

Scaling Enterprise
Solutions with Large

Language Models
Comprehensive End-to-End

Generative AI Solutions
for Production-Grade
Enterprise Solutions

Arindam Ganguly

Scaling Enterprise Solutions with Large Language Models: Comprehensive

End-to-End Generative AI Solutions for Production-Grade Enterprise

Solutions

ISBN-13 (pbk): 979-8-8688-1153-1 ISBN-13 (electronic): 979-8-8688-1154-8
https://doi.org/10.1007/979-8-8688-1154-8

Copyright © 2025 by Arindam Ganguly

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aditee Mirashi
Desk Editor: James Markham
Editorial Project Manager: Jacob Shmulewitz
Copy Editor: Kezia Endsley

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
Delaware LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/
services/source-code.

If disposing of this product, please recycle the paper

Arindam Ganguly
Howrah, West Bengal, India

https://doi.org/10.1007/979-8-8688-1154-8

Dedicated to my better half, Sugandha Ghosh,
and to my mother

v

Table of Contents

About the Author ���xiii

About the Technical Reviewer ��xv

Acknowledgments ��xvii

Introduction ���xix

Chapter 1: Machine Learning Primer ��1

The Origins of Machine Learning ��1

Linear Regression ���3

Decision Tree ���6

Ensemble Methods ���9

The Case of the Late Night Burglar ��10

Voting Classifier ���10

Bagging and Pasting��12

Random Forest ��15

Boosting ��16

Stacking���18

Metrics ��19

Accuracy ��20

Precision ��21

Recall ���22

Confusion Matrix ���22

ROC AUC ��25

Mean Squared Error ��25

https://doi.org/10.1007/979-8-8688-1154-8_1
https://doi.org/10.1007/979-8-8688-1154-8_1
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec1
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec2
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec3
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec4
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec5
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec6
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec7
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec8
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec9
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec12
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec13
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec14
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec15
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec16
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec17
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec18
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec19

vi

Deep Learning ���27

Sigmoid Neuron ���29

Problems with Sigmoid Neuron ���31

Tanh ���31

Vanishing Gradient Problem ��32

ReLU ��33

Leaky ReLU ��34

TensorFlow and Keras ���36

Optimizers ���38

Unsupervised Learning ���43

K-Means Clustering Algorithm ���44

Associative Rule Mining ��46

Dimensionality Reduction ��47

Summary���47

Chapter 2: Natural Language Processing Primer �������������������������������49

Steps for an NLP Task ���50

Data Gathering ���51

NLTK and Spacy ���55

Cleaning Data ��59

Tokenization ��67

Vectorization and Embedding ��69

Model Selection, Training, and Evaluation ���73

Deep Learning in Natural Language Processing ���74

Pretrained Embeddings ���79

Summary ���82

Table of ConTenTs

https://doi.org/10.1007/979-8-8688-1154-8_1#Sec20
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec21
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec22
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec23
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec24
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec25
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec26
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec27
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec28
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec34
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec35
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec36
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec37
https://doi.org/10.1007/979-8-8688-1154-8_1#Sec38
https://doi.org/10.1007/979-8-8688-1154-8_2
https://doi.org/10.1007/979-8-8688-1154-8_2
https://doi.org/10.1007/979-8-8688-1154-8_2#Sec1
https://doi.org/10.1007/979-8-8688-1154-8_2#Sec2
https://doi.org/10.1007/979-8-8688-1154-8_2#Sec3
https://doi.org/10.1007/979-8-8688-1154-8_2#Sec4
https://doi.org/10.1007/979-8-8688-1154-8_2#Sec13
https://doi.org/10.1007/979-8-8688-1154-8_2#Sec15
https://doi.org/10.1007/979-8-8688-1154-8_2#Sec17
https://doi.org/10.1007/979-8-8688-1154-8_2#Sec18
https://doi.org/10.1007/979-8-8688-1154-8_2#Sec19
https://doi.org/10.1007/979-8-8688-1154-8_2#Sec20

vii

Chapter 3: RNN to Transformer and BERT ���83

Sequence Modeling ��84

Recurrent Neural Networks ���85

Problems with Vanilla RNN ��88

Attention ��95

Encoder-Decoder Models ��99

Self-Attention ��100

Transformers ���102

BERT ��112

HuggingFace Transformers ��114

Summary ���127

Chapter 4: Large Language Models ��129

Language Models (LLMs) ��130

Masked Language Modeling��130

Sequence-to-Sequence Models ��132

Autoregressive Models ��132

GPT ��133

Reinforcement Learning��135

OpenAI Gym���137

Reinforcement Learning Through Human Feedback ���139

Instruct GPT���140

OpenAI ���142

Prompting ��144

OpenAI API ���150

Create Your API Key ���150

Setting Up Postman ���151

Handling Rate Limits ���155

Table of ConTenTs

https://doi.org/10.1007/979-8-8688-1154-8_3
https://doi.org/10.1007/979-8-8688-1154-8_3
https://doi.org/10.1007/979-8-8688-1154-8_3#Sec1
https://doi.org/10.1007/979-8-8688-1154-8_3#Sec2
https://doi.org/10.1007/979-8-8688-1154-8_3#Sec3
https://doi.org/10.1007/979-8-8688-1154-8_3#Sec6
https://doi.org/10.1007/979-8-8688-1154-8_3#Sec7
https://doi.org/10.1007/979-8-8688-1154-8_3#Sec8
https://doi.org/10.1007/979-8-8688-1154-8_3#Sec9
https://doi.org/10.1007/979-8-8688-1154-8_3#Sec17
https://doi.org/10.1007/979-8-8688-1154-8_3#Sec20
https://doi.org/10.1007/979-8-8688-1154-8_3#Sec23
https://doi.org/10.1007/979-8-8688-1154-8_4
https://doi.org/10.1007/979-8-8688-1154-8_4
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec1
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec2
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec3
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec4
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec5
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec6
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec7
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec8
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec9
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec10
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec11
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec17
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec18
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec19
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec20

viii

LLM API Best Practices ��156

Common Issues ���156

The IT Assistant ���157

Preparing the Database ���159

Preparing the Backend and Orchestration Layer ���161

Creating a Python File ���162

Creating Microservices ��166

Mission Accomplished ��178

Summary���181

Chapter 5: Retrieval Augmented Generation ������������������������������������183

Prompt Engineering ��184

Chain of Thought Prompting ��185

Vector Databases ���188

LangChain ��197

Building Your First RAG Application ���204

Summary ���213

Chapter 6: LLM Evaluation and Optimization ������������������������������������215

The Need for LLM Evaluation ��216

LangGraph ���217

Hallucinations ���218

LLM as a Judge ���219

Corrective RAG ���220

Benchmarking ���231

MLFlow ���232

MLFlow for Scikit-Learn Models��233

The Complete Intelligent Application with MLFlow Tracker �������������������������239

Dockerfiles���249

Table of ConTenTs

https://doi.org/10.1007/979-8-8688-1154-8_4#Sec21
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec22
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec23
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec24
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec25
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec26
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec27
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec28
https://doi.org/10.1007/979-8-8688-1154-8_4#Sec29
https://doi.org/10.1007/979-8-8688-1154-8_5
https://doi.org/10.1007/979-8-8688-1154-8_5
https://doi.org/10.1007/979-8-8688-1154-8_5#Sec1
https://doi.org/10.1007/979-8-8688-1154-8_5#Sec2
https://doi.org/10.1007/979-8-8688-1154-8_5#Sec4
https://doi.org/10.1007/979-8-8688-1154-8_5#Sec9
https://doi.org/10.1007/979-8-8688-1154-8_5#Sec12
https://doi.org/10.1007/979-8-8688-1154-8_5#Sec13
https://doi.org/10.1007/979-8-8688-1154-8_6
https://doi.org/10.1007/979-8-8688-1154-8_6
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec1
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec2
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec3
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec4
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec5
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec6
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec7
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec8
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec11
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec17

ix

Tracking LLM and Generative AI Applications ���257

Preparing Custom Generative AI Evaluation Metrics Using MLFlow ������������265

Portkey ��269

Creating an Account ��269

Using Portkey in Your Code ��273

Load Balancing ��279

Caching ��280

vLLM ���281

Prerequisites ���282

Steps to Install ���282

Summary���284

Chapter 7: AI Governance and Responsible AI ���������������������������������285

AI Fairness ��286

Explainable AI ��288

Drift ���294

Model Drift ���294

Data Drift ���295

Drift Detection ���296

AI Regulations ���299

LLM and Prompt Governance ��302

Langfuse ��303

Prompt Governance Using Langfuse ���310

Summary���316

Table of ConTenTs

https://doi.org/10.1007/979-8-8688-1154-8_6#Sec20
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec21
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec22
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec23
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec24
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec25
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec26
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec27
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec28
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec29
https://doi.org/10.1007/979-8-8688-1154-8_6#Sec30
https://doi.org/10.1007/979-8-8688-1154-8_7
https://doi.org/10.1007/979-8-8688-1154-8_7
https://doi.org/10.1007/979-8-8688-1154-8_7#Sec1
https://doi.org/10.1007/979-8-8688-1154-8_7#Sec2
https://doi.org/10.1007/979-8-8688-1154-8_7#Sec5
https://doi.org/10.1007/979-8-8688-1154-8_7#Sec6
https://doi.org/10.1007/979-8-8688-1154-8_7#Sec7
https://doi.org/10.1007/979-8-8688-1154-8_7#Sec8
https://doi.org/10.1007/979-8-8688-1154-8_7#Sec9
https://doi.org/10.1007/979-8-8688-1154-8_7#Sec10
https://doi.org/10.1007/979-8-8688-1154-8_7#Sec11
https://doi.org/10.1007/979-8-8688-1154-8_7#Sec12
https://doi.org/10.1007/979-8-8688-1154-8_7#Sec13

x

Chapter 8: Adding Intelligence to Large Enterprise Applications �����317

A Typical Chatbot ���318

The Need for AI Architecture ���320

Experimentation Environment ���322

The Intelligent IT Assistant ��323

The Enterprise CRM ��325

Setting Up HubSpot ���325

Setting Up HubSpot Private App for REST API integration ���������������������������327

Setting Up the Knowledge Repository ��333

Agents ���334

Building the Bot ��339

Setting Up the Vector Database ���340

Developing Agents in LangChain ���341

Summary���354

Chapter 9: Data Pipelines in Generative AI ���������������������������������������357

A Closer Look at Data ��358

File Formats ��359

JSON ��359

CSV ��359

XML��359

Avro and Parquet ���360

Data Models and Data Storage ���361

Data Processing Systems ���361

The Data-Intensive AI Assistant ��362

Setting up MinIO ��365

Upload File Application ��367

RAG from an S3 Bucket ���374

Table of ConTenTs

https://doi.org/10.1007/979-8-8688-1154-8_8
https://doi.org/10.1007/979-8-8688-1154-8_8
https://doi.org/10.1007/979-8-8688-1154-8_8#Sec1
https://doi.org/10.1007/979-8-8688-1154-8_8#Sec2
https://doi.org/10.1007/979-8-8688-1154-8_8#Sec3
https://doi.org/10.1007/979-8-8688-1154-8_8#Sec4
https://doi.org/10.1007/979-8-8688-1154-8_8#Sec5
https://doi.org/10.1007/979-8-8688-1154-8_8#Sec6
https://doi.org/10.1007/979-8-8688-1154-8_8#Sec7
https://doi.org/10.1007/979-8-8688-1154-8_8#Sec8
https://doi.org/10.1007/979-8-8688-1154-8_8#Sec9
https://doi.org/10.1007/979-8-8688-1154-8_8#Sec10
https://doi.org/10.1007/979-8-8688-1154-8_8#Sec11
https://doi.org/10.1007/979-8-8688-1154-8_8#Sec12
https://doi.org/10.1007/979-8-8688-1154-8_8#Sec13
https://doi.org/10.1007/979-8-8688-1154-8_9
https://doi.org/10.1007/979-8-8688-1154-8_9
https://doi.org/10.1007/979-8-8688-1154-8_9#Sec1
https://doi.org/10.1007/979-8-8688-1154-8_9#Sec2
https://doi.org/10.1007/979-8-8688-1154-8_9#Sec3
https://doi.org/10.1007/979-8-8688-1154-8_9#Sec4
https://doi.org/10.1007/979-8-8688-1154-8_9#Sec5
https://doi.org/10.1007/979-8-8688-1154-8_9#Sec6
https://doi.org/10.1007/979-8-8688-1154-8_9#Sec7
https://doi.org/10.1007/979-8-8688-1154-8_9#Sec8
https://doi.org/10.1007/979-8-8688-1154-8_9#Sec9
https://doi.org/10.1007/979-8-8688-1154-8_9#Sec10
https://doi.org/10.1007/979-8-8688-1154-8_9#Sec11
https://doi.org/10.1007/979-8-8688-1154-8_9#Sec12

xi

Apache Kafka for Streaming ��383

Using Data Pipelines in AI Assistant ��388

Summary���401

Chapter 10: Putting It All Together ���403

Option 1: Minimizing Cost while Maximum Efficiency ��������������������������������������404

Determining Optimal Intelligence ��404

Small Language Models ��409

Phi 3�5 ���410

Option 2: Getting the Best Performance with the Same Cost ���������������������������413

Fine-Tuning Large Language Models ��413

Parameter Efficient Fine Tuning (PEFT) ���414

Low Rank Adaptation (LoRA) ���415

Implementing PEFT LoRA in Python ��416

Long Context LLM and RAG ���422

Self-Routing ���423

Summary���424

 Index ���427

Table of ConTenTs

https://doi.org/10.1007/979-8-8688-1154-8_9#Sec13
https://doi.org/10.1007/979-8-8688-1154-8_9#Sec15
https://doi.org/10.1007/979-8-8688-1154-8_9#Sec16
https://doi.org/10.1007/979-8-8688-1154-8_10
https://doi.org/10.1007/979-8-8688-1154-8_10
https://doi.org/10.1007/979-8-8688-1154-8_10#Sec1
https://doi.org/10.1007/979-8-8688-1154-8_10#Sec2
https://doi.org/10.1007/979-8-8688-1154-8_10#Sec7
https://doi.org/10.1007/979-8-8688-1154-8_10#Sec8
https://doi.org/10.1007/979-8-8688-1154-8_10#Sec9
https://doi.org/10.1007/979-8-8688-1154-8_10#Sec10
https://doi.org/10.1007/979-8-8688-1154-8_10#Sec11
https://doi.org/10.1007/979-8-8688-1154-8_10#Sec12
https://doi.org/10.1007/979-8-8688-1154-8_10#Sec13
https://doi.org/10.1007/979-8-8688-1154-8_10#Sec15
https://doi.org/10.1007/979-8-8688-1154-8_10#Sec16
https://doi.org/10.1007/979-8-8688-1154-8_10#Sec17

xiii

Arindam Ganguly is an experienced data

scientist at a leading multi-national software

service firm, where he is responsible for

developing and designing intelligent solutions

by leveraging his expertise in AI and data

analytics. He has over nine years of experience

delivering enterprise products and applications

and has proven skillsets in developing and

managing a number of software products with

various technical stacks.

Arindam also is well-versed in developing automation and hyper-

automation solutions that leverage automated workflow engines and

integrating them with AI. Additionally, he is the author of Build and Deploy

Machine Learning Solutions Using IBM Watson, which teaches readers

how to build AI applications using the popular IBM Watson toolkit.

About the Author

xv

Varunsaagar Saravanan is an experienced

AI/ML engineer specializing in Generative AI,

Large Language Models, and NLP. With over

six years of experience, he has contributed

to groundbreaking AI solutions across the

media, entertainment, and e-governance

sectors. Recognized for award-winning

innovations like the ePaarvai AI Cataract Application and his leadership

in AI-driven local news broadcasting, Varunsaagar has published research

and mentored teams in AI strategy. His work integrates cutting-edge AI

techniques into impactful, scalable products, driving transformation and

innovation.

About the Technical Reviewer

xvii

This book would not be possible without the constant support of my

partner, Sugandha Ghosh. There were many times when she pushed me to

complete the book when I thought it was not within me to do so. A big hug

and a thanks to my mother, Moli Ganguly, for always putting up with me

when I’m too busy working and writing and not being able to give her the

time she deserves. It would not be just if I didn't mention my childhood

pal, Dipanjan Bosu, for being on my side when I needed motivation.

A lot of this book is derived from public documentation available on

various frameworks, including LangChain and LangGraph. The Scikit-

Learn and OpenAI documentation are worth mentioning here, as most of

the book relies on them.

Last, but not the least, a big thanks to the team at Apress, especially

Aditee and Shobana, for helping me during the project.

Acknowledgments

xix

Introduction

It will not be long before the world adapts AI into daily life for even the

simple things. The information industry will be overwhelmed with the

demands of consumers. Many AI enthusiasts and self-proclaimed experts

have good knowledge of certain parts of AI, but they usually fail when

attempting to put all these concepts together.

I had been a long-term enthusiast when AI was still a buzzword and

the information age was gearing up for Big Data. I have seen my colleagues

and seniors struggle to manage large datasets, let alone analyze and play

around with them.

After Big Data was sorted with technologies such as Hadoop and Spark,

and machine learning was established using Scikit-Learn, anticipation

ran wild with the kinds of opportunities it could bring to the market.

Developers soon realized that, although these AI techniques are good tools

for solving smaller isolated problems, there was no way to marry them

together to create a large enterprise application. Soon interest dropped,

and AI became dormant in areas dealing with large scale applications.

I have seen some of the biggest players throw away machine learning

just because it couldn't address these real-world datasets.

There are two types of people working with AI—the scientists who

give their heart and soul in bettering the algorithms and the practitioners

who try to use these algorithms in the real world. Although it was going

good for the scientists, the constant setbacks of the practitioners led the

AI industry to a halt—that is, until the introduction of the Transformers

architecture. The world quickly saw the inception of Generative AI and

LLMs. Suddenly, there was an overwhelming demand for embedding AI

into these applications. But again, practitioners realized the struggles of

infusing Generative AI into large-scale enterprise applications.

xx

During some very tough months, the AI practitioner community came

up with techniques to use the best of ML and Generative AI in real-world,

large-scale applications and data. This is when I realized the necessity

to author a book to spread the word that MLOps, Gen AI, and data

engineering can carefully coexist and create wonderful additions to non-

intelligent large-scale enterprise applications.

This book follows a structured approach, where a practitioner can

relate to the struggle and an enthusiast who has perfected their AI skills is

introduced to the real-world struggle of putting their skills into place for

large applications and datasets. This book introduces AI and Generative

AI concepts and explains ways to infuse them into applications to run

them in production. I hope this book will be a revelation into the tricks and

techniques needed to set you apart in the world of AI.

InTroduCTIon

1© Arindam Ganguly 2025
A. Ganguly, Scaling Enterprise Solutions with Large Language Models,
https://doi.org/10.1007/979-8-8688-1154-8_1

CHAPTER 1

Machine Learning
Primer
The world has gone through a lot of revolutions since the dawn of time. For

example, during the stone age, humans invented powerful tools for basic

survival (such as the wheel). With the advent of city life, humans started

embedding structures into all forms of work, and this lead to the industrial

revolution. One of the biggest revolutions taking place now is called the

artificial intelligence (AI) revolution.

Although it may seem intuitive from a 30,000-foot level, the current

advancements are products of multiple waves of AI inventions, starting

from the first Turing machine concept. To give you a better understanding

of machine learning (ML), this chapter provides an overview of the subject.

 The Origins of Machine Learning
According to Wikipedia, “The term machine learning was coined in 1959

by Arthur Samuel, an IBM employee and pioneer in the field of computer

gaming and artificial intelligence. The synonym self-teaching computers

was also used in this time period.” To understand this, consider the

difference between traditional problem solving and machine learning (see

Figure 1-1).

https://doi.org/10.1007/979-8-8688-1154-8_1#DOI

2

Problem solving has been an inherent human skill since the beginning

of time. Problem-solving methods were put into structures in the form

of algorithms. With the advent of computers, algorithms could be

programmed into computers and solve complex problems flawlessly.

These algorithms can be structured into computers as procedural or

functional programming. Procedural programming takes each step one by

one and uses iterations and conditions in a monolithic structure. On the

other hand, functional programming uses the concept of mathematical

functions to break a problem down into smaller problems and arrive at a

final solution. With the advancement of time, more problem-solving skills

have come to existence, but the basic theory remains the same. Given a set

of data as the input and a set of rules, the outcome is a set of outputs.

These problem-solving methods work best when there is a predefined

set of rules or a known set or path to follow. When the ruleset is not known

but the desired output is known, the input and output is used to create a

set of rules. In other words, the machine tries to learn a rule (or pattern), in

order to produce the known output as accurately as possible.

Machine learning is an application of statistics. In other words, it is the

study of statistical inference. Hence, all the machine learning algorithms

are derived from various statistical inference techniques.

The following sections look at some of the popular machine learning

algorithms.

Chapter 1 MaChine Learning priMer

3

Figure 1-1. Traditional computer programming vs machine learning

 Linear Regression
Linear regression (see Figure 1-2) is one of the most popular and intuitive

machine learning algorithms. It assumes that the dataset is linearly shaped

and hence tries to use a linear line equation on the dataset.

Y = WX+b

Chapter 1 MaChine Learning priMer

4

Figure 1-2. Linear regression

The task of the machine learning algorithm is to figure out W and b,

given X is the set of inputs and Y is the set of outputs. Since there is no fixed

rule, the algorithm iterates with some initial values of W and b, producing

new values of Y (say Y’) and X (say X’) until the differences between Y and

Y’ and X and X’ are so small that they can be ignored.

Although this might seem easy, the detailed math behind it is very

complex. But developers need not worry so much about the mathematical

intricacies, because Python many packages to abstract all the complexities

behind single lines of code.

Python is the most popular language choice for data scientists and

machine learning engineers. The most popular package for traditional

machine learning algorithms is Scikit-Learn (see https://scikit-
learn.org).

Scikit-Learn can help you develop a simple linear regression with just

four lines of code:

Chapter 1 MaChine Learning priMer

https://scikit-learn.org
https://scikit-learn.org

5

from sklearn import datasets, linear_model

X, y = datasets.load_diabetes(return_X_y=True)

X = X[:,8].reshape(-1,1)

lr = linear_model.LinearRegression()

lr.fit(X, y)

This code uses the diabetes dataset available in the Scikit-Learn

datasets.

Note the line X = X[:,8].reshape(-1,1).

It works in two steps:

 1. It takes only the eighth column of data. If you want

to see other columns instead, you can run the

following Python code and include the name of

those columns:

db = datasets.load_diabetes()
print(db.feature_names)

 2. The second step is reshaping the datasets. Since

you are only taking one column out of the complete

matrix, it is just one row. Hence the X matrix

becomes a one- dimensional array. But linear

regression expects data in two-dimensional format.

Hence it is necessary to convert an array of type

[a1,a2,a3,…] to [[a1],[a2],[a3],…]. Reshaping to (-1,1)

does this trick. -1 in reshape tells Python to keep the

length as it is. Hence reshaping from (n) to (-1,1)

means reshaping from (n) to (n,1).

Chapter 1 MaChine Learning priMer

6

Once the regression is complete, you can generate sample predictions

using the following code:

sample_preds = lr.predict(X)

The linear regression algorithm uses gradient descent, which uses

a loss function to iteratively check how close the real output is to the

predicted output. It does this using derivatives of the weights and biases

(the W in the linear regression and b, respectively).

The code is in the GitHub repository for the book SimpleLR.ipynb.

Although the code for linear regression is just a single line, machine

learning mostly comprises a lot of phases apart from these algorithms,

which I discuss separately in consecutive chapters.

Let’s look at some of the other algorithms and see how their

Scikit-Learn implementations look.

 Decision Tree
There are a lot of complex techniques to track what is going on inside the

algorithms. Among all of the machine learning algorithms, decision tree is

one of the most intuitive. Some machine learning algorithms, such as the

deep learning algorithms, are black boxes in terms of interpretability.

A decision tree works by breaking down the features and their values

into a tree so it can reach a decision on the value of the outcome. As with other

algorithms, Scikit-Learn helps you use this algorithm in just a few lines of code:

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

iris = load_iris()
X, y = iris.data, iris.target
clf = DecisionTreeClassifier()
clf = clf.fit(X, y)

Chapter 1 MaChine Learning priMer

7

The dataset used is the Iris dataset, which uses Sepal Length, Sepal

Width, Petal Length, and Petal Width to predict the type of iris—Setosa,

Versicolor, or Virginica.

To see how the decision tree fits on the dataset, you can use this code:

from sklearn import tree
tree.plot_tree(clf)

The output is shown in Figure 1-3.

Figure 1-3. Decision tree classifier on the Iris dataset

Using this visualization, you can clearly see how the algorithm fits

the dataset in the form of a tree. The algorithm to form the tree lies

in the algorithm it uses to break down a node. There has been a lot of

research into coming up with ways to form the tree. One such way is CART

(Classification And Regression Tree), which uses a concept known as

impurity or more technically, Gini impurity.

Chapter 1 MaChine Learning priMer

8

A Gini impurity is calculated from the number of elements of each

category that exists in a node versus the total number of elements in the

node. For instance, in Figure 1-3, if you focus on the topmost node in the

figure, Gini=0.667 and the number of samples is [50,50,50], all the categories

are of equal length, this is how we set the dataset to begin training so as to

start with a balanced dataset. The formula to calculate Gini is as follows

Gini = 1- ∑(cati/total number of samples)2

where cati is the number of data samples in the ith category.

Assume that the decision tree algorithm wants to split the node

into two based on a certain column and condition. The [column j]<=x

value, which leads to m_left items in the left node after the split and

m_right items in the right node after the split. The CART algorithm starts

calculating a cost using this formula:

m left

m
Gini left

_ () +
m right

m
Gini right

_ ()

where m is the total number of elements, Gini(left) is the Gini impurity of

the left node, and Gini(right) is the Gini impurity at the right node. The

CART algorithm will then employ its optimization technique so that it can

find a split condition with most minimum cost.

It does this recursively until either the Gini impurity is zero or it

reaches the maximum depth of the tree. The maximum depth can be

specified by the hyperparameter called max_depth, which you can pass in

the DecisionTreeClassifier constructor as follows:

clf = DecisionTreeClassifier(max_depth=5)

This line of code ensures that the number of levels of the tree does not

cross 5.

Other hyperparameters you can use are min_samples_leaf and min_
samples_split, which restrict the tree to split only into a certain number

of nodes.

Chapter 1 MaChine Learning priMer

9

You can also recursively tune and test these hyperparameters to find

your best fit by using grid search, which I discuss in an upcoming chapter.

There are also techniques—such as ID3 and C4.5—which you can

check out.

Although CART is a good enough algorithm to use, you can further

optimize it using hyperparameters such as the following:

max_depth : max_depth resi

There are numerous algorithms that are used by developers, some of

the most popular ones are:

K-Nearest Neighbors

Support Vector Machines

PCA

Discussing all of them is out of the scope of this book. Scikit-Learn’s

official website is a wonderful place to start digging.

 Ensemble Methods
There has been continuous innovation in the field of data science and with

data scientists developing various machine learning algorithms with every

passing day, there is a new machine learning algorithm or a new technique

involving them just to make predictions better. It is similar to finding a

new software developer everyday just to make your organization work a

little better. But what if you could combine the best of the lot to get more

accurate predictions, surpassing the individual algorithms!

Ensemble learning deals with taking one or multiple such algorithms

and combining them to get a better result than the individual ones. The

idea behind ensemble learning is to leverage the idea behind the “wisdom

of the crowd,” which says that collective opinion is more accurate than any

one individual.

Chapter 1 MaChine Learning priMer

10

There are various ensemble learning techniques in which ensemble

learning can be achieved that this section briefly touches on.

 The Case of the Late Night Burglar
Assume for this example that your home was burgled and the police have

two suspects. Your neighbors claim to have seen a man in your premises

and they have been called in for identification.

If you try to map this analogy using machine learning, the task is a

classification task and it chooses between two classes—the two suspects.

Your neighbors are your machine learning algorithms trying to match the

suspects with the burglar they spotted from far in the dark on the basis of

body height and structure (which are the features that your algorithms will

consume).

Your neighbors may have been from various age groups and staying

at various locations around your house. Some of your neighbors were in

front of your house, whereas others were a bit farther away. These factors

determine the accuracy of the neighbors in determining who is the real

perpetrator.

 Voting Classifier
One of the best ways to discern with certain precision who the real burglar

is is to let the neighbors predict it and ask them to score their confidence

levels. Suppose you get the following table from the neighbors’ guesses, as

shown in Figure 1-4.

Chapter 1 MaChine Learning priMer

11

Figure 1-4. Neighbor’s predictions

You can employ a private detective to analyze the situation or you

can employ your data science skill and try to arrive at a solution using the

voting classifier technique.

To use a voting classifier, you take an aggregate of the scores for each

suspect, as shown here:

Score for Suspect 1 = (78+83+51)/3 = 70.67

Score for Suspect 2 = (46+90)/2 = 68

Using this technique, Suspect 1 seems to be the legit perpetrator.

The voting classifier uses multiple predictors (ML algorithms such

as decision tree, SVM, and so on) to draw predictions and then uses the

scores of those predictions to aggregate and determine the class based on

the scores, exactly as was done in the burglar scenario.

This technique is known as soft voting. If you had counted the number

of times your algorithms predicted one class and compared it to the other

class, and you make a decision based on that difference, it is known as

hard voting.

In Python, you can leverage VotingClassifier from sklearn.
ensemble, as shown in this code snippet:

voting_clf = VotingClassifier(
 estimators=[
 ('lr', LogisticRegression(random_state=42)),
 ('rf', RandomForestClassifier(random_state=42)),

Chapter 1 MaChine Learning priMer

12

 ('svc', SVC(random_state=42))
]
)
voting_clf.fit(X_train, y_train)

As you can see, the code snippet uses multiple predictors—such as

logistic regression, random forest classifier, and SVM-to get their scores

and aggregate to get the best voted class.

 Bagging and Pasting
Let’s return to the late night burglar crime scene. In the previous

technique, the cops called the neighbors of all the neighboring houses.

But since some of the houses were farther away, it was obvious that their

confidence scores would be smaller than the neighbor’s score of the house

right in front of yours (the crime scene). You can instead ask the cops to

ask only the neighbors of that house.

To correlate this to the machine learning ensemble technique, you

can think of the family in the house in front as one single ML algorithm.

For example, if you chose a decision tree as the algorithm, you can take

multiple instances of the decision tree and sample the training data

for each instance of the decision tree. You can then employ the voting

classifier for all these instances, similar to the technique you used earlier.

This technique is known as bagging. See Figure 1-5.

Chapter 1 MaChine Learning priMer

13

Figure 1-5. Simple voting classifier

In bagging, the number of training instances is divided and spread

among the instances of the decision tree. Each instance has different

samples of the training data. If there are overlaps in the samples, bagging

turns into pasting. In the pasting technique, each time a sample of the

training dataset is drawn, it is replaced and a fresh sample is drawn. This

is as opposed to bagging, where each sampling is done without replacing

anything. Hence there are no overlaps in bagging, as the sampling excludes

the samples drawn for the previous instance. See Figure 1-6.

Chapter 1 MaChine Learning priMer

14

Figure 1-6. Bagging and pasting

Pasting and bagging may seem counterintuitive as opposed to the

voting classifier, since it’s using the same algorithm every time. But it uses

the law of large numbers to increase the confidence of the predictions by

taking multiple instances of the same algorithm.

Pasting takes more CPU power, since it uses redundancy to bulk up

the confidence and hence arrives with less bias than bagging. But bagging

remains the favorite among industries due to its lightweight nature.

Scikit-Learn has an encapsulation for this as well and you can use

bagging as follows:

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier

bag_clf = BaggingClassifier(DecisionTreeClassifier(), n_
estimators=500, max_samples=100, n_jobs=-1, random_state=42)
bag_clf.fit(X_train, y_train)

Chapter 1 MaChine Learning priMer

15

n_estimators tells the bagging classifier to use 500 instances of the

decision tree classifier and max_samples tells the bagging classifier to take

100 training data records for each sample. You can add bootstrap=False if

you want to perform pasting instead of bagging.

 Random Forest
The bagging classifier also has two parameters to sample features along

with training records—max_features and bootstrap_features. They

work similar to max_samples and bootstrap, but for features instead

of training data records. So, if you have max_features set to something

less than 1, it will sample the feature set and should take that fraction of

features (training data columns) for each instance and sample. Similarly,

bootstrap_features will ensure that there are no overlaps on feature

sampling if it is set to False. If bootstrap_features is True, it means

pasting but with feature sampling.

If you allow the bagging classifier to take 100 percent of the training

dataset records but sample only on features and keep the bootstrap_
feature set to True (i.e. ensuring bagging instead of pasting), you have a

random forest classifier.

This is one of the most popular and widely used techniques, and

Scikit-Learn offers the random forest classifier as a separate module to be

imported and used.

from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier()
clf.fit(X, y)

Chapter 1 MaChine Learning priMer

16

 Boosting
Another popular ensemble class is boosting, where you can take several

weak training instances and boost them so they fit well the next time. This

section takes you through two popular boosting techniques.

 Ada Boost

Let’s break down the bagging classifier for a moment and suppose that you

record the scores for each training sample instance. Now you take the ones

that are low according to a preset threshold and decide on a weight that

you are going to add the next time you process the algorithm again. For

the same samples, having low scores or a true value that doesn’t match the

predicted one, i.e. the misclassified instances. If you iterate like this until

you get a decent score and keep on updating the weight every time, you

have resorted to the Ada boost technique.

Mathematically, in Ada boost you calculate the error rate for each ith

instance as ri=∑w(i)
j for all j rows in the ith sample, where true yi is not

equal to predicted yi. You can consider an initial weight for all samples and

all rows.

Now, you calculate the predictor weight as 𝜶i =(1-ri)/ri

𝜼 is your learning rate.

Finally, every time the true yi value is not equal to the predicted

yi value, you update the weight of that training instance sample as

w(i)exp(𝜶i).

You can keep on iterating as long as the true yi value is not equal to the

predicted yi value.

You can invoke Ada boost from Scikit-Learn as follows:

from sklearn.ensemble import AdaBoostClassifier

adaclf = AdaBoostClassifier(DecisionTreeClassifier(),
n_estimators=30, learning_rate=0.5)

Chapter 1 MaChine Learning priMer

17

The next variation of boosting is more popularly used.

 Gradient Boosting

To understand gradient boosting, you should understand what residual

errors are. A residual error is the difference between the true and the

predicted value. Ada boost corrects the weights for each misclassified

instance. In gradient boosting, you set up a new algorithm instance (i.e., a

predictor) for the residual error and combine the prediction scores of the

residuals with the predicted scores on the training instances.

For example, you calculate a predicted y value using an ML algorithm

such as this:

y_pred = ML_algo(y)

Your next step is to calculate residual as y_res1 = y-y_pred.

You use the same ML_algo to calculate a new prediction as follows:

y_res_pred1 = ML_algo(y_res1)

Let’s calculate another level of residual as y_res2 = y_res_pred1- y_res1

and allow ML_algo to calculate another level of prediction as follows:

y_res_pred2 = ML_algo(y_res2)

Now you take y_pred, y_res_pred1 and y_res_pred2 and you can

use an aggregator function such as sum or average to get the final score.

Gradient boosting is widely used; to implement it in Python, use sklearn.
ensemble.GradientBoostingClassifier.

Chapter 1 MaChine Learning priMer

18

 Stacking
The final ensemble technique I want to talk about is Stacking. Stacking is

an interesting concept where you divide the training set into certain layers.

The number of layers determines the number of blenders in your stacking

method. Consider a single layer of blenders. Hence, your training data is

divided into two layers.

You use the first layer to make predictions using the algorithms you

selected, similar to a voting classifier. Now, instead of using an aggregate

function to combine the prediction scores, if you can note down these

predictions and allow another training algorithm to train on these

predictions to arrive at a final score, what you have is a blender. The

final output of your blender is the result of your stacking method (see

Figure 1-7).

Figure 1-7. Stacking

As mentioned, you can stack multiple layers of blenders by dividing

the training set into those many datasets.

Stacking has been adopted by contestants appearing in competitions

hosted in platforms such as Kaggle.

Chapter 1 MaChine Learning priMer

19

Although fitting an algorithm to a dataset is the primary concern,

you also need to know how the algorithm is performing. You need some

evaluation metrics to understand which algorithm is better. The following

section discusses some of the popular metrics used to evaluate machine

learning models.

 Metrics
The popular metrics discussed in this section are applicable to most

machine learning algorithms.

Before moving on to metrics, make sure that you know the popular

classification of machine learning algorithms according to the problem

statement. Machine learning algorithms can be broadly classified into two

types of tasks:

• Classification

• Regression

A classification task is a problem where you are given a set of categories

for the output and the algorithm is supposed to map its output to one or

many of these categories or classes. For example, predicting whether an

email is spam or not is a classification task; the output must be either spam

or not spam. Some classification task might also be multi-

label classification problem, where the output can map to multiple,

nonexclusive categories. For example, the task of predicting the genre of a

movie can have the algorithm outputting multiple genre classes for a single

movie. For instance, the famous Hollywood movie Citizen Kane could

be identified as a drama and a mystery (as you can see on IMDB and in

Figure 1-8).

Chapter 1 MaChine Learning priMer

20

Figure 1-8. The IMDB website

A regression task, on the other hand, predicts simple values. For

example, the task of predicting the temperature should output the

temperature (such as 23 degrees) and not categorize data into classes.

 Accuracy
Whenever we talk of predictions, we generally say that a prediction is

accurate to a certain degree. Accuracy is a metric that can be defined

mathematically. Consider a classification task where you have a training

dataset containing 100 samples of class A and 100 samples of class B

(i.e. a total of 200 samples). After training using some model, if you get

an accuracy of 90 percent (or a score of 0.90), you can safely say that the

model has recognized 180 samples correctly and 20 samples incorrectly.

If you modify the dataset a bit so that you have 150 samples of class A

and 50 samples of class B, and the same model gives the same amount of

accuracy, can you say that the sample has recognized 90 percent of 150

samples (i.e., 135 samples) of class A correctly and 45 samples (90 percent

of 50) of class B correctly? Since the total accuracy of the model is

Chapter 1 MaChine Learning priMer

21

90 percent, it is possible that it classified all samples of class B as class B

but correctly classified only 80 percent of 150 samples (120 samples) of

class A correctly (90+10 percent of class B and 90-10 percent of class B,

which comes to 90 percent of the total sample). The reason for this is that

the dataset is skewed.

In such cases, you have to resort to other metrics.

 Precision
Before understanding precision, you need to know a few concepts. For any

classification problem, you have the actual dataset that is used as training

data and the predicted dataset. Suppose you have to predict whether a set

of data belongs to class A or not:

• True Positives (TP) are when the model predicts that

the dataset belongs to class A and the actual dataset

also says that it belongs to class A.

• True Negatives (TN) are when the model predicts that

the dataset does not belong to class A and the actual

dataset also says that it doesn’t belong to class A.

• False Positives (FP) are when the model predicts that

the dataset belongs to class A but the actual dataset

says that it doesn’t belong to class A.

• False Negatives (FN) are when the model predicts that

the dataset does not belong to class A but the actual

dataset says that it does belong to class A.

Precision is mathematically defined as
TP

TP FP+

Chapter 1 MaChine Learning priMer

22

You now see how this resolves problems with skewed data using the

same example as before. Considering that it classified all samples of class

B as class B (i.e., 50 samples), but correctly classified only 80 percent of 150

samples (120 samples) of class A correctly, the number of True Positives

are 50+120, or 170 and False Positives are 30. Thus the precision is
170

170 30+
,

or 85 percent, which makes better sense than simple accuracy.

 Recall
Another useful matric is Recall, which is mathematically defined as

TP

TP FN+
. This metric is used in problems where the system is allowed to

tolerate a few False Positives, but the True Positives must not be missed.

For instance, with a system that catches identified convicts from facial

recognition in real time in an airport, the security guards can afford a few

false alarms, but the recall must be high.

There is often a tradeoff that a data scientist must consider when

building a prediction system, but a balanced system is in general

considered the best approach to start with. To get a system with balanced

precision and recall, you can use the harmonic mean of precision and

recall as a metric, which is popularly known as an F1 score.

 Confusion Matrix
You can leverage something known as a confusion matrix to visually check

at a glance how your algorithm is performing now that you understand

precision and recall. A confusion matrix shows you visually the amount

of True Positives, True Negatives, False Positives, and False Negatives

achieved by the system.

Chapter 1 MaChine Learning priMer

23

Consider the classification task discussed earlier to predict whether

the genre of the movie is drama or not (mystery or others). This is a simple

binary classification task and you can employ a simple model.

Once you are done with the model building and have a holdout set for

testing, you have true and predicted values and you can create a confusion

matrix from them.

In Python, you can simply use the confusion_matrix class from

sklearn.metrics as follows:

cm = confusion_matrix(y,y_preds)

where y are your true values and y_preds are your predicted values.

If there were 5,500 samples being classified, your confusion matrix

would look like the following:

array([5000,1500,
 1500, 4000])

Since this is a simple binary classification, it is pretty easy to check the

various quadrants of your confusion matrix.

The first quadrant gives you the number of True Positives where the

actual genre was drama and so was the predicted ones. The one below, on

the other hand, mentions the False Positives, where your system predicts

that the genre was drama but it was not. The one beside the False Positive

quadrant is the True Negative count and one the one above it is the False

Negative count.

Your requirement should determine the kind of confusion matrix you

need to see.

The best use of a confusion matrix is when you are building a multi-

class classification model. For example, say your task was expanded to

predict the following genres:

[Drama, Mystery, Horror, Romance, Comedy]

Chapter 1 MaChine Learning priMer

24

To visually determine the performance of your model, you can

calculate the confusion matrix and then see it through a heatmap as

follows:

import seaborn as sns
import matplotlib.pyplot as plt

sns.heatmap(cm)
plt.ylabel('Actual', fontsize=13)
plt.title('Confusion Matrix', fontsize=17, pad=20)
plt.gca().xaxis.set_label_position('top')
plt.xlabel('Prediction', fontsize=13)
plt.show()

Then you may have a confusion matrix resembling Figure 1-9.

Figure 1-9. Confusion matrix

Chapter 1 MaChine Learning priMer

25

As you may already realize, the diagonal ones should have 100 percent

of the number of elements of that class (i.e., the number in diagonal cells

equals the number of rows of that class in the test dataset), indicating

perfect match for a best model. The rest of the cells indicate the number of

predicted values out of true values. For instance, the first cell in the second

row tells you how many drama movies it classified out of mystery movies.

A perfect model should have all these cells as 0.

This visual gives you an overview of how your model performs and

which of the classes should be weighted more than the others to tune

your model.

 ROC AUC
Before showing how these metrics can be converted to Python code, a final

metric cannot be overlooked, which is Receiver Operating Curve (ROC).

ROC is the ratio of the True Positive rate (another name for recall) to the

False Positive rate. The False Positive rate is 1-the True Negative rate.

The True Negative rate is the ratio of negative instances that are correctly

classified as negative (called specificity). When the ROC is plotted with the

True Positive rate and the False Positive rate on the axes, the area of the

curve plotted is called Area Under Curve (or AUC). AUC is desired to be

close to 1 for a model to give a balanced score.

 Mean Squared Error
All the previous metrics are particularly designed for classification

problems. Regression problems are simpler to evaluate and one such

popular metric is Mean Square Error (MSE). Considering true values from

training dataset values (Y) and predicted values (Y’) from a dataset of n

samples, MSE is calculated as:

Chapter 1 MaChine Learning priMer

26

MSE
n

=
1
Σ (Y-Y’)

Scikit-Learn again comes to the rescue. As mentioned, Scikit-Learn can

make this happen with a few lines of code.

But before that, you need to divide the dataset into train and test

datasets using the following Scikit-Learn code:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=0.33, random_state=42)

Here, X and y are the features and output columns respectively, and

the function is dividing the dataset into a training dataset (X_train, y_
train) and testing dataset (X_test, y_test), with 33 percent of the dataset

reserved for training instances and the rest for testing instances.

Coming back to the evaluation metrics, you first need to import

the functions pertaining to each of the metrics before using them, and

thankfully all of them fall under the same module. Considering the

predictions are stored as y_test_predictions, the following code should

make it clear:

from sklearn.metrics import accuracy_score, precision_score,
recall_score, f1_score, roc_curve, auc
y_test_predictions = model.predict(y_test)
accuracy = accuracy_score(y_test, y_test_predictions)
precision = precision_score(y_test, y_test_predictions)
recall = recall_score(y_test, y_test_predictions)
f1score = f1_score(y_test, y_test_predictions)
fpr, tpr, thresholds = roc_curve(test_y, y_test_predictions)
auc = auc(fpr,tpr)

Chapter 1 MaChine Learning priMer

27

Although these algorithms form the foundation of machine learning,

they don’t closely relate to how a human brain works. It was not very long

ago that computers could simulate how human brains function through

understanding neurons (one of the basic building blocks of the human

brain). This led to an important discipline in data science known as deep

learning.

 Deep Learning
Deep learning started with scientists trying to figure out how the human

brain works. The started in the 1800s, when Joseph von Gerlach first

proposed that the nervous system works as a single network of discrete

cells, to the 1890s when Santiago Ramon y Cajal proposed that the nervous

system was made up of discrete individual cells forming a network. It

was during the era of big scientific achievements around 1950 when

the electron microscope was invented that scientists confirmed that the

nervous system is indeed a system of interconnected individual nerve

cells, which they called neurons.

During that time, the first version of the neuron model was devised

by McCulloch and Pitts, which is popularly known as the McCulloch and

Pitts Neuron. The McCulloh and Pitts Neuron (see Figure 1-10) has an

aggregation function g(x), which aggregates the inputs and an activation

function f(g(x)), which further calculates the probabilities as predictions.

For example, you can consider a threshold, say ϴ, such that

f(g(x)) = 1 if f(g(x))>ϴ, and

f(g(x)) = 0 if f(g(x))<=ϴ

Chapter 1 MaChine Learning priMer

28

Figure 1-10. McCulloch Pitts Neuron

A modified version of the McCulloh and Pitts Neuron was later

derived, and is currently present in present Python modules. This is the

perceptron, which uses weights during the initial input aggregation.

g(x) = ∑x for McCulloh and Pitts neuron, which is modified to

g(x) = ∑(wx) for Perceptron.

With a threshold function, you can have a mathematical model

that can prepare a boundary for separation of one class from the other.

Correlating weights and biases of a neuron with a slope and intercept, you

can also graphically visualize and concur on how your threshold function

prepares a linear boundary for separation of the classes.

But in real-world scenarios, most of the problems you encounter will

be nonlinear and hence it would be difficult to propose a single neuron

with activation functions to tackle such tasks.

In such cases, you have to resort to using a multilayer perceptron.

A multilayer perceptron uses a middle layer to consider all possible inputs

through permutation of multiple neurons, as shown in Figure 1-11, so that

any combination of input activates a certain neuron and hence doesn’t

fail to accommodate any combination of input and output, whether it is

linearly separable or not.

Chapter 1 MaChine Learning priMer

29

Figure 1-11. Multilayer perceptron

As mentioned, each layer of the MLP has a set of weights that the

neuron calculates on top of. According to the image, as there are four red

and four blue lines connecting to the first layer of neurons from the inputs.

There are eight weights and in the second layer there are four weights.

For such a network of neurons, there are a total of 12 weights that are

calibrated and adjusted to get the desired output. Such networks are also

known as neural networks.

 Sigmoid Neuron
Now, as you may have already picked up, the main building block of the

neural networks is the neuron, similar to the human brain. One way to

model these neurons artificially is using the aggregation function and the

threshold function. But one problem with such neurons is the threshold

function. The threshold function fails in situations where the values might

Chapter 1 MaChine Learning priMer

30

be fuzzy. In such cases, the function switches its output suddenly when a

certain value (threshold value) is reached. The threshold function, when

plotted, looks like Figure 1-12.

Figure 1-12. Threshold function

Instead of this, a more suitable function modeling the real world

problems should be smooth. A sigmoid is a class of function that forms

variations of the following function:

S(x) =
1

1+ −e x

The function, when plotted, looks like Figure 1-13.

Figure 1-13. Sigmoid function

Chapter 1 MaChine Learning priMer

31

The sigmoid function has several variations that are used in neural

networks.

 Problems with Sigmoid Neuron
While sigmoid identifies the first activation neuron, it suffers from two

major problems—the vanishing gradient problem and the non-zero center

problem. Vanishing gradient is a conundrum the activation functions

face when the input and eventually the derivatives from the inputs reach

near zero. I discuss this briefly in upcoming sections. The non-zero center

problem, on the other hand, prevents the neuron from capturing strongly

negative, neutral, and positive values. This problem can be mitigated by

using the Tanh activation function.

 Tanh
The Tanh activation function models a neuron based on this equation:

tanh(x)=21+e-2x-1

The function, when plotted, looks like Figure 1-14.

Chapter 1 MaChine Learning priMer

32

Figure 1-14. Tanh activation function

Although this activation function mitigates the zero center problem,

it still suffers from the vanishing gradient problem. The following section

explores the vanishing gradient problem in detail before explaining how to

mitigate it.

 Vanishing Gradient Problem
Consider a sequence modelling problem in which you are trying to predict

the next part of the sequence from the previous parts (such as a stock

prediction algorithm or a sentence completion algorithm). In such cases,

by the time you reach the nth part of the sequence (where n>>1), the

neuron has applied the derivative of the first input n times. This derivative

will reach near zero if the input value of the first input is a very small value

or is itself near or less than zero. In such cases, the neuron fails to retain

that information and a large n can drop the values down significantly.

Chapter 1 MaChine Learning priMer

33

This in turn can lead the weights to drop down to zero and hence training

with such weights and biases will not lead to convergence. You will see

later how this can be mitigated through recurrent neural network variants,

but for now you’ll learn how to improve on the activation function to

constrain this problem as much as possible.

 ReLU
A very naive way to prevent the vanishing gradient problem from ever

occurring is to arrive at a constant as soon as the value falls below zero.

ReLU sets the value to zero for any values less than or equal to zero. Hence,

the ReLU activation function uses the following equation:

relu(x) = max(x,0)

As you can see, this is a very naive way that data scientists conjured

up to prevent the derivatives from reaching near zero. The ReLU function

looks like Figure 1-15.

Figure 1-15. ReLU activation function

Chapter 1 MaChine Learning priMer

34

One issue with this activation function is that, although it blocks any

value less than or equal to zero, it doesn’t account for those values even

if they are important for the use case. What if your business case requires

you to model a solution for values that are mainly negative? In that case,

you can use Leaky ReLU.

 Leaky ReLU
The Leaky ReLU function is as follows:

leaky_relu(x) = max(0.01x, x)

The activation function resembles Figure 1-16.

Figure 1-16. Leaky ReLU activation function

As you can see, to ensure that the negative values are accounted for,

the leaky ReLU function can add a small weight to the input value so that it

doesn’t turn to zero.

But with all these activation functions in mind, how do you select the

best one?

Chapter 1 MaChine Learning priMer

35

Start with sigmoid or tanh for any kind of classification problems

and see how your training proceeds. Or, you can start with ReLU, as

it is the most popular one. But all of them can fall prey to the dead

neuron problem. To detect dead neurons, you should monitor for slow

convergence and the loss coming equal to nan. If your loss is nan, you have

a dead neuron problem. In such cases, change your activation function to

leaky ReLU.

Problems in the current market scenario does not comprise a single

layer of neurons like in MLP, but a multilayer of neurons interacting with

each other and producing a set of outputs. The aggregation function from

the final layer of neurons is called the output function, as it is the one that

produces the final predictions. Also, instead of the threshold function, a

function similar to sigmoid is used, which is called the activation function.

Another function measures the difference between the actual output and

the predicted output during training, called the loss function.

Now, using all these functions, the algorithm to train a system using

training data runs in two main steps in a neural network:

• Feedforward

• Backpropagation

During the feedforward step, the neurons in each step calculate

the values of each neuron, until reaching the output neurons. It is also

noteworthy that each connection between the neurons consists of weights

similar to MLP. The values in the output neurons are then passed to the

loss function along with actual output values. In the backpropagation step,

based on the loss function value, the weights are adjusted for each layer

and each connection based on the gradient function, as follows:

W’ = W – ∇W, where W’ is the new weight, W is the previous weight

and ∇W =
δ
δ
L

W
L is the loss function value.

Chapter 1 MaChine Learning priMer

36

These two steps are performed several times (each iteration is termed

an epoch), until the loss function value is as small as can be tolerated.

As discussed previously, any machine learning model addresses either

of two types of problems—classification or regression. The output function

for classification produces probability scores and the output function for

the regression function produces real number values.

The output function to produce a probability score can be a softmax

function. A softmax function is a variant of a sigmoid function and

any linear function can be used as the output function to produce a

real number.

Similarly, to compare probability scores, cross entropy is a common

loss function. Here is the cross entropy function:

Cross entropy(p,q) = Σq(x)logp(x), where q is the true probability

values from the training dataset and p is the predicted probability values.

To compare real number values, MSE (mean square error), described

in the previous section, can be used as a loss function.

 TensorFlow and Keras
Just like Scikit-Learn, which is used to develop machine learning

applications by leveraging their powerful abstractions, TensorFlow and

Keras are used to develop deep learning algorithms. Keras is a Python

library that uses TensorFlow as backend to provide almost all the functions

used in deep learning algorithms, starting from all kinds of activation

functions to all kinds of loss functions and many more.

This section dives into the Python code directly instead of covering the

theory. You are going to implement a very interesting use case to identify

numbers from images, similar to how Google Lens works.

The first step is to gather data. The MNIST database consists of a large

volume of images annotated properly to their corresponding number

representations. MNIST is open source and is also available in the Keras

dataset.

Chapter 1 MaChine Learning priMer

37

Now that you know where the data is, you can start by writing the code.

As the first step, you need to include the tensorflow and keras packages

into your script.

import tensorflow as tf
from tensorflow import keras

You also need two important packages (numpy and pandas), which are

extensively used for numerical calculations and data analysis, respectively.

import numpy as np
import pandas as pd

Next, you need to load the dataset. The dataset consists of images

tagged to the numbers they represent. Each image can be considered a

matrix of 28x28 pixel values.

mnist = keras.datasets.mnist
(x_train_full, y_train_full), (x_test, y_test) = mnist.
load_data()
X_train_full = x_train_full/255.0
X_test_full = x_test_full/255.0

As you can see, Keras divides the dataset into train and test sets.

You can check the shape of the train set by using x_train_full.shape.

The values in x_train_full and x_test_full are not normalized; that

is, they fall under the gap of 0 to 255, which can cause the neuron values

to explode or vanish (which I discuss later when adding optimizers).

Hence, it’s better to normalize the values, as shown in the last two lines of

the code.

Now you can start building the algorithm:

model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28,28]))

Chapter 1 MaChine Learning priMer

38

model.add(keras.layers.Dense(300, activation="relu"))
model.add(keras.layers.Dense(100, activation="relu"))
model.add(keras.layers.Dense(10, activation="softmax"))

This code initializes the model as a sequential model in the beginning.

A sequential model executes each layer one step at a time. After that, you

start defining the layers. In the first layer, you flatten the matrix from a

(28,28) dimension to a 748 dimension vector. Then you start building the

subsequent layers by defining the activation function and the number

of neurons in each layer. The second layer has 300 neurons with the

ReLU activation function and the third one has 100 neurons of the ReLU

function. ReLU is a popular function used by most data scientists, as

its performance is optimal. In the final output layer, as the problem is a

classification problem (since you are predicting digits from images and

there are ten digits or ten classes), you need to get probability score, and as

discussed previously, softmax is the best output activation.

Finally, you have to compile this model by providing the loss function

to be used (cross entropy as discussed), the metric to see how well the

model is performing (accuracy should suffice as of now), and an optimizer.

 Optimizers
Optimizers take care of how the weights are updated.

 SGD

One of the basic ways to update weights is as follows:

wt+1=wt+
 𝛈∆wt

where 𝛈 is the learning rate.

This is the Stochastic Gradient Descent (SGD) optimizer and you can

leverage the optimizers class to import and use it with this code keras.
optimizers.SGD(learning_rate=0.01).

Chapter 1 MaChine Learning priMer

39

 Momentum-based SGD

Simple SGD can be very slow, in which case you can add a momentum

resembling this equation:

updatet=𝚼*updatet-1+ 𝛈∆wt

updatet+1=wt+ updatet

where 𝚼 is the momentum.

To use it in Keras, add the momentum parameter as follows:

keras.optimizers.SGD(learning_rate=0.01, momentum=0.1)

Sometimes momentums can lead your training to loop round and

round near the convergence but never reach it (see Figure 1-17).

Figure 1-17. Momentum-based SGD missing point of convergence

The missed point of convergence depends not only on the momentum

parameter, but also on the input values. For example, for the same

optimizer, some feature values might be very sparse (mostly zero) and

some not. For the non-sparse ones, the optimizer will work best but for the

features that are very sparse, the zero values will lead the optimizer to miss

the convergence more frequently than the non-sparse ones.

Chapter 1 MaChine Learning priMer

40

One way to mitigate this is to figure out a way to change the learning

rate depending on the frequency of the feature values.

 Adagrad

Adagrad can decay the learning rate based on previous input values. If

there are mostly zero values, it will decay the learning rate and increment it

when a non-zero value is encountered.

v(t)= v(t-1) + (∆wt)2

wt+1=wt+ update

update = ∆wt* (𝛈/v(t)+ ϵ)

where ϵ is a small value to prevent zero division.

In Keras, you can use the Adagrad class as follows:

keras.optimizers.Aadgrad(learning_rate=0.01, epsilon=1e-07)

Although Adagrad was originally a promising optimizer, it suffered

from aggressive decays, mainly when the denominator of the update

parameter increased significantly.

 RMSPorp

As mentioned previously, Adagrad suffers from aggressive decay. To

prevent that, you have to prevent denominator growth. Consider the

following equations:

v(t)= 𝝱v(t-1) + (1-𝝱)(∆wt)2

wt+1=wt+ update

update = ∆wt* (𝛈/v(t)+ ϵ)

where the parameter 𝝱 is added to tune the v(t) and hence reduce the

denominator.

Chapter 1 MaChine Learning priMer

41

 Adam

Adam, a popular optimizer, should be your go-to. Adam introduces

another parameter to tune the denominator as well.

m(t)= 𝝱1m(t-1) + (1-𝝱1)∆wt

v(t)= 𝝱2v(t-1) + (1-𝝱2)(∆wt)2

M(t) = m(t)/1-𝝱1

V(t) = v(t)/1-𝝱2

wt+1=wt+ update

update = M(t)* (𝛈/V(t)+ ϵ)

As you can see here, instead of one parameter (𝝱), Adam introduces

two parameters (𝝱1 and 𝝱2) to decay the weight update and the

denominator.

Keras allows you to add this optimizer using the Adam class as follows:

keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9,
beta_2=0.999, epsilon=1e-07)

The following example uses Adam. If you don’t want to mess with the

parameters and let the default values do the magic, you can simply express

the optimizer algorithm as a string, such as “sgd”, ”rmsprop” and “adam”.

model.compile(loss="sparse_categorical_crossentropy",
optimizer="adam", metrics=["accuracy"])

Otherwise, you can use the optimizer class from Keras.

model.compile(loss="sparse_categorical_crossentropy",
optimizer=keras.optimizers.Adam() metrics=["accuracy"])

Now that the model is compiled, you can fit it to your dataset and train.

history = model.fit(x_train_full, y_train_full, epochs=30)

Chapter 1 MaChine Learning priMer

42

You will see each epoch running and giving the loss and accuracy at

each epoch.

After training, you can see how the model performed by evaluating it.

The model evaluation will be done based on the validation set that you set.

print(model.evaluate(x_test, y_test))

This will give an idea of how well the model has performed.

But if you want to specifically check out the evaluation metrics, you

can start with accumulating the predictions:

y_pred = model.predict(x_test)
y_pred_classes = np.argmax(y_pred, axis=1)

The second line allows you to gather the class labels from the

prediction values by selecting the maximum probability class

using argmax.

Now you are ready to calculate the precision:

from sklearn.metrics import precision_score
precision = precision_score(y_test, y_pred_classes)
print(precision)

You can also calculate recall as follows:

from sklearn.metrics import recall_score
recall = recall_score(y_test, y_pred_classes)
print(recall)

As discussed previously, you have to ensure a proper tradeoff based on

your use case. Otherwise, you can try to ensure a good F1 score as follows:

from sklearn.metrics import f1_score
f1 = f1_score(y_test, y_pred_classes)
print(f1)

Chapter 1 MaChine Learning priMer

43

 Unsupervised Learning
Up until now you have used a historical dataset to train on. When the

model is decided and trained, the model is prepared to predict on some

part of the true dataset and is compared to the predicted dataset to see

how the model is performing.

But what if you don’t have the luxury of gathering proper data

annotated with proper labels? This happens when you have past data of

the predictors but don’t have the labels or the true outputs tagged. For

instance, say you need to predict churn reduction for a retail chain. You

have to predict the customer category (such as adults, teenagers, senior

citizens, or kids) based on the shop data inventory category (such as

grocery items, fashion products, medicines, or toys) to determine which

products attract which category of customer. With the human eye, it’s easy

to map the shop product categories with the customer categories, as we

know such patterns from our experiences. But it’s going to be difficult for

a machine to map this if the customer data is not available. The model

needs a new shop product inventory count per customer category visit

count as training data. But what if the store is just a small local retail

shop bootstrapped by a family who doesn’t have the customer count, or

doesn’t have the infrastructure or resources to keep track of the customer

categories?

In such cases, you have to resort to models that do not depend on

labeled training data, called unsupervised models. The models I have

discussed up to now are known as supervised models, as they have proper

training data to train your model. And any machine learning model can be

divided into one of two types—supervised and unsupervised.

This section shows a popular supervised model and explains how

it works.

You need a model that helps you with the following journey, as

depicted in Figure 1-18.

Chapter 1 MaChine Learning priMer

44

Figure 1-18. Clustering algorithm

This algorithm is known as a clustering algorithm; it can separate

one cluster from another. Each cluster represents a class category for the

dataset.

One of the most popular clustering algorithms used in unsupervised

machine learning tasks is the K-Means Clustering algorithm. This chapter

explains how this algorithm works intuitively before diving into the

Python code.

 K-Means Clustering Algorithm

 1. Start by initializing centroids randomly. A centroid

is a data point in a cluster that is equidistant from all

the data points in the same cluster. As you have not

initialized the clusters yet, you take N data points

randomly to be assumed as N cluster centroids

(assuming you want the data to be segregated into N

clusters).

 2. Once you determine the distances of the other data

points, you arrange them and assign and divide the

data points to clusters according to their distances.

Chapter 1 MaChine Learning priMer

45

 3. Based on the distances, the algorithm assigns new

centroids, which have the mean shortest distance

with all other data points in its own clusters.

 4. The previous steps are iterated until there is no

change in centroids. Use the new centroids as a

starting point instead of randomly initializing.

Similar to other machine learning algorithms, Scikit-Learn comes to

the rescue when you want to implement the algorithm in Python.

from sklearn.clussters import KMeans
kmeans = KMeans(n_clusters=k) # k is the number of desired
categories or clusters
y_pred = kmeans.fit_predict(X) # X is the input dataset

This code elegantly shows how simple it is to implement an

unsupervised learning algorithm in Python.

It is worth noting that supervised learning algorithms can be measured

for their performance using metrics such as accuracy, precision, recall,

mean square error, and so on. But all of these metrics require the true

labels as well as the predicted ones. Hence, they cannot be used to

measure unsupervised algorithms as you don’t have true labels in those

cases. An alternative way to measure the performance of an unsupervised

learning algorithm is using the Silhouette Score.

Silhouette Score =
b a

b a

−
()max ,

Where a is the mean distance of centroids with the data points inside

the cluster and b is the mean distance of centroids with data points outside

the cluster (or in other clusters).

Chapter 1 MaChine Learning priMer

46

Using the Silhouette Score, you can arrive at an optimal k value.

Although you can preset a k value based on your use case, an optimal k

value is needed for a perfect model. You can then tune your data to match

the optimal k value.

To arrive at an optimal k value, you should use the elbow method,

where you can plot the Silhouette Score against k (the number of clusters)

and see where the elbow occurs, as shown in Figure 1-19.

Figure 1-19. Elbow method

The elbow shows your optimal k value.

Apart from clustering, unsupervised learning has other applications as

well. The following sections discuss some of them very briefly.

 Associative Rule Mining
Before the advent of generative AI, building recommendation

systems required an excessive use of unsupervised learning. Building

recommendation systems was achieved through something known

as associative rule mining. Associative rule mining uses large datasets

to discern patterns through relationships between the X and Y values

Chapter 1 MaChine Learning priMer

47

without a historical pattern. For example, if you wanted to prepare a

recommendation algorithm to map the sales of customers and customer

insights, associative rule mining tries to discern a pattern between the

relationship between these two parameters—the customer insights (as X)

and sales (as Y).

 Dimensionality Reduction
Dimensionality reduction is used to model large datasets in terms of a

large number of features. When there are a large number of features used

to model a certain prediction, it often requires a large amount of memory

and processing power. Instead of that, you can compress the feature set.

For example, if you have a feature set of N features and you need to prepare

a model with limited processing power, you can employ an unsupervised

learning technique known as dimensionality reduction, which uses

projections of feature sets using eigen vectors and compresses N features

to n<<N. One such popular dimension reduction technique is Principal

Component Analysis (PCA).

Now that you have a fair idea of the various types of machine learning

and deep learning algorithms and metrics, you can learn something about

their applications, which is covered in the next chapter.

 Summary

• Machine learning uses historical data and evidence to

discern a pattern using various mathematical models.

• Linear regression is one of the simplest machine

learning algorithms and it bases its model on the

equation of a line.

Chapter 1 MaChine Learning priMer

48

• Decision tree is another machine learning model

that divides the dataset into features and tries to

discern a tree to arrive at the labels. All of these model

implementations are available in the Scikit-Learn

Python library.

• Ensemble Machine Learning techniques use multiple

algorithms on the same subsets of dataset, or the

same algorithm on multiple subsets of the dataset and

aggregate the results to get a better output.

• Once a machine learning model is selected and

trained, evaluation metrics such as accuracy, precision,

recall, ROC AUC, and MSE are used to measure the

model performance.

• Deep learning tries to imitate the workings of the

human brain to create models for AI.

• TensorFlow and Keras libraries are used to implement

deep learning models.

• There are also unsupervised models that are used

when unlabeled datasets are encountered.

Chapter 1 MaChine Learning priMer

49© Arindam Ganguly 2025
A. Ganguly, Scaling Enterprise Solutions with Large Language Models,
https://doi.org/10.1007/979-8-8688-1154-8_2

CHAPTER 2

Natural Language
Processing Primer
This chapter begins delving into one of the most important applications—

natural language processing. Any application of artificial intelligence can

be broadly classified into vision and text. Vision applications deal with

image and video processing and text applications deal with understanding

natural language.

Natural language processing specifically deals with tasks such as the

following:

• Text classification: Depending on the meaning of the

text, a certain decision is automated.

• Named entity recognition: Based on the word type (such

as country, organization, person, etc.) a certain task is

performed.

• Translation: Deals with converting languages.

• Sentiment analysis: Deals with understanding the tone

of a statement (sad, hurtful, happy, etc.) and making

some decision based on it.

The list is endless and AI displays new innovations every day.

https://doi.org/10.1007/979-8-8688-1154-8_2#DOI

50

 Steps for an NLP Task
Digital technology understands data in the form of 0s and 1s. These binary

digits are interpreted from numbers, and when words are involved, each

character has its own numbered code (known as ASCII).

If you require a system that needs to understand words as a whole,

the ASCII codes are not very useful, as they represent single letters. For

example, the word “FRAUD” would be converted into an array as follows:

[70,82,65,85,68]

This array doesn’t make any sense when used with a sentence of

several words and a document of multiple sentences. One might argue

with a method of aggregating the array of numbers as a representation of

a word such as taking the sum of array contents. But that logically doesn’t

bring meaning to the codes. The reason is that the ASCII characters were

not developed keeping in mind the formation of words from letters. Also,

it is almost impossible to come up with a system that would assign codes

to each letter and number so that they bring meaning to words and in turn

bring meaning to a sentence and a document as a whole. Just think about

how complex that would be!

In the domain of Artificial Intelligence, we need to come up with

a system that can bring meaning to a word or sentence as humans do.

Humans do not assign understanding to each single character or letter

when they are reading a sentence. They perceive the sentence as a whole,

and sometimes a document as a whole. Natural language processing

algorithms use systems that do such tasks, similar to how our brains

function.

A common natural language processing problem generally boils down

to a few steps:

 1. Data gathering

 2. Cleaning and tokenization

Chapter 2 Natural laNguage proCessiNg primer

51

 3. Vectorization and embedding

 4. Model selection, training, and evaluation

You might be familiar with the last two steps, as you have seen them in

the previous chapter. The main agenda of the first three steps is to convert

the complex textual input into simple machine learning inputs, as seen in

the first chapter.

Instead of going down the road where there is a lot of theory without

much of an implementation, you’ll learn first by implementing. So, open

your favorite Python editor and get ready to go through these steps.

I recommend using Jupyter Notebooks or Google Colabatory for this

chapter.

 Data Gathering
As you might know from the previous chapter, data gathering is the first

step to any AI problem. It is essential to understand that data gathered

must be similar to the data to be encountered in production. If this is

not the case, then you must make sure that the training data can be

preprocessed to the format of the test data.

A data science team reaches out to the business or domain team to

gather data and insights about the training and test data. One of the best

and simplest datasets to start the NLP journey is IMDB data. This dataset is

easily available in Keras and we take full advantage of this dataset to build

your NLP skills. This dataset already has clean data and does not need any

preprocessing. So instead we will use the raw IMDB dataset from Stanford

University. The link to this dataset is as follows:

https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_
v1.tar.gz

This dataset is targeted to train a system that can understand a movie

review and score the sentiment (the review) as positive or negative.

Chapter 2 Natural laNguage proCessiNg primer

https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz

52

If you are using Google Colabatory, you can directly download and

unzip the contents in the workspace using the following two lines:

! wget https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_
v1.tar.gz
! tar -xvzf /content/aclImdb_v1.tar.gz

You should be able to see two folders—train and test—consisting of

the training and test data, respectively, as well as pos and neg folders inside

each of them consisting of positive and negative reviews.

Now it’s time to collate the data into a Pandas dataframe. Each of the

reviews is in a separate text file. Here’s how to read the positive sentiment

reviews of the training data:

import os

train_pos_reviews_filenames = os.listdir("/content/aclImdb/
train/pos")
train_pos_reviews = []

for filename in train_pos_reviews_filenames:
 with open("/content/aclImdb/train/pos/"+filename) as fd:
 train_pos_reviews.append(fd.readline())
 fd.close()

The code is fairly self-explanatory. The list train_pos_reviews

holds the reviews from the text files by looping for each of the files in the

aclImdb/train/pos folder, which holds all the files storing positive reviews

for training.

Similarly prepare the following lists:

train_neg_reviews for negative reviews in the

training dataset.

test_pos_reviews for positive reviews in the testing

dataset.

Chapter 2 Natural laNguage proCessiNg primer

53

test_neg_reviews for negative reviews in the

testing dataset.

Now you need to create the label data for the datasets. You can use the

following code to create a list of labels corresponding to each list (1 is for a

positive sentiment and 0 is for negative sentiment).

train_pos_reviews_labels = [1]*len(train_pos_reviews)
train_neg_reviews_labels = [0]*len(train_neg_reviews)
test_pos_reviews_labels = [1]*len(test_pos_reviews)
test_neg_reviews_labels = [0]*len(test_neg_reviews)

Once this is done, you need to collate these lists into four dataframes—

train_pos_df, train_neg_df, test_pos_df, and test_neg_df consisting

of the positive training dataset, the negative training dataset, the positive

test dataset, and the negative test dataset. After that, you need to collate

these dataframes into two dataframes—train_df and test_df—consisting

of all the training and the test data, respectively.

Figure 2-1 shows how train_df can be created from the training

reviews and labels list.

Figure 2-1. Derive train_df

Chapter 2 Natural laNguage proCessiNg primer

54

Similarly, create the test_df dataframe from the test reviews and

labels lists (see Figure 2-2).

Figure 2-2. Derive test_df

These images explain how you should form the final dataframes.

The green level infers that the boxes are lists and the blue levels are the

dataframes. It is easier to join dataframes than lists, when your final output

is supposed to be dataframe.

The train_pos_df, train_neg_df, test_pos_df, and test_neg_df

dataframes are created by using the reviews as the first column and labels

as the second column, as shown in the image.

The code that does it all is shown here:

import pandas as pd
train_pos_df = pd.DataFrame({'reviews':train_pos_
reviews,'labels':train_pos_reviews_labels})
train_pos_df
train_neg_df = pd.DataFrame({'reviews':train_neg_
reviews,'labels':train_neg_reviews_labels})
train_neg_df.head()
test_pos_df = pd.DataFrame({'reviews':test_pos_
reviews,'labels':test_pos_reviews_labels})

Chapter 2 Natural laNguage proCessiNg primer

55

test_pos_df.head()
test_neg_df = pd.DataFrame({'reviews':test_neg_
reviews,'labels':test_neg_reviews_labels})
test_neg_df.head()
train_df = pd.concat([train_pos_df,train_neg_df],ignore_
index=True)
train_df.shape
test_df = pd.concat([test_pos_df,test_neg_df],ignore_
index=True)
test_df.shape

Now that you are done with data gathering, the next sections move on

to the other steps.

Before proceeding, let’s look at the two main libraries used in almost

all natural language processing implementations—NLTK and Spacy.

 NLTK and Spacy
This section dives into Python. Python has packages and libraries for

everything, and two of the most popular Python libraries for natural

language processing are NLTK and Spacy.

Install NLTK and Spacy using their websites:

• https://www.nltk.org/ for NLTK

• https://spacy.io/ for Spacy

Let’s start with the new kid in town—Spacy! Install and import Spacy,

then take one review and see how Spacy works.

import spacy
review = train_df.loc[50,'reviews']

Chapter 2 Natural laNguage proCessiNg primer

https://www.nltk.org/
https://spacy.io/

56

The review consists of the following:

Karen goes into a Japanese house as a substitute

nurse to Emma, a strange woman who sleeps at day

and wakes at night. Karen goes upstairs after hearing

noises when she encounters a frightening ghost. She

will learn the house's secrets.

It is very

scary! The scenes are shocking and frightening! The

characters are good. The settings are creepy. I love

the whole plot! The ending was shocking! I paused at

a scene where the little boy meowed so loudly to the

man finding his sister upstairs and I was shocked.

This is the scariest movie I have watched. I did not

see the Japanese version. I recommend this to horror

fans. 10/10 and 5 stars!

As you can see, there are a lot of sentences in one single review and

they consist of HTML tags, exclamation signs, and other nonalphabetical

or numeric characters. Hence, getting the tokens out of the reviews by

splitting the full text by spaces will not work. A lot of cleaning also needs to

be done.

Now, to work with Spacy, you have to import the Spacy model

pertinent to the language and type of statements you want to work with.

For this example, load the en_core_web_sm model, which is pertinent to

the small English model.

nlp = spacy.load('en_core_web_sm')

Now that the model is loaded, you have to load the text into the Spacy

documents. A Spacy document can be considered a single unit of text that

you want to work on. You can consider each review as a Spacy document.

Spacy understands and analyzes the text in a document and captures

insights about the document’s contents. Once you have the document

loaded, you can also get any insights. These insights consists of tokens,

Chapter 2 Natural laNguage proCessiNg primer

57

parts of speech of each token, sentences, word shapes, lemmas, and so

on. Let’s ingest the selected review as a document and print some of the

insights.

doc = nlp(review)

for token in doc:
 print(token.text, token.pos_, token.tag_, token.shape_,
token.lemma_)

If you run the previous code, the first few lines of the output should be

something like this:

I PRON PRP X I
can AUX MD xxx can
not PART RB xxx not
say VERB VB xxx say
this DET DT xxxx this
movie NOUN NN xxxx movie
is AUX VBZ xx be
a DET DT x a
disappointment NOUN NN xxxx disappointment
because SCONJ IN xxxx because
I PRON PRP X I
read VERB VBD xxxx read
some DET DT xxxx some
reviews NOUN NNS xxxx review
before ADP IN xxxx before
watching VERB VBG xxxx watch
and CCONJ CC xxx and
it PRON PRP xx it
did AUX VBD xxx do
not PART RB xxx not
do VERB VB xx do

Chapter 2 Natural laNguage proCessiNg primer

58

as ADV RB xx as
well ADV RB xxxx well
as SCONJ IN xx as
I PRON PRP X I
thought VERB VBD xxxx think
it PRON PRP xx it
would AUX MD xxxx would
have VERB VB xxxx have
. PUNCT . . .

As you can see, Spacy has extracted the tokens from the document, the

part of speech (pos), a code assigned to the part of speech (tag), the word

shape (x for small letter, X for capital letter), and the lemma. Note also that

Spacy has understood the punctuations over the alphanumeric characters

(in the last output). These insights sometimes help in forming feature

sets. For example, a model might work better when you include the parts

of speech of each token as a feature set along with the tokens. Machine

learning models generally work better when you lemmatize the tokens. But

the one we use here for leveraging spacy is tokenization.

Let’s build a function for tokenization using Spacy.

Now that you have a fair idea of how Spacy works, you can move

on to another most widely used natural language processing library,

called NLTK.

Installing NLTK is as easy as installing Spacy or any other library

for that matter. One thing that NLTK needs to do is download all the

pertinent models:

! pip install nltk

Once NLTK is installed, you can check the various NLP techniques

that NLTK helps you provide. But before that I would like to bring to your

attention one very important step for any kind of text processing, which is

text cleaning. You must have seen that almost all of the reviews have HTML

tags, accented characters, and special characters in them. Also, as in real

Chapter 2 Natural laNguage proCessiNg primer

59

time most of the text inputs will be either OCR text or human written formats,

either of which might contain distorted text. There can also be spelling

mistakes, grammatical mistakes, and more, which need to be encountered.

Spacy tries to get rid of these discrepancies, but no product is fool-

proof until you train it according to your business and requirements or

environments. On the other hand, as NLTK does not have an built-in

cleansing capability, you need to clean it manually. Next, you’ll build some

of the functions that help you clean the inputs.

 Cleaning Data
Source systems are often not capable of purging junk data, so cleaning that

data is an almost mandatory and important preprocessing step. Some of

the steps and concepts of text preprocessing are explained in this section.

 Removing Accented and Unicode Characters

The Internet is vast and once your NLP system is online you should be

wary of all the types of input that can crawl into your system. Although

your system should have a validation to accept only text, malicious

or unintended text or characters such as control characters can also

seep into an input unnoticed, which can break your algorithm. Control

characters are nonprintable characters that accompany simple characters

with nonalphanumeric keys, such as carriage returns, which is a control

character composed of the Ctrl key and R. Control characters are

represented in Unicode and they can encode other type of characters that

can cause confusion to your system.

Other examples of notorious Unicode characters that are often

supported by some programming languages are emojis or special symbols

such as 🙂 and 𝛈, which are composed of nonalphanumeric character keys

such as punctuation and character keys. These characters can cause havoc

in your system if they are left unaccounted for.

Chapter 2 Natural laNguage proCessiNg primer

60

Hence, the first step is to remove any accented and Unicode characters

in your text input. This example employs NFKD to normalize any Unicode

characters from the unicodedata library:

import unicodedata

def remove_splchars(text):
 text = unicodedata.normalize('NFKD',text).

encode('ascii','ignore').decode('utf-8','ignore')
 return text

These accented characters and Unicode data can often disrupt the

Python processing, so it is wise to check for such characters and filter

them out.

 Removing HTML Characters

Now that your text is void of any kind of accented characters, you can start

by stripping any HTML characters. To remove HTML tags, you need to use

regular expressions, which can remove text with a pattern similar to HTML

tags. The following function does this for you.

import re
def striphtml(data):
 p = re.compile(r'<.*?>')
 return p.sub('', data)

After you run this, you should see the formatted output without the

HTML tags.

striphtml(review)
'No doubt intended as a totally campy joke, "Full Moon High"
portrays 1950s teenager Tony Walker (Adam Arkin) accompanying
his father (Ed McMahon) on a trip to Romania. Sure enough, Tony
gets bitten, and grows fur and fangs whenever there\'s a full

Chapter 2 Natural laNguage proCessiNg primer

61

moon. A particularly interesting aspect in this
..
and thanked his sons, I wonder whether or not he remembers co-
starring with two of them in this movie (aside from Adam, his
son Anthony also has a small role). Quite funny. Also starring
Elizabeth Hartman.PS: director Larry Cohen is probably best
known for the killer baby flick "It\'s Alive".'

It covers removing HTML tags and special characters. Other important

cleaning steps, like lowercasing, stemming/lemmatization, and handling

contractions, should be mentioned.

You can run these steps together as follows:

remove_splchars(striphtml(review))

The output should be as follows:

'No doubt intended as a totally campy joke, "Full Moon High"
portrays 1950s teenager Tony Walker (Adam Arkin) accompanying
his father (Ed McMahon) on a trip to Romania. Sure enough, Tony
gets bitten, and grows fur and fangs whenever there\'s a full
moon. A particularly interesting aspect in this movie is that
he can\'t age as long as he has the werewolf curse, and that he
...
Also starring Elizabeth Hartman.PS: director Larry Cohen is
probably best known for the killer baby flick "It\'s Alive".'

 Removing Special Characters

Often your business use case will only deal with textual information,

such as a legal contract, and in such cases it will demand the use of only

alphanumeric characters. Any other characters should be considered

junk. Although some of the special characters should have already been

removed from the text when you had filtered accented characters, it never

Chapter 2 Natural laNguage proCessiNg primer

62

hurts to be extra careful when you want to put something in production.

This preprocessing step involves removing these special characters.

This step is not as daunting as the others and a simple regular

expression can often do the job, as follows.

def remove_special_chars(text):
 pattern = r'[^a-zA-z0-9\s]'
 text = re.sub(pattern, '', text)
 return text

This simple function is enough to rid your text of any special

characters.

Note that it would be wise to analyze the business use case before

proceeding with removing special characters to make sure you really can

remove them. For example, systems involving medical or mathematical

journals might require these special characters.

 Lowercasing

This step is obvious and often is the first one to be included as a

preprocessing step. If you let your complete text input be lowercase, it will

be easier for the algorithm to handle your input when it is converted into a

numeric representation. You will read about vectorization more in the next

section.

Python offers an even easier way to implement this step as compared

to the previous one.

def lowercase(text):
 return text.lower()

The lower attribute of a string in Python converts all uppercase

characters to lowercase.

Chapter 2 Natural laNguage proCessiNg primer

63

 Stemming

To understand stemming, you need to know what a morpheme is. A

morpheme is the smallest meaningful meaning of a word. For example,

the word “unusually” can be divided into “un,” ”usual,” and “ly.” Here

“usual” is the morpheme that constitutes the word “unusually.” Adding

prefixes (“un”) and suffixes (“ly”) to evolve the meaning of the morpheme

to something different is known as inflection. Stemming is the process of

getting morphemes from a word in order to use the morphemes as the unit

of input for an NLP sequence.

Stemming is often achieved by running the string through a set of rules

that checks for prefixes and suffixes and removes them to get the stem.

NLTK provides several stemmers, among which the Porter Stemmer is

most frequently used. You can use the Porter Stemmer as follows:

def simple_stemmer(text_tokens):
 stemmer = nltk.porter.PorterStemmer()
 text = ' '.join([stemmer.stem(word) for word in text_

tokens])
 return text

In this code snippet, you have to pass the list of words in the function

as text_tokens and PorterStemmer from NLTK grabs the stem of the word

through the stem() function.

 Lemmatization

Lemmatization is similar to stemming, where a word is stripped to get

the base form, with a small difference. Stemming is performed through

rule engines, where the stemmer only strips the predetermined prefixes

and suffixes and presents the output with the form of the word that is

left, without any regard to the meaning of the base form outputted by the

stemmer. It may so happen that the base form (or the stem) is not a real

Chapter 2 Natural laNguage proCessiNg primer

64

meaningful word that exists in the English vocabulary. For example, the

stem of the word “fancier” is “fanci,” which the stemmer will output after

passing through the rule to remove “er” from a word form. But “fanci” is

not a real meaningful word in the English vocabulary.

Lemmatization is the process of determining a lemma, which is a root

word of a word form that also exists in the English vocabulary. Hence, the

lemma of “fancier” is “fancy.”

Stemming is often used in use cases where the root form of the

word does not have to be meaningful, such as with sentiment analysis.

Sentiment analysis needs to understand the overall sentiment of a

statement without regard to the meaning of each of the base word forms.

On the other hand, lemmatization is necessary for use cases that need

to derive the meaning of each word carefully, such as chatbots.

NLTK provides a lexical database known as WordNet, which

is a vocabulary that can be used to find lemmas. NLTK also has

a lemmatization module that leverages WordNet, known as

WordNetLemmatizer. You can use it as follows:

from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize(fancier, 'a'))

Here a in the lemmatize() function refers to the part of speech.

Although NLTK has all these processes up its sleeves, Spacy is easier

to use when it comes to lemmatization and you can use it similarly to how

you used it earlier, as follows.

doc = nlp(review)
for token in doc:
 print(token.lemma_)

The lemma_ attribute will give you the lemma of the word.

Chapter 2 Natural laNguage proCessiNg primer

65

 Expand Contractions

An NLP system needs clearly defined words and contractions such

as “you’re” sometimes confuse the system. It’s necessary to expand

such contractions to their base words, such as “you” and “are,” before

processing the rest of the text.

To expand contractions in Python, you can use the contractions

library, which you can install using pip (see https://pypi.org/project/
contractions/). This library expands a contraction in a sentence into

possible words and uses the Word Movers Distance metric to find the

best match.

For example, the sentence “They’ll get the same prizes due to their

similar skills” can be expanded to the following:

“They will get the same prizes due to their similar

skills.”

“They shall get the same prizes due to their similar

skills.”

“They are get the same prizes due to their similar

skills.”

“They have get the same prizes due to their similar

skills.”

The Word Mover Distance calculates the distance between these

expanded texts. The one with the contracted text and the one closest is

chosen as the expanded text. The Word Mover distance calculates the

score by using embeddings, which you will learn about in upcoming

sections.

Chapter 2 Natural laNguage proCessiNg primer

https://pypi.org/project/contractions/
https://pypi.org/project/contractions/

66

To use the contractions library, start by installing the library

using pip.

pip install contractions

Now you can import and use it as follows:

import contractions
def expand_con(words):
 expanded_text = []
 for word in words:
 expanded_text.fix(word)
return expanded_text

As you can see, here again we are passing the list of words in the

function.

 Stopword Removal

The last step to consider when cleaning your text is to remove any

stopwords. Stopwords consist of insignificant words such as “a,” “the,” and

so on. Often it is beneficial to get rid of these stopwords for use cases that

need to gather and work on the words that have a weight and significance

for analysis.

NLTK makes it very easy to remove stopwords since it contains a

predefined list of stopwords that you can use, as follows:

stopword_list = nltk.corpus.stopwords.words('english')

Then you can use the stopword_list to filter out the stopwords when

processing.

Chapter 2 Natural laNguage proCessiNg primer

67

 Tokenization
The problem we are concentrating on is sentiment analysis of reviews and

hence the model that we will build will take reviews as the input. Each

review can be considered a range of sentences. Hence, the input is a set of

sentences.

Almost all of the problems in the real world are similar to this problem,

in that they take sentences as inputs. Problems that take documents as

inputs can also be broken down into sentences since documents are made

up of sentences.

The model should be able to understand these sentences. But

sentences cannot be a unit of input. So you have to break down the

sentences into words. For example, the sentence “I want to learn machine

learning” should be broken down into these tokens:

["I","want","to","learn","machine","learning"]

These building blocks of inputs (or sentences) are known as tokens

and the process of breaking down sentences into tokens is known as

tokenization.

 Types of Tokenization

Tokenization does not always mean breaking down a sentence into words.

Although the most intuitive idea for a unit of input, as mentioned earlier,

is a word, you will often encounter situations where you will need to break

down the word units further.

Tokenization ideally can be considered these types:

 1. Word tokenization

This is the most intuitive type of tokenization where

you have to break down a stream of sentences into

words. Word tokenization works well when the

language is well defined.

Chapter 2 Natural laNguage proCessiNg primer

68

 2. Character tokenization

You will at times encounter streams of strings where

there is no clear distinctions. In such cases, when

you are unable to discern the word boundaries,

the best approach is to break down the streams of

strings into individual characters. Although it may

seem like a naive approach, you can always fall back

on this type of tokenization when you are unsure of

the structure of the string.

 3. Subword tokenization

The previous two types of tokenization represent

the best and worst cases, but most of the time you

have to deal with systems where you have to break

down a word into multiple sections so the model

can understand the meaning. Consider the word

“radically.” The word is a form of the word “radical.”

In advanced natural language processing systems,

after tokenization, each unit is taken through

multiple steps so that the system understands the

meaning of the word. This is often done through

vocabulary. This vocabulary is either prepopulated

or sourced from the input; subword tokenization

is best in such cases. You will encounter subword

tokenization when you learn about advanced NLP

models such as BERT.

NLTK also provides a simple way to tokenize text using the default

tokenizer. But you have to download the Punkt model of NLTK, which does

the tokenization:

Chapter 2 Natural laNguage proCessiNg primer

69

import nltk

nltk.download('punkt')

Now you can use the NLTK tokenizer as follows:

tokenizer = nltk.word_tokenize
tokenizer(review)

There are other ways to tokenize in NLTK. If you are interested in

learning more, check the NLTK library’s official website.

 Vectorization and Embedding
Even though you have the complete text tokenized into individual units to

process, you are still further away from making a digital system understand

the tokens or words like humans do. For that, you need to derive

numeric features out of these text units. There are various ways to get

numeric representations of text inputs, a technique called vectorization.

Vectorization is a feature engineering technique that converts text inputs

into numerical vectors while preserving the meaning of the text. The

following sections explain some of the popular vectorization methods

used in NLP.

 Count Vectorization

This is the simplest vectorization technique. It counts the occurrences of

a token in each document (or input row). Scikit-Learn has a wonderful

implementation of Count Vectorization.

Start by importing the CountVectorizer class from Scikit-Learn:

from sklearn.feature_extraction.text import CountVectorizer

Chapter 2 Natural laNguage proCessiNg primer

70

Now you can instantiate a count vectorizer as follows:

vectorizer = CountVectorizer(encoding='utf-8', decode_
error='ignore', strip_accents='unicode', lowercase=True,
analyzer='word', max_df=1, min_df=1, max_features=None,
vocabulary=None)

Here are the parameters passed in to instantiate the vectorizer. Some

of these parameters handle some of the text-cleaning methods discussed

earlier:

• encoding: Ensures that the encoding to be followed for

the input string is in a certain format. By default, the

encoding is utf-8.

• decode_error: Lets Scikit-Learn know what to do

when it encounters a character that does not follow the

encoding. You can use this to ignore harmful characters

by passing ignore to this parameter. Other values you

can use here are strict and replace. If you set this to

strict, Scikit-Learn will raise a UnicodeDecodeError.

• strip_accents: This parameter handles the accented

character removal discussed during the text-cleaning

methodologies. You can set it to ascii or unicode,

depending on your use case. Scikit-Learn uses NFKD

for both. You can also use None if you want to ignore the

process; this is the default value.

• lowercase: This parameter converts the text to

lowercase.

• analyzer: You can pass word, char, or char_wb to

this parameter, which uses word-based analysis or

character-based analysis. Accordingly, your tokenizer

and ngram will work based on characters or words, as

explained here:

Chapter 2 Natural laNguage proCessiNg primer

71

• tokenizer: You can pass a function as a callback

to this parameter, which will use this function to

tokenize if you have passed word as the analyzer

value. This parameter can only allow tokenization

by word.

• ngarm_range: You can pass a tuple in this

parameter, which can refer to the range the

vectorizer will use while counting. For example,

if you have analyzer="word" and ngram_
range=(1,1), then CountVectorizer will take one

word as a count. On the other hand having ngram_
range as (1,2) will let CountVectorizer take both

single words (unigram) and two words (bigrams) as

one count each. If you used analyzer="character"

and the ngram_range set to (1,2), CountVectorizer

will take both single character (unigram) and two

characters (bigrams) as one count each.

• max_df: This parameter tells CountVectorizer to ignore

terms having a document frequency higher than the

value mentioned. Here, the value to be mentioned is

from 0 to 1.

• min_df: This parameter tells CountVectorizer to ignore

terms having a document frequency less than the

value mentioned. Here the value to be mentioned is

from 0 to 1.

• max_features: The value mentioned here will tell

CountVectorizer to ignore terms beyond the term

frequency so that it only considers the top max_feature

terms. If ignored, the default is None.

Chapter 2 Natural laNguage proCessiNg primer

72

• vocabulary: You can pass a mapping (i.e., a dict) with

keys as terms and values as indices in a feature matrix

to be considered as a vocabulary. The default value is

None. If you pass a vocabulary, your CountVectorizer

will ignore any out-of-vocabulary words and hence you

are safe to let your system only consider the words that

are in the vocabulary.

Finally, you can apply the CountVectorizer to your text as follows:

X = vectorizer.fit_transform(train_df['reviews'])
print(X.toarray())

The output should give you a matrix of word occurrences per

document (or row).

[[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]]

To get the shape of the matrix, use this:

X.toarray().shape

Which should give the following:

(25000, 74849)

You can also get the vocabulary that the CountVectorizer extracted.

vectorizer.get_feature_names_out()

It’s worth noting that we didn’t employ tokenization but

CountVectorizer did.

Chapter 2 Natural laNguage proCessiNg primer

73

 Model Selection, Training, and Evaluation
Now that you have a feature matrix ready, you can use a machine learning

algorithm on top of it.

If you are working with limited hardware, you can just use 2,000

reviews to see if your POC is working. For that, you need to take a stratified

dataset so that you have half negative reviews and half positive reviews.

Since you appended positive reviews on top of negative reviews, you need

to take the middle part of the dataset. In this case, since the dataset is

25000, the middle is 12500. To take the 2000 stratified data, you can take

data points from 12500-1000=11500 to 12500+1000=13500.

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score

vectorizer = CountVectorizer()
X = vectorizer.fit_transform(train_
df.loc[11500:13500,'reviews'])
y = train_df.loc[11500:13500,'labels']
X_train, X_test, y_train, y_test = train_test_split(X.
toarray(),y,test_size=0.3)
dtree_model = DecisionTreeClassifier()
dtree_model.fit(X_train,y_train)
preds = dtree_model.predict(X_test)
print(f1_score(y_test,preds))

This example uses the Decision Tree Classifier and F1 score to see how

the model is performing.

Similar to CountVectorizer, another effective text vectorization method

is the TF-IDF Vectorizer. TF-IDF stands for Term Frequency-Inverse

Document Frequency. Term Frequency is the count of a term (or token)

occurring in a document. Inverse Document Frequency is the reciprocal

Chapter 2 Natural laNguage proCessiNg primer

74

log of the document frequency, which is the number of documents

containing a term (token). Scikit-Learn uses the TF-IDF Vectorizer module

instead of CountVectorizer for this purpose.

 Deep Learning in Natural Language Processing
This section covers deep learning and neural networks from classical

machine learning algorithms. A popular class of algorithms for vectorizing

text inputs is Word2Vec. It leverages deep learning by dividing the text

into sets of neighboring words and the word to be predicted. It uses

deep learning to predict a word by leveraging its context words. For

example, consider the sentence “I would like to learn AI and ML quickly.”

The sets of context words are ([‘I’,‘like’],‘would’), ([‘to’,‘AI’],‘learn’),

and ([‘and’,‘quickly’],‘ML’). This algorithm is called Continuous Bag of

Words (CBOW).

Another algorithm that does something similar is Skipgram. Skipgram

attempts to predict context words by leveraging the middle word using

deep learning.

Another great NLP library is Gensim, which has numerous

functionalities such as vectorization using CBOW or Skipgram.

You can install Gensim using this line:

! pip install gensim

You have to use the tokenizer to tokenize the text. So, first you need to

tokenize it using the following code:

tokenized_reviews = []
for i in range(train_df.shape[0]):
 tokenized_reviews.append(tokenizer(train_df.iloc[i,0]))
tokenized_reviews

Once the tokenized reviews are in order, you can start using Gensim to

vectorize words using the Word2Vec model as follows:

Chapter 2 Natural laNguage proCessiNg primer

75

from gensim.models import Word2Vec

wv_model = Word2Vec(tokenized_reviews, window=5, min_count=5,
workers=16, sg=0, negative=5)

The following code shows how a single word vector would look.

wv_model.wv['Plot']
array([0.08990693, 0.25508496, 0.2509542 , -0.05455301,

0.06975589, -0.51104593, -0.11543421, 1.0389962 ,
 -0.40622306, -1.066329 , -0.28960004, -0.08673833,
 -0.17169608, 0.00749075, 0.28168637, 0.43893206,
 0.4540334 , -0.18602416, -0.1758271 , -0.3663723 ,
 -0.4080482 , 0.46373916, -0.0285309 , -0.22901495,
 -0.4389961 , 0.29966518, -0.04618331, -0.47676224,
 0.5549119 , -0.21962325, 0.12367783, 0.1094077 ,
 0.26706585, -0.16847895, -0.4608883 , -0.24890974,
 0.5640716 , 0.22057909, -0.10006899, -0.39787945,s
 0.16495384, -0.21580067, 0.5167709 , 0.38862267,
 0.21256255, -0.6272423 , -0.22778796, -0.4818152 ,
 0.5632361 , 0.07095092, -0.46020564, 0.62135273,
 0.26800495, 0.41899973, 0.5436685 , -0.0673762 ,
 -0.23013812, -0.16339765, -0.33574238, 0.499936 ,
 0.10157613, 0.25957525, 0.7206584 , 0.20903282,
 0.35593304, 0.47046697, -0.3913343 , -0.22632024,
 -0.85171527, 0.44256178, -0.7991937 , -0.37387526,
 -0.11396343, 0.08097679, 0.03048304, -0.33055916,
 -0.29276899, 0.26041335, -0.00631601, 0.38871458,
 0.30741662, 0.2631277 , 0.00865427, 0.7148884 ,
 0.5829756 , 0.16456945, 0.21283737, 0.16670783,
 0.2599439 , 0.3610271 , 0.24865824, 0.26855388,
 -0.07378637, 0.11134908, 0.02223351, -0.32067415,
 -0.5192192 , 0.18481703, -0.23788132, 0.28109246],
 dtype=float32)

Chapter 2 Natural laNguage proCessiNg primer

76

Let’s check the length of such a vector:

len(wv_model.wv['Plot'])

This outputs 100.

You can also get the vocabulary like this:

vocab = wv_model.wv.index_to_key

Now you need to use this as embedding for a machine learning input.

Considering 25,000 rows, and each row is at least 50 words (which in turn

is vectorized into 100 dimension), the train_df vectorized would be

25000*50*100, which is very large. Instead, you can take the mean of all the

word embeddings so as to get a dimension of 25,000*100 when all the word

embeddings are aggregated. Let’s see if we can do the same and form a

feature matrix. As before, we take only 3,000 rows of train_df:

import numpy as np

X = train_df.loc[11500:13500,'reviews']
y = train_df.loc[11500:13500,'labels']
emb_X = []
for review in X:
 tokenized = tokenizer(review)
 emb = np.zeros(100)
 for token in tokenized:
 if token in vocab:
 emb = emb + wv_model.wv[token]
 emb = emb/(len(tokenized))
 emb_X.append(emb)

Let’s convert this to a NumPy array for convenience of calculation.

emb_X = np.array(emb_X)

Chapter 2 Natural laNguage proCessiNg primer

77

Now we use a decision tree with this embedding:

X_train, X_test, y_train, y_test = train_test_
split(emb_X,y,test_size=0.3)
dtree_model = DecisionTreeClassifier()
dtree_model.fit(X_train,y_train)
preds = dtree_model.predict(X_test)
print(f1_score(y_test,preds))

Since we were on the topic of deep learning, let’s use this in a neural

network. You already prepared the Word2Vec model using Gensim. Since

you will be using Keras for deep learning, Keras also has a wonderful

API to create embedding layers using the same kind of algorithm that

Gensim uses.

Start by installing Keras, initializing the vocabulary as max_token, and

calling the embedding dimension embedding_dim.

import keras
from keras import layers
import tensorflow.data as tf_data
max_tokens = 40000
embedding_dim = 100

Take the same subset of training data as before.

X = train_df.loc[11500:13500,'reviews']
y = train_df.loc[11500:13500,'labels']

Then use a vectorized layer to split the text into tokens and assign them

to number sequences.

vectorizer = layers.TextVectorization(max_tokens=max_tokens,
output_sequence_length=embedding_dim)
vectorizer.adapt(X)

Chapter 2 Natural laNguage proCessiNg primer

78

The output_sequences parameter pads the sequences to a certain

length to handle varying length of text sequences. In this case, we fix the

length of the sequences to the embedding dimension length.

Now you can use the Keras embedding layer, which will learn the

embedding matrix for each input and pass it to the next layers. The

advantage of using the text vectorization and embedding layers is that you

can embed them in your model and use them as layers in your model.

from keras.layers import Embedding

int_sequences_input = keras.Input(shape=(None,), dtype="int32")
embedded_sequences = Embedding(max_tokens, output_
dim=embedding_dim)(int_sequences_input)
x = layers.Dense(128, activation="relu")(embedded_sequences)
x = layers.Dropout(0.5)(x)
preds = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(int_sequences_input, preds)

The model we just built is very simple; it uses the embedding layer

to embed the incoming input text and then uses ReLU activation for a

network of 128 neurons. Finally, because there are two classes, the model

appends another layer of the Softmax activation neurons as output

activation functions with just two neurons. The model blueprint is now

ready; you can fit it on the subset of the training dataset as you saw for the

decision tree classifier.

Leverage train_test_split again to get the middle data points

as before:

X_train, X_test, y_train, y_test = train_test_split(X,y,test_
size=0.3, stratify=y)

Chapter 2 Natural laNguage proCessiNg primer

79

Now compile the model by providing the optimizer and

evaluation metric.

model.compile(
 loss="binary_crossentropy", optimizer="rmsprop",

metrics=["acc"]
)

Finally, use the vectorization layer to vectorize the inputs.

model.fit(vectorizer(X_train), y_train, epochs=3)

You can check the model performance using the following code:

model.evaluate(vectorizer(X_test),y_test)

The output shows test loss and test accuracy.

 Pretrained Embeddings
The embedding layer learns the embedding for vectorizing the text, which

is then passed on to the next layers to learn. But there might be instances

where you need to use a pretrained embedding that was previously

prepared. For instance, you can try using GLOVE embeddings. GLOVE

embeddings are prepared by running an unsupervised algorithm.

To use GLOVE embeddings, you have to download them from the

following link and unzip them in your working location:

https://downloads.cs.stanford.edu/nlp/data/glove.6B.zip
The zip that is downloaded consists of a text file that contains key-

value pairs in each line separated by spaces. The key is the word and the

value is its embedding vector.

Chapter 2 Natural laNguage proCessiNg primer

https://downloads.cs.stanford.edu/nlp/data/glove.6B.zip

80

While using GLOVE embedding, your system might encounter words

that are not in the vocabulary. In such cases, you can either choose to

ignore such words or use n-grams to see if they match any of the words in

the vocabulary.

A simple way to deal with this is to initialize the embedding matrix

as a matrix of zeroes and fill only the words that are found in the GLOVE

vocabulary. In that case, the out-of-vocabulary words remain as a vector

of zeroes.

Then make a dict, mapping words (strings) to their NumPy vector

representation:

path_to_glove_file = "glove.6B.100d.txt"

embeddings_index = {}
with open(path_to_glove_file) as f:
 for line in f:
 word, coefs = line.split(maxsplit=1)
 coefs = np.fromstring(coefs, "f", sep=" ")
 embeddings_index[word] = coefs

print("Found %s word vectors." % len(embeddings_index))

Finally, prepare a corresponding embedding matrix that you can use in

a Keras embedding layer:

num_tokens = len(voc) + 2
embedding_dim = 100
hits = 0
misses = 0

embedding_matrix = np.zeros((num_tokens, embedding_dim))
for word, i in word_index.items():
 embedding_vector = embeddings_index.get(word)

Chapter 2 Natural laNguage proCessiNg primer

81

 if embedding_vector is not None:
 # Words not found in embedding index will be all-zeros.
 embedding_matrix[i] = embedding_vector
 hits += 1
 else:
 misses+=1
 print("Converted %d words (%d misses)" % (hits, misses))

The last thing you need to do to use a pretrained embedding is use

the embedding matrix as weights in the Keras embedding layer. In such

cases, you also need to initialize the embedding layer using the embedding

matrix that you prepared:

from keras.layers import Embedding

embeddings_initializer=keras.initializers.
Constant(embedding_matrix)

embedding_layer = Embedding(
 numtokens,
 embedding_dim,
 weights=[embedding_matrix],
 trainable=False,
)
embedding_layer.build((1,))
embedding_layer.set_weights([embed_mat])

I leave the rest as an exercise.

Now that you have a fair idea how a Natural Language Processing

problem can be tackled, the next chapter concentrates on the model

selection and model building part of NLP.

Chapter 2 Natural laNguage proCessiNg primer

82

 Summary

• Natural language processing (NLP) deals with processing

and understanding textual information in free form.

• The data is gathered from various sources and collated

into a single input format and data structure in the

data-gathering phase of NLP.

• Once the data is gathered, the text is cleaned to remove

unwanted special characters and HTML tags.

• After data cleaning, features are extracted from the

text using various methods of vectorization and

embedding, such as CountVectorizer, which is the

frequency of each term in a document. This method is

present in Scikit-Learn.

• You can use Gensim to access advanced deep learning

methods of vectorization, such as Continuous Bag of

Words (CBOW) and Skipgram.

• You can also learn the embedding by using the Keras

embedding layer.

• You can also use pretrained embeddings in deep

learning by adding the embedding matrix to the Keras

embedding layer.

Chapter 2 Natural laNguage proCessiNg primer

83© Arindam Ganguly 2025
A. Ganguly, Scaling Enterprise Solutions with Large Language Models,
https://doi.org/10.1007/979-8-8688-1154-8_3

CHAPTER 3

RNN to Transformer
and BERT
At this point, you should have a decent idea how to build artificial

algorithms to work like the human brain. In a world waiting to embrace

automation to its complete potential, it is necessary to analyze all facets

of problem solving to understand how best you can artificially model the

various problem-solving approaches.

You have seen how to build neural networks so that they can model the

interaction of human brain cells to solve a problem and you have also seen

how to model each neuron. But simple artificial neural networks do not

excel at modeling sequence problems when the input length is not fixed.

This chapter explains how to attack such problems using state-of-

the-art modeling techniques and architectures, such as Recurrent Neural

Networks and Transformers.

The chapter starts with RNNs, which give you a unique architecture

to model sequences and play a vital role in text sequence modeling. You

will then move on to the Transformers architecture and see how it deals

with the disadvantages of RNNs. It is the state-of-the-art architecture,

even to this day, laying the foundation for architectures such as BERT and

Generative AI.

https://doi.org/10.1007/979-8-8688-1154-8_3#DOI

84

 Sequence Modeling
Consider building a model to predict the next word after a sequence of

words typed to form a sentence. These systems suggest the next words

emails or document editors such as Google Mail and Google Docs. They

try to complete your sentence by suggesting the next word. Sometimes

they even suggest better words than what you would have written!

Building such a system, even with a large corpus of next word

prediction datasets, is daunting, considering the length of input token

you would need to set while building your model. You would take a large

number and set it as max sentence length, so that whenever an incomplete

input sentence arrived, you would fill a set of preceding tokens as blank so

they match the maximum sentence length. Another approach is to predict

the next word based only on the previous word. But such an approach

would fail in accounting for the complete meaning of the sentence.

Consider another task of predicting the next character to autocomplete

a word. You cannot consider a fixed length of input and output sequence.

The length of words would vary. Another problem is that the successive

inputs are no longer independent. For instance, consider suggesting one

character at a time while typing the word “Transformer”:

T_

TR_

TRA_

TRAN_

….

TRANSFORME_

At each step, the character to be predicted depends on the previous set

of characters. In such situations, you need to resort to modified versions

of artificial neural networks. Recurrent neural networks are the best fit for

such situations.

Chapter 3 rNN to traNsformer aNd Bert

85

 Recurrent Neural Networks
In the previous chapter, you successfully built a model using artificial

neural networks to predict the sentiment of movie reviews. There, you

used the vocabulary of the corpus to build an embedding matrix. The

embedding matrix was trained in every iteration to learn the embeddings

of the words (or tokens) in order to make meaningful vectors of the

sentences in the reviews. This embedding matrix was then used in the

neural network layers downstream to output a sentiment. The problem

was pretty straightforward and the embedding matrix was a fixed size since

you have already calculated the vocabulary size. Since the inputs are words

instead of numbers, there was a need to vectorize the inputs and assign a

serial number (or a unique identifier) to each token. The vectorized input

was passed to the embedding matrix through the embedding layer to get

the embedding vectors and then the neural network layers did the jobs

downstream.

An important point to notice is that the input length is almost fixed.

You set the maximum token length of an input, i.e. a review. Also, in

problems like these, the processing is one-shot, which means you

input a sequence of text and you get an output. But in problems such as

autocomplete (discussed in the introduction), the processing happens

with time. At each timestamp, there is a section of input that requires

processing, the output of which may be used in the next timestamp for

processing the next section of input. These kind of problems are known as

sequence-learning problems.

Artificial neural networks can help out in fixed-length or one-shot

problems. But when you need recurring processing and variable length

inputs, you have to resort to RNNs.

This section explains how recurrent neural networks work. You know

that, for a simple neural network, there is an input, a sigmoid neuron (or

another dense neuron) layer, and a final output neuron (see Figure 3-1).

Chapter 3 rNN to traNsformer aNd Bert

86

Figure 3-1. Simple unit of processing

A careful glance at Figure 3-1 will remind you of the deep learning

basics you saw in the previous chapters. If you remember the mathematics,

each connection in the figure will have a weight associated with it.

Considering an input matrix X, and the final output Y, the dense (or

sigmoid) neuron will work as given here:

Si =
 g(U*Xi)

Considering S as the output of the dense neuron, W as the weight

matrix associated with the input and g as the dense function (a sigmoid

or any other type of function), the output of this state is sent to the output

function. This can be a Softmax or linear function based on the problem

type (classification or regression, respectively). Considering V as the

weight connecting the output of the dense neuron to the output function

h, the output should be given by the following equation:

Yi =
 h(V*Si)

Chapter 3 rNN to traNsformer aNd Bert

87

Now, considering a sequence learning problem, the configuration

described previously can attend to inputs at each timestamp. Figure 3-2

shows how this configuration can be used with sequence learning

problems.

Figure 3-2. The neural network at each timestamp

This configuration solves the problem of the variable length input

sequence. But the problem with such a configuration is adapting to

sequence learning problems such as autocomplete, as mentioned in the

introduction. Sequence learning problems need recurrent feedback from

the previous states to use them in the next state computations. Recurrent

neural networks use the output of the dense state as a parameter while

calculating the dense state output of the next state. You also need another

weight matrix W at each timestamp to connect the dense state output to

the next dense state. Figure 3-3 shows this configuration.

Chapter 3 rNN to traNsformer aNd Bert

88

Figure 3-3. Recurrent neural network

The only update you need to add to your calculations and dense

neuron inputs is the weight matrix W attached to the output of the

previous state S. Hence, considering each timestamp from 1,2,3…n as

shown in the figure, the dense neuron output computation Si at timestamp

i also needs to consider the weight W and the previous state Si-1, like the

following equation:

Si = g(WSi-1 + UXi)

The output function calculation remains the same and you get a

recurrent neural network capable of sequence learning problems.

 Problems with Vanilla RNN
Even though these types of neural networks are some of the best choices

for modeling sequence learning problems, there are two problems with

these models:

Chapter 3 rNN to traNsformer aNd Bert

89

• Vanishing gradient problem: There is a complex

mathematical analogy behind this problem. But briefly,

the problem is due to the fact that each hidden state

is dependent not only on its previous hidden state

but also on all the states preceding it. Hence, for long

sequences, the gradient that flows from the token in

the beginning to the end starts fading in the journey.

It might so happen that the gradient of the first token

almost turns to 0 when the gradient associated with the

last token is calculated. This means that the importance

of the first token is almost shredded off to zero. This

situation is known as the vanishing gradient problem

and this leads to losing the information of the tokens,

hence losing their knowledge.

• Exploding gradient problem: Similar to the vanishing

gradient problem, the model might lead to an

exploding gradient, where the gradient reaches a huge

number, hence crashing the memory.

Exploding gradients can be tackled using a technique called gradient

clipping, where the gradient is deducted once a certain value is reached. It

is intuitive to implement and has been productive in multiple situations.

But to address the gradient vanishing problem you have to resort to using

LSTMs (Long Short Term Memory Models).

 LSTM

As the problem with vanishing gradient is due to the multiple gradients in

the flow, if you could only use the gradients that are necessary to carry the

information of the input, then you could manage the final gradient from

getting unnecessary information that might lead to vanishing gradients of

the tokens.

Chapter 3 rNN to traNsformer aNd Bert

90

To attain such a configuration, you can introduce three gates:

• Write gate: A write gate can filter out the gradients

that flow out from one timestamp (or state) to the

next. The write gate can be as simple as a gate of real

numbers between 0 and 1 of the length equal to that of

the incoming gradients that needs to flow to the next

state. Each real number represents the importance of

carrying the gradient to the next state. This number

can also be learned by introducing a weight vector and

having an initial value of one for all the gate values.

• Read gate: You can use the output of the write gate

as an input to the sigmoid (or any other activation

function) to get the output of the new state. But before

taking this output of the activation function, you can

select which of the gradients to pass through according

to the new output values. Similar to the write gate,

you can introduce another gate to work like a read

gate. The configuration is the same as the read gate:

you introduce a weight matrix with values between 0

and 1 and initialize the gate with 1s to learn the gate

on the go.

• Forget gate: The write and read gates take the previous

state and manipulates to get a new state after passing

it through the gates. After the read gate, you have the

new state values. Now you need a gate to combine and

filter the previous state and the new state to get the

final new state. Although you have selective writes and

reads, you can also take the previous state values and

let go of some of the values that are not needed (the

unnecessary tokens) and concatenate or combine the

rest with the new state to get a final new state.

Chapter 3 rNN to traNsformer aNd Bert

91

This configuration of RNN is known as LSTM and it is widely used to

prevent vanishing gradients.

Figure 3-4 should allay all your doubts about the working of LSTMs.

Figure 3-4. LSTM

 Gated Recurrent Units (GRUs)

It might occur to you that the selective read gate is unnecessary, or the

forget gate is unnecessary. GRUs came up with a solution to this confusion.

You can use a single gate and combine the outputs of the sigmoid (or

activation function) and the previous state values. So instead of using

two different weight matrix to learn, you can use a single matrix both as

the forget and read gate. This configuration is known as GRU. It’s difficult

to say which RNN to use—LSTM or GRU. It depends on various factors,

such as computation power optimization over faster processing, problem

statement, and so on.

The following code shows you how to use these in Python to solve a

problem in real life. It uses the problem and dataset from the previous

chapter. You will also use the same preprocessing procedures.

! wget https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_
v1.tar.gz
! tar -xvzf /content/aclImdb_v1.tar.gz

Chapter 3 rNN to traNsformer aNd Bert

92

import os
import pandas as pd

train_pos_reviews_filenames = os.listdir("/content/aclImdb/
train/pos")
train_pos_reviews = []

for filename in train_pos_reviews_filenames:
 with open("/content/aclImdb/train/pos/"+filename) as fd:
 train_pos_reviews.append(fd.readline())
 fd.close()

train_neg_reviews_filenames = os.listdir("/content/aclImdb/
train/neg")
train_neg_reviews = []

for filename in train_neg_reviews_filenames:
 with open("/content/aclImdb/train/neg/"+filename) as fd:
 train_neg_reviews.append(fd.readline())
 fd.close()

test_pos_reviews_filenames = os.listdir("/content/aclImdb/
test/pos")
test_pos_reviews = []

for filename in test_pos_reviews_filenames:
 with open("/content/aclImdb/test/pos/"+filename) as fd:
 test_pos_reviews.append(fd.readline())
 fd.close()

test_neg_reviews_filenames = os.listdir("/content/aclImdb/
test/neg")
test_neg_reviews = []

Chapter 3 rNN to traNsformer aNd Bert

93

for filename in test_neg_reviews_filenames:
 with open("/content/aclImdb/test/neg/"+filename) as fd:
 test_neg_reviews.append(fd.readline())
 fd.close()

train_pos_reviews_labels = [1]*len(train_pos_reviews)
train_neg_reviews_labels = [0]*len(train_neg_reviews)
test_pos_reviews_labels = [1]*len(test_pos_reviews)
test_neg_reviews_labels = [0]*len(test_neg_reviews)
train_pos_df = pd.DataFrame({'reviews':train_pos_
reviews,'labels':train_pos_reviews_labels})
train_pos_df
train_neg_df = pd.DataFrame({'reviews':train_neg_
reviews,'labels':train_neg_reviews_labels})
train_neg_df.head()
test_pos_df = pd.DataFrame({'reviews':test_pos_
reviews,'labels':test_pos_reviews_labels})
test_pos_df.head()
test_neg_df = pd.DataFrame({'reviews':test_neg_
reviews,'labels':test_neg_reviews_labels})
test_neg_df.head()
train_df = pd.concat([train_pos_df,train_neg_df],ignore_
index=True)
train_df.shape
test_df = pd.concat([test_pos_df,test_neg_df],ignore_
index=True)
test_df.shape

import keras
from keras import layers
import tensorflow.data as tf_data
max_tokens = 40000
embedding_dim = 100

Chapter 3 rNN to traNsformer aNd Bert

94

X = train_df.loc[11500:13500,'reviews']
y = train_df.loc[11500:13500,'labels']

vectorizer = layers.TextVectorization(max_tokens=max_tokens,
output_sequence_length=embedding_dim)
vectorizer.adapt(X)

This code is exactly what you did in the previous chapter. Now you can

build your model and use the Keras LSTM layer to use LSTM in the model.

You will also use a bidirectional layer so that the LSTM layer performs the

RNN from left to right and from right to left. Here's how you can do that:

from keras.layers import Embedding

int_sequences_input = keras.Input(shape=(None,), dtype="int32")
embedded_sequences = Embedding(max_tokens, output_
dim=embedding_dim)(int_sequences_input)
Add 2 bidirectional LSTMs
x = layers.Bidirectional(layers.LSTM(64, return_
sequences=True))(embedded_sequences)
x = layers.Bidirectional(layers.LSTM(64))(x)
x = layers.Dropout(0.5)(x)
preds = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(int_sequences_input, preds)

Now that you have the model ready, you can divide the dataset into

training and test sets, compile, fit, and evaluate the model, similar to what

you did in the previous chapter.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X,y,test_
size=0.3, stratify=y)

Chapter 3 rNN to traNsformer aNd Bert

95

model.compile(
 loss="binary_crossentropy", optimizer="rmsprop",

metrics=["acc"]
)
model.fit(vectorizer(X_train), y_train, epochs=3)
model.evaluate(vectorizer(X_test),y_test)

The output will show test loss and test accuracy. For me, it showed the

following output:

19/19 [==============================] - 6s 110ms/step - loss:
0.6091 - acc: 0.6689

[0.6091383695602417, 0.6688851714134216]

I can say that the test accuracy (0.66 or 66 percent in my case) will

definitely be better than what you would have got in the previous chapter.

 Attention
RNN and its variants have been extremely popular for solving long-

range sequence learning problems without worrying about fixed-length

problems. But these models suffer from something known as the long-

term dependency problem. The information derived in the beginning is no

more relevant when the model reaches the end of the sequence. Although

LSTM and GRU manages some of this by introducing gates and filtering

out the unnecessary information, they are not enough to capture the

importance of tokens.

Another problem with RNNs is that they are relatively slower

compared to Artificial Neural Networks, due to temporal processing.

To address these problems, data scientists came up with a wonderful

technique known as attention. The necessity of attention stems from

the fact that temporal processing leads to loss of relevant information.

Chapter 3 rNN to traNsformer aNd Bert

96

In simple terms, it becomes too heavy for the last state to capture the

information of the entire sequence. Instead of that, a novel solution is

to use multiple vectors that represent how each token contributes to the

other tokens. This is known as an attention mechanism and the value that

represents the contribution is known as the attention score. The following

example uses this process to implement an attention mechanism.

Consider each token as a temporal input and each state derived as

from each corresponding input. From each of these states, two vector

representations (or projections) are derived—key and query (K and Q).

Each of these vector representations are learned through weight vectors—

one for key and one for query (WK and WQ) to be used for all the tokens.

Attention scores of a token (or state) are then calculated for each of the

other tokens, and they show how the prediction of the token is influenced

by the other tokens. To calculate this score, the query vector representation

of the token to be predicted is derived, and the key vector of the other

tokens are derived. The attention score for each token is calculated by

performing the dot product of the query vector with each key vector,

combining by scaling, and then normalizing the dot product. This

normalization can be done through the Softmax function. Let’s look at this

calculation in depth:

 1. Derive the Key and Query through weight vectors

(considering h as state of token):

K = WK * ht

Q = WQ * ht

 2. Calculate the dot product as follows:

Dot product = Q*KT

Mathematically, the dot product of two vectors is calculated by

the product of one vector and the transpose of another product.

Chapter 3 rNN to traNsformer aNd Bert

97

 3. You can then scale this by dimension of the key

vector (denoted by dk) as follows:

Q K

d

T

k

∗

 4. Finally, you will normalize using Softmax. Why do

you even need Softmax? Consider the problem of

getting the attention score of a token with respect to

the other tokens as a classification problem. In this

classification problem, the query vector is the target

and the keys are the feature set. The attention score

is the maximum probability score derived from the

feature vectors. The maximum probability scores are

derived using the Softmax function.

Along with this, another projection of the Key vector

(called the Value projection vector or V) is also

added as a multiple to add a weight to Softmax.

You will realize its significance once you read about

self-attention in the next section. Hence, the final

attention score is as follows:

Attention score = Softmax(
Q K

d

T

k

∗
)*V

Figure 3-5 shows this visually by using the example of a sentence

completion problem.

Chapter 3 rNN to traNsformer aNd Bert

98

Figure 3-5. Attention

As you can see, the attention is calculated in parallel for each token

instead of temporal processing. This reduces lag by getting rid of the

recurrent connections and computations, which are shown in Figure 3-5 as

dotted lines.

If you consider the token predicting the target and the other tokens as

a predictor or feature, the attention scores give the feature importance of

each of those predictor tokens and hence the Softmax is an obvious choice

to gather the final combined attention score. See Figure 3-6.

Chapter 3 rNN to traNsformer aNd Bert

99

Figure 3-6. Attention scores of tokens as predictors

 Encoder-Decoder Models
The problems so far have dealt with getting a single output from a range

of inputs, for example, predicting the next word of a sentence (similar

to autocompletion) and predicting the sentiment in reviews. But in the

recent world of AI advancements, these problems are very minimal when

compared to advanced AI applications like chatbot. If you think about it

for a moment, a chatbot is also a simple AI application where the model

is supposed to predict an answer to a query. For a chatbot, the input can

be represented in the same way, but the output is a sentence (or a range of

tokens) instead of a single token or value. Hence, the problem becomes a

multi-output supervised learning problem.

To tackle such a problem, we need to represent and model the output

as a sequence of tokens similar to the input. The input model is then

considered the encoder model and the output is the decoder model. Since

RNN (or its variants such as LSTM and GRU) is the model of choice for

sequence learning problems, we can model the encoder as an RNN and

the decoder as another RNN. The output of the encoder RNN is taken

as the first state of the decoder RNN and the output of the states of the

decoder RNN are considered the final output. Figure 3-7 shows how the

model is implemented with a simple question answering sample.

Chapter 3 rNN to traNsformer aNd Bert

100

Figure 3-7. Encoder-decoder models

Encoder-decoder models use RNNs to train state-of-the-art

architectures and are used for advanced AI applications like chatbot.

 Self-Attention
Although encoder-decoder models are the foundation for devising

modern-day AI applications such as chatbots, simple attention

mechanisms cannot be embedded in encoder-decoder models. The

reason for this is obvious if you think about it. The output of the decoder is

not a single token but a range of tokens as a sentence. So you cannot use a

single query vector to map to all the other key vectors of the decoder. Since

you have to learn the complete sentence, you have to get query vectors of

all tokens, as the desired output will consist of all these tokens. This idea

of using query vector representation of all the vectors to get the feature

importance of each token with respect to the other is known as a self-

attention mechanism.

To implement a self-attention mechanism, along with key and

query vector representation at each step for each token, you also need

a vector representation called the value vector. The value vector is used

to normalize with Softmax to give a unique value to each of the final

Chapter 3 rNN to traNsformer aNd Bert

101

attention outputs. The value vector is combined using a dot product and

a final neural network layer (a dense layer) is used as the output layer. See

Figure 3-8.

Attention score = Softmax(
Q K

d

T

k

∗
)*V

Figure 3-8. Self-attention

Why do you need to go to all these lengths when it can be easily

accomplished by RNNs? Why do you even need self-attention?

Since all you are doing is creating vector projections using weight

matrices, that is, creating simple matrices out of vectors and using these

vectors to compute a score and finally a dense and a Softmax layer, you are

actually doing everything in one shot. You can create vector projections for

all the tokens in one iteration altogether. You can also calculate everything

together using matrix multiplication.

Chapter 3 rNN to traNsformer aNd Bert

102

Hence you can get rid of the temporal procedures and thus get rid of

the recurrent connections because your key vectors take the knowledge of

all other successive tokens. See Figure 3-9.

Figure 3-9. Attention parallel computation

This mechanism forms the foundation for transformers. Transformers

are the basis on which modern AI models such as GPT are built.

 Transformers
In 2017, Ashish Vaswani and his colleagues came up with a

groundbreaking concept that led to all modern-day architectures. His

paper was titled “Attention Is All You Need” and it showed how you

can use an encoder-decoder model with self-attention to attain a faster

machine translation. You can find the paper at https://arxiv.org/
abs/1706.03762.

This chapter has discussed most of the building blocks of this paper

in previous sections. This section takes it a few steps further and stitches

everything to get the transformer architecture that exists today. See

Figure 3-10.

Chapter 3 rNN to traNsformer aNd Bert

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

103

Figure 3-10. Transformer architecture

Don’t be scared by the complexities of the architecture, as this section

dissects all the fine pieces and stitches them together to explain the

complete Transformer architecture.

Chapter 3 rNN to traNsformer aNd Bert

104

 Multi-Head Self-Attention

This chapter has discussed self-attention and how it helps you get rid

of the temporal delays by allowing the system to compute attention

scores of all the elements in one shot for each training iteration. The

Transformer architecture does the same thing, but multiple times in the

same step of the iteration. Each time you get an attention score, called the

attention head.

You create the query, key, and value projection of each token. For ten

attention heads, you create ten queries, keys, and value projections and

calculate ten attention scores for each training step. All these heads are

then concatenated and passed on to the final linear neural network layer.

Figure 3-11 breaks down the attention calculation similar to the

procedure discussed in the previous sections and shows how to calculate

multi-head self-attention.

Figure 3-11. Multi-head self-attention

In the original Transformer paper, the dimension of the queries, keys,

and value vectors was assumed to be 64. Hence the weight matrix for the

query, key, and value is used to derive the projections and should be Nx64,

where N is the dimension of the token embedding. The number of heads

in the original Transformer paper was 8.

Chapter 3 rNN to traNsformer aNd Bert

105

The encoder starts with a multi-head attention layer, akin to what

was discussed previously. This attention mechanism uses multiple

keys, queries, and value projections of the input token embeddings and

prepares the attention scores. See Figure 3-12.

Figure 3-12. Multi-head attention in encoder

The next multi-head attention layer is used in the decoder (at the top),

which uses cross-attention mechanism. In the cross-attention layer, the

multi-head attention uses the output of the encoder and uses these output

vector values to create query and key projections for multiple heads. The

value is then derived as a projection of the output of the layers preceding

this attention layer in the decoder. Figure 3-13 highlights the part where

cross-attention is used.

Chapter 3 rNN to traNsformer aNd Bert

106

Figure 3-13. Cross-attention in the decoder

As you can see from Figure 3-13, the key and query are derived from

the encoder outputs and the value vector is derived from the decoder layer

outputs. This allows the decoder to acquire and blend the knowledge of

the encoder while preparing the final attention scores.

Finally, the masked multi-head attention is used to mask the values

of the successive outputs while preparing the attention matrix. Since

this is not using temporal processing like RNN and calculating all the

attention scores in one go, it is essential to calculate the attention scores

for tokens arrived at time t without accounting for the tokens at time t+1.

In the attention score matrix, the attention scores for tokens at time t+1 are

masked, so the scores don't flow in the next layers.

Chapter 3 rNN to traNsformer aNd Bert

107

 Point-Wise Feed-Forward Networks

You must have noticed that there are feed-forward networks in the

Transformer architecture present in the encoder and decoder. These

networks are nothing but a combination of three dense layers stacked

on top of the other, where a dense layer of ReLU activation function is

sandwiched between two linear activation layers.

This section discusses the input and outputs from the feed-forward

networks.

 Layer Normalization

Normalization is when you need to combine and scale certain elements.

Normalization was used when we used Softmax to get the attention

scores. There, we used Softmax to essentially combine and get the final

probability score out of all the scores. This section looks deeper into what

normalization is. You first need to understand what scaling is.

 Scaling

Now consider a feature set where the metric is not uniform. A classic

example is a feature set that predicts the future price of a stock. This

prediction could be based on features such as opening price, closing price,

quantity of the stock being traded, and so on. It is worth noting that the

quantity of stock traded could be in the range of thousands to millions

(for example 120,000), whereas opening and closing price could be just

a few hundred at maximum (for example, $125). This means that there

is disparity in the metric, which might cause bias toward features having

greater values than the others. One way to bring everything into a common

range (for example, 0 to 1) is by scaling.

Chapter 3 rNN to traNsformer aNd Bert

108

Scaling can be done in two ways:

 1. Scaled Value = (value - value_min)/(value_max -

value_min)

Where the range of values in the feature is value_

min to value_max.

This method is known as min-max scaling because

the range is squeezed between 0 and 1 by scaling the

values down within the range. This method is also

known as normalization.

 2. Another method is derived from the statistical

calculation of z-score.

z =
x mean

std

−

Where std is the standard deviation of the feature

values. This technique assumes that your feature

values follow the Gaussian distribution and

converts the values to follow the standard normal

distribution. Hence, the method is known as

standardization. A standard normal distribution has

a mean of 0 and a standard deviation of 1.

Unlike normalization, standardization does not ensure the scaled

values fall in the range of 0 to 1. But standardization is not affected by

outliers, which is a possible scenario in case of normalization.

Standardization is sometimes referred to as z-score normalization.

It is not untrue to say that almost all machine learning algorithms tend

to preprocess the distribution of feature sets to fit the normal curve (or

distribution). Hence z-score normalization is an important preprocessing

step to perform with a machine learning problem.

Chapter 3 rNN to traNsformer aNd Bert

109

 Batch Normalization

Consider a neural network layer where the input is a set of N features

divided into batches of k. At each layer, batch normalization standardizes

the k values corresponding to each feature to a standard normal

distribution. Batch normalization is applied as a separate layer; Figure 3-14

illustrates this with an example.

Figure 3-14. Batch normalization

 Layer Normalization

Although batch normalization attempts to convert each feature at each

batch to a standard normal distribution, in sequence learning problems,

where the previous inputs carry knowledge about the next inputs, the

separation into batches causes this connection of knowledge to break out.

Hence, when standardization is done for a batch, the successive inputs in

the next batch cannot be accounted for.

Chapter 3 rNN to traNsformer aNd Bert

110

Hence, for sequence learning problems, the best approach is to

normalize for each row. Figure 3-15 explains this with an example.

Figure 3-15. Layer normalization

After each layer in the transformer architecture, the outputs are passed

through the feed-forward layer and a layer normalization. The result of

these are concatenated with the original output of the previous layer prior

to the feed-forward layer, in order to capture and use the knowledge of the

original layer output.

 Positional Embedding

As you can see in the Transformer architecture, the inputs and outputs are

converted into vector embeddings, called input and output embedding.

But there is also a feature added to the embeddings before passing them to

the encoder and decoder, which is called positional embedding. Positional

embedding, as the name suggests, holds the positional information of

the tokens. The reason for preserving the position values here is due to

Chapter 3 rNN to traNsformer aNd Bert

111

the lack of recurrent connections like RNN. Since there are no recurrent

connections, there is no way of preserving the order of the inputs. This

necessitates the use of positional embedding, which captures the position

of the inputs and blends them in the model.

In the original transformer paper, the authors used sinusoidal

functions to keep the order of the positions. They simply used two types

of positional embedding functions. One for the inputs in even positions,

which is passed through the function: sin(pos/100002i/d), where 2i is

the position of the input (considering only even positions) and d is the

dimensionality of the inputs and output vector. In the original paper d was

assumed to be 512.

The other function was for the inputs in odd positions, which is passed

through the function: cos(pos/100002i/d), where 2i+1 is the position of the

input (considering only odd positions).

Leveraging all the previous concepts, the Transformer architecture

is implemented with six encoder and six decoder layers in the original

paper. During the training, the authors experimented with the ADAM

optimizer with β1 = 0.9, β2 = 0.98 and ϵ = 10−9. Apart from these, the

authors experimented with varying parameters—dimension of input and

output vector embeddings (dmodel), dimension of key and value (dk and dv

respectively), dimension of the sandwiched ReLU layer in a feed-forward

layer (dff which is initially taken as 2048), the number of attention heads

(h), a residual dropout with a rate of Pdrop, and the learning rate. The results

are presented in Table 3 in the original transformer paper.

Although the Transformer architecture is a bit convoluted, the inner

workings and data flow are very intuitive once you have these concepts

in mind. With evolving Python developments, all the models are already

implemented by various organizations, including HuggingFace, and are

open-sourced and available to the general public. If you are still looking

to implement the architecture from scratch, TensorFlow has a wonderful

Chapter 3 rNN to traNsformer aNd Bert

112

tutorial that can walk you through each of the steps while coding along.

You can find the tutorial at https://www.tensorflow.org/text/
tutorials/transformer.

Keep in mind that the transformer was invented to solve a single

problem of language translation and the previous link targets solving the

same referring to the original paper. But now transformers are used as a

foundation for all advanced generative AI models.

The next section discusses how the Transformer architecture began to

be used in developing ground-breaking models.

 BERT
BERT (Bidirectional Encoder Representations from Transformers) is one

of the oldest and best models used, even currently in large enterprise

systems. You learned about the inner workings of Transformer architecture

and the theories that surround it. This section explains BERT and shows

how the Transformer architecture gave birth to numerous models

used today.

After all the theories in the previous sections, we finally dive into

Python and use these models for practical use cases. But before that, I

introduce BERT.

The original paper for BERT introduced by Google can be found here :

https://arxiv.org/abs/1810.04805
Before BERT, there were attempts to create the perfect model but most

of them suffered one problem—they are unidirectional. For models that try

to solve problems involving sentence or text inputs, unidirectional models

fail to capture the complete meaning of the sentence. But for tasks like

sentiment analysis, the complete meaning of the sentence is extracted only

when the sentence is processed from both ends.

Chapter 3 rNN to traNsformer aNd Bert

https://www.tensorflow.org/text/tutorials/transformer
https://www.tensorflow.org/text/tutorials/transformer
https://arxiv.org/abs/1810.04805

113

But previous attempts to process sequences bidirectionally used a

naive approach, where the right and left embeddings were concatenated.

An example of a model that uses such a technique is ELMO, as shown in

Figure 3-16.

Figure 3-16. Both unidirectional embeddings are
concatenated in ELMO

BERT came up with a novel approach known as Masked Language

Modelling to use bidirectional processing in one shot instead of processing

them separately and concatenating them. BERT uses two techniques

for processing inputs bidirectionally and preserving their knowledge—

Masked Language Modeling and Next Sentence Prediction.

 Masked Language Modeling

BERT uses masks to hide 15 percent of the tokens at each step of the

processing so that there is no need for bidirectional processing. This 15

percent of masking is done in three ways:

• BERT places [MASK] as a special masking token 80

percent of the time

• It replaces masked tokens with a random word from

another position 10 percent of the time

• Another 10 percent of the token is kept unchanged

Chapter 3 rNN to traNsformer aNd Bert

114

 Next Sentence Prediction

During training, BERT is also trained by inputting pairs of sentences from

the dataset. It does this by providing two sentences that actually come in

order one after the other 50 percent of the time and two random sentences

that do not fall in order 50 percent of the time.

With the configurations discussed previously, BERT performs better

than almost all other models implemented prior to BERT.

Organizations like HuggingFace have pretrained versions of models

like BERT and the pretrained knowledge is used in various industrial use

cases where there is no means or infrastructure to train these models from

scratch.

 HuggingFace Transformers
Let's dive into Python and learn how to use these models in Python.

Similar to all the previous implementation endeavors, you can follow

all the steps one by one, starting with data gathering. For data gathering,

let me introduce you to Kaggle. Kaggle is a gold mine for data scientists

and practitioners. Kaggle lets you avail various datasets, codes, and models

over several domains. You will leverage Kaggle to get access to a dataset

that predicts whether a news story is fake or not. The application for such a

model is endless. Consider building a website that hosts news on a specific

domain. Your model can help identify fake news. You can get the dataset

from this link:

https://www.kaggle.com/datasets/rajatkumar30/fake-news
You are welcome to download the dataset and try it on your local

system. You can also bring up a notebook from Kaggle itself and write your

code to build the model.

Chapter 3 rNN to traNsformer aNd Bert

https://www.kaggle.com/datasets/rajatkumar30/fake-news

115

But before starting the implementation, I want to introduce you to

HuggingFace. It was one of the first organizations to bring a complete

library of Transformers for the general public to use. You will use

HuggingFace Transformer libraries to build the code.

Since you are aware of the data source, start by checking the dataset

through Pandas.

data = pd.read_csv('news.csv')
data.head()

The output will show you a table with four columns:

Unnamed: 0 title text label

0 8476 You Can smell hillary’s

fear

daniel Greenfield, a

shillman Journalism

fello...

faKe

1 10294 Watch the exact

moment paul ryan

Committed pol...

Google pinterest

digg LinkedIn reddit

stumbleu...

faKe

2 3608 Kerry to go to paris in

gesture of sympathy

U.s. secretary of state

John f. Kerry said mon...

reaL

3 10142 Bernie supporters on

twitter erupt in anger

ag...

— Kaydee King

(@KaydeeKing) November

9, 2016 t...

faKe

4 875 the Battle of New York:

Why this primary

matters

It's primary day in

New York and front-

runners...

reaL

Chapter 3 rNN to traNsformer aNd Bert

116

To be on the safe side, you can also load only 500 rows if you are

working locally or with limited resources, by adding the parameter

nrows=500 in read_csv.

You have to consider the title and text as the input and the label as the

target. Specifically, you combine the title and text into a single string and

use it as input from a separate column (say desc).

data['desc'] = data['title'] + " " + data['text']

You might be wondering the reason for choosing a simple text

classification problem which can very well be solved by traditional

machine learning and NLP toolkits. But let me assure you that

Transformers like BERT can give you far better results with minimal

preprocessing than with traditional ways of solving the problem.

Now install the Transformer library of HuggingFace.

!pip install transformers

HuggingFace has a huge repository of advanced and pretrained models

and we will use their Transformer library to avail those models. Start by

importing the library you will need to use BERT for this classification.

You will use pretrained BERT model available in HuggingFace

repository and fine tune it to fit to the dataset to predict the target from the

features in the dataset. There are various versions of pretrained models

available in HuggingFace. The version of BERT used for this problem is

bert-base-uncased. This version is pretrained on Wikipedia, which is a

corpus of Wikipedia dumps and Book corpus, which is a corpus of 7,185

unique books. This version of BERT is trained only with English language

text and has 11 million parameters.

Import TensorFlow and the Auto class from the HuggingFace

Transformers library:

Chapter 3 rNN to traNsformer aNd Bert

117

from transformers import AutoTokenizer,TFAutoModelForSequenceCl
assification
import tensorflow as tf

Auto classes can retrieve the pretrained models from HuggingFace

and act as a wrapper to call the HuggingFace model APIs for interacting

with the model. Auto classes are available for PyTorch and TensorFlow

frameworks, as AutoModel and TFAutoModel.

Auto classes provide generic wrappers that can be enhanced by

adding layers on top of the output of the models for specific purposes

like classification, question answering, and so on. HuggingFace also

provides specific auto classes for specific purposes, where an extra head

is introduced on top of the pretrained model based on a specific purpose,

thus preventing you from adding these layers manually. For example:

TFAutoModelForSequenceClassification

has a classification head on top of the generic

Transformer model.

TFAutoModelForQuestionAnswering has an

additional layer on top of the generic model to

support question answering tasks.

TFAutoModelForTokenClassification is used for

tasks such as Named Entity Recognition.

Since you are dealing with a classification problem from text

sequences, you need TFAutoModelForSequenceClassification.

Before using the pretrained transformer model for classification, you

need to preprocess the text inputs in order to get the tokens properly from

each of the sentences. HuggingFace has a wrapper for tokenizers called

AutoTokenizer that can use subword tokenization algorithms that various

Transformer models use. This makes the tokenizer output compatible with

the Transformer model that will be used in the next steps. For example,

Chapter 3 rNN to traNsformer aNd Bert

118

BERT uses Word-Piece Tokenization, GPT uses Byte Pair Encoding,

ALBERT uses unigram, and so on. This example uses AutoTokenizer and

leverages bert-base-uncased.

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

The tokenizer is further wrapped in a function that calls the

AutoTokenizer on the concatenated text input. Before using this tokenizer,

you need to make the dataset compatible with the HuggingFace model

input formats. HuggingFace has a library “datasets” that can ensure that

your inputs are in order when you want to input this to the BERT model.

Install the datasets library:

! pip install datasets

You also need to divide the dataset into training and test datasets using

train_test_split like you did earlier.

from sklearn.model_selection import train_test_split
train_data, test_data = train_test_split(data)

Now you can use datasets to let it ingest the training dataset.

from datasets import Dataset
train_ds = Dataset.from_pandas(train_data)

Now use these tokenizer function to create a preprocess function that

can tokenize the combined text using BERT.

def preprocess(dataset):
 return tokenizer(dataset["desc"],return_

tensors="np",padding=True, max_length=512, truncation=True)

This code sets a maximum length parameter to 512. If you remember,

BERT has been trained in the original paper with dimension of model

input set to 512. This is exactly how the versions of BERT models are also

trained in HuggingFace. Hence, you need to set the maximum length of the

Chapter 3 rNN to traNsformer aNd Bert

119

tokens to 512. The padding parameter lets the tokenizer pad the sequences

having length less than 512 and truncation lets the tokenizer remove

tokens that exceed the maximum length. Also, note that the example is

extracting only the desc column while tokenizing and ignoring the other

columns.

To tokenize the training dataset, simply call the preprocess function

on the dataset.

tokenized_train_dataset = preprocess(train_ds)

For the model to understand the labels, you need to put labels into a

NumPy array and convert “FAKE” and “REAL” to 1 and 0.

train_labels = np.array(train_ds["label"])
train_labels_modified = []
for tl in train_labels:
 if tl=='FAKE':
 train_labels_modified.append(1)
 else:
 train_labels_modified.append(0)

You also need the text dataset to be converted to dict.

tokenized_train_dataset = dict(tokenized_train_dataset)

Do all of this to your test dataset as well.

test_ds = Dataset.from_pandas(test_data)
tokenized_test_dataset = preprocess(test_ds)
test_labels = np.array(test_ds["label"])
tokenized_test_dataset = dict(tokenized_test_dataset)

Chapter 3 rNN to traNsformer aNd Bert

120

test_labels_modified = []
for tl in test_labels:
 if tl=='FAKE':
 test_labels_modified.append(1)
 else:
 test_labels_modified.append(0)

Now you are ready to bring the model to the ground and fine-tune the

model with the dataset.

As discussed, this example uses

TFAutoModelForSequenceClassification.

from transformers import TFAutoModelForSequenceClassification

model = TFAutoModelForSequenceClassification.from_
pretrained("bert-base-uncased")

model.compile(optimizer="adam")

 model.fit(tokenized_train_dataset,np.array(train_labels_
modified))

It took me around five hours to train on CPU. I suggest you change your

environment to GPU and try the same.

Once it's done, you can also evaluate your model with your test

dataset.

test_loss = model.evaluate(test_tf_dataset,np.array(test_
labels_modified),verbose=2)
print('\nTest Loss:', test_loss)

You can assume that it’s fairly easy to fine-tune any transformer model

with your dataset of choice using HuggingFace libraries. But you were

lucky enough to match the business requirement exactly with one of the

model wrappers provided by HuggingFace and hence you were directly

able to use TFAutoModelForSequenceClassification.

Chapter 3 rNN to traNsformer aNd Bert

121

But what if you need something other than plain classification, or

question answering, or anything that can fit with the specific model

wrappers? In that case, you have to take the model without any specific

head and add a few layers to top of it to match the business use case. In

such a case, you need to use the TFAutoModel wrapper of HuggingFace,

which gives you the model outputs. You can add the custom layers on top

of it to fit your needs.

 TFAutoModel

Let's see how to do that. This example uses the same problem you just

read about for sequence classification of fake news detection, but it uses

TFAutoModel instead of TFAutoModelForSequenceClassification.

To begin, you read and preprocess the data using the HuggingFace

datasets library exactly like you did in the previous section.

import pandas as pd

data = pd.read_csv("news.csv", nrows=500)
data['desc'] = data['title'] + " " + data['text']

This time I suggest that you download and install only a specific

version of HuggingFace Transformers.

!pip install transformers==4.37.2

Next, you'll import AutoTokenizer and prepare the tokenizer.

 DistilBERT

This time you'll use another Transformer model devised by data scientists

to overcome one of the major disadvantages of BERT, namely the

resource utilization. BERT was definitely ground-breaking in terms of

performance and accuracy but it was really a struggle for small enterprises

and development teams to use the model with limited resources

Chapter 3 rNN to traNsformer aNd Bert

122

and infrastructures. Hence, DistilBERT was introduced in the paper

“DistilBERT, A Distilled Version of BERT: Smaller, Faster, Cheaper and

Lighter,” by victor, lysandre, julien and thomas from HuggingFace. You can

read the DistilBERT paper at https://arxiv.org/pdf/1910.01108.pdf.

With model training and maintaining becoming more and more

expensive with BERT, data scientists came up with a novel approach to

bring forward a smaller, faster, cheaper, and lighter transformer trained

by distilling BERT. The approach is known as knowledge distillation and

it is defined as a compression technique in which a compact model—the

student—is trained to reproduce the behavior of a larger model—the

teacher—or an ensemble of models.

The two main parts of the knowledge distillation architecture used by

DistilBERT are as follows:

• Teacher model: The large and expensive model trained

on a huge corpus.

• Student model: A relatively smaller model that uses

a different type of training called “distillation” to

transfer knowledge from the teacher model to the

student model.

The distillation is done after training the teacher model with the

complete large corpus, by taking another set of training data smaller than

the full corpus and using this data to train both the teacher and student

models, by leveraging a combined loss function.

Now that you have a very basic idea of what DistilBERT does, and

continuing with the coding, you can use DistilBERT in the tokenizer.

from transformers import AutoTokenizer
import tensorflow as tf
tokenizer = AutoTokenizer.from_pretrained("distilbert/
distilbert-base-uncased")

Chapter 3 rNN to traNsformer aNd Bert

https://arxiv.org/pdf/1910.01108.pdf

123

You can also split the data into training and test datasets, install the

HuggingFace datasets library, and ingest the data after tokenization as you

did earlier.

! pip install datasets
from sklearn.model_selection import train_test_split

train_data, test_data = train_test_split(data)

from datasets import Dataset

train_ds = Dataset.from_pandas(train_data)

def preprocess(dataset):
 return tokenizer(dataset["desc"],return_

tensors="np",padding=True, max_length=512,truncation=True)

tokenized_train_dataset = preprocess(train_ds)

import numpy as np

train_labels = np.array(train_ds["label"])
tokenized_train_dataset = dict(tokenized_train_dataset)

import numpy as np

train_labels = np.array(train_ds["label"])
tokenized_train_dataset = dict(tokenized_train_dataset)

train_labels_modified = []
for tl in train_labels:
 if tl=='FAKE':
 train_labels_modified.append(1)
 else:
 train_labels_modified.append(0)

test_labels_modified = []
for tl in test_labels:

Chapter 3 rNN to traNsformer aNd Bert

124

 if tl=='FAKE':
 test_labels_modified.append(1)
 else:
 test_labels_modified.append(0)

These preprocessing steps should seem familiar to you, as you are

doing the preprocessing steps you did in the previous section.

Next, download the DistilBERT model and wrap it with TFAutoModel.

from transformers import TFAutoModel

auto_model = TFAutoModel.from_pretrained("distilbert/
distilbert-base-uncased",output_attentions=True,output_hidden_
states=True)

Notice that two new parameters have been added—output_
attentions and output_hidden_states—which allow AutoModel to return

the attention scores as a separate vector and return the last hidden states

respectively.

You can check the attention scores and the hidden states using this

code snippet:

hidden_states = auto_model_output.hidden_states
attentions = auto_model_output.attentions

You have to build your model by leveraging the AutoModel class and

other Keras layers.

import keras
from keras import layers

max_length=512

auto_model.trainable = False

Chapter 3 rNN to traNsformer aNd Bert

125

input_ids = keras.Input(shape=(None,), dtype="int32",
name="input_ids")
attention_masks = keras.Input(shape=(None,), dtype="int32",
name="attention_mask")
auto_model_output = auto_model(input_ids, attention_
mask=attention_masks)
sequence_output = auto_model_output.last_hidden_state

dropout = tf.keras.layers.Dropout(0.3)(sequence_output)
preds = layers.Dense(1, activation="sigmoid")(dropout)
model = keras.Model(inputs=[input_ids, attention_masks],
outputs=preds)

model.compile(loss="binary_crossentropy",optimizer="adam")

Let’s analyze this code snippet carefully.

In the beginning, you set the AutoModel to nontrainable since you do

not want to mess with the weights and biases of the pretrained DistilBERT.

After that, you prepared two input layers to accept the input IDs and

attention masks from the Transformer tokenizer. This is also one of the

reasons for using AutoTokenizer, as it can return the tokenized dataset in

the format that the HuggingFace Transformer models expect as inputs.

Almost all of the Transformer models expect the following input formats:

• Input IDs: These are the tokenized and vectorized

sequences derived from text.

• Attention Masks: These are the masks that a

transformer model needs for multi-head masked

attention.

• Token Type IDs: These are used by Transformers when

the input is a collection of sequences and the model

needs to differentiate tokens of one sequence from

the other.

Chapter 3 rNN to traNsformer aNd Bert

126

Since you are building a model leveraging a pretrained Transformer

model, you need to pass these input formats separately. Also, since your

final model input is only a single sequence, you can leave the Token

Type IDs.

Once you have placed the Transformer model using the AutoModel

wrapper instance, you need to get the last hidden state to pass it on to the

next layers. These layers will determine the output of your final model

based on business requirements.

Since you are referring to the same problem and same dataset, you can

use a simple dropout and a sigmoid output layer for binary classification.

Hence, you finally add a dropout and a dense layer and compile the final

model with binary cross entropy loss and ADAM as the optimizer.

You can now go ahead and fit your model to your dataset and you are

good to go.

model.fit([tokenized_train_dataset['input_ids'],tokenized_
train_dataset['attention_mask']],np.array(train_labels_
modified).astype("float16").reshape((-1,1)))

Notice that since you have explicitly added input layers to capture

the input IDs and attention masks, you need to pass the input IDs and

attention masks separately from the dataset dictionary.

Because of this, you need to reshape and pass the labels, because you

do not have HuggingFace dataset as inputs to do these adjustments.

I prepared and ran the code in Google Colab and used TPU as a

runtime instead of CPU, which took 624 seconds to run.

12/12 [==============================] - 624s 50s/step -
loss: 0.7244

You can also leverage a Trainer class provided by HuggingFace to train

an LLM using this code snippet:

Chapter 3 rNN to traNsformer aNd Bert

127

from transformers import Trainer, TrainingArguments

training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=3,
per_device_train_batch_size=16,
per_device_eval_batch_size=64,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
)

trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset
)

trainer.train()

You should now have a good idea how to use HuggingFace

Transformers to level up your NLP applications. The next chapter covers

Large Language Models.

 Summary

• Recurrent Neural Networks (RNNs) are the ideal neural

network models to work on sequence inputs. Vanishing

gradient is one of the common problems in RNN. LSTM

and GRU are the two variants of RNNs that can help

minimize vanishing gradient issues.

Chapter 3 rNN to traNsformer aNd Bert

128

• RNNs are good for sequence-to-label problems, but

when it comes to sequence-to-sequence problems, the

encoder-decoder architecture shines as an obvious

solution.

• For long-range sequence problems, it is very difficult to

manage the context, as the knowledge at the beginning

of the sequence starts to fade when the temporal

processing reaches the end. An attention mechanism

helps in mitigating the problem by figuring out

attention scores of one token to the other.

• Attention can be used in sequence-to-sequence

problems by using the self-attention mechanism. In

the self-attention mechanism, all the tokens are scored

with respect to all the others.

• Leveraging the encoder-decoder architecture and a

self-attention mechanism, models can completely

get rid of temporal processing by leveraging the

Transformer architecture.

• While the Transformer was already popular, BERT was

introduced by Google and it raised the bar by coming

up with state-of-the-art performance.

• HuggingFace has a huge repository of pretrained

Transformer-based models and wrappers for

developers to leverage the power of models like BERT

and DistilBERT.

Chapter 3 rNN to traNsformer aNd Bert

129© Arindam Ganguly 2025
A. Ganguly, Scaling Enterprise Solutions with Large Language Models,
https://doi.org/10.1007/979-8-8688-1154-8_4

CHAPTER 4

Large Language
Models
Artificial intelligence has come a long way from predicting simple weather

temperatures using meteorological factors to generating poems and songs

from a single line of text. Natural Language Processing as a domain of AI

started by predicting sentiment analysis from statements. Such problems

dealt with text inputs as complete sentences and a number as an output,

which determined the positive or negative tone of the sentences, that is,

a simple classification problem. Once we could determine or categorize

text based on some classes, we could apply the same technique to other

problems, such as statement comparisons that determine whether two

statements are similar or different. There again, the input is a combination

of text (two sentences) and the output is a number determining the class.

Taking this a step further, a similar technique can be applied to extract

intent and entities from text. Intent and entities are basic building blocks of

chatbots and you will see them in detail in a later chapter.

Now that you know how to derive a complex system out of AI models,

you should be confident enough to tackle any system that your business

might need.

Assume that you are working as a data scientist and building AI models

day in and out. Suddenly your supervisor comes up with a problem to

create an automation system to generate marketing content for your

https://doi.org/10.1007/979-8-8688-1154-8_4#DOI

130

client’s products. Now you are dumbfounded! Your confidence is down

to zero as none of your experience or expertise seems to apply. What do

you do now?

Your answer now resides elsewhere. Welcome to the world of

Generative AI and Large Language Models!

 Language Models (LLMs)
Necessity is the mother of invention and Transformers were invented as

a solution to efficiently and accurately translate text from one language

to another. As data scientists and industry professionals tried the

architecture and its variations on other problems, they realized that

simple variations and improvement techniques could easily break the

previous benchmarks. These improvements mainly depend on your

goals, business requirements, or constraints. Large Language Models

(LLMs) revolutionized natural language processing, enabling tasks like

text generation, translation, and question-answering with remarkable

accuracy and fluency. For example, in the past DistilBERT was a successor

to the vanilla BERT architecture, where the idea was to optimize on

the infrastructure while achieving a similar performance. Most of

these language models follow a technique known as Masked Language

Modelling as opposed to traditional string sequence predictive analysis.

The next section explains how.

 Masked Language Modeling
Chapter 2 discussed how string sequences are processed for predictive

analytics. For example, autofill works by predicting the next word while

typing a sentence in real time. LLMs, on the other hand, adopted a

technique known as Masked Language Modeling, where instead of

predicting the next upcoming word at the end of the sentence, it tries to

predict a random word somewhere in between the sentence in question.

Chapter 4 Large Language ModeLs

https://doi.org/10.1007/979-8-8688-1154-8_2

131

For example, consider a dataset containing numerous sentences

to train a model for autofill. If you focus on a single sentence such as,

“Learning Generative AI is more fun than necessary,” your traditional

modeling should have the following X (independent variable) and Y

(dependent variable):

X = “Learning Generative AI is more fun than __”,

Y=“necessary”

A Masked Language Modeling technique, on the other hand, will try to

predict each of the words as follows:

X = “__ Generative AI is more fun than necessary”,

Y=“Learning”

X = “Learning __ AI is more fun than necessary”,

Y=“Generative”

X = “Learning Generative __ is more fun than

necessary”, Y=“AI”

X = “Learning Generative AI __more fun than

necessary”, Y=“is”

X = “Learning Generative AI is __ fun than

necessary”, Y=”more”

X = “Learning Generative AI is more __ than

necessary”, Y=“fun”

X = “Learning Generative AI is more fun __

necessary “, Y=“than”

X = “Learning Generative AI is more fun than __”,

Y=“necessary”

Other variations in MLM can sample 80 percent of the words in

random as Y and keeping the rest intact as X.

Chapter 4 Large Language ModeLs

132

Based on such ideas and generalizing on a broader level, language

models are classified into sequence models and autoregressive models.

 Sequence-to-Sequence Models
Sequence models can be either autoencoding models or sequence-to-

sequence models. Autoencoding models borrow the encoder part of the

Transformer architecture and are pretrained on various tasks. These tasks

can vary based on constraints and requirements. For example, BERT uses

Next Sentence Prediction, but DistilBERT uses Sentence Ordering and

this helps optimize the infrastructure. But at the heart of the pretraining

process, these models play with the input tokens (such as masking) and/or

sentences (bidirectional read/write) to understand the text.

Sequence-to-sequence models are best for tasks that expect a text

sequence as output from an input sequence of text, such as translation,

question answering, and so on. These models leverage both the encoder

and decoder parts of the Transformer architecture and are pretrained with

input and output text sequences.

 Autoregressive Models
Autoregressive models, on the other hand, use only the decoder part of the

Transformer architecture; they use the idea of predicting the next element

based on the previous set of elements in a sequence (hence the name

autoregressive). They use masks to hide the next elements when using the

previous elements to determine the current element. These models are

now the foundation of Generative AI and are best suited for generative

tasks. The following sections discuss how they led to the foundation of the

generative AI models that we see today.

Chapter 4 Large Language ModeLs

133

 GPT
GPT (Generative Pretraining) doesn’t sound like anything that we might

have thought of after the rise of ChatGPT. This chapter explains how

advanced models like ChatGPT came into existence and the concepts that

helped form the gears that drive LLMs today.

The first version of GPT was a simple autoregressive model, which was

pretrained on the Books Corpus, which consisted of text from more than

7,000 unique books. The pretraining strategy was divided into three steps:

 1. Language Modeling

Language modeling leveraged text prediction using

log probability. The model used at this step was the

decoder part of the transformer and predicted the

next word from a long sequence of preceding text

regarded as context.

 2. Supervised Learning Task

Here again the decoder was used as a classifier to be

applied to the following tasks:

• Sentence similarity

• Entailment detection (Sentence A implies

Sentence B or not)

• Multiple choice question answering

 3. Combine the previous tasks and use weighted

evaluations to get the final model.

This example uses GPT with HuggingFace and the Transformer

library. It will again use one of the auto classes, specifically

AutoClassForCasualLM, which is appropriate for handling autoregressive

Chapter 4 Large Language ModeLs

134

models. Since you have already seen how the auto classes can be used

for classification and fine tuning, you will see how to use GPT for text

generation, which autoregressive models excel at.

Let’s start by importing the auto class and use GPT2 for this now.

from transformers import AutoModelForCausalLM

gpt2 = AutoModelForCausalLM.from_pretrained("gpt2")

To use the LLM, you need to use input IDs for this similar to the one

you did in the previous chapter.

input_ids = tokenizer("It was stormy", return_tensors="pt").
input_ids

You can now use the input IDs to generate the rest of the sentence.

output_ids = gpt2.generate(input_ids, max_new_tokens=20)
decoded_text = tokenizer.decode(output_ids[0])

print(decoded_text)

The decoded text should be something starting with the phrase, “It was

a stormy.”

Although this seems impressive, you will not get the kind of

generations that you get when using ChatGPT. For readers who have not

encountered or used ChatGPT, let me take you through ChatGPT and how

to use them.

Open AI introduced ChatGPT around 2024 and it changed the

paradigm of AI completely. Open AI is now known by almost everyone

due to the incredible accomplishments that ChatGPT can achieve. But

before ChatGPT, OpenAI had always been working on a special field of

machine learning known as reinforcement learning. It was reinforcement

learning that sparked the idea of how Chatbots can converse and learn like

human beings.

Chapter 4 Large Language ModeLs

135

 Reinforcement Learning
Have you seen computers playing video games? If you feel this is a bit

far-fetched, I urge you to search for the advancements that industries

like NVIDIA and DeepMind are cooking up. In 2003, researchers from

DeepMind devised a model that learned to play Atari. In 2016 and 2017

their system was able to defeat the world champions at a game of Go. This

took the world by storm.

Until the 1900s, data scientists could devise a system, namely neural

networks, that could mimic the workings of a human brain based on how

biological neurons work.

Babies learn to walk by taking a first step, falling, and standing up.

Through various rewards and failures, a person learns their way through life.

Data scientists took this idea into consideration and came up with

reinforcement learning. The model doesn’t learn from traditional labeled

data in one go. Instead, a software agent takes an action to move from its

current state to the desired state in a predefined environment. The reward

received by the agent decides whether it has succeeded or not.

We can have a predefined set of actions that the agent can take at any

point in time; we call that set an action space. The action space can be

discrete or continuous. If a system is attempting to play a game of Chess,

the action space is definitely discrete, as it can traverse right, left, up, or

down by a certain number of steps and pattern. But if you consider a

system generating sample text, the action space is continuous, based on

probability distributions of tokens and vector embeddings that you saw in

the previous chapters.

This behavior of the agent to take certain steps and discard others can

be accumulated in a policy. A policy determines the strategy that maps

states to actions. Relating to the same examples discussed previously, the

policy can be deterministic or stochastic. A stochastic policy will give a

probability distribution for all possible actions and a deterministic policy

will show the definite action to be taken at a certain state.

Chapter 4 Large Language ModeLs

136

Reinforcement learning is a paradigm where an agent learns to

take actions in an environment to maximize a cumulative reward. In

reinforcement learning, the model learns by trial and error. Each trial

can be considered as an episode and each episode contains a trajectory,

which is a set of actions, states, and rewards. To evaluate a policy, you have

to use a Value function Vπ(s). The Value function estimates the expected

cumulative reward R from a given state for a certain policy π. This can be

expressed mathematically as follows:

Vπ(s) = E[R(π,s)]

where Vπ(s) is the Value function for policy π for a given state s and R(π,s) is

the Reward achieved by the policy at state s.

To get the optimal policy, you use the policy with the maximum value.

A similar evaluation parameter is the Q function. It estimates the

expected cumulative reward from a given state-action pair. It records the

value of a certain policy π from a specific state to another, but also for a

certain action. This also can be mathematically expressed as follows:

Qπ(s,a) = E[R(π,s,a)]

where Qπ(s,a) is the Q Function of a policy π for a state s performing

an action a and R(π,s,a) is the Reward achieved by the policy at state s

performing an Action a in order to transition to another state.

If you consider the set of all the possible policies as a policy space, then

the Q value allows you to pick the best policy by taking into account not

only the complete trajectory, but also the states it is visiting and the action

it’s taking for each state traversal.

The Q function to evaluate the maximal Q value is also known as the

Q* function.

Q*(s,a) = maxQπ(s,a)

Your objective is always to get the optimal policy. Consider the Q

function parameterized by a weight matrix so that it can learn to pick

Chapter 4 Large Language ModeLs

137

the Q* value based on the probability distribution of state-action pairs

for a continuous action space. But how do you fit in a network for the

weight matrix?

You need a supervised learning algorithm for learning the weight

matrix through an artificial neural network. For this, the dataset will be a

buffer consisting of source state, destination state, action, and reward. You

also need a loss function that uses Q* values. The algorithm uses a weight

parameter to calculate Q* as follows:

Loss(max(Q*(a,s), Q*(a,s))

The first Q* contains the true values and the second one contains

the predicted values. They both use the weight matrix as a parameter to

calculate Q* values.

To help the model balance the evaluation of loss, the weight matrix should

differ for both the Q* values and hence there has to be another neural network

for the target (or true) value. This algorithm is known as Deep Q Network (DQN).

If you have a stochastic policy, you can allow weight matrices as

parameters to the stochastic policy space. An algorithm that learns

the policy by using the gradient of weight matrix for policy is known

as a policy gradient method. There are numerous other reinforcement

learning algorithms, including Actor-Critic, Advantage Actor Critic, and

TRPO. Discussing all the algorithms and their implementations would

require a separate book and is out of scope. But the next section does

discuss one algorithm called Proximal Policy Optimization (PPO) when

we dig deep into ChatGPT. Before discussing PPO, you need to understand

Reinforcement Learning through Human Feedback (RLHF).

 OpenAI Gym
Before OpenAI came up with their disruptive idea to incorporate

reinforcement learning into chatbots for AGI, they released a framework

to implement reinforcement learning models, known as OpenAI Gym.

Chapter 4 Large Language ModeLs

138

Just like Scikit-Learn has some datasets (such as iris, boston housing, etc.)

for you to work your initial modelling journey, OpenAI Gym also has a

wide range of preconfigured environments for your initial reinforcement

learning journey.

This section illustrates a simple reinforcement learning algorithm

in Python using OpenAI Gym. This is a relatively small exercise and I

recommend you use the Google Colab, as OpenAI Gym is preinstalled in

Google Colab.

Start by importing Gym as follows:

import gym

You need an environment to simulate your reinforcement learning

algorithm. This exercise uses the Cart-Pole environment, which simulates

the cart pole game, where one needs to balance a pole on a moving cart.

env = gym.make("CartPole-v1")

The next step is to reset the environment so that every time you run

this code, it starts from the beginning.

observation = env.reset()

The system needs to take a random action from the action space. You

will keep this running in a loop 100 times, as shown here.

for _ in range(100):
 env.render() # Render the environment (optional)
 action = env.action_space.sample() # Sample a random action
 observation, reward, done, info = env.step(action)
Take action

 print(observation, reward, done, info)

Now let the system take a random action from the action space. You

will keep this running in a loop also for 100 times, as shown here.

Chapter 4 Large Language ModeLs

139

You should see the observation as a tuple containing four values

representing a state in the form of cartesian coordinates and the reward as

a value.

Finally, make sure you close the environment to prevent any hanging

resources.

env.close()

This is a very simple demonstration of OpenAI Gym and a simple

reinforcement algorithm. I urge you to explore OpenAI Gym if you want

to get your hands dirty on game automation or robotic automation

technology such as self-driving cars.

 Reinforcement Learning Through
Human Feedback
You now know that reinforcement learning is based on how humans learn

using trial, error, and experience. Human knowledge, however, is also

guided by other humans. Our parents taught us basic virtues and helped us

make good decisions. Our teachers guided us in understanding the correct

meaning of materials in books.

Reinforcement Learning through Human Feedback (RLHF) borrows

the idea that there needs to be manual feedback to improve the learning

and training processes. Human feedback can be provided in various

forms, including demonstrations, reward shaping, critiques, and

preference rankings. One of these techniques widely used in Generative

AI is preference ranking, where a human in the middle checks the output

of the generated text and ranks them based on requirements, such as

accuracy. This feedback is then taken into the system to update the reward

and target network (in the case of DQN) and the training continues until

convergence.

Chapter 4 Large Language ModeLs

140

Reinforcement learning was mastered by data scientists at

OpenAI. Now you are ready to understand how ChatGPT works. ChatGPT

is an interface that lets you chat with a bot akin to a human. The model

under the hood is Instruct GPT. The next section explains how Instruct

GPT works.

 Instruct GPT
ChatGPT was an application born out of an RLHF model known as

Instruct GPT. Instruct GPT uses GPT3 for training. GPT3 had certain

shortcomings such as misalignment of context, which means it could not

follow the instructions provided in the inputs. Instruct GPT used RLHF

to allow models to abide by the instructions and be precise and concise

in their responses (see Figure 4-1). Instruct GPT was pretrained using the

following steps:

 1. Supervised Pretraining

A set of instructions are considered the input dataset

and a human is introduced in this step to prepare

the response of the instructions. This dataset of

instructions and their response is then trained

using supervised pretraining. The model used here

is GPT3.

 2. Reward Model Training

In the second step, a dataset of instructions

or prompts and the generated responses are

accumulated. Multiple responses are generated

as variations and a human is introduced to label

and rank these responses from best to worst. Once

the ranked results are tallied, the reward model is

trained with the ranked dataset.

Chapter 4 Large Language ModeLs

141

 3. Policy Optimization

In the final step, a prompt is sampled from the

dataset and a policy from a policy space is chosen

to generate the response. A reward model is used

to assign a reward for this generation. This reward

is leveraged to optimize the policy using Proximal

Policy Optimization (PPO).

Figure 4-1. Instruct GPT (Source: https://arxiv.org/
pdf/2203.02155)

PPO uses the trust region method to check whether the new policy

is within the trust region. A loss function, specifically KL Divergence, is

used to evaluate the differences with the old (or previous) policy. Trust

region is a predefined threshold that is used to check how much a value

of a function can diverge. PPO checks whether the gradient of a policy

defies the trust region. This policy is then considered optimal and is used

further in trajectory selection. In the case of ChatGPT, this trajectory is the

response to the instructions or prompts in the final step of Instruct GPT.

Chapter 4 Large Language ModeLs

https://arxiv.org/pdf/2203.02155
https://arxiv.org/pdf/2203.02155

142

Now that you know how ChatGPT works internally, gear up to see how

you can use ChatGPT.

 OpenAI
OpenAI started a new paradigm of technical development through LLMs

by using prompt engineering. Instead of learning through the theory of

prompt engineering, you’ll now get your hands dirty and learn by doing.

When OpenAI introduced LLMs through ChatGPT, they opened

ChatGPT to the public through OpenAI Playground. Getting access to

OpenAI Playground is easy. You have to create an account and register at

https://platform.openai.com/. OpenAI Playground is an interactive

interface for users to test and play around with OpenAI models.

Once you register, you should get a $5 credit under the Free Trial

usage. I recommend that you add more credits to move on to the paid

account, so that you don’t have any constraints in experimenting with

LLMs. You can do that from the Billing section.

Once you have your account set up, you can go to OpenAI Playground

using this link: https://platform.openai.com/playground.

OpenAI Playground is shown in Figure 4-2.

Chapter 4 Large Language ModeLs

https://platform.openai.com/
https://platform.openai.com/playground

143

Figure 4-2. OpenAI Playground

As you can see, OpenAI lets you test models for Chat, build assistants,

and run completions (which are considered legacy now). This chapter

uses Chat to test the models. There is a drop-down to select the model you

want to test. OpenAI hosts the top-performing models and these models

are deployed in their servers for general use.

You might be wondering why we don’t use our knowledge of model

building to rent our own servers and build our own models. As easy as

it might sound, they are often not economically feasible since training

such large models with such a huge number of parameters would require

a fortune in hardware. Apart from the economic constraints, industries

often detest reinventing the wheel and let firms such as OpenAI worry

about hosting and maintaining the models. Driving the applicability of the

models often requires more hustle than training and hosting these models.

Apart from some basic security concerns, which I discuss later, you can use

your skills to fine-tune and apply these models to achieve wonders!

On the right tab in Figure 4-2, you should see some parameters. These

parameters are going to be one of the crucial factors that tunes the model

to fit your purpose.

Chapter 4 Large Language ModeLs

144

Finally, you should see two text areas in the middle—one for System

Instruction (or prompting) and the other for User Message. The user

message is the user input you want to test with your selected model and its

configuration. The system instruction is known as prompting. Let’s discuss

prompting in detail.

 Prompting
A prompt is a specially crafted instruction given to an LLM, which

decides how to use the user input to get the desired output. Prompt

engineering is a discipline of designing a prompt and has been one of

the foremost demanding skills in the world of LLMs since Generative AI

came to existence. There has been lots of research in the field of prompt

engineering, leveraging LLMs that are tuned to perform interesting tasks

just by manipulating the prompts. You learn about some of them in the

next chapter.

To understand prompt engineering, you need to understand notable

concepts:

 1. Few shot prompting: Just like with supervised

learning, LLMs work best when you provide them

with some examples to show what it should do

with the inputs. Although the concept might sound

similar to supervised learning, keep in mind that

these models are pretrained with lots of data. You

are only providing it some instructions to nudge the

model to fit your purpose. Hence your examples

cannot be as large as the training data, but must

fit the input length of the model. Each model has

a specific maximum input length that must be

respected to not cause errors and your prompt along

with inputs that should fit in that range.

Chapter 4 Large Language ModeLs

145

A simple example of few shot prompting follows.

Say you are an IT assistant and your task is to extract

the employee number, location, and issue occurring

from the call transcript. You can use the following

examples as your reference.

Example 1:

Transcript: “Hey this is 1745 from the Delaware

office. I have been facing some issues with my

monitor. It shows some green lines in the middle.”

Extracts:

Employee Number: 1745

Location: Delaware

Issue: Issue with monitor. It shows some green lines

in the middle.

Example 2:

Transcript: “Hi, I’m not sure why my laptop is not

booting up. Can you please check it? I’m in Dallas

and my ID is 5122.”

Extracts:

Employee Number: 5122

Location: Dallas

Issue: Issue with monitor. Laptop is not booting up.

The examples are your few shots (two shots to

be specific) and the instruction is the prompt

instruction.

You can enter this few shot prompt in the system

instruction text area in OpenAI Playground and test

a model.

Chapter 4 Large Language ModeLs

146

 2. Zero shot prompting: In this case, you provide

instructions but do not provide any examples. The

model uses its pretrained knowledge to perform

actions mentioned in the instructions.

Other than prompting, your model also needs to tune a few parameters

pertinent to tune the model to the needs. Let’s now discuss a few

parameters that you can see in the right tab of OpenAI Playground.

 Temperature

This is a crucial parameter that’s tuned based on your use case.

Temperature determines the amount of creative freedom that should

be given to the model while generating the output. A lower temperature

(under the range of 0 to 0.9) restricts randomness of the output and is

generally used for use cases that require factual and traceable outputs.

Some examples of such use cases are entity extractions and data analysis.

Medium temperature values are generally used for chatbot-like use

cases where you require factual answers but in a conversational way.

Temperatures above 1 are used for creative use cases, such as poetry

generation, song composition, marketing slogan generation, and so on.

You can tune the temperature parameter in the previous example of

few shot in OpenAI Playground and see the differences.

 Top P

Top P is used instead of temperature to determine the randomness of the

generation in a quantitative way. Top P mainly allows the generation to

generate tokens having cumulative probability greater than P. This seems a

bit intricate and mathematically heavy, but the idea is almost same.

Chapter 4 Large Language ModeLs

147

 Frequency Penalty and Presence Penalty

Frequency penalty restricts the model to generate the same words or

phrases multiple times or too frequently. It acts on the output as a whole as

a flat reduction on the frequency of the tokens and phrases.

Presence penalty allows the model to generate varied forms of words,

hence increasing the creativity.

 Stop Sequences

Since the models are trained for output generation, they might choose

to generate unwanted sections of text. Sometimes you might see your

model appending the question along with the answer. In such cases, when

you see a part of text being generated often, you can use some part of

the starting text as a stop sequence so that your models stop generating

whenever it encounters that particular text sequence.

 Maximum Tokens

You can restrict your model to generate up to a certain number of tokens.

Although, generally you might not restrict your model in generating text,

you have to keep in mind that all your model executions incur cost. The

cost is based on the number of tokens and adjusting your token count is

crucial in developing your application for obvious budgetary concerns.

Assuming that you will work with other LLM providers such as

Anthropic, Mistral, WatsonX, and so on, the parameters are almost the

same. For example, IBM WatsonX has something known as Prompt Lab,

where you can test your prompts with their parameters. If your firm has

an IBM WatsonX subscription, you can create a project. While creating

an asset, choose Chat and Build Prompts with Foundation Models

(see Figure 4-3). Foundation models is another phrase often used to

describe LLMs.

Chapter 4 Large Language ModeLs

148

Figure 4-3. IBM WatsonX Prompt Lab selector

Once you select this, you should be able to access Prompt Lab, which is

similar to OpenAI Playground, as shown in Figure 4-4.

Figure 4-4. The IBM WatsonX Prompt Lab

Chapter 4 Large Language ModeLs

149

Similar to OpenAI Playground, you will see three ways to experiment

with your prompt—Chat, Structured, and Freeform. You should use the

structured form to make your experience similar to OpenAI Playground.

You will also see a drop-down with the model names to change your

models and the button at the top-right allows you to access and tune the

model parameters. See Figure 4-5.

Figure 4-5. WatsonX Prompt Lab, Structured pane

As you might have guessed, Repetition Penalty corresponds to

frequency penalty for OpenAI models and Decoding allows you to tune the

temperature categorically. Sampling corresponds to higher temperature

values and Greedy corresponds to higher temperature values. Stop

Sequence and Min and Max Tokens are the same as those in OpenAI

Playground.

If you are in the Structured pane, as shown in Figure 4-5, you will also

be able to see the parts where you can provide the prompt instruction

(Instruction). The examples should be separated as inputs and outputs and

your user inputs go in the Input Text pane at the bottom. Once you click

Generate, you will be able to see the output in the Output pane at the bottom.

Chapter 4 Large Language ModeLs

150

My intention of showing you the WatsonX playground is to emphasize

that no matter which LLM provider or hypervisor you choose, your models

will adhere to the input and parameter formats.

 OpenAI API
Now that you have a place to experiment and choose the correct LLMs

and parameters, this section shows you how to use them in enterprise

applications.

All the LLM providers allow you to use their hosted LLMs through API

endpoints. These APIs allow you to pass the prompt instructions, few shots

(if needed), and the tuning parameters. In the next section of this chapter,

you will attempt to develop and build an application using these APIs. But

before that, you see how these APIs look and how to use them.

To start with experimenting with LLM APIs, you need two things:

• An API key from an OpenAI account.

• A tool such as Postman to test the API responses.

To begin, you need to get an API key from an OpenAI account.

 Create Your API Key

 1. Go to https://platform.openai.com and log in to

your OpenAI account.

 2. Go to your profile at the top right.

 3. In your profile page, click Create New Secret Key.

 4. Give your key a descriptive name (e.g., IT
Assistant Project).

 5. Copy the key immediately and store it securely—you

won’t be able to see it again.

Chapter 4 Large Language ModeLs

https://platform.openai.com

151

To start experimenting with OpenAI APIs, you need Postman. Postman

is a widely used API testing tool and many developers use it when building

web applications. The next section explains how to set up Postman.

 Setting Up Postman
Postman is a widely used tool for testing HTTP requests. It provides a user-

friendly interface to enable developers to send HTTP requests and analyze

the responses.

To set up Postman, navigate to www.postman.com and download the

setup file to install Postman on your computer.

Alternatively, you can create an account in www.postman.com and you

should be able to access the Postman application through your browser in

your Postman account.

Follow these steps to start using Postman:

 1. Open Postman (either through your browser or from

the application installed on your computer).

 2. Select Workspaces from the top and click Create

Workspace.

 3. Select Blank Workspace and then click Next.

 4. Give the workspace a name, select Personal, and

then select Create.

Open Postman to start testing your few shots example through the API

endpoint. The API endpoint you are going to use is the chat completion

API and you can use this API endpoint most of the time while calling your

model inferences. The chat completion API can be invoked through the

endpoint https://api.openai.com/v1/chat/completions as a POST

method. You need to pass your API key as a bearer token and you can

pass the parameters (model identifier, temperature, stop sequence, etc.)

as JSON objects in the body. The prompt instruction, few shots, and user

Chapter 4 Large Language ModeLs

https://www.postman.com/
https://www.postman.com/
https://api.openai.com/v1/chat/completions

152

inputs all need to be passed inside an array named messages. Each object

in messages can be of several object types. Your prompt instruction should

be as system message (object) type; your examples should have an input

as user message type; and your output should reside as assistant message

type. Your final user input will also be passed as user message type. Each

of these types can be discerned by assigning the role field as “assistant”

or “user” for each object. The request for the few shot example should

therefore look like this:

{
 "model": "gpt-3.5-turbo",
 "messages": [

 {
 "role": "system",
 "content": "You are an IT assistant and your task is

to extract the employee number, location and issue
occurring from the call transcript. You can use the
below examples as your reference."

 },
 {
 "role": "user",
 "content": " Hey this is 1745 from the Delaware office.

I have been facing some issues with my monitor. It
shows some green lines in the middle."

 },
 {
 "role": "assistant",
 "content": "Extracts: Employee Number : 1745, Location:

Delaware, Issue: Issue with monitor. It shows some
green lines in the middle."

 },

Chapter 4 Large Language ModeLs

153

 {
 "role": "user",
 "content": "Hi I’m not sure why my laptop is not

booting up. Can you please check. I’m at Dallas and my
ID is 5122."

 },
 {
 "role": "assistant",
 "content": "Extracts: Employee Number : 5122, Location:

Dallas, Issue: Issue with monitor. Laptop is not
booting up."

 },
 {
 "role": "user",
 "content": "Hi my ID is 4412 and I'm not able to

connect to the internet hence I had to call you
directly. Please check, It's urgent. Oh I'm in the
New York office now."

 }
],
 "temperature":0
 }

Let’s break down the key components of the API request:

• model: Specifies which model to use (e.g.,

gpt-3.5-turbo)

• messages: An array of message objects, each with a role

and content

• temperature: Controls randomness (0 for

deterministic, 1 for more random)

Chapter 4 Large Language ModeLs

154

Additional parameters you can use include:

• max_tokens: Limits the length of the generated

response

• stop: Specifies sequences where the API should stop

generating further tokens

• presence_penalty and frequency_penalty: Adjust the

model’s focus on new or repeated information

Experiment with these parameters to fine-tune the model’s responses

for your specific use case.

Remember to set the authorization as bearer token and add your API

key as a token.

As you can see, I used GPT3.5 Turbo and the temperature is set as 0

since you want factual extractions from the transcript. Note that all the

examples are passed as user and assistant messages with inputs (the

transcripts) as user message and the expected extractions as assistant

message. The final user input is then passed as a user message.

The list of model IDs can be found at https://platform.openai.com/
docs/models.

You can also access the API documentation at https://platform.
openai.com/docs/api-reference/chat. You might find some additional

parameters useful.

The results should look something similar to this response:

{
 "id": "chaxxxxxxxxxxxxx8fznO3sZn0P61EMGR1SK",
 "object": "chat.completion",
 "created": 1718807108,
 "model": "gpt-3.5-turbo-0125",
 "choices": [
 {
 "index": 0,

Chapter 4 Large Language ModeLs

https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
https://platform.openai.com/docs/api-reference/chat
https://platform.openai.com/docs/api-reference/chat

155

 "message": {
 "role": "assistant",
 "content": "Extracts: Employee Number : 4412,

Location: New York, Issue: Unable to connect to
the internet."

 },
 "logprobs": null,
 "finish_reason": "stop"
 }
],
 "usage": {
 "prompt_tokens": 220,
 "completion_tokens": 24,
 "total_tokens": 244
 },
 "system_fingerprint": null
}

You can see there are some obvious output parameters sent by

OpenAI, including prompt_tokens, completion_tokens, finish_reason,

and so on. Your desired output will reside in the message field. If there is

any discrepancies due to token length or plan limitation, you should be

able to judge that from the finish_reason value.

 Handling Rate Limits
When using the OpenAI API in production, you need to be aware of rate

limits. OpenAI imposes limits on requests per minute and tokens per

minute, which vary based on your account type and the model used. To

handle rate limits:

Chapter 4 Large Language ModeLs

156

• Implement exponential backoff for retries

• Use a queue system for high-volume applications

• Monitor your usage and adjust your application’s

behavior accordingly

Keep in mind the following best practices while building your

application.

 LLM API Best Practices
Best practices for efficient API usage include:

• Batching requests when possible

• Caching responses for identical or similar queries

• Using the smallest model that meets your needs

• Optimizing your prompts to reduce token usage

By following these practices, you can manage costs and ensure smooth

operation of your application.

When working with the OpenAI API, you may encounter various

errors. The next section looks at some of the common issues.

 Common Issues
Common issues include:

• Authentication errors: Check your API key and ensure

that it’s correctly set

• Rate limit errors: Implement backoff and retry logic

• Context length errors: Reduce your input or use a

model with a larger context window

• Content policy violations: Review and adjust your prompts

Chapter 4 Large Language ModeLs

157

To debug API requests:

• Use logging to capture full request and response details

• Implement verbose error handling to provide

meaningful error messages

• Use tools like Postman to test API calls independently

of your application

Remember to sanitize any logged data to avoid exposing sensitive

information.

Although this is pretty easy to use, you need to build applications in

code and not in Postman, so you need an SDK for the APIs. Since this

example has been using Python all along (and OpenAI has a wonderful

Python SDK), you are going to use the OpenAI Python SDK. You will build

the application using this SDK and see how you can get the most out of

OpenAI LLMs to build a production-grade business enterprise application.

 The IT Assistant
The example in this chapter pertains to a necessary business requirement

relevant in almost all industries today. IT is an indispensable part of

any firm in today’s world and keeping the IT infrastructure in order is

necessary for all firms. This section expands on this example to make it

relevant to the real world.

You will add all the necessary gears to make the system production

ready. This section explains the brief architecture of the application you

are going to build. I assume you are mostly aware of all the elements

needed in a basic web application because introducing all of them is out of

scope of this book.

You are going to create a system that can refer to a set of

knowledgebase documents, such as system manuals, and talk to users to

solve their problems. A few years back, this would not have been possible

Chapter 4 Large Language ModeLs

158

and you would have needed a human in the loop to find the relevant

document and reply to the user’s queries. With the emergence of LLMs, it

is now possible to pass on the relevant document and the LLM can answer

queries referring to the text from the document.

To get the relevant document, you are going to refer to a database.

This database keeps track of all the system manuals in the firm. It consists

of all the details of the knowledgebase (i.e., the documents/system

manuals) and you will allow users to choose the document from the set

of documents they want their assistant to refer to when answering their

queries.

Since the target of this book is to show how Generative AIs can fit in

large enterprises, you need this system to be production ready and easily

pluggable. A brief architecture of the system is shown in Figure 4-6.

Figure 4-6. Simple IT assistant architecture

Let’s start building this application step by step.

Chapter 4 Large Language ModeLs

159

The demo limits the application to three device manuals so that it can

solve any problem occurring in any of those devices. It uses WikiHow

www.wikihow.com/Main-Page to prepare the manuals.

Go to each of the following links and save these pages in the

form of PDF.

• www.wikihow.com/Fix-a-Keyboard

• www.wikihow.tech/Solve-Common-Printer-Problems

• www.wikihow.com/Repair-LCD-Monitors

In case you are wondering, you can open the links in the browser and

simply try to print them (by pressing Ctrl+P). Instead of printing, you can

ask to save them as PDFs. As you can figure from the links, these are the

knowledgebase documents that the system would use to answer the user

queries and try to solve their problems.

Save the first link as keyboard.pdf, the second one as printer.pdf,

and the third one as monitor.pdf.

Once you have the documents ready, create a workspace and a folder

inside the workspace called docs. Copy these documents into that folder.

 Preparing the Database
Now that you have the knowledgebase ready, you can prepare a database

that will consist of the details of the documents and the devices they

refer to. You might have figured out that the first link refers to fixing a

broken keyboard, the second link is to fix a printer, and the third link is for

repairing a LCD monitor. Hence, in the database, you will tag them to the

specific devices in the form of a table that should look like this:

Chapter 4 Large Language ModeLs

https://www.wikihow.com/Main-Page
http://www.wikihow.com/Fix-a-Keyboard
http://www.wikihow.tech/Solve-Common-Printer-Problems
http://www.wikihow.com/Repair-LCD-Monitors

160

 doc_id | doc_name | doc_url | topic
--------+--------------+-------------------+----------
 1 | keyboard.pdf | docs/keyboard.pdf | keyboard
 2 | monitor.pdf | docs/monitor.pdf | monitor
 3 | printer.pdf | docs/printer.pdf | printer
(3 rows)

The table has a document ID, the name of the document or the file

name, the URL or path to access, and the topic, which is the device it

attempts to refer to. You will use the last two columns in this application.

You can use any database, but the codebase I prepared uses Postgres.

If you are new to Postgres and want to set it up in your environment and

learn, I suggest you refer to this link:

https://www.w3schools.com/postgresql/postgresql_install.php
It doesn’t matter where you have set up your Postgres instance (local

or otherwise)—you will be able to access it through the credentials of the

database, namely database user ID, password, database name, the host

URL, and the port. Generally, all databases even have a command-

line interface. To create the table, open your Database shell and use the

following query:

create table tst_index_tab (doc_id varchar, doc_name varchar,
doc_url varchar, topic varchar);

You can check your table using the following:

Select * from tst_index_tab;

You will be able to see a blank table if the table was created.

 doc_id | doc_name | doc_url | topic
--------+----------+---------+-------
(0 rows)

Chapter 4 Large Language ModeLs

https://www.w3schools.com/postgresql/postgresql_install.php

161

Now you can fill up the table with data using SQL insert statements

shown here:

insert into tst_index_tab values ('1','keyboard.pdf',
'docs/keyboard.pdf','keyboard');

insert into tst_index_tab values ('2','monitor.pdf',
'docs/monitor.pdf','monitor');

insert into tst_index_tab values ('3','printer.pdf',
'docs/printer.pdf','printer');

 Preparing the Backend and Orchestration Layer
Now that your database and knowledgebase are ready, you need to prepare

the backend or orchestration layer with microservices. Let’s start by

preparing the functions to retrieve data from the database when required.

The database connection needs to know the database credentials, but

exposing database credentials is a potential risk if you consider your

system running in production. Security is obviously a concern.

There are two ways to prevent credentials and secrets from being

leaked. You can either create an environment variable or an environment

file. Creating an environment variable requires administrator system

access. You can instead create an environment file and hide it from your

codebase repository or your source code management (SCM). In this

project, you are going to use git as the SCM, so you need a gitignore file

containing your environment file path. The steps are as follows:

 1. Create a file named .env, which will contain the

application secrets in a key value pair as follows:

DB_USER=<Your Database User Name>
DB_PASSWORD=<Database Password>
DB_NAME=<Database Name>

Chapter 4 Large Language ModeLs

162

DB_HOST=<Database URL>
DB_PORT=<Database port>
OpenAI_API=<The OpenAI API Key we created in the
previous section>

 2. Create a file named .gitignore, which will contain

just one line:

.env

This will ensure that your credentials are safe, even if you push your

codebase to an external repository such as GitHub.

 Creating a Python File
In this section, you create the Python file containing the database

functions. You cannot use Jupyter Notebook or any other similar

experimentation environment, as you are building a complete application

to run in production.

The first task is to include the libraries you are going to use. This

example uses psycopg2 to connect to the Postgres database from Python.

You also need the dotenv package to access the environment file through

the load_dotenv function.

One last thing I recommend using is a logger to keep a track of your

system errors while the application is running. This example uses the

logging package, which is included with the basic Python installation.

Start by installing the packages you will need. You need to install the

following packages using pip on your command line:

pip install Flask
pip install openai
pip install PyPDF2

Chapter 4 Large Language ModeLs

163

Open your code editor and create a file named db_functions.py. Then

follow these steps:

 1. import your packages

import psycopg2
import os
import sys
from dotenv import load_dotenv
import logging

You have read about all these packages already

except for os and sys, which are needed to

support the load_dotenv function to access the

environment files.

 2. Now configure logging using the following code. The

comments should make the code self-explanatory.

Create and configure logger
logging.basicConfig(filename="assistant.log",
 format='%(asctime)s %(message)s',
 filemode='w')

Creating an object
logger = logging.getLogger()

Setting the threshold of logger to DEBUG
logger.setLevel(logging.DEBUG)

The logger configuration in the first line allows your

logs to be saved in a file named assistant.log in

the format <time> <output log>.

Chapter 4 Large Language ModeLs

164

An example of the contents of the log is as follows:

2024-06-21 10:01:46,350 load_ssl_context verify=True
cert=None trust_env=True http2=False

 3. Now load the env file using the load_dotenv

function:

load_dotenv()

 4. As your environment file is now loaded, you

can assign the environment file secrets in global

variables as follows:

Now get all the database Configs from .env file
host = os.getenv("DB_HOST")
port = os.getenv("DB_PORT")
user_name = os.getenv("DB_USER")
pass_word = os.getenv("DB_PASSWORD")
db_name = os.getenv("DB_NAME")

 5. Now you’ll create a function to connect to the

database. This function will be used to create a

database connection in your Python program and

send that connection for use. You will use the global

variables created from the environment file values

to create a connection using the psycopg2.connect

function. A cursor will also be created with the

connection, which is a tracker or identifier to access

each row returned by the SQL queries.

Function to generate a DB connection
def get_connection():

Chapter 4 Large Language ModeLs

165

 con = psycopg2.connect(database=db_name,
user=user_name,password=pass_word,
host=host,port=port)

 cursor = con.cursor()
 return (con,cursor)

 6. The final function in this file is the get_topic_
details function, which will take the topic as a

parameter, use the get_connection function to get

a connection and a SQL query to get the row values

corresponding to a topic. The topic is selected from

the frontend by the user.

Now get all the topics and their document
details (id, name and URL/path)
def get_topic_details(topic_id):
 try:
 con,cursor = get_connection()
 cursor.execute(f"SELECT doc_id,

doc_name, doc_url FROM tst_index_tab
where topic='{topic_id}'")

 row = cursor.fetchall()
 con.close()
 except Exception as e:
 logger.error("get_topic_details()|"

+repr(e))
 con.close()
 return False
 return row

Chapter 4 Large Language ModeLs

166

As you can see, the code uses exception handling

to log errors using the logger. repr(e) ensures

that you get the details of the exception (or error

occurred) in the string. Note also how the query

string is formatted. The code uses f-string instead

of string concatenation and placeholders for

variables as {}.

 Creating Microservices
Now that db_functions.py is ready, you can create the microservices that

will drive the web app. You need to establish methods that can initiate a

server, listen for HTTP requests, and send a response. Using bare HTTP

methods in Python can be a bit of a hassle, so you are going to use Flask in

this case, which has simple methods that do all of the hard work for you.

Start by preparing the backend code:

 1. Create the index.py file in your workspace:

import all the libraries as follows.
from flask import Flask, request, render_
template, session
import psycopg2
from db_functions import get_topic_details
import os
import sys
from dotenv import load_dotenv
from openai import OpenAI
from PyPDF2 import PdfReader
import io

Chapter 4 Large Language ModeLs

167

The first import line imports the desired functions

from Flask. The request module is used to access

the HTTP request and its parameters and session

is used to hold the web session as long as the

application is running. It will help you persist

certain values, such as the topic (or device) selected

to use the proper knowledge document. Finally,

the render_template is used to render a template,

which is the frontend web page to be displayed to

the user. Flask uses Jinja2 templates to pass the

Python variables and perform manipulations on

DOM elements based on the variable values. This

makes the web page dynamic. You can read more

about Flask and Jinja2 templates at https://flask.
palletsprojects.com/en/3.0.x/tutorial/.

The second import is psycopg2, which we already

discussed.

The third import lets you use the function you

created in the db_functions.py file.

The fourth, fifth, and sixth imports are similar to the

ones you saw in the previous section.

Since you need to use OpenAI, you need a Python

package for OpenAI, which is imported in the

seventh line.

The final package that’s imported is PyPDF2, which

is a Python package that can extract text from a

PDF. Since PDFs are unstructured documents,

you need a Optical Character Recognizer (OCR)

to extract text from PDFs. OCRs use machine

learning algorithms to decipher the image content

Chapter 4 Large Language ModeLs

https://flask.palletsprojects.com/en/3.0.x/tutorial/
https://flask.palletsprojects.com/en/3.0.x/tutorial/

168

and extract the characters in that unstructured

document. You can read more about PyPDF2 at

https://pypdf2.readthedocs.io/en/3.x/.

 2. Since you need the API key stored as a secret in

the .env file, you need to load the environment

variables and store the API key in a variable.

Load .env file
load_dotenv()

Now get the OpenAI API from .env file
apikey = os.getenv("OpenAI_API")

 3. Now you need to initialize the web application

in Flask.

app = Flask(__name__)

 4. You also need to set an app secret key to use the web

session in Flask.

app.secret_key = "index"

It’s actually better to use a random string as a secret

key. For demo purposes only, I use a simple string.

 5. Now you need to create some utility functions.

The first utility function you need to create will use

PyPDF2’s OCR to extract text from a PDF.

def get_text(pdf_url):
 reader = PdfReader(pdf_url)

 context = ""
 #For each page get the text and add it to context
 for page in reader.pages:

Chapter 4 Large Language ModeLs

https://pypdf2.readthedocs.io/en/3.x/

169

 context = context + page.extract_text()
 return context

The parameter you need to pass to this function

is the PDF URL, which as you might have already

guessed, you will get from the database, given the

topic leveraging the function from the previous file.

 6. Now you use the OpenAI model to generate query

results. Up to now, you have used HTTP requests

and Postman to call OpenAI APIs, but now you will

use Python to do this, by utilizing the Python library

called openai, which provides Python functions

to seamlessly invoke OpenAI models, just like we

did using Postman. This makes your life easier by

abstracting the intricacies needed to invoke OpenAI

using HTTP requests and will allow you to use

OpenAI models in different applications.

def get_openAI_completion(context, query,
chatlog=""):
 client = OpenAI(api_key=apikey)
 if chatlog=="": # For first time
 prompt_instruction = "You are an IT

Assistant and you are provided a
knowledge text and a user query. Your
task is to use the knowledge text to
answer the user query."

 user_content = "Knowledge Text:\n"
+context+"\n\nUser Query:"+query

 else:

Chapter 4 Large Language ModeLs

170

 prompt_instruction = "You are an IT
Assistant in conversation with a user.
You are provided a knowledge text, the
previous chat conversation and user query.
Your task is to use the knowledge text to
answer the user query as a continuation
to the previous chat conversation."

 user_content = "Knowledge Text:\n"+context+"\n\
nChat Conversation:\n"+chatlog+"\n\nUser
Query:"+query

 # Call OpenAI model below:
 response = client.chat.completions.create(
 model="gpt-3.5-turbo",
 messages = [
 {
 "role":"system",
 "content": prompt_instruction
 },
 {
 "role":"user",
 "content": user_content
 }
],
 temperature=0.6,
 top_p=1
)
 return response.choices[0].message.content

There are a couple of things to understand about

this function. It will be used whenever a query

is sent to the assistant. Since you are building a

conversational assistant, to attain the conversation

Chapter 4 Large Language ModeLs

171

flow, the assistant needs to keep in mind the

previous dialogues that have been exchanged.

This conversation context is provided in the

chatlog variable, which persists the log of any

conversations. But when the conversation starts,

the chatlog variable should be empty and at that

time no conversation context needs to be passed to

the LLM. The prompts are designed conditionally,

keeping in mind this criteria. The context should

also include the document text that the assistant

should refer to, as discussed previously. This

document knowledge is passed in the context

variable. Finally, the chat completion URL is invoked

with the chat.completion.create() functions

and the parameters passed are similar to the ones

discussed in the previous section.

 7. Now that the utility functions are ready, you need

to create the HTTP routes for the Python server in

the same file. To create a route in Flask, you need

a @app.route decorator. The route along with

the HTTP method is passed and the respective

HTML template should be rendered along with the

variables to be passed. The first route is the entry

point /index.

@app.route("/index",methods=['GET'])
def index():
 return render_template("index.html")

Chapter 4 Large Language ModeLs

172

 8. The index template should have a drop-down to

allow the users to select the appropriate device.

Create a folder called templates and place a

file called index.html into it with the following

contents:

<html>
 <head>
 <title>Topic</title>
 </head>
 <body>
 <h3>Select Topic</h3>
 <form action="get_doc_detail" method="POST">
 <select id="topic" name="topic">
 z<option value="keyboard">KEYBOARD

</option>
 <option value="monitor">MONITOR

</option>
 <option value="printer">PRINTER

</option>
 </select>
 <input type="submit" value="submit"/>
 </form>
 </body>
</html>

As you might have guessed, the starting template or

frontend allows the user to select between keyboard,

monitor, and printer. It passes the selected value to a

HTTP route /get_doc_detail.

Chapter 4 Large Language ModeLs

173

 9. To create the /get_doc_detail route, go back to the

index.py Python file and add this code:

@app.route("/get_doc_detail",methods=['POST'])
def get_doc_detail():
 topic = request.form['topic']
 row = get_topic_details(topic)
 if not row:
 return render_template("index.html")
 doc_obj = {"doc_id":row[0][0],"doc_name":row

[0][1],"doc_url":row[0][2]}
 session['doc_url'] = doc_obj['doc_url']
 session['chat_history'] = [{"user":"",

"assistant":""}]
 return render_template("chat_template.

html",chat_history=[])

As you can see, this is a POST method and hence

the data (the topic value received from the index.
html template) is sent here, which is set in a topic

variable. The function then utilizes the get_topic_
detail() function from the db_functions.py file to

get the document details and saves it in a variable

named row. Just to keep error handling in place,

the row variable is checked and the URL is saved or

persisted in the Flask session in order to persist it in

the full lifecycle of the web application. An empty

session with empty dialogs is also set in session as

an initial chat log. The chat template is rendered in

chat_template.html.

Chapter 4 Large Language ModeLs

174

 10. Now you’ll create the chat_template.html Jinja

template. Create the chat_template.html file in the

templates folder and add this code:

<html>
 <head>
 <title>Chat</title>
 </head>
 <body>
 {% if chat_history!=[] %}
 {% for c in chat_history %}
 <p>
 {% if c['user']!="" %}
 User: {{ c['user'] }}
 {% endif %}
 </p>
 <p>
 {% if c['assistant']!="" %}
 Assistant: {{ c

['assistant'] }}
 {% endif %}
 </p>
 <hr/>
 {% endfor %}
 {% endif %}
 <p>
 <form method="POST" action=

"/message">
 Enter Your Message
 <input type="text" name="user_

message" id="user_message" />

Chapter 4 Large Language ModeLs

175

 <input type="submit" value=
"submit">

 </form>
 </p>
 </body>
</html>

The code is almost self-explanatory. The chat history

is shown as a combination of user and assistant

dialogs in a loop and the form in the end allows

the user to send the query. This form leverages

another route, called /message, to send the query to

the system.

 11. Finally, go back to the index.py Python file and add

this code to create the /message route:

@app.route("/message",methods=['POST'])
def assistant():
 doc_url = session['doc_url']
 chat_history = session['chat_history']
 user_message = request.form['user_message']
 knowledge = get_text(doc_url)
 chatlog = "user: " + chat_history[-1]

["user"] +"\nassistant: " + chat_history[-1]
["user"]

 result = get_openAI_completion(knowledge,
user_message,chatlog)

 chat_history.append({"user":user_message,
"assistant":result})

 session['chat_history'] = chat_history
 return render_template("chat_template.html",

chat_history=chat_history)

Chapter 4 Large Language ModeLs

176

This function uses the last chat conversation as the

conversation context derived from the chat_history

session and the document URL from the session is

leveraged to point to the document that the assistant

should refer to while answering the queries. This

document URL is then sent to the get_text utility

function to get the text of the PDF. All of these are

sent to the get_openAI_completion utility function

to get the response.

 12. The last step is to allow the server to listen to a

certain port. In Flask, you need to add a main

function with this code:

if __name__ == '__main__':
 app.run(host="0.0.0.0",port="3000")

You are now ready with your application; your working directory

should look like Figure 4-7.

Chapter 4 Large Language ModeLs

177

Figure 4-7. The workspace

You can run the Python file index.py in the console and open your

browser to point to 127.0.0.1:3000/index. You should see something like

Figure 4-8.

Figure 4-8. The index page

Chapter 4 Large Language ModeLs

178

You can select a topic from the three and the web application will

redirect you to /get_doc_detail, where you can start chatting with your

assistant. You should see your conversation being answered, based on the

corresponding document you selected. See Figure 4-9.

Figure 4-9. The Chat page

 Mission Accomplished
Congratulations! You have successfully built an IT assistant and eradicated

your Level1 Support team!

The application you created uses a document to retrieve relevant text

and augment it with context to get the desired response. This technique is

known as retrieval augmented generation and this is the topic of discussion

in the next chapter, which introduces modern toolkits to improve on this

system you built.

But before that, as promised, you need to containerize your system

so that it’s compact, replicable, and has cross-platform consistency. A

container is the best way to achieve such advantages and Docker is one of

the best tools to do this.

Chapter 4 Large Language ModeLs

179

It is best to assume that you are familiar with Docker and Kubernetes.

If you aren’t, I strongly recommend you picking up some resources on

Docker and Kubernetes and building your skills for deployment. Covering

Docker and Kubernetes is out of the scope of the book and a complete

subject altogether.

Here is the Dockerfile you need for this application:

FROM python:latest
WORKDIR /app
COPY requirements.txt /app/
RUN pip install -r requirements.txt
COPY . /app
CMD ["python", "index.py"]

The Dockerfile is simple and it requires that you create a

requirements.txt file to let Docker install all the required Python

libraries. Add the following contents to your requirements.txt file:

requests
Flask==2.0.2
Jinja2==3.0.2
psycopg2==2.9.9
python-dotenv==1.0.1
MarkupSafe==2.0.1
Werkzeug==2.0.2
openai
PyPDF2

Most of the libraries are discussed except a few—MarkupSafe,

Werkzeug, and Jinja2—and they assist Flask in performing their jobs

smoothly. If you are getting errors when running the application locally, it

is quite possible that you are missing one of these Python libraries.

Chapter 4 Large Language ModeLs

180

Although Kubernetes is a default choice for container orchestration,

docker-compose is a simpler choice. If you are ready to use docker-
compose, use the following docker-compose.yml file:

version: "3.3"
services:
 application:
 build:
 context: .
 dockerfile: ./Dockerfile
 ports:
 - '3000:3000'
 image: it_assistant_application
 container_name: it_assistant_application
 extra_hosts:
 - "host.docker.internal:host-gateway"
 networks:
 - net

networks:
 net:
 external: true

Note the line in the docker-compose.yml file that says

 extra_hosts:
 - "host.docker.internal:host-gateway"

If you have your Postgres deployed in the localhost, you need Docker

to reach out to your host system’s localhost; this line will enable that

process. Along with this, you should also edit your environment file for

DB_HOST as follows:

DB_HOST=host.docker.internal

Chapter 4 Large Language ModeLs

181

This will allow your Python code to access your localhost from the

Docker container.

To run docker-compose, you can simply run this line:

docker-compose up - -build

Open your browser to 127.0.0.0:3000/index.

You will find this code using the GitHub link at https://github.com/
gangulyarin/IT_Assistant_Simple.

With this, let’s move on to Retrieval Augmented Generation (RAG) in

the next chapter.

 Summary

• Language models are either sequence-to-sequence

models like Transformers or they use only the decoder

part of the Transformer architecture. These are called

autoregressive models and they specialize in text

generation such as GPT.

• Reinforcement learning is a discipline of machine

learning that uses trial and error to understand

patterns, similar to how humans learn from experience.

• Reinforcement Learning through Human Feedback

(RLHF) introduces a human in the loop to criticize

the model performance and allows the model to

correct itself.

• Instruct GPT uses RLHF to allow models to converse,

similar to humans, which gave rise to ChatGPT and

other LLMs.

Chapter 4 Large Language ModeLs

https://github.com/gangulyarin/IT_Assistant_Simple
https://github.com/gangulyarin/IT_Assistant_Simple

182

• OpenAI hosts LLMs and exposes APIs to use

them. It allows APIs to configure the LLM through

parameters like temperature, top p, presence

penalty and frequency penalty, stop sequences, and

maximum tokens.

• OpenAI APIs can be accessed through HTTP requests

as well as from the Python package called openai.

• You can leverage openai for LLMs, PyPDF2 to extract

text from PDFs, and Flask for Python HTTP request and

response handlers to create a RAG application.

Chapter 4 Large Language ModeLs

183© Arindam Ganguly 2025
A. Ganguly, Scaling Enterprise Solutions with Large Language Models,
https://doi.org/10.1007/979-8-8688-1154-8_5

CHAPTER 5

Retrieval Augmented
Generation
The previous chapters provided a foundation of intelligent applications

and thus far a machine learning hobbyist should be able to confer their

understanding with you. But the agenda of this book is to look beyond

machine learning model building. We have only scratched the surface and

the next chapters take you into the trench.

In the previous chapter, you built a chatbot that not only responds to

casual conversations but can also refer to a knowledge source and retrieve

the exact excerpts that might assist the LLM in generating answers. Prompt

engineering plays a big role here. Your prompt should instruct your LLM

to use the excerpts from the knowledge sources to answer the customer

queries.

Prompt engineering has itself emerged as a new domain in the

seemingly ever-growing field of artificial intelligence. This chapter

attempts to give you an idea of what prompt engineering is and how

various prompting techniques can tune an LLM to render good results.

I introduced and talked about prompts in the previous chapter, but I

will reiterate them once more and expand on a few more techniques for

prompt engineering.

https://doi.org/10.1007/979-8-8688-1154-8_5#DOI

184

 Prompt Engineering
There are several movies and books about how machines will surpass

human intelligence and trick us into causing a doomsday. With generative

AI growing at a faster pace than ever in the history of human civilization,

computer scientists and philosophers have been discussing how machines

are continuing to take over tasks that were previously thought of as

impossible for them.

Previously, during the age of traditional machine learning, many

industries rejected models due to the high cost of maintainability and

lack of skilled computer scientists who could understand the intricacies

of the models. Then came deep learning, where models started getting

more complex, and it was almost impossible to track and trace back to the

output they had produced. The models were then accepted as black boxes,

with certain hyperparameters to be tuned to reach the desired outcome.

But this didn’t stop mathematicians from coming up with new sets of

modifications to certain parts of the models such as a modified activation

function, a new optimizer function, or a new neural network architecture

altogether.

There is a new discipline called Explainable AI (often abbreviated

XAI), which tries to explain how the model came up with the output that

it did. These techniques are never fool-proof and are still an active area of

research. With generative AI and LLMs, computer scientists can see that

models are almost completely behaving like humans.

You can think of the LLM as your assistant and your prompt as a

carefully crafted instruction to get your models to behave the way you

want. A prompt is the input given to an LLM; it consists of an instruction

and some examples. These examples are technically called shots and you

can have zero (only the instruction is provided) to one, to few shots (more

than one). These examples are your LLM’s way of understanding how you

want your inputs and outputs.

Chapter 5 retrieval augmented generation

185

These are some of the concepts you have already seen and even used

in the previous chapter. The next section discusses some of the popular

prompt engineering techniques and you can then try them in OpenAI

Playground.

 Chain of Thought Prompting
Although it’s impossible to trace back and understand how your LLM

came up with its outputs, you can ask the LLM to give you its reasoning in

a manner you seem fit. To do so, you have to give the LLM a way to present

the pattern. Consider this example:

Instruction:
You are given a math problem. Your task is to solve them by
showing the step by step thought process.

Example 1
Question
A rabbit has 13 carrots and he wants to share them amongst his
family - his mom and dad. He wants to share all of them and eat
the ones that are left after distributing them equally. Can the
rabbit keep a carrot for himself.

Answer
13 carrots can be divided into two members as 13/2 which is
6 and 1 is the remainder. Hence after sharing them equally
amongst his mom and dad he has 1 left with himself.
Yes, he can have 1 carrot for himself.

Question
A kingfisher has captured 4 fishes and wants to distribute them
with his wife. How many can each of them eat?

Chapter 5 retrieval augmented generation

186

With this, your LLM should respond with the answer along with the

reasoning. I encourage you to try this in OpenAI Playground. When I did

so, I got the following result:

Answer
Since there are 4 fishes and 2 to be distributed among 2
members, we divide 4 by 2 which equals 2.
Each of them can eat 2 fishes.

You can refer to the original paper published by Wei et al. (2022) at

https://arxiv.org/abs/2201.11903.

The author of that paper provides a wonderful example, as shown in

Figure 5-1.

Figure 5-1. Chain of thought prompting

 Tree of Thoughts Prompting

Prompt engineers and computer scientists have come up with different

variations of Chain of Thoughts to fit the purpose of some more

complicated prompt engineering techniques. One such modification is

the Tree of Thoughts. There are often problems that require the system to

devise a tree of decisions to be made to arrive at an appropriate response.

Chapter 5 retrieval augmented generation

https://arxiv.org/abs/2201.11903

187

Tree of Thoughts allows the LLM to reach the proper response by creating

intermediate decision trees of thoughts and then combining them with

search algorithms (e.g., breadth-first search and depth-first search) to

enable systematic exploration of decision points.

Yao et al. (2023) came up with Tree of Thoughts (ToT) in the paper

titled “Tree of Thoughts: Deliberate Problem Solving with Large Language

Models,” which you can access at https://arxiv.org/abs/2305.10601.

The ToT framework from the same paper is illustrated in Figure 5-2.

Figure 5-2. Tree of Thoughts prompting

There are a plethora of prompt engineering techniques that you

can explore and are popularly published. You can come up with novel

ideas to arrive at unique prompt engineering techniques that best fit for

your system.

If you can recollect from the previous chapter, you used a database to

store the mapping of the knowledge source to the topic that the user was

referring to. Although the prompt could direct the LLM to gather proper

resources to answer the user queries, the document needed to be selected

manually by the user to map the topic. Now, this is fine until you have

finitely distinguishable topics. But when you are building systems for a

large industry, your knowledgebase should be finitely uncountable.

Chapter 5 retrieval augmented generation

https://arxiv.org/abs/2305.10601

188

The reason for this is your system must have a provision to add documents

and other formats of knowledgebases such as Excel, docs, pictures,

transcripts, and so on, on the fly.

For example, say your manager asked you to design a chatbot that

listens to customer care call transcripts and assists data analysts to gather

certain insights from them. The data analysts are placed to gather insights

about the performance of the products. One of their queries is, “How

many times have the customers expressed their discomfort while using

the Product A in the past two weeks?” As you might have guessed, your

system is continuously transcribing customer care calls and storing the

information in the knowledgebase. You need to design a system to extract

the topics out of each call transcript. Even if you think of achieving this

by using a machine learning model, maintaining the model is another

headache and a burden for the team.

To address such issues, you need something to store the

knowledgebases, index them for faster retrieval, and do a semantic search

instead of topic mapping. These tasks can be easily achieved by using

something known as vector databases.

 Vector Databases
You have likely worked with relational or nonrelational databases.

However, even if you haven’t, it is impossible to ignore the fact that any

application needs a place to store data. Data is conventionally stored in

databases, which allow easy retrieval and storage of data, as opposed to

storage mediums such as raw or formatted files stored in the hard disk.

Chapter 5 retrieval augmented generation

189

 Disadvantages of Traditional Databases in Intelligent
Applications

Storage of data in databases is managed by various complex data

structures. Such data structures ensure that the storage is optimal in terms

of space and efficiency when it comes to retrieval.

Even though these data structures are well researched to optimize

retrieval, sometimes it falls on the user to ensure the retrieval is efficient,

by adding indexes. Indexes can be assigned to a single or composite set of

columns so that the database can prepare a dictionary of index columns

and the corresponding record for easy retrieval. For example, in a search

application, the database designer inquiries about the columns that are

used to filter the records. The database designer then assigns indexes to

these database columns so that the database engine internally arranges

the records according to the index column. See Figure 5-3.

Chapter 5 retrieval augmented generation

190

Figure 5-3. Traditional database indexing

With the indexing in place, the database can easily retrieve a record, by

just looking at the indexes instead of looking at all of the records.

Although the concept of indexing in traditional databases can ensure

performant retrieval, retrieval demands of a structured language such

as SQL are more complicated. You usually query a row where the search

values match in the database.

Even though databases are almost inescapable when building any kind

of application, retrieval procedures in intelligent systems need more than

rule-based matching techniques. Of course, you need to retrieve the data

you are storing (or there is no point in storing data). But the in-memory

storage and retrieval needs to be shifted to something intelligent for the

kind of applications you are targeting.

Chapter 5 retrieval augmented generation

191

Imagine a system that can do semantic searches from a database of

paragraphs. Can you think of some of the ways you could use traditional

databases to perform this task?

Well, one way is to allow the users to manually select the set of

documents and then let the LLMs take the whole set of text from the

selected documents as context and answer the user search queries

accordingly. But, as discussed, this is infeasible for large enterprises that

have terabytes of documents. The LLMs will not be able to fit the data in

context. This approach is just not practical.

Semantic search systems need to understand the text from the

documents. For a machine learning model to understand the text, it

needs to be preprocessed and vectorized using embeddings. Once the

text is vectorized, the embedding space can be searched by a similarity

algorithm.

In a very crude way, you can use an embedding algorithm to convert

all the text into vector embeddings and store them in your database after

somehow partitioning them. You can partition them based on documents,

that is, each row in the database will consist of three columns—document

IDs, vector embeddings of the complete document text, and the text. If

the documents are huge, you can partition each document further into

paragraphs. In that case, you would add a column called paragraph ID.

In either of these two cases, you need your system to follow these steps:

 1. Take your documents and prepare vector

embeddings from them.

 2. Ingest these document embeddings into the

database.

 3. Your search input needs to use this embedding

algorithm to convert the search query into vector

embedding using the same embedding algorithm.

 4. Finally, you use a similarity score and a threshold to

output your result. See Figure 5-4.

Chapter 5 retrieval augmented generation

192

Figure 5-4. Semantic search using a traditional database

Although this algorithm seems straightforward and simple, there are

a lot of intricacies that you will encounter once you start implementing it.

You can try to start implementing this and I will not discourage you. But I

will not resist from revealing the warning signals beforehand.

You need to have a middle layer that does the embedding, which is

not an easy task. Your middle layer needs to sit actively intercepting all

the text coming in from any new documents, every time a new query is

made by the user in the system. This poses a great deal of concern in terms

of performance, scalability, and maintainability. Your system needs to

perform the algorithm dynamically on the fly for every request and, on top

of that, you have to manually add the similarity algorithm and metric to get

your desired result. All the individual components need to work in sync.

Maintaining these gears can be really stressful. Finally, if your system has

incoming documents from a lot of lines of businesses, maintaining them

will be almost impossible.

Vector databases provide an easy way out, as explained next.

Chapter 5 retrieval augmented generation

193

 How Vector Databases Work

Vector databases use a pipeline of preprocessing, ingestion, indexing, and

retrieval.

You will need to decide how you want your documents to be

partitioned and chunked initially while you enter the pipeline to ingest

your set of documents. For example, you can partition on paragraphs from

your combined set of text, just like in the database scenario.

Vector databases then can use vectorization algorithms to embed

text using any of the embedding models. You can include metadata to

supplement your search capability while ingesting your documents. Each

chunk being ingested is similar to the columns we talked about while

building the traditional database, apart from the fact that they are ingested

as JSON instead of columnar values. Hence, your metadata includes the

document ID, paragraph ID, and the text itself. The real search utilizes

your text embeddings. But then why do you even need them if you get the

same result using a traditional database?

The answer is simple. You get the complete package under one roof.

Vector database can preprocess, vectorize, embed, and ingest altogether.

The real juice comes with what happens next.

Once the documents are chunked and ingested into a vector database,

the vector database uses machine learning and clustering algorithms to

form index clusters. There are multiple algorithms that different vector

databases use. I cover one of them that some popular vector databases

such as ChromaDB or Pinecone use—HNSW.

 Hierarchical Navigable Small Worlds (HNSW)

The Hierarchical Navigable Small Worlds (HNSW) algorithm is one of the

best performant algorithms for ingestion and similarity search and the

one that most popular vector databases use. In this algorithm, the text

embedding space is divided into clusters as nodes. These nodes are placed

Chapter 5 retrieval augmented generation

194

in a graph-like structure with edges connected between nodes having

high similarity scores. Once a query enters a system, the query embedding

searches for the most similar node through graph traversal algorithms

such as BFS (Breadth First Search) to get the best result. See Figure 5-5.

Figure 5-5. HNSW graph like embedding space

Internally, the graph is created through multiple layers of linked lists.

The top layer connects the start node to the last, the next layer has more

nodes in between the start and end, and so on. The hyperparameter

here is the number of layers, which needs to balance traversal cost with

overlapping nodes. Once a node (or a new text embedding) enters the

system, the algorithm must decide the levels it needs to reside in based on

this tradeoff. See Figure 5-6.

Chapter 5 retrieval augmented generation

195

Figure 5-6. HNSW internal linked list structure

 Similarity Measures

Finally, this section covers two of the famous similarity measures that

some of the vector databases use:

• Cosine similarity: Considering each embedding as an

N-Dimensional vector, cosine similarity measures the

cosine of the angle between the embedding vectors to

arrive at a score.

• Euclidean distance: It computes the straight-line

distance between the embedding vectors.

Vector databases attempt to preserve all of the features boasted

by traditional databases, such as atomic transaction, scalability, fault

tolerance, and so on. Some vector databases, like Pinecone, use a middle

caching layer called a freshness layer that caches an incoming text vector

until it can properly decide to cluster and place it appropriately within its

existing embedding vector space.

Vector databases come in serverless and on-premise flavors. Serverless

vector databases also ensure data replication, data security, compliance,

and protection. Offline vector databases leave it up to you to manage.

Chapter 5 retrieval augmented generation

196

Now that all the concepts are more or less clear, you can get your

hands dirty and build a production-based application. In the previous

chapter, you attempted devising a small application but it is far from being

production grade. You used a traditional database to store the data and

had to make do with selecting the topics manually from a small set of

documents. Now you’ll use a vector database instead of the production

database and see if it makes a difference.

The current technical landscape looked something like Figure 4-6 from

the previous chapter. As you are attempting to build a production-grade

application, you need to make some changes to the current application.

This book assumes you are well aware of all the components

required for a bare minimum production application, such as a CI/CD

pipeline like Jenkins and Kubernetes or Docker Compose and Docker

for containerization. A Docker compose file can be converted into a

Kubernetes file with ease if your preference is Kubernetes (as production

applications reside well in Kubernetes as opposed to Docker Compose).

Your CI/CD pipeline also needs a source-code management tool such as

Git or Bitbucket to store and track your source code changes.

OpenShift has emerged as an advanced platform for deploying

containerized applications. You get all the features of Kubernetes without

the code-level intricacies that you need to manage in a Kubernetes Cluster.

Containerization is advocated and used in most production grade

applications now. Even if you have a cloud environment such as AWS set

up, you should go for EKS clusters to support containerization.

You also need to make sure that some of the configurations are set

in advance, which I mentioned at the end of the previous chapter—the

Dockerfile, the docker compose file (with the external hosts configuration

set), and the requirements.txt file for the Python packages. These are

some of the minor details you have to keep in mind to keep your container

in check.

Chapter 5 retrieval augmented generation

https://doi.org/10.1007/979-8-8688-1154-8_4#Fig6

197

Returning to the application, you will now try to get rid of the manual

topic selection that you had to use in the last chapter. I guide you now to

include a vector database instead of a traditional one. You will start out

with a Jupyter Notebook instead of a full-blown production application.

This is the experimentation phase of the development lifecycle. You can

try your code in Jupyter Notebooks before actually building Python files to

stick it to your production pipeline. Some cloud environments even allow

Jupyter Notebooks to be used as a part of the production pipeline instead

of insisting on using Python files. Although I still advocate using Python

files for cleaner and structured source-code management.

 LangChain
Before starting, there is one last thing you need to know about—LangChain.

In recent times, with generative AI models being the forerunner of

almost all the industries, there has been an increasing emergence of

popular frameworks that allow you to encapsulate everything under one

roof. One such popular framework is LangChain. It allows you to think of

your generative AI application pipeline as a chain. They have now also

come with their own expression language to make development easier. It’s

called the LangChain Expression Language (LCEL). LangChain also has

other supplementing frameworks, such as LangGraph, LangSmith, and so

on, and you’ll explore some of them in the upcoming chapters.

In the previous chapter, you saw how to use OpenAI and its API to use

LLMs and build an intelligent application. The APIs exposed by OpenAI

are often sufficient and very extensive. But with the growing demand and

exposure to generative AI, every organization wants to embed LLMs in

their applications and enterprise applications are complex enough to use

plain OpenAI APIs.

Chapter 5 retrieval augmented generation

198

Similar to how JavaScript developers came up with frameworks such

as Angular JS, React JS, Vue JS, and so on, to cope with the ever-increasing

complexity of frontend applications, machine learning engineers came

up with LangChain to cope with the increasing complexity needed to

integrate LLMs into complex applications.

It might sound a bit paradoxical when you think of the main idea of

introducing LLMs into a large enterprise application is to get rid of the

complexities and let the LLMs handle the tough job, but you need to

handshake all the complex wheels with your LLM while attaching your

LLM, which ultimately attends to the complexities.

The following section explains some basic features that LangChain

provides out-of-the-box so that you can get comfortable using LangChain

instead of OpenAI APIs.

 LLM Development Lifecycle

You use Jupyter Notebook in this chapter for all applications since you

have not yet learned about some of the MLOps concepts (covered in the

next chapter).

If you think about it, you can use Jupyter Notebook to build the

application (at least the backend part) from the end of the previous

chapter. Once you have the backend of the previous application at

hand, you can take it into a Python file and add a frontend to make your

application whole. Similarly, whatever you build in this chapter in a

Jupyter Notebook can be brought into a Python file and combined with

a frontend to have a complete application. This is exactly how an AI

application development lifecycle works. You have an experimentation

environment, which is actually your Jupyter Notebook, where you can

work on building your skeleton and see how each part works in isolation.

Once you are ready, you can move your code to a final Python file and

start your integration for the complete application. Of course, you can

have some of the parts in both your environments in common, such as

Chapter 5 retrieval augmented generation

199

the database. Your database will reside in a database server from the

beginning. Your client may have an existing database which you will need

to connect to. Both your experimentation and production environment

will connect to this database server. Similarly, you may have an input

and output system that you need to connect to, which is supposed to be

common for both. You may have a streaming service and hence you will

need a message queue service that will be common input for both. A vague

representation of such a setup is mapped in Figure 5-7.

Figure 5-7. Intelligent application development lifecycle setup

We discuss this in detail in the next chapters. Open your Jupyter

Notebook and get ready to build a bare minimum featured generative AI

application. This will help you get familiar with LangChain.

 A Bare Minimum Chatbot Using LangChain

Since this is a demo application to get you accustomed to the basic

features of LangChain, you can use Jupyter Notebook, as previously

discussed.

Chapter 5 retrieval augmented generation

200

Start by installing the LangChain Python SDK, which has integration

with OpenAI. LangChain has Python libraries, which can also work with

other LLM providers, including Anthropic, Cohere, and so on. Since you

have been using OpenAI in this book, go ahead with that.

! pip install langchain-openai

You now need to set the OpenAI API key to the environment as a

variable.

import os
from dotenv import load_dotenv

os.environ["OPENAI_API_KEY"] = '<Your API Key>'
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
 raise ValueError("OpenAI API Key not found")

You can now initialize the LLM.

from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-3.5-turbo")

GPT3.5 Turbo is one of the models of the GPT family early release. You

can use any other model, such as GPT4 or so on.

The ChatOpenAI class ensures integration and usability of the LLM

in the format of a chat application. In most cases, you will be using

ChatOpenAI unless you have a very specific requirement from any of

the other interfaces. You can think of the ChatOpenAI interface as the

programmatic version of the OpenAI platform. You need to add Assistant

and User sections as inputs and your LLM will respond similar to how it

does in OpenAI.

Chapter 5 retrieval augmented generation

201

If you want to test your model, you can use the interface as follows.

model.invoke("Tell me about langchain.")

You should get a response in this format:

AIMessage(content='Langchain is a decentralized language
learning platform that utilizes blockchain technology to
connect language learners with native speakers around the
world. Users can take lessons,
....
Langchain aims to make language learning more accessible,
affordable, and engaging for people of all ages and
backgrounds.', additional_kwargs={'refusal': None}, response_
metadata={'token_usage': {'completion_tokens': 81, 'prompt_
tokens': 13, 'total_tokens': 94}, 'model_name': 'gpt-3.5-
turbo- 0125', 'system_fingerprint': None, 'finish_reason':
'stop', 'logprobs': None}, id='run-410ef98d-e553-4a7d-
ae20- 3640fd189542-0', usage_metadata={'input_tokens': 13,
'output_tokens': 81, 'total_tokens': 94})

As you can see, your response arrives wrapped in an AIMessage

interface, which you can think of as the output from the OpenAI platform.

You should see lots of metadata along with your text content response such

as total_tokens, model_names, and so on.

You know what prompts are and how prompt engineering can bring

out the best. You can use the ChatPromptTemplate interface of LangChain,

which will allow you to build a prompt template wherein you can insert

your queries and other data points to adjust to your dynamic query

requirements.

from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages([

Chapter 5 retrieval augmented generation

202

 ("system", "You are a computer science trainer. You will
be asked to provide some technical documentation and your
task is to explain those technical concepts in layman's
terms."),

 ("user", "{input}")
])

As the prompt template is ready, you can use chains to create a

pipeline using LCEL (LangChain Expression Language). The paradigm

of programming using LangChain is by using these pipelines, called

chains (and hence the name LangChain), which are the way to prepare

your orchestrations in LangChain. In this book, I use pipeline and chains

interchangeably when I am talking about LangChain.

chain = prompt | model

This chain will create a pipeline to take the input, fit it into the prompt

template you created in place of the input placeholder, and pass it to the

LLM through the ChatOpenAI interface class.

Finally, you can use the pipeline using the invoke function as follows:

chain.invoke({"input": "What is deep learning?"})

This should respond to your input query as you have instructed in the

prompt (in layman’s terms, in this case). Your response format should be

similar to the one you received by invoking the model directly using the

ChatOpenAI interface.

AIMessage(content='Deep learning is a subfield of machine
learning that involves training artificial neural networks to
learn and make decisions in a way that mimics how the human
brain works. These neural networks are composed of layers of
interconnected nodes that process data and extract features
to make predictions or decisions. By using deep learning

Chapter 5 retrieval augmented generation

203

techniques, computers can be trained to recognize patterns
and make decisions without being explicitly programmed to
do so. This allows them to perform tasks such as image
recognition, speech recognition, and natural language
processing with a high level of accuracy.', additional_
kwargs={'refusal': None}, response_metadata={'token_usage':
{'completion_tokens': 103, 'prompt_tokens': 47, 'total_
tokens': 150}, 'model_name': 'gpt-3.5-turbo-0125', 'system_
fingerprint': None, 'finish_reason': 'stop', 'logprobs':
None}, id='run-de6a30b1-1228-4f3f-9328-a821a08376cb-0', usage_
metadata={'input_tokens': 47, 'output_tokens': 103, 'total_
tokens': 150})

LangChain also allows you to format your responses using output

parsers. You can transform the output generated by the LLMs into a

predefined format of your own using output parsers.

Now you’ll see how to use an output parser, which takes the response

from the LLM and gives you only the string content.

from langchain_core.output_parsers import StrOutputParser

output_parser = StrOutputParser()

StrOutputParser takes the response from the LLM and gives you only

the string contents of AIMessage.

You have to build another chain (or pipeline) to output the LLM

response through the output parser.

chain_1 = prompt | llm | output_parser

If you invoke your chain with some input, you should only see the

string message without the other metadata.

chain_1.invoke({"input": "What is deep learning?"})

Chapter 5 retrieval augmented generation

204

You should see something just like this:

Deep learning is a type of artificial intelligence (AI) that
is inspired by the way the human brain works. It uses neural
networks, which are algorithms that mimic the structure and
function of the human brain, to learn from large amounts of
data and make decisions or predictions without being explicitly
programmed to do so.

In simpler terms, deep learning is a technology that allows
computers to learn and make decisions on their own by analyzing
vast amounts of information, similar to how our brains process
and learn from the world around us.

 Building Your First RAG Application
Instead of understanding how each of the parts of LangChain work

individually, this section takes you through the code directly and builds a

RAG application. RAG applications leverage the power of vector databases

to ingest and retrieve documents through popular embedding models and

prompt engineering. They use the retrieved document excerpt as context

for the final LLM in order to answer the user’s queries.

The complete application process is visually imagined in Figure 5-8.

You can refer to this figure anytime while developing your application.

Open your Jupyter Notebook and let’s start by installing the required

Python libraries. I introduce some libraries that you didn’t use in the

previous application of this chapter when you started with LangChain.

! pip install langchain langchain-community chromadb pypdf

Consider the libraries you installed in this line. LangChain has

a Python SDK called langchain, which has the core features of

LangChain but some of the helper functions are found in another

Chapter 5 retrieval augmented generation

205

library, called langchain-community. The vector database you will use

is ChromaDB. ChromaDB is an open-source vector database and has a

Python SDK called chromadb. You will also need an OCR that can extract

text from PDFs. You will use PyPDF for this, which also has a Python SDK

called pypdf.

Now install the library you used previously:

! pip install langchain-openai

Since you are building a RAG application, you need some data sources.

Allow me to digress for a moment and talk about the data source I planned

to use (unless you have some other document at hand to try this out on).

Since I was a kid, I have always been interested in mathematics. I was

not a very bright student and my report cards will support my case. But

I was keen on learning various avenues that mathematics can lead to.

Although I was always quick on my feet when it came to programming,

and I had always secured the top spot when it came to computer science,

I always had this deep in my heart that programming is just a tool to use

math in the real world.

Now that I am a professional data scientist and a technical specialist,

I keep myself updated on the advances of mathematics, particularly

something that involves the best of both worlds—mathematics and data

science.

A topic that had interested me for quite a bit is algebraic topology

(groups, rings, etc.) even though my friends used to consider this field of

mathematics not as worthy as statistics or combinatorics. And I admit that

you won’t find any layman talk about this subject even though they may

know about the other subjects of mathematics.

Now, coming back to the application, the data source I used is a

wonderfully written paper titled “Algebraic Topology for Data Scientists,”

by Michael S. Postol. The link to the paper is here: https://arxiv.org/
abs/2308.10825.

Chapter 5 retrieval augmented generation

https://arxiv.org/search/math?searchtype=author&query=Postol,+M+S
https://arxiv.org/abs/2308.10825
https://arxiv.org/abs/2308.10825

206

Although this is a single paper, it contains almost all the topics of

algebraic topology that a data scientist may find useful, similar to a

complete book.

But this is just my personal preference. You are welcome to use any

PDF from your library and query your system accordingly.

You might be wondering why this example uses a single document

instead of multiple ones like in the previous chapter. You are welcome to

use multiple documents or a single one. You just need to ingest in a loop

and add it to your document store. Don’t worry, I will point out where you

need to do this!

Let’s start by ingesting the document:

from langchain_community.document_loaders import PyPDFLoader

try:
 loader = PyPDFLoader("mypdfpaper.pdf")
 pages = loader.load_and_split()
except Exception as e:
 logging.error(f”Failed to load PDF: {str(e)}”)

PYPDFLoader is a helper function in the langchain-community library

and it uses PyPDF library internally. You might not see importing PyPDF

library explicitly even though you have installed it separately. But this

helper function leverages the installed library internally and extracts the

text from the PDF document.

The loader uses the load_and_split() method to split the documents

into chunks and return an array of chunks (or pages), which you store in

the pages variable.

Here, you can load any PDF document of your liking. If you want to

load multiple documents, you can have a master array (or list) of pages

that you can keep extending after every loader loads and splits a document

at each iteration.

master_pages.extend(pages)

Chapter 5 retrieval augmented generation

207

Now you need to set the OpenAI API key in an environment variable

and use ChatOpenAI again, as you did in the previous application, to

choose an OpenAI model.

import os

os.environ["OPENAI_API_KEY"] = '<Your API Key>'

from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-3.5-turbo")

These two sections of code should look familiar. I don’t have anything

new to explain here.

Now you’ll use a vector database called ChromaDB, as discussed

previously, to store the document chunks and create a clustered

embedding space. Don’t not get worked up on choosing and defining a

complex embedding model; just use the OpenAI embedding models in

this case.

OpenAI has three embedding models specially curated to vectorize

text into embeddings and use them for semantic retrieval using similarity

metrics:

• text-embedding-3-small

• text-embedding-3-large

• text-embedding-ada-002

They differ mainly on performance and cost and you can get details

about them from this OpenAI link: https://platform.openai.com/docs/
guides/embeddings/embedding-models.

You will use the OpenAIEmbeddings interface of langchain-openai to

add the OpenAI embeddings to this application. The default model that

the interface functions fall back to if no embedding model is chosen is

text-embedding-3-large.

Chapter 5 retrieval augmented generation

https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models

208

from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma

vectore_store = Chroma.from_documents(documents=pages,embedding
=OpenAIEmbeddings())

The Chroma interface from langchain_community.vectorstores

allows LangChain to leverage the chromadb library. It is installed to prepare

and ingest the chunks into ChromaDB as collections. This LangChain

interface does all the heavy lifting, from preparing the chunks into a

format fit for chromadb to preparing and/or ingesting into the appropriate

ChromaDB collection.

Alternatively, if you have a list of text, you can have more control

over how you want your text source to be ingested and chunked through

RecursiveCharacterTextSplitter.

To begin with using RecursiveCharacterTextSplitter, start by

installing the library.

pip install -qU langchain-text-splitters

You can start adding the configuration parameters to control your text

chunking next:

Add configurable parameters
CHUNK_SIZE = 1000
CHUNK_OVERLAP = 200

The CHUNK_SIZE variable determines the number of characters each

chunk should have and the CHUNK_OVERLAP determines the maximum

number of characters that two consecutive chunks can intersect or overlap.

You can add them to RecursiveCharacterTextSplitter as follows:

text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CHUNK_SIZE,
chunk_overlap=CHUNK_OVERLAP
)

Chapter 5 retrieval augmented generation

209

Finally, you can use them to create chunked ingested documents as

follows:

text_splitter.create_documents([text_list])

Now that your vector database is ready and the documents have been

ingested, you need to have a LangChain retriever to query and retrieve

document chunks from the vector store. LangChain uses a special kind of

interface known as a LangChain retriever to do this. Retrievers connect

with vector databases and allow a chain to return document chunks based

on a prompt or a query from the vector database. They then pass it on to

the next feed in the pipeline (the chain).

It sounds complex—connect to the vector database, get the query, and

pass it to the vector database, and use the similarity score to get the best

answer. However, retriever can be set up using the following line of code,

which you need to add to your application:

retriever = vectore_store.as_retriever()

Your retriever is ready!

It is worth mentioning that the code shown here doesn’t persist the

vector store and hence you have to parse and ingest the PDF documents

or text sources every time you want to run your application. Hence you

should also be aware of the way to persist your vector store once you have

created it. You can do that using the persist_directory parameter when

you are creating your vector store, as follows:

Add persistence and optimization
vectorstore = Chroma.from_documents(
documents=pages,
embedding=OpenAIEmbeddings(),
persist_directory="./chroma_db",
collection_metadata={"hnsw:space": "cosine", "hnsw:m": 16}
)
vectorstore.persist()

Chapter 5 retrieval augmented generation

210

Now you’ll set up the prompt template using the same old

ChatPromptTemplate and the same output parser (the StrOutputParser).

Start by defining the prompt.

template = """Answer the question based only on the following
context:
{context}

Question: {question}
"""

As you can see, the prompt not only needs the query but also a

reference or context to answer the query. In this case, this context is

gathered from the vector database. Hence, your prompt needs to add two

things—a question from the user and the context from the vector database.

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template(template)
output_parser = StrOutputParser()

The final LangChain concept to understand are the runnables.

Runnables are a kind of protocol that LangChain devised for using and

building custom chains. It must have occurred to you that while you are

building chains using LCEL, there are several input and output formats

that the parts of the chains can understand and interact between.

Runnables allow you to add custom components and build custom chains

if needed.

Figure 5-8 shows a diagrammatic view of the runnables.

In this case, you have to feed the prompt part of the chain two

things—the context from the vector database and the query from the

user. The context needs to be placed from the retriever that you set up.

You can pass these prompt inputs into a runnable interface known as

RunnableParallel, which ensures proper formatting of the inputs and

Chapter 5 retrieval augmented generation

211

returns a dictionary representation of these prompt inputs. The user

query that is to be passed to the prompt needs to be gathered from the

user input (a variable). The RunnablePassthrough interface allows you

to insert a variable value unchanged and use it in a runnable interface

(RunnableParallel in this case).

from langchain_core.runnables import RunnableParallel,
RunnablePassthrough

sr = RunnableParallel({"context":retriever, "question":Runnable
Passthrough()})

Finally, you have to build the chain and invoke it as you did previously.

chain = sr | prompt | model | output_parser

chain.invoke("What is a group?")

Congratulations! You have a fully functional RAG application. See

Figure 5-8.

You don’t need a database anymore for storing document topics like

you did in the previous chapter.

I leave it to you as an exercise to add the frontend and prepare the

backend from the Notebook you created.

Chapter 5 retrieval augmented generation

212

Figure 5-8. The RAG application workflow

Isn’t it easier to understand a complex application when you can map

the workflow in your mind? What if I tell you that LangChain developed a

graph-like framework where you can build your application as if it were a

workflow of graphs? This framework is known as LangGraph and you will

see how to use it to build LLM evaluations in the next chapter.

Chapter 5 retrieval augmented generation

213

 Summary

• Prompts are an essential part of a generative AI

application that helps to fit an LLM to a specific purpose.

Prompt engineering is the discipline where data

scientists devise various prompting techniques to best fit

a business or technical requirement for an LLM to work.

• There are various prompting techniques, such as Chain

of Thought and Tree of Thought prompting. They

instruct the LLM to lay out the reasoning that led the

LLM to the response.

• Although traditional databases are best fit for storing

and retrieving data, they fail miserably when it comes

to semantic searches from a specific set of documents.

Semantic search can be best achieved when a

document is divided into chunks and vectorized into

embedding so that they can reside in an embedding

space based on semantic similarities. Vector databases

allows you to do this using several algorithms,

including Hierarchical Navigable Small Worlds

(HNSW). They use several similarity measures such as

Euclidean distance and cosine similarity.

• When you have a vector database and an LLM, you can

build an application that refers to the document stores

to answer queries. These applications are known as

Retrieval Augmented Generation (RAG) applications.

• LangChain is a popular framework often preferred

over RAG and other Generative AI applications due

to its immense capability for abstracting complex

functionalities.

Chapter 5 retrieval augmented generation

215© Arindam Ganguly 2025
A. Ganguly, Scaling Enterprise Solutions with Large Language Models,
https://doi.org/10.1007/979-8-8688-1154-8_6

CHAPTER 6

LLM Evaluation
and Optimization
This chapter focuses on getting the maximum efficiency from Generative

AI with minimal resource consumption. Achieving maximum efficiency

involves getting the best results out of the LLM. Hence, this chapter starts

by explaining the need to evaluate an LLM. It also discusses hallucinations,

which are made-up results that are not factual.

You learn a new framework from LangChain, called LangGraph and

how it can be used to evaluate an LLM using a technique known as LLM as

a judge. LLM as a judge can in turn be achieved for a RAG application by a

technique known as Corrective RAG.

The chapter also discusses benchmarking LLMs as a standard way to

evaluate their performance. This is often necessary when you are using a

new LLM from scratch.

The chapter then introduces MLFlow, which is one of the go-to tools

for MLOps to track your model and workflow. You will start by using

MLFlow with earlier machine learning algorithms and optimize them

using hyperparameter tuning. Then you will learn how to use MLFlow in a

complete end-to-end intelligent enterprise application. After that, you will

use MLFlow for Generative AI to optimize and track the RAG application.

https://doi.org/10.1007/979-8-8688-1154-8_6#DOI

216

Additional features, such as load balancing and caching, can optimize

your application resource usage and they are best done in another

platform, called Portkey.

Finally, you will learn how to deploy your model locally to optimize it

on the LLM provider charges.

 The Need for LLM Evaluation
Generative AI and LLMs are the youngest descendants in the field of

AI. The term artificial intelligence was coined in 1956 by John McCarthy.

Hence, you can imagine how old traditional AI is. In 2017, Vaswani et al.

introduced the Transformers architecture, which can be considered the

epitome of Generative AI. OpenAI bundled all the state-of-the-art machine

learning architectures such as Transformers with reinforcement learning

into Instruct GPT and ChatGPT toward the end of 2022. At the time of

writing this book, Generative AI is just three years old but AI itself is 68

years old.

Thus, Generative AI and LLM developers are still exploring the

various parts of application development. When OpenAI almost broke

the Internet with ChatGPT, scientists and philosophers around the

world started to discover various drawbacks with LLMs. Some of the

philosophical debates sprung up about machines taking over the manual

job and hence the world. But developers and practitioners were more

concerned with generative issues such as hallucination, which was one

of the most concerning drawbacks with LLMs. In fact, it is still worrying

large industries and preventing them from adapting such intelligence in

their ecosystem. This chapter discusses hallucinations and other such

issues and prevention mechanisms. Hallucinations were accompanied by

qualitative drawbacks in responses such as toxicity and profanity.

Chapter 6 LLM evaLuation and optiMization

217

Practitioners who were happy letting LLMs do the heavy lifting without

a whiff of concern were considering alternative routes. Data scientists

started thinking about evaluation strategies, some of which are covered in

this chapter.

 LangGraph
Before diving into the actual evaluation, you need to be familiar with

LangGraph. LangGraph is a library built to support LangChain, which

can support multiple agents’ stateful workflows for LLM applications.

You can think of LangGraph as the tool that can create workflows to drive

your LLM applications. This workflow can persist states and use multiple

agents. Agents are a new concept in LangChain where you can create

various tools.

You can consider tools as one action that you have programmed your

LLM to work on. Agents allow your LLM to decide which tool to invoke, as

opposed to chains, where your tool chain is hardcoded. You can read more

about LangChain agents at https://python.langchain.com/v0.1/docs/
modules/agents/.

Although this chapter does not use agents to keep things simple, you

can set up your functionalities as tools and hence as agents.

This section explores LangGraph and shows you how you can leverage

LangGraph to perform LLM evaluations. The concept used here is

Corrective RAG.

Recall that Retrieval Augmented Generation (RAG) uses vector stores

to chunk and store embeddings of documents or other data sources. RAG

works in the following two phases. In the first phase, the query is passed to

the vector store and it retrieves document chunks based on the embedding

space. In the second phase, the LLM takes over the document chunks and

generates chunks to produce a conversational summary. See Figure 6-1.

Chapter 6 LLM evaLuation and optiMization

https://python.langchain.com/v0.1/docs/modules/agents/
https://python.langchain.com/v0.1/docs/modules/agents/

218

Figure 6-1. Retrieval Augmented Generation (RAG)

RAG suffers from a long-term issue, known as hallucinations, covered

in this next section.

 Hallucinations
When an LLM generates a response, the LLM can introduce information

it thinks is relevant, but is actually not factual. For example, if you have a

document covering various mathematical topics and you ask something

specifically that might require inference and reasoning, there are two

issues that can come along with it for the two steps of RAG. First, the

similarity algorithm might retrieve chunks of text that’s closer in the

embedding space due to some of the words that relate to the query better

than other chunks that actually do contain something more relevant but

don’t contain the key terms. Second, the LLM can generate a response

from this even though it is not factually relevant and correct.

Consider a document that explains traditional machine learning

techniques and models such as linear regression, SVM, random forests,

and so and which is fed into the RAG system. Also consider that the

Chapter 6 LLM evaLuation and optiMization

219

document doesn’t contain the chronology of the inventions of the models

and why SVM was invented. It only discusses the functional methodology

and formula that work underneath.

The user asks, “Is linear regression inspired from SVM?”. The vector

store retrieves the two document chunks that discuss SVM and linear

regression. It is quite possible that the LLM might wrongfully infer that

linear regression was inspired from SVM due to the notion that SVM

tackles nonlinear boundaries and linear regression could be the successor

to the SVM, which started tackling the linear boundary problems quicker.

Had the document contained the idea of how machine learning came

into being and how SVMs were considered, the RAG could infer correctly.

But due to the missing knowledge, LLM cannot infer correctly and might

make up an inference on its own, even though there is nothing mentioned

in the document about it.

This phenomena is known as hallucinations, where a RAG system

makes up information on its own.

 LLM as a Judge
Traditional AI evaluation techniques have been around for quite some

time and there are quantitative measures that determine how your model

performs. Some of these techniques were discussed in previous chapters,

including precision, recall, F1 score, and so on. These metrics tackle issues

such as false positives, which are also quantitative in nature.

But when it comes to Generative AI, there isn’t one quantitative

metric that can measure its efficiency. Precision, recall, F1 score, and

other traditional AI metrics need a mathematical formulation on the

quantity of elements produced and how they differ from the ground truth

quantitatively. With Generative AI, you can’t gather a ground truth since

the answer is generated from the documents and a predefined response

can’t be considered the ground truth since it would not match the

generated answer word for word.

Chapter 6 LLM evaLuation and optiMization

220

Hence, it makes more sense to somehow measure the RAG

performance qualitatively. At the time of writing this book, there is no such

mathematical breakthrough that can quantitatively measure the quality of

the answer.

One way to address this conundrum is to have another LLM (or

even the same model that is performing the LLM) review the response it

generated. You can think of it in this way—suppose that you are a teacher.

You ask your student to write an answer to a question by referring to the

book. Once it’s done, you give the answer and the response to another

student (maybe in the same class) to verify the other student’s response.

It might be quite possible that the other student (and hence the LLM)

is also wrong. But let’s settle for at least one round of a second opinion.

This procedure is exactly how LLM as a judge works. You employ an

LLM to perform RAG and other LLMs to check on qualitative feedback

such as hallucination, relevance, and so on. It is all a matter of how

you engineer your prompts at different stages. Corrective RAG is an

improvement on top of conventional RAG that can use LLM as a judge to

refine RAG responses.

 Corrective RAG
As mentioned in the previous section, Corrective RAG or C-RAG uses the

LLM as a judge strategy to refine RAG responses. This technique can be

used to evaluate LLM applications. You will use LangGraph to see how to

implement this.

The workflow that you need to build using C-RAG can use the

following steps to ensure refined LLM responses:

Chapter 6 LLM evaLuation and optiMization

221

 1. The query is routed to the system, which is taken

over by the vector store.

 2. The vector store returns the document chunks

fetched by the LLM and the LLM responds with a

conversational summary referring to the document

chunks as context.

 3. Another LLM (or maybe the same one) fetches the

response and tries to determine how much the LLM

is hallucinating.

 4. If the LLM is hallucinating, the LLM tries to

regenerate the answer.

 5. If the LLM is not hallucinating, the LLM tries to

determine whether it is on point and resolves the

user’s query.

 6. If the answer does not resolve the user’s query,

the system (an LLM) tries to regenerate the

query so that the vector store can retrieve more

relevant chunks.

This process can be explained in the form of a graph, as shown in

Figure 6-2.

A[Start] --> B(Retrieve);
B --> C(Generate);
C -->| "not supported" | C
C -->| "not useful" | D(Transform Query);
C -->| "useful" | E(End);
D --> B;

Chapter 6 LLM evaLuation and optiMization

222

Figure 6-2. Corrective RAG

It’s time to get dirty with a Jupyter Notebook. Start by installing the

appropriate libraries.

! pip install -U langchain_community langchain-openai
langchainhub chromadb langchain langgraph pypdf

Most of these libraries should be familiar to you:

• langchain_community

• langchian-openai

• chromadb

• langchain

• pypdf

The ones that need introduction are these:

• langchainhub: LangChain Hub is a crowdsourced

collection of prompts, agents, and other elements often

used for preparing recipes including LangChain.

• langgraph: The official library to install the LangGraph

Python SDK.

Chapter 6 LLM evaLuation and optiMization

223

Now you can set the OpenAI API key.

import os

os.environ["OPENAI_API_KEY"] = '<Your API Key Here>'

I referenced a wonderful paper on the survey of various activation

functions used in neural networks. (You can get it at https://arxiv.org/
abs/2109.14545.) You can also use your own source documents.

This example uses PyPDF to extract the text from the PDF:

from langchain_community.document_loaders import PyPDFLoader

loader = PyPDFLoader("Activation_Functions.pdf")
pages = loader.load_and_split()

Now set up the LLM from OpenAI:

from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-3.5-turbo")

You also need to set up the vector store and initialize the LangChain

retriever:

from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma

vectore_store = Chroma.from_documents(documents=pages,embedding
=OpenAIEmbeddings())
retriever = vectore_store.as_retriever()

Finally, you need to prepare the chain (the LangChain pipeline) exactly

like you did in the previous chapter. I try to keep it simple this time.

from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableParallel,
RunnablePassthrough

Chapter 6 LLM evaLuation and optiMization

https://arxiv.org/abs/2109.14545
https://arxiv.org/abs/2109.14545

224

generate_template = """Answer the question based only on the
following context:
{context}

Question: {question}
"""

generation_prompt = ChatPromptTemplate.from_template(generate_
template)
output_parser = StrOutputParser()

generation_chain = generation_prompt | model | output_parser

The previous lines of code should be very familiar to you, as all

you have done is set up a simple RAG pipeline. Next, you add the RAG

improvements.

Before getting to that, let me share a technique that’s useful for

many applications that require LLM responses to perform middle layer

calculations. LLMs respond in a string format; if you are looking to use

the response to get a specific value for some kind of calculation, you

have to parse it from the response. LangChain can help you with this by

allowing your LLMs to render structured responses. The trick is to prepare

a JSON schema (or a Python class) and pass it to the ChatOpenAI interface

method with_structured_output().

You will leverage Pydantic library, which allows to prepare a model for

a schema to be used in Python. You can think of it as a converter from a

JSON schema to a Python class. A Pydantic model is a class simply derived

(inherited) from pydantic.BaseModel and it has fields (defined by the

Field interface of the Pydantic library) for class attributes. You can read

more about Pydantic at https://docs.pydantic.dev/latest/.

Chapter 6 LLM evaLuation and optiMization

https://docs.pydantic.dev/latest/

225

from langchain_core.pydantic_v1 import BaseModel, Field

class GradeHallucinations(BaseModel):
 binary_score:str = Field(description="Answer is grounded in
the facts, 'yes' or 'no'")

As you might have already inferred from the description of the class

(or schema suggests), this model stores “yes” or “no” based on whether the

response is factual or not, that is, whether the LLM is hallucinating or not.

Now you’ll use this schema and set up a LangChain pipeline to grade

hallucinations from an LLM response.

llm_grader = model.with_structured_output(GradeHallucinations)

system = """You are a grader assessing whether an LLM
generation is grounded in / supported by a set of retrieved
facts. \n
 Give a binary score 'yes' or 'no'. 'Yes' means that the

answer is grounded in / supported by the set of facts."""

hall_prompt = ChatPromptTemplate.from_messages([
 ("system",system),
 ("human","Set of facts: \n\n {documents} \n\n LLM

generation: {generation}")
])

hallucination_grader = hall_prompt|llm_grader

Similarly, prepare a chain to determine whether an LLM response

resolves the user’s query:

class GradeAnswers(BaseModel):
 binary_score:str = Field(description="Answer addresses the
question, 'yes' or 'no'")

llm_grader_ans = model.with_structured_output(GradeAnswers)

Chapter 6 LLM evaLuation and optiMization

226

system = """You are a grader assessing whether an answer
addresses / resolves a question \n
 Give a binary score 'yes' or 'no'. Yes' means that the

answer resolves the question."""

answer_prompt = ChatPromptTemplate.from_messages([
 ("system",system),
 ("human", "User question: \n\n {question} \n\n LLM

generation: {generation}")
])

answer_grader = answer_prompt|llm_grader_ans

Finally, prepare a prompt and a chain to rewrite the user query.

rewrite_template = """You a question re-writer that converts an
input question to a better version that is optimized \n
 for vectorstore retrieval. Look at the input and try to

reason about the underlying semantic intent / meaning."""

rewrite_prompt = ChatPromptTemplate.from_template(rewrite_
template)
output_parser_rewrite = StrOutputParser()

sr = RunnableParallel({"question":RunnablePassthrough()})

rewrite_chain = sr | rewrite_prompt | model | output_
parser_rewrite

Now you’ll concentrate on preparing the workflow and graph using

LangGraph.

The first step is to prepare a state. You can think of it as a session store

that stores the attributes that need to be accessed by all the nodes of the

graph or all the tasks in the workflow.

Chapter 6 LLM evaLuation and optiMization

227

from typing import List

from typing_extensions import TypedDict
from langchain.schema import Document

class GraphState(TypedDict):

 question: str
 generation: str
 documents: List[Document]

This state is similar to a dictionary that flows throughout the edges of

the graph and is accessible to all the nodes that the graph refers to. When

you set up the functionalities for each of the graph nodes, your state will be

used to access the query, generated response, or the retrieved document at

every point of the graph.

For example, say you have to create a function that can access the user

query from the state and use the LangChain retriever that you created

earlier to extract relevant document chunks from the vector database.

def retrieve(state):
 question = state["question"]
 documents = retriever.invoke(question)
 return {"documents":documents,"question":question}

You also need to prepare a document aggregator that can join all the

source documents returned by the vector database. You’ll now prepare a

utility function for that.

def format_docs(docs):
 return "\n\n".join(doc.page_content for doc in docs)

You now have to create all the other functions that use the LangChain

chains (or pipelines) that you created earlier.

Chapter 6 LLM evaLuation and optiMization

228

Create the following function to leverage the generation_chain to

generate answers from the retrieved document chunks and the user query,

which you can access from the state.

def generate(state):
 question = state["question"]
 documents = state["documents"]

 generation = generation_chain.invoke({"context":format_docs(d
ocuments),"question":question})

 return {"documents": documents, "question": question,
"generation": generation}

Now create the following function, which will rewrite the query using

rewrite_chain.

def transform_query(state):
 question = state["question"]
 documents = state["documents"]
 better_question = rewrite_chain.invoke({"question":question})
 return {"documents": documents, "question": better_question}

Finally, create a function that can decide and act upon the correction

in the C-RAG approach. As discussed, you need the system to check for

hallucinations in the LLM response. It will either rewrite the query or

regenerate the answer. This function handles the machineries behind it.

def grade_generation_v_documents_and_question(state):
 question = state["question"]
 documents = state["documents"]
 generation = state["generation"]

 hg = hallucination_grader.invoke({"documents":documents,
"generation":generation})

 if hg.binary_score=="yes":

Chapter 6 LLM evaLuation and optiMization

229

 ag = answer_grader.invoke({"question":question,
"generation":generation})

 if ag.binary_score=="yes":
 return "useful"
 else:
 return "not useful"
 else:
 return "not supported"

If you carefully look at the if-ladder, you should be able to relate it to

the C-RAG workflow.

It’s time to create the graph exactly according to the C-RAG figure. The

grade_generation_v_documents_and_questions function does most of

the heavy lifting. Hence, you can assign this function as a conditional edge

in the graph and the rest of the functions as nodes of the graph.

To start, you need to import certain elements from the langgraph.
graph library:

from langgraph.graph import END, StateGraph, START

Here, END and START are string constants that act as virtual start and

end nodes. StateGraph is used to initialize the graph, which you need to

do to start your graph development, as shown here:

workflow = StateGraph(GraphState)

Now, as discussed in the previous section, you have to create the nodes

by assigning the functions that you created (except the one that needs to

be added as a conditional edge) to each of the nodes so that they can be

invoked by the node when the workflow encounters them.

workflow.add_node("retrieve",retrieve)
workflow.add_node("generate",generate)
workflow.add_node("transform_query",transform_query)

Chapter 6 LLM evaLuation and optiMization

230

Now let’s concentrate on developing the edges.

The first edge should connect the START node to the retriever.

workflow.add_edge(START,"retrieve")

Now that the document chunks are retrieved, the workflow should

generate the LLM response using the generate function and node.

workflow.add_edge("retrieve","generate")

You can add your conditional edge by leveraging the grade_
generation_v_documents_and_question function:

workflow.add_conditional_edges("generate",grade_generation_
v_documents_and_question,
 {
 "not supported":"generate",
 "not useful":

"transform_query",
 "useful":END
 })

As you can see, if the answer really turns out to be useful even after all

the checks, you can definitely ask the workflow to stop, and hence call the

END node at the “useful” check.

Finally, you can compile your workflow:

app = workflow.compile()

Now you can test your workflow by sending a user query. It would be

best if you could add some logging (print statements) for each function to

see how your workflow flows.

inputs = {"question": "What is Activation Function?"}
for output in app.stream(inputs):
 print(output)

Chapter 6 LLM evaLuation and optiMization

231

The app.stream function will show all the logs (if you have set any) and

the final output.

For each node, you should see what the function associated with that

node returns.

Using LangGraph is a crude way of evaluating LLMs, where you

create workflows and design them according to your needs. This way of

evaluating intelligent systems has its own advantages and disadvantages.

You can definitely design your workflow in your own way and add a few

diversions along the way to suit your needs. This might be suitable for a

developer and a unit tester. But when it comes to valuing and verifying

from the business perspective, this might lead to some unending

adjustments when the business requirement keeps changing and your

evaluation strategies are tightly coupled with your workflow. If you can

separate the evaluation part and the rest of the system workflow, you can

handle adjustments at any point in time as easily as any other task.

 Benchmarking
LLM evaluation is an active area of research and one way of separating the

evaluation part with the model development is using benchmarks. Various

benchmarks have already been agreed upon for several early ML models.

For example, MNIST was considered one of the benchmarks that used to

decide how your AI model performed. Data scientists used to test their

models using popular datasets such as MNIST and calculating precision,

recall, F1-Score, and AUC to benchmark their models. They had been

used for a long time and various papers and journals validated published

models using these datasets and the metrics.

With the growing branches of machine learning, AI started taking

over (rather solving) previously untackled problems, such as question

answering and summarization, and it became difficult to benchmark

models based on generic metrics and simple datasets.

Chapter 6 LLM evaLuation and optiMization

232

Popular datasets such as SQuAD (Stanford Question Answering

Dataset) started to serve as benchmarks to validate the worthiness of

a model.

Some popular benchmarks were derived from calculating scores using

new metrics, including BLEU (Bilingual Evaluation Understudy) for machine

translation and ROUGE (Recall Oriented Understudy for Gisting Evaluation)

for summarization. Data scientists used to calculate the scores and

benchmark the efficiency of a model specifically designed for a particular

task based on the score. These metrics made more sense than simple

precision and recalls as they couldn’t target specific domains and tasks.

There are numerous such evaluation metrics and explaining each

of them is out of the scope of this book, but I urge you to search for their

papers and try to understand at least a few of them.

After the advent of the Transformers architecture, models started

targeting specific tasks and metrics such as ROUGE and BLEU became the

norm for evaluating AI models. Various tools sprung up to ease the pain

of evaluation; machine learning development became more fluent and

systematic.

Machine learning ops emerged as a new discipline, with new

challenges to embed CI/CD into intelligent systems that include model

building and development. Productionizing these models required extra

precaution and MLOps started gaining attention. MLOps tools came

out with features to solve these intricacies and they included evaluation

metrics to make everything streamlined.

The next section covers one such MLOps tool.

 MLFlow
MLFlow is an open-source, all-inclusive tool that streamlines your

machine learning development pipeline. MLFlow can track and manage

your machine learning development lifecycle and can ensure that each

Chapter 6 LLM evaLuation and optiMization

233

phase is traceable and reproducible. You will embed MLFlow in your

development from now on in this book and use its myriad range of

evaluation strategies to perfect your model iteratively if needed.

You can check out the MLFlow documentation at https://mlflow.
org/docs/latest/index.html.

MLFlow starts by tracking the model building right from the beginning

and it can help evaluate your models and save them in their own managed

repositories. You can perform versioning of your models and monitor

how they are doing. MLFlow supports traditional as well as Generative AI

pipelines.

 MLFlow for Scikit-Learn Models
Without further ado, let me show you how you can use such a powerful

tool. You will learn how MLFlow can take care of your machine learning

development pipeline if you are planning a Scikit-Learn traditional AI

model, a TensorFlow deep learning model, or an LLM.

You have to use Python files instead of Jupyter Notebooks when you

start building your MLFlow components. MLFlow, which comes after the

experimentation and model building phase, mainly deals with tracking the

runtime model performance and usability. Hence, once you are done with

your experimentation and model selection, you will embed model tracking

in your final application as a complete project.

But just like with any other data science project, you’ll start your

experimentation and model building and selection phase.

Pull up your Jupyter Notebook; you’ll start by exploring how a simple

Scikit-Learn model can use MLFlow to track its development lifecycle. You

created and reviewed various Scikit-Learn models in the first chapter. For

the purposes of demonstration, you’ll use the iris dataset and a random

forest classifier in this chapter.

Chapter 6 LLM evaLuation and optiMization

https://mlflow.org/docs/latest/index.html
https://mlflow.org/docs/latest/index.html

234

 Setting Up Data-Gathering Modules

You’ll make a small modification where you will modularize the code:

from sklearn.datasets import load_iris

def get_data():
 iris = load_iris()
 return iris.data, iris.target

X,y = get_data()

print(len(X))
print(len(y))

This should output:

150
150

The data gathering is now separated into a function. The code is pretty

straightforward. You can also place it in a separate file and use it as a

package or library.

Next, you learn about hyperparameter tuning and then you will

initialize the model.

 Hyperparameter Tuning

Let’s first identify the difference between a model parameter and a

hyperparameter.

You must have heard of various LLM announcements stating that a

model contains a certain number of parameters. At the time of writing this

book, these parameters have reached billions. For example, the Llama

model from Meta has upped their game by incrementing the number

of parameters and as of now, Meta has announced Llama 3.1 with three

versions—8 billion, 70 billion, and 405 billion. When you use these models,

Chapter 6 LLM evaLuation and optiMization

235

you often ID these models using these parameter versions such as meta-
llama/Meta-Llama-3-8B, which refers to the 8 billion parameter version of

Llama 3 from the meta-llama library.

Recall that a deep learning model relies on the number of weights

and biases that are learned during the training phase. These weights and

biases are initialized randomly and the gradient method allows the model

to learn the appropriate values of these weights and biases to model

the training data as accurately as possible with each iteration or epoch.

The weights and biases learned during training are model parameters.

Sometimes you can include other parameters that accompany the weights

and biases to learn their values as well, such as the read/write gates

in an RNN.

On the other hand, other parameters, such as the number of neurons,

the optimizer, number of epochs, the number of layers, and so on, in

the same ANN need to be decided from the beginning. Similarly, if you

consider a simple model such as a SVM, the C parameter decides how

soft or hard your decision boundary is. You fix the value of this parameter

from the start according to your needs or business requirements and

the rest of the parameters are learned. These parameters are known as

hyperparameters and they are determined from the beginning of the

training phase and don’t change.

What if you could experiment with the hyperparameters as well and

let the system determine which is the best configuration for a certain

use case?

One way to do this that you possibly have already imagined is

using an array of hyperparameters and manually looping over all their

configurations for a particular model.

Scikit-Learn enables you to tune the hyperparameters in the same

way automatically as well, by allowing the model to be trained with

several configurations of hyperparameters. It shows the evaluating

metrics by using a method known as a grid search. You need to tell the

Chapter 6 LLM evaLuation and optiMization

236

hyperparameter configuration and the estimator you are using to train.

Your estimator can be a model instance or a pipeline (it may consist of

preprocessors and model instances).

Grid Search can be done in Scikit-Learn using the GridSearchCV class.

Now you’ll see how to use GridSearchCV for the iris classification. You’ll try

a random forest classifier with several configurations of hyperparameters.

To begin, you need to instantiate the random forest classifier model:

from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier()

Now, like any responsible data scientist, you have to split your dataset

into a training and test set.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X,y)

You now have to decide on the hyperparameters to try for the random

forest models. Some of the popular hyperparameters that you can meddle

with are n_estimators (signifies the number of trees), max_features

(specifies the maximum number of features it can assume to take from the

dataset), and max_depth (tells the model the maximize size to allow the

trees to grow).

Start by preparing the configuration for these hyperparameters:

param_rfc = {
 'n_estimators': [10,20,30,40],
 'max_features': ['sqrt','log2'],
 'max_depth': [3,6,9,12,15]
}

As you can see, each hyperparameter is assigned to a key value pair in

the configuration, with the key being the name of the parameter and the

value being the array of values of the hyperparameter.

Chapter 6 LLM evaLuation and optiMization

237

For example, this example sets the n_estimators to 10, 20, 30, and 40,

so max features should be considered square roots of the total number

of columns (or features) in the dataset and a logarithm of the total

number of features, and max_depth can be between 3, 6, 9, 12, and 15.

GridSearchCV will try all permutations of all the hyperparameters and find

the best model.

To accomplish this, you need to initialize your GridSearchCV with the

model and hyperparameter configuration.

from sklearn.model_selection import GridSearchCV

gs = GridSearchCV(rfc,param_rfc,scoring='accuracy',cv=5,
n_jobs=-1)

The first line of code is definitely the one you need to import

GridSearchCV with. The second line of code ensures that you can use

grid search. The first two parameters are well understood—the model

(estimator) and the parameter configuration dictionary. You need to

provide a metric for GridSearchCV to pick the best hyperparameter

configuration, which you have done using the scoring parameter.

GridSearchCV uses cross-validation, which is one way of trying the

permutations of all the parameters. During cross-validation, grid search

uses holdout data to check how the model configuration performs by

leveraging the scoring method. This holdout data is set aside from the

training data and used as a small test set every time GridSearchCV trains

the model with a particular hyperparameter configuration. Finally, n_jobs

tells GridSearchCV to use a certain number of parallel jobs while it’s

training the model. -1 signals GridSearchCV to use as much as it can.

Now you have to fit your dataset to gs:

gs_fit = gs.fit(X_train,y_train)

This will start the grid search process with the model and the

hyperparameter configuration provided.

Chapter 6 LLM evaLuation and optiMization

238

Now that the grid search is done, let’s see how it has performed.

GridSearchCV has a myriad of several metrics to check the performance

and evaluation of hyperparameter values for the estimator.

gs_fit.best_estimator_ tells you the best model

configuration it has picked based on the metric

(scoring parameter value of GridSearchCV).

gs_fit.best_params_ gives you the

hyperparameters that gave the best result on the

holdout data that GridSearchCV used during cross-

validation.

gs_fit.best_score_ shows you the score (accuracy

in this case) of the best model configuration.

You can try to see the score (accuracy) your test data gives by using

your own test dataset that you kept aside in the beginning, by using the

following line of code.

gs_fit.score(X_test,y_test)

You can also leverage the predict and predict_proba functions to get

the prediction on your test set.

gs_fit.predict(X_test)

Figure 6-3 runs the same lines of code described earlier.

Chapter 6 LLM evaLuation and optiMization

239

Figure 6-3. Grid search evaluation

 The Complete Intelligent Application
with MLFlow Tracker
Now that you have the model ready and with hyperparameter tuned, you’ll

put all these components into a Python project.

Pull up your favorite Python IDE and get ready to write the same lines

of code that you wrote earlier.

Just to give a sense of how a complete intelligent application is

structured in a production environment, I urge you to divide your modules

into separate files in the following manner.

Start by preparing data_gathering.py, which can reside in your

project workspace. This file ensures data gathering. In a practical

scenario, this file might contain modules to connect to a database or

another external data source/sources. This file will also have the required

mechanisms to get the data from those sources and outsource them from

the entry function of this file. This file might have various table joins, big

data manipulations, or message queues to gather streaming data.

Chapter 6 LLM evaLuation and optiMization

240

This case is much simpler, as you are getting the data directly from the

Scikit-Learn library.

Here are the contents of data_gathering.py that pertain to this

project.

data_gathering.py

from sklearn.datasets import load_iris

def get_data():
 iris = load_iris()
 return iris.data, iris.target

As a next step, create a separate file for the data preparation stage. This

file might contain steps to mingle with the data to format the dataset into a

suitable structure. In case of unstructured data such as PDFs, images, and

so on, this file will take the of activities such as OCR (Optical Character

Recognition), convert pixel data into dataframes in the case of images,

extract important features from the datasets, and so on. This Python file

sets the stage for the models to access the training and testing data directly.

Hence, it also contains the train and test split and stratification methods.

Again, since this case is simpler than what you might encounter later,

you already have the data in the required format, courtesy of Scikit-Learn,

and you only have to perform the train and test splits.

data_prepartion.py

from sklearn.model_selection import train_test_split

def prepare_data(X,y):
 X_train, X_test, y_train, y_test = train_test_split(X,y)
 return X_train, X_test, y_train, y_test

Now you move on to the exciting part of this project, where you will

need to train the model. You have already selected and experimented with

this model and have decided on the process for training (including the

hyperparameter tuning), so you will simply use the code written earlier

Chapter 6 LLM evaLuation and optiMization

241

during the experimentation phases pertaining to model training and

tuning in train.py. Along with this, you also include the model tracking

steps. You can separate the model training and tracking in separate

Python files, but this example keeps things simple for now and keeps them

together.

 train.py

In this section, you create a file called train.py and add all the imports.

The imports will contain the libraries you used in the experimentation

phase, as well the data gathering and data preparation files, since you need

to access and prepare the data for training.

Add the Scikit-Learn modules as you did earlier:

from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
import datetime

In Python, once you have a file with the required functions in place,

you can use them in another file by treating them as any other libraries.

Include the data gathering and data preparation functions from data_
gathering.py and data_prepration.py:

from data_gathering import get_data
from data_preparation import prepare_data

Finally, include MLFlow library that you have been waiting eagerly for.

import mlflow

After all these imports, you need to start your model selection. You

have already experimented with random forest classifier. But just to make

things a little more interesting, you’ll also add a decision tree classifier,

assuming that you have also tried the decision tree classifier in the

experimentation phase.

Chapter 6 LLM evaLuation and optiMization

242

Add the following lines of code, which will instantiate the model

classes from Scikit-Learn:

rfc = RandomForestClassifier()
dt = DecisionTreeClassifier()

Now you’ll prepare the parameter configurations for the decision tree

classifier and random forest classifier. The parameters from the random

forest classifier have already been explored in the experimentation phase.

The parameters for the decision tree classifier are similar to the random

forest classifier, apart from the n_estimators parameter.

As you already know, the n_estimators parameter defines the

number of trees to be used in a random forest classifier. As the decision

tree classifier deals with a single tree, n_estimators makes no sense here.

Instead, you’ll use a parameter called criterion, which defines the criteria

that the tree uses to split, namely entropy or gini impurity.

You can add the following code to add the model configurations:

param_rfc = {
 'n_estimators': [10,20,30,40],
 'max_features': ['sqrt','log2'],
 'max_depth': [3,6,9,12,15]
}

param_dt = {
 'criterion': ['entropy','gini'],
 'max_features': ['sqrt','log2'],
 'max_depth': [3,6,9,12,15]
}

Now you set up tracking using MLFlow while training the model.

This will track the models for their best configuration, as derived by the

GridSearchCV.

Chapter 6 LLM evaLuation and optiMization

243

To make this dynamic, you can loop the model trainings for the models

from an array of models. Let’s set up these arrays, which will help you

iterate through the models.

models = [rfc,dt]
model_names = ['Random Forest Classifier','Decision Tree']
params = [param_rfc,param_dt]

Now you can begin the MLFlow journey... Finally!!

Although MLFlow is used in production, each model training to be

tracked by MLFlow is considered an experiment.

MLFlow requires an experiment name, so let’s give it to them by using

the following line of code:

experiment_name = f"Iris_experiment_{datetime.datetime.now().st
rftime('%m_%d_%Y_%H_%M_%S')}"

You have probably been wondering why you need the datetime

library. You will need it to format your MLFlow experiment name in

production so that you can identify your good run days and bad run

days later.

In principle, you need a way to log your runs; your experiment name

format will help you do this.

Prepare a function for the training module just like you did for data

gathering and data preparation:

def best_fit_models():

Before including your MLFlow tracking techniques, MLFlow gives you

a ready-made dashboard and UI to visualize your runs. But to use that,

you have to launch the built-in MLFlow server to expose the dashboard.

This is optional and many data scientists choose to prepare their own

visualizations by either custom-built UIs of their own or by leveraging

third-party dashboarding tools such as Prometheus or Grafana.

Chapter 6 LLM evaLuation and optiMization

244

Add the following line of code inside the best_fit_models() function

to switch on the MLFlow visualization server:

mlflow.set_tracking_uri(uri="http://mlflow:5000")

Don’t forget to add indentation as a part of your best_fit_model

function definition in Python.

You also need to set the experiment name in the format prepared, as

given here:

mlflow.set_experiment(experiment_name)

You have to tell MLFlow to start tracking by running the MLFlow

tracker. You have to encapsulate everything you track inside the MLFlow

tracker as follows.

with mlflow.start_run():

Now you have to iterate your model trainings for each of the models

inside mlflow.start_run().

for idx in range(len(models)):
 X,Y = get_data()
 X_train, X_test, y_train, y_test = prepare_data(X,Y)
 gs = GridSearchCV(models[idx],params[idx],scoring="a

ccuracy",cv=5,n_jobs=-1)
 gs_fit = gs.fit(X_train,y_train)

The code is pretty much self-explanatory, as we have already discussed

this for a single model during the experimentation phase. This code does

the same thing for each model in the loop.

But within this loop, you also need to tell the MLFlowservice to track

certain metrics. The following line of code allows MLFlow to log the train

and test accuracy metrics using the log_metrics function of mlflow.

Chapter 6 LLM evaLuation and optiMization

245

mlflow.log_metrics({
 "Train_Accuracy": gs_fit.best_score_,
 "Test_Accuracy": gs_fit.score(X_test,y_test)
 })

MLFlow has its own model repository, which you can use later to refer

to a certain model. This technique is used when the model is retrained

again and again, maybe with new incoming data. Every retrain brings a

new version of the model and MLFlow allows versioning of the model that

can later help you bring out a certain version of model if need be.

Hence, you also have to log your model in MLFlow along with its

metrics using the following lines of code:

 # Log the model
 model_info = mlflow.sklearn.log_model(
 sk_model=models[idx],
 artifact_path="iris_model",
 registered_model_name=model_names[idx],
)

This allows the model to register into the repository with a name to

keep track of.

In case you missed something, the complete best_fit_models()

function definition is presented here:

def best_fit_models():
 mlflow.set_tracking_uri(uri="http://mlflow:5000")
 mlflow.set_experiment(experiment_name)
 with mlflow.start_run():
 for idx in range(len(models)):
 X,Y = get_data()
 X_train, X_test, y_train, y_test = prepare_data(X,Y)

Chapter 6 LLM evaLuation and optiMization

246

 gs = GridSearchCV(models[idx],params[idx],scoring="ac
curacy",cv=5,n_jobs=-1)

 gs_fit = gs.fit(X_train,y_train)
 mlflow.log_metrics({
 "Train_Accuracy": gs_fit.best_score_,
 "Test_Accuracy": gs_fit.score(X_test,y_test)
 })
 # Log the model
 model_info = mlflow.sklearn.log_model(
 sk_model=models[idx],
 artifact_path="iris_model",
 registered_model_name=model_names[idx],
)

This concludes the train.py file.

Now that all your functions and modules are ready and since I

promised you that this is going to be a complete production grade

application, I now guide you to prepare the web-based entry point for

training the data using Flask as well as the Docker files for deployment.

First, you need to prepare the Flask application to train it in a server.

 index.py

from flask import Flask, render_template
from train import best_fit_models

app = Flask(__name__)

@app.route('/train')
def train():
 best_fit_models()
 return render_template("run_model.html")

Chapter 6 LLM evaLuation and optiMization

247

@app.route('/')
def index():
 return render_template("index.html")

main driver function
if __name__ == '__main__':
 app.run(host='0.0.0.0', port=7000)

The application has two routes serving two services—the root (/) as an

entry point and the /train route to initiate model training from train.py.

Now that you have a backend web server, you also need a UI. This UI

is the interface you need to initiate training with. Don’t confuse it with the

MLFlow UI, which runs on a different port and shows the visuals of your

model runs.

To create the UIs, create a folder called templates in your root working

directory and add two HTML files from the backend services—index.html

and run_model.html.

 index.html

<html>
 <head>
 <title>MLFlow SkLearn</title>
 </head>
 <body>
 <p>
 <h4>Click on the Submit Button Below to Train your

Model</h4>
 </p>
 <p>
 <form action="/train" method="GET">
 <input type="submit" value="submit" />
 </form>

Chapter 6 LLM evaLuation and optiMization

248

 </p>
 </body>
</html>

The index.py file is simple and only contains a form to initiate

training. It invokes the other service—train—using the /train route

defined in the Flask application.

Finally, you need the run_model.html file to show that the training has

completed successfully.

 run_model.html

<html>
 <body>
 <h2>Success!!</h2>
 <p>Check MLFlow UI</p>
 </body>
</html>

Now that you have the application codebase ready, you can add the

pieces to deploy the application using Docker.

For that, you need a Docker file and the requirements.txt file.

 requirements.txt

Prepare the requirements.txt file as shown here:

scikit-learn
Flask
mlflow

Before proceeding, there is something I want to mention.

If you are aware of containerization using Docker, you know that each

Docker file is used to containerize a single application to be deployed.

But in this case, you have two applications—one application renders

Chapter 6 LLM evaLuation and optiMization

249

your AI app and the other one serves the MLFlow server that you will

use for visualization (i.e., the one MLFlow comes with). This is why you

exposed two ports—the port 7000 exposed in index.py will render your

AI application and the port you mentioned as your MLFlow tracker UI is

5000, which will be used for MLFLow visualizations. Hence, you need two

Docker files.

You can run both Docker files separately, or you can create a

single docker-compose file to maintain, run, and orchestrate both your

containers.

You have probably worked with or heard of Kubernetes; it’s one of the

most popular container orchestration tools used in the current market.

For the purposes of demonstration, this example uses Docker

Compose, which is a similar container orchestrator but with minimal

features as compared to Kubernetes. You will run the Docker Compose

file to start the application, which in turn will containerize and run the

MLFlow server and the custom backend Flask server, which can trigger

your model training.

Next are the Docker files and the Docker Compose files.

 Dockerfiles
FROM python:3.11
WORKDIR /app
COPY requirements.txt /app/
RUN pip install -r requirements.txt
COPY . /app
EXPOSE 7000 8080
CMD ["mkdir","iris_model"]
CMD ["python", "index.py"]

This Docker file will containerize the Flask server and all the model

building components along with it.

Chapter 6 LLM evaLuation and optiMization

250

 Dockerfile_mlflow

FROM python:3.11
RUN pip install mlflow
EXPOSE 5000

This Docker file will install mlflow and expose the other port for its

internal server to allow visualization.

Finally, add the Docker Compose file with the following contents and

name the file docker-compose.yml. (This is the default Docker Compose

filename. If you call it something else, you will have to provide the Docker

Compose filename with the -f parameter when you run the docker-
compose command.)

 docker-compose.yml

version: "3.3"
services:
 application:
 build:
 context: .
 dockerfile: ./Dockerfile
 ports:
 - '7000:7000'
 image: scanner_application
 container_name: scanner_application
 networks:
 - net
 mlflow: # create a MLFlow container
 build:
 context: .
 dockerfile: ./Dockerfile
 container_name: mlflow_container

Chapter 6 LLM evaLuation and optiMization

251

 ports:
 - "5000:5000" # expose port
 command: 'mlflow server --backend-store-uri ./mlflow

 --host 0.0.0.0 --port 5000'
 networks:
 - net
networks:
 net:
 driver: bridge #external: true

As you can see, the compose file runs and exposes two ports as two

applications.

Your codebase is ready!

All that is left to do is to run the complete application using the

following command:

docker-compose run –build

This will build and run the application using your Docker

Compose file.

Once the build and run is complete, you can open your browser and

navigate to 127.0.0.1:7000. You should see a web page that asks you to train

your model by clicking a Submit button, as shown in Figure 6-4.

Chapter 6 LLM evaLuation and optiMization

252

Figure 6-4. Home page of the application

You should know that in your backend, your MLFlow is also running

and since you already have made a provision to run your MLFlow server as

well, you can check the MLFlow UI by navigating to 127.0.0.1:5000.

Now train your model by clicking the Submit button on the application

home web page. Monitor what’s going on in the MLFlow UI.

Once your model has been trained successfully, you should see a

success message on your application’s web page, as shown in Figure 6-5.

Figure 6-5. Successful training run

Now let’s look at the MLFlow UI and see what it has captured. (You

might need to refresh your MLFlow UI.)

Chapter 6 LLM evaLuation and optiMization

253

You will find a training run in the left-most sidebar attributed as an

experiment since MLFlow tracks every model run as an experiment.

You already set the name format for the experiment using the current

timestamp. See Figure 6-6.

Figure 6-6. MLFlow experiment

Click the experiment that it logged to see the run details in the tab in

the middle.

It will show a random name under Run Name, but it will show other

details such as the duration of the run and the model it has used for

training (see Figure 6-7).

Figure 6-7. Run details

Chapter 6 LLM evaLuation and optiMization

254

Click the name of the run to get a more detailed view. You should

see all the details, such as time it took, the run ID, and the model that is

registered in the end. See Figure 6-8.

Figure 6-8. Run details overview

Chapter 6 LLM evaLuation and optiMization

255

Right now you are on the Overview tab. Click the Model Metrics tab to

see a graphical representation of the train and test accuracy. This is shown

in Figure 6-9.

Figure 6-9. Model metrics

At the top menu, you are on the Experiments tab. Click the Models

tab to see the logged model details. You should see the models that are

registered (Decision Tree and Random Forest Classifier in this case).

These are the registered or logged models that can be used for

predictions from the model registry. See Figure 6-10.

Figure 6-10. MLFlow registered models

Run the training again from the application home page (127.0.0.1:7000)

by clicking the Submit button. Once this second run is successful, you can

navigate to MLFlow UI to see another run in the same experiment. Since

Chapter 6 LLM evaLuation and optiMization

256

you preserved the timestamp for each day and formatted the name of

the experiment, each run on the same day will be placed under the same

experiment for that day. This is one of the methods used in the real world

to categorize multiple model runs. You can also categorize by month, year,

and more.

From your MLFlow UI, select both runs and click the Compare button

at the top to compare the model runs. See Figure 6-11.

Figure 6-11. Multiple model runs

Once you click Compare, MLFlow will take you to the visual

comparisons of the model runs. Since you have tracked training and test

runs, you will be able to compare various runs graphically by selecting

your preferred graphical representation format, as shown in Figure 6-12.

Figure 6-12. Scatterplot

Chapter 6 LLM evaLuation and optiMization

257

In this case, I chose the scatterplot. If you have multiple tracked

metrics, you can set various X and Y axis to compare your runs from the

left tab, as shown in Figure 6-12.

I urge you to perform multiple runs and add metrics to play around

with the MLFlow UI. You will quickly realize the power of this tool.

Now that you have seen how to use MLFlow to track traditional

machine learning applications, I keep it to you as an exercise to try

MLFlow to track deep learning applications. This exercise will ensure

that you are well versed with tracking machine learning models of any

kind using MLFlow. The method and metric for deep learning models

(including the Transformer models) are the same.

But using MLFlow for tracking Generative AI applications is not that

similar since the genre is different and the paradigm demands new ways of

measuring performance.

 Tracking LLM and Generative
AI Applications
In this era of Generative AI, it’s important to learn more about LLMs

than deep learning or traditional machine learning models. But make no

mistake, the older machine learning paradigms are never going to fade

out and it is almost inevitable that you will have to conjugate traditional

models with Generative AI models when you are building an end-to-end

intelligent application. Sometimes it will be overkill to use Generative

AI when you need simple classifiers or tasks such as sentiment analysis.

You will encounter such instances when you move to building enterprise

applications in this book.

But since the main focus of this chapter is tracking AI models, and you

have already explored tracking traditional AI models, you’ll now see how

to track LLMs.

Chapter 6 LLM evaLuation and optiMization

258

While building LLM applications, you will mostly use frameworks like

LangChain instead of handling all the complexities yourself. So let’s see

how to use MLFlow with LangChain.

MLFlow contains a range of prebuilt evaluation metrics that you can

leverage to track LLMs, similar to traditional AI models. Most of the time

you will likely configure your own evaluation metrics and use them to

gauge your LLM application.

Start by pulling up a Jupyter Notebook and building a RAG pipeline,

which you will evaluate using MLFlow.

Install the packages mentioned in the first notebook cell:

! pip install langchain chromadb pypdf langchain-community
langchain-openai

You have seen these libraries when previously building RAG

applications.

The PDF I used while preparing the application is a research paper

that surveys various activation functions used in neural networks in deep

learning models.

Since you have installed PyPDF and LangChain, use the PyPDF loader

of LangChain, which leverages the PyPDF library to load and read your

PDF file.

from langchain_community.document_loaders import PyPDFLoader

loader = PyPDFLoader("Activation_Functions.pdf")
pages = loader.load_and_split()

Before proceeding, since you are using OpenAI in this example, set

your environment variable for the OpenAI key and initialize your OpenAI

model such as GPT3.5 Turbo.

Chapter 6 LLM evaLuation and optiMization

259

import os

os.environ["OPENAI_API_KEY"] = ‘<Your OpenAI key>’

from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-3.5-turbo")

You also installed chromadb to be used as your vector DB, so initialize

and load your vector DB with your PDF pages.

from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma

vectore_store = Chroma.from_documents(documents=pages,embedding
=OpenAIEmbeddings())

Prepare the retriever, prompt template, and output parsers:

retriever = vectore_store.as_retriever()
template = """Answer the question based only on the following
context:
{context}

Question: {question}
"""
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template(template)
output_parser = StrOutputParser()

from langchain_core.runnables import RunnableParallel,
RunnablePassthrough

sr = RunnableParallel({"context":retriever, "question":Runnable
Passthrough()})

Chapter 6 LLM evaLuation and optiMization

260

Finally, build your LangChain pipeline (aka chain) for your RAG, as

you did earlier using LCEL:

chain = sr | prompt | model | output_parser

I will let you in on a small trick, where you can also analyze and see the

source documents retrieved by the vector database and used by the LLM

for answering. To do this, you have to modify the chain so that you can

pass a runnable (use a RunnablePassthrough) as the text retrieved from all

the document pages from the context retrieved by your vector database.

Use the following code to create your chain to output the document

pages as well:

docs_chain = (RunnablePassthrough.assign(context=(lambda x:
"\n\n".join([d.page_content for d in x["context"]]))))|prompt|mo
del|output_parser

You can assign this chain as your output when you receive inputs from

your runnables as follows:

chain_1 = sr.assign(answer=docs_chain)

Now invoke your chain:

chain_1.invoke("What is Activation Function?")

You should see a JSON field named context, which contains the array

of source documents (document pages from the PDF ingested by the

vector database) used by the LLM to answer your queries.

{'context': [Document(metadata={'page': 3, 'source':
'Activation_Functions.pdf'}, page_content='4\nrecognition …
...
)]
'question': 'What is Activation Function?',
 'answer': 'An activation function is a function used in neural

Chapter 6 LLM evaLuation and optiMization

261

networks to compute the weighted sum of inputs and biases, ..
...
the outputs of neural networks in various domains.'}

You need this to evaluate the document retrieval when using MLFlow.

It’s time to prepare the evaluations using MLFlow.

First install MLFlow.

! pip install mlflow

As mentioned, MLFlow comes with some predefined Generative AI

evaluation metrics and some encapsulations to allow you to define your

own metrics. You will use the LLM as a judge strategy to evaluate your LLM

outputs, as you did when using LangGraph. In fact, what you did using

LangGraph can be achieved by MLFlow as well. Let’s see how.

You need to import the Generative AI evaluation metrics from MLFlow

to start.

from mlflow.metrics.genai import faithfulness,
EvaluationExample

MLFlow uses the faithfulness class to assess the accuracy of an

answer using some sample inputs and outputs that you can encapsulate.

You do this using EvaluationExample as follows:

faithfulness_examples = [
 EvaluationExample(
 input="Can we solve dead neuron problem ReLU?",
 output="Yes, we can solve dead neuron problem

in ReLU.",
 score=2,
 justification="The context says that dead neuron

problem can be solved in ReLU.",
 grading_context={

Chapter 6 LLM evaLuation and optiMization

262

 "context":"The ReLU has a significant limitation
that it is sometimes fragile during training
thereby causing some of the gradients to die.
This leads to some neurons being dead as well,
thereby causing the weight updates not to activate
in future data points, thereby hindering learning
as dead neurons gives zero activation [5]. To
resolve the dead neuron issues, the leaky ReLU was
proposed."

 }
),
 EvaluationExample(
 input="Can we solve dead neuron problem ReLU?",
 output="Yes, Leaky ReLU can solve dead neuron problem

for simple ReLU.",
 score=2,
 justification="The context says that dead neuron

problem can be solved in ReLU by Leaky ReLU.",
 grading_context={
 "context":"The ReLU has a significant limitation

that it is sometimes fragile during training
thereby causing some of the gradients to die.
This leads to some neurons being dead as well,
thereby causing the weight updates not to activate
in future data points, thereby hindering learning
as dead neurons gives zero activation [5]. To
resolve the dead neuron issues, the leaky ReLU was
proposed."

 }
)
]

Chapter 6 LLM evaLuation and optiMization

263

This code shows that the faithfulness metric is given two examples

with justification of the scores to let MLFlow know how to measure factual

correctness of the answer.

Since MLFlow uses LLM as a judge, you have to assign an LLM for

MLFlow to use to evaluate faithfulness:

faithfulness_metric = faithfulness(model="openai:/gpt-3.5-
turbo", examples=faithfulness_examples)

The examples you provide will ensure higher alignment of the metrics

with your data as well as your intent. If you want, you can tune your

examples so that they can measure faithfulness according to your thought

process by providing comprehensible justification and examples.

If you intend to be easy going, you can let MLFlow take the controls

and omit evaluation examples.

Let’s allow MLFlow to take the driver’s seat with another metric,

called relevance. Relevance measures appropriateness, significance, and

applicability of the output with respect to the input and the context.

from mlflow.metrics.genai import relevance,EvaluationExample

relevance_metric = relevance(model="openai:/gpt-3.5-turbo")

Let’s prepare a few queries to run the evaluation metrics:

import pandas as pd

eval_df = pd.DataFrame({
 "questions":[
 "Which Activation function does not have any dead

neuron problem?",
 "Which Activation function is most faster?",

Chapter 6 LLM evaLuation and optiMization

264

 "What are the types of ReLU activation function
variants?",

 "What are Activation Functions?"
]
})

You can also set up a function to loop through the queries, RAG using

LLM, and evaluate using the metrics.

def run_model(df):
 answers = []
 for idx,row in df.iterrows():
 answers.append(chain_1.invoke(row['questions']))
 return answers

Finally, you have to call the MLFlow evaluate function to evaluate the

answers by assigning appropriate parameters, as given here:

import mlflow

res = mlflow.evaluate(
 run_model,
 eval_df,
 model_type="question-answering",
 predictions="answer",
 extra_metrics=[relevance_metric,faithfulness_metric],
 evaluator_config={
 "col_mapping":{
 "inputs":"questions",
 "context":"context"
 }
 }
)
print(res.metrics)

Chapter 6 LLM evaLuation and optiMization

265

The model_type indicates how your model is tuned or how you are

using it (question answering, summarization, etc.) and the predictions

parameter tells MLFlow to watch the incoming fields and map the answer

to a certain field (“answer” in this case). Similarly, evaluator_config gives

away the column mappings to watch for input query and the context (the

reason for the trick to output the context document pages as well). Finally,

you have to pass your evaluation metrics to the extra_metrics parameter

as an array. Then you are all set to go.

Sample output might look like the following after a successful run:

{'relevance/v1/mean': 4.25, 'relevance/v1/variance': 0.6875,
'relevance/v1/p90': 5.0, 'faithfulness/v1/mean': 5.0,
'faithfulness/v1/variance': 0.0, 'faithfulness/v1/p90': 5.0}

You can also check the output in tabular format, as shown in

Figure 6-13, which will also give you the justifications along with the scores

and the inputs and outputs using res.tables["eval_results_table"].

Figure 6-13. Tabular representation of MLFlow evaluations

 Preparing Custom Generative AI Evaluation
Metrics Using MLFlow
Up until now, the metrics that you used in MLFlow have been served

to you with predefined strategies. The relevance metric is already

programmed by MLFlow to check the appropriateness and significance of

the answer with respect to the context. MLFlow knows the output fields to

watch and capture to gauge relevance of the answer. The same is the case

Chapter 6 LLM evaLuation and optiMization

266

with faithfulness. MLFlow has already told the metric to use a certain

strategy. All you did was provide tuned examples to score and justify.

They will not budge from the basic definitions embedded within them

by MLFlow.

MLFlow also allows you to create metrics that are new to the world of

MLFlow and whose strategies are unknown or unheard of by MLFlow.

For example, you can define a custom metric called Resolution, which

will evaluate if the answer provided by the LLM answers the user’s query.

To achieve this, you have to set your examples with using

EvaluationExample of MLFlow.

resolution_ex_1 = EvaluationExample(
 input="I have to tackle a problem with that expects large

dataset in production environment. Which activation
function should I choose for making the application run as
fast as possible?",

 output="ELU's has been highlighted as a faster learning AF
but the most notable observation on the use of AFs for DL
applications is that the newer activation functions seem
to outperform the older AFs like the ReLU, yet even the
latest DL architectures rely on the ReLU function. However,
current practices does not use the newly developed state-
of-the-art AFs but depends on the tested and proven AFs,
thereby underlining the fact that the newer activation
functions are rarely used in practice.",

 score=2,
 justification="The response is formal but does not suggest

exactly which AF to use as asked. It is confusing to
the user."

)

resolution_ex_2 = EvaluationExample(
 input="I have to tackle a problem with that expects

Chapter 6 LLM evaLuation and optiMization

267

large dataset in production environment. Which activation
function should I choose for making the application run as
fast as possible?",

 output="Although current practices does not use the newly
developed state-of-the-art AFs and depends on the tested
and proven AFs, The ELU's has been highlighted as a faster
learning AF compared to their ReLU counterpart. Hence, you
should go ahead and use ELU.",

 score=4,
 justification="The response formal, relevant and suggests

the user with the proper AF as asked."
)

Now you have to define your custom metric using the make_genai_
metric function of MLFlow, as shown here:

resolution_metrics = mlflow.metrics.genai.make_genai_
metric(name="resolution",
 definition=(
 "Resolution refers to formal, relevant and pointed

answers that"
 "should be concise and do not confuse the user."
),
 grading_prompt=(
 "Resolution: If the answer is pointed and not

confusing then below are the details for different
scores."

 "- Score 0: Language is very casual and does not lead
to one relevant answer."

 "- Score 1: Language is formal but is not relevant and
is also confusing."

 "- Score 2: Answer is formal and relevant but is very
confusing."

Chapter 6 LLM evaLuation and optiMization

268

 "- Score 3: Answer is formal, relevant and pointed but
is not correct."

 "- Score 4: The response formal, relevant and suggests
the user with the proper pointed answer."

),
 examples=[resolution_ex_1, resolution_ex_2],
 model="openai:/gpt-3.5-turbo", parameters=

{"temperature": 0.0})

The function should have a definition of the metric using the definition

parameter, which will be used by the LLM to define its base strategy. The

grading_prompt parameter should explain how the metric will score

along with the justification of each score. Finally, you have to provide the

evaluation examples you prepared earlier and the model to be used.

You can now run the same loop. This time, use the custom metric to

evaluate your LLM generations.

res = mlflow.evaluate(
 run_model,
 eval_df,
 model_type="question-answering",
 predictions="answer",
 extra_metrics=[resolution_metrics],
 evaluator_config={
 "col_mapping":{
 "inputs":"questions",
 "context":"context"
 }
 }
)

The results you get for this new evaluation metric are similar to the

previous run.

Chapter 6 LLM evaLuation and optiMization

269

Now that you know how to prepare evaluation metrics in MLFlow, you

can use the code in the notebook to prepare an end-to-

end application just like you did in the beginning. I leave it to you as an

exercise to bulk up and flex your MLFlow muscles!

You should now be confident enough to use MLFlow and monitor your

ML runs to stay one step ahead of your data scientists and know how to use

MLOps pipeline to deploy your models into production.

Although MLFlow is a powerful tool and contains necessary and

relevant aids, such as model tracking and evaluations, to help you keep

your modeling and developments in check, MLFlow falls short when it

comes to features relevant to optimizing the consumption and processing

of inferences from LLMs. The following section discusses a tool that

enables you to enhance the capability of maximum throughput with

optimal consumption.

 Portkey
Portkey offers a unified platform to manage any LLM with a wide range

of capabilities, such as caching and routing apart from features similar to

tools like MLFlow such as model tracking.

Portkey integrates seamlessly with most major LLM providers. In this

section, you start using Portkey and get to know the tool better.

 Creating an Account
Just like any other tool provider, start by creating an account to

portkey.ai.

Head over to https://app.portkey.ai/login and create an account

to access portkey.ai.

Chapter 6 LLM evaLuation and optiMization

https://app.portkey.ai/login

270

When you log in for the first time, Portkey might ask you to name an

organization. You can add a demo name and get started. See Figure 6-14.

Figure 6-14. Getting started with Portkey

You should be sent to the dashboard. The dashboard will reveal an API

Key and a space below it where it asks you to integrate your LLM provider.

See Figure 6-15.

Chapter 6 LLM evaLuation and optiMization

271

Figure 6-15. The Portkey dashboard

Copy the API key and select the LLM provider (for example, OpenAI,

Cohere, Anthropic, etc.) from the drop-down. See Figure 6-16.

Figure 6-16. Select the LLM provider

Chapter 6 LLM evaLuation and optiMization

272

Once you select the AI provider, you will be required to provide your

LLM API key. Paste your API key and click the Generate Virtual Key button

at the bottom. See Figure 6-17.

Figure 6-17. Generate the Portkey virtual key

As soon as you do this, you will see a code snippet that shows you how

you can use the Portkey virtual key in Node.js, Python, or CuRL. Copy the

integration code so you can use it in your code. See Figure 6-18.

Chapter 6 LLM evaLuation and optiMization

273

Figure 6-18. Portkey integration code

 Using Portkey in Your Code
At the time of writing this book, Portkey is fully compatible with OpenAI

and OpenAI with LangChain, but Portkey doesn’t know how to work with

LangChain when the LLM is anything other than OpenAI and Together

AI (even though LangChain has full compatibility with almost all LLM

providers). Hence, using anything other than OpenAI when working with

Portkey is a bit tricky. The trick when working with Portkey, LangChain,

and other LLM provider, is that you have to wrap everything with

langchain-openai library.

In this exercise, you use Cohere. To start, create your account with

https://cohere.com and log in to your dashboard to get your API key. See

Figure 6-19.

Chapter 6 LLM evaLuation and optiMization

https://cohere.com

274

Figure 6-19. Cohere

To reiterate, when using LangChain, you can use the langchain-
cohere library, which wraps your Cohere LLM with the LangChain format.

But this will not be recognized with Portkey and hence you need to install

the same langchain-openai and use it to wrap your Cohere model. You do

this by providing Portkey and Cohere credentials to the langchain-openai

wrapper so that Portkey understands the format.

Now open up a notebook so you can start implementing a RAG

application with Portkey, LangChain, and Cohere.

This example uses the PDF prepared for the IT assistant (i.e., the

computer_troubleshoot.pdf file).

Start by installing the necessary libraries:

! pip install langchain chromadb pypdf langchain-community
langchain-openai

Now load the PDF.

from langchain_community.document_loaders import PyPDFLoader

loader = PyPDFLoader("computer_troubleshoot.pdf")
pages = loader.load_and_split()

Chapter 6 LLM evaLuation and optiMization

275

Load your Cohere API key in the environment, similar to how you did

it in OpenAI.

import os

os.environ["COHERE_API_KEY"] = 'Your API Key from Cohere
Dashboard'

Apart from the libraries you have already been using, you need to

install only one additional library to add your Portkey credentials:

!pip install -qU portkey-ai

Now you are ready to add the Portkey credentials, as follows:

from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL

portkey_headers = createHeaders(api_key= "Your Portkey API
Key", ## Grab from https://app.portkey.ai/

 provider="cohere"

)

Creating a header is essential for Portkey to piggy back your requests

with the authentication and other configurations, as shown previously.

This example uses Cohere instead of OpenAI and so it provides the

provider parameter called cohere.

The first parameter is the Portkey API key that you created from the

Portkey portal.

You can test how Portkey tracks the LLM using this code:

from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model = "command",

 api_key= 'Your Cohere API Key', ## Replace it
with your provider key

Chapter 6 LLM evaLuation and optiMization

276

 base_url=PORTKEY_GATEWAY_URL,

 default_headers=portkey_headers)

llm.invoke("What is the meaning of life, universe and
everything?")

You should receive a response and can track this call from your Portkey

dashboard.

To see how Portkey is tracking your LLM, log in to https://app.
portkey.ai and click Logs in the left menu. See Figure 6-20.

Figure 6-20. Portkey logs

Now let’s go back to building the RAG.

Although this example uses Cohere, you can use any other LLM here.

My intention of getting you used to Cohere instead of OpenAI is so that you

are comfortable using any LLM provider.

Although you will be using langchain-openai to wrap up the Cohere

LLM, the PDF text embeddings must be created using LangChain’s Cohere

wrapper. Hence, install the langchain-cohere library:

! pip install langchain-cohere

Chapter 6 LLM evaLuation and optiMization

https://app.portkey.ai
https://app.portkey.ai

277

Now create the embeddings using the Cohere LLM:

from langchain_cohere import CohereEmbeddings
from langchain_community.vectorstores import Chroma

vectore_store = Chroma.from_documents(documents=pages,embedding
=CohereEmbeddings(model="embed-english-v3.0"))

The embedding model you are using here is one of the widely used

embedding models when it comes to Cohere.

Now create the vector store:

retriever = vectore_store.as_retriever()

Also create your LLM template:

template = """You are an IT Assistant to assist in
troubleshooting of computer systems. Please answer the question
based only on the following context:
{context}

Question: {question}
"""

You also need to create your output parser, as you did previously.

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template(template)
output_parser = StrOutputParser()

Finally, create the RunnableParallel for your LangChain chain:

from langchain_core.runnables import RunnableParallel,
RunnablePassthrough

sr = RunnableParallel({"context":retriever, "question":Runnable
Passthrough()})

Chapter 6 LLM evaLuation and optiMization

278

Now build the chain and run your RAG application:

chain = sr | prompt | llm | output_parser

chain.invoke("My computer is not booting. What do I do?")

Similar to how you checked the Portkey logs earlier, head over to

https://app.portkey.ai and log in to view your dashboard. Once you

select the Log menu, you should see your logs as you did previously. Focus

on the log referring to the recent most timestamp and click the right-most

side arrow (>) to view the details of the logs. This is shown in Figure 6-21.

Figure 6-21. Log details

It shows the cost, API key, and the complete request and response.

But this is not why this example uses Portkey. As mentioned, Portkey

is a unified space that offers a lot of other useful features. The next section

explores some of them.

Chapter 6 LLM evaLuation and optiMization

https://app.portkey.ai

279

 Load Balancing
If you are working with your LLM in a manner that you feel is too much for

one LLM to handle, you can distribute the LLM requests to multiple LLMs

according to some assigned weights.

To achieve load balancing, create a config variable, as shown here:

config = {
 "strategy": {
 "mode": "loadbalance"
 },
 "targets":
 [
 {
 "provider": "openai",
 "api_key": "Your-openai-key",
 "weight": 0.3
 },
 {
 "provider": "cohere",
 "api_key": "Your-cohere-key",
 "weight": 0.7
 }
]
}

As you may have already realized from the configuration, 70 percent

of your requests will go to Cohere and the rest will be targeted to your

OpenAI model. In such a way, you can load-balance your LLM requests

considering factors such as the capacity of the LLM and the cost of the

LLM (you can check your cost from the dashboard as mentioned already),

and so on.

Chapter 6 LLM evaLuation and optiMization

280

Finally, you need to make a small change in your code where you are

creating the Portkey header to pass the config variable as well.

portkey_headers = createHeaders(api_key= "Your Portkey API
Key", ## Grab from https://app.portkey.ai/

 provider="cohere",
 config=config

)

Now you can fire some example requests and check your dashboard

logs to see how the load-balancing is working.

 Caching
Finally, this chapter introduces another useful feature that Portkey allows

you to leverage—caching. You can let Portkey cache the prompts from

the incoming requests and queries so that the next time you fire a request

similar to the previous ones, Portkey can use cached responses and

save time.

To use caching, you have to add another configuration, as shown here:

{
 "cache":
 {
 "mode": "semantic",
 "max_age": 1000
 }
}

There are only two parameters—max_age and mode. The max_age

parameter defines the number of milliseconds the cache will persist.

The mode parameter can be one of two values—semantic or simple. The

semantic value lets Portkey match the incoming requests semantically

Chapter 6 LLM evaLuation and optiMization

281

using cosine similarity and the simple value matches the incoming

requests character by character. Decide which to use by the criticality of

the business. Your critical application should have a simple match and the

less critical ones should have a sematic match.

You should be able to view all the features at work by viewing your

dashboard logs and analytics. To view analytics, click Analytics in the left

menu and you should be able to see something like Figure 6-22.

Figure 6-22. Analytics dashboard

This should give you some confidence on how you can leverage

various situations to optimize your LLM usage.

There is one last way to optimize your LLMs. You can deploy your

LLMs locally on your server.

 vLLM
There are a number of platforms that allow you to deploy your LLMs

locally on your server and one of the best ones among them is vLLM

(virtual LLM). This section shows how to use vLLM to locally deploy a

model and use it.

Chapter 6 LLM evaLuation and optiMization

282

For this exercise, you will use an open-source model developed by IBM

called Granite. You can check out its documentation at https://www.ibm.
com/granite.

This section walks you through deploying and using Granite by vLLM

step by step.

 Prerequisites
Docker installed in your system

Nvidia GPU

 Steps to Install

 1. Pull the Docker container that supports OpenAI

deployment in vLLM using the following

command in CLI.

docker pull vllm/vllm-openai:latest

 2. To download the model, I suggest you download

huggingface-cli. It will allow you to download

the model from HuggingFace, which is one of the

best repositories for open-source models. You can

read more about huggingface- cli at https://
huggingface.co/docs/huggingface_hub/en/
guides/cli.

You can download huggingface-cli using pip as

follows:

pip install "huggingface_hub[cli]"

Chapter 6 LLM evaLuation and optiMization

https://www.ibm.com/granite
https://www.ibm.com/granite
https://huggingface.co/docs/huggingface_hub/en/guides/cli
https://huggingface.co/docs/huggingface_hub/en/guides/cli
https://huggingface.co/docs/huggingface_hub/en/guides/cli

283

 3. Now download the model into ~/.cache/
huggingface using this command:

huggingface-cli download ibm-granite/
granite-3.1-8b-instruct

 4. Now run your downloaded Granite model inside

your Docker container using this command:

docker run --runtime nvidia --gpus all \
 -v ~/.cache/huggingface:/root/.cache/huggingface \
 -p 8000:8000 \
 vllm/vllm-openai:latest \
 --model ibm-granite/granite-3.1-8b-instruct

Congratulations! You have deployed your model

locally.

To infer using the model, use this example cURL

command:

curl -H "Content-Type: application/json" http://
localhost:8000/v1/chat/completions -d '{
 "model": "ibm-granite/granite-3.1-2b-instruct",
 "messages": [
 {"role": "users", "content": "How are you today?"}
]
}'

You should be able to get a response from your locally deployed model.

That way, you are saved from billing costs.

You still need to know and understand some of the practical concepts

and make yourself aware and recognize some guidelines while preparing

and maintaining models in production, as you are not an individual

player in the industry and you need to fit your application in the world.

Chapter 6 LLM evaLuation and optiMization

284

Some concepts such as ethics, reliability, and responsibility should also

be embedded into AI. The next chapter covers some of these governance

concepts.

 Summary

• Generative AI models are essential to maintain and

RAG applications should have multiple checks to

determine whether the answers generated are factual

and solve the user queries.

• Corrective RAG (or C-RAG) techniques employ the

LLM as a judge strategy to use LLMs in order to

evaluate hallucinations and resolutions.

• You can use LangGraph, which is a LangChain

derivative to prepare workflows so that you can set up

C-RAG in your RAG application.

• You should also keep in mind the benchmarks that

many data scientists have set to gauge your models.

• MLFlow is a tool that is a compilation of various

monitoring capabilities that ML applications can use to

maintain your application.

• You can also track Generative AI applications using

either preconfigured MLFlow metrics or by building

your own MLFlow custom metrics.

• You can use Portkey as a unified platform to optimize

your Generative AI applications by load balancing and

caching.

• You can minimize your LLM provider costs by

deploying an open-source model locally using vLLM.

Chapter 6 LLM evaLuation and optiMization

285© Arindam Ganguly 2025
A. Ganguly, Scaling Enterprise Solutions with Large Language Models,
https://doi.org/10.1007/979-8-8688-1154-8_7

CHAPTER 7

AI Governance
and Responsible AI
Responsible artificial intelligence (AI) deals with preventing and mitigating

serious risks caused by AI outputs. To stay a step ahead, you need to

understand the appropriate strategies that come with Generative AI. To

do that, you need to monitor AI fairness. The first step to AI fairness is to

carefully monitor and remediate any imbalance in the dataset you provide

to your AI to train on. With the advent of LLMs, it has become very difficult

to peek into the black box. You can use techniques such as SHAP and LIME

to carve out explainability from traditional AI as much as possible.

You have to rely upon LLM as a judge to do the same. Drift detection

is another important concept, whereby data scientists need to monitor

and check for data drift and model (or concept) drift and have proper

remediation techniques. When you are ready to implement AI applications

at a scale, you should keep in mind various AI regulations and policies

that various nations have agreed upon. These policies can safeguard you

against unforeseen repercussions. Along with tracking LLMs, you should

also have proper prompt governance for a long-term AI application, using

Langfuse as an Ops tool.

This chapter explains some of these fundamental concepts, which

go beyond the technicalities of model building, deployment, and

maintenance.

https://doi.org/10.1007/979-8-8688-1154-8_7#DOI

286

 AI Fairness
The first concept you need to grasp is the idea of model fairness. It might

sound counterintuitive if you have always heard that automation is the

key to removing human intervention and hence reducing bias among

processes. However, AI systems are often black boxes.

Fairness of a machine learning model determines that it is true and fair

to its requirement or purpose.

In artificial intelligence, AI Fairness is often distinguished as follows:

Demographic parity: The likelihood of a positive

outcome (e.g., being hired, receiving a loan) should

be the same across different groups.

Equal opportunity: The true positive rate (e.g., the

probability of being correctly identified as qualified

for a job) should be equal across groups.

Equalized odds: Both the true positive rate and the

false positive rate should be equal across groups.

As you learned in previous chapters, the deep learning model is built

on top of weights and biases. In the real world, bias is a term used to imply

an inclination to a particular factor so much so that it can lead to biased

decisions. Human biases are some of the major causes of indifference and

conflicts in society Machine learning models are trained on data curated

by human beings, which means bias can seep into data. These factors can

lead a machine learning model to adopt the same kind of bias as humans

when formulating its decisions.

By no fault of the data curator or the machine learning model, the data

gathered can very well contain more elements of a certain class than the

others (as it may so have occurred in the real world). For example, if you

are asked to create a classifier to make a primary selection in the defense

division of a country, your dataset will probably be skewed gender-wise, as

Chapter 7 aI GovernanCe and responsIble aI

287

it is a fact that not many women choose a career in defense as compared to

men and this may lead to a wrongful assessment of a female candidate. As

a data scientist, it is the job of the developer to include code to debias such

a dataset. One way to debias a dataset is to balance out an imbalanced

class. See Figure 7-1.

Figure 7-1. Balance the imbalanced

To balance out an imbalanced class, you can use Python packages

such as the imblearn library and Fairlearn.

There are various techniques that libraries such as imblearn use for

balancing datasets. For instance, one technique that you can use is to

oversample the class having fewer samples to be at par with the one having

more samples. You can use RandomOverSampler and RandomUnderSampler

to balance the class distribution, using imblearn in Python with this code

snippet:

from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler

Assuming X_train and y_train are your features and target
variable

Chapter 7 aI GovernanCe and responsIble aI

288

Oversampling the minority class
ros = RandomOverSampler(random_state=42)
X_resampled, y_resampled = ros.fit_resample(X_train, y_train)

Undersampling the majority class
rus = RandomUnderSampler(random_state=42)
X_resampled, y_resampled = rus.fit_resample(X_train, y_train)

I urge you to check out various techniques for balancing out

imbalanced datasets. Techniques include oversampling minor classes and

undersample major classes.

Apart from this technique, you can use unstructured similar methods

depending on your business requirements to see if your predictions are

fair or biased. These methods generally depend on your domain and you

will have to come up with custom algorithms to check them.

You can also check out Fairlearn, which solely uses techniques

specializing in AI fairness.

 Explainable AI
Machine learning models have been inspired from the workings of the

brain, which itself is a matter of research. No one can map a thought or

interpret how a certain person thinks (except maybe Sherlock Holmes!).

Similar to this, the more complex your machine learning model is, the

more inexplicable it is. With the evolution of machine learning and data

science, machine learning models have become more and more difficult to

understand.

You can make out how some of the models, such as a decision tree,

work. But as you move to more complex models, such as deep learning

models like CNN or RNN, the models turns out to be a black box. Finally

with Generative AI, you have to try various prompting techniques, similar

to talking to a human, and you cannot go even one level inside the model.

This is considered a complete black box.

Chapter 7 aI GovernanCe and responsIble aI

289

You have already read about some of the primary explainability

parameters that can help you understand model performance.

Two explainable AI tools that attempt to interpret machine learning

models, such as decision tree or random forest, are SHAP and LIME. They

are discussed next.

 SHAP

SHAP has been around for quite some time and it has been widely used

in traditional machine learning applications to keep a eye on the model

outcome by understanding what is going on underneath. SHAP (SHapely

Addditive exPlanations) is used to explain the outcomes of a machine

learning model. SHAP values attempt to assign importance to each feature

based on game theory and other mathematical calculations. These values

can help you deduce how each of the features in the feature set contributes

to the model.

A simple library in Python can help you get started with SHAP.

! pip install shap

This chapter uses the iris database and a simple decision tree classifier

to explain the outcomes of the model calculations.

from sklearn import datasets

iris = datasets.load_iris()

You can try listing the feature names.

iris.feature_names

As you might be working in a Jupyter Notebook environment to

try SHAP, you can initialize internal JavaScript libraries of SHAP for

interactive plots.

import shap
shap.initjs()

Chapter 7 aI GovernanCe and responsIble aI

290

You’ll build your model by following the same procedure you did

earlier.

 1. Split your data into training and test sets.

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_
split(iris.data, iris.target, test_size=0.3, random_
state=1)

 2. Initialize your model and fit it to your training set.

from sklearn.tree import DecisionTreeClassifier

dt = DecisionTreeClassifier()
dt.fit(X_train,y_train)

 3. Watch how your model performs.

from sklearn.metrics import classification_report

y_pred = dt.predict(X_test)

print(classification_report(y_pred, y_test))
]
from sklearn.metrics import classification_report
y_pred = dt.predict(X_test)
print(classification_report(y_pred, y_test))
 Output:
 precision recall f1-score support

 0 1.00 1.00 1.00 14
 1 0.94 0.94 0.94 18
 2 0.92 0.92 0.92 13

Chapter 7 aI GovernanCe and responsIble aI

291

 accuracy 0.96 45
 macro avg 0.96 0.96 0.96 45
weighted avg 0.96 0.96 0.96 45

This model is now finalized and you can use SHAP to explain your

model’s outcome.

explainer = shap.Explainer(dt)
shap_values = explainer.shap_values(X_test)
shap_values

These values have an array of elements containing the importance

of each feature for each test data row. As users might find a bit difficult to

discern these values, the makers of the library provide options for you to

see visual representations through various graphs and plots.

For example, you can create a summary plot using the following line

of code:

shap.summary_plot(shap_values, X_test)

You might get output similar to Figure 7-2.

Chapter 7 aI GovernanCe and responsIble aI

292

Figure 7-2. SHAP summary plot

 LIME

SHAP calculates feature importance by looking at the overall model

outcomes. If you want your explainability system to calculate feature

importance for each instance of your dataset, you can limit your feature

importance calculation to be localized to each dataset using Local

Interpretable Model-Agnostic Explanations (LIME).

To use LIME in Python, use the same notebook you have been using to

implement SHAP and install the Python package called lime:

!pip install lime

Once this is installed, use LimeTabularExplainer to initialize

explainability features using LIME. As the name of the interface suggests,

LIME is specific to specific types of datasets. Currently, LIME supports

tabular data, image data, and text-related datasets.

Chapter 7 aI GovernanCe and responsIble aI

293

from lime import lime_tabular

explainer_lime = lime_tabular.LimeTabularExplainer(X_train,
 feature_names=iris.feature_names,
 verbose=True,
 mode='classification')

iris.feature_names will return the feature names of the dataset and

use the mode as classification.

Now use explain_instance of LimeTabularExplainer to visualize how

the feature importance comes out based on a sample test instance (say the

tenth test_X row). Make sure to import matplotlib.

import matplotlib.pyplot as plt

exp_lime = explainer_lime.explain_instance(
 X_test[10], dt.predict_proba, num_features=len(iris.

feature_names))

exp_lime.show_in_notebook()

As you can see in this code, you have to use the predict_proba

function of the model, which returns the probability score instead of the

predicted class for a classification model instead of the predict method.

Otherwise, you will get the following error: “LIME does not currently
support classifier models without probability scores”. If you

are using a regression model, you can simply pass the predict method

as the second parameter. Also, make sure to pass the correct value of

num_features, which expects the number of features used to train the

dataset. show_in_notebook allows Jupyter Notebook to render visual

representations of the exp_lime value using MatplotLib.

You might see output similar to Figure 7-3, which visually points out

the importance of each feature through color encoding.

Chapter 7 aI GovernanCe and responsIble aI

294

Figure 7-3. LIME

 Drift
Machine Learning has been so widespread that almost all industries today

are adopting AI in their landscapes. Sometimes the nature of the data leads

to unnatural outcomes that scare off potential customers. To track such

unusual outcomes, you need to understand the concept of drift in various

premises.

Drift in machine learning implies the amount of degradation of quality

in model prediction as compared to ground truth over time. Drift can be

caused due to the model (model drift) or the data (data drift).

 Model Drift
Model Drift, also known as Concept Drift, occurs when the type of model

training was based on the kind of predictions it has to do and when the

procedure or coefficients used to perform the predictions don’t hold

correct after the system has been running for a while. It is quite possible

that the data patterns the model has adjusted to doesn’t hold true for the

current landscape.

For example, say you prepared a recommendation model for a retail

industry some time ago. It is quite possible that customer preferences have

changed over time and this leads to unsatisfactory recommendations to

potential recurring customers. This signals that your model drift should be

checked and acted upon.

Chapter 7 aI GovernanCe and responsIble aI

295

You can think of your machine learning model as an employee who

you hired to do your accounting during the past decade. This accountant

has shown immense accuracy and precision in performing the kind of job

you gave them in the past. After almost a decade, the employee, although

loyal to the methods you set up, fails to evolve with time. They still use

paper and pen to perform all of the calculations, which can lead to delay

and human errors in the era of automation.

 Data Drift
Data drift occurs when the environment around your data collection,

processing, and so on has changed. In terms of the machine learning

model, the model has stopped adapting to the current machine states with

new modifications.

You may have prepared the model to predict certain feature sets and

you might have updated the data integration and flows to capture more

signals than it previously did. It is possible that the system now receives

more data signals, which can lead to better precision based on the current

data pattern. It is also possible that the nature or format of some of the data

has been changed by the source input system. It is quite obvious then that

your model should adapt to those changes. You can trigger such checks

and modifications using data drift.

Here are some examples of data drift:

• Seasonality: In retail, customer purchasing patterns

change throughout the year (e.g., increased spending

during the holidays). A model trained on data from one

season might not perform well in another.

• Changing demographics: The demographic makeup

of a customer base can shift over time. For instance,

a new marketing campaign might attract a younger

audience with different preferences.

Chapter 7 aI GovernanCe and responsIble aI

296

• New trends: Social media trends, emerging

technologies, or economic shifts can alter user

behavior and the data. A sentiment model trained on

old data might not accurately capture new slang or

evolving opinions.

• Sensor degradation/changes: If your model relies

on data from physical sensors, changes in the sensors

themselves (e.g., degradation, recalibration) can

introduce data drift.

• Adversarial drift: In security applications, adversaries

may intentionally try to manipulate the input data to

cause harm to your system.

One way to remediate drift is constant maintenance and monitoring of

your model using the techniques you learned in the previous chapter. But

you can only do this when you can see the drift in your system.

 Drift Detection
If you went through the previous chapter, you have already pulled your IDE up

and used LLM to detect drift using the LLM as a judge technique. I urge you to

integrate that with a complete end-to-end intelligent system as an exercise.

Another way to detect drift involves statistical tests. Explaining the

mathematical intricacies behind these statistical tests is out of the scope of

this book. Here are two statistical tests used to perform drift detection:

 1. Kolmogorov-Smirnof Test (or KS test)

A KS test is used to measure how a statistical

distribution differs from the other. It leverages

the Cumulative Distribution Function and checks

whether the data comes from the same distribution.

You can use a KS test to measure data drift.

Chapter 7 aI GovernanCe and responsIble aI

297

 2. Page-Hinkley method

The Page-Hinkley method detects changes in the

means of a distribution by monitoring cumulative

sums of deviations from the mean. The Page-

Hinkley method is used to detect concept drift.

Nothing is worthy until you can implement and use it in real life.

To detect drift in Python, you can leverage Evidently AI (https://www.
evidentlyai.com/), which provides a wonderful platform and Python

SDK to detect drift in Python.

Open the Jupyter Notebook and start installing the Evidently SDK.

pip install evidently

You’ll use the same iris dataset from sklearn but this time you need to

prepare a dataframe for later use in Evidently.

from sklearn import datasets
import pandas as pd

iris = datasets.load_iris()
dataset_df = pd.DataFrame(data=iris.data, columns=iris.
feature_names)

As before, you can prepare a training and test set and use decision tree

to model it. But since the focus here is on drift detection, you’ll use the

training features to see how drift can be detected:

reference = dataset_df.sample(n=50, replace=False)
current = dataset_df.sample(n=50, replace=False)

In practice, you have a reference and a current dataset to see if your

current dataset has drifted with respect to the reference dataset, which you

may have used previously while model building.

Chapter 7 aI GovernanCe and responsIble aI

https://www.evidentlyai.com/
https://www.evidentlyai.com/

298

You are ready to let Evidently generate a report on data drift using the

following line of code:

from evidently.report import Report
from evidently.metric_preset import DataDriftPreset

report = Report(metrics=[
 DataDriftPreset()
])
report.run(reference_data=reference, current_data=current)

The code is self-explanatory; it leverages a Report interface to generate

a report while calculating data drift using the DataDriftPreset interface.

Finally, the report is generated using reference and current datasets that

you set aside.

You can view the report in a Jupyter Notebook cell inline by running

the following line of code:

report.show(mode='inline')

You should see something like Figure 7-4.

Figure 7-4. Data drift detection using Evidently AI

Chapter 7 aI GovernanCe and responsIble aI

299

As you may have already figured out, AI governance is based on

complex statistical calculations. In recent years, almost all hyperscalers

have come up with their own proprietary algorithms for features like drift

and fairness detection.

Azure uses AzureML, which provides its users with data drift

mechanisms using their own interfaces in the AzureML library. This is

also the case with IBM Watson, which released WatsonX Governance

as a platform on top of their proprietary AI building platform known as

Cloud Pak for data. This platform lets you build models using their own

Jupyter Notebook compatible platform, deploy them, and have WatsonX

governance monitor parameters such as drift and fairness while it is in

production.

If you are restricted to open-source, you are at the mercy of Python

libraries and packages such as Evidently AI, which nowadays is tough

competition to licensed and closed platforms.

 AI Regulations
All of the previous methods can help you monitor the model performance.

Methods like LIME and SHAP tell you that whatever your model outputs

should be fair so much so that you can let your new system loose in the

world to the larger audience. With AI spreading like wildfire and having the

power of Generative AI in your hands, you can almost think of conquering

the world.

But if that is the case, why do many major market players still face

significant challenges when deploying their AI systems into production

and releasing them to the wider public? Despite efforts to ensure fairness

and mitigate bias, many organizations are hesitant to fully embrace AI, due

to concerns about potential risks and unintended consequences.

Chapter 7 aI GovernanCe and responsIble aI

300

The answer to this question is more macro than micro when you look

at the problems at 30,000 feet above sea level. With advent of Generative

AI, nations have taken a step back to think about the consequences of

these systems on matters outside the technical expertise. If you are about

to build an intelligent system, there are several regulations to keep in mind

before releasing them into the wild.

Different nations have different perspectives, and this has led to

nations implementing policies and regulations on AI. In the United

States, the National Institute of Standards and Technology (NIST), in

collaboration with various private and public sector stakeholders, has

developed a framework for managing risks and biases caused by AI. This is

known as the AI Risk Management Framework (AI RMF). This framework,

initially released in January 2023, serves as a voluntary guideline for the

design, development, use, and evaluation of AI products, services, and

systems.

Core components of the NIST AI RMF are as follows:

Govern: Establish and maintain a culture of risk

management within the organization.

Map: Identify and understand the context in which

AI systems are deployed, including potential risks

and impacts.

Measure: Track and evaluate identified risks

using quantitative, qualitative, or mixed-method

approaches.

Manage: Allocate resources and implement

strategies to mitigate identified risks.

The AI RMF emphasizes an iterative approach to risk management,

encouraging organizations to continuously monitor and adapt their

practices as AI technologies evolve. It also provides various resources,

Chapter 7 aI GovernanCe and responsIble aI

301

such as roadmaps and crosswalks, to help organizations implement the

framework. You can access these resources at the official NIST website:

https://www.nist.gov/itl/ai-risk-management-framework.

These frameworks ensure proper acceptance of systems released to the

larger audience for use and reuse.

Beyond the NIST AI RMF, organizations developing AI systems in the

United States should also be aware of existing and proposed legislation

related to algorithmic accountability. For instance, the Algorithmic

Accountability Act, which was initially proposed in 2019 and reintroduced

in 2022, aims to require companies to conduct impact assessments for

automated decision systems, evaluating them for accuracy, fairness,

bias, discrimination, privacy, and security. Although not yet enacted into

law, it reflects a growing trend toward increased scrutiny of AI systems’

societal impact.

You should also abide by the data privacy and protection acts by

ensuring that your AI doesn’t leak data in any way. Your system should be

air tight and secured so it’s not prone to bad intentions.

When your system is attending to other geographies, you should make

sure that it abides by the policies in effect in those areas. For example,

European Unions have the General Data Protection Regulation (GDPR),

which ensures data privacy and protection. GDPR is considered the

benchmark regulation for data privacy and protection and every nation has

their own regulations for data privacy and protection similar to GDPR. For

example, if your system is running in Asian countries like India, they

adopted the DPDPA (Digital Personal Data Protection) act in 2023 after the

advent of Generative AI. Similarly, the UK has the UK Data Protection Act

and Singapore has the Personal Data Protection Act, which are regulations

for data privacy and protection in the UK and Singapore, respectively.

After the advent of Generative AI, governments started intervening to

ensure safe, responsible, and trustworthy releases of intelligent systems.

They did this by appending sections pertaining to AI outputs so they do

cause any collateral damage.

Chapter 7 aI GovernanCe and responsIble aI

https://www.nist.gov/itl/ai-risk-management-framework

302

You should make sure to include fairness, bias, and avoid damaging

outputs containing hate, profanity, or derogatory text in your AI pipeline.

For this, you should take into account all the knowledge you have acquired

from this and the previous chapters and make good use of the toolkits you

have learned so far.

Before closing the chapter, I cover another toolkit for governing

your system.

 LLM and Prompt Governance
You were introduced to LLM governance in the previous chapter, where

you learned how to maintain an LLM and a model using MLFlow.

MLFlow gives you the capability to track and monitor machine learning

models built using either Scikit-Learn (such as decision tree) or deep

learning models (built using PyTorch or TensorFlow). The current market

scenario is much more interested in evaluating LLMs. You got an idea of

maintaining and evaluating LLMs using MLFlow by using another LLM to

judge the performance of the primary LLM in the system. MLFlow makes

it a bit easier by providing interfaces to add your judgment model and a

subjective instruction on the qualitative metric you want to judge it on.

You have a ready-to-use method with just a few lines of code. You also

used LLM to judge the faithfulness and relevance of a RAG application

using MLFlow. Model governance techniques like these are one of the

most important pillars to safeguarding your intelligent applications.

In the case of LLMs, it’s almost impossible to fine-tune the models

due to various factors, such as budget, server, and so on. An LLM works

through prompts and prompts also need to be maintained and monitored.

This section introduces prompt governance.

To use MLFlow, you need to localize MLFlow by installing it in your

server and exposing it in a server. Using the tracking server, you can

monitor and govern your ML models or LLMs.

Chapter 7 aI GovernanCe and responsIble aI

303

MLFlow has the capability to govern your LLM generation through

the LLM as a judge technique, but has limited capability when it comes to

prompt governance. At the time of writing this book, MLFlow has recently

released a beta version of a prompt governance platform.

 Langfuse
This section explains another toolkit, called Langfuse (https://
langfuse.com/), which is built by leveraging LangChain, which has

similar capabilities to LangGraph (such as workflows) and has a platform

to govern prompts. Unlike MLFlow, you can use it online and it is open-

source at the time of writing this book. You can also host it on your own

server, but this example shows how to use it online.

You’ll start by creating a Langfuse account.

Go to https://cloud.langfuse.com/auth/sign-up and sign up with

your region (cloud location), name, email. and password. Or you can sign

up with your Google or GitHub account.

Once you are logged in, you have to create an organization by clicking

the New Organization button at the top right. You should be prompted to

enter an organization name. You can name it a dummy name, such as my-
org for demo purposes. See Figure 7-5.

Figure 7-5. Create organization in Langfuse

Chapter 7 aI GovernanCe and responsIble aI

https://langfuse.com/
https://langfuse.com/
https://cloud.langfuse.com/auth/sign-up

304

On the next page, you will be asked to confirm and add members.

This part is essential when you are working on a team and need to restrict

access to your development team. For now, you can keep it as it is. After

this, finally, you will be prompted to enter the name of the project. You can

use a demo name such as rag-bot.

Once you have set up the project, Langfuse will show you the project

details in the Project Settings page, as shown in Figure 7-6.

Figure 7-6. Langfuse project settings

You need to create an API key next. Click API Keys in the menu tab just

below Project Settings header to see the API keys created for this project.

If you are navigating to the API Keys section for the first time, you should

already have one. I recommend you create a new API key by clicking

Create New API Keys below the list of API keys. See Figure 7-7.

Chapter 7 aI GovernanCe and responsIble aI

305

Figure 7-7. Langfuse API keys

Once you create an API key, Langfuse will display the details of the

key. Make sure to save the secret key and public key and note the host. See

Figure 7-8.

Chapter 7 aI GovernanCe and responsIble aI

306

Figure 7-8. Langfuse API key details

You’ll start by infusing Langfuse in the code. The first step you need

to take is to check out how you can make Langfuse work in the simplest

terms, such as via an LLM call using the prompt.

You learned how to call an LLM through a prompt in Python

using LangChain in Chapter 5. This example uses the same code with

Langfuse in it.

Open your Jupyter Notebook and start by installing the libraries:

! pip install langchain langchain-openai langfuse

Chapter 7 aI GovernanCe and responsIble aI

https://doi.org/10.1007/979-8-8688-1154-8_5

307

The last library, as you might have guessed, is the Python SDK for

Langfuse.

You now need to set your OpenAI key as the environment variable and

identify the LLM to use in the ChatOpenAI interface:

import os

os.environ["OPENAI_API_KEY"] = "<Your Open AI API Key here>"

from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-3.5-turbo")

You can set up your prompt template exactly like you did in Chapter 5.

from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages([
 ("system", "You are a computer science trainer. You will

be asked to provide some technical documentation and your
task is to explain those technical concepts in layman's
terms."),

 ("user", "{input}")
])

Now that the basics are complete, you need to integrate Langfuse. To

use Langfuse in LangChain, you have to create a callback. A callback is a

method that LangChain can call while invoking an LLM.

from langfuse.callback import CallbackHandler
#Get project ID from the project setting page in langfure
project_id = "<your-project-id>"
langfuse_handler = CallbackHandler(
 secret_key="sk-lf-23898ffb-7c87-45e5-9992-c7243f352dd2",
 public_key="pk-lf-143c7d4b-60a0-46cb-97fd-d71377b679bc",

Chapter 7 aI GovernanCe and responsIble aI

https://doi.org/10.1007/979-8-8688-1154-8_5

308

 host="https://us.cloud.langfuse.com",
 project_id=project_id
)
callbacks = [langfuse_handler]

As you can see from this code, the public and secret keys are the ones

you generated when you created the new API key. The host was also

mentioned in the API key details in Figure 7-8.

Langfuse is ready to be integrated into your LangChain chain:

chain = prompt | model
chain = chain.with_config(callbacks=callbacks)

with_congif allows LangChain to add extra handlers, such as callbacks,

which it will use while invoking the chain.

You can invoke your LangChain pipeline and you should see your code

working.

chain.invoke({"input": "What is deep learning?"})

But what about the Langfuse callback you added?

Go to your Langfuse dashboard (on right-most menu, under the

Langfuse banner) to see if your LLM call has been tracked.

In the first row, you should see KPIs such as the number of traces, the

model cost incurred for the LLM calls, and any scores that you might have

traced. This is shown in Figure 7-9.

Figure 7-9. Langfuse dashboard 1

Chapter 7 aI GovernanCe and responsIble aI

309

The second row should show a graphical representation of the traces

and model costs that you saw in the previous row, as shown in Figure 7-10.

Figure 7-10. Langfuse dashboard 2

Finally, toward the end, you should see other details related to user

consumption and latencies. These are shown in Figures 7-11 and 7-12.

Figure 7-11. Langfuse dashboard 3

Chapter 7 aI GovernanCe and responsIble aI

310

Figure 7-12. Langfuse dashboard 4

You should now be familiar with the objective Langfuse is built for.

But along with LLM user consumption and tracing, one of the pillars that

drives any LLM application is a prompt. Langfuse can help you govern

prompts by prompt versioning and maintaining a repository of prompts.

The next section explains how to implement prompt governance using

Langfuse.

 Prompt Governance Using Langfuse
To see how Langfuse helps in prompt governance, you will revisit the same

code for building a RAG application that was implemented in Chapter 5

and see how prompt governance with Langfuse can fit in the context of a

RAG application.

Pull up your Jupyter Notebook and start by installing the essential

packages:

! pip install langchain chromadb pypdf langchain-community
langchain-openai
langfuse

I think you are already familiar with the Python packages. If you have

any doubts, revisit Chapter 5.

Chapter 7 aI GovernanCe and responsIble aI

https://doi.org/10.1007/979-8-8688-1154-8_5
https://doi.org/10.1007/979-8-8688-1154-8_5

311

Now load the PDF in PYPDF for OCR. You can use the same PDF used

in Chapter 5. Otherwise, you can use a new PDF like the one I used while

implementing the code. This PDF is a paper on concept drift, which you

can download from https://arxiv.org/abs/2004.05785.

from langchain_community.document_loaders import PyPDFLoader

loader = PyPDFLoader("Concept_Drift_Paper.pdf")
pages = loader.load_and_split()

add the credentials for Langfuse and OpenAI in the environment

variables:

import os

os.environ["OPENAI_API_KEY"] = '<OpenAI API Key here>'
os.environ["LANGFUSE_PUBLIC_KEY"] = 'pk-
lf- 143c7d4b-60a0-46cb-97fd-d71377b679bc'
os.environ["LANGFUSE_SECRET_KEY"] = 'sk-
lf- 23898ffb-7c87-45e5-9992-c7243f352dd2'
os.environ["LANGFUSE_HOST"] = "https://us.cloud.langfuse.com"

You should also select your LLM:

from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-3.5-turbo")

To use Langfuse, just as you did in the previous code, you have

to initialize the Langfuse client and create a callback handler for

LangChain to use.

from langfuse import Langfuse
from langfuse.callback import CallbackHandler

langfuse = Langfuse()

langfuse_callback_handler = CallbackHandler()

Chapter 7 aI GovernanCe and responsIble aI

https://doi.org/10.1007/979-8-8688-1154-8_5
https://arxiv.org/abs/2004.05785

312

Now you can get back to building the rest of the parts of RAG, as you

did in Chapter 5. Prepare the vector store for vectorizing using OpenAI

Embeddings to be consumed in the vector store (ChromaDB in this case)

and then prepare a retriever from the vector store.

from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma

vectore_store = Chroma.from_documents(documents=pages,embedding
=OpenAIEmbeddings())

retriever = vectore_store.as_retriever()

Once this is done, you have your gears set up for RAG.

It’s time to move on to the part of RAG you have likely been waiting

for—creating a prompt and using the Langfuse to version, maintain, and

govern it.

Start by creating a prompt template in a string variable:

template = """Answer the question based only on the following
context:
{context}

Question: {question}
"""

Now it’s time to use this as a prompt and let Langfuse version and

govern it. You use the create_prompt function of the Langfuse client for

this, as shown in the following code:

langfuse.create_prompt(
 name="simple-rag",
 prompt=template,
 config={
 "model":"gpt-3.5-turbo",
 "temperature": 0,

Chapter 7 aI GovernanCe and responsIble aI

https://doi.org/10.1007/979-8-8688-1154-8_5

313

 },
 labels=["rag_prod"]
);

As you can see in this code, you need to pass a name and a label that

will be utilized by you and Langfuse when you need to access the prompt.

You can also pass some metadata for the kind of LLM to use while using

this prompt. You do this in the config parameter as an object. I show you

how to leverage this later in this chapter.

Go to the Langfuse dashboard and click the Prompts menu from the

left-most menu. You should see your prompts been tracked by Langfuse

along with the versions. Click the version and it will display the details, as

shown in Figure 7-13.

Figure 7-13. Langfuse prompt versioning

Now use the prompt you just versioned in Langfuse using get_prompt.

You have to use the name and label to access and use the prompt as

follows:

prompt_template = langfuse.get_prompt("simple-rag",
label="rag_prod")

Chapter 7 aI GovernanCe and responsIble aI

314

This will return a Langfuse object to access the prompt template

in your RAG application, just like any other prompt. To get the prompt

from this template, use the get_langchain_prompt function, as shown in

this code:

from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template(prompt_template.get_
langchain_prompt())

The rest of the code is a usual RAG application using the

previous prompt:

from langchain_core.output_parsers import StrOutputParser
output_parser = StrOutputParser()

from langchain_core.runnables import RunnableParallel,
RunnablePassthrough

sr = RunnableParallel({"context":retriever, "question":Runnable
Passthrough()})

Now that you have everything ready, you can finally create the

LangChain pipeline and invoke your chain:

chain = sr | prompt | model | output_parser

chain.invoke("What is Concept Drift?")

Once you have invoked the prompt, Langfuse traces it. You can see the

traces in the Langfuse dashboard under the Tracing menu, as shown in

Figure 7-14.

Chapter 7 aI GovernanCe and responsIble aI

315

Figure 7-14. Langfuse traces

You can also check out the details of the traces by clicking it, as shown

in Figure 7-15.

Figure 7-15. Langfuse trace details

The metadata that you recorded in the Langfuse as prompt metadata

(i.e., the model ID and the temperature) can be used to call an LLM and

add parameters while calling the LLM. Try this code:

model = prompt_template.config["model"]
temperature = str(prompt_template.config["temperature"])
model = ChatOpenAI(model=model, temperature=temperature)
chain = sr | prompt | model | output_parser

chain.invoke("What is Concept Drift?")

Chapter 7 aI GovernanCe and responsIble aI

316

As you can see, the model and the temperature of the model are

gathered from the metadata that you stored in the prompt trace in

Langfuse. They are used in the LangChain pipeline just like any other LLM.

Now that you have a fairly good idea of how Langfuse works, you can

now try to fiddle with various metrics in the dashboard for analytics. Refer

to the Langfuse documentation and try to come up with various use cases

that you may be able to implement in your current environment. Prompt

governance and tracing is an extremely important toolkit in your machine

learning toolbox and large industries cannot do without AI governance in

the current market.

The remaining chapters look at the big picture and stitch everything

together to show you how you can make a large enterprise work with

machine intelligence.

 Summary

• Proper governance is needed to prevent AI from

generating refuting outputs. For that, you need AI

fairness, which involves carefully monitoring and

remediating any imbalance in the dataset that AI is

training on.

• Techniques such as SHAP and LIME can be used to

eliminate explainability from traditional AI.

• Drift detection is used to monitor and check for data

drift and model (or concept) drift.

• It’s important to understand international AI

regulations and policies, which can safeguard you

against unforeseen repercussions.

• Use the Langfuse as a ops tool for prompt governance.

Chapter 7 aI GovernanCe and responsIble aI

317© Arindam Ganguly 2025
A. Ganguly, Scaling Enterprise Solutions with Large Language Models,
https://doi.org/10.1007/979-8-8688-1154-8_8

CHAPTER 8

Adding Intelligence
to Large Enterprise
Applications
With AI and Generative AI as frontrunners of the technical landscape

and driving a complete application with multiple complex workflows, it

is almost necessary now to design a proper AI architecture to get a clear

picture before proceeding to develop.

AI development lifecycles should have an experimentation

environment, where you can use Jupyter Notebooks to try your

architecture using sample data. Currently there are a lot of applications

that serve large enterprises (enterprise applications), but there is a need

to add intelligence to these applications. You need to properly understand

the REST APIs that almost all of the large enterprise applications provide

as interfaces.

The next step to adding intelligence to these large enterprise

applications is to understand the concept of AI agents. Agents act as

directors that drive an intelligent application.

Agents use prompts to make decisions based on tools. Tools are

modular functions that perform individual tasks. These tools should have

docstrings that describe the functionality of the task. These docstrings are

https://doi.org/10.1007/979-8-8688-1154-8_8#DOI

318

used by the agents to make decisions about which tool to invoke when

a query hits the agent. You can develop a complete application and the

agents using LangChain.

 A Typical Chatbot
This book has discussed various models and several problems that

pertain to real life. Many of the solutions have almost been solved by large

enterprises and industry leaders. We looked at Generative AI and how

it can be used as a chatbot in the modern world. However, back in the

days of traditional AI, chatbots had two main designs—entity and intent

extraction. Whenever a chatbot encounters text from a user, the system

deciphers the text to gather the intent and the list of entities from the text.

A dialogue flow determines what the chatbot will respond or do based on a

predesigned flow, which branches based on entities and intent. Intents are

the summary of the text the user provides.

For example, the intent of “How do I do a restaurant booking?”

is restaurant booking. The list of intents and entities are predefined

and each intent and entity can be considered a class or category. The

intent recognition system leverages a pretrained classification model

to determine the class that the text falls in. Similarly, entities are

predetermined categories that certain words fall into. For example, the

word “Samsung” represents a company name and hence falls into a

predetermined category that represents company names. Entity extraction

systems extract entities from text. For example, the statement “Is Samsung

headquartered in South Korea and popular with electronic items?”

contains several entities, including the following:

• “Samsung” is a company name

• “South Korea” is a geographical location

• “Electronic items” are product types

Chapter 8 adding intelligenCe to large enterprise appliCations

319

Although company name and geographical location might be obvious

entities, product type is not so obvious. Hence, you need predetermined

categories and data to train the model on. Thus, your dataset for entities

will be a set of words and their corresponding entity classes. Your system

will tokenize each text and pass it to your model, which will determine the

entity class for each token. Once you have the intent and entity recognition

models, you can prepare your dialogue flow, and you have a chatbot ready.

Figure 8-1 shows this process.

Figure 8-1. The Chatbot workflow

Although the main components that build a chatbot are few, the

complete detailed architecture to deploy such a simple chatbot into an

enterprise application is highly complex.

Let’s look closer at the chatbot workflow shown in Figure 8-1.

A typical chatbot workflow has an intent recognition model and an

entity recognition model. The intent recognition model understands

the intent of the user’s statement. For example, the intent of, “Can you

make a reservation for four people at 5 PM” is to create a reservation to

a restaurant. The chatbot should therefore redirect to a system that takes

reservations to that restaurant. Similarly, as another example, the intent

of “Hi! Good Morning” is a greeting. Your chatbot respond could by saying

something like, “Hello, Good Morning to you too. I am your restaurant

assistant to help you with reservations.”

Entities are particular values that the intent points to and holds. For

example, the first example—“Can you make a reservation for four people at

5 PM”—may have an intent as reserving a restaurant, but the entities here

Chapter 8 adding intelligenCe to large enterprise appliCations

320

is the number of people, i.e., four (People = 4) and time, i.e., 5PM (Time =

5PM). Intent and entity recognition models are primary requirements for

building any kind of chatbot.

Finally, the chatbot should be able to come back with any necessary

clarification queries. as shown in the chatbot workflow diagram in

Figure 8-1, the chatbot should evaluate whether all the inputs are received

or not. According to the example in the diagram and the statement in the

first example, the customer didn’t mention a date. Hence, the chatbot

responds by asking for the date of the reservation.

This is one of the goals you will try to achieve by the end of the book.

This chapter starts with baby steps so you comprehend the components

and the complete architecture.

 The Need for AI Architecture
Let’s look at a simple architecture showing a proof of concept (POC). A

POC is designed to show the feasibility of a technical concept and is often

considered the initiation of a development lifecycle. The chatbot discussed

in the previous section consists of multiple wheels and gears in action.

Let’s start with a simple project for a POC and move to an enterprise

chatbot toward the end of the book.

The project requirements consist of only one model and you will

see how to productionize such a model. You will incrementally add

components to this project to make it stronger and to fit the business

requirements.

The final goal is to build an enterprise chatbot. However, you will use

an interesting dataset first—the Stanford QUestion and Answering Dataset

(SQUAD) dataset. This dataset can be found at https://rajpurkar.
github.io/SQuAD-explorer/. It consists of 100,000 sets of questions,

the context, and the answers to the questions from 536 articles from

Wikipedia. If you train a model on this dataset, the model will be able to

tackle basic questions about some topics based on Wikipedia articles.

Chapter 8 adding intelligenCe to large enterprise appliCations

https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/

321

The task boils down to creating a question-answering model. Since you

have tools like BERT at your disposal, it might seem like a walk in the park.

But here are a few questions to ponder:

 1. What is the data source for the training data? What

if the training data resides in a database or an

enterprise application?

 2. What if you want the model to improve with every

wrong answer, so that once the wrong answer is

identified, the model is retrained with the new data?

 3. What if the test or final user data using the model is

real time?

 4. Where does the model reside and what if the

application needs to be containerized?

 5. How do you monitor the performance of the model?

 6. How do you use the model in a final product to be

used by a website?

These are the struggles you will face once you dive into the real world.

To tackle these problems and requirements, you need to understand the

components that make up such a system.

To understand how to come up with a production-level architecture

for an intelligent application, you have to understand the two phases of

production—the training phase and the prediction phase. The training

phase is what we have been concerned with up until now and the one most

aspiring data scientists focus on. But once you have the trained model,

you have to embed it into your production system and monitor it. The next

section focuses on this part of the intelligent system building process.

Chapter 8 adding intelligenCe to large enterprise appliCations

322

 Experimentation Environment
Once you have the requirements sorted, you need sample data for data

analysis and model building. Until now you have been doing these things

in a Jupyter Notebook or a simple Python file. This is your experimentation

environment, where you play around with your data and model until you

have the final plan.

Once your experimentation environment is ready, you have to think

about designing a production environment. As mentioned previously,

the production environment has a lot going and a number of factors to be

considered. I show you all the bits and pieces eventually as you proceed

with the applications that you will build in this chapter through the end of

the book.

From this chapter onwards, you will start using all the knowledge you

acquired in the previous chapters and implement full-fledged applications

to be run in production environments. You do not do anything all at once,

but will take one step at a time to reach the ultimate goal of building a

wonderful, state-of-the-art, end-to-end intelligent application. You will:

• Learn to add intelligence to large enterprise

applications to improve and enhance upon the needs

and demands of the current market (in this chapter).

• Add data pipelines to support big data and variations of

data sources (in the next chapter).

• Build an end-to-end enterprise application (in the last

chapter).

Start by imagining how you can add intelligence to an existing large

enterprise application. You will take small steps and get introduced to

concepts here.

The next section goes through the application building process step by

step, starting with understanding the business requirements.

Chapter 8 adding intelligenCe to large enterprise appliCations

323

 The Intelligent IT Assistant
The application you attempt to configure is the intelligent IT assistant,

which is an improvement on the IT assistant application you built in

Chapter 4. This application can assist associates in troubleshooting IT

infrastructure problems. For example, say an associate is working on

their computer and suddenly the screen goes blank. The next step that

the associate can take is log in to the Intelligent ITSM UI and type the

issue that they are facing on the chat engine of the application. This

system is connected to the same knowledge resource (through RAG)

that you used in Chapter 4, which contains resolutions about keyboard,

monitor, and printer issues and tries to determine a solution from the

available resources. But if the issue that the associate is facing is related to

something other than those three components, the bot will automatically

log a ticket in the built-in enterprise CRM (Customer Resource

Management) tool with the proper content and a description so that a

“human in the loop” can intervene.

As promised, this application is mainly aimed at showing you how to

embed Generative AI into an existing large enterprise application. Before

proceeding, let’s check the components of the application.

As you might have realized, there are three main components of the

application—the chatbot, the knowledge resource (or repository), and the

enterprise CRM application that handles the ticketing. See Figure 8-2a,b.

Chapter 8 adding intelligenCe to large enterprise appliCations

https://doi.org/10.1007/979-8-8688-1154-8_4
https://doi.org/10.1007/979-8-8688-1154-8_4

324

Figure 8-2a. The intelligent ITSM

The interesting part is when you put everything together, especially

adding the intelligent chatbot to the Enterprise CRM. Once you are

confident about adding an intelligent component to an enterprise

application, you should be proficient in appending intelligence to any

other enterprise CRM applications.

The next section covers building the application.

Figure 8-2b. The intelligent ITSM (with arrow labels)

Chapter 8 adding intelligenCe to large enterprise appliCations

325

 The Enterprise CRM
To begin, bring in the Enterprise CRM. For the purpose of this application,

you need a CRM that provides users with a platform to raise incident

tickets. There are a number of Enterprise CRMs that are the industry

leaders, including ServiceNow, JIRA, and so on. You may be acquainted

with one or more of these CRMs. The used here is HubSpot (https://www.
hubspot.com/products/crm). For the purpose of building this application,

there is no cost associated with acquiring HubSpot CRM. If you have a

license to use any other CRM, you can go through the following steps and

using your preference and still learn the concepts.

If you are new to HubSpot, check out the following section about

setting it up.

 Setting Up HubSpot
Start by registering your account from the HubSpot homepage (https://
www.hubspot.com/products/crm).

When you start setting up your HubSpot account, you will be asked

some basic questions to set up for profile information.

HubSpot will ask the industry you are in, your role, your company’s

name (you can provide a demo name if you don’t want to specify your

company name), the number of people who work at the company, the

company’s website (you can provide a demo website name such as ww.
abc.com), and your reason for using HubSpot.

During the account setup process, it will set up the preferred UI

template for you by asking for the starting template. For this example,

select Customer Service and Track Support Tickets as the service template,

as shown in Figure 8-3.

Chapter 8 adding intelligenCe to large enterprise appliCations

https://www.hubspot.com/products/crm
https://www.hubspot.com/products/crm
https://www.hubspot.com/products/crm
https://www.hubspot.com/products/crm

326

Figure 8-3. Add the template to HubSpot

It will then ask you to add contacts for any associates (you can keep it

blank) and your email address.

Once your HubSpot Service template is set up, you should see a

ticketing portal, as shown in Figure 8-4.

Figure 8-4. HubSpot Service template for incident management

You can also visit this portal in HubSpot at any time by clicking the

CRM menu from the sidebar on the left and choosing Tickets.

Chapter 8 adding intelligenCe to large enterprise appliCations

327

Try to create a new ticket or play around in the portal. You might also

see a dummy ticket created for you by HubSpot.

 Setting Up HubSpot Private App for REST
API integration
This section focuses on the integration of HubSpot with your code (that

you have yet to build).

If you are an experienced industry associate, you should already be

well versed with using REST APIs to integrate enterprise applications into

a custom application. Nowadays, there are various tools that allow you to

integrate APIs with your own application, such as App Connect. HubSpot

also allows you to use its REST APIs to connect to your application.

To use the HubSpot APIs, you need to create a private app. A HubSpot

private app will allow you to generate authentication tokens which will

be tagged to your private apps and you can use them to invoke REST APIs

exposed by HubSpot.

To create a private app, go to the Settings page by clicking the

Settings menu from the top bar (a gear icon). In the Settings, go to the

Account Management menu section on the left sidebar menu and click

Integrations, where you will find the Private Apps menu. If you are creating

a private app for the first time or navigating to the Settings page for the first

time, you should see something like Figure 8-5. If the account already has a

private app, it will show in the same Settings page with the Create a Private

App button.

Chapter 8 adding intelligenCe to large enterprise appliCations

328

Figure 8-5. HubSpot settings

To create a private app now, click the Create a Private App button. It

will then start creating a private app for you, which you will be using to

generate specific authentication tokens to use the HubSpot REST API.

It will ask for a name and a description in the first step (you can

provide a dummy name and description if you want) and then take you to

add the scope. Make sure to check the Tickets scope in the Scopes page, as

you will be using their features in the CRM through REST APIs, as shown in

Figure 8-6.

Chapter 8 adding intelligenCe to large enterprise appliCations

329

Figure 8-6. Scopes for creating private apps

You can ignore the Webhooks and continue creating the private app.

Finally, HubSpot will generate the authentication token, as shown in

Figure 8-7, which you need to copy and save in a secure place. You’ll use

this token to connect to HubSpot from your code.

Chapter 8 adding intelligenCe to large enterprise appliCations

330

Figure 8-7. HubSpot API authentication token for private apps

Now that you have your authentication token ready with you, check

out the HubSpot REST API documentation page at https://legacydocs.
hubspot.com/docs/overview.

Although this is legacy documentation, as of writing this book, these

APIs seem to work just fine. At least the tickets APIs, which you can check

out (as you will be using them).

Specifically, take a look at these two API documentations that you will

use for this application:

Chapter 8 adding intelligenCe to large enterprise appliCations

https://legacydocs.hubspot.com/docs/overview
https://legacydocs.hubspot.com/docs/overview

331

 1. You will need a REST API to fetch all the tickets in

your dashboard. You can check this link for the

documentation: https://legacydocs.hubspot.
com/docs/methods/tickets/get-all-tickets.

This one describes a GET request of the format

https://api.hubapi.com/crm-objects/v1/
objects/tickets/paged.

This API needs an authorization header with a

bearer token, which is the authentication token you

got during the creation of the private app. It will

return a list of tickets in the format of an array of

JSON as objects. For example:

{
 “objects”:[....]
}

Your tickets will be inside the array as a single ticket

object in this format:

{
 "objectType": "TICKET",
 "portalId": ID of the portal (you dont need to

worry about this now),
 "objectId":(an unique ID),
 "properties": {}(any property),
 "version": 2 (the version),
 "isDeleted": false (is deleted or not)
 }

Chapter 8 adding intelligenCe to large enterprise appliCations

https://legacydocs.hubspot.com/docs/methods/tickets/get-all-tickets
https://legacydocs.hubspot.com/docs/methods/tickets/get-all-tickets
https://api.hubapi.com/crm-objects/v1/objects/tickets/paged
https://api.hubapi.com/crm-objects/v1/objects/tickets/paged

332

 2. The other API is a POST request, which you will

need when you want to create a ticket. You can

check this link for the documentation: https://
legacydocs.hubspot.com/docs/methods/tickets/
create-ticket.

You have to post to the following endpoint:

https://api.hubapi.com/crm-objects/v1/
objects/tickets

The data is the payload containing your ticket details

that you want to raise. The payload should be in the

following format:

[
 {
 "name": "subject",
 "value": "A subject line for the ticket"
 },
 {
 "name": "content",
 "value": "A description containing the details"
 },
 {
 "name": "hs_pipeline",
 "value": "0" (you can keep this as is)
 },
 {
 "name": "hs_pipeline_stage",
 "value": "1" (you can keep this as is)
 }
]

Once you push a POST request, you will get a detailed

response showing the ticket.

Chapter 8 adding intelligenCe to large enterprise appliCations

https://legacydocs.hubspot.com/docs/methods/tickets/create-ticket
https://legacydocs.hubspot.com/docs/methods/tickets/create-ticket
https://legacydocs.hubspot.com/docs/methods/tickets/create-ticket
https://api.hubapi.com/crm-objects/v1/objects/tickets
https://api.hubapi.com/crm-objects/v1/objects/tickets

333

Now that you know how to raise and check tickets in HubSpot through

REST APIs, try them out once. If you comfortable using a console, you can

use the powerful cURL command to run them.

For example, to try the API to see the list of tickets, you can run the

following cURL command:

curl --location --request GET 'https://api.hubapi.com/
crm-objects/v1/objects/tickets/paged' \
--header 'Authorization: Bearer Your_Authorization_Token'

Similarly, to test the POST request for creating a ticket, you can use the

following cURL command:

curl --location --request POST 'https://api.hubapi.com/
crm-objects/v1/objects/tickets' \
--header 'Authorization: Bearer Your_Authorization_Token' \
--header 'Content-Type: application/json' \
--data-raw '[.. Your Payload JSON data as shown previously..]'

Otherwise, you can use Postman to see how the REST APIs perform.

Once you create a ticket, you should be able to see it in the tickets

dashboard in HubSpot.

Now that you have the Enterprise CRM ready, the next section moves

on to the next step of gathering knowledge articles to set up the knowledge

repository.

 Setting Up the Knowledge Repository
Data in intelligent applications are the foundations on top of which the

entire application works. Your data can be either the training set upon

which your model is trained, or it can be the data that your model refers

to while performing RAG. It can also be data that your application uses to

manipulate while processing certain functions or features. In short, data is

the cornerstone of your application.

Chapter 8 adding intelligenCe to large enterprise appliCations

334

Your data should be routed and processed properly before it arrives

at the destination where your application will use it. Data engineering is a

skill that needs to be mastered to understand how to route your data. With

the rising need of intelligent applications, data engineering has emerged

as a separate expertise that industries desire to keep their data and

applications in good shape.

This example uses simple PDF documents as the data for this

application. A separate chapter tackles the various data engineering

concerns when building an end-to-end intelligent application for

enterprise architects.

This example uses two PDFs from the same set of PDFs used in

Chapter 4:

 1. monitor.pdf

 2. printer.pdf

See Chapter 4 to learn how you can gather these PDFs.

Now that the data repository is ready, you can proceed with the final

part of building the bot.

 Agents
Consider the pharmacy business as an example. Assuming that the

pharmacy has one attendant who deals with customers and a backend

employee who finds the medicines or bandages and places orders to the

warehouse.

A regular day assumes the following business:

• A customer visits the store and asks for one of the

following—medicine, non-medical products such as

bandages, or some kind of diagnostic tool such as a

glucometer.

Chapter 8 adding intelligenCe to large enterprise appliCations

https://doi.org/10.1007/979-8-8688-1154-8_4
https://doi.org/10.1007/979-8-8688-1154-8_4

335

• If they ask for medicine and if the medicine is in stock,

the attendant asks the backend employee to get it from

the self. The attendant then provides the customer

with the medicine. Once the medicine is provided, the

medicine ID is entered into the database to stock up.

Since medicines are specific, they need to specifically

enter the product details, unlike other products such as

non-medical products, which might be filled monthly

or quarterly at specific intervals in bulk.

• If the customer asks for a non-medical product,

the item is provided right away as there is a regular

stock up.

• If the customer asks for a diagnostic product, the

attendant asks the backend employee to place an order

and provide a tentative delivery date.

Consider for a moment only the medicines and the diagnostic tools.

The sequence flow is visually represented in Figure 8-8.

Chapter 8 adding intelligenCe to large enterprise appliCations

336

Figure 8-8. Pharmacy sequence diagram

If you think about the workflow, you should have realized that it’s the

attendant who is the decision maker. They discern between medical, non-

medical, and diagnostic tool and direct the backend worker to perform

accordingly.

In the digital era, where everything is attempted through automated

apps, if you are asked to automate the pharmacy attendant role, you might

imagine that there needs to be a chatbot that will interact with the user, a

backend that can access the catalog database, and a system to place orders

for unavailable medicines.

Chapter 8 adding intelligenCe to large enterprise appliCations

337

If you attempt to prepare a flowchart to build your workflow, there

needs to be a decision-making mechanism, as shown in Figure 8-9.

Figure 8-9. Pharmacy flowchart

Now let’s get a bit more technical and think about modularizing

the applications in terms of Generative AI. A very brief overview of the

architecture of the application might look like Figure 8-10.

Chapter 8 adding intelligenCe to large enterprise appliCations

338

Figure 8-10. Technical architecture

As you can see in Figure 8-10, there is a chatbot that you can build

using LangChain. Then you need a backend, possibly using Python.

This backend should be able to access and interact with the database

and decide whether the request is a medicine or a diagnostic tool. If it’s

a medicine, the backend can also trigger delivery of the medicine to the

customer. In that case, the chatbot can leverage the database and send

the details of the medicine. The bot backend can use RAG to get the

details about the medicine. Otherwise, it places an order if the ask is a

diagnostic tool.

Unfortunately, although the LangChain chatbot can connect to the

database through RAG, it can’t make the decision to perform either of the

jobs—get the medicine details or place an order.

But what if I tell you that it can! Generative AI can!

Using LangChain, you can build tools for each task that you want your

application to work on. In this case, the tools include an order tool for

ordering a diagnostic tool by generating an email to the supplier or the

warehouse, and another tool that provides the name and details of the

medicine using RAG.

Chapter 8 adding intelligenCe to large enterprise appliCations

339

Your agent will be able to choose either of the paths, leveraging a

carefully designed prompt.

Agents are now a go-to procedure to create powerful intelligent

applications; they provide an easy way to divide and conquer. You

understand the business requirements, plan and prepare the tools, as each

module is supposed to perform a specific task. These set of tools will then

be directed by agents driven by predefined prompts.

With the rising demand of intelligent applications, defining AI

processes becomes more and more complex with every passing month.

This has led to designing agentic patterns for Generative AI systems. Some

of these patterns rely on a single agent driving multiple tools. Some of

these patterns are multi-agent patterns, where either a single agent drives

multiple agents which in turn drive their tools, or various agents working

in a mesh network form a workflow. See Figure 8-11.

Figure 8-11. Some agentic patterns

 Building the Bot
Now that you have a good idea about agents pertaining to Generative

AI, this section returns to building the intelligent IT assistant. As of now,

the Enterprise CRM Application (HubSpot) and the knowledgebase are

ready. You now have to start building the bot that connects the CRM and

knowledgebase so that your CRM has an automated way of understanding

and raising a ticket.

Chapter 8 adding intelligenCe to large enterprise appliCations

340

Keep in mind that the bot will interact with the customer, use the

knowledgebase from the PDFs using RAG, and connect to the enterprise

CRM to raise a ticket. Let’s use the agentic AI to drive this Python bot.

Pull up your Jupyter Notebook and start by setting up the vector

database for the RAG.

 Setting Up the Vector Database
To start, install the libraries:

! pip install -U langchain_community langchain-openai
langchainhub chromadb langchain langgraph pypdf

I don’t think any of these libraries are new to you if you have been

following along in the previous chapters.

The next step is to set your OpenAI API key to the environment and

decide which LLM to use:

import os
from langchain_openai import ChatOpenAI

os.environ["OPENAI_API_KEY"] = 'Your API Key'

model = ChatOpenAI(model="gpt-3.5-turbo")

Follow these steps to ingest the monitor.pdf file into Vector DB:

• Use PyPDF to OCR the PDF text and split it into chunks

(pages).

from langchain_community.document_loaders import
PyPDFLoader

loader = PyPDFLoader("monitor.pdf")
monitor_pages = loader.load_and_split()

Chapter 8 adding intelligenCe to large enterprise appliCations

341

• Now store this ingested text as embeddings into the

ChromaDB vector store and prepare a LangChain

retriever to be used later.

from langchain_openai import OpenAIEmbeddings

from langchain_community.vectorstores
import Chroma

vectore_store_monitor = Chroma.from_
documents(documents=monitor_pages,embedding=Open
AIEmbeddings())

retriever_monitor = vectore_store_monitor
.as_retriever()

• Use the steps you followed previously for processing

printer.pdf:

loader = PyPDFLoader("printer.pdf")
printer_pages = loader.load_and_split()
vectore_store_printer = Chroma.from_
documents(documents=printer_pages,embedding=Open
AIEmbeddings())
retriever_printer = vectore_store_printer
.as_retriever()

The next step is to plan and prepare the agents.

 Developing Agents in LangChain
As mentioned, you will use an agent to drive the bot. But before diving into

developing this agentic AI pattern, you need to understand the purpose

and workflow of the bot.

Chapter 8 adding intelligenCe to large enterprise appliCations

342

This bot will interact with the customer, whereby the customer will

enter the issue or problem they are facing. The bot serves as the first line

of defense in receiving the query and passing it on to the intelligent system

to see whether a resolution can be derived out of the knowledgebases. If

it can’t, then it passes the mantle to the enterprise CRM by raising a ticket

with the proper description of the issue.

One might think of this system as a chatbot system that uses an

enterprise CRM to raise issues. That is one way to look at it. But the

objective here is the other way round. You have an enhanced enterprise

CRM that can raise a ticket by itself after understanding the issues. This is

as opposed to having a human in the loop do the heavy lifting of searching

through all the documents in the knowledgebase to find a resolution and

filling in all the necessary information in the fields to raise a proper ticket

in the CRM.

Let’s plan the agent you are going to use.

As mentioned, agents use tools that are specific functionalities that

perform certain tasks. Hence, this agent has to make a decision among the

following:

• Decision: The query is about a monitor.

 Activity: Use the monitor RAG tool to RAG on the

contents of monitor.pdf.

• Decision: The query is about a printer.

 Activity: Use the printer RAG tool to RAG on the

contents of printer.pdf.

• Decision: The query is not about a monitor or a printer.

 Activity: Raise a ticket in the enterprise CRM (HubSpot

in this case).

The agent should work something like Figure 8-12.

Chapter 8 adding intelligenCe to large enterprise appliCations

343

Figure 8-12. IT assistant application architecture

Now let’s hit the keyboard and start developing the agent.

To begin, you have to create the tools, which are the functionalities that

define the tasks the agents need to route to.

LangChain provides all kinds of wrappers to develop a fully functional

agent. Use the @tool decorator of LangChain to create the tool that raises a

ticket in HubSpot:

import requests
import json

Chapter 8 adding intelligenCe to large enterprise appliCations

344

from langchain.agents import tool

Get project id and api key
project_id = "<your-project-id>"
api_key = "<your-api-key>"

@tool
def raise_ticket(content_obj):
 """Creates ticket in ITSM portal with proper subject and

description"""
 hs_pipeline = '0'
 hs_pipeline_stage = '1'
 obj = content_obj
 subject = obj['subject']
 content = obj['content']
 headers = {
 'Authorization': f'Bearer {api_key}',
 'Content-Type': 'application/json',
 }

 data = {
 "properties": {
 "subject": subject,
 "content": content,
 "hs_pipeline": hs_pipeline,
 "hs_pipeline_stage": hs_pipeline_stage,
 "hs_ticket_category": "IT_SUPPORT" # Example

category - adjust as needed
 },
 "associations": [
 {
 "to": {

Chapter 8 adding intelligenCe to large enterprise appliCations

345

 "id": get_contact_id_by_email(obj['user_email'],
api_key) # Assumes you have the user's email

 },
 "types": [
 {
 "associationCategory": "HUBSPOT_DEFINED",
 "associationTypeId": 4
 }
]
 }
]
 }
 url = f"https://api.hubapi.com/crm/v3/objects/tickets?

project={project_id}"
 response = requests.post(url, headers=headers, json=data)

 if response.status_code >= 200 and response.status_code
< 300:

 return f"Ticket created successfully with ID:
{response.json().get('id')}"

 else:
 return f"Error creating ticket: {response.status_code}

- {response.text}"

If you go through this code, you will see that it is quite simply. It is a

simple function that uses the argument passed in the function to derive

the ticket contents and the description to send a POST request to the

HubSpot REST API, as you saw previously, to raise a ticket. Two things

worth mentioning: Note the use of the decorator @tool to use this function

as a tool. This decorator is imported from the langchain.agents module.

Since it will now act as a tool, you can invoke this function using invoke()

as raise_ticket.invoke().

Chapter 8 adding intelligenCe to large enterprise appliCations

346

Another point worth mentioning is the docstring used after the first line

of the function in “””. This docstring should mention the purpose of the tool

that will be used by agents while finding the appropriate tool for the task.

Now that this tool is ready, look at preparing the tool for calling the

RAG pipeline. This tool is easier to develop—thanks to LangChain for

coming up with create_retriever_tool. This function instantly derives

a tool out of a retriever especially designed to perform RAG agents. The

following code should make this clear:

from langchain.tools.retriever import create_retriever_tool

monitor_retriever_tool = create_retriever_tool(
 retriever_monitor,
 "vectordb_search_monitor",
 "Search for information about Computer Monitor

troubleshooting. For any questions about troubleshooting
computer monitors use this tool.",

)

As you can see, create_retriever_tool expects the retriever, a name

for the tool, and a description to show the purpose of the tool, as was done

previously using a docstring when using @tool.

The previous code showed how to create a tool out of the retriever

that was derived from the ChromaDB vector database for the monitor.
pdf text. You can develop a similar tool for the printer.pdf contents, as

shown here:

printer_retriever_tool = create_retriever_tool(
 retriever_printer,
 "vectordb_search_printer",
 "Search for information about Printer troubleshooting.

For any questions about troubleshooting printers use
this tool.",

)

Chapter 8 adding intelligenCe to large enterprise appliCations

347

Now that the tools are ready, the next step is to create the agent.

The first step to creating the heart of the agent is to carefully design

the prompt. This prompt will tell the agent where to route when a query

arrives. To create this prompt, use ChatPromptTemplate as you did

earlier. One additional system you need to add to the prompt is an agent

scratchpad. This is memory that will be used by the agent to load and

look at the tools you are associating your agent with. It will load and look

into the purpose and description of the tools that you provided, either

in a docstring or in a parameter, and it will make a decision to route to a

particular agent based on these tools. The agent scratchpad should reside

in a message placeholder within the prompt in order to make the prompt

in the following format.,

Prompt for describing how to arrive at a decision and the

output format.

Description of tool 1 (residing in

MessagePlaceholder)

Description of tool 2 (residing in

MessagePlaceholder).... so on..

The MessagePlaceholder allows LangChain to add certain text to the

prompt at that particular position.

Similarly, if you also want to make the system conversational, you can

add a memory to store the chat history. This can also reside in the message

placeholder in your prompt:

from langchain_core.prompts import ChatPromptTemplate,
MessagesPlaceholder

ticket_prompt = ChatPromptTemplate.from_messages(
 [
 (
 "system",

Chapter 8 adding intelligenCe to large enterprise appliCations

348

 """You are a IT Support Assistant. If the input
is a query regarding monitor then use the monitor
retriever tool vectordb_search_monitor.

 If the input is a query regarding printer then use
the printer retriever tool vectordb_search_printer.

 Otherwise use the raise ticket tool.
 If you are using the monitor or printer retriever

tool then output should be the resolution text.
 If you are using the raise ticket tool then

you have to create a proper subject line and
description to be used to raise a ticket in the
ITSM portal.

 Output should be of the format {{"subject":
"Subject line generated","content":"Description
content"}}""",

),
 MessagesPlaceholder(variable_name='chat_history',

optional=True),
 ("user", "{input}"),
 MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)

Now that the prompt for the agent is ready, you have to put these

together—that is, the prompt, the tools, and the LLM—and create an agent.

Use the create_tool_calling_agent function of langchain.agents to

prepare a tool, as shown here:

from langchain.agents import create_tool_calling_agent

ticket_agent = create_tool_calling_agent(model, [monitor_
retriever_tool, printer_retriever_tool,raise_ticket],
ticket_prompt)

Chapter 8 adding intelligenCe to large enterprise appliCations

349

Your agent is ready!

But wait! How do you call the agent?

You can use an agent executor from langchain.agents that lets you

stream the outputs in the format of its decision making.

from langchain.agents import AgentExecutor
ticket_agent_executor = AgentExecutor(agent=ticket_agent,
tools=[monitor_retriever_tool, printer_retriever_tool,raise_
ticket], verbose=True)

To stream the output while you call the agent with an input, use the

following code:

list(ticket_agent_executor.stream({"input":"My monitor is
suddenly blank. What do I do?"}))

As you can see, the query is regarding a monitor, which should route

the system to RAG from monitor.pdf.

The output I received was similar to this:

> Entering new None chain...

Invoking: `vectordb_search_monitor` with `{'query': 'monitor is
blank'}`

Use the following steps to scan for corrupt files and fix them:
• Click the Windows Start menu.
• Type "CMD."
• Right-click the Command Prompt and click Run as Administrator.
• Type sfc /scannow and press Enter.
Advertisement[3]
Run a virus scan.
Check your computer for malware. Viruses or malware could
be causing
... The full monitor.pdf content..

Chapter 8 adding intelligenCe to large enterprise appliCations

350

If the issue persists after trying these steps, it could
indicate a faulty monitor or power supply. In that case, you
may need to take it to a repair shop or consider purchasing a
new one.

> Finished chain.

[{'actions': [ToolAgentAction(tool='vectordb_search_monitor',
tool_input={'query': 'monitor is blank'}, log="\nInvoking:
`vectordb_search_monitor` with `{'query': 'monitor is
blank'}`\n\n\n", message_log=[AIMessageChunk(content='',
additional_kwargs={'tool_calls': [{'index': 0, 'id':
'call_nJzEJjRrKtFTpDIHo68FruJA', 'function': {'arguments':
'{"query":"monitor is blank"}', 'name': 'vectordb_search_
monitor'}, 'type': 'function'}]}, response_metadata={'finish_
reason': 'tool_calls', 'model_name': 'gpt-3.5-turbo-0125'},
id='run-48bd6fd5-51ce-463e-960a-f405dfbd601d',

..several tool calls to make a decision, done by the agent...

, tool_calls=[{'name': 'vectordb_search_monitor', 'args':
{'query': 'monitor is blank'}, 'id': 'call_nJzEJjRrKtFTpDIH
o68FruJA', 'type': 'tool_call'}], tool_call_chunks=[{'name':
'vectordb_search_monitor', 'args': '{"query":"monitor is
blank"}', 'id': 'call_nJzEJjRrKtFTpDIHo68FruJA', 'index': 0,
'type': 'tool_call_chunk'}])], tool_call_id='call_nJzEJjRrKtFTp
DIHo68FruJA'), observation='Advertisementgraphics driver. Use
the following steps to scan for corrupt files and fix them:\n•
Click the Windows Start menu.\n• Type "CMD."\n• Right-click the
Command Prompt and click Run as Administrator.\n• Type sfc /
scannow and press Enter.\nAdvertisement[3]\nRun a virus scan.\
nCheck your computer for malware. Viruses or malware could be
causing\nhardware problems on your computer that interfere with
your monitor

Chapter 8 adding intelligenCe to large enterprise appliCations

351

...... the monitor.pdf page content that is relevant to the
query

teps, it could indicate a faulty monitor or power supply. In
that case, you may need to take it to a repair shop or consider
purchasing a new one.', additional_kwargs={}, response_
metadata={})]}]

You can try to query the agent about a printer as well. You should get

similar output, but from the printer.pdf.

But the moment of confidence will arrive once you query about

something else, such as a mouse:

list(ticket_agent_executor.stream({"input":"My mouse is not
working. I have tried restarting also but it doesnt work."}))

The output should call the raise_ticket tool and raise a ticket in the

HubSpot portal with the generated description and subject line.

Here is the output I received:

> Entering new None chain...

Invoking: `raise_ticket` with `{'content_obj': {'subject':
'Mouse Not Working', 'content': 'The user reported that the
mouse is not working despite restarting the system. Further
investigation is needed to troubleshoot the issue.'}}`

{'subject': 'Mouse Not Working', 'content': 'The user reported
that the mouse is not working despite restarting the system.
Further investigation is needed to troubleshoot the issue.'}
<class 'dict'>
[{'name': 'subject', 'value': 'Mouse Not Working'}, {'name':
'content', 'value': 'The user reported that the mouse is not
working despite restarting the system. Further investigation is
needed to troubleshoot the issue.'}, {'name': 'hs_pipeline',
'value': '0'}, {'name': 'hs_pipeline_stage', 'value': '1'}]

Chapter 8 adding intelligenCe to large enterprise appliCations

352

<Response [200]>A ticket has been raised for the issue
regarding the mouse not working. Further investigation is
needed to troubleshoot the problem.

> Finished chain.

[{'actions': [ToolAgentAction(tool='raise_ticket', tool_
input={'content_obj': {'subject': 'Mouse Not Working',
'content': 'The user reported
....
....
the problem.',
 'messages': [AIMessage(content='A ticket has been raised
for the issue regarding the mouse not working. Further
investigation is needed to troubleshoot the problem.',
additional_kwargs={}, response_metadata={})]}]

This output should convince you of the performance of your agent.

Note the subject line and the content generated by the LLM that’s passed

to the agent in the form of a JSON object. Check your HubSpot portal for

any ticket that is created. See Figure 8-13.

Chapter 8 adding intelligenCe to large enterprise appliCations

353

Figure 8-13. HubSpot Ticket created by the AI agent

Now that your enterprise CRM automation is ready and you are

confident on enterprise integration using the agentic pattern, I suggest you

try this technique with other enterprise applications. You’ll be amazed by

the power that agents can bring into the world of AI.

I also urge you to take this notebook and prepare a full-fledged

application out of it, containing a Docker container to keep it

environmentally agnostic. You can have an additional index.py file, which

can serve as your entry point. You can have two routes—a loader route to

load the PDFs for RAG and another route to receive the chatbot query.

Chapter 8 adding intelligenCe to large enterprise appliCations

354

You can also modularize your file structure so that it can have separate

Python files as modules to act as tools and other ones to use in an agent.

I leave the rest up to you as an exercise.

But don’t be content just yet! Your data still resides in the project folder

and you are still not handling databases or large data structures such as

big data. The next chapter discusses handling such complicated data mesh

in your AI application and explains how you can use various data formats

and structures to aid your AI’s workflow.

 Summary

• Generative AI is the frontrunner in the current market,

but a complete end-to-end system has a lot of tasks and

workflows going underneath it. For example, a simple

chatbot application has an intent recognition model,

an entity recognition model, and a model to provide

clarification queries or responses.

• To understand how to build end-to-end intelligent

systems, an architect must adhere to the best

practices of building a scalable architecture. This

includes preparing an experimentation environment,

a development environment, and the production

pipelines.

• An AI engineer/developer should also master the

concepts of web development, including mastering

REST API integrations.

Chapter 8 adding intelligenCe to large enterprise appliCations

355

• Using Generative AI agents gives you the power to

break your system into various systems and allows

you to drive various systems with the power of

Generative AI.

• LangChain and LangGraph allow you to develop

agentic AI patterns easily.

Chapter 8 adding intelligenCe to large enterprise appliCations

357© Arindam Ganguly 2025
A. Ganguly, Scaling Enterprise Solutions with Large Language Models,
https://doi.org/10.1007/979-8-8688-1154-8_9

CHAPTER 9

Data Pipelines
in Generative AI
Data is a fundamental block of all applications. Data is to a molecule as

an application is to an object. Data pipelines are necessary to engineer

data coming from various sources in various formats, as data powers the

intelligence in an intelligent application. This chapter discusses data.

Covering all the aspects of data is difficult to do in one chapter. In fact, it is

difficult to do in a single book. This chapter attempts to cover some of the

aspects of data engineering that explain how data engineering pipelines fit

into an intelligent Generative AI application.

Some common data formats, such as JSON, CSV, and XML are

traditional. Some other formats, such as Avro and Parquet, are used for

unconventional data formats and Big Data. Some data models, such as

the relational data model, is used in everyday SQL. NoSQL bases its data

structure on nonrelational data models.

You have to think about data storage issues when you deal with output

and input. For example, data files for RAG can be gathered not only from

local and on-premise file systems, but also from the cloud, such as in S3

buckets. AWS provides S3 buckets where you can store files in the cloud.

If you don’t have easy access to AWS or other clouds, you can use MinIO,

which spins up S3-compatible clusters, and you can also use S3 bucket like

services.

https://doi.org/10.1007/979-8-8688-1154-8_9#DOI

358

You can use boto3 to read file contents from S3 buckets and ingest data

into vectorDB for RAG applications.

Apache Kafka is another component that you can add to your data

pipelines if you want distributed data streaming. Kafka has Python SDK,

which you can use in Flask applications. It uses the publish-subscribe

concept, where you spin up a Kafka server and publish a data stream using

a producer and subscribe using a consumer.

 A Closer Look at Data
All system inputs and outputs are ultimately a forms of data. What varies is

the format or the representation of the data.

For example, consider a system that generates video out of a prompt.

The prompt you provide is text that represents the data format and so is the

video that you get to see.

Now if you go deeper, everything is a string of bits (i.e., ones and zeros).

So does data equate to a bit?

Data is a representation of information. For example, say the age of the

customer is 23. This information can be translated to data as an input to a

system (or algorithm) as follows:

{
 “Age”:23
}

We all know that this format is a JSON and this in turn is a

representation of the information. The JSON file is further broken down

into binary so the computer can process it. Just like you can’t talk in binary,

a computer can’t talk in words. Hence, a computer needs preprocessors

to convert formats such as JSON to binary. But wait! Before that, you

need to convert your information into JSON. Hence, humans need to

know the various formats of data that a computer can take in and convert

into binary.

Chapter 9 Data pipelines in Generative ai

359

 File Formats
Previous chapters dealt with PDFs and other document files. This section

looks at some of the formats that a large enterprise system can accept as

input data.

 JSON
One of the most popular data formats is JSON. JSON stands for JavaScript

Object Notation and it represents data in the form of an object similar

to how you do when you are defining a JavaScript object. Nonrelational

databases such as MongoDB store data in this format. Most of the REST

APIs use JSON as payload data and send responses in JSON format.

Although JSON format is used by MongoDB to store data, when you try

to store images, MongoDB uses BSON (Binary JSON) to store the contents

of the file.

 CSV
CSV (or comma separated value) is probably the most intuitive data format

and can be used to store structured data. By structured data, I mean that if

there is a set of data, all the data has the same set of fields and subfields. You

may relate CSV to tables. If you can imagine the data in the form of a table,

you can use the CSV format of that data. CSV is also widely used when you

want to import or export tabular data into databases or algorithms.

 XML
XML data formats are similar to JSON except that you need tags like HTML

(for example, <id>123</id>) instead of braces ({ "id":123 }). JSON is

faster than XML when it comes to processing data due to its widely used

format in several coding languages to represent objects.

Chapter 9 Data pipelines in Generative ai

360

The file formats mentioned here are traditional file formats often used

in applications to store or transfer data. When the data is large and huge,

developers turn to new technologies that can handle Big Data.

 Avro and Parquet
Today’s age is driven by large volumes of data. With each passing day, the

overall volume of data increases and the entire world is consuming huge

amounts of data. This might provoke you to ponder about the processing

power needed to handle simple applications. For example, consider that

your favorite search engine tries to find the appropriate link from the

list of all the links in the whole world; this requires immense processing

power. But apart from processing power, what you would also need is an

appropriate way to represent and format your data for big data algorithms

to accept, process, and output. One such format is Avro. The schema of

Avro is out of the scope of this book, but it reformats JSON so as to allow

faster processing of Big Data applications for search and retrieval. In brief,

it tries to prepare a columnar representation for easy retrieval of large

systems.

A similar data format is Parquet, which uses row-based representation

and converts to a binary representation of the same.

Although these file formats are some of the most popular file

representation formats used in the industry, always keep an open mind

when visiting an application’s data structure, as you might be introduced

to some unknown data representation format. Sometimes some

applications maintain their own file formats and schemas to maintain

security and consistency.

Chapter 9 Data pipelines in Generative ai

361

 Data Models and Data Storage
Data formats ensure data transfer and storage in a certain representation.

You also need a data model to adapts your algorithm and system so that

it can work seamlessly. Your data model should respect your database.

There are generally two ways you can model your data—relational and

nonrelational. Relational data models are used in SQL databases and

nonrelational databases work with NoSQL databases. These databases

serve as data storage formats and systems and they are used widely in

almost all applications.

The other worth mentioning data storage system is the file storage

system. In the current market scenario, files are either stored in on-premise

folders or on cloud in containers such as buckets (for example, you will use

S3 buckets of AWS later in this chapter).

With the advancement in technologies, graph-like data models

have also become very popular. At the time of writing this book, vector

databases are sometimes altered with knowledge graphs using Neo4j.

Knowledge graphs allow data to be stored in the form of graphs, which

allows better relational representation of data. This in turn allows easy

retrieval of data leveraging semantic relations between data.

It might also interest you to know the internal data structures used

by various databases to store the data such as B-Tree and hash tables.

Although that is out of the scope of this book, do take some time to check

them out on the Internet.

 Data Processing Systems
Data processing systems define how your data will flow when you are

deriving data from external systems. When deriving data from external

systems you can either process it in batches or stream the data and process

it. Batch processes take chunks of data broken into batches and process

them independently. The other way is to set up message queues.

Chapter 9 Data pipelines in Generative ai

362

These message queues consume data in bits and pieces. The consumer

system gathers the pieces and sends them together for the entire stream to

process.

You will now stitch these together and learn to plan and build a

data-intensive intelligent application to get an idea of how various

data pipelines work in tandem with a Generative AI application. The

responsibility of building efficient data pipelines lies with data engineers

who work with AI engineers and data scientists to deliver the best results.

This book is targeted mainly toward AI Architects, though, and as an AI

architect, you need to understand all of the parts of an application or at

least have an idea of how data pipelines work with AI. Also, you will never

find a range of data files or PDFs being handed over to you to be processed

directly. Your system will always expect a pipeline of input data sources.

The application you are going to build now illustrates how to ingest data

from various complex and standard data pipelines used in the current

industry.

 The Data-Intensive AI Assistant
The application that you are going to build now is a simple RAG

application that answers users’ queries based on PDF documents. The real

challenge I want you to learn here is building real-life production grade

data pipelines.

A simple RAG application should look like Figure 9-1.

Chapter 9 Data pipelines in Generative ai

363

Figure 9-1. Simple retrieval augmented generation

Chapter 9 Data pipelines in Generative ai

364

You have been building a RAG application like this since Chapter 5.

But if you think about this carefully, the PDF document (or any other data

source) is in the same working directory for the application to access it. But

in the real world, these data sources are going to come from pipelines. You

will try to set up a similar data pipeline for your document to be used in

the RAG. You will also add other data pipelines for chat/query input as and

try to prepare this as production grade as possible.

You will not do this in Jupyter Notebook this time. Pull up your favorite

Python IDE or development studio and start by building a simple RAG

application.

Start by creating a folder inside your working directory with the name

of the app as /minio_app.

The first thing you are going to do is prepare the data pipeline to

upload, store, and receive the data source of the RAG application.

In today’s world, personal hardware storage is becoming near

obsolete with the rise of cloud-based storage, which maintains all our

personal artifacts such as photos and videos. You must have a smartphone

with a cloud drive space to store all your artifacts; this is the same

mechanism being adapted by large industries. Realize also that one

of the main reasons large industries are adapting to this pattern is due

to maintainability. Big enterprises spend a lot on on-premise storage

hardware. Although the cost of hardware is declining, if you let popular

cloud storage devices keep your data, these large cloud players also take

the responsibility of maintaining your data which would otherwise be your

infrastructure team’s job. These large cloud players offer such reasonable

prices for storing and maintaining your storage that it feels like pennies on

a dollar when you compare it with maintaining your own devices with your

own hardware and infrastructure team.

Most of the cloud players use the concept of buckets when storing

your artifacts. AWS was one of the first cloud providers that introduced

the concept of S3 (Simple Storage Service) buckets. These buckets act as

individual storage providers that store artifacts.

Chapter 9 Data pipelines in Generative ai

https://doi.org/10.1007/979-8-8688-1154-8_5

365

You are going to use MinIO, which allows you to spin up storage

service providers that resemble S3 buckets. You can visit MinIO official

website at https://min.io/.

MinIO is suggested as a S3 provider, as an alternative to AWS or other

S3 buckets in the cloud. If you have S3 bucket access or access to AWS

or another cloud provider, feel free to skip the next section on setting up

MinIO and use your S3 provider instead. I point out the place to add your

credentials for S3 in the upcoming sections.

 Setting up MinIO
To begin, set up MinIO in a Docker Container using the following Docker

Compose file (docker-compose.yml):

version: '3'

services:

 minio:
 image: docker.io/bitnami/minio:2023.12.21-debian-11-r1
 ports:
 - '9000:9000'
 - '9001:9001'
 volumes:
 - 'minio_data:/data'
 environment:
 - MINIO_ROOT_USER=userid
 - MINIO_ROOT_PASSWORD=password
 - MINIO_DEFAULT_BUCKETS=mybucket1
 container_name: minio_application
 networks:
 - net

networks:

Chapter 9 Data pipelines in Generative ai

https://min.io/

366

 net:
 driver: bridge

volumes:
 minio_data:
 driver: local

This Docker Compose file, when it runs, spins up a MinIO service

at ports 9000 and 9001. These are the default ports used when MinIO is

set up. Port 9001 allows you to access a MinIO interface and Port 9000

accesses the MinIO APIs.

A user ID, password, and bucket ID are provided in the environment

section.

Once you run the Docker Compose file (you should be familiar with

running Docker Container since Chapter 4), you can open 127.0.0.1:9001

in your browser and you will be greeted with MinIO login page. See

Figure 9-2.

Figure 9-2. MinIO login page

Chapter 9 Data pipelines in Generative ai

https://doi.org/10.1007/979-8-8688-1154-8_4

367

Log in using the user ID and password you added to your Docker

Compose file; you should be able to see a page with a section mentioning

your bucket ID, as you provided in your Docker Compose file as your

default bucket. See Figure 9-3.

Figure 9-3. MinIO buckets

You can click it and you will land on a page that allows you to upload or

remove files in the bucket. You can try adding a random file and removing

it just to test the system.

A point worth mentioning is that all the artifacts that you store will reside

inside the volume that you asked your Docker Compose file to mount, as

minio_data in the last three lines of your docker_compose.yml file.

 Upload File Application
Now that the S3 bucket is ready, this section shows you how to prepare a

small application to upload a file in MinIO. It is easier to upload your file

manually, but you need to have an interface for the users to upload files

and you will use a Flask web application to do this.

Chapter 9 Data pipelines in Generative ai

368

Go to the application folder (/minio_app) and pull up your Python

IDE. Start with a Python file to contain all your functions to upload files

in S3. This example uses boto3 to interact with the S3 bucket. Boto3 was

developed as an AWS SDK and is widely used to interact with S3 buckets.

There is also a MinIO SDK, but it restricts users to only MinIO users.

Since you have Docker Compose to set up MinIO, keep your

containerization ready as well. Create a requirement.txt file to add all the

Python packages that you will need.

Add the following packages to requirement.txt as of now. You will

continue adding more as you progress.

python-dotenv
boto3
Flask

Also add an .env file to keep your credentials safe with the following

contents:

S3_ROOT_USER=user_id
S3_ROOT_PASSWORD=password
S3_DEFAULT_BUCKETS=mybucket1

The credentials should match the ones you provided in your docker-
compose.yml file if you are using MinIO and running it using Docker

Compose. If you are using cloud providers, such as AWS for your S3 bucket,

add your AWS S3 credentials here.

You need to add a mechanism to trigger the ingestion of the uploaded

PDF into the vector database. There are several ways to do this:

• Option 1: Poll the S3 Bucket: Create a separate script

or service that periodically polls the S3 bucket for new

files. When a new file is detected, download it, extract

the text, generate the embeddings, and add them to the

vector database.

Chapter 9 Data pipelines in Generative ai

369

• Option 2: S3 Event Notifications (for AWS S3): If

you’re using AWS S3, configure S3 event notifications

to trigger a Lambda function whenever a new file is

uploaded. The Lambda function can then download

the file, process it, and update the vector database.

• Option 3: Webhook from the Upload Application:
Modify the /upload route in your Flask application,

in addition to uploading to S3. Also send a message

to a message queue (e.g., Kafka) or trigger a separate

service responsible for RAG ingestion.

• Option 4: Direct Ingestion after Upload: Modify the

upload_file function to directly ingest the PDF into

the vector database after uploading it to the S3 bucket.

This is the simplest approach for might not be ideal for

large files or high-volume uploads.

For this example, you’ll implement Option 4 (direct ingestion). You will

modify the s3_functions.py and index.py files to incorporate the vector

database ingestion logic.

First, create the Python file called s3_functions.py to keep your

Python function and upload a file using boto3 APIs. Later, you also need to

add function to fetch the file and ingest it into your vector database.

Start by importing these packages:

from dotenv import load_dotenv
import os
#from io import BytesIO
#from PyPDF2 import PdfReader
import boto3

BytesIO and PDFReader read and ingest the file that’s uploaded into the

bucket (that’s why they are commented out for now).

Chapter 9 Data pipelines in Generative ai

370

Load your S3 bucket credentials next:

load_dotenv()

s3_access_key = os.getenv("S3_ROOT_USER")
s3_secret_key = os.getenv("S3_ROOT_PASSWORD")
s3_bucket = os.getenv("S3_DEFAULT_BUCKETS")

Now you will need to create a S3 client using boto3.

s3 = boto3.client('s3',
 endpoint_url='http://minio:9000',
 aws_access_key_id=s3_access_key,
 aws_secret_access_key=s3_secret_key)

The endpoint_url needs to be same as the endpoint URL you need

to access your S3 APIs. Readers setting up MinIO on their machines using

Docker Compose need to add the URL mentioned in the code. Readers

who are not using containerization should use the localhost instead of

MinIO (i.e., http://localhost:9000). Note port 9000 that I mentioned

previously. Docker Compose uses the service name as the hostname. For

other cloud providers, you need to check the endpoint URL of your S3

provider.

Now you are ready to create your upload function as follows:

def upload_file(filename):
 print(filename)
 s3.upload_file(os.path.join('/tmp', filename), s3_bucket,

filename)
 return True

Boto3 makes it easy by providing easy SDKs for S3 APIs.

Now you need to create the index.py file that will use Flask to run.

It will have a route /upload that will upload a file and put it into the

S3 bucket.

Chapter 9 Data pipelines in Generative ai

371

Create the index.py file and add the code shown here to create a

simple Flask application with an upload route:

from flask import Flask, request, render_template,jsonify
from s3_functions import upload_file

app = Flask(__name__)

@app.route("/upload",methods=['GET', 'POST'])
def upload():
 f = request.files["resource"]
 filename = f.filename
 f.save(os.path.join('/tmp', filename))
 upload_file(filename)

 return render_template("success.html")

@app.route("/home")
def home():
 return render_template("index.html")

@app.route("/")
def root():
 return render_template("index.html")

if __name__ == '__main__':

 app.run(host="0.0.0.0",port="5000")

Note the upload() function that serves the route (/upload). It takes in

the file object from the request and saves it in a temporary location

 (/tmp) and then calls the upload_file function of the s3_functions

Python file that you imported in the beginning. You reviewed this function

earlier. After all this, it loads a success page.

There are also two routes (/home and /) that render the same index.
html web page for the root and home page, respectively.

Chapter 9 Data pipelines in Generative ai

372

Now let’s look at the HTML Jinja templates needed in the Flask

application.

Create a folder called /templates inside the application folder in your

workspace. Create the index.html file, which should contain the upload

button to upload file.

<html>
 <head>
 <title>Upload Resource PDF</title>
 </head>
 <body>

 <form action="/upload" method=post enctype=multipart/
form-data>

 <label for="resource">Upload PDF</label>
 <input type="file" id="resource" name="resource">
 <input type="submit">
 </form>
 </body>

This form posts the file data to the /upload route, which in turn calls

the upload_file function in the route defined in the index.py file. Be sure

to add enctype as multipart/form-data to let your form send the file data

in proper format.

You also need to create a success.html file, which the /upload route

should render after you successfully upload a file. This should be a simple

HTML file as follows:

<html>
 <head>
 <title>File Upload Success</title>
 </head>
 <body>

Chapter 9 Data pipelines in Generative ai

373

 <h3>File Upload Successful</h3>
 </body>
</html>

The last step is to add your containerization configurations. So, add a

dockerfile for the Flask application as follows:

Dockerfile

FROM python:3.11

WORKDIR /app
COPY /minio_app/requirements.txt /app/
RUN pip install -r requirements.txt
COPY /minio_app/. /app
EXPOSE 5000

CMD ["python","index.py"]

This dockerfile is quite self-explanatory. Since the application is inside

the minio_app folder in the workspace, you need to add the relative folder

path as well.

Finally, use this dockerfile to spin up a service for the application in

docker-compose.yml.

u_application:
 build:
 context: .
 dockerfile: ./minio_upload_app/Dockerfile
 ports:
 - '5000:5000'
 image: u_application
 container_name: u_application
 networks:
 - net

Chapter 9 Data pipelines in Generative ai

374

Be sure to add this to the service.yml element, like your MinIO

service.

Now run Docker Compose and navigate to localhost:5000. You

should be able to see a page with a form to upload a file. Browse and add

a file. Once you add it, you can navigate to localhost:9001 to your MinIO

console. You should see the file you uploaded inside the bucket, as shown

in Figure 9-4.

Figure 9-4. Uploaded file in S3 bucket

Now that you the file upload application is ready, it’s time to use the

file being uploaded to RAG.

 RAG from an S3 Bucket
In the workflow’s first step, the users open the home page and can upload

a document. Once their document is uploaded, they can then move to the

chat page and ask questions based on the document.

Internally, once the document is uploaded, it should be ingested in a

vector database. Now when the user types a query, an LLM should use the

same vector database to retrieve context and the LLM in turn will generate

an answer.

Chapter 9 Data pipelines in Generative ai

375

The first step is to add the following Python packages needed for RAG

in the requirement.txt file:

langchain_community
langchain-openai
langchainhub
langchain-chroma
chromadb
langchain
pypdf2
openai

As you may have noticed, the vector database is ChromaDB and

LangChain helps build the RAG using OpenAI LLMs. Pypdf2 is needed to

OCR into the document you intend to ingest.

Next, you need to add the OpenAI API key to the .env file, as OPENAI_
API_KEY.

Next, add the function to ingest the file from the bucket in s3_
functions.py.

def get_file(filename):
 pdf_file = s3.get_object(Bucket=s3_bucket, Key=filename)[
 "Body"
].read()
 reader = PdfReader(BytesIO(pdf_file))
 page_texts = [page.extract_text() for page in reader.pages]
 return page_texts

Boto3 can fetch you objects inside your s3 bucket, but they come in

a streaming object format. The get_object function of boto3 returns

a dictionary, where the body element of the dictionary contains the

streaming object. You can use the read() function to stream the object

contents, but you have to wrap it with BytesIO from the io Python package

Chapter 9 Data pipelines in Generative ai

376

to make the object readable as a Python bytes (or binary) object. Once you

have the binary object, you can let PyPDF2 OCR it using PdfReader, as you

did in the earlier chapters.

Now that you have a way to get the document contents from the S3

bucket, you’ll add the other functionalities needed for a RAG.

Create a file called langchain_func.py in the application folder. It will

contain the functions for data ingestion and generation.

You will use the official Python SDK from ChromaDB to create the

client instead of using LangChain, but you will use LangChain to integrate

it into the LLM and query it on the ingested data.

Start by importing the necessary Python packages:

import os
from langchain_openai import ChatOpenAI
from langchain_community.document_loaders import PyPDFLoader
from langchain.docstore.document import Document
from langchain_openai import OpenAIEmbeddings
import chromadb
import chromadb.utils.embedding_functions as embedding_functions
from langchain_chroma import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel,
RunnablePassthrough
from dotenv import load_dotenv

The LangChain packages should be well known to you from the

previous chapters. This code also imports the ChromaDB Python package

from the ChromaDB Python SDK. It uses embedding_functions from

chromadb.utils so that you can directly use this in the ChromaDB client

from the ChromaDB Python SDK.

Next, you need to add your OpenAI credential from the .env file using

dotenv().Just add dotenv() and you are done.

Chapter 9 Data pipelines in Generative ai

377

You can now load your LLM and the embedding function from OpenAI

using the following lines of code:

load_dotenv()

model = ChatOpenAI(model="gpt-3.5-turbo")

embeddings = embedding_functions.OpenAIEmbeddingFunction(
 api_key=os.getenv("OPENAI_API_KEY"),
 model_name="text-embedding-3-small"
)

Text-embedding-3-small is one of the recommended embedding

models that you can use from OpenAI when you are using models like

gpt-3.5-turbo.

Now add the function to ingest and load your vector database:

load document text into vectordb
def load_into_vectordb(texts):
 docs = []
 for text in texts:
 docs.append(Document(page_content=text.encode('utf-8'),

metadata={}))
 client = chromadb.PersistentClient(path="/chroma")
 collection = client.get_or_create_collection("resources",

embedding_function=embeddings)
 uids = ['uid'+str(i) for i in range(len(docs))]
 collection.add(documents=texts, ids=uids)
 return True

The texts parameter you see is the same array of page texts that you

get from get_file, from s3_functions.py. The text content of a page

is then encoded to UTF-8, a persistent ChromaDB collection is created,

and the embedding function is configured. These page texts are added

as documents to the collection. Note that you will need to add IDs to

Chapter 9 Data pipelines in Generative ai

378

index each document (or page contents). You can generate IDs like in the

function using a simple loop, generating uid1,uid2, and so on, or you can

also generate random numbers.

Go to index.py and add this function to load the vector database as

soon you upload the file in the bucket. Hence add the import statement as

follows:

from langchain_func import load_into_vectordb

Then add the load_into_vectordb function call in the upload route

function as follows:

@app.route("/upload",methods=['GET', 'POST'])
def upload():
 f = request.files["resource"]
 filename = f.filename
 #f.save("/tmp/tmp.pdf")
 f.save(os.path.join('/tmp', filename))
 upload_file(filename)
 load_into_vectordb(get_file(filename))
 return render_template("success.html")

Note that once the file is uploaded successfully, you use get_file to

get the file contents and load it into vector database, using the load_into_
vectordb function.

One other function you need to add to the langchian_func.py Python

file is the one for querying the vector database:

def send_query(query):
 client = chromadb.PersistentClient(path="/chroma")
 vector_store = Chroma(
 client=client,
 collection_name="resources",

Chapter 9 Data pipelines in Generative ai

379

 embedding_function=OpenAIEmbeddings(model="text-
embedding- 3-small"),

)
 retriever = vector_store.as_retriever()
 template = """Answer the question based only on the

following context:
{context}

Question: {question}
"""

 prompt = ChatPromptTemplate.from_template(template)
 output_parser = StrOutputParser()
 sr = RunnableParallel({"context":retriever, "question":Runna

blePassthrough()})
 chain = sr | prompt | model | output_parser
 return chain.invoke(query)

Here you use the same persistent client from the persistent storage

(/chroma), initiate the vector store using the Chroma client from

LangChain here (unlike the one you created in the previous function

from the ChromaDB package), and combine the other functionalities of

LangChain.

Similarly, you initiate the embedding function and retriever from

LangChain. In short, this function uses LangChain functionalities to make

life easier.

Finally, create the prompt, he output parser, and the chain so that you

can call the chain for the query that is passed as a parameter.

Come back to the index.py file and add some routes for the query

and RAG.

Add the following routes:

@app.route("/chat")

Chapter 9 Data pipelines in Generative ai

380

def chat():
 return render_template("chat.html",res="")

@app.route("/send_message")
def send_message():
 query = request.args.get("message")

 res = send_query(query)

 return render_template("chat.html",res=res)

The /chat route will render the chat page for you to enter the query

and send_message processes the query entered in the /chat route.

The chat.html template is the single HTML frontend that serves as

the frontend for query processing. Create a chat.html file in the template

folder as follows:

<html>
 <head>
 <title>Chat</title>
 </head>
 <body>
 <hr/>
 Home

 <hr/>
 <p>
 {{res}}
 </p>
 <hr/>
 <form action="/send_message" method="GET">
 Type your query</br>
 <input type="text" id="message" name="message" />
 <input type="submit" value="submit" id="submit" />

Chapter 9 Data pipelines in Generative ai

381

 </form>
 </body>
</html>

As you can see, the res variable is either blank (for the first launch of

the page) or is the generated answer to the query based on RAG. The page

also contains a form for the next query. Don’t be vexed by the name chat,

because you can easily convert this one-on-one Q&A into a chatbot if you

can maintain the history and display it through a session. Do try it!

Don’t forget to add the import statement for send_query as follows:

from langchain_func import send_query

For ease of access to the users, add a chat hyperlink as a menu in the

index page (index.html inside the template folder), like the following

before the form:

Chat

Now start running Docker Compose. If everything works, you should

see all services spinning up in the console (i.e., the application and the

MinIO cluster).

Navigate to the MinIO console at localhost:9001 and then open the

application at localhost:5000 in another tab. See Figure 9-5.

Figure 9-5. The index home page

Once you upload the file in the form from the home page, your

document will be added to MinIO cluster in the backend. Once this is over,

you should see the File Upload Successful success message, as shown

in Figure 9-6.

Chapter 9 Data pipelines in Generative ai

382

Figure 9-6. The Success page

You should see the chat menu at the top, where you need to navigate to

start RAG Q&A. See Figure 9-7.

Figure 9-7. The Chat page

Now enter a query and click Submit. I uploaded a seq2seq model

paper and asked, “What is neural network”?

If you see a conversational answer, you have successfully built a

RAG application based on a document from the cloud, specifically a S3

bucket. Data source pipelines are generally used in real-life production

applications in the current market scenario.

But don’t be content yet! You can add another data pipeline to hone

your data engineering skills for Generative AI applications.

Chapter 9 Data pipelines in Generative ai

383

Sometimes you have to deal with streaming data pipelines, especially

when the application captures data real time. The next section introduces

Apache Kafka for streaming analytics processing.

 Apache Kafka for Streaming
Apache Kafka is a streaming processing platform written in Java and

Scala and developed by the Apache software foundation. It helps you

build a streaming pipeline and works in a pub-sub (publish-subscribe)

mechanism in the form of a messaging queue. To learn more about Apache

Kafka, visit https://kafka.apache.org/.

When you want to publish a message in Kafka, you have to push it

into the producer. The producer stores it under a particular topic. Each

message is published under a topic to categorize it. This message resides in

the Kafka stream until you want to subscribe it. When a system is ready to

subscribe, you have to call the consumer through a topic. The subscriber

will yield the message as a stream. In between lies the Kafka broker, which

takes care of transferring data between the producer and the consumer.

Figure 9-8 visualizes this process.

Figure 9-8. Apache Kafka

Chapter 9 Data pipelines in Generative ai

https://kafka.apache.org/

384

Apache Kafka has a Python SDK that you can use to try Kafka

messaging. The next section explains this process.

 Apache Kafka in Python

This section explains how to set up and use Kafka to stream a message

in Python.

You will spin up Kafka in a Docker container, so the first step is to

create a Docker-Compose.Yml file as follows:

version: '2'

services:

 zookeeper:
 container_name: zookeeper
 image: docker.io/bitnami/zookeeper:3.7
 ports:
 - "2181:2181"
 volumes:
 - "zookeeper_data:/bitnami"
 environment:
 - ALLOW_ANONYMOUS_LOGIN=yes

 kafka:
 container_name: kafka
 image: docker.io/bitnami/kafka:2
 ports:
 - "9092:9092"
 - "9093:9093"
 volumes:
 - "kafka_data:/bitnami"
 environment:
 - ALLOW_PLAINTEXT_LISTENER=yes

Chapter 9 Data pipelines in Generative ai

385

 - KAFKA_CFG_ZOOKEEPER_CONNECT=zookeeper:2181
 - KAFKA_CFG_LISTENER_SECURITY_PROTOCOL_MAP=CLIENT:PLAINTE

XT,EXTERNAL:PLAINTEXT
 - KAFKA_CFG_LISTENERS=CLIENT://:9092,EXTERNAL://:9093
 - KAFKA_CFG_ADVERTISED_LISTENERS=CLIENT://kafka:9092,

EXTERNAL://localhost:9093
 - KAFKA_INTER_BROKER_LISTENER_NAME=CLIENT
 depends_on:
 - zookeeper

 kafka-ui:
 image: provectuslabs/kafka-ui
 container_name: kafka-ui
 ports:
 - "18080:8080"
 restart: always
 environment:
 - KAFKA_CLUSTERS_0_NAME=local
 - KAFKA_CLUSTERS_0_BOOTSTRAPSERVERS=kafka:9092
 - KAFKA_CLUSTERS_0_ZOOKEEPER=zookeeper:2181
 depends_on:
 - kafka
 - zookeeper

volumes:
 zookeeper_data:
 driver: local
 kafka_data:
 driver: local

Chapter 9 Data pipelines in Generative ai

386

A careful inspection of the Docker Compose file should tell you that

there are three services:

• Kafka: This is the main service that spins a

Kafka server.

• Zookeeper: Another Apache product that takes care of

the server that Apache spinned up for Kafka and also

the distributed processing that Kafka holds.

• Kafka-UI: Kafka-UI helps you visually check the topics,

messages, and other details for the Kafka server.

Navigate to localhost:18080 to see the Kafka UI. You can check the

number of Kafka brokers, the topics, and the messages in the topics. See

Figure 9-9.

Figure 9-9. Kafka UI

Now you’ll learn how to use Python for message streaming. Open a

Jupyter Notebook and start installing the Python SDK:

! pip install kafka-python

Next, start importing the Python packages:

import json
from kafka import KafkaProducer

Chapter 9 Data pipelines in Generative ai

387

Create a topic name and a JSON dict object, which you will use as a

streaming message.

topic="mess"
data={"m":"Hi","u":"2"}

Now prepare a Kafka producer.

producer = KafkaProducer(bootstrap_servers='localhost:9093')

Since the Kafka server is spinned up at ports 9093 and 9092 in the

Docker Compose file, you have to mention that server here as well.

You can use KafkaProducer, which was imported earlier, to publish it

to the Kafka stream.

producer.send(topic,json.dumps(data).encode('utf-8'))

The reason for converting to a string and encoding to UTF-8 is so that

you can ingest it as a string that KafkaProducer has no problem ingesting.

Don’t forget to close the producer stream:

producer.close()

Now that the message is published, you can see how to subscribe to

the message. Import KafkaConsumer to do this.

from kafka import KafkaConsumer

Now prepare the consumer using the following code.

consumer = KafkaConsumer(topic,
 bootstrap_servers=['localhost:9093'],
 consumer_timeout_ms=3000,
 auto_offset_reset='earliest',
 enable_auto_commit=True,
 value_deserializer=lambda x: json.loads(x.decode

('utf-8')))

Chapter 9 Data pipelines in Generative ai

388

What you see here is the server and some of the other parameters—such

as timeout (in case you want your Kafka server to wait until it can successfully

reach the server), enable_auto_commit (to let it save the message states),

auto_offset_reset (for FIFO subscription), and value_deserializer, which

is a postprocessor used to convert the string back to dict.

Now subscribe to the message from the consumer and check it out:

for msg in consumer:
 x = msg.value
 print(x)

You should see your dictionary that you ingested in the producer.

Now that you understand how Apache Kafka works, you can use it in

your application.

 Using Data Pipelines in AI Assistant
Before proceeding, you need to decide on the complete AI assistant and its

data pipelines.

In production environments, data-intensive applications are designed

so that they can handle multiple concurrent requests coming from various

distributed sources at the same time and attain high network throughput.

When you have multiple requests coming at a single moment, Kafka is one

way to stream messages coming from various resources.

Kafka is also very efficient for data streams when there is a video

streaming application sending data streams from multiple distributed

sources at a single server.

In this application, you place a data pipeline that will take your chat

as a stream and have Kafka publish it to the messaging server to put into

your database. When the LLM generates a conversational answer, it will

subscribe to your message stream and feed it into the database. Figure 9-10

shows the complete view of the data architecture of the data-intensive AI

application.

Chapter 9 Data pipelines in Generative ai

389

Figure 9-10. The complete data-intensive AI application architecture

It’s time to start coding. Go back to your workspace and add the

following services to the docker-compose.yml file:

 postgres:
 image: postgres:14-alpine
 ports:
 - '5432:5432'
 volumes:
 - ~/apps/postgres:/var/lib/postgresql/data
 environment:
 - POSTGRES_PASSWORD=agpass
 - POSTGRES_USER=arindam
 - POSTGRES_DB=chat_db
 networks:
 - net

 zookeeper:
 container_name: zookeeper
 image: docker.io/bitnami/zookeeper:3.7
 ports:
 - "2181:2181"

Chapter 9 Data pipelines in Generative ai

390

 volumes:
 - "zookeeper_data:/bitnami"

 environment:
 - ALLOW_ANONYMOUS_LOGIN=yes
 networks:
 - net

 kafka:
 container_name: kafka
 image: docker.io/bitnami/kafka:2
 ports:
 - "9092:9092"
 - "9093:9093"
 volumes:
 - "kafka_data:/bitnami"
 environment:
 - ALLOW_PLAINTEXT_LISTENER=yes
 - KAFKA_CFG_ZOOKEEPER_CONNECT=zookeeper:2181
 - KAFKA_CFG_LISTENER_SECURITY_PROTOCOL_MAP=CLIENT:PLAINTEXT,

EXTERNAL:PLAINTEXT
 - KAFKA_CFG_LISTENERS=CLIENT://:9092,EXTERNAL://:9093
 - KAFKA_CFG_ADVERTISED_LISTENERS=CLIENT://kafka:9092,

EXTERNAL://kafka:9093

 - KAFKA_INTER_BROKER_LISTENER_NAME=CLIENT
 networks:
 - net
 depends_on:

 - zookeeper

 kafka-ui:
 image: provectuslabs/kafka-ui

Chapter 9 Data pipelines in Generative ai

391

 container_name: kafka-ui
 ports:
 - "18080:8080"
 restart: always
 environment:
 - KAFKA_CLUSTERS_0_NAME=local

 - KAFKA_CLUSTERS_0_BOOTSTRAPSERVERS=kafka:9092
 - KAFKA_CLUSTERS_0_ZOOKEEPER=zookeeper:2181
 networks:
 - net
 depends_on:
 - kafka
 - zookeeper

The first service runs a Postgres database. The next three services are

zookeeper, kafka, and kafka UI, which you saw in the previous section. The

only change is KAFKA_CFG_ADVERTISED_LISTENERS, where the localhost is

replaced with the service name (i.e., Kafka:9093 for external access instead of

localhost:9093). Feel free to change the credentials in the docker-compose.
yml file to your needs.

Two additional things you need to add to your docker-compose.yml

file are the dependencies for the Flask application and the volumes (or

drives) added to the end.

Add these service names to the dependencies in your service

application as follows:

depends_on:
 - kafka
 - postgres
 - zookeeper

Chapter 9 Data pipelines in Generative ai

392

Your final Flask application service should look like the following:

u_application:
 build:
 context: .
 dockerfile: ./minio_upload_app/Dockerfile
 ports:
 - '5000:5000'
 image: u_application
 container_name: u_application
 networks:
 - net
 depends_on:
 - kafka
 - postgres
 - zookeeper

Finally, at the very end of the docker-compose.yml file, be sure you

have the following:

volumes:
 minio_data:
 driver: local
 zookeeper_data:
 driver: local
 kafka_data:
 driver: local

You should already have the minio_data driver volume. You will need

to add volumes for zookeeper and kafka to allow them to store the data

they are using.

When your docker-compose file is ready, start by adding the Python

modules that will be needed for Apache Kafka.

Chapter 9 Data pipelines in Generative ai

393

Go to your application folder (/minio_app) and create a Python file for

your Kafka producer module (producer.py). Then add the following code.

import json
import datetime
from kafka import KafkaProducer

topic = 'message_stream'

def stream_produce(usr, msg):
 producer = KafkaProducer(bootstrap_servers='kafka:9093')
 data = {
 "message":msg,
 "user":usr,
 "time":str(datetime.datetime.now())
 }

 producer.send(topic,json.dumps(data).encode('utf-8'))
 producer.close()

The code is pretty straightforward; it works just as same as the

producer part you wrote in the Jupyter Notebook in the previous section.

The code starts by importing the required Python packages. The name

of the topic should be maintained consistently in the producer and

consumer modules. Finally, a function ingests a dict as a message in the

KafkaProducer instance. The dictionary contains the following fields:

 1. message: The query or response text provided or

generated.

 2. user: Identifies whether it is a user query (with

the value user) or an LLM response (with the

value bot).

 3. time: The timestamp of the provided or

generated text.

Chapter 9 Data pipelines in Generative ai

394

The message and user ID are provided in the function as parameters

from the index file and the timestamp is generated from the Python

datetime package.

You need to create the consumer module next in another Python file

called consumer.py and then add the following code:

from kafka import KafkaConsumer
import json
import psycopg2

topic = 'message_stream'
host = 'postgres'
port = '5432'
database = 'chat_db'
username = 'arindam'
password = 'agpass'

def get_connection():
 con = psycopg2.connect(database=database,user=username,password

=password,host=host,port=port)
 cursor = con.cursor()
 return (con,cursor)

def stream_consume():
 print("Called stream_consume")
 consumer = KafkaConsumer(topic,
 bootstrap_servers=['kafka:9093'],
 consumer_timeout_ms=3000,

auto_offset_reset='earliest',
enable_auto_commit=True,

 value_deserializer=lambda x: json.loads(x.decode('utf-8')))

 for m in consumer:
 msg = m.value

Chapter 9 Data pipelines in Generative ai

395

 try:
 con,cursor = get_connection()
 sql = f"insert into Chat (userid, message, timestamp)

values ('{msg['user']}','{msg['message']}','{msg
['time']}')"

 cursor.execute(sql)
 con.commit()
 except Exception as e:
 return repr(e)

 return True

There are two functions here. The first one creates a database

connection using psycopg2 for a Postgres connection. You used psycopg2

in Chapter 4 when working with the Postgres database in Python. Make

sure to check it out if you need a refresher.

The other function—stream_consume—is the one you’ll focus on

here. You are doing the same thing in this function that you did in the

Jupyter Notebook when you explored Apache Kafka using Python. Here,

you are not passing or using any function parameters because you want

to subscribe to all the messages that the stream produced. When you are

subscribing and receiving the message from the Kafka consumer, you

insert the dict values into a Postgres database table.

But wait! You have to create the Chat table, right?

For that, you’ll create another Python file for handling database

functions called tables_init.py. Add the following code:

import psycopg2

conn = psycopg2.connect(database='chat_db', user='arindam',
 password='agpass', host='postgres', port='5432')

def create_tables():
 sql = "Create Table IF NOT EXISTS Chat (userid varchar,

message varchar, timestamp varchar)"

Chapter 9 Data pipelines in Generative ai

https://doi.org/10.1007/979-8-8688-1154-8_4

396

 cursor = conn.cursor()
 cursor.execute(sql)
 conn.commit()
 conn.close()

def get_values():
 con = psycopg2.connect(database='chat_db', user='arindam',
 password='agpass', host='postgres', port='5432')
 sql = "select userid,message,timestamp from Chat"

 cursor = con.cursor()
 cursor.execute(sql)
 rows = cursor.fetchall()
 print(rows)
 con.close()
 return rows

Before running through the code, note the database credentials that

are there, right inside the codebase, instead of in an environment file. I

leave this to you as an exercise.

Let’s look at the code in consumer.py now. You should be able to

understand this if you are familiar with psycopg2 and Postgres SQL. The

create_tables(0 function creates a table called Chat with the exact

fields you used to insert into the consumer.py file—userid, message, and

timestamp.

To give your users a way to see the list of conversations that you are

storing in the database, you use the get_values() function. It lists all the

records in the database.

You will also need to build a UI and a router. This section explains how

to do that, step by step!

To create a frontend for users to view the conversations being stored

in the database, create an HTML template inside the /templates folder

called list.html and add the following lines of code to it:

Chapter 9 Data pipelines in Generative ai

397

<html>
 <head>
 <title>Messages</title>
 </head>
 <body>
 <h2>Messages</h2>
 <table border="1">
 {% for r in rows %}
 <tr>
 <td>{{r[0]}}</td>
 <td>{{r[1]}}</td>
 <td>{{r[2]}}</td>
 </tr>
 {% endfor %}
 </table>
 </body>
</html>

Assuming that you use a variable named rows to pass the list of records

in the database from the Flask backend, the code simply displays the

records in the database using a Jinja template.

Also create a route in the index.py file, as follows:

@app.route("/list_all", methods=['GET'])
def list_all():
 print("Called list_all")
 rows = get_values()
 return render_template("list.html",rows=rows)

This route uses the get_values() function you developed in the

tables_init.py file. Add the following import statement to index.py:

from tables_init import create_tables, get_values

Chapter 9 Data pipelines in Generative ai

398

Don’t forget to add the create_tables function in the main function.

This will fire the function just before running the server in the application,

so that the application finds the Chat table before accessing it.

if __name__ == '__main__':
 create_tables()
 app.run(host="0.0.0.0",port="5000")

Now you will add the producer and consumer functionalities in the

send_message() function as follows:

@app.route("/send_message")
def send_message():
 query = request.args.get("message")
 stream_produce('user',query)
 res = send_query(query)
 stream_produce('bot',res)
 stream_consume()
 return render_template("chat.html",res=res)

The function works as follows:

• Gets the query from the user.

• Publishes the query to the Kafka message stream.

• Gets the LLM response using RAG.

• Publishes the LLM response to the Kafka message

stream as well.

• Subscribes to the message stream data.

Don’t forget to add the following import statements:

from producer import stream_produce
from consumer import stream_consume

Chapter 9 Data pipelines in Generative ai

399

Add a list_all route hyperlink to the chat.html so the users can

check the message records any time:

List

Now you are ready to run your application.

Run the Docker Compose YAML; you should see a List link on your

Chat page once your file upload is successful. See Figure 9-11.

Figure 9-11. The Query/Chat page

Once you get a response from the query, you can click the List link to

see the contents of your database. See Figure 9-12.

Figure 9-12. Database records

Chapter 9 Data pipelines in Generative ai

400

You can also browse to the topics in your Kafka UI and see the topic

that is created. See Figure 9-13.

Figure 9-13. Topics from Kafka UI

To drill down further, click the topic and go to the Messages tab. You

will be able to see the data messages that were sent if you expand the

records, as shown in Figure 9-14.

Figure 9-14. Message data from Kafka UI

You have successfully implemented a data pipeline of multiple

components in your application.

This chapter should instill the confidence in you to pull up a

complicated data pipeline. One more thing I would like you to try is using

Spark in between Kafka and the database so that you also get the hang of

how Big Data can give your basket a lot of power.

Chapter 9 Data pipelines in Generative ai

401

Now that you have an in-depth understanding of how data pipelines

work in tandem with intelligent Generated AI applications, the next

chapter shows you how to bring it all together.

 Summary

• Data is a fundamental building block of an intelligent

system that allows your system to train and attend to

the new dataset in real time. Hence, understanding

the various aspects of managing data is essential in

building an intelligent system.

• Although CSV, XML, and JSON are known by almost all

developers, it is imperative to understand how to use

these common data file formats in a large, intelligent

enterprise system.

• Along with these common file formats some other data

formats such as Avro and Parquet are essential when

working with Big Data and streaming applications.

• Another important decision you need to address is the

data modeling technique used to build the database. To

cater to this, you need to understand the basic ideas of

relational and nonrelational data modeling.

• Data storage on the cloud can be achieved easily using

the S3 buckets that AWS pioneered. You can store any

kind of data format on the cloud in S3 buckets and work

with them by leveraging the boto3 Python library.

Chapter 9 Data pipelines in Generative ai

402

• To address real-time data requirements, you can use

Apache Kafka for distributed data streaming.

• Finally, you can build a data-intensive RAG application

by stitching all these technologies and concepts

together.

Chapter 9 Data pipelines in Generative ai

403© Arindam Ganguly 2025
A. Ganguly, Scaling Enterprise Solutions with Large Language Models,
https://doi.org/10.1007/979-8-8688-1154-8_10

CHAPTER 10

Putting It All Together
In the previous chapters, you saw all the gears and parts that drive

an intelligent application through various perspectives. You saw the

techniques that can be used to stir up intelligence and embed it in a

complex, nonintelligent system. You have seen ways to containerize it and

make the complete system environment-agnostic. Now that you know all

the complexities, you also need to consider some of the ways to make the

application as optimal and efficient as possible.

As an enterprise architect, you now know how to build an intelligent

system and/or embed intelligence into a complex system. This chapter

discusses some small alternatives and tricks to scale and optimize your

strategies and achieve maximum effectiveness at minimal cost. To do this,

the chapter reviews two approaches to getting the best out of Generative AI

and machine learning:

• Minimizing your cost while maximizing efficiency.

• Maximizing system performance while incurring

almost the same cost, effort, and time.

Preparing an intelligent solution for an enterprise application often

requires architects to consider multiple variables such as budget, time,

work hours, and so on. You have to make a tradeoff on compromising

cost for efficiency or securing quality at minimal extra cost. You need to

determine the optimal type of language models of the various parts of your

application. You can use to small language models (SLMs) for trivial tasks.

https://doi.org/10.1007/979-8-8688-1154-8_10#DOI

404

One such SLM is Phi 3.5; it was developed by Microsoft and you can

use it through HuggingFace.

On the other hand, if your budget is a bit larger, you can explore

fine-tuning the LLMs. But to fine-tune LLM, you have to consider PEFT to

reduce compute power and memory by using a technique known as LoRA.

At the time of writing this book, context length windows have been

increasing with every new research paper and there is an ongoing debate

to either fit large text into the LLM or use RAG through the LLM. You can

also explore hybrid approaches through the LLM as a judge technique,

using a technique known as self-route.

 Option 1: Minimizing Cost while
Maximum Efficiency
The first option is to analyze the ways you can minimize your cost as

much as possible while receiving the same kind of efficiency. Here, you

can compromise 10 percent on the quality at the expense of a 90 percent

reduction in costs. To do this, you have to analyze the kind of intelligence

you want your system to be assigned at the various modules. You may want

to use a less intelligent model in some specific places in the system.

 Determining Optimal Intelligence
When application development is in progress, the first decision is to not

only plan on the intelligence and its technology, but also consider the cost

implications. As an enterprise architect, your budget should always be a

factor when you are considering or determining which technology to use.

You’ll see this with a familiar example.

Chapter 10 putting it all together

405

 Adding Further Analytics to AI Assistant Dashboard

If you have been following along in the previous chapters, you have the

AI Assistant application implemented and running. In this section, you’ll

accommodate a minor addition where the dashboard also expresses

the sentiment of the chats. A lot of industries (especially ones dealing in

contact centers) try to monitor the sentiment analysis of the conversations

in order to improve on the existing products or keep track of the services

being rendered to their customers.

Sentiments give you insights into the overall performance of your

industry through customer interactions. If you monitor most of the chats

and analyze their sentiments, you can capture and point out the sections

that indicate bad sentiments and the ones with good sentiments to forecast

your next set of actions.

For instance, detecting negative sentiment in user interactions with the

IT assistant could help identify areas where the system is failing to meet

user needs, highlight potential problems with IT infrastructure or services,

or even signal the need for additional training for the support team. This

sentiment information could be displayed on a dashboard, providing

valuable insights for IT managers and executives.

Considering the immense power that Generative AI brings, it should

you can very easily employ an LLM that will be invoked every time a chat

record is entered into the database and record the sentiment of the chat.

See Figure 10-1.

Chapter 10 putting it all together

406

Figure 10-1. Adding traditional RNN for sentiment analysis

Sentiment analysis is one of the basic predictive analytics that even the

smallest and least powerful model can help with. With OpenAI, you can

employ even the most basic GPT3.5 Turbo to take care of it (at the time of

writing the book, GPT4 is the topmost performing model in OpenAI and is

also the most expensive one; see https://openai.com/api/pricing/).

Think about this solution carefully in terms of factors such as cost,

efficiency, and work hours. You can use the same GPT model that you

have been using in the application for other purposes, but that would not

help with operating costs, since OpenAI (and all other LLM providers for

that matter) charges you for every API call. For every LLM call for a query

response, you are employing two LLM calls—one for the query and one for

the answer.

Total Cost = cost(LLM call for query response) + cost(LLM for

sentiment of query) + cost(LLM for sentiment of response)

Chapter 10 putting it all together

https://openai.com/api/pricing/

407

Where

cost(LLM call for query response): The cost

of the LLM call to generate a response to the user’s

query using the RAG system.

cost(LLM for sentiment of query): The cost

of the LLM call to analyze the sentiment of the

user’s query.

cost(LLM for sentiment of response): The

cost of the LLM call to analyze the sentiment of the

LLM’s generated response.

Thus, your cost just tripled if you use the same LLM for all purposes.

If you could instead use the least expensive model, it would bring your

cost down to some extent. You can bring the cost down to double your

operating cost for LLMs if the LLM you select to analyze sentiment is half

the cost of the main LLM you are using for the purpose of Q&A.

Hence, if a smaller, cheaper LLM is used for sentiment analysis:

Total Cost = cost(Main LLM for query response) + cost(Smaller LLM

for sentiment of query) + cost(Smaller LLM for sentiment of response)

Also, if a traditional ML model is used for sentiment analysis:

Total Cost = cost(LLM call for query response) + cost(Training and

deploying traditional model)

It’s worth mentioning that cost (training and deploying traditional

model) is only charged during retraining.

An alternative way to go is to use a traditional ML model to do this,

instead of an LLM. You can very well train a simple RNN and employ it to

predict the sentiment of each chat. This will reduce your cost for sentiment

analysis to zero except for a repository to keep your model. Let’s analyze

this route and look at the positive and negative implications this can

lead to.

Chapter 10 putting it all together

408

 Training Data

Considering you are using a supervised model—be it a traditional model

or a deep learning model—you need historical data. But a major concern

of such a system is data collection. In this case, the best approach is to

gather previous conversation logs as training data. If your system is a

development from scratch and a new project, it is not possible to have

historical data. In that case, you can opt for another alternative, such as a

cheap LLM or a SLM (SLM is covered soon).

Although the cost is accounted for, data collection and curation

requires some extra effort, so it increases your person-cost a bit.

 Model-Building Capability

Although sentiment analysis is very basic and easy to implement and any

kind of simple modelling can achieve it, the concern is not sentiment

analysis to be specific. You are trying to establish supporting intelligence

that can be achieved by traditional modeling. Building a traditional

model requires significant expertise and effort. Hence, if you are trying

to use traditional modelling, you should consider the effort, cost, and

time required to put the model in place. You should carefully analyze the

resources you have, along with the time and cost.

 Model Maintenance and Retraining

Traditional models require model monitor and maintenance and also

require considerable expertise as compared to using LLMs, because they

are pretrained and don’t require retraining that you might need when

using traditional models built on curated data. On the other side of the

coin, having custom curated training data and frequent retraining ensures

that your models are updated with your present circumstance. If you

system attracts more young adults, then you can curate your data so that

you can include their phrases and casual conversations rather than having

more formal conversations.

Chapter 10 putting it all together

409

On the other hand, if you are planning to go the LLM route to analyze

sentiment, you can include some prompt examples to suit the needs when

required.

The debate is endless, but you should definitely have all your

considerations in place before committing to a particular technique.

Instead of using large language models to accumulate large amounts of

cost, you can resort to using SLMs, which will relieve your billing to some

extent. You will learn about SLMs in the next section.

 Small Language Models
While we are on the topic of introducing new features that augment the

current capability of the application, this section introduces another

alternative that can save you time and money.

You have worked with and used LLMs for Generative AI. Generative AI

came into existence with the inception of the Transformers architecture.

But the rise of research and development in the field has led data scientists

to come up with very powerful models that can now almost replace human

intellect. But these LLMs are almost impossible for small to medium

industries to host. They require powerful servers and multiple GPUs.

As a counterpart, data scientists have also come up with small

language models (SLMs), which can easily run on smart devices, such as

wearables, watches, smartphones, and other similar firmware. They can

easily reside on your device and you can cut down on the network latency.

SLMs are decoder-only models derived from Transformer

architectures and they have parameters ranging from 100 million to 5

billion. These models have been widely used in daily smart devices to

cut down on the cost of hosting LLMs and to reduce the latency that LLM

responses cause.

The next section explains one of the SLMs devised by Microsoft—Phi 3.5.

Chapter 10 putting it all together

410

 Phi 3.5
Phi 3.5 was designed by Microsoft as a successor to the Phi model family.

This model has been trained on specifics set of documents that Microsoft

has used for its earlier version of Phi models. It used high-quality images

and various types of text for training.

Similar to other SLMs, it is a decoder-only Transformer model and is

multilingual and 128K in context length.

Phi 3.5 has been released in multiple versions; the one used in this

chapter is the Phi 3.5 MOE. MOE stands for Mixture of Experts and it tries

to pull up a model that performs exactly as mentioned in the name—like a

mixture of experts.

In MOE models, all the feed-forward dense neural network layers

are replaced by a layer that contains multiple FFNs, each having its own

capability. A gated network is learned by the model to route an input to the

appropriate expert (FFN).

It is also noteworthy that most of the Generative AI models are named

according to the objective they were trained for. For example, Phi-3.5-

MOE- Instruct is an instruct model that aims to generate responses

considering the input is a set of instructions for the model to perform.

Meta introduced the Llama model family, which had variations

of training objectives. You will find that Llama instruct models as well

as Llama chat models are specially trained to engage in colloquial

conversations.

HuggingFace hosts the SLM and you can download and use it in your

system. This section explains how to use HuggingFace and the Phi 3.5

MOE instruct model in Python.

Chapter 10 putting it all together

411

Pull up your Jupyter Notebook and start by installing the following

packages:

flash_attn==2.5.8
torch==2.3.1
accelerate==0.31.0
transformers==4.46.0

This exercise uses PyTorch instead of TensorFlow, which is a similar

framework for deep learning. The transformers package is provided by

HuggingFace to encapsulate Transformers in a package. The accelerate

package is used to run PyTorch in a distributed environment in order

to divide the processing into parallel threads. The flash_attn library

encapsulates the Flash Attention mechanism, which is an effective

technique to parallelize the attention calculation in order to achieve the

most in the least amount of computation.

Now you have to import the packages:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer,
pipeline

Now load the model in AutoModelForCausalLM so that it can be

downloaded in your system:

model = AutoModelForCausalLM.from_pretrained(
 "microsoft/Phi-3.5-MoE-instruct",
 device_map="cuda",
 torch_dtype="auto",
 trust_remote_code=False,
)

Chapter 10 putting it all together

412

You should also load a tokenizer in a similar way:

tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-
MoE- instruct")

Now it’s time to set up the prompt to be sent to the model. Phi 3.5

expects prompts to be entered in a certain format:

System: You are a helpful AI assistant.

Query: What are tokenizers?

Response:

To set up the similar prompt in Python, you’ll prepare an array:

prompt= [
 {"role": "system", "content": "You are a helpful

AI assistant that can answer queries on NLP."},
 {"role": "user", "content": "What are tokenizers?"},
]

Now you can create the transformers pipeline and ask the SLM to

generate text using your pipeline.

pipe = pipeline(
 "text-generation",
 model=model,
 tokenizer=tokenizer,
)

args = {
 "max_new_tokens": 500,
 "return_full_text": False,
 "temperature": 0.2,
 "do_sample": False,
}

Chapter 10 putting it all together

413

output = pipe(prompt, **args)
print(output[0]['generated_text'])

You should see a response similar to an LLM.

Let’s come back to the IT assistant application you built. You can use

this model as an optimal tradeoff; it has almost all the power of an LLM,

without the huge computation and charges incurred by hypervisors such

as Azure, AWS, or even OpenAI.

The next section explains another alternative, where you can even have

the flexibility to fine-tune and train LLMs.

 Option 2: Getting the Best Performance
with the Same Cost
The second option is to get the best performance possible while incurring

nearly the same cost, effort, and time. Here, you compromise a 10 percent

increase in expenditure at the expense of a 90 percent increase in the

quality. For this, you can attempt to fine-tune your Generative AI LLM with

your own data or use an expensive model in some places in the system.

 Fine-Tuning Large Language Models
As mentioned, all the LLMs require a significant amount of storage

and compute power to run. But you should not also forget the amount

of compute power needed to train these models. Companies such as

OpenAI, Amazon, IBM, and so on, are heavily invested in pulling up an

infrastructure that can accommodate an immense amount of compute

capability to train large models from scratch. Just so that you get an

idea—for a computer with the capability to perform 1018 computations

per second, it would take the system approximately 3.5 days to train GPT3,

which is the older version of the GPT models.

Chapter 10 putting it all together

414

You are probably not thinking about establishing a server farm to host

a powerful LLM right now! It would be almost impossible to train a large

language model locally. But what if you intend to fine-tune the model

to suit your needs, similar to the fine-tuning exercise you performed in

Chapter 3 for BERT? If you followed along in Chapter 3, you must have

already felt the pain that your system endured while you tried to run

your fine-tuning exercise. It must have taken an enormous amount of

time and processing power to converge the training to a certain loss and

accuracy just for BERT. Now consider that you try to push the same data in

your LLM!

Keeping this in mind, data scientists came up with a novel approach

to reduce the burden on compute power while fine-tuning LLMs (or any

language model for that matter), which you see in the next section.

 Parameter Efficient Fine Tuning (PEFT)
With the widespread use of LLMs and LLMs becoming the new tool for

everything, it is inevitable to have a way to fine-tune and/or pretrain. But

fine-tuning such a large model is not the best solution when it comes

to achieving high performance at scale. It is very easy to understand

the difficulties in fine-tuning such a large model that itself takes such a

large amount of compute power to load and run. If you try to fine-tune

the complete model with some custom data, it will demand enormous

amounts of compute and processing power.

If you load a model into memory or train it with data, the heart of the

model that is recalibrated and calculated is the weight matrix. The weight

matrix determines the number of parameters that the model is supposed

to learn and use to predict a new set of data. For instance, OpenAI’s GPT4

is estimated to have around 1.76 trillion parameters. You can fairly imagine

that operating such a model offline would require immense compute

power and memory. Hence, fine-tuning trillions of parameters is out of

question for a simple server.

Chapter 10 putting it all together

https://doi.org/10.1007/979-8-8688-1154-8_3
https://doi.org/10.1007/979-8-8688-1154-8_3

415

But what if you could come up with techniques that could reduce the

number of parameters while training? Another way to look at it is training

only a certain number of parameters that are sufficient to lead to the same

effect as training the complete model. Such a technique is known as PEFT

(Parameter Efficient Fine Tuning).

PEFT states that instead of training the whole model, you train only a

certain number of layers and keep the others frozen.

One method often associated with PEFT is LoRA (Low Rank

Adaptation), which leverages a simple mathematical concept. The next

section explains this method.

 Low Rank Adaptation (LoRA)
LoRA had been into production since GPT3 but had not been used with

such popularity until the inception of models such as GPT4 and Claude-3.

You can check out the paper at https://arxiv.org/pdf/2106.09685.pdf.

LoRA is a parameter-efficient fine-tuning technique that leverages the

concept of rank in matrices, since the main object you are training is the

weight matrix.

A rank of a matrix is the number of linearly independent rows and

columns. Rank of a matrix of dimension 3x3 can be anywhere between 1

and 3. LoRA attempts to take a lower rank version of the weight matrices.

There is a very simple way to do that! Consider a weight matrix of size

dxd. LoRA decomposes the matrix into a dxr matrix and a rxd matrix so

that the memory needed to operate them is less than the dxd matrix.

This decomposition can be done using a technique known as singular

value decomposition, which breaks a matrix down into three matrices—U,

∑, and V where ∑ is a diagonal matrix Of dimension rxr, U having

dimension dxr and V having dimension rxd (see Figure 10-2). The detailed

mathematics are complicated and involve core aspects of linear algebra,

which is out of the scope of this book.

Chapter 10 putting it all together

https://arxiv.org/pdf/2106.09685.pdf

416

Figure 10-2. LoRA (Credit: https://arxiv.org/pdf/2106.
09685.pdf)

Being an enterprise architect and a developer, you should be eagerly

awaiting to see how to get hold of all of these in Python. The next section

covers this.

 Implementing PEFT LoRA in Python
I suggest that you to try this exercise in Google Colab and enable the TPU

or GPU settings. The data you are going to use is from a competition from

Kaggle that closed years ago. You can use the data anyway even if you are

not participating in the competition.

This competition was initiated by Alex Ellis, Julia Elliott, Paula Griffin,

and William Chen, and it aims at finding questions in Quora that are

insincere. That is, instead of looking for genuine knowledge, the question

aims to make a statement. The dataset is a simple labeled dataset with

questions and a label indicating whether they are sincere. You can visit

Chapter 10 putting it all together

https://arxiv.org/pdf/2106.09685.pdf
https://arxiv.org/pdf/2106.09685.pdf

417

this link and check out the details: https://kaggle.com/competitions/
quora-insincere-questions-classification.

You can also implement this exercise in Kaggle if you have a login.

Otherwise, you can download the dataset and try it in Google Colabatory.

Pull up your Jupyter Notebook, either in Google Colabatory or Kaggle,

and start by loading the data:

import numpy as np
import pandas as pd
data = pd.read_csv("/kaggle/input/quora-insincere-questions-
classification/train.csv", nrows=500)

The train.csv file contains the training data and I only use the first

500 rows, as it would otherwise be impossible to run it in a shared hosted

environment such as Google Colabatory or Kaggle.

The next step is to install all the required packages:

! pip install transformers accelerate bitsandbytes peft
datasets

Among all the libraries being installed here, you have already seen

transformers and accelerate. The datasets library is used to create

data loaders compatible with neural network libraries. The bitsandbytes

library is a lightweight package that allows you to maintain 32-bit

performance at a small fraction of the memory. The peft library tells you

its significance by the name.

The next step is to convert the pandas dataframe to the datasets

format to directly use it in a training algorithm. Since there are 500 data

rows, you’ll have 400 training data rows and 100 test data rows.

from datasets import Dataset

train_ds = Dataset.from_pandas(data[:400])
test_ds = Dataset.from_pandas(data[400:])

Chapter 10 putting it all together

https://kaggle.com/competitions/quora-insincere-questions-classification
https://kaggle.com/competitions/quora-insincere-questions-classification

418

Now you invoke the model that you want to fine-tune. This exercise

uses a simple model such as Google Flan T5, and use the same as a

tokenizer.

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("google/flan-
t5- small")
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-
small",load_in_8bit=True)

Note in the last line of this code snippet, where the model is

downloaded, the parameter load_in_8bit is true. This enables the model

to be downloaded into 8-bit quantized blocks for easy quantization and

memory efficiency.

To start fine-tuning using PEFT, you have to prepare your model to be

capable enough for LoRA to work on. For that, you have to make sure all

your model matrices are stored in a 8-bit quantized format and have full

precision for float numbers, have gradients ready to be calculated, and

have memory checkpointing enabled so your system memory is efficient.

The following code does this:

from peft import prepare_model_for_int8_training

model = prepare_model_for_int8_training(model)

Now you have to set up the configurations for LoRA as follows:

from peft import LoraConfig, get_peft_model

loraconfig =LoraConfig(r=16, lora_alpha=32, target_
modules=['q','v'], lora_dropout=0.05, bias="none", task_
type="SEQ_2_SEQ_LM")

Chapter 10 putting it all together

419

LoRA needs to decompose a dxd weight matrix to dxr and rxd, so

you have to mention the parameter r for LoRA to decompose it into. This

parameter is mentioned as the first parameter value r. lora_alpha is a

hyperparameter for scaling. The target_modules parameter names which

parameter LoRA should be applied to. In this case, you are applying it to

query and value, and not the key. Finally, task_type defines the task you

want your data to be fine-tuned for.

Finally, add this configuration to the model instance prepared for

fine-tuning using PEFT:

model = get_peft_model(model,loraconfig)

The next step is to prepare the data for training. If you are training

using a text dataset, you need a function to convert each statement into

numerical vectors. This step takes care of that process:

def tokenize_function(examples):
 return tokenizer(examples["question_text"], padding="max_

length", truncation=True)

text_column = "question_text"
label_column = "target"
max_length = 128

def preprocess_function(examples):
 inputs = examples[text_column]
 targets = [str(x) for x in examples[label_column]]
 model_inputs = tokenizer(inputs, max_length=max_length,

padding="max_length", truncation=True, return_tensors="np")

 labels = tokenizer(targets, max_length=3, padding="max_
length", truncation=True, return_tensors="np")

Chapter 10 putting it all together

420

 labels = labels["input_ids"]
 labels[labels == tokenizer.pad_token_id] = -100
 model_inputs["labels"] = labels

 return model_inputs

This code tells you a very obvious story. The tokenize_function is

used to tokenize a statement using Flan T5. Finally in the preprocess_
function you tokenize each statement and label.

Finally, when you have the desired formatted inputs and labels,

prepare your train and test dataset as follows:

train_dataset = train_ds.map(
 preprocess_function,
 batched=True,
 num_proc=1,
 remove_columns=data.columns.tolist(),
 load_from_cache_file=False,
 desc="Running tokenizer on dataset",
)

test_dataset = test_ds.map(
 preprocess_function,
 batched=True,
 num_proc=1,
 remove_columns=data.columns.tolist(),
 load_from_cache_file=False,
 desc="Running tokenizer on dataset",
)

As you can see, you map the dataset to the preprocess_function

created in the previous step. Make sure to keep load_from_cache_file set

to false so the system does not use repeated data and gradients. Also keep

batched set to true for efficient parallel computation in memory.

Chapter 10 putting it all together

421

You need to prepare the training arguments and the trainer as follows:

from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(
 "temp",
 evaluation_strategy="epoch",
 learning_rate=1e-3,
 gradient_accumulation_steps=1,
 auto_find_batch_size=True,
 num_train_epochs=1,
 save_steps=100,
 save_total_limit=8,
 report_to="none"
)
trainer = Trainer(
 model=model,
 args=training_args,
 train_dataset=train_dataset,
 eval_dataset=test_dataset,
)
model.config.use_cache = False

The training arguments mention hyperparameters like learning rate,

when to save the step results, when to release the accumulated gradients,

and the number of epochs. The auto_find_batch_size if set to false;

otherwise, you would have to provide the number of batches per epochs.

The trainer is an encapsulation of an executable model to start

training. Hence, finally, you can start training as follows:

trainer.train()

If everything is fine, you should see your model has started training.

Congratulations! You have just fine-tuned an LLM.

Chapter 10 putting it all together

422

 “With Great Power Comes Great Responsibility!”

You probably have felt how power-hungry your fine-tuning exercise was

if you ran the exercise. You must be very careful to determine when you

can use this technique and it must be used only when you absolutely

need it. Using it everywhere will drain your compute resources and as well

as budget!

Before winding up, I give you one last trick to increase your efficiency.

 Long Context LLM and RAG
At the time of writing this book, there have been a lot of enhancements in

the two main fields—inventing various techniques for RAG and developing

various models with longer context lengths.

At the time of writing this book, Google’s Gemini 1.5 has been

introduced and it can process up to 1 million tokens. This is compared

to its previous versions, which had a context window length of 32K

tokens. Hence with time, the number of context window lengths has been

increasing.

Consider an IT Assistant where the system needs to answer certain

queries based on some text passages from a document. It is quite obvious

that LLMs perform the best when they have the complete context passage

loaded into their memory instead of using RAG to load multiple chunks

of context passages, which can lead to gaps in knowledge. Unfortunately,

nothing is free and using long-context LLMs is definitely more expensive,

mostly because the LLM providers charge you by the token length per API

call for the LLM.

The tradeoff between long-context LLMs and RAG is an ongoing

debate right now. There have been multiple survey papers written on this

topic. But it is best to use a hybrid approach to determine which part of the

system can use long context LLMs and where you can use RAG with less

expensive models.

Chapter 10 putting it all together

423

 Self-Routing
Consider a system where you have to develop a conversational assistant

that can respond to queries from a document. A hybrid approach to

determine and use both long context LLM and RAG is to use LLM as a

judge. Let’s break down this approach into two steps:

• Step 1: Get a retriever to retrieve text passages for

RAG. Employ an LLM as a judge to respond to the

following prompt, given the retrieved text passage and

the query: “Write unanswerable if the query cannot be

answered based on the provided text.”

• Step 2: Based on the answer, the system can decide to

either employ RAG with shorter context window length

LLMs or have the long context LLM respond with the

full text in its context window.

This is the self-route idea, which explores which approach is better

based on the current developments—long context LLM or RAG. This paper

also mentions an alternative as a hybrid instead of getting stuck in the

debate. You can read the paper at https://arxiv.org/abs/2407.16833.

Figure 10-3 visualizes the self-route approach.

Chapter 10 putting it all together

https://arxiv.org/abs/2407.16833

424

Figure 10-3. The self-route approach

It is difficult to ingest a complete document into a context window of

an LLM if the document is fairly large. Hence, this idea usually works when

the complete document you want to let your LLM hold is less than the

context window length of the long context LLM.

 Summary
As you reach the end of this chapter as well as the book, I suggest that

you expand your horizons while architecting an intelligent enterprise

application.

When you have to come up with a solution for a complicated

enterprise application, analyze your business requirements carefully

and note the skills and techniques you will need for this development,

including various options. Certain modules might require Generative AI,

Chapter 10 putting it all together

425

but it is not necessary to use LLMs when the goal can be achieved using

SLMs. In such cases, explore both the options. Note and plan all the routes,

including all the options.

Try to come up with a mix and match of various options and try to

develop a hybrid approach. Hybrid approaches generally constitute

adversarial technologies with a decision management system taking

control of the routes.

Always keep in mind that there is no perfect system and your job is to

pursue perfection, knowing that it’s never absolute.

With this, I leave the task to you and wish you success in your

endeavors in the world of intelligent applications. Happy learning!

Chapter 10 putting it all together

427© Arindam Ganguly 2025
A. Ganguly, Scaling Enterprise Solutions with Large Language Models,
https://doi.org/10.1007/979-8-8688-1154-8

Index

A
Accuracy, 20, 21
Activation function, 35
Ada boost, 16, 17
Adagrad, 40
Adam, 41, 42
Adversarial drift, 296
Agents, 317

catalog database, 336
decision-making

mechanism, 337
intelligent applications, 339
LangChain, 338
LLM, 217
patterns, 339
pharmacy business, 334, 335
sequence flow, 335
technical architecture, 338

Aggregation function, 29
AI, see Artificial intelligence (AI)
AI fairness

debias, 287
demographic parity, 286
equalized odds, 286
equal opportunity, 286
explainable AI, 288, 289
imbalanced class, 287

libraries, 287
LIME, 292, 293
monitoring, 285
SHAP, 289–291

AI Risk Management
Framework (AI RMF), 300

AI RMF, see AI Risk Management
Framework (AI RMF)

Algebraic topology, 205
Algorithmic Accountability Act, 301
Apache Kafka, 358, 383

Python, 384–388
streaming, 383, 384

App Connect, 327
Area Under Curve (AUC), 25
Argmax, 42
Artificial intelligence (AI), 50,

183, 216
agents, 317, 334–339
architecture, 320, 321
building bot, 339–354
chatbots, 318–320
CRM (see Enterprise CRM)
development lifecycles, 317
experimentation

environment, 322
fairness (see AI fairness)

https://doi.org/10.1007/979-8-8688-1154-8#DOI

428

intelligent IT assistant, 323, 324
knowledge repository, 333, 334
regulations, 299–302
responsible (see Responsible AI)
revolution, 1

Artificial neural networks,
83–85

ASCII, 50
Associative rule mining, 46
Attention, 98

classification problem, 97
definition, 95
dot product, 96
mechanism, 96
parallel computation, 102
scores, 96, 98, 99
sentence completion

problem, 97
temporal processing, 95, 98
vector representations, 96
weight vectors, 96

Attention head, 104
AUC, see Area Under Curve (AUC)
Authentication errors, 156
AutoClassForCasualLM, 133
Autoencoding models, 132
Automation system, 129
AutoModel, 117
AutoModelForCausalLM, 411
Autoregressive models, 132, 133
AutoTokenizer, 117, 118, 121
Avro, 360
AWS S3, 369

B
Backend/orchestration layer,

161, 162
Backpropagation step, 35
Bagging, 12–15
Batch normalization, 109
Benchmarking, 231, 232
BERT, see Bidirectional Encoder

Representations from
Transformers (BERT)

Best_fit_models() function, 245
Bias, 286
Bidirectional Encoder

Representations from
Transformers (BERT)

large enterprise systems, 112
masked language modeling, 113
naive approach, 113
next sentence prediction, 114
unidirectional models, 112

Bilingual Evaluation Understudy
(BLEU), 232

BLEU, see Bilingual Evaluation
Understudy (BLEU)

Boosting
Ada boost, 16, 17
gradient, 17

Breadth-first search, 187, 194
B-Tree, 361

C
Caching, 280, 281
Callback, 307

Artificial intelligence (AI) (cont.)

INDEX

429

CART, see Classification And
Regression Tree (CART)

Cart-pole environment, 138
Centroid, 44
Chain of thought prompting,

185, 186
Chains, 202
Character-based analysis, 70
Character tokenization, 68
Chatbots, 64, 99, 199–204,

318–320, 342
workflow, 319

ChatGPT, 133, 134, 142, 216
ChatOpenAI, 200, 202, 207
ChatOpenAI interface, 307
ChatPromptTemplate, 347
ChatPromptTemplate

interface, 201
Chromadb, 205, 207, 312
Citizen Kane (movie), 19
Classification And Regression Tree

(CART), 7–9
Classification task, 19, 20, 23
Cloud-based storage, 364
Cloud Pak, 299
Clustering algorithm, 44
Cohere, 274, 275
Comma separated value (CSV), 359
Concept drift (see Model drift)
Confusion matrix, 22–25
Consumer system, 362
Containerization, 196
Content policy violations, 156
Context length errors, 156

Continuous bag of words
(CBOW), 74

Contractions, 65, 66
Control characters, 59
Corrective RAG, 215, 217, 222

app.stream function, 231
conditional edge, 230
generate function, 230
generation_chain, 228
graph, 221
hallucinations, 225, 228
langchainhub, 222
LangChain retriever, 223
langgraph, 222
langgraph.graph library, 229
libraries, 222
OpenAI API key, 223
Pydantic library, 224
PyPDF, 223
rewrite_chain, 228
tasks, 226
user’s query, 225, 226
utility function, 227
vector database, 227
workflow, 220, 229, 230

Cosine similarity, 195
Count vectorization

implementation, 69
parameters

analyzer, 70
decode_error, 70
encoding, 70
lowercase, 70
max_df, 71

INDEX

430

max_features, 71
min_df, 71
ngarm_range, 71
strip_accents, 70
tokenizer, 71
vocabulary, 72

CRM, see Customer resource
management (CRM)

Cross entropy, 36
Crosswalks, 301
CSV, see Comma separated

value (CSV)
Cumulative distribution, 296
cURL command, 333
Customer resource

management (CRM), 323

D
Data

curator, 286
definition, 358
file formats, 359, 360

Data cleaning
expand contractions, 65, 66
lemmatization, 63, 64
lowercasing, 62
removing accented and

Unicode characters,
59, 60

removing HTML
characters, 60, 61

removing special characters, 61

stemming, 63
stopword removal, 66

Data drift, 295, 296, 298
DataDriftPreset interface, 298
Data engineering, 334
Data formats, 357

Avro and Parquet, 360
CSV, 359
JSON, 359
XML, 359

Data gathering, 234, 241, 243
AI problem, 51
coding, 54, 55
dataframes, 53
dataset, 51
lists, 52
derive train_df, 53, 54
training and test data, 52
workspace, 52

Data-intensive AI assistant
Apache Kafka, 383–388
architecture, 389
buckets, 364
MinIO, 365–367
personal hardware storage, 364
RAG, 362, 364, 374–383
upload file application, 367–374
using data pipelines, 388–401

Data models, 361
Data pipelines

application service, 392
coding, 393
consumer module, 394
create_tables function, 398

Count vectorization (cont.)

INDEX

431

database functions, 395
database records, 399
data messages, 400
distributed sources, 388
docker-compose.yml

file, 389–392
fields, 393
get_values() function, 397
HTML template, 396
import statements, 398
Jinja template, 397
Kafka, 388
query/chat page, 399
responsibility, 362
send_message() function, 398
service names, 391
sources, 357

Data preparation, 241, 243
Data processing systems, 361, 362
Data science, 288
Data storage, 357, 361
Decision-making mechanism, 337
Decision tree, 288, 289, 297

CART, 7–9
Gini impurity, 8
hyperparameters, 8, 9
ID3 and C4.5, 9
Iris dataset, 7
lines of code, 6
visualization, 7

Decision tree classifier, 78, 242
DecisionTreeClassifier

constructor, 8

Deep learning, 6, 27–29, 74–79, 184,
204, 257, 286, 288

Deep Q network (DQN), 137
Demographics, 295
Depth-first search, 187
Deterministic policy, 135
Dialogue flow, 318
Digital Personal Data Protection

Act (DPDPA), 301
Digital technology, 50
Dimensionality reduction, 47
Direct ingestion, 369
DistilBERT

AutoModel class, 124, 125
business requirements, 126
defined, 122
input formats, 125
knowledge distillation

student model, 122
teacher model, 122

parameters, 124
TFAutoModel, 124
tokenizer, 122
Trainer class, 126
training and test datasets, 123

Distillation, 122
Docker, 179, 180, 196, 248

docker-compose.yml,
250–257

dockerfile_mlflow, 250
DQN, see Deep Q network (DQN)
DPDPA, see Digital Personal Data

Protection Act (DPDPA)

INDEX

432

Drift
data, 295, 296
degradation, 294
detection, 285, 296–299
model, 294, 295

E
Economic shifts, 296
Elbow method, 46
ELMO technique, 113
Embedding models, 193
Embeddings, 65, 69–72, 76
Embed intelligence, 403
Emerging technologies, 296
Encoder-decoder models, 99, 100
Ensemble methods, 9, 10, 12
Enterprise CRM

automation, 353
chatbot, 342
HubSpot, 325–333
industry leaders, 325

Entities, 319
Entity extraction systems, 318
Entity recognition model, 320
Euclidean distance, 195
Evaluation metrics, 232
Experimentation

environment, 322
Explainable AI (XAI), 184, 288, 289
Exploding gradient

problem, 89
External systems, 361

F
Facial recognition, 22
False negatives (FN), 21
False positives (FP), 21–23
Feed-forward dense neural

network, 410
Feedforward step, 35
Few shot prompting, 144, 145
Fine-tuning large language models,

413, 414
FN, see False negatives (FN)
Forget gate, 90
FP, see False positives (FP)
Frequency penalty, 147
Freshness layer, 195
F1 score, 22
Functional programming, 2

G
Game automation, 139
Game theory, 289
Gated recurrent units (GRUs),

91–95
Gaussian distribution, 108
GDPR, see General Data Protection

Regulation (GDPR)
General Data Protection

Regulation (GDPR), 301
Generative AI, 139, 144, 184, 197,

216, 219, 285, 288, 301, 323,
337, 339, 403, 405, 409

INDEX

433

document pages, 260
end-to-end intelligent

application, 257
EvaluationExample, 261, 262
evaluation metrics, 261,

263, 265
MLFlow, 265–269
packages, 258
parameters, 264
retriever, prompt template and

output parsers, 259
source documents, 260
vector DB, 259

Generative pretraining (GPT),
133, 134

Gensim, 74, 77
Get_topic_details function, 165
Gini impurity, 8
Global variables, 164
GLOVE embeddings, 79
Google Colabatory, 52, 417
Google Flan T5, 418
GPT, see Generative

pretraining (GPT)
GPT3.5 Turbo, 200, 258
Gradient boosting, 17
Gradient clipping, 89
Gradient descent, 6
Grafana, 243
Granite, 282
Graph-like data models, 361
Grid search, 9, 235, 237, 239
GridSearchCV class, 236, 237

GRUs, see Gated recurrent
units (GRUs)

gs_fit.best_estimator, 238
gs_fit.best_params, 238
gs_fit.best_score, 238

H
Hallucinations, 215, 216, 218, 219,

225, 228
Hard voting, 11
Hash tables, 361
Hierarchical Navigable Small

Worlds (HNSW), 193–195
HNSW, see Hierarchical Navigable

Small Worlds (HNSW)
HTML tags, 60, 61
HubSpot, 339, 343–345, 353

adding template, 326
private app, 327–333
purpose, 325
service template for incident

management, 326
setting up, 325–328

HuggingFace, 111, 114, 410
advanced and pretrained

models, 116
auto classes, 117
business requirement, 120
datasets, 114, 118
DistilBERT, 122–128
example, 117
generic wrappers, 117

INDEX

434

implementation, 114, 115
library, 116
maximum length

parameter, 118
output, 115
preprocess function, 118, 119
test dataset, 119, 120
text dataset, 119
TFAutoModel, 121
tokenizers, 117, 118
versions, 116

Human biases, 286
Hyperparameter tuning,

234–238, 240

I
IBM WatsonX Prompt Lab, 147–149
IMDB website, 20
Inflection, 63
Input and output embedding, 110
Instruct GPT, 140–142, 216
Intelligent IT assistant, 323, 324
Intelligent ITSM, 323, 324
Intelligent system, 403
Intent recognition model, 318, 319
Invoke function, 202
IT assistant

architecture, 158
business requirement, 157
creating microservices, 166–178
creating Python file, 162–166
database, 158

device manuals, 159
knowledgebase documents, 157
links, 159
preparing backend and

orchestration layer,
161, 162

preparing database, 159–161
IT assistant application

architecture, 343

J
JavaScript Object Notation

(JSON), 359
Jinja2, 179
JSON, see JavaScript Object

Notation (JSON)

K
Kafka, 386, 388

See also Apache Kafka
KafkaProducer instance, 393
Kafka-UI, 386, 400
Kaggle platform, 18, 114, 417
Keras, 36–39, 41, 51, 77
K-means clustering

algorithm, 44–46
Knowledgebases, 188
Knowledge distillation, 122
Knowledge graphs, 361
Knowledge repository, 333, 334
Kolmogorov-Smirnof test (KS

test), 296

HuggingFace (cont.)

INDEX

435

KS test, see Kolmogorov-
Smirnof test (KS test)

Kubernetes, 179, 180, 196, 249

L
LangChain, 224, 258, 303, 308, 338

Chatbot, 199–204
chromaDB vector database, 346
create_retriever_tool, 346
docstring, 346
enterprise CRM, 353
frameworks, 197, 198
functionalities, 342
generative AI models, 197
intelligent system, 342
langchain.agents, 345, 348
LLM development lifecycle,

198, 199
output, 349–352
prompt, 347
retriever, 209
runnables, 210
wrappers, 343

Langchain-community, 205
LangChain Expression Language

(LCEL), 197, 202
Langfuse

API keys, 304–306
callback, 307
consumption and latencies, 309
creating organization, 303
dashboard, 308–310, 313
description, 303

environment variables, 311
infusing, 306
LangChain, 308
libraries, 306
project settings, 304
prompt governance, 310–316
prompt template, 307
prompt versioning, 313
public and secret keys, 308
traces, 315

LangGraph, 197, 212, 215, 217, 231,
261, 303

LangSmith, 197
Language modeling, 133
Large language models (LLMs)

autoregressive models, 132
benchmarking, 215, 231, 232
C-RAG, 220–231
defined, 130, 157–181
development lifecycle, 198, 199
evaluation, 216, 217
factors, 302
GPT, 133, 134
hallucinations, 218, 219
instruct GPT, 140–142
Langfuse (see Langfuse)
LangGraph, 217
masked language

modeling, 130–132
MLFlow, 232, 302, 303 (see

also MLFlow)
OpenAI (see OpenAI)
OpenAI Gym, 137–139
Portkey, 269–281

INDEX

436

reinforcement learning, 135–137
RLHF, 139, 140
sequence models, 132
template, 277
tracking, 257–269
traditional AI metrics, 219
vLLM, 281–284

Layer normalization, 109, 110
LCEL, see LangChain Expression

Language (LCEL)
Leaky ReLU function, 34–38
Learning rate, 421
Least expensive model, 407
Lemmatization, 63, 64
LIME, see Local interpretable

model-agnostic
explanations (LIME)

LimeTabularExplainer, 292, 293
Linear function, 86
Linear regression, 3–6, 219
Llama chat models, 410
Llama instruct models, 410
Llama model, 234
LLMs, see Large language

models (LLMs)
Load balancing, 279, 280
Load_dotenv function, 164
Local interpretable model-agnostic

explanations
(LIME), 292–294

Logging package, 162
Log_metrics function, 244

Long context LLM, 422
Long short-term memory (LSTM),

89–91, 94
Long-term dependency

problem, 95
LoRA, see Low rank

adaptation (LoRA)
Loss function, 35
Lowercasing, 62
Low rank adaptation (LoRA), 404,

415, 416, 418
LSTM, see Long short term

memory (LSTM)

M
Machine learning (ML), 286, 403

AI fairness, 286
accuracy, 20, 21
associative rule mining, 46
bagging and pasting, 12–15
boosting, 16, 17
challenges, 232
case of burglar, 10
confusion matrix, 22–25
decision tree, 6–9
dimensionality reduction, 47
drift, 294
ensemble methods, 9, 10, 12
evolution, 288
K-means clustering

algorithm, 44–46
leaky ReLU function, 34–38
linear regression, 3–6

Large language
models (LLMs) (cont.)

INDEX

437

metrics, 19, 20
MSE, 25–29
optimizers, 38–44
origins, 1, 2
precision, 21, 22
random forest, 15
recall, 22
ReLU, 33, 34
ROC AUC, 25
sigmoid neuron, 29–31
stacking, 18–20
tanh, 31
untackled problems, 231
vanishing gradient problem, 32
voting classifier, 10–12

MarkupSafe, 179
Masked language modeling,

113, 130–132
MatplotLib, 293
McCulloh and Pitts neuron, 27, 28
Mean square error (MSE), 25–29
Memory checkpointing, 418
Mesh network, 339
MessagePlaceholder, 347
Metadata, 315
Microservices

backend code, 166
chatlog variable, 171
chat page, 178
chat_template.html file, 174
conversation context, 171
creating workspace, 166
/get_doc_detail route, 173
import line, 167

index page, 177
main function, 176
/message route, 175
OpenAI models, 169, 170
POST method, 173
random string, 168
templates, 172
utility functions, 168, 171
web application, 168
workspace, 177

Minimizing cost, maximum
efficiency, 404

MinIO, 365
cluster, 381
S3 provider, 365
setting up

buckets, 367
Docker Compose file,

365, 366
login page, 366

Min-max scaling, 108
Mixture of experts (MOE), 410
MLFlow, 215, 302, 303

all-inclusive tool, 232
Docker, 249–257
documentation, 233
evaluation, 261
EvaluationExample, 266, 267
experiment, 253
faithfulness, 261, 263, 266
grading_prompt

parameter, 268
home page, 252
inferences, 269

INDEX

438

make_genai_metric function, 267
model metrics, 255
multiple model runs, 256
prebuilt evaluation metrics, 258
registered models, 255
relevance, 263, 265
resolution, 266
run details, 253, 254
scatterplot, 256
Scikit-Learn models

components, 233
data-gathering modules, 234
hyperparameter

tuning, 234–238
successful training run, 252
tabular representation, 265
tracker

data_gathering.py, 240
index.html, 248
index.py, 246, 247
production

environment, 239
requirements.txt file,

248, 249
run_model.html, 248
train and test splits, 240
train.py, 241–246
unstructured data, 240

visualization server, 244
MNIST database, 36
Model drift, 294, 295
MOE, see Mixture of experts (MOE)
Momentum-based SGD, 39, 40

MongoDB, 359
Morpheme, 63
MSE, see Mean square error (MSE)
Multi-agent patterns, 339
Multi-head self-attention, 104

attention heads, 104
calculation, 104
decoder, 105, 106
encoder, 105
masked, 106
temporal delays, 104
temporal processing, 106

Multi-label classification
problem, 19

Multilayer perceptron, 28, 29
Multi-output supervised learning

problem, 99

N
Named entity recognition, 49
National Institute of Standards and

Technology (NIST), 300
Natural language processing

cleaning data, 59–66
data gathering, 51–55
deep learning, 74–79
model selection, training and

evaluation, 73, 74
NLTK and Spacy, 55–59
pretrained embeddings, 79–81
steps, 50, 51
tasks, 49
tokenization, 67–69

MLFlow (cont.)

INDEX

439

N clusters, 44
Necessity, 130
Neighbor’s predictions, 11
Nervous system, 27
Network latency, 409
Neural networks, 29, 35, 77, 83,

223, 258
Neurons, 27
Next sentence prediction, 114
NIST, see National Institute of

Standards and
Technology (NIST)

NLTK, 55–59, 68
See also Spacy

Nonintelligent system, 403
Nonrelational databases, 361
Non-zero center problem, 31
Normalization

batch, 109
defined, 107
layer, 109, 110
scaling, 107, 108

O
Offline vector databases, 195
OpenAI, 216, 406

API
best practices, 156
common issues, 156, 157
create your API key, 150, 151
experimenting, 150
handling rate limits, 155
prompt instructions, 150

setting up Postman, 151–155
ChatGPT, 142
economic constraints, 143
embeddings, 312
frequency and presence

penalty, 147
maximum tokens, 147–150
Playground, 142, 143, 149
prompt engineering, 142
prompting, 144–146
stop sequences, 147
temperature, 146
test models, 143
top P, 146
user message, 144

OpenAIEmbeddings interface, 207
OpenAI Gym, 137–139
OpenShift, 196
Optical character recognition/

recognizer (OCR), 167, 240
Optimal intelligence

AI assistant, 405–407
model-building capability, 408
model maintenance and

retraining, 408, 409
training data, 408

Optimizers
Adagrad, 40
Adam, 41, 42
momentum-based SGD, 39, 40
RMSPorp, 40
SGD, 38
unsupervised learning, 43, 44

Output function, 35, 36

INDEX

440

P
Padding parameter, 119
Page-Hinkley method, 297
Parameter efficient fine tuning

(PEFT), 414, 415, 419
Parquet, 360
Pasting, 12–15
PCA, see Principal component

analysis (PCA)
PEFT, see Parameter efficient fine

tuning (PEFT)
Perceptron, 28
Pharmacy business

attendant role, 336
flowchart, 337
sequence diagram, 336
steps, 334, 335

Phi 3.5, 410–413
POC, see Proof of concept (POC)
Point-wise feed-forward

networks, 107
Policy gradient method, 137
Policy optimization, 141
Portkey, 216

analytics dashboard, 281
caching, 280, 281
Cohere, 274, 275
creating account, 269–272
credentials, 275
dashboard, 271
integration code, 273
langchain-cohere library, 276
langchain-openai library, 273

load balancing, 279, 280
logs, 276, 278
model tracking, 269
output parser, 277
RunnableParallel, 277
selecting LLM provider, 271
virtual key, 272

Positional embedding, 110–112
Postman application, 151–155
PPO, see Proximal policy

optimization (PPO)
Precision, 21, 22
Prediction phase, 321
Predict_proba function, 293
Presence penalty, 147
Pretrained embeddings, 79–81
Pretraining strategy, 133
Principal component

analysis (PCA), 47
Problem solving, 2
Procedural programming, 2
Production environment, 322
Production-grade application, 196
Production-level architecture, 321
Prometheus, 243
Prompt engineering, 183

chain of thought, 185, 186
LangChain, 197–204
LLM, 184
modified activation

function, 184
traditional machine

learning, 184

INDEX

441

tree of thoughts, 186–188
vector databases, 188–197

Prompt governance, 310–316
Prompting, 144–146
Proof of concept (POC), 320
Proximal policy optimization

(PPO), 137, 141
Psycopg2.connect function, 164
Psycopg2 function, 395
Publish-subscribe mechanism, 383
Punkt model, 68
Pydantic model, 224
Pypdf, 205
PYPDFLoader, 206
PyTorch, 411

Q
Q* function, 136
Question-answering model, 321

R
RAG, see Retrieval-augmented

generation (RAG)
Random forest, 15, 289
Random forest classifier, 236, 242
RandomOverSampler, 287
RandomUnderSampler, 287
Rate limit errors, 156
Read gate, 90
Recall, 22

Recall Oriented Understudy for
Gisting Evaluation
(ROUGE), 232

Receiver Operating
Curve (ROC), 25

Recurrent neural
networks (RNNs), 88

configuration, 87
dense/sigmoid neuron, 86
embedding matrix, 85
equation, 86, 88
fixed-length/one-shot

problems, 85
GRUs, 91–95
input length, 85
LSTM, 89–91
problems, 88, 89
simple unit processing, 86
timestamp, 87, 88

RecursiveCharacterTextSplitter, 208
Regression task, 20
Reinforcement learning

biological neurons, 135
cumulative reward, 136
defined, 134
policy, 135–137
predefined environment, 135
Q function, 136
value function, 136

Reinforcement learning through
human feedback (RLHF),
137, 139, 140

INDEX

442

Relational data models, 357, 361
Relevance measures, 263, 265
ReLU activation function, 33, 34
Remediation techniques, 285
Repetition penalty, 149
Residual error, 17
Retrieval augmented generation

(RAG), 178, 181, 218,
363, 422

application workflow, 212
building applications, 204–212
performance, 220
phases, 217
prompting (see Prompt

engineering)
S3 buckets

boto3, 375
chat.html template, 380
chat page, 382
coding, 377
data ingestion and

generation, 376
importing, 376
import statement, 378
index home page, 381
langchian_func.py, 378
load_into_vectordb

function, 378
OpenAI API key, 375
persistent storage, 379
requirement.txt file, 375
res variable, 381
routes, 379
send_query, 381

s3_functions.py, 375
success page, 382
texts parameter, 377
upload route function, 378
vector database, 377

Reward model training, 140
RLHF, see Reinforcement learning

through human
feedback (RLHF)

RMSPorp, 40
RNNs, see Recurrent neural

networks (RNNs)
Roadmaps, 301
Robotic automation

technology, 139
ROC, see Receiver Operating

Curve (ROC)
ROUGE, see Recall Oriented

Understudy for Gisting
Evaluation (ROUGE)

Rule-based matching
techniques, 190

RunnableParallel, 210
RunnablePassthrough

interface, 211

S
S3 buckets, 357, 361, 364, 367,

368, 374–383
SCM, see Source code

management (SCM)
Seasonality, 295
Self-attention mechanism, 100–102

INDEX

443

Self-routing, 404, 423, 424
Semantic search systems, 191, 192
Sensor degradation/changes, 296
Sentence completion algorithm, 32
Sentiment analysis, 49, 64, 67,

257, 405–407
Sequence learning problems,

85, 87, 110
Sequence modeling, 84
Sequence-to-sequence models, 132
Sequential model, 38
Serverless vector databases, 195
S3 event notifications, 369
SGD, see Stochastic gradient

descent (SGD)
SHAP, see Shapely addditive

explanations (SHAP)
Shapely addditive explanations

(SHAP), 289–292
Shop data inventory, 43
Shots, 184
Sigmoid neuron, 29–31
Silhouette Score, 45
Similarity metrics, 207
Singular value decomposition, 415
Sinusoidal functions, 111
Skipgram, 74
SLMs, see Small language

models (SLMs)
Small language models (SLMs),

403, 409
Smart devices, 409
Social media trends, 296
Softmax activation neurons, 78

Softmax function, 36, 38, 86,
96, 97, 107

Soft voting, 11
Source code management

(SCM), 161
Spacy

coding, 57
discrepancies, 59
document, 56
insights, 57
review, 56
tokenization, 58
websites, 55

Special characters, 61
Specificity, 25
SQuAD, see Stanford Question

Answering
Dataset (SQuAD)

Stacking, 18–20
Standardization, 108
Stanford Question Answering

Dataset (SQuAD), 232, 320
Statistical inference, 2
Statistical tests, 296
Stemming, 63, 64
Stochastic gradient descent

(SGD), 38
Stochastic policy, 135, 137
Stock prediction algorithm, 32
Stopwords, 66
Stream_consume function, 395
Streaming, 383, 384
Subword tokenization, 68
Supervised learning task, 133

INDEX

444

Supervised models, 43
Supervised pretraining, 140
Support vector

machine (SVM), 219
SVM, see Support vector

machine (SVM)
System manuals, 157

T
Tanh activation function, 31, 32
Temperature, 146
TensorFlow, 36–38, 111, 411
Term frequency-inverse document

frequency (TF-IDF), 73
Test dataset, 420
Text applications, 49
Text classification, 49
TFAutoModel, 117, 121, 124
TF-IDF, see Term frequency-

inverse document
frequency (TF-IDF)

Threshold function, 28–30
TN, see True negatives (TN)
Tokenization, 58

defined, 67
NLTK, 69
types

character, 68
subword, 68
word, 67

vectorization and
embedding, 69–72

Tokens, 67

Top P, 146
TP, see True positives (TP)
Traditional AI evaluation

techniques, 219
Traditional computer

programming vs. machine
learning, 3

Traditional databases
data structures, 189
embedding algorithm, 191
features, 195
indexing, 189, 190
semantic search, 191, 192
steps, 191
user search queries, 191

Traditional modeling, 408
Train dataset, 420
Training arguments, 421
Training phase, 321
Transformers

architecture, 102, 103, 216,
232, 409

groundbreaking concept, 102
HuggingFace (see HuggingFace)
multi-head self-attention,

104–106
normalization, 107–110
point-wise feed-forward

networks, 107
positional embedding, 110–112

Translation, 49
Tree of thoughts

prompting, 186–188
True negatives (TN), 21

INDEX

445

True positives (TP), 21–23
Truncation, 119
Trust region, 141

U
UK Data Protection Act, 301
Unicode characters, 59, 60
Unicodedata library, 60
Unit tester, 231
Unsupervised learning, 43, 44
Unsupervised models, 43

V
Value projection vector, 97
Value vector, 100
Vanishing gradient, 31, 32
Vanishing gradient problem, 89
Vector databases, 188

corrective RAG, 227
HNSW, 193, 194
ingest and load

function, 377
libraries, 340
Neo4j, 361
OpenAI API key, 340
printer.pdf processing, 341
querying, 378
similarity measures, 195–197
steps, 340
traditional databases, 189–192
working principles, 193

Vectorization, 69–72
Virtual LLM (vLLM)

description, 281
installation steps, 282–284
prerequisites, 282

Vision applications, 49
vLLM, see Virtual LLM (vLLM)
Voting classifier, 10–14, 18

W
Webhooks, 329, 369
Weight matrix, 101, 104, 414, 415
Werkzeug, 179
Wikipedia, 116, 320
Word2Vec model, 74
Word-based analysis, 70
Word Mover Distance, 65
WordNet, 64
WordNetLemmatizer, 64
Word tokenization, 67
Write gate, 90

X, Y
XAI, see Explainable AI (XAI)
XML, 359

Z
Zero shot prompting, 146
Zookeeper, 386
Z-score normalization, 108

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Machine Learning Primer
	The Origins of Machine Learning
	Linear Regression
	Decision Tree
	Ensemble Methods
	The Case of the Late Night Burglar
	Voting Classifier
	Bagging and Pasting
	Random Forest
	Boosting
	Ada Boost
	Gradient Boosting

	Stacking

	Metrics
	Accuracy
	Precision
	Recall
	Confusion Matrix
	ROC AUC
	Mean Squared Error

	Deep Learning
	Sigmoid Neuron
	Problems with Sigmoid Neuron
	Tanh
	Vanishing Gradient Problem
	ReLU
	Leaky ReLU

	TensorFlow and Keras
	Optimizers
	SGD
	Momentum-based SGD
	Adagrad
	RMSPorp
	Adam

	Unsupervised Learning
	K-Means Clustering Algorithm
	Associative Rule Mining
	Dimensionality Reduction

	Summary

	Chapter 2: Natural Language Processing Primer
	Steps for an NLP Task
	Data Gathering
	NLTK and Spacy
	Cleaning Data
	Removing Accented and Unicode Characters
	Removing HTML Characters
	Removing Special Characters
	Lowercasing
	Stemming
	Lemmatization
	Expand Contractions
	Stopword Removal

	Tokenization
	Types of Tokenization

	Vectorization and Embedding
	Count Vectorization

	Model Selection, Training, and Evaluation
	Deep Learning in Natural Language Processing
	Pretrained Embeddings
	Summary

	Chapter 3: RNN to Transformer and BERT
	Sequence Modeling
	Recurrent Neural Networks
	Problems with Vanilla RNN
	LSTM
	Gated Recurrent Units (GRUs)

	Attention
	Encoder-Decoder Models
	Self-Attention
	Transformers
	Multi-Head Self-Attention
	Point-Wise Feed-Forward Networks
	Layer Normalization
	Scaling
	Batch Normalization
	Layer Normalization

	Positional Embedding

	BERT
	Masked Language Modeling
	Next Sentence Prediction

	HuggingFace Transformers
	TFAutoModel
	DistilBERT

	Summary

	Chapter 4: Large Language Models
	Language Models (LLMs)
	Masked Language Modeling
	Sequence-to-Sequence Models
	Autoregressive Models
	GPT

	Reinforcement Learning
	OpenAI Gym
	Reinforcement Learning Through Human Feedback
	Instruct GPT
	OpenAI
	Prompting
	Temperature
	Top P
	Frequency Penalty and Presence Penalty
	Stop Sequences
	Maximum Tokens

	OpenAI API
	Create Your API Key
	Setting Up Postman
	Handling Rate Limits
	LLM API Best Practices
	Common Issues

	The IT Assistant
	Preparing the Database
	Preparing the Backend and Orchestration Layer
	Creating a Python File
	Creating Microservices

	Mission Accomplished
	Summary

	Chapter 5: Retrieval Augmented Generation
	Prompt Engineering
	Chain of Thought Prompting
	Tree of Thoughts Prompting

	Vector Databases
	Disadvantages of Traditional Databases in Intelligent Applications
	How Vector Databases Work
	Hierarchical Navigable Small Worlds (HNSW)
	Similarity Measures

	LangChain
	LLM Development Lifecycle
	A Bare Minimum Chatbot Using LangChain

	Building Your First RAG Application
	Summary

	Chapter 6: LLM Evaluation and Optimization
	The Need for LLM Evaluation
	LangGraph
	Hallucinations
	LLM as a Judge
	Corrective RAG

	Benchmarking
	MLFlow
	MLFlow for Scikit-Learn Models
	Setting Up Data-Gathering Modules
	Hyperparameter Tuning

	The Complete Intelligent Application with MLFlow Tracker
	train.py
	index.py
	index.html
	run_model.html
	requirements.txt

	Dockerfiles
	Dockerfile_mlflow
	docker-compose.yml

	Tracking LLM and Generative AI Applications
	Preparing Custom Generative AI Evaluation Metrics Using MLFlow

	Portkey
	Creating an Account
	Using Portkey in Your Code
	Load Balancing
	Caching

	vLLM
	Prerequisites
	Steps to Install

	Summary

	Chapter 7: AI Governance and Responsible AI
	AI Fairness
	Explainable AI
	SHAP
	LIME

	Drift
	Model Drift
	Data Drift
	Drift Detection

	AI Regulations
	LLM and Prompt Governance
	Langfuse
	Prompt Governance Using Langfuse

	Summary

	Chapter 8: Adding Intelligence to Large Enterprise Applications
	A Typical Chatbot
	The Need for AI Architecture
	Experimentation Environment
	The Intelligent IT Assistant
	The Enterprise CRM
	Setting Up HubSpot
	Setting Up HubSpot Private App for REST API integration

	Setting Up the Knowledge Repository
	Agents
	Building the Bot
	Setting Up the Vector Database
	Developing Agents in LangChain

	Summary

	Chapter 9: Data Pipelines in Generative AI
	A Closer Look at Data
	File Formats
	JSON
	CSV
	XML
	Avro and Parquet

	Data Models and Data Storage
	Data Processing Systems
	The Data-Intensive AI Assistant
	Setting up MinIO
	Upload File Application
	RAG from an S3 Bucket
	Apache Kafka for Streaming
	Apache Kafka in Python

	Using Data Pipelines in AI Assistant

	Summary

	Chapter 10: Putting It All Together
	Option 1: Minimizing Cost while Maximum Efficiency
	Determining Optimal Intelligence
	Adding Further Analytics to AI Assistant Dashboard
	Training Data
	Model-Building Capability
	Model Maintenance and Retraining

	Small Language Models
	Phi 3.5

	Option 2: Getting the Best Performance with the Same Cost
	Fine-Tuning Large Language Models
	Parameter Efficient Fine Tuning (PEFT)
	Low Rank Adaptation (LoRA)
	Implementing PEFT LoRA in Python
	“With Great Power Comes Great Responsibility!”

	Long Context LLM and RAG
	Self-Routing

	Summary

	Index

