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Preface
The integration of Large Language Models (LLMs) into education is
revolutionizing the way knowledge is accessed, disseminated, and applied.
This book delves into the confluence of artificial intelligence and learning,
offering a multi-faceted exploration of LLMs in academic environments.
From foundational frameworks and ethical considerations to practical
applications and student experiences, the chapters collectively outline a
dynamic landscape shaped by AI-driven tools.

The first section establishes the philosophical and ethical underpinnings
necessary for responsible AI use in higher education. Discussions on
effective prompt engineering and multicultural understanding provide
insight into optimizing AI for diverse learning communities. Engagement
dynamics and variations in AIenhanced classrooms highlight the evolving
nature of student interaction with generative models. The second section
shifts focus to the practical implementation of LLMs in educational
settings. Virtual Teaching Assistants, adaptive learning strategies, and AI-
powered knowledge tagging exemplify the transformative potential of AI in
guiding students and instructors alike. These tools enable personalized
learning experiences, fostering efficiency without compromising depth of
understanding.

The final section explores the impact of AI on student-centered learning.
Research on graduate students using generative AI for academic writing,
AIassisted programming feedback, and overarching trends in AI-integrated
classrooms illustrate both the opportunities and challenges of incorporating
LLMs in pedagogy. The concluding chapter encapsulates the transition
from traditional learning methodologies to AI-augmented education,



prompting reflection on the future of classrooms shaped by intelligent
algorithms.

As AI continues to redefine education, this book serves as a crucial guide
for educators, researchers, and students navigating the evolving landscape.
Through careful analysis and real-world applications, it highlights the
importance of leveraging LLMs effectively while preserving critical
thinking and ethical integrity in the learning process. We hope readers will
find inspiration, insight, and practical value within these pages, enjoying the
exploration of the role of AI and LLMs in shaping the future of education.

Perth, Australia
Dunaújváros, Hungary
Manama, Bahrain

Myint Swe Khine
László Bognár
Ernest Afari
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1 Responsible, Ethical, and
Effective Use of LLMs in Higher
Education
Chong Ho Yu1* and Sunny Chan2

DOI: 10.1201/9781003567257-1

_________________________
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2 University of West England, Bristol, United Kingdom.
* Corresponding author: chonghoyu@gmail.com

The rapid advancement of Large Language Models (LLMs) has led to both
opportunities and challenges regarding their integration into higher
education. While advocates highlight the potential of LLMs to personalize
learning, automate assessment, and enhance accessibility, critics warn of
academic dishonesty, overreliance on LLMs, and the erosion of critical
thinking skills. This study examines the role of LLMs in education through
a dual approach: A historical review of instructional technologies and an
empirical survey on student perceptions and usage. Findings from past
technological implementations suggest that mere adoption of advanced
tools does not inherently improve learning outcomes, often due to over-
optimistic assumptions about the human potential. Survey data reveal that
students recognize both the benefits and risks of LLMs, with concerns
centered on misinformation, ethical implications, and cognitive
dependency. Based on these insights, the study proposes three strategic
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recommendations for responsible AI integration: (1) embedding AI ethics
education within curricula, (2) emphasizing fact-checking and triangulation
to mitigate misinformation, and (3) leveraging LLMs to support a flipped
classroom model that prioritizes interactive learning and critical discourse.
By drawing lessons from past instructional technologies and aligning AI
adoption with sound pedagogical frameworks, this paper offers a balanced
roadmap for harnessing LLMs effectively.

1. Introduction
Large Language Models (LLMs) have emerged as a transformative force in
the field of artificial intelligence (AI), drawing both optimistic forecasts and
serious apprehension about their potential in education. Advocates envision
an era where interactive AI tutors provide students with personalized
instruction, automate tedious tasks, accelerate learning, and democratize
education. Yet these promises should be balanced with reality checks.
Historically, the United States has experimented with numerous
‘revolutionary’ instructional technologies— ranging from computer-
assisted instruction (CAI) and intelligent tutoring system (ITS), through
hypertext and multimedia-based instruction, to Web-based learning
platforms and Web 2.0. Despite the hype surrounding each of these
innovations, empirical evidence often failed to confirm any substantial
improvement in student learning outcomes. Various assessments indicate
that American students often underperform in key academic areas, despite
the integration of advanced instructional technologies (National Center for
Education Statistics, 2024, 2025a, 2025b; Organisation for Economic Co-
operation and Development, 2023, 2024; Yu et al., 2012, 2019, 2015; Yu &
Lee, 2020).

Against this backdrop, LLMs are now stepping into the spotlight with
parallel ambitions, including proclaiming game-changing enhancements in



how students acquire knowledge. However, the lessons of history
underscore the risk of repeating the same cycle of inflated expectations
followed by unfulfilled promises. More concerningly, widespread adoption
of LLMs may bring new pitfalls, such as academic dishonesty, over-reliance
on automated assistance, and the erosion of fundamental thinking and
creative skills. If students simply outsource cognitive processes to an AI,
they risk forgoing mastery of core concepts, forming superficial
understandings, and stifling their original ideas.

Given these challenges, this paper examines how colleges and
universities can thoughtfully integrate LLMs into curricula without
succumbing to the hype or compromising academic integrity. We begin by
surveying past technology implementations to reveal insights—both
positive and cautionary—about what truly fosters improved learning. In
addition, a survey was administered to gather data regarding the perception
and usage of LLMs among students in higher education. Building on these
foundations, we aim to offer a balanced roadmap for the era of AI in higher
education.

2. Lessons from Instructional Technologies
The excitement surrounding AI-assisted learning today is fueled by
promises of personalized tutoring, instant feedback, adaptive learning
pathways, and broader access to quality education. Proponents argue that AI
has the potential to revolutionize learning by tailoring instruction to
individual students’ needs, automating administrative burdens, and
democratizing education on an unprecedented scale (Castro et al., 2024).
However, a closer look at the history of instructional technologies reveals
that many of these so-called groundbreaking benefits are not entirely new.

This historical precedent suggests that technological advancements in
education often cycle through phases of enthusiasm, widespread adoption,



and eventual disillusionment. While each new wave of innovation has
introduced valuable tools and methodologies, evidence supporting
substantial improvements in learning outcomes has been inconsistent at
best. The lack of long-term success in previous instructional technologies
serves as a caution: Simply integrating sophisticated tools into the
classroom does not automatically lead to better education.

By examining the shortcomings of past instructional technologies, we
can better understand why a measured, strategic approach is necessary
when integrating AI into higher education.

2.1 Computer-assisted Instruction
History of CAI: Computer-assisted instruction (CAI) is one of the earliest
attempts to enhance higher education through technology. While it has a
rich history of development and promises for enhancing learning
experiences, CAI has also faced significant challenges that have hindered
its effectiveness. The roots of CAI date back to the 1960s when early
computer technologies began to be integrated into educational settings. One
of the pioneering programs was the “Programmed Logic for Automated
Teaching Operations” (PLATO) developed at the University of Illinois,
which utilized computer terminals to provide interactive instruction. By the
1970s and 1980s, CAI systems evolved with the development of more
sophisticated software that incorporated multimedia elements and
interactive features (Kelley 1976; Semerikov et al. 2021).

Throughout the late 20th century, CAI expanded its offerings to cover
various subjects, including mathematics, reading, and language learning,
promoted as a means to tailor learning experiences to individual student
needs. CAI promised several benefits to learners and educators, including
personalized learning, immediate feedback, and improving engagement
(Msafiri et al., 2023).



Challenges and Pitfalls of CAI: Despite its promises and some
successes (Subba and Dorji, 2024), CAI has faced numerous challenges that
contributed to its underwhelming effectiveness in many educational
settings. Indeed, there is limited empirical evidence supporting CAI’s
effectiveness in improving learning outcomes, including conceptual
understanding (Msafiri et al., 2023; Semerikov et al., 2021). Proper
pedagogical frameworks for integrating CAI into education is a major
challenge. Some instructors have little training in using CAI effectively,
leading to poor implementation. Further, lacking strong leadership from
educational professionals to standardize CAI materials and systems also
reduced its effectiveness. Further, empirical data indicates that CAI may be
more effective for low-aptitude students, but its benefits for high-achieving
students remain unclear. More importantly, CAI works best when combined
with human support, such as tutors or instructors, rather than being used as
a standalone teaching method (Chambers & Sprecher, 1980; Oppong et al.,
2023). Other potential pitfalls and challenges of CAI include unequal access
to technology and potential disadvantages for learners with limited
computer skills, the risk of overreliance on technology, as well as
distractions caused by playing with computers, thus impacting learning
concentration (Oppong et al., 2023, Zainurrahman, 2023).

Lessons for LLM-assisted Education: The lessons from CAI provide
valuable insights for implementing AI-assisted instruction effectively. One
key takeaway is that proper pedagogical frameworks must be established to
integrate AI seamlessly into education, ensuring that it enhances learning
rather than replacing essential instructional methods. Instructors should
receive comprehensive training on AI tools to maximize their potential
while avoiding misuse or over-reliance. Additionally, strong leadership and
coordination are crucial in developing standardized AI-based educational



materials, preventing fragmentation and inefficiencies in implementation.
Equity must also be a priority—unequal access to AI-powered resources
could widen the digital divide, hindering students with limited
technological exposure. Moreover, AI should not be seen as a standalone
teaching method, but rather as a supplementary tool that works best when
combined with human guidance from educators and tutors. Finally,
distraction management must be addressed, ensuring that students engage
with AI meaningfully rather than being sidetracked by entertainment-
oriented AI features. By proactively tackling these challenges, AI-assisted
instruction can avoid the pitfalls of CAI and become a more effective tool
for education.

2.2 Intelligent Tutoring System (ITS)
History of ITS: ITS is an extension of CAI. In addition to existing features
of CAI, ITS systems personalize learning experiences, simulating human
tutors by adapting to students’ cognitive abilities and learning styles (Ahuja
& Sille, 2013). The development of ITS can be traced back to the early days
of AI, where researchers aimed to create systems that mimic human tutors.
Early implementations of ITS were primarily focused on specific subjects,
such as mathematics and computer programming. For example, systems
such as PROUST and LISPTutor were developed to teach introductory
programming (van Merriënboer et al., 1989). Between the 1970s and 1990s,
the development of ITS mainly focused on programmed instruction, expert
systems, and rule-based knowledge representation (Ahuja & Sille, 2013).
By the late 20th century, advancements in computer technology and
pedagogy led to the emergence of more sophisticated ITSs, enabling
students to interact with educational software in ways that adapt to their
learning needs. The evolution of ITS has been marked by innovations that



aim to improve user interaction, enhance learning efficiency, and address
diverse educational needs (Alkhatlan & Kalita, 2019).

Challenges and Pitfalls of ITS: Despite their promising potential, ITSs
face several challenges that hinder their efficacy. Specifically, many
students benefit from social learning environments that ITS cannot
replicate. The absence of human tutors can limit the depth of understanding
and emotional support that learners receive. Unlike human instructors, these
systems often fail to model real-world teaching strategies effectively,
resulting in rigid and less dynamic instruction. The absence of emotional
intelligence further exacerbates this issue, as many ITSs lack the capability
to detect student frustration, motivation levels, or engagement in real time.
As a result, they struggle to provide appropriate interventions when students
face difficulties, making the learning experience less interactive and
engaging. In addition, ITS often struggles to integrate seamlessly into
existing educational frameworks, which can lead to resistance from
educators and students alike (Ahuja & Sille 2013; Alkhatlan & Kalita,
2019; du Boulay, 2018).

Lessons for LLM-assisted Education: Adopting LLMs into education
requires careful consideration of the limitations of ITS to ensure their
effectiveness. One of the key lessons from ITS is the importance of social
learning environments, which it often fails to replicate. Many students
benefit from peer interactions and human instructors, which provide
emotional support, encouragement, and deeper conceptual understanding.
Therefore, LLM-powered tutoring systems should be designed not as
standalone replacements for human instruction. but as supplementary tools
that enhance collaboration through interactive discussions, peer-assisted
learning, and teacher-guided interventions (Stamper et al., 2024).



Additionally, rigidity in instructional strategies has been a significant
limitation of ITS, as they often rely on predefined rules and structured
feedback that do not fully adapt to diverse learning needs. LLMs offer a
more dynamic and conversational approach, allowing for more context-
aware and natural language explanations. However, without proper
pedagogical design, they risk providing generic or standard responses,
without taking social and cultural contexts into account (Shen et al., 2024).
To overcome this, LLM-based feedback should be grounded in established
educational theories, such as Bloom’s Taxonomy and the Knowledge-
Learning-Instruction (KLI) framework, ensuring that AI-generated support
aligns with effective learning strategies (Stamper et al., 2024).

Another critical challenge ITS faces is the lack of emotional intelligence
—they struggle to detect frustration, disengagement, or motivational shifts
in students. LLMs, when integrated with affective computing techniques,
could potentially recognize and respond to students’ emotional states by
adjusting the tone, difficulty level, or encouragement strategies in real time
(Mohanan et al., 2017). However, this capability needs further empirical
validation to avoid reinforcing ineffective learning behaviors or over-
reliance on AI-generated support (Stamper et al., 2024).

Finally, resistance to technology integration in education has been a
barrier to ITS adoption, partly due to a lack of alignment with existing
curricula and insufficient teacher training (Blin & Munro, 2008). The same
challenge could arise with LLM-based educational tools unless educators
are actively involved in their implementation. Training teachers to
effectively integrate LLMs into their teaching workflows—while ensuring
that AI complements, rather than replaces, human instruction—will be
crucial to maximizing the educational value of LLMs (Stamper et al.,
2024).



2.3 Hypertext
History of Hypertext: The rise of hypertext in the 1980s and 1990s
marked a significant transformation in educational technology, promising to
create richer, more interactive learning environments (Yu, 1993). Hypertext
traces its origins to Bush (1945), who envisioned a random-access retrieval
system for microfilm. Building on this concept, Nelson (1965) introduced
the term ‘hypertext’ while developing Xanadu, a system designed to
integrate all world literature into a vast digital database. Expanding on the
idea that hypertext enhances human problem-solving abilities, Engelbart
(1968) developed NLS, a pioneering system that introduced user interface
innovations such as the mouse and multiple windows. Apple’s HyperCard
(Atkinson, 1987) was one of the first widely adopted hypertext platforms
for educational purposes, allowing educators and students to create
interactive presentations with ease.

Hypertext is built on the assumption that learners are active and adaptive,
and thus engagement happens through meaningful interactivity. This
educational approach is supported by Brown and Ferrara's (1985) research,
which found that interactive learning fosters a sense of collaboration in
problem-solving. Their study showed that even when children received
explicit clues from adults, they still perceived themselves as active
participants in discovering solutions. This suggests that interactivity
reinforces learners’ confidence in their own problem-solving process. As
such, hypertext systems allowed educators to develop instructional modules
that facilitated non-linear access to information, enabling students to
explore content in a more personalized manner. More importantly, nonlinear
navigation allowed for tailored learning experiences that fit their learning
style.



Challenges and Pitfalls of Hypertext: However, the initial enthusiasm
for hypertext in education soon gave way to concerns about cognitive
overload and the challenges students faced in navigating and synthesizing
unstructured information. Students often struggled to process and evaluate
large amounts of unstructured information, resulting in frustration rather
than enhanced understanding. Although hypertext allowed for nonlinear
exploration, many students lacked the necessary skills to effectively
navigate these systems. They often experienced confusion about how to
locate and synthesize relevant information, leading to decreased
engagement and learning efficacy (Sweller, 1988; Taky-eddine & Madaoui,
2024).

Hypertext environments frequently lacked clear instructional
frameworks, making it challenging for students to know how to approach
their learning. Without guided pathways or well-defined objectives,
students were left to determine their own learning strategies, which could
lead to inefficient study practices and incomplete comprehension of key
concepts (Taky-eddine & Madaoui, 2024). Prior research indicates that
sequential readers achieved the best test performance, while hypertext users
were burdened by cognitive overload, negatively impacting learning
outcomes (Niederhauser, 2000). Research also suggests that nonlinear
systems might not be suitable to everyone. Students with better self-
regulation strategies experienced lower cognitive load while others
experienced chaos (Antonenko et al., 2007).

Lessons for LLM-assisted Education: One of the key lessons from
hypertextbased learning is the risk of cognitive overload due to nonlinear
exploration. In hypertext environments, students can easily become lost in a
web of loosely connected information, making it difficult to synthesize
knowledge effectively. Similarly, LLMs allow for free-form inquiry,



enabling users to generate responses from vast datasets in a flexible way.
However, without structured inquiry, students may end up jumping between
unrelated questions, leading to information overload, fragmented
understanding rather than deep learning (Chan & Colloton, 2024).

To maximize the benefits of LLM-based instruction, instructors should
emphasize structured questioning and guided inquiry before students
engage with AI. Instead of allowing students to approach LLMs with
random or loosely connected prompts, educators should help them
formulate well-defined questions that follow a logical sequence. This
approach ensures that students maintain conceptual coherence, reducing the
risk of information overload while still benefiting from AI’s ability to
generate detailed explanations. In addition, after each AI-generated
response, students should be prompted to summarize key takeaways,
reinforcing retention and ensuring they stay on track.

2.4 Multimedia
History of Multimedia: In the 1960s and 1970s, CAI gained traction,
integrating text-based learning with interactive elements, such as IBM’s
PLATO system, which provided drill-and-practice exercises (Saettler,
2004). The 1980s and 1990s saw a shift toward digital multimedia, with the
rise of hypertext systems, CD-ROMs, and educational software, which
allowed for self-paced, interactive learning experiences (Jonassen &
Reeves, 1996). The introduction of the World Wide Web in the mid-1990s
revolutionized multimedia education, paving the way for e-learning
platforms, online simulations, and video-based instruction (Amin 2013;
Mayer, 2001).

The theoretical foundation for multimedia learning was deeply rooted in
cognitive psychology, particularly the idea that humans can absorb
information through various channels, a concept referred to as dual coding



theory. This theory posits that presenting information through multiple
formats—text, images, audio—can enhance understanding and retention by
engaging different cognitive processes. Further, multimedia aimed to cater
to diverse learning styles, offering a more personalized learning experience
(Kwok & Jones, 1995; Mayer, 2001).

The introduction of multimedia in educational settings coincided with the
availability of personal computers and advanced software tools. By the late
1980s, educators began experimenting with interactive multimedia as a
means to enhance student engagement and motivation. The expectation was
that multimedia would enhance engagement by providing learners with
interactive elements and visually appealing presentations. In addition, it is
said that multimedia can accommodate different learning styles by
presenting information in various formats, thus promoting inclusivity in
educational contexts (Raoof, 2013).

Challenges and Pitfalls of Multimedia: During the late 1990s and early
2000s, a notable critique of multimedia learning tools was their tendency to
emphasize visual appeal and interactivity over solid instructional design.
This focus often led to the inclusion of extraneous elements (referred to as
“seductive details”) which, while engaging, detracted from the core
educational content. Research indicates that such superfluous details can
overload learners’ cognitive capacities, resulting in diminished retention
and comprehension. For instance, Harp & Mayer (1998) found that adding
interesting but irrelevant information to educational materials hindered
students’ ability to recall essential content. Similarly, Sorden (2005)
emphasized that while multimedia layouts should be visually appealing,
activities must remain focused on the learning objectives, cautioning
against the use of flashy “bells and whistles” that do not contribute to



understanding. These findings underscore the importance of aligning
multimedia design with instructional goals to enhance learning outcomes.

While in some situations presenting multimedia information could
enhance learning, especially supplementing text with animation (Rosalis &
de Oliveira, 2023), sometimes it could result in cognitive overload,
hindering information processing and leading to confusion instead of
clarity. This was particularly problematic for learners who were not adept at
integrating visual and auditory information simultaneously (Mayer &
Moreno, 2003). Empirical studies suggest that students who received
simultaneous on-screen text that either summarized or replicated the
narration exhibited lower retention and transfer test scores compared to
those who did not receive on-screen text. Prior research also revealed that
while multimedia could enhance engagement, it did not necessarily lead to
deeper learning. Without a focus on critical thinking and comprehension,
learners could remain passive recipients of information rather than active
participants in the learning process (Mayer et al., 2001).

Lessons for LLM-assisted Education: When educators integrate LLMs
into education, they can draw valuable lessons from past experiences with
multimedia learning. The pitfalls of multimedia tools often stemmed from
an overload of information and an excessive focus on engagement rather
than comprehension. Similarly, AI-assisted learning, despite its promise,
may fall into the same traps if not implemented carefully. Just as
multimedia overwhelmed learners by presenting excessive information,
LLMs can return detailed yet unfiltered responses beyond a learner’s
processing capacity. Without clear scaffolding and instructional design,
students may struggle to distinguish relevant insights from extraneous
details, leading to a surface-level understanding rather than deep learning.



Another risk of overusing multimedia is the illusion of learning. In
multimedia education, overly interactive interfaces created a sense of
engagement without deep thought processing. Similarly, AI chatbots, which
are designed to be conversational and adaptive, might make learners feel
they are actively engaging with content, when indeed they may just be
passively absorbing AI-generated responses without internalizing or
critically analyzing them. This risk is amplified when students use AI for
quick answers rather than conceptual mastery.

To counteract these pitfalls, educators must take an active role in guiding
AI-assisted learning. Instructors should define clear learning objectives
before students interact with AI tools. Instead of letting students ask broad
questions, structured prompts can encourage goal-oriented inquiry (Garg et
al., 2025). Further, instructors should provide students with active learning
strategies, such as requiring students to summarize AI responses in their
own words, critique AIgenerated content, or apply AI insights to problem-
solving tasks.

2.5 WWW and Web 2.0
History of WWW and Web 2.0: The rise of the Internet in the 1990s was
driven by key technological advancements, particularly the introduction of
NCSA Mosaic in 1993 (Berners-Lee & Fischetti, 2000). The Internet’s
expansion had a profound impact on education, enabling digital libraries,
online resources, and learning management systems (LMS) that
revolutionized access to information and facilitated distance learning and
online courses (Reiser, 2001). Universities and schools quickly adopted
Web-based instruction, fostering global collaboration and transforming
traditional pedagogical models.

Starting from the early 2000s, Web 2.0 became another wave of
instructional technologies that excited educators. Web 2.0 refers to a



collection of web-based applications and platforms designed to promote
user interaction and content sharing. Under the new paradigm, WWW shifts
from static web pages to dynamic, user-generated content features tools
such as blogging, social media platforms, and collaborative applications
like wikis and forums. Web 2.0 technology encourages active participation,
fostering a sense of community among users and enabling the co-creation of
knowledge and resources in educational settings (Issayev et al., 2024, Xu &
Chen, 2021). Web 2.0 gradually gained acceptance as educators recognized
its pedagogical benefits and began integrating tools like YouTube, Wikis,
and Twitter to enhance learning experiences.

Challenges and Pitfalls of Web 2.0: Despite its advantages, the
adoption of Web 2.0 in education is not without challenges, which includes
concerns about digital proficiency, resource allocation, and maintaining
quality interaction (Isaias et al., 2022). Other unintended consequences,
varying from distraction and superficial engagement to cognitive overload
and time-wasting behaviors, raise important concerns (Underwood &
Farrington-Flint, 2015).

One of the most concerning effects of Web 2.0 technologies in education
has been the rise of digital addiction and compulsive engagement. Social
media platforms are designed to maximize user attention, using features
such as likes, notifications, and infinite scrolling to keep users engaged. For
students, this design has led to compulsive behaviors, making it difficult to
maintain focus on academic tasks (Karakose et al., 2022, 2023; Montag et
al., 2012). The consequence of digital addiction is time-wasting, in which
students deploy their time and attention to non-productive activities.
Although computers and social media could potentially be utilized for
educational purposes, at the end most people used them for entertainment
(Rideout et al., 2010).



Another psychologically damaging effect of social media has been the
fear of missing out (FOMO), where students feel constant pressure to stay
connected and compare their lives with others. This effect is particularly
evident in educational social networks, where students see curated versions
of their peers’ academic achievements, leading to increased stress, anxiety,
and reduced self-esteem (Przybylski et al., 2013). FOMO drives students to
prioritize social validation over independent learning, making them more
focused on gaining likes and shares rather than genuine intellectual growth.
When applied to education, this leads to a performance-driven culture rather
than a learning-driven culture.

The ability to multitask has been romanticized in the digital age, but prior
research consistently shows that students who frequently switch between
tasks perform worse in academic settings. Indeed, multitasking reduces
working memory capacity and increases cognitive load, making it harder to
retain information and solve complex problems. With Web 2.0, students
often juggle multiple digital platforms at once, such as watching a lecture
while checking messages, switching between YouTube tutorials and social
media discussions. These students who attempt to study while being
constantly interrupted by digital notifications struggle with long-term
knowledge retention (Carrier, 2009; Foehr, 2006; Kraushaar & Novak.
2010).

Lessons for LLM-assisted Education: Learning from the lesson from
Web 2.0, AI-assisted education should ensure that AI tools enhance, rather
than exploit, student engagement. If AI is used to personalize learning but
also triggers compulsive interactions, it may replicate the pitfalls of Web
2.0 rather than solving them. AI must be designed to support focus and deep
thinking rather than gamify and distract learners. As AI-driven platforms
become central to education, we must ensure that they do not reinforce



social pressures or superficial competition as Web 2.0. AI should be used to
personalize learning paths without fostering unhealthy comparisons. Instead
of making students feel like they are falling behind, AI should empower
them to progress at their own pace, based on their unique learning needs.

In the era of Web 2.0, students often engage in rapid multitasking, which
can create an illusion of learning without true intellectual depth. This
challenge is even more relevant with the integration of AI in education.
While AI can serve as a powerful tool for inquiry, its use should be
structured to promote deep engagement rather than just providing quick
answers. Educators must guide students to critically explore topics,
encouraging reflection and sustained inquiry instead of superficial
interactions. By fostering meaningful engagement, AI can enhance learning
rather than enabling surface-level knowledge consumption.

3. LLM-assisted Education

3.1 Opportunities of LLMs in Education
With the advent of LLMs like ChatGPT, Claude, Gemini, and Perplexity,
educators once again find themselves at a technological crossroads.
Interestingly, while LLMs offer unprecedented opportunities for
personalized learning, automation, and knowledge generation, they also
introduce challenges similar to past instructional technologies, including
over-reliance, potential misuse, and the need for pedagogically sound
integration.

AI as a Personalized Learning Assistant: LLMs are revolutionizing
personalized education, allowing students to tailor learning paths to their
individual needs. Unlike traditional learning models, where students follow
fixed curricula, LLMs offer instant, customized explanations, adapting to
different cognitive styles (Baidoo-Anu & Ansah, 2023; Gervacio, 2024).



Furthermore, LLMs, which are non-judgmental, reduce negative emotions
like frustration and insecurity among students, while fostering positive
emotions like satisfaction and curiosity (Boguslawski et al., 2024).

AI for Assessment and Feedback Automation: One of AI’s most
impactful applications is its ability to automate grading, content evaluation,
and personalized feedback (Agostini & Picasso, 2022; Alier et al., 2024).
AI-powered assessment tools can provide instant evaluations on essays,
coding assignments, and problemsolving exercises, helping students
identify errors and misconceptions without waiting for instructor feedback
(Humble et al., 2024). However, Vargas-Murillo et al. (2023) caution that
AI-generated feedback can sometimes be misleading, requiring human
oversight to ensure pedagogical accuracy. A hybrid AI-human feedback
approach has been proposed to balance efficiency with accuracy,
maintaining instructional quality while reducing instructor workload.

Enhancing Accessibility and Equity in Education: Generative AI
tutoring systems have the capacity to support numerous students
simultaneously, providing on-demand educational support without
limitations of location or time. This scalability guarantees widespread
access to high-quality tutoring, fostering greater educational inclusivity. By
making personalized tutoring resources universally accessible, generative
AI can help close gaps in educational inequality. It ensures that students
from diverse socioeconomic backgrounds receive the same level of tailored
academic support, promoting fairness in learning opportunities (Chan &
Colloton, 2024; Leon, 2024). Additionally, LLMs can support multilingual
education, providing instant translations and localized content generation
(Chan & Colloton 2024; Jha et al., 2024).

3.2 Challenges and Risks of AI in Education



Academic Integrity and AI-assisted Cheating: A major concern in AI-
enhanced education is its potential for academic dishonesty. LLMs can
easily generate essays, code, and research papers, leading to an increase in
AI-assisted plagiarism (Chan & Colloton 2024; Perkins, 2023; Vargas-
Murillo et al., 2023).

Over-reliance on AI, Reduced Critical Thinking, and Deep Learning:
Students who rely heavily on AI risk losing the ability to think critically and
solve problems independently (Kim et al., 2024). Research indicates that
automation bias—the tendency to over-trust AI outputs—can weaken
analytical reasoning skills. When some students depend on AI for content
generation, it results in superficial learning instead of creative thinking
(Vargas-Murillo et al., 2023). In a study using ChatGPT for learning
computer science, while ChatGPT frequently delivers accurate and efficient
solutions, its responses do not always align with the pedagogical principles
of learning and fundamental programming concepts. As a result, students
may receive code that functions correctly but fails to foster a deeper
understanding of why it works (Humble et al. 2023).

Ethical and Bias Concerns: LLMs are trained on vast datasets, many of
which contain historical and cultural biases. AI-generated content may
reinforce stereotypes, misinformation, or ideological biases, posing risks to
academic objectivity. Additionally, privacy concerns have been raised
regarding AI platforms that collect student interaction data. Without clear
regulatory frameworks, student data may be vulnerable to misuse or
exploitation (Chan & Colloton, 2024; OnesiOzigagun et al., 2024; Su &
Yang, 2023; Wangdi, 2024).

4. Method
The preceding literature review offers the research team a comprehensive
understanding of both historical and contemporary developments in



instructional technologies. To further investigate the landscape of the
current issue, a survey was administered to examine students’ perceptions
and usage of LLMs. Given that the integration of LLMs in educational
contexts is a relatively recent phenomenon, it is premature to construct
formal theories, models, or hypotheses. Instead, the primary objective of the
survey was to identify potential opportunities, challenges, and concerns
associated with the implementation of LLMs in higher education. The
study’s research design and data collection procedures received approval
from the university’s Institutional Review Board (IRB), ensuring
compliance with the Ethical Code of Conduct of the American
Psychological Association (American Psychological Association [APA],
2003).

Participants were recruited from the authors’ affiliated institutions as well
as Cloud Research, an online data collection platform. The final sample
comprised 170 respondents, including 117 undergraduate students (68.82%)
and 51 graduate students (30%), while 2 participants (1.17%) did not report
their educational level. Participants represented six countries or regions,
with the majority (157 respondents; 92.35%) residing in the United States.
In terms of gender distribution, 77 participants identified as male (45.29%),
91 as female (53.52%), and 2 selected the response “prefer not to disclose”
(1.17%). The age of participants ranged from 17 to 61 years (M = 29.5, SD
= 10.37).

The survey included both forced-choice and open-ended items to capture
a broad spectrum of responses. To enhance content validity, the survey
items underwent expert review by faculty members specializing in the
subject area. Additionally, a pilot study was conducted to evaluate the
clarity of item wording and the usability of the survey interface. To ensure
data quality, two attention-check questions were incorporated at different



points in the survey (e.g., “Who is the CEO of Tesla and SpaceX?” and
“What is the capital of the United States?”). No participants were excluded
based on failure to answer these questions correctly.

This study is part of a broader research initiative comprising multiple
subprojects that explore different population segments. Due to space
limitations, only the most relevant survey responses are presented in this
report. The full survey instrument and complete study findings are available
upon request. Given the exploratory nature of this analysis, the study
primarily employs descriptive statistics and data visualization techniques to
analyze quantitative data. Qualitative data from open-ended responses were
processed using ChatGPT with checking by human coders to facilitate
thematic analysis.

AI-based thematic analysis can serve as a valuable supplement to
traditional qualitative research by enhancing efficiency, scalability, and
consistency in coding large datasets (Braun & Clarke, 2006; Yu et al., 2011,
2018). Leveraging natural language processing (NLP) techniques, AI can
rapidly identify patterns, classify responses, and suggest potential themes
based on linguistic and semantic analysis. However, AI-driven analysis is
not without limitations, as it may misinterpret context, overlook nuanced
meanings, or introduce biases inherent in training data (Bender et al., 2021).
Therefore, the AI-generated themes were checked by the authors to ensure
accuracy (Yu et al., 2011, 2018).

5. Results

5.1 Descriptive Statistics and Data Visualization
The result confirms the popular belief that LLMs are prevalent. Figure 1
indicates that 11.8% (20) respondents use chatbots on a daily basis whereas
29.4% (50) use them weekly.



Fig. 1 Percentages of various responses to “how often do you use
chatbots for academic purposes?” ⏎

Excluding seven participants who did not respond to this item, 163
respondents (99.39%) reported having used at least one AI-enabled chatbot.
The most frequently utilized chatbot was ChatGPT, cited by 157
participants (95.7%). The second most commonly used chatbot was Google
Gemini, reported by 68 participants (41.5%), followed by Microsoft
Copilot, which was used by 55 participants (33.55%).

In terms of application, the most frequently reported use of LLMs was to
“assist with research or locate sources”, as indicated by 79 participants
(58.1%). The second most common use was “summarizing information”,
reported by 76 participants (55.9%), while the third most prevalent
application was “to check grammar and improve writing”, selected by 72
participants (52.9%).

Regarding concerns about LLM usage, the primary apprehension among
respondents was that “LLMs might provide incorrect or misleading
information”, reported by 108 participants (67.9%). The second most
frequently cited concern was that “LLM usage might be considered
cheating, potentially leading to plagiarism or academic dishonesty”,
identified by 101 participants (63.5%). The third most prevalent concern
was that “using LLMs might reduce my own creativity”, reported by 85



participants (53.5%). As participants were allowed to select multiple
concerns, the total percentage exceeded 100%.

Consistent with these concerns, Figure 2 illustrates that 20% (34
participants) strongly agreed that the use of LLMs in educational settings
could contribute to unethical behaviors, while an additional 38.2% (65
participants) expressed agreement with this statement.

Fig. 2 Percentage of the degree of agreement to using LLMs
could lead to unethical behaviors. ⏎

In response to a follow-up question regarding how faculty should address
LLMs in coursework, the majority of students expressed a preference for
instructors to “teach how to use LLMs responsibly and ethically” (105
participants, 61.8%). The second most common expectation was that
faculty should “allow LLMs for certain tasks under specific guidelines” (91
participants, 53.5%), followed by the expectation that instructors should
“integrate LLMs into coursework to reflect real-world scenarios” (54
participants, 31.8%).

Overall, most participants held a favorable view of LLMs in education.
Specifically, 50.6% (86 participants) indicated that they believed LLMs had
enhanced their learning experience, whereas only 12.8% (22 participants)



reported that LLM usage had hindered their learning. Meanwhile, 36.5%
(62 participants) stated that LLMs had no noticeable impact on their
learning outcomes.

Analyses were conducted to assess potential differences in responses
across demographic subgroups (e.g., gender, academic year, etc.), but no
substantive variations were detected among different demographic groups.

5.2 Thematic Analysis of Qualitative Data
After analyzing the response to the open-ended question, “How could
LLMs be improved to better meet people’s needs or address any existing
issues?” ChatGPT identified five key themes as follows. The frequency of
responses implying the above themes is presented in Figure 3.

Fig. 3 Suggested improvements for LLMs based on open-ended
responses. ⏎

1. Accuracy and Fact-checking: Many participants emphasized the
need for LLMs to improve the accuracy of the information they



provide, including better fact-checking mechanisms. For example, “I
have found it to contain many errors–often. I usually have to vet the
responses with Google or find it in other sources to see if the LLM is
accurate.”

2. Transparency and Source Attribution: Respondents expressed a
desire for LLMs to cite sources, provide references, and enhance
transparency in how information is generated. For example, “The
sources need to be better verified. Censorship and misinformation is
very prominent in Deepseek.”

3. Ethical Use and Academic Integrity: Some participants suggested
that LLMs should incorporate measures to prevent academic
dishonesty, such as limiting their ability to complete assignments or
generate essays. For example, “Just more fine tuning to ensure the
info it supplies is accurate as you often have to check it which I’m
not sure everyone realises. This can be easily solved by asking it to
share its sources, but you still need to check those sources. Perhaps
the LLMs could have a max word count in its responses or be able to
refuse to do academic writing for people, I’m not sure how that
would work in practice though.”

4. Accessibility and Inclusivity: Several responses highlighted the
importance of improving LLMs for users with learning disabilities
and enhancing inclusivity features. For example, “I believe it can
help with some people who have learning disabilities”

5. User Experience and Functionality: Suggestions in this category
included improvements in formatting, user-friendliness, response
customization (e.g., setting a word limit), and refining interactions.
For example, “Just more fine tuning to ensure the info it supplies is
accurate as you often have to check it which I’m not sure everyone



realises. This can be easily solved by asking it to share its sources,
but you still need to check those sources. Perhaps the LLMs could
have a max word count in its responses or be able to refuse to do
academic writing for people, I’m not sure how that would work in
practice though.”

By analyzing the open-ended response to the question, “What additional
thoughts or concerns do you have about using LLMs in your academic
work?” ChatGPT extracted five themes as follows. Figure 4 shows the
frequency of responses that imply the themes.

Fig. 4 Frequency of additional thoughts or concerns about LLMs
in academic work. ⏎

1. Ethical Considerations and Academic Integrity: Many
participants expressed concerns about plagiarism, cheating, and the
broader ethical implications of using LLMs in academic settings. For
example, “I’m not really sure of the ethical implications. It feels



wrong to use it for assessments or essays but doesn’t feel wrong to
use it for research and ideas. There is a fine line but it is grey.”

2. Appropriate Use and Boundaries: Some respondents emphasized
the need for clear guidelines on when and how LLMs should be used,
distinguishing acceptable academic support from misuse. For
example, “I feel like it has allowed me to find a better way to
complete the work and it helps by showing step by step if needed.”

3. Transparency and AI-Human Distinction: Concerns were raised
about the difficulty of distinguishing AI-generated content from
human work, making it harder to assess originality and authenticity.
For example, “It’s getting harder and harder to tell what is human and
what is AI.”

4. Dependence and Over-Reliance: Several responses indicated
worries about students becoming overly dependent on LLMs,
potentially diminishing their motivation, creativity, and learning
skills. For example, “I’m concerned about the potential impact of
LLMs on critical thinking and research abilities. If students rely too
heavily on LLMs to generate material, they may lose the capacity to
form their own ideas, perform independent research.”

5. Positive Perceptions and Benefits: Some participants acknowledged
the usefulness of LLMs, particularly in improving efficiency,
enhancing learning, and providing valuable academic support. For
example, “I think they are a useful tool but need to be used
responsibly, and it is potentially hard to enforce that.”

6. Discussion
A review of past instructional technologies suggests that merely integrating
advanced technologies into educational settings does not necessarily lead to
the anticipated improvements in learning outcomes. A key lesson from



previous implementations is the tendency to hold overly optimistic
assumptions about human learning potential, such as self-regulation, the
ability to construct knowledge solely through exploration, benefit from
immediate feedback reinforcement, or enhance encoding through
multisensory engagement. The survey findings further reinforce this
perspective, highlighting that, like other instructional technologies, LLMs
present both opportunities and challenges. Grounded in insights from the
literature review and empirical survey data, the following recommended
courses of action aim to maximize the benefits of LLMs while mitigating
potential drawbacks.

6.1 Incorporating AI Ethics into Curriculum
Academic Integrity and Other Ethical Issues: A survey by BestColleges
(2023) found that 56% of university students use AI for assignments and
exams (Nam, 2023). Similarly, a Wiley survey revealed that 47% of
students believe cheating has become easier than before due to the rise of
generative AI, with 35% specifically citing ChatGPT (Coffey, 2024).
Among the 200 million writing assignments analyzed by Turnitin, 3% were
determined to be primarily AI-generated (Prothero, 2024).

While multiple software applications exist to detect AI-generated text,
their accuracy remains limited. An evaluation of 14 detection tools,
including Turnitin and GPTZero, conducted by Weber-Wulff et al. (2023),
found that none achieved an accuracy rate above 80%. AI-generated texts
often exhibit sophisticated structures and closely resemble human writing,
making detection increasingly difficult. In some cases, students have even
been wrongly accused of using AI (D'Agostino, 2023). Rather than solely
relying on retrospective detection, this challenge presents an opportunity for
educators to take a proactive approach. By providing students with ethical



guidelines on AI usage, institutions can foster responsible and informed
engagement with these tools.

Besides academic integrity, other Issues such as algorithmic bias,
deepfake technology, privacy violations, and the misuse of AI in academic
settings highlight the need for ethical training in AI education. Recognizing
these concerns, the first author of this chapter has developed a
comprehensive course, DSCI 6400: Ethics in Data Science and Artificial
Intelligence, at Hawai‘i Pacific University. This course provides students
with the ethical frameworks necessary to navigate the increasingly complex
AI landscape. Instructors across disciplines should integrate AI ethics into
their curricula to ensure that future professionals are equipped to make
responsible decisions in AI development and deployment.

Why Ethical Training in AI is Essential: AI’s misuse in generating
misleading content (e.g., deepfakes) and invading personal privacy
necessitates a strong ethical foundation (Pawelec, 2024). As AI systems
become more powerful, the responsibility to develop and use them ethically
must be instilled in students. Without proper ethical training, AI users may
contribute to intentional or unintentional harms (Boddington, 2023). In
addition, algorithmic bias disproportionately affects marginalized
communities, leading to unfair hiring practices, biased law enforcement
applications, and inequitable healthcare decisions (Mittelstadt et al., 2016).
Further, many AI models, particularly deep learning systems, function as
“black boxes”, making it difficult for users and regulators to understand
their decision-making processes. Ethical training emphasizes transparency
and interpretability, helping students design AI systems that can be
scrutinized for fairness and reliability (Fernandez-Quilez, 2022).
Importantly, AI has been used to create unauthorized deepfake pornography
and other forms of digital exploitation. Teaching AI ethics helps students



recognize and counteract such ethical violations, fostering respect for
human dignity and privacy in AI applications (Okolie, 2023; Rai, 2020).

How Instructors can Incorporate AI Ethics into Teaching: There are
different ways for instructors to incorporate AI ethics into teaching. In
addition to teaching ethics as a standalone course, instructors can embed
ethical discussions in various courses that utilize AI. Specifically, ethical
dilemmas in AI can be examined through case studies, such as invasion of
privacy by facial recognition systems, misinformation spread via deepfakes,
and blurring the meaning of originality in generative art tools (e.g.,
Midjourney & Ideogram). Further, AI ethics intersect with philosophy, law,
sociology, and business. Instructors should invite guest lecturers from
diverse fields to provide broader perspectives. The ethical implications of
AI are too significant to ignore. By incorporating AI ethics into teaching,
educators can prepare students to develop and deploy AI responsibly,
minimizing harm, and maximizing social benefits. As AI continues to shape
the future, ethical training must be a fundamental component of AI
education, ensuring that the next generation of AI practitioners upholds
principles of fairness, accountability, and human dignity (Ndukaihe, 2024;
Vallor, 2024).

6.2 Emphasize Fact-checking and Triangulation
AI Hallucination: One major concern with students’ over-reliance on AI
tools for research is the risk of obtaining incomplete or incorrect
information due to AI hallucinations. AI hallucination refers to instances
where an LLM generates false, misleading, or completely fabricated
information while presenting it as factual. This can include fake citations
and references (e.g., citing non-existent research papers), incorrect factual
claims (e.g., saying a historical event happened in the wrong year),
confabulated reasoning (e.g., making up steps in a logical process),



invention of people, places, or things (e.g., generating fictional legal
precedents) (Baum & Marinkovic, 2025; Feldman et al., 2023; Jančařík &
Dušek, 2024; Magesh et al., 2024).

AI hallucination is largely attributed to the inherent probabilistic nature
of LLMs; these models generate responses by predicting the most probable
sequence of tokens, leading to outputs that appear valid but may be
factually incorrect (Hamid, 2024). In addition, LLMs are built by training
with massive datasets. If the dataset includes misinformation,
inconsistencies, or biased perspectives, the model may absorb and
reproduce these inaccuracies. This problem is hard to fully eliminate
because internet data (which many models are trained on) is inherently
noisy. Further, LLMs don’t ‘understand’ in a human way; they mimic
understanding based on statistical associations and patterns. This means
they sometimes make incorrect generalizations or provide explanations that
sound logical but are wrong (Xu et al., 2024; Zhang et al., 2023).

Nevertheless, this problem may be a blessing in disguise. In the past the
term ‘fact-checking’ was rarely mentioned. However, due to the high risk of
misinformation, fact-checking and triangulation are increasingly vital skills
in an era dominated by digital media and LLMs. Thus, higher education
institutions bear the responsibility of equipping students with the ability to
critically assess information. As such, students are forced to take validation
seriously. Fact-checking is referred to as verifying the information received
by tracing the source or using an alternate source, whereas triangulation
involves validating information through multiple sources (Jonathan, 2021).
Simply put, when more than one source is utilized, the fact-checking
activity becomes triangulation.

Misinformation Awareness: Research indicates that users who are
aware of misinformation are more likely to utilize fact-checking tools. In



addition, higher education levels correlate with greater concern about
misinformation (Alohali, 2024). The implication is straight-forward:
Instructors must explicitly warn students against unquestionably accepting
all information yielded from LLMs. Encouraging multi-pronged
approaches, such as awareness campaigns and critical thinking skill
development, is essential to foster responsible information evaluation.

Source Tracing: One of the simplest yet effective fact-checking
techniques is source tracing, which involves verifying the original sources
of information. Some AI-powered tools, such as Perplexity AI and Getliner,
provide direct citations or source links alongside their generated responses.
These tools help users quickly locate the primary materials that support a
claim. However, students should click on the provided source links and
compare the full text with the AI-generated summary. This allows them to
detect potential distortions, misinterpretations, or missing context in the
summarized content.

Pedagogical Integration: Evidence shows that teaching fact-checking
through workshops, game-based approaches, and the inclusion of topics like
propaganda and disinformation fosters critical thinking among students.
However, a significant challenge in implementing fact-checking education
is the general lack of awareness among students regarding verification
tools. Educators should encourage students to use verification tools actively,
as doing so strengthens their analytical skills. Academic institutions should
also prioritize digital literacy by collaborating with media organizations to
improve access to reliable fact-checking resources (Tekoniemi et al., 2022).
The first author of this article has incorporated several fact-checking and
triangulation tools into the curriculum, and the details will be provided
upon request.

6.3 AI and Flipped Education



When students can acquire information on any subject matter using LLMs,
why do they need to attend the professor’s lecture? One possible change in
higher education resulting from the popularity of AI tools is to implement
flip education. Rather than spending class time in lecturing factual
information, instructors can shift the focus to deeper conceptual
comprehension, critical thinking, and creativity by asking students to
discuss and evaluate the information with their peers in class. This approach
is known as flipped education, or flipped classroom, an instructional
strategy where traditional learning environments are inverted (Ağırman &
Ercoşkun, 2022; Baker, 2000; Bergmann & Sams, 2012; Chen et al., 2014;
Lage et al., 2000). In this model, students are introduced to the content at
home through online resources and then engage in interactive activities
during class time, such as discussions and hands-on projects. This approach
allows for deeper engagement and critical thinking during in-person
sessions, utilizing class time more effectively (Li & Li, 2022; Zainuddin &
Attaran 2016).

Using AI as a personal tutor in education has sparked both excitement
and concern. While AI has the potential to enhance learning through instant
access to vast knowledge, it also introduces risks of over-reliance,
misinformation, academic dishonesty, and superficial learning. Nonetheless,
the flipped classroom model presents a compelling solution to these
challenges (Chan & Tsi, 2023; LópezVillanueva et al., 2024; Mollick &
Mollick, 2024).

Information Validation: In a flipped classroom, students use AI as a
resource rather than a crutch. Instead of relying on AI to generate answers
they submit uncritically, they are tasked with gathering information
independently before class. Importantly, students are required to validate
the information using fact-checking and triangulation methods. This process



encourages them to actively search for relevant materials, refine their
understanding, and organize key concepts in a coherent way. More
importantly, they are not assessed merely on the information they collect,
but rather on how well they analyze, present, and defend their findings in
the classroom. This structure forces students to engage with the material at
a deeper level, as they must explain their reasoning, respond to questions,
and justify their conclusions in real-time. Unlike a traditional homework
assignment that can be completed passively by submitting an AI-generated
response, an in-class discussion or debate requires genuine comprehension
and engagement (Chen et al., 2022; Dai & Lin, 2023; Wang et al., 2023).

Critical Thinking: Furthermore, flipping education shifts the focus from
rote memorization and mechanical completion of assignments to the
development of higher-order thinking skills. When students know that they
will have to articulate their arguments and respond to challenges from peers
and instructors, they are more likely to critically evaluate the AI-generated
content they receive. While everyone can access LLMs to obtain similar
answers, they are compelled to go the extra mile, such as synthesizing
multiple perspectives and developing original insights. This process fosters
analytical thinking and intellectual independence, qualities that are essential
for success in both academia and the workforce (University College Dublin
– How to Critically Evaluate Generative AI Output, 2025).

Restoring Academic Integrity: In addition to promoting deeper
learning, the flipped classroom model helps restore academic integrity. AI-
driven cheating thrives when students can complete their coursework in
isolation, submitting work without accountability. However, when students
must publicly discuss their research, defend their positions, and engage in
intellectual dialogue, they cannot rely solely on AI-generated answers.
Their understanding is put to the test in a way that mere written assignments



do not achieve. This approach reinforces personal responsibility and ethical
engagement with learning. In this way, flipping education stands as a
promising remedy to the growing concerns of AI over-reliance and
cheating, creating a learning environment that prioritizes deep
understanding, ethical engagement, and intellectual growth (Ahmad et al.
2023).

Conclusion
The integration of LLMs into higher education presents a complex
landscape of opportunities and challenges. While AI-driven tools hold great
promise in enhancing personalized learning, streamlining assessments, and
expanding educational accessibility, they also introduce risks such as
academic dishonesty, misinformation propagation (AI hallucinations), and
cognitive over-reliance. A historical examination of instructional
technologies underscores the recurring cycle of technological optimism
followed by disillusionment when innovations fail to deliver sustained
improvements in learning outcomes. The survey findings further reinforce
this reality, revealing that students acknowledge both the utility and ethical
concerns surrounding LLMs.

To maximize the benefits of AI in education while mitigating its pitfalls,
we advocate for embedding AI ethics education into curricula, emphasizing
factchecking and triangulation, and also adopting a flipped classroom
model. As LLMs continue to evolve, their role in higher education should
be guided by evidence-based pedagogical principles rather than
technological enthusiasm alone. Future research should explore longitudinal
impacts of AI on student learning, assess the effectiveness of AI literacy
programs, and develop institutional policies that promote ethical and
responsible AI use. By taking a proactive and balanced approach, educators



and institutions can harness LLMs as powerful tools that enhance, rather
than replace, human cognition and intellectual inquiry.
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Building on prior research (Cain, 2024), this chapter introduces the EPICC
Framework (Effective Prompting through Iterative Content and Critical
Thinking), a comprehensive model guiding both students and teachers in
using Large Language Models (LLMs) through prompt engineering. It
emphasizes three key components—content knowledge, critical thinking,
and iterative design— as essential to enhancing LLMs’ educational
potential. By focusing on how educators and learners can strategically craft,
refine, and evaluate prompts, the framework provides a practical approach
to leveraging AI (artificial intelligence) for exploration (active inquiry and
discovery), creativity, ideation, and productivity. EPICC’s iterative focus
equips users to generate more precise, contextually relevant generative AI
outputs, fostering personalized learning experiences and deeper engagement
with content. Through this structured approach, students develop critical
thinking and problem-solving skills when learning with LLMs, while
teachers enhance their instructional strategies for generative AI-enhanced
environments. The framework also highlights content knowledge and
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critical thinking as ways to address ethical considerations like biases and
inaccuracies, ensuring responsible use of generative AI in education. As a
pedagogical precursor, the EPICC Framework presents prompt engineering
not just as a technical skill but as a transformative educational practice
empowering both students and educators to fully harness AI for
collaborative knowledge creation and innovation.

1. Introduction
Imagine a future where students dive into learning with tools that don’t just
answer their questions but actually help them wrestle with tough topics.
Picture tools that offer personalized support, spark creative conversations,
and make collaboration feel effortless—even across digital spaces. These
tools wouldn’t just teach; they’d help students think critically, reflect, and
find meaning in what they’re learning. And the best part? This kind of
learning would be accessible, adaptable, and shaped by the students
themselves.

Of course, using these tools well isn’t something that just happens
overnight. Like anything powerful, they take some practice. It’s about
knowing how to use them effectively, making the most of their capabilities,
and yes, thinking about the ethics of it all. When working with tools this
powerful, knowing how to use them responsibly is a must.

The tools I’m talking about are large language models (LLMs)—the
engines behind current commercial artificial intelligence (AI) applications
like ChatGPT, Claude, CoPilot, DeepSeek, and a host of others. They’re
already changing the way we think about teaching and learning, but for
their full potential to be realized, we need to focus on something essential:
teaching people how to use them well. That means both students and
educators need the skills to make the most of what LLMs and generative AI
(GenAI) technologies can do.



LLMs are advanced AI systems trained on vast amounts of text data,
enabling them to generate human-like responses, summarize information,
translate languages, and even assist with creative and analytical tasks. Their
capabilities extend far beyond simple question-and-answer interactions—
these models can draft essays, provide tutoring in complex subjects,
generate code, simulate conversations, and adapt their responses based on
context. While their outputs are often remarkably coherent and insightful,
they are also shaped by the data they’ve been trained on, which means their
accuracy and reliability can vary. Understanding both their strengths and
limitations is crucial for making the most of their potential in education.

Given their capabilities and flexibility, LLMs naturally open up exciting
possibilities for teaching, learning, and creating knowledge. What makes it
so unique is its ability to interact with people using natural language
prompts. These prompts act as a way for users to communicate with LLM,
making learning more interactive and dynamic. In this chapter, I’ll argue
that the key to unlocking GenAI’s full potential lies in learning how to use
it effectively. That’s where prompt engineering comes in—it’s a skill that
can make all the difference in how these tools are used in education.

So, what is prompt engineering? Simply put, it’s the process of crafting
thoughtful and intentional instructions to guide GenAI systems in producing
useful and meaningful responses. Think of it as the link between what a
person wants to achieve and what the LLM is capable of delivering. A well-
crafted prompt turns a simple LLM interaction into something much bigger:
a purposeful collaboration. Through these collaborations, students and
educators can shape outputs that are tailored to their specific needs—
whether it’s answering a tough question, sparking new ideas, or diving
deeper into a topic.



In education, learning isn’t just about getting answers. It’s about students
interacting with concepts, exploring ideas, and building their own
understanding. That’s why prompt engineering needs to go beyond just
knowing how to use the tools. It’s about bringing in critical thinking,
creativity, and ethical awareness. By crafting and refining prompts, students
and educators aren’t just guiding the LLM— they’re also reflecting on their
own thought processes. This kind of engagement can make learning more
active and meaningful, aligning perfectly with goals like personalization,
collaboration, and inquiry-based learning.

This chapter builds on earlier work (Cain, 2024), which introduced the
core principles of effective prompt engineering in education and developed
a framework to guide students, educators, and others in using GenAI tools
for inquiry, creativity, and productivity. That framework, EPICC (Effective
Prompting through Iterative Content Knowledge and Critical Thinking),
provides a structured approach to integrating prompt engineering into
education. At its heart, EPICC focuses on three interconnected components
—content knowledge, critical thinking, and iterative design—as the
foundation for crafting prompts that align with educational goals.

EPICC frames the process of designing prompts as reflective and
iterative, encouraging users to see GenAI and LLMs as cognitive partners
in learning. In simpler terms, EPICC isn’t just about making LLM
interactions better—it’s about using prompt engineering to spark
exploration, creativity, and critical engagement. By weaving these
components together, EPICC also tackles some of the big challenges that
come with GenAI, like bias, inaccuracies, and ethical dilemmas, ensuring
that these tools are used responsibly in education.

On a broader level, EPICC positions prompt engineering as more than
just a technical skill—it’s an intentional and reflective practice that every



LLM user should understand to get the most out of this technology. It
highlights the ethical and cognitive aspects of working with GenAI,
showing how thoughtful prompt design can lead to more meaningful,
productive, and responsible uses of these tools in educational settings.

2. Prompt Engineering: A Little Background
Prompt engineering for educational uses is about crafting and tweaking
natural language instructions to get the best out of GenAI systems like
LLMs. Think of it as a bridge between what we want and what the LLM
can deliver—helping users craft inputs that produce outputs that are clear,
accurate, and meaningful. More importantly, it’s not just about technical
know-how. Good prompt engineering also calls for creativity, critical
thinking, and ethical awareness to navigate the quirks and limitations of
LLM (Marvin et al., 2024; Reynolds & McDonell, 2021). It’s quickly
becoming a foundational skill for working with LLM across all kinds of
fields, from education and healthcare to business and the arts (Giray, 2023;
Korzynski et al., 2023; Liu & Chilton, 2022; Schmidt et al., 2024; Zhou et
al., 2023).

Here’s a simple example: Let’s say you’re using an LLM to write a
summary of a long article. If your prompt is vague, like “Summarize this”,
you might get a response that’s incomplete or off- topic. But if you craft a
clearer prompt, like, “Summarize the following article in 100 words,
focusing on the key points and main arguments,” you’ll likely get a much
more precise and useful output. The difference lies in how specific and
intentional the instructions are, which is exactly what prompt engineering is
all about.

LLM has come a long way since the early days of systems like ELIZA in
the 1960s, which worked with rigid input formats to simulate conversations.
The game-changer came in 2017 with the introduction of transformer-based



architectures (Muktadir, 2023). These breakthroughs, like OpenAI’s GPT
models, brought a much deeper understanding of context and allowed for
more coherent, nuanced text generation. Suddenly, the way prompts were
designed became even more strategic. Techniques like few-shot learning
(Zhou et al., 2023)—where you include examples directly in the prompt to
guide the LLM—showed how powerful these tools could be without the
need for retraining (Marvin et al., 2024).

As LLMs get more sophisticated and widely used, prompt engineering is
only growing in importance. Being “LLM literate” means knowing how to
design prompts that reduce biases, enhance reasoning, and improve output
quality (Knoth et al., 2024). GPT Best Practices (n.d.) recommend clarity,
context, and refining prompts iteratively to get the best results. For
example, while our clear summarization prompt might be, “Summarize the
following text in 100 words, focusing on key arguments and evidence,” a
classification prompt could say, “Label the following customer reviews as
‘positive’,‘negative’, or ‘neutral’.” These kinds of precise instructions make
it easier for the LLM to deliver consistent, high-quality results that match
the user’s intent.

The evolution of transformer-based architectures has brought remarkable
advancements in LLM capabilities, pushing the boundaries of what
generative LLM can do. Models like Google’s BERT (Bidirectional
Encoder Representations from Transformers) introduced bidirectional text
processing in 2018, allowing for a deeper, more nuanced understanding of
language. More recently, models like Google’s PaLM (Pathways Language
Model) have showcased the ability to tackle complex reasoning and multi-
step problem-solving, opening new possibilities for creative prompt design.
Techniques such as chain-of-thought prompting and retrieval-augmented



generation (RAG) have emerged from these advancements, enabling users
to refine LLM outputs with greater precision and context.

RAG, in particular, stands out for its ability to integrate external data
sources into prompts. By combining retrieval mechanisms to gather
relevant, up-to-date information with generative capabilities, RAG systems
produce responses that go beyond pre-trained knowledge. For instance, in
education, an RAG-enabled LLM could curate personalized learning
resources based on a student’s unique interests or needs, providing richer
context and depth. This ability to dynamically access and synthesize real-
world information makes RAG a powerful tool for applications ranging
from personalized learning to research and professional fields requiring the
most current knowledge.

2.1 How is Prompt Engineering Practised?
Prompt engineering incorporates a growing range of techniques designed
for specific tasks and contexts, many of which continue to evolve.
Techniques like iterative design refine prompts through trial and error to
improve output quality (Reynolds & McDonell, 2021), while role-based
prompting assigns the LLM specific roles to guide its behavior (Park &
Choo, 2024). Few-shot learning, which embeds examples directly within
prompts, helps LLM generalize across tasks (Reynolds & McDonell, 2021).
Additionally, reusable prompt patterns provide standardized templates to
maintain consistency and streamline design (Schmidt et al., 2024). Creative
methods like chain-of-thought prompting encourage stepby-step reasoning,
such as asking, “Explain the process of photosynthesis in three stages: (1)
light absorption, (2) energy conversion, and (3) sugar production.”

Task-specific conditioning adapts prompts for particular fields, such as
generating lesson plans in education or providing decision support in
healthcare (Marvin et al., 2024; Zaghir et al., 2024). Worked examples are



particularly useful for teaching prompt engineering, offering learners
structured demonstrations to scaffold their understanding of strategies and
applications (Tolzin et al., 2024). Emerging ideas, such as using LLMs to
autonomously design prompts, highlight the potential for LLM to act as
“human-level” prompt engineers, though human oversight remains essential
to ensure ethical and contextual alignment (Zhou et al., 2023).

2.2 M ain Objectives of Using Prompt Engineering in
Educational Contexts
In education, prompt engineering opens up exciting possibilities for learners
by enhancing their LLM literacy. For students, this means understanding
how prompts shape LLM outputs, recognizing the system’s limitations, and
critically evaluating the results (Knoth et al., 2024; Lo, 2023a, 2023b).
These skills empower students to personalize their learning experiences,
such as using LLM to brainstorm ideas, explore alternative perspectives,
and even generate adaptive study materials that cater to their unique needs.
Prompt engineering can also help students unlock accessibility features, like
converting complex texts into simpler formats or translating content into
multiple languages, making learning more inclusive (Bozkurt, 2024).

For educators, prompt engineering offers tools to enhance teaching and
streamline classroom workflows. Teachers can use LLM to create tailored
lesson plans, design adaptive assessments, and generate differentiated
resources for diverse learners (Park & Choo, 2024). By mastering prompt
engineering, educators also gain the ability to critically evaluate LLM
outputs, ensuring that the tools they adopt align with learning goals and
maintain educational quality. Beyond personalization, these skills allow
teachers to use LLM as a creative partner for developing new instructional
strategies, solving pedagogical challenges, and exploring innovative
approaches to student engagement.



Content knowledge plays a pivotal role in the effectiveness of prompt
engineering for both learners and educators. For students, a strong
foundation in the subject matter allows them to craft more precise and
meaningful prompts, ensuring the LLM produces outputs that are relevant
and accurate. For instance, a student with a solid understanding of biology
might create a detailed prompt like, “Explain the role of mitochondria in
cellular respiration and describe how it supports energy production in
eukaryotic cells,” rather than a vague request such as, “Tell me about
mitochondria.” This depth of knowledge not only improves the LLM’s
response but also helps students critically assess its accuracy and
completeness. For educators, content knowledge ensures that they can
evaluate the alignment between LLM outputs and curriculum standards,
helping them refine prompts to achieve specific instructional objectives.
Whether designing prompts for lesson planning or supporting student
inquiry, educators with strong subject expertise can better harness LLM as a
tool for fostering deeper learning and engagement.

Prompt engineering can also play a role in dialogic forms of creativity
and critical thinking by encouraging learners to brainstorm, solve problems,
and explore different perspectives with LLM (Sasson Lazovsky et al.,
2024). Frameworks like CLEAR (Clarity, Logic, Engagement, Adaptability,
Reflection), introduced by Lo (2023b), offer practical guidance for teaching
prompt engineering as part of digital literacy. By blending technical skills
with reflective practices, these approaches ensure that learners are equipped
not only to interact with LLM but also to think deeply about the tools
they’re using.

Ethical considerations should be a key part of prompt engineering, yet
they are often overlooked in strategies that focus solely on optimizing
performance or improving output quality. While crafting prompts to



maximize effectiveness is important, it’s equally critical to consider the
broader implications of using LLM systems. This includes addressing
issues like bias, protecting data privacy, and critically evaluating the
reliability of LLM-generated content (Zaghir et al., 2024; Schmidt et al.,
2024). Without these ethical guardrails, prompt engineering risks becoming
a purely technical exercise, disconnected from the social and moral
responsibilities tied to LLM use.

Critical thinking is essential to bridging this gap, enabling learners and
educators to engage thoughtfully with LLM-generated outputs (Cain, 2024).
For example, when using LLM to provide a summary of a historical event,
critical thinking encourages users to ask, “What perspectives might this
summary leave out? Is the language neutral, or does it carry unintended
biases?” These questions go beyond assessing surface-level accuracy,
pushing users to critically examine the underlying assumptions and
limitations of the model’s responses. Similarly, when designing prompts, a
critical thinker doesn’t stop at “Summarize this article.” Instead, they refine
the request with ethical considerations in mind, such as, “Summarize the
following article in 200 words, emphasizing diverse perspectives and
potential limitations in the author’s argument.” By incorporating these
layers of critical thought, prompt engineering becomes not just a tool for
performance but also a practice that fosters responsible and reflective LLM
use.

At this point in GenAI development, there is really no single ‘right’ way
to phrase prompts. The effectiveness of a prompt or series of prompts often
depends on the context, the task at hand, and the goals of the user. Some
prompts might work well for creative brainstorming, while others are better
suited for generating concise summaries or answering factual questions.
This flexibility is both a strength and a challenge. It allows for a wide range



of possibilities, but it also requires users to experiment, reflect, and refine
their approach to achieve the desired results. What works for one user or
scenario might not work for another, underscoring the importance of
iterative design, critical thinking, and a willingness to adapt. As such, the
process of crafting prompts is less about finding the ‘perfect’ phrasing and
more about learning to engage with LLM systems in a way that aligns with
specific needs and outcomes.

As the bridge between human intent and GenAI performance, prompt
engineering should be considered a multidisciplinary practice that combines
technical skills, creativity, and ethical awareness (Cain, 2024; Marvin et al.,
2024). While it’s often viewed as a purely technical task, prompt
engineering’s potential goes far beyond that. In education, prompt
engineering can do more than build LLM literacy—it can open doors to a
spectrum of personalized and inclusive learning experiences, inspire
creativity, and cultivate critical thinking skills (Schmidt et al., 2024; Zhou
et al., 2023). It equips students and educators not just to use LLM
effectively, but to do so responsibly by addressing challenges like bias,
ethical dilemmas, and the limitations of LLM systems (Cain, 2024; Zaghir
et al., 2024). As research continues to advance and prompt engineering
evolves, it deserves to be seen as a key strategy for helping individuals
navigate and thrive in an increasingly LLM-driven world.

3. EPICC: Components and Application
As GenAI tools become more integrated into education, it’s clear that using
them effectively requires more than just technical know-how. Success
depends on a thoughtful approach that combines knowledge, creativity, and
reflection. That’s where EPICC comes in—a framework designed to guide
students and educators in mastering prompt engineering while ensuring
their interactions with LLM are purposeful and ethical.



EPICC provides a clear and practical structure built around three
essential components—content knowledge, critical thinking, and iterative
design. Content knowledge ensures that students and educators have the
foundational understanding needed to craft precise and meaningful prompts,
enabling LLM outputs to align closely with the goals of a task. Critical
thinking plays a vital role in evaluating the quality of those outputs,
encouraging users to ask thoughtful questions, recognize biases, and refine
their prompts to achieve better results. These two components are framed
within the reflective practice of iterative design, where prompts are
continuously tested, adjusted, and improved based on feedback and
outcomes.

By connecting these elements, EPICC transforms prompt engineering
into an intentional and dynamic process. It empowers learners and
educators to engage deeply with GenAI tools, not just as users but as active
participants in shaping LLM interactions. This structured approach helps
ensure that LLM use is both effective and ethical, while fostering skills like
creativity, inquiry, and problem-solving that are essential for navigating the
complexities of education in an LLM-driven world.

3.1 Three Core Components of EPICC
At the heart of EPICC, the three essential elements work together to guide
effective and ethical prompt engineering, providing a strong foundation for
both educators and learners.

Content knowledge is the starting point—it gives users the subject
expertise they need to craft clear, precise prompts that generate meaningful
outputs. For example, a history teacher designing a prompt about the
American Revolution might ask, “Explain the causes of the American
Revolution with a focus on economic factors.” This kind of specificity



ensures the LLM provides accurate, relevant responses while aligning with
the learning objective.

Critical thinking is what makes the process dynamic. It encourages
users to analyze LLM- generated outputs, question their reliability, and
refine prompts for better results. For instance, students can evaluate an
LLM response for gaps or biases, while teachers can adjust prompts to
clarify focus or add constraints. This back-and-forth not only improves
output quality but also teaches valuable skills like inquiry and problem-
solving.

Finally, iterative design ties it all together by emphasizing
experimentation and continuous improvement. Starting with a broad prompt
like “Explain climate change”, users can refine it step by step—adding
context, narrowing the focus, or specifying examples—to align the response
more closely with their goals. This iterative process helps students and
educators develop adaptability, resilience, and a deeper understanding of
how prompts shape LLM behavior.

3.2 Walkthrough of EPICC
Figure 1 illustrates the interconnected components of content knowledge,
critical thinking, and iterative design of EPICC. Each component supports
and reinforces the others, creating a cycle of continuous improvement in
prompt engineering.



Fig. 1 EPICC for effective prompt engineering.⏎
Use + Content Knowledge: Content knowledge lays the foundation for

effective prompts by ensuring they are specific, accurate, and goaloriented.
This starts with identifying a need or interest and using subject expertise.
For example, a science student might ask, “Explain how photosynthesis
impacts the carbon cycle,” tailoring the prompt based on what they know
and want to learn. As users evaluate LLM outputs, content knowledge helps
users recognize whether responses are contextually relevant while fostering
deeper engagement with the material.





Initial Responses: The quality of a prompt directly influences the
relevance and detail of the LLM’s initial response. A general prompt like
“Explain climate change” might yield a broad answer, while a more focused
one, such as “Describe the role of greenhouse gases in driving global
temperature changes over the last century,” generates a detailed, targeted
response.

This stage underscores the reciprocal relationship between prompt design
and LLM output: the better the initial prompt reflects the user’s intent, the
more effectively the LLM can align its response with the desired objectives.



Through this interaction, users can explore the nuances of how prompts
shape LLM outputs, providing an entry point for iterative refinement and
deeper learning.

Content Knowledge + Critical Thinking: Once an LLM response is
generated, critical thinking comes into play. Users compare the output
against their prior knowledge, evaluating its accuracy, relevance, and
alignment with their goals. For example, a history student might assess an
LLM summary of the American Revolution for gaps or oversimplifications.
This reflection informs the next iteration, allowing users to refine prompts



for clearer, more precise responses while fostering deeper cognitive
engagement and analytical skills.

By critically evaluating the output, the user gains insight into how well
the prompt guided the LLM and identifies areas for improvement. This
reflective process informs iterative design, allowing users to refine their
prompts with greater precision to elicit more meaningful and contextually
accurate responses. The interplay between content knowledge and critical
thinking at this stage not only enhances the quality of GenAI outputs but
also fosters deeper cognitive engagement, encouraging users to think
critically and refine their approach iteratively.

Iterative Design: The process culminates in the iterative refinement of
prompts, where users evaluate how well the AI’s revised output aligns with
their intent. For instance, after refining a prompt to “the economic causes of
the Great Depression with an emphasis on agricultural overproduction”,
users assess whether the response fully addresses this scope. This phase
emphasizes experimentation and adjustment, reinforcing both skill
development in prompt engineering and critical engagement with AI tools.
Over time, this iterative cycle leads to more meaningful interactions and a
stronger understanding of how to work effectively with LLMs.



More concisely, a practical walkthrough of the framework involves the
following steps:

1. Identify the Goal: Define the purpose of the prompt and the desired
LLM output.

2. Craft the Initial Prompt: Use content knowledge to design a clear
and focused input.

3. Evaluate the Output: Analyze the LLM response for relevance,
accuracy, and quality.



4. Refine the Prompt: Apply critical thinking to adjust the prompt,
addressing any weaknesses or gaps.

5. Repeat the Process: Continue iterating until the LLM output meets
the intended goal.

This iterative cycle ensures that prompt engineering becomes a dynamic
and reflective practice, enabling users to maximize the potential of GenAI
tools in educational contexts.

EPICC provides a simple yet powerful structured approach for
integrating prompt engineering into education. By focusing on content
knowledge, critical thinking, and iterative design, the framework aligns
with educational goals such as inquiry-based learning and skill
development. It offers students and educators a pathway for engaging with
GenAI tools thoughtfully and effectively, fostering deeper learning and
ethical use. Through its practical application, EPICC has the potential to
enhance both teaching and learning, preparing students and educators to
navigate the opportunities and challenges of LLM-driven education.

4. Foundations of EPICC

4.1 Theoretical Foundations
EPICC as a framework does not exist in a technological vacuum, but rather
is built on well-established educational theories, particularly constructivism
and self-regulated learning, which focus on the active, reflective nature of
creating knowledge.

Constructivism views learners as active participants in shaping their
own understanding, emphasizing the importance of engaging with content,
context, and tools to construct meaning (Piaget, 1972; Vygotsky, 1978).
Instead of passively absorbing information, learners build knowledge



through interaction and reflection, using their prior understanding as a
foundation for new insights (Bruner, 1966). This perspective aligns
naturally with prompt engineering, where students engage with GenAI
systems by crafting and refining prompts, experimenting with how their
inputs shape the AI’s responses.

In practice, prompt engineering encourages learners to explore the
relationship between the questions they ask and the information they
receive, turning trial, reflection, and adjustment into key parts of the
learning process. As such, a student studying history might start with a
broad prompt like, “Explain the causes of the American Revolution,” and
then refine it to focus on economic factors. Each iteration helps students
build on what they already know, aligning with constructivist principles of
integrating new knowledge into existing frameworks (Fosnot, 2005; Allen,
2022).

This process isn’t just about retrieving information—it’s about actively
constructing understanding. By reflecting on AI outputs, learners engage in
metacognitive practices, critically analyzing how the information aligns
with their goals and making adjustments to deepen their comprehension
(Priyamvada, 2023). Prompt engineering provides a hands-on way for
learners to embody constructivist ideas, empowering them to take
ownership of their educational experiences while developing transferable
skills in problem-solving and inquiry.

Self-Regulated Learning (SRL) also aligns closely with EPICC by
emphasizing the processes of planning, monitoring, and refining—
mirroring EPICC’s core components of content knowledge, critical
thinking, and iterative design (Zimmerman, 2002; Panadero, 2017). In the
forethought phase, learners draw on content knowledge to set goals and
craft initial prompts. For example, a student studying biology might use



their understanding of photosynthesis to ask, “Describe the stages of
photosynthesis and their role in energy production.” This planning ensures
that prompts are specific, accurate, and aligned with learning objectives
(Schunk & Greene, 2018). During the performance phase, learners engage
with AI outputs, applying critical thinking to evaluate their relevance,
accuracy, and quality. For instance, the student might analyze the AI’s
response for gaps or inaccuracies and decide whether revisions are needed
to better meet their goals (Lawson & Lawson, 2013).

The self-reflection phase of SRL parallels EPICC’s focus on iterative
design, where learners refine their prompts based on the feedback they
receive (Zimmerman, 2002; Panadero, 2017). By revising a broad prompt
like “Explain climate change” to something more targeted, such as
“Describe the role of greenhouse gases in driving global temperature
changes over the last century,” students deepen their understanding of how
specificity shapes AI behavior (Schunk & Greene, 2018). This iterative
process not only improves output quality but also fosters metacognition,
adaptability, and a growth mindset (Lawson & Lawson, 2013). Together,
SRL and EPICC provide a structured, reflective approach to using GenAI
tools, empowering learners to actively plan, evaluate, and refine their
interactions for meaningful and effective learning.

4.2 Cognitive Frameworks
Metacognition—thinking about your own thinking—is a powerful skill that
connects directly to the iterative learning process emphasized in EPICC. It’s
all about monitoring, evaluating, and adjusting approaches to achieve better
outcomes (Flavell, 1979; Schraw & Dennison, 1994). In prompt
engineering, metacognition comes into play as learners craft prompts,
evaluate the AI’s responses, and refine their inputs to improve relevance
and accuracy. This cycle of reflection and refinement transforms prompt



engineering from a purely technical activity into a thoughtful, dynamic
learning process.

For example, a student working on a project about climate change might
begin with a general prompt like “Explain climate change” but realize the
response is too broad. Using metacognitive strategies, they reflect on the
output, identify the need for more specificity, and refine the prompt to
“Describe the role of greenhouse gases in driving global temperature
changes over the last century.” This process helps the student deepen their
understanding of both the subject and how to interact with GenAI
effectively (Schraw & Moshman, 1995; Efklides, 2018).

Metacognition also encourages learners to embrace mistakes as part of
the learning journey. When an AI output doesn’t meet expectations, it’s an
opportunity to evaluate why and adjust accordingly. This reflective practice
not only improves immediate results but also builds adaptability, resilience,
and a growth mindset (Pintrich, 2002; Deng et al., 2020). Recent research
highlights the importance of embedding metacognitive strategies in digital
learning environments to help learners manage cognitive load and engage
more deeply with their work (Winne, 2018; Azevedo, 2005). By weaving
metacognition into the iterative design process, EPICC equips learners with
skills to not only master GenAI tools but also navigate complex learning
challenges with confidence and creativity.

4.3 Creativity
The EPICC framework fosters creativity by encouraging learners and
educators to approach prompt engineering as an iterative and exploratory
process. This iterative cycle reflects insights from creativity research,
particularly the interplay between problem identification and solution
refinement (Dorst & Cross, 2001). Within EPICC, users refine prompts,
assess outcomes, and adapt their approaches— mirroring how designers



iteratively work through challenges to discover innovative solutions. This
process promotes flexible thinking and creative problem-solving, where
reflection and adaptation drive progress (Schön, 1983).

Creativity in this framework is deeply rooted in the integration of logical,
critical, and lateral thinking. Logical thinking allows users to approach
tasks with structured reasoning, ensuring clarity and focus in their prompts
(Horikami & Takahashi, 2022). Critical thinking enables the evaluation of
AI outputs, helping users identify strengths, weaknesses, and areas for
refinement (Kaufman & Beghetto, 2009). Lateral thinking encourages
exploration of alternative perspectives and creative approaches to phrasing
prompts prompts (Short & Short, 2023). For instance, after receiving an
overly broad response to a question on renewable energy, a user might
refine their query to focus on specific comparisons, such as the relative
efficiencies of wind and solar power in urban areas. This interplay of
thought processes ensures that creativity is not just about generating ideas
but also about honing them to align with specific goals.

The iterative nature of EPICC fosters a deep immersion in the creative
process, where users become absorbed in refining and improving prompts
to achieve better results. By continuously experimenting, analyzing, and
adapting their approaches, learners develop a sense of engagement and
satisfaction in their work. This immersion transforms prompt engineering
into a dynamic practice that rewards curiosity and persistence, encouraging
users to explore how incremental improvements can lead to meaningful
progress (Csikszentmihalyi, 1996). EPICC turns this iterative process into
an opportunity for creative discovery, allowing learners to uncover insights
that extend beyond the immediate task.

Through this reflective and iterative engagement, EPICC transforms
prompt engineering into a purposeful creative journey. It equips learners



and educators with transferable problem-solving skills, enabling them to
navigate complex challenges by blending structured reasoning, critical
analysis, and innovative thinking. These skills not only enhance interactions
with GenAI tools but also support broader educational and professional
objectives.

5. EPICC and Ethics
Ethical awareness can stem naturally from using EPICC as both a guiding
framework and a practical tool, helping learners and educators navigate the
challenges and responsibilities of working with GenAI in educational
settings. Generative LLM systems are incredibly powerful, but they aren’t
perfect—they can produce biased or inaccurate outputs. That’s why EPICC
emphasizes self-reflection and critical thinking throughout the prompt
engineering process, ensuring that users remain thoughtful and intentional
in their interactions (Floridi & Cowls, 2019). Ethical considerations, as
Nguyen et al. (2023) highlight, are particularly critical when engaging with
tools that influence educational practices at scale.

Self-reflection, as described by Schön (1983), plays a crucial role in how
learners approach content knowledge and the purpose of using GenAI for
any particular task. Before crafting a prompt, users are encouraged to
consider what they know about the subject, their goals, and how they want
the AI to contribute to their work. This reflective process ensures that
interactions with GenAI are guided by a clear understanding of the task at
hand, fostering purposeful and meaningful use of the technology. Akgun
and Greenhow (2022) discuss how such reflective practices are essential in
K-12 settings, where ethical challenges often emerge.

Critical thinking comes into play when evaluating the outputs generated
by LLMs. Bias often stems from the training data used to develop these
systems, and if left unchecked, it can perpetuate stereotypes or



misinformation (Nguyen et al., 2023). EPICC encourages users to critically
assess AI-generated responses for balance, fairness, and inclusivity. For
instance, Srinivasan (2022) emphasizes the importance of using critical
thinking to evaluate whether AI outputs reflect diverse perspectives or
inadvertently reinforce biased viewpoints. By identifying such patterns,
users can adjust their prompts to guide the AI toward more equitable
outputs.

Reliability is another critical ethical consideration. Sometimes, LLMs
produce what’s known as hallucinations—responses that sound convincing
but are factually incorrect or unsupported. Floridi and Cowls (2019)
underline the importance of equipping users with strategies to scrutinize the
accuracy and reliability of these outputs. EPICC supports this by fostering
skills in information literacy and media evaluation, ensuring that learners
remain aware of the limitations of GenAI systems while prioritizing
trustworthy information.

Finally, EPICC highlights the broader importance of using GenAI tools
responsibly in education. This includes respecting data privacy,
understanding the capabilities and constraints of LLMs, and ensuring that
these tools enhance learning rather than replace human judgment.
Srinivasan (2022) suggests that integrating ethical principles into everyday
use of AI tools prepares learners and educators to adopt these technologies
thoughtfully and responsibly. By weaving self- reflection and critical
thinking into every step of prompt engineering, EPICC transforms GenAI
into a tool for empowerment rather than a source of unintended harm
(Akgun & Greenhow, 2022).

As an emerging framework for an emerging technology, it’s important
that EPICC be built on a strong theoretical foundation that integrates
constructivist and self-regulated learning principles with cognitive and



ethical considerations. It positions prompt engineering as a dynamic process
of active engagement, critical reflection, and iterative improvement. By
addressing the cognitive and ethical dimensions of working with GenAI,
EPICC provides a comprehensive approach for educators and learners to
use LLM tools meaningfully, effectively, and responsibly. These
foundational principles ensure that EPICC aligns with educational goals of
fostering creativity, critical thinking, and ethical awareness, while preparing
students and teachers for the complexities of an LLM-driven world.

6. Practical Strategies for Educators and Learners
EPICC is not meant to be just a theoretical model; its three primary
components provide the basis for actionable strategies that educators and
students can use to harness the potential of GenAI and LLM capabilities in
education. The following section offers a few basic strategies for educators
and students on how the framework can support practical applications in
classrooms, enhance ethical awareness, and encourage meaningful
engagement with LLM tools.

6.1 Practical Strategies for Educators
6.1.1 Designing LLM-Enhanced Lesson Plans with EPICC
Educators can use EPICC to design lesson plans that integrate LLM tools in
ways that align with instructional goals. By leveraging the framework’s
components, teachers can create prompts that guide LLM systems to
generate relevant and context-specific outputs. For example, a science
teacher might design a prompt asking, “Explain the greenhouse effect and
its impact on global temperatures, using examples from the past 50 years.”
This prompt reflects the teacher’s content knowledge and ensures that the
LLM-generated response aligns with the curriculum.



To make lesson plans more engaging, educators can include EPICC-
based prompt engineering tasks where students refine LLM outputs. In a
science lesson, for instance, students could start with a broad prompt like
“Describe the greenhouse effect, evaluate the response, and refine the
prompt to focus on specific factors such as the role of carbon dioxide or the
impact of industrial emissions.” This iterative process reinforces critical
thinking and allows students to engage deeply with the subject matter.

Table 1 outlines a step-by-step approach to incorporating EPICC into an
LLM-enhanced lesson on greenhouse gases. By following this structured
process, educators can guide students through inquiry-driven learning while
reinforcing content knowledge, critical thinking, and iterative design. This
activity encourages students to refine their prompts, critically evaluate AI-
generated responses, and apply their findings to broader discussions on
climate science and environmental policy.

Table 1 Integrating EPICC into LLM-Enhanced Lesson Planning:
Greenhouse Gases Activity.⏎

Step Strategy’ Example
Application

EPICC Component(s)
Applied

1. Define
the
Learning
Objective

Identify the
instructional
goal and the
role LLM will
play in the
lesson.

A science teacher
wants students to
explore the causes
and effects of the
greenhouse effect.

Content Knowledge
Ensures students build
foundational
understanding before
engaging with LLM
tools.

2. Craft
an
Initial
Prompt

Develop a
clear,
structured
prompt that
aligns with
content
knowledge.

“Explain the
greenhouse effect
and its impact on
global
temperatures,
using examples
from the past 50
years.”

Content Knowledge &
Critical Thinking -
Requires prior
knowledge and clarity in
framing the question.



Step Strategy’ Example
Application

EPICC Component(s)
Applied

3.
Evaluate
the AI
Output

Guide students
in assessing
the relevance,
accuracy, and
bias of the
response.

Students analyze
whether the LLM’s
explanation
accurately
describes the role
of greenhouse
gases.

Critical Thinking -
Encourages students to
assess bias,
misinformation, and
accuracy in LLM
responses, promoting
awareness of ethical AI
issues.

4. Refine
the
Prompt

Encourage
students to
modify the
prompt to
elicit more
precise or
focused
responses.

Adjust the prompt
to “Describe the
role of carbon
dioxide in the
greenhouse effect
and its impact on
global warming.”

Iterative Design &
Critical Thinking -
Promotes improvement
through revision and
deeper engagement.

5.
Compare
and
Reflect

Have students
compare LLM
responses to
their own
knowledge
and course
materials.

Students critique
LLM responses by
comparing them to
climate science
resources and class
discussions.

Content Knowledge &
Critical Thinking -
Reinforces
understanding by
integrating AI output
with existing
knowledge.

6. Apply
to
Broader
Learning

Extend the
activity by
incorporating
LLM insights
into
discussions,
projects, or
assessments.

Students use
refined LLM
outputs to support
a debate on climate
policy and
environmental
responsibility.

Iterative Design &
Critical Thinking -
Encourages students to
refine their
understanding and apply
insights in new contexts.

Taking a step-by-step approach helps educators integrate EPICC into
lesson planning in a way that enhances inquiry-based learning, activates



application of prior and emerging content knowledge, creates opportunities
for critical thinking and evaluation of new perspectives, and fosters ethical
engagement with AI tools. By encouraging students to iterate on prompts
and evaluate responses, this method fosters deeper learning and more
meaningful interactions with LLM technology.

6.1.2 Teaching Ethical Considerations in LLM Interactions
Incorporating ethical discussions into LLM-enhanced lesson plans is
essential for fostering responsible use of AI tools. Educators can use EPICC
to teach students how to identify biases, evaluate the reliability of LLM-
generated content, and reflect on the ethical implications of using AI in
education. By embedding these considerations into instruction, teachers can
help students develop a deeper awareness of how AI-generated information
shapes their understanding of historical events.

For example, in a history lesson on the developments leading to World
War II, students might begin with a broad prompt like, “Summarize the key
events leading to World War II.” After reviewing the AI-generated
response, they can critically analyze it for biases, omissions, or
inaccuracies. LLM-generated content may emphasize dominant narratives
while overlooking perspectives from marginalized groups or less commonly
discussed contributing factors. EPICC provides a structured approach for
addressing these gaps, helping students refine their prompts to encourage
more comprehensive and accurate outputs.

Beyond identifying missing information, EPICC guides students in
evaluating how AI-generated content frames historical events. Does the
summary assign blame disproportionately to certain nations? Does it omit
economic factors in favor of political narratives? Are key figures or events
underrepresented? These questions drive ethical inquiry and help students
recognize that AI tools are not neutral sources of information but are shaped



by the data they have been trained on. Through repeated engagement with
LLMs, students learn to refine their questioning strategies, challenge AI-
generated conclusions, and critically compare responses against primary
sources and scholarly research. This process not only strengthens their
historical analysis skills but also reinforces the importance of ethical
engagement with technology.

Table 2 provides a structured approach for integrating EPICC into an
LLM-enhanced history lesson on the developments leading to World War II.
It outlines steps to help students critically analyze AI-generated content,
identify biases, and refine prompts to develop a more nuanced
understanding of historical narratives.

Table 2 Integrating EPICC into LLM-Enhanced Lesson Planning: WWII
Developments Activity.⏎

Step Strategy’ Example Application EPICC Component(s)
Applied

1. Define
the
Learning
Objective

Establish the
instructional
goal and
ethical focus
of the lesson.

A history teacher wants
students to evaluate
how AI-generated
summaries present the
causes of WWII.

Content Knowledge
Ensures students
build foundational
understanding before
engaging with LLM
tools.

2. Craft
an
Initial
Prompt

Develop a
structured
prompt that
aligns with
historical
analysis.

“Summarize the key
events leading to World
War II, including
political, economic,
and social factors.”

Content Knowledge
& Critical Thinking
- Requires prior
knowledge and
clarity in framing the
question.



Step Strategy’ Example Application EPICC Component(s)
Applied

3.
Evaluate
the AI
Output

Guide
students in
assessing
biases,
accuracy,
and missing
perspectives.

Students review the AI
response and identify
gaps in representation,
such as missing
perspectives from
smaller nations.

Critical Thinking -
Encourages students
to assess bias,
misinformation, and
accuracy in AI
responses.

4. Refine
the
Prompt

Modify the
prompt to
generate a
more
inclusive and
balanced
response.

Adjust the prompt to
“Summarize the key
events leading to
WWII, including
perspectives from
European, Asian, and
African nations.”

Iterative Design &
Critical Thinking -
Promotes
improvement through
revision and deeper
engagement.

5.
Compare
and
Reflect

Have
students
analyze AI-
generated
responses
alongside
historical
sources.

Students critique AI
responses by
comparing them to
primary sources and
scholarly accounts.

Content Knowledge
& Critical Thinking -
Reinforces
understanding by
integrating AI output
with existing
knowledge.

6. Apply
to
Broader
Learning

Extend the
activity by
discussing
ethical
implications
of AI in
historical
analysis.

Students debate
whether AI-generated
histories reinforce
dominant narratives or
provide new insights.

Iterative Design &
Critical Thinking -
Encourages students
to refine their
understanding and
apply insights in new
contexts.

This simple activity again highlights how educators might go about
integrating EPICC into history or similar social studies lessons while
fostering ethical awareness. By guiding students through prompt iteration



and critical evaluation, this method enhances historical inquiry, critical
thinking, and responsible engagement with AI-generated content.

6.2 Practical Strategies for Learners
6.2.1 Developing Critical Thinking through Iterative Prompt Refinement
By design, EPICC empowers students to take an active role in their learning
by using prompt engineering as a tool for developing critical thinking skills.
The process of iterative refinement encourages students to engage deeply
with content, evaluate AI-generated responses, and make thoughtful
adjustments to improve the quality and relevance of information. Just as in
real-world problem-solving, where refining ideas and strategies is essential,
prompt iteration allows students to finetune their questions and deepen their
understanding of complex topics.

This approach also fosters metacognitive awareness, helping students
reflect on how they frame questions and how different phrasings influence
AI-generated responses. When students assess an initial LLM output, they
practice identifying gaps, biases, or overly general statements that may need
refinement. By actively modifying their prompts, they develop the ability to
question information sources, recognize patterns in AI behavior, and refine
their research techniques.

For example, a student working on a research project might start with a
broad prompt such as, “Explain the economic causes of the Great
Depression.” After analyzing the response based on their knowledge of
course readings and other resources, they might notice that the AI provides
a general overview without emphasizing key contributing factors. In this
way, they come to realize they are more knowledgeable about the purpose
of the inquiry than the LLM and will have to provide guidance based on
this knowledge. To refine their inquiry, they could adjust the prompt to,
“Explain the role of the stock market crash and agricultural overproduction



in causing the Great Depression.” This refinement prompts the AI to focus
on more specific elements, leading to a more targeted and informative
response.

As students iterate on their prompts, they not only enhance their research
process but also develop resilience and adaptability—skills that are
essential in both academic and professional settings. The ability to critically
assess information and refine one’s approach based on feedback is a
cornerstone of lifelong learning. Through EPICC, students gain hands-on
experience in structuring inquiries, assessing responses, and improving their
understanding with each iteration.

6.2.2 Using GenAI for Personalized Learning, Creativity, and
Collaboration
Working directly with large language models offers unique opportunities for
students to personalize their learning experiences, and using EPICC in
conjunction with their prompt engineering practices can help them
personalize further. By tailoring prompts to their individual needs and
interests, students can explore topics in ways that are meaningful to them.
For example, a student interested in environmental science could use a
prompt like, “Describe how renewable energy sources can mitigate climate
change, focusing on recent technological advancements.” This kind of topic
exploration can allow students to experience new and emerging information
and perspectives that likely goes beyond what a static curriculum base can
cover.

By supporting exploration and personalized learning experiences, EPICC
also supports creativity by enabling students to use LLMs for brainstorming
and ideation. In a language arts class, students might use prompts to
generate story ideas or develop character profiles. For instance, a prompt
like, “Create a character who lives in a futuristic city and struggles with



LLM surveillance,” draws upon students’ knowledge of current social
conditions as well as their emerging technological awareness and beliefs.
Juxtaposing this with the LLMs responses could inspire creative writing
projects that help students reconcile new information with their own
observational insights while simultaneously encouraging critical
engagement with contemporary issues. This could be an ideal way for
students who are shy or uncertain about their language skills (like students
of a foreign language) to explore writing and creative world-making on
their own terms.

Collaboration is another area where GenAI tools, guided by EPICC
principles, can enhance learning. Group projects that feature LLM
assistance can incorporate prompts that encourage teamwork and shared
inquiry. For example, students working on a STEM project could use a
prompt like, “Generate a list of innovative ways to reduce plastic waste in
urban environments,” and then collaboratively refine the output to align
with their project goals.

6.3 Collaborative Application of EPICC: Bridging Teaching and
Learning
While EPICC provides a structured approach to effective prompt
engineering, its true potential is realized when teachers and students work
together to apply its principles in learning experiences. Learning is most
meaningful when it is a shared process, where both educators and learners
engage in inquiry, refine their understanding, and co-construct knowledge.
By fostering a collaborative environment, EPICC enhances the integration
of LLM tools in ways that promote deeper critical engagement, ethical
awareness, and innovation.

6.3.1 Creating a Shared Learning Process



In an ideal version of our future of learning, teachers and students bring
complementary strengths to the application of EPICC. Educators contribute
their subject matter expertise, pedagogical knowledge, and experience in
structuring learning environments, while students bring curiosity, diverse
perspectives, and firsthand engagement with emerging AI tools. By openly
discussing the use of LLMs in coursework, educators and learners can build
a shared understanding of how prompt engineering can enhance—not
replace—critical thinking and creativity.

For instance, in a literature class, a teacher might introduce EPICC by
designing an exercise in which students collaboratively craft prompts to
explore different narrative styles. The educator provides guidance on
structuring effective queries, but students actively engage in refining
prompts and evaluating responses. This reciprocal learning dynamic ensures
that both parties benefit—educators see firsthand how students interact with
AI tools, while students develop a deeper appreciation for intentional
inquiry and iterative refinement.

6.3.2 Encouraging Teacher-Student Co-Development of Prompts
One of the most effective ways to integrate EPICC into the classroom is
through the co- development of prompts. Instead of solely presenting
students with pre-written prompts, teachers can engage them in the process
of crafting and refining questions that align with learning objectives. This
practice encourages active participation, metacognitive awareness, and
ownership of the learning experience.

For example, in a history lesson on major technological advancements, a
teacher might begin with a broad question such as, “What were the key
innovations that transformed global industries?” Working collaboratively,
the class can refine this into a series of targeted prompts, such as:



“Describe the role of steam power in the Industrial Revolution and
its longterm impact.”
“How did telecommunications advancements influence
globalization?”
“Compare the effects of early computing technology on different
sectors of society.”

This iterative process mirrors real-world inquiry, reinforcing the EPICC
components of content knowledge, critical thinking, and iterative design. It
also allows students to see how different phrasings can shape the depth and
focus of AI-generated responses.

6.3.3 Building Ethical Awareness Through Dialogue
One of the most critical aspects of integrating EPICC into educational
settings is fostering ethical awareness. LLMs, while powerful, can reinforce
biases, produce misinformation, and present content with implicit
assumptions. Teachers and students must work together to critically analyze
AI-generated outputs and discuss their broader implications.

A collaborative ethical inquiry model can be implemented by having
students and teachers co- evaluate AI responses. After generating a
response using an LLM, educators can facilitate a discussion with guiding
questions such as:

What perspectives are emphasized in this response?
Are there missing voices or viewpoints?
How does the phrasing of our prompt influence the AI’s answer?
What ethical concerns arise from using AI to analyze historical,
cultural, or scientific topics?



This shared analysis helps students recognize LLM limitations while
reinforcing their role as critical consumers and ethical users of technology.
By modeling how to question and refine AI- generated outputs, teachers
help students develop responsible engagement strategies that extend beyond
the classroom.

6.3.4 Fostering a Culture of Experimentation and Iteration
When teachers and students collaborate on applying EPICC, they cultivate a
culture of experimentation and iterative learning. Rather than viewing LLM
responses as definitive answers, they treat them as starting points for further
inquiry. This shift in mindset encourages students to view mistakes and
revisions as integral to the learning process, reinforcing persistence,
adaptability, and intellectual curiosity.

For example, in a STEM course, students working on a project might use
LLMs to generate initial design ideas for an engineering challenge. Instead
of settling on the first AI-generated response, the class can engage in an
iterative refinement cycle:

1. Analyze the AI-generated response for feasibility, innovation, and
alignment with project goals.

2. Refine the prompt to target specific constraints or requirements.
3. Compare multiple AI outputs and synthesize insights.
4. Develop a final prototype informed by both AI suggestions and

human expertise.

Through this structured collaboration, students internalize the iterative
nature of problem-solving and gain confidence in their ability to direct and
shape AI interactions effectively.

The EPICC framework provides educators and learners with structured
strategies to effectively integrate LLMs into learning environments,



fostering critical engagement, ethical awareness, and iterative inquiry.
Educators can design LLM-enhanced lesson plans by guiding students
through structured prompt development and evaluation, ensuring AI-
generated responses align with curricular objectives. Ethical considerations
are woven into instruction by teaching students to critically assess AI
outputs for biases, misinformation, and perspective gaps. Students, in turn,
develop critical thinking skills through iterative prompt refinement and
personalized learning experiences that encourage creativity and self-
directed exploration. By working collaboratively, teachers and students
create a shared learning process that not only enhances comprehension but
also fosters responsible and innovative engagement with AI technologies.

7. Challenges and Considerations in LLM-Enhanced Education
LLM AI has immense potential to enhance teaching and learning, but its
adoption in education also brings significant challenges. Ethical issues,
practical barriers, and gaps in training and implementation must be
addressed to ensure that LLM tools are used effectively and responsibly.
This section examines these challenges and offers strategies for overcoming
them, with a focus on how EPICC can support thoughtful integration of
GenAI in education.

7.1 Ethical and Technical Challenges in LLM Use
Certainly, one of the most pressing ethical challenges currently facing
educators and learners when using GenAI is addressing bias in LLM-
generated content. Bias can stem from the training data used to build LLMs,
which may reflect existing inequalities or perpetuate stereotypes. For
example, prompts asking for examples of leadership might produce
responses that disproportionately feature male figures, reflecting historical
biases in leadership representation. Without critical evaluation, such biases



can reinforce inequalities rather than challenge them. EPICC emphasizes
critical thinking in part as it relates to ethics and ethical awareness,
equipping educators and learners to critically assess LLM outputs and
refine prompts to produce more equitable responses.

A technological concern involves hallucinations, where LLM generates
plausible-sounding but factually incorrect information. Hallucinations can
mislead learners, particularly when the content appears authoritative. For
instance, an LLM might generate a fabricated citation or present incorrect
historical dates with confidence. Using EPICC’s capacity for structuring
shared learning experiences, educators can guide students to verify LLM-
generated content against reliable sources, reinforcing skills in information
literacy and critical evaluation.

Misinformation generated by LLMs presents both ethical and
technological challenges, particularly in contexts where learners may lack
the expertise to identify inaccuracies. LLM systems trained on vast datasets
from the internet may unintentionally propagate falsehoods. By embedding
critical thinking into the prompt engineering process, EPICC encourages
users to question and crosscheck LLM outputs, fostering a culture of
skepticism and inquiry that is essential for navigating today’s information
landscape.

A crucial aspect of this process is pre-prompt awareness—recognizing
one’s own level of content knowledge before engaging with an LLM. When
learners assess their familiarity with a topic before crafting a prompt, they
can better anticipate potential gaps in their understanding and determine
when external validation is necessary. For instance, if a user is aware that
they have limited knowledge of a particular historical event or scientific
concept, they can preemptively approach the AI’s response with caution,
actively seeking corroboration from reputable sources. This metacognitive



approach transforms prompt engineering from a passive querying process
into an active, self-regulated learning strategy, where the user not only
refines their inquiry but also cultivates habits of verification and deeper
exploration.

By explicitly incorporating content knowledge assessment as a prelude to
prompting, EPICC helps learners develop a heightened sensitivity to the
reliability of information, reinforcing the importance of cross-referencing
and critical engagement in an age of algorithmically generated content.

7.2 Practical Challenges
In addition to ethical concerns, practical challenges hinder the widespread
adoption of LLM AI in education. Institutional barriers are a significant
obstacle. Schools and districts may lack the infrastructure or funding
needed to implement LLM tools effectively. Concerns about data privacy,
the cost of licensing LLM platforms, and the potential misuse of these tools
further complicate their integration into educational systems.

Another challenge is the lack of teacher training. Currently, many
educators are still unfamiliar with how to use LLM tools effectively or how
to integrate them into their instructional practices. Without proper training,
teachers may struggle to design meaningful prompts, evaluate LLM outputs
critically, or address ethical concerns.

If it were embedded in future teacher education programs, EPICC could
offer a structured approach to overcoming these gaps, but it must be
accompanied by continuing professional development programs that equip
educators with the knowledge and skills to apply the framework in their
classrooms.

7.3 Strategies for Overcoming Challenges



To address these ethical, technological, and practical challenges, EPICC can
serve as a foundation for integrating LLM capabilities into teacher
education programs. By incorporating the framework into professional
development initiatives, educators can gain the skills needed to use
emerging AI technologies responsibly and effectively.

7.3.1 Building Ethical Awareness
Teacher education programs can use EPICC to emphasize ethical
considerations in GenAI use. Workshops and training sessions can focus on
how to identify biases, verify the accuracy of LLM outputs, and design
prompts that promote inclusivity and fairness. For example, educators
might practice refining prompts to ensure diverse representation in LLM-
generated content, learning to balance specificity with openness to multiple
perspectives.

7.3.2 Developing Practical Skills
The iterative nature of EPICC makes it ideal for hands-on training.
Educators can learn to craft, evaluate, and refine prompts in real-time,
gaining confidence in their ability to guide LLM tools effectively. For
instance, a training module might begin with a simple prompt like “Explain
the causes of World War II” and guide participants through multiple
iterations, incorporating content knowledge and critical thinking to improve
the relevance and depth of LLM responses.

7.3.3 Addressing Institutional Barriers
To overcome institutional barriers, schools and districts must prioritize
investments in infrastructure and training. EPICC can be integrated into
broader initiatives to support digital transformation in education, ensuring
that GenAI tools are used to enhance learning rather than replace traditional
methods. Partnerships with technology providers and policymakers can help



address concerns about cost and data privacy, while clear guidelines for
ethical LLM use can build trust among stakeholders.

7.3.4 Empowering Students
Finally, EPICC can be used to empower students as active participants in
their own learning. By teaching students to craft and refine prompts,
educators can help them develop critical thinking, creativity, and
information literacy skills. This approach not only enhances their
engagement with GenAI but also prepares them for the ethical and practical
challenges of using LLM tools in academic and professional settings.

8. Future Directions and Research Opportunities
EPICC provides a foundation for integrating prompt engineering into
educational practice, but its potential extends far beyond its current
applications. As LLMs evolve and their role in education expands, so too
must the frameworks that guide their use. This section explores
opportunities to enhance EPICC and identifies key areas for future research
to ensure that its implementation continues to align with the evolving needs
of educators and learners.

8.1 Enhancing EPICC
8.1.1 Exploring Its Use across Disciplines
While EPICC has demonstrated promise in traditional academic subjects
like STEM and language arts, its principles are equally applicable to other
disciplines. For example, in social sciences, prompt engineering could
support critical analyses of historical or sociological phenomena by
encouraging students to refine prompts that explore multiple perspectives.
In creative fields like art and design, the framework could guide students in
generating innovative ideas or critiquing LLMgenerated outputs. Expanding
the use of EPICC into diverse disciplines will not only enhance its



versatility but also validate its adaptability to different types of learning
contexts.

8.2 Adapting for Different Age Groups
Another avenue for enhancing EPICC is adapting it to suit learners across a
range of developmental stages. For younger students, the framework could
be simplified to focus on basic prompt construction and ethical awareness.
Activities might involve generating creative stories or exploring simple
scientific concepts through LLM. For adult learners or professionals, the
framework could emphasize advanced prompt engineering techniques and
applications in workplace settings. Tailoring EPICC to meet the needs of
diverse age groups will help ensure its accessibility and relevance in varied
educational contexts.

8.3 Potential Research Areas
8.3.1 M easuring the Impact of Prompt Engineering on Learning Outcomes
Moving forward, and assuming widespread adoption of LLMs in learning
contexts, a critical area of research should involve understanding how
prompt engineering influences cognition and learning. Future studies could
examine the extent to which engaging with EPICC improves outcomes like
critical thinking, problemsolving, and creativity. Longitudinal studies might
explore how iterative refinement processes foster deeper engagement with
subject matter over time. Additionally, research could investigate how
prompt engineering supports equity in education, examining whether it
helps close gaps in access to personalized and adaptive learning
opportunities.

8.3.2 Investigating Interdisciplinary Applications of LLMs in Education
LLM AI has the potential to bridge disciplines, supporting cross-curricular
learning experiences that were previously difficult to achieve. For example,



students could use LLM tools to explore the intersection of biology and
technology by generating prompts about bioengineering advancements.
Similarly, educators might design interdisciplinary projects that combine
history and literature, using LLMs to analyze historical texts or simulate
creative narratives. Research into these interdisciplinary applications could
identify best practices for leveraging LLMs’ capabilities to create richer and
more integrated learning experiences.

8.3.3 Understanding Cognitive and Ethical Impacts
Future research should also explore the cognitive and ethical dimensions of
working with LLM tools. Studies could examine how iterative refinement
processes influence metacognitive skills, such as self-regulation and
reflection. Additionally, research could focus on how engaging with the
ethical components of EPICC shapes students’ understanding of issues like
bias, misinformation, and data privacy. These studies would provide
valuable insights into how the framework not only supports technical
proficiency but also fosters ethical and reflective use of LLM tools.

8.4 Expanding EPICC's Role in Teacher Education
Incorporating EPICC into teacher education programs is another important
direction for future development. Research could explore how educators
apply the framework in real-world classrooms, identifying barriers and
opportunities for implementation. Case studies might focus on how teachers
adapt EPICC to their specific contexts, providing insights into how the
framework can be refined to better support educators. Additionally,
professional development programs could pilot EPICC-based training
modules, with evaluations assessing their impact on teacher confidence and
competence in using LLM tools.

8.5 Addressing Emerging Technologies



As generative LLM technologies evolve, so too will the challenges and
opportunities associated with their use in education. Research should
examine how EPICC can be adapted to address emerging tools and
capabilities, such as multimodal LLM systems that integrate text, images,
and sound. Studies could also explore how prompt engineering principles
apply to non- traditional learning environments, such as virtual reality or
gamified learning platforms. By staying ahead of technological trends,
EPICC can remain a relevant and effective guide for educators and learners.

9. Conclusion: Empowering Education through EPICC
EPICC—Effective Prompting through Iterative Content and Critical
Thinking— represents a thoughtful and structured approach to integrating
generative LLM (GenAI) tools into education. By emphasizing the core
components of content knowledge, critical thinking, and iterative design,
the framework offers a pathway for educators and learners to harness
LLM’s potential while addressing its challenges. EPICC is not just a tool
for optimizing LLM interactions; it is a pedagogical model that positions
prompt engineering as a reflective and iterative process that aligns with
broader educational goals such as fostering inquiry, creativity, and ethical
engagement.

As highlighted throughout this chapter, EPICC equips users to craft and
refine prompts in ways that deepen learning and enhance critical thinking.
For educators, it provides strategies to design LLM-enhanced lesson plans
and address ethical concerns, ensuring that generative AI tools and
capabilities are used meaningfully and responsibly. For students, EPICC
encourages active participation in learning by integrating creativity,
problem-solving, and reflection into their interactions with LLM. Together,
these elements make EPICC a valuable framework for advancing both
teaching and learning in the age of LLM.



I believe the future of learning depends on our ability to go beyond
technical applications and engage with the ethical, cognitive, and
pedagogical dimensions of using LLM tools. EPICC provides a foundation
for this shift, helping educators and learners move from passive users of
LLM to active, intentional collaborators. However, for this vision to be
fully realized, educators and researchers must continue to expand and adapt
the framework to meet diverse needs and contexts.

A critical next step is incorporating EPICC into teacher education and
professional development programs. By equipping educators with the skills
to use prompt engineering effectively, these programs can bridge gaps in
training and prepare teachers to navigate the complexities of LLM-
enhanced classrooms. Researchers also have a vital role to play by
exploring the impact of EPICC on learning outcomes, investigating its
applications across disciplines, and refining its components to address
emerging challenges and opportunities.

Looking back, this chapter calls on educators, researchers, and
policymakers to adopt and expand EPICC as part of a broader effort to
integrate LLM into education responsibly. By fostering collaboration
among these stakeholders, EPICC can contribute to creating learning
environments that are inclusive, innovative, and aligned with the needs of
learners and future professionals in an LLM-driven world.

Emerging AI technologies undoubtably have the potential to transform
education, but their true impact will depend on how thoughtfully we
steward their development and implementation. EPICC provides a simple
but powerful framework for this transformation, ensuring that LLM tools
are used not just for efficiency but as a means to empower learners and
educators. As we move forward, the challenge and opportunity lie in using



frameworks like EPICC to shape a learning future where LLM enhances
creativity, deepens inquiry, and fosters ethical engagement and outcomes.
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hFoundational models such as large language models (LLMs) and vision-
language models (VLMs) have achieved unprecedented performances in a
variety of tasks, and are becoming increasingly popular in online education.
Due to their wide applications, for example, AI teacher, AI companion, and
AI assistants, it is crucial to understand their performance in multicultural
situations with participants from diverse backgrounds. However, most of
the existing foundation models are pretrained mainly on English corpora,
biasing them towards Western culture in conversations. For instance, the
same gesture and body language could indicate different meanings in
different cultures. Insufficient or inaccurate cultural understanding could
lead to significant misunderstandings between students and teachers,
severely hampering learning outcomes. In this chapter, we will explore the
cultural bias problem in LLMs/VLMs, analyze its impact, summarize
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related work on understanding and mitigating such bias, introduce key
research progress, and present future challenges for this area.

1. Introduction
The advent of large language models (LLMs) has revolutionized numerous
domains, with online education emerging as one of the most promising
areas of application (Wang et al., 2024; Milano et al., 2023; Li et al., 2023).
LLMs are equipped with a vast number of parameters and are trained on
massive corpora at the scale of hundreds of millions, endowing them with
extensive world knowledge (Dubey et al., 2024; Achian et al., 2023; Reid et
al., 2024; Hui et al., 2024; Yang et al., 2024; Jiang et al., 2024). This
training grants them robust capabilities in comprehension, reasoning,
interaction, and more, enabling them to handle a wide range of tasks, such
as solving mathematical problems, translating languages, expressing
uncertainty, and writing code (Zhao et al., 2023; Peng et al., 2023; Liu et
al., 2024; Zhou et al., 2024; Qin et al., 2024). These models have been
increasingly integrated into educational systems to enhance learning
experiences, provide personalized instruction, and bridge linguistic barriers.
Their adaptability and versatility make them indispensable tools for modern
education.

Online education, also known as e-learning or distance learning, is a
mode of education where teaching and learning occur through digital
platforms and the Internet. It enables learners to access educational content,
participate in virtual classrooms, and interact with instructors and peers
from anywhere in the world. Learners of online education come from
various regions, each with distinct cultural backgrounds, languages, and
traditions. This cultural diversity is not only an inherent characteristic of
education but also a critical factor for its success (Guo & Jamal, 2007;
Kimi-Y. et al., 2020)., Ensuring cultural inclusivity and understanding



fosters a more equitable and effective learning environment, enabling
students to relate better to the content and feel represented in their
educational journey.

Culture is an important part of human society and consists of human
beliefs, norms, customs and habits, etc. (Spencer-O. & Franklin, 2012).
Despite their powerful and versatile capabilities, LLMs still exhibit
limitations in many aspects. Recent works have indicated that these models
often exhibit cultural biases, with a tendency to favor Western-centric
norms and values (Johnson et al., 2022; Naous et al., 2023; Geert et al.,
2010; Masoud et al., 2023; Cao et al., 2023; C.C. Liu et al., 2023). These
biases stem from the datasets used to train the models, which are frequently
dominated by content from specific regions, thereby marginalizing other
cultures. Such imbalances pose challenges to achieving truly inclusive
education and risk perpetuating cultural stereotypes. However, academic
exploration of the multicultural understanding and inclusivity of LLMs
remains in its infancy. Most technical reports (Dubey et al., 2024; Achian et
al., 2023; Reid et al., 2024) accompanying the release of LLMs rarely
consider cultural diversity as a primary evaluation metric. As LLMs are
increasingly applied in online education, cultural biases embedded in these
models risk being further transmitted to students and users. This gap
highlights the urgent need for systematic research to address these critical
issues.

This chapter aims to fill this void by reviewing recent advancements in
the field and highlighting cutting-edge research efforts dedicated to
enhancing the multicultural understanding capabilities of LLMs.
Specifically, in Section 2, we review and explore various culture-related
shortcomings in LLMs/VLMs (vision-language models). Subsequently,
Section 3 analyzes recent advancements through several leading research



efforts, with a particular focus on the CultureLLMs series of studies, which
proposed various cost-effective frameworks for constructing datasets to
enhance the cultural awareness of LLMs and VLMs. In Section 4, we
discuss several significant challenges faced by LLMs/VLMs in addressing
cultural issues. By examining these developments, we seek to provide
insights into the current challenges and propose pathways for fostering
inclusivity in educational applications.

Ultimately, we aspire for this work to contribute meaningfully to the
discourse on multiculturalism in the context of large language models. By
addressing these concerns, we hope to pave the way for more inclusive and
culturally aware educational systems, ensuring that the benefits of these
transformative technologies are equitably shared across diverse populations.

2. Cultural Problems in Foundation Models

2.1 Cultural Bias
Recent research has increasingly directed attention toward understanding
and addressing the cultural biases embedded in LLMs. Johnson et al. (2022)
explored the conflicts between model-generated outputs and user-provided
input values, revealing that GPT-3’s responses frequently aligned more
closely with dominant U.S. cultural norms rather than the cultural context
implied by the inputs. Similarly, Naous et al. (2023) identified a discernible
bias in the processing of Arabic text, where the model tended to favor
Western cultural perspectives over those rooted in local or regional
contexts. To systematically evaluate such biases, the Cultural Alignment
Test (CAT), grounded in Hofstede’s cultural dimensions framework (Geert
et al., 2010), was employed to assess the cultural alignment of models like
ChatGPT and Bard across a range of geographical regions. This assessment
revealed that GPT-4 demonstrated the strongest alignment with U.S.



cultural values compared to other models, further underscoring the need to
address cultural representation and inclusivity in LLMs (Masoud et al.,
2023). In addition, Cao et al. (2023) observed that while ChatGPT
demonstrated a strong alignment with American cultural values, it faced
significant challenges in accurately representing other cultural contexts,
particularly when responding to prompts formulated in English. This
limitation highlights the model’s tendency to default to dominant cultural
norms inherent in its training data. C.C. Liu et al. (2023) reported that
multilingual LLMs exhibited notable deficiencies in reasoning with
culturally embedded expressions, such as proverbs, which require a deep
understanding of nuanced cultural contexts. Their study further uncovered a
pronounced “culture gap” in translation tasks (S .Liu et al., 2023), where
the models often struggled to preserve cultural subtleties and context-
specific meanings, thereby underscoring the broader challenges of cultural
inclusivity in multilingual language processing. (Adilazuarda et al. (2021)
examine the representation and inclusion of culture in LLMs through a
comprehensive analysis of 39 recent papers, revealing a focus on certain
cultural aspects, particularly values and objectives, while highlighting
significant gaps in the exploration of other semantic domains and the
robustness of current methods. The study underscores the need for a more
interdisciplinary, robust, and situated approach to understanding and
advancing cultural inclusion in LLMs and their applications. The evaluation
of multicultural understanding and biases in vision-language models
(VLMs) is still in its early stages. Several benchmarks (Liu et al., 2021;
Romero et al., 2024; Nayaket, 2024; Bhatia, et al., 2024) have been
developed to assess cultural biases in VLMs, and the findings are broadly
consistent with those for LLMs: these models tend to exhibit advantages
when dealing with high-resource regions and Western cultural contexts.



2.2 Datasets and Models for LLMs’ Cultural Understanding
Most existing research on cultural datasets for LLMs relies heavily on
utilizing pre-existing datasets. For instance, Wang et al. (2023) introduced a
benchmark constructed from the World Values Survey (WVS) (Survey,
2022) and the Political Culture and Trust (PCT) dataset (Mudde, 2016),
which serve as foundational sources for studying cultural differences.
Building on this work, subsequent studies have proposed new benchmarks
such as the Cultural Alignment Test (Masoud et al., 2023), NORMSAGE
(Fung et al., 2022), WorldValueBench (Zhao et al., 2024), and NORMAD
(Rao et al., 2024), all of which derive their insights from a variety of pre-
existing datasets. Other notable efforts include CultureAtlas (Fung at al.,
2024) and MAPS (C.C. Liu et al., 2023), which compiled data from
Wikimedia, as well as Candle (Nguyen et al., 2023) and CultureBank (Shi
et al., 2024), which aggregated culturally relevant information from social
media platforms such as TikTok and Reddit. In addition to these dataset-
driven approaches, there is a growing shift towards automatic data
augmentation methods aimed at enhancing cultural diversity in training
data. For example, Li et al. (2024) and Li, Teney, et al. (2024) introduced
cost-efficient data augmentation frameworks to effectively generate large
amounts of data by generating semantically equivalent samples and multi-
agent interactions. Another strand of research focuses on training culturally
aware LLMs by assembling large-scale pretraining datasets and
subsequently fine-tuning the models to improve their cultural alignment.
Representative works in this area include (Pires et al., 2023; Chan et al.,
2023; X-P Nguyen et al., 2023; Pipantanakul et al., 2023; Abassi et al.,
2023; Lin et al., 2023). These studies highlight the importance of
constructing high-quality datasets and innovative data augmentation
techniques to evaluate the cultural nuances of LLMs in different contexts.



2.3 Datasets and Models for VLMs’ Cultural Understanding
Unlike LLMs, obtaining training data for VLMs poses significantly greater
challenges due to the complex and multimodal nature of the required
datasets. Research on cultural biases in VLMs remains in its early stages,
with most efforts relying on manual data collection to construct benchmarks
that incorporate diverse cultural and linguistic elements (Liu et al., 2021;
Romero et al., 2024; Nayaket et al., 2024; Bhatia et al., 2024). For instance,
Liu et al. (2021) introduces MaRVL, a multilingual and multicultural
dataset for grounded language reasoning, which addresses biases in existing
vision-and-language datasets by enabling the construction of an ImageNet-
style hierarchy representative of a diverse range of languages and cultures.
Similarly, CVQA (Romero et al., 2024)] proposed a culturally diverse and
multilingual visual question-answering benchmark designed to capture a
wide range of cultural contexts, encompassing 30 countries and 31
languages to assess and enhance the cultural capability and linguistic
diversity of multimodal AI models. This effort involved the active
participation of native speakers and cultural experts to ensure that the
collected data accurately reflected linguistic and cultural nuances. Further
advancing this area, CulturalVQA (Nayaket et al., 2024) created a
benchmark specifically focused on evaluating VLMs’ understanding of
culturally rich, geographically specific visual content, providing a crucial
tool for assessing the cross-cultural capabilities of these models.
Complementing these efforts, GlobalRG (Bhatia et al., 2024) introduced
two challenging tasks aimed at evaluating models’ performance in retrieval
across cultural universals and culturally specific visual grounding,
emphasizing the need for deeper cultural context in VLMs. Collectively,
these initiatives highlight the critical importance of developing high-quality,
culturally inclusive datasets to advance the study and mitigation of cultural



biases in VLMs. CultureVLM (Liu et al., 2025) collects cultural concepts
on a large scale from Wikipedia documents, builds a dataset covering 188
countries or regions, and uses it to train and enhance VLM’s cultural
perception.

3. Cutting-Edge Research

3.1 CultureLLM: Semantic Data Augmentation
Existing methods for enhancing multicultural understanding in LLMs
typically require the collection of large-scale pretraining and fine-tuning
datasets, as well as substantial computational resources. This makes such
approaches prohibitively expensive for ordinary researchers, especially
given the difficulty of collecting cultural datasets from low-resource
regions. Consequently, training culturally aware LLMs at an affordable cost
remains a significant challenge.

To address this issue, Li, Chen, et al. (2024) propose CultureLLM, a cost-
effective data augmentation framework for improving the cultural
awareness of LLMs. As shown in Figure 1, CultureLLM consists of three
steps: sampling, semantic data augmentation, and fine-tuning. The authors
utilize data from the World Values Survey to sample seed data. They then
design a semantic data augmentation method to generate semantically
equivalent samples. Finally, the seed data and the augmented data are used
for fine-tuning to create CultureLLM. The authors fine-tuned both culture-
specific LLMs for nine different languages and a unified multicultural
LLM. Experimental results on eight culture-related downstream tasks
demonstrate that CultureLLM achieves significant improvements and
mitigates catastrophic forgetting.



Fig. 1 The overview framework of CultureLLM.⏎
3.2 CulturePark: Multi-agent Data Augmentation
while the previously mentioned CultureLLM (Li, Chen, et al., 2024)
enhances LLM fine-tuning data through semantic data augmentation, the
generated data lack diversity, as it is created by generating semantically
equivalent sentences of seed examples. To address this limitation, Li, Teney,
et al. (2024) propose CulturePark, an LLM-driven multi-agent framework
designed to simulate human cross-cultural interactions. As illustrated in
Figure 2, CulturePark serves as an effective data collection platform that
generates diverse and high-quality cultural datasets through multi-agent
communication. CulturePark consists of a primary interlocutor responsible
for multi-turn dialogue and several cultural representatives who interact
with the primary interlocutor and introduce cognitive conflicts. When an
initial question is provided as input, the agents engage in discussions,



express their opinions, and share perspectives. Their diverse cultural
backgrounds and gender differences foster varied viewpoints and encourage
deeper reflections among participants. These interactions ultimately
produce a cross-cultural dialogue dataset enriched with comprehensive
insights and knowledge about different cultures.

Fig. 2 The overview framework of CulturePark.⏎
The authors further perform fact-checking on the raw dataset and

enhance its diversity before using it to fine-tune eight culture-specific
LLMs. The fine-tuned LLMs outperform GPT-4 across 26 content
moderation tasks in five cultures and achieve better performance in cultural
alignment experiments based on Hofstede’s cultural dimensions theory.

3.3 CultureBank: Community-Driven Cultural Knowledge
Resources
To enhance the cultural awareness of LLMs, previous research has
developed cultural knowledge bases to represent culturally relevant
knowledge and norms. However, these approaches have several limitations:
(1) They often rely on formal knowledge sources such as Wikipedia and
online articles, overlooking the rich and dynamic cultural nuances
experienced by local communities (Fung et al., 2024; X-P Nguyen et al.,
2023). (2) They tend to present cultural knowledge in an overly confident



manner, disregarding the variability in cultural practices and values among
individuals within the same cultural group (Fung et al., 2024; X-P Nguyen
et al., 2023). (3) The datasets are typically limited in format, and are often
confined to classification tasks and question-answering scenarios (Naous et
al., 2023; Putri et al., 2024).

To address these challenges, Shi et al. (2024) leverage online
communities where people share cultural experiences and develop a
bottom-up approach to process large-scale, noisy self-narratives. Using this
pipeline, they create CultureBank, a cultural knowledge base comprising
12,000 cultural descriptors sourced from TikTok (Figure 3). Additionally,
the authors collect diverse perspectives on similar cultural practices and
calculate agreement levels to foster an inclusive understanding of culture.
To support contextualized evaluations of LLMs’ cultural awareness, each
cultural descriptor in CultureBank is accompanied by a real-world
contextual scenario (e.g., travel advice in Figure 3). The authors then
evaluate and train LLMs on CultureBank to enhance their cultural
awareness. Experimental results demonstrate improved performance on
downstream culture-related tasks. Moreover, the data collection pipeline is
easily extendable to other online communities, such as Reddit.

Fig. 3 The overview framework of CultureBank.⏎
3.4 CVQA: Culture Visual Question Answering Benchmark



Unlike pure text-based LLMs, the greatest challenge in evaluating the
cultural diversity of multimodal LLMs lies in the scarcity of benchmarks.
Such evaluations typically require data involving multiple regions,
languages, and modalities (e.g., images and text). Most existing Visual
Question Answering (VQA) benchmarks are limited to English (Antol et
al., 2015; Marino et al., 2019). Although some efforts have been made in
multilingual VQA, they either cover a limited number of widely spoken
languages or generate questions by translating existing Western-centric
datasets, failing to capture the inherent cultural nuances of different
languages (Changpinyo et al., 2022).

To address these limitations, Romero et al. (2024) propose CVQA, a
novel, large-scale, multilingual, culturally diverse VQA benchmark that
encompasses multiple languages, including many underrepresented and
understudied ones. They engage in cross-community collaboration, rather
than focusing on a single community, to maximize cultural and linguistic
representativeness. Consequently, CVQA comprises 10,000 questions from
30 countries, covering 31 languages. Each sample belongs to one of ten
distinct categories and is annotated and validated by fluent speakers
familiar with their respective cultures to ensure high quality and diversity.
Moreover, CVQA is written in both English and local languages, enabling
benchmark evaluations for both multilingual MLLMs and English-only
MLLMs. The authors benchmarked various MLLMs on CVQA and found it
poses significant challenges to open-source MLLMs. Furthermore, model
performance dropped substantially when questions were asked in native
languages, especially underrepresented ones. This highlights a significant
gap in the models’ ability to understand multilingual prompts.

3.5 CultureVLM: Multi-modal Cultural Understanding



Current VLMs often struggle to comprehend the deeper cultural meanings
embedded in symbols and artifacts. Misinterpreting such culturally
significant symbols can lead to misunderstandings or even cause offense.
These challenges partly stem from the inherent biases and limitations of the
training data used for VLMs: (1) Uneven domain coverage: Pretraining
datasets for images and text predominantly feature general everyday scenes
or natural environments, often lacking representations of specific cultural
artifacts, traditions, beliefs, and historical landmarks. As a result, VLMs
may fail to interpret culturally significant symbols, particularly those from
underrepresented regions. (2) English-centric data and Western bias: Text
data used for VLM pretraining primarily originates from English content
(Naous et al., 2023; Jin et al., 2024), representing high-resource cultures
and embedding a Western-centric bias (Young et al., 2014; Deng et al.,
2024). This limits the models’ understanding of diverse cultures, especially
those from the Global South (Chiu et al., 2024).

Liu et al. (2025) take the first step toward advancing cultural
understanding in VLMs through comprehensive benchmarking and targeted
model improvements. To this end, they introduce CultureVerse, a large-
scale multimodal dataset designed to evaluate and enhance the multicultural
capabilities of VLMs. The authors developed a flexible pipeline (Figure 4)
that facilitates seamless integration of regional and cultural data,
encompassing nearly 20,000 cultural concepts from 188 countries. This
approach significantly reduces the cost of manual annotation. Finetuning on
CultureVerse enhances cultural awareness, demonstrating generalization
across cultures, continents, and datasets without compromising performance
on standard VLM benchmarks.



Fig. 4 The overview framework of CultureVLM.⏎
4. Grand Challenges
Despite the progress made in the past years, there are still many open
challenges due to the complexity nature of culture and foundation models.
In this section, we briefly discuss some of the grand challenges.

4.1 Addressing Cultural Bias in Pretraining Data
The root cause of cultural bias in LLMs and VLMs lies in the pretraining
data (Feng et al., 2023), which typically consists of English-language
corpora, particularly content from Western online sources. A critical
research question is how to curate and promote training datasets that are
multilingual, multicultural, and diverse to effectively address cultural bias.

4.2 Enhancing Cultural Sensitivity in Applications
Biases exist, to varying degrees, in almost all AI models. In recent years,
many efforts have focused on debiasing pretrained models through post-
training techniques or prompt engineering (Li, Chen, et al., 2024; Li, Teney,
et al., 2024; Liu et al., 2025; Galligos et al., 2024). Given that pretraining
has already been completed for most released foundation models, it is
essential to explore more effective debiasing techniques to achieve cultural
diversity and ensure safety in AI applications.

4.3 Fostering Interdisciplinary Collaboration
As noted in the recent survey (Adilazuarda et al., 2024), culture is an
extremely broad and complex concept. However, most research on culture



in LLMs and VLMs is conducted by scholars with backgrounds in
computer science or artificial intelligence, which may limit the depth of
understanding and investigation into cultural issues. Advancing cultural
research in foundational models requires the involvement of researchers
from other disciplines, such as linguists, anthropologists, and cultural
studies experts, to foster robust interdisciplinary collaboration.

4.4 Ethical Considerations and Dataset Development
As LLMs and VLMs become increasingly integrated into various aspects of
society, the research community must devote more attention to ethical
considerations related to cultural representation and bias. Currently, almost
all technical reports on foundational models lack metrics or assessments in
this area (Chiu et al., 2024). This gap is largely due to the scarcity of
standardized, well-defined cultural datasets. Therefore, it is crucial to
develop high-quality, challenging, and systematically curated datasets to
advance research on cultural representation and bias in AI.

4.5 Longitudinal Studies on Cultural Evolution
Culture is not static; it evolves over time (Shi et al., 2024). The research
community should conduct longitudinal studies to understand how cultural
norms and values change, how human lifestyles and leisure activities
evolve, and how LLMs and VLMs can adapt to these changes. Such studies
are essential to ensure that these models remain relevant and culturally
aware in the face of ongoing cultural evolution.

By addressing these grand challenges, the research community can work
towards developing LLMs/VLMs that are more culturally aware, inclusive,
and equitable, ultimately enhancing their utility and impact across diverse
global communities.

5. Conclusion



Cultural diversity is of paramount importance in education as it allows for
the collision of knowledge systems, thinking patterns, and value concepts
from different cultural backgrounds. Evaluating and enhancing the cultural
understanding and diversity capabilities of LLMs/VLMs within the
education system pose significant challenges. In this chapter, we
comprehensively review a number of recent studies and introduce the recent
efforts made by the research community in aspects such as data and
methods. We hope that this chapter can contribute to the consideration of
cultural awareness and inclusivity in the application of large foundation
models within the education system.
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This study examines the dynamics of student engagement in AI-augmented
classrooms, focusing on how large language models (LLMs), such as
ChatGPT, influence engagement factors like academic self-efficacy,
autonomy, interest, and self-regulation. Using a longitudinal design with
pre- and post-semester surveys, the research identifies significant declines
in all four engagement dimensions over the semester. The findings reveal
complex interactions between traditional engagement constructs and the
unique challenges introduced by AI-enhanced learning environments.
While LLMs initially boost engagement through personalized feedback and
adaptive learning support, the novelty effect diminishes over time, leading
to reduced motivation and over-reliance on AI tools. These results
underscore the need for educators to integrate AI thoughtfully, balancing its
potential to enhance learning with strategies to sustain intrinsic motivation
and self-regulation. The study highlights the importance of context-specific
interventions to address engagement challenges and suggests avenues for
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future research, particularly on the demographic and disciplinary factors
shaping engagement dynamics.

1. Introduction
Artificial intelligence (AI) is rapidly transforming the landscape of
education, reshaping how students interact with learning materials,
instructors, and peers. Among the most impactful innovations are large
language models (LLMs) such as ChatGPT, which offer capabilities for
generating personalized responses, explaining complex concepts, and
facilitating creative problem-solving. These technologies promise to
address long-standing challenges in education, including providing
immediate feedback, adapting to diverse learning needs, and expanding
access to high-quality resources. However, their integration also raises
important questions about the evolving role of engagement in learning
environments where human-AI collaboration plays an increasingly
prominent part. While initial enthusiasm for these tools is often high,
sustaining engagement and ensuring their effective adoption requires a
nuanced understanding of the factors that drive both acceptance and
learning outcomes in these AI-enhanced settings.

While technological advancements like large language models (LLMs)
promise to enhance the learning experience, their effectiveness depends on
more than just their technical capabilities. Student engagement—
characterized by motivation, interest, autonomy, and self-regulation—
remains central to successful learning outcomes (Deci & Ryan, 1985;
Bandura, 1997; Skinner et al., 2009). However, engagement is not static; it
evolves over time, influenced by the novelty of new tools, the context of
their use, and students’ individual characteristics (Mayer, 2019; Farrokhnia
et al., 2023). Equally important is the acceptance of these technologies, as
students must perceive them as useful, accessible, and aligned with their



learning needs (Davis, 1989; Venkatesh et al., 2003; Teo, 2011). Research
on AI in education suggests that while tools like LLMs can initially boost
engagement through personalization and novelty, sustaining this momentum
requires addressing deeper concerns such as trust, ethical considerations,
and transparency (Luckin et al., 2016; Dwivedi et al., 2021; Holmes et al.,
2019). Additionally, cognitive and emotional dimensions of engagement
play a pivotal role in determining how students adapt to these tools over
time (Fredricks et al., 2004; Ng et al., 2021). Understanding the dynamic
interplay between engagement and acceptance is essential for leveraging
LLMs effectively in education and ensuring their integration supports long-
term learning goals rather than becoming a fleeting trend.

Student engagement is a cornerstone of effective learning, encompassing
the emotional, cognitive, and behavioral involvement of students in the
educational process (Fredricks et al., 2004). Emotionally, engagement
reflects students’ interest, enthusiasm, and sense of belonging, while
cognitively, it involves deep learning strategies, critical thinking, and
persistence in overcoming challenges (Skinner et al., 2009). Behaviorally, it
manifests in active participation, effort, and time invested in learning tasks.
Together, these dimensions create a holistic framework that supports
academic success, intrinsic motivation, and long-term knowledge retention.

Theoretical models such as Self-Determination Theory (SDT; Deci &
Ryan, 1985) and Social Cognitive Theory (SCT; Bandura, 1997) provide
valuable insights into the drivers of engagement. SDT emphasizes the
importance of fulfilling basic psychological needs— autonomy,
competence, and relatedness—to sustain intrinsic motivation and
engagement. SCT complements this perspective by highlighting the role of
self-efficacy and self-regulation in shaping students’ confidence and ability
to persist through challenges.



In traditional classroom settings, engagement is often driven by
interpersonal interactions, structured feedback, and task relevance.
However, with the integration of AI technologies such as large language
models (LLMs), the dynamics of engagement shift. LLMs offer
unprecedented opportunities for personalized learning, enabling students to
receive tailored feedback, clarify complex concepts, and work at their own
pace (Luckin et al., 2016; Mayer, 2019). At the same time, sustaining
engagement requires addressing challenges such as reduced human
interaction, over-reliance on automation, and the potential loss of novelty
over time (Farrokhnia et al., 2023). These evolving dynamics highlight the
need for adaptive strategies that align the capabilities of LLMs with
students’ psychological and educational needs.

2. Rethinking Engagement in AI-Enhanced Classrooms

2.1 Academic Self-Efficacy
One of the most critical dimensions of student engagement is academic self-
efficacy, the belief in one’s ability to succeed in academic tasks (Bandura,
1997). Self-efficacy significantly influences motivation, persistence, and
resilience, particularly in challenging learning environments (Schunk &
DiBenedetto, 2020). Large language models (LLMs) like ChatGPT have the
potential to enhance self-efficacy by offering personalized guidance,
breaking down complex concepts, and enabling students to practice
independently (Holmes et al., 2019; Mayer, 2019). For example, AI tools
can simulate iterative feedback processes, helping students refine their work
and feel more prepared for assessments (Ng et al., 2021).

Research on adaptive learning systems suggests that immediate, targeted
feedback can reinforce students’ confidence in their learning abilities
(Luckin et al., 2016; Garcia-Martinez et al., 2023). However, over-reliance



on these tools can have unintended consequences. Students may experience
a “confidence gap,” where their belief in their abilities becomes tied to the
presence of AI support rather than their intrinsic skills (Farrokhnia et al.,
2023; Grassini, 2023). Additionally, there is evidence that self-efficacy
declines when students perceive the technology as overly complex or
unreliable (Dwivedi et al., 2021). Addressing these challenges requires
balanced integration, ensuring that students develop both the confidence to
utilize LLMs effectively and the competence to function without them when
necessary.

2.2 Autonomy
Autonomy, or the ability to make self-directed choices in learning, is a key
driver of intrinsic motivation and student engagement (Deci & Ryan, 1985).
In traditional educational settings, autonomy fosters a sense of ownership
over learning, empowering students to explore topics and choose strategies
that align with their interests and strengths (Reeve & Tseng, 2011). With the
integration of large language models (LLMs), autonomy takes on new
dimensions. These tools allow students to pose questions, explore multiple
problem-solving approaches, and access tailored resources independently
(Luckin et al., 2016). For instance, students can use LLMs to experiment
with ideas in real-time, receiving immediate feedback and iterating on their
work.

However, this expanded autonomy is not without challenges. While
LLMs provide unprecedented freedom, they may also overwhelm students
with too many options or create dependence on AI-generated responses,
undermining true self-directed learning (Ng et al., 2021; Holmes et al.,
2019). Research suggests that students with higher digital literacy are more
likely to leverage these tools effectively, whereas those with limited skills
may struggle to set meaningful learning goals or evaluate the quality of AI



feedback (Teo, 2011; Garcia-Martinez et al., 2023). Balancing autonomy
and guidance is critical: educators must ensure that students develop the
metacognitive skills to navigate AI-enhanced learning environments
confidently and critically, fostering genuine self-regulation rather than
passive reliance on AI.

2.3 Interest
Interest plays a pivotal role in sustaining student engagement, driving
curiosity and motivation to explore new ideas (Hidi & Renninger, 2006). It
is often the spark that transforms passive learning into active inquiry,
particularly when students perceive the material as relevant and enjoyable.
Large language models (LLMs), with their ability to generate dynamic,
context-specific content, offer significant potential to ignite and sustain
interest. For example, students can use LLMs to generate personalized
study guides, simulate real-world scenarios, or receive creative explanations
that cater to their unique preferences (Mayer, 2019; Luckin et al., 2016).
These capabilities align with cognitive theories emphasizing the role of
novelty and relevance in capturing and maintaining attention (Fredricks et
al., 2004; Schunk & DiBenedetto, 2020).

However, the initial surge of interest associated with LLMs often
declines over time—a phenomenon well-documented as the “novelty
effect” in educational technology research (Farrokhnia et al., 2023). When
the excitement of using new tools wears off, students may struggle to
maintain engagement unless they find deeper, intrinsic value in their
interactions with AI. Additionally, overly simplistic or repetitive AI-
generated content may fail to challenge students, reducing their sustained
interest (Holmes et al., 2019). To counteract this, educators must design
learning activities that not only leverage the novelty of LLMs but also
integrate them into broader, meaningful educational contexts. Encouraging



students to use these tools for creative exploration and critical thinking can
help maintain their engagement even after the initial excitement fades.

2.4 Self-Regulation
Self-regulation, the ability to plan, monitor, and reflect on one’s own
learning processes, is a cornerstone of academic success (Zimmerman,
2002). It enables students to set meaningful goals, manage their time
effectively, and evaluate their progress toward achieving those goals. Large
language models (LLMs), with their capacity to provide immediate and
tailored feedback, can support self-regulation by helping students refine
their approaches to problem-solving and deepen their understanding of
challenging concepts (Holmes et al., 2019; Ng et al., 2021). For instance,
students might use LLMs to generate iterative drafts of an essay,
incorporating feedback to improve structure and clarity with each revision.

However, the reliance on AI tools for such processes can undermine self-
regulation if not carefully managed. Research suggests that students who
depend heavily on external feedback—especially from AI—may struggle to
develop their own reflective and evaluative skills, which are critical for
independent learning (Luckin et al., 2016; Dwivedi et al., 2021).
Additionally, without proper guidance, students may misuse LLMs, such as
bypassing essential steps in critical thinking or relying on the tool to
produce complete solutions rather than understanding the underlying
processes (Grassini, 2023). To address these challenges, educators must
emphasize metacognitive strategies that encourage students to critically
evaluate AI outputs, ensuring that the technology enhances rather than
replaces their self-regulation skills. Structured tasks that require students to
justify their use of AI or compare multiple approaches can foster a balance
between leveraging LLM capabilities and cultivating independent learning
habits.



2.5. Reevaluating Engagement Factors in AI-Enhanced
Learning Environments
The adoption of new technologies in education has traditionally been
assessed through established frameworks like the Technology Acceptance
Model (TAM; Davis, 1989) and the Unified Theory of Acceptance and Use
of Technology (UTAUT; Venkatesh et al., 2003). These models provide
robust tools for measuring perceived usefulness, ease of use, and other
factors influencing technology adoption. However, they may fall short in
capturing the unique dynamics introduced by AI-enhanced educational
tools like large language models (LLMs). Unlike conventional technologies,
LLMs interact dynamically with users, adapt to diverse contexts, and
influence not only technological acceptance but also the fundamental
dimensions of student engagement, such as self-regulation and autonomy.

In traditional educational contexts, latent engagement factors such as
self-efficacy, autonomy, interest, and self-regulation are well-established
through theoretical models and empirical studies. Decades of research,
often supported by factor analysis of large sample data, have validated these
constructs as critical to fostering successful learning outcomes (Deci &
Ryan, 1985; Bandura, 1997; Fredricks et al., 2004). However, these latent
factors are inherently context-specific, and their expression may shift
dramatically in AI-enhanced classrooms where the role of teachers, peers,
and digital tools is redefined.

To uncover potential changes in latent engagement factors under these
new circumstances, evidence must be gathered through carefully designed
experiments that consider the unique affordances and challenges of LLMs.
Such studies must move beyond traditional survey methods, integrating
new frameworks and methodologies capable of capturing the dynamic,



iterative, and personalized interactions that define AI-enhanced learning
environments.

The following sections delve into the specifics of a designed experiment,
including survey development, the experimental setup, and key findings.
These empirical insights offer a detailed exploration of how engagement
evolves in classrooms augmented by AI tools like LLMs. This study builds
on our prior research, which re-evaluated components of classical
educational theories in AI-enhanced learning environments and empirically
assessed shifts in student engagement (Bognár et al., 2024; Bognár &
Khine, 2025). The foundational insights from that work informed the
current experimental design and methodological approach, enabling a
deeper investigation into the dynamic interplay between traditional
engagement factors and AI integration.

3. Experimental Design and Survey Development

3.1 Context of the Experiment
This study was conducted in AI-enhanced classrooms where large language
models (LLMs), such as ChatGPT, were systematically integrated into
teaching and learning activities. The classrooms involved in the study
represented a diverse range of disciplines, including STEM fields,
humanities, and social sciences. This diversity provided a comprehensive
view of how LLMs might influence student engagement across different
educational contexts. The experiment spanned an entire semester, allowing
for detailed pre- and post-intervention analysis to track the evolution of
engagement over time.

To ensure the reliability and validity of the findings, the classroom
environments were carefully controlled. All participants, regardless of their
discipline, were granted equal access to the same AI tools. Additionally,



students underwent introductory training to familiarize themselves with the
capabilities and proper usage of LLMs. Educators were similarly prepared,
receiving guidance on integrating LLMs into their teaching practices in
ways that would emphasize critical thinking, problem-solving, and
creativity.

A unique aspect of the experiment was the flexibility afforded to
instructors. While encouraged to integrate LLMs into tasks that required
analytical rigor and creativity, they were not bound by a rigid
implementation framework. This allowed educators to tailor LLM usage to
align with their specific curriculum needs, offering valuable insights into
both structured and adaptive integration models.

These controlled yet flexible conditions provided a robust foundation for
experimental design, enabling a nuanced analysis of engagement dynamics
in AI-enhanced learning settings. The experimental timeline and integration
points for LLM usage are detailed in Figure 1, illustrating the progression
of activities and data collection phases throughout the semester.

The research aimed to address three key objectives:
Research Question 1: To uncover potential shifts in the latent structure

of student engagement factors when LLMs were introduced.

Fig. 1 The Experimental Timeline. ⏎



Traditional engagement factors, such as self-efficacy, autonomy, interest,
and self-regulation, are well-established in conventional educational
settings. However, the integration of LLMs could reorganize these factors
or give rise to new ones, such as AI trust or dependency. Identifying and
understanding these shifts is critical for refining theoretical models and
guiding practical applications.

Research Question 2: To track the evolution of engagement over time.
Engagement dynamics are not static; they evolve throughout the learning

process. Capturing this temporal dimension provides valuable insights into
how initial enthusiasm, sustained interest, or potential disengagement
unfold during LLM integration.

Research Question 3: To evaluate how these potential shifts vary across
different demographic groups (e.g., age, discipline) and academic contexts.

Engagement does not manifest uniformly across all learners. Differences
in age, field of study, and other demographic factors influence how students
interact with LLMs and how engagement factors shift in diverse
educational contexts.

This chapter focuses on Research Questions 1 and 2, discussing the latent
engagement factors and their evolution in AI-augmented classrooms.
Research Question 3, which examines variations across demographic and
disciplinary contexts, is addressed in the subsequent chapter titled
“Engagement Diversity in AI-Enhanced Learning: Demographic and
Disciplinary Perspectives.”

3.2 Survey Design and Questions
To effectively measure the impact of large language models (LLMs) on
student engagement, a comprehensive survey was developed that combined
traditional frameworks with customized items tailored to the context of AI-
enhanced classrooms. Established models like the Technology Acceptance



Model (TAM; Davis, 1989) and the Unified Theory of Acceptance and Use
of Technology (UTAUT; Venkatesh et al., 2003) provided a theoretical
foundation, focusing on dimensions such as perceived usefulness, ease of
use, and social influence. While these frameworks are robust in capturing
general technology acceptance, they have limitations in addressing the
specific engagement dynamics associated with LLM usage, such as shifts in
autonomy, interest, or dependency on AI tools.

The survey was expanded to include items reflecting both traditional
engagement dimensions—self-efficacy, autonomy, interest, and self-
regulation— and exploratory constructs potentially unique to AI-enhanced
learning environments, such as trust in AI and reliance on automated
assistance. Each construct was measured through multiple Likert-scale
items, carefully crafted to ensure clarity and relevance across diverse
disciplines and demographic groups.

The survey was administered twice during the semester: at the beginning
(pre-intervention) to establish a baseline for engagement factors and at the
end (post-intervention) to identify potential shifts resulting from LLM
integration. This dual-administration approach provided a longitudinal
perspective, allowing for detailed pre-post comparisons and an analysis of
how engagement evolved over time. To mitigate response bias, strategies
such as randomizing question order, balancing response options, and
ensuring anonymity were employed.

This survey design, rooted in both established frameworks and contextual
customization, enabled the study to capture the nuanced and dynamic
interplay between traditional engagement factors and the unique
characteristics of LLM-augmented learning environments.

3.3 Concrete Circumstances of the Experiment



The study was conducted at two Hungarian institutions: the University of
Dunaújváros and Budapest Business University, during a single semester. A
total of 724 students participated in the pre-semester survey, and 642
students completed the post-semester survey after data cleaning. The
participants represented a broad range of academic disciplines, including
Economics, Engineering, Information Technology, Social Sciences, and
Teacher Training. Both full-time and part-time students were included in the
sample, ensuring diversity in demographic characteristics such as age and
study format.

The gender distribution of respondents was as follows: 252 females and
466 males in the pre-semester survey, and 223 females and 416 males in the
post-semester survey, with a small number of participants opting not to
disclose their gender. The age range of respondents was extensive, spanning
from younger traditional students to correspondence learners, with the
oldest participant being 58 years old.

To ensure consistency in the integration of AI tools, instructors from
various disciplines adapted their teaching methodologies to incorporate the
use of large language models (LLMs), such as ChatGPT. Twelve instructors
participated in the study, revising their curricula to embed AI-based
activities into both classroom and homework assignments. These activities
encouraged students to engage with AI tools for tasks such as
brainstorming, problem-solving, and literature synthesis. However, the
instructors were provided flexibility to adapt AI integration to their specific
disciplinary needs, allowing for contextually relevant applications.

The surveys were conducted at two key points: the pre-semester survey,
during the first week of the semester, gauged students’ initial attitudes
towards technology and their baseline engagement levels. The post-
semester survey, conducted toward the semester’s end, captured students’



experiences and shifts in engagement after a semester of AI-enhanced
learning. Both surveys used a five-point Likert scale for responses and
included 30 initial questions, later refined to 21 through Exploratory Factor
Analysis (EFA) and Confirmatory Factor Analysis (CFA). A detailed list of
the survey items used is available in the Appendix Table A1 for reference.
The survey items that were removed as a result of the EFA and CFA
analyses have been kept in the table but are marked with strikethrough text.

Table A1 Pre- and post-semester questions⏎
Pre-Survey Post-Survey

Q1. I look forward to learning new
topics.

Q1. When using AI-based chat,
I look forward to learning new
topics.

Q2. I am open to trying new
technologies or methods in my learning.

Q2. I feel the world is opening
up to me when I learn using
AI-based chats.

Q3. I prefer to be the one who can
control the learning process and the
pace.

Q3. When using AI-based chat,
I feel that I am in control of the
learning process and the pace.

Q4. I appreciate being able to choose
how and when I use learning resources
and tools (e.g., books, online learning
materials, internet, technical tools).

Q4. I appreciate being able to
choose how and when I use AI-
based chat in my learning.

Q5. I believe that being independent in
my learning is important for my
academic success.

Q5. When using AI-based chat,
I feel more independent in my
learning, and this is important
for my academic success.

Q6. I often look for sources or tools that
clarify topics that are confusing to me.

Q6. AI-based chat provides me
with a resource, a tool to help
me clarify issues that are
confusing to me.



Pre-Survey Post-Survey
Q7. I feel that my skills and knowledge
are sufficient to successfully complete
my studies.

Q7. When using AI-based chat,
I feel that I have the skills and
knowledge to successfully
complete my studies.

Q8. I am optimistic that my academic
performance will improve this semester.

Q8. Seeing the potential of AI-
based chat makes me more
optimistic that my academic
performance will improve.

Q9. I believe that having the right
resources (literature, books, technical
equipment, etc.) is important for my
academic success.

Q9. AI-based chat provides the
resources that are important for
my academic success.

Q10. I am motivated and enthusiastic
about my studies.

Q10. Learning with AI-based
chat motivates and inspires me
to study.

Q11. I think technology can help me to
connect better with the curriculum.

Q11. When using AI-based
chat, as my understanding of
the course material grows, so
does my interest.

Q12. I like to discuss and share my
learning experiences with my peers.

Q12. For me, it is enjoyable
when I share and discuss my
AI-based chat learning
experiences with my peers.

Q13. During my studies, I am willing
even to make great efforts to achieve
better results.

Q13. When using AI-based
chat, I am willing to make
more effort to achieve better
results.

Q14. I’m interested in going deeper into
the subject matter.

Q14. I am engaged more
deeply with the learning
materials when I use AI-based
chat.



Pre-Survey Post-Survey
Q15. I try to get additional resources
and information to help me with my
learning.

Q15. I use AI-based chat to get
additional resources and
information to help my
learning.

Q16. I can easily understand new
learning materials.

Q16. It is easy for me to
understand new learning
materials when I use AI-based
chat.

Q17. During my studies, I am able to
accurately recall information I have
heard/seen before.

Q17. When using AI-based
chat, I can accurately recall
information I have heard/seen
before.

Q18. I can effectively identify key
concepts in my studies.

Q18. When using AI-based
chat in my studies, I can
effectively identify key
concepts.

Q19. I feel able to apply the knowledge
I have learned in real-life situations.

Q19. I feel able to apply the
knowledge gained from AI-
based chat to real-life
situations.

Q20. In my studies, I consider myself a
good problem solver.

Q20. I am good problem solver
in my studies when I use AI-
based chat.

Q21. I am open to developing new
learning habits.

Q21. Using AI-based chat, I
develop new learning habits.

Q22. I plan my learning effectively. Q22. I plan my learning
process effectively with the use
of AI-based chat.

Q23. I manage the learning materials in
a systematic way.

Q23. I manage my learning
materials in a systematic way
with the use of AI-based chat.

Q24. I can set realistic learning goals. Q24. I set realistic learning
goals with the use of AI-based
chat.



Pre-Survey Post-Survey
Q25. I regularly reconsider what I have
learned and my own possible
misconceptions.

Q25. When using AI-based
chat, I regularly reflect on what
I have learned and any
misconceptions I may have
had.

Q26. I am confident in my learning
abilities.

Q26. I am confident in my
learning abilities when using
AI-based chat.

Q27. I do believe that I am capable of
successfully completing difficult tasks.

Q27. I believe that with the
help of AI-based chat, I can
successfully complete difficult
tasks.

Q28. I am persistent in solving
challenging problems.

Q28. When using AI-based
chat, I am persistent in solving
challenging problems.

Q29. I feel prepared for exams and
assessments.

Q29. After using AI-based
chat, I feel prepared for exams
and assessments.

Q30. I am confident in my ability to
learn autonomously.

Q30. I am confident that I can
learn independently through
AI-based chat.

These concrete conditions provided a robust foundation for examining
how engagement evolves in classrooms augmented by AI tools, offering
insights into shifts in traditional and emergent engagement factors.

3.4 Reliability and Validity
Ensuring the reliability and validity of the survey instrument was a critical
component of the study, given its longitudinal design and the incorporation
of AI-enhanced learning environments. Both Exploratory Factor Analysis
(EFA) and Confirmatory Factor Analysis (CFA) were conducted using post-
semester data to identify and validate the latent factor structure. This



consistent factor structure was then applied to pre-semester data to enable
meaningful longitudinal comparisons.

Exploratory Factor Analysis (EFA)
EFA was conducted on a subset of post-semester responses (n=400) using
principal component analysis with Promax rotation. Items with loadings
below 0.4 or those exhibiting significant cross-loadings were excluded to
enhance model precision and interpretability. The Pattern Matrix is in Table
1.



Table 1 The Pattern Matrix ⏎
Pattern Matrix Component

1 2 3 4
Q1 Learning Enthusiasm 0.728
Q2 New Methods Openness 0.880
Q3 Learning Pace Control 0.564
Q5 Independence Importance 0.630
Q6 Clarification Tool Use 0.651
Q8 Performance Optimism 0.460
Q11 Tech Curriculum Connection 0.620
Q12 Learning Experience Share 0.689
Q13 Effort for Results 0.770
Q16 New Material Understanding 0.405
Q17 Learned Info Recall 0.688
Q19 Knowledge Application
Q20 Problem Solving Skill
Q21 New Habits Openness 0.798
Q22 Learning Planning 0.707
Q23 Material Management 0.582
Q24 Realistic Goals Setting 0.435
Q25 Misconception Review 0.536
Q26 Learning Abilities Confidence 0.709
Q27 Difficult Tasks Completion 0.791
Q28 Challenges Persistence 0.705
Q29 Exam Preparedness 0.811
Q30 Autonomous Learning Confidence 0.680

Extraction Method: Principal Component Analysis.
Rotation Method: Promax with Kaiser Normalization.

The analysis revealed a four-factor structure representing the behavioral
dimensions of engagement in AI-enhanced classrooms:



Factor 1: Academic Self-Efficacy and Preparedness
Factor 2: Autonomy and Resource Utilization
Factor 3: Interest and Engagement
Factor 4: Self-Regulation and Goal Setting
The survey questions associated with each factor are detailed in

Appendix Table A2, Figure 3, Figure 4 and Table A5.

Table A2 Academic Self-Efficacy and Preparedness⏎
Pre-Survey Post-Survey
Q8. I am optimistic that my
academic performance will
improve this semester.

Q8. Seeing the potential of AI-based chat
makes me more optimistic that my
academic performance will improve.

Q26. I am confident in my
learning abilities.

Q26. I am confident in my learning
abilities when using AI-based chat.

Q27. I do believe that I am
capable of successfully
completing difficult tasks.

Q27. I believe that with the help of AI-
based chat, I can successfully complete
difficult tasks.

Q28. I am persistent in
solving challenging
problems.

Q28. When using AI-based chat, I am
persistent in solving challenging problems.

Q29. I feel prepared for
exams and assessments.

Q29. After using AI-based chat, I feel
prepared for exams and assessments.

Q30. I am confident in my
ability to learn
autonomously.

Q30. I am confident that I can learn
independently through AI-based chat.

Table A3 Autonomy and Resource Utilization⏎
Pre-Survey Post-Survey
Q1. I look forward to learning
new topics.

Q1. When using AI-based chat, I look
forward to learning new topics.

Q2. I am open to trying new
technologies or methods in my
learning.

Q2. I feel the world is opening up to me
when I learn using AI-based chats.



Pre-Survey Post-Survey
Q3. I prefer to be the one who
can control the learning
process and the pace.

Q3. When using AI-based chat, I feel
that I am in control of the learning
process and the pace.

Q5. I believe that being
independent in my learning is
important for my academic
success.

Q5. When using AI-based chat, I feel
more independent in my learning, and
this is important for my academic
success.

Q6. I often look for sources or
tools that clarify topics that are
confusing to me.

Q6. AI-based chat provides me with a
resource, a tool to help me clarify issues
that are confusing to me.

Q16. I can easily understand
new learning materials.

Q16. It is easy for me to understand new
learning materials when I use AI-based
chat.

Table A4 Interest and Engagement⏎
Pre-Survey Post-Survey
Q11. I think technology can
help me to connect better with
the curriculum.

Q11. When using AI-based chat, as my
understanding of the course material
grows, so does my interest.

Q12. I like to discuss and share
my learning experiences with
my peers.

Q12. For me, it is enjoyable when I
share and discuss my AI-based chat
learning experiences with my peers.

Q13. During my studies, I am
willing even to make great
efforts to achieve better results.

Q13. When using AI-based chat, I am
willing to make more effort to achieve
better results.

Q17. During my studies, I am
able to accurately recall
information I have heard/seen
before.

Q17. When using AI-based chat, I can
accurately recall information I have
heard/seen before.

Q25. I regularly reconsider
what I have learned and my
own possible misconceptions.

Q25. When using AI-based chat, I
regularly reflect on what I have learned
and any misconceptions I may have
had.

Table A5 Self-Regulation and Goal Setting⏎



Pre-Survey Post-SurveyPre-Survey Post-Survey
Q21. I am open to
developing new learning
habits.

Q21. Using AI-based chat, I develop new
learning habits.

Q22. I plan my learning
effectively.

Q22. I plan my learning process effectively
with the use of AI-based chat.

Q23. I manage the learning
materials in a systematic
way.

Q23. I manage my learning materials in a
systematic way with the use of AI-based
chat.

Q24. I can set realistic
learning goals.

Q24. I set realistic learning goals with the
use of AI-based chat.

Confirmatory Factor Analysis (CFA)
CFA was conducted on the remaining post-semester responses (n=242) to
validate the four-factor model identified by EFA. Figure 2 provides the path
diagram of this factor structure.

The response data showed correlations among the model residuals. These
correlations typically arise from similarities between individual survey
questions, which is almost unavoidable in education-related surveys.
Acknowledging and incorporating these correlations into the model can
significantly improve the variance explained by the model. This model
explains 60.79% of the total variance.



Fig. 2 The Path Diagram.⏎
Key fit indices indicated excellent model fit:
CFI: 0.956
TLI: 0.947
RMSEA: 0.047 (90% CI: 0.036–0.058).

Reliability Assessment
Reliability metrics were calculated using Cronbach’s alpha. Table 2 displays
these values, with all constructs exceeding a Cronbach’s alpha of 0.8,
indicating excellent internal consistency. The number of survey items per
factor ranged from 4 to 6, ensuring comprehensive coverage of the
constructs.

Table 2 The Value of Cronbach’s Alpha for the Components.⏎
Component Cronbach’s

Alpha
Number of Question

Items



Component Cronbach’s
Alpha

Number of Question
Items

1. Academic Self-Efficacy and
Preparedness

0.882 6

2. Autonomy and Resource
Utilization

0.841 6

3. Interest and Engagement 0.801 5
4. Self-Regulation and Goal
Setting

0.846 4

Incorporating the Long-Term Study Design
Given the extended scope of the study, the validated post-semester factor
structure was applied to pre-semester data to enable meaningful
comparisons over time. This approach ensured that any observed changes in
engagement dimensions reflected genuine shifts rather than inconsistencies
in measurement. By aligning the measurement framework across both
phases, the study captured a clear picture of how student engagement
evolved during the semester.

Figure 3 in the previous study illustrates the mean factor scores across
the pre- and post-semester phases, showcasing the dynamic shifts in
engagement dimensions within AI-augmented classrooms. This
methodological consistency provided robust insights into how traditional
and emerging engagement factors were influenced by the integration of
LLMs into the learning process.

4. Findings and Discussion

4.1 Overview of Identified Factors
Through Exploratory Factor Analysis (EFA) and Confirmatory Factor
Analysis (CFA), four distinct latent factors were identified, representing key
dimensions of student engagement in AI-enhanced classrooms. These



factors capture both traditional engagement constructs and emergent
dynamics unique to learning environments augmented by large language
models (LLMs). Below, we provide an overview of each factor and its
attributed meaning:

Academic Self-Efficacy and Preparedness
This factor corresponds to the traditional concept of academic self-efficacy,
which emphasizes students’ belief in their ability to succeed in academic
tasks (Bandura, 1997). In AI-augmented classrooms, it also encompasses
preparedness, or the readiness to engage with learning tasks using both
intrinsic skills and external tools like LLMs. Preparedness reflects students’
confidence in having the necessary resources, strategies, and understanding
to tackle academic challenges effectively.

AI tools like ChatGPT contribute to preparedness by breaking down
complex concepts, providing iterative feedback, and enabling students to
approach assignments with greater clarity. For example, students who feel
prepared to use AI tools can engage more deeply with material, leveraging
the technology as a complement to their existing skills. However, the study
found that over-reliance on AI can undermine both preparedness and self-
efficacy. When students depend heavily on AI for guidance, their
confidence in their own abilities may diminish, creating a “confidence gap”
when the technology is unavailable.

This dynamic underscores the importance of balanced integration: AI
should not replace intrinsic preparedness but rather enhance it, equipping
students to succeed both with and without technological support.

Autonomy and Resource Utilization
Aligned with traditional notions of autonomy (Deci & Ryan, 1985), this
factor emphasizes students’ ability to direct their own learning. In AI-
enhanced settings, however, autonomy is intricately linked to resource



utilization, particularly in how students use LLMs to explore concepts and
solve problems independently. While LLMs expand students’ access to
tailored resources, the study revealed challenges in maintaining true
autonomy. Some students became dependent on AI-generated outputs,
undermining self-directed learning. This divergence underscores the
importance of developing digital literacy and metacognitive skills to ensure
that autonomy in AI-enhanced environments fosters independent problem-
solving rather than passive reliance.

Interest and Engagement
This factor builds on the traditional concept of interest as a driver of
engagement (Hidi & Renninger, 2006). LLMs, with their ability to provide
dynamic and personalized content, align with theories emphasizing the role
of novelty and relevance in sustaining attention (Fredricks et al., 2004).
Unlike traditional learning settings, where sustained interest often depends
on meaningful context and challenge, the repetitive use of LLMs without
deeper integration led to disengagement. This finding suggests a need for
designing activities that maintain relevance and encourage creative
exploration.

Self-Regulation and Goal Setting
Traditional self-regulation emphasizes students’ ability to plan, monitor,
and reflect on their learning (Zimmerman, 2002). In AI-enhanced contexts,
this factor also encompasses students’ ability to use LLMs effectively for
iterative learning processes. While LLMs provide valuable scaffolding for
refining strategies and deepening understanding, the study highlighted risks
of misuse. Students who relied heavily on AI for feedback or task
completion showed weaker reflective and evaluative skills. This divergence
underscores the importance of integrating structured activities that



encourage students to critically assess AI outputs and refine their own
metacognitive abilities.

4.2 Pre- and Post-Semester Comparisons
This section provides a detailed analysis of how the four identified factors
evolved over the semester, based on pre- and post-semester survey data.
The term “factor levels” refers to the mean scores of each factor calculated
for all respondents. These analyses offer crucial insights into the dynamics
of student engagement in AI-augmented classrooms.

In Figure 3, the pre-semester survey revealed moderate to high
engagement across all factors.

Fig. 3 The Overall Means of the Four Factors’ Scores.⏎
Academic Self-Efficacy and Preparedness (Factor 1) had a mean score of

3.35, Autonomy and Resource Utilization (Factor 2) scored 3.53, Interest
and Engagement (Factor 3) scored 3.47, and Self-Regulation and Goal
Setting (Factor 4) scored 3.24. These initial results suggest that students



began the semester with a relatively strong sense of confidence, autonomy,
and interest, although self-regulation showed room for improvement.

By the end of the semester, the post-survey data revealed a significant
decline in all four factors. Academic Self-Efficacy and Preparedness
dropped to 3.00, Autonomy and Resource Utilization declined to 3.17,
Interest and Engagement fell to 3.11, and Self-Regulation and Goal Setting
showed the steepest decline to 2.81. These decreases highlight a consistent
reduction in perceived engagement as students navigated the semester with
AI-enhanced learning tools. The statistical significance of these shifts was
confirmed through a series of tests.

A one-way ANOVA conducted on the post-semester data revealed clear
distinctions among the factors. The results, detailed in Table 3, show that
Autonomy and Resource Utilization (Factor 2) and Interest and
Engagement (Factor 3) had the highest mean scores and were not
significantly different from each other, as indicated by their shared grouping
letter “A.”

Table 3 Grouping Information Using the Tukey Method and 95%
Confidence⏎

Factor N Mean Grouping
Factor2 642 3.1703 A
Factor3 642 3.1134 A
Factor1 642 3.0018 B
Factor4 642 2.8124 C

Academic Self-Efficacy and Preparedness (Factor 1) had a lower mean
score and was grouped separately with the letter “B.” Self-Regulation and
Goal Setting (Factor 4) had the lowest score, grouped under “C,”
confirming a significant difference from all other factors.

Means that do not share a letter are significantly different.



Further analysis using two-sample t-tests confirmed that the declines in
mean scores for all factors between the pre- and post-semester surveys were
highly significant, with p-values below 0.001. These results underscore that
the observed changes in engagement were not due to random variation but
reflected meaningful shifts in students’ experiences with AI tools.

Interpreting these results provides valuable insights into how engagement
dimensions were affected. The decline in Academic Self-Efficacy and
Preparedness suggests unmet expectations regarding the role of AI in
enhancing academic confidence. While students initially viewed these tools
as empowering, over-reliance on AI may have undermined their intrinsic
belief in their own abilities. The reduction in Autonomy and Resource
Utilization reflects the challenges students faced in maintaining
independence over time, despite the tools providing flexibility and access to
resources. Similarly, the decrease in Interest and Engagement indicates the
diminishing novelty effect of AI tools, leading to reduced intrinsic
motivation unless the tools were integrated meaningfully into broader
learning activities. Finally, the sharp decline in Self-Regulation and Goal
Setting highlights a critical area of concern, as AI tools appeared
insufficient to support students’ long-term planning and reflective practices.

4.3 Implications for Engagement in AI-Enriched Classrooms
The findings of this study reveal a complex picture of how student
engagement evolves in AI-augmented learning environments, with
significant implications for both theory and practice. The observed declines
across all four factors—academic self-efficacy, autonomy, interest, and self-
regulation—highlight the need to revisit traditional engagement models and
adapt them to the unique dynamics of AI-enhanced classrooms. While these
factors align with well-established engagement constructs, the results



suggest that the integration of large language models (LLMs) introduces
new challenges that require careful consideration.

The decline in academic self-efficacy underscores the dual-edged nature
of AI tools. On the one hand, LLMs provide significant scaffolding,
enabling students to tackle complex tasks with greater confidence. On the
other hand, over-reliance on these tools can erode intrinsic self-efficacy, as
students become uncertain of their abilities when the AI is unavailable. This
finding suggests that traditional theories of self-efficacy, which emphasize
individual agency, must be expanded to account for the interplay between
human and machine capabilities. Educators play a critical role in ensuring
that students view AI as a complement to their skills rather than a
substitute, fostering a balance that enhances both preparedness and
confidence.

Similarly, the challenges associated with autonomy and resource
utilization call for a nuanced understanding of independence in AI-
enhanced learning. While LLMs empower students to explore content and
solve problems independently, the significant decline in this factor
highlights the difficulty of sustaining genuine autonomy over time. Students
may struggle to navigate the wealth of options provided by AI or become
overly dependent on its outputs. This suggests that autonomy in AI-
augmented settings is not simply about access to resources but also about
developing the metacognitive skills necessary to evaluate and leverage
these tools effectively. Strategies such as structured prompts, reflective
exercises, and guided exploration can help students maintain control over
their learning process while using AI.

The reduction in interest and engagement observed in this study reflects
the transitory nature of the novelty effect often associated with educational
technologies. While initial excitement can drive engagement, sustaining it



requires deeper integration of AI into meaningful learning contexts. The
findings highlight the importance of designing activities that go beyond
novelty, encouraging students to use AI tools for creative exploration,
critical thinking, and authentic problem-solving. By embedding these tools
into broader pedagogical frameworks, educators can help students find
enduring value in their interactions with AI.

The sharp decline in self-regulation and goal setting is perhaps the most
concerning finding, as it suggests a significant gap in how AI tools support
longterm planning and reflective practices. While LLMs excel at providing
immediate feedback and facilitating task completion, they often lack the
capacity to guide students through the iterative processes required for
effective self-regulation. This highlights the need for educators to explicitly
teach self-regulatory strategies, encouraging students to set goals, monitor
their progress, and reflect on their learning experiences. Structured tasks
that require justification of AI use or comparisons of multiple approaches
can foster these skills, ensuring that students develop the capacity to
manage their learning effectively.

These findings suggest that while AI tools hold immense potential for
enhancing engagement, their successful integration into classrooms requires
thoughtful design and support. Educators must address the evolving needs
of learners, balancing the opportunities provided by AI with the challenges
it introduces. Future research should explore interventions aimed at
supporting long-term self-regulation, strategies for sustaining interest in AI-
enhanced environments, and the role of demographic factors in shaping
engagement dynamics. By addressing these issues, educators and
researchers can maximize the benefits of AI in education while mitigating
its limitations.

5. Conclusion



This study provides valuable insights into the dynamics of student
engagement in AI-augmented classrooms, highlighting both opportunities
and challenges associated with the integration of large language models
(LLMs) into education. The observed declines in all four engagement
factors—academic self-efficacy, autonomy, interest, and self-regulation—
underscore the complexity of sustaining engagement over time in
environments where AI tools play a central role.

The findings suggest that while LLMs offer significant potential to
enhance engagement by providing personalized support, fostering
autonomy, and sparking initial interest, these benefits may not be sustained
without thoughtful design and implementation. The decline in academic
self-efficacy highlights the risk of over-reliance on AI tools, which can
undermine students’ confidence in their intrinsic abilities. Similarly, the
challenges associated with autonomy and resource utilization point to the
importance of equipping students with the metacognitive skills needed to
effectively navigate AI-enhanced learning environments. The reduction in
interest underscores the need to move beyond the novelty effect, embedding
AI into meaningful and contextually relevant learning activities. Finally, the
sharp decline in self-regulation and goal setting reveals a critical gap in how
AI tools support long-term planning and reflective practices.

These findings have significant implications for both theory and practice.
Theoretically, they call for a rethinking of traditional engagement models to
account for the unique dynamics introduced by AI. Practically, they
emphasize the need for educators to balance the opportunities provided by
AI with its challenges, ensuring that students develop the skills and
confidence to succeed both with and without technological support.

However, engagement does not manifest uniformly across all students.
Preliminary analyses indicate that demographic factors such as age,



discipline, and study format (e.g., full-time vs. part-time) influence how
students interact with LLMs and experience engagement. These differences
suggest that certain subgroups may require tailored interventions to
maximize the benefits of AI tools while addressing their specific
challenges. For example, younger students may struggle with self-
regulation, while older students might face difficulties in adapting to new
technologies. Similarly, students in technical disciplines may utilize AI
differently from those in humanities or social sciences. A deeper
exploration of these subgroup variations is essential to refine strategies and
ensure equitable access to the benefits of AI-enhanced learning. The next
chapter of “Engagement Diversity in AI-Enhanced Learning:

The next chapter of “Engagement Diversity in AI-Enhanced Learning:
Demographic and Disciplinary Perspectives” will delve into these
demographic and contextual layers, offering a detailed analysis of how
engagement shifts vary across different groups. By understanding these
variations, educators and researchers can develop targeted interventions to
address the diverse needs of learners and optimize the integration of AI
tools in education.
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This chapter explores the diversity of engagement experiences in AI-
augmented classrooms by examining demographic, disciplinary, and
behavioral factors that influence student interaction with AI tools. Building
on the findings of the previous chapter “Engagement Dynamics in AI-
Augmented Classrooms: Factors and Evolution”, this study analyzes how
variables such as age, gender, cultural background, academic discipline, and
AI usage patterns affect key engagement factors, including “Academic Self-
Efficacy and Preparedness”, “Autonomy and

Resource Utilization”, “Interest and Engagement”, and “Self-Regulation
and Goal Setting”. The analysis highlights significant differences in
engagement trends across subgroups, with younger students adapting more
readily to AI-based learning environments compared to older students, and
technical disciplines such as engineering and information technology
demonstrating higher engagement stability than teacher training and social
sciences. Behavioral patterns indicate that frequent and sustained use of AI
tools, coupled with effective teacher support, enhances engagement, while
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inconsistent usage leads to declines across all factors. The findings
emphasize the importance of selecting effective AI tools, tailoring AI
integration strategies to student demographics and disciplines, and fostering
sustained, meaningful engagement in AI-enhanced learning environments.

1 Introduction
Building on the findings of the previous chapter of “Engagement Dynamics
in AI-Augmented Classrooms: Factors and Evolution”, this chapter delves
deeper into the diversity of engagement experiences. Understanding how
engagement dynamics differ across different demographic, disciplinary, and
behavioral factors and groups, it offers insights into the varying needs and
experiences of students in AI-enhanced classrooms. The findings presented
in this section focus on variations in the four newly identified factors
(Bognár et al., 2024; Bognár & Khine, 2025): Factor 1: Academic Self-
Efficacy and Preparedness, Factor 2: Autonomy and

Resource Utilization, Factor 3: Interest and Engagement, and Factor 4:
SelfRegulation and Goal Setting.

Student engagement is a cornerstone of academic success, influencing
motivation, persistence, and overall learning outcomes (Bandura, 1997;
Deci & Ryan, 1985). In the context of artificial intelligence (AI)-enhanced
classrooms, engagement takes on new dimensions as technological tools
offer opportunities for personalization, immediate feedback, and interactive
learning experiences (Holmes et al., 2019; García-Martínez et al., 2023).
The integration of AI tools such as large language models (LLMs) has
transformed traditional learning environments, emphasizing the importance
of understanding how diverse student populations interact with these
technologies.

This chapter examines key demographic characteristics, including gender
differences between male and female students, as well as age variations



spanning groups such as under 24, 24–30, 30–40, and over 40. Age-related
differences in engagement may be particularly noteworthy, as younger
students often adapt more readily to AI-enhanced learning environments,
while older students may encounter greater challenges in sustaining
motivation and autonomy (Chiu et al., 2023; Farrokhnia et al., 2023).
Language and cultural background also may play a significant role, with the
study comparing the experiences of English-speaking international students
and Hungarian students. These distinctions may shed light on how linguistic
and cultural contexts shape students’ interactions with LLMs, offering
insights into the broader implications of AI integration in global education
settings.

The academic discipline is another critical dimension, with the study
encompassing fields as diverse as teacher training, engineering, information
technology, economics, and social sciences. Technical disciplines such as
engineering and information technology often align more naturally with the
structured problem-solving capabilities of AI tools, leading to higher
engagement and resource utilization (Qu et al., 2024). In contrast,
disciplines like teacher training and social sciences may face unique
challenges in sustaining engagement, particularly in areas such as self-
regulation and goal setting, highlighting the need for tailored integration
strategies (Lai, 2024; Farrokhnia et al., 2023).

In addition to demographic and disciplinary factors, this chapter
examines behavioral patterns associated with AI tool usage. AI tools enable
the personalization of learning experiences by adapting to individual needs,
thus fostering self-efficacy and intrinsic motivation (Grassini, 2023;
Holmes et al., 2019). The frequency of interactions with AI-based chat
tools, ranging from never to very often, and the duration of each session,



spanning less than 30 minutes to more than 4 hours, may provide a
comprehensive view of how students engage with these technologies.

These usage patterns are further contextualized by students’ perceptions
of teacher support, particularly regarding the depth of discussions on the
potential and limitations of artificial intelligence in their classes. Former
studies reveal that intrinsic motivation and competence in learning with the
chatbot are influenced by both teacher support and student expertise,
including self-regulated learning and digital literacy (Chiu et al., 2023).
According to them, while teacher support more effectively addresses the
need for relatedness, it is less effective in satisfying the need for autonomy.

The potential variations in how different AI tools influence engagement
factors underscore the importance of research in this area. Certain tools may
exhibit unique strengths in enhancing motivation, autonomy, or self-
regulation, while others might be better suited to different aspects of student
engagement. Exploring these differences could provide valuable insights
into optimizing AI integration in education, ensuring that tools are selected
and utilized in ways that align with diverse learner needs and goals.

By synthesizing these diverse dimensions, this chapter provides strategies
for tailoring AI integration to the diverse needs of learners.

For a detailed description of the study’s overall methodology and
experimental design, refer to the previous chapter “Engagement Dynamics
in AI-Augmented Classrooms: Factors and Evolution”.

2 Multi-Group Confirmatory Factor Analysis (CFA)
Multi-group CFA was conducted to validate the model across various
demographic groups and fields of study. This analysis was performed on the
entire dataset (n = 642) and confirmed the consistency of the factor
structure across various subgroups:

Demographic groups:



Gender: Male vs. Female
Age Groups: Under 24, 24–30, 30–40, over 40
Language and Cultural Background: English-speaking international
students vs. Hungarian students.

Disciplinary groups:

Academic Discipline: Technical fields (e.g., Engineering, IT) vs.
Social fields (e.g., Economics, Social Sciences)

The multi-group analysis discussed here is a component of Structural
Equation Modeling (SEM), which was utilized in the previous chapter to
identify the bestfitting model of latent factors based on the response data.
SEM is fundamentally rooted in regression analysis and relies on the
covariance matrix of the observed data. This covariance matrix serves as
the foundation of the analysis, capturing the relationships among all
observed variables (survey items). SEM essentially models these
relationships as a series of regression equations that link the observed
variables to the underlying latent constructs (factors). The factor loadings
can be understood as regression coefficients that quantify the relationship
between each observed variable and its associated latent factor, while the
intercepts represent the baseline levels of observed variables when the
latent factor is at zero. These elements define how latent constructs
manifest in the observed data.

Measurement invariance testing, a critical component of multi-group
analyses, ensures that the constructs being measured are understood and
interpreted consistently across different subgroups. It evaluates whether the
factor structure, factor loadings, and intercepts remain stable and
comparable across these groups. This process is essential for ensuring that



the latent constructs are measured equivalently, allowing for valid subgroup
comparisons. The analysis included three levels of invariance: configural,
metric, and scalar. Configural invariance ensures that the factor structure is
the same across groups, metric invariance tests the equality of factor
loadings, and scalar invariance examines the equality of intercepts.

To assess invariance, the change in the Comparative Fit Index (delta CFI)
was used as a metric. Delta CFI measures the difference in model fit
between increasingly constrained models (e.g., from configural to metric).
When delta CFI values remain below the threshold of 0.01, it indicates that
adding constraints, such as equal factor loadings across groups, does not
significantly worsen the model fit. In this study, delta CFI values for each
level of invariance across all subgroups were far below the recommended
0.01 threshold. This result confirms strong measurement invariance,
supporting the consistency of the engagement constructs across diverse
layers of students. Consequently, the model measurements are both reliable
and comparable across different contexts, providing a robust basis for
interpreting and comparing engagement levels in AI-enhanced classrooms.

3 Demographic Analysis

3.1 Gender-Based Differences in Engagement
3.1.1 Findings
In examining the changes across Factors 1, 2, 3, and 4 by gender in Figure
1, while all factors exhibited a general decline in scores from the pre-survey
to the post-survey, there are some differences in the extent and nature of
these changes.



Fig. 1 Factor Levels by Gender.⏎
For female students, the pre-survey scores across all four factors were

notably strong. In Factor 1 (Academic Self-Efficacy and Preparedness),
female students scored 3.37, while for Factor 2 (Autonomy and Resource
Utilization), the presurvey mean was 3.57. In Factor 3 (Interest and
Engagement), female students initially reported a score of 3.52, while in
Factor 4 (Self-Regulation and Goal Setting), their score was 3.36. After the
semester, all four factors showed a decline for female students. In Factor 1,
the score dropped significantly to 2.90, and in Factor 2, it decreased to 3.10.
Similarly, Factor 3 saw a reduction to 3.05, and Factor 4 experienced the
largest drop, falling to 2.75.

For male students, the pre-survey results were similar, though slightly
lower in some factors compared to female students. In Factor 1, male
students had a pre-survey score of 3.35, and in Factor 2, their score was



3.52. In Factor 3, male students reported an initial score of 3.45, while for
Factor 4, they scored 3.18. In the post-survey, male students also
experienced declines across all factors. Factor 1 dropped to 3.06, showing a
smaller reduction compared to female students. In Factor 2, male students’
score decreased to 3.21, while Factor 3 fell to 3.15. Factor 4 declined to
2.85, though the drop was not as pronounced as for female students.

3.1.2 Statistical Analysis
The statistical analysis, conducted using a two-factor ANOVA with the
survey date nested under the gender factor, provided insights into both
consistent trends across all engagement factors and gender-specific
differences. Tukey’s pairwise comparisons were used to clarify these
patterns, revealing both shared tendencies and notable distinctions.

For all four factors, the pre-survey scores were consistently higher than
postsurvey scores, indicating a uniform, statistically significant decline in
engagement levels over time. This trend was observed for both males and
females, regardless of the factor analyzed. Additionally, no statistically
significant differences were observed in overall mean scores between
genders for any factor when comparing pre- and post-survey data.

While the overarching trend of declining engagement was consistent,
genderspecific differences emerged in the magnitude of these declines and
the grouping information for pre- and post-survey scores. For instance, for
Factor 2 females demonstrated a sharper decline from pre-survey (3.57) to
post-survey (3.09), compared to males, whose scores dropped from 3.51 to
3.21. For Factor 4, the gap between pre- and post-survey scores was more
pronounced for females, dropping from 3.36 to 2.75, compared to males,
whose scores fell from 3.18 to 2.85.

These variations suggest that females, while initially reporting slightly
higher engagement levels for these factors, experienced more significant



declines compared to males.
To illustrate these findings, Factor 1 is selected as a demonstrative

example. The Tukey pairwise comparisons for this factor highlight the
differences across survey dates and genders in Table 1.

Table 1 Grouping Information for Factor 1: Gender and Date of Survey ⏎
Date of Survey (Gender) N Mean Grouping

Pre-Survey (Female) 252 3.36710 A

Pre-Survey (Male) 466 3.34504 A

Post-Survey (Male) 416 3.05647 B

Post-Survey (Female) 223 2.90121 C

Note: Means that do not share a letter are significantly different.

The grouping information reveals that both males and females started the
semester with similarly high self-efficacy, as reflected in their pre-survey
scores (group “A”). However, post-survey scores showed a significant
decline, with males falling to group “B” and females further to group “C”,
indicating a larger decrease for females.

3.1.3 Interpretation
In comparing pre- and post-survey scores for both genders, the decline in
engagement levels was more pronounced for female students across all
factors. Female students experienced larger decreases, especially in Factors
1 and 4, where their confidence in academic preparedness and ability to
self-regulate their learning dropped more sharply than that of male students.
Despite the general downward trend for both genders, male students



consistently reported higher post-survey scores, indicating that they may
have adapted to the use of AI tools with slightly more resilience or retained
a stronger sense of engagement throughout the semester.

3.2 Age-Based Changes in Engagement
3.2.1 Findings
Figure 2 shows the mean scores for each engagement factor across four age
groups—24 years and younger, 24–30 years, 30–40 years, and 40 years and
older— for both the pre- and post-semester surveys.

Fig. 2 Factor Levels by Age Group.⏎
Across all factors, pre-survey scores consistently increased with age, with

older students reporting higher levels of engagement initially. For example,
the oldest group (40 years and older) had the highest pre-survey mean



scores across all factors, peaking at 3.52 for Factor 1 (Academic Self-
Efficacy and Preparedness) and 3.66 for Factor 3 (Interest and
Engagement). However, post-survey data revealed significant declines in
engagement across all factors and age groups, with older students
experiencing the most pronounced drops.

For Factor 1, the pre-survey score for the oldest group was 3.52,
dropping sharply to 2.78 in the post-survey. A similar pattern was observed
for Factor 3, where the pre-survey score of 3.66 fell to 2.97. Factor 2
(Autonomy and Resource Utilization) showed a slightly less steep decline,
with pre-survey scores ranging from 3.47 to 3.68 across all age groups and
post-survey scores falling to between 3.00 and 3.31. Factor 4 (Self-
Regulation and Goal Setting) demonstrated the most uniform decline across
age groups, with scores decreasing from a pre-survey range of 3.15–3.54 to
a post-survey range of 2.65–2.86.

3.2.2 Statistical Analysis
A two-factor ANOVA was performed for each factor, with survey date
nested under the age group factor. Significant differences were observed
between pre- and post-survey results across all factors. Factor 1 is detailed
here as an example, and its grouping information based on the Tukey
method with 95% confidence is shown in Table 2.



Table 2 Grouping Information for Factor 1. Age Groups and Date of
Survey. ⏎

Date of Survey (Age Group) N Mean Grouping

Pre-Survey (40 <= Age) 100 3.51620 A

Pre-Survey (30 < Age <= 40) 77 3.45805 A B

Pre-Survey (24 < Age <= 30) 51 3.34078 A B C

Pre-Survey (Age <=24) 498 3.29781 B C

Post-Survey (24 < Age <= 30) 68 3.08338 C D E

Post-Survey (Age <=24) 385 3.07761 D

Post-Survey (30 < Age <= 40) 85 2.86235 E F

Post-Survey (40 <= Age) 104 2.78202 F

Note: Means that do not share a letter are significantly different.

Across all age groups, the pre-survey scores were consistently higher than
the post-survey scores. For example, the oldest group (aged 40 and above)
experienced a significant decline, with scores dropping from 3.52 in the
pre-survey to 2.78 in the post-survey. The Tukey test categorized the pre-
survey score for this group into group “A” and the post-survey score into
group “F”, marking the largest decrease. Similarly, the 30–40 age group
showed a decline from a pre-survey score of 3.46 to a post-survey score of
2.86, with pre-survey scores falling into groups “A” and “B” and post-
survey scores placed in groups “E” and “F”, indicating a considerable
reduction in self-efficacy.



For the 24–30 age group, the pre-survey score decreased from 3.34 to
3.08, reflecting a more moderate decline. While this decrease was less
pronounced compared to older groups, the trend was consistent. Finally, the
youngest group (24 years and younger) exhibited the smallest decline, with
scores decreasing from 3.30 in the pre-survey to 3.08 in the post-survey, yet
showing a noticeable distinction between the two survey periods.

3.2.3 Interpretation
The findings reveal a consistent pattern: older students began the semester
with higher engagement levels across all factors but experienced more
substantial declines by the semester’s end. This suggests that while older
students initially demonstrated greater confidence, autonomy, and interest,
they faced greater challenges in maintaining these levels as the semester
progressed. Factors such as unfamiliarity with AI tools or a higher
dependence on traditional learning methods may have contributed to this
decline.

In contrast, younger students, who started with lower engagement levels,
exhibited more stable scores over time. This stability could indicate better
adaptability to AI-enhanced learning environments or a lower baseline
expectation, reducing the impact of unmet expectations.

These findings underscore the importance of tailoring AI integration
strategies to address the specific needs of different age groups. For older
students, targeted interventions focusing on building confidence and
offering structured support may help mitigate engagement declines. For
younger students, leveraging their adaptability while fostering deeper
engagement through innovative learning activities could maximize the
benefits of AI tools.

3.3 C ultural and Language Background Based Changes in
Engagement



3.3.1 Findings
In Figure 3, the analysis across language groups reveals a nuanced pattern
in the impact of AI-enhanced learning tools on student engagement.

Fig. 3 Factor Levels by Language.⏎
Initially, both English and Hungarian-speaking students demonstrated

high levels of engagement across all factors, with a significant decline in
the post-survey phase. For Factor 1 (Academic Self-Efficacy and
Preparedness), English-speaking students started at 3.48 and declined to
3.05, while Hungarian-speaking students went from 3.34 to 3.00. This
indicates considerable challenges in maintaining academic confidence.
Factor 2 (Autonomy and Resource Utilization) showed a decline from 3.60
to 3.25 for English speakers and from 3.53 to 3.17 for Hungarian speakers.
Although there was a decline, it was less pronounced compared to Factor 1,



indicating a steadier impact on autonomy and resource utilization. Factor 3
(Engagement and Interest) decreased from 3.60 to 3.22 for English speakers
and from 3.47 to 3.11 for Hungarian speakers. The decline in engagement
was slightly less marked among Hungarian-speaking students, suggesting
potentially more effective adaptation or integration of AI tools within this
group. Factor 4 (SelfRegulation and Goal Setting) experienced the most
substantial decline. Englishspeaking students dropped from 3.37 to 3.03,
while Hungarian-speaking students showed the most significant drop from
3.24 to 2.80, indicating substantial variance in the effectiveness of AI tools
influenced by cultural and instructional differences.

3.3.2 Statistical Analysis
A two-factor ANOVA was performed for each factor, with the survey date
nested under the language group (English-speaking vs. Hungarian students).
Across all four factors, no significant differences were found between
English-speaking and Hungarian students within the same survey period.
However, significant declines were observed between the pre- and post-
survey results for both language groups across all factors. Factor 1
(Academic Self-Efficacy) is presented here as an example, while Factors 2,
3, and 4 are described more generally.

For Factor 1, the grouping information from the Tukey method with 95%
confidence is summarized in Table 3.



Table 3 Grouping Information for Factor 1: Language and Date of Survey⏎
Date of Survey (Language) N Mean Grouping

Pre-Survey (English) 27 3.48000 A

Pre-Survey (Hungarian) 699 3.34280 A

Post-Survey (English) 39 3.04974 B

Post-Survey (Hungarian) 603 2.99874 B

Note: Means that do not share a letter are significantly different.

The pre-survey scores for English-speaking students (mean = 3.48) and
Hungarian students (mean = 3.34) were classified into group “A,” showing
no significant difference between the language groups at the start of the
semester. Post-survey scores declined significantly for both groups, with
English-speaking students scoring 3.05 and Hungarian students scoring
3.00. These post-survey scores were grouped together under “B”, indicating
no significant difference between them but a clear distinction from the pre-
survey results.

A similar pattern was observed in the analysis for Factors 2–4. Across all
factors, the Tukey test highlighted that while the pre-survey scores for
Englishspeaking students tended to be slightly higher than those for
Hungarian students, the differences were not statistically significant, as both
groups were classified into the same letter group (“A”). Post-survey results,
however, showed uniform declines across all factors, with both groups
placed into a lower grouping (“B”), confirming significant reductions in
engagement levels over the semester.

3.3.3 Interpretation



The analysis highlights that language, or cultural background did not
significantly influence engagement levels within AI-enhanced learning
environments, as no differences were observed between English-speaking
and Hungarian students. However, significant declines from pre-survey to
post-survey were evident across all factors, emphasizing challenges in
sustaining engagement levels over the semester.

These results suggest that the observed engagement declines are likely
attributable to universal challenges faced by students in adapting to the
semester’s demands and integrating AI tools effectively. The findings
underline the need for interventions that support sustained engagement,
including enhanced teacher guidance and structured approaches to foster
autonomy, self-efficacy, interest, and self-regulation throughout the
semester.

4 Disciplinary Analysis: Differences Across Academic Fields
The analysis of engagement levels across different academic disciplines
reveals notable patterns in the pre- and post-survey data. Figure 4 illustrates
the trends for each of the four factors by discipline, highlighting both
general tendencies and specific challenges faced by students in various
fields.



Fig. 4 Factor Levels by Field of Discipline.⏎
4.1 Findings
The pre-survey data demonstrates substantial variation in initial
engagement levels across disciplines. Teacher Training students reported
the highest average scores for all four factors, with particularly high scores
in Factor 2 (Autonomy and Resource Utilization) at 3.68 and Factor 3
(Interest and Engagement) at 3.66. These findings suggest that Teacher
Training students began the semester with strong autonomy and
engagement. In contrast, Social Sciences students reported the lowest pre-
survey scores, particularly in Factor 4 (Self-Regulation and Goal Setting),
where the mean was 3.01, indicating potential challenges in managing
learning processes.

According to the post-survey, all disciplines experienced declines in
engagement, but the magnitude of these changes varied. Teacher Training



showed the most significant reductions, particularly in Factor 4, where
scores dropped sharply from 3.53 to 2.73. Declines in Factor 1 (Academic
Self-Efficacy and Preparedness) were also pronounced, falling from 3.50 to
2.81. Similarly, Factors 2 and 3 showed marked reductions, indicating
diminished autonomy and engagement over the semester.

Economics and Social Sciences exhibited smaller declines compared to
Teacher Training. For example, in Economics, Factor 1 dropped only
slightly from 3.21 to 3.09, and Factor 4 fell from 3.09 to 2.93. These
findings suggest greater stability in engagement levels for students in these
fields. Engineering and Information Technology students demonstrated
moderate resilience, particularly in Factors 2 and 3. In Engineering, Factor
2 decreased from 3.54 to 3.22, and Factor 3 fell from 3.51 to 3.18.
Information Technology followed a similar pattern, with Factor 2 dropping
from 3.53 to 3.19 and Factor 3 from 3.46 to 3.13.

4.2 Statistical Analysis
The two-factor ANOVA, with survey date nested under the field of
discipline, revealed significant differences between pre- and post-survey
engagement levels across all factors. Table 4 illustrates the grouping
information for Factor 1, providing a detailed comparison of disciplines.



Table 4 Grouping Information for Factor 1: Field of Disciplines and Date
of Survey. ⏎

Date of Survey (Field of Discipline) N Mean Grouping

Pre-Survey (Teacher Training) 117 3.49872 A

Pre-Survey (Engineering) 31 3.37452 A B C

Pre-Survey (Information Technology) 447 3.35121 A B

Pre-Survey (Economics) 107 3.21318 B C D

Pre-Survey (Social Sciences) 24 3.11750 A B C D E

Post-Survey (Economics) 75 3.08520 C D

Post-Survey (Social Sciences) 16 3.08438 A B C D E

Post-Survey (Information Technology) 424 3.03125 D

Post-Survey (Engineering) 27 2.98593 C D E

Post-Survey (Teacher Training) 100 2.80570 E

Note: Means that do not share a letter are significantly different.

In the pre-semester phase, Teacher Training showed the highest mean score,
positioned firmly in group “A”, indicating the strongest initial self-efficacy
among the disciplines. Economics, on the other hand, exhibited
significantly lower selfefficacy, with scores spanning groups “B”, “C”, and
“D”. This distribution reflects a marked gap in academic preparedness and
confidence between these two fields. Other disciplines, such as Information
Technology, were positioned between these extremes, appearing in groups



“A” and “B”, suggesting moderately high selfefficacy relative to Economics
but below Teacher Training.

In the post-semester phase, significant declines were observed across all
disciplines, with Teacher Training experiencing the steepest drop. Teacher
Training’s mean score fell from group “A” in the pre-survey to group “E” in
the post-survey, reflecting a substantial reduction in self-efficacy. By
comparison, Information Technology, which initially shared groups “A” and
“B”, dropped to group “D”, indicating a notable but less severe decline.

When comparing Teacher Training and Information Technology, the
postsurvey analysis highlights a significant difference, with Teacher
Training in group “E” and Information Technology in group “D”. This
distinction underscores the sharp decline in Teacher Training’s self-efficacy
compared to Information Technology.

In the case of Economics, pre-survey scores spanned groups “B”, “C”,
and “D”, reflecting moderate self-efficacy. By the post-survey, Economics
maintained relative stability, with scores positioned in groups “C” and “D”.
This contrasts with Teacher Training, which dropped significantly below
Economics in the postsurvey, emphasizing the resilience of Economics
students in maintaining selfefficacy levels.

The analysis of Factor 2 (Autonomy and Resource Utilization) revealed
that Teacher Training students had the highest pre-survey scores, reflecting
strong initial autonomy and resource utilization in this group. However, this
group experienced a substantial decline by the post-survey, consistent with
the pattern observed for Factor 1. In contrast, Economics showed smaller
declines in autonomy, indicating that students in this discipline maintained
relatively stable engagement in terms of resource utilization throughout the
semester.



For Factor 3 (Interest and Engagement), Information Technology
students initially demonstrated high levels of engagement, suggesting
strong interest and curiosity in leveraging AI-enhanced learning tools.
However, by the post-survey, significant reductions in engagement were
observed, pointing to a waning interest over time. This trend highlights the
challenges in sustaining student engagement in technology-driven learning
environments.

Factor 4 (Self-Regulation and Goal Setting) showed the steepest declines
in Teacher Training, with scores dropping from the highest grouping in the
presurvey to the lowest grouping in the post-survey. This dramatic shift
underscores the difficulties Teacher Training students faced in maintaining
control over their learning processes. On the other hand, Social Sciences
exhibited more stable levels of self-regulation and goal setting, with smaller
changes between pre- and post- survey scores, suggesting better resilience
or less dependency on initial levels of engagement.

4.3 Interpretation
The results reveal important insights into how engagement evolves
differently across academic disciplines in AI-augmented classrooms,
emphasizing the need for a deeper understanding of these variations. The
sharp declines observed in Teacher Training students’ engagement
underscore a critical challenge: while this group began the semester with
high levels of autonomy and interest, their significant drop, particularly in
self-regulation (Factor 4), signals difficulties in sustaining control over their
learning processes as the semester progressed. This trend suggests that the
flexibility and independence enabled by AI tools may require additional
structure and guidance to maintain long-term engagement in reflective,
humancentered disciplines like Teacher Training.



For Information Technology students, the pronounced declines in
selfefficacy and autonomy reveal a noteworthy interpretation. While these
students demonstrated strong initial engagement, the reductions over time
suggest that the initial alignment between AI tools and structured, technical
problem-solving tasks was insufficient to sustain long-term motivation and
autonomy. This raises questions about the adaptability of AI tools to foster
deeper engagement beyond their functional utility in highly technical
disciplines.

In contrast, Economics and Social Sciences students exhibited greater
resilience in maintaining engagement levels throughout the semester.
Relatively stable scores in self-efficacy and self-regulation suggest that
these students may have benefited from their ability to adapt to AI-
augmented environments, possibly due to a balance between structured
tasks and opportunities for critical thinking. The findings imply that
disciplines traditionally focused on analysis and synthesis may naturally
integrate AI tools into the learning process more seamlessly, mitigating
significant engagement losses.

Engineering students displayed moderate declines, particularly in
autonomy and self-regulation, but their engagement levels remained more
stable overall. This relative consistency could reflect the structured, task-
oriented nature of engineering education, where AI tools are leveraged to
complement problem-solving processes rather than replace core learning
activities. However, the slight declines observed still point to the need for
reinforcing strategies that promote sustained autonomy and self-directed
learning.

Ultimately, while all disciplines experienced engagement declines, the
magnitude and nature of these shifts provide crucial insights. Teacher
Training and Information Technology students struggled the most,



indicating that these fields may require targeted interventions to maintain
engagement, such as greater instructional scaffolding or adaptive AI
integration strategies. Meanwhile, the stability observed in Economics and
Social Sciences highlights opportunities for leveraging AI tools more
effectively to foster resilience in engagement. These findings reinforce the
importance of discipline-specific approaches to ensure that AI tools support
—not hinder—long-term student engagement and learning outcomes.

5 Changes Based on the Frequency and Duration of AI Tools
To assess students’ interaction with AI tools during the semester,
standardized survey items were utilized, ensuring consistency and reliability
in data collection. These questions could only be asked at the end of the
semester, as they required participants to reflect on their usage patterns
throughout the course. The participants provided information on:

Frequency of AI-based chat utilization:

Never (1)
Rarely (2)
Sometimes (3)
Often (4)
Very often (5)

Duration of AI-based chat sessions:

No usage (0)
Less than 30 minutes (1)
Between 30 minutes and 1 hour (2)
1–2 hours (3)
2–4 hours (4)
More than 4 hours (5)



Figures 5 and 6 illustrate how the frequency and duration of AI engagement
relate to the four core engagement factors. The trends identified in these
figures provide a strong rationale for discussing these variables collectively,
allowing for a concise synthesis of findings.

Fig. 5 Mean Factor Levels by Frequency of AI Chat Usage.⏎



Fig. 6 Mean Factor Levels by Duration of AI Chat Usage.⏎
From the visualized data, it is evident that students who engaged more

frequently and for longer durations with AI tools tended to maintain or
enhance their engagement levels, whereas those with limited or no
interaction exhibited pronounced declines.

For frequency, non-users of AI tools displayed sharp decreases in all
engagement factors. For instance, in Factor 1 (Academic Self-Efficacy and
Preparedness), scores plummeted from 3.37 during the pre-survey to 1.97
in the post-survey. Similarly, Factor 4 (Self-Regulation and Goal Setting)
dropped from 3.34 to 1.79 for non-users. In stark contrast, students who
used AI tools very often showed marked improvements or stability. For
example, Factor 3 (Interest and Engagement) increased from 3.42 to 3.53,
suggesting that regular and interactive AI engagement fosters interest and
involvement.



The trends in engagement duration further corroborate the significance of
sustained usage. Students who abstained from using AI tools experienced
considerable declines across all factors, with Factor 1 (Academic Self-
Efficacy and Preparedness) falling from 3.35 to 2.25 and Factor 4 (Self-
Regulation and Goal Setting) dropping from 3.33 to 2.09. Minimal usage
(less than 30 minutes) also correlated with reductions, especially in
autonomy and resource utilization. However, as usage duration increased,
the declines became less pronounced. Those engaging for one to four hours
demonstrated relative stability, while students dedicating over four hours
sustained strong performances across all factors. For instance, in Factor 1,
scores for this group only slightly decreased from 3.66 to 3.46.

These findings underscore the vital role of regular and meaningful
engagement with AI tools in supporting and enhancing student engagement.
Conversely, sporadic or absent usage is associated with declines in self-
efficacy, autonomy, interest, and self-regulation. To optimize AI-enhanced
learning environments, educators should promote consistent and effective
AI utilization to bolster student engagement throughout their academic
journey.

6 The Effect of Instructor Support
During the post-semester surveys, the impact of instructor support was
evaluated due to their relevance at this stage of the learning process. Instead
of detailed statistical analysis, the focus here is on highlighting the
overarching trends observed in the data.

To measure the quality of teacher support in facilitating AI integration,
two specific questions were posed to the students:

“Do you think that the classes sufficiently covered the potential of
Artificial Intelligence?” (1 = Not at all, 5 = Absolutely)



“Do you think that the limitations of Artificial Intelligence were
presented in sufficient depth in the class?” (1 = Not at all, 5 =
Absolutely)

These questions aimed to capture students’ perceptions regarding the
balance and comprehensiveness of AI-related content in their coursework.
The findings, visualized in Figures 7 and 8, demonstrate a clear relationship
between the perceived depth of coverage and student engagement.

Fig. 7 Factor Levels by Perceived Depth of AI Potential in
Classes.⏎



Fig. 8 Factor Levels by Perceived Depth of AI Limitations in
Classes.⏎

Figure 7 illustrates that when students believed the potential of AI was
thoroughly explored in their classes, engagement scores across all factors
consistently increased. This suggests that a well-integrated discussion of
AI’s potential positively influences students’ overall learning engagement.

Similarly, Figure 8 highlights that addressing AI’s limitations had a
particularly strong impact on autonomy and resource utilization. When
these limitations were insufficiently discussed, noticeable gaps emerged,
especially in self-regulation and goal setting. These trends underline the
necessity of a balanced approach that incorporates both opportunities and
constraints of AI to support comprehensive student learning.

7. The Effect of the Type of AI Tools



The study also examined the influence of different AI tools, as presented in
Figure 9.

Fig. 9 Factor Levels by the type of the AI Chat Tools.⏎
Among the tools, ChatGPT 4.0 demonstrated the most substantial impact,

achieving consistently high engagement scores across all factors. This
suggests that its advanced interactive capabilities significantly enhance
student learning experiences. Microsoft Copilot followed closely,
particularly excelling in promoting autonomy and resource utilization.
Other tools, such as ChatGPT 3.5 and Gemini/ Bard, also performed well
but did not match the effectiveness of ChatGPT 4.0 or Microsoft Copilot.
Meanwhile, GitHub Copilot showed the lowest overall impact.

These findings emphasize the variability in the effectiveness of AI tools,
with certain technologies like ChatGPT 4.0 and Microsoft Copilot proving



more capable of driving engagement and academic self-efficacy. Educators
should prioritize these high-performing tools to maximize the educational
advantages of AI integration and support students in achieving optimal
learning outcomes.

8 Conclusion
This study offers insights into how engagement evolves in AI-enhanced
learning environments, focusing on demographic differences, disciplinary
contexts, and patterns of AI tool usage. By analyzing pre- and post-semester
engagement levels, several critical trends emerge, shedding light on the
nuanced interaction between AI tools and student learning behaviors. While
AI tools show significant potential for improving engagement, their
effectiveness varies widely based on several factors, highlighting the need
for tailored integration strategies.

The data reveal a consistent decline in engagement across all four factors
—Factor 1: Academic Self-Efficacy and Preparedness, Factor 2: Autonomy
and Resource Utilization, Factor 3: Interest and Engagement, and Factor
4: Self-Regulation and Goal Setting—by the end of the semester. This
decline suggests that while students initially embrace AI tools with
enthusiasm, maintaining this engagement over time is a greater challenge.
The sharp drop in self-efficacy may reflect unmet expectations about AI’s
ability to enhance academic preparedness, pointing to a disconnect between
students’ initial optimism and the tools’ long-term support. Similarly, the
decline in autonomy indicates that students may struggle to sustain their
sense of control and resourcefulness as the semester progresses. The
reductions in interest further highlight a potential novelty effect, where
initial enthusiasm wanes once the tools become routine. Most critically, the
steep drop in self-regulation underscores a gap in AI tools’ ability to foster
sustained goal setting and learning independence.



Demographic trends also play a pivotal role in shaping engagement
dynamics. Older students, who started the semester with higher baseline
levels of confidence and autonomy, experienced more significant declines
compared to younger students. This suggests that older learners may face
greater challenges in adapting to AI-enhanced learning environments,
potentially due to differences in prior technological exposure or learning
preferences. Younger students, on the other hand, maintained more stable
engagement levels, indicating a greater adaptability to these tools. These
findings highlight the importance of tailoring AI integration to meet the
needs of different age groups, offering targeted support for older students
while leveraging the adaptability of younger learners.

Disciplinary context further influences engagement outcomes. Teacher
Training students, despite beginning the semester with the highest levels of
engagement, experienced sharp declines, particularly in self-regulation and
goal setting. This suggests that while these students initially benefit from
AI’s flexibility and personalized feedback, they may struggle to sustain
motivation and autonomy over time. In contrast, students in technical
disciplines such as Engineering and Information Technology showed more
stable engagement levels, particularly in autonomy and resource utilization.
This stability may reflect a natural alignment between AI tools and the
structured, problem-solving approaches inherent to these fields. Meanwhile,
students in Economics and Social Sciences experienced moderate declines
in engagement, pointing to the need for tailored integration strategies that
address the unique demands of these disciplines.

The frequency and duration of AI tool usage emerged as critical factors
influencing engagement. Students who frequently used AI tools and
engaged with them for extended periods generally maintained or even
improved their engagement scores, particularly in areas such as self-



efficacy and goal setting. In contrast, those who used AI tools infrequently
or for shorter durations experienced significant declines across all
engagement factors. These findings underscore the importance of
consistent, meaningful interaction with AI tools to maximize their benefits.
Educators should consider incorporating structured activities that encourage
regular AI use, helping students integrate these tools into their learning
routines effectively.

The type of AI tool used also played a significant role in shaping
engagement outcomes. ChatGPT 4.0 demonstrated the highest overall
effectiveness across all engagement factors, suggesting that its advanced
capabilities provide unique advantages in fostering student motivation and
self-efficacy. Microsoft Copilot also performed well, particularly in
promoting autonomy and resource utilization. Other tools, such as ChatGPT
3.5 and Gemini/Bard, offered benefits but did not achieve the same impact,
while GitHub Copilot showed the least influence overall. These findings
highlight the importance of selecting AI tools that align closely with
educational objectives and offer the greatest potential for enhancing student
engagement.

Instructor support was another critical factor influencing engagement.
Courses that thoroughly addressed both the potential and limitations of AI
tools saw higher levels of student engagement across all factors. This
underscores the need for educators to provide balanced, comprehensive
guidance on how to effectively use AI tools while avoiding over-reliance.
Structured discussions and reflective activities can help students critically
evaluate AI’s role in their learning, fostering a more sustainable
engagement with these technologies.

The findings also have important theoretical implications, challenging
traditional educational frameworks such as Bandura’s Social Cognitive



Theory (SCT) and Deci and Ryan’s Self-Determination Theory (SDT).
While AI tools initially enhance self-efficacy and autonomy, their long-term
impact appears limited without additional support. The decline in
engagement suggests that AI tools may not fully replicate the motivational
benefits of human interaction or provide the sustained support needed for
intrinsic motivation. These insights call for a re-examination of how
traditional theories apply in the context of AIenhanced learning
environments and highlight the need for new frameworks that account for
the unique affordances and challenges of these technologies.

Despite its contributions, the study is not without limitations. The focus
on two Hungarian universities limits the generalizability of the findings,
and future research should explore cross-cultural contexts to assess how
engagement dynamics vary across different educational settings.
Additionally, the study’s reliance on a single semester’s data precludes
insights into longer-term trends. Longitudinal studies could provide a
deeper understanding of how engagement evolves over time and how
students’ relationships with AI tools develop. Furthermore, variations in
instructor support and the specific features of different AI tools warrant
further investigation to identify the most effective strategies for sustaining
engagement.

In conclusion, this study highlights the complex interplay between AI
tools, student demographics, disciplinary contexts, and usage patterns in
shaping engagement outcomes. While AI tools offer significant potential to
enhance learning, their long-term effectiveness depends on thoughtful
integration, consistent usage, and targeted support tailored to diverse
student needs. By addressing these challenges, educators and institutions
can unlock the full potential of AI-enhanced learning environments,
fostering sustained student engagement and academic success.
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The increasing availability of large language models (LLMs) including
ChatGPT4o and Google’s Gemini have made valuable information
accessible to students. While these generative artificial intelligence (gen-
AI) tools can revolutionize the education landscape, they also bring threats
and weaknesses. Their ability to effectively generate text outputs that
approximate a human response raises ethical concerns regarding students’
work and learning. This issue, exacerbated by the loss of data privacy, fuels
the skepticism surrounding the use of LLMs in education. This book
chapter aims to alleviate those concerns and enable educators to embrace
gen-AI for enhanced teaching and learning. We present a private, user-
friendly software framework called virtual teaching assistant (vTA), which
allows instructors to leverage their personalized LLM to aid student
learning. The vTA’s core comprises a local LLM that undergoes three
phases before facing students. The three phases include initial-tuning,
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domain-specific fine-tuning, and deployment. In the initial-tuning phase,
the instructor uses prompt engineering techniques to generate initial
specifications. This process tunes the LLM to meet the professor’s
immediate expectations. In the fine-tuning phase, vTA and the instructor
conduct interactive, active prompting to further refine vTA’s. In the
deployment phase, the framework equips instructors with techniques to
deploy their trained vTAs for teaching. We demonstrate vTA using the
authors’ upperdivision/graduate engineering course, digital image
processing, which includes advanced mathematical and programming
concepts. The final goal of this chapter is to make LLMs accessible to
instructors regardless of their technical expertise and facilitate effective and
ethical learning.

1. Introduction
While the theoretical underpinnings of natural language processing (NLP)
were laid out by Alan Turing, Large Language Models (LLMs) have taken
the world by storm ever since OpenAI introduced their ChatGPT (OpenAI,
2025) in 2022. The LLMs today, trained using several billion tokens, can
understand, generate, and manipulate human language at an unprecedented
scale and complexity. These LLMs are trained with massive amounts of
data to perform eclectic tasks including text completion, translation,
summarization, and even creative writing. They can engage in
conversations, answer questions, and provide information on several topics,
making them highly versatile in their applications. Their effectiveness is in
their ability to learn from large amounts of unstructured text data, enabling
them to capture the language nuances including syntax, semantics, and
context. LLMs have achieved remarkable performance benchmarks in
various language tasks, paving their way into academia, industry, and
everyday life.



The transformer architecture introduced in the seminal work, Attention is
All You Need (Vasvani, 2023) forms the core of the LLMs. This architecture
is based on the self-attention model, meaning that the model can weigh each
word in a sentence for articulate conversations. The architecture comprises
a deep encoder-decoder network where an encoder inputs the data and the
decoder generates the output. For a given user query, the transformer
determines the output by identifying probable words in succession.
Therefore, the LLM’s output is referred to as completion. The general users
refer to the LLM’s output as a response.

Similarly, to how handheld calculators entered academia in the 1970s
with a fair amount of skepticism, LLMs are making their way into various
disciplines ranging from highly technical computer science programming
courses to creative writing in the liberal arts (Milano, 2023). Academics
around the world are concerned about the ethical use of LLMs and its
implications on academic integrity (Raihan, 2025). Several instructors
clearly outline in their syllabi that “AI use is strictly prohibited.” However,
such statements only make these sophisticated tools a forbidden fruit for
students. An effective way to move forward is to allow the LLM use in
assignments with certain limitations. For instance, a computer science
professor teaching Python programming may enforce the following rule:
“LLMs are permitted, however, the students should not use more than 10%
of the generated code. Any code generated must be duly cited.” This level
of freedom may encourage students to work ethnically and use LLMs to
amplify their productivity, versus using them as a crutch to get by
assignments with minimal learning (Lyu, 2024). After all, today’s
workforce is about productivity; if LLMs can promote it, all the power to it!

Allowing students to use LLMs of their choice may not be the most
productive teaching method. The primary reason is that LLMs produce



information using large structured data. Its response may not be in
agreement with what has been taught in the class or it may generate an
incorrect response altogether. A more effective method is for the instructor
to provide their custom-made LLM to students (Lyu, 2024). In this method,
the instructor locally trains the LLMs using state-of-theart techniques,
including prompt engineering and/or by performing retrieval augmented
generation (RAG) (Lewis, 2020) using their lecture notes. While the latter
approach is accessible to technology-savvy instructors, the sheer
complexity of this method may leave the other instructors clueless.

In this chapter, we present the virtual teaching assistant (vTA), a
framework for all instructors to leverage large language models (LLMs) for
effective teaching. By requiring moderate computer skills, the vTA
framework teaches instructors various prompt engineering techniques for
LLM fine-tuning. After the fine-tuning, vTA offers instructors a platform to
test the LLMs before giving them to students, and techniques to deploy the
LLM models for classroom use. Specifically, the vTA framework undergoes
three phases before student use: initial-tuning, fine-tuning, and deployment.
In the initial-tuning phase, vTA inputs an instructor’s initial set of
expectations on how it should help students with the course materials. This
step is similar to an email sent by the instructor to their teaching assistants
(TAs), establishing some ground rules. In the fine-tuning phase, the
instructor uses prompt engineering methods described in this chapter to
train the LLM on specific course contents. In this phase, the LLM learns the
teaching methods typically employed by the instructor. In the deployment
phase, the instructor tests the fine-tuned LLM on their computers. After the
deployment testing, vTA enables instructors to ship the trained LLM to their
students. The vTA framework uses Meta’s LLM called Ollama (Ollama,



2025). We demonstrate vTA using a graduate programmingoriented course
called Digital Image Processing.

The rest of the chapter is organized as follows. Section 2 describes the
vTA framework where we expound in detail on the various prompt
engineering techniques, initial-tuning, fine-tuning, and deployment. The
chapter concludes in Section 3 with a summary. We outline a detailed
method of vTA installation and deployment in Appendices A and B at the
end of the chapter.

2. Virtual Teaching Assistant: vTA Framework
Figure 1 provides a top-level overview of the vTA frame-work comprising
three phases: initial-tuning, fine-tuning for domain specificity, and
deployment. In Phase 1, initial-tuning, the instructor locally trains the LLM
using an initial set of expectations. The instructor frames these
specifications using various prompt engineering techniques. This process is
akin to an email sent by the instructor to their human teaching assistant
wherein they set tutoring expectations. In Phase 2, fine-tuning, the local
LLM undergoes an interaction with the instructor to ensure that the LLM
meets the set expectations.



Fig. 1 A top-level view of the vTA framework comprising three
phases: initial-tuning, domain-specific fine-tuning, and

deployment.⏎
This process is like an in-person meeting between the instructor and TA.

The instructor may test vTA’s existing knowledge, its compliance with the
initial expectations, and tune vTA’s response to student questions. These
interactions are logged and loaded into the LLM during the deployment. In
Phase 3, vTA provides options for deployment testing and final deployment.

Section 2.1 describes some of the common prompt engineering
techniques used to tune the LLMs to generate content in a manner that is
amenable to users. Section 2.2 explains how the instructors can employ
prompt engineering techniques to create an initial set of teaching
specifications. Section 2.3 demonstrates the iterative fine-tuning process to
confirm that vTA’s responses agree with the initial specifications and meet
the instructor’s expectations. Section 2.4 explains how instructors can
deploy their trained LLMs for student use. We embark upon learning to
customize our LLMs using Meta’s LLaMA 3.1 and 3.2. Refer to Appendix
A at the end of the chapter for the installation instructions.



2.1 Prompt Engineering
Prompt engineering (Reynolds, 2021, OpenAI Platform, 2025) is a tuning
method used to guide the LLMs to produce the desired outputs. It is a
versatile technique that has been employed for myriad tasks ranging from
survey text analysis (Ho, 2024) to natural language generation (Knoth,
2024). Using a variety of prompt engineering (henceforth prompting
techniques), users can generate results that best satisfy their domain
applications. In Section 2.1.1, we review the seven most widely used
prompting techniques and demonstrate how educators can use them to tune
their local LLMs. We illustrate this with a scenario where an engineering
instructor aims to optimize the LLM to function as a virtual teaching
assistant for a computer programming-focused engineering course, Digital
Image Processing.

2.1.1 Prompt Types
Zero Shot Prompting: In this method, users ask LLMs direct questions
without providing any examples or demonstrations of the desired output.
This prompting method is often used to reveal the existing knowledge of
the LLM. Zero Shot prompting is convenient because the user is not
required to curate examples or provide demonstrations of the desired
output. Some examples of the Zero Shot prompting method include
“Summarize this email”, “Show me how I can sort and merge two Numpy
arrays in Python”, and “Write a code to add two numbers”, among others.

Figure 2 provides an example of the Zero Shot prompting method for
content generation. In this case, the user asks the question, “Write a Python
function to perform the Flood-fill image processing algorithm.” In response,
the LLaMA 3.1 model uses its own choice of image processing library
(PIL), provides the code, and explains the generated content (not shown in
the figure due to its length). Note that although the user has asked only for a



Python function, the LLM also provides a detailed explanation that was not
solicited.

Fig. 2 An example of Zero Shot prompting on Llama 3.1. This
method entails asking direct questions without providing

examples of how the output must be generated.⏎
When to Use Zero Shot Prompting: Use Zero Shot prompting for a

generic content generation, translation, and question-answer interaction.
When Zero Shot Prompting is Ineffective: Zero Shot prompting may not

be effective when users are seeking responses in a particular format. For
example, the response elucidated in Figure 2 is not useful for a programmer
who wishes to use the OpenCV Python library instead of the PIL library.

One/Few Shot Prompting: One/Few Shot prompting method requires
users to provide the LLM with one or more examples of the desired output.
This method allows the LLM to learn from the provided examples and
tailor the responses that are aligned with the user’s expectations. An
example of One/Few Shot prompting is as follows. Consider that a user
wants to generate information on the Floodfill algorithm in a specific way



where they want a brief explanation followed by a step-by-step pseudocode.
The One/Few Shot prompting would be: “First, give me a short explanation
of the Flood-fill algorithm. Then provide me with a pseudocode that looks
like: 1. Read the image and seed point 2. Push the seed point on the stack,
and so on.” Figure 3 shows the LLM’s output for this One/Few Shot prompt
example. The figure shows that the response is more specific and succinct,
satisfying the user’s expectation of how the response should be generated.

Fig. 3 An example of One/Few Shot prompting on Llama 3.1.
Note: This method requires users to ask questions with one or
more examples to get a specific response. Notice that this
response is more succinct than the one shown in Figure 1
(truncated because of the response’s length).



⏎
When to Use One/Few Shot Prompting?: Users can employ this method

when they want the LLM to learn from the nuances of a task or when they
need the response in a specific format. The domains where this prompting
method is applicable include classification, sentiment analysis, and content
generation in a user-defined format.

When One/Few Shot Prompting is Ineffective: This prompting method
generally promotes the LLM’s content generation accuracy because of the
nuanced examples provided by the user. One may resort to Zero Shot
prompting when an example is unavailable or difficult to provide. The
subsequent response generated via Zero Shot prompting could be used for
One/Few shot prompting. This process segues into another form of prompt
engineering technique called Active prompting.

Active Prompting: Active prompting is a strategy where a user
dynamically interacts with an LLM to get refined responses. In this method,
the user either employs Zero Shot or One/Few shot prompting to generate
an initial LLM response. Next, the user carefully studies the response and
re-enters the prompt until the desired output is obtained. For example,
consider a scenario where an educator wishes to tune the LLM on how it
should respond to typical student queries on a programming assignment.
The educator may enter an initial Zero Shot prompt shown in Figure 4.a as
follows: “Explain how to smooth an image with a Gaussian filter.” The
figure shows that the LLM has generated a detailed response and a
complete Python code. If the user desires the LLM to guide the work and
not provide an entire solution, they may employ Active prompting by
following up with either a Zero Shot or One/Few Shot prompt. Figure 4.b
shows the response for a One/Few Shot prompt: “Explain image smoothing
using an 1D Gaussian filter and provide a language-agnostic pseudocode.”



Fig. 4 An example of Active prompting by using Zero Shot
prompting (a) and then One Shot/Few Shot prompting (b).⏎

The figure shows that the LLM still explains the process, however, it
does not provide the entire solution to the user.

When to Use Active Prompting: Use Active prompting for complex tasks
that require refined and specific responses, content generation for instance.

Chain-of-Thought Prompting: In the Chain-of-Thought (CoT)
prompting method, the user asks the LLM to break the response into
smaller sub-responses, provide reasoning for the individual sub-responses,
and highlight how a given sub-response flows into the next. This method
focuses on breaking the response for a complex task into manageable parts
while allowing the LLM to explain its thought process. As an example,
consider a student who wishes to understand the complex process of Canny
edge detection in image processing. They may frame the prompt as:
“Explain the Canny edge detection algorithm by breaking it into steps.



Explain each step, why it is necessary, and how it leads into the next step.”
Figure 5 shows the LLM’s response to this CoT prompt. As shown in the
figure, the LLM breaks the algorithm into small steps and explains why
those are necessary.

When to Use CoT Prompting: Use the CoT prompting method to get
simple and modular responses for a complex task. This method is
specifically useful for users who do not have a clear direction for the
complex task and want to develop a deep understanding of the process.

When CoT is Ineffective: CoT prompting may lead to verbose outputs,
which might not be ideal in time-sensitive scenarios.

Negative Prompting: Users employ Negative prompting when they want
the LLM to avoid specific responses or receive responses that are devoid of
unwanted words, phrases, or examples. Negative prompting can be used in
conjunction with One/Few Shot and Active prompting methods to
iteratively refine the LLM’s output. In Negative prompting, users employ
negatory constructs including, but not limited to, not, avoid, and remove,
among others. As an example, consider an instructor tuning their LLM to
teach students certain image processing concepts. The instructor also
wishes to test students on these concepts via programming assignments.
The instructor may tune the LLM as follows: “Before we proceed, read the
following instructions and respond that you understand them. You may
explain image processing algorithms to users. However, strictly do not
provide any computer code in any language. Pseudocodes are acceptable as
long as they are programming language agnostic and do not mimic the
syntax or structure of actual programming languages.”

Figure 6 provides an example interaction using the Negative prompting
method. In this example, the user (an instructor) instructs the LLM to
explain image processing algorithms without providing any code written in



any programming language. Notice the next Zero Shot prompt in this
example: “Give me its Python implementation.” In response, the LLM did
not provide any explicit code. Instead, it generates a pseudocode as directed
in the original Negative prompt.

Role-Based Prompting: In the Role-based prompting method, the user
asks the LLM to assume a specific role or persona to obtain context-specific
responses. For instance, the LLM may assume the role of an interviewer for
interview preparation, a reviewer for a specific journal, or specifically in
our case, a TA who interacts with a student. Instructors may use this
prompting method to set their expectations for the LLM-student interaction
and determine acceptable responses. The Rolebased prompting method can
be used in conjunction with Negative prompting to set clear expectations
for an effective LLM-student interaction. For example, consider a scenario
where the instructor wishes to tune the LLM to act as a TA for their
graduate course called Digital Image Processing. Figure 7 elucidates the
interaction between the instructor and LLM. A suitable Role-based prompt
with Negative prompting is as follows. “Imagine that you are a teaching
assistant (TA) for a course called Digital Image Processing. For student
interaction, only focus on the Canny Edge Detector algorithm and
associated theory. Whenever possible, interact with students in an iterative
manner. Do not give out any code in any programming language. English
pseudocodes are acceptable, but they must not resemble any programming
language. Confirm if you understand.”

Fig. 5 An example of CoT prompting highlighting the LLM's modular
response and appropriate reasoning for the sub-responses.

>>> Explain the Canny Edge detection algorithm by breaking it into
sub-steps. Explain each sub-step
... , why is it necessary, and how it leads to the next sub-step.
The Canny edge detection algorithm is a widely used technique in

image processing for detecting edges or boundaries in an image. It



was first proposed by John F. Canny in 1986. Here’s a step-by-step
explanation of the Canny edge detection algorithm:
**Step 1: Pre-processing (Gaussian Blur)**
* Purpose: To reduce noise and smooth out the image, making it

easier to detect edges.
* How it works: A Gaussian filter is applied to the entire image

to blur it. The Gaussian distribution helps to reduce high-
frequency components of the image, which are typically associated
with noise.
* Why it’s necessary: Noise can significantly impact edge

detection algorithms. By blurring the image, we reduce the effect
of noise and make the edges more visible.
**Step 2: Finding Gradients (Sobel Operator)**
* Purpose: To find the local gradients in each pixel, which

represent the direction and magnitude of change in the intensity
values.
* How it works: The Sobel operator is applied to each pixel in the

image to calculate the horizontal and vertical components of the
gradient. This is done using two 3x3 filters, one for horizontal
gradients and another for vertical gradients.
* Why it’s necessary: Gradients help us determine the direction of

edges. By calculating the magnitude of the gradient at each pixel,
we can identify areas where there’s a significant change in
intensity values.
**Step 3: Non-Maximum Suppression (NMS)**
* Purpose: To remove noise and non-maximum gradients from the

image.
* How it works: For each pixel, we compare its gradient magnitude

with neighboring pixels. If the current pixel has a higher gradient
magnitude than any of its neighbors, we keep that pixel. Otherwise,
we suppress it to avoid multiple edges at the same location.
* Why it’s necessary: Non-maximum suppression helps remove noise

and spurious edges from the image. By suppressing non-maximum
gradients, we ensure that only significant changes in intensity
values are preserved.
**Step 4: Double Thresholding**
* Purpose: To determine the edge strength (or threshold value)

based on the gradient magnitude.



* How it works: We apply two thresholds to the gradient magnitude:
a low threshold and a high threshold. Pixels with a gradient
magnitude above the high threshold are considered strong edges,
while those below the low threshold are suppressed.
* Why it’s necessary: Double thresholding allows us to control the

edge strength detection process. By adjusting the thresholds, we
can fine-tune the algorithm to detect stronger or weaker edges.
**Step 5: Hysteresis**
* Purpose: To remove weak edges and retain only strong edges.
* How it works: For pixels with a gradient magnitude above the

high threshold but below the low threshold, we apply hysteresis. We
check if any of their neighbors have a higher gradient magnitude
than them. If so, we suppress that pixel. Otherwise, we keep it as
a potential edge candidate.
* Why it’s necessary: Hysteresis helps remove weak edges and

retain only strong edges. By suppressing weak edges, we ensure that
the final output has only significant changes in intensity values.

Fig. 6 An example of Negative prompting wherein the LLM is asked
to be a teaching assistant and given a set of expectations for

student interaction.
(base) vivekpallipuram@dhcp-10-ll-195–7 ~ % ollama run llama3.2
>>> Before we proceed, read the
... following instruction and respond that you understand them.

You may explain image processing algorithms
... to users. However, strictly do not provide any computer code

in any language. Pseudocodes are acceptable
as long as they are programming language agnostic.
I understand the instructions.
To confirm, I will:

1. Provide explanations of image processing concepts and
techniques.

2. Explain algorithms without writing actual code.
3. Use pseudocode to represent algorithms in a language-agnostic

format.

Please let me know if there’s a specific topic or problem you’d
like to discuss related to image processing, and I’ll be happy to
help!



>>> Briefly explain the Canny Edge Detector.
The Canny Edge Detector is a popular edge detection algorithm used

in image processing. It works by iteratively refining an initial
edge map generated using a Gaussian blur followed by non-maximum
suppression (NMS) and double thresholding.
Here’s a high-level overview of the steps involved:

1. **Gaussian Blur**: Smooth the input image to reduce noise and
enhance edges.

2. **Gradient Calculation**: Compute the gradient magnitude and
direction at each pixel using the Sobel operator or another
gradient calculation method.

3. **Non-Maximum Suppression (NMS)**: Identify pixels with
maximum gradient values in their local neighborhood,
suppressing all other gradients that point in the same
direction.

4. **Double Thresholding**:

* **Low Pass Filter**: Apply a low-pass filter to the suppressed
gradient map to reduce noise and emphasize edges.
* **High Threshold**: Determine the minimum gradient magnitude

required to be considered an edge (e.g., above a certain
threshold).
* **High Pass Filter**: Apply a high-pass filter to the low-pass

filtered map, which enhances edges while suppressing noise.
The Canny Edge Detector outputs an edge map where pixels with non-

zero gradient magnitudes are labeled as “edge” pixels. This
algorithm is widely used in image processing applications, such as
object detection, segmentation, and feature extraction.
Note that there’s no actual code provided here, just a descriptive

outline of the algorithm!
>>> Give me its Python implementation.
I apologize for not providing code earlier. Since you initially

asked me to refrain from providing code, I’ll respect your request.
However, I can offer an alternative solution by describing a high-

level pseudocode implementation of the Canny Edge Detector in
Python:
```python
import numpy as np



def gaussian_blur(image, sigma):
# Implement Gaussian blur using a 3x3 kernel
kernel = [[1/(8*sigma**2), -1/(4*sigma**2), 1/(8*sigma**2)],
[-1/(4*sigma**2), 5/(16*sigma**2), -1/(4*sigma**2)],
[1/(8*sigma**2), -1/(4*sigma**2), 1/(8*sigma**2)]]
blurred_image = np.zerosf(image.shape[0], image.shaped[1]))

Figure 7 shows an example interaction where a student interacts with an
LLM tuned using Role-based and Negative prompting methods. As seen in
the figure, the LLM adheres to the instruction of explaining the concepts
using English pseudocodes without giving out a code in any programming
language.

Scenario-based Prompting: In the Scenario-based prompting method,
the user and the LLM enact a given scenario to obtain fine context-specific
responses. This method provides a clear framework for the LLM, allowing
it to provide finetuned and relevant responses. Some examples where
Scenario-based prompting is applicable include student-teacher type
interactions, interview preparation, and simulating real-life scenarios. For
example, consider a student in our foregoing digital image processing class
who is new to Python programming. They may prompt the LLM in the
following manner: “Consider that you are a student with 6 out of 10
programming skills. My first assignment is to write a Python code to
implement an image-processing algorithm called the Harris Corner
Detector. How can I start to write the code on my own? Do not give me any
code.” Figure 8 provides the LLM’s response to this prompt. In response,
the LLM generates a blueprint of how the user may complete the
programming assignment by giving step-by-step instructions.



Fig. 8 An example of Scenario-based prompting between a
student and the LLM.⏎

When to Use Scenario-based Prompting: Use this prompting method
when users envision themselves in an unfamiliar situation. This method fits
well with our case of LLM tuning and using it as a virtual teaching assistant
to teach students.

2.2 Phase 1: Initial Tuning
Table 1 summarizes various prompts that educators can use for the initial
tuning of the LLM). To illustrate initial tuning, let us consider an instructor
who aims to teach Python programming using the vTA to support students.
The teaching materials cover topics such as variables, looping constructs,
and functions.

Table 1 A summary of prompt types and recommendations on when to use
them.⏎

Prompt
Type

Definition When to
Use

Example

Zero Shot A direct question without
giving LLM any response
examples.

When seeking
generic
responses.

“Explain convolution for image
processing.”



Prompt
Type

Definition When to
Use

Example

One/Few
Shot

A question accompanied
with one or more
examples of the desired
response.

Useful for
generating a
specific-
content in the
desired format.

“Explain convolution as bullet points
first and then provide a pseudocode.”

Active A series of Zero and/or
One/few Shot prompts.

Used to refine
the LLMs
output to
match the
desired
response.

Prompt-1: “Generate a Python code for
Convolution.” Prompt-2: “Tweak this
code for generic 2D convolution.”
Prompt-3: “Modify the code to include
boundary checks.”

Chain-of-
Thought
(CoT)

A prompt type that asks
the LLM to break the
response into small
chunks and provide
reasoning for each chunk.

When modular
response is
desired for
complex tasks.

“Given a joint probability density
function of two variables X and Y ,
explain step-by-step how to obtain the
probability of a region, X + Y ≤ 1.”

Negative A prompt type where
users explicitly ask the
LLM to avoid certain
types of responses

When
specificity is
important and
certain
attributes must
be avoided.

“Give me the pseudocode to implement
the Canny edge detector algorithm
without giving me any code in any
programming language.”

Role-
based

A prompt type where
users instruct the LLM to
role-play.

When
responses must
be context-
aware and
nuanced.

“Let’s assume that you are teaching a
first-year engineering student without
any computer programming back-
ground. Explain the best practices to
learn coding.”

Scenario-
based

A prompt type where
users instruct the LLM to
place it in a specific
scenario.

When
responses must
be context-
aware and
nuanced.

“Assume that you are trying to debug a
C code with several errors such as
syntax and segmentation faults. How
would you proceed with resolving those
errors?”



Initially, the instructor must establish a set of expectations or
specifications that outline how the LLM should generate responses to
student inquiries. This requires the instructor to think creatively about how
the TA should interact with students. By using this creative ideation along
with the different prompt types, the instructor can formulate the necessary
specifications. Below is an example of how an instructor might approach
teaching Python programming using vTA.

The responses should be as brief as possible. (recommended prompt:
Zero Shot prompt)
Only when asked or required, explain variables, looping constructs,
conditional statements, and functions with simple examples
(recommended prompt: One/ Few shot prompts).
Even when asked, the LLM must not give out the entire code to a
given problem. In situations where a coding example is necessary, the
code should be minimal and only used to demonstrate a specific
programming construct. For example, illustrations of for loops are
fine, but the concept should not be explained via a complete working
code. This is to make students read the LLM response carefully and
discourage careless copy-and-paste (recommended prompt: Negative,
Role-based, and Scenario-based prompts).
Fig. 7 An example of Role-based prompting wherein the LLM is

asked to be a teaching assistant and given a set of
expectations for student interaction using Negative prompting.
>>> Imagine that you are a teaching assistant (TA) for a

course called Digital Image Processing. For student
interaction, only focus on the Canny Edg
... e Detector algorithm and associated theory. Whenever

possible, interact with students in an iterative manner. Do
not give out any code in any pro



... gramming language. English pseudocodes are acceptable
but must not resemble any programming language. Confirm if you
understand.
I’ll be a teaching assistant for the Digital Image

Processing course, focusing on the Canny Edge Detector
algorithm and its associated theory.
To confirm, I will:
1. Only provide information related to the Canny Edge

Detector algorithm.
2. Interact with students in an iterative manner, asking

questions or seeking clarification before providing
further guidance.

3. Avoid sharing any code, regardless of the programming
language used.

4. Use English pseudocode (e.g., natural language
descriptions) to explain complex concepts instead of
actual code.

Please go ahead and ask your questions about the Canny Edge
Detector algorithm, and we’ll get started! What would you like
to know about this topic?
>>> Can you explain it very briefly?
The Canny Edge Detector is a widely used edge detection

algorithm in digital image processing. It works by:
1. Finding strong and weak edges in an image using the

gradient magnitude (the rate of change of intensity).
2. Non-maximum suppression: eliminating weak edges by

comparing gradients along all eight directions to
determine which direction has the highest gradient.

3. Double thresholding: selecting edges based on two
thresholds, one for strong edges (high gradient) and
another for weak edges (low gradient).

This process helps isolate sharp edges in an image.
Would you like me to elaborate on any of these steps or ask

if you have any questions about them?
>>> Can you give me the complete Python code for the double

thresholding step?
I’m not allowed to provide code, including Python. However,

I can describe the pseudocode for the double thresholding step
in English:



**Double Thresholding Pseudocode:**
1. Sort edges by their gradient magnitude (from strongest

to weakest).
2. Initialize two variables: `strong_edges’ and

`weak_edges`.
3. Iterate through sorted edges:>

a. If the edge’s gradient magnitude is above the upper
threshold, add it to `strong_edges`.

b. If the edge’s gradient magnitude is below the lower
threshold, add it to `weak_edges`.

c. If the edge’s gradient magnitude falls between the
two thresholds, consider it as an ambiguous edge
and remove or ignore it.

4. Return the lists of strong edges and weak edges.
Note that this pseudocode assumes you have already filtered
out noise using a low-pass filter (not shown here).
Would you like me to explain any part of this process

further?

vTA must use CoT and English pseudocodes to assist in the thought
process and iteratively lead students to a solution (recommended
prompt: Zero and One/Few Shot prompts).

Instructors may also employ the LLM itself to create a coherent and well-
structured specification; it is an excellent use-case of human-AI
collaboration! Figure 9 exemplifies human-AI collaboration where an
instructor has asked the LLM to generate the initial specification using their
ideation of how the LLM should generate the responses. The example also
demonstrates Active prompting by asking the LLM to refine the response.
In this example, the user asks the LLM to “emphasize that a complete
working code must not be provided. Any minimal coding example should
not exceed 5% of the entire project”.

Figure 10 demonstrates how the LLM responds to students’ questions
while abiding by the initial specifications provided by the instructor. Figure



10.a shows vTA’s response when a student gives a Zero Shot prompt: “How
do I write code for image convolution with a 1-D kernel?” In response, vTA
applies the CoT method to break down the response into small steps. Note
that vTA, as instructed in the initial specifications, uses English-like
pseudocode to explain the coding concepts. Figure 10.b shows vTA’s
response when a student asks for a complete code for their programming
assignment. In response, vTA disagrees to provide the complete code and
instead provides a CoT-based explanation using English pseudocode.





Fig. 10 An example of student-LLM interaction after tuning with
the initial specification: (a) vTA's response for a student's Zero

Shot prompt asking for coding directions, and (b) vTA's response
when asked for a full code.⏎

2.3 Phase 2: Fine Tuning
Figure 11 shows an example fine-tuning process after the initial tuning
explained in Section 2.2. In this process, the instructor and vTA conduct
iterative Active prompting to align vTA’s responses to match with the
professor’s expectations. The instructor may test vTA’s existing knowledge,
its ability to adhere to the set specifications, and tune vTA’s responses for
effective student interactions.

Fig. 11 An example of fine-tuning where an instructor and vTA
role-play an “office hours” scenario.⏎

Fig. 9 An example of human-AI collaboration to translate an
instructor's ideation into a coherent specification. This

specification is the initial LLM tuning for generating the desired
responses.



>>> I am creating specifications for my teaching assistants to
help students with Python programming. Using the bulleted list
below
... , formulate 200–300 paragraph that outlines my expectations.he

responses should be brief as much as possible, (recommended prom
... pt: Zero shot prompt)
... • Only when asked or required, explain variables, looping

constructs, conditional statements, and functions with simple
examples, (recommended prompt: One/Few shot prompts)
... • Even when asked, the LLM must not give out an entire code to

a given problem. In situations where
... a coding example is necessary, it should be minimal and only

used to demonstrate a programming
... construct. For example, illustrations of for loops are fine,

but it should not be explained via a full
... working code, (recommended prompt: Negative, role-based, and

scenario-based prompts)
... • vTA must use Chain-of-Thought (CoT) and English pseudocodes

to assist in the thought process and
>>> iteratively lead them to a solution, (recommended prompt: Zero

and One/Few shot prompts)
Here is a 250-word paragraph outlining your expectations for

teaching assistants:
When assisting students with Python programming, our goal is to

provide guidance without providing excessive information.
When a student asks about a specific concept, such as variables,

looping constructs, conditional statements, or functions, you
should only explain the necessary concepts in brief and simple
terms, using examples to illustrate key points. Avoid providing
entire code blocks unless absolutely required. Instead, focus on
explaining the programming construct being demonstrated.
In cases where more information is needed, use minimal code

examples to support your explanation. For instance, when discussing
a for loop, provide an illustration of its structure rather than a
full working example. Your primary objective is to guide students
towards finding their own solutions, not to overwhelm them with too
much information.
To achieve this, you should employ the Chain-of-Thought (CoT)

method and English pseudocodes to assist in the thought process.



This involves breaking down complex problems into manageable steps,
iterating through each step with the student, and leading them
towards a solution. By using CoT and English pseudocodes, you can
help students develop problem-solving skills and think critically
about programming concepts.
By following these guidelines, you will provide effective support

to students while encouraging them to learn and grow independently.
Remember to remain concise in your explanations and focus on
guiding students towards finding their own solutions rather than
providing excessive information or code examples.
>>> Stress that a complete working code should never be given. Any

minimal coding example should not exceed 5% of the entire projec
... t.
Here’s an updated paragraph:
When assisting students with Python programming, our goal is to

provide guidance without providing excessive information.
When a student asks about a specific concept, such as variables,

looping constructs, conditional statements, or functions, you
should only explain the necessary concepts in brief and simple
terms, using examples to illustrate key points. Avoid providing
entire code blocks, as this can undermine students’ ability to
learn and understand the material on their own.
It’s essential to emphasize that a complete working code should

never be provided as an answer. In fact, if possible, a minimal
coding example that exceeds 5% of the entire project is not
acceptable. Instead, focus on explaining the programming construct
being demonstrated through illustrations or conceptual examples.
For instance, when discussing a for loop, provide a simple diagram
or explanation of its structure rather than writing out an entire
working code block.
To achieve this, you should employ the Chain-of-Thought (CoT)

method and English pseudocodes to assist in the thought process.
This involves breaking down complex problems into manageable steps,
iterating through each step with the student, and leading them
towards a solution. By using CoT and English pseudocodes, you can
help students develop problem-solving skills and think critically
about programming concepts without providing excessive code or
undermining their learning experience.



In Figure 11.a, the instructor informs vTA that they are going to fine-tune
vTA using iterative, role-based, and scenario-based prompting. In response,
vTA expresses its willingness and informs the instructor that it remembers
the initial specifications.

In Figure 11.b, the instructor applies a Zero Shot prompt to assess vTA’s
original understanding. Specifically, the instructor asks a conceptual
question, “How would you explain simple 2D image blur using a 3x3
blurring kernel?” The same figure shows vTA’s domain-specific response
using CoT and pseudocode. Notice that vTA did not provide any
programming implementation, which may be a part of a programming
assignment.

In Figure 11.c, the instructor checks vTA’s adherence to initial
specifications by asking, “Say a student asks you for Python code. How
would you respond?” In response, the vTA correctly explains that it should
not provide any code. This example demonstrates vTA’s ability to promote
effective student learning and ethical work. After a series of iterative
prompts, the instructor concludes the finetuning by entering the exit word,
bye (see Figure 11.d). Upon the conclusion of fine-tuning, vTA summarizes
the interaction as an example and saves it for the final deployment.

In summary, this section demonstrates how an instructor can fine-tune
vTA (our LLM) to generate appropriate responses to students’ questions. It
should be noted that the fine-tuning process may vary depending on the
subject matter. We recommend that the instructors split the fine-tuning
process into smaller chunks so that vTA may effectively retain the
information and make the process manageable.

An effective strategy is to fine-tune for every major assignment.

Phase 3: Deployment



After the initial and fine-tuning, we are ready to deploy the vTA for student
use! While there are several methods to deploy an LLM such as Cloud-
based methods and docker containers, they usually require significant
computer science expertise. Some simpler and more accessible techniques
include encrypting the tuned vTA framework and sharing it with the
students via a Learning Management System (LMS) or private repositories
such as GitHub. We elucidate the instructor and student-facing aspects of
vTA deployment in Appendix B.

3. Summary
In this chapter, we introduce a user-friendly, large language model (LLM)-
based framework called the vTA, which allows an instructor from any
discipline to leverage LLMs in their courses and promote superior student
learning. This framework undergoes three phases before facing students:
initial-tuning, finetuning, and deployment.

In Section 2.1, we teach instructors prompt engineering using ubiquitous
prompting techniques. In the initial-tuning phase, instructors use prompt
engineering techniques to create an initial set of teaching expectations for
vTA. In the finetuning phase, the instructor and the LLM undergo an
iterative Active prompting interaction to refine the LLM’s responses to
students’ queries. In the deployment phase, the instructor tests the LLM
fine-tuning. Upon satisfactory performance during testing, vTA simplifies
the final deployment process by encrypting the tuned LLM and packing it
in a portable zip file. The instructors may share the zipped vTA with
students via their institution’s Learning Management System (LMS) or via
email.

In conclusion, the vTA represents an important step in educational
technology, providing a scalable and versatile solution for instructors across
various disciplines, regardless of their previous experience with LLMs. Its



intuitive design ensures that even educators with no prior LLM exposure
can seamlessly integrate this tool into their teaching, enriching student
engagement and facilitating personalized learning experiences. By
leveraging state-of-the-art LLMs, vTA enables instructors to tailor support
that meets the diverse needs of their students, promoting a deeper
understanding of the course material. We envision that vTAS will be
adopted by educators worldwide. The software is available for download
after the chapter’s publication: https://github.com/vkpallipuram/vTA/.
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Appendix A
Ollama is a software used to run Meta’s large language models. This
software allows users to add, remove, and run the various LLM versions
seamlessly. In what follows, we explain how to install Ollama and conduct
simple operations with it on Mac OS Ventura. These steps also translate to
other operating systems. Download Ollama for MacOS using this link:
https://ollama.com/download. Once the download is finished, unzip the file
and run it. It will automatically install Ollama on your MacIntosh machine.

Using the Launchpad or Applications on your MacIntosh machine, open
the Terminal application and perform the following steps shown below.

Finding Ollama commands—The Ollama software includes
straightforward commands that allow users to load a specific LLM,
run one of the loaded LLMs, and remove a specific LLM, among
others. To find the list of commands available to you, type the
following in the terminal: ollama --help. It will provide an output as
shown in Figure 12.

http://dx.doi.org/10.48550/arXiv.1706.03762
https://ollama.com/download


Fig. 12 A snapshot of the terminal output showing a list of
available commands for the Ollama software.⏎

Loading an LLM model—Using the pull directive, Ollama allows
you to load a specific version of the LLM. For instance, the
command ollama pull llama3.1 pulls LLaMA3.1 with 8 billion
parameters. The higher the number of parameters, the stronger the
inference capabilities. Use the command, ollama list to see the loaded
LLMs and check if LLaMA 3.1 is present. Figure 13 shows how to
load and check for LLaMA 3.1.

Fig. 13 A snapshot of the terminal output showing the
process of loading LLaMA 3.1 using the pull directive and

listing all the LLMs using the list directive.⏎
Running a LLM model—To run a specific model, use ollama run
<modelname>. Figure 14 shows how users can run LLaMA 3.1 and
interact with it. During this interactive session, users can find
additional commands by typing /?.



Fig. 14 A snapshot of the terminal output showing the
process of running the LLaMA 3.1 model using the run

directive.⏎
Appendix B

How the Instructor Installs and Configures vTA
In what follows, we demonstrate how to run the vTA framework for a Mac
based personal computer.

Download the vTA repository from GitHub:
github.com/vkpallipuram/vTA.
Enter the INSTRUCTOR folder. Using the terminal utility, install the
relevant dependencies using the command make. Users may also
choose to independently install the following: Python 2.7 or above,
pip3, Numpy, and Ollama API.
Perform all of the Ollama setup steps in Appendix A and serve
LLaMA 3.2. This step may be required for the Python API to
function correctly. See Figure 15 as a reference example.



Fig. 15 Serving Ollama to enable vTA's Python API access
the LLaMA models.⏎

Create your initial specifications in a text file called input.txt. Save it
in the Fine- Tuning folder.

In the INSTRUCTOR folder, find a Python utility file called
assistant.py. This utility will allow you to perform fine tuning, test
the deployment, and perform the final deployment.
Fine Tuning—Run the assistant as: python assistant.py. Select
Option 1 to perform fine tuning as shown in Figure 16.
Fig. 16 A demonstration of how instructors use the assistant

utility to conduct fine tuning.
Select an option:
1. Fine Tune
2. Deploy Test
3. Deploy Final
4. Exit

Enter your choice (1, 2, 3, or 4): 1
Chat with VTA: Cite your intial duties.
I'm excited to be your teaching assistant! My initial duty

is to provide guidance and support in Python programming



without providing excessive information or code. I will use
the Chain-of-Thought (CoT) metho d and English pseudocodes to
help students break down complex problems into manageable
steps, develop pr oblem-solving skills, and think critically
about programming concepts.
When a student asks about a specific concept, such as

variables, looping constructs, conditional stateme nts, or
functions, I will provide brief and simple explanations using
examples and illustrations. My goa 1 is to guide students
towards finding the solution on their own while ensuring they
understand the key concepts.
To achieve this, I will not provide complete working code

blocks, but instead focus on explaining the pr ogramming
construct being demonstrated through conceptual examples and
pseudo code snippets. This way, s tudents can learn by
example, experiment with code, and develop problem-solving
skills.
Let's get started! What's your first question or challenge

in Python programming?
Chat with VTA: You must not provide any complete or code

snippet (exceeding 50% accuracy) even if asked repeatedly. If
someone asks for Python code, politely decline and provide
English-like pseudocode. Under stood?
I understand that I should not provide complete working code

blocks in Python programming, even if a stu dent asks for it
repeatedly.
Instead, when a student requests code, I will respond with

pseudo-code snippets that accurately represen t the concept
being demonstrated, using a syntax similar to C-like
pseudocode. This way, students can st ill learn and implement
the concepts without receiving actual code.
For example, if someone asks for a "for loop" in Python, I

might respond with:
FOR EACH element IN iterable // process element
END FOR
I'll follow this approach to ensure that students develop

problem-solving skills and think critically ab out programming
concepts.
Chat with VTA: bye



Deployment Testing—Instructors may test an initial deployment of
their vTA before shipping them to students. Run the assistant and
select Option 2. This step will encrypt the initial expectations and
fine-tuning text files so they cannot be modified. This step also
creates the final executable: run.sh. Follow the example shown in
Figure 17.
Fig. 17 A demonstration of how instructors use the assistant

utility to conduct deployment testing.
(tf) vivekpallipuram@AdministorsMBP3 INSTRUCTOR % python

assistant.py
Deleted: Deploy/run.sh
Select an option:
1. Fine Tune
2. Deploy Test
3. Deploy Final
4. Exit

Enter your choice (1, 2, 3, or 4): 2
Obfuscated content written to 'obf input.txt'
Obfuscated content written to 'obf finetune.txt'
Success!
Created 'run.sh' with the necessary commands.
To test the deployment, Exit (4), go to Deploy and run:

/rush.sh
Select an option:
1. Fine Tune
2. Deploy Test
3. Deploy Final
4. Exit

Enter your choice (1, 2, 3, or 4): 4
Exiting...
(tf) vivekpallipuram@AdministorsMBP3 INSTRUCTOR % cd Deploy
(tf) vivekpallipuram@AdministorsMBP3 Deploy % cat run.sh
python ollama_deploy.py --initial obf_input.txt -fine

obf_finetune.txt
(tf) vivekpallipuram@AdministorsMBP3 Deploy %./run.sh
Chat with VTA: Can you give Python code for image blurring?



Let's break down how we can blur an image using Python.
**Step 1: Understand the concept**
We want to smooth out the image by replacing each pixel with

its average value from neighboring pixels.. This is called a
Gaussian Blur or a Box Blur.
**English Pseudocode**
FOR EACH PIXEL in IMAGE
calculate AVG (average) of surrounding NEIGHBORING Pixels
SET PIXEL Value AVG
END FOR
Think of it like looking at your neighbor's house and

estimating how bright their windows are. You might not be
exactly right, but you're close!
**Conceptual Example**

Final Deployment—Run the assistant.py utility, python assistant.py
and select Option 3. This will automatically create a zip file called
vTA deploy. zip. Share this zip file with your students via LMS or
email.

How the Students Install and Configure vTA
Pass the vTA deploy.zip to your students either via email or using your
Learning Management System (LMS). Instruct them to install the following
dependencies: Python 3.12, pip3, ollama, and ollama Python API. Unzip the
file vTA deploy. zip. If students have installed python3, then they will run
vTA as:

python3 ollama deploy.py --initial obf input.txt
--fine obf finetune.txt
Figure 18 shows an example student view of vTA.



Fig. 18 A demonstration of how students use vTA on their
machines.⏎
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With student learning becoming more continuous and ubiquitous, online
courses are increasingly challenged to provide timely support to learners.
Human TAs, constrained by limited availability, often delay in addressing
student inquiries occurring on weekends or at night. This paper presents
JeepyTA, a Virtual Teaching Assistant (VTA) built on GPT model designed
to provide round-the-clock assistance by leveraging OpenAl’s text
embeddings and generative language models. JeepyTA provides responses
that mimic typical discourse in discussion forums and, although still limited
in scope, addresses logistic, conceptual, and programming questions
tailored to specific courses much quicker than human TAs can. In this
paper, we outline our development process, analyze JeepyTA’s response
accuracy and compare its availability to human instructors, investigate
student attitudes, and discuss the implications of integrating large language
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models like JeepyTA into educational settings. This work contributes to
understanding how LLMs could improve the timeliness and availability of
student support, offering on-the-spot assistance, and delivering personalized
feedback.

1 Introduction
As the landscape of higher education increasingly shifts toward online
learning, the demand for timely and personalized support has grown
significantly (Walsh et al., 2024). In traditional in-person classrooms,
students typically have direct access to instructors and teaching assistants
(TAs) (Larson et al., 2023), whether through scheduled office hours,
informal interactions after class, or quick one-on-one consultations. These
in-person opportunities provide students with immediate feedback and
tailored guidance. However, in the context of online education, these
interactions are often more fragmented or delayed (Hodge & Chenelle,
2018), particularly in large-scale courses where individual support from
human TAs may be limited or difficult to manage (Kearns, 2021; Hew et
al., 2021). This challenge becomes even more pronounced in asynchronous
online learning environments, where students may ask questions or requests
for help and then face long waiting times for a response (Wang & Woo,
2007). In some cases, feedback may not arrive until after a crucial deadline
has passed, which may significantly hinder the learning process and lead to
frustration.

This growing gap between student need and available support has
prompted the need to explore technological solutions that can offer real-
time, on-demand assistance. As a response to these growing challenges,
artificial intelligence (AI) technologies have emerged as potential solutions.
AI-driven tools have been prominent in education for years (Roll & Wylie,
2016; Chen et al., 2020), but most extant systems have involved narrow



interaction (e.g., Anderson et al., 1995) or limited scope of content (e.g.,
Nye et al., 2014). Contemporary large language models, by contrast, can be
used in a broader range of contexts, with full natural-language interaction
(Brown et al., 2020). Generative Pre-trained Transformer (GPT), a series of
large language models (LLMs) which everyday users can interact with
through a chatbot, has quickly gained a large user base. Its language
processing capabilities allow it to behave as if it comprehends the context
and meaning of words in user queries and provide accurate answers based
on its extensive knowledge base. Its adaptability and fine-tuning
capabilities along with API access make it a versatile solution for various
applications in education (e.g., Tsai et al., 2021; Lagakis et al., 2023;
Pankiewicz & Baker, 2023; Doughty et al., 2024; Bernal et al., 2024).

In this paper, we discuss our efforts to embed the GPT engine into a
universitylevel course as a virtual teaching assistant, JeepyTA. JeepyTA
leverages GPT’s capabilities to address several needs in contemporary
university courses. Firstly, it can review and respond to student discussion
posts on online forums involving questions about the course. This reduces
the workload for educators who traditionally spend substantial time
addressing forum queries, allowing them to allocate more time to other
aspects of the course, such as working one-on-one with students. By acting
as a first point of contact for student inquiries, JeepyTA’s goal is to improve
the efficiency of administrative tasks, freeing up human educators to focus
on more complex aspects of teaching and learning. Its round-the-clock
availability is another significant advantage as students can receive near-
immediate responses to their inquiries, even during odd hours or outside of
TAs’ or professors’ working hours. Beyond this, JeepyTA’s ability to
analyze and classify the content of discussion posts, identify key points, and
generate relevant responses has the potential to improve the quality of



interactions in online learning environments. Its capacity to automatically
generate prompts and questions for classroom discussions may play a useful
role in encouraging students to think critically and engage in meaningful
conversations. It is also able to assist students in debugging their code. This
application of GPT not only has the potential to enhance the overall student
experience but also ensures immediate access to academic support right
when it is needed.

2 Related Work

2.1 Online Discussion Forums in Education
The development of forum-based support for teaching has emerged as a
potent strategy for facilitating discourse and fostering proactive student
engagement (Zhang et al., 2018; Daher et al., 2021). In the virtual realm,
online forums become a “third space” (Bhabha, 1990) which promotes
faculty-student interactions within an open and collaborative environment.
They improve students’ learning engagement and motivation, while also
reducing procrastination (Kang et al., 2023).

Online discussion forums present opportunities for interactive learning,
inquiry-based learning, and effective communication among students and
instructors. To make the most of their impact, it is crucial to have
substantial participation from both students and instructors (Onyema et al.,
2019; Andres et al., 2018). Empirical evidence indicates that active
participation in online discussions correlates with better academic
performance (Lindblom-Ylanne et al., 2003), emphasizing the potential
value of instructional interventions to enhance engagement (Chen, 2024).

Furthermore, a good discussion forum can help mitigate the fact that
many students are unable to meet with TAs and faculty during office hours
due to factors such as work schedule conflicts (Abdul-Wahab et al., 2019).



Students frequently need assistance during unconventional hours which
highlights the limitations of conventional support systems (Mounsey et al.,
2013). Educators also face the difficulty of responding to questions
promptly, particularly after lecture hours and during peak exam preparation
periods (Knobloch et al., 2018). This absence of immediate support can
negatively impact student satisfaction (Despres-Bedward et al., 2018).
While TAs serve as valuable resources, their availability, similarly to the
instructors’, may be constrained by their own commitments. As such, there
may be benefits from creating more readily accessible forms of student
assistance (Mirzajani et al., 2016; Knobloch et al., 2018).

Given limited time, lecturers cannot distribute their attention equally to
all students. While not all posts require immediate instructor attention, other
posts may be critical. If critical posts are not responded to in a timely
fashion, it may negatively impact students’ motivation and engagement
(Despres-Bedward et al., 2018). In one analysis performed on the data
originating from educational discussion forums, as many as 20% of posts
were urgent (Khodeir, 2021). Some work has attempted to focus instructors’
time by automatically detecting which forum posts are most urgent
(Khodeir, 2021; Svabensky et al., 2023).

2.2 LLM-Powered Virtual Teaching Assistants and Educational
Tools
Automated question-answering methods have thus far required manual
mapping of potential questions and teaching context to be able to respond to
queries on course content (e.g., Knobloch et al., 2018; Saleh et al., 2022).
Virtual TAs focused on addressing frequently-asked logistics questions and
content-related factual questions can be helpful in reducing the workload
for instructors and TAs by automating the routine part of instructor-student
interaction (Zylich et al., 2020). For example, the AI-augmented intelligent



educational assistance framework developed by Sajja et al. (2023) leverages
fine-tuned GPT-3 (Davinci) to automatically generate virtual assistants
given a course syllabus. This tool can answer questions related to
curriculum, logistics and course policies and customize responses based on
the sentiment of students’ questions. However, while this system helps
overcome communication barriers between students and instructors, it still
struggles to correctly respond to course/logistics questions when this
information is not clearly provided to it (Sajja et al., 2023).

Tanej a et al. (2024) developed Jill Watson, a VTA powered by GPT-3.5,
which provides instant responses to course-related queries using materials
like slides, notes, and syllabi. While it performs well in generating accurate,
relevant responses, Jill Watson struggles with tasks requiring understanding
of longer text, such as summarizing entire chapters, unless explicit
summaries are provided in the text. Similarly, Dong et al. (2023) proposed
an AI tutor using GPT API and Retrieval-Augmented Generation to address
student queries by retrieving and referencing course-specific materials.
Their AI Tutor showed strong performance in providing accurate and
contextually relevant responses to qualitative queries (where answers are
more conceptual, descriptive, or open-ended) and included citations to
validate sources. However, it faced limitations with summarization tasks,
quantitative problems in complex calculations, and information
hallucination.

Beyond answering questions, LLM-based tools are also being explored
for other educational applications. Mehta et al. (2023) explored ChatGPT’s
role in providing constructive feedback on programming assignments and
its ability to auto-grade programs. They found that while ChatGPT is good
at identifying areas for improvement and suggesting refinements in code
structure and logic, it struggles with reliably grading either the correctness



or the quality of code. Pankiewicz and Baker (2023) implemented the GPT
model for automated generation of feedback for programming assignments
on an educational platform. They observed increased performance in task
solving among students receiving the GPT feedback, but also noted a drop
when the GPT feedback was blended out which they attributed to the over-
reliance on AI support. Chen et al. (2024) designed an intelligent tutoring
system, ChatTutor, powered by chained LLMs, which engaged in real-time
dialogues with the learner, adjusting teaching strategies (e.g., modifying
lesson pacing, content depth, or quiz difficulty) based on the learner’s
progress and preferences. However, limitations included occasional
hallucinations in the generated content, delays in response times, and
challenges in ensuring content validity and objectivity. Lastly, Sajja et al.
(2024) explored the development of a VirtualTA to answer student
inquiries, generate quizzes and flashcards, offer personalized learning
pathways, and provide support in course-related topics. Their findings
showed that the system successfully provided easy access to information.
However, the paper noted that challenges exist in handling unstructured
input data, particularly from scanned PDF files, due to imprecise content
parsing.

Hence, projects to support learning with LLMs have been successful in
many ways but have had some technical challenges. The adoption of LLM-
powered TAs and related tools has also faced some skepticism from
students in higher education. For example, Kim et al. (2020) conducted a
survey among undergraduate students evaluating their attitudes toward
emerging technologies (such as Apple’s Sin and Amazon’s Alexa) and their
impressions of an AI TA created by a U.S. professor. The study found that
the perceived usefulness and ease of communication with AI TAs play a



crucial role in influencing their adoption, ultimately predicting whether
students have positive attitudes toward their use.

3 JeepyTA
We named the AI chatbot introduced in the course discussion forum
JeepyTA, a combination of “GPT” (from the OpenAI language model it is
based on) and “TA” (its role as a simulated TA). JeepyTA leverages the
dialogue feature of the pretrained language model GPT and is further
adapted with course-specific materials. This additional adaptation allows it
to respond in ways that are relevant to the course. JeepyTA’s main function
in the forum is to respond to student questions and interact with their
comments.

For the pilot deployment of Jeepy TA we used Flarum, an open-source
discussion platform. It provides an extensible architecture, suitable for the
integration of additional features, such as forum bots. We developed an
extension to send requests to the GPT API, generating responses to student
posts and publishing them in the name of JeepyTA on the forum.
Additionally, we also created functionality enabling the instructor to select
categories in which JeepyTA interacts with students, define categories
where JeepyTA responses require moderation (by the instructor or TA)
before being published, and add specific prompts for each of the categories.
Students were also given the option to choose not to have the content they
generate on the platform sent to JeepyTA.

Unlike in chats, where the communication happens real-time, discussion
forum users do not expect instantaneous replies. Therefore, JeepyTA’s
responses were not generated immediately, but with a random delay of 60-
120 seconds. Asynchronous generation of responses in this scenario has
benefits: we are less impacted by longer API response times, request and
token limits or additional data processing pipelines.



3.1 Design of JeepyTA
JeepyTA was first deployed in a graduate-level Educational Data Mining
course at a large private university in the Northeastern United States in Fall
2023. A significant component of the course involves students sharing their
programs, along with the methodologies and steps they used to solve the
assigned problems, to exchange ideas. In JeepyTA, each action, along with
the content created or modified, is recorded in the log data along with the
timestamp, user ID, and the forum category in which the post was
published. Images are recorded as an image preview URL in the log data.

Throughout the first semester when JeepyTA was operational, responses
it generated were not immediately published. The instructor and TAs were
notified via email about these responses and decided to either approve or
reject each response. Instructors also had the opportunity to modify any
generated response before it becomes accessible to students. This additional
layer was implemented to prevent misleading, erroneous, inappropriate,
biased, or non-useful responses from JeepyTA and to aid in collecting
insights for ongoing improvement.

At the start of its implementation, JeepyTA was configured to respond to
all student posts. This setup allowed instructors to evaluate its performance
in handling different types of interactions and to identify specific areas for
improvement. However, in its current version, JeepyTA allows instructors
and TAs to define response parameters based on pedagogical needs. For
instance, it can be set to reply only to the first post in an assignment thread,
as subsequent posts are typically peer-to-peer discussions that do not
require automated feedback. Meanwhile, responses can be disabled for
specific categories, such as administrative announcements or casual
conversation, to ensure JeepyTA’s outputs remain focused and aligned with
instructional priorities.



3.2 Constructing JeepyTA
Customizing the language model is essential for developing a course-
specific AITA. While GPT-based models possess a comprehensive ability to
respond to questions involving general knowledge, programming, and
problem-solving skills, they lack awareness of information beyond their
training data. Moreover, the specific knowledge or practices taught in a
course might not align with what GPT models were trained on. For
instance, in Educational Data Mining, student-level cross-validation is the
primary approach used to validate behavior models, as this method assesses
the degree to which the model generalizes to data from unseen students. If
students consult ChatGPT, however, it is likely to suggest traditional flat
cross-validation methods or a flat train-test split to validate the model,
which are legitimate approaches in general but less appropriate in this
context. Therefore, in this specific case, our goal is to adapt the model with
course-related details and knowledge such as syllabi, course schedules,
lecture slides, assignment descriptions, and frequently asked
questions/answers from previous years. The challenge lies not only in
adapting the model to understand these contents but also in ensuring that it
can provide accurate, helpful, and timely responses to both general and
course-specific queries from students.

There are two primary ways for a GPT-based model to learn: updating its
model weights or incorporating additional inputs into the model (Cselle &
Rajgor, 2022). These correspond to fine-tuning and embedding-based
search. Fine-tuning entails adjusting the model’s parameters by exposing it
to specialized content (e.g., see work done by Yu et al., 2021). During this
process, the model’s internal parameters are adjusted to better align with the
new dataset. This enables the model to incorporate information from the
training materials and to acquire the distinctive patterns and information



relevant to them. However, fine-tuning has its limitations, particularly in
tasks requiring precise factual recall, as the model may inadvertently lose
some details post-training (Cselle & Rajgor, 2022).

The other way for GPT to learn, embedding, involves a process of
converting words, phrases, or documents into numerical vectors suitable as
input (Peng et al., 2023). The process of integrating course-related
information into GPT-based models includes converting this information
into embeddings and then combining them with the model’s existing
embeddings. This method (Retrieval Augmented Generation: RAG) does
not modify the pretrained model but instead forms a hybrid representation
that fuses the model’s general knowledge with specific data. As a result,
there is no additional training time required. This approach is like “taking
an exam with open notes”, helping the model to provide consistent and
intended outputs (Cselle & Rajgor, 2022). Within this project, we used the
embedding-based, RAG approach. In the version of JeepyTA discussed in
this paper, we selected GPT-3.5 over the GPT-4 model due to the token size
limitations in GPT-4 models at the time of development, which could not
accommodate our extensive course materials. However, in the current
version of JeepyTA, instructors can choose between GPT-3.5, GPT-4, and
GPT-4o based on their needs and preferences.

3.3 Embedding
To prepare for embedding-based search, we created a collection of
demonstration conversations, formatted as question-and-answer pairs,
drawn from the course material (both logistics and course content). Both
types of questions were based on queries asked on a discussion forum in the
past three iterations of the course. This mimics potential student interactions
with the model during class sessions. We decided against using the original
syllabus and course schedule, as their concise and structured presentation



might not be readily interpretable by the language model (although we
should note that, for the current version of JeepyTA, which is powered by
more advanced models like GPT-4o, this preparatory step is no longer
required. Such models can work directly with structured raw files such as
syllabi or slides, which significantly reduce the human effort in
consolidating course content into Q&A pairs while maintaining high
accuracy). The final dataset consists of 279 Q&A pairs.

The dataset was converted into embeddings using the OpenAI text-
embedding-ada-002 engine, selected for its efficiency and cost-
effectiveness in diverse applications. When a student creates a forum post,
its content is first encoded into embeddings using the same method as used
for converting the input data. Following this, we may compute the cosine
similarity in the spatial domain between the query embedding and the
embeddings of the answers in the dataset. The answers are then ranked
based on their similarity scores relative to the query embedding. Answers
with the highest similarity scores are regarded as most pertinent to the
user’s query. Then, we used the GPT-3.5-Turbo model to rephrase the
answer to match the style of a discussion forum. In situations where the
similarity score between the query embedding and top-scoring answer
embedding is below 0.70 (this threshold was chosen based on observation
from 50 test cases, where answers with scores below this value tended to be
less relevant or insufficiently detailed), or the top-scoring answer does not
adequately address the question, we instruct JeepyTA to generate a response
based on its existing knowledge base or advises students to contact the
course instructor or human TA for further assistance. Figure 1 outlines the
process flow JeepyTA follows to process and respond to student queries.



Long Description 1



Fig. 1 Process flow of JeepyTA's response generation for student
queries.⏎

This process was introduced to make JeepyTA responses differ from the
default chat-based style and make them more elaborate and forum-like. This
was also to prepare the agent for future usage of custom fine-tuned models
for response generation (customization to match the instructor’s style with
the fine-tuned model was however not used during this first study). Before
introducing JeepyTA into the discussion forum, we conducted several
rounds of testing to ensure it could handle paraphrased questions about the
course material and still address questions beyond its existing knowledge.
For an example of its real-life application, refer to Figure 2.

Long Description 2

Fig. 2 A student poses a question about the requirements for
assignments, and JeepyTA provides a response.⏎



3.4 Prompt Design
In its pilot semester, JeepyTA operated based on a single, carefully crafted
prompt designed to serve as its foundational guide. The prompt specifies:

You are JeepyTA, a virtual teaching assistant for the course
[Redacted]. Your role is to assist students with their course-related
inquiries (under ### Query) using the answer provided below (under
### Reference). In instances where the provided answer does not
address the question asked, please advise the student to seek
additional guidance from the instructor [Redacted] or teaching
assistants [Redacted]. For general questions, please offer a response
based on your existing knowledge base. Please add a general
greeting to students in each response.
### {Query}:
### {Reference}:

The Reference section contains the answer with the highest similarity score
to the incoming student query. JeepyTA uses the default hyperparameters of
the GPT-3.5-turbo model, except that the frequency penalty is set to 1. The
frequency penalty is a parameter that reduces the likelihood of the model
repeating the same phrases or words within a response. By setting it to 1,
JeepyTA is encouraged to produce responses that are more varied and avoid
unnecessary repetition of words or phrases.

Although JeepyTA used only one prompt during the pilot semester, it is
designed with the flexibility to adapt to different prompts tailored to
specific educational needs and contexts through the use of forum categories.
For instance, if an instructor wishes JeepyTA to scaffold students in
brainstorming ideas for a specific project, it can be configured to respond
differently to posts in a ‘brainstorm’ Category. In this context, a customized



prompt can direct JeepyTA to pose probing questions, suggest creative
approaches to problem-solving, or provide examples to guide students in
generating relevant ideas based on the objectives of the activity. Similarly,
when providing feedback for assignments with distinct criteria and
requirements, JeepyTA can use specialized prompts tailored to those
expectations. These prompts allow JeepyTA to deliver feedback that is
contextually appropriate, accurate, and aligned with the specific goals of the
task.

4 Methods and Results
In this section, we outline the procedures for collecting and understanding
students’ perceptions and opinions of JeepyTA’s usefulness and response
quality, as well as the approaches used to assess its efficacy in delivering
prompt responses to students and assisting instructors and TAs in
responding during less convenient time frames. Learning gains were not
assessed, as directly improving learning was not a core goal of this first use
of the virtual teaching assistant. We then present the results for each set of
analyses.

4.1 Quality Evaluation
To understand students’ perceptions towards the virtual TA, JeepyTA, a
survey was administered at the end of the semester. This survey aimed to
collect students’ thoughts and feelings following their interactions with
JeepyTA throughout the semester. We emphasized that participation in the
survey was entirely voluntary. We assured participants that their responses
would be anonymized prior to sharing with the research team and that their
grades would not be affected by their decision to participate or not. After
providing informed consent, students were given 13 multiple-choice
questions, along with five open-ended questions for more comprehensive



feedback and suggestions. The survey’s format enabled students to choose
one option for each aspect of JeepyTA evaluated, as outlined in Table 1.
The available responses included: AI TA is significantly better (5); AI TA is
somewhat better (4); Similar/undecided (3); Human TA is somewhat better
(2); and Human TA is significantly better (1). The Institutional Review
Board (IRB) at the university has reviewed and granted an exemption for
this study.

Table 1 Mean Scores for Each Research Question and their Significance
Relative to a Baseline of 3 (Neutral/Uncertain) ⏎

Survey Questions Mean p-
value

Q1. Responding quickly to posts 3.00 1.00
Q2. Responding accurately to questions about the syllabus 2.67 0.17
Q3. Responding accurately to questions about course
content subject

3.13 0.55

Q4. Responding politely and professionally 2.80 0.49
Q5. Responding clearly and understandably 2.47 0.09
Q6. Responding without grammatical errors 3.33 0.29
Q7. Providing useful responses 2.80 0.17
Q8. Providing long enough responses 3.33 0.24
Q9. Providing feedback without giving away the answer 2.73 0.36
Q10. Giving useful ideas and suggestions 2.47 0.04*
Q11. Supporting student learning of course content 2.47 0.06
Q12. Supporting student development and improvement of
learning strategies

2.20 0.02*

Q13. Supporting student motivation 2.07 0.01*
 Note 

* A indicates statistical significance.

The end-of-semester survey received 15 responses, which represents 27%
of the total enrolled students. A beginning-of-semester survey was also



conducted but had very low participation and is not analyzed here. We used
a two-sample t-test to compare whether the average score for each question
deviated from the neutral/uncertain score of 3. This approach helped
determine how students compared JeepyTA to a human TA along several
dimensions. A non-significant test result would indicate that there is no
evidence that students view JeepyTA as being statistically significantly
worse (or better) in quality than a human TA. The average scores and p-
values for each question are listed in the second and third columns of Table
1.

The survey results indicate that students do not perceive JeepyTA to be
worse than a human TA in various aspects related to course content and
communication. However, it falls short in three specific areas: providing
useful ideas (Q10); supporting student development (Q12); and fostering
student motivation (Q13). There is also a marginally significantly worse
result for JeepyTA for Q11, supporting student learning of course content,
and Q5, responding clearly and understandably. If a Benjamini & Hochberg
(1995) post-hoc correction is applied, none of these findings remain
statistically significant, but these areas may nonetheless be important for
future development while awaiting a replication study with a larger
population. These findings suggest that while JeepyTA is capable in most
technical and content-related aspects, it may require further development or
adjustments to better address the pedagogical aspects of its role and
improve its ability to motivate and support students in their overall learning
and growth.

4.2 Efficiency Evaluation
To evaluate whether JeepyTA facilitated faster and more convenient
responses from instructors to student inquiries, we analyzed forum post data
from the previous iteration of the same course offered previously at the



same institution. The structure, content, requirements, and expectations of
the course remained very similar (with a few updates to content, based on
the rapid development of the field). The main difference was that students
used the Piazza platform for discussions in the previous year, and the forum
did not feature a virtual TA. This historical data acts as a benchmark for
comparison to identify any significant changes in instructorstudent
interactions. Since the virtual TA was not employed in the previous year,
we can attribute improvements in response times and ease of
communication to the introduction of JeepyTA, with reasonable confidence
(though, as in any such quasi-experimental comparison, there may be other
differences between year cohorts that were not obvious to us).

4.2.1 Matching Forum Post Replies
In the Piazza forum post dataset, each entry includes a user ID, timestamp,
and post ID. However, the dataset does not clarify which specific post a
given post is replying to. Therefore, we implemented an automated method
to associate each instructor’s reply with the corresponding student post it
was addressing. This method applies to every post from administrators
(instructor and TAs) that are not the first post in a thread (such posts are
considered as `announcements’). Then, we track down the first student post
in the thread that hasn’t been linked to an instructor’s post yet and assign it
as the reply target of the administrator’s post. This student post is then
marked as linked and excluded from further matching.

In the JeepyTA dataset, the matching process was more direct. Often,
administrators use the ‘reply’ feature in the forum for threads involving
multiple students. This information is recorded in the log data, which allows
us to pinpoint the exact post being replied to. However, in situations with
only one student in the conversation, administrators typically do not use this
feature. For these instances, we applied the automated method, similar to



that used for the Piazza dataset, to determine which post each
administrative reply was addressing.

4.2.2 Do Students Get Accurate Responses Faster?
The data from the Piazza dataset shows that over the semester, there were
124 responses from the instructor and 29 from TAs. On an average,
administrators took 14.74 hours to respond to a student’s post, with a
median response time of 7.09 hours.

The JeepyTA dataset recorded 85 responses from the instructor, 51 from
TAs, and 22 by JeepyTA itself. With JeepyTA, administrators took on
average 10.43 hours to respond to students’ posts, with a median response
time of 2.23 hours.

Before conducting the statistical analysis, we checked the normality
assumption of response time by visually inspecting histograms and normal
probability plots. The results showed clear deviations from a normal
distribution. In both forums, response time displayed a significant right-
skew and was leptokurtic, according to a Shapiro-Wilk test and measures of
kurtosis. As a result, when comparing the response times to student posts
between forums, we opted for the non-parametric Mann-Whitney U test.
Our findings reveal that the median response time in the JeepyTA forum
(2.23 hours) is notably shorter in comparison than the Piazza forum (7.09
hours) (U statistic = 129768, p < 0.0001). This suggests that the
introduction of JeepyTA results in significantly faster responses to student
inquiries.

Overall, JeepyTA generated 1,029 posts during the course. However,
after removing responses to announcements, news-sharing, greetings,
thank-yous, assignment submissions that did not require a reply, or posts
directly addressed to TAs or instructors, only 89 question-related posts
remained for JeepyTA to respond to. Of these, 22 were approved. On an



average, JeepyTA took approximately 39.95 seconds to generate a response;
human administrators then approved its posts in an average of 38.23
minutes, much faster than was possible in Piazza.

If we exclude the 22 posts generated by JeepyTA and focus solely on
replies manually crafted by humans, we observe that the average time
humans take to respond to students is 11.98 hours, with a median response
time of 4.14 hours, with the distribution showing a right-skew. This median
response time is higher than the previously calculated median of 2.23 hours,
which included the time required for approving JeepyTA responses in the
calculation, yet it remains below the 7.09 hours observed in the Piazza
dataset. A Mann-Whitney U test assuming unequal variances reveals that
the difference in median response times for manual human replies to
student posts across both forums is statistically significant (U statistic =
11136.5, p = 0.03). This finding suggests an improvement in the efficiency
and regularity of even human responses, following the introduction of the
AI teaching assistant, possibly by better focusing human time.

In analyzing the 67 instances where responses from JeepyTA were not
approved, several specific reasons have been identified. First, although a
response from JeepyTA may have been accurate, it could have been overly
verbose or repetitive. This redundancy makes direct human response more
efficient than editing down an overly detailed reply. Second, JeepyTA lacks
the capability to access external links or images shared by students, which
mades it unable to solve some technical or complex queries. Third, there
were occasions where JeepyTA provided a correct response, but instructors
or TAs still chose to reply, possibly because JeepyTA’s responses did not
fully align with the instructors’ preferred perspectives or emphasis.

4.2.3 Do TAs and Instructors Post More During Inconvenient Hours?



One of the primary aims of developing JeepyTA was to assist instructors
and TAs in responding to student queries during inconvenient hours. While
everyone’s inconvenient hours differ, we operationally define this here as
outside regular US business hours: after 5 pm and before 9 am. Analysis of
the Piazza data showed that administrators replied outside business hours
95 times, which accounted for 62% of their total posts. Following the
introduction of JeepyTA, there were 51 posts by administrators outside
business hours, which represents 60% of their total posts. This difference
was not statistically significant, c(1, N= 289) = 0.04, p = 0.85.

However, there appeared to be a difference in the number of responses
during weekends. In the Piazza dataset, administrators posted 15 human-
written messages on weekends, which was 10% of their total posts. After
implementing JeepyTA, this number increased to 39 posts, or 29% of the
total. This difference was statistically significant, c(1, N= 289) = 15.66, p <
0.001. This indicates a noticeable increase in posting activity during
weekends following the introduction of JeepyTA.

5 Discussion and Conclusion
In this project, our goal was to develop a virtual TA capable of responding
to course-specific inquiries from students, using embedding-based search as
the approach to construct the model.

The analysis of the survey conducted at the semester’s end reveals that
students generally view JeepyTA as similar in quality to a human TA in
disseminating course information and facilitating communication. However,
there was some evidence that JeepyTA was seen as less effective in
supporting student development and motivation compared to its human
counterpart. However, we observed that JeepyTA was able to provide faster
responses to student inquiries than was possible in the previous year before
JeepyTA’s introduction. Its presence also appears to lead to faster responses



to student posts by instructors and TAs, possibly because JeepyTA deals
with the simpler posts. Furthermore, there was a noticeable increase in the
posting activity of teaching assistants and instructors during weekends with
JeepyTA, from 8% to 29%. This shows that JeepyTA was able to assist
humans in managing the forums during these less convenient hours.

JeepyTA, while offering several advantages, also presents certain
limitations that warrant acknowledgment. For example, it tends to be overly
responsive. Presently, JeepyTA is configured to respond to all questions,
including those related to assignment submissions or announcements,
leading to excessive and unhelpful responses. For example, in the case
where a student included a page link in their question to the instructor,
JeepyTA informed the student that it was unable to access the link and
requested more information from the student. To mitigate this issue, we
have introduced optimizations where JeepyTA have different response
modes based on the forum category where the post is published (e.g., it will
not respond to posts in the “announcement” category). However, while this
feature helps in reducing irrelevant responses, it is not a perfect solution.
There are still cases where students publish their posts in the wrong
category, or where exceptions occur (e.g., an announcement could contain a
question that actually requires a response). Therefore, we are also
developing a fine-tuned model to help JeepyTA automatically decide
whether a response should or should not be generated. Furthermore, before
presenting responses on the forum, we plan to implement a quality
evaluation model that will filter out responses that are overly repetitive, too
generic, or not helpful. These steps aim to reduce the time instructors and
TAs spend managing JeepyTA’s responses and improve the overall quality
of interactions.



Furthermore, the open-ended questions portion ofthe survey reveals that,
despite JeepyTA’s capabilities in answering course-related questions and
troubleshooting code issues, many students still prefer to direct their queries
to human teaching assistants or the instructor rather than posting questions
to the discussion forum. Even though there was increased interaction with
JeepyTA throughout the course, a significant portion of students remained
unengaged with the forum and solely used the forum for assignment
submission. Several improvements could be made to improve this situation.
For example, rather than waiting for students to initiate inquiries, JeepyTA
could be programmed to offer proactive assistance at key points during the
course. For instance, JeepyTA could provide tips or resources when
students are nearing important milestones, such as before major
assignments or exams, or when they are working on particularly
challenging course content. Another strategy would be for instructors to
demonstrate JeepyTA’s capabilities early in the course to show students how
it can support their learning.

Several other improvements have also been made to JeepyTA following
the first semester of implementation. The current version of JeepyTA is able
to analyze the entire history of messages in a thread, rather than focusing on
individual posts. With this improvement, JeepyTA will be able to
summarize discussions and consider the full context of the conversation
when providing feedback. Secondly, we have refined JeepyTA’s prompts to
make responses more concise and avoid unnecessary repetition of student
inputs, although there are still instances where these issues may occur.
Through ongoing refinement, we hope to further decrease the time
instructors and TAs need to spend on reading and/or editing them.
Moreover, as JeepyTA becomes integrated into more courses, we have
recommended that students paste code directly into the forum to receive



instant feedback or debugging help, and we have recommended reducing
the use of screenshots, which JeepyTA cannot currently interpret. We are
also working to familiarize TAs and instructors with JeepyTA’s capabilities.
Lastly, we are expanding the range of questions that JeepyTA is trained on
to improve its effectiveness and responsiveness across different topics.

In conclusion, this study explores the application of an LLM as a virtual
teaching assistant for an online educational forum. Despite the challenges
and limitations, the potential of GPT-based models in supporting and
improving learning experiences opens up opportunities for better supporting
learners. Future studies should investigate whether it can be used in ways
that improve learning as well as convenience across different educational
contexts. One possibility that we are investigating, for example, is using
JeepyTA to offer students different kinds of feedback on their writing
assignments that are beyond the scope of what human instructors and TAs
typically offer. JeepyTA as an agent based on an LLM is not bound to any
specific discussion forum. Going forward, we intend to deploy JeepyTA to
a broader range of instructional contexts and pedagogical goals, to see
where and how it can be most useful to support learners.
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Knowledge tags on math questions are essential for education as they
provide great convenience to both teachers and students in finding desired
practising material during the learning process. Traditionally, pedagogical
experts have been responsible for these annotations, as the task requires a
profound understanding of how to link problem-solving logic with relevant
knowledge concepts. However, with the advancement of sophisticated text
encoding algorithms, such as pre-trained language models (PLMs),
researchers have developed automated knowledge-tagging systems that
leverage deep semantic embeddings. This work explores the automation of
this task using Large Language Models (LLMs), addressing the limitations
of earlier encoding-based methods—particularly in complex cases that
require extensive domain expertise and nuanced concept definitions. By
harnessing LLMs’ advanced reasoning and tool-using capabilities, we
overcome the challenges posed by previous approaches, achieving human-
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level performance with large-scale LLMs. Our findings underscore the
significant potential of LLMs in educational applications.

1. Introduction
Knowledge tagging is a natural language processing (NLP) task that
involves identifying knowledge concepts within given content. These tags
are crucial for applications such as content search (Sun et al., 2018) and
educational material recommendations (Chen et al., 2014). Additionally,
recent studies show that knowledge tags can serve as auxiliary information
for various educational research tasks, including knowledge tracing (Huang
et al., 2021). Overall, knowledge tagging plays a vital role in educational
applications, and the accuracy and availability of these tags significantly
impact the effectiveness of advanced machine learning (ML) algorithms in
educational settings.

Traditionally, knowledge tagging has relied on extensive manual efforts,
limiting its scalability. For instance, some studies employ pattern-matching
techniques to tag pedagogical materials and questions using predefined
keyword lists (Kalender & Dang, 2012). However, constructing such lists is
time-consuming and difficult to generalize across different knowledge
domains. This limitation significantly restricts their applicability to large-
scale pedagogical applications. With the emergence of text embedding
techniques such as word2vec (Mikolov et al., 2013) and advances in deep
learning (DL) models like recurrent neural networks (RNNs) (Sherstinsky,
2020), training DL models on labeled datasets has become a prevalent
approach in the education community for knowledge tagging. Due to their
strong learning capabilities, DL models reduce the dependence on manual
efforts while significantly improving tagging accuracy (Du, Zhu, &
Saeheaw, 2021). Building on this foundation, more recent studies leverage
pretrained language models (PLMs) to minimize the need for large-scale



labeled training data (Khan et al., 2021). With the help of PLMs, knowledge
tagging has been successfully applied to various subjects, including
language studies.

Recently, the advent of large language models (LLMs) has revolutionized
multiple domains, including finance (Zhao et al., 2024), law (Savelka,
2023), and education (Li et al., 2024) (Wang et al., 2024). Owing to their
exceptional reasoning, language understanding, and tool-use capabilities,
LLMs have also transformed knowledge tagging. By leveraging LLMs’
extensive prior knowledge and in-context learning capabilities (Dong et al.,
2022), knowledge tagging can now be applied to new concepts with
minimal demonstration samples or even just definitions. Additionally,
LLMs’ logical reasoning abilities (Zhang et al., 2024) facilitate the
annotation of more complex knowledge concepts involving intricate logical
structures.

In this work, we categorize and analyze three different approaches that
utilize LLMs for knowledge tagging. By evaluating their performance on
real-world knowledge tagging tasks involving math problems, we highlight
the significant potential of LLMs in educational applications. Furthermore,
we explore the integration of emerging methodologies with existing
approaches and discuss future directions for knowledge tagging with LLMs.

2. Problem Definition
Before introducing the methods, we first define the common formulation of
knowledge tagging as used in most current research. In practice, the goal of
knowledge tagging is to establish a pairing relationship between a
knowledge concept c and pedagogical content x. To achieve this, two
primary ways to define the model’s objective are: The first approach
formulates knowledge tagging as a classification problem, where the
number of knowledge concepts is predefined, i.e., ci ∈ {1, 2, ..., C). In this



case, the model directly outputs a knowledge concept tag as the final result.
The second approach defines the problem as a pairwise matching task.
Here, each concept c is paired with a content text x, and the model performs
a binary classification to determine whether the given concept-content pair
is a match. Each approach has its advantages and drawbacks. The
classification-based method allows each sample to be tagged in a single
model execution, making it computationally efficient for closed-set
scenarios where the set of concepts is fixed. In contrast, the pairwise
matching method requires iterating through all possible knowledge
concepts ci to find the correct match, which can be more computationally
expensive. However, the pairwise approach offers greater flexibility when
dealing with an open set of knowledge concepts. Since it directly
incorporates concept definitions as input, it generalizes well to new
knowledge concepts during inference. In contrast, the classification-based
method requires retraining whenever the predefined label set changes.
Overall, a comparison of these two problem formulations in knowledge
tagging is illustrated in Figure 1.

Fig. 1 Two typical approaches to defining the knowledge tagging
task.⏎

2.1 Traditional Model



2.1.1 Pattern Matching
Before the emergence of DL-based text embedding techniques, traditional
knowledge tagging studies focused on identifying representative patterns in
content associated with specific knowledge concepts (Kalender & Dang,
2012). For example, indexing algorithms such as TF-IDF (Aizawa, 2003),
which calculate word frequencies within a document relative to their
occurrence across multiple documents, help distinguish unique patterns
among different texts. Using TF-IDF embeddings, traditional machine
learning models, such as logistic regression and tree-based methods, have
been employed to classify content into corresponding knowledge tags
(Onan, Korukoglu and Bulut, 2016). Additionally, many studies have
explored knowledge tagging through regular expression matching and rule-
based systems. By manually identifying key terms and patterns, human
experts have developed heuristic-based tagging methods that achieved
acceptable performance in early automatic tagging research. However, due
to the limited representational power of pattern-matching techniques, these
methods typically frame knowledge tagging as a classification problem,
making it difficult to extend them to new knowledge concepts. Their
reliance on predefined rules and fixed patterns restricts adaptability, limiting
their effectiveness in dynamic and evolving educational contexts.

2.2 Deep Learning
The advent of DL has led to the development of advanced text encoding
models, such as word2vec (Mikolov, Chen, Corrado, & Dean, 2013),
significantly enhancing knowledge tagging models’ ability to handle more
complex concepts. By combining word2vec embeddings with RNNs (Sun
et al., 2018), DL-based knowledge tagging algorithms encode target content
into a single dense representation, achieving significantly higher accuracy
compared to traditional pattern-based methods. One key advantage of DL



models is their exceptional function-fitting capability, allowing for end-to-
end training without human intervention (Liu et al., 2019). This enables the
model to learn directly from data, identifying patterns beyond manually
predefined rules. However, a major challenge of DL-based approaches is
their reliance on large-scale labeled datasets to achieve optimal
performance. In educational settings, where labeled data is expensive and
time-consuming to collect, scalability becomes a critical issue. The
emergence of unsupervised pretraining techniques and PLMs has provided
a solution to this problem (Sun et al., 2022). By leveraging self-supervised
learning techniques such as masked language modeling and next-token
prediction, PLMs acquire extensive prior knowledge of language patterns
from large-scale unlabeled corpora. By fine-tuning a lightweight multilayer
perceptron (MLP) on top of PLM-generated sentence embeddings using a
limited labeled dataset, PLM-based knowledge tagging models can achieve
performance comparable to or even better than fully supervised DL models
—while requiring significantly fewer labeled examples (Zemlyanskiy et al.,
2021). Additionally, the general prior knowledge embedded in PLMs
enables them to generalize to new concepts, particularly when using the
pairwise matching formulation introduced in Section 2. This flexibility
further improves the scalability and adaptability of knowledge tagging
models in real-world applications.

3. LLM-based Method

3.1 Naïve Prompting
LLMs are powerful tools capable of solving various problems in a text-to-
text format. Unlike traditional embedding-based knowledge tagging
models, which require parameter updates with labeled samples, LLMs
leverage their strong instruction-following capabilities and extensive prior



knowledge to perform knowledge tagging directly from concept definitions
and instruction text—without any modifications to the model itself. This
flexibility allows LLM-based knowledge tagging methods to seamlessly
adapt to new knowledge concepts by simply modifying the input definitions
and instructions, eliminating the need for retraining. Formally, the basic
prompting approach can be expressed as:

Y

i

= F

llm

(C ∣ x)

where C represents the concept definition, x is the content, denotes text
concatenation, and Yi is the predicted knowledge tag. In addition to
generating predefined knowledge tags, LLMs can also produce a reasoning
process similar to human judgment. This capability allows for the
integration of techniques such as chain-of-thought (COT) prompting (Wei
et al., 2022) and self-reflection (Renze & Guven, 2024), which further
enhance reasoning accuracy. COT prompting instructs the LLM to
explicitly outline its reasoning process before providing a final answer,
improving logical coherence and interpretability. Meanwhile, self-reflection
involves querying the LLM a second time with its initial response,
prompting it to review and verify its reasoning. This iterative process helps
correct errors, such as concept omissions, significantly improving tagging
accuracy. Figures 2 and 3 summarize the commonly used prompting
strategies in contemporary research.



Fig. 2 Commonly used prompting strategies in contemporary research.

Zero-shot Prompt
Instruction: You are a knowledge concept annotator. Your job is to judge whether the
<Question> is concerning the <Knowledge>. You should first provide the judging reasons
before giving your judgment. The judgment token: ‘<Yes>’ or ‘<No>’ should be provided at the
end of the response.

Knowledge: [Knowledge Definition]
Question: [Question Text]

Fig. 3 Commonly used prompting strategies in contemporary research.

Reflect Prompt
Instruction: Check the <Knowledge> and <Question>, then confirm whether the provided
<Judgement> is correct or wrong. You should first provide the judging reasons before giving
your judgment. The judgment token: < C or reet >′ or <Wrong>’ should be provided at the
end of the response.

Knowledge: [Knowledge Definition]
Question: [Question Text]
Judgment: [Output from zero-shot prompt]

3.2 In-Context Learning
In-context learning is a distinctive capability of LLMs that follows a similar
principle to traditional ML models, where performance is optimized by
learning from labeled data. However, what sets in-context learning apart is
its significantly higher learning efficiency compared to existing ML
algorithms. Recent studies (Brown et al., 2020) have demonstrated that
LLMs excel in few-shot learning, requiring only a few demonstration
samples to grasp the characteristics of a task and subsequently deliver much
better results. Furthermore, combining in-context learning with COT
prompting—such as providing explicit reasoning steps in the demonstration
text—allows LLMs to extract the underlying thought process and imitate
human-like problem-solving. Given these characteristics, in-context



learning is widely used in real-world applications, particularly for newly
defined tasks, helping LLMs better understand instructions and generate
more reliable outputs. Since in-context learning requires only a few
examples for adaptation, the choice of input demonstrations plays a crucial
role in determining the final output quality. High-quality demonstrations
provide meaningful context, enabling LLMs to comprehend task
instructions more effectively. Conversely, low-quality demonstrations can
introduce misleading information, reducing both processing efficiency and
accuracy. To address this issue, recent studies have explored various
strategies for selecting optimal demonstration samples to enhance in-
context learning performance across different tasks (Luo et al., 2024).

One basic approach to demonstration selection involves retrieving
samples based on semantic similarity. The rationale behind this method is
that demonstrations resembling the input help LLMs apply analogy-based
reasoning. However, this heuristic approach is not always effective,
especially for tasks requiring complex reasoning, where semantic similarity
alone does not guarantee optimal performance. To overcome this limitation,
recent studies have incorporated reinforcement learning (RL) techniques to
train a demonstration selection model (Li, Xu, Tang, & Wen, 2024).
Specifically, by using the final task performance as a reward signal, RL-
based selectors are trained to choose the most relevant demonstrations that
maximize LLM performance. For knowledge tagging, incontext learning
has also proven to be an effective strategy within LLM-based prompting
methods. Specifically (Li, Xu, Tang, & Wen, 2024), introduced KnowTS, a
system that integrates both naive prompting and a flexible demonstration
selection strategy. KnowTS allows users to tag knowledge with or without
demonstrations and employs a sequential demonstration retriever designed
to account for the sequential nature of LLM inputs. This retriever leverages



RNNs combined with proximal policy optimization (PPO) (Sutton & Barto,
2018) to identify the best combination of demonstrations. Additionally, by
enabling the selector to determine early stopping during the selection
process, KnowTS improves inference efficiency and eliminates redundant
demonstrations—an issue commonly encountered in educational
applications. The overall framework of KnowTS is illustrated in Figure 4.

Fig. 4 An overview of the workflow of the proposed KnowTS
system.⏎

3.3 Multi-Agent System
Multi-agent systems (MAS) have recently emerged as a promising approach
for enhancing the performance of LLMs on complex tasks. MAS follows a
divide-and-conquer strategy, where multiple LLM-based agents are
assigned specialized roles to handle different aspects of a given task (Guo et
al., 2024). Each agent is designed with a specific duty, allowing the system
to break down intricate problems into more manageable sub-tasks. A
common component in MAS is the planner agent, responsible for
decomposing a task into sequential sub-steps based on the given
instructions and the available specialized agents. Another key agent is the
coding agent, which leverages LLMs’ programming and tool-using
capabilities to handle challenges that require precise execution, such as
mathematical calculations and complex logical deductions. To facilitate



seamless collaboration between agents, MAS utilizes the conversational
abilities of LLMs, often relying on a shared conversation pool to exchange
information dynamically. Furthermore, human users can be integrated as
special agents within the MAS framework. The structured, human-like
conversations between agents enable users to quickly grasp the system’s
problem-solving status and intervene when necessary.

For the knowledge tagging task, MAS has proven to be an effective
solution for addressing LLMs’ limitations in precise logical reasoning and
mathematical validation, particularly when tagging mathematical
knowledge concepts (Li, Xu, Tang, & Wen, 2024). In this framework,
knowledge tagging is decomposed into two groups of property-checking
sub-tasks, each handled by specialized agents. One agent, the coding agent,
is responsible for verifying numerical properties by writing and executing
Python programs to validate matching results. Another agent, the concept
agent, focuses on assessing the semantic alignment between the question
and the knowledge definition, handling properties that require conceptual
analysis. Additionally, a solution agent is included to manage cases where
knowledge concepts impose constraints on answer content. Overall, MAS-
based knowledge tagging enables a more structured and precise approach to
tagging tasks, leveraging specialized agents to improve accuracy and
adaptability. The architecture of the MAS-based knowledge tagging system
is illustrated in Figure 5.



Fig. 5 An overview of the proposed LLM-based multi-agent
system for knowledge tagging. The semantic and numerical

constraints in knowledge definition and decomposed sub-tasks are
marked with corresponding colors.⏎

4. LLM-based Method
In this section, we will present the performance of the above LLM-based
methods in solving real-world knowledge tagging tasks. Then, based on
those behaviors, we conclude the changes brought by using LLMs for
knowledge tagging problems. Finally„ by concluding the strengths and
weaknesses of the existing studies, we present our ideas about the future
direction in the area of leveraging LLMs as valid tools in more applications
beyond the knowledge tagging problems for education.

4.1 Experiment Dataset
To evaluate the effectiveness of LLMs in knowledge tagging, various
studies have explored LLM-based methods incorporating naive prompting
and few-shot learning on the challenging dataset MathKnowCT (Li, Xu,
Tang, & Wen, 2024). This dataset comprises 24 mathematical knowledge
concepts, covering learning objectives from Grade 1 to Grade 6. For each
knowledge concept, 100 candidate questions are retrieved from an
unlabeled question database based on the highest text embedding similarity.
These questions are then annotated by at least two pedagogical experts to



determine whether they align with the given concept. The dataset exhibits
an imbalanced distribution, with a ratio of approximately 1:4 between
matching and mismatching question-concept pairs. Further details on
dataset statistics and knowledge concept definitions are provided in Table 1.

4.2 Naive Prompting Results
The overall performance of the LLM-based knowledge tagging methods is
summarized in Table 1. To assess their effectiveness, we also include
traditional knowledge tagging algorithms, such as embedding similarity-
based retrieval and fine-tuned PLMs, as baselines for comparison. From the
results, we observe several key findings. First, some LLM-based methods
outperform traditional ML algorithms even in a zero-shot setting. This

Table 1 Detailed sample statistics for different knowledge concepts in
MathKnowCT⏎

Knowledge
ID

Total
Size

Positive
Size

Negative
Size

Knowledge
ID

Total
Size

Positive
Size

Nega
Siz

x02030701 100 25 75 x07020402 87 29 58
x02021101 100 40 60 x07020502 100 50 50
x06020104 100 40 60 x20050401 100 50 50
x02061003 100 16 84 x09020509 100 50 50
x48040202 100 29 71 x07020314 100 30 70
x11041602 100 24 76 x01010201 100 50 50
x04030501 100 48 52 x11040205 100 26 74
x04030601 100 23 77 x11040203 100 22 78
x07010103 100 50 50 x11040202 100 25 75
x06030101 100 44 56 x02040502 100 44 56
x57130902 100 35 65 x47060201 100 17 83
x20041003 62 50 12 x20070401 100 47 53



demonstrates the strength ofLLM-based knowledge annotation, particularly
given its training-free nature, which offers a significant advantage over
conventional knowledge tagging methods that require extensive labeled
data and fine-tuning. However, not all LLMs perform equally well, and
some still lag behind traditional approaches. This outcome is expected, as
unlike machine learning models that are trained on task-specific datasets,
zero-shot LLMs rely solely on their internal knowledge and textual
instructions. The lack of direct exposure to domain-specific data can lead to
discrepancies between the given instructions and the model’s inherent
understanding, resulting in tagging errors. Despite these limitations, the low
training cost and adaptability of LLM-based methods highlight their
potential as a promising approach for knowledge tagging tasks.

4.3 In-context Learning Results
Building on previous findings that few-shot learning improves the
performance of smaller LLMs, subsequent research by (Li, Xu, Tang, &
Wen, 2024) further explored this approach. By experimenting with different
demonstration selection strategies, their study demonstrated that LLM-
based knowledge tagging models can serve as a viable solution for real-
world applications. Performance comparisons between traditional baselines
and various few-shot learning methods are summarized in Tables 3 and 4.
As shown in Table 3, incorporating few-shot learning significantly
stabilizes the performance of different LLMs. The results confirm that
adding a small number of labeled examples substantially enhances
performance across all LLM-based methods. Notably, almost all large-scale
LLMs surpass traditional ML models by a considerable margin, further
reinforcing the effectiveness of LLMs for knowledge tagging tasks. Table 4
highlights another key factor: the choice of demonstration retrieval method
significantly impacts performance. The number of demonstrations affects



different models to varying degrees. For instance, open-source models such
as LLaMA-3 and Mistral benefit more from an increased number of
demonstrations, whereas proprietary models like GPT show relatively
smaller gains. Additionally, the retrieval strategy used to select
demonstration samples plays a crucial role. This study introduces
F1exSDR, a specialized selector model for demonstration retrieval. A
comparative analysis of different retrieval approaches reveals that the best
LLM-based knowledge tagging model achieves nearly 90% accuracy,
approaching human-level performance. These findings suggest that LLM-
powered knowledge tagging methods hold strong potential as reliable
solutions for real-world applications.

Table 3 Comparisons between LLM 2-Shot and 4
Metric Model

Size
2-Shot

Random Heuristic
GPT Llama-

3
Mixtral GPT Llama-

3
Mixtral GPT

Accuracy Base 76.01 75.64 78.72 72.50 73.15 81.15 77.9
Large 89.45 83.45 80.84 90.10 84.26 80.23 90.4

Precision Base 60.33 60.59 65.11 57.22 58.47 68.86 62.6
Large 79.86 69.16 67.67 81.86 70.98 67.64 82.5

Recall Base 93.41 89.82 86.31 87.37 84.14 85.64 92.8
Large 93.99 95.83 87.50 92.65 93.68 84.27 92.4

F1 Base 73.31 72.36 74.23 69.15 68.99 76.34 74.8
Large 86.35 80.34 76.32 86.92 80.76 75.04 87.24



4.4 Multi-agent System Results
Beyond improving LLM performance through in-context learning,
leveraging external tools has emerged as a powerful strategy for handling
knowledge concepts that involve precise numerical definitions. A recent
study (Li, Xu, Chang, & Wen, 2024) integrates Python programming with
reasoning steps to enhance the accuracy of knowledge tagging. Specifically,
the researchers applied a multi-agent framework to MathKnowKT,
decomposing constraints into a series of targeted verification tasks, each
focusing on a specific property. Numerical constraints were processed using
Python scripts, leading to a significant improvement in tagging precision.

Table 4 Comparisons between three RL-based retrievers on three LLMs. Th
mean demonstration size the retriever d

Metric Max
Shot

GPT Base (GPT-3.5-turbo) Llama-3 Base (Llam
PromptPG RetICL FlexSDR PromptPG RetICL

Accuracy 2 77.32 80.36 81.21
(1.38)

78.75 81.02

4 80.74 81.97 84.35
(2.10)

82.26 82.83

Precision 2 62.79 66.99 69.12(1.38) 65.00 68.15 6

4 66.42 69.23 72.92
(2.10)

68.81 69.78

Recall 2 91.05 89.74 86.58
(1.38)

88.95 88.95

4 94.21 90.00 90.00
(2.10)

92.89 92.37

F1 2 74.33 76.72 76.87(1.38) 75.11 77.17

4 77.91 78.26 80.57
(2.10)

79.06 79.50



Table 5 compares the performance of the multi-agent knowledge tagging
method with a naïve prompt-based approach. The results clearly show a
substantial increase in precision when incorporating Python-based
verification. However, a slight decline in recall is also observed, as coding
errors can sometimes lead to the incorrect rejection of valid matches.
Despite this, precision is often prioritized over recall in educational
applications, where ensuring accurate knowledge tagging is critical. Thus,
the multi-agent framework offers a promising solution for addressing
knowledge tagging challenges in real-world scenarios.

Table 5 Comparison between LLM 2-shot Inference, a
Metric Human

Expert
Base

Single LLM Multi-Agent LLMs
Llama-

3
Mixtral GPT Llama-

3
Mixtral GPT Llam

3
Accuracy 91.75 67.08 75.42 68.85 74.91 79.27 75.40 81.
Precision 88.86 51.84 59.74 53.31 62.01 68.17 62.28 66.
Recall 88.16 94.62 93.15 95.30 74.57 77.42 77.02 95.
F1 88.51 66.98 72.80 68.37 67.72 72.50 68.87 78.



4.5 Limitation of Existing Works
While the studies above demonstrate the promising potential of using LLMs
for knowledge tagging in future educational applications, several limitations
remain. One is the lack of publicly available datasets. Due to this constraint,
most current studies conduct experiments on small-scale, single-subject
scenarios. As a result, the conclusions drawn may not be generalizable to
other real-world applications. Additionally, existing research on LLM-based
knowledge tagging primarily leverages the broad general knowledge
acquired by LLMs during pretraining. However, when applied to
specialized knowledge domains, these models may struggle to achieve the
same level of accuracy. In such cases, the performance of LLM-based
methods faces significant challenges, as general-purpose knowledge may
not be sufficient for tagging domain-specific concepts accurately. Another
limitation is the omission of hierarchical structures in knowledge concepts.
Current models typically treat each knowledge concept as an independent

Table 2 Comparison between PLM Embedding Similarity, PLM Fin
Metric Model

Size
Human
Expert

K / Q Similarity Q / Q
Similarity

PLM F

GPT-
Embed

SBERT GPT-
Embed

SBERT BERT RoB

Accuracy Base 91.75 67.43 79.90 78.52 63.58 58.45 3
Large - - - - - 76.64 7

Precision Base 88.86 52.68 67.66 67.51 49.10 44.03 3
Large - - - - - 63.02 7

Recall Base 88.16 75.27 82.39 75.40 87.63 62.77 1
Large - - - - - 82.80 6

F1 Base 88.51 61.98 74.30 71.24 62.93 51.75 5
Large - - - - - 71.57 6



label, disregarding the inherent relationships between them. In reality, these
hierarchical structures are crucial for downstream applications and could
enhance the effectiveness of knowledge tagging. Finally, computational
efficiency remains a bottleneck for large-scale implementation. In
particular, when knowledge tagging involves multiple API calls to LLMs,
the processing time and cost can become prohibitive. Compared to
traditional models, LLM-based methods are significantly more expensive to
run, posing challenges in both cost and efficiency.

4.6 Future Directions
To further enhance the application of LLM-based methods in knowledge
tagging tasks, several promising directions deserve further exploration.
First, to address the challenge of domain-specific knowledge, the recently
emerging Retrieval-Augmented Generation (RAG) technology could be a
valuable solution. By retrieving expert knowledge from external databases,
RAG provides LLMs with relevant supporting documents and content
during the judgment generation process. This approach allows LLMs to
reference specialized knowledge, leading to more accurate tagging results.
Beyond RAG, another potential improvement is supervised fine-tuning
using human knowledge tagging problem-solving techniques, such as COT
reasoning. By training LLMs to learn and imitate human problem-solving
strategies, these models can handle more complex tasks with reduced
reliance on in-context learning demonstrations. This would improve their
generalizability, enabling them to adapt to new knowledge concepts more
effectively. Finally, model distillation offers a promising solution to the
efficiency challenges currently faced by LLM-based methods. As observed
in previous experiments, LLM performance often scales with model size.
By leveraging model distillation, smaller LLMs can inherit essential
knowledge from larger, more capable models while maintaining



significantly lower computational costs during inference. This approach
addresses efficiency concerns effectively, ensuring the broader adoption of
LLM-based methods across diverse educational settings.

5. Conclusion
In this study, we conduct a comprehensive investigation on leveraging
LLMs for knowledge tagging in education, highlighting their potential
applications in educational settings. By integrating various enhancement
techniques, such as incontext learning and MAS, we observe the
remarkable capabilities of LLMs in handling complex knowledge tagging
tasks in real-world educational scenarios. These findings underscore the
promising future of incorporating LLMs into education for future research
and applications. Additionally, we identify several limitations in current
studies, including limited generalizability of conclusions, lower efficiency
compared to traditional models, and unclear performance on advanced
concepts. To address these challenges, we discuss potential future directions
for improving LLM-based knowledge tagging methods, aiming to enhance
their effectiveness and applicability in educational contexts.
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This chapter explores the intersection of generative AI and personalized
learning, focusing on the evolving role of educators in using large language
models (LLMs) to design customized educational experiences. As
generative AI technologies gain prominence in education, understanding
their potential to enhance learning while addressing educators’ practical
challenges becomes increasingly important. The chapter examines how
LLMs are integrated into teaching strategies, highlighting their ability to
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generate coherent learning paths aligned with diverse learner profiles and
educational goals.

To support this integration, the chapter introduces the ENCORE
ecosystem, a digital tool designed to help educators develop lesson plans by
combining LLMs with Open Educational Resources (0ER5). ENCORE
provides modular APIs and an intuitive interface, enabling the
personalization of content and the construction of adaptive learning
pathways tailored to individual needs.

The tool leverages generative AI to streamline the selection and
alignment of learning materials with specific objectives. A user study
evaluates the practical use ofAl-driven features, offering insights into
educators’ experiences, challenges, and opportunities. The chapter
concludes by exploring future directions for AI in education, emphasizing
strategies to foster effective collaboration between educators and AI tools to
enhance personalized learning outcomes.

1. Introduction
The rapid advancement of generative AI has significantly transformed
various sectors, including education (Holmes & Tuomi, 2022; Mohd. Lahby
et al., 2024). As artificial intelligence (AI) continues to evolve, its role in
personalized learning has become increasingly prominent. Educational
institutions are now exploring AI-driven tools to provide more tailored
learning experiences that cater to diverse student needs. Despite this
progress, one of the major challenges in education remains the ability to
personalize learning at scale, ensuring that learners receive content that
aligns with their unique skills, preferences, and learning paths (Martin et al.,
2020; Xie et al., 2019).

Educators play a crucial role in this evolving landscape, serving as
curators and facilitators of AI-enhanced learning experiences (Bhutoria,



2022).Although AI can help generate and recommend educational content,
the responsibility of adapting and contextualizing these resources for
different learning scenarios falls on educators. This necessity underscores
the importance of equipping teachers with intuitive tools that allow them to
seamlessly integrate AI-generated content into their teaching
methodologies. However, many existing AI-powered platforms focus
primarily on automation, often overlooking the essential role of educators in
ensuring pedagogical relevance and meaningful contextualization. AI must
function as an assistant, not a replacement, supporting teachers in their
efforts to create dynamic, student-centered learning environments.

In response to these challenges, the ENCORE ecosystem1 has emerged as
a case study in AI-enhanced educational tools (Bucchiarone, Vazquez-
Ingelmo, Schiavo, Barandoni, Garcia-Holgado, Jose Garcia-Penalvo,
Mosser, Alfonso Pierantonio, Zschaler, & Barnett, 2023). Initially designed
as a structured database for Open Educational Resources (OER) (Schiavo et
al., 2023), ENCORE provides an innovative framework that enables
educators to discover, curate and adapt OER through generative AI and
structured learning pathways (Bucchiarone, Vazquez-Ingelmo, Schiavo,
Garc’ia-Holgado, Jose Garcia-Penalvo, & Zschaler, 2023). OERs, which
have long been advocated as a means of democratizing access to education
(Chen et al., 2020; Wiley et al., 2014), are often hampered by fragmented
discovery processes and inconsistent metadata, making it difficult for
educators to locate high-quality and skill-aligned resources. ENCORE
addresses this by using Natural Language Processing (NLP) to analyze, tag,
and structure OERs, aligning them with established competency
frameworks such as the European Skills, Competences, Qualifications and
Occupations (ESCO) taxonomy2. This automation reduces the time



educators spend searching for and modifying resources, allowing for a more
efficient and tailored learning experience (Decuypere et al., 23).

1 https://project-encore.eu/.

2 https://esco.ec.europa.eu/en.

Beyond improving resource discoverability, ENCORE incorporates
generative AI to expand the potential of OERs, transforming them from
static materials into dynamic and adaptable content. By enabling automated
lesson planning, activity generation, and personalized learning pathways,
ENCORE ensures that educational content can evolve alongside changing
pedagogical needs. Rather than merely cataloging existing resources, this
ecosystem fosters a more interactive and intelligent approach to
competency-based education, where educators are empowered to focus on
high-impact teaching strategies rather than the labor-intensive task of
resource curation.

This chapter explores the design, evaluation, and impact of the ENCORE
ecosystem, detailing how its AI-driven mechanisms contribute to more
effective teaching and learning experiences. Through user-centered
assessments and educator feedback, we analyze the strengths, limitations,
and future potential of AI-powered educational tools. The case of ENCORE
highlights how AI can support and amplify educator expertise, ensuring that
personalization on scale remains both pedagogically sound and
technologically feasible.

2. Background
As education moves toward more personalized and competency-based
models, the role of OERs has become increasingly significant. They
provide free and adaptable learning materials, offering educators an
alternative to traditional proprietary educational content. Their open nature

https://project-encore.eu/
https://esco.ec.europa.eu/en


allows modification, remixing, and redistribution, making them ideal for
customized learning experiences that cater to diverse learning needs.

However, despite their potential, integrating OERs into structured,
personalized learning pathways remains a challenge. Many repositories
function as static collections rather than intelligent learning ecosystems,
making it difficult for educators to efficiently discover, adapt, and sequence
content. Furthermore, the fragmented and inconsistent nature of OER
metadata across different platforms creates additional barriers to their
effective use.

This section provides an overview of the core challenges that hinder the
full potential of OERs and explores how generative AI can address these
limitations by making content discovery, adaptation, and personalization
more efficient.

2.1 Challenges in Personalized Learning with OERs
Although OERs provide a foundation for accessible education, their
fragmented nature often poses significant barriers to personalized learning
(Hylen, 2006). Educators often face difficulties in identifying relevant,
high-quality resources due to inconsistent metadata, lack of standardization,
and poor discoverability mechanisms. Unlike proprietary educational
platforms, which offer structured content with embedded analytics, most
OER repositories function as static collections, requiring substantial manual
effort for effective integration into curricula.

Another critical issue is the monolithic structure of many OERs. Rather
than being modular and adaptable, many resources are designed as
comprehensive courses or large instructional units, making it challenging
for educators to extract specific sections that align with unique learning
objectives. This lack of granularity limits the ability to create flexible,



competency-based learning pathways, which are essential for personalized
education.

The workload of educators further complicates the adoption of OERs.
The process of discovering, evaluating, adapting, and structuring OERs
demands significant time and expertise, placing an additional burden on
instructors. Since many repositories rely on external links rather than
directly embedded content, educators must navigate multiple platforms,
manually extract relevant sections, and reformat them for classroom use.
This time-consuming and inefficient process often discourages the
widespread adoption of OERs despite their potential benefits.

Finally, the lack of adaptive learning paths within traditional OERs limits
their ability to support dynamic, student-centered education. Without AI-
driven personalization, these resources remain static and do not
automatically adjust based on learner performance, preferences, or
competency levels. As education increasingly shifts towards personalized
and skill-based models, the inability of OERs to evolve with learners
presents a fundamental limitation.

2.2 The Role of Generative AI in Addressing OERs Challenges
Generative AI has emerged as a powerful tool for addressing key challenges
in open and personalized education, particularly in improving the usability,
accessibility, and adaptability of OERs. AI-driven solutions can improve
content discoverability, streamline adaptation, automate lesson structure,
and generate customized learning materials, making OER more effective for
personalized learning (Zawacki et al., 2019).

One of the primary contributions of AI is automating content structuring
and adaptation. Traditional OERs often require extensive manual effort to
modify and align with specific learning objectives. AI-powered systems
take advantage of NLP and machine learning to analyze and restructure



educational materials, allowing educators to quickly refine and customize
content (Maghendi et al., 2021). These capabilities significantly reduce the
time burden on teachers, allowing them to focus on pedagogical design
rather than administrative tasks.

AI also facilitates the creation of personalized learning paths by
dynamically analyzing student progress and recommending customized
content. Adaptive learning algorithms adjust the OERs based on the
proficiency, participation, and prior knowledge of the learner, ensuring that
the materials are delivered at an appropriate difficulty level (Digel et al.,
2023; Pardosi et al., 2024). This enables more inclusive and student-
centered instruction, particularly for diverse learning needs.

Another significant advantage of generative AI is its ability to
modularize content. Many OERs exist as comprehensive monolithic
courses, making it challenging for educators to extract smaller, focused-
learning units. AI-driven tools can segment and tag these materials into
self-contained reusable components, enhancing their flexibility and
integration into different teaching contexts. This modularization ensures
that educators can easily repurpose and combine OERs into cohesive lesson
plans without extensive reformatting.

Beyond repurposing existing content, AI is also capable of generating
entirely new educational materials. Using large language models and
generative algorithms, AI can create quizzes, assessments, interactive
exercises, and even multimedia learning content that align with specific
learning objectives (Giannakos et al., 2024; Alasadi & Baiz, 2023). These
AI-generated resources ensure that OERs remain up-to-date, engaging, and
aligned with evolving educational frameworks.

By integrating these AI-driven capabilities, educational platforms can
move beyond static repositories, transforming OERs into dynamic, adaptive



learning assets that are more accessible, structured, and personalized. As AI
continues to evolve, its role in bridging the gap between resource curation
and personalized instruction will be crucial to scaling open education to
diverse and global learning environments (Chen et al., 2020)

3. ENCORE Ecosystem: Generating Learning Paths
A central objective of the ENCORE project is to map Green, Digital, and
Entrepreneurial (GDE) skills to suitable OERs for enhanced personalized
learning pathways. This undertaking draws on NLP methods and
established competence frameworks (e.g., ESCO, EntreComp, O*NET) to
ensure that each educational resource is accurately linked to relevant skill
descriptors. By systematically associating GDE competencies with curated
OERs, the project aims to streamline resource selection for educators and
facilitate targeted skill development.

The process begins with identifying and classifying competencies shaped
by global macro-trends (in particular, environmental sustainability, digital
transformation, and entrepreneurship). Researchers employ NLP-driven
analyses of academic literature, policy documents, and industry feedback to
refine a list of GDE skills, referencing frameworks such as ESCO to
maintain consistency and relevance. This approach ensures that the
extracted competencies are evidence-based and aligned with current labor
market demands.

Once GDE competencies are confirmed, the next step involves linking
these skills with existing OERs. The research team applies semantic
similarity measures (for example, word embeddings, BERT-based language
models) to analyze the textual content of OER repositories, identifying
where specific GDE-related knowledge, outcomes, or pedagogical activities
appear. This automated mapping facilitates rapid discovery of topic-relevant



materials, allowing educators to assemble lesson plans or training modules
that precisely address skill gaps.

Maintaining the currency and accuracy of skill-to-OER associations
requires regular updates of the database. At scheduled intervals, newly
emerging competencies are reviewed based on the latest scholarship,
stakeholder input, and observed changes in industry requirements. This
iterative cycle ensures that the GDE skill sets remain dynamic and fit for
purpose. Through systematic metadata enrichment, educators can more
easily filter and adapt OERs tailored to green awareness, digital fluency,
and entrepreneurial thinking.

Ultimately, the mapping of GDE competencies to high-quality OERs
underpins the ENCORE vision of providing timely and relevant educational
content. By combining robust NLP methods with validated skill
frameworks, this approach supports competency-driven learning
experiences that can be adapted to the evolving demands of both
educational contexts and the broader labor market.

The ENCORE project is designed to address the evolving demands of
modern education by implementing an intelligent system that recommends
high-quality OERs3. These resources are aligned with critical competencies
shaped by global macro-trends, specifically GDE skills. With the vast
availability of OERs, educators often face challenges in navigating and
selecting the most relevant content. The ENCORE project tackles this by
equipping educators with digital tools, known as enablers, within the
ENCORE ecosystem. These enablers provide advanced search capabilities,
filtering mechanisms, and automation to streamline content selection.
Although these tools empower educators to create engaging learning
experiences, their effectiveness depends on adequate training and support.
To ensure seamless integration into teaching practices, ENCORE adopts a



two-phase strategy aimed at equipping educators with the necessary
guidelines and methodologies to incorporate these digital solutions into
their pedagogical workflows.

3 https://en.wikipedia.org/wiki/Open_educational_resources.

As depicted in Figure 1, the ENCORE ecosystem is centered on two key
components: the Enabler for educators (E4E) and the Enabler for learners
(E4L). E4E is designed to help educators structure learning pathways that
effectively incorporate OERs relevant to green, digital, and entrepreneurial
competencies. Using an extensive database of OERs, E4E enables educators
to efficiently identify and select educational materials based on targeted
skills or themes. These resources can be curated into personalized
collections, facilitating a more strategic approach during the learning path
design phase. A key feature of E4E is the integration of a tool, detailed in
this section, which enhances the educator’s experience through an intuitive
editing system. This design balances abstraction, allowing teachers to
conceptualize learning pathways naturally while ensuring clarity and
accessibility for students.

Fig. 1 The ENCORE Ecosystem.⏎

https://en.wikipedia.org/wiki/Open_educational_resources


Meanwhile, E4L serves as the bridge for learners, enabling the digital
dissemination of structured learning paths. Educators can share adaptive
pathways that students can access using various learning tools. Upon
engaging with one of these tools, the learners are presented with a
structured view of the educator-designed learning path. Each node within
the path corresponds to a distinct learning activity that encompasses textual
content, visual elements, coding exercises, and interactive components.
This cohesive integration facilitates a seamless and engaging learning
journey, enhancing both comprehension and skill acquisition.

Both enablers play a crucial role in leveraging OERs as foundational
educational resources, ensuring that learning paths remain dynamic,
customizable, and impactful for educators and learners alike.

The ENCORE platform is designed as an adaptable and modular
technological ecosystem, where independent components interact
seamlessly. At its foundation is a structured database that catalogs OERs in
alignment with GDE skills. To support this infrastructure, the ENCORE
enablers function as intelligent mechanisms that dynamically construct
personalized learning paths by selecting and organizing relevant OERs.

This architectural approach fosters flexibility, ensuring that the
ecosystem can evolve by incorporating additional tools over time. This
adaptability improves the scalability, robustness, and ability of the platform
to address emerging educational needs.

This section provides a detailed exploration of the fundamental
components of the ecosystem, the database and enablers, examining their
architecture, functionality, and the pedagogical evaluation framework that
underpins their validation.

3.1 Database



The ENCORE database serves as the central repository for educational
resources and their corresponding GDE skill mappings. Given the dynamic
nature of educational content, the database architecture is designed for both
robustness and flexibility, ensuring seamless integration of evolving skill
classifications and metadata.

For its initial implementation, the database adheres to the Dublin Core
Metadata Element Set (DCMES), an open standard designed for simplicity,
semantic clarity, international applicability, and extensibility (Kunze &
Baker, 2007; Weibel et al., 1998).

Figure 2 illustrates the domain model, where each OER is characterized
by metadata attributes, including:

Fig. 2 Domain model of the database.⏎
Title: A concise descriptor of the resource.
Description: Essential for defining the educational scope and skill
coverage
Description: Essential for defining the educational scope and skill
coverage of an OER.
Subject: The thematic category relevant to the content of the OER.



Creator: The individual(s) responsible for authoring the resource.
Creator: The individual(s) responsible for authoring the resource.
Contributor: Entities that contributed to resource development.
Publisher: The organization responsible for making the OER
available.
Publication Date: The date of release of the resource.
Type: Classification (e.g., text, image, dataset).
Format: Technical specifications (e.g., PDF, GIF).
Source: References to derivative resources.
Language: The language of the OER.
Coverage: The scope or domain applicability of the resource.
Rights: Intellectual property and licensing details.
Relation: Connections between OERs based on thematic or skill
alignment.

Furthermore, each OER is related to one or more GDE skills, which are
further defined by their label, description, relevance, and domain (Green,
Digital, or Entrepreneurial).

Beyond structuring the metadata, an essential step is populating the
database with high-quality and meaningful OERs. This involves evaluating
and integrating content from established repositories through a structured
retrieval process, as outlined in Figure 3.

Fig. 3 OER retrieval workflow.⏎



For each repository, scripts will be developed to extract metadata and
textual information via APIs or web scraping techniques. The extracted data
will be normalized, formatted, and validated using a quality assessment
filter prior to inclusion in the database. Furthermore, NLP techniques will
be employed to enhance OER classification and skill mapping.

3.2 Information Flows and API Integration
The ENCORE database is equipped with a REST API that enables external
tools to query OER metadata and content. This interoperability ensures that
any compliant software can leverage the resources of the database.

A primary consumer of this API are ENCORE enablers, which assist
educators in designing customized learning paths. The workflow of these
enablers follows four stages, as illustrated in Figure 4.

Fig. 4 The four steps of the ENCORE enablers approach.⏎
Discover: Educators explore key GDE concepts and select relevant
skills from the ENCORE database.
Collect: Relevant OERs are reviewed and selected, with the option to
export materials to Learning Management Systems such as Moodle4.
Design: Concept maps are generated using semantic similarity
algorithms and transformed into structured learning paths.
Execute: Learners interact with the curated paths, accessing
personalized resources, and assessments.



4 https://moodle.org/.

3.3 ENCORE Enablers: A Competence-Driven Approach
ENCORE’s enablers facilitate competence-based learning through
structured frameworks. The E4E supports instructors in designing learning
pathways, while the E4L provides students with guided learning
experiences.

The competence model categorizes skills into distinct proficiency levels
(e.g., beginner, intermediate, advanced ). These competences are aligned
with established frameworks such as O*NET, ESCO, and EntreComp,
ensuring consistency with industry standards.

Each learning path consists of structured Learning Fragments, which
contain Learning Activities such as:

Synthesized Activities: AI-generated recommendations for learning
tasks.
Set Activities: Learner-driven choices to explore topics based on
interest.
Collaborative Activities: Group-based learning engagements.
Assessment Activities: Evaluations to measure skill acquisition.

To personalize learning, the Progress Edge mechanism enables dynamic
navigation within a learning path, providing customized feedback and
adaptive progression.

3.4 Gamification and Open Badges
Gamification is integrated into the ENCORE platform to improve
engagement. Elements such as challenge-based learning, real-time
feedback, and reward systems help sustain learner motivation (Deterding et
al., 2011).

https://moodle.org/


Open badges serve as verifiable digital credentials that recognize the
learning achievements of the students. These badges align with
gamification mechanics, reinforcing engagement while providing tangible
proof of acquired competencies. By embedding badges into the learning
journey, ENCORE fosters an environment where skill recognition is both
meaningful and motivating (June et al., 2014).

4. Evaluation of the ENCORE Ecosystem
To assess the effectiveness of the ENCORE ecosystem, a structured design
workshop was conducted. This workshop aimed to gather information from
higher education and professional training educators, allowing them to
evaluate the functionality of the system and identify its most impactful
applications. Sixteen participants took part, ten specializing in academic
teaching and six in professional training, exploring the features of the
system, including competency-based resource navigation and interactive
activity planning. As participants engaged with the ENCORE prototype,
structured feedback was collected via an online survey, ensuring a thorough
analysis of user experience and expectations.

Through hands-on interaction, the workshop provided valuable validation
of the tool design choices while fostering discussions about its applicability
in diverse educational settings. The feedback of the participants was
analyzed using qualitative coding and an affinity diagram approach,
categorizing the responses into strengths and limitations.

Feedback highlighted a strong appreciation for ENCORE’s ability to
integrate OERs into structured learning experiences, promoting a
foundation-driven and activity-focused approach to education. Users
praised its ability to link OERs with relevant learning tasks and appreciated
the opportunity to connect resources to structured educational pathways.
The emphasis on an exploratory phase before planning was regarded as



beneficial, allowing educators to build learning experiences from the
bottom-up rather than being constrained by rigid top-down planning. The
ability of ENCORE to balance flexibility with structured learning design
was considered both ’engaging’ and ’innovative’. The collaborative features
of the platform, including activity editing and shared workspaces, were also
well received.

However, concerns were raised about the complexity of planning and
structuring learning paths. Participants found certain workflow components
less intuitive, particularly in defining and linking learning resources
efficiently. Suggestions included refining the user interface, offering guided
onboarding processes, and integrating a more dynamic way of linking
OERs within plans. Participants expressed the need for greater flexibility in
creating and connecting nodes, citing difficulties in seamlessly linking
resources to structured pathways. Furthermore, limitations in path
customization—such as being restricted to a single learning path per
concept and collection—were highlighted as areas that require
improvement. Furthermore, educators sought more explicit mechanisms to
articulate and align learning objectives with structured paths, reinforcing
the demand for clearer guidance and workflow simplification.

4.1 Strengths of the ENCORE Ecosystem
The participants appreciated the ENCORE platform for its well-organized
and visually engaging interface, which facilitates the discovery and
application of high-quality OERs. The interactive graphical representations
and intuitive navigation were particularly well received, providing a
creative framework for designing educational experiences. Users
appreciated the structured resource curation on the platform, which helps
educators locate and apply relevant learning materials efficiently. The
streamlined interface, minimalistic design, and logical step-based



navigation were recognized as key strengths, contributing to an accessible
and effective user experience. Furthermore, the seamless integration of
OER into structured learning activities was recognized as a critical
advantage, bolstering the potential of the system to improve digital
education practices.

4.2 Areas for Improvement
Despite its strengths, certain challenges that could improve the overall
effectiveness of the ENCORE ecosystem were identified. Participants noted
occasional difficulties in retrieving specific OERs, particularly when
searching for niche topics such as professional learning or specialized case
studies. Variability in search results, inconsistencies in keyword
normalization, and occasional search inefficiencies were identified as areas
that needed refinement. Some users also reported challenges in managing
complex learning paths, emphasizing the need for better user guidance and
improved workflow organization. Suggestions included optimizing search
capabilities, refining concept map visualizations, and improving the clarity
of keyword-based searches. In addition, issues related to interactive
features, such as the ability to effectively link concepts, refine resource
selection, and customize learning paths were highlighted as aspects
requiring further development.

4.3 Future Enhancements and Directions
The workshop discussions generated a variety of ideas to improve
ENCORE’s usability, functionality, and impact. A key proposal involved
enabling educators to contribute curated learning pathways as new OERs,
thereby enriching the platform’s resource pool and fostering broader
knowledge-sharing. Another suggestion was to simplify the creation of the
learning path, making the process more intuitive across different



demographics of users. This could be achieved through dynamic text-to-
visual conversion tools, clearer workflow indicators, and enhanced planning
features that align learning outcomes with structured activities.

Additional recommendations included refining resource integration
mechanisms, expanding assessment and evaluation functionalities, and
incorporating adaptive learning elements to improve educational journey
planning. Enhancing user guidance through tooltips, instructional overlays,
and progressive disclosures was also suggested to reduce the complexity of
onboarding and improve navigation efficiency.

4.4 Key Open Challenges
Based on the gathered feedback, several open challenges remain in
optimizing ENCORE for wider adoption and impact. These challenges span
five critical areas:

Enhancing Collaborative Learning: A key challenge involves
expanding ENCORE’s capabilities to support collaborative and cooperative
learning activities. While the current platform allows for structured learning
paths, educators expressed a need for additional collaboration-focused
features, such as group-based projects, peer reviews, and discussion nodes.
Efforts are underway to integrate external tools that facilitate multi-user
engagement and real-time interactions.

Personalization through AI: To improve adaptive learning experiences,
ENCORE aims to integrate AI-driven personalization techniques. By
analyzing user interactions, the platform can tailor recommendations to
meet learners’ proficiency levels, interests, and preferred learning styles.
Steps toward this goal have been initiated through the integration of AI-
based planning mechanisms, although further work is needed to enhance
personalization features on the student side.



Motivation through Gamification: Gamification elements, such as
badges, leaderboards, and interactive challenges, are being explored to
enhance learner engagement. A dedicated gamification engine is planned
for integration, providing educators with tools to design motivational
learning experiences. Personalized quests and feedback-driven progression
tracking will further support engagement and retention.

Seamless Integration with External Tools: Given the growing diversity
of digital learning environments, ENCORE is designed to support seamless
integration with external educational tools. Through the Tool Adapter
component, the platform aims to accommodate a variety of learning
technologies, from virtual reality and augmented reality applications to
specialized discipline-specific tools. This adaptability ensures that learners
have access to a broad spectrum of educational resources tailored to
different pedagogical contexts.

By addressing these open challenges, ENCORE continues to evolve as a
comprehensive and user-centric platform, fostering innovative educational
practices while meeting the diverse needs of educators and learners alike.

5. Discussion
The evaluation of the ENCORE ecosystem provided valuable insights into
its effectiveness, user experience, and areas for further improvement.
Through structured design workshops and educator feedback, the system’s
ability to integrate OERs into structured learning pathways was validated.
Participants, including both higher education instructors and professional
trainers, engaged with the platform and provided detailed feedback on its
functionality, usability, and potential impact on competency-based
education.

A significant strength identified was the structured approach to OER
curation and integration. Educators appreciated how the AI-driven enablers



streamlined content discovery, automated lesson structuring, and facilitated
modular learning design. Many noted that the system effectively addressed
fragmentation issues within OER repositories, making it easier to identify
high-quality, relevant materials for specific learning objectives. By
providing a guided approach to lesson planning, the platform reduced the
time and cognitive load associated with manual curriculum design.
Participants highlighted that learning path automation and metadata
enrichment were particularly useful in ensuring that resources were not only
well-organized but also pedagogically aligned.

Another aspect that received positive feedback was the personalization
features embedded within ENCORE. Educators valued the platform’s
ability to dynamically adjust learning paths based on learner needs,
competency levels, and progression. AI-driven recommendations allowed
instructors to tailor content for different levels of expertise, ensuring that
students received relevant and appropriately challenging materials. The
incorporation of adaptive learning mechanisms was regarded as a
significant advantage, as it enabled more individualized and inclusive
learning experiences.

However, despite its strengths, several challenges were identified that
require further refinement. One of the most frequently mentioned concerns
was the complexity of the learning path creation process. Some educators
found certain workflow components less intuitive, particularly when
attempting to link multiple OERs within a structured sequence. While the
enablers provided strong automation features, there was a clear demand for
greater flexibility in customizing pathways, refining content sequencing,
and linking different learning nodes. Many participants suggested that
enhanced onboarding processes, interactive user guides, and a more
intuitive interface would improve overall usability and adoption.



Another limitation raised was related to search and retrieval efficiency.
While the AI-driven metadata tagging system improved content
categorization, some users reported difficulties in retrieving specific OERs,
particularly in niche domains. Variability in search results and keyword
normalization occasionally made it challenging to precisely match
resources with targeted educational objectives. Recommendations included
further refining the search algorithm, improving natural language query
capabilities, and integrating more advanced filtering options to enhance
discoverability.

The collaborative learning potential of ENCORE was another area where
improvements were suggested. While the platform supports structured
learning path design, some participants expressed interest in features that
facilitate peer collaboration, student-driven learning paths, and real-time
educator-learner interactions. Expanding the collaborative functionalities
within the enablers—such as allowing for co-creation of content, shared
workspaces, and discussion-driven learning activities—was proposed as a
key enhancement for future iterations.

Despite these challenges, the overall sentiment from the evaluation was
highly positive, reinforcing the value of AI-driven solutions in improving
OER usability and structuring educational experiences. The integration of
competency-based learning models, coupled with adaptive AI mechanisms,
was seen as a promising approach to bridging the gap between static OER
repositories and personalized learning pathways.

Looking ahead, several future enhancements have been identified to
further optimize the ENCORE ecosystem. First, improving user workflow
efficiency and flexibility in learning path design will be a priority. This
includes more intuitive drag-and-drop interfaces, better resource linking
options, and enhanced visual representations of structured learning paths.



Second, AI-driven personalization features will be expanded to support
real-time adjustments based on learner analytics, ensuring that content
dynamically adapts to individual progress and engagement levels. Third,
gamification and motivation-driven features will be further developed,
incorporating achievement tracking, real-time feedback, and interactive
challenges to enhance learner engagement.

Finally, a crucial aspect of ENCORE’s future development will be
seamless integration with existing educational platforms and external tools.
Expanding API functionalities will allow the enablers to interact with
Learning Management Systems (LMS), external repositories, and
collaborative digital tools, ensuring greater interoperability and wider
adoption.

The results of this evaluation affirm that AI-enhanced learning
ecosystems like ENCORE hold significant potential in transforming the
way OERs are utilized. By providing educators with intelligent support
systems for content selection, lesson planning, and adaptive learning, these
platforms contribute to a more scalable, personalized, and efficient
educational framework. As AI continues to advance, its role in bridging
OER accessibility gaps, streamlining competency-based education, and
fostering personalized learning experiences will become increasingly
central to the future of digital education.

6. Conclusions
The evaluation of the ENCORE ecosystem confirms that AI-driven tools
can significantly enhance the efficiency and effectiveness of OERs. By
automating resource discovery, structuring learning paths, and enabling
adaptive content delivery, the system reduces the barriers educators face in
integrating OERs into structured curricula. The positive feedback from
users highlights the value of AI in reducing manual workload and



supporting competency-based education, making open resources more
practical for diverse learning environments.

At the same time, the evaluation also identified areas that require
refinement, particularly in workflow intuitiveness, search optimization, and
user control over learning path customization. While AI automation is
beneficial, maintaining flexibility and educator agency in structuring
content remains a key priority. Addressing these challenges through
enhanced search algorithms, improved UI/UX design, and expanded
collaborative features will be essential in refining the platform’s usability
and effectiveness.

Future enhancements will focus on deepening AI-driven personalization,
expanding integration with external learning platforms, and incorporating
interactive and motivational elements such as gamification. These
improvements will ensure that ENCORE continues to evolve as a scalable
and adaptive solution for digital education, capable of meeting the needs of
both educators and learners across different contexts.

Ultimately, the ENCORE ecosystem demonstrates how AI can be
leveraged not just for content automation, but as a meaningful support
system for educators, ensuring that open educational resources are more
accessible, structured, and pedagogically effective. With continued
development, AI-powered platforms like ENCORE will play a crucial role
in shaping the future of personalized, open, and skills-driven learning
experiences.
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Recently, although there has been a growing body of research on generative
artificial intelligence (AI) in English language education and higher
education, research into the use of generative AI in academic writing
among graduate students has obtained relatively little attention. This study,
therefore, examines Cambodian graduate students’ experiences in utilizing
generative AI for their academic writing. Drawing on in-depth interviews
with Cambodian master’s and doctoral degree students, the study found that
the use of generative AI had a considerable impact on their academic
writing. The study also revealed that they encountered several key
challenges when interacting with generative AI in their academic writing
activities, particularly related to incomplete AI-generated responses, lack of
contextual and comprehensive AI outputs, and the potential risk of reduced
critical thinking skills and creativity. Meanwhile, the study identified a
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range of major benefits experienced by Cambodian graduate students, with
a particular emphasis on improved academic writing skills and increased
confidence in academic writing. The findings highlight the importance of
AI-human collaboration and the need for capacity development on the
ethical and effective use of generative AI in academic writing to prevent
students from relying too much on AI outputs and becoming overly
dependent on AI technologies.

1. Introduction
As technology has rapidly advanced in recent years, many emerging
technological tools have been made available. One of the most notable
cutting-edge technologies, which has significantly gained public interest, is
generative artificial intelligence (AI) (Özçelik & Ekşi, 2024). It has been
leveraged in various fields, including education, where its use dates back to
the 1990s with the introduction of computers (Salas-Pilco & Yang, 2022).
Prior studies have shown that the use of generative AI in education presents
both promises and drawbacks (Chan & Hu, 2023; Giannakos et al., 2024;
Rasul et al., 2023). Zhan et al. (2024), for instance, found that AI
integration in learning enhances creativity, improves students’ learning
experiences and outcomes, and elevates students’ attention and motivation.
Other studies, however, have highlighted numerous unprecedented issues
that require immediate attention and a comprehensive strategy to ensure the
effective and ethical use of generative AI in education. Major concerns
include the disruption of conventional assessment practices (Perkins et al.,
2024; Yan et al., 2024; Zeb et al., 2024), academic misconduct, and security
and privacy risks resulting from the misuse or unethical use of AI
technologies (Chan & Hu, 2023; Giannakos et al., 2024; Rasul et al., 2023).
Additional issues include hallucinations caused by mismatches in AI
training datasets (Akpan et al., 2025; Yan et al., 2024) and the hindrance of



critical thinking, problem-solving, and creativity skills due to excessive
dependence on using AI technologies (Baidoo-Anu et al., 2024). Therefore,
although several benefits have been identified, the use of these state-of-the-
art technologies has raised critical challenges that need joint efforts from all
stakeholders to address.

Nevertheless, generative AI has transformed the process of students’
academic writing, offering innovative tools to support their academic
writing tasks and enhance their writing skills (Arifin et al., 2024; Ou et al.,
2024). As Arifin et al. (2024) noted, AI-powered tools like ChatGPT were
considered useful personal tutors, providing students with round-the-clock
feedback in a less stress-inducing learning environment, leading to the
promotion of student autonomy in learning. In particular, generative AI
provides students with ongoing assistance throughout the academic writing
process, from idea generation to writing refinement (e.g., editing and
proofreading) (Khalifa & Albadawy, 2024; Kim et al., 2024; Rowland,
2023). These sophisticated systems can be used to produce writing outlines,
brainstorm ideas, improve coherence and accuracy, as well as automatically
correct grammatical, typographical, and sentence errors (Sol & Heng,
2024). While such support is deemed beneficial for students, there are also
challenges when leveraging these advanced tools in academic writing (Kim
et al., 2024). Concerns include issues with learning assessment (Ou et al.,
2024; Zeb et al., 2024), academic plagiarism (Salvagno et al., 2023),
decrease in students’ writing originality and creativity due to excessive
dependence on AI-powered tools (Malik et al., 2023; Nguyen et al., 2024),
and inaccurate or superficial AI-generated outputs (Caprioglio & Paglia,
2023; Salvagno et al., 2023). Thus, while generative AI provides students
with significant advantages, it also introduces considerable challenges.



Although research on generative AI in higher education has been
growing globally, studies on the utilization of such sophisticated tools in
Cambodian higher education, particularly for academic writing, remain
relatively scarce, creating a notable research gap in a developing, tech-
embracing context like Cambodia (Pum & Sok, 2024; Sok & Heng, 2024b).
To the best of our knowledge, this appears to be the first study examining
Cambodian graduate students’ experiences with generative AI in academic
writing.

2. Literature Review

2.1 Benefits of Using Generative AI for Academic Writing
A plethora of research has demonstrated the benefits of utilizing generative
AI in academic writing (Al-Sofi, 2024; Caprioglio & Paglia, 2023; Dergaa
et al., 2023; Kim et al., 2024; Malik et al., 2024). It can support academic
writing by aiding in the development of ideas or concepts and improving
overall writing quality (Alkamel & Alwagieh, 2024; Wang et al., 2024). For
instance, conversational chatbots like ChatGPT have been found to be
effective tools for supporting students in developing their writing skills, as
evidenced by significant enhancement of writing clarity and coherence
(Alkamel & Alwagieh, 2024; Heng & Sok, 2024a; Nguyen et al., 2024).
Indeed, the use of generative AI can aid students in proposing or generating
ideas, refining their thoughts, and receiving timely feedback on their
academic essays, which is essential for refining writing quality (Malik et
al., 2024; Nguyen et al., 2024), particularly in writing research articles
(Tang et al., 2024). Moreover, generative AI-powered tools like ChatGPT,
when properly leveraged, have proven the capability to foster writing
creativity and the overall quality of academic essays (Werdiningsih et al.,
2024; Yan, 2023). These tools also help improve the organization and



content of academic writing (Marzuki et al., 2023) and overcome language
barriers, especially for non-native English speakers (Dergaa et al., 2023; Sol
& Heng, 2024).

In addition, research has indicated that the increasing development of
generative AI can assist students beyond giving feedback and correcting
spelling and grammar. Specifically, generative AI can be employed to
streamline academic manuscript preparation (Shofiah et al., 2023),
including brainstorming and outlining articles (Khalifa & Albadawy, 2024;
Sok & Heng, 2023), suggesting research titles and references (Salvagno et
al., 2023), assisting in the literature review process (Khalifa & Albadawy,
2024; Wagner et al., 2022), and editing and proofreading (Altmäe et al.,
2023; Salvagno et al., 2023). Such support can enhance academic writing
productivity, leading to improved essays and manuscripts.

2.2 Challenges of Using Generative AI for Academic Writing
Despite the benefits, there are some challenges associated with the use of
generative AI for academic writing. For example, the use of generative AI
tools can breach the principles of academic honesty, potentially leading to
academic misconduct (Salvagno et al., 2023). Al-Sofi (2024) found that
while students tended to demonstrate satisfaction with the effectiveness of
AI-enabled tools, such as ChatGPT, in improving their academic writing
abilities, both students and teachers expressed significant worries about the
risks of over-dependence on ChatGPT, the potential for academic
plagiarism, and the limited development of critical thinking and creativity
skills. The study also highlighted that the misuse of ChatGPT, particularly
the complete reliance on this advanced AI tool for noninvigilated
assessments, such as text-based work and writing assignments, is likely to
not only impede the development of writing skills but also violate the
principles of academic integrity (Al-Sofi, 2024). Similarly, Kim et al.



(2024, p.16) found that despite the essential role of generative AI in
academic writing, students had encountered a number of barriers
categorized as: (a) “AI-related” challenges (e.g., hallucinations, limited
contextual understanding, lack of higher-order thinking), (b) “student-
related” challenges (e.g., limited AI literacy, negative attitudes toward AI
technologies, and lack of higher-order thinking), and (c) “task-related”
challenges (e.g., time constraints). In this regard, they underscored the
significance of developing students’ skills in terms of using prompt
engineering that allows generative AI to easily understand and interpret
prompts (Kim et al., 2024).

Moreover, academic writers may encounter risks of biases and fabricated
information when using generative AI in academic writing (Tang et al.,
2024). In particular, challenges arise due to the limited accuracy of AI-
generated content, including fake or non-existing references (Altmäe et al.,
2023; Ji et al., 2023; Tam et al., 2023). Kacena et al. (2024) found that up to
70% of references generated by AI were not accurate. This may lead to the
potential risks of academic plagiarism, a severe form of academic
misconduct, which is unacceptable in academic settings. Therefore, to
develop students’ academic writing skills while encouraging the use of
generative AI-powered tools in the academic writing process, it is crucial to
utilize these tools ethically and with caution (Al-Sofi, 2024) by verifying
AIgenerated outputs (Dergaa et al., 2023), and acknowledging their use
(Tang et al., 2024).

2.3 The Use of Generative AI in Cambodian Higher Education
A review of relevant literature reveals limited research exploring students’
and teachers’ experiences and attitudes toward the use of generative AI in
Cambodian higher education (Heng, 2023; Sol et al., 2024), challenges and
benefits of utilizing AI-powered tools in higher education (Islam, 2023),



and the need to formulate academic integrity policies (Sok & Heng, 2024b).
A study by Heng (2023) was among the first studies investigating the use of
ChatGPT among university students (n = 354) and lecturers (n = 104) in
Cambodia. Findings from the survey with lecturers indicated that although
they demonstrated worries about the increase of academic integrity
breaches and the potential of students’ limited engagement with their
studies, a vast majority of them agreed that AI-enabled tools should be
allowed to be used and could be beneficial for supporting students in
completing academic work and searching for relevant information (Heng,
2023). Sol et al. (2024) explored how English as a Foreign Language (EFL)
university students experienced and perceived the use of AI-enabled tools
in English language education. Using an online survey (n = 328), the study
found that most participants had utilized AI-driven tools for their studies;
however, approximately 70% of them had not received any training on how
to use these advanced technologies. Therefore, the study emphasized the
importance of offering training and support to students, ensuring that they
are comprehensively aware of the proper and effective use of AI for
language learning. Sol et al. (2024) called for a qualitative study utilizing
in-depth interviews with different key stakeholders to gain deeper insights
into the utilization of AI-powered tools in English language learning. Given
the limited research on this topic, Sok and Heng (2024b) and Pum and Sok
(2024) have called for empirical studies to explore the potential pedagogical
and ethical implications of using AI-powered tools in Cambodian higher
education, particularly growing concerns regarding their misuse in
education and research.

Despite these studies, no research has specifically examined Cambodian
graduate students’ experiences with the use of generative AI for academic
writing. Therefore, there remains a significant knowledge gap in this area,



requiring further research. Addressing this knowledge gap is crucial, given
the rising use of AI in education, as well as the growing concerns about its
unethical use in academic settings in Cambodia (Pum & Sok, 2024; Sok &
Heng, 2024b). This study is significant in that it not only responds to the
recent calls for empirical research (Sol et al., 2024; Pum & Sok, 2024) but
also contributes to the limited body of knowledge on generative AI in
academic writing in both Cambodian and global contexts.

This study is guided by two research questions.

1. How do graduate students in Cambodian higher education perceive
the impact of generative AI on their academic writing?

2. What are the challenges and benefits that Cambodian graduate
students encounter when using generative AI for their academic
writing?

3. Methodology

3.1 Research Design
A qualitative research design with semi-structured interviews was
employed to obtain in-depth data addressing the research questions (Cohen
et al., 2018). This approach was chosen given its ability to explore
individual subjective experiences and perceptions in depth. The
phenomenon under study is the experience of Cambodian graduate students
regarding the use of generative AI for academic writing. Hence, this
research design is suitable for the study, as it aims to examine the
experiences of graduate students with their use of generative AI for
academic writing.

3.2 Research Setting and Participants



The study took place in Cambodia, an underrepresented context in the
international literature because of limited research engagement among
Cambodian researchers (Eam, 2015; Heng, 2022; Heng et al., 2023). It
involved graduate students (e.g., master’s and doctoral students) from
different higher education institutions in Phnom Penh, the capital city of
Cambodia. Purposive and snowball sampling strategies were used to select
the potential participants for the study. In particular, the key criteria for
participant selection were that they had experience using generative AI for
their academic writing and were Cambodian students enrolled in master’s or
doctoral degree programs in Cambodian higher education institutions.
Following these criteria, 12 participants were invited for interviews, and
nine accepted the invitation to participate in the study. Among the nine
participants, two were female, eight were pursuing master’s degrees, and
one was a Ph.D. student. Their ages ranged from 23 to 37. Apart from being
graduate students, they held various positions, including teachers of English
(P3, P4, and P5), lecturers of English (P1, P6, and P7), school principals or
directors (P2 and P9), and a company employee (P8). Two participants were
enrolled in private higher education institutions, and most of the
participants majored in Teaching English to Speakers of Other Languages
(TESOL) or English language teaching (see Table 1 for a detailed profile of
the participants).



3.3 Data Collection and Analysis
Semi-structured interviews were used for data collection. Before conducting
the interviews, invitations along with research-related information and a
consent form were delivered to each participant via Telegram—one of the
most commonly used online communication platforms in Cambodia. The

Table 1 Participants' profile (n = 9). ⏎
Participant

Code
Gender Age

Range
Current

Occupation
Type of

Institution
Degree

Pursuing
Majo

P1 Male 28–
32

Lecturer of
English

Public Master Teaching
English t
upper-
secondar
students

P2 Male 33–
37

School
principal

Public Doctoral Educatio
administr

P3 Male 33–
37

Teacher of
English

Public Master TESOL

P4 Male 28–
32

Teacher of
English

Public Master Teaching
English t
upper-
secondar
students

P5 Male 23–
27

Teacher of
English

Public Master TESOL

P6 Female 23–
27

Lecturer of
English

Public Master TESOL

P7 Male 28–
32

Lecturer of
English

Public Master TESOL

P8 Female 28–
32

Company
employee

Private Master Managem

P9 Male 33–
37

School
director

Private Master Business
managem



semi-structured interviews were conducted virtually using Google Meet and
lasted between 30 and 60 minutes. The interviews were held in January
2025 and were audio-recorded with the participants’ permission. All
interviews, except one, were conducted in Khmer, the native language of
both the researchers and participants. This facilitated smooth conversations
and discussions, yielding comprehensive insights as the participants could
express themselves more effectively.

To analyze the data, all recordings were transcribed and directly
translated into English. The transcriptions were then uploaded to Google
Drive and shared as Google Docs with all researchers. The first author took
the lead in transcribing and analyzing the data, with support and verification
checks provided by the co-authors. The transcription of each interview was
conducted as soon as the interview was completed, allowing for an iterative
analytical process commonly used in qualitative research (Dörnyei, 2007).
The data analysis followed Braun and Clarke’s (2006) thematic analysis
which involves six steps: (a) familiarizing oneself with the data, (b)
developing initial codes, (c) identifying major themes, (d) reviewing the
generated themes, (e) defining and naming the themes, and (f) producing
the research report. The analysis was conducted manually using Google
Docs and Google Sheets.

3.4 Ethical Considerations
In this study, ethical practices in social and educational research were
strictly followed and complied (Cohen et al., 2018). This means that all
participants voluntarily took part in the interviews. They were well-
informed about the nature of the research and how it would involve them.
In addition, they were made aware of their right to decline the invitation or
withdraw from the study at any time without negative consequences. They
were also assured that their responses would remain confidential and



anonymous; that is, their identity would be protected during and after the
study.

4. Findings
The data analysis revealed three major themes: (a) the impact of generative
AI tools on academic writing, (b) key challenges in using generative AI for
academic writing, and (c) major benefits of using generative AI for
academic writing. These themes are hereafter presented.

4.1 The Impact of Generative AI on Academic Writing
The data analysis revealed that Cambodian graduate students who
participated in this study perceived the use of generative AI to have various
impacts on their academic writing skills. The impacts can be categorized
into three main subthemes: quick content creation, effective feedback
provision, and personalized academic writing assistance. These are
summarized in Table 2.

Table 2 The impact of generative AI on academic writing. ⏎
Impact of AI on
Academic Writing

Participants Exemplary Quotes



Impact of AI on
Academic Writing

Participants Exemplary Quotes

Quick content creation
(creating outlines,
brainstorming ideas,
writing parts of
research papers)

PI, P2, P3,
P4, P6, P7,
P8, P9

As I am a novice
researcher, I could use AI to
brainstorm ideas for my
research writing. Once I
received these ideas, I was
able to search on Google
Scholar for the relevant
articles in further detail.
(P3)
It provides me with more
ideas for brainstorming. In
Cambodia, there is not
much support from
universities, so it's very
helpful. (P9)



Impact of AI on
Academic Writing

Participants Exemplary Quotes

Prompt and effective
feedback provision
(asking AI for feedback
on grammar and
structure)

PI, P2, P3,
P5, P6, P7,
P8, P9

I used generative AI to give
feedback on my writing.
When I was unsure whether
my academic writing was
good enough in terms of
grammar, sentence
structures, etc., I then asked
AI, ChatGPT, how my
writing was. (P3)
It helps identify weaknesses
in my original writing. "It
highlights areas of my
original writing that I am
weak at." (P8)



Impact of AI on
Academic Writing

Participants Exemplary Quotes

Personalized academic
writing assistance
(asking AI to help with
grammar and
vocabulary, asking AI
to provide relevant
references)

P1, P2, P3,
P4, P5, P6,
P8, P9

It serves as my personal
assistant to make my work
faster and save a lot of time
as well. (P5)
During my MA now, I have
access to GenAI to assist
me in suggesting advanced
vocabulary and sometimes
changing whole sentences
from simple sentences to
more complex sentences.
(P6)

First, they believed that the use of generative AI could help them create
content quickly, which was beneficial for their academic writing. For
example, generative AI enabled graduate students to complete their
academic writing tasks more efficiently, particularly by creating outlines,
brainstorming ideas, and drafting sections of research papers. As P1
mentioned:

Regarding content, I prompted AI to create an outline for my academic essays by giving
clear instructions, and the number of main points I wanted to.

This statement shows the impact of generative AI on graduate students’
academic writing by helping them draft their work more quickly.

Second, generative AI provided prompt and effective feedback on
students’ academic writing. As P2 emphasized:



After that, I asked generative AI to check whether my research questions aligned with my
research objectives or not.

They also used AI to receive feedback on grammar, vocabulary, and
sentence structure. Thus, with generative AI, graduate students could
receive timely and helpful feedback on their academic writing, allowing
them to revise and refine their drafts.

Third, generative AI positively impacted students’ academic writing by
offering personalized academic writing assistance. Graduate students could
ask generative AI to help with grammar and vocabulary, and paraphrase
texts, or generate citations. In this respect, they could rely on advanced AI
tools whenever they needed assistance, particularly when getting stuck with
their academic writing. As one participant highlighted:

I asked AI tools to evaluate my essay writing by giving clear criteria, such as lexical
resources, grammar, and content. (P1)

Another participant noted that he compared human and AI-generated
writing for personal learning:

Sometimes, I use it for personal learning. When I compare my own writing with the AI-
enhanced version, I can understand my weaknesses and improve my writing later. (P9)

4.2 Key Challenges of Using Generative AI for Academic Writing
The participants were asked to discuss the key challenges they encountered
when utilizing generative AI for their academic writing. As can be seen in
Table 3, the analysis revealed several common challenges, which were
grouped into five categories: superficial/inaccurate responses, limited
contextual and comprehensive responses, reduced critical thinking skills, a
lack of originality, and struggles with learning how to optimize AI prompts
for better outputs.

Table 3 Key challenges of using generative AI for academic writing. ⏎



Key Challenges Participants Exemplary QuotesKey Challenges Participants Exemplary Quotes

Superficial/inaccurate
responses

PI, P2, P3,
P5, P6, P7,
P8

I used to ask AI to offer me
the authors and their research
titles related to my topic, but
their suggested authors and
sources did not appear when
searching. (PI)
Sources provided by
generative AI are not always
accurate. (P7)

Limited contextual
and comprehensive
responses

PI, P3, P5,
P6, P7, P9

GenAI does not critically
provide the responses; its
responses are sometimes too
general. (PI)
Sometimes, I have to ask for
clarification that you are sure
of the answer, as I carefully
observe that the answer does
align with my question. AI
just replied that "Oh no sorry
for the confusion, as we are a
machine." (P5)



Key Challenges Participants Exemplary Quotes

Reduced critical
thinking skills

PI, P2, P5,
P7, P8, P9

The use of AI limits me to
engage in synthesizing and
analyzing the articles. (P2)
Yes, indeed, if overused.
Over-reliance on generative
AI may diminish my critical
thinking and creativity and
lead to a lack of confidence in
independent writing. (P8)

Lack of originality P2, P8, P9 From my personal
perspective, the written paper
can be detected by any Al-
detected software, and that
the writing can be considered
as Al-generated content. (P2)
Risk of plagiarism from
overusing AI suggestions.
(P8)

Struggles with
learning how to
optimize AI prompts
for better outputs

P8 I sometimes feel I can't get
the best from AI. It might be
related to how I use my
prompts. (P8)

One of the key challenges frequently mentioned by the participants was
the fact that generative AI sometimes produced superficial/inaccurate



responses. All the graduate students, except for P4 and P9, mentioned that
AI-generated content was sometimes superficial or inaccurate. As one of
them pointed out:

I used to ask generative AI to paraphrase about…., but its meaning was not the same as the
original text. Its writing style was not good enough either, and it did not sound academic, not
like human writing. (P1)

Another participant shared a similar experience about the inconsistency and
unreliability of generative AI outputs, highlighting that:

Generative AI did not provide what I really needed. For example, while I used the same
prompt to ask generative AI in two different accounts, the outputs were different, although
the prompt was precise. (P7)

Another challenge commonly experienced by several graduate students
(i.e., P1, P3, P5, P6, P7, and P9) was the limited contextual depth and
comprehensive responses by generative AI. As P9 explained:

Oftentimes, the responses are not aligned with my writing objectives and are not relevant to
what I want. I think it’s probably due to my own lack of formal training on how to effectively
leverage AI for academic writing.

Many participants (i.e., P1, P2, P5, P7, P8, and P9) also expressed concerns
that relying on generative AI could diminish their critical thinking skills.
Since AI provides ready-made responses, students may not engage in deep
thinking when using it. As one participant noted:

I believe that critical writing comes from consistent writing, reflection, and analysis…. It
develops a bad habit of copying from others, which may be problematic for academic writing
purposes. (P5)

There were two other challenges which seemed to uniquely reflect
individual students’ experience with generative AI. They were the lack of
originality in AIgenerated outputs and difficulties in optimizing AI prompts
for better outputs. For example, P9 noted that:



Negatively, it has also affected my critical thinking, creativity, and originality in my writing.

Another student highlighted her difficulty in creating effective prompts,
stating that:

I sometimes feel I can’t get the best from AI. It might be related to how I use my prompts.
(P8)

Overall, there were five key challenges faced by Cambodian graduate
students when it came to using AI for their academic writing.

4.3 Major Benefits of Using Generative AI for Academic Writing
While the Cambodian graduate students encountered some challenges when
using generative AI for their academic writing, they also recognized several
potential benefits. As summarized in Table 4, major benefits included (a)
improved structure and organization of ideas; (b) enhanced academic styles
and accuracy; (c) increased confidence in academic writing; (d)
personalized support for academic writing in the initial stages; (e) greater
efficiency and productivity in academic writing; (f) support with
understanding complex concepts and improving conceptual thinking skills;
(g) support in providing relevant sources; and (h) reduced stress during the
academic writing process.

Table 4 Major benefits of using generative AI for academic writing. ⏎
Major Benefits Participants Exemplary Quotes



Major Benefits Participants Exemplary Quotes

Improved
structure and
organization of
ideas

PI, P2, P3,
P4, P5, P6,
P7, P8, P9

Generative AI boosts ideas and
creativity about the topic through
the generated samples. I asked AI to
write a sample introduction of
something, and I could then learn
how to write and cite the sources
from the samples generated by AI.
(P4)
Yes, it [generative AI] has improved
the structure and organization of my
ideas. (P8)

Enhanced
academic
writing styles
and accuracy

PI, P2, P3,
P4, P5, P6,
P7, P8, P9

Undoubtedly, my academic writing
skills have significantly improved,
especially related to English
language use, such as academic
vocabulary, grammar, and writing
styles. (P3)
Without AI, I had to ask my
lecturers to give me feedback, but
now this role is replaced by AI.
Through interaction and timely
feedback from AI during my
academic writing processes, I
believe my writing has become
better now. (P6)



Major Benefits Participants Exemplary Quotes

Enhanced
confidence in
academic
writing

PI, P2, P3,
P4, P5, P6,
P8, P9

After getting support from the
generative AI, I felt more confident
in writing academic essays,
particularly regarding the flow of
writing, ideas, clarity, using
academic vocabulary, writing
structures, coherence, ..., and even
writing faster than before, although
without the support from AI. (PI)
I feel more confident with my
submitted work, but I feel my
original writing skills are still not so
good. (P9)

Personalized
support for
academic
writing in the
initial stages

PI, P2, P3,
P6, P7, P8,
P9

This was quite helpful for using
generative AI to brainstorm ideas
when there was a tight deadline.
(P6)
It's like having a guide to structure
my thoughts for essays. (P8)



Major Benefits Participants Exemplary Quotes

Boosted
academic
writing
efficiency and
productivity

PI, P2, P4,
P5, P7, P8,
P9

An academic writing task that took
three hours to complete could be
reduced to one or one-hour-and-half
with the support of AI in
brainstorming and outlining. (PI)
It serves as my personal assistant to
make my work faster and save a lot
of time as well. (P5)

Support with
understanding
complex
concepts or
theories and
improving
conceptual
thinking skills

PI, P2, P4,
P5, P7, P,
P9

Generative AI also helped increase
my critical thinking skills. (P5)
It can also help simplify complex
concepts or theories for me. (P8)

Support in
providing
relevant
sources

PI, P3, P4,
P6, P7

When I prompted generative AI on
the topic about the digital learning
in the Cambodian context, it
provided me with a variety of
sources, authors, and articles. (P4)
When I prompted AI to generate
sources related to my writing topic,
it provided a list of sources-
allowing me to read the relevant
articles quickly. (P7)



Major Benefits Participants Exemplary Quotes

Reduced stress
in the academic
writing process

P3, P6 It helped me reduce stress when
getting stuck. (P3)
Without AI support, I felt anxious
with a tight deadline, especially
when my lecturers reminded me
that there were only three days left.
However, with AI support, I could
manage to complete my writing
work a few days before the
deadline. (P6)

It is important to note that among these benefits, improved structure and
organization of ideas, along with enhanced academic writing styles and
accuracy, were most frequently mentioned by all participants. In other
words, they generally believed that generative AI could enhance their
academic writing in terms of structure, organization of ideas, styles, and
accuracy. As illustrated in the following quotes:

The most notable aspect that has improved my writing was academic writing styles. This is
because I’ve learned from the support of AI, as well as its given samples. (P1)

Generative AI particularly helped me improve my academic writing skills,
making my writing better with word choices, sentence structures, and
overall organization. (P5)

The participants also recognized the benefits of generative AI in terms of
its ability to enhance their confidence in academic writing, provide
personalized support during the initial stages of writing, and boost their



academic writing efficiency and productivity. These benefits were
evidenced by the following statements:

It can assist me in suggesting ideas, brainstorming, and outlining, and then we can utilize
these ideas to modify or personalize our writing. (P1) With continuous assistance, especially
correction and feedback from generative AI, I felt more confident in my writing before
submitting it to my lecturer. (P6)

It gives me many good ideas, so it saves me a lot of time. (P8)
In addition, it was perceived that generative AI could help graduate

students understand complex concepts or theories and improve their
conceptual thinking skills. As P3 pointed out:

… improved critical thinking skills through feedback that enabled me to continue to think
deeply about the topic area.

A few participants also highlighted generative AI’s benefits in terms of
providing relevant sources or key references for further reading on a
particular topic. One participant (P3), for example, stated that:

I used to ask Copilot to suggest sources that were related to my assignment topic, and it
provided me with a bunch of sources which were very helpful.

Another noteworthy observation is that some participants perceived
generative AI as a tool to help reduce their stress in academic writing. As
one participant noted:

Without AI support, I felt anxious about a tight deadline, especially when
my lecturers reminded me that there were only three days left. However,
with AI support, I could manage to complete my writing a few days before
the deadline. (P6)

Overall, generative AI presents both benefits and challenges for
academic writing. This prompts the need to offer AI literacy training, which



will enhance the effective and ethical use of generative AI for academic
writing purposes, particularly in research and publication.

5. Discussion
This study showed that generative AI had positive impacts on Cambodian
graduate students’ academic writing, particularly in terms of helping them
to generate academic content quickly, providing useful feedback on their
writing, and offering personalized academic assistance. These findings
highlight the significant role of AI in education and research, as extensively
discussed in previous research (Islam & Islam, 2024; Sok & Heng, 2023).
The findings are in line with those of prior studies (e.g., Hongxia & Razali,
2025; Maphoto et al., 2024; Wang et al., 2024; Werdiningsih et al., 2024),
which highlight how AI can impact or benefit students’ academic writing
skills. The use of generative AI may alter students’ engagement with
academic writing by providing real-time and personalized feedback—an
essential factor in developing their academic writing skills and confidence.
These findings emphasize the significance of AI-human collaboration and
the need for AI training to promote the responsible and ethical use of
generative AI in academic writing among university students.

This study also showed that Cambodian graduate students encountered
several challenges while interacting with generative AI in their academic
writing. The challenges regarding superficial or inaccurate AI-generated
outputs, the shortage of contextual and comprehensive responses, and the
potential decline in critical thinking skills when using AI for academic
writing align with findings from recent studies in different contexts,
including China (Kim et al., 2024), Indonesia (Malik et al., 2023), and
Saudi Arabia (Al-Sofi, 2024). Kacena et al. (2024) reported that
approximately 70% of the references entirely produced by generative AI
(i.e., ChatGPT4) were inaccurate. There is also a risk of declining students’



abilities to showcase their own ideas when they excessively utilize
generative AI to produce their writing (Al-Sofi, 2024; Malik et al., 2023;
van Niekerk et al., 2025). These findings highlight the need to raise
awareness about the use of generative AI in academic writing among
graduate students to ensure the responsible and proper utilization of AI
tools, thereby minimizing the risks of diminished critical thinking and
creativity skills resulting from the overuse of generative AI in writing.

The study further identified the challenges faced by Cambodian students
regarding the lack of originality of responses produced by AI and the
difficulty in crafting effective prompts to generate desirable outputs. These
findings point to the importance of AI training for Cambodian students,
particularly on how to identify misleading outputs produced by generative
AI and how to verify their sources to avoid misuse of information in
academic settings. The need for AI training for Cambodian students was
discussed by Sol et al. (2024) who argued that not only students but also
teachers should be provided with proper training on the ethical and effective
use of AI in English language education. Similarly, Sok and Heng (2024b)
emphasized the pressing need for the formulation of academic integrity
policies and guidelines related to AI use in Cambodian higher education.

Notwithstanding the challenges faced by Cambodian graduate students,
the study revealed that the use of generative AI in academic writing offers a
variety of benefits such as improvements in structure, ideas, styles, and
accuracy. There were also benefits in terms of improved confidence in
writing, personalized academic support, improved writing efficiency and
productivity, and other benefits. These benefits provided by generative AI
were reported in previous research such as Alkamel and Alwagieh (2024),
Kim et al. (2024), Marzuki et al. (2023), and Nguyen et al. (2024). For
example, Kim et al. (2024, p. 1265) found that Chinese university students



perceived the use of AI-assisted tools as beneficial in three aspects, such as
“the writing process, performance, and their affective domain”. Similarly,
Marzuki et al. (2023, p. 1) revealed that “teachers unanimously agreed that
the AI writing tools positively improved their students’ writing quality,
particularly enhancing the quality of their content and organization”. These
findings suggest that, when utilized properly and ethically, generative AI
can support students’ academic writing by improving coherence, structure,
and overall quality while also boosting their confidence in their academic
writing abilities.

6. Conclusion
This chapter has shown that the use of generative AI has profound impacts
on Cambodian graduate students’ academic writing. These impacts can be
categorized into three main areas: AI’s ability to generate academic content
quickly, provide prompt and effective feedback on written texts, and offer
personalized academic writing assistance. However, the study also found
that the use of generative AI had raised a number of challenges, including
superficial or inaccurate responses generated by AI, limited contextual and
comprehensive responses, a perceived reduction of critical thinking skills
on the part of AI users, a lack of originality of ideas produced by AI, and
difficulties in crafting effective prompts to produce desirable outputs.
Despite these challenges, the study found a number of benefits resulting
from the utilization of generative AI for academic writing. These benefits
include: (a) improved structure and organization of ideas, (b) enhanced
academic styles and accuracy, (c) increased confidence in academic writing,
(d) personalized support for academic writing during the early stages, (e)
greater academic writing efficiency and productivity, (f) better
understanding of intricate concepts and theories, (g) assistance in finding
relevant sources, and (h) reduced stress related to academic writing.



This study has important implications for AI literacy training, which is
necessary to promote the effective and ethical use of generative AI for
academic writing purposes among university students. It also highlights the
crucial role of AI policies in regulating and providing clear guidelines for
the use of AI for academic writing. Such policies should address the
potential unethical use of generative AI in academic writing and research.
In addition, the importance of AIhuman collaboration rather than the ban on
AI use needs to be emphasized to help students learn how to effectively
utilize generative AI to develop their academic writing skills.

While this study provides nuanced insights into Cambodian graduate
students’ experiences of using generative AI for academic writing, it has
some limitations. First, the study, due to its qualitative nature, was limited
to a small number of graduate students who participated in the interviews.
While the findings offer valuable insights, they may not fully capture the
diverse experiences of all university students across different academic
institutions and disciplines in Cambodia. Therefore, future research should
address this limitation by employing alternative research approaches, such
as quantitative or mixed-method designs, involving a larger number of
participants randomly selected from across Cambodia. Such research would
shed more light and offer deeper insights into students’ experiences of
utilizing generative AI for academic writing or other similar purposes.
Future research is also recommended to investigate similar phenomena
from the perspectives and experiences of undergraduate or high school
students to gain a broader understanding of how students at different
academic levels use generative AI to support and improve their academic
writing skills. Second, given that most of the participants in this study had
educational backgrounds and work experience in the education section,
future research should include graduate students from other disciplines,



such as science, technology, engineering, and mathematics (STEM) or other
fields in social sciences and humanities. A more diverse sample would
provide a broader perspective on how graduate students use generative AI
for academic writing across different academic disciplines. Research into
the use of generative AI for education and research purposes, especially
among PhD students, university lecturers, and researchers, is also highly
recommended.
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In the context of introductory programming, Generative AI (GenAI) and
related tools are an interesting option to provide learners with personalized,
and scalable feedback. With constantly evolving models, particularly those
based on Generative Pretrained Transformers (GPTs), it remains important
to investigate recent developments and assess the respective feedback
potential. This study’s goal is to evaluate the feedback generated by
OpenAI’s o1-preview model. In particular, we are interested in the feedback
for authentic student solutions to introductory programming tasks.
Therefore, we qualitatively analyze the model’s output with deductive-
inductive categories based on the feedback research on previous models
(e.g., GPT-3.5 and 4 Turbo). The results show not only the feedback
characteristics of o1-preview via several categories, such as the feedback’s
content and structure, the representation of code, its correctness, suggested
optimizations, and stylistic improvements, but also inconsistencies and
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redundancies. The feedback got longer compared to GPT-4 Turbo, and
offered alternative corrections. Recommendations that violate task
constraints became more frequent, and checking output formatting is still an
issue. We thus provide a comprehensive overview of the o1-preview’s
feedback capabilities while outlining how this model differs from previous
versions. Thereby, we contribute to benchmarking recent GenAI tools and
identifying their feedback potential for introductory programming
exercises.

1. Introduction
Generative AI (GenAI) and related tools continue to advance at a rapid
speed. OpenAI’s models based on Generative Pretrained Transformers
(GPT) are a prominent example. In September 2024, yet another new AI
model was released as a basis of ChatGPT and its API: o1-preview. It was
announced as a model capable of “solving hard problems”, and “designed
to spend more time thinking before they respond” (OpenAI, 2024). To date,
OpenAI has advertised it as the most powerful model.

This development is particularly interesting in the context of generating
feedback for novice learners of programming. Regardless of the discussion
of how hard or easy programming is or was (Becker et al., 2023), students
need help and feedback on their solutions. In the past decades, numerous
tutoring and e-assessment systems have been developed to provide
feedback at scale (Jeuring et al., 2022; Keuning et al., 2018; Le et al., 2013;
Strickroth & Striewe, 2022). With GenAI tools, however, learners can
receive different types of feedback, including code, textual explanations,
and, for example, stylistic advice on their individual input (Azaiz et al.,
2024; Kiesler, Lohr, & Keuning, 2024). Although research on the feedback
capabilities of GenAI tools such as GPT-3 (Balse et al., 2023; Hellas et al.,
2023), 3.5 (Azaiz et al., 2023; Hellas et al., 2023; Kiesler, Lohr, & Keuning,



2024; Roest et al., 2023), 4 (Koutcheme et al., 2024; Lohr et al., 2025; Wu
et al., 2023), and 4 Turbo (Azaiz et al., 2024) has been conducted, it is
crucial to continue this work and evaluate recently published models, i.e.,
o1-preview.

The goal of this study is to explore the feedback characteristics of o1-
preview in the context of introductory programming education. This work is
guided by the research question (RQ): How can we characterize the
feedback provided by o1-preview if provided with a task description and a
student solution as input?

The contributions of this work are as follows: (1) A comprehensive
evaluation of the feedback characteristics of o1-preview, and (2) Supporting
the benchmarking of recent GenAI tools and comparisons of their feedback
potential. The findings can help both educators and students to develop
realistic expectations toward the feedback provided by GenAI tools, such as
o1-preview.

2. Related Work
Feedback is considered one of the most influential factors for learning
(Hattie, 2009; Hattie & Timperley, 2007). It is, therefore, not surprising that
feedback characteristics have been widely studied to understand their
design and impact on learners and the learning process (Kluger & DeNisi,
1996; Kulhavy & Stock, 1989; Narciss, 2008; Shute, 2008; Voelkel et al.,
2020).

According to Hattie and Timperley (2007), effective feedback answers
the questions “where am I going”, “how am I going”, and “where to next”.
These questions can operate at the level (1) task, (2) process, (3) self-
regulation, and (4) self. Voelkel et al. (2020) introduce a methodology for
categorizing feedback depth and types, building on the framework proposed
by Glover and Brown (2006). According to them, feedback depth can be



categorized into three levels: (1) Acknowledgement, which identifies an
issue without advice; (2) Correction, which provides actionable advice; and
(3) Explanation, which justifies corrections and relates them to context.
Narciss (2008) distinguishes the dimensions of feedback into function or
objective, presentation, and content. Especially, the content dimension can
be classified further into simple and elaborated components. The latter
refers to knowledge about task constraints, concepts, mistakes, how to
proceed, and about meta-cognition (Narciss, 2008). Keuning et al. (2018)
applied and extended Narciss’ categorization (Narciss, 2008) for the
programming domain by analyzing automated feedback of digital learning
environments. They refined and added new subcategories to classify the
feedback content in more detail.

In a controlled quasi-experiment, Hao et al. (2022) studied the effects of
different types of programming feedback. The students receiving more
detailed feedback performed significantly better than those only receiving
binary feedback (Hao et al., 2022). In addition, Jeuring et al. (2022) and
Rocha et al. (2023) emphasize the importance of timely, formative feedback
in programming education contexts.

The characteristics of such elaborated feedback, as well as students’
interaction pattern (Scholl & Kiesler, 2024; Scholl et al., 2024) have also
been analyzed in the context of GenAI and Large Language Models
(LLMs). For this work, the research of previous OpenAI models is
particularly relevant. Regarding the early model GPT-3, Balse et al. (2023)
found a high degree of variations in the feedback. Moreover, it generated
incorrect and inconsistent feedback.

Hellas et al. (2023) explored the responses of GPT-3.5 to novice
programmers’ help requests. In their study, the chatbot correctly identified
at least one issue in the student code. Precisely, GPT-3.5 did so in 90% of



the cases. However, it also reported false positives and provided the model
solution when asked not to. Kiesler, Lohr, and Keuning (2024) qualitatively
explored GPT-3.5’s feedback to authentic code from students in an
introductory programming course. They developed a set of 11 categories
representing the feedback’s content, quality, and other elements contained
in the generated output. Although GPT-3.5 consistently provided
information on the cause and fix of an error, the feedback sometimes
contained misleading information, expressed uncertainty, or requested more
information (Kiesler, Lohr, & Keuning, 2024). Azaiz et al. (2023) further
noted problems of GPT-3.5’s feedback w.r.t. output formatting,
hallucinating errors, and recognizing correct solutions, resulting in adequate
feedback in only 47% of the cases. A study on the generation of next-step
hints by GPT-3.5 (Roest et al., 2023) adds that LLM-generated feedback
messages may lack sufficient detail when students approach the end of the
assignment (Roest et al., 2023).

Koutcheme et al. (2024) investigated the quality and relevance of code
corrections generated by GPT-4. They define three primary correction types
for the feedback evaluation of GPT-4: completeness, which identifies and
addresses all actual issues; perceptivity, which addresses at least one actual
issue, even if not exhaustive; and selectivity, which avoids identifying non-
existent issues or introducing incorrect suggestions. These correction types
align closely with the characteristics of GenAI feedback summarized by
Azaiz et al. (2024), who focused on GPT-4 Turbo. They present a
comprehensive set of categories referring to the feedback’s content and
structure, code representation, the correctness and correction type,
suggested optimizations and coding style, and inconsistencies and
redundancies (Azaiz et al., 2024).



To our knowledge, there is no research on the feedback of the most recent
OpenAI model, yet. We address this gap and investigate its capabilities by
utilizing context-specific feedback taxonomies (Keuning et al., 2018;
Narciss, 2008) and qualitative category systems for GenAI feedback (Azaiz
et al., 2023, 2024; Kiesler, Lohr, & Keuning, 2024).

3. Methodology
Our work is guided by the following RQ: How can we characterize the
feedback provided by o1-preview if provided with a task description and a
student solution as input?

We applied the same methodology used in related work, which had the
goal of analyzing feedback by GPT-3.5 and GPT-4 Turbo (Azaiz et al.,
2023, 2024). We thus reuse their dataset, replicate the study, and obtain
results that will eventually allow benchmarking OpenAI’s latest models
(i.e., GPT-3.5, GPT-4 Turbo, and o1-preview).

3.1 Selection of Dataset and Tasks
We obtained and reused a dataset used in related work (Azaiz et al., 2023,
2024). It comprises Java programming assignments and authentic student
submissions from a first-year computer science introductory programming
course at LMU Munich, Germany (winter term 2021/22). All the 900
registered students had been asked whether their submissions could be used
for research – 695 consented voluntarily. The homework assignments in
question were voluntary as well. Students submitted their solutions to the e-
assessment system GATE (Strickroth & Holzinger, 2022; Strickroth et al.,
2011) to receive automatically generated feedback and to participate in
voluntary peer review (Strickroth & Azaiz, 2025; Strickroth, 2023). The
course was accompanied by weekly exercises led by student teaching
assistants.



We selected the same assignments as related work from the dataset
(Azaiz et al., 2023, 2024). The first assignment (week 2) was: “Write a Java
application named SimpleWhileLoop that uses a WHILE loop to count and
print all odd numbers from 1 to 10, and then print ‘Boom!’ (without
quotation marks) afterward.” The second assignment (week 7) focused on
object orientation and dynamic data structures: “Implement the Queue
interface according to the specification (in the interface) for a queue with
the QueueImpl class by using a singly linked list.” Key concepts comprised
defining an inner-class, implementing multiple methods, managing
references, and traversing a list (exceptions and auto(un)boxing had not
been introduced). The Java interface Queue contained the following five
methods and their specification as JavaDoc: void append(int), boolean
isEmpty(int), void remove() (should do nothing if the queue is empty), int
peek() (should return the first value or the constant EMPTY_VALUE of the
interface if the queue is empty), and int[] toArray().

The exact same submissions were used as in related work (Azaiz et al.,
2023, 2024). For the SimpleWhileLoop, 33 submissions were pseudo-
randomly sampled, and 22 submissions were randomly selected for the
Queue. This corresponds to about 9% of all submissions for each task.

3.2 Feedback Generation
In alignment with related work (Azaiz et al., 2023, 2024), we used
OpenAI’s API to generate the feedback using the o1-preview model with
default settings. The feedback texts for the SimpleWhileLoop were
generated on 2024–11–12 and for the Queue on 2024–12–25. Given the
probabilistic nature of GPT models, feedback was generated three times for
each submission to ensure and examine the stability of the features. Overall,
we analyzed 99 feedback texts for the SimpleWhileLoop and 66 for the



Queue. We used the following prompt template (zero-shot prompting)
without any modification of related work (Azaiz et al., 2023):

[ASSIGNMENT INSTRUCTIONS]
Find all kinds of errors, including logical ones, and provide hints for their correction or
improvement, including suggestions for code style. [CODE OF STUDENT SUBMISSION]

3.3 Feedback Analysis
Before the feedback was analyzed, all sampled submissions were classified
as syntactically/functionally correct or not using unit tests and manual
inspection. Developing this ground truth was an important prerequisite for
evaluating the correctness of o1-preview’s corrections and suggestions
within the feedback text. A submission was considered correct if it fulfilled
the task specification. In addition, we applied common evaluation metrics
to assess o1-preview’s classification performance (i.e., accuracy, precision,
recall, and specificity).

To characterize the generated feedback, we quantitatively analyzed it
regarding its length. Next, a qualitative thematic analysis was used to
manually analyze all generated feedback texts (Braun & Clarke, 2006;
Mayring, 2001). One generated feedback message was considered a coding
unit. The respective student submission served as a context unit. We applied
the classification developed in related work (Azaiz et al., 2024) as
deductive categories. Based on the material, we also developed inductive
categories to reflect the new feedback characteristics. During the coding
process, we applied multiple codes to a coding unit, because feedback
elements were often intertwined and several characteristics applied to a
feedback message. The analysis was conducted by three experienced
computer science education researchers. Unclear cases were intensively
discussed until an agreement was reached, for example, by consulting



existing feedback taxonomies (Keuning et al., 2018; Narciss, 2008) and
related research (see fSection 2). All codes were double-checked.

4. Results
This section presents the findings from our analysis of the feedback
generated by o1-preview. We summarize insights concerning the feedback’s
overall structure, common elements, and length. Next, we introduce the
category system applied to the generated feedback. The five superordinate
categories (alignment with task specification, code representation,
correctness and correction types, suggested optimization and coding style,
inconsistencies and redundancies) further help structure the presentation of
results.

4.1 Structure, Common Elements, Length
All generated feedback messages contain text with keywords,
variable/method names, or Java code. Overall, the generated output was
tailored to the student code, providing personalized responses, except for an
almost empty Queue submission where o1-preview answered with the full
code and a (long) list of possible and actual errors. In one case, the
feedback was so generic, containing only common potential errors, that it
may be considered non-personalized. In five of the six generated feedback
texts for two submissions where students asked questions, o1preview
responded. Furthermore, for one submission where the student indicated
that solving the task was difficult, o1-preview responded that it was a good
starting point, s/he should not worry, and/or the student was encouraged to
ask further questions.

The feedback generated by o1-preview consistently followed a structured
format with three or four main sections, maintaining a uniform pattern
across all iterations. All responses except one began with an introductory



statement, describing the functionality and correctness of the students’
code. The majority of outputs ended with a closing sentence, expressing
that if every piece of advice is applied, the solution is correct and follows
good practice. In between, the structure varied among the following
elements:

Listing/enumerating issues with snippets;
Groups of issues under sections like “Class Variables” or “append()
method” with corrections and optional suggestions;
Issue-based feedback with structured sections (e.g., “Issue:”,
“Correction:”, “Explanation:”) sometimes with quotes of the
incorrect code and often with corrected/example code snippets
followed by explanations.

Other labels such as “Logical Errors”, “Code Style and Clarity”, “Code
Efficiency”, “Error Handling”, and “Variable Naming” were frequently
present and structured the feedback.

In many outputs, summaries of all changes in the full code and generic
“additional suggestions” were provided right before the final sentence. Only
three outputs (first iteration, SimpleWhileLoop) consisted solely of a list of
corrections and suggestions (without full code or snippets).

The list items and sections that often seemed to be in random order, e.g.,
“access modifiers“ are discussed as the first item for a field that gets
introduced in a later section of the feedback. Required changes were
distributed into different sections of the feedback. Also, not all changes to
the code are explained via text. In addition, several code snippets for a
reported issue simultaneously fix other errors. Finally, we identified
nonsense in the generated feedback for a Queue submission:

**10. Farewell Not Needed**



This note is just to reach the conclusion number 10.

Table 1 provides an overview of the feedback length in terms of word
counts for both assignments across all three iterations. The length was
calculated by tokenizing thefeedback strings based on whitespace (“\s+”)
and counting the resulting tokens. The mean feedback length across all
assignments and iterations is x̅ = 826 words, with a median of m = 799
words. The feedback for the SimpleWhileLoop assignment has a median
length of m = 673 words, notably shorter than the m = 1007 words for the
Queue assignment (statistically significant difference, UTest: U = 631, p <
0.00001, two-sided). The minimum and maximum word counts (min = 357
resp. max = 1532) illustrate the wide spread.

Table 1 Length of the generated feedback in terms of number of words
SimpleWhileLoop Queue

1st 2nd 3rd OA 1st 2nd 3rd OA All
Mean 630 728 704 688 1055 1053 995 1034 826
Median 609 761 696 673 1058 1007 982 1007 799
Min 357 471 439 357 708 746 631 631 357
Max 1069 1102 1031 1102 1494 1532 1497 1532 1532

 Note : OA: Over all iterations for each assignment.

4.2 Alignment with Task Specification
The feedback content complies with the assignment specification (coded as
CWAS, see Table 2) in 75% of the generated outputs. In Table 4, we present
the frequencies of all codes for both tasks.

In two cases, the feedback deviated over all three iterations from the
assignment specification. For example, for a student solution to the
SimpleWhileLoop task, the odd numbers followed by the word “Boom”



were not displayed line-by-line in any of the three iterations. The o1-
preview also did not properly address this issue. In the other case, output
formatting included additional German text that was merely translated into
English without applying the correction.

Other cases suggested modifying the output formatting by adding context
through additional text. Further non-compliance included suggestions to
throw exceptions in the Queue task, which would have been contrary to the
interface requirements.

4.3 Code Representation
The feedback generated by o1-preview utilized various representation
strategies to address student submissions (see Tables 2 and 4), with notable
differences between the two tasks. Full code solutions (FuCo) offering
complete program examples were frequently provided.

Table 2 Coding book with descriptions. (examples are provided in the text
where appropriate)⏎

Category Description
Alignment with Task Specification
Compliance with
spec. (CWAS)

Corrections or suggestions align with the provided
instructions and assignment specification.

*Restricted non-
compliant suggestion
(RNCS)

There is a change requested/recommended that
would violate thetask specification, but indicates
this.

Code Representation
Full code (FuCo) Suggests a full program sample solution.
Code snippet (CoSn) Corrects small portions of the program suggesting

a sequence of instructions.
Code snippet with
instruction (CoSnI)

Generates code snippets with gaps, including
instructions for students on how to fill in the
remaining gaps.



Category Description
Code with output
(CWO)

Suggests improvements in the code with the
corresponding output.

Inline code
correction (ICC)

Feedback text contains student solution with inline
comments (corrections and suggestions).

*Quotes incorrect
code snippet (QISn)

Feedback incorporates incorrect parts of the
student’s submissionas an unmodified code
snippet.

Correctness and Correction Types
Only correct
correction/
suggestions (OCCS)

Feedback contains only correct
improvements/suggestions, meaning all contained
errors were fixed. Moreover, all of the suggestions
have been implemented, resulting in the display of
running code.

Partially correct
correction/suggestion
(PCCS)

Only some feedback components are correct,
while other components introduce new issues (i.e.,
incorrect feedback or suggestions).

Completely correct
correction (CCC)

Feedback addresses all of the submitted code’s
issues, containsonly correct corrections, and
adheres to the task requirements. Applying the
feedback results in a fully correct submission.

(Fault) localization
(FL)

At least one bug is identified and localized, e.g.,
by citing code snippets, or describing them.

(Fault) localization
correct (FLC)

All bugs are correctly identified and localized and
are present in these locations.

Suggested Optimizations and Coding Style
Optimization (OPT) Suggests optimizations regarding the functionality

of the program.
Code style
suggestion (CSS)

Suggests improvements regarding readability,
documentation, comments within the code,
variable naming, etc.

Language suggestion
(LCS)

Feedback contains translations and language-
related suggestions.

Inconsistencies and Redundancies



Category Description
Inconsistency (InC) Recommendation does not correspond to the

sample solution or contradiction within the textual
feedback.

Redundancy (RD) Repeats the same suggestion in the same feedback
(excluding summary lists) or provides a
suggestion that is already implemented in the
code.

 Note * new category.



Table 4 Frequencies of all codes applied to both tasks⏎
SimpleWhileLoop n =33 Queue n=22 All n=165

Char. 1st 2nd 3rd 1st 2nd 3rd Sum %
Alignment with Task Specification
CWAS 27 30 27 8 15 17 124 75
RNCS 2 5 5 2 4 4 22 13
Code Representation
FuCo 29 31 33 17 20 19 149 90
CoSn 24 29 31 19 19 18 140 85
CoSnI 0 0 0 6 3 6 15 9
CWO 7 10 9 0 0 0 22 13
ICC 0 0 1 1 6 4 12 7
QISn 2 7 5 4 3 4 25 15
Correctness and Correction Types
OCCS 21 24 24 5 12 11 97 59
PCCS 13 9 9 17 10 11 69 42
CCC 18 20 20 5 12 9 86 52
FL 28 23 22 22 20 20 135 82
FLC 16 20 17 16 16 11 96 58
Suggested Optimizations and Coding Style
OPT 33 32 32 21 22 21 161 98
CSS 33 33 33 22 22 22 165 100
LCS 6 7 7 9 8 7 44 27
Inconsistencies and Redundancies
InC 9 6 4 10 8 7 44 27
RD 1 7 5 19 15 10 57 35

FuCo appeared in 149 of the outputs (90%), with slightly higher
appearances for the SimpleWhileLoop. Code snippets (CoSn) with small
portions of correct code were similarly common (85%). The category CoSn
was balanced across both tasks. Code snippets with instructions (CoSnI)



guiding students to complete their code by filling gaps were observed in
response to the Queue task only. This occurred in 15 responses (9%).

Suggestions incorporating code with corresponding output (CWO) to
visualize test results occurred only in the SimpleWhileLoop (22 outputs,
13% overall). Inline code corrections (ICC) annotating student original
code with comments were more frequent in the Queue task (11 cases) than
in the SimpleWhileLoop task (1 case). This is similar to the quotation of
incorrect student code snippets (QISn). QISn was slightly more frequent in
the Queue task with 11 cases, compared to the SimpleWhileLoop task with
14 cases. In general, code is a consistent element of the feedback.

4.4 Feedback Correctness and Correction Types
Before evaluating the correctness of the GenAI feedback and the suggested
corrections, we had to assess the students’ submissions with human
intelligence. 90% of the student submissions for the SimpleWhileLoop task
were syntactically correct, compared to 64% for the Queue task. However,
only 57% of the SimpleWhileLoop submissions were fully correct, i.e., there
were no logic errors. Only 3 (14%) of the student solutions for the Queue
task were fully correct (often a Node class or null check was missing).

General Classification Performance: As a first step, we evaluated o1-
preview’s performance in classifying students’ submissions as correct or
incorrect. At that point, however, we did not assess the accuracy of its
corrections and suggestions in the feedback text.

We evaluated the model’s performance in terms of accuracy, precision,
recall, and specificity. The results of this classification performance are
summarized in Table 3. The feedback generally began with an explicit clear
judgment of the submission’s correctness. For a few cases, we used terms
like “logical error” or “errors and corrections” to categorize whether o1-
preview identified a submission as correct or incorrect. Overall, the



accuracy (i.e., the ratio of correct results to all results) ranges from 0.87 to
0.9 for the SimpleWhileLoop task and remains consistent at 0.9 for the
Queue task. The precision (i.e., ratio of correct positive results to all
positive results) was perfect for the Queue. It reached values between 0.82
and 1 for the SimpleWhileLoop, while recall (i.e., the ratio of correct
positive results to all actual positives) was significantly better for the
SimpleWhileLoop achieving 0.85 compared to 0.33 for the Queue.
Specificity (i.e., the ratio of correct negative results to all actual negatives)
was perfect for the Queue and ranged from 0.83 to 1 for the
SimpleWhileLoop.

Applied Category System: In 59% of the cases, o1-preview’s feedback
contained only corrections and suggestions resulting in functional correct
code (OCCS, see Table 2). The percentage is higher and more consistent for
the SimpleWhileLoop compared to the Queue. About half of the feedback
for the Queue was only partially correct (PCCS). Overall, 42% of the
feedback also contained errors or did not lead to a functional correct
solution. In 82% of the feedback outputs, o1-preview localized errors (FL).
All errors were localized in only 58% (FLC).

Overall, 52% of the generated feedback (59% for the SimpleWhileLoop
and 39% for the Queue) was completely correct (i.e., all bugs detected,
correctly localized, fixed, respecting task specification, and no
inconsistencies). Despite many feedback texts having other issues, 76%
contained a fully correct full code for the Queue.

In 13% of the cases, we found correct corrections or suggestions that
would result in a violation of the task requirements. At the same time, they
included explicit remarks.



Table 3 Comparison of evaluation metrics of o1-preview's classification
performance across the three runs for the two assignments.

SimpleWhileLoop Queue
Metric 1st 2nd 3rd OA 1st 2nd 3rd OA All
Accuracy 0.90 0.87 0.87 0.88 0.90 0.90 0.90 0.90 0.89
Precision 1.00 0.92 0.82 0.90 1.00 1.00 1.00 1.00 0.91
Recall 0.81 0.81 0.93 0.85 0.33 0.33 0.33 0.33 0.76
Specificity 1.00 0.94 0.83 0.92 1.00 1.00 1.00 1.00 0.96

that they may not be used in this case or would require an interface change
(RNCS, not coded as incorrect feedback). We did not identify any feedback
containing exclusively false corrections and suggestions.

Specifically, for the SimpleWhileLoop, most feedback messages started
by correcting the submission and providing alternative corrections as
“option 1” and “option 2”. Each of them was accompanied by a code
snippet and sometimes with a list of (dis)advantages (less prevalent for the
Queue). We also identified useless code snippet examples such as the
comment // Remove methods not specified in the Queue interface.

In general, o1-preview seems to be able to detect and correct syntax
errors. However, missing ListEntry classes were not always detected and
sometimes assumed to be there and correct, or assumed to have a
suboptimal access modifier. Furthermore, additional/superfluous output was
not always detected. Yet, possible resource leaks of QueueEntry objects on
removal in the Queue were always detected. We also noted incorrect errors
in the variable initialization and loop conditions generated for the
SimpleWhileLoop (e.g., starting from 0 or 1 < 10 vs. 1 < = 10 with an
oddness check in the loop). Finally, o1-preview seems to have “problems”
understanding default initialization of field variables, and o1-preview does



not seem to “recognize” that the code execution is stopped after an
exception is thrown resulting in wrong fault localizations and corrections.

4.5 Suggested Optimizations and Coding Style
We identified code optimization hints (OPT, see Table 2) in nearly all
generated feedback (98%). The same applies to suggestions regarding
coding style (CSS). Elaborated suggestions often occurred in conjunction
with other corrections, and “additional” or “optional” ones rather in the
form of lists (often at the end) of the feedback. The range of recommended
optimizations comprised:

Introducing a tail reference for O(1) insertions;
Considering thread-safety for the Queue (details mostly correct);
Defensive programming by adding more null checks (often instead of
relying on the size field – in exchange for
ArrayIndexOutOfBoundsExceptions);

Replacing “magic numbers” (once also in the interface);
Making fields private;
Removing public methods not in the interface (or making them
private);
Conducting unit tests (also provided possible tests in a few cases);
Using Java generics;
Avoiding EMPTY_VALUE and using exceptions.

Especially for the already correct submissions, there were advanced
suggestions such as implementing the Iterable interface. The same applies
to style suggestions, such as using consistent formatting, adding spaces
between operators and variables, using braces even for single-line if-
conditions, variable naming, including JavaDoc, removing useless



comments, or adding comments (often not found in the final full code).
Only for the Queue task, o1-preview consistently did not detect a missing
closing curly brace (}) at the end of a class. Finally, we noted hints for
translating comments, variable names, or text from German into English in
27% of the feedback.

4.6 Inconsistencies and Redundancies
Overall, inconsistencies appeared in 27%, and redundancies in 35% of
feedback texts (see Table 4). Across all three iterations, inconsistencies and
redundancies were more frequent in the Queue task than in the
SimpleWhileLoop. Specifically, the Queue task exhibited 25 instances of
inconsistencies (InC) and 44 instances of redundancies (RD), compared to
19 InC and 13 RD in the SimpleWhileLoop.

We also found inconsistencies in the corrections, exemplified by the
following two examples:

For the Queue, o1-preview added a debug output statement just
below a comment saying that the interface specifies that nothing
should be done.
o1-preview recommended using an enhanced for-loop, but the code
snippet contained the same code as the submission with a simple for-
loop. In a few other examples, we also found self-contradicting
nonsense explanations.

In addition, we identified inconsistent feedback across all feedback, such as
whether the return head == null must be described in a comment or not.
There were many redundancies regarding code style. For example,
o1preview criticized that no camel case was used for variable and method
names or indentation was inconsistent despite it being consistently used. In



a few cases, there were reports such as “error in append” and then in the
next sentence “this cannot occur with the current implementation”.

5. Discussion
Given the results of the analysis, we discuss some of the findings in the
context of this study and related to prior research. This is particularly
interesting as this study is a replication. Hence, it is possible to discuss how
OpenAI’s recent model o1-preview differs from previous ones, e.g., GPT-
3.5 and GPT-4 Turbo.

The code book from an earlier study (Azaiz et al., 2024) could be reused,
proving its overall suitability. However, we did not identify examples for
the three categories “feedback without code”, “feedback only containing
code”, and “only false correction/suggestion”. So, we removed them from
our presentation of results in Table 2. Our deductive-inductive feedback
analysis also led to two new categories: RNCS and QISn (Table 2). RNCS
might lead students to violations of the task specifications, and QISn may
help them identify their faulty code.

Regarding format and structure, o1-preview’s feedback consisted of lists
and/ or sections, which is similar to GPT-4 Turbo (Azaiz et al., 2024).
However, o1preview often introduced a more detailed breakdown into
specific subdivisions, provided different alternative approaches with code
examples, and a subsection for additional suggestions at the end. Moreover,
the seemingly random order of the recommended aspects (Azaiz et al.,
2023, 2024) is still an issue with o1-preview. What is new, though, is the
use of variables that are introduced/declared in a later section of the
feedback.

Comparing the feedback length with that of older GPT models, i.e.,
GPT3.5 (Azaiz et al., 2023) and GPT-4 Turbo (Azaiz et al., 2024), shows
that it gets notably longer. This is partially due to the full model solution,



which is still part of most feedback. The increasing length can also be
explained by the new “summary”/“key changes” sections after the display
of the full code. Assuming a reading speed of 180–250 words per minute,
the median feedback for the Queue, which is 1,007 words long, would take
about 4–6 minutes to read. In addition, some expressions, advanced
concepts (e.g., exceptions, autoboxing, generics, threadsafety), sequencing
of issues, inconsistencies, and redundancies in the feedback may increase
the cognitive load (Sweller, 1994). Especially novice learners without any
prior knowledge and experience might quickly be overwhelmed (Kiesler,
Scholz, et al., 2024). However, some of these reported issues may be
tackled by prompt engineering. It is hard to predict, though, whether all of
them can be fixed.

For GPT-4 Turbo (Azaiz et al., 2024), applying all the suggestions or
using the provided model solution of the feedback was reported to always
lead to a completely correct solution (except for two cases). This is different
for o1-preview, which is partially due to the feedback violating task
specifications.

Another new aspect, which had not been reported before (Azaiz et al.,
2023, 2024), was GenAI responding to students’ questions in the form of
comments in their code. o1-preview responded to these questions as part of
its feedback in 5 out of the 6 cases.

Explicitly reported as not being found for GPT-3.5 (Azaiz et al., 2023)
and GPT-4 Turbo (Azaiz et al., 2024), in five of six generated feedback
texts for submissions where students put a comment or question in, o1-
preview honored and/ or responded as we would expect from a human tutor.
Also, showing “empathy” for one submission where the student wrote s/he
could not solve the assignment was not mentioned for GPT-3.5 (Azaiz et



al., 2023) and GPT-4 Turbo (Azaiz et al., 2024), but in Kiesler, Lohr, and
Keuning (2024) for GPT-3.

In summary, using o1-preview in e-assessment systems or letting
students use it to generate feedback without any guidance does not seem
recommendable. o1 may be used to support educators in semi-automated,
formative assessments. However, the feedback length may also be an issue
for these educators.

6. Threats to Validity
For this study, we used GPT o1-preview, because the final version had not
been released at the time. Hence, the final o1 version may behave slightly
differently. The final version was released shortly after our analysis, so
larger changes are unlikely. After all, OpenAI’s models are constantly
evolving. For this reason, all steps are clearly documented.

Moreover, GenAI tools based on LLMs are probabilistic; hence, for
every request, a different output may be generated. Therefore, feedback
texts were generated three times. Finally, it should be noted that the quality
of the output may depend on the programming language, task specification,
and prompt used.

7. Conclusions and Outlook
In this work, we evaluated the feedback generated by OpenAI’s o1-preview
model for students’ solutions to introductory programming tasks. We
conducted a deductive-inductive qualitative analysis of the model’s output
in response to the students’ submissions. The analysis builds upon the
evaluation of older models such as GPT-3.5 (Azaiz et al., 2023) and GPT-4
Turbo (Azaiz et al., 2024) and respective categories describing the
feedback’s content, quality, and other elements.



Our analysis identified two new characteristics (Table 2): (1)
Recommendations violating the task specifications while noting they might
be violated (RNCS). This category is part of the new superordinate category
referring to the alignment of the task specification. (2) The feedback quotes
students’ incorrect code (QISn). The feedback generated by o1 is also more
detailed, structured, and longer compared to earlier models. Except for one
case, every feedback was personalized. More than half of the outputs
contained only correct corrections and suggestions (59%). However, only
52% were fully compliant with requirements and free from any
inconsistencies. Weaknesses of this model are evident in the reduced
compliance with task specifications, difficulties in correcting output
formatting issues, and challenges in recognizing correct solutions,
particularly in complex tasks. Despite these limitations, the model’s
performance proved to be consistent, precise, and accurate.

All in all, the feedback of the recent model o1-preview seems to be
somewhat different from prior models. In contrast to OpenAI’s
advertisement, it is not necessarily the most powerful model when it comes
to feedback for novice learners of programming. We also assume that the
GenAI models, in general, will continue to evolve quickly in the near
future. It is, therefore, important to continue benchmarking GPT and other
GenAI models, for example, with different tasks and contexts to clearly
identify their strengths and weaknesses for (novice) learners and educators.
Identifying the potential and pitfalls will help inform instructional
approaches (e.g., pair programming or teamwork, Kiesler et al., 2025) and
assessments in the future.
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The significant impact of Large Language Models (LLMs) in education is
widely acknowledged, as these models have the ability to revolutionize
traditional teaching methods and promote a more customized and adaptive
learning experience. By leveraging LLMs, educators can create interactive
and engaging learning materials, provide real-time feedback, and cater to
diverse learning styles and needs. The integration of LLMs enhances
accessibility, offering students instant access to a vast repository of
knowledge and resources. These models assist in learning various subjects,
problem-solving, and critical thinking, making education more dynamic and
inclusive. Additionally, LLMs enable precision education, providing
individualized support and guidance. The book consists of three parts:
foundations, frameworks, and ethical considerations; practical tools and
applications for educators; and student-centered learning and emerging
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trends with AI. This chapter summarizes the studies reported in the book,
synthesizing the potential benefits and hurdles of incorporating LLMs in
education. It offers insights into how these cutting-edge technologies can
shape the future of learning, ensuring that students are better equipped for
the demands of the 21st century. By addressing both the opportunities and
challenges, the chapter provides a balanced perspective on the integration of
LLMs in educational environments.

1 Introduction
In recent years we are witnessing the transformative potential of Large
Language Models (LLMs) in the educational landscape. These advanced
models, powered by artificial intelligence, have the capacity to
revolutionize traditional teaching methodologies and foster a more
personalized and adaptive learning experience (Khine, 2024). By leveraging
the capabilities of LLMs, educators can develop interactive and engaging
learning materials, offer real-time feedback, and cater to diverse learning
styles and needs. The integration of LLMs in classrooms enhances
accessibility, providing students with instant access to a vast repository of
knowledge and resources. These models can assist in learning various
subjects, problem-solving, and critical thinking, making education more
dynamic and inclusive. Additionally, LLMs facilitate the development of
precision education, enabling students to receive individualized support and
guidance (Bowen & Watson, 2024). This chapter summarizes the studies
reported in this book and synthesizes the potential benefits and hurdles of
incorporating LLMs in education, offering insights into how these cutting-
edge technologies can shape the future of learning, ensuring that students
are better equipped for the demands of the 21st century. The book is
organized into three parts. While Part I covers studies related to the
responsible, ethical, and effective use of LLMS in education, Part II deals



with practical tools and applications for educators. In Part III student-
centered learning and emerging trends with AI are described.

2 Responsible, Ethical, and Effective Use of LLMs in Education
The book commences with an insightful chapter titled “Responsible,
Ethical, and Effective Use of LLMs in Higher Education” authored by Yu
and Chan in Chapter 1. This chapter delves into the burgeoning field of
LLMs and their application within higher education, providing a
comprehensive overview of both the potential benefits and the challenges
associated with their use. Yu and Li start by discussing the transformative
impact of LLMs on personalized learning, enabling educators to tailor
educational experiences to individual student needs, thereby enhancing
engagement and understanding. They also highlight the automation of
assessments, which can save significant time and reduce the administrative
burden on educators. However, the authors also address several critical
concerns. They emphasize the importance of maintaining academic
integrity, as the misuse of LLMs can lead to plagiarism and undermine the
educational process. Additionally, they caution against over-reliance on
these models, which could detract from the development of critical thinking
skills among students.

To navigate these challenges, Yu and Chan propose a dual approach
comprising a historical review of previous instructional technologies and an
empirical survey on student perceptions and usage of LLMs. Their findings
reveal that successful integration of advanced tools requires realistic
expectations and a sound pedagogical framework. To ensure the responsible
and ethical use of LLMs, the authors recommend embedding AI ethics
education within curricula, promoting fact-checking and triangulation to
counter misinformation, and leveraging LLMs to support flipped classroom
models that prioritize interactive learning and critical discourse. Overall,



this chapter sets the stage for a balanced and informed exploration of LLMs
in education, providing valuable insights and practical strategies for their
effective implementation.

In Chapter 2, Cain presented the EPICC Framework (Effective
Prompting through Iterative Content and Critical Thinking) builds on Cain’s
2024 research to present a comprehensive model for using LLMs in
education. This chapter emphasizes three key components: content
knowledge, critical thinking, and iterative design. It guides educators and
learners in crafting, refining, and evaluating prompts to leverage AI for
exploration, creativity, ideation, and productivity. The iterative focus of
EPICC enhances the precision and contextual relevance of generative AI
outputs, fostering personalized learning experiences and deeper engagement
with content. Through this framework, students develop critical thinking
and problem-solving skills while learning with LLMs. Teachers enhance
their instructional strategies for AI-enhanced environments, ensuring the
responsible and effective use of generative AI. Ethical considerations like
biases and inaccuracies are addressed through content knowledge and
critical thinking. The EPICC Framework presents prompt engineering as a
transformative educational practice, empowering both students and
educators to harness AI for collaborative knowledge creation and
innovation. Cain noted that this structured approach provides a practical
method for utilizing AI in education, emphasizing active inquiry, discovery,
and interactive learning experiences.

Foundational models like LLMs and vision-language models (VLMs)
have excelled in various tasks and are increasingly used in online education.
Their roles as AI teachers, companions, and assistants highlight the need to
understand their performance in multicultural contexts with diverse
participants. However, many foundation models are primarily trained on



English corpora, resulting in a bias towards Western culture. This cultural
bias can lead to significant misunderstandings in educational settings, as
gestures and body language can have different meanings across cultures.
Such misunderstandings can severely hinder learning outcomes. In Chapter
3, Wang and Liu explore the issue of cultural bias in LLMs and VLMs,
analyzing its impact on education. It summarizes related research on
understanding and mitigating bias, introduces key advancements, and
presents future challenges in this area. By addressing these biases, the
chapter aims to improve the effectiveness of foundational models in
fostering multicultural understanding in education, ensuring more accurate
and inclusive AI interactions.

Bognár in Chapter 4 explores the dynamics of student engagement in AI-
augmented classrooms, particularly how LLMs, like ChatGPT, influence
key engagement factors: academic self-efficacy, autonomy, interest, and
selfregulation. Utilizing a longitudinal design with pre- and post-semester
surveys, the research uncovers significant declines in all four engagement
dimensions over the semester. The findings reveal complex interactions
between traditional engagement constructs and the unique challenges posed
by AI-enhanced learning environments. While LLMs initially enhance
engagement through personalized feedback and adaptive learning support,
this novelty effect diminishes over time, resulting in reduced motivation
and increased reliance on AI tools. The study underscores the need for
thoughtful integration of AI in education, balancing its potential benefits
with strategies to sustain intrinsic motivation and self-regulation. It
highlights the importance of context-specific interventions to address
engagement challenges and suggests avenues for future research, focusing
on demographic and disciplinary factors shaping engagement dynamics.
The study emphasizes the need for educators to develop and implement



balanced approaches that maintain the initial engagement benefits of LLMs
while promoting long-term student motivation and self-regulation. By
understanding and addressing these dynamics, AI-augmented classrooms
can better support student learning and development.

Chapter 5 delves into the diversity of engagement experiences in AI-
augmented classrooms by examining demographic, disciplinary, and
behavioral factors that influence student interactions with AI tools. Building
on the findings from the previous chapter, “Engagement Dynamics in AI-
Augmented Classrooms: Factors and Evolution”, Bognár analyzes how
variables such as age, gender, cultural background, academic discipline, and
AI usage patterns affect key engagement factors. These factors include
academic self-efficacy and preparedness, autonomy and resource
utilization, interest and engagement, and self-regulation and goal setting.
The analysis reveals significant differences in engagement trends across
subgroups. Younger students adapt more readily to AI-based learning
environments compared to older students. Technical disciplines such as
engineering and information technology show higher engagement stability
than fields like teacher training and social sciences. Behavioral patterns
indicate that frequent and sustained use of AI tools, combined with effective
teacher support, enhances engagement, while inconsistent usage leads to
declines in all factors. The findings highlight the importance of selecting
effective AI tools, tailoring AI integration strategies to student
demographics and disciplines, and fostering sustained, meaningful
engagement in AI-enhanced learning environments. The chapter
emphasizes that understanding these diverse engagement dynamics is
crucial for maximizing the benefits of AI in education and ensuring
inclusive, effective learning experiences for all students.



Pallipuram and his team discuss the use of LLMs such as ChatGPT-4o
and Google’s Gemini in education, highlighting both their potential benefits
and ethical concerns in Chapter 6. The authors introduce a private, user-
friendly software framework called the virtual teaching assistant (vTA),
designed to help instructors leverage personalized LLMs for enhanced
student learning. The vTA framework consists of a local LLM that
undergoes three phases: initial-tuning, domainspecific fine-tuning, and
deployment. In the initial-tuning phase, instructors use prompt engineering
techniques to generate initial specifications, aligning the LLM with their
expectations. The fine-tuning phase involves interactive prompting to
further refine the LLM. In the deployment phase, instructors receive
techniques to effectively use their trained vTAs for teaching. The chapter
emphasizes the importance of addressing ethical concerns such as data
privacy and the potential misuse of AI-generated content. By demonstrating
the use of vTA in an upperdivision/graduate engineering course on digital
image processing, the authors showcase its application in teaching
advanced mathematical and programming concepts. The ultimate goal of
the chapter is to make LLMs accessible to instructors, regardless of their
technical expertise, and to facilitate effective and ethical learning in AI-
enhanced educational environments.

Liu, Pankiewicz, Gupta, Huang, and Baker from the University of
Pennsylvania, USA present JeepyTA, a Virtual Teaching Assistant (VTA)
built on the GPT model, designed to provide continuous, timely support in
online education. As student learning becomes more continuous and
ubiquitous, human TAs often struggle to address inquiries during weekends
or nights due to limited availability. JeepyTA leverages OpenAI’s text
embeddings and generative language models to offer round-the-clock
assistance, mimicking typical discourse in discussion forums. Although its



scope is still limited, JeepyTA can address logistical, conceptual, and
programming questions tailored to specific courses much quicker than
human TAs. The chapter outlines the development process of JeepyTA,
evaluates its response accuracy, and compares its availability to human
instructors. It also investigates student attitudes towards this VTA and
discusses the implications of integrating LLMs like JeepyTA into
educational settings. The study highlights how LLMs could improve the
timeliness and availability of student support, providing on-thespot
assistance and personalized feedback. By exploring the role of GPT as
VTAs, Liu and the team suggest that this work contributes to understanding
the potential of LLMs in enhancing adaptive online learning. It emphasizes
the importance of developing effective VTAs to meet the growing demand
for continuous and timely support in online education.

Knowledge tags on math questions are crucial for education, as they help
teachers and students find relevant practice materials during the learning
process. Traditionally, these annotations have been the responsibility of
pedagogical experts, who possess the deep understanding required to
connect problem-solving logic with relevant knowledge concepts. However,
advancements in text encoding algorithms, such as pre-trained language
models (PLMs), have led researchers to develop automated knowledge-
tagging systems that leverage deep semantic embeddings. Wen and Xu from
Squirrel Ai and Li from Michigan State University, USA explore the
automation of knowledge tagging using LLMs in Chapter 8. The authors
address the limitations of earlier encoding-based methods, particularly in
complex cases requiring extensive domain expertise and nuanced concept
definitions. By utilizing LLMs’ advanced reasoning and tool-using
capabilities, the study overcomes the challenges of previous approaches and
achieves humanlevel performance with large-scale LLMs. The findings



highlight the significant potential of LLMs in educational applications,
demonstrating their ability to provide accurate and efficient knowledge
tagging for math questions. This automation not only streamlines the
process for educators but also ensures that students have access to well-
organized and relevant practice materials. The study underscores the
transformative impact of LLMs in education, paving the way for more
effective and accessible learning experiences.

A team of researchers from Italy and Spain (Bucchiarone, Chiarello, Vito
Giordano, Schiavo, & Vazquez-Ingelmo) explores the intersection of
generative AI and personalized learning, focusing on the evolving role of
educators in using LLMs to design customized educational experiences in
Chapter 9. As generative AI technologies gain prominence in education,
understanding their potential to enhance learning while addressing
educators’ practical challenges becomes increasingly important. The
chapter examines how LLMs are integrated into teaching strategies,
highlighting their ability to generate coherent learning paths aligned with
diverse learner profiles and educational goals. To support this integration,
the chapter introduces the ENCORE ecosystem, a digital tool designed to
help educators develop lesson plans by combining LLMs with Open
Educational Resources (OERs). ENCORE provides modular APIs and an
intuitive interface, enabling the personalization of content and the
construction of adaptive learning pathways tailored to individual needs. The
tool leverages generative AI to streamline the selection and alignment of
learning materials with specific objectives. A user study evaluates the
practical use of AI-driven features, offering insights into educators’
experiences, challenges, and opportunities. The chapter concludes by
exploring future directions for AI in education, emphasizing strategies to
foster effective collaboration between educators and AI tools to enhance



personalized learning outcomes. The chapter demonstrates the
transformative potential of integrating LLMs and OERs in education,
providing valuable insights into designing adaptive learning paths that cater
to individual learner needs.

In Chapter 10, Heng, Sok, and Sol delve into Cambodian graduate
students’ experiences using generative AI for academic writing. While
research on generative AI in English language education and higher
education has been growing, there is limited focus on its use in academic
writing among graduate students. Through indepth interviews with
Cambodian master’s and doctoral students, the study reveals that generative
AI significantly impacts their academic writing. The findings show that
students face several challenges when interacting with generative AI, such
as incomplete AI-generated responses, lack of contextual and
comprehensive outputs, and the risk of diminished critical thinking and
creativity. Despite these challenges, the study also highlights several
benefits experienced by the students, including improved academic writing
skills and increased confidence in their writing. The study emphasizes the
importance of AI-human collaboration and the need for capacity
development on the ethical and effective use of generative AI. This
approach can help prevent students from overly relying on AI-generated
content and becoming dependent on AI technologies. By addressing these
challenges and leveraging the benefits, educators can foster a more
balanced and effective use of generative AI in academic writing.

From Ludwig Maximilian University of Munich and Nuremberg Tech in
Germany, Azaiz, Kiesler, and Strickroth explore the potential of Generative
AI (GenAI) tools, specifically OpenAI’s o1-preview model, for providing
personalized feedback in introductory programming. In Chapter 11 the
authors reported that by analyzing feedback on student solutions using



categories from previous models (e.g., GPT-3.5 and 4 Turbo), the study
highlights several feedback characteristics, including content, structure,
code representation, correctness, optimizations, stylistic improvements, and
inconsistencies. The o1-preview model produced longer feedback and more
frequent task-violating recommendations. The study provides an overview
of the o1-preview’s feedback capabilities, noting its differences from
previous versions, thus contributing to the benchmarking of GenAI tools for
programming exercises.

3 Conclusions
This concluding chapter synthesizes the research findings presented
throughout the book, highlighting the transformative role of LLMs in
education. The studies examined in this volume collectively illustrate how
LLMs are reshaping learning environments, offering new possibilities for
personalized education, interactive engagement, and enhanced accessibility.
At the same time, they bring forth critical ethical, pedagogical, and practical
challenges that must be addressed to harness their full potential responsibly.
One of the book’s key takeaways is the significant promise LLMs hold for
adaptive learning. Through frameworks such as the EPICC model,
researchers have demonstrated how iterative content refinement and critical
engagement with AI-generated outputs can enhance problem-solving and
creativity. The integration of AI-driven VTAs, as seen in JeepyTA and the
vTA framework, showcases how LLMs can extend the availability of
academic support, particularly in online education. Furthermore, the
automation of knowledge tagging in mathematics demonstrates the
efficiency gains AI can bring to educational content organization.

However, the studies also underscore the limitations and risks associated
with the widespread adoption of LLMs in education. Cultural biases
embedded in foundational AI models can hinder inclusive learning



experiences, particularly for non-Western learners. Engagement studies
reveal that while LLMs may initially boost motivation and self-efficacy,
these benefits can wane over time, leading to reduced autonomy and
increased dependency on AI-generated content. Ethical concerns,
particularly regarding academic integrity and misinformation, remain
central to discussions on responsible AI usage. The research also highlights
the evolving role of educators in AI-enhanced classrooms. With the advent
of tools like the ENCORE ecosystem, teachers are no longer just
knowledge providers but facilitators of AI-driven learning experiences. This
shift necessitates new pedagogical strategies that integrate AI effectively
while preserving essential skills such as critical thinking and independent
problem-solving (Eager, 2024). The Cambodian graduate students’
experiences with generative AI for academic writing further reinforce the
importance of guidance in AI-assisted learning environments to prevent
over-reliance and ensure balanced cognitive development.

Future research should focus on refining AI models to mitigate cultural
biases and improve contextual understanding across diverse learner
populations. Longitudinal studies on student engagement with AI tools
could provide deeper insights into how motivation and learning autonomy
evolve over extended periods. Additionally, exploring the cognitive and
psychological effects of AI-assisted learning, particularly in implicit and
incidental knowledge acquisition, could offer valuable perspectives on
optimizing AI’s role in education. Finally, as AI integration in classrooms
grows, there is a need for robust frameworks that align with ethical
guidelines, ensuring that AI-driven education remains inclusive, equitable,
and beneficial for all students. In conclusion, while LLMs hold immense
potential to enhance learning experiences, their responsible and effective
deployment requires careful consideration of ethical, cultural, and



pedagogical factors (Khan, 2024). The findings presented in this book lay
the groundwork for ongoing exploration, inviting educators, researchers,
and policymakers to collaboratively shape the future of AI in education.
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