
 
from catboost import Pool 
eval_set = Pool(Xtst, ytst, cat_features=cat_features)    #B 
 
ens.fit(Xtrn, ytrn, eval_set=eval_set,  
        early_stopping_rounds=5,     #C 
        verbose=False, plot=True)    #D 
 
ypred = ens.predict(Xtst) 
print('Model Accuracy using CATBOOST = {0:5.3f}%'. 
       format(100 * accuracy_score(ypred, ytst))) 

#A Initialize a CatBoostClassifier with ensemble size 100 

#B Create an evaluation set by pooling Xtst and ytst 

#C Stop training if no improvement detected after 5 rounds 

#D Set plotting to true for CatBoost to plot training and evaluation curves 

This code generates training and curves as shown in Figure 8.11, where the effect of overfitting 

is observable. Around the 80-th iteration, the training curve (dashed) is continuing to 

decreasing, while the evaluation curve has begun to flatten.  

This means that the training error is continuing to decrease without an equivalent decrease 

in our validation set, indicating overfitting. CatBoost observes this behavior for 5 more 

iterations (as early_stopping_rounds=5), and then terminates training. 

The final model reports a test set performance of 82.61%, achieved after 85 rounds, with 

early stopping avoiding training all the way to 100 iterations as originally specified. 

Model Accuracy using CATBOOST = 82.609% 
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Figure 8.11. Training (dashed) and evaluation (solid) curves generated by CatBoost. The dot at the 85-th 

iteration indicates the early stopping point. 

8.3 Case Study: Income Prediction 

In this section, we study the problem of income prediction from demographic data. 

Demographic data typically contains many different types of features, including categorical and 

continuous features.  

We will explore two approaches to training ensemble methods 

• Approach 1 (Sections 8.3.2 and 8.3.3): Pre-process categorical features using the 

category_encoders package and then train ensembles using scikit-learn’s Random 

Forest, LightGBM and XGBoost with the pre-preprocessed features. 

• Approach 2 (Section 8.3.4): Use CatBoost to directly handle categorical features during 

training through ordered target statistics and ordered boosting. 

8.3.1 The Adult Census Data Set 

This case study uses the Adult Census dataset (originally created in 1995) from the UCI 

Repository. The task is to predict whether an individual will earn more or less than $50,000 

per year based on several demographic indicators such as education, marital status, race, and 

gender. 

This data set contains a nice mix of categorical and continuous features, which makes is 

an ideal choice for this case study. The data set is available along with the source code. Let’s 

load the data set and visualize it. 

import pandas as pd 
df = pd.read_csv('./data/ch08/adult.csv') 
df.head() 
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Figure 8.12. The Adult Data set contains categorical and continuous features. 

This data set contains several categorical features:  

• workclass, which describes the classification of the type of employment and contains 

8 categories: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-

gov, Without-pay, Never-worked 

• education, which describes the highest education level attained and contains 16 

categories: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-

voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool 

• marital-status, which has 7 categories: Married-civ-spouse, Divorced, Never-

married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse 

• occupation, which describes the classification of the occupation area and contains 15 

categories: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-

specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, 

Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces 

• relationship status: Wife, Own-child, Husband, Not-in-family, Other-relative, 

Unmarried,  

• sex: male or female, 

• native-country, which is a high(ish)-cardinality categorical variable that contains 30 

unique countries in this data set 

In addition, the data set also contains several continuous features such as age, number of 

years of education, number of hours worked per week, capital gains and losses etc. 

In the listing below, we explore some of the categorical features using the seaborn package, 

which provide some neat functions for quickly exploring and visualizing data sets. 

  

255

https://livebook.manning.com/#!/book/ensamble-methods-for-machine-learning/discussion


©Manning Publications Co.  To comment go to  liveBook 

Listing 8.4. Visualize some categorical features in the Adult Census data set 

import matplotlib.pyplot as plt 
import seaborn as sns 
 
fig, ax = plt.subplots(nrows=3, ncols=1, figsize=((12, 6))) 
fig.suptitle('Category counts of select features in the adult data set') 
 
sns.countplot(x='workclass', hue='salary', data=df, ax=ax[0]) 
ax[0].set(yscale='log') 
 
sns.countplot(x='marital-status', hue='salary', data=df, ax=ax[1]) 
ax[1].set(yscale='log') 
 
sns.countplot(x='race', hue='salary', data=df, ax=ax[2]) 
ax[2].set(yscale='log') 
fig.tight_layout() 

This listing produces the following output. 

 

Figure 8.13. Visualizing the category counts of three categorical features in the Adult Census data set: 

workclass, marital-status, race. Note that the y-axis is in log scale. 

8.3.2 Creating Preprocessing and Modeling Pipelines 

The listing below describes how to prepare the data. In particular, we use sklearn. 

preprocessing.LabelEncoder to convert the target labels from string (<=50k, >50k) to 

numeric (0/1). LabelEncoder is identical to OrdinalEncoder, except that it is specifically 

designed to work with 1D data (targets). 
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Listing 8.5. Prepare the Adult Census Data 

X, y = df.drop('salary', axis=1), df['salary']    #A 
 
from sklearn.preprocessing import LabelEncoder 
y = LabelEncoder().fit_transform(y)    #B 
 
from sklearn.model_selection import train_test_split 
Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, test_size=0.2)   #C 
 
features = X.columns 
cat_features = ['workclass', 'education', 'marital-status', 
                'occupation', 'relationship', 'race', 'sex', 
                'native-country']    #D 
cont_features = features.drop(cat_features).tolist() 

#A Split the data into features and targets 

#B Encode the labels  

#C Split into train and test sets 

#D Explicitly identify categorical and continuous features 

Recall that the task is to predict if the income is greater than $50,000 (with labels y==1) or 

less than $50,000 (with labels y==0). One thing to note about this data set is that it is 

imbalanced, that is, it contains different proportions of the two classes: 

import numpy as np 
n_pos, n_neg = np.sum(y > 0)/len(y), np.sum(y <= 0)/len(y) 
print(n_pos, n_neg) 
0.24081695331695332 0.7591830466830467 

Here, we see that the positive-negative distribution is 24.1% to 75.9%, rather than 50% 

to 50%. This means that evaluation metrics such as accuracy can unintentionally skew our 

view of model performance as they assume a balanced data set. 

Next, we define a preprocessing function that can be reused with different types of category 

encoders. This function has two preprocessing pipelines, one to be applied to continuous 

features only, and the other for categorical features. The continuous features are preprocessed 

using StandardScaler, which normalizes each feature column to have zero mean and unit 

standard deviation.  

In addition, both pipelines have a SimpleImputer, to impute missing values. Missing 

continuous values are imputed with their corresponding median feature value, while missing 

categorical features are imputed as a new category called ‘missing’ prior to encoding. 

For example, the feature workclass has missing values (indicated by ‘?’ in Figure 8.12), 

which are treated as a separate category for modeling purposes.  
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Listing 8.6. Preprocessing pipelines 

from sklearn.preprocessing import StandardScaler 
from sklearn.impute import SimpleImputer 
from sklearn.pipeline import Pipeline 
from sklearn.compose import ColumnTransformer 
 
import category_encoders as ce 
             
def create_preprocessor(encoder): 
    preprocess_continuous = Pipeline(steps=[     #A 
('impute_missing', SimpleImputer(strategy='median')), 
('normalize', StandardScaler())]) 
    preprocess_categorical = Pipeline(steps=[     #B 
('impute_missing', SimpleImputer(strategy='constant', 
   fill_value='missing')), 
            ('encode', encoder())]) 
 
    transformations = ColumnTransformer(transformers=[     #C 
('continuous', preprocess_continuous, cont_features), 
('categorical', preprocess_categorical, 
                                      cat_features)]) 
    
    return transformations 

#A preprocessing pipeline for continuous features 

#B preprocessing pipeline for categorical features 

#C ColumnTransformer object is used to combine the pipelines 

This listing will create and return a scikit-learn ColumnTransformer object, which can apply 

a similar pre-processing strategy to training and test sets, ensuring consistency and minimizing 

data leakage. 

Finally, we define a function to train and evaluate different types of ensembles, combining 

them with different types of category encoding. This will enable us to create different ensemble 

models by combining different ensemble learning packages with different types of category 

encoders. 

The function below allows us to pass an ensemble as well as a grid of ensemble parameters 

for ensemble parameter selection. It uses n-fold cross validation combined with randomized 

search to identify the best ensemble parameters before training a final model with these best 

parameters. 

Once trained, the function evaluates final model performance on the test set using three 

metrics: accuracy, balanced accuracy and F1 score.  

Balanced accuracy and F1 score are especially useful metrics when the data set is 

imbalanced, as they take label imbalance into account by weighting model performance on 

each class based on how often they appear in the labels. 
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Listing 8.7. Training and evaluating combinations of encoders and ensembles 

from sklearn.model_selection import RandomizedSearchCV 
from sklearn.metrics import accuracy_score, f1_score,    
                            balanced_accuracy_score 
 
def train_and_evaluate_models(ensemble, parameters,    #A 
                              n_iter=25,   #B 
                              cv=5):    #C          
    results = pd.DataFrame() 
     
    for encoder in [ce.OneHotEncoder,  
                    ce.OrdinalEncoder,  
                    ce.TargetEncoder]:     #D 
        preprocess_pipeline = create_preprocessor(encoder)    #E 
 
        model = Pipeline(steps=[ 
                         ('preprocess', preprocess_pipeline),                            
                         ('crossvalidate',  
                           RandomizedSearchCV( 
                                ensemble, parameters,                     
                                n_iter=n_iter, cv=cv,    #F 
                                refit=True,     #G 
                                verbose=2))]) 
        model.fit(Xtrn, ytrn) 
         
        ypred_trn = model.predict(Xtrn) 
        ypred_tst = model.predict(Xtst)     
 
        res = {'Encoder': encoder.__name__,     #H 
               'Ensemble': ensemble.__class__.__name__,  
               'Train Acc': accuracy_score(ytrn, ypred_trn), 
               'Train B Acc': balanced_accuracy_score(ytrn, 
                                                      ypred_trn),  
               'Train F1': f1_score(ytrn, ypred_trn),  
               'Test Acc': accuracy_score(ytst, ypred_tst), 
               'Test B Acc': balanced_accuracy_score(ytst, 
                                                     ypred_tst), 
               'Test F1': f1_score(ytst, ypred_tst)} 
        results = results.append(res, ignore_index=True) 
     
    return results 

#A specify ensemble and parameter grid  

#B maximum number of parameter combinations for randomized grid search 

#C number of cross validation folds for parameter selection 

#D different categorical encoding strategies to try 

#E initialize preprocessor pipeline (Listing 8.6) 

#F parameter selection using randomized grid search 

#G refit a final ensemble using the best parameters 

#H evaluate final ensemble performance and save the results 

8.3.3 Category Encoding and Ensembling 

In this Section, we will train various combinations of encoders and ensemble methods. In 

particular, we consider 
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• encoders: one hot, ordinal, and greedy target encoding (from the category_encoders 

package) 

• ensembles: scikit-learn’s random forest, gradient boosting with LightGBM and Newton 

boosting with XGBoost 

For each combination of encoder and ensemble, we follow the same steps implemented in 

Listings 8.6 and 8.7: pre-process the features, perform ensemble parameter selection to get 

best ensemble parameters, refit a final ensemble model with the best parameter combination 

and, finally, evaluate the final model. 

RANDOM FOREST 

The listing below trains and evaluates the best combination of categorical encoding (one hot, 

ordinal, and greedy target) and random forest. 

Listing 8.8. Category encoding followed by ensembling with random forest 

from sklearn.ensemble import RandomForestClassifier 
 
ensemble = RandomForestClassifier(n_jobs=-1) 
parameters = {'n_estimators': [25, 50, 100, 200],    #A 
              'max_depth': [3, 5, 7, 10],     #B             
              'max_features': [0.2, 0.4, 0.6, 0.8]}     #C 
 
rf_results = train_and_evaluate_models(ensemble, parameters,  
                                       n_iter=25, cv=5)    #D 

#A number of trees in the random forest ensemble 

#B maximum depth of individual trees in the ensemble 

#C fraction of features/columns during tree learning 

#D randomized grid search with 25 parameter combinations and 5-fold cross validation 

This listing returns of results, shown below (edited to fit into the page). 

 Encoder  Test Acc  Test B Acc  Test F1  Train Acc  Train B Acc  Train F1 
  OneHot     0.862       0.766    0.669      0.875        0.783       0.7 
 Ordinal     0.861       0.756    0.657      0.874        0.773     0.688 
  Target     0.864       0.774    0.679      0.881        0.797      0.72 

Observe the difference between plain accuracy (Acc) and balanced accuracy (B Acc) or F1-

score (F1) for both the training and test sets. This illustrates the importance of using the right 

metric to evaluate our models. 

While all encoding methods appear equally effective using plain accuracy as the evaluation 

metric, encoding with target statistics seems to be most effective in classifying between the 

positive and negative examples. 

LIGHTGBM 

Next, we repeat this training and evaluation procedure with LightGBM, where we train an 

ensemble with 200 trees. Several other ensemble hyperparameters will be selected using 5-

fold cross validation: maximum tree depth, learning rate, bagging fraction and regularization 

parameters. 
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Listing 8.9. Category encoding followed by ensembling with LightGBM 

from lightgbm import LGBMClassifier 
 
ensemble = LGBMClassifier(n_estimators=200, n_jobs=-1) 
parameters = {'max_depth': np.arange(3, 10, step=1),    #A 
              'learning_rate': 2**np.arange(-8., 2., step=2),    #B 
              'bagging_fraction': [0.4, 0.5, 0.6, 0.7, 0.8],    #C 
              'lambda_l1': [0, 0.01, 0.1, 1, 10],    #D 
              'lambda_l2': [0, 0.01, 0.1, 1e-1, 1, 10]}  
 
lgbm_results = train_and_evaluate_models(ensemble, parameters,  
                                         n_iter=50, cv=5) 

#A maximum depth of individual trees in the ensemble 

#B learning rate for gradient boosting 

#C fraction of examples used during tree learning 

#D parameters for weight regularization 

This listing returns of results, shown below (edited to fit into the page). 

Encoder  Test Acc  Test B Acc  Test F1  Train Acc  Train B Acc  Train F1 
  OneHot    0.874       0.802    0.716      0.891        0.824     0.754 
Ordinal     0.874       0.802    0.717      0.892        0.825     0.757 
 Target     0.873       0.796     0.71      0.886        0.815     0.741 

With LightGBM, all three encoding methods lead to ensembles with roughly similar 

generalization performance as evidenced by test balanced accuracy and F1 scores. The overall 

performance is also better than random forest. 

XGBOOST 

Finally, we repeat this training and evaluation procedure with XGBoost as well, where we again 

train an ensemble of 200 trees.  

Listing 8.10. Category encoding followed by ensembling with XGBoost 

from xgboost import XGBClassifier 
 
ensemble = XGBClassifier(n_estimators=200, n_jobs=-1) 
parameters = {'max_depth': np.arange(3, 10, step=1),    #A 
              'learning_rate': 2**np.arange(-8., 2., step=2),    #B 
              'colsample_bytree': [0.4, 0.5, 0.6, 0.7, 0.8],    #C 
              'reg_alpha': [0, 0.01, 0.1, 1, 10],    #D 
              'reg_lambda': [0, 0.01, 0.1, 1e-1, 1, 10]} 
 
xgb_results = train_and_evaluate_models(ensemble, parameters,  
                                        n_iter=50, cv=5) 

#A maximum depth of individual trees in the ensemble 

#B learning rate for Newton boosting 

#C fraction of features/columns during tree learning 

#D parameters for weight regularization 

This listing returns of results, shown below (edited to fit into the page). 
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Encoder  Test Acc  Test B Acc  Test F1  Train Acc  Train B Acc  Train F1 
  OneHot     0.875       0.799    0.715      0.896        0.829     0.764 
 Ordinal     0.873       0.799    0.712      0.891        0.823     0.753 
  Target     0.875       0.802    0.717      0.898        0.834     0.771 

As with LightGBM, all three encoding methods lead to XGBoost ensembles with roughly similar 

generalization performance. The overall performance of XGBoost is similar to that of LightGBM, 

but better than Random Forest. 

8.3.4 Ordered Encoding and Boosting with CatBoost 

Finally, we explore the performance of CatBoost on this data set. Unlike the previous 

approaches in Section 8.3.4, we will not use the category_encoders package. This is because, 

CatBoost uses ordered target statistics along with ordered boosting. 

This means that, as long as clearly identify the categorical features that need encoding with 

ordered target statistics, CatBoost will take care of the rest and we do not need to incorporate 

any additional pre-processing! 

List 8.11. Ordered target encoding and ordered boosting with CatBoost 

from catboost import CatBoostClassifier 
 
ensemble = CatBoostClassifier(cat_features=cat_features) 
parameters = {'iterations': [25, 50, 100, 200],    #A 
              'depth': np.arange(3, 10, step=1),   #B 
              'learning_rate': 2**np.arange(-5., 0., step=1),    #C 
              'l2_leaf_reg': [0, 0.01, 0.1, 1e-1, 1, 10]}    #D 
 
search = ensemble.randomized_search(parameters, Xtrn, ytrn,  
                                    n_iter=50, cv=5, refit=True,  
                                    verbose=False)    #E 
ypred_trn = ensemble.predict(Xtrn) 
ypred_tst = ensemble.predict(Xtst)     
 
res = {'Encoder': '', 
       'Ensemble': ensemble.__class__.__name__,  
       'Train Acc': accuracy_score(ytrn, ypred_trn), 
       'Train B Acc': balanced_accuracy_score(ytrn, ypred_trn),  
       'Train F1': f1_score(ytrn, ypred_trn),  
       'Test Acc': accuracy_score(ytst, ypred_tst), 
       'Test B Acc': balanced_accuracy_score(ytst, ypred_tst), 
       'Test F1': f1_score(ytst, ypred_tst)} 
 
cat_results = pd.DataFrame() 
cat_results = cat_results.append(res, ignore_index=True) 

#A number of trees in the random forest ensemble 

#B maximum depth of individual trees in the ensemble 

#C learning rate for Newton boosting 

#D parameters for weight regularization 

#E use CatBoost’s randomized search functionality 

CatBoost provides its own randomized_search feature, which can be initialized and invoked 

similarly to scikit-learn’s RandomizedGridCV, which we used in the previous section. 
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Ensemble  Test Acc  Test B Acc  Test F1  Train Acc  Train B Acc  Train F1 
CatBoost      0.87       0.796    0.708      0.888         0.82     0.747 

CatBoost’s performance on this data set is comparable to that of LightGBM and XGBoost, 

and better than Random Forest.  

 

Figure 8.14. The test set performance (with the balanced accuracy metric) of various encoding and ensemble 

method combinations. 

Now, let’s put the results of all the approaches side-by-side; in the figure above, we look 

at how each approach performed with respect to balanced accuracy evaluated on the test set. 

In analyzing these results, keep in mind, always, that there is no free lunch, and no method 

is best performing all the time. However,  CatBoost does enjoy two key benefits:  

• it allows for a consolidated approach to encoding and handling categorical features, 

unlike other ensemble approaches which necessarily use a two-step encode+ensemble 

approach, and  

• by design, it mitigates data and target leakage and distribution shift issues, which often 

need more care with other ensembling approaches. 

8.4 Encoding High-Cardinality String Features 

We wrap up this chapter by exploring encoding techniques for high-cardinality categorical 

features. The cardinality of a categorical feature is simply the number of unique categories in 

it. The number of categories is an important consideration in categorical encoding. 

Real-world data sets often contain categorical string features, where feature values are 

strings. For example, consider a categorical feature of job titles at an organization. This feature 

can contain dozens to hundreds of job titles from ‘Intern’ to ‘President and CEO’, each with 

their own unique roles and responsibilities. 
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Such features contain a large number of categories and are inherently high-cardinality. 

This disqualifies encoding approaches such as one-hot encoding (because it increases feature 

dimension significantly), or ordinal encoding (because no natural ordering typically exists). 

What’s more, in real-world data sets, such high-cardinality are also ‘dirty’, in that there are 

several variations of the same category: 

• Natural variations can arise because data is compiled from different sources. For 

example, two departments in the same organization may have different titles for the 

exact same role: “Lead Data Scientist” and “Senior Data Scientist”. 

• Many such data sets are manually entered into databases, which introduces noise due 

to typos and other errors. For example, “Data Scientsit” [sic] and “Data Scientist”. 

Because two (or more!) such variants do not match exactly, they are treated as their own 

unique categories, even though common sense suggests that they should be cleaned and/or 

merged. This causes additional problems with high-cardinality string features by adding new 

categories to an already large set of categories. 

To address this issue, we will need to determine categories (and how to encode them) by 

string similarity rather than by exact matching! The intuition behind this approach is to encode 

similar categories together in a way that a human might, to ensure that the downstream 

learning algorithm treats them similarly (as it should).  

For example, similarity-based encoding would encode “Data Scientsit” [sic] and “Data 

Scientist” with similar features so that they appear nearly identical to a learning algorithm. 

Similarity-based encoding methods use the notion of string similarity to identify similar 

categories. 

Such string similarity metrics, or measures, are widely used in natural language and text 

applications, for example, in autocorrect applications, database retrieval or in language 

translation. 
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String similarity metrics 

A similarity metric is a function that takes two objects and returns a numeric similarity measure between them. 

Higher values mean that the two objects are more similar to each other. A string similarity metric operates on strings. 

 

Measuring the similarity between strings is challenging as strings can be of different lengths and can have similar 

substrings in different locations. To identify if two strings are similar potentially requires matching characters and 

subsequences of all possible lengths and locations. This combinatorial complexity means that computing string 

similarity can be computationally expensive. 

 

Several approaches to computing string similarity between strings of different lengths exist. Two common types 

are character-based string similarity and token-based string similarity, depending on the granularity of the string 

components being compared. 

 

Character-based approaches measure string similarity by the number of operations at the character-level 

(insertion, deletion, or substitution) needed to transform one string to another. These approaches are well-suited for 

short strings. 

 

Longer strings are often decomposed into tokens, typically substrings or words, called n-grams. Token-based 

approaches measure string similarity at the token-level. 

 

Irrespective of which string similarity metric you use, the similarity score can be used to encode both high-

cardinality features (by grouping similar string categories together) and dirty features (by `cleaning’ typos). 

 

THE DIRTY-CAT PACKAGE 

The dirty-cat3 package provides such functionality off-the-shelf and can be used seamlessly 

in modeling pipelines. The package provides three specialized encoders to handle so called 

“dirty categories”, which are essentially noisy and/or high-cardinality string categories.  

• SimilarityEncoder, a version of one-hot encoding constructed using string 

similarities, 

• GapEncoder, that encodes categories by considering frequently co-occurring substring 

combinations, and 

• MinHashEncoder, that encodes categories by applying hashing techniques to 

substrings. 

We use another salary data set to see how we can use the dirty_cat package in practice. 

This data set is a modified version of a publicly-available employee salaries data set from 

data.gov, with the goal being to predict an individual’s salary given their job title and 

department. 

First, we load the data set and visualize the first few rows: 

  

 
3 https://dirty-cat.github.io/stable/index.html  
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import pandas as pd 
df = pd.read_csv('./data/ch08/employee_salaries.csv') 
df.head() 

 

Figure 8.15. The Employee Salaries data set mostly contains string categories. 

The column salary is the target variable, making this a regression problem. We split this 

dataframe into features and labels. 

X, y = df.drop('salary', axis=1), df['salary'] 
print(X.shape) 
(9211, 6) 

We can get a sense of which features are high-cardinality by counting the number of unique 

categories or values per column. 

for col in X.columns: 
    print('{0}: {1} categories'.format(col, df[col].nunique())) 
 
gender: 2 categories 
department_name: 37 categories 
assignment_category: 2 categories 
employee_position_title: 385 categories 
underfilled_job_title: 83 categories 
year_first_hired: 51 categories 

We see that the feature employee_position_title has 385 unique string categories, 

making this an instance of a high-cardinality feature. Directly encoding this using one-hot 

encoding, say, would introduce 385 new columns into our data set, thus increasing the number 

of columns greatly!  

Instead, let’s see how we can use the dirty-cat package to train an XGBoost ensemble 

on this data set. First, let’s identify the different types of features in our data set explicitly: 

lo_card = ['gender', 'department_name', 'assignment_category'] 
hi_card = ['employee_position_title'] 
continuous = ['year_first_hired'] 

Next, let’s initialize the different dirty-cat encoders we want to use: 

encoders = [SimilarityEncoder(similarity='ngram'),   #A 
            MinHashEncoder(n_components=100),   #B 
            GapEncoder(n_components=100)] 

#A specify the string similarity measure to use 

#B encoding dimension 
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The most important parameter in SimilarityEncoder is the similarity metric, which 

compares two strings and returns a value indicating how similar they are. The most important 

parameter for MinHashEncoder and GapEncoder is n_components, which is also known as the 

encoding dimension. 

SimilarityEncoder accepts four different types of string similarity metrics: ngram (token-

based), levenshtein-ratio, jaro and jaro-winkler (character-based). Character-based 

string similarity metrics are better suited for short strings with a few words at most, while 

token-based metrics are better suited for longer strings. 

To understand encoding dimension, consider that we are one-hot encoding the feature 

employee_position_title, which contains 385 unique categories. This encoding converts 

each categorical value to a 385-dimensional vector, making the encoding dimension 385. 

MinHashEncoder and GapEncoder, on the other hand, can take in a user-specified encoding 

dimension, and create an encoding of the specified size. In this case, the encoding dimension 

is specified to be 100 for both, which is much smaller than what one-hot encoding would be 

forced to use. 

Practically, the encoding dimension (n_components) is a modeling choice, and the best 

value should be determined through k-fold cross validation depending on the tradeoff between 

model training time vs. model performance. 

We put all this together into the listing below, which trains three different XGBoost models, 

one for each type of dirty-cat encoding. 
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Listing 8.12. Encoding and ensembling with high-cardinality features 

from sklearn.preprocessing import OneHotEncoder, MinMaxScaler 
from sklearn.pipeline import Pipeline 
from sklearn.compose import ColumnTransformer 
from dirty_cat import SimilarityEncoder, MinHashEncoder, GapEncoder 
from xgboost import XGBRegressor 
from sklearn.metrics import r2_score 
 
lo_card = ['gender', 'department_name', 'assignment_category']    #A 
hi_card = ['employee_position_title']    #B 
continuous = ['year_first_hired']    #C 
 
encoders = [SimilarityEncoder(similarity='ngram'), 
            MinHashEncoder(n_components=100), 
            GapEncoder(n_components=100)] 
 
for encoder in encoders: 
    ensemble = XGBRegressor(objective='reg:mse', learning_rate=0.1,  
                            n_estimators=100, max_depth=3)    #D 
 
    preprocess = ColumnTransformer( 
                    transformers=[ 
                       ('continuous', MinMaxScaler(), continuous),    #E 
                       ('onehot', OneHotEncoder(sparse=False), lo_card), #F 
                       ('dirty', encoder, hi_card)],    #G 
                    remainder='drop') 
     
    pipe = Pipeline(steps=[('preprocess', preprocess),  
                           ('train', ensemble)])    #H 
    pipe.fit(Xtrn, ytrn) 
     
    ypred = pipe.predict(Xtst) 
    print('{0}: {1}'.format(encoder.__class__.__name__,  
                            r2_score(ytst, ypred)))    #I 

#A identify low-cardinality features 

#B identify high-cardinality features 

#C identify continuous features 

#D use XGBoost as the ensemble method 

#E rescale continuous features to [0, 1] range 

#F one-hot encode the low-cardinality features 

#G encode high-cardinality features using dirty-cat encoding 

#H create a pre-processing and training pipeline 

#I use R2 score to evaluate overall performance 

In this example, we identify three different types of features, each of which we pre-process 

differently: 

• low-cardinality features such as gender (2 categories) and department_name (37 

categories) are one-hot encoded, 

• high-cardinality features such as employee_position_title are encoded using 

dirty_cat encoders, and 

• continuous features such as year_first_hired are rescaled using MinMaxScaler to be 

in the range 0 to 1. 

268

https://livebook.manning.com/#!/book/ensamble-methods-for-machine-learning/discussion


©Manning Publications Co.  To comment go to  liveBook 

After encoding, we train an XGBoost regressor with 100 trees each of maximum depth 3 

using the fairly standard mean-squared-error loss function. The trained models are evaluated 

using the regression metric R2 score (see Chapter 1 for details) , which ranges from -∞ to 1, 

with values closer to 1 indicating better-performing regressors. 

SimilarityEncoder: 0.8406447781562516 
MinHashEncoder: 0.8162021132963543 
GapEncoder: 0.8087771002785784 

In this simple use case, similarity encoding combined with XGBoost works best, compared 

to XGBoost models trained using the GapEncoder or the MinHashEncoder. As with the other 

supervised methods, it is often necessary to use cross validation determine which encoding 

parameters produce the best results for the data set at hand. 

8.5 Summary 

• A categorical feature is a type of data attribute that takes discrete values called classes 

or categories. For this reason, categorical features are also called discrete features.  

• A nominal feature is a categorical variable whose values have no relationship between 

them (e.g., cat, dog, pig, cow) 

• An ordinal feature is a categorical variable whose values are ordered, either increasing 

or decreasing (e.g, freshman, sophomore, junior, senior) 

• One-hot vectorization/encoding and ordinal encoding are commonly used unsupervised 

encoding methods.  

• One-hot encoding introduces a binary (0-1) columns for each category into the data set 

and can be inefficient when a feature has a large number of categories. Ordinal encoding 

introduces integer values sequentially for each category. 

• Target statistics (TS) are a supervised encoding approach for categorical features; 

rather than a predetermined or learned encoding step, categorical features are replaced 

with a statistic that describes the category (such as mean)  

• Greedy target statistics use all the training data for encoding which leads to issues of 

train-to-test target leakage and distribution shift, which affects how we evaluate model 

generalization performance. 

• Hold-out target statistics uses a special hold-out encoding set in addition to a hold-out 

test set; it eliminates leakage and shift but is wasteful of date. 

• Leave-one-out target statistics and ordered target statistics are data-efficient ways to 

mitigate leakage and shift. 

• Gradient boosting techniques use training data for both residual computation and model 

training, which causes a prediction shift and overfitting. 

• Ordered boosting is a modification of Newton boosting that uses a permutation-based 

approach to ensembling to further reduce prediction shift. Ordered boosting tackles 

prediction shift by training a sequence of models on different permutations and subsets 

of the data.  

• CatBoost is a publicly available boosting library that implements ordered target 

statistics and ordered boosting. 

• While CatBoost is well-suited for categorical features, it can also be applied to regular 
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features. 

• CatBoost uses oblivious decision trees as weak learners. Oblivious decision trees use 

the same splitting criterion in all the nodes across an entire level/depth of the tree. 

Oblivious trees are balanced, less prone to overfitting, and allow speeding up execution 

at testing time significantly  

• High-cardinality features contain many, many unique categories; one-hot encoding 

high-cardinality features can introduce a large number of new data columns, most of 

them sparse (with many zeros), which leads to inefficient learning 

• dirty-cat is a package that produces more compact encodings for discrete-valued 

features and uses string and substring similarity and hashing to create effective 

encodings. 
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9 
Explaining Your Ensembles 

This chapter covers 

• Understanding glass-box vs. black-box and global vs. local interpretability

• Reviewing the basics of glass-box interpretability of decision trees and generalized linear

models

• Using global black-box methods to understand the behavior of pre-trained ensembles

• Using local black-box methods to explain predictions of pre-trained ensembles

• Training and using explainable global & local glass-box ensembles from scratch

When training and deploying models, we are usually concerned about WHAT the model 

prediction is. Equally important, however, is WHY the model made the prediction that it did.  

Understanding a model’s predictions is a critical component of building robust machine-

learning pipelines. This is especially true when machine-learning models are used in high-

stakes applications such as in healthcare or finance. 

For example, in a medical diagnosis task such as diabetes diagnosis, understanding why 

the model made a specific diagnosis can provide users (in this case, doctors) with additional 

insights that can guide them towards better prescriptions, preventative or palliative care.  

This increased transparency, in turn, increases trust in the machine-learning system, and 

allows the users for whom the models have been developed to use them with confidence. 

Understanding the reasons behind a model’s predictions is also extremely useful in model 

debugging, identification of failure cases and in finding ways to improve model performance. 

Furthermore, model debugging can also help pinpoint biases and problems with the data itself. 

Machine-learning models are typically characterized as black-box models and glass-box 

models. Blackbox models are typically challenging to understand owing to their complexity (for 

example, deep neural networks). The predictions of such models require specialized tools to 

be explainable. Many of the ensembles covered in this book, such as random forests and 

gradient boosting are black-box machine-learning models. 
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Glass-box models are more intuitive and easier to understand (for example, decision trees). 

The structure of such models makes them inherently interpretable. In this chapter, we explore 

the concepts of explainability and interpretability from the perspective of ensemble methods.  

Interpretability methods are also characterized as global or local. Global methods attempt 

to broadly explain a model’s features and relevance to decision-making across different types 

of examples. Local methods attempt to specifically explain a model’s decision-making process 

with respect to individual examples and predictions. 

Section 9.1 introduces the basics of black-box and glass-box machine-learning models. 

This section also reintroduces two well-known machine learning models from the perspective 

of interpretability: decision trees and generalized linear models. 

Section 9.2 introduces this chapter’s case study: data-driven marketing. This application is 

used in the rest of the section to illustrate techniques for interpretability and explainability.  

Section 9.3 introduces three techniques for global black-box explainability: permutation 

feature importance, partial dependence plots and global surrogate models. Section 9.4 

introduces two methods for local black-box explainability: LIME and SHAP. 

The black-box methods introduced in Sections 9.3 and 9.4 are model-agnostic, that is, can 

be used for any machine-learning black-box. In these sections, we specifically focus on how 

they can be used for ensemble methods. 

Section 9.5 introduces a glass-box method called explainable boosting machines, a new 

ensemble method that is designed to directly interpretable and provides both global and local 

interpretability. 

9.1 What is Interpretability? 

We first introduce the basics of interpretability and explainability for machine-learning models 

generally, before moving to how these concepts apply to ensemble methods specifically. 

The notions of interpretability and explainability of a machine-learning model are related 

to its structure (e.g., is it a tree, a network, a linear model?) and its parameters (e.g., split 

and leaf values in trees, layer weights in neural networks, feature weights in linear models). 

Our goal is to understand a model’s behavior in terms of its input features, output 

predictions and the model internals (that is, structure and parameters).  

9.1.1 Black-Box vs. Glass-Box Models 

Black-box machine-learning models are models that are difficult to describe in terms of their 

model internals. This can be because we do not have access to the internal model structure 

and parameters (for example, if it was trained by someone else).  

Even in cases where we do have access to the model internals, the model itself may be 

sufficiently complex that it is not easy to analyze and establish an intuitive understanding of 

the relationship between its inputs and outputs (see Figure 9.1). 
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Figure 9.1. With black-box machine-learning models, we can only use to the input-output pairs to analyze and 

explain model behavior. The model internals in a black box are either unavailable or are not directly 

interpretable. With glass-box machine-learning models, in addition to input-output pairs, the model internals 

are also intuitively interpretable. 

Neural networks and deep learning models are often cited as examples of black-box 

models, owing to the considerable complexity arising from their multilayered structure and 

large number of network parameters. 

These models essentially function as black boxes: given an input example, they provide a 

prediction, but their inner workings are opaque to us. This makes interpreting model behavior 

pretty hard.  

Many of the ensemble methods we’ve seen so far: random forests, AdaBoost, gradient and 

Newton boosting are all effectively black-box models to us. This is because, even though the 

individual base estimators themselves may be intuitive and interpretable, the process of 

ensembling introduces complex interactions between the features, which in turn, makes it hard 

to interpret the ensemble and its predictions. 

Black-box models typically require black-box explainers, which are explanation models that 

aim to explain model behavior using only a model’s inputs and outputs, but not its internals. 

Glass-box machine-learning models, on the other hand, are easier to understand. This is 

often because their model structures are immediately intuitive or comprehensible to humans. 

For example, consider a simple task of diabetes diagnosis from only two features: age and 

blood-glucose test result (glc). Let’s say that we have learned two machine-learning models 

that have identical predictive performance, a 4-th degree polynomial classifier and a decision 

tree classifier 

The data set  for this example is shown in Figure 9.2, where patients who do not have 

diabetes (class=-1) are denoted by squares and patients who have diabetes (class=+1) are 

denoted by circles. The two classification models are also shown. 
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Figure 9.2. The problem space of diabetes patients who have to be classified as having diabetes (circles) or 

not having diabetes (squares) based on two features: age and glc. Two machine-learning models: a 4-th 

degree polynomial classifier and a decision-tree classifier are trained to have roughly similar predictive 

performance. However, the nature of their model internals (structure and parameters) means that decision 

lists are more intuitive for explanations and for understanding model behavior (see text). 

The first model is a 4-th degree polynomial classifier. This classifier has an additive 

structure made up of weighted feature powers, and the weights are the model parameters: 

f(age,glc) = sign(0.0021 age4 - 0.497 age3 + 41.734 age2 - 1550.251 age + 21645.647 - glc). 

This function returns either +1 (diabetes = TRUE) or -1 (diabetes = FALSE). Even with 

the full model available to us, given a new patient and resulting diagnostic prediction (say, 

diabetes = TRUE), it is not immediately clear why the model made the decision it did.  

Was it because of the patient’s age? Their blood-glucose test result? Both of these factors? 

This information is buried within complex mathematical calculations that are not easy for us to 

infer by simply looking at the model, its structure, and parameters. 

Now, let’s consider a second model, a decision tree with a single decision node of the form: 

 

This function also returns either +1 (diabetes = TRUE) or -1 (diabetes = FALSE). 

However, the structure of this decision tree is easily interpretable as: 

if age > 45 AND glc > 140 then diabetes = TRUE else diabetes = FALSE.  

This model’s interpretation is pretty straightforward: any patient who is over the age of 45 

and has a blood glucose test result of over 140 will be diagnosed as having diabetes. 
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In summary, even though the full model internals of the polynomial classifier are available 

to us, the model might as well be a black-box since the model internals are not intuitive or 

interpretable. On the other hand, the inherent nature of how the decision tree represents the 

knowledge it has learned allows for easier interpretation, making it a glass-box model. 

In the rest of this section, we will explore two familiar machine-learning models that are 

also glass-box models: decision trees (and decision lists) and generalized linear models 

(GLMs). This will set us up to better understand the notions of interpretability and explainability 

for ensembles as both GLMs and decision trees are commonly used as base estimators in many 

different ensemble methods. 

9.1.2 Decision Trees (and Decision Rules) 

Decision trees are arguably the most interpretable of machine-learning models as they 

implement decision-making as a sequential process of asking and answering questions. The 

tree structure of a decision tree and its feature-based splitting functions are easy to interpret, 

as we will see below. This makes decision trees glass-box models. 

Let’s begin by training a decision tree on a classification data set called Iris. The task is a 

3-way classification of irises into three species: Iris setosa, Iris versicolour and Iris virginica 

based on four features: sepal height, sepal width, petal height and petal width. This 

exceedingly simple data set only has 150 training examples and will serve as a good teaching 

example for the notions of visualization. 

INTERPRETING DECISION TREES IN PRACTICE 

Listing 9.1 loads the data set, trains a decision tree classifier, and visualizes it. Once visualized, 

we can interpret the learned decision tree model. 
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Listing 9.1. Training and interpreting decision trees 

from sklearn.datasets import load_iris 
from sklearn.model_selection import train_test_split 
iris = load_iris()    # A 
Xtrn, Xtst, ytrn, ytst = train_test_split(iris.data, iris.target, 
                                          test_size=0.15) 
 
from sklearn import tree 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.metrics import accuracy_score 
model = DecisionTreeClassifier(min_samples_leaf=40, criterion='entropy') #B 
model.fit(Xtrn, ytrn)    # C 
ypred = model.predict(Xtst) 
print('Accuracy = {0:4.3}%'.format(accuracy_score(ytst, ypred) * 100)) 
 
import graphviz, re, pydotplus 
dot = tree.export_graphviz(model, feature_names=iris.feature_names,  
                           class_names=['Iris-Setosa',  
                                        'Iris-Versicolour',  
                                        'Iris-Virginica'], 
                           filled=True, impurity=False) 
graphviz.Source(dot, format="png")    # D 

#A Load the Iris data set and split into training and test sets 

#B Use entropy as the criterion to measure quality of splits during learning 

#C Train a decision tree classifier and evaluate its test set performance 

#D Export the tree internals to dot format and then render using graphviz 

The resulting decision tree achieves 91.3% accuracy on the iris data set. We visualize it using 

the open-source graph visualization software graphviz package, which is used to render lists, 

trees, graphs, and networks. 

 

Figure 9.3. Decision tree learned on the Iris data set for classification of irises into three species: Iris setosa, 

Iris versicolour and Iris virginica. The standard convention for splits is followed here: if the split function 

evaluates to true, we proceed to the right branch and if it evaluates to false, the left branch. 
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The first thing we notice is that only two of the four features: petal width and length are 

enough to achieve over 90% accuracy. Thus, this decision tree has learned a sparse model by 

using only a subset of the features. But we can glean far more than that from this. 

A nice property of decision trees is that each path from root node to leaf node represents 

a decision rule. At every split, since an example can either go left or right only, the example 

can only end up at one of the three leaf nodes. This means that each leaf node (and by 

extension, each path from root to leaf, that is each rule) partitions the overall population into 

a sub-population. Let’s actually see this in action. 

Since there are three leaf nodes, there are three decision rules, which we can write in 

Python syntax to understand them easier: 

if petal_width <= 0.8:  
    class = ‘Iris-Setosa’ 
elif (petal_width > 0.8) and (petal_length <= 4.85): 
    class = ‘Iris-Versicolour’ 
elif (petal_width > 0.8] and (petal_length > 4.85): 
    class = ‘Iris-Virginica’ 
else: 
 ‘Can never reach here’ 

In general, every decision tree can be expressed as a set of decision rules, which are more 

easily comprehensible to humans owing to their if-then structure. 

NOTE The interpretability of decision trees can be subjective and depends on the depth of the tree and the 

number of leaf nodes. Trees of small-to-medium depth (say, up to 3-4) and approximately 8-15 nodes are 

generally more intuitive and easier to understand. As the tree depth and number of leaf nodes increase, the 

number and length of decision rules we will have to contend with and interpret also increases. This makes 

deep and complex decision trees also rather difficult to interpret and black-box-like. 

Finally, observe that every example that passes through a decision tree must end up at 

one and only one of the leaf nodes. Thus, the set of paths from root to the leaves will fully 

cover all the examples.  

What’s more, this tree/rules will partition the space of all irises into three non-overlapping 

subpopulations, each corresponding to one of the three species. This is very helpful for 

visualization and interpretation as shown in Figure 9.4.  

FEATURE IMPORTANCES 

We know from the tree that two features are used: petal length and petal width. But how much 

did each feature contribute to the model? This is the notion of feature importance: where we 

ascribe a score to each feature depending on how much it influences overall decision-making 

in a model. In a decision tree, feature importances can be computed very easily!  

Let’s compute the feature importances for each feature in the tree in Figure 9.3, keeping 

in mind a couple of important details. First, the training set consisted of 127 training examples 

(samples = 127 in the root node). Next, this tree was learned using entropy as the split-

quality criterion (see Listing 9.1).  
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Thus, to measure feature importance, we simply compute how much each feature 

decreases entropy overall after the split. In order to avoid skewing our perception of splits with 

very small or very large proportion of examples, we will also weight the entropy decrease. 

 

Figure 9.4. Decision trees partition the feature space into non-overlapping subspaces, where each subspace 

denotes a subpopulation of the examples. 

More precisely, for each split node, compute how much its (weighted) entropy decreases 

with respect to its child nodes after the split:  

Importance(node) = nnode H(node) - (nleftH(left) + nright H(right)). 

For the node [petal_width <= 0.8], Importance(petal_width) = 127⋅1.584 - (41 ⋅ 0.0 + 86 ⋅ 1.0) 

= 115.244. For the node [petal_length <= 4.85], Importance(petal_length) = 86 ⋅ 1.0 - (43 ⋅ 0.271 

+ 43 ⋅ 0.365) = 58.599. Since the other two features are not used in the model, their feature 

importances will be zero. 

The final step is to normalize the feature importances so that they sum to one. This gives 

us: Importance(petal_width) = 115.244⁄(115.244 + 58.599)= 0.663 and Importance(petal_length) = 

115.244⁄(115.244 + 58.599) = 0.337.  

In practice, we don’t have to compute feature importances ourselves as most 

implementations of decision-tree learning do so. For example, the feature importances of the 

decision tree we just learned from Listing 9.1 can be obtained directly from the model (compare 

with our computation above): 

model.feature_importances_ 
array([0.        , 0.        , 0.33708016, 0.66291984]) 
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Finally, the example above showed the interpretability of decision trees for classification 

problems. Decision tree regressors can also be interpreted in the same way; the only difference 

is that the leaf nodes will be regression values instead of class labels. 

9.1.3 Generalized Linear Models 

We now revisit generalized linear models (GLMs), which were originally introduced in Section 

7.1.4. Recall that generalized linear models extend linear models through a (nonlinear) link 

function, g(y). For example, linear regression uses the identity link to relate the regression 

values y to the data x: 

y = β0 + β1x1 + ⋯ + βdxd. 

Here, the data point x = [x1, ⋯, xd]' is described by d features, and the linear model is 

parameterized by the linear coefficients β1, ⋯ , βd and the intercept (sometimes called the bias) 

β0. Another example of a GLM is logistic regression, which uses the logit link to relate class 

probabilities p to the data x: 

ln((p(y = 1))/(1 - p(y = 1)) = β0 + β1x1 + ⋯ + βdxd. 

Generalized linear models are interpretable due to their linear and additive structure. The 

linear parameters themselves gives us an intuitive sense of each feature’s contribution to the 

overall prediction. The additive structure ensures that the overall prediction depends on the 

individual contributions from each feature. 

For example, consider that we’ve trained a logistic regression model for the diabetes 

diagnosis task discussed earlier, to classify if a patient has diabetes using two features: age 

and blood-glucose test result (glc). Let’s say the learned model is (with p(y = 1) as p) 

ln(p/(1 - p)) = -0.1 + 0.5⋅age - 0.29⋅glc. 

Recall that if p is the probability of a positive diagnosis, then p/(1 - p) are the odds that the 

patient has diagnosis. Thus, logistic regression represents the log odds of a positive diabetes 

diagnosis as a weighted combination of the features age and glc. 

FEATURE WEIGHTS 

How can we interpret the feature weights? If age is increased by 1, ln(p/(1 - p) will increase by 

0.5 (because the model is linear and additive). Thus, for a patient who’s a year older, their log 

odds of a positive diabetes diagnosis are ln(p/(1 - p) = 0.5. Consequently, their odds of a positive 

diabetes diagnosis are p⁄(1 - p) = e0.5 = 1.65, or 65% more. 

In a similar vein, if glc is increased by 1, ln(p/(1-p) will decrease by 0.29 (note the minus in 

the weight, indicating a decrease). Thus, for a patient whose glc increases by 1, their odds of 

a positive diabetes diagnosis are p⁄(1 - p) = e-0.29 = 0.75, or 25% less. 

Let’s take this intuition and see how we can interpret a more realistic logistic regression 

model. We begin by training a logistic regression model on a data set called Breast Cancer.  
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The task is binary classification for breast cancer diagnosis. Each example in the data set 

is characterized by 30 features extracted from an image of the breast mass. These features 

characterize properties such as the radius, perimeter, area, concavity etc. of the breast mass. 

INTERPRETING GLMS IN PRACTICE 

Listing 9.2 loads the data set, trains a logistic regression classifier, and visualizes the increase 

or decrease in the odds of a positive breast cancer diagnosis of each feature.  

Listing 9.2. Training and interpreting logistic regression 

from sklearn.datasets import load_breast_cancer 
from sklearn.preprocessing import StandardScaler 
from sklearn.linear_model import LogisticRegression 
import matplotlib.pyplot as plt 
 
bc = load_breast_cancer()    #A 
X, y = StandardScaler().fit_transform(bc.data), bc.target    #B 
 
Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, test_size=0.15) 
model = LogisticRegression(max_iter=1000, solver='saga', penalty='l1') 
model.fit(Xtrn, ytrn)    #C 
ypred = model.predict(Xtst) 
print('Accuracy = {0:5.3}%'.format(accuracy_score(ytst, ypred) * 100)) 
 
fig, ax = plt.subplots(figsize=(12, 4)) 
 
odds = np.exp(model.coef_[0]) - 1.   #D 
colors = np.full(odds.shape, fill_value='#0081ff') 
colors[model.coef_[0] < 0] = '#ff0141' 
ax.bar(height=odds, x=np.arange(0, Xtrn.shape[1]), color=colors)    #E 

#A Load the Breast Cancer data set and split into training and test sets 

#B Preprocess the features ensure they are all the same scale 

#C Train a logistic regression classifier and evaluate its test set performance 

#D Compute the increase or decrease in odds as exp(weight) - 1 

#E Visualize the change in odds as a bar chart 

 

Figure 9.5. Interpreting a logistic regression, a linear model for classification, for breast cancer diagnosis. 

Positive feature weights lead to increased odds of breast cancer, negative feature weights lead to decreased 

odds of breast cancer, and zero feature weights do not affect the odds of breast cancer.  
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The odds of each feature i are calculated from the weights as oddsi  = ewi ). The change in 

odds is calculated as changei = oddsi – 1 = ewi - 1, and visualized in Figure 9.5. 

If the feature weight wi > 0, then oddsi > 1 and it will increase the odds of a positive diagnosis 

(changei > 0). If a feature weight wi < 0, then oddsi < 1 and it will decrease the odds of a positive 

diagnosis (changei < 0). If a feature weight wi = 0, then oddsi > 1 and that feature does not affect 

the diagnosis (changei = 0).  

This last part is an important component of learning sparse linear models, where we learn 

a model as a mixture of zero and non-zero feature weights. A zero feature weight means that 

that feature does not contribute to the model and can be effectively dropped. This, in turn, 

allows for a sparser feature set and leaner, more interpretable models! 

NOTE The interpretability of linear models is dependent on the relative scaling between the features. For 

example, age might be in the range 18-65, while salary might be in the range $30,000-$90,000. This disparity 

in features affects the underlying weight learning, and the feature with the higher weight range (in this case, 

salary) will dominate the models. When we interpret such models, we might incorrectly ascribe greater 

significance to such features. In order to train a robust model that considers all the features equally during 

learning, care must be taken to properly pre-process the data to ensure all features are in the same numerical 

range. 

Linear regression models can also be interpreted similarly. In this case, rather than 

compute the odds, we can compute the contribution of each feature to the regression value 

directly, since the regression value y = β0 + β1x1 + ⋯ + βdxd. 

9.2 Case Study: Data-driven Marketing 

In the rest of this chapter, we will explore how we can train both black-box and glass-box 

ensembles in the context of a machine-learning task from the domain of data-driven 

marketing. 

Data-driven marketing aims to use customer and socio-economic information to identify 

customers who will be most receptive to certain types of marketing strategies. This allows 

businesses to target specific customers with advertisements, offers and sales in an optimal 

and personalized way. 

9.2.1 The Bank Telemarketing Data Set 

The data set we will consider is the Bank Marketing data set4 from the UCI repository and is a 

part of a phone-based direct marketing campaign of a Portuguese bank. The task is to predict 

if a customer will subscribe to a fixed-term deposit. 

For each customer in the data set, there are four types of features: demographic attributes, 

details of the last phone contact, overall campaign information pertaining to this customer and 

general socio-economic indicators. The details are illustrated in Table 9.1. 

 
4 S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems, Elsevier, 62:22-31, 

June 2014. 
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Table 9.1 Features and target of the bank marketing data set, grouped by the feature type and 
source.  

Feature Type Feature Description 

client demographic attributes and financial indicators 

age continuous age of the customer 

job categorical type of job (12 categories: e.g., blue-collar, retired, self-employed, 

student, services, etc., and unknown) 

marital categorical marital status (divorced, married, single, unknown) 

education categorical highest education (8 categories: e.g., high school, university 

degree, professional course, and unknown) 

default categorical does customer have credit in default? (yes, no, unknown) 

housing categorical does customer have a housing loan? (yes, no, unknown) 

loan categorical does customer have a personal loan? (yes, no, unknown) 

date and time conditions of last marketing contact 

contact binary contact communication type (cellphone, telephone) 

month categorical last contact month (12 categories: jan-dec) 

day-of-week categorical last contact weekday (5 categories: mon-fri) 

marketing campaign details from current and previous campaigns 

campaign continuous total number of contacts during this campaign 

pdays continuous number of days since the last contact in previous campaign 

previous continuous number of contacts performed before this campaign 

poutcome categorical outcome of previous marketing campaign (3 categories: failure, 

nonexistent, success) 

general social and economic indicators 

emp.var.rate continuous employment variation rate - quarterly indicator 

cons.price.idx continuous consumer price index – monthly indicator 

cons.conf.idx continuous consumer confidence index – monthly indicator 

euribor3m continuous euribor 3 month rate - daily indicator 

nr.employed continuous number of employees - quarterly indicator 

prediction target 

subscribed? binary has the customer subscribed to a term deposit? 

An important thing to note is that this data set is extremely imbalanced: only 10% of the 

customers in the data set subscribed to a term deposit as a result of this marketing campaign.  

The listing below loads the data set, splits into training and test sets and pre-processes 

them. The continuous features are scaled to between 0 and 1 using scikit-learn’s 

MinMaxEncoder and the categorical features are encoded with OrdinalEncoder. 
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Listing 9.3. Load and preprocess the Bank Marketing Data Set 

data_file = './data/ch09/bank-additional-full.csv' 
df = pd.read_csv(data_file, sep=';')    #A 
df = df.drop('duration', axis=1)    #B 
 
from sklearn.model_selection import train_test_split 
y = df['y'] 
X = df.drop('y', axis=1)    #C 
Xtrn, Xtst, ytrn, ytst = train_test_split(X, y, stratify=y, test_size=0.25)      
    #D 
 
from sklearn.preprocessing import LabelEncoder    #E 
preprocess_labels = LabelEncoder()     
ytrn = preprocess_labels.fit_transform(ytrn).astype(float) 
ytst = preprocess_labels.transform(ytst) 
 
from sklearn.preprocessing import MinMaxScaler, OrdinalEncoder    #F 
from sklearn.pipeline import Pipeline 
from sklearn.compose import ColumnTransformer 
 
cat_features = ['default', 'housing', 'loan', 'contact', 'poutcome',  
                'job', 'marital', 'education', 'month', 'day_of_week'] 
cntnous_features = ['age', 'campaign', 'pdays', 'previous', 'emp.var.rate',  
                    'cons.price.idx', 'cons.conf.idx', 'nr.employed',  
                    'euribor3m']     
 
preprocess_categorical = Pipeline(steps=[('encoder', OrdinalEncoder())]) 
preprocess_numerical = Pipeline(steps=[('scaler', MinMaxScaler())]) 
data_transformer =  
    ColumnTransformer(transformers=[ 
        ('categorical', preprocess_categorical, cat_features), 
        ('numerical', preprocess_numerical, cntnous_features)]) 
all_features = cat_features + cntnous_features 
 
Xtrn = pd.DataFrame(data_transformer.fit_transform(Xtrn), 
                    columns=all_features) 
Xtst = pd.DataFrame(data_transformer.transform(Xtst), columns=all_features) 

#A Load data set 

#B Drop 'duration' column (see NOTE for a more detailed explanation) 

#C Split the dataframe into features and labels 

#D Split into train and test with stratified sampling to preserve class balances 

#E Preprocess labels using LabelEncoder 

#F Preprocess continuous features with MinMaxEncoder and categorical features with OrdinalEncoder 

In order to prevent data and target leakage (see Chapter 8), we ensure that scaling and 

encoding functions are only fit to the training set before applying to the test set. 
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NOTE The original data set contains a feature called ‘duration’: the duration of the last phone call. Longer 

calls are highly correlated with the outcome of the call, because longer calls indicate more engaged customers 

who are  likelier to subscribe. However, unlike other features which are known before making the call, we 

cannot possibly know a call’s duration ahead of time. In this way, ‘duration’ essentially behaves like a target 

variable since both ‘duration’ and ‘subscribed?’ will immediately be known after a call. In order to build a 

realistic predictive model that can be deployed in practice with all features available before calling, we drop 

this feature from our modeling. 

9.2.2 Training Ensembles 

We will now train two ensembles (from two different packages) on this data set: 

xgboost.XGBoostClassifier and sklearn.RandomForestClassifier. Both these models 

will be complex ensembles of 200 decision trees (weighted ensembles, in the case of XGBoost) 

and are effectively black boxes. Once trained, we will explore how to make these black boxes 

explainable in Section 9.3. 

Listing 9.4 shows how we can train an XGBoost ensemble over this data set. We use 

randomized grid search combined with 5-fold cross validation and early stopping (see Chapter 

6 for additional details) to select among various hyperparameters such as learning rate and 

regularization parameters. 

Listing 9.4. Training XGBoost on the bank marketing data set 

from xgboost import XGBClassifier 
from sklearn.model_selection import RandomizedSearchCV 
 
xgb_params = {'learning_rate': [0.001, 0.01, 0.1],   
              'n_estimators': [100],                 
              'max_depth': [3, 5, 7, 9],             
              'lambda': [0.001, 0.01, 0.1, 1],       
              'alpha': [0, 0.001, 0.01, 0.1],        
              'subsample': [0.6, 0.7, 0.8, 0.9],     
              'colsample_bytree': [0.5, 0.6, 0.7],   
              'scale_pos_weight': [5, 10, 50, 100]}    #A 
 
fit_params = {'early_stopping_rounds': 15,   #B 
              'eval_metric': 'aucpr', 
              'eval_set': [(Xtst, ytst)], 
              'verbose': 0} 
 
xgb = XGBClassifier(objective='binary:logistic', use_label_encoder=False)#C 
xgb_search = RandomizedSearchCV(xgb, xgb_params, cv=5, n_iter=40,  
                                verbose=2, n_jobs=-1) 
xgb_search.fit(X=Xtrn, y=ytrn.ravel(), **fit_params) 
xgb = xgb_search.best_estimator_    #D 

#A Create a grid of hyperparameters for XGBoost  

#B Initialize early stopping and set early stopping rounds to 15 

#C Set the classification loss for XGBoost to the logistic loss 

#D Save the best XGBoost model after cross valiation 

Note also that one of the hyperparameters is scale_pos_weight, which allows us to weight 

positive and negative training examples differently. This is necessary since the bank marketing 
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data set is unbalanced (10%:90% positive-to-negative example ratio). By weighting the 

positive examples more, we can ensure that their contribution is not drowned out by the larger 

proportion of negative examples. 

This listing trains an XGBoostClassifier that achieves around 87.24% test set accuracy 

and 74.67% balanced accuracy. We can use a similar procedure to train a random forest over 

this data set. The main difference is that we set the class weights for positive examples to 10. 

Listing 9.5. Training a random forest on the bank marketing data set 

from sklearn.ensemble import RandomForestClassifier 
from sklearn.model_selection import RandomizedSearchCV 
 
rf_params = {'max_depth': [3, 5, 7],                 
             'max_samples': [0.5, 0.6, 0.7, 0.8],    
             'max_features': [0.5, 0.6, 0.7, 0.8]}    #A 
 
rf = RandomForestClassifier(class_weight={0: 1, 1: 10}, n_estimators=200) #B 
rf_search = RandomizedSearchCV(rf, rf_params, cv=5, n_iter=30,  
                               verbose=2, n_jobs=-1) 
rf_search.fit(X=Xtrn, y=ytrn) 
rf = rf_search.best_estimator_    #C 

#A Create a grid of hyperparameters for RandomForestClassifier  

#B Set the weights for negative-to-positive examples to be 1:10 

#C Save the best random forest after cross validation 

This listing trains a RandomForestClassifier that achieves around 84% test set accuracy. 

9.2.3 Feature Importances in Tree Ensembles 

Most of the ensembles in this book (including XGBoostClassifier and 

RandomForestClassifier trained in the previous subsection) are tree ensembles as they use 

decision trees as their base estimators. 

This means that we can simply average the feature importances from the individual decision 

trees to give us feature importances for the learned ensembles! 

In fact, the implementations of random forest (in scikit-learn) and XGBoost do this already, 

and we can obtain the ensemble feature importances using 

xbg_search.best_estimator_.feature_importances_ 
rf_search.best_estimator_.feature_importances_ 

We visualize the feature importances of both these ensembles in Figure 9.6 to interpret 

and understand their decision making. 
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Figure 9.6. Feature importances of the ensembles learned by XGBoost and Random Forest classifiers. 

Both ensembles ascribe significant importance to the socio-economic indicator variables, in 

particular nr.employed and emp.var.rate (which indicate unemployment rates), euribor3m 

(interbanking interest rates, which indicate financial stability) and cons.conf.idx (which 

consumer optimism regarding their expected financial situation). 

The XGBoost model, however, is strongly reliant on just one of the variables over the 

others: nr.employed. The overall takeaway from is that people are more likely to subscribe to 

a fixed-term deposit account when the overall economic picture is optimistic. 

Feature importances allow us to understand what a model is doing overall and over different 

types of examples. That is, feature importances are a type of global explainability method. 

9.3 Black-Box Methods for Global Explainability 

Methods for machine-learning model explainability can be categorized into two types: 

• global methods attempt to generally explain a model’s decision-making process, and 

what factors are broadly relevant, while 

• local methods attempt to specifically explain a model’s decision-making process with 

respect to individual examples and predictions. 

Global explainability speaks to a model’s sensible behavior over a large number of examples 

when deployed or used in practice, while local explainability speaks to a model’s individual 

predictions on single examples that allow the user to make decisions on what to do next. 

In this section, we look at some methods for the global explainability for black-box models. 

These approaches only consider a model’s inputs and outputs and do not use the model 

internals (hence black box) to explain model behavior. 

For this reason, they can be used for global explainability of any machine-learning method 

and are also called model-agnostic methods.  
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9.3.1 Permutation Feature Importance 

Feature importance in a machine-learning model refers to a score that indicates how good a 

feature is in a model, that is, how effective it is in a model’s decision-making process. 

We’ve already seen how we can compute feature importances for decision trees, and by 

aggregation, for tree-based ensembles that use decision trees as base estimators. 

For tree-based methods, the feature importance calculation uses model internals such as 

the tree structure and split parameters. But what if these model internals are not available? Is 

there a black-box equivalent method for obtaining feature importances in such situations?  

There is indeed: permutation feature importance. Recall that decision-tree feature 

importance scores each feature by how much it decreases the split criterion (such as gini 

impurity or entropy for classification, squared error for regression). 

In contrast, permutation feature importance scores each feature by how much it increases 

the test error after we permute (shuffle) that feature’s values.  

The intuition here is straightforward: if a feature is more important, then “messing with it” 

affects its ability to contribute to predictions and will increase the test error. If a feature is less 

important, then “messing with it” will not have much of an impact on the model’s predictions 

and will not affect the test error. 

We “mess with a feature” by randomly permuting its values. This effectively snaps any 

relationship between that feature and its prediction. The procedure of permutation feature 

importance is illustrated in Figure 9.7: 

 

Figure 9.7. The procedure for computing permutation feature importance illustrated for the 3rd feature. This 

procedure is repeated for all features. Permutation feature importance uses only inputs and outputs to 

estimate feature importance and does not use model internals (making this a model-agnostic approach).  

The permutation feature importance is elegant and simple in how it scores features without 

access to model internals. Here are some important technical details to keep in mind, though: 

• Permutation feature importance is a before-and-after score. It tries to estimate how the 

model’s predictive performance changes from before to after we shuffle/permute 

features. In order to get a robust and unbiased estimate of the before and after model 
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performance, it is essential that we use a hold-out test set! 

• There are many ways to evaluate a model’s predictive performance depending on the 

task (classification or regression), the data set and our own modeling goals. For this 

task, for instance, consider the following performance metrics: 

• balanced accuracy: Since this is a classification task, accuracy is a natural choice for a 

model evaluation metric. However, this data set is imbalanced with a 1:10 ratio of 

positive-to-negative examples. To account for this, we can use balanced accuracy, 

which ensures this skew is considered by weighting predictions by class size. 

• recall: the purpose of this model is to identify “high-value” customers, who will 

subscribe to fixed-term deposits. From this perspective, we would like to minimize false 

negatives, or customers that our model thinks will not subscribe, but who actually will! 

This type of wrong prediction costs us customers, and recall is a good metric to minimize 

such false negatives. 

• This procedure randomly shuffles feature values. As with any randomized approach, it’s 

a good idea to repeat the process several times and average the result.  

PERMUTATION FEATURE IMPORTANCE IN PRACTICE 

The code snippet in Listing 9.6 computes permutation feature importances for the 

XGBClassifier trained in the previous section using balanced_accuracy. 

Listing 9.6 Computing Permutation Feature Importance 

from sklearn.inspection import permutation_importance 
pfi = permutation_importance(xgb,  
                             Xtst, ytst,    #A 
                             scoring=’balanced_accuracy’,    #B 
                             n_repeats=30)    #C 

#A Use a hold-out test set to compute feature importances 

#B Different metrics can be used to evaluate model performance & feature importance 

#C Repeat randomized shuffling of features 

Figure 9.8 compares feature importance of the XGBoost model with the permutation 

importance computed using balanced accuracy and recall and visualizes the top 10 features 

identified by each approach. 
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Figure 9.8. Feature importances computed by XGBoost vs. black-box permutation feature importances 

computed for the XGBoost model using two different metrics: balanced accuracy and recall. 

Interestingly, while all three approaches identify the importance of nr.employed (the 

number of employees), euribor3m (the interbank borrowing rate) emerges as the key indicator 

when scoring features using balanced accuracy or recall.  

A little deeper reflection might shine a light as to why. In a healthier economy, better 

interbank borrowing rates allow for better interest rates, which in turn, favorably influence 

customers to subscribe to a fixed deposit account.  

Aside from the socio-economic indicators, other features such as contact (cellphone vs. 

telephone contact) and campaign (total number of contacts during this campaign) also emerge 

as an important indicators of whether a customer will subscribe to a fixed-term deposit. 

Some demographic features such as marital, age and education also begin to emerge as 

important when scored using recall, where we aim to decrease the false negatives and identify 

as many ‘high-value’ customers as possible.  

Again, it’s not hard to see that identifying ‘high-value’ customers effectively is reliant on 

their personal demographic indicators. 

NOTE Care must be taken with correlated features since they contain similar information. When two features 

(say) are correlated and one of them is permuted, the model can still use the other unpermuted feature without 

suffering any degradation in performance (because they both contain similar information). When this happens, 

the permutation feature importance scores for both features will be lower. From this, we may incorrectly 

conclude that both features are unimportant, when, in fact, they may both be important. This situation is even 

worse when we have three, or four, or a cluster of correlated features. One way to handle this situation is to 

preprocess the data by clustering features into groups and using a representative feature from each feature 

group. 

9.3.2 Partial Dependence Plots 

Partial dependence plots are another useful black-box approach, which help us identify the 

nature of the relationship between a feature and the target.  
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Unlike permutation feature importance, which uses randomization to elicit the importance 

of a feature, the partial dependence relationship is identified using marginalization, or summing 

out.  

Let’s say that we are interested in computing the partial dependence between the target y 

and the k-th feature, Xk. Let the data set with the remaining features be Xrest. We have a black-

box model y = f([Xk, Xrest]).  

To obtain the partial dependence function (Xk)  from this black box, we simply have to 

sum over all possible values of all the other features Xrest, that is, we marginalize the other 

features. Mathematically, summing over all possible values of the other features is equivalent 

to integrating over them:  

 

However, since computing this integral is not really feasible, we will need to approximate 

it. We can do so very easily using a set of n examples: 

 

The equation above gives us a straightforward way of computing the partial dependence 

function for a feature Xk.  

For different values of a, we simply replace the entire column with a. Thus, for each a we 

create a new data set X[a], where the k-th feature takes the value a for every example.  

The predictions of this modified data set using our model black-box will be y[a] = f(X[a]). The 

prediction vector y[a] is a length-n vector, containing the predictions of each test example in 

the modified data set. We can now average over these predictions to give us one pair of points  

 

We repeat this procedure for different values of a to generate the full partial dependence 

plot. This is illustrated in Figure 9.9 for two values, a = 0.1 and a = 0.4. 
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Figure 9.9. Two points in the partial dependence plot for the 3rd feature computed at X3 = 0.1 and X3 = 0.4. 

Partial dependence plots are intuitive to create and use, though can be somewhat time-

consuming as new modified versions of the data set have to be created and evaluated for each 

point in the dependence plot. Here are some important technical details to keep in mind: 

• Partial dependence tries to relate a model’s output to input features, that is, model 

behavior in terms of what it has learned. For this reason, it is best to create and visualize 

a partial dependence plot with the training set. 

• Remember that a partial dependence function is created by averaging across n 

examples. That is to say, each training example results in an example-specific partial 

dependence function. The partial dependence between a specific example and its output 

is called the individual conditional expectation (ICE). 

PARTIAL DEPENDENCE PLOTS IN PRACTICE 

Listing 9.7 illustrates how to construct partial dependence plots for the XGBoostClassifier 

trained in Section 9.2 on the bank marketing data set. 
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Listing 9.7. Creating partial dependence plots 

from sklearn.inspection import PartialDependenceDisplay as pdp 
fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(10, 6))  
pdp.from_estimator(xgb, Xtrn,  
                   features=['euribor3m', 'nr.employed',  
                             'contact', 'emp.var.rate'],    #A 
                   feature_names=list(Xtrn.columns),   #B 
                   kind='average',     #C 
                   response_method='predict_proba',    #D 
                   ax=ax)    

#A Features that we want to compute PDPs for 

#B List of all the features in the data set 

#C Plot individual conditional expectations for each example or the average PDP 

#D Set whether we want partial dependence with predictions or prediction probabilities 

Figure 9.10 shows the partial dependence function of four high-scoring variables: euribor3m, 

nr.employed, contact and emp.var.rate from the marketing data set.  

 

Figure 9.10. Partial dependence plots of four variables in the bank-marketing data set. 

The partial dependence plots give us further insight into how different variables belong and 

how they influence predictions. Note that, in Listing 9.6, we set response_method to 

‘predict_proba’.  

Thus, the plots above show how each variable (partially) influences the prediction 

probability of a customer subscribing to a fixed-deposit account. Higher prediction probabilities 

indicate that those attributes are more helpful in identifying ‘high-value’ customers. 
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For example, low values of euribor3m (say, in the range 0-0.5) generally correspond to 

higher subscription likelihoods. As discussed previously, this makes sense as lower bank 

borrowing rates typically mean lower customer interest rates, which would be attractive to a 

potential customer. 

A similar conclusion can be drawn from the variables emp.var.rate and nr.employed, that 

lower unemployment rates are also likely to influence potential customers into opening fixed-

deposit accounts. 

NOTE A key assumption in the procedure for partial dependence plots is that the feature we are interested in 

Xk is not correlated with the remaining features, Xrest. This independence assumption is what allows us to 

marginalize the remaining features by summing over them. If the features Xrest are correlated, then 

marginalizing over them destroys some component of Xk as well, and we no longer have an accurate view of 

how much Xk contributes to the predictions. 

One key limitation of PDPs is that it is only possible to create plots of partial dependence 

functions of one variable (curves), two variables (contours) or three variables (surface plots). 

Beyond 3 variables, it becomes impossible to visualize multi-variable partial dependence 

without breaking features down into smaller groups of 2 or 3. 

9.3.3 Global Surrogate Models 

Black-box explanations such as feature importance and partial dependence aim to identify the 

impact of an individual feature or groups of features on predictions. In this section, we explore 

a more holistic approach that aims to approximate the behavior of the black-box model in an 

interpretable way. 

The idea of a surrogate model is extremely simple: we train a second model that mimics 

the behavior of the black-box model. However, the surrogate model itself is a glass box and 

inherently explainable.  

Once trained, we can use the surrogate glass-box model to explain the predictions of the 

black-box model. This is illustrated in Figure 9.11. 

• A “surrogate data set” (Xs
trn, ys

trn) is used to train the surrogate model. The original data 

that was used to train the black-box model can also be used to train the surrogate 

model, if it is available. If not, an alternate data sample from the original problem space 

is used. The key is to ensure that the surrogate data set has the same distribution as 

the original data set that was used to train the black-box model. 

• The surrogate model is trained on the predictions of the original black-box model. This 

is because the idea is to fit a surrogate model to mimic the behavior of the black-box 

model so that we can explain the black-box using the surrogate. Once trained, if the 

surrogate predictions (ys
pred) match the black-box predictions (yb

pred) then the surrogate 

model can be used to explain the predictions. 

• Any glass-box model can be used as a surrogate model. This includes decision trees 

and generalized linear models, which can then be interpreted as shown in Section 9.1. 
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Figure 9.11. The procedure to train a global surrogate model from the predictions of a black-box model is 

illustrated. Both models are trained on the same surrogate training examples. However, the surrogate model 

is trained on the predictions of the black-box model, so that it can learn to mimic it’s predicions. If the black-

box and surrogate make the same prediction, then the surrogate can be used to explain the black-box model’s 

prediction. 

THE FIDELITY-INTERPRETABILITY TRADEOFF 

Let’s train a surrogate decision tree to explain the behavior of the XGBoost model that was 

originally trained on the bank marketing data set. The original training set is used as the 

surrogate training set. 

Keep in mind that we would like to tradeoff between two criteria while training the model: 

the surrogate’s fidelity to the black-box model and the surrogate’s explainability.  

The surrogate’s fidelity measures how well it can mimic the black-box’s predictive behavior. 

More precisely, we measure how similar the surrogate model’s predictions (ys
pred) are to the 

black-box model’s predictions (yb
pred).  

For binary classification problems, we can do this using metrics such as accuracy or R2 

score (see Chapter 1). For regression problems, we can do this with metrics such as mean 

squared error, or R2 again. Higher R2 scores indicate better fidelity between the black-box and 

its surrogate. 

The surrogate’s explainability depends on its complexity. Let’s say that we want to train a 

decision-tree surrogate. Recall from our discussion in Section 9.1 that we need to limit the 

number of leaf nodes in the surrogate model for it to be human-interpretable as too many leaf 

nodes might lead to model complexity that might overwhelm the interpreter. 

TRAINING GLOBAL SURROGATE MODELS IN PRACTICE 

To train a useful surrogate model, we will need to find the sweet spot in the fidelity-

interpretability tradeoff. This sweet spot will be a surrogate model that approximates the black-
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box’s predictions pretty well but is also not so complex that it defies any interpretation 

(possibly by inspection). 

Figure 9.12 shows the fidelity-explainability tradeoff for a decision-tree surrogate trained 

for the XGBoost model. The surrogate is trained on the same bank marketing training set that 

was used to train the XGBoost model in Section 9.1. 

 

Figure 9.12. The fidelity-explainability tradeoff for the bank marketing data set. The black-box model is an 

XGBoost ensemble, while the surrogate is a decision-tree trained on the black-box predictions.  

We increase the surrogate’s complexity (characterized by the number of leaf nodes), while 

keeping an eye on the fidelity (R2 score) between the black-box and surrogate predictions. 

A decision-tree surrogate with 14 leaf nodes seems to achieve the ideal tradeoff between 

fidelity and complexity for explainability. Listing 9.8 trains a surrogate decision-tree model 

with these specifications. 

Listing 9.8. Training a surrogate model 

from sklearn.tree import DecisionTreeClassifier 
surrogate = DecisionTreeClassifier(criterion='gini',  
                                   max_leaf_nodes=14,    #A  
                                   min_samples_leaf=20,    #B 
                                   class_weight={0: 1, 1: 10})    #C 
surrogate.fit(Xtrn, yb_trn_pred) 

#A set maximum possible leaf nodes to 14 

#B set minimum samples in a leaf node to 20 to avoid overfitting 

#C set class weights to 1 for negative examples and 10 for positive examples to account for the class imbalance  

Figure 9.13 shows the decision-tree surrogate for the XGBoost model. 
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Figure 9.13. Surrogate model trained from the predictions of the XGBoost model, which was originally trained 

on the bank marketing data set. This tree has 14 leaf nodes. Inspecting and analyzing this tree can yield many 

insights. One such insight for the highlighted path from root to leaf is discussed in the text. 

Several variables appear in the highlighted path from leaf to a tree node. These variables 

describe a ‘high-value’ subpopulation and provide insights into potentially successful 

strategies.  

First, the socio-economic variables such as emp.var.rate, nr.employed, cons.price.idx 

and euribor3m identify favorable societal circumstances during which to launch a successful 

campaign.  

The node age <= 0.167 is obtained on the pre-processed data, where 0.167 corresponds 

to 42 before rescaling. Thus, the nodes [default <= 0.5] and [age <= 0.167] suggest that 

customers who are under 42 years of age and have no previous defaults are `high value’. 

Finally, [day_of_week <= 1.5] suggests that calling these high-value customers on 

Monday (day_of_week = 0) or Tuesday (day_of_week = 1) is a good strategy. 

Can you see if you can identify any other viable strategies for identifying high-value 

customers and strategies? 
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9.4 Black-Box Methods for Local Explainability 

The previous section introduced methods for global explainability, which aim to explain a 

model’s global behavioral trends across different types of input examples and subpopulations.  

In this section, we will explore methods for local explainability, which aim to explain a 

model’s individual predictions. The explanations allow users (such as doctor’s using a 

diagnostic system) to trust the predictions and take actions based on them. This is tied to the 

user’s ability to understand why a model made a particular decision. 

9.4.1 Local Surrogate Models with LIME 

The first method we’ll look at is called Locally Interpretable Model-Agnostic Explanation, or 

LIME. As the name rather transparently suggests, LIME is (1) a model-agnostic method, which 

means it can be used with any machine-learning method as it treats it like a black-box, (2) a 

local interpretability method that is used to explain a model’s individual predictions. 

LIME is, in fact, a local surrogate method. It uses a linear model to approximate a black-

box model’s predictions in the locality of the example whose predictions we are interested in 

explaining. This intuition is shown in Figure 9.14, which shows the complex surface of a (black-

box) model, and an interpretable linear surrogate model that approximates black-box behavior 

around a single example of interest. 

THE FIDELITY-INTERPRETABILITY TRADEOFF AGAIN 

Given a training example whose predictions we want to explain, LIME trains a local surrogate 

to be the model with the best tradeoff between fidelity and interpretability. 

In the previous section, we trained a decision-tree surrogate to optimize the fidelity-

interpretability tradeoff.  

Let’s write this down more formally. First, we denote the black box model by fb(x) and the 

surrogate model by fs(x'). We measure fidelity between the predictions of the black box (fb) and 

the surrogate (fs) using the R2 score. We measure interpretability of the surrogate model by 

using the number of leaf nodes in the tree: fewer leaf nodes generally leading to better 

interpretability. 

Let’s say that we want to explain the predictions of the black box on example x. For 

decision-tree surrogate training, we tried to find a decision tree that optimized the following 
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Figure 9.14. LIME creates a surrogate training set of examples (visualized in blue) in the locality of the 

example whose prediction needs to be explained (visualized in red). These examples further weighted by their 

distance. This is indicated by the sizes of the surrogate examples, with closer examples getting higher weights 

(and visualized larger). A weighted loss function is used to fit a linear surrogate model, which provides local 

explanations. 

In a similar vein, LIME trains a linear surrogate by optimizing 

 

Here, the examples x’, called surrogate training examples, will be used to train the 

surrogate model. The loss function that is used to measure fidelity is a simple weighted mean-

squared error that measures the disparity in the predictions of the black box and the surrogate: 

 

The surrogate is a linear model of the form fs(x) = β0 + β1x1 + ⋯ + βdxd. As we’ve seen in 

Section 9.1, the interpretability of linear models depends on the number of features. Fewer 
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features make analyzing their corresponding parameters βk easier. Thus, LIME seeks to train 

sparser linear models with more zero parameters to promote interpretability. 

A good linear surrogate will trade-off between fidelity and interpretability. But what makes 

LIME local? How can we train a local surrogate model? How do we obtain surrogate examples 

x’? And what are these local weights (πx) in the equation above? 

SAMPLING SURROGATE EXAMPLES FOR LOCAL EXPLAINABILITY 

We now have a well-defined fidelity-interpretability criterion to train our surrogate model. If 

we used the entire training set, we would obtain a global surrogate model. 

To train a local surrogate model we need data points that are “close” or “similar” to our 

example of interest. LIME creates a local surrogate training set by sampling and smoothing.  

Let’s say that we are interested in explaining the prediction of the black-box on an example 

with five features x = [x1, x2, x3, x4, x5]. LIME samples data in a neighborhood of x as follows: 

• Perturb: Randomly generate perturbations for each feature. For continuous features, 

perturbations are randomly sampled drawn from the normal distribution, ϵ~N(0,1). For 

categorical features, these are randomly sampled from the multivariate distribution 

over K category values, ϵ~Cat(K). This generates one surrogate example x' = [x1 + ϵ1, x2 

+ ϵ2, x3 + ϵ3, x4 + ϵ4, x5 + ϵ5]. This example can now also be labeled using the black box, y 

= fb(x'). And so on, until we obtain a surrogate set Z in the locality of x. 

• Smooth: Each surrogate training example is also assigned a weight using the 

exponential smoothing kernel: πx(x') = exp(-γ ⋅ D(x, x')2). Here, D(x, x') is the distance 

between our example that needs to be explained x and a perturbed sample z. Samples 

that are further from x get smaller weights and those that are closer to x get higher 

weights. Thus, this function encourages the surrogate model to prioritize surrogate 

examples that are ‘more local’ when training a linear approximation.  

The smoothing parameter γ > 0 controls the width of the kernel. Increasing γ allows 

LIME to consider larger neighborhoods, making the model less local. 

Now that we have a surrogate training set in the locality of the example x, we can train a 

linear model. The goal is to train it to induce sparsity (as many zero parameters) as possible. 

LIME supports training of sparse linear models with L1 regularization, such as LASSO or elastic 

net. 

These models are covered in Chapter 7 for linear regression and can be easily extended to 

logistic regression for classification as well. 

NOTE Keen observers may have noticed that the exponential kernel is the same as a radial-basis function 

(RBF) kernel that is used in support vector machines and other kernel methods. From that perspective, the 

exponential smoothing kernel is essentially a similarity function. Points that are closer are considered more 

similar and will have higher weights. 

LIME IN PRACTICE 

LIME is available as a package available through Python’s two most popular package 

managers: pip and anaconda. The package’s GitHub page (https://github.com/marcotcr/lime) 
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also contains additional documentation and a number of examples illustrating how to use it for 

classification, regression and applications in text and image analytics. 

In Listing 9.9, we use LIME to explain the predictions of a test set example from the bank 

marketing data set. Test example 3104 is a customer who did subscribe, which the XGBoost 

model identified with 64% confidence, a true positive example.  

Listing 9.9. Using LIME to explain XGBoost predictions 

cat_features = ['default', 'housing', 'loan', 'contact', 'poutcome',  
                'job', 'marital', 'education', 'month', 'day_of_week'] 
cat_idx = np.array([cat_features.index(f) for f in cat_features])    #A 
 
from lime import lime_tabular 
explainer = lime_tabular.LimeTabularExplainer( 
  Xtrn.values,    #B 
  feature_names=list(Xtrn.columns),     #C 
                             class_names=['Sub?=NO', 'Sub?=YES'],  
                             categorical_names=cat_features, 
                             categorical_features=cat_idx,    #A 
                             kernel_width=75.0,     #D 
                             discretize_continuous=False) 
 
exp = explainer.explain_instance(Xtst.iloc[3104], xgb.predict_proba)    #E 
fig = exp.as_pyplot_figure()     #F 

#A Identify the categorical features and their indices explicitly (for visualization) 

#B Pass the training set, which is sometimes used for sampling, especially continuous features 

#C Identify the feature names and class names explicitly (for visualization) 

#D Set the kernel width for this data set (identified here by trial-and-error) 

#E Explain the predictions of test example 3104 

#F Visualize the explanation as a bar chart 

Figure 9.15 visualizes the local weights identified by LIME to explain this example.  

 

Figure 9.15. Explanations generated by LIME for test example 3104 (a true positive prediction). Features that 

contributed to a negative prediction (will not subscribe) are in red and those to a positive prediction (will 

subscribe) are in green.  
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The features and feature values (of the example being explained) are shown in the y-axis. 

The x-axis shows LIME feature importances. 

Aside from socioeconomic trends, let’s look at the personalized features of this customer. 

The variables with the biggest impact are poutcome(=0), whether the previous marketing 

campaign was successful (it wasn’t), contact (=0), whether they were contacted by cellular 

or landline (here, 0=cellular) and default, whether they have prior banking defaults in their 

prior history (they don’t).  

These interpretations are intuitive to even non-technical people, such as sales and 

marketing, who might further analyze them to fine tune future marketing campaigns. 

9.4.2 Local Interpretability with SHAP 

In this section, we will cover another widely used local interpretability approach: SHapley 

Additive exPlanations, or SHAP. SHAP is a model-agnostic black-box explainer, which is used 

to explain individual predictions (hence, local interpretability) through feature importance. 

SHAP is a feature attribution technique that computes feature importance based on each 

feature’s contribution to the overall prediction. SHAP is built upon the concept of Shapley 

values, which comes from the field of co-operative game theory. 

In this section, we will learn what Shapley values are, how they can be applied to computing 

feature importances and how we can compute them efficiently in practice.  

UNDERSTANDING SHAPLEY VALUES 

Let’s say a group of 4 data scientists (Ava, Ben, Cam, and Dev) work collaboratively on a 

Kaggle Challenge and win first place with total prizemoney of $20,000. Being a fair-minded 

group, they decide to split the prizemoney based on their contributions.  

They do this by trying to figure out how well they work in various combinations. Since 

they’ve worked together a lot in the past, they write down how well they work individually, 

and also in groups of 2 and in groups of 3. These values are shown in Figure 9.16. 

This table lists every possible combination of Ava, Ben, Cam, and Dev, also known as a 

coalition. Associated with each coalition is its value (prizemoney in $1000 units), that indicates 

how much each coalition might have been worth had they only been working on this project.  

For example, the coalition of Ava alone has value of $7,000, while the coalition of Ava, Ben 

and Dev has a value of $13,000. The last coalition of all four of them, called the grand coalition, 

has a value of $20,000, the overall prizemoney. 

The Shapley value allows us to attribute the overall prizemoney to each of these four team 

members across all the coalitions possible. It essentially helps us determine team member 

importance to the overall collaboration and helps us determine a fair way to split the overall 

value of the collaboration (in this case, the prizemoney). 

The Shapley value of each team member p is computed in a very intuitive manner: we look 

at how the value of each coalition changes, with and without that team member. More formally: 
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Figure 9.16. All possible coalitions of Ava, Ben, Cam and Dev, and their corresponding values (in units of 

$1000). The last coalition contains all four friends and has value $20,000, the total prizemoney. There is one 

coalition of size 0, 4 coalitions of size 1, 6 coalitions of size 2, 4 coalitions of size 3 and 1 coalition of size 4. 

This table is called the characteristic function. (Icons credit: freepix.com). 

This equation might look intimidating at first, but it’s actually quite simple. Figure 9.17 

illustrates the components of this equation when computing the Shapley values for Dev (team 

member 4): (1) coalitions with Dev on the first row, (2) corresponding coalitions without Dev 

on the second row, and (3) the weighted difference between the two on the third row. 

The weights are computed using n, the total number of team members (in this case, 4) and 

nS, the coalition size. For example, for the coalition S = {Ava, Cam}, nS = 2. The weights for the 

coalition without Dev (S) and with Dev S ∪ Dev will both be 1!2!/4!=1/12. Other weights can 

be computed similarly.  
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Summing all the weighted differences in the last row in Figure 9.17 gives us the Shapley 

value for Dev, ϕDev = 6. Similarly, we can also obtain ϕAva = 4.667, ϕBen = 4.333 and ϕCam = 5. This 

suggests that an equitable way to attribute the prize money based on contribution is $4667, 

$4333, $5000, and $6000 respectively between Ava, Ben, Cam, and Dev. 

 

Figure 9.17. Computing the Shapley values for Dev. The top row is all the coalitions with Dev. The middle row 

are the corresponding coalitions without Dev. The last row shows the individual weighted differences in the 

values of the coalitions. Summing across the last row gives us the Shapley values for Dev: ϕDev = 6. 

The Shapley value has some interesting theoretical properties. First, observe that ϕAva + 

ϕBen + ϕCam + ϕDev = 20. That is, the Shapley values sum to the value of the grand coalition: 

 

This property of the Shapley value, called efficiency, ensures that the value of the overall 

collaboration is exactly broken down and attributed to each team member in the collaboration.  

Another important property is additivity, which ensures that if we have two value functions, 

the overall Shapley value computed using a joint value function is equal to the sum of the 

individual Shapley values. This has some important implications for ensemble methods since 

it allows us to add Shapley values across individual base estimators to obtain the Shapley 

values across the entire ensemble. 

So, what does the Shapley value have to do with explainability? Analogous to the case of 

the four data scientist friends above, features in a machine learning problem collaborate 

together to make predictions. The Shapley value allows us to attribute how much each feature 

contributed to the overall prediction. 

SHAPLEY VALUES AS FEATURE IMPORTANCE 

Let’s say that we want to explain the predictions of a black-box model f on an example x. The 

Shapley value of a feature j is computed as: 
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We use the black-box as the characteristic / value function. As before, we consider all 

possible coalitions with and without the feature j. 

Now, we can compute the Shapley values for all the features. As before, the Shapley value 

for feature importance estimation is efficient and attributes a part of the overall prediction to 

each feature: 

 

The Shapley value is theoretically well-motivated and has some very attractive properties 

that make it a robust measure of feature importance. There is one significant limitation to 

using this procedure directly in practice: scalability. 

The Shapley computation uses trained models to score feature importance. In fact, it will 

need to use one trained model for each coalition of features. For example, for our diabetes 

diagnosis model from earlier with 2 features: age and glc, we will have to train 3 models, one 

for each coalition: f1(age), f2(glc) and f3(age, glc). 

In general, if we have d features, we will have 2d total coalitions and will have to train 2d - 

1 models (we don’t train a model for the null coalition). For instance, the bank marketing data 

set has 19 features and will require the training of 219 – 1 = 524,287 models! This is simply 

absurd in practice. 

SHAPLEY ADDITIVE EXPLANATIONS (SHAP)  

What can we do in the face of such combinatorial infeasibility? What we always do: 

approximate and sample. Inspired by LIME, the SHAP method aims to learn a linear surrogate 

function whose parameters are the Shapley values for each feature. 

Analogous to LIME, given a black-box model fb(x), SHAP also learns a surrogate model fs(x') 

using a loss function that has an identical form to LIME’s. Unlike LIME, however, we have to 

accommodate the notion of coalitions in the loss function: 

 

Let’s understand this loss function and SHAP by seeing what it does similarly and differently 

from LIME (also see Figure 9.18). As before, let’s say that we are interested in explaining the 

prediction of the black-box on an example with five features x = [x1, x2, x3, x4, x5]. 
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• LIME creates surrogate examples x’ by randomly perturbing the original example x. 

SHAP uses a slightly more involved two-step approach to create surrogate examples 

• First, SHAP generates a random coalition vector, z, which is a 0-1 vector indicating if a 

feature is in the coalition or not. For example, z = [1, 1, 0, 0, 1] represents a coalition of 

the first, second and fifth features. 

• Next, SHAP creates a surrogate example from z by using a mapping function hx(z). 

Wherever zj = 1, hx = xi, the original feature value. Wherever zj = 1, hx = xi’, a feature 

value from a random example.  

• Thus, each surrogate example is a patchwork of features from the original training 

example we want to explain and another random training example. The idea is that 

features belonging to the coalition get “good values” from and features not belonging 

to the coalition get random “garbage values”. 

• LIME weights surrogate examples x’ inversely by their distance from x using the 

RBF/exponential kernel. SHAP weights surrogate examples x’ using the Shapley kernel, 

which is simply the weight from the Shapley computation, πx(z) = ((d – nz - 1)!nz!)⁄d!, 

where d is the number of features and nz is the coalition size (number of 1s in z). 

Intuitively, this weight reflects the number of other similar coalitions, with a similar 

number of zero and non-zero features.  

 

Figure 9.18. SHAP creates a surrogate training set of examples (visualized in blue) in the locality of the 

example whose prediction needs to be explained (visualized in red).  

Now that we have a surrogate training set in the locality of the example x, we can train a 

linear model. The weights of this linear model will be the approximate Shapley values for each 

feature. 

305

https://livebook.manning.com/#!/book/ensamble-methods-for-machine-learning/discussion


©Manning Publications Co.  To comment go to  liveBook 

SHAP IN PRACTICE 

SHAP is available as a package available through Python’s two most popular package 

managers: pip and anaconda. The package’s GitHub page 

(https://github.com/slundberg/shap) also contains additional documentation and a number of 

examples illustrating how to use it for classification, regression and applications in text and 

image analytics. 

In this section, we will use a version of SHAP called TreeSHAP that is specifically designed 

to be used for tree-based models, including individual decision trees and ensembles. TreeSHAP 

is a special variant of SHAP that exploits the unique structure of decision trees in the function 

hx (z) to calculate the Shapley values efficiently.  

As mentioned before, Shapley values have a nice property called additivity. For us, this 

means that if we have a model that is an additive combination of trees, that is, tree ensembles 

(such as bagging, random forests, gradient and Newton boosting among others), then the 

Shapley value of the ensemble is simply the sum of the Shapley values of the individual trees.  

Since TreeSHAP can efficiently compute the Shapley values of each feature in each 

individual tree in an ensemble, we can efficiently get the Shapley values of the entire ensemble. 

Finally, unlike LIME, TreeSHAP does not require us to furnish a surrogate data set, as the 

trees themselves contain all the information (feature splits, leaf values/predictions, example 

counts etc.) needed. 

TreeSHAP supports many of the ensemble methods discussed in this book, including 

XGBoost. Listing 9.10 shows how to compute and interpret the Shapley values for test example 

3104 of the bank marketing data set using an XGBoost model. 

Listing 9.10. Using TreeSHAP to explain XGBoost predictions 

import shap 
explainer = shap.TreeExplainer(xgb, feature_names=list(Xtrn.columns))     
shap_values = explainer(Xtst.iloc[3104].values.reshape(1, -1))    #A 
shap.plots.waterfall(shap_values[0])    #B 
shap.initjs() 
shap.plots.force(shap_values[0])    #C 

#A Explain the predictions of test example 3104 

#B Visualize Shapley values using a waterfall plot 

#C Visualize Shapley values using a force plot 
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Figure 9.19. A waterfall plot to visualize Shapley values. The gray text before the feature names shows the 

feature values for test example 3104, while the text in the bars shows their Shapley values. 

This snippet visualizes Shapley values in two ways: as a waterfall plot and as a force plot.  

SHAP explains classifier models in terms of their prediction probabilities (confidence). For 

a classifier, the x-axis values will be the log-odds, with 0.0 representing even odds (1:1) of 

classification, or 50% prediction probability as a positive example.  

Force plots allow for a more intuitive view of how the features contribute to a prediction. 

The plot is centered around the prediction (0.596 for this example) and visualizes how much 

the features contribute towards a positive or negative explanation. 

 

Figure 9.20. A force plot to visualize Shapley values. The features to the left (in red) contribute to a positive 

decision (Sub? = YES), while the features to the right (in blue) contribute to a negative decision. The feature 

values of the example being explained are shown along with the features under the force plot. 

NOTE LIME and SHAP are both additive local explainability methods. This means that they can be extended 

to global explainability in a rather straightforward manner: global feature importances from either method can 

be obtained by averaging over local feature importances computed over a task-relevant data set. 
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One drawback of LIME and SHAP is that they are fundamentally designed only to compute and 

evaluate individual feature importances, and not feature interactions. SHAP offers some 

support for visualizing feature interactions in a manner similar to partial dependence plots.  

However, like partial dependence plots, SHAP does not have any mechanism to 

automatically identify important interacting feature groups and forces us to visualize all pairs, 

which can be overwhelming. For example, with 19 features in the bank marketing data set, we 

will have 171 pairwise feature interactions. 

In real-world applications, since many features depend on each other, it is important to 

also understand how feature interactions come into play in decision making. In the next 

section, we will learn about one such method: explainable boosting machines. 

9.5 Glass-Box Ensembles: Training for Interpretability 

We have learned about model-agnostic explainability methods. These methods can take a 

model that was already trained (for example, by an ensemble learner such as XGBoost) and 

attempt to explain the model itself (global) or its predictions (local). 

But instead of treating our ensembles as a black box, can we learn an explainable ensemble 

from scratch? Can this ensemble method still perform well and be explainable? 

These are the types of questions that motivated the development of Explainable Boosting 

Machines, or EBMs, a type of glass-box ensemble method. Some key highlights of EBMs are: 

• EBMs can be used for both global explainability and local explainability of individual 

examples! 

• EBMs learn a fully factorized model, that is, the model components only depend on 

individual features or pairs of features. These components provide interpretability 

directly and EBMs need no additional computations (like SHAP or LIME) to generate 

explanations. 

• EBMs are a type of generalized additive model (GAM), which are nonlinear extensions 

of generalized linear models (GLMs) discussed in this chapter and elsewhere in the 

book. Similar to GLMs, each component of a GAM only depends on one feature. 

• EBMs can also detect important pairwise feature interactions.  Thus, EBMs extend the 

GAMs to include components of two features. 

• EBMs use a cyclic training approach, where a very large number of base estimators are 

trained by repeated passes through all the features. This approach is also parallelizable, 

which makes EBMs an efficient training approach. 

In the next two sections, we will see how EBMs work conceptually, and how we can train 

and use them in practice. 

9.5.1 Explainable Boosting Machines (EBMs) 

EBMs have two key components: they are generalized additive models with feature 

interactions. This allows the model representation to be broken down into smaller components 

which allow for better interpretation. 
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GENERALIZED ADDITIVE MODELS WITH FEATURE INTERACTIONS 

We are familiar with the concept of the generalized linear model (GLM), which use link functions 

g(y) to relate targets to linear models over features: 

g(y) = β0 + β1x1 + ⋯ + βdxd. 

Each component of the GLM βjxj only depends on one feature xj. The generalized additive 

model (GAM) further extends this to be nonlinear: 

g(y) = β0 + f1(x1) + ⋯ + fd(xd). 

As with the GLM, each component of a GAM f(xj) also depends on only one feature xj. Keep 

in mind that both GLMs and GAMs can be viewed as ensembles, with each component of the 

ensemble depending on only one feature! This has important implications for training. 

Explainable boosting machines further extend GAMs to include pairwise components as 

well. However, since the number of feature pairs can be very large, EBMs only include a small 

number of important feature pairs: 

 

This is also visualized in Figure 9.21 for the diabetes diagnosis problem from earlier, but 

with three variables: age, blood glucose level (glc) and body mass index (bmi). This example 

EBM contains components for all three features individually, and one pairwise component. 

 

Figure 9.21. An explainable boosting machine is a generalized additive model consisting of nonlinear 

components that depend on only one feature and nonlinear components that depend on pairs of features. This 

example shows an EBM for diabetes diagnosis dependent on three variables: age, glc and bmi. Though there 

are 3 pairs of variables (age-glc, glc-bmi, age-bmi), this EBM includes only one of them that it has deemed 

significant. The explainable boosting model is also an ensemble. 

Since each component is a function of only one or two variables, once learned, we can 

immediately visualize the dependence between each variable or pair of variables and the 

target.  

In addition, the EBM avoids incorporating all pairwise components, and only selects the 

most impactful ones. This avoids model bloat and improves explainability. By carefully choosing 
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the structure of the EBM, we can learn an explainable ensemble, which makes this a glass-box 

method. 

But what about model performance? Is it possible to train an EBM effectively to perform as 

well as existing ensemble methods? 

TRAINING EBMS 

As with GLMs and GAMs, the EBM is also an ensemble of base components over individual 

features as well as feature pairs. Why is this important?  

Because it allows us to train EBMs sequentially using simple modifications of our favorite 

ensemble learner: gradient boosting. EBMs are trained using a two-stage procedure: 

• In the first stage, the EBM fits components for each feature fj(xj). This is done through 

a cyclical and sequential training process over several thousand iterations, one feature 

at a time. In iteration t, for feature j, we fit a very shallow tree treej
t using gradient 

boosting. Once we cycle through all the features within an iteration, we move on to the 

next iteration. This procedure is illustrated in Figure 9.22.  

• The partially trained EBM g(y) = f1(x1) + ⋯ + fd(xd) is now frozen and used to evaluate and 

score all possible feature pairs (xi, xj). This enables EBM to determine critically important 

feature interaction pairs (xa, xb) ⋯ (xw, xv) in the data. A small number of relevant feature 

pairs are selected. 

• In the second stage, the EBM fits components for each feature pair fjk(xj, xk) in a manner 

identical to the first stage. This produces a fully trained EBM: g(y) = f1(x1) + ⋯ + fd(xd) + 

fab(xa, xb) + ⋯ + fuv(xu, xv).  
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Figure 9.22. The first stage of the training procedure for EBMs, where models for each feature are trained 

sequentially and cyclically, with one model per feature per iteration. The trees trained are shallow and the 

learning rate is very low. However, over a very large number of iterations, a sufficiently complex nonlinear 

model for each feature can be learned. A similar procedure is also followed for the second stage of training 

EBMs, where models for pairwise feature interactions are trained. 

From Figure 9.22, we can see that each individual component fj(xj) is actually an ensemble 

of thousands of shallow trees:  

fj(xj) = tree1
j(xj) + ⋯ + tree5000

j(xj), 

and similarly, each feature interaction component is also an ensemble: 

fjk(xjk) = tree1
jk(xj, xk) + ⋯ + tree5000jk(xj, xk). 

So how exactly is this EBM a glass box? In two ways! 

• Local interpretability: For a classification problem, given a specific example we want to 

explain x, we can get the log-odds of prediction from the EBM as: f1(x1) + ⋯ + fd(xd) + fab 

(xa, xb) + ⋯ + fuv(xu, xv). By construction, the EBM is already a fully decomposed and 

additive model, allowing us to simply grab the contribution of each feature fj(xj) or 

feature pair fjk(xj, xk). For regression, we can get the contribution to the overall 

regression value similarly. In both cases, there is no additional procedure like LIME or 

311

https://livebook.manning.com/#!/book/ensamble-methods-for-machine-learning/discussion


©Manning Publications Co.  To comment go to  liveBook 

SHAP and there is no need to approximate using linear models! 

• Global interpretability: Since we have each component fj(xj) or fjk(xj, xk), we can also plot 

this over the feature ranges of xj and/or xk. This will produce a dependency plot for the 

features xj and/or xk over all possible values they can take. This tells us how the model 

behaves on aggregate. 

• Feature interactions: Unlike SHAP or LIME, the model also inherently identifies key 

feature interactions, by design. This provides additional insights into model behavior 

and helps explain predictions better.  

9.5.2 EBMs in Practice 

Explainable Boosting Machines (EBMs) are available as part of the InterpretML package. In 

addition to EBMs, the InterpretML package also provides wrappers for LIME and SHAP, allowing 

us to use them in one framework. InterpretML also provides some nice functionalities for 

visualization. 

In this section, though, we will only explore how to train, visualize, and interpret EBMs with 

InterpretML. InterpretML can be installed through pip and anaconda. The package’s 

documentation page (https://interpret.ml/) contains additional information on how to use 

various glass-box and black-box models. 

Listing 9.11 shows how we can train EBMs on the bank marketing data set. Like random 

forests and XGBoost models trained in Section 9.2, we will have to account for the class 

imbalance in the data. We do this by weighting positive examples by 5.0 and negative 

examples by 1.0 during training. 

The listing also creates two visualizations: one for local explainability (of test example 

3104) and another for global explainability (using feature importances and dependency plots). 
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Listing 9.11. Training and visualizing EBMs using InterpretML 

from interpret.glassbox import ExplainableBoostingClassifier 
 
wts = np.full_like(ytrn, fill_value=1.0)      
wts[ytrn > 0] = 5.0     #A 
 
feature_names = list(Xtrn.columns) 
feature_types = np.full_like(feature_names, fill_value='continuous') 
cat_features = ['default', 'housing', 'loan', 'contact', 'poutcome',  
                'job', 'marital', 'education', 'month', 'day_of_week'] 
feature_types = ['categorical' if f in cat_features else 'continuous'  
                 for f in feature_names]    #B 
 
ebm = ExplainableBoostingClassifier() 
ebm.fit(Xtrn, ytrn, sample_weight=wts)    #C 
 
from interpret import set_visualize_provider    #D 
from interpret.provider import InlineProvider 
set_visualize_provider(InlineProvider()) 
 
from interpret import show    #E 
x = Xtst.iloc[3104, :].values.reshape(1, -1) 
y = ytst[3104].astype(float).reshape((1, 1)) 
 
local_explainer = ebm.explain_local(x, y)     #F 
show(local_explainer) 
 
ebm_global = ebm.explain_global()     #G 
show(ebm_global) 

#A Weight examples 1:5 to account for class imbalance 

#B Identify the feature type for EBM: categorical, continuous 

#C Initialize and train an EBM with these weights 

#D Initialize the InterpretML visualizers 

#E Test example 3104 will be explained 

#F Local explanations (for test example 3104) 

#G Global explanations (feature importances and dependency plots) 

ExplainableBoostingClassifier trains for 5000 rounds by default, with support for early 

stopping. ExplainableBoostingClassifier also limits the number of pairwise interactions to 

10 (by default, though this can be set by the user). Since this data set has 19 feature, there 

will be 171 total pairwise interactions, of which the model will pick the top 10. 

The trained EBM model has an overall accuracy of 86.69% and balanced accuracy 74.59%.  

The XGBoost model trained in Section 9.2 has an overall accuracy of 87.24% and balanced 

accuracy of 74.67%. The EBM model is pretty comparable to the XGBoost model! The key 

difference is that the XGBoost model is a black box, while the EBM is a glass box. 

So, what can we get out of this glass box? Figure 9.23 shows the local explanations of test 

example 3104. The local explanations show how much each feature and feature interaction 

pair in the model contributes to the overall positive or negative prediction. 

Test example 3104 is a positive example (i.e., Sub?=YES, meaning that the customer did 

subscribe to a fixed-term deposit account). The EBM model has correctly classified this 

example, with confidence (prediction probability) 66.1%. 
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This trained EBM uses three pairwise features to make a prediction for 3104: month x 

day_of_week, day_of_week x cons.conf.idx, default x month. 

The highest pairwise feature interaction is month x day_of_week, which contributes a 

positive amount to the overall prediction. Contrast this to LIME and SHAP explanations of the 

XGBoost black box, which could only identify month since they do not support feature 

interactions explicitly. The EBM model is able to learn use a finer-grained feature and also 

explain its importance! 

The takeaway here is that the EBM model is explicitly structured to incorporate feature 

interactions and to be able to explain them. 

 

Figure 9.23. Local explainability of test example 3104, with individual features (such as euribor3m and 

poutcome) and pairwise features (such as month x day_of_week). The value of each EBM component and their 

contribution to the overall prediction (Sub? = YES) is shown. 

EBMs can also provide global interpretability in terms of feature importances. The overall 

importance is obtained by averaging over (the absolute values) of individual feature 

importances over the entire training set.  

 

Figure 9.24. Global explainability of the trained EBM model, showing feature importance scores. 
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The overall model contains 30 components: 19 individual feature components, 10 pairwise 

feature components and 1 intercept. The top 15 feature and pairwise feature importances are 

visualized in Figure 9.24. These results are in general agreement with previous feature 

importance measures computed using other methods such as SHAP and LIME. 

Finally, we can also obtain dependency plots directly from the EBM (as described in Figure 

9.22).  Figure 9.25 shows the dependency plot for age and how it influences whether someone 

will subscribe to a fixed-deposit account. 

 

Figure 9.25. Dependency plot for age. The x-axis bins representing age, scaled to the range 0-1 during pre-

processing. The raw ages are in the range 17-98. Scores are negative for people in the range 0.2-0.4, which 

corresponds to ages 33-49. This suggests that, absent any other information, people in this age range are 

typically not likely to subscribe to a fixed-deposit account. 

9.6 Summary 

• Blackbox models are typically challenging to understand owing to their complexity. The 

predictions of such models require specialized tools to be explainable. Glass-box models 

are more intuitive and easier to understand. The structure of such models makes them 

inherently interpretable. 

• Most ensemble methods are typically black-box methods. 

• Global methods attempt to generally explain a model’s overall decision-making process, 

and what factors are broadly relevant. Local methods attempt to specifically explain a 

model’s decision-making process with respect to individual examples and predictions. 

• Feature importance is an interpretability method that assigns score to features based 

on their contribution to correct prediction of a target variable. 

• Decision trees are commonly used glass box models and can be expressed as a set of 

decision rules, which are easily interpretable by humans. 

• The interpretability of decision trees depends on their complexity (depth and number 

of leaf nodes). More complex trees are less intuitive and harder to understand. 

• Generalized linear models are another commonly used glass box model. Their feature 
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weights can be interpreted as feature importances as they determine how much each 

feature contributes to the overall decision. 

• Permutation feature importance is a black-box method for global interpretability. It tries 

to estimate how the model’s predictive performance changes from before to after we 

shuffle/permute features. 

• Partial dependence plots are another black-box method for global interpretability. 

Partial dependences are identified using marginalization or summing out other 

variables. 

• Surrogate models are often used to mimic or approximate the behavior of a black-box 

model. Surrogate models are glass boxes and inherently explainable. 

• Global surrogate models such as decision trees train models to optimize the fidelity-

interpretability tradeoff.  

• Locally Interpretable Model-Agnostic Explanation, or LIME is a local surrogate model 

that trains a linear model in the neighborhood of the example we want to explain. 

• LIME also optimizes the fidelity-interpretability tradeoff and does so with a surrogate 

training set generated by perturbing features in the local neighborhood of the example 

to be explained. 

• Shapley values are a tool that allows us to attribute the overall contribution of individual 

features (feature importances) by considering their contributions across all possible 

combinations of features. 

• Shapley values are infeasible to compute directly for real world data sets with many 

features and examples. 

• SHapley Additive exPlanations, or SHAP is a local surrogate model that trains a local 

linear model to approximate Shapley values. 

• For tree-based models, a specially designed variant called TreeSHAP is used to compute 

the Shapley values efficiently. 

• Shapley values and SHAP both have the additivity property, which allows us to 

aggregate Shapley values when ensembling individual models.  

• One drawback of LIME and SHAP is that they are fundamentally designed only to 

compute and evaluate individual feature importances, and not feature interactions. 

• Explainable Boosting Machines are a type of glass-box model and can be used for both 

global explainability and local explainability of individual examples.  

• EBMs learn a fully factorized model, that is, the model components only depend on 

individual features or pairs of features. These components provide interpretability 

directly and EBMs need no additional computations (like SHAP or LIME) to generate 

explanations. 

• EBMs are a type of generalized additive model (GAM), which are nonlinear extensions 

of generalized linear models (GLMs). 

• EBMs can also detect important pairwise feature interactions. Thus, EBMs extend the 

GAMs to include components of two features. 

• EBMs use a cyclic training approach, where a very large number of base estimators are 

trained by repeated passes through all the features. This approach is also parallelizable, 

which makes EBMs an efficient training approach. 
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