
Machine Translation: Technologies and Applications
Series Editor: Andy Way

Peyman Passban
Andy Way
Mehdi Rezagholizadeh   Editors

Enhancing LLM 
Performance
Efficacy, Fine-Tuning, and Inference 
Techniques

Passban · W
ay · 

Rezagholizadeh   Eds.
Enhancing LLM

 Perform
ance



Machine Translation: Technologies and 
Applications 

Volume 7 

Editor-in-Chief 

Andy Way, ADAPT Centre, Dublin City University, Dublin, Ireland 

Editorial Board 

Sivaji Bandyopadhyay, National Institute of Technology Silchar, Silchar, India



This book series tackles prominent issues in MT at a depth which will allow these 
books to reflect the current state-of-the-art, while simultaneously standing the test of 
time. Each book topic will be introduced so it can be understood by a wide audience, 
yet will also include the cutting-edge research and development being conducted 
today. 

Machine Translation (MT) is being deployed for a range of use-cases by millions 
of people on a daily basis. Google Translate and Facebook provide billions of trans-
lations daily across many languages. Almost 1 billion users see these translations 
each month. With MT being embedded in platforms like this, available to anyone 
with an internet connection, one no longer has to explain what MT is on a general 
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much smaller. 
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Many of the most significant recent advances in AI, such as sequence-to-sequence 
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during which MT system design has changed considerably. While standalone NMT 
systems are still built, MT in current AI frameworks often no longer depends on 
parallel source-target data, reflecting a major shift in how translation systems are 
developed. 

This broader context also explains why a book on efficient large language models 
appears in this series as its final volume. Though not strictly MT, LLM efficiency 
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larger, general-purpose AI systems, so MT practitioners as well as AI generalists 
will benefit considerably from this volume. 
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Foreword 

This is the final book of six I am editing in the Machine Translation: Technologies 
and Applications series (https://www.springer.com/series/15798) which I agreed to 
co-edit back in 2016, following an approach by Jolanda Voogd, my Springer contact 
at the Machine Translation journal. 

When I first proposed this to Springer, the series was to “tackle prominent issues 
in MT today at a depth which will allow these books to reflect the current state-of-
the-art, while simultaneously standing the test of time”. Fortunately, Springer agreed 
to commission the series, and to date, the first five books in the series are as follows:

• Translation Quality Assessment (2018): Joss Moorkens, Sheila Castilho, Federico 
Gaspari, & Stephen Doherty (eds.)

• A Neurolinguistic Solution to Ambiguity and Complexity in Machine Translation 
(2018): Bernard Scott

• Explorations in Empirical Translation Process Research (2021): Michael Carl 
(ed.)

• Towards Responsible Machine Translation: Ethical and Legal Considerations in 
Machine Translation (2023): Helena Moniz & Carla Parra Escartín (eds.)

• Sign Language Machine Translation (2024): Andy Way, Lorraine Leeson and 
Dimitar Shterionov (eds.) (forthcoming) 

The first four of these have come out, and at the time of writing, have already 
been accessed over 85,000 times. By far the most popular to date is the book by 
my colleagues Joss Moorkens et al., as whatever paradigm is in vogue––as well 
as whether MT is being used at all––the ability to tell whether translations are any 
good is crucial. Importantly, being able to inspect translations and report precisely on 
why they are insufficient is of great importance. Bud Scott’s book came out around 
the same time, and as it inspects the neurolinguistic assumptions underpinning the 
Logos MT system, it remains relevant for today’s almost entirely neural models. 
Michael Carl’s volume inspects MT as part of the overall translation process. Given 
the ubiquity of MT nowadays, and knowing first-hand from my days in industry what 
a disruptive technology MT is, the papers in this book will remain relevant for years. 
The topics tackled in Helena and Carla’s book are hugely important, increasingly
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vi Foreword

so, as we see a greater focus on how AI applications can be built and deployed ‘for 
good’. Since the book was published, we have seen the publication of the AI Act in 
Europe, with more vigilance and no doubt legislation to come globally, so the writing 
of this book was hugely prescient, as we all seek to see AI being used responsibly. 

The 5th book on sign language MT is about to come out. It is all too easy these days 
for people to talk about AI applications being ‘solved problems’, but today’s tech-
nology is so dependent on data being available that it is only when one works on a topic 
where data is extremely scarce that one can see immediately how foolish such claims 
are. As well as proponents of sign language MT, this volume is likely to appeal equally 
to anyone working in low-resource applications, especially in language processing. 

It is easy to see a common thread between the previous five books, but at first 
glance, the reader may struggle to see the significance of this book in the series, so let 
us try to explain. Firstly, all three editors have a profound interest in MT. Secondly, 
many of the breakthroughs in AI have come initially from MT; a brief literature 
review will reveal that many groundbreaking papers, such as the well-known Seq2Seq 
paper by Sutskever et al., the Encoder–Decoder paper from Cho et al., the famous 
Attention paper by Bahdanau et al., and the hugely influential Transformer paper 
by Vaswani et al. were either proposed directly for MT or extensively tested on 
it. This highlights the critical role that the MT community plays in shaping next-
generation solutions in the field. The complexity of MT, which involves handling (at 
least) two different languages with independent data distributions and bridging the 
space between them, is so high that investigating these issues can provide valuable 
inspiration for addressing other NLP challenges. Moreover, while large datasets with 
billions of tokens are now common, historically, MT was one of the few ML tasks 
with millions of training samples (the English–French corpus of WMT in 2014, a 
decade ago, includes over 40 million parallel sentences according to https://aclant 
hology.org/W14-3302.pdf), while back then other NLP datasets only provided a few 
hundred or thousands of samples. Improvements in quality have led to an increased 
focus on efficiency and effectiveness within the MT community. For example, n-
gram language models, which were large even in earlier times (with billions of 
parameters according to https://aclanthology.org/J92-4003.pdf), required efficient 
implementations, motivating the community to prioritize performance and efficiency 
early on. 

Accordingly, this volume aims to move beyond translational detail and explore 
language understanding and network training much more from an engineering stand-
point. In this volume, we dissect the underlying architecture of AI models, viewing 
them through an engineering lens. Availing of the range of techniques expounded in 
this book will benefit any practitioners using LLMs, including multilingual versions 
for translation. 

At the time the series was commissioned, I boldly informed Springer that “there 
are, in fact, very few books published on Machine Translation in particular, or Trans-
lation more generally. Accordingly, there is no competition for the intended series 
in this space.” MT is not a solved problem, so it is terrific to see that there have been 
many books published on the topic recently, including:

https://aclanthology.org/W14-3302.pdf
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• Translation Project Management (2022): Callum Walker
• The Human Translator in the 2020s (2023): Gary Massey, Elsa Huertas-Barros, 

David Katan (eds.)
• Translation Tools and Technologies (2023): Andrew Rothwell, Joss Moorkens, 

Maria Fernández Parra, Joanna Drugan, Frank Austermuehl
• Using Technologies for Creative-Text Translation (2023): James Luke Hadley, 

Kristiina Taivalkoski-Shilov, Carlos S. C. Teixeira, Antonio Toral (eds.)
• Translation Ethics (2023): Joseph Lambert
• Computer-Assisted Literary Translation (2023): Andrew Rothwell, Andy Way, 

Roy Youdale (eds.)
• Automating Translation (2024): Joss Moorkens, Andy Way, Séamus Lankford 

(forthcoming)
• Localization in Translation (2024): Miguel A. Jiménez-Crespo
• Working as a Professional Translator (2024): JC Penet 

Hopefully, then, more and more people will be inspired by what they have read and 
will want to work in this most interesting of all applications ... and this book will 
help them do so more efficiently! 

Finally, I’d particularly like to thank Springer for trusting me in a number of roles 
for the past 20 years: as Book Review Editor and subsequently Editor of the Machine 
Translation journal, which ran until 2021; and thereafter with the stewardship of this 
series. Hopefully the journal and these books have demonstrated some value to the 
MT community. I’d also like to thank my DCU colleagues Joss, Sheila and Federico, 
ex-DCU colleagues Carla, Stephen and Dimi, my host in the beautiful city of Lisbon 
and current EAMT president Helena, my ADAPT colleague Lorraine, and my old 
EBMT colleague Michael, as well as Bud, for all their hard work in putting these 
volumes together. As they will be able to testify (albeit with gritted teeth!), I have 
read every word, corrected a few and made changes to others, but they were very 
much responsible for getting together the content that you have had the privilege of 
reading. Around ten years ago, when I returned to DCU to set up ADAPT, I was  
very fortunate that my colleague at the time Qun Liu had assembled a fantastic array 
of Ph.D. talent, which he very generously offered to me to co-supervise. One of those 
students was Peyman, who a few years after graduating I convinced to edit a volume 
on AI approaches to MT and NLP. No differently from how we was as a PhD student, 
together with Mehdi, he did this with boundless enthusiasm and extreme efficiency; 
I was again fortunate to be invited by them to help co-edit this volume, so thanks to 
both Peyman and Mehdi for the opportunity to work on this, my last book. 

But my time is now up, and it’s over to the younger generation, including Peyman 
and Mehdi, to pick up the gauntlet and take the subject forward, as I quietly slip away 
into retirement. With people like them and Helena at the helm, the field is in very 
safe hands indeed. Springer wish for this series to continue, so we all look forward 
to future volumes building on what has been produced to date. 

Dublin, Ireland 
July 2024 

Andy Way



Preface 

This book provides an in-depth investigation of the dynamic world of large language 
models (LLMs), which are revolutionizing various facets of research and application 
within the fields of deep learning, natural language understanding, medical image 
analysis, predicting the properties of proteins, understanding language acquisition, 
and many others. We have observed that LLMs not only represent a hot topic but 
signify a potentially fundamental paradigm shift, one which may lead to the dawn of 
a new era of research and so merits significant attention. These models pose unique 
challenges due to their scale, requiring unconventional training and data collection 
approaches that differ from traditional methods. 

Beyond basic language processing, LLMs offer expanded capabilities that warrant 
further exploration. This broadens their utility and introduces additional challenges, 
particularly concerning their operation as intelligent agents. Questions of privacy, 
security, and ethical usage are paramount and highlight the distinct nature of these 
models compared to their predecessors. It is these differences and the need for a 
comprehensive understanding that inspired us to compile this book. 

This year, following the third annual workshop on Efficient Natural Language and 
Speech Processing,1 we recognized the opportunity to transform some of the work-
shop’s content into a published format for the benefit of the broader community. 
We realized that researchers provide small but vital techniques to train, fine-tune, 
optimize, and accelerate LLMs. These incremental but crucial innovations often 
bypass the traditional publication process, where a theoretical method is enshrouded 
in a lengthy paper accompanied by an extensive literature review. Instead, today’s 
researchers lean towards presenting engineering solutions and diving directly into 
the main techniques without much preliminary exposition. We felt it important that 
this evolving approach be documented in a book, and one which could appear as 
quickly as possible in this fast-moving area, so that other practitioners could benefit 
from the range of techniques contained herein. By doing so, we not only preserve 
the ingenuity of contemporary researchers but also provide a reliable resource for 
more traditional learners yet wish to access cutting-edge material. This ensures that

1 https://neurips.cc/virtual/2023/workshop/66532 
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valuable practical insights are captured and made accessible to a wider audience. 
Additionally, by documenting these insights, we make sure that the engineering 
claims align with the scientific standards and expectations of the research commu-
nity. This balance enhances the credibility of the techniques presented and fosters a 
more robust dialogue between developers of practical applications and researchers 
interested in adding to our theoretical understanding of how these models work, and 
how they can be made to work more effectively. 

The main theme of this book is efficiency and the pivotal topic is “scale”. More 
specifically, in this volume, we aim to examine the reasons behind the substantial size 
of LLMs, investigate the intricacies of their design and the consequent implications. 
We will discuss the formidable challenges they pose, as well as the unprecedented 
opportunities they offer. The discussion extends to various technical considerations 
such as model training, selection of data sets, and the architecture of LLMs. In the 
first introductory chapter, we lay out a roadmap for the journey ahead, detailing 
what readers can expect from each subsequent section and chapter of the book. 
Additionally, we provide the basic fundamentals necessary to understand LLMs, 
ensuring that regardless of their prior knowledge, readers have a solid foundation 
from which to explore more advanced concepts throughout the book. The following 
chapters will not shy away from (sometimes quite deep) detail, as dissecting the 
intricacies of LLMs is critical to aid understanding of this new paradigm. 

This book adopts a direct and focused approach, intentionally putting slightly 
less weight on traditional literature review and background exposition to immedi-
ately engage with proposed techniques and relevant details. It is crafted for a diverse 
audience, including students, practitioners, and both junior and senior scientists and 
engineers, whether in academia or industry. Designed to cater to a broad spectrum of 
readers, it ranges from those seeking detailed technical insights into the workings of 
LLMs to those interested in understanding the broader implications of these models in 
practical and theoretical contexts. By maintaining a careful balance between in-depth 
technical explanations and overarching discussions, this book aims to be both acces-
sible and valuable, swiftly moving to enrich the reader’s knowledge and appreciation 
of LLMs without presupposing extensive prior knowledge of the field. 

Toronto, Canada 
Toronto, Canada 
Dublin, Ireland 
May 2024 

Peyman Passban 
Mehdi Rezagholizadeh 

Andy Way
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Chapter 1 
Introduction and Fundamentals 

Peyman Passban, Mehdi Rezagholizadeh, and Andy Way 

Abstract In this chapter, we explain the intricacies of language modelling, focusing 
on the evolution from statistical models to the sophisticated large language models 
(LLMs) that dominate the field today. We explore the transition from n-gram 
models to neural network-based approaches, highlighting key advancements such as 
Word2Vec, ELMo, BERT, and the Transformer architectures. The chapter emphasizes 
the significance of scale in LLMs, discussing how increased model size enhances 
their capabilities, including context understanding and emergent behaviour. We also 
address the challenges associated with pre-training and fine-tuning these models, 
providing insights into data requirements, structural adaptations, and the implica-
tions of scaling laws. Finally, we examine the impact of model scale on predictive 
mechanisms and the tendency for hallucinations, proposing potential solutions to 
mitigate these issues. 

1.1 Language Modelling 

Language modelling is simply a task of computationally modelling a language, which 
is achieved through predicting the next word or sequence of words in a piece of text. 
This foundational technique underpins a wide range of applications, including text 
generation and speech recognition. Though the concept of language modelling is not 
new, it has undergone significant evolution from its origins. Initially, the field relied on 
statistical models such as n-gram models (Pauls and Klein 2011),  which used fixed-
size sequences of words to predict the likelihood of subsequent text continuations. 
These early models laid the groundwork for the more complex approaches. However, 
they were limited in their ability to capture contextual nuances. Thus, the evolution 
continued with the introduction of neural network-based approaches, notably through

P. Passban (B) · A. Way 
ADAPT Centre, School of Computing, Dublin City University, Dublin, Ireland 
e-mail: peyman.passban@adaptcentre.ie 

M. Rezagholizadeh 
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4 P. Passban et al.

the pioneering work of Bengio et al. (2003), Collobert and Weston (2008), and 
technologies like Word2Vec (Mikolov et al. 2013). 

More neural models have been proposed with different flavours and function-
alities, such as recurrent models (Mikolov et al. 2010) and memory-based archi-
tectures (Sundermeyer et al. 2012) to improve context retention. Note too that 
by their very nature, these models dealt with just a single language, and so were 
restricted to monolingual applications. However, simply adding words and phrases 
from different languages allowed language models (LMs) and today’s large language 
models (LLMs) to become multilingual (MLLMs), so that the same basic approach 
can be used for multilingual applications like machine translation (MT). 

Building upon this progress, Bahdanau et al. (2015) had introduced the concept 
of “attention” to the recurrent architectures, where “a natural line of investigation 
was to see whether attention could do most of the heavy lifting" of context learning 
by itself (Moorkens et al. 2024, Chap. 4). That also enabled innovations such as bidi-
rectional models (Rahman et al. 2021). The introduction of more advanced context-
based models like ELMo (Peters et al. 2018) and BERT (Devlin et al. 2019) further 
revolutionized the field by enabling even deeper understanding and processing of 
linguistic context. The most significant breakthrough came with the development of 
the Transformer architecture (Vaswani et al. 2017) (see Chap. 2, Sect. 2.2.1 for a tech-
nical description). Its natural capability to parallelize computations, the self-attention 
mechanism, and other unique features such as tensor normalization modules allowed 
models to weight the importance of different words within a sentence and learn more 
about the context, all while allowing the use of much simpler feed-forward neural 
networks. 

LLMs are firmly rooted (Brown et al. 2020a) in the Transformer paradigm, basi-
cally being deep, large Transformers. However, recent discussions surrounding LLMs 
signal a transformative leap rather than a simple extension of these models, which 
is the main theme of this chapter. From a different point of view, a more balanced 
perspective is also conceivable, as discussed by Way (2024) and further explored in 
Chap. 11 of this volume. 

LLMs differ fundamentally not merely due to their size but because of the emer-
gence of distinct features that become prominent at such scales. Their vast capacity 
allows for an extensive encapsulation of human knowledge and context, markedly 
setting them apart from their predecessors. This capacity enables extraordinary capa-
bilities that were previously unattainable, prompting researchers to consider not just 
the models themselves but also the ecosystems in which they operate. This holistic 
view highlights the unique nature of LLMs, as they interact with and adapt to their 
computational and data environments in ways that smaller models cannot. 

One development that emerged with the increasing scale and size of models was 
the concept of pre-training on vast datasets (Devlin et al. 2019). This pre-training 
allows the models to function as general-purpose tools, capable of adapting to a wide 
range of possible future applications. When specific needs arise, these models can be 
fine-tuned with relatively little effort to become specialized tools tailored to precise 
tasks. This process enhances their versatility and efficacy in various contexts.
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To understand the training and fine-tuning of these models, it is essential to 
recognize that the mathematical principles underlying the training of LLMs are 
akin to those of earlier models, though applied at a much larger scale. Typically, 
an LLM operates by predicting the next word in a sequence based on the history 
of previous tokens. The mathematical formulation for next-word prediction can be 
simply expressed as in Eq. (1.1): 

P(wn+1|w1, w2, ..., wn) = Softmax(f (w1, w2, ..., wn)) (1.1) 

where wn+1 is the next word to be predicted and w1, ..., wn denote the previous 
words in the sequence. The function f embodies the transformations computed by 
the model’s architecture to predict the probability of wn+1 facilitated by a Softmax 
layer that normalizes the outputs to ensure they represent valid probabilities. 

The concept may seem simple–it is just next-word prediction–yet there are many 
debates about whether this is sufficient for sophisticated language understanding. 
However, experimental results demonstrate that this straightforward approach works 
quite effectively. Again, the secret lies in the scale. Through this technique, the 
model has a chance to predict the probability of billions or even trillions of words, 
which helps it form an internal representation of its world and capture the nuances 
of language with remarkable accuracy on the whole, given the simplicity of the 
approach. 

It should be noted that it is not entirely accurate to claim that next-word predic-
tion is the only method for training language models. Researchers have proposed 
various alternatives, such as masked language modelling, next sentence prediction, 
and permutation language modelling (Yang et al. 2019). These different approaches 
have significantly contributed to the community’s understanding and advancement 
of language modelling techniques. Nevertheless, it must be acknowledged that, at 
present, next-word prediction has been demonstrated to be the most effective method 
among these options for achieving sophisticated language understanding capabilities. 

Pre-training neural models at scale is extremely challenging and demands special-
ized strategies. These challenges and potential remedies will be discussed in subse-
quent chapters. The pre-training phase must ensure that models are exposed to a 
vast amount of data, learn from this data effectively, avoid catastrophic forgetting, 
and utilize resources efficiently. Achieving these objectives is crucial for developing 
high-quality models capable of supporting the backbone of language understanding 
(and other) applications. 

However, these generic models might not be sufficiently accurate or domain-
specific for certain tasks, necessitating customized versions. This is where fine-tuning 
comes into play. Fine-tuning leverages the extensive language understanding of pre-
trained LLMs and adapts them for specialized applications using relatively small 
labeled datasets. This process enhances the model’s performance on specific tasks 
while retaining the general knowledge acquired during pre-training. 

More formally, fine-tuning adapts the LLM to perform specific tasks using labeled 
datasets. This involves supervised learning where the model parameters are adjusted
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to minimize the loss for a particular task, such as sentiment analysis, MT, or question 
answering. 

For auto-regressive (AR) language modelling, the objective is to maximize the 
likelihood of the next token given the previous tokens (very similar to the pre-training 
phase), as formulated in Eq. (1.2): 

LAR = −  
N∑

n=1 

log P(wn|w<n; θ) (1.2) 

where θ is the set of model parameters and the prediction of wn relies on its preceding 
words. For masked language modelling (MLM) the criterion is slightly different that a 
masked token is predicted based on the context information gathered from unmasked, 
context words ( m̂), as shown in (1.3): 

LMLM = −
∑

m 

log P(wm|w m̂; θ) (1.3) 

A model can also be optimized on a task-specific dataset during fine-tuning, as shown 
in (1.4): 

LCL = −
∑

(x,y) 

log P(y|x; θ) (1.4) 

where x is the input (a sequence of representations of words) and y is an associated 
label defined by that specific classification task. Model fine-tuning is not limited to 
these methods, and any strategy that can inject in-domain knowledge to LLMs could 
be considered as a fine-tuning method. Radford et al. (2018) illustrated this concept 
very well from the perspective of a range of different tasks, so is worth consulting 
for newcomers to the field. 

1.2 The Scale Factor in LLMs 

When discussing the scale factor in LLMs, it is essential to understand how it funda-
mentally influences their capabilities and behaviours. The term “large” does not 
only refer to the scale but consists of a range of aspects that collectively enhance the 
model’s performance and applicability. To illustrate, GPT-3 has 175 billion parame-
ters (Brown et al. 2020a), or PaLM is even a larger model with 540 billion parameters, 
3x the size of GPT-3 (Chowdhery et al. 2023a), and these are not the largest models 
on the market; Google have already released a solution with a capacity to train the 
first trillion-parameter model (Fedus et al. 2021).
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To put these advancements into perspective, it is useful to compare them with 
earlier models. The BERT model, that was not so long ago referred to as the state-
of-the-art model for many natural language processing (NLP) tasks, contains 330 
million parameters (Devlin et al. 2019), while GPT-2, another significant model, has 
1.5 billion parameters (Radford et al. 2019). Although these models were revolu-
tionary at their time, their parameter count pales in comparison to those of recent 
models. These figures are not just substantial statistics; they represent the exten-
sive capacity of LLMs to learn and generate information. The enormous number of 
parameters enables LLMs to absorb so much information such that leads to emer-
gent behaviours that smaller models cannot exhibit. Nevertheless, not all behaviour 
is entirely positive. In Chap. 11, we discuss related issues of the negative impact of 
huge electricity consumption and CO2 emissions, as well as approaches like knowl-
edge distillation used in Chap. 8 to reduce these effects without significantly adverse 
effects on performance. 

The scale of LLMs extends beyond the number of parameters. For instance, PaLM 
is pre-trained on a staggering number of 6144 TPU v4 chips (Chowdhery et al. 
2023a), highlighting the computational resources required for such models, or fine-
tuning of models like Flan-PaLM involved 473 diverse datasets (Chung et al. 2024), 
underscoring the breadth of data used for these models. Even we see the footprint 
of larger scales in the inputs to these models. OpenAI released GPT-4 Turbo with 
a 128K context window and Anthropic’s Claude 2.1 has a 200K context window.1 

The exponential increase in the size and complexity of LLMs reflects a broader trend 
where models demonstrate superior performance more and more across a wide range 
of tasks. 

At this point, it is evident that the first “L” in LLMs plays a key role but under-
standing why is crucial. The primary reason is the relationship between scale and 
performance. As discussed, when the scale of these models increases, researchers 
observe emergent behaviours that significantly enhance their capabilities. One of the 
most important findings is that LLMs exhibit improved context understanding as 
they grow larger. Brown et al. (2020b) visualized this concept very well, showing 
that the larger the GPT model, the higher the accuracy. Moreover, they demonstrated 
that larger models perform considerably better on zero-, one-, and few-shot learning 
tasks, meaning that the models find context to be beneficial. 

Recent research has shown that smaller models often suffer from saturation, where 
their performance drops and plateaus after a certain point in training. To overcome 
this, models must exceed a certain threshold in size to exhibit certain behaviours 
(Godey et al. 2024). A tangible example of this phenomenon can be observed when 
LLMs complete various types of text sentences. Not only do these sentences appear 
fluent and grammatically correct–an achievement in itself compared to conventional 
models–but they also provide semantically and factually accurate answers to complex 
questions. This dual capability (fluency and correctness) is a clear example of emer-
gent behaviour. These capabilities are particularly evident in complex applications

1 https://www.anthropic.com/news/claude-2-1. 

https://www.anthropic.com/news/claude-2-1
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such as coding,2 where the model’s output is both syntactically correct and contextu-
ally appropriate (note that this behaviour clearly goes beyond next word prediction 
or sentence completion). 

Another notable emergent behaviour in LLMs is step-by-step reasoning or the 
“chain-of-thought” (Wei et al. 2022) process. This concept refers to the model’s 
ability to break down complex problems into smaller, manageable steps and provide 
a detailed explanation of the reasoning process involved. As these models store 
vast amounts of information within their internal structures, to some extent they 
are capable of performing limited but significant forms of reasoning. This chain-
of-thought reasoning is remarkable because it enables the model to handle tasks 
that require logical progression and problem-solving skills. Furthermore, it allows 
LLMs to provide explanations for their answers, making them more transparent 
and interpretable. Users can follow the model’s ‘thought process’, understand the 
‘rationale’ behind its conclusions, and assess the validity of its ‘reasoning’. 

1.3 Implications of the Scale Factor in LLMs 

In the previous section, we showed that the scale of LLMs is not just a matter of 
having more parameters; it is a critical factor that enables them to perform tasks with 
unprecedented accuracy and sophistication. The emergence of advanced behaviours 
such as context understanding and chain-of-thought also demonstrate the importance 
of scale. However, this scale factor influences almost all aspects of LLMs, from model 
training, data ingestion, to many others. 

1.3.1 Data Complications 

The first significant impact of the scale is on data requirements. These models are 
exceptionally data-hungry, necessitating not only vast quantities of data but also 
diverse sets of data to ensure comprehensive training. To provide some context 
regarding the scale and variety of these datasets, consider the CommonCrawl dataset, 
C4, which has a size of 800GB (Raffel et al. 2020). Another CommonCrawl dataset, 
REALNEWs, is 120GB (Zellers et al. 2019). Wikipedia’s dataset comprises 21GB 
of content, while OpenWebText includes 38GB of Reddit data.3 These examples 
illustrate the complexity and magnitude of the data involved. 

A few years ago, even transferring such massive datasets to a cloud environment 
was a challenging task, let alone pre-processing, tokenizing, and training models with 
them. Today, these tasks have become more feasible, yet they remain non-trivial. For 
instance, fine-tuning Flan-PaLM involved using 473 datasets, covering 146 unique

2 https://github.com/OpenDevin/OpenDevin. 
3 https://skylion007.github.io/OpenWebTextCorpus/. 

https://github.com/OpenDevin/OpenDevin
https://skylion007.github.io/OpenWebTextCorpus/
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task categories and totaling 1836 tasks (Chowdhery et al. 2023). This process required 
extensive data cleaning, initiating numerous training cycles, collecting results, and 
continuously optimizing configurations. 

Access to such large-scale data is rarely feasible across all domains (see Way 
(2024) and Chap. 11 for more on this). Even when large datasets are available, adjust-
ments are often necessary to achieve ideal model performance. Research indicates 
that the ratio of different data sources directly influences model quality. Accordingly, 
getting this balance right is a complex engineering challenge rather than a straight-
forward data aggregation task. For example, “the influence of the source language 
in MT has long been known, but, a different kind of influence, namely that of the 
predominant language in the training set” (Way 2024), is starting to be clearly seen 
in the development of (M)LLMs (Moorkens et al. 2024; Naous et al. 2023). Thus, 
careful down- or up-sampling is often required to balance the data sources effec-
tively (Clark et al. 2020). Studies have shown that removing data sources with high 
heterogeneity, such as web pages, has a more detrimental impact on LLM abilities 
than removing more homogeneous sources, such as academic corpora. Additionally, 
ratio might not be the only element to consider. The order of different data instances 
can also significantly affect learning outcomes. This concept, known as “curriculum 
learning”, involves the adjustment of data proportions from different sources. The 
order in which data is presented plays a crucial role in in-context learning and can 
markedly influence the performance of LLMs (Liu et al. 2024). 

1.3.1.1 Data Quality and Availability 

Data complications are not only limited to technical aspects. Non-technical issues 
are also important, so we decided to create a dedicated section for them, rather 
than mixing them with technical matters or scattering them throughout the text. The 
previous discussion highlighted the significance of data applications and how their 
size and quality necessitate new approaches. However, accessing such large datasets 
is not always feasible. According to research4 from the European Language Equality 
project (Rehm and Way 2023), most European languages are in danger of digital 
extinction, with some even facing actual extinction. In this scenario, LLMs might in 
fact prove effective, as their zero- and few-shot learning capabilities allows the use 
of less data to achieve more. They can even help generate synthetic data for these 
languages, but is this always a viable solution? 

Thompson et al. (2024) recently demonstrated that a substantial amount of bilin-
gual data mined for training has been machine-translated, which “raises serious 
concerns about training models such as multilingual large language models on both 
monolingual and bilingual data scraped from the web”. Consequently, proper labeling 
and careful creation of these datasets are imperative. Another example noted by Way 
(2024) is that “Siddhant et al. (2022) cover ‘the Next 1000 Languages in Multilin-
gual Machine Translation’, but despite this promising title, they demonstrate that

4 https://european-language-equality.eu/. 

https://european-language-equality.eu/
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much data on the web attributed to certain languages is wrongly ascribed”. These 
examples reinforce the importance of the availability and quality of data, regardless 
of the technical complications. 

The process of dataset curation and collection is also profoundly affected. To 
gather large datasets, a significant portion (if not all) of the textual data available 
on the web must be harvested. This approach can potentially raise serious issues 
concerning intellectual property infringements, unauthorized access to data, and data 
leaks, among other concerns. While huge datasets are crucial for training (M)LLMs, 
this aspect also demands careful consideration and attention from researchers. The 
implications of data usage must be managed with strict protocols to prevent breaches 
of privacy and ensure ethical compliance. We recommend the work of Strubell et al. 
(2019), Leins et al. (2020), Bender et al. (2021), Birhane et al. (2021), and Carlini 
et al. (2021), as well as the contents of the edited volume by Moniz H, Escartin (2023), 
all of which extensively investigate such issues, the latter from an MT perspective. 

1.3.2 Structural and Architectural Adaptations 

Data is not the only factor impacted by the large size of these language models; the 
internal components of these models must also be adapted to handle the increased 
complexity and scale effectively. For instance, layer normalization was introduced 
in the seminal Transformer paper to cope with variance shift across layers. This 
technique helps stabilize the training process by normalizing the inputs to each layer, 
thereby maintaining consistency in the training dynamics. Following the introduction 
of layer normalization, several other techniques have been proposed to extend and 
improve upon this concept. For example, batch normalization is widely used in 
various neural network architectures. However, it struggles with variable length data, 
making it less suitable for NLP tasks. Consequently, layer normalization is often 
preferred for its ability to handle variable input lengths more effectively (Ba et al. 
2016; Xiong et al. 2020). 

To address some of the limitations of layer normalization, RMSNorm was intro-
duced as a faster alternative. RMSNorm simplifies the normalization process by 
using the root mean square (RMS) of the inputs instead of their mean and variance, 
leading to reduced computational overhead (Zhang and Sennrich 2019). Another 
significant advancement is DeepNorm, which aims to stabilize the training of deep 
Transformers. DeepNorm modifies the residual connections in the network, enabling 
Transformers to scale up to 1,000 layers without encountering the instabilities typi-
cally associated with deep networks (Wang et al. 2024). This innovation is crucial 
for training very large language models, which require deep architectures to capture 
complex language patterns. 

The proposed post-layer normalization (post-LN) in the vanilla Transformer, is 
not optimal for very large models. Thus, Transformers with pre-layer normalization 
(pre-LN) are more stable during training (Zhao et al. 2023; Minaee et al. 2024). 
Despite pre-LN performing worse in some scenarios compared to post-LN, it is
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often adopted in LLMs due to its training stability. These various LN techniques 
and adaptations highlight the evolving strategies used to manage the complexities 
introduced by scaling up language models. 

LN and similar aspects operate at the single-component level, but the interaction 
and integration of these components within a model are also significantly impacted 
by scale. A model with billions of parameters cannot fit into the memory of a single 
processor, necessitating specialized treatments. Handling such large volumes of data 
is a challenge that requires robust orchestration mechanisms. Motivated by these 
requirements, new techniques and solutions have been developed. Researchers have 
proposed data parallelism, which involves splitting the data across multiple proces-
sors while each processor runs the same model architecture. This approach allows the 
training of large models by distributing the workload of processing the data. Pipeline 
parallelism was introduced to distribute different layers of LLMs across multiple 
GPUs, enabling efficient utilization of hardware resources and reducing memory 
bottlenecks (Narayanan et al. 2019). 

Tensor parallelism is another significant advancement. This technique involves 
splitting the model’s parameters (tensors) across multiple devices, allowing each 
device to handle a portion of the model’s operations. Under these parallelism strate-
gies, methods such as ZeRO (Rajbhandari et al. 2020) were developed to opti-
mize memory usage by partitioning the model states across data-parallel processes, 
reducing memory redundancy. Several frameworks and tools have also been built 
to support these parallelism techniques. DeepSpeed (Rasley et al. 2020), an opti-
mization library, is one of them that provides efficient training of large models by 
incorporating ZeRO and other optimizations. JAX5 is a library for high-performance 
numerical computing that offers automatic differentiation and accelerates research 
by enabling hardware-accelerated machine learning. BMTrain6 is another training 
framework designed to handle large-scale models with efficient memory manage-
ment. FastMoE (He et al. 2022), a framework for training models with mixtures 
of experts, allows efficient scaling and utilization of multiple GPUs. vLLM (Kwon 
et al. 2023), an inference-time optimization library was designed to reduce latency 
and improve throughput. Internal components have also been fine-tuned to work 
better with these strategies. Flash Attention, for example, is an efficient attention 
mechanism that reduces memory usage and computation time, making it suitable 
for large models (Dao et al. 2022). LoRA was proposed to reduce the number of 
parameters needed for fine-tuning, thereby making the training of large models more 
feasible and efficient (Hu et al. 2022). Beyond these techniques, researchers have 
revisited common training techniques such as knowledge distillation (Xu et al. 2024) 
to train better LLMs and also transfer the knowledge from them to smaller, more 
deployable versions, to benefit from them in real-world applications, as well as being 
kinder to the planet (see Chap. 11 for more on this). 

The list of innovations in this field is extensive and continually growing, making 
it challenging to document them all comprehensively. However, the continuous

5 https://github.com/google/maxtext. 
6 https://github.com/OpenBMB/BMTrain. 

https://github.com/google/maxtext
https://github.com/OpenBMB/BMTrain
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development of new techniques and frameworks demonstrates the rapid pace of 
advancements in the training and optimization of LLMs. 

1.3.3 Predictive Mechanisms and Output Challenges 

As previously discussed, data aspects, training methods, and internal mechanics of 
these models were significantly impacted by their scale. However, the implications of 
scaling extend beyond technical adjustments. The way researchers and practitioners 
think about these models has also evolved. One pivotal concept that emerged is the 
conversations around scaling laws. Given the immense resources and time required 
to train a model over several months, it is imperative to have some assurance of 
its eventual success. Scaling laws provide a mechanism to predict the performance 
of larger models, helping researchers select more scalable architectures and plan 
resource allocation (Isik et al. 2024). This predictive capability mitigates the risk of 
investing time and resources into training models with uncertain outcomes. 

The large size of these models has also changed our expectations regarding 
their outputs. While we have extensively discussed inputs (data considerations) and 
internal components, we should also briefly mention the outputs of these models. 
LLMs possess extensive knowledge across a wide array of topics; however, the depth 
of this knowledge can vary, leading to the generation of inaccurate or misleading 
statements in some cases. These inaccuracies are often referred to as “hallucination” 
(Huang et al. 2023) or “confabulations” (Smith et al. 2023); these occur when models 
generate information that is plausible yet incorrect or not grounded in reality. 

The tendency of these models to hallucinate might stem from their fundamental 
design as next-word predictors. Although this mechanism enables them to learn a vast 
amount of information, there are no explicit processes to teach them reasoning skills, 
making hallucinations a likely consequence. Addressing this issue requires grounding 
model outputs in reality and developing methods to filter out inaccuracies. Techniques 
such as fine-tuning on domain-specific data (Jeong 2024), using external knowledge 
bases (Gao et al. 2024), and implementing post-processing filters (Clusmann et al. 
2023) are being explored to mitigate hallucinations and improve the reliability of 
model outputs. 

1.4 Conclusion and Next Chapters 

In this chapter, we have tried to cover the fundamentals of LLMs, specifically 
addressing the significance of the scale factor and its impact on these models and 
their surrounding environment. Our writing approach is slightly different than what 
is offered in scientific books; rather than providing exhaustive details, we present key 
concepts to a degree that ensures comprehension before moving on, and we inten-
tionally selected this style for our book. We recognize that the field is exceptionally
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vibrant, with a vast number of papers and readily accessible material available to 
readers. Therefore, we focus on the essentials, allowing readers to refer to other 
sources for more comprehensive information if they wish. For those interested in 
further study, we recommend two invaluable resources: the works of Gao et al. 
(2024) and Zhao et al. (2023). These comprehensive surveys on LLMs provide an 
excellent foundation for researchers in this field. 

In subsequent sections, we will concentrate on efficiency techniques, discussing 
how to run these models faster and more cost-effectively during inference, improve 
them during fine-tuning, and explore potential enhancements to their training or 
architecture. The book concludes with a section on efficiency techniques for smaller 
models. It is important to remember that LLMs are not the solution to every problem. 
Smaller models remain highly useful across various fields, and the principles of 
efficiency apply to them as well. Therefore, it is crucial to give due attention to 
both large and small models. Finally of course, even if in certain circumstances 
an LLM-based approach gives ostensibly ‘better’ results, if its ‘reasoning’ cannot 
be made absolutely explicit, many companies (especially multinationals operating 
in traditionally conservative sectors) will lean toward a less-performant but more 
explainable solution. 
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Chapter 2 
SPEED: Speculative Pipelined Execution 
for Efficient Decoding 

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Hasan Genc, 
Kurt Keutzer, Amir Gholami, and Yakun Sophia Shao 

Abstract Generative LLMs based on the Transformer architecture have recently 
emerged as a dominant foundation model for a wide range of Natural Language 
Processing tasks. Nevertheless, their application in real-time scenarios has been 
highly restricted because of the significant inference latency associated with these 
models. This is particularly pronounced due to the autoregressive nature of generative 
LLM inference, where tokens are generated sequentially since each token depends 
on all previous output tokens. It is therefore challenging to achieve any token-level 
parallelism, making inference extremely memory-bound. In this work, we propose 
SPEED, which improves inference efficiency by speculatively executing multiple 
future tokens in parallel with the current token using predicted values based on early-
layer hidden states. For Transformer decoders which employ parameter sharing, the 
memory operations for the tokens executing in parallel can be amortized, which 
allows us to accelerate generative LLM inference. We demonstrate the efficiency of 
our method in terms of latency reduction relative to model accuracy and demonstrate 
how speculation allows for training deeper decoders with parameter sharing with 
minimal runtime overhead. 

2.1 Introduction 

The Transformer neural network architecture has recently revolutionized NLP, 
providing massive accuracy gains across a range of tasks (Devlin et al. 2019; Brown  
et al. 2020). In particular, there has been growing interest in applying Transformer 
decoders for generative tasks (Radford et al. 2019, Raffel et al.  2020). Unlike Trans-
former encoders which can process an entire input sequence in parallel, Transformer 
decoders must be applied autoregressively at inference time as each input token 
depends on the output classification for the previous token. This means that they 
exhibit low arithmetic intensity and are typically memory bandwidth-bound (Park
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Fig. 2.1 From left to right: Floating-point operations (FLOPs), memory operations (MOPs), and 
end-to-end runtime on an A5000 GPU for an encoder-only model processing a sequence of 128 
tokens in parallel, and for a decoder-only model generating 128 tokens autoregressively. The encoder 
and decoder model architecture parameters were set as the parameters from the T5-Base decoder-
only model, which are provided for reference in Sect. 2.4.1. Although encoder and decoder inference 
have a similar number of FLOPs, the latency of autoregressive inference with a Transformer decoder 
is much greater due to the larger number of memory operations required. Profiling was performed 
using the Huggingface Transformers library (Wolf et al. 2020) 

et al. 2020, Kim et al. 2023). For small batch sizes (as is typical for edge deployment 
scenarios (Schuster et al. 2022)), it is extremely difficult to achieve any parallelism. 
As shown in Fig. 2.1, the limited parallelism leads to increased runtime with Trans-
former decoders relative to encoders, even for the same sequence length (Park et al. 
2020). In order to accelerate memory bandwidth-bound decoder inference, we must 
reduce the number of memory operations required. 

In this chapter, we aim to reduce the latency of memory bandwidth-bound decoder 
inference by employing speculative execution in order to process tokens at different 
positions in the sequence in parallel. When employing speculative execution, the 
forward passes for future tokens are started using speculative output values from 
earlier tokens. By starting future tokens, we can process them in parallel with 
finishing the forward passes for earlier tokens. If a prediction is later found to be 
wrong, we must invalidate all future inferences that were started based on the spec-
ulative output value from the incorrect prediction. By still following all iterations 
through to completion, we can ensure that full model accuracy is maintained.

On its own, speculative execution would not lead to performance benefits within 
a single network. As shown in Fig. 2.2b, different tokens in the sequence would need 
to be processed by different layers in the network at the same time, meaning that the 
number of memory operations (MOPs) required for performing inference would not 
be reduced (even assuming perfect prediction). Additionally, to support inference 
on low-resource edge devices, it is crucial to reduce the model’s memory footprint. 
Parameter sharing is a common method for model compression in Transformer 
networks (Lan et al. 2020, Reid et al.  2021). However, although it reduces the size 
of the network, parameter sharing does not typically provide significant speedup as 
the standard computation must still be performed for all layers in the network. Even 
if the inference is memory-bound, parameter sharing only reduces the number of 
MOPs required if the entire model fits in local cache memory, which is restrictive 
and hardware-dependent.



2 SPEED: Speculative Pipelined Execution for Efficient Decoding 21

Need to load parameters for 
all three layers at each stage 

Decoder 
Layer 1 

Decoder 
Layer 2 

Decoder 
Layer 3 

I 

went 

went 

went 

Decoder 
Layer 1 

Decoder 
Layer 2 

Decoder 
Layer 3 

went 

to 

Start next forward pass 
early using predicted value 

away 

to 

Decoder 
Layer 1 

away 

If prediction changes, 
flush and restart 

X 

Decoder 
Layer 1 

Decoder 
Layer 2 

Decoder 
Layer 3 

to 

the 

(a) Decoder Inference with Speculative Execution 

Decoder 
Layer 1 

Decoder 
Layer 2 

Decoder 
Layer 3 

I 

went 

Decoder 
Layer 1 

Decoder 
Layer 2 

Decoder 
Layer 3 

to 

Decoder 
Layer 1 

Decoder 
Layer 2 

Decoder 
Layer 3 

the 
Time 

Decoder 
Layer 1 

Decoder 
Layer 2 

Decoder 
Layer 3 

I 

went 

Decoder 
Layer 1 

Decoder 
Layer 2 

Decoder 
Layer 3 

to 

Decoder 
Layer 1 

Decoder 
Layer 2 

Decoder 
Layer 3 

the 

went 

to 

went 

to 

Same shared parameters 
for decoder layer 

(b) Speculative Pipelined Execution 
without Parameter Sharing 

(c) Speculative Pipelined Execution 
with Parameter Sharing (SPEED) 

Fig. 2.2 Outline of our method for speculative pipelined execution with parameter sharing. 
Diagram a shows how speculative values can be used to start later tokens, and how any incor-
rect predictions can later be corrected. Diagram b shows how this type of speculative execution 
allows us to pipeline inference, thereby achieving parallelism across the sequence length dimension. 
However, in a standard decoder, this doesn’t help reduce MOPs since we would now need to load 
different decoder layers for different tokens in the sequence. Diagram c shows how in networks 
with parameter sharing, speculative pipelined execution amortizes MOPs across the sequence length 
dimension, thereby allowing for efficient decoding (SPEED)
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In a network that employs parameter sharing, however, speculative execution 
allows us to amortize the memory operations required for the weight matrices across 
different tokens in the sequence. By employing speculative execution in networks 
with parameter sharing, we can pipeline inference, thereby reducing memory opera-
tions. Each pipeline stage corresponds to passing several tokens at different positions 
through the same set of linear layers (since the parameters for these linear layers are 
shared across decoder blocks). Our speculative execution approach therefore allows 
us to accelerate decoder inference with networks that employ parameter sharing as 
a model compression method. We believe that our speculative execution approach 
can make parameter sharing an advantageous model compression strategy for both 
shrinking the static model size and accelerating inference. 

2.2 Background 

In Sect. 2.2.1, we first provide background on the Transformer model architecture 
(in particular, the decoder-only model architecture). In Sect. 2.2.2, we then describe 
relevant background information on parameter sharing in Transformer networks. 
Finally, in Sect. 2.2.3, we provide an overview of related methods to accelerate 
inference with decoder-only models. 

2.2.1 Transformer Decoder Architecture 

The baseline Transformer decoder consists of a stack of repeated decoder blocks 
as well as an input embedding layer and an output classification layer (Vaswani 
et al. 2017). The input embedding layer translates token indices into corresponding 
embedding vectors which are passed as inputs to the network. The output classifica-
tion layer is used by the decoder to classify the output vector (thereby obtaining the 
next token index). In a decoder-only model, the decoder is used both to process the 
input sequence in parallel as well as to generate the output sequence one token at a 
time. 

When inferring a model autoregressively, a decoding algorithm is used to deter-
mine which token to pass into the model on the next iteration. In the simplest case 
(referred to as “greedy decoding” (Holtzman et al. 2020), the token is classified as 
the index of the highest value in the output vector. Another common decoding algo-
rithm is “beam search” (Jurafsky and Martin 2023, Chapter 10), which keeps track 
of multiple most likely sequences. Additionally, when inferring an autoregressive 
Transformer decoder, we need to store the previous key and value activations (since 
these are required for future decoding iterations, and it would be prohibitively expen-
sive to regenerate them at each iteration). These stored keys and values are referred 
to as the key/value (KV) cache.



2 SPEED: Speculative Pipelined Execution for Efficient Decoding 23

2.2.2 Parameter Sharing 

Several prior works have explored parameter sharing in Transformer networks as a 
method for reducing the size of the network. ALBERT (Lan et al. 2020) originally 
proposed parameter sharing as a method of reducing model size for encoder-only 
networks. The Universal Transformer (Dehghani et al. 2019) instead applied param-
eter sharing to both the encoder and decoder (starting from a baseline Transformer 
architecture). Reid et al. (2021) also applied parameter sharing in the decoder-only 
context. Dehghani et al. (2019), Lan et al. (2020), and Reid et al. (2021) shared 
parameters across all layers in the encoder and/or all layers in the decoder. Takase 
and Kiyono (2023) explored only sharing parameters amongst a subset of layers 
and found that cyclic parameter sharing schemes outperformed sharing across all 
layers. Cyclic parameter sharing refers to a network with Nd distinct layers which 
are stacked G times (giving a total number of layers of N = Nd × G). 

2.2.3 Accelerating Autoregressive Inference 

There have been several works on performing speculative execution in decoder infer-
ence (Leviathan et al. 2023, Xia et al. 2023; Kim et al. 2024). These methods aim to 
produce a set of ‘draft’ tokens autoregressively using a smaller network (or a subset 
of a larger network) and then correct them (in parallel) using a larger network. Our 
work instead aims to support speculative execution within a single network in order 
to accelerate inference with parameter sharing networks. 

There are also prior works that aim to accelerate decoder inference through early 
exiting (Schuster et al. 2022, Tang et al. 2023). These works aim to accelerate decoder 
inference by terminating inference early when the model is confident that it can 
already predict the next token. Our work also leverages similar intuition, namely 
that while certain predictions truly benefit from the model’s full capacity, other 
continuations are more trivial and can be solved with reduced compute (Schuster 
et al. 2022). However, our proposed approach for accelerating decoder inference 
has advantages over typical early exiting approaches. Although early exiting can be 
applied to an existing network and doesn’t require pretraining, our method is guar-
anteed to always achieve the same accuracy as the baseline network with parameter 
sharing since it fixes any mistakes. Our method also provides a reduction in model size 
through parameter sharing in the decoder (in addition to the speedup from pipelined 
execution).
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2.3 Method 

This section outlines the methodology for SPEED. Section 2.3.1 outlines how we 
perform parameter sharing in order to facilitate our speculative inference method. 
Section 2.3.2 then outlines how we incorporate a novel speculative decoding strategy 
in order to enable amortizing MOPs along the sequence length dimension. 

2.3.1 Parameter Sharing 

The parameter sharing scheme in this work corresponds to the “CYCLE” configura-
tions from Takase and Kiyono (2023), meaning that if a group of two decoder layers 
is shared three times, a forward pass consists of alternating between going through 
layer 1 and layer 2 three times. Our cyclic parameter sharing scheme is outlined 
graphically in Fig. 2.3a. During fine-tuning, we incorporate a weighted loss function 
inspired by the work of Schuster et al. (2022). The purpose is to adapt the output 
classifier so that it can make early predictions during inference using the output logits 
from earlier decoder layers (i.e., after different repetitions of decoder layer groups). 
More formally, the shared loss function is given by Lw = ∑G 

i=1 wiLi, where G is the 
number of decoder layer groups, and Li and wi correspond to the loss and the applied
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Fig. 2.3 A demonstration of how our speculative pipelined execution approach is implemented. 
Diagram a shows how parameters are shared cyclicly across groups of decoder layers (where Nd is 
the number of unique decoder layers shared G times and N = G ∗ Nd is the total number of layers), 
and how the losses from the classifications at each layer are incorporated into a shared loss function 
during training. Note that we have omitted the final layer normalization layer prior to the shared 
classifier for simplicity. Diagram b shows a single pipeline stage in our inference process. Note that 
all embeddings must pass through the classifier for the invalidation logic (Sect. 2.3.2), although we 
have omitted them from the illustration for simplicity. Diagram c shows the progression of several 
pipeline stages in sequence 
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weighting for group i, respectively. The default weighting scheme we use is the linear 
weighting described in Schuster et al. (2022), which is given as wi = i/(

∑
i i). Note  

that this weighting scheme intentionally weights the loss for later layers higher to 
ensure the final output accuracy is not degraded. As T5 uses pre-norm and has a final 
layernorm after the last decoder layer, we applied the final normalization layer to the 
output embeddings from each layer before passing them into the shared classifier. 
The training scheme using a shared classifier is also illustrated in Fig. 2.3a. 

2.3.2 Speculative Pipelined Execution 

Figure 2.3b and c outline how the forward pass is performed in our speculative 
approach. In essence, SPEED speculatively predicts future tokens based on early 
predictions and then concatenates them with the current token for their parallel 
processing. The crucial feature of SPEED is its invalidation logic since specula-
tive predictions can sometimes be incorrect. To achieve this, our framework keeps 
track of previous classifications for each token at the previous stage (i.e., before 
passing through a decoder layer group) and performs the invalidation logic whenever 
subsequent classifications change after the current stage (i.e., after passing through a 
decoder layer group). In such a case, any future iterations that have been speculatively 
initiated using the previous classifications must be flushed out and restarted. 

Another crucial implementation detail is that the internal logic in the attention 
module and the internal KV cache management logic both need to be modified to 
facilitate pipelining. The KV cache corresponds to intermediate activations asso-
ciated with earlier tokens in the sequence, which are required for calculating later 
tokens. The KV cache management logic has to ensure that when future tokens are 
invalidated, all previous KV cache updates corresponding to these tokens are also 
invalidated. These modifications play a key role in ensuring that the final output 
classification for each token remains unaffected by speculation. 

2.4 Experimental Setup 

Sections 2.4.1 and 2.4.2 provide relevant implementation details for our experiments. 

2.4.1 Training Details 

We used the baseline T5-Base decoder-only model architecture (Raffel et al. 2020), 
which has 12 decoder layers, a hidden dimension of 768, 12 attention heads each 
with dimension 64, and an FFN dimension of 2048 (the default configuration in T5X 
(Roberts et al. 2023). We used the default SentencePiece tokenizer with a vocabulary
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size of 32K, and we used tied input and output embeddings (Kudo and Richardson 
2018). We pretrained the model on the C4 dataset for 524,288 steps using a batch 
size of 128 (Raffel et al. 2020). We used a base learning rate of 1 with a square root 
decaying learning rate scheduler and with 10K warmup steps. 

For downstream tasks, we focused on two particular sequence-to-sequence tasks 
during finetuning: translation and summarization. For translation, we used the WMT 
English to German dataset as well as the English to German Paracrawl-Paragraph 
translation dataset (Barrault et al. 2019, Ghussin et al. 2023). The Paracrawl-
Paragraph dataset was used to evaluate a translation dataset with longer source and 
target context lengths as it consists of full-paragraph translations. For summarization, 
we used the CNN/DailyMail dataset (Hermann et al. 2015), as well as the English-
to-English split of the Wikilingua multilingual summarization dataset (Ladhak et al. 
2020). We finetuned for 262,144 steps using a batch size of 128 and dropout of 0.1, 
using input/target sequence lengths of 512/512 across all tasks. When finetuning, we 
used a constant learning rate of 0.001 with 1K warmup steps. We evaluated check-
points every 5,000 steps during finetuning on the validation set, and then reported 
results on the test set using the checkpoint with the best accuracy on the validation 
set. Both training and inference arithmetic were performed in BF16 precision. We 
used TPU v2-8 machines on Google Cloud Platform for training experiments, which 
are launched using Skypilot (Yang et al. 2023). 

2.4.2 Implementation Details 

We implement SPEED within the T5X (Roberts et al. 2023) repository, which is 
built on top of the JAX (Bradbury et al. 2018) framework. Our implementation 
for pipelined inference used a custom decoding function in the T5X framework. 
Our initial profiling runs also indicated that the existing greedy decoding function 
in JAX had greater runtime overhead than our custom decoding algorithm, likely 
due to additional optional arguments that were unused in our experiments. In order 
to benchmark the networks without parameter sharing, we therefore implemented 
a stripped-down greedy decoding function to serve as a fair baseline since it has 
minimal added control logic. 

2.5 Results 

Section 2.5.1 provides the main results from our work, showcasing the benefits of 
our method in terms of accuracy and efficiency, as well as additional discussion of 
performance on particular datasets. Section 2.5.2 provides detailed analysis of the 
prediction accuracy at different layers in the network. Finally, Sect. 2.5.3 discusses 
the factors that affect the latency benefits when employing SPEED.
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Fig. 2.4 Accuracy versus Efficiency for T5-Base with Speculative Execution on an NVIDIA A5000 
GPU. The stars correspond to the parameter sharing configurations with speculative pipelined 
execution, and the circles correspond to the baseline configurations (with either the normal full-
length decoder or a shallower decoder). The dot sizes are proportional to the number of parameters 
in the decoder. The arrows indicate the accuracy improvements we can get from using parameter 
sharing without the full latency penalty that we would normally incur. The reported runtime is the 
average latency across 500 examples in the test set 

2.5.1 Main Results 

Figure 2.4 shows the accuracy versus efficiency tradeoff comparisons. When 
employing parameter sharing with SPEED, we observe significant speedups rela-
tive to the baseline 12-layer decoder network of up to ∼ 3×, achieving close to the 
same runtime as the shorter decoder network without parameter sharing across all 
benchmarks other than WMT-ENDE. Additionally, our parameter-sharing configu-
rations attain significantly higher accuracy than the shallow decoder baselines. This 
demonstrates how the SPEED approach allows for improving accuracy for a fixed 
model size without a significant runtime penalty. We further experiment with deep-
ening the decoder with parameter sharing by sharing parameters more times such that 
the total number of layers is increased. We find that deepening the decoder generally 
improves accuracy with minimal runtime penalty; as such, we believe that this is a
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promising approach to further boost accuracy for a fixed model size without much 
latency overhead. 

2.5.1.1 WMT-ENDE Performance 

The primary reason that we observed greater latency penalties with our approach for 
WMT-ENDE compared with the other translation and summarization tasks was due 
to its shorter output generation lengths. The benefits from our pipelined decoding 
approach come from being able to process multiple tokens in parallel, and in the 
first few and last few iterations with our method, there will be fewer tokens in the 
pipeline. This means that the first iterations and final iterations in pipelined decoding 
aren’t completely overlapped. This is only a limiting factor for tasks with shorter 
generated sequence lengths where the average number of tokens generated is close 
to the number of shared groups of layers in the network. The generation lengths 
for WMT-ENDE are typically shorter than summarization tasks and paragraph-level 
translation, which leads to increased latency penalties. 

2.5.1.2 CNN/DM Performance 

With CNN/DM, we actually observed reduced latency when inferring the 4x3/4x4 
configurations relative to the 4-layer network without parameter sharing. This is 
unexpected, since even assuming perfect prediction for the networks with parameter 
sharing, the latency would not be less than the baseline 4-layer network assuming 
the same output generation length. However, it is possible for the parameter sharing 
configurations to exhibit lower latency due to differences in the average generation 
lengths for the networks with parameter sharing relative to the network without 
parameter sharing. 

2.5.2 Prediction Consistency

In order to assess the accuracy of the predictions made from our network at earlier 
layers, we profiled the proportion of predictions that were flipped between pairs of 
layers during inference. Figure 2.5 shows the prediction consistencies for 4x3 and 2x6 
network configurations across all tasks. Upon examining these numbers and plots, 
we found that the model is able to make the majority of predictions accurately at early 
layers. Across all three configurations, the proportion of predictions that would need 
to be corrected after the first layer was between 13–17% for the 2x6 configuration and 
between 6–14% for the 4x3 configuration, showing that the majority of predictions 
were correct at early layers. Additionally, we found that a very small percentage of 
predictions flipped at later layers. This shows that the model tends to converge to the 
final answer and does not experience much oscillation between different predictions.
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Fig. 2.5 Proportion of predictions that were flipped at each layer when using speculative pipelined 
execution with 2x6 and 4x3 configurations

pred: Sally Forrest, whose birth name was Katherine Feeney, was 86 and had long 

battled cancer. She appeared in as herself in an episode of The Ed Sullivan Show 

and three episodes of The Dinah Shore Chevy Show . Other , her IMDb page says. 

She also appeared in a Broadway production of The Seven Year Itch. 

Fig. 2.6 Visualizing the model’s early incorrect predictions that are later corrected, using the 4x3 
decoder-only model evaluated on a sample from the CNN/DM dataset. The green highlighted 
words are predictions that were correct from the start (i.e., after the first layer group), while the red 
highlighted (underlined) words are predictions that were wrong and had to be corrected later in the 
network. The majority of predictions are correct after the first layer group 

Figure 2.6 provides a qualitative example of the model’s prediction consistency, 
demonstrating that the majority of predictions can be made accurately at early layers. 

2.5.3 General Discussion 

There are several factors that impact the runtime when employing SPEED. 

• One factor is the generation length, as the first iterations and final iterations in 
pipelined decoding aren’t completely overlapped (as discussed in Sect. 2.5.1). 
This limits the runtime gains from SPEED for tasks with short output generation 
lengths. 

• Because the embedding matrix is large, it can actually end up consuming a large 
portion of the memory bandwidth (and hence the runtime) for smaller models. 
This is a crucial reason why the latency gains aren’t linear as you go from a 
12-layer network down to a 2-layer network even without considering parameter 
sharing or speculative execution.
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• One additional performance implication is that if the pipeline is too deep (i.e., 
layers are shared too many times), this can lead to greater misprediction penalties. 
Improving prediction consistency is therefore crucial for improving runtime with 
deeper decoder configurations. 

2.6 Conclusion 

We present a novel decoding strategy that allows for pipelined execution in Trans-
former decoders with parameter sharing. We describe the modifications to the model 
architecture that are required to leverage pipelined execution in order to reduce 
memory traffic (namely, cyclic parameter sharing in the decoder module). We observe 
consistent accuracy gains across all tasks for an equivalent model size, with only a 
small latency penalty. These results demonstrate the accuracy and performance bene-
fits of our pipelined inference approach, showing how SPEED allows for deeper 
decoder configurations with parameter sharing to improve accuracy for a fixed 
parameter budget and minimal latency penalty. 
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Chapter 3 
Efficient LLM Inference on CPUs 

Haihao Shen, Hanwen Chang, Bo Dong, Yu Luo, and Hengyu Meng 

Abstract LLMs have demonstrated remarkable performance with tremendous 
potential across a wide range of tasks. However, deploying these models has been 
challenging due to the astronomical number of model parameters, which necessitates 
large memory capacity and high memory bandwidth. In this chapter, we propose an 
effective approach to make the deployment of LLMs more efficient. We support 
automatic INT4 weight-only quantization and design a specialized LLM Runtime 
with highly optimized kernels to accelerate LLM inference on CPUs. We demon-
strate the general applicability of our approach on popular LLMs, including Llama 
(Touvron et al. 2023a), Llama2 (Touvron et al. 2023b), and Mistral (Jiang et al. 2023), 
showcasing extreme inference efficiency on CPUs. The code is publicly available at: 
https://github.com/intel/intel-extension-for-transformers. 

3.1 Introduction 

LLMs have shown remarkable performance with tremendous potential across a wide 
range of tasks (Roziere et al. 2023). However, deploying these models has been 
challenging due to the astronomical number of model parameters, which necessitates 
significant memory capacity and high memory bandwidth. 

Quantization is a technique used to reduce the numeric precision of weights and 
activations of a neural network to lower the computation costs of inference. INT8 
quantization (Vanhoucke et al. 2011) is the most widely used approach today, given 
the trade-off between high inference performance and reasonable model accuracy. 
However, outliers in activations limit the general adoption of INT8 quantization, 
though some related works have addressed these issues (Xiao et al. 2023). FP8, a 
newly introduced data type, has attracted much attention (Micikevicius et al. 2022) 
but has seen limited adoption due to hardware unavailability. Conversely, weight-
only quantization has become popular as it applies low precision (e.g., 4-bit) to
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weights only, while maintaining higher precision (e.g., 16-bit floating point) for acti-
vations, thus preserving model accuracy. Many excellent works on 4-bit weight-only 
quantization (Dettmers et al. 2023) have demonstrated effectiveness in LLM infer-
ence. Meanwhile, the open-source community is embracing such low-bit weight-only 
quantization and has made available CPP-based implementations such as llama.cpp1 

and starcoder2 based on the GGML library. These implementations, typically opti-
mized for CUDA, may not work efficiently on CPUs. Therefore, it is crucial to 
address the challenge of making LLM inference efficient on CPUs. 

In this research, we propose an effective approach for LLM inference on CPUs 
including an Automatic INT4 Quantization Process and an efficient LLM Runtime. 
We leverage the Intel neural compressor3 that provides the support of INT4 quan-
tization such as GPTQ (Frantar et al. 2022), AWQ (Lin et al. 2023), TEQ (Cheng 
et al. 2023a), SignRound (Cheng et al. 2023b) and generate the INT4 model auto-
matically. Inspired by the GGML4 library, we develop a tensor library for CPU, 
supporting all the mainstream instruction sets such as AVX2, AVX512, AVX512_ 
VNNI (Rodriguez et al. 2018), and advanced matrix extensions.5 Our results show 
that the average latency for generating tokens ranges from 20ms to 80ms on LLMs 
with 6B to 20B parameters, using just a single socket of fourth generation Intel Xeon 
scalable processors. while preserving high accuracy with only a 1% loss from the 
FP32 baseline. Our main contributions are as follows:

• We propose an automatic INT4 quantization flow and generate high-quality INT4 
models with negligible accuracy loss within 1% from the FP32 baseline.

• We design a tensor library that supports general CPU instruction sets as well as 
the latest instruction sets for deep learning acceleration. With a new CPU tensor 
library, we develop an efficient LLM Runtime model to accelerate inference.

• We apply our inference solution to popular LLM models covering 3B to 20B 
models and demonstrate the promising per-token generation latency from 20ms 
to 80ms. 

The remainder of this chapter is organized as follows. Section 3.2 describes the 
limitations of prior works and discusses how we address them. Section 3.3 introduces 
the approach, which includes INT4 quantization and inference. Section 3.4 outlines 
the experimental setup, presents accuracy and performance results, and discusses 
performance tuning. Section 3.5 presents the conclusions and outlines future work.

1 https://github.com/ggerganov/llama.cpp. 
2 https://github.com/bigcode-project/starcoder.cpp. 
3 https://github.com/intel/neural-compressor. 
4 Group-wise gradient-based mix-bit low-rank: https://github.com/ggerganov/ggml. 
5 https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/advanced-matrix-
extensions/overview.html. 
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3.2 Related Work 

GGML is a quantization technique that assigns different bit-widths to various weight 
groups to significantly reduce memory usage. In LLM inference on CPU, the most 
significant cost is often I/O bound, so reducing memory usage can greatly improve 
performance. llama.cpp is a GGML-based implementation that accelerates low-bit 
inference. This implementation is very popular because CPUs can use it to perform 
inference on LLMs. The GGML-based implementation has limitations, including 
accuracy, performance, and extensibility. 

Although GGML provides different bit-widths for different groups, the accuracy 
has not been validated across various tasks. Using 4 bits with GGML, many LLMs 
still cannot achieve less than a 1% accuracy loss. We validated numerous LLMs on 
various tasks and calculated the average to compare INT4 and FP32 models. GGML-
INT4 often struggles to achieve good accuracy with models like Llama-2-7b-hf and 
GPTNeoX-20b. Using 3 bits or other combinations may result in even worse accuracy. 
GPTQ (Frantar et al. 2022), AWQ (Lin et al. 2023) and other advanced quantization 
methods can improve accuracy; however, the GGML-based implementation cannot 
automatically generate them; users need to convert it themselves. Even with advanced 
quantization, we found that some LLMs still cannot achieve satisfactory accuracy. 

As far as performance is concerned, while prior work may have outperformed 
FP16 or BF16, upon further investigation into the implementation, we believe CPUs 
can achieve even higher performance. GGML-based implementation doesn’t utilize 
vector instructions such as VNNI and AMX. The default quantization group size 
is set to 32 for better accuracy. However, using a group size of 128 or per-channel 
quantization can significantly improve performance if the accuracy issue can be 
resolved. Additionally, the implementation lacks fusion kernels like MHA, which is 
why the first token latency is still poor. Finally, the GGML-based implementation 
did not have the ability to extend the solution to 2-sockets on CPU or multi-nodes. 

For accuracy, we introduced an automatic INT4 quantization flow to address accu-
racy issues and improve usability. For performance, we developed an efficient LLM 
called Runtime to enhance both first-token and next-token latency. For extensibility, 
we implemented tensor parallelism for inference across 2 sockets using 4-bit models. 

3.3 Method 

In this section, we introduce the approach, which consists of two major components: 
an automatic INT4 quantization flow and an efficient LLM Runtime, as shown in 
Fig. 3.1. More details are provided in the subsequent sections.
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Fig. 3.1 The left part depicts the automatic INT4 quantization flow. Starting with an FP32 model, 
this flow utilizes the default INT4 quantization recipes to evaluate the INT4 model’s accuracy; the 
recipe tuning loop is optional if the INT4 model meets the accuracy target. The right part shows a 
simplified runtime for efficient LLM inference, built on top of a CPU tensor library that includes 
an automatic kernel selector 

3.3.1 Automatic INT4 Quantization Flow 

The INT4 quantization flow was developed with the Intel neural compressor, a 
popular quantization tool for deep learning frameworks. Since the tool supports main-
stream INT4 quantization methods such as GPTQ (Frantar et al. 2022), SignRound 
(Cheng et al. 2023b), AWQ (Lin et al. 2023), TEQ (Cheng et al. 2023a), and RTN 
(round-to-nearest), our automatic quantization flow allows tuning of various quanti-
zation methods and granularities (channel-wise or group-wise), different group sizes 
(32, 64, 128 ... 1024) as well as which linear operators should not be quantized. Each 
method generates an INT4 model, which is then evaluated. Once the INT4 model 
meets the accuracy target, it is passed to LLM Runtime for performance evaluation. 
We evaluated approximately 100 LLMs, and most of them achieved a low accu-
racy loss, typically less than one percent. Additionally, we propose a state-of-the-art 
INT4 algorithm called AutoRound, which has demonstrated superior performance 
compared to other algorithms. We experimented with 3-bit quantization but found it 
more challenging to achieve acceptable accuracy compared to 4-bit. While using a 
smaller group size can produce a good INT4 model, this is often at the expense of 
performance. When considering the balance between accuracy and performance, we 
find that INT4 offers a compelling LLM solution. 

3.3.2 Efficient LLM Runtime 

LLM Runtime is designed to enable efficient inference of LLMs on CPUs. Figure 
3.2 illustrates the key components of LLM Runtime, where the components (CPU 
tensor library and LLM optimizations) in green (labeled with •) are specialized 
for LLM inference, while those in blue (without •) are essential for general runtime 
functionality. More details about the CPU tensor library are described in the following 
paragraphs. Note that the design is flexibly extensible, with a hardware abstraction 
layer (currently for CPU only), while the support for other hardware types is beyond 
the scope of this study.
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Fig. 3.2 Key components in LLM Runtime including general components and LLM specialized 
components (labeled with •) 

3.3.3 CPU tensor library in LLM Runtime 

We developed a CPU tensor library for linear algebra subroutines, inspired by the 
template design of Cutlass.6 The tensor library is built using Xbyak, a just-in-time 
(JIT) assembler for x86 architectures. As shown in Table 3.1, this library provides 
extensive support for INT4 kernels on x86 CPUs, with AMX available in the latest 
Intel Xeon scalable processors and VNNI available in both Intel and AMD CPUs. 
The CPU tensor library offers more than just GEMM operations; it also includes 
a prologue and an epilogue. With these components, the library can replace the 
matrix multiplication operation with an INT4 operation. The prologue dequantizes 
the weight matrix from low-bit format to the computation data type and can also 
quantize the activation matrix when using AMX INT8 or VNNI. The flow of weight 
data type INT4 and computation data type INT8 is shown in Fig. 3.3. This library 
supports kernels for popular fusion patterns such as feedforward networks (FFN), 
multi-head attention (MHA), and general query attention.

3.3.4 LLM Optimizations 

Most recent LLMs typically consist of decoder-only Transformer-based models 
(Vaswani et al. 2017). Given the unique characteristics of next token generation, 
the Key/Value (KV) cache becomes performance critical for LLM inference. The 
optimizations are described in Fig. 3.4. To prevent out-of-memory errors and mini-
mize the costs of switching optimization profiles and changing shapes, LLM Runtime 
pre-computes the memory requirements for activation tensors at build time. LLM 
Runtime also integrates continuous batching to enhance throughput. We submitted 
the results to MLPerf v4.0 GPT-J closed division, highlighting the capabilities of 
CPUs.

6 https://github.com/NVIDIA/cutlass. 

https://github.com/NVIDIA/cutlass
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Table 3.1 Support matrix for the CPU tensor library, detailing input/output data types, compute 
data types, and the instruction set architecture (ISA). The library supports dynamic quantization for 
input along with batch or input channel per group, and weight quantization in both symmetric and 
asymmetric scheme 

Input data type Output data type Compute data type Compute ISA 

FP32 FP32 FP32 AVX2 

FP32 FP32 FP32 AVX512F 

FP32 FP32 INT8 AVX_VNNI 

FP32 FP32 INT8 AVX512_VNNI 

FP32 FP32 INT8 AMX_INT8 

FP32/FP16 FP32/FP16 FP16 AVX512_FP16 

FP32/BF16 FP32/BF16 BF16 AMX_BF16 

Fig. 3.3 Computation flow of the INT4 op in the CPU tensor library, including dequant, 
multiplication and add

a b  

Fig. 3.4 KV cache optimization. Left a shows the default KV cache, where new token generation 
requires memory reallocation for all the tokens (5 in this example); Right b shows the optimized 
KV cache with the pre-allocated KV memory and only new token updated each time
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3.3.5 Tensor Parallelism 

Tensor parallelism is a strategy used to train and perform inference on LLMs by 
distributing computations/tensors across multiple compute devices. It is a crucial 
technique for scaling up the size of deep learning models. The CPU tensor library 
supports tensor parallelism on multiple sockets and nodes, allowing for efficient 
utilization of computational resources. 

When employing tensor parallelism to partition and compute LLMs, various parti-
tioning algorithms can be used. We employ 1D algorithms, which divide matrices 
by rows or columns. Splitting matrices in row-major order by columns requires 
data rearrangement, potentially impacting performance. Conversely, splitting such 
matrices by rows does not incur this overhead. 

In our implementation, we pre-split the corresponding weights, so the time spent 
on this step is one-time and does not affect inference performance. Another significant 
factor affecting performance is the all reduce operation. Since each node computes 
partial and incomplete results, an all-reduce operation is necessary to combine the 
output data. However, this process can be time-consuming. To mitigate this, it’s 
advisable to perform tensor parallelism only on heavy computing operators. This 
strategy is applied only to FFNs and attention operations. Figure 3.5 illustrates the 
steps of the FFN process, where we horizontally split the first matrix and vertically 
split the second matrix, and then combine the results. 

Figure 3.6 illustrates the steps of the Attention process, which is more complex. 
We horizontally split the Q, K, and V matrices, transpose the K Cache, and finally 
combine the results.

Fig. 3.5 FFN fusion with tensor parallelism, matrix splitting and computation on 2 nodes 



40 H. Shen et al.

Fig. 3.6 Attention with 
tensor parallelism, matrix 
splitting and computation on 
2 nodes
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3.4 Results 

3.4.1 Experimental Setup 

To demonstrate generality, we selected the popular LLMs from a wide range of 
architectures with model parameter sizes from 7B to 20B. We evaluate the accuracy 
of both FP32 and INT4 models using open-source datasets from lm-evaluation-
harness7 including Lambada (Paperno et al. 2016) OpenAI, HellaSwag (Zellers et al. 
2019), Winogrande (Sakaguchi et al. 2021), Piqa (Bisk et al. 2020), and wikitext.8 

The accuracy data represents the average results of these tasks. We select the best 
accuracy from various algorithms such as RTN, GPTQ, AWQ, AutoRound, etc. To 
demonstrate performance, we measure the latency of next token generation on the 
fourth generation of Intel Xeon� scalable Processors, available on public clouds 
such as AWS. We conducted experiments with quantization group sizes of 128 and 
32. A group size of 32 typically yields better runtime performance but accuracy is 
lower. 

3.4.2 Accuracy 

We evaluate the accuracies on the aforementioned datasets and show the average 
accuracy in Table 3.2. From the table, we observed that the INT4 model achieves 
accuracies nearly equivalent to the FP32 model, with a relative loss of less than 1% 
compared to the FP32 baseline. Upon even closer examination, the results remain 
impressive. For example, GPT-J-6B achieved accuracies of 0.6786 on Lambada-
OpenAI, 0.6614 on HellaSwag, 0.648 on Winogrande, and 0.7465 on PIQA. This 
demonstrates that weight-only INT4 quantization is an effective approach for main-
taining accuracy. We validated additional models beyond those listed in the table and 
consistently observed a loss of less than one percent. Interested readers should refer 
to our blog post9 for additional findings.

3.4.3 Memory Usage 

Memory usage is a critical metric for the 4-bits solution. We significantly reduce 
memory usage with quantization and provide the details in Table 3.3. Using a group

7 https://github.com/EleutherAI/lm-evaluation-harness. 
8 https://huggingface.co/datasets/wikitext. 
9 https://medium.com/@NeuralCompressor/llm-performance-of-intel-extension-for-transformers-
f7d061556176. 

https://github.com/EleutherAI/lm-evaluation-harness
https://huggingface.co/datasets/wikitext
https://medium.com/%40NeuralCompressor/llm-performance-of-intel-extension-for-transformers-f7d061556176
https://medium.com/%40NeuralCompressor/llm-performance-of-intel-extension-for-transformers-f7d061556176
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Table 3.2 Accuracy of INT4 and FP32 models. The INT4 model features two configurations with 
group sizes of 32 and 128 

LLM FP32 INT4 (Group size = 32) INT4 (Group size = 128) 
EleutherAI/gpt-j-6B 0.643 0.644 0.64 

meta-llama/ 
Llama-2-7b-hf 

0.69 0.69 0.685 

decapoda-research/ 
llama-7b-hf 

0.689 0.682 0.68 

EleutherAI/ 
gpt-neox-20b 

0.674 0.672 0.669 

mosaicml/mpt-7b 0.689 0.688 0.683 

tiiuae/falcon-7b 0.698 0.694 0.693 

databricks/dolly-v2-3b 0.613 0.609 0.609 

microsoft/phi-1.5 0.628 0.623 0.623 

Qwen/Qwen-7B 0.683 0.68 0.672 

mistralai/ 
Mistral-7B-v0.1 

0.728 0.724 0.722

size of 128 allows for a greater reduction in memory usage than using a group size 
of 32. 

Table 3.3 Memory usage (in MB) for INT4 and FP32 models. The INT4 model is available in two 
configurations with group sizes of 128 and 32 

LLM FP32 INT4 (Group size = 128) INT4 (Group size = 32) 
EleutherAI/gpt-j-6B 22481 3399 4017 

meta-llama/ 
Llama-2-7b-hf 

22057 3772 4928 

decapoda-research/ 
llama-7b-hf 

21750 3773 4874 

EleutherAI/ 
gpt-neox-20b 

68829 11221 13458 

mosaicml/mpt-7b 21561 5678 5805 

tiiuae/falcon-7b 24624 5335 5610 

databricks/dolly-v2-3b 9389 2736 2794 

microsoft/phi-1.5 5481 931 1059 

Qwen/Qwen-7B 29715 4354 5245 

mistralai/ 
Mistral-7B-v0.1 

27835 4017 4975
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3.4.4 Performance 

We measure the latency of next token generation using LLM Runtime and the popular 
open-source GGML-based implementation. Table 3.4 presents the next token latency 
under a proxy configuration with 32 as both input and output token sizes. Note that 
the GGML-based solution only supports group size 32 when testing. As shown in 
the table, our solution achieves a 1.6x performance improvement compared to the 
GGML-based implementation. We marked the GGML-based dolly-v2-3b as ‘N/A’ 
because GGML-based implementation cannot perform inference with this model. 

Table 3.5 presents the first token latency under a proxy configuration with 32 as 
both input and output token sizes. Due to MHA fusion, the latency for the first token 
is significantly lower than that of the GGML-based implementation. 

We conducted another experiment on a client CPU, the Intel Core i9-12900, 
operating at 2.4GHz with 24 cores per socket and a total memory of 32GB (4× 
8GB DDR5 4800 MT/s). The system was running BIOS version ADLSFWI1 
R00.2257.A01.2106221245 with microcode 0x2e on Ubuntu 22.04.1 LTS. We bench-
marked LLM Runtime using llama2-7b and llama.cpp with an input size of 1024, 
output size of 32, and beam size of 1. LLM Runtime showed a performance 
approximately three times faster compared to llama.cpp. 

We also conducted experiments on tensor parallelism using an Intel Xeon 8481C 
processor running at 2.7GHz with 22 cores per socket. In these experiments, both 
the input size and output size were set to 32. The next token latency of the INT4

Table 3.4 INT4 next token latency using LLM Runtime and GGML-based solution (both in ms). 
LLM Runtime outperforms the GGML-based solution by up to 1.69x under group-size = 128, and 
by 1.52x under group size =3 2  

Model LLM Runtime (Group 
size = 32) 

LLM Runtime (Group 
size = 128) 

GGML-based (Group 
size = 32) 

EleutherAI/gpt-j-6B 22.99 19.98 31.62 

meta-llama/ 
Llama-2-7b-hf 

23.4 21.96 27.71 

decapoda-research/ 
llama-7b-hf 

23.88 22.04 27.2 

EleutherAI/ 
gpt-neox-20b 

80.16 61.21 92.36 

mosaicml/mpt-7b 23.04 21.05 31.54 

tiiuae/falcon-7b 31.23 22.26 36.22 

databricks/ 
dolly-v2-3b 

15.3 11.66 N/A 

microsoft/phi-1.5 10.44 7.25 15.88 

Qwen/Qwen-7B 32.21 24.44 41.34 

mistralai/ 
Mistral-7B-v0.1 

29.87 23.85 39.9
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Table 3.5 INT4 first token latency using LLM Runtime and GGML-based solutions (both in ms). 
LLM Runtime outperforms the GGML-based solution by up to 8.4x under group-size = 128, and 
by 3.75x under group size = 32 
Model LLM Runtime (Group 

size = 32) 
LLM Runtime (Group 
size = 128) 

GGML-based (Group 
size = 32) 

EleutherAI/gpt-j-6B 64.32 43.93 390.6 

meta-llama/ 
Llama-2-7b-hf 

147.98 46.01 328.19 

decapoda-research/ 
llama-7b-hf 

103.33 57.65 324.85 

EleutherAI/ 
gpt-neox-20b 

362.52 161.97 1361.19 

mosaicml/mpt-7b 259.67 62.95 321.31 

tiiuae/falcon-7b 93.07 43.2 344.7 

databricks/ 
dolly-v2-3b 

63.83 38.64 N/A 

microsoft/phi-1.5 64.99 19.78 96.11 

Qwen/Qwen-7B 142.06 62.26 282.24 

mistralai/ 
Mistral-7B-v0.1 

154.42 115.3 317.44

Llama2-70b on 2 sockets is 200.6ms, and on a single socket, it is 387.6ms. This 
results in a scaling factor of 1.93x, indicating that the improvement nearly achieves 
linear growth with the number of sockets. The scaling factor for Llama2-13b is 1.83x, 
and for Llama2-7b, it is 1.8x. The scaling factor improves with larger model sizes. 
When we changed the input size to 1024, the scaling factor for INT4 Llama2-70b, 
Llama2-13b, and Llama2-7b increased to 1.89x, 1.84x, and 1.87x, respectively. 

3.5 Conclusion and Future Work 

We achieved up to 8.4x performance improvement in first-token processing and 
1.69x in next-token processing, demonstrating a clear performance advantage over 
GGML-based solutions. At the same time, our solution still maintains good accuracy 
with advanced algorithms. Our solution presented an end-to-end INT4 LLM infer-
ence solution including automatic INT4 model quantization and an efficient LLM 
Runtime model. This solution supports a broad range of CPU platforms, including 
client CPUs, making it suitable for AI-powered machines, and meeting the growing 
demands for AI-generated content and enable generative AI on PCs. We demon-
strated the generality of our approach on a set of popular LLMs and the perfor-
mance advantage over the open-source solution on CPUs. Our solution has already
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extended HuggingFace Transformer APIs to support INT4 LLM inference as part of 
the contributions to the open-source community.10 

There are still opportunities to enhance LLM Runtime performance through 
further tuning, such as optimizing the thread scheduler. While our threading currently 
relies on OpenMP, implementing a thread pool could potentially yield even better 
performance. Implementing a blocking strategy in the CPU tensor library would be 
another enhancement. Currently, we divide matrix multiplications using large block 
sizes, but using smaller sizes may improve performance for certain models. 

As part of our future work, we plan to extend the solution to Intel GPUs and 
HPUs. Since we have tested tensor parallelism on multi-socket CPUs, GPUs can 
potentially achieve greater performance improvements. Meanwhile, we continue 
exploring quantization techniques and have published Autoround on GitHub.11 We 
plan to explore 3-bit quantization, mixed precision, and 2-step quantization to provide 
the best quantization method that balances both accuracy and performance. 
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Part III 
Efficiency Techniques for Fine-Tuning



Chapter 4 
KronA: Parameter-Efficient Tuning 
with Kronecker Adapter 

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, 
James J. Clark, and Mehdi Rezagholizadeh 

Abstract Fine-tuning a pre-trained language model (PLM) on a specific down-
stream task is a well-established paradigm in natural language processing. However, 
training the entire model on downstream tasks is computationally expensive, 
requiring significant time and resources. Parameter efficient fine tuning (PEFT) has 
been proposed to address this challenge by reducing the number of trainable param-
eters. A popular category of PEFT techniques inserts trainable adapters in a frozen-
parameter model during the fine-tuning stage. Common adapters include low-rank 
projections such as LoRA, which reduces the adapter’s representation power. We 
address this reduced representation using the Kronecker product instead of the low-
rank projection to improve flexibility, leading to improved performance. We introduce 
KronA, a Kronecker equivalent of LoRA, to efficiently fine-tune Transformer-based 
PLMs. We apply different variants of KronA for fine-tuning the T5 model on the 
GLUE benchmark and show that KronA outperforms common PEFT baselines. 

4.1 Introduction 

Large pre-trained language models (PLMs) are used as a backbone in various natural 
language processing tasks to achieve state-of-the-art results (Devlin et al., 2019; 
Radford et al., 2019). PLMs are adapted to downstream applications either via in-
context learning or fine-tuning. In-context learning imposes substantial memory and 
computational overhead during inference since all training examples have to be 
processed for each sample (Liu et al., 2022). In contrast, fine-tuning provides less 
inference latency and improved accuracy. However, as PLMs become larger, fine-
tuning the entire model becomes challenging since more time and computational
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power is required. Additionally, one must store a complete model checkpoint for 
each downstream application, making the deployment inefficient. 

To address these challenges, several works have proposed inserting just a few 
trainable parameters while freezing most (or even all) of the pre-trained model 
parameters. This significantly reduces the memory and computation requirements 
for fine-tuning. Furthermore, instead of storing one copy of the entire model, a small 
set of tuned parameters can be stored for each task. We refer to these methods as 
parameter-efficient fine tuning (PEFT) methods. 

Among the PEFT methods, soft prompts (Lester et al., 2021; Li and Liang, 2021) 
prepend trainable parameters to the input of the layers and train them on down-
stream tasks. However, the increase in the length of the embedding layers leads to a 
significant computation overhead during inference. 

In another category of the PEFT methods, trainable adapters (Houlsby et al., 
2019; Mahabadi et al., 2021; He et al., 2022) are inserted into frozen Transformers 
(Vaswani et al., 2017). Adapters are low-rank modules that are composed of an up 
projection followed by a down projection. One limitation of these approaches is that 
they increase the computational overhead and the latency during inference which 
makes them inefficient for latency-critical scenarios. 

Accordingly, low-rank adaption (LoRA) (Hu et al., 2022) was developed using 
extra low-rank adapters in parallel to pre-trained weight matrices. However, once 
fine-tuned, the adapter parameters can be merged with the original pre-trained 
weights, making the latency and energy requirements for inference, intact. Despite 
the fast inference, like other low-rank adapters, LoRA suffers from a loss of accuracy 
compared to full fine-tuning. This is due to the strong assumption imposed by its 
low-rank structure for the task-specific updates. 

Kronecker-based decomposition is another factorization method that does not 
rely on the low-rank assumption. When used for model compression, this powerful 
decomposition method has proven to outperform low-rank compression methods 
(Thakker et al., 2019; Hameed et al., 2022). It has also been used successfully to 
compress Transformer-based language models (Edalati et al., 2022; Tahaei et al., 
2022). 

Inspired by the success of Kronecker decomposition, we replace the low-rank 
projections of LoRA with the Kronecker product to develop Kronecker adapter 
(KronA). This simple modification can improve accuracy without increasing the 
inference latency. Furthermore, for applications where the latency increase is toler-
able, we propose to use KronAB . This module is a version of KronA developed to 
be utilized in parallel to feedforward network (FFN) blocks and achieves notable 
improvements over full fine-tuning on the general language understanding evalua-
tion (GLUE) benchmark (Wang et al., 2019). In addition, when a proposed learnable 
residual connection is added to KronAB , KronAB 

res is developed to achieve even better 
results. 

We evaluated our methods on the GLUE benchmark to study the impact of the 
Kronecker product on the performance. To summarize, our contributions are:
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• Proposing KronA, a Kronecker Adapter that can be inserted in parallel to the 
weight matrices and is suitable for latency-critical scenarios. 

• Using KronA in parallel to FFNs (KronAB ) along with a learnable residual connec-
tion (KronAB 

res) to further improve accuracy at the cost of a higher inference 
latency. 

• Providing evaluation of the proposed methods in comparison to the well-known 
baselines in terms of the GLUE score, training time, and inference latency. 

4.2 Related Work 

BitFit (Ben Zaken et al., 2022) proposed freezing the weights and tuning only (a 
subset of) biases of PLMs for fine-tuning on downstream tasks. This technique 
is parameter-efficient and fast, but it underperforms compared to state-of-the-art 
methods. 

Adapters (Houlsby et al., 2019) were introduced as a PEFT method, where all 
parameters of a PLM are frozen and some trainable modules are inserted after the 
FFN or attention blocks. The proposed adapters contain a down projection, a non-
linear function, an up projection, and a residual connection. We use “Adapter” to refer 
to these modules. Later, parallel adapters (PAs) (He et al., 2022) were developed as 
another version of adapters. PAs are inserted parallel to the pre-trained blocks and 
have a scaling factor (Fig. 4.1c). In addition, a unified view on PEFT methods and 
combinations of some techniques such as prefix tuning (Li and Liang, 2021) and PA 
was studied in He et al. (2022). 

Compacter (Mahabadi et al., 2021) proposed a modified version of the adapters for 
PEFT. In Compacter, the Kronecker product of multiple pairs of Kronecker factors 
is summed to reconstruct the module’s weight matrix (WCompacter = ∑n 

i=1 Ai ⊗ Bi). 
To further reduce the trainable parameters, Ai matrices are shared across all layers 
and Bi matrices are decomposed as the matrix multiplication of two low-rank sub-
factors. Although Compacter achieves good results, it is notably slow in the training 
and inference phases. 

KAdaptation (He et al., 2023) developed Kronecker-based adapters that have a 
similar structure to Compacter adapters for Vision Transformers (Dosovitskiy et al., 
2021). However, KAdaptation adapters are applied in parallel to weight matrices 
which enables merging the adapters into the model after training to avoid increasing 
the latency and parameters at the inference stage. Furthermore, PEFT of both convo-
lutional and linear layers used in computer vision models was investigated in Edalati 
et al. (2023) by developing adapters that use the summation of the Kronecker product 
of a sequence of factors. 

The proposed adapters in our work have a simpler structure compared to those by 
Mahabadi et al. (2021), Edalati et al. (2023), and He et al. (2023). By eliminating 
parameter sharing, low-rank sub-factor decomposition, and summation, we have 
developed a faster method, albeit with less parameter reduction
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LoRA (Hu et al., 2022) inserted adapters made from a downward projection and an 
upward projection parallel to the PLM weight matrices to introduce LoRA. During 
the training, the pre-trained weights are frozen, and only the LoRA adapters are 
tuned. During inference, the LoRA adapters are merged with the original weight 
matrices of PLMs. Therefore, unlike Adapter, PA, and Compacter, LoRA does not 
increase inference time. 

Fig. 4.1 The structure of the proposed Kronecker-based adapters and their low-rank counterparts. 
For simplicity, the scaling factor at the output of the modules is not depicted. Figure d shows 
KronAB 

res. The residual connection is depicted by a dotted-line to indicate that this connection can 
simply be removed to have KronAB
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4.3 Methodology 

In this section, the Kronecker product, its features, and our approach for developing 
the Kronecker-based adapters are explained. For more details see Edalati (2023). 

4.3.1 Kronecker Product 

Equation (4.1) shows how the elements of A are multiplied by B to generate the 
Kronecker product of A ∈ Rm1×n1 and B ∈ Rm2×n2 (Henderson et al., 1983). 

A ⊗ B = 

⎡ 

⎢ 
⎣ 
a1,1B · · ·  a1,n1B 

... 
. . . 

... 
am1,1B · · ·  am1,n1B 

⎤ 

⎥ 
⎦ = W ∈ Rm1m2×n1n2 (4.1) 

The Kronecker product has some interesting features that make it suitable for PEFT. 
First, unlike the low-rank down-projections used in other techniques, Kronecker-
based decomposition maintains the rank of the input matrix. Second, to reduce the 
required FLOPS, Eq. (4.2) can be used to obtain (A ⊗ B)x without the computation 
of A⊗B, where ηm×n(·) reshapes a vector into a matrix of size m×n and γ (·) flattens 
a matrix into a vector. 

(A ⊗ B)x = γ (Bηm×n(x)A�) (4.2) 

4.3.2 KronA 

Figure 4.1a shows the structure of a LoRA adapter where A and B are the weight 
matrices of the down and up projection, respectively. To modify this module into 
KronA, the Kronecker product replaces the matrix multiplication. In addition, the 
LoRA projections are replaced by Kronecker factors (see Fig. 4.1b). Table 4.1 shows 
the features of the Kronecker factors that replaced the projections in the LoRA 
modules. Equation (4.3) shows how the output is generated when KronA is applied. 
Ak and Bk are the Kronecker factors that replaced the LoRA projections. Similar to 
LoRA, KronA has a fixed scaling factor, s, which is a hyperparameter. 

Y = XW + sX[Ak ⊗ Bk ] (4.3) 

The KronA modules are applied in parallel to the weight matrices of PLMs during 
the fine-tuning phase. Once fine-tuned, the Kronecker factors are multiplied, then
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Table 4.1 Comparing some details of the Kronecker factors with the LoRA projections 

Module name Factor name Symbol Shape Parameters Module 
parameters 

Constraint 

KronA Kronecker 
factor 

Ak m1 × n1 m1n1 m1n1+m2n2 m1m2 = 
n1n2 = dh 

Kronecker 
factor 

Bk m2 × n2 m2n2 

LoRA Down 
projection 

A dh × r dhr 2dhr r < dh 2 

Up 
projection 

B r × dh dhr 

scaled and merged into the original weight matrices (Eq. 4.4). Therefore, similar to 
LoRA, KronA does not increase the inference time. 

Wtuned = W + s[Ak ⊗ Bk ] (4.4) 

4.3.3 KronAB and KronAB 
res 

Inspired by the promising performance of PA, we also investigate KronA when used 
in parallel to the FNN blocks and call it KronAB. The B superscript in the name means 
that this module is applied to the pre-trained blocks, as opposed to KronA, which is 
applied to pre-trained weight matrices. Similar to PA, the non-linearity in the FFN 
blocks does not allow our proposed adapters to be merged into the pre-trained blocks 
after fine-tuning. This imposes an increase in the inference time and computations. 
Equation (4.5) shows how KronAB works in parallel to an FFN block. 

Y = FFN(X) + sX[Ak ⊗ Bk ] (4.5) 

To further improve the representation power, we incorporate a scaled residual connec-
tion inside the KronAB module to develop KronAB 

res. The scale of the residual connec-
tion (sres) is initialized with one and tuned during the fine-tuning. Equation (4.6) 
shows how KronAB 

res works in parallel to an FFN block. Furthermore, Fig. 4.1c and 
d show the structure of a PA and our KronAB 

res module, respectively. 

Y = FFN(X) + sX[Ak ⊗ Bk ] +  sresX (4.6)
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Table 4.2 The performance 
of the tested options for Ak in 
KronA on MNLI. Note that 
for each option, the shape of 
the corresponding Bk is in the 
reversed order of Ak 

Shape of Ak MNLI (accuracy) 

(48, 16) 86.50 

(32, 24) 86.31 

(3, 256) 86.16 

(24, 32) 86.40 

(2, 384) 86.63 

(192, 4) 86.46 

(12, 64) 86.56 

4.4 Experimental Setup 

This section provides information about our experimental setup including the 
hyperparameters, datasets, implementation, and time measurement. 

4.4.1 Setting and Hyperparameters 

All experiments were performed on one NVIDIA Tesla V100. We used PyTorch 
and the HuggingFace Transformers library (Wolf et al., 2020) for our experiments. 
To re-implement LoRA1 and PA,2 we used their publicly available code. For the 
experiments on Compacter, BitFit, fine-tuning, and Adapter, we used the official 
Compacter code.3 The backbone model for this work is T5base (Raffel et al., 2020). 
The size of the trainable parameters for all of the methods is set roughly equal to 
enable a fair comparison. However, for BitFit tuning, we could not match the trainable 
parameters despite tuning all of the biases. 

Given the number of trainable parameters, we have several choices for the shape 
of the Kronecker factors. For KronA, we tested some of the options and selected 
the one option with the best results (see Table 4.2). KronAB and KronAB 

res modules 
can have one or two biases. We selected the number of biases that maximized the 
score on each task. Since we wanted to ignore the effect of the scaling factor when 
comparing LoRA and KronA, the scaling factor for these two modules is set to one 
in all experiments.

For fine-tuning, BitFit, Compacter, and Adapter experiments, we used the hyper-
parameters that are mentioned in Mahabadi et al. (2021). However, we changed the 
learning rate and the rank of the modules to match the desired number of trainable 
parameters in the Adapter experiments.

1 https://github.com/microsoft/LoRA. 
2 https://github.com/jxhe/unify-parameter-efficient-tuning. 
3 https://github.com/rabeehk/compacter. 

https://github.com/microsoft/LoRA
https://github.com/jxhe/unify-parameter-efficient-tuning
https://github.com/rabeehk/compacter
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The rank of LoRA and PA is set to one and two, respectively. For the KronA 
modules, the shape of the Kronecker factors is selected based on the best dev results 
among different options for the shapes. Due to time and resource limitations, we did 
not tune the shape of the Kronecker factors for KronAB and KronAB 

res. 
All of the other hyperparameters are set based on Mahabadi et al. (2021), except 

for the learning rate and scaling factor which are tuned based on the best dev results. 
All methods are trained for 20 epochs and the checkpoint that achieves the best 
performance on the dev set is reported as the final model. Table 4.3 shows the tuned 
hyperparameters for each method on the GLUE tasks. 

4.4.2 Datasets 

We used the GLUE benchmark to evaluate our methods compared to the baselines. 
This benchmark covers a variety of tasks including: 

• Natural language inference: MNLI (Williams et al., 2018), RTE (Bar-Haim et al., 
2006; Bentivogli et al., 2009; Dagan et al., 2006; Giampiccolo et al., 2007), QNLI 
(Rajpurkar et al., 2016) 

• linguistic acceptability: CoLA (Warstadt et al., 2019) 
• similarity and paraphrasing: STS-B (Cer et al., 2017), MRPC (Dolan and Brockett, 

2005), QQP4 

• sentiment classification: SST-2 (Socher et al., 2013) 

The original GLUE test labels are not published, so similar to Mahabadi et al. (2021); 
Zhang et al. (2023), we generated our test sets from the evaluation and the training 
data. For the small datasets (CoLA, RTE, MRPC, and STS-B), we used half of the 
task dev set for evaluation and the other half as the test set. For the rest of the GLUE 
tasks with larger datasets, we took 1K samples from the training set and used them 
as our test sets. The reported evaluation metric for CoLA, MRPC, and STS-B is the 
Matthew correlation coefficient (Matthews, 1975), F1, and the average of Pearson/ 
Spearman correlations, respectively. Accuracy is used for the other tasks. 

4.4.3 Details of Measuring the Training and Inference Time 

To measure the inference latency, a random dummy input with a batch size equal 
to one and a sequence length equal to ten is generated. Then, the dummy input is 
given to the model for 150 iterations to warm up the GPU. Finally, the dummy input 
is fed to the model for 200 iterations and the required time to generate the output is 
measured, averaged, and recorded. This experiment is repeated three times and the

4 https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs. 

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Table 4.4 The normalized training time of methods on the GLUE tasks 

Method CoLA RTE MRPC SST-2 STS-B MNLI QNLI QQP Average 

BitFit 0.58 0.64 0.65 0.66 0.66 0.65 0.64 0.62 0.64 

Adapter 0.82 0.71 0.72 0.78 0.76 0.72 0.69 0.69 0.73 

LoRA 0.79 0.69 0.7 0.76 0.72 0.7 0.68 0.68 0.72 

KronA 0.8 0.72 0.75 0.81 0.77 0.74 0.73 0.73 0.75 

Compacter 0.88 0.74 0.78 0.86 0.81 0.75 0.74 0.76 0.79 

PA 0.7 0.78 0.81 0.73 0.7 0.67 0.66 0.65 0.71 

KronAB 0.84 0.7 0.72 0.79 0.75 0.72 0.7 0.71 0.74 

KronAB 
res 0.91 0.85 0.81 0.91 0.76 0.78 0.73 0.74 0.81 

average latency is reported. Finally, the reported latencies are normalized and shown 
in Table 4.6. 

Table 4.4 shows the normalized training time for each technique on the GLUE 
tasks. All the experiments are performed with the same number of epochs, batch 
size, number of GPUs, and the gradient accumulation step. 

4.5 Results and Discussion 

Table 4.5 shows the GLUE score of our proposed adapters compared to other base-
lines when applied to T5 (Raffel et al., 2020). As the results show, KronA and 
KronAB outperform LoRA and PA as their low-rank counterparts, respectively. All 
of our proposed adapters also outperform other baselines on average and most of the 
GLUE tasks. Furthermore, KronAB 

res, which benefits from an extra learnable residual 
connection, achieves remarkably better results. 

Table 4.6 shows the normalized inference delay for the discussed methods. KronA, 
LoRA, fine-tuning, and Bitfit do not increase the inference latency since these 
techniques do not add additional parameters or computations to the model during 
the inference phase. Although KronAB is significantly faster than Compacter and 
Adapter, it is slower than PA, as expected; computation of the Kronecker product is 
generally slower than the normal matrix multiplication. Also, adding the learnable 
residual connection increases the latency. 

The normalized training time averaged over the GLUE tasks for each technique 
is shown in Table 4.6. Based on these results, the significant improvement in the 
accuracy of the proposed KronA and its variants is at the expense of a slight increase 
in the training time compared to the low-rank counterparts like LoRA, PA, and 
Adapter. However, the training time increase is not remarkable, and KronA modules 
are still significantly faster than fine-tuning.
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Table 4.5 The score of the methods on GLUE 

Method Parameters CoLA RTE MRPC SST-2 STS-B MNLI QNLI QQP Average 

Fine-tuning 100 63.37 74.82 92.73 93.58 90.07 86.16 92.77 91.74 85.65 

BitFit 0.12 58.19 68.34 92.58 94.61 90.69 85.73 92.91 90.33 84.17 

Adapter 0.07 64.66 71.94 91.27 94.84 90.49 85.91 92.97 90.35 85.30 

LoRA 0.07 64.76 74.10 92.10 93.92 91.21 86.08 92.97 90.68 85.73 

Compacter 0.07 64.42 76.26 91.52 93.92 91.04 86.14 92.93 90.36 85.82 

PA 0.06 64.80 74.10 93.20 94.04 91.10 86.24 93.12 90.30 85.86 

KronA 0.07 63.27 77.70 92.52 94.26 91.30 86.34 93.15 90.57 86.14 

KronAB 0.07∗ 65.74 75.54 92.78 94.72 91.41 86.22 93.19 90.68 86.28 

KronAB 
res 0.07∗ 66.73 76.98 93.15 94.38 91.35 86.20 93.21 90.57 86.57 

∗ shows that the number of trainable parameters might be slightly different depending on the choice of 
one or two biases in the module 

Table 4.6 The first row shows the normalized latency of the methods in the inference phase while 
the second row lists the average normalized training time of the methods on the GLUE tasks 

Method Fine-tuning LoRA KronA BitFit Adapter PA Compacter KronAB KronAB 
res 

Inference 
Latency 
(%) 

100 100 100 100 146 113 181 127 136 

Training 
Time (%) 

100 72 75 64 73 71 79 74 81 

4.6 Ablation Study 

This section provides an ablation study on our work, illustrating the effect of the 
steps that were taken to develop our proposed Kronecker-based adapters. 

4.6.1 KronA Initialization 

Our empirical results show that the initialization of the Kronecker factors affects 
the performance of KronA. Table 4.7 shows the performance of two investigated 
strategies for the initialization. We observe that by initializing one of the Kronecker 
factors from a Kaiming-uniform (KU) distribution (a = √

5) (He et al., 2015) and 
the other one with zero, KronA adapters perform significantly better than initializing 
both of the factors from a Normal (μ = 0, σ  = 1 √

dh 
, where dh is the embedding 

dimension) distribution.
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Table 4.7 The performance of KronA on GLUE using different initialization options for the 

Kronecker factors. In the first row, both factors are initialized from a normal distribution (μ = 

0, σ  = 1 √
dh 
) while in the second row, Ak is initialized from a Kaiming-Uniform distribution 

(a = √
5) and  Bk is set to zero 

Init Method CoLA RTE MRPC SST-2 STS-B MNLI QNLI QQP Average 

Ak ,Bk ∼ Normal 63.36 66.91 91.69 91.97 90.46 86.03 92.33 90.19 84.12 

Ak ∼ KU ,Bk=0 63.27 77.70 92.52 94.04 91.26 86.03 93.13 90.57 86.06 

4.6.2 Step by Step Improvement of KronAB 

At first, KronAB was initialized like a normal adapter. It was sequentially inserted 
after both FFN and attention blocks and it did not have a scaling factor. We modified 
our module based on He et al. (2022) to improve its performance. 

Table 4.8 shows the results of our experiments. We observed that inserting KronAB 

modules in parallel to the PLM modules, rather than sequentially inserting them, 
significantly improves the performance. Additionally, adding a scaling factor to our 
module further increases the GLUE score. Furthermore, adding two modules to each 
FFN instead of adding to both the FFN and the attention blocks resulted in a higher 
score. 

In addition, motivated by the presence of a non-linear function in PA and Adapter, 
we tested different non-linear functions between the two multiplications (by AT 

k and 
Bk ) in Eq.  (4.2). As Table 4.9 shows, SiLU (Elfwing et al., 2018a) is the best option 
among others, but according to Table 4.8, adding SiLU decreases the GLUE score 
of KronAB . Therefore, we removed the nonlinearity from our module. 

Table 4.8 The performance of KronAB after implementing step by step modifications on GLUE 

Modification CoLA RTE MRPC SST-2 STS-B MNLI QNLI QQP Avg 

Sequential 15.26 53.28 86.39 87.38 83.78 74.70 84.29 86.63 71.46 

Parallel 58.17 69.78 91.58 93.81 90.86 85.68 93.35 90.14 84.17 

Parallel+Scale (PS) 62.27 70.50 91.58 94.04 91.01 86.16 93.39 90.61 84.94 

PS+SiLU 62.74 69.78 91.89 94.15 90.97 85.98 93.30 90.15 84.87 

PS only on FFN 63.74 72.66 92.20 94.72 90.98 85.98 93.12 90.68 85.51 

Table 4.9 The performance of KronAB on QNLI using Mish (Misra, 2020), ReLU (Agarap, 2018), 
GELU (Hendrycks and Gimpel, 2016), GELUnew, and SiLU (Elfwing et al., 2018b) as different 
non-linear functions 

Nonlinear function Mish ReLU GELU GELUnew SiLU 

QNLI Performance 93.21 93.28 93.13 93.26 93.30
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Table 4.10 The effect of adding a sigmoid function to the KronAB 
res module. “Avg Score” is the 

averaged score on the GLUE tasks and “Training Time” represents the relative training time 

Method Average score Training time 

KronAB 
res 86.57 1 

KronAB 
sigres 86.42 1.18 

4.6.3 Learnable Residual Connection 

In the KronAB 
res module, a residual connection multiplied by a learnable scale is added 

to the output of KronAB . We also studied another scenario in which the learnable scale 
is passed through a sigmoid function and then multiplied by the residual connection. 
This module is called KronAB 

sigres. We wanted to investigate whether it was better 
to limit the residual scale between 0 and 1. Our empirical results (Table 4.10) show  
that by adding the sigmoid function, the performance of the module drops and the 
latency increases. Therefore, the sigmoid function was removed from our module. 

4.7 Conclusion 

In this chapter, we proposed Kronecker-based adapters by replacing the low-rank 
projections from well-known PEFT methods with the Kronecker product. In addition 
to comparing the training and inference time, we evaluated our proposed adapter 
for fine-tuning T5 on the GLUE benchmark to show its superiority over common 
baselines. 
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Chapter 5 
LoDA: Low-Dimensional Adaptation 
of Large Language Models 

Jing Liu, Toshiaki Koike-Akino, Pu Wang, Matthew Brand, Kieran Parsons, 
and Ye Wang 

Abstract Parameter-efficient fine-tuning (PEFT) has recently garnered significant 
attention, due to the enormous size of LLMs. Among various PEFT methods, low-
rank adaptation (LoRA) demonstrates comparable performance to full fine-tuning, 
despite having significantly fewer trainable parameters. In this work, we first gener-
alize LoRA from a low-rank linear adaptation/mapping to low-dimensional, non-
linear adaptation/mapping, which we name “low-dimensional adaptation” (LoDA). 
We also propose LoDA+, which further improves the expressiveness of the non-
linear adaptation, while still using nearly the same number of tunable parameters 
as LoRA. Both LoDA and LoDA+ include LoRA as a special case. To improve 
computational efficiency at the inference phase, we further propose R-LoDA(+) and 
S-LoDA(+), by replacing the pre-trained weight matrix with its low-rank or sparse 
approximation, which is frozen during fine-tuning. Empirical evaluations on natural 
language generation tasks demonstrate that variants of LoDA outperform LoRA and 
other baselines. 

5.1 Introduction 

LLMs such as ChatGPT (Achiam et al. 2023), Gemini (Anil et al. 2023), 
LLaMA2 (Touvron et al. 2023), and Claude 3 (Anthropic 2024) have shown great 
promise in generating human-like text and have sparked excitement about their poten-
tial applications across various industries. The sizes of large LLMs have grown at an 
unprecedented rate, with current models boasting parameter counts in the hundreds of 
billions or even trillions, necessitating massive amounts of computational resources 
for training and inference. Recent studies show that the performance of a pre-trained 
language model (PLM) can be significantly improved by further fine-tuning on 
domain-specific data (Hu et al. 2022). Therefore, fine-tuning PLMs for domain-
specific tasks has become the de facto procedure. However, full fine-tuning of such
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LLMs is still very expensive. For instance, fine-tuning a 65 billion-parameter model 
requires more than 780 GB of memory (Dettmers et al. 2023). Parameter-efficient 
fine-tuning (PEFT) fine-tunes only a small set of parameters, which may be a subset 
of the existing model parameters or a set of newly added parameters, thereby greatly 
reducing computational and memory costs. Another advantage of PEFT is that, in 
addition to the pre-trained model, only a small number of (extra) model parameters 
need to be stored for each fine-tuned task. While PEFT greatly saves storage for 
multiple downstream tasks, full fine-tuning needs to generate a new large model for 
each such task.1 Besides parameter savings, PEFT makes it possible to quickly adapt 
to new tasks without catastrophic forgetting (Pfeiffer et al. 2020), which has often 
been observed during full fine-tuning of LLMs. PEFT approaches have also been 
shown to be better than full fine-tuning in low-data regimes (Hu et al. 2022; Li and 
Liang 2021). 

Unsurprisingly, therefore, many PEFT methods have been proposed. Prefix 
tuning (Li and Liang 2021) and prompt tuning (Lester et al. 2021) prepend some 
tunable prefix tokens to the input or hidden layers, and only train these soft prompts 
during fine-tuning. Several adapter tuning methods (Houlsby et al. 2019; Pfeiffer et al. 
2020; Rebuffi et al. 2017; Rücklé et al. 2020) insert (and tune) small neural modules 
called adapters (see Chap. 4, Sect. 4.2 for more details) to some layers of the PLM. 
More recently, Hu et al. (2022) propose to use low-rank decomposition matrices to 
approximate the parameter update of the weight matrix of a dense layer. In particular, 
they propose to update the Query and Value projection matrices in the Transformer 
architecture, which shows promising performance and has become a popular PEFT 
tool for LLMs in modern libraries, e.g., Hugging Face PEFT (Mangrulkar et al. 
2022). For a comprehensive review and comparison, we refer interested readers to 
recent surveys (Ding et al. 2023; Lialin et al. 2023; Pfeiffer et al. 2023; Sabry and 
Belz 2023). 

LoRA is motivated by the hypothesis that the change in the model (to adapt to a 
related downstream task) is intrinsically low-dimensional (Aghajanyan et al. 2021). 
LoRA constrains the change in weights during model adaptation to be low-rank, 
leading to the Low-Rank Adaptation (LoRA) approach (Hu et al. 2022). For a dense 
layer of the PLM, its original weight parameters, e.g., W ∈ Rd×d (blue parts of 
Fig. 5.1a, also labeled with •) is frozen. During fine-tuning, LoRA uses low-rank 
decomposition matrices A ∈ Rd×r and B ∈ Rr×d to constrain the weight update
�W = AB (parts without • in Fig. 5.1a). As the rank r is typically set to be very 
small, the number of parameters in A and B are significantly less than the original 
W.

We view the neural network as a function, and the change in the neural network 
during the task adaptation can be more generally viewed as the change in its mapping. 
Let the input to the dense layer be denoted by x, and the output of the pre-trained

1 For example, in Hu et al. (2022), a GPT-3 175B model of size 350GB is fine-tuned with a rank-4 
LoRA adapter that requires only 35MB for each downstream task. Storing 100 adapted models 
requires only 350GB + 35MB × 100 ≈ 354GB as opposed to 350GB × 100 ≈ 35TB for full 
fine-tuning over 100 tasks. 
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Fig. 5.1 Overview of a LoRA; b LoDA; c S-LoDA; d R-LoDA; e LoDA+. The blue part (labeled 
with •) is frozen during fine-tuning, and only other parts are trained. In LoDA+, there is essen-
tially only one matrix B, but the non-linear part has additional non-linear operations after B (e.g., 
LeakyReLU)
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dense layer denoted by h0 = xW . After LoRA fine-tuning of that dense layer, the 
new output h′

LoRA = h0 + �hLoRA, where �hLoRA = xAB. Thus, the mapping from 
input x to the update �hLoRA = xAB by LoRA is a low-rank (i.e., r-dimensional) 
linear mapping. 

Although the update of the mapping x → �h likely has an intrinsic low dimension 
for task adaptation, the linear low-rank constraint imposed by LoRA might be too 
restrictive, and so we aim to relax it to a more general low-dimensional, non-linear 
constraint. Liao et al. (2023) also argue that linear adaptation may limit the learning 
capacity of LoRA. Consequently, we propose to extend LoRA to a more general 
Low-Dimensional Adaptation (LoDA), which will be detailed in the next section. 

Notation We follow conventional terminologies for the Transformer architecture, 
where dmodel denotes the input/output dimension of a Transformer block. We 
use Wq, Wk, and Wv to refer to the query, key, and value projection matrices, 
respectively, of a self-attention module. 

5.2 Proposed Methods 

One key question is how to design and realize a more general low-dimensional, non-
linear constraint than the linear low-rank constraint of LoRA, while keeping LoRA as 
a special case. We propose a deep neural network architecture for LoDA as illustrated 
in Fig. 5.1b. The low-dimensional non-linear constraint is realized by a multi-layer 
neural network within the bottleneck structure (to maintain parameter efficiency) and 
a residual connection between matrices A and B. It can be considered as a non-linear 
version of LoRA with the non-linear mapping x → �hLoDA 

.= fLoDA(x). 
Mathematically, with our proposed residual connection architecture of LoDA in 

Fig. 5.1b, we have Eq. (5.1):

�hLoDA = fLoDA(x) = xAB + f1(xA)B, (5.1) 

where f1(·) is a non-linear function between matrix A and matrix B, which consists 
of a series of linear layers and non-linear operations (e.g., LeakyReLU activation, 
layer-normalization). Note that Fig. 5.1b is merely an example of a LoDA structure. 
For instance, the non-linear part between matrix A and matrix B could have more 
layers than illustrated, and may use non-square matrices. LoRA is a special case of 
LoDA if f1(xA)B is zero (e.g., a hidden layer’s weights in LoDA are zero) or if f1(·) 
is linear, for example.
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5.2.1 Extension to LoDA+ 

Although LoDA generalizes LoRA from a low-rank linear mapping/adaptation to 
a low-dimensional, non-linear mapping/adaptation, and keeps LoRA as a special 
case, the image of such a non-linear mapping still lies in a low-dimensional linear 
subspace (i.e., the range of matrix B). We investigate whether it is possible to further 
generalize that to a low-dimensional (non-linear) manifold, while keeping LoRA as 
a special case, and using almost the same number of tunable parameters as LoRA. 
We further propose the mapping in (5.2) for LoDA+, illustrated in Fig. 5.1e, that 
affirms the possibility:

�hLoDA+ = fLoDA+(x) = xAB + f2(f1(xA)B) (5.2) 

Note that the key difference between LoDA and LoDA+ is the additional non-linear 
function f2(·), e.g., non-linear activation and/or layer-normalization. With this addi-
tional non-linear function, the image of the mapping fLoDA+ becomes the combination 
of a linear subspace (the first term in Eq. (5.2)) and a non-linear manifold (the second 
term in Eq. (5.2)). For convenience, we will use LoDA(+) to represent both ‘LoDA 
and LoDA+’. 

Viewing LoDA(+) as Deep Parallel Adapters: He et al. (2022) viewed LoRA  
as a parallel adapter. Similarly, the proposed LoDA can be viewed as a deep parallel 
adapter. Recent work (Zhu et al. 2021; He et al.  2022) propose to use the traditional 
shallow adapter in a parallel fashion instead of the usual sequential fashion. The 
shallow adapter there only has a down-projection layer, followed by a non-linear 
activation function (typically ReLU), then an up-projection layer, and the adapter 
attaches to the input and output of the Attention module or the Feed-Forward Network 
module of a Transformer block in an LLM. We refer the interested readers to (Hu 
et al. 2023), Fig. 1) and (He et al. (2022, Table 1) for more details. In contrast, the 
proposed LoDA, which aims at learning a low-dimensional, non-linear mapping, has 
a deep structure to capture the underlying nonlinearity. Further, in LLMs, LoDA and 
LoRA are attached to Wq and Wv, but not attached to the whole Attention module nor 
to the Feed-Forward Network module of the Transformer block. Also, it is interesting 
to note that LoDA has a Residual Connection inside, that is between the output of 
matrix A and the input of matrix B (see Fig. 5.1b), which is different from the existing 
adapters. More interestingly, LoDA+ can be viewed as a deep+shallow dual parallel 
adapter, where the shallow and deep parts correspond to the first and second terms 
in Eq. (5.2), respectively.
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5.2.2 S-LoDA(+) and R-LoDA(+) 

As the dimension of the non-linear layers in LoDA(+) is restricted to a very small 
value r, the additional computational cost during the inference is very small (see 
Sect. 5.3.2 for more details). Furthermore, as LoDA(+) runs in parallel with the 
pre-trained weight matrix W, it will not introduce a noticeable delay in the overall 
inference with parallelization, unlike the sequential adapters in the literature. With 
LoDA(+), the main computational bottleneck is still W of the PLM. We explore the 
extent to which it is possible to further improve the computational efficiency of a 
LoDA(+) fine-tuned model, and even whether it can be significantly better than the 
pre-trained model. 

We observe that the combined projection matrix Wproj = [Wq, Wk, Wv] inside 
the Attention module of GPT2-medium (with size 1024 × 3072) can be well-
approximated by a relatively low-rank matrix or a relatively sparse matrix. More 
specifically, Fig. 5.2a shows the percentage of total energy (i.e.,

∑R 
i=1 σ 2 i /

∑1024 
i=1 σ 2 i ) 

with respect to the number of top singular values R of Wproj in the first Transformer 
block of GPT2-medium. We see that using only the top 300 singular value compo-
nents of Wproj preserves over 93% of its total energy. Figure 5.2 shows the percentage 
of total energy w.r.t. the percentage of nonzero entries of Wproj (by zeroing out smaller 
magnitude weights). We see that keeping 40% of the larger magnitude entries of Wproj 

can preserve over 96% of its total energy. 
The aforementioned questions and observations motivate us to further propose 

R-LoDA(+) and S-LoDA(+), which are LoDA(+) combined with the low-Rank 
or Sparsified approximations of W, which are frozen during fine-tuning, while the

Fig. 5.2 a Percentage of total energy w.r.t. the number of top singular values of Wproj. b Percentage 
of total energy w.r.t. the percentage of nonzero entries of Wproj (by zeroing out smaller magnitude 
weights) 
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adapter is trained/fine-tuned for this approximate W. See Fig. 5.1c and d for illustra-
tions.2 Our empirical investigation shows that even when the pre-trained projection 
matrix Wproj is low-rank approximated or sparsified, combining with LoDA(+) can 
still achieve competitive performance. More importantly, the total inference cost of 
the R-LoDA(+) or S-LoDA(+) fine-tuned model can be significantly lower than the 
pre-trained model. The analysis of the computational costs can be found in Sect. 5.3.2, 
and Table 5.2 in Sect. 5.4 also demonstrates the significant computational savings 
for the GPT2-medium model. 

5.3 Discussion 

5.3.1 Number of Fine-Tuning Parameters 

The number of trainable parameters of LoRA and the proposed methods are deter-
mined by the bottleneck dimension r and the shape of the original weights. More 
specifically, in Fig. 5.1, the matrices A and B across all methods have dimensions 
d times r. The proposed methods have two additional r by r bottleneck matrices. 
Their non-linear activation function is LeakyReLU with a fixed slope of 0.8, and 
their layer-normalization is not trainable. Accordingly, the total number of trainable 
parameters for LoRA is 2rdL, and for all proposed methods is 2(rd + r2)L, where 
L is the number of weight matrices that we apply LoRA/LoDA(+)/S-LoDA(+)/R-
LoDA(+) to. Note that they are almost the same when r � d . For example, in 
GPT2-medium, d = dmodel = 1024 and r = 4 are used for all methods by default, so 
r2 is negligible compared to rd. As in LoRA, we only apply the proposed methods 
to Wq and Wv (of shape dmodel × dmodel) in the self-attention module. 

5.3.2 Computational Efficiency During Inference 

In Fig. 5.1, let the input embeddings be X ∈ Rn×d , where n is sequence length. For 
the LoDA(+) part, recall that A ∈ Rd×r , B ∈ Rr×d , and the two bottleneck matrices in 
Fig. 5.1b–e are r by r square matrices, and there are some non-linear activations and/ 
or layer-normalization layers. The computational complexity of a LoDA(+) adapter 
during the inference is O(rdn + dn + r2n + rn), where the dominant part is O(rdn), 
which is much lower than computing XWq (or XWv), which costs O(d2n), since 
r � d (recall that in GPT2-medium, d = dmodel = 1024 and r = 4 are used for all 
methods by default).

2 If applying R-LoDA (or S-LoDA) on Wq and Wv, one could approximate Wq and Wv separately, 
but we directly approximate the whole Wproj = [Wq, Wk, Wv] to make the model inference more 
efficient. 
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For R-LoDA and S-LoDA, as mentioned earlier, if applying them on Wq and 
Wv, one could low-rank approximate (or sparsify) Wq and Wv separately. To make 
the model inference more efficient, we directly approximate the whole Wproj = 
[Wq, Wk, Wv] instead. More specifically, for Wproj ∈ Rd×3d , we approximate it using 
the product of matrix WA ∈ Rd×R and matrix WB ∈ RR×3d , i.e., WAWB. The compu-
tational cost for XWproj is 3d2n MACs (Multiply-Accumulate Operations), while 
the computational cost for the low-rank version (XWA)WB is ndR + nR3d = 4Rdn 
MACs, which is lower than the former as long as R < 3d /4 (e.g., in GPT2-medium, 
d = 1024, so we only need R < 768). One can calculate that the R-LoDA(+) fine-
tuned model is computationally more efficient than the pre-trained model during 
inference, even setting R as high as 700 in our experimental settings. 

Similarly, for S-LoDA(+), the computational cost for the sparsified version 
XWSparse is s × 3d2n MACs, where s is the fraction of nonzero entries in Wproj. 
While the added computational cost of the LoDA+ adapters on Wq and Wv is 
2(2rd + 2r2 + 4r)n MACs, which is relatively negligible since r � d , and the 
total computational saving is then approximately (1 − s) × 3d2n MACs. Reducing 
the computational complexity with R-LoDA(+) and S-LoDA(+) can directly decrease 
total power consumption in inference. 

Table 5.1 GPT2-medium with different adaptation methods on E2E NLG challenge. For all 
metrics, higher is better 

Method Approx # Trainable E2E NLG challenge 

Wproj Parameters BLEU NIST MET ROUGE-L CIDEr 

FT* No 354.92M 68.2 8.62 46.2 71.0 2.47 

AdapterL* No 0.37M 66.3 8.41 45.0 69.8 2.40 

AdapterL* No 11.09M 68.9 8.71 46.1 71.3 2.47 

AdapterH* No 11.09M 67.3±.6 8.50±.07 46.0±.2 70.7±.2 2.44±.01 

PreLayer* No 0.35M 69.7 8.81 46.1 71.4 2.49 

FTTop2* No 25.19M 68.1 8.59 46.0 70.8 2.41 

FTWq,Wv No 48.00M 69.4±.1 8.74±.02 46.0±.0 71.0±.1 2.48±.01 

One-shot No – 14.6 2.86 27.5 40.3 0.82 

LoRA No 0.38M 69.0±.7 8.69±.07 46.5±.2 71.3±.4 2.51±.00 

LoDA No 0.38M 70.2±.3 8.83±.03 46.6±.1 71.6±.1 2.53±.01 

S-LoDA Keep 40% 0.38M 70.2±.3 8.83±.03 46.6±.1 71.6±.1 2.53±.01 

R-LoDA Rank300 0.38M 69.7±.2 8.79±.03 46.7±.0 71.5±.3 2.52±.00 

LoDA+ No 0.38M 69.9±.3 8.81±.04 46.5±.0 71.4±.0 2.52±.00 

S-LoDA+ Keep 40% 0.38M 69.6±.5 8.77±.06 46.7±.1 71.6±.2 2.50±.01 

R-LoDA+ Rank300 0.38M 70.1±.4 8.81±.05 46.4±.1 71.6±.3 2.52±.01 

*indicates numbers published in previous work, as compiled by Hu et al. (2022)
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5.4 Empirical Studies 

We focus on natural language generation (NLG) tasks, and we follow the setup of 
Hu et al. (2022) and Li and Liang (2021) on GPT2-medium (Radford et al. 2019) for  
a direct comparison. We compare the downstream task performance of our proposed 
methods with LoRA, adapter tuning methods by Houlsby et al. (2019) (AdapterH ) 
and Lin et al. (2020) (AdapterL ), prefix-layer tuning (PreLayer), full fine-tuning (FT), 
and fine-tuning the top-2 layers (FTTop2 ), similar to Hu et al. (2022). We also compare 
direct fine-tuning of the projection matrices Wq and Wv (denoted as FTWq,Wv ). As a 
reference, we also tested the one-shot in-context learning performance of the pre-
trained GPT2-medium model, by providing the task description and one example in 
the prompt. 

For LoDA(+), we simply set the hyperparameters (e.g., bottleneck dimension 
r = 4, learning rate, etc.) to the same as that used by LoRA (indicated in Table 11 
of Hu et al. (2022)3 ) without tuning, which may favor LoRA. For R-LoDA(+) and 
S-LoDA(+), since the pre-trained Wproj is approximated, training a few more epochs 
may be needed to recover some details that are potentially lost during approximation. 
Thus, we train R-LoDA(+) and S-LoDA(+) up to 10 epochs and choose the best result 
from epoch 5 and epoch 10. The experiments were run on an NVIDIA A40 GPU 
with 48 GB memory. 

We first evaluated on the E2E NLG challenge (Novikova et al. 2017) dataset, 
which is a dataset for training end-to-end NLG systems and is commonly used for 
data-to-text evaluation. The dataset consists of approximately 42K training, 4.6K 
validation, and 4.6K testing examples from the restaurant domain. It is released 
under the Creative Commons BY-NC-SA 4.0 license. Table 5.1 compares the perfor-
mance of different methods on this dataset. One-shot in-context learning4 performs 
much worse than other methods which fine-tune the model. LoDA, LoDA+, and S-
LoDA outperform the baselines (including Fine-Tuning methods) on all 5 evaluation 
metrics. Other variants R-LoDA(+) and S-LoDA+ perform better than or at least 
on-par with LoRA and other baselines.

3 We do not know the random seeds used in Hu et al. (2022). So we run LoDA(+) and LoRA with 
the same random seeds for fair comparisons. On DART, we cannot reproduce the results of LoRA 
using the default of 5 epochs, and we run 10 epochs instead to obtain results similar to that reported 
in Hu et al. (2022). 
4 The task description and one example that we provided in the prompt are as follows: Generate a 
restaurant description from the table. Here is an example: name : The Eagle | Type : coffee shop | 
food : Japanese | price : less than £20 | customer rating : low | area : riverside | family friendly : yes | 
near : Burger King. The generated description is: The Eagle is a low rated coffee shop near Burger 
King and the riverside that is family friendly and is less than £20 for Japanese food. 
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We also perform experiments on the DART dataset (Nan et al. 2021) following 
the setup of Hu et al. (2022) and Li and Liang (2021). This open-domain data-to-text 
dataset has a total of 82K examples. DART presents a significantly larger and more 
complex data-to-text task compared to the E2E NLG challenge dataset (Novikova 
et al. 2017). This dataset is released under the MIT license. We evaluate with the 
BLEU (Papineni et al. 2002), METEOR (Lavie and Agarwal 2007), and TER (Snover 
et al. 2006) metrics, similar to Hu et al. (2022), but with slightly higher precision. 
The evaluation code is based on the source code of LoRA (Hu et al. 2022), which 
is available on GitHub.5 The results are shown in Table 5.2, which also include the 
number of MACs per token for computing Query/Key/Value during inference in the 
fine-tuned model. Note that the LoRA fine-tuned model has the same computational 
cost as the pre-trained model if the adapter is merged into the pre-trained weight, 
otherwise its computational cost is almost the same as LoDA. Also note that the 
number of trainable parameters in FTWq,Wv accounts for nearly 1/7 of the total model 
parameters, and is 126 times more than that of LoRA and proposed methods. LoDA 
and especially LoDA+ again outperform LoRA and FTWq,Wv , and their computational 
cost during inference is only slightly higher than the pre-trained model. 

We notice that higher rank and less sparseness to approximate Wproj, respectively, 
in R-LoDA(+) and S-LoDA(+), are needed for DART, as it is a more complex task than 
the E2E NLG challenge. Nevertheless, even with pruning 40% of the entries in Wproj, 
S-LoDA(+) can outperform LoRA and FTWq,Wv . For R-LoDA(+), approximating 
Wproj with the 300 top singular value components seems insufficient on DART, while 
it is sufficient on E2E NLG challenge in Table 5.1 (as R-LoDA and R-LoDA+ 
outperform baselines on E2E NLG challenge with Rank= 300). This is likely because 
the E2E NLG challenge is a relatively easier downstream task, so a rough low-rank 
approximation of the pre-trained weights combined with LoDA(+) fine-tuning is 
sufficient. R-LoDA+ with Rank = 500 shows reasonable performance. We observe a 
trade-off between efficiency and accuracy in R-LoDA(+) and S-LoDA(+). This may 
shed light on how to choose the Rank and Sparsity in R-LoDA(+) and S-LoDA(+), 
which depends on the downstream task as well as its relation to the pre-trained tasks. 
Such (downstream) task-dependent auto-configuration of Rank and Sparsity is a topic 
for our future work. 

Most notably, the number of MACs per token for computing Query/Key/Value 
during inference, in both the S-LoDA(+) and R-LoDA(+) fine-tuned models, is signif-
icantly lower than the pre-trained model. For example, S-LoDA+ that prunes 40% 
of the entries in Wproj can significantly reduce the number of MACs, while having 
slightly better performance than LoRA and FTWq,Wv .

5 https://github.com/microsoft/LoRA. 

https://github.com/microsoft/LoRA
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Table 5.2 GPT2-medium with different adaptation methods on DART. For TER metric, lower is 
better. The number of MACs per token of computing Query/Key/Value during inference in the 
LoRA fine-tuned model is 75.5 million if the LoRA adapter is merged into the pre-trained weight 
W, otherwise it is 75.9 million 

Method Approx Wproj MACs/token of 
compute Q/K/V 

# Trainable  
parameters 

DART 

BLEU↑ MET↑ TER↓ 
FTWq,Wv No 75.5M 48.00M 47.1±.1 36.0±.0 0.480±.000 

LoRA No 75.5/75.9M 0.38M 47.2±.1 36.0±.0 0.480±.000 

LoDA No 75.9M 0.38M 47.3±.1 36.0±.0 0.480±.000 

S-LoDA Keep 60% 45.7M 0.38M 47.3±.2 36.0±.0 0.477±.006 

S-LoDA Keep 50% 38.1M 0.38M 47.1±.2 36.0±.0 0.480±.000 

R-LoDA Rank500 49.5M 0.38M 46.8±.7 35.9±.1 0.483±.006 

R-LoDA Rank400 39.7M 0.38M 46.6±.2 35.9±.1 0.483±.006 

R-LoDA Rank300 29.9M 0.38M 46.5±.2 35.5±.4 0.487±.006 

LoDA+ No 76.1M 0.38M 47.3±.2 36.0±.0 0.477±.006 

S-LoDA+ Keep 60% 45.9M 0.38M 47.3±.1 36.0±.0 0.473±.006 

S-LoDA+ Keep 50% 38.3M 0.38M 47.1±.2 36.0±.0 0.480±.000 

R-LoDA+ Rank500 49.7M 0.38M 47.1±.5 35.9±.1 0.480±.000 

R-LoDA+ Rank400 39.9M 0.38M 46.7±.2 35.9±.1 0.483±.006 

R-LoDA+ Rank300 30.1M 0.38M 46.3±.6 35.6±.5 0.483±.006 

5.4.1 Why LoDA(+) Outperforms FTWq,Wv 

From Tables 5.1 and 5.2, one can see that LoDA and LoDA+ consistently outperform 
FTWq,Wv on all evaluation metrics. Recall that LoDA(+) are applied to projection 
matrices Wq and Wv, while FTWq,Wv directly fine-tunes the whole matrices Wq and 
Wv. Naturally, one may question why LoDA(+) does better. 

It is important to note that directly fine-tuning the weight matrix W of a dense 
layer still retains a linear mapping. Let the input to that dense layer be denoted 
by x, and the output of the pre-trained dense layer be denoted by h0 = xW . After  
directly fine-tuning that dense layer, we have W ′ = W + �W , and the new output 
h′
FTW = xW ′ = xW + x�W = h0 + �hFTW , where �hFTW = x�W . So the mapping 
from input x to the update �hFTW is still a linear mapping, though this mapping is 
generally not low-rank.6 

6 The definition of the rank of a linear mapping can be found at https://en.wikipedia.org/wiki/Lin 
ear_map.

https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Linear_map
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In contrast, the mappings of LoDA and LoDA+ in Eqs. (5.1) and (5.2) are non-
linear, and cannot be expressed in the form of �h = x�W . This is in line with 
the observation in Eq. 5 of Liao et al. (2023), when the authors discuss the limited 
learning capacity of LoRA. From that perspective, our proposed LoDA(+) can be 
viewed as expanding the learning capacity of LoRA, which further explains why 
LoDA(+) performs better. 

5.4.2 Effect of the Bottleneck Dimension 

We further study the effect of the bottleneck dimension r of LoDA(+) adapters in 
GPT2-medium using the E2E NLG challenge dataset, and also include LoRA (under 
the same random seeds) as a baseline. The hyperparameters (e.g., learning rate) of 
LoDA(+) are set to be the same as that used by LoRA (indicated in Table 11 of Hu et al. 
(2022)) without tuning, which may favor LoRA, but the main purpose here is to study 
the effect of the bottleneck dimension in LoDA(+). Table 5.3 shows the performance 
of each adapter under different bottleneck dimensions r. LoDA+ and LoRA achieve 
their best performance roughly around r = 128, while further increasing r does not 
show apparent improvement. Interestingly, LoDA achieves favorable performance 
at bottleneck dimensions of both r = 4 and r = 256.

5.5 Conclusion and Future Work 

We have generalized LoRA to the framework of LoDA(+), where LoRA is a special 
case, and have demonstrated their very promising performance. We also extended 
LoDA(+) to R-LoDA(+) and S-LoDA(+), by applying low-rank and sparse approxi-
mation, which achieves similar performance, while drastically improving computa-
tional efficiency. One future direction is to approximate W with other structured 
matrices, e.g., block-sparse matrix, Monarch matrix (Dao et al. 2022), or with 
quantization of the pre-trained model, such as in QLoRA (Dettmers et al. 2023).
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Table 5.3 GPT2-medium with different adaptation methods and corresponding bottleneck dimen-
sions r, on E2E NLG challenge. For all metrics, higher is better. For each adapter, bold fonts indicate 
its best metric score among tested bottleneck dimensions 

Method Bottleneck E2E NLG challenge 

Dimension r BLEU NIST MET ROUGE-L CIDEr 

LoRA 2 69.4±.5 8.74±.07 46.5±.1 71.4±.3 2.49±.03 

LoRA 4 69.0±.7 8.69±.07 46.5±.2 71.3±.4 2.51±.00 

LoRA 8 69.4±.6 8.74±.06 46.6±.1 71.7±.3 2.52±.01 

LoRA 16 68.6±.5 8.65±.06 46.4±.2 71.4±.3 2.50±.01 

LoRA 32 69.4±.8 8.74±.10 46.6±.2 71.6±.1 2.51±.01 

LoRA 64 69.7±.1 8.77±.02 46.5±.1 71.8±.1 2.51±.01 

LoRA 128 69.8±.4 8.77±.03 46.6±.1 71.8±.2 2.51±.01 

LoRA 256 69.0±.4 8.68±.04 46.6±.2 71.7±.2 2.50±.01 

LoRA 512 69.4±.5 8.72±.05 46.6±.1 71.6±.1 2.51±.01 

LoRA 1024 69.4±.4 8.72±.04 46.6±.1 71.6±.1 2.51±.01 

LoDA 2 67.71.0 8.62±.14 44.9±.5 69.5±.7 2.32±.04 

LoDA 4 70.2±.3 8.83±.03 46.6±.1 71.6±.1 2.53±.01 

LoDA 8 69.4±.2 8.74±.04 46.5±.2 71.1±.2 2.52±.01 

LoDA 16 69.6±.4 8.77±.05 46.6±.1 71.4±.2 2.51±.01 

LoDA 32 68.3±1.0 8.63±.12 46.3±.2 71.0±.3 2.49±.03 

LoDA 64 68.2±.7 8.62±.09 46.2±.2 70.8±.4 2.49±.02 

LoDA 128 69.9±.0 8.81 ±.02 46.6±.1 71.6±.2 2.53±.01 

LoDA 256 70.2±.8 8.82±.09 46.8±.1 71.8±.3 2.53±.02 

LoDA 512 68.9±.8 8.69±.08 46.4±.4 71.5±.5 2.50±.02 

LoDA 1024 68.9±.3 8.70±.04 46.5±.2 71.5±.2 2.51±.01 

LoDA+ 2 66.9±.9 8.52±.16 44.7 ±.1 69.3±.1 2.35±.06 

LoDA+ 4 69.9±.3 8.81±.04 46.5±.0 71.4±.0 2.52±.00 

LoDA+ 8 70.0±.6 8.82±.06 46.6±.1 71.4±.3 2.54±.02 

LoDA+ 16 69.6±.3 8.77±.05 46.6±.1 71.4±.3 2.52±.01 

LoDA+ 32 69.9±.3 8.79±.04 46.7±.1 71.7±.0 2.53±.01 

LoDA+ 64 69.9±.6 8.81±.06 46.7±.1 71.6±.5 2.52±.02 

LoDA+ 128 70.2±.6 8.83±.06 46.8±.1 71.9±.2 2.53±.01 

LoDA+ 256 69.9±.4 8.79±.03 46.6±.1 71.7±.4 2.52±.01 

LoDA+ 512 70.1±.5 8.81±.06 46.8±.1 72.0±.2 2.53±.02 

LoDA+ 1024 69.6±.8 8.77±.11 46.7±.1 71.7±.2 2.52±.03
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Chapter 6 
Sparse Fine-Tuning for Inference 
Acceleration of Large Language Models 

Eldar Kurtic, Denis Kuznedelev, Elias Frantar, Michael Goinv, 
Shubhra Pandit, Abhinav Agarwalla, Tuan Nguyen, Alexandre Marques, 
Mark Kurtz, and Dan Alistarh 

Abstract We investigate the problem of accurate sparse fine-tuning of large 
language models (LLMs), that is, fine-tuning pre-trained LLMs on specialized tasks, 
while inducing sparsity in their weights. Our work is motivated by experiments 
showing that standard loss-based fine-tuning methods are not able to achieve high 
accuracy in this setting, especially at high sparsity targets. To address this issue, we 
perform a detailed study of knowledge distillation losses for fine-tuning of sparse 
models. We determine an L2-based distillation approach that we term ‘SquareHead’, 
which enables accurate recovery even at higher sparsities. Investigating the question 
of efficient inference, we show that sparse LLMs can be executed faster by taking 
advantage of sparsity. Specifically, we exhibit end-to-end results showing speedups 
enabled by sparsity, while recovering accuracy, on the following models and tasks, 
respectively: T5 for language translation, Whisper for speech translation, and open 
GPT-type models such as the Mosaic Pre-Trained Transformer (MPT) and Llama-2 
models for text generation. In particular, for popular generative tasks, we show for 
the first time that sparse fine-tuning can reach 75% sparsity without drops in accu-
racy, and provide notable end-to-end speedups for inference on CPUs. Moreover, we 
also highlight that sparsity is compatible with other compression approaches, such 
as quantization.
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6.1 Introduction 

Large Transformer models (Vaswani et al. 2017) have gained high popularity and 
adoption due to their breakthrough performance across a wide range of challenging 
tasks. To address their high runtime costs, several acceleration techniques have been 
developed (Dao et al. 2022; Dettmers et al. 2022b; Frantar et al. 2022; Dettmers and 
Zettlemoyer 2023). For inference acceleration, one of the most popular techniques is 
quantization (Dettmers et al. 2022a; Frantar et al. 2022; Yao et al. 2022; Dettmers and 
Zettlemoyer 2023). Specifically, it has been shown that LLMs can be quantized down 
to 4 bits per weight with negligible accuracy loss and that this can be leveraged for 
inference speedups (Frantar et al. 2022; Dettmers and Zettlemoyer 2023). However, 
quantization methods are reaching accuracy limits at around 3 bits per weight (Chee 
et al. 2024; Dettmers et al. 2024). 

A key compression alternative to quantization is weight sparsity (LeCun et al. 
1989), which consists of setting individual LLM connections to zero. For smaller 
models such as BERT (Devlin et al. 2019), it is known (Sanh et al. 2020; Kurtic et al. 
2022) that high levels of sparsity can be applied during fine-tuning, i.e., the process 
by which a pre-trained model is adapted to a “downstream” task, such as question 
answering or text classification. However, it is not known whether similar techniques 
an be applied at the scale of LLMs. 

In this chapter, we study sparse fine-tuning for LLMs across three modern appli-
cations: speech transcription using Whisper (Radford et al. 2023), specialized to a 
specific language, machine translation using T5 (Wei et al. 2021), specialized to a 
specific language pair (Macháček and Bojar 2014), and higher-level reasoning using 
the openly-available MPT (Team et al. 2023) and Llama-2 (Touvron et al. 2023) 
models, specialized on the grade-school math (GSM8k) task (Cobbe et al. 2021). 

Accordingly, the contributions of this chapter are as follows: 

• We observe that naive sparse fine-tuning (Sanh et al. 2020), which follows dense 
fine-tuning while gradually imposing sparsity, is challenging to apply for LLMs 
due to training instability. More precisely, this instability manifests itself in several 
forms: (1) sudden loss increases (spikes) at higher sparsities which lead to diver-
gence, (2) poor accuracy recovery for the sparse model, as the small amount 
of fine-tuning data available for the specific task may not be sufficient to recover 
accuracy; or (3) overfitting, as iterating multiple times over the limited fine-tuning 
data leads to low training loss, but high validation loss. 

• To address this, we investigate fine-tuning models sparsified via the state-of-the-
art SparseGPT method (Frantar and Alistarh 2023) using various losses which 
incorporate standard cross-entropy and output knowledge distillation (Hinton 
et al. 2015). More specifically, we also investigate a type of L2-based knowl-
edge distillation inspired by Sun et al. (2019), Frantar and Alistarh (2022), Kurtić 
et al. (2024) which we call SquareHead. We show that SquareHead distillation 
consistently recovers accuracy, even at high sparsities.
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• On the practical side, we show that the resulting sparse models can be executed 
faster. For CPU inference, we leverage the DeepSparse inference engine (Neural-
Magic 2021) to obtain faster execution (speedups) across all three applications. 
Finally, we are able to obtain remarkable CPU speedups by jointly leveraging 
sparsity and quantization. For example, we are able to achieve a 7.5x speedup 
with a minimal accuracy loss relative to the full precision dense baseline. 

6.2 Methodology 

6.2.1 Sparse Fine-tuning 

Sparsification. To obtain a set of sparse models satisfying some target compression 
requirements, we gradually increase the sparsity level, while fine-tuning the model 
on the task of interest. Unless otherwise stated, we start from a list of desired spar-
sity levels, in increasing order, and iteratively prune and fine-tune the model while 
following the original fine-tuning recipe for the dense model. 

Distillation strategies. LLMs are notoriously difficult to train and fine-tune (Team 
et al. 2023), and we found this to be particularly the case when sparsity is imposed 
during an often short fine-tuning cycle. Choosing the ‘right’ loss function is critical to 
obtain stable fine-tuning. Thus, to address this, we investigate knowledge distillation 
(KD) approaches. Specifically, a sparse “student” model is trained to mimic the output 
of a dense and accurate “teacher” model, which has already been fine-tuned on the 
target task. In this context, the most common KD strategy adds a loss term measuring 
the Kullback–Leibler (KL) divergence between student and teacher outputs (Hinton 
et al. 2015). However, we observe that one obtains better results by going further and 
distilling intermediate representations. We describe this process formally below. 

Standard output distillation uses KL-divergence between student and teacher 
logits as its loss, as shown in Eq. (6.1): 

Llogit = DKL(θt||θs) = 1 
B×seq∑

i 
1[i /∈ P] 

B×seq∑

i 

1[i /∈ P]pθt (xi) log 
pθt (xi) 
pθs (xi) 

. (6.1) 

where B stands for batch size, seq for sequence length, pθt (xi) and pθs (xi) denote 
output probabilities for teacher and student model respectively. The notation 1[i /∈ P] 
means that the loss for padding tokens P is discarded. 

To transfer intermediate representations, we examine normalized mean squared 
error (MSE) loss on each feature representation, which we call SquareHead, as  
shown in Eq. (6.2): 

Ll 
feat = 

MSE(f l t , f l s ) 
MSE(f l t , 0) 

, shape(f l s ) = shape(f l t ) = B × seq × dmodel. (6.2)
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Here, f l t and f 
l 
s denote the feature map of the l-th layer of the teacher and student 

model, and MSE represents the mean squared error calculated as MSE(X , Y ) =
1 
N

∑N 
i=0(xi − yi)2, for  N-dimensional vectors X and Y. We discard terms that corre-

spond to padding tokens. The motivation for the normalization is that the magnitude 
of activations may greatly vary between different layers, thus focusing the optimiza-
tion procedure to optimize the layers with the largest norm. We observed that for 
some models MSE loss without normalization leads to instabilities in training. The 
total feature loss is the sum of per-layer losses over all encoder/decoder blocks. 

SquareHead Distillation. The overall SquareHead distillation loss is the sum of 
the original task loss and SquareHead term with equal weights: L = Ltask + Lfeat. 

As stated previously, variants of SquareHead-type losses have been used by Sun 
et al. (2019), Frantar and Alistarh (2022), and Kurtić et al. (2024) in the context 
of compressing smaller-scale models during the fine-tuning process, such as BERT-
style models (Devlin et al. 2019) for question-answering or sentiment classification 
fine-tuning tasks. More broadly, in the context of BERT fine-tuning, it is known 
that variants of knowledge distillation can help reduce accuracy loss during fine-
tuning (Sanh et al. 2020; Frantar and Alistarh 2022; Xia et al. 2022; Kurtic et al. 
2022; Kurtić et al. 2024). Relative to this line of work, in this chapter we determine 
a type of distillation loss that is consistently effective for accurate sparse fine-tuning 
of LLMs, which has not yet been investigated. 

6.2.2 Quantization 

Besides sparsification, we apply 8-bit quantization to both weights and activations to 
further improve performance. Quantizing activations of LLMs is known to be chal-
lenging due to the presence of outliers (Dettmers and Zettlemoyer 2023). The most 
effective approach for mitigating outliers is re-scaling the activations and weights 
simultaneously such that the outcome of linear operators remains unaltered, but that 
activations are more uniform. Specifically, this makes activations easier to quantize 
at the cost of making weights harder to quantize. Here, we refer to this approach as 
smoothing. Smoothing for LLMs was introduced in SmoothQuant (Yao et al. 2022), 
but is also present in other methods such as OmniQuant (Shao et al. 2023) and 
Logarithmic Activation Equalization (Li et al. 2023). 

However, we observe experimentally that smoothing alone is insufficient to quan-
tize certain LLMs without significant loss in accuracy. We conclude that, at the current 
state of the art, one needs to skip quantization of linear operators severely affected by 
outliers in order to preserve accuracy. Fortunately, we find skipping quantization of 
only a small number of operators is enough to recover accuracy. A typical example is 
skipping 3 to 10 operators out of 320 in Llama-2 7B (Touvron et al. 2023). Moreover, 
not quantizing such operators has a negligible impact on the overall inference speed. 

The best criterion to identify which layers to skip during quantization is to quantize 
each operator independently, one at a time, and evaluate the accuracy sensitivity due 
to quantization. Clearly, this strategy is costly and does not scale to larger models,
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but we use it in our investigations to correlate with other criteria that are simpler 
and cheaper to evaluate. Out of these criteria, kurtosis1 is the one that produced the 
most robust results across different models. We also experimented with the range 
or maximum absolute value, but both approaches failed to identify outliers in some 
models. 

We quantize all linear operators (with the exception of those skipped due to 
accuracy concerns, as discussed above), including operators that do not contain 
weights, such as attention scores and attention output. As such, the cached keys 
and value tensors can be stored in 8-bits, improving inference speed. Finally, we 
apply weight quantization in one-shot using GPTQ (Frantar et al. 2022) at the end 
of sparse fine-tuning. 

6.3 Compression of T5 and Whisper Translation Models 

In our first experimental scenario, we consider the compression of Transformer 
models for language translation (T5) and speech transcription (Whisper). 

6.3.1 Accuracy Versus Sparsity 

Experimental Setup. We consider sparsity levels corresponding to 2x, 3x, 4x, 
5x, 6x, 7x, 8x, and 10x compression ratios, applied uniformly per layer with 
SparseGPT (Frantar and Alistarh 2023). We compare sparse fine-tuning with three 
variants of losses: cross entropy (original loss,Ltask), Standard KD (Ltask+Llogit), and 
SquareHead KD (Ltask + Lfeat). The computational speedups, presented relative to 
the uncompressed baseline, are reported for end-to-end execution in the DeepSparse 
inference engine (NeuralMagic 2021) on an Intel Sapphire Rapids CPU with 8 cores 
(AWS m7i.4xlarge). 

Compression for language translation using T5. We begin by investigating 
the sparsification of a pre-trained T5 model (Raffel et al. 2020), fine-tuned on the 
popular English-German subset of WMT14 (Bojar et al. 2014). Following standard 
practice, we compute BLEU scores (Papineni et al. 2002) on a validation set as a 
measure of the model’s accuracy. Figure 6.1 shows the accuracy-vs-sparsity trade-off 
for various loss functions. Table 6.1 shows scores for the best-performing loss variant 
(SquareHead KD), together with speedups relative to the uncompressed model. For 
reference, the dense baseline needs 370 milliseconds (ms) to encode/decode 128 
tokens. We observed that sparse training with CE and Standard KD is unstable at 
high sparsities; only SquareHead KD is able to produce highly sparse models with 
reasonable accuracy recoveries.

1 Kurtosis is a statistical measure to understand the shape and characteristics of data distributions. 
It provides useful information about tails behaviour. 
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Fig. 6.1 BLEU (↑) score for variants of loss functions on English-German WMT14 and T5-Small 
at various compression rates 

Table 6.1 BLEU score and 
speedups of T5-Small for 
various sparsities and 
SquareHead KD loss on 
English-German WMT14 

Model Sparsity (%) BLEU (↑) Speedup (×) 
T5 0 25.9 1.0 

50 25.4 1.9 

67 25.0 2.1 

75 24.7 2.1 

80 24.6 2.2 

86 24.1 2.3 

90 23.1 2.4 

Compression of speech-to-text using Whisper. In Fig. 6.2 and Table 6.2, we  
study compression of Whisper-Small (244M) for automatic speech recognition 
(ASR) on the Hindi (Hi) language subset of CommonVoice 11.0 (Ardila et al. 2020). 
We report word error rate (WER) (Levenshtein 1966) as a standard measure of ASR 
performance. For reference in terms of absolute numbers, the dense CPU baseline 
takes 882 ms to transcribe an audio sequence of 15 seconds. A detailed breakdown 
is presented in Sect. 6.3.2.

Hyperparameters. For both models, we use weight decay of 10−4 and a linearly 
decaying learning rate (LR) scheduler. The T5 model is fine-tuned with a batch-size 
of 128 over three epochs with 300 LR-warmup steps and peak-LR value of 2× 10−3. 
The Whisper model is fine-tuned with a batch-size of 32 over six epochs with 50 
LR-warmup steps and peak-LR value of 2 × 10−4. 

Further Analysis. The results observed so far show that the SquareHead KD loss 
improves upon standard approaches in these two fine-tuning scenarios, especially 
at higher sparsities, where the latter tend to diverge. A possible explanation for 
the success of SquareHead could be the fact that fine-tuning with task loss only,
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Fig. 6.2 WER (↓) for variants of loss functions on the Hindi dataset and Whisper-Small at various 
compression rates 

Table 6.2 WER and 
speedups of Whisper-Small 
for various sparsities and 
SquareHead KD loss on the 
Hindi dataset 

Model Sparsity (%) WER (↓) Speedup (×) 
Whisper 0 32.6 1.0 

50 30.9 1.6 

67 31.8 2.1 

75 33.1 2.2 

80 34.7 2.3 

86 37.3 2.5 

90 40.6 2.7

especially on limited data, leads to overfitting. We measured the entropy of the 
predictive distribution of sparse Whisper models and observed that models fine-tuned 
without KD have a very low entropy, i.e., make overconfident predictions, whereas 
SquareHead induces regularization. This behaviour is visualized in Fig. 6.3.

6.3.2 Performance Breakdown 

Next, we would like to understand the individual performance of the encoder and 
decoder components in sequence-to-sequence models like T5 and Whisper. These 
components handle different tasks; the encoder processes input data into a context-
rich representation, and the decoder translates this representation into generated
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Fig. 6.3 Entropy of the predictive distribution of sparse Whisper-244M models for different fine-
tuning approaches on train (left) and test (right) split of the Hindi subset of Common Voice dataset

tokens, using both the encoder’s representation and its own context to produce subse-
quent output. While individual component performance provides insight into bottle-
necks, it is also essential to evaluate end-to-end performance as it offers a more 
holistic understanding of how compression affects real-world application scenarios. 
In Figs. 6.4 and 6.5, and Tables 6.3 and 6.4 we present detailed performance 
breakdown from the DeepSparse engine. 

Further Analysis. First, we notice that, due to similar model structures, the 
sparsity-related speedups are similar between the T5 and the Whisper models. 
(However, the latencies for Whisper are much higher.) Furthermore, note that the 
more compute-bound Decoder component benefits significantly more from sparsity
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Fig. 6.4 Per-component speedups of Whisper-Small for various sparsities
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Table 6.3 Encoder, decoder, and total timings of Whisper-Small for various sparsities. The total 
workload is generating 60 tokens from 15 seconds of audio 

Encoder Decoder Total 

Sparsity (%) Speedup Latency (ms) Speedup Latency (ms) Speedup Latency (ms) 

0 1.0x 89.4 1.0x 12.8 1.0x 882.7 

50 1.2x 75.5 1.6x 7.8 1.6x 558.2 

67 1.4x 62.5 2.3x 5.6 2.1x 410.1 

75 1.5x 58.0 2.4x 5.4 2.2x 395.5 

80 1.7x 50.9 2.5x 5.2 2.3x 374.9 

86 1.9x 48.0 2.6x 4.9 2.5x 350.2 

90 2.1x 42.0 2.8x 4.7 2.7x 330.4 
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Fig. 6.5 Component speedups of T5-Small for various sparsities 

Table 6.4 Encoder, decoder, and total timings of T5-Small for various sparsities. The total workload 
is encoding 128 tokens and generating 128 tokens 

Encoder Decoder Total 

Sparsity (%) Speedup Latency (ms) Speedup Latency (ms) Speedup Latency (ms) 

0 1.0x 5.2 1.0x 3.0 1.0x 391.9 

50 1.1x 4.8 1.9x 1.6 1.9x 206.9 

67 1.3x 3.9 2.1x 1.4 2.1x 184.8 

75 1.5x 3.6 2.1x 1.4 2.1x 183.5 

80 1.6x 3.2 2.2x 1.4 2.2x 181.2 

86 1.8x 2.9 2.3x 1.3 2.3x 174.2 

90 2.0x 2.6 2.4x 1.2 2.4x 161.8
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in terms of speedups relative to dense: for instance, on T5, Decoder speedups are 
between 1.6x (at 50% sparsity) and 2.7x (at 90% sparsity), whereas Encoder speedups 
are much more limited. Thus, the significant end-to-end speedups are mostly driven 
by the speedups in the Decoder. 

6.4 Compression of Generative Pre-Trained Transformer 
Models 

We investigate compression of generative models, specifically MPT-7B (Team et al. 
2023) and Llama-2-7B (Touvron et al. 2023). We focus on the GSM8K task (Cobbe 
et al. 2021), a dataset with high quality and diverse grade school math problems, 
following a recipe proposed by Anyscale.2 On this task, in zero-shot evaluation mode, 
the baseline MPT-7B model completely fails, with a score of 0%, whereas in 8-shot 
evaluation it scores only 6.8%. These results suggest that the model necessitates 
additional refinement via supervised fine-tuning (SFT). 

Experimental setup. First, we fine-tune MPT-7B via SFT to obtain a highly 
accurate and competitive dense baseline, which we use as the teacher in KD runs. 
Then, we apply one-shot unstructured pruning with SparseGPT to 50%, 60%, 70%, 
and 80% sparsity targets, uniformly across all layers, which correspond to 2.0x, 2.5x, 
3.3x, and 5.0x compression ratios, respectively. We explore how different sparse fine-
tuning techniques help in recovering the accuracy of the dense baseline model. After 
fine-tuning is completed, we investigate the compatibility of sparse models with 
quantization via post-training quantization to INT8. To achieve this we leverage the 
SparseML (Kurtz et al. 2020) library and quantize to 8-bits the weights and activations 
of all linear weight matrices, and two batch matrix multiplications in attention layers. 
For accuracy evaluation on the GSM8K task, we utilize the standardized evaluation 
protocol via Language Model Evaluation Harness (Gao et al. 2023).

Hyperparameters. We untie input embeddings and language modelling head for 
compatibility with quantization via SparseML, where we quantize weights of input 
embeddings, and weights and activations of the language modelling head. For all 
sparsities, we one-shot prune the model with the default SparseGPT (Frantar and 
Alistarh 2023) parameters and then fine-tune for either 2 (50% and 60% sparsity) 
or 4 epochs (70% and 80% sparsity). We use a linearly decaying learning rate (LR) 
with a warmup of 20 steps, a batch-size of 32, and a sweep over 3e-5, 5e-5, 8e-5, 
and 1e-4 peak-LR values. 

Discussion. The accuracy results for different losses are shown in Fig. 6.6. They  
exhibit very similar trends to the prior two applications, showing that SquareHead 
KD is superior to both standard CE loss and standard KD for sparse fine-tuning. 
The fact that the distilled models can outperform the dense baseline at low sparsity 
can be explained due to the effect of distillation being applied, but also possibly

2 https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-
with-llama-2. 

https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
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Fig. 6.6 Test accuracy for variants of loss functions on the GSM8K dataset and MPT-7B model 
at various compression rates. ICL stands for in-context learning results using the pre-trained dense 
model, without fine-tuning 

Table 6.5 Test accuracy of pruned (FP32) and pruned-quantized (INT8) MPT-7B models on 
the GSM8K dataset. Speedups are measured relative to FP32, for end-to-end decode latency in 
DeepSparse (NeuralMagic 2021) using an 8-core CPU at sequence length 512 

FP32 INT8 

Sparsity (%) Test accuracy CPU speedup Test accuracy CPU speedup 

0 28.2 1.0x 27.8 4.0x 

40 32.9 1.5x 30.3 5.3x 

50 30.6 1.8x 30.7 5.7x 

60 28.8 2.1x 28.4 6.7x 

70 28.0 2.6x 27.1 7.5x 

80 23.1 3.4x 21.1 9.1x

the regularizing effect of low sparsity. With SquareHead KD, we can obtain FP32 
models with 70% and 75% sparsities which have essentially no loss (in terms of test 
accuracy) relative to the dense model, even though pruning is performed in one shot. 
We emphasize that fine-tuning with SquareHead KD improves the dense model’s 
accuracy as well, from 28.2 to 33.0. 

We now examine the speedup-vs-accuracy trade-offs, presented in Table 6.5 for 
both FP32 and INT8 models. In FP32, moderate sparsities (60–70%) can be reached 
losslessly, leading to speedups of 2–2.5x. Moving to INT8, we observe a consistent 
accuracy decrease of 1–2% at each sparsity level, due to post-training quantization. 
At the same time, this loss of accuracy is accompanied by a major performance 
improvement, since the gains due to these two compression approaches compound. 
In absolute terms, the 70% INT8 model can execute at a remarkable 7.7 tokens/
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second on a single core of an AMD Ryzen CPU, and at 20.9 tokens/second on 4 
cores. The speedup of the lossless 60%-sparse INT8 model is approximately 6.7x, 
and we can reach a decoding speedup of 9.08x at 80% INT8, at the price of a 7% 
drop in accuracy (Table 6.6). 

Extension to Llama-2. We also investigate compression of the more recent and 
popular Llama-2 (Touvron et al. 2023) model of 7B size. We follow the same exper-
imental setup as described for MPT-7B model: one-shot pruning with SparseGPT 
followed by sparse-finetuning with different variants of loss functions. As shown in 
Fig. 6.7, the proposed SquareHead knowledge distillation consistently outperforms 
the standard cross-entropy and KL-divergence loss functions. 

Table 6.6 Performance (tokens/second) for MPT-7B at various sparsities, using DeepSparse on 1 
and 4 cores, using Intel and AMD CPUs 

Precision Sparsity (%) Xeon Gold 6430 # cores Ryzen 9 7950X # cores 

1 4 1 4 

FP32 0 0.6 2.1 1.4 2.5 

70 1.5 5.5 2.0 6.3 

80 2.1 8.2 2.1 7.6 

INT8 70 4.7 16.3 7.7 20.9 

80 6.1 19.6 7.9 26.7 
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Fig. 6.7 Test accuracy for variants of loss functions on the GSM8K dataset and Llama-2-7B model 
at various compression rates
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6.5 Discussion 

We have shown results suggesting that sparsity can be an effective acceleration 
approach for LLM inference, focusing on applications such as speech and language 
translation, and text generation following complex instructions. Importantly, our 
study shows that sparsity is compatible with quantization in the memory-bound 
generative setting and that together these techniques can lead to remarkable perfor-
mance for computationally-limited devices. Based on prior work, we have identified 
a general distillation approach to recover accuracy while inducing high sparsity over 
limited fine-tuning data. Future work could expand this study by exploring sparse 
fine-tuning for larger-scale models and tasks in the generative setting, higher quanti-
zation degrees, as well as the practically relevant setting of pruning on the pre-training 
task (Frantar et al. 2024), followed by fine-tuning the already-sparsified model on a 
specialized dataset. 

6.6 Reproducibility 

To promote reproducibility of our results, we provide the following resources: 

• Code for sparse fine-tuning of T5 and Whisper models can be found here: https:// 
github.com/IST-DASLab/TACO4NLP. 

• Code for sparse fine-tuning of GPT-type models can be found here: https://github. 
com/IST-DASLab/SparseFinetuning. 

• MPT models are released at: https://sparsezoo.neuralmagic.com/?datasets= 
gsm8k&ungrouped=true. 

• CPU speedup for generative inference can be reproduced by following the instruc-
tions at https://github.com/neuralmagic/deepsparse/tree/main/research/mpt. 

Acknowledgements We would like to thank Eugenia Iofinova for useful comments on an earlier 
version of this draft, and Artur Niederfahrenhorst for useful suggestions regarding fine-tuning on 
the GSM8k dataset. 
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Chapter 7 
TCNCA: Temporal CNN with Chunked 
Attention for Efficient Training on Long 
Sequences 

Aleksandar Terzić, Michael Hersche, Geethan Karunaratne, Abu Sebastian, 
and Abbas Rahimi 

Abstract MEGA is a recent Transformer-based neural network utilizing a linear 
recurrent architecture whose computation can be parallelized, a useful property 
during training as well as sequence encoding tasks. The parallel computation is based 
on the fast Fourier transform and scales as O(LlogL), with L being the sequence 
length. We replace the linear recurrence in MEGA with a temporal convolutional 
network (TCN) which permits a large receptive field size with few TCN layers, 
and reduces the computational complexity to O(L). We call the resulting model 
TCNCA, a Temporal Convolutional Network with Chunked Attention. We eval-
uate TCNCA on the tasks of EnWik8 language modelling, associative recall, a 
synthetic reasoning benchmark, and long-range-arena (LRA) sequence classifica-
tion, and observe consistent improvements compared to MEGA in terms of both task-
specific metrics and runtimes. More specifically, on EnWik8, TCNCA outperforms 
MEGA-chunk by a 0.01 BPC loss with a 1.22×/1.28× faster forward/backward pass. 
On LRA, TCNCA outperforms MEGA-chunk by 0.8% on average with a 1.42×/ 
1.16× forward/backward pass speed-up. We further demonstrate the efficacy of our 
approach by comparing the runtimes of our approach and MEGA over a wide range 
of sequence lengths and embedding dimensions. 

7.1 Introduction 

Transformer (Vaswani et al. 2017) is a neural architecture which has found success 
in a variety of tasks including image processing (Dosovitskiy et al. 2021; Liu et al. 
2021), physical system modelling (Geneva and Zabaras 2022), but perhaps most
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notably, language modelling (Brown et al. 2020; Chowdhery et al. 2023; Touvron 
et al. 2023a, b). However, despite its wide adaptation, it faces some crucial limitations. 

The core limitation of the Transformer is its O(L2) computational and memory 
complexity, where L is the sequence length. The quadratic complexity arises as 
a consequence of the fact that computing attention, the Transformer’s backbone, 
involves calculating the dot product between linear projections of all pairs of elements 
in the input sequence. This unfavourable property has spurred a large number of 
models proposing efficient approximations to the original Transformer (see Tay et al. 
(2020) for more details). 

Another limitation of the Transformer is its poor performance on long-context 
classification tasks. This limitation of the Transformer has become clear with the 
introduction of a new family of artificial neural networks based on linear recur-
rences (Gu et al. 2022b; Orvieto et al. 2023; Smith et al. 2023). These recurrence-
based alternatives outperform Transformer-based models by a large margin (Gu et al. 
2022b) on the long-range-arena (LRA) benchmark (Tay et al. 2021)—a set of long-
sequence classification tasks originally designed to test the performance of attention-
based models. Attention is, however, still an important operation in LLMs, as there 
exists evidence that it is necessary in order to achieve state-of-the-art performance 
(Dao et al. 2023; Vardasbi et al. 2023). Note, however, that Gu and Dao (2023) 
question this claim. 

Motivated by the current limitations, MEGA (Ma et al. 2023) combines the 
strengths of linear recurrences and attention in a manner which scales sub-
quadratically in the sequence length. Concretely, MEGA combines a specific form 
of a linear recurrence, damped exponential moving average (EMA) (McKenzie and 
Gardner 2010), with chunked attention, which operates on fixed-size non-overlapping 
blocks in the input sequence. An overview of the model is given in Fig. 7.1 and more 
details to the EMA layer can be found in Sect. 7.2. 

MEGA achieves competitive scores in a range of disparate tasks including 
language modelling on EnWik8 (Hutter 2006 and LRA sequence classification (Tay 
et al. 2021). MEGA is particularly interesting for us as it is the only model which has 
simultaneously demonstrated strong performance on both of these types of tasks.

Although MEGA is a powerful and efficient model, we can further improve both 
its modelling power and computational efficiency by considering alternative opera-
tions to the linear recurrence MEGA employs. In this research work we investigate 
the performance and runtime effects of replacing the bottleneck linear recurrence 
within the MEGA processing stack with a temporal convolutional neural network 
(TCN) (Bai et al. 2018; Kalchbrenner et al. 2016; van den Oord et al. 2016; Ingolf-
sson et al. 2020), an operator which scales linearly with the sequence length. The 
TCN employs dilated convolutions which allow the network to achieve a large recep-
tive field with fewer parameters than a dense convolution would require. TCNs are 
typically implemented as a cascade of residual blocks (Ingolfsson et al. 2020), in 
which each block applies a dilated convolution on the input sequence, with the dila-
tion exponentially increasing with each successive block (Bai et al. 2018; Ingolfsson 
et al. 2020). We call our resulting model, which combines a TCN with chunked 
attention, TCNCA.
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Fig. 7.1 A high-level overview of MEGA (Ma et al. 2023). MEGA consists of N layers, each of 
which contains a temporal processing block and a position-wise multi-layer perceptron (MLP). 
The temporal processing block in turn contains an EMA layer which operates over the entire input 
sequence and an attention layer which operates on fixed-size non-overlapping segments of the input 
sequence. Due to the global-local structure of temporal processing, each output token is influenced 
by each input token, a concept which we illustrate on the right-hand side of the figure. As shown, 
the final output token is impacted by all of the input tokens through the intermediate values which 
connect the global EMA with local attention. For a detailed overview of the temporal processing 
block, see Fig. 7.3

We evaluate TCNCA on EnWik8 language modelling, a synthetic benchmark, 
associative recall (Ba et al. 2016; Dao et al. 2023), as well as LRA long sequence 
classification. We find that on EnWik8 language modelling, TCNCA outperforms 
MEGA (and Transformer-XL Dai et al. 2019), achieving a bit-per-character (BPC) 
loss of 1.01, in addition to a 1.22×/1.28× faster forward/backward pass compared to 
MEGA-chunk. On a synthetic reasoning benchmark, associative recall, TCNCA is 
competitive with MEGA over a range of different sequence lengths and vocabulary 
sizes. On the LRA classification tasks, TCNCA outperforms MEGA-chunk by an 
average of 0.8% while achieving an average of a 1.42×/1.16× forward/backward 
pass speed-up. We further experiment with simpler versions of TCNCA on a subset 
of LRA tasks as well as on EnWik8. 

Overall, we find TCNCA to be an efficient alternative to MEGA, offering benefits 
in terms of performance as well as increased efficacy, in particular during training 
on long sequences.
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7.2 Background and Related Work 

Our work is part of a booming area of research dealing with efficient neural sequence 
modelling, which includes Transformers (Vaswani et al. 2017), efficient variants of 
Transformers (Tay et al. 2020), as well as linear recurrent models (Gu et al. 2022a, b; 
Smith et al. 2023; Orvieto et al. 2023). In the following sections we provide a review 
of recent advancements in the domain of efficient sequence models. 

Linear Recurrent Models. Following a long line of work on non-linear RNNs 
(Elman 1990; Hochreiter and Schmidhuber 1997; Cho et al. 2014), there has been 
a recent surge of linear recurrences, motivated in part by the fact that linear recur-
rences can be efficiently parallelized during network training and non-autoregressive 
inference (Blelloch 1990; Martin and Cundy 2018). Particularly, a prominent family 
of linear recurrent models comes in the form of linear state-space models (LSSMs). 

S4 (Gu et al. 2022b) is an early example of such a linear state-space model and 
is, to the best of our knowledge, the first method to significantly advance the state-
of-the-art on LRA classification (Tay et al. 2021). Many other variants of linear 
state-space models follow, including S4D (Gu et al. 2022a) that diagonalizes the 
recurrence matrix from S4, GSS (Mehta et al. 2022) that introduces a gating mecha-
nism for improving the performance of LSSMs on language modelling, and S5 (Smith 
et al. 2023) that introduces multiple-input-multiple-output LSSMs. The LRU model 
(Orvieto et al. 2023) is a linear recurrent model which, in contrast to the LSSM 
family of models, is not based on discretizing an implicit continuous state-space 
model, while still achieving near-state-of-the-art accuracy on LRA. 

Linear recurrent models map a 1-dimensional sequence ut with t = 1, ..., L to a 
1-dimensional sequence yt through a hidden h-dimensional vector xt using the set of 
linear equations in (7.1): 

xt = Axt−1 + But 
yt = Cxt + Dut 

(7.1) 

with A ∈ Rh×h, B, CT ∈ Rh×1 and D ∈ R. The set of equations is typically applied 
on each embedding dimensions separately, with a separate set of parameters A, B, C 
and D. 

Equation (7.1) defines a linear time-invariant system and as such admits a different 
interpretation, namely, it is equivalent to a convolution of the input sequence xt with 
a kernel of length L whose elements can be computed as Kt = CAtB. The kernel can 
be efficiently computed when the A-matrix is diagonal, which is indeed the recent 
trend in linear recurrent models (Gu et al. 2022a; Ma et al.  2023). The convolution 
with the long kernel can be computed directly with a cost of O(dL2), but is computed 
more efficiently for long sequences using the fast Fourier transform (FFT) algorithm, 
whose computational cost is O(dLlogL). We will assume that L >> d , making this 
cost asymptotically equal to O(LlogL). An overview of the kernel generation and 
FFT-convolution can be found in Gu et al. (2022b) and Ma et al. (2023).
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MEGA (Ma et al. 2023), the model which forms the basis of our work, utilizes a 
specific form of the linear equation (7.1) called “damped EMA”, as described in Eq. 
(7.2): 

xt = (1 − α � δ) � xt−1 + α � But 
yt = Cxt + Dut 

(7.2) 

with wα,δ ∈ Rh being trainable parameters, σ(·) denoting the sigmoid activation 
function, and α = σ(wα) δ = σ(wδ). Such a recurrence corresponds to a convolution 
kernel which exhibits an exponentially decaying shape. 

Long Convolution Models. We refer to models which apply convolutions whose 
kernels are of the same length as the input sequence as long convolutional models. 
These models differ from linear recurrent models in several ways. Most notably, they 
do not necessarily admit a recurrent formulation. SGConv (Li et al. 2023), a member 
of this group of models, constructs a sparsely parametrized long kernel with an expo-
nentially decaying structure and finds that this achieves strong performance on LRA. 
Hyena hierarchy (Poli et al. 2023) achieves strong scores on language modelling 
with a long convolutional kernel generated by a hypernetwork. FlashButterfly (Fu 
et al. 2023) explores simple long convolution kernel constructions that are effec-
tive on LRA classification and furthermore develops a hardware-aware algorithm for 
efficient computation of FFT-based long convolutions. 

TCNs for Sequence Modelling. Temporal convolutional networks (TCNs) are 
widely used for parameter-efficient processing of data with long-range dependen-
cies. CDIL-CNN (Cheng et al. 2022) employs circular dilated convolutions on several 
datasets including LRA. WaveNet (van den Oord et al. 2016) is a generative audio 
model based on the TCN architecture. ByteNet (Kalchbrenner et al. 2016) employs  
the TCN for machine translation. TCAN (Hao et al. 2020) employs a cascade of 
dilated convolutions with full self-attention. Their architecture differs from TCNCA 
in several ways, and scales quadratically with the sequence length. TConvTrans-
former (Chao et al. 2023) is a quadratic complexity concatenation of a TCN and 
multi-head self-attention. 

7.3 The TCNCA Model 

A high-level overview of TCNCA is shown in Fig. 7.2 and a more detailed view of 
the model construction is provided in Fig. 7.3.

TCNCA consists of N layers, each of which alternates a temporal processing block 
with an element-wise MLP. The layers are additionally augmented with normaliza-
tion and residual connections, closely following the original Transformer architec-
ture. Each temporal processing block combines a TCN with attention, where the 
TCN operates over the entire input sequence (global), and attention is restricted to 
fixed-size chunks of the sequence (local).
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Fig. 7.2 A high-level overview of TCNCA. TCNCA relies heavily on the MEGA architecture. It 
replaces the EMA module with a temporal convolutional network (TCN), which is composed of a 
cascade of residual blocks of depth D, each of which includes a dilated convolution operation. Within 
every single TCN block, the dilation increases exponentially with the depth of the corresponding 
residual block. The temporal processing block visualized here is a simplified view of the full block, 
shown in Fig. 7.3

The TCN is depicted on the right side of Fig. 7.2. It is constructed as a stack 
of residual blocks of depth D, each block in turn consisting of a dilated convo-
lution, normalization, and a nonlinear activation function. In our architecture, the 
non-linearity is the SiLU activation function (Elfwing et al. 2018). 

A separate set of convolutional filters is instantiated for each embedding dimen-
sion of the input, in the same manner as how linear recurrent networks operate with 
a separate set of parameters per embedding dimension (Gu et al. 2022a, b; Gu and 
Dao 2023). The amount of kernel dilation increases exponentially with the depth 
of the residual block, ranging from 0 to FD−1, where F is an integer hyperparam-
eter called the dilation factor. The computational cost of the TCN is O(dL), with 
d being the embedding dimension. This is O(L) when L >> d . When the task is 
sequence encoding, meaning a non-autoregressive task such as classification, the 
input sequence is circularly padded (as in Cheng et al. (2022)). During decoding, 
meaning autoregressive tasks such as language modelling, the input sequence is 
zero-padded on the left. 

Following the global TCN, local (chunked) attention operates on fixed size blocks 
of the input sequence. Concretely, given an input sequence X1,...,L, chunked attention 
splits the sequence into non-overlapping chunks of size C < L and computes atten-
tion within each chunk separately. The attention module is not the usual multi-head 
self-attention, but is instead a single-head gated attention module inspired by the 
gated attention unit (Hua et al. 2022). The computational cost of chunked attention 
is O(dLC), which becomes O(L) for very long sequences.
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Fig. 7.3 The temporal processing block from Fig. 7.2 is in fact defined according to the architecture 
shown above, taken as is from MEGA (Ma et al. 2023) with the exception that MEGA’s EMA 
layer is replaced by a TCN. It involves several steps which deviate from the usual construction 
of Transformer-based networks. The main differences from the usual construction are highlighted 
in the figure, and include: a global temporal processing layer, non-linear query, key and value 
generation, gated single-head chunked attention, and finally a type of gated residual connection 
originally introduced as a Highway network (Srivastava et al. 2015). The main results were obtained 
using this architecture. However, for comparison purposes results from other simpler alternatives 
are provided too

7.4 Experiments 

Our evaluations are centered on language modelling with real and synthetic data and 
long sequence classification. In our evaluation, we observe a consistent improvement 
in task-specific metrics as well as processing run-times when comparing TCNCA to 
the chunked version of MEGA (Ma et al. 2023).
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Table 7.1 EnWik8 bit-per-character scores. Results marked with an asterisk (*) are taken from Ma 
et al. (2023) 

Model Transformer-XL MEGA TCNCA 

BPC 1.06* 1.02* 1.01 

Parameters 41 M 39 M 39 M 

7.4.1 EnWik8 Language Modelling 

The EnWik8 dataset (Hutter 2006) consists of the first 100 MB of the English 
Wikipedia XML dump, taken on March 3, 2006. We train TCNCA for character-level 
autoregressive language modelling, and report the bit-per-character (BPC) loss. 

We re-use the training and evaluation procedure from MEGA. The data is split 
into consecutive chunks of size 2048, which is the same size as the attention chunk 
size. At training time, we randomly load 2, 3, or 4 consecutive chunks of text to 
be processed by the model. During evaluation, the attention chunk size is set to 
4096, and 3 consecutive chunks of text are loaded. We train for 250 epochs. Atten-
tion is augmented with relative positional encoding (Su et al. 2021) in order to 
promote extrapolation to longer contexts during evaluation. The results are provided 
in Table 7.1. The reported results are the average over 3 random seeds. TCNCA 
outperforms the Transformer-XL as well as MEGA, reaching a 1.01 BPC score. 

During training, TCNCA achieves a 1.22× speed-up in the forward pass and a 
1.28× speed-up in the backward pass, compared to MEGA-chunk. The comparison 
is only valid during training, since the linear recurrence employed by MEGA can be 
computed sequentially in O(1) time per generation step, a property not shared by the 
TCN. 

7.4.2 Associative Recall 

Associative recall (Ba et al. 2016; Dao et al. 2023) is a synthetic reasoning benchmark 
which measures a basic reasoning capability of neural sequence models, remem-
bering associations between pairs of tokens. There exists evidence that a model’s 
performance on associative recall and more complex variants thereof is correlated 
with its performance on more general language modelling tasks (Arora et al. 2023; 
Dao et al. 2023; Olsson et al. 2022). 

In this task, the input sequence consists of pairs of characters, the first one in the 
pair denoting a key and the second one being the associated value. After observing 
a sequence of key-value pairs, the model is prompted with a key and is required to 
output the corresponding value. An example would be: 

Input: a1b2c3d4b 
Output: 2
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Table 7.2 Associative recall accuracy (%) with varying sequence lengths and vocabulary sizes 

Vocabulary size 10 Vocabulary size 20 

Sequence length MEGA TCNCA MEGA TCNCA 

64 100.0 100.0 64.4 63.6 

1024 100.0 100.0 99.4 99.8 

4096 100.0 100.0 100.0 100.0 

We test our model on examples with three different sequence lengths and two 
different vocabulary sizes. For sequence length 64, we use an attention chunk size 
of 32. For all other sequence lengths, a chunk size of 128 is used. The embedding 
dimension is 128 for all configurations. The best results over 10 random seeds are 
reported in Table 7.2. We see that over the investigated range of vocabulary sizes and 
sequence lengths, TCNCA remains competitive with MEGA. 

7.4.3 Long-Range-Arena 

Long-range-arena (Tay et al. 2021) comprises six classification tasks with sequence 
lengths ranging from 1024 to 16384. The benchmarks are varied, including pattern 
detection, sentiment classification, mathematical reasoning, and visual reasoning. 
Results on this task, averaged over 3 random seeds, are shown in Table 7.3. 

TCNCA achieves a modest 0.8% increase in average accuracy compared to 
MEGA while offering a forward/backward pass speed-up in all benchmarks 
excluding ListOps, with average speed-ups being 42% in the forward pass and 16% 
in the backward pass. Furthermore, TCNCA outperforms every other model used in

Table 7.3 Long-range-arena accuracies (%) of state-of-the-art models. The Transformer scores 
are taken from the reproduction in MEGA. All other results, excluding TCNCA, were taken from 
the respective papers. The last row reports the end-to-end inference speed-up of TCNCA measured 
against MEGAchunk 

Model ListOps Text Retrieval Image Path Path-X Average 

Transformer (Ma et al. 2023) 37.1 65.2 79.1 42.9 71.8 50 57.7 

S4D (Gu et al. 2022a) 60.5 86.2 89.5 89.9 93.1 91.9 85.2 

S5 (Smith et al. 2023) 62.2 89.3 91.4 90.1 95.3 98.6 87.8 

LRU (Orvieto et al. 2023) 60.2 89.4 89.9 89.0 95.7 96.0 86.7 

SGConv (Li et al. 2023) 61.4 89.2 91.1 88.0 95.4 97.8 87.1 

MEGA chunk (Ma et al. 2023) 58.7 90.2 91.0 85.8 94.4 93.8 85.6 

TCNCA 59.4 90.0 89.5 90.4 94.7 94.4 86.4 

Speedup (forward) 1.12× 1.28× 1.73× 1.42× 1.30× 1.68× 1.42× 
Speedup (backward) 0.95× 1.05× 1.34× 1.18× 1.03× 1.41× 1.16× 
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our comparison on the sequential CIFAR-10 image classification task (Krizhevsky 
and Hinton 2009), in which images are laid out in a 1-dimensional row instead of 
the usual 2-D grid. 

7.4.4 Simpler TCNCA Variants 

MEGA defines a complex temporal processing block which TCNCA inherits 
(Fig. 7.3). In this section, we investigate whether simpler TCNCA variants remain 
competitive with some of the baselines we have established in the previous sections. 
To this end, we define three simple TCNCA variants shown in Fig. 7.4, and evaluate 
them on a subset of LRA and on EnWik8. 

The TCN hyperparameters (kernel size, dilation factor, TCN depth) are the same as 
those used to obtain the results shown in the previous sections. For each benchmark, 
we train with three different learning rates, 0.1×, 1× and 5× the learning rate used in
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Fig. 7.4 We experiment on three simpler versions of TCNCA on a subset of LRA and EnWik8 
language modelling. Option 1 (TCNCMHA: TCN with Chunked Multi-Head-Attention) imple-
ments temporal processing as a global TCN whose output is fed into multi-head chunked atten-
tion. Option 2 (TCNCSHGA: TCN with Chunked Single-Head Gated Attention) replaces multi-
head attention from Option 1 with gated single-head attention, motivated by MEGA and the gated 
attention unit (Hua et al. 2022). Option 3 (TCN) fully removes attention 
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Table 7.4 Accuracy on a subset of LRA (higher is better), and BPC loss on EnWik8 language 
modelling (lower is better), for three different simple variants of TCNCA shown in Fig. 7.4 

Model ListOps ↑ Text ↑ Image ↑ Pathfinder ↑ Average ↑ EnWik8 ↓ 
TCNCA 59.4 90.0 90.4 94.4 83.6 1.01 

TCNCMHA (1) 44.9 86.0 85.2 82.3 74.6 1.05 

TCNCGSHA (2) 52.9 85.9 88.8 94.4 80.5 1.06 

TCN (3) 52.2 89.1 88.9 96.3 81.6 1.27 

the corresponding experiments (for experimental hyperparameters see Sect. 7.4.6). 
In the models which use attention, query, key and value dimensions are equal to the 
embedding dimension. Option 1, which utilizes multi-head attention, operates with 
4 attention heads. In each case, the embedding dimension is selected such that the 
models are parameter-matched to TCNCA. The results are shown in Table 7.4. The  
reported results are the average over 3 random seeds. 

On all benchmarks except Pathfinder, TCNCA outperforms all the simpler vari-
ants, confirming that the architectural choices defined in MEGA and inherited by our 
model are crucial. On the subset of LRA we experiment on, out of all of the simpler 
models, the one without attention (option 3) performed best. It outperforms TCNCA 
on Pathfinder by 1.9%, but its average performance on LRA is lower by 2% than that 
of TCNCA. On EnWik8, however, the model without attention is not able to match 
the quality of all of the others which do contain attention, confirming that it is an 
important component for the applicability of TCNCA on language modelling tasks. 

7.4.5 Runtime Measurements 

The runtime measurements were collected using the PyTorch benchmark utilities1 

with PyTorch version 2.2.1, CUDA version 12.1. All measurements were collected 
on a single 32GB Nvidia V100 GPU and two Intel Xeon 6258R CPU cores running 
at 2.70GHz.

Figures 7.5, 7.6 and 7.7 show the most important trends in terms of model effi-
cacy during autoregressive training and non-autoregressive training and inference. 
OOM entries stand for “out of memory”. We measure the speed-ups of TCNCA 
compared to MEGA in both the forward and backward pass using different embed-
ding dimensions and EMA hidden state sizes. We additionally measure the speed-ups 
in both autoregressive and non-autoregressive processing modes (when EMA is run 
in a non-autoregressive mode, its hidden state dimension is expanded by 2, meaning 
that different sets of parameters are used when processing the sequence in the two 
directions Ma et al. 2023). The TCN is always configured with 3 residual blocks 
as is typically used in our experiments, with the kernel size set such that MEGA 
and TCNCA are roughly parameter-matched. The receptive field size of the TCN

1 https://pytorch.org/tutorials/recipes/recipes/benchmark.html. 

https://pytorch.org/tutorials/recipes/recipes/benchmark.html
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(a) Forward pass. 

(b) Backward pass. 

Fig. 7.5 Speedups of TCNCA over MEGA-chunk with an 8-layer model, EMA hidden state 
dimension 16, chunk size 1024, encoding (non-autoregressive) inference mode

is modified by changing the dilation factor, and is set such that the entire network 
covers the input sequence at least once. 

The speedup increases with increased sequence length, EMA hidden state size, 
as well embedding dimension, indicating that TCNCA becomes a more attractive 
alternative to MEGA with larger model sizes and sequence lengths.
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(a) Forward pass. 

(b) Backward pass. 

Fig. 7.6 Speedups of TCNCA over MEGA-chunk with an 8-layer model, EMA hidden state 
dimension 16, chunk size 1024, decoding (autoregressive) inference mode

7.4.6 Hyperparameters 

The hyperparameters for reproducing our experimental results are provided in 
Tables 7.5, 7.6 and 7.7. K denotes the kernel size, F the dilation factor, and D the 
number of TCN residual blocks. In the associative recall experiments, the embedding 
dimension is 128, attention chunk size is 128, and the model consists of two decoder 
layers.
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(a) Forward pass. 

(b) Backward pass. 

Fig. 7.7 Speedups of TCNCA over MEGA-chunk with an 8-layer model, EMA hidden state 
dimension 60, chunk size 1024, decoding (autoregressive) inference mode

Table 7.5 TCNCA hyperparameters for LRA and EnWik8. All other hyperparameters and 
architectural options are taken from MEGA 

K F D Learning rate 

ListOps 15 14 2 0.001 

Text 7 4 3 0.004 

Retrieval 11 8 3 0.0005 

Image 11 8 3 0.01 

Path 11 8 3 0.01 

Path-X 11 8 3 0.001 

EnWik8 15 12 3 0.005
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Table 7.6 TCNCA hyperparameters for the associative recall experiments 

Vocab size Seq. length LR Dropout Epochs Batch size K F D 

10 64 0.001 0.1 800 128 15 2 3 

1024 0.01 0.1 800 128 15 8 3 

4096 0.01 0 800 128 15 14 3 

20 64 0.01 0.1 800 128 15 2 3 

1024 0.01 0.1 800 128 15 8 3 

4096 0.012 0 2000 32 15 14 3 

Table 7.7 MEGA hyperparameters for the associative recall experiments 

Vocab size Seq. length LR Dropout Epochs Batch size 

10 64 0.01 0.1 800 128 

1024 0.01 0 800 128 

4096 0.01 0 800 128 

20 64 0.01 0 800 128 

1024 0.008 0.1 2000 64 

4096 0.01 0.1 2000 64 

7.5 Conclusion 

In this work inspired by MEGA (Ma et al. 2023), we showed that a TCN and 
chunked attention hybrid model, TCNCA, is able to compete with the state-of-the-art 
models on Enwik8 language modelling and Long-Range-Arena sequence classifica-
tion, while offering better performance and run-times compared to MEGA-chunk. 
Concretely, our model outperforms the competing method, MEGA-chunk, by 0.01 
BPC points on EnWik8 language modelling while offering an over 20% speed-up 
in the forward and backward pass. We measure the performance of TCNCA on 
a synthetic language modelling benchmark, associative recall, and confirm that it 
performs on par with MEGA. On LRA classification, TCNCA outperforms MEGA-
chunk by 0.8% while offering an average speedup of 46% in the forward pass and 
16% in the backward pass. TCNCA achieves the best result of all competing methods 
on the Image task from LRA. We furthermore evaluated three simple variants of 
TCNCA and found that the original model formulation is the most performant one, 
which confirms that the architectural choices introduced by MEGA and re-used by 
TCNCA are well motivated. Our runtime measurements show that TCNCA is an 
efficient alternative to MEGA-chunk, in particular during training of large models 
on long sequences. 

Our work is limited in several ways. Firstly, on language modelling, our model 
offers run-time advantages over MEGA during training but not during inference. 
Secondly, the linear recurrence in MEGA can be computed using an alternative 
algorithm to FFT, the parallel scans algorithm (Blelloch 1990), and it is unclear
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whether our model is still computationally advantageous in this scenario. Finally, 
our analysis in Sect. 7.4.4 confirms that MEGA’s complex temporal processing block 
is performant, but it does not explore the effect of each component of the block in 
detail. All of these limitations are possible avenues for further research. 
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Chapter 8 
Class-Based Feature Knowledge 
Distillation 

Khouloud Saadi, Jelena Mitrović, and Michael Granitzer 

Abstract Knowledge Distillation (KD) is an effective technique for compressing 
large language models through the teacher-student framework without compromising 
accuracy. Once a large model is compressed to a lightweight one, it can be stored 
within limited disk space and trained at higher speed with fewer computational 
resources. Previous work on feature distillation mainly applied an exact matching 
between the hidden representations of the student and the teacher. However, since 
the student has a lower capacity compared to the teacher, it may struggle to mimic its 
exact hidden representations. This leads to a large discrepancy between their features 
as demonstrated in preceding research. Therefore, we propose intra-class similarity-
guided feature distillation, a novel approach to make the task easier for the student. 
In this chapter, we map each sample representation by the student to its k-nearest 
neighbor samples representations by the teacher that are within the same class. This 
method is novel and can be combined with other distillation techniques. Empir-
ical results show the effectiveness of our proposed approach by maintaining strong 
performance on benchmark datasets. Furthermore, we evaluate our proposed KD 
approach on the hate-speech detection task, where we aim to compress HateBERT 
into a smaller, more efficient model. 

8.1 Introduction 

Knowledge Distillation (KD) (Romero et al. 2014; Hinton et al. 2015) is known as an 
effective technique to compress LLMs (Sanh et al. 2019; Sun et al. 2019; Jiao et al. 
2020). It is a framework to train a student network, the model with fewer parameters, 
to mimic the behaviour of a teacher network, the over-parameterized model, on a set 
of data points. The distilled lightweight student model is highly efficient in terms
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of parameters, requiring minimal storage and computational resources. There are 
different approaches to KD, where the teacher is dynamic as in Zhou et al. (2021) 
and Ma et al. (2022), or static as in Sun et al. (2019) or Jiao et al.  (2020). The 
knowledge embedded in various components of the teacher can be distilled to the 
student. Examples include the prediction layer (Hinton et al. 2015; Sanh et al. 2019), 
the attention matrices (Jiao et al. 2020; Passban et al. 2021; Wang et al. 2021), 
and the hidden states (Sun et al. 2019; Jiao et al. 2020; Wu et al.  2020; Passban 
et al. 2021; Saadi et al. 2023). In Kovaleva et al. (2019), it is shown that LLMs 
(such as BERT) suffer from over-parametrization in domain-specific tasks. Thus, 
task-specific distillation has been an active research topic. In this chapter, we mainly 
focus on task-specific feature distillation from a static teacher. 

Existing methods in feature distillation tried to improve the loss function where 
MSE (Sun et al. 2019; Jiao et al. 2020), cosine distance (Sanh et al. 2019), and 
correlation function (Saadi et al. 2023) are used to match the hidden representations 
of the teacher and the student. However, previous work mostly applied a one-to-
one mapping between the student hidden representations and the teacher hidden 
representations (Sun et al. 2019; Sanh et al. 2019) neglecting the capacity gap between 
them. In fact, each student sample representation is mapped to the identical teacher 
sample representation. Nevertheless, as detailed in Chen et al. (2022), in layer-wise 
distillation, the student may struggle to mimic the hidden representations of the 
teacher because of their large capacity difference. This invariably results in huge 
discrepancies between their feature representations. Furthermore, as shown in Liang 
et al. (2023), training a student to achieve discriminative feature extraction for the 
main classification task and exact feature matching for distillation at the same time 
is considered multi-task learning. It is also shown that, in this case, the student tends 
to overfit the representations of the teacher’s hidden states. 

Motivated by this, we propose intra-class similarity-guided feature distillation, 
a novel approach where we introduce a new mapping between the student and the 
teacher hidden representations. In fact, we match each student’s sample representa-
tion with its K nearest neighbor teacher’s sample representations which are within 
the same class to reduce the difficulty of the distillation task for the student model. 
Furthermore, we can look at our new mapping as a relaxation for the feature distil-
lation task, so the student will not overfit the teacher features as detailed in Liang 
et al. (2023). Instead, it will focus better on the main feature extraction task while 
utilizing the teacher features as guidance.

In Fig. 8.1, we illustrate the key idea of our approach using a simple example. On 
the left side, we present the typical features matching approach where each student 
sample representation is mapped to its exact sample representation by the teacher. On 
the right side, we present our newly proposed approach where the mapping occurs 
between each student sample representation and its nearest teacher sample repre-
sentation, from the same class. In the existing approach (Left), as sometimes the 
student’s sample representation is very far from the teacher same sample represen-
tation, it is hard for the student to match it with its lower capacity, unlike in our 
proposed approach (Right) where we try to minimize the shortest distances taking 
advantages of the intra-class similarities.
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Fig. 8.1 Left: Typical feature distillation. Right: Our proposed approach. For simplicity, we set K 
= 1. The arrows represent the loss per sample. Red shapes (filled) represent the teacher samples 
representations. Yellow shapes (hollow) represent the student samples representations. The same 
samples are marked with the same shapes. The samples in the figure are from the same class

In our research, we distill the last hidden representation of the teacher to the 
student as in Tian et al. (2020) and Yang et al. (2020) where we try to group together 
the sample representations of the same class, revealing the intra-class similarities. 
This is primarily, because it is the closest to the classifier and will immediately affect 
the classification performance (Yang et al. 2020). We also assume that the teacher’s 
last hidden state and the student’s last hidden state have the same dimension. 

8.2 Methodology 

Unlike previous feature distillation work which applied a sample-wise representation 
alignment, we propose a KNN-based feature KD, which is a novel feature distilla-
tion method where the alignment is done between each sample representation by 
the student and its K nearest neighbor representations by the teacher which belong 
to the same class. Our approach makes the task easier for the student. Moreover, 
as illustrated in Fig. 8.2, the average intra-class similarity across the four GLUE 
benchmark datasets is higher with our method compared to the typical layer distilla-
tion technique. This highlights the effect of our approach in learning more compact 
class-embeddings. To empirically verify this hypothesis, we compute the intra-class 
cosine similarity MICS as in Eq. (8.1): 

MICS = 
1 

N 

N∑

i=1 

ci∑

j=1 

< si · sj > 
ci‖si|| 2‖sj|| 2 (8.1) 

where N is the batch-size, sj is the j-th sample belonging to the same class of si, and 
ci is the total number of the samples that belong to the class of sj in the batch of size 
N.
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Fig. 8.2 Intra-class similarity graph. w/ KNN (solid) is the MICS metric value with our approach. 
w/o KNN (hatched pattern) is the MICS metric value using the exact matching for feature distillation 

Typically, in a KD framework, we have the knowledgeable over-parameterized 
teacher modeled by fθ . The efficient student network is modeled by gθ

′ which has 
a lower number of parameters compared to the teacher |θ ′ | << |θ |. An input batch 
X is fed simultaneously to fθ and gθ

′ to produce the last hidden representations 
Yt and Ys, respectively. Usually, to perform the feature distillation task, an MSE 
is computed between Yt and Ys (Jiao et al. 2020; Sun et al. 2019). In fact, each 
sample representation in Ys is mapped to the corresponding representation in Yt . We  
propose a novel mapping approach to reduce the difficulty of the task for the student. 
We propose to map each sample representation in Ys to its K nearest neighbors that 
have the same label in Yt . In detail, given a sample x in the input batch X where the 
batch X contains N samples. Its student representation rS is with dimension n. 

rS = gθ
′ (x). F = {s | s ∈ X , and label(x) = label(s)} contains the elements in the 

batch that have the same label as x. G = {d | d = ∑n 
j=1

(
fθ (s)j − rS j

)2 
, ands ∈ F} 

contains the distances between each sample representation s in F by the teacher and 
rS . GK = {i1, i2, i3, ..., iK | di1 < di2 < di3 ... < diK , andK < N } contains the indices 
of the K-nearest points to rS . The feature KD loss per sample is lhidd (x), as shown  in  
Eq. (8.2):
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lhidd (x) = 
1 

n

∑

k∈GK 

n∑

j=1

(
fθ (sk )j − gθ

′ (x)j
)2 

(8.2) 

The final feature KD loss over all the batch samples is computed as in Eq. (8.3): 

Lhidd =
∑

x∈X 
lhidd (x) (8.3) 

The final KD loss is computed as in Eq. (8.4): 

LKD = α1Lhidd + α2Lsoft (8.4) 

The final training loss of the student is computed as in Eq. (8.5): 

L = LKD + α3LCE (8.5) 

where α1, α2, and α3 are the contributions of the three loss components to the final 
training loss. Lsoft is the logit distillation loss as in Sanh et al. (2019) and Jiao et al. 
(2020), which is the temperated KL divergence between the student logits and the 
teacher logits. LCE is the cross entropy loss between the ground truth labels and the 
student predictions. 

8.3 Experimental Results 

8.3.1 Experimental Setup 

Datasets In this research, we evaluate our proposed method on the validation set of 
seven GLUE benchmark datasets (Wang et al. 2019). The GLUE dataset is commonly 
used as a benchmark for KD in NLP (Zhou et al. 2021) as it is composed of several 
datasets for different tasks. In our evaluation, we use MNLI, QNLI, and RTE for 
natural language inference; SST-2 for sentiment classification; and QQP, MRPC, 
and STS-B for paraphrase similarity matching. The reported results follow the same 
format as those on the official GLUE leaderboard. 

Baselines In our experiments, the teacher is a 12-layer BERT-base-uncased model, 
fine-tuned on each GLUE task, with 110M parameters distilled into a 6-layer BERT6 

student model with 66M parameters. The number of epochs, the sequence length, the 
batch size, and the learning rate are set to 5, 128, 32, and {1e−5, 3e−5, 5e−5}, respec-
tively, for the teacher fine-tuning. We compare our proposed method with different 
state-of-the-art BERT compression approaches, including BERT-PKD (Sun et al. 
2019), DistilBERT (Sanh et al. 2019), PD (Turc et al. 2019), BERT-of-Theseus (Xu 
et al. 2020), TinyBERT (Jiao et al. 2020), MetaDistil (Zhou et al. 2021), MiniLM 
v2 (Wang et al. 2021), and ReptileDistil (Ma et al. 2022).
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Training settings For the baseline methods we report the same results as those 
in Ma et al. (2022), which are from the corresponding original paper. In our work, 
following Jiao et al. (2020); Ma et al. (2022), we initialize the student with the 
general TinyBERT6 model weights. Similar to Ma et al. (2022), the sequence length, 
the batch size, the number of epochs, and the temperature are set to 128, 32, 5, 
and 5, respectively. As proposed in Sanh et al. (2019); Jiao et al. (2020), α2 and 
α3 are set to 0.5 and 0.5, respectively. Inspired by Sun et al. (2019), Zhou et al. 
(2021), and Ma et al. (2022), we conduct a grid search over student learning rate 
from {1e − 5, 3e − 5, 5e − 5}, the K (number of nearest neighbors) from {1, 2, 3, 5}, 
and α1 from {0.1, 0.01, 0.001} and save the best model. All the experiments are 
repeated for four random seeds as in Sun et al. (2019) and the average is reported. 

8.3.2 Results 

In this section, we discuss the experimental results of our approach. 

Table 8.1 Experimental results on the GLUE development sets. The numbers and the strings under 
each dataset name indicated the number of samples and the metrics. All student models listed have 
the same architecture of 6 Transformer layers with 66M parameters 

SST-2 
method 
ACC 

MRPC 
(67k) 
F1/Acc 

STS-B 
(3.7k) 
pear/ 
spea 

QQP 
(5.7k) 
F1/Acc 

MNLI 
(364k) 
Acc m/ 
mm 

QNLI 
(105k) 
Acc 

RTE 
(2.5k) 
Acc 

BERTBASE (Devlin 
et al. 2019) (teacher) 

93.0 91.6/ 
87.6 

90.2/ 
89.8 

88.5/ 
91.4 

84.6/ 
84.9 

91.2 71.4 

DistilBERT (Sanh et al. 
2019) 

91.3 87.5/– –/86.9 –/88.5 82.2/– 89.2 59.9 

BERT-PKD (Sun et al. 
2019) 

91.3 85.7/– –/86.2 –/88.4 81.3/– 88.4 66.5 

PD (Turc et al. 2019) 91.1 89.4/ 
84.9 

– 87.4/ 
90.7 

82.5/ 
83.4 

89.4 66.7 

TinyBERT (Jiao et al. 
2020) 

93.0 90.6/ 
86.3 

90.1/ 
89.6 

88.0/ 
91.1 

84.5/ 
84.5 

91.1 73.4 

BERT-of-Theseus (Xu 
et al. 2020) 

91.5 89.0/– –/88.7 –/89.6 82.3/– 89.5 68.2 

MiniLM v2 (Wang 
et al. 2021) 

92.4 88.9/– – –/91.1 84.2/– 90.8 69.4 

MetaDistil (Zhou et al. 
2021) 

92.3 91.1/ 
86.8 

89.4/ 
89.1 

88.1/ 
91.0 

83.5/ 
83.8 

90.4 72.1 

ReptileDistil (Ma et al. 
2022) 

92.2 91.6/ 
87.7 

89.5/ 
89.3 

87.6/ 
90.1 

83.7/ 
83.7 

90.5 75.3 

Ours 92.5 92.5/ 
89.64 

89.7/ 
89.5 

87.7/ 
90.9 

84.5/ 
84.5 

90.8 75.8
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Table 8.2 Experimental 
results on the RTE and MRPC 
development sets. The 
reported results are averaged 
over four random seeds 

Approach MRPC (%) RTE (%) 

Teacher 93.05/90.19 87.00 

Student 92.48/89.52 84.83 

Our model 93.29/90.68 86.19 

As shown in Table 8.1, our proposed approach outperforms all state-of-the-art 
methods on three datasets, i.e., MRPC, MNLI, and RTE. While distilling knowl-
edge from a static teacher, ours outperforms both KD state-of-the-art MetaDistil 
and ReptileDistil, where the teacher is dynamic, on most of the datasets. While we 
distill the knowledge only from the last hidden representation of the teacher, ours 
outperforms BERT-PKD on all the datasets, which distills several hidden representa-
tions from the teacher to the student. It is also worth mentioning that although Wang 
et al. (2023) showed that the attention distillation is the best-performing objective, 
ours outperforms MiniLM v2, which distills the attention on all the datasets, and 
TinyBERT, which distills the attention, all the hidden states, and the logits, on three 
datasets. 

Evaluation with DEBERTA 
We also conducted an additional small experiment comparing our approach 

with larger DEBERTA variants (He et al. 2021). In this experiment, the teacher is 
DEBERTA-Xlarge, which has 750M parameters and the student is DEBERTA-large 
with 400M parameters. The RTE and MRPC scores of our approach along with the 
standard student fine-tuning are presented in Table 8.2. As can be seen, the proposed 
approach still helps in this case and consistently yields superior performance. 

8.4 Evaluation on HateSpeech 

8.4.1 Experimental Setup 

8.4.1.1 Dataset 

In this section, we evaluate our proposed KD approach on the hate-speech detection 
task, using the OffensEval (Zampieri et al. 2019), AbusEval (Caselli et al. 2020) and 
HatEval (Basile et al. 2019) English hate-speech datasets. 

OffensEval2019 is composed of 14,100 tweets that are binary annotated, as either 
offensive or non-offensive. A tweet is considered offensive if “it contains any form 
of non-acceptable language (profanity) or a targeted offense, which can be veiled 
or direct” (Zampieri et al. 2019). The dataset is split into 13,240 training examples 
with 4,400 offensive tweets (i.e., the positive class) and 860 test examples with 240 
offensive tweets.
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Abuseval is OffensEval2019 annotated for abusive versus non-abusive language. 
A tweet is labelled as abusive if “it contains hurtful language that a speaker uses to 
insult or offend an individual or a group of individuals based on personal qualities, 
appearance, social status, opinions, statements, or actions” (Caselli et al. 2020). It 
has the same training size and test size as OffensEval2019. 

HatEval is composed of 13,000 tweets that are binary annotated hateful vs non-
hateful against migrants and women. A tweet is considered hateful if “any commu-
nication that disparages a person or a group on the basis of some characteristic 
such as race, colour, ethnicity, gender, sexual orientation, nationality, religion, or 
other characteristics” (Basile et al. 2019). The dataset is split into 10,000 training 
examples with 4,165 hateful messages and 3,000 test examples with 1,252 hateful 
messages. 

8.4.1.2 Training Settings 

In this distillation framework, the teacher is the HateBERT model (Caselli et al. 
2021), fine-tuned on each of the datasets. HateBERT is a retrained 12-layer BERT 
for English hate-speech detection. The model was trained on RAL-E (Caselli et al. 
2021), a large dataset collected from Reddit hateful comments. The students are a 6-
layer BERT model initialized with the first 6 layers of the pre-trained HateBERT and 
a 3-layer BERT model initialized with the first 3 layers of the pre-trained HateBERT. 
In this evaluation, we compare the students’ performance to the BERT-base model 
and the teacher, as in Caselli et al. (2021). 

For the teacher and the BERT-base fine-tuning, we follow a similar experimental 
setup described in Caselli et al. (2021). The learning rate, batch size, max sequence 
length, and number of epochs are set to 1e − 5, 32, 100, and 5, respectively. For the 
distillation, α2 and α3 are set to 0.5 and 0.5, respectively, and the student learning 
rate is set to 5e − 5. The batch size is 32, the temperature is 2, and the number of 
epochs is 3. 

Following the experimental setup in Sect. 8.3, K ranges from {1, 2, 3, 5} and α1 

is set to 0.01. All the experiments are repeated for four random seeds as in Sun et al. 
(2019) and both the average and standard deviation are reported. 

8.4.2 Results and Discussion 

In this section, we discuss the evaluation metrics used and the results obtained. 
In these experiments, Macro average F1-score (Macro-F1) and the F1-score of the 
positive class (Pos .class-F1) are the reported evaluation metrics following Caselli 
et al. (2021). 

As illustrated in Table 8.3, while our student model (i.e., the Distilled-HateBERT6) 
has only half the number of the parameters of the teacher and BERT12 models, on 
the AbusEval dataset, it outperforms BERT12 by 1.7% as Macro-F1 and 2.6% as Pos
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Table 8.3 Experimental results on the OffensEval, HatEval, and AbusEval test sets. Each 
experiment is repeated for four random seeds and the average and the standard deviation are reported 

Dataset Model Macro-F1 Pos .class-F1 

OffensEval 2019 HateBERT12 (Caselli et al. 2021)(Teacher) 0.780 0.682 

OffensEval 2019 BERT12 (Devlin et al. 2019) 0.775±0.007 0.682±0.006 

Distilled-HateBERT6(Student) 0.782±0.001 0.675±0.005 

Distilled-HateBERT3(Student) 0.761±0.003 0.653±0.004 

HatEval HateBERT12 (Caselli et al. 2021)(Teacher) 0.531 0.641 

HatEval BERT12 (Devlin et al. 2019) 0.490±0.021 0.632±0.003 

Distilled-HateBERT6(Student) 0.496±0.017 0.631±0.001 

Distilled-HateBERT3(Student) 0.451±0.015 0.620±0.001 

AbusEval HateBERT12 (Caselli et al. 2021)(Teacher) 0.754 0.598 

AbusEval BERT12 (Devlin et al. 2019) 0.728±0.009 0.554±0.017 

Distilled-HateBERT6(Student) 0.745±0.008 0.580±0.018 

Distilled-HateBERT3(Student) 0.710±0.008 0.516±0.014 

.class-F1. Moreover, its performance drops only by 0.9% for Macro-F1 and 1.8% for 
Pos .class-F1 compared to the teacher. 

On OffensEval2019, Distilled-HateBERT6 has comparable results to BERT12. It is  
worth mentioning that it also could slightly exceed the performance of the teacher on 
the Macro-F1 metric. This behaviour is commonly observed in Furlanello et al. (2018) 
and Stanton et al. (2021). On HatEval, Distilled-HateBERT6 slightly outperforms 
BERT12. Furthermore, the standard deviations of the Distilled-HateBERT6 student 
model are lower than those of the BERT model in most cases, which demonstrates 
the stability and consistency of our approach. 

Additionally, we distilled the teacher HateBERT12 model to a 3-layer BERT model 
that is initialized by the first 3 layers of HateBERT12. As can be seen from Table 8.3, 
the resultant student model (i.e., Distilled-HateBERT3) has just one third of the 
parameters of the teacher and BERT12 models, but its performance did not drop 
dramatically in comparison. 

8.5 Conclusion 

In this research, we introduced a new mapping between the hidden representations 
of the teacher and the student. In fact, each sample representation by the student is 
mapped to its K nearest neighbor representations by the teacher. Our approach makes 
the task easier for the student and helps it to learn more compact sample embeddings. 
Empirical results on the GLUE benchmark dataset showed the effectiveness of our 
proposed method in comparison to competitive approaches for model compression 
with KD such as ReptileDistil and MetaDistil. In addition to being simple and easy to
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implement, our novel method outperformed existing KD approaches on three GLUE 
tasks. Furthermore, we evaluated our distillation approach on three hate-speech detec-
tion tasks, where we distilled the 12-layer HateBERT model to a smaller efficient one 
(i.e., Distilled-HateBERT with 6 Transformer layers) without significantly compro-
mising accuracy. Future work will include exploring adding a projector to dispose 
of the requirement that the student and the teacher must have the same final hidden 
state dimension. 
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Chapter 9 
On the Use of Cross-Attentive Fusion 
Techniques for Audio-Visual Speaker 
Verification 

Jahangir Alam and R. Gnana Praveen 

Abstract Audio-Visual (A-V) speaker verification has recently been gaining a lot 
of attention owing to the closely associated audio and visual cues. Though existing 
approaches based on A-V fusion showed improvement over unimodal systems, its 
potential for speaker verification is not fully exploited. In this contribution, we inves-
tigate the prospect of effectively capturing the synergic relationships across audio and 
visual modalities, which can play a vital role to significantly boost the performance of 
multimodal fusion over unimodal systems. More specifically, we present a compar-
ative study of three variants of Cross-Attentive frameworks, namely Joint Cross-
Attention (JCA), Recursive JCA (RJCA) and Cross-Modal Transformer (CMT), for 
multimodal fusion that can efficiently capture the intra-modal and/or inter-modal 
associations for A-V speaker verification. We carry out extensive experiments on 
the Voxceleb1 dataset to rigorously evaluate and compare the cross-attention-based 
models. Results indicate that effectively capturing intra- and/or inter-modal relation-
ships across audio and visual modalities can significantly improve the performance 
of the A-V speaker verification system. 

9.1 Introduction 

Speaker Verification (SV) is the process of verifying the identity of an individual 
based on unique voice characteristics. It has a wide range of applications such as 
access control, unlocking devices, authorizing transactions, forensics, commercial, 
and law enforcement applications (Hansen and Hasan 2015). The task of SV has been 
predominantly explored using faces (Wang and Deng 2021) and speech (Tu et al. 
2022) signals independently. With the advancement of deep learning models, both 
face- and speech-based methods have individually achieved remarkable success (Tu 
et al. 2022). However, relying on single modalities may often deteriorate the perfor-
mance of the system when face- or speech-based signals are degraded by extreme
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background noise or intra-variations such as pose, low illumination, or manner of 
speaking. Therefore, the fusion of facial and vocal data, which often reliably comple-
ments each other, is gaining momentum, enhancing security and robustness under 
adverse conditions (Tao et al. 2023). For instance, when speech modality is corrupted, 
we can rely on face to verify the identity of a person and vice-versa. Most of the 
existing audio-visual (A-V) fusion approaches for SV have focused on score-level 
fusion (Alam et al. 2020; Seyed et al. 2020) or early feature-level fusion (Chen et al. 
2020; Qian et al. 2021). Although these methods have improved fusion performance 
over unimodal systems, they fail to leverage the rich complementary inter-modal 
relationships between the audio and visual modalities. 

In recent years, attention-based models have been explored to efficiently capture 
complementary inter-modal associations across faces and voices (Hörmann et al. 
2020; Sun et al. 2023). Most existing attention-based models attempted to leverage 
the intra- and inter-modal relationships in a decoupled fashion. Another approach 
involves mitigating the impact of noisy modalities by leveraging their complemen-
tary relationships (Shon et al. 2019; Tao et al. 2023). To effectively fuse audio and 
visual modalities, it is very important to adeptly capture intra- and/or inter-modal 
relationships. Intra-modal relationships offer valuable insights into the temporal 
dynamics of videos, while inter-modal relationships provide substantial informa-
tion regarding the complementarity between modalities. In this work, for improving 
the performance of multimodal fusion, we aim to investigate the prospect of effec-
tively capturing the intra- and/or inter-modal relationships across audio and visual 
modalities, and provide a comparative study of multiple variants of cross-attention 
mechanisms. More explicitly, we focus on three variants of Cross-Attentive frame-
works for multimodal fusion, namely, Joint Cross-Attention (JCA), Recursive JCA 
(RJCA) and Cross-Modal Transformer (CMT), that can adeptly cover the intra- and/ 
or inter-modal associations for A-V speaker verification. 

The major contributions of this chapter can be summarized as follows: 

• Inspired by the success of multimodal transformers in various applications, we 
adopt a CMT model, which employs Transformers in the framework of cross-
attention for A-V speaker verification. 

• We investigate multiple variants of cross-attention-based mechanisms (JCA, 
RJCA and CMT) and provide a comparative study of the impact of these 
mechanisms for A-V speaker verification. 

• Extensive experiments are conducted on the voxceleb1 dataset to demonstrate the 
productiveness of the JCA, RJCA and CMT models for multimodal SV tasks. 

9.2 Related Work 

The close association between face and voice has attracted much attention for the task 
of cross-modal biometric matching by projecting the features of individual modal-
ities to a common representation space (Nagrani et al. 2018b, a). Sarı et al. (2021)
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explored a multi-view approach by transforming the individual feature representa-
tions into a common latent space and using a shared classifier for both modalities for 
SV. Chen et al. (2023) leveraged complementary information as a means of supervi-
sion to obtain robust A-V feature representations using a co-meta-learning paradigm 
in a self-supervised learning framework. Tao et al. (2023) also explored the comple-
mentary relationship between audio and visual modalities to clean noisy samples, 
where consistency across audio and visual modalities is used to discriminate easy 
from hard samples. Another line of investigation is to mitigate the impact of noisy 
modalities by leveraging complementary relationships. Shon et al. (2019) proposed 
an attention mechanism to assign higher attention scores to the modality exhibiting 
higher discrimination by benefiting from complementarities across audio and visual 
modalities. Hörmann et al. (2020) further extended the idea of Shon et al. (2019) 
by introducing feature fusion of audio and visual modalities at intermediate layers 
to improve the quality of feature representations. Chen et al. (2020) explored the 
prospect of obtaining robust feature representations by investigating various fusion 
strategies at the embedding level and achieved best performance using gating-based 
fusion. They also implemented data augmentation strategies to address issues with 
extremely corrupted or missing modalities. 

None of the above approaches leverage cross-modal interactions to effectively 
capture the rich inter-modal relationships. Cross-modal attention has been success-
fully explored in several applications such as weakly supervised action localiza-
tion (Lee et al. 2021), event localization (Duan et al. 2021), and emotion recog-
nition (Praveen et al. 2021). Recently, Mocanu and Tapu (2022) also explored 
cross-attention (CA) based on cross-correlations across audio and visual modal-
ities to effectively capture the complementary relationships between them. Liu 
et al. (2023) explored cross-modal attention by deploying cross-modal boosters in 
a pseudo-Siamese structure to model one modality by exploiting knowledge from 
another modality. However, these approaches focus only on inter-modal relation-
ships (Mocanu and Tapu 2022) or capture intra- and inter-modal relationships in a 
decoupled fashion (Liu et al. 2023). Rajasekhar and Alam (2023) explored a joint 
cross-attentional framework to jointly capture the intra and inter-modal relationships 
and showed better performance of SV. Recursive attention has also been previously 
explored successfully for emotion recognition (Praveen et al. 2023b) and event local-
ization (Duan et al. 2021). In this work, we perform an analytical study on three 
cross-attention variants, namely JCA, RJCA, and cross-modal Transformers (CMT), 
and further explore the prospects of CMT-based multimodal fusion for A-V person 
verification. 

9.2.1 Applicability to LLMs 

This chapter focuses on developing fusion models to effectively combine infor-
mation from audio and visual modalities to enhance person verification perfor-
mance. These fusion models operate on deep features extracted from pre-trained
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audio and visual networks, aiming to leverage the complementary nature of the two 
modalities. Compared to unimodal systems, multimodal systems can be expected to 
offer improved robustness and security, especially in challenging conditions such as 
missing or noisy modality and potential deepfake attacks. While this research doesn’t 
directly address techniques for LLMs, the concepts and methodologies explored 
could potentially be applied to the development of multimodal LLMs. By integrating 
information from multiple modalities, multimodal LLMs could offer more compre-
hensive and contextually rich understanding, which could be beneficial for various 
natural language understanding and generation tasks. Moreover, the idea of lever-
aging fusion models to combine information from different sources could poten-
tially enhance the performance and personalization capabilities of LLMs in diverse 
applications. 

9.3 Cross-Attention Mechanisms 

Attention mechanisms have emerged as a powerful tool in deep learning, enabling 
models to focus on relevant information and ignore less important parts, thereby 
capturing dependencies and relationships within the input. Since its introduction, 
attention mechanisms have been successfully applied in different domains such as 
natural language processing (Kretov 2020), computer vision (Guo et al. 2022), and 
speech processing applications (Alam 2023). 

In contrast, in the context of multimodal fusion, a CA mechanism is an extension to 
the idea of attention mechanisms, allowing the model to attend to relevant information 
from multiple modalities simultaneously instead of attending to only parts of a single 
modality. Cross-attention-based multimodal fusion has been successfully applied to 
various tasks, including multimodal sentiment analysis (Jiang and Ji 2022), image 
captioning (Zhao et al. 2019), visual question answering (Zhang and Wu 2022), 
speaker recognition (Liu et al. 2023; Mocanu and Tapu 2022) and so on. 

Since multimodal data convey more diverse information than unimodal data, effec-
tively leveraging the intra-modal and/or inter-modal complementary relationships 
among both audio and visual modalities plays a crucial role in efficient audio-visual 
fusion. In this section, we introduce three variants of cross-attentive multimodal 
fusion for A-V speaker verification. 

9.3.1 Problem Formulation 

For an input video sub-sequence S, L non-overlapping video segments are uniformly 
sampled, and the corresponding deep feature vectors are extracted using the pre-
trained models of audio and visual modalities. Let Za and Zv denote the deep feature 
vectors of audio and visual modalities, respectively, for the given input video sub-
sequence S of fixed size, which is expressed in (9.1) and (9.2):
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Za = {z1 a, z2 a, ..., zL a} ∈  Rda×L (9.1) 

Zv = {z1 v, z2 v, ..., zL v} ∈  Rdv×L (9.2) 

where da and dv represent the dimensions of the audio and visual feature vectors, 
respectively, and zl a and z

l 
v denote the audio and visual feature vectors of the video 

segments, respectively, for l = 1, 2, ..., L segments. 
The objective of the problem is to estimate the speaker verification model f : 

Z → Y from the training data Z, where Z denotes the set of audio and visual feature 
vectors of the input video segments and Y represents the speaker identity of the 
corresponding video sub-sequence S. 

It has been observed that the performance of unified multimodal training may 
decline over that of individual modalities due to the differences in learning dynamics 
and noise topologies (Wang et al. 2020). Therefore, we have obtained deep feature 
vectors for the individual audio and visual modalities independently, which are then 
fed to the cross-attentional module for A-V fusion. 

9.3.2 Joint Cross-Attention (JCA) 

In this section, we present Joint Cross-Attention (JCA)-based multimodal fusion to 
simultaneously encode intra-modal and inter-modal relationships in a joint frame-
work. The JCA approach was initially proposed in Praveen et al. (2022, 2023a) 
for the multimodal dimensional emotion recognition task, but was later adopted in 
Rajasekhar and Alam (2023) for SV. Specifically, the joint A-V feature representation 
obtained by concatenating the audio and visual features is fed to the fusion module 
along with the feature representations of the individual modalities. By deploying 
the joint representation, features of each modality attend to themselves, as well as 
other modalities, thereby simultaneously capturing the semantic inter-modal and 
intra-modal relationships among audio and visual modalities. Leveraging the joint 
representation also helps to reduce heterogeneity in the audio and visual modalities, 
which further improves SV performance. A schematic diagram of the JCA model is 
depicted in Fig. 9.1, where both Za and Zv are passed through a bidirectional LSTM 
(BLSTM) module with residual embedding so as to encode the temporal dynamics of 
the segments of the sequence of audio and visual feature vectors, respectively. Let Xa 

and Xv denote the deep feature vectors of audio and visual modalities, respectively, 
which is placed after BLSTM module, as explained in (9.3) and (9.4): 

Xa = {x1 a, x2 a, ..., xL a} ∈  Rda×L (9.3) 

Xv = {x1 v, x2 v, ..., xL v} ∈  Rdv×L (9.4)
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Fig. 9.1 Components of the JCA model for A-V fusion for SV. Here, modules (C) and (T) indicate 
the concatenation and transpose operation, respectively 

The joint representation J is obtained by concatenating the audio and visual feature 
vectors as J = [Xa; Xv] ∈  Rd×L where d = da + dv denotes the feature dimension 
of the concatenated features. The concatenated A-V feature representations (J) of  
the given video sub-sequence (S) are now employed in the CA framework to attend 
to the individual modalities. This helps to incorporate both intra- and inter-modal 
relationships in obtaining the attention weights of audio and visual modalities. Now 
the correlation across the joint feature representation and the individual modalities 
are obtained as joint cross-correlation matrices, which are computed as in Eq. (9.5): 

Ca = tanh
(
X�

a W jaJ √
d

)
and Cv = tanh

(
X�

v W jvJ √
d

)
(9.5) 

where W ja ∈ Rda×d and W jv ∈ Rdv×d represent the learnable weight matrices of 
the audio and visual modalities, respectively. The joint correlation matrices Ca and 
Cv for audio and visual modalities help to obtain the attention weights based on 
the semantic relevance of both across and within the modalities. The higher the 
correlation coefficient, the higher the correlation across the corresponding samples 
within the same modality as well as across modalities. Now the joint cross-correlation 
matrices are used to obtain the attention maps of audio and visual modalities, as shown 
in Eq. (9.6): 

Ha = ReLU (XaWcaCa) and Hv = ReLU (XvWcvCv) (9.6) 

where Wca ∈ RL×L,Wcv ∈ RL×L denote learnable matrices of audio and visual 
modalities respectively. These attention maps are used to obtain the attended features 
of the audio and visual modalities, computed as in Eq. (9.7):
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Xatt,a = HaWha + Xa and Xatt,v = HvWhv + Xv (9.7) 

where Wha ∈ RL×L and Whv ∈ RL×L denote the learnable weight matrices for audio 
and visual modalities, respectively. The attended audio and visual features Xatt,a and 
Xatt,v are further concatenated to obtain the A-V feature representation, which is 
given by X

∧

, as in Eq.  (9.8): 

X
∧

= [Xatt,a; Xatt,v] (9.8) 

As shown in Fig. 9.1, the attended A-V feature vectors are fed to the BLSTM in order 
to capture the temporal dynamics of the attended joint A-V feature representations. 
The segment-level A-V feature representations are in turn fed to the attentive statistics 
pooling (ASP) (Okabe et al. 2018) to obtain the sub-sequence or utterance-level 
representation of the A-V feature vectors. Finally, the embeddings of the final A-
V feature representations are used to obtain the scores, where the additive angular 
margin Softmax (AAMSoftmax) (Deng et al. 2018) loss function is used to optimize 
the parameters of the fusion model and the ASP module. 

9.3.3 Recursive Joint Cross-Attention (RJCA) 

In this section, we present the extended version of the JCA model proposed in 
Praveen and Alam (2024a) by including a recursive mechanism to obtain more refined 
feature representations. A schematic diagram of this recursive JCA model is shown 
in Fig. 9.2, and we call this fusion model “Recursive Joint Cross-Attention” (RJCA). 
The main idea behind deploying the joint feature representation in the CA frame-
work in a recursive fashion is to simultaneously boost intra- and inter-modelling of 
A-V relationships. Unlike the JCA approach, the recursive JCA does not employ any 
BLSTM module, so the input features to the RJCA fusion model are Xa = Za and 
Xv = Zv. 

The JCA and RJCA (as illustrated in Figs. 9.1 and 9.2) approaches share similar 
processing stages. The only difference is that, in RJCA, an additional recursion step, 
as indicated by the green line in Fig. 9.2, is appended. More specifically, in RJCA 
fusion approach, in order to attain more refined feature representations, the attended 
features are again fed as input, as shown in Eq. (9.9): 

X(t) 
att,a = H(t) 

a W
(t) 
ha + X(t−1) 

a and X(t) 
att,v = H(t) 

v W
(t) 
hv + X(t−1) 

v (9.9) 

where W (t) 
ha ∈ RL×L and W (t) 

hv ∈ RL×L denote the learnable weight matrices of the tth 

iteration for audio and visual modalities, respectively. Finally the attended features 
X(t) 

att,a and X
(t) 
att,v obtained from the recursive fusion model are concatenated and fed 

to the attentive statistics pooling (ASP) module to obtain sub-sequence or utterance-
level representations. The utterance-level A-V feature representations are used to
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Fig. 9.2 Components of the RJCA model for A-V fusion. Here, modules (C) and (T) indicate the 
concatenation and transpose operation, respectively 

obtain the scores, where the AAMSoftmax loss function (Deng et al. 2018) is used  
to optimize the parameters of the fusion model and the ASP module. 

9.3.4 Cross-Modal Transformers (CMT) 

In this section, we introduce our Cross-Modal Transformer (CMT)-based multi-
modal fusion approach (Praveen and Alam 2024b) for the A-V SV task. A schematic 
diagram of the various steps in CMT is shown in Fig. 9.3. As described in Sect. 9.3.1, 
deep features Za and Zv of audio and visual modalities are extracted via the pre-
trained audio (e.g., ECAPA-TDNN) and visual (e.g., Resnet-18) models, respec-
tively. Similar to the JCA framework, the extracted deep features Za and Zv are then 
passed individually through a BLSTM module with residual embedding for encoding 
the temporal dynamics of the segments of the sequence of the audio and visual feature 
vectors, respectively. The outputs of the BLSTM module are termed Xa and Xv.

This approach consists of two Transformer encoders, one for each modality. 
Typically, each encoder comprises multiple self-attention layers, each producing 
three types of representations—Keys (K), Values (V), and Queries (Q)—from the 
outputs of previous layer. The K and Q matrices are used to compute the attention 
by computing a dot product between them, as given by Eq. (9.10): 

Y = Softmax(KQT )V (9.10)
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Fig. 9.3 Illustration of the 
proposed CMT model. It 
employs the ECAPA-TDNN 
and ResNet-18 architectures 
as the audio-only and 
visual-only encoding 
networks, respectively. The 
module (C) represents the 
concatenation operation, and 
μ and σ indicate the 
weighted mean and standard 
deviation, respectively

Based on the self-attention layers, each encoder attends to the corresponding modality 
to compute the attention scores. In this model, we have used cross-modal attention 
layers, which also compute the dot product between the K and Q matrices, but these 
are taken from different modalities as shown in Fig. 9.3. By introducing cross-modal 
attention layers, we are able to capture the complementary relationships between 
the audio and visual modalities. After obtaining the attended features, the audio and 
visual features are concatenated to obtain the segment-level A-V feature representa-
tions. Finally, the ASP mechanism (Okabe et al. 2018) is employed to compute the 
weighted first- and second-order statistics (i.e., mean μ and standard deviation σ ) 
which are then concatenated to attain the final A-V embedding. 

9.4 Experiments 

9.4.1 Dataset and Evaluation Metric 

We have evaluated the proposed model on the Voxceleb1 dataset (Nagrani et al. 2020), 
obtained from YouTube videos under challenging environments. The dataset consists 
of 148,642 video clips, captured from 1,251 speakers, of which 55% are male. Each
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video clip has a duration of 4 to 145 seconds and the speakers are chosen to cover a 
diverse range of ethnicities, accents, professions, and ages. For our experiments, we 
divided the voxceleb1 development set, which has 1,211 speakers into training and 
validation sets. The training and validation splits were randomly selected as 1,150 
and 61 speakers, respectively, and we report our results on both the validation split 
and Vox1-O (Voxceleb1 original) test set. It is worth mentioning that the model is 
trained only on the training set of the voxceleb1 dataset. 

Equal Error Rate (EER) is used as an evaluation metric, which refers to the point 
where the False Accept Rate (FAR) is equal to the False Reject Rate (FRR). A perfect 
scoring model should yield an EER of zero, so a lower EER value indicates better 
performance. 

9.4.2 Experimental Setup 

In the case of the audio modality, the ECAPA-TDNN (Desplanques et al. 2020) 
framework is used for training the audio-based speaker embedding network. The 80-
dimensional Mel-FilterBank (MFB) features, which are extracted using an analysis 
window size of 25 ms over a frame-shift of 10 ms, are used as input acoustic features to 
the network. The audio data are randomly augmented on-the-fly with either MUSAN 
noise, speed perturbation with a rate between 0.95 and 1.05, or reverberation (Snyder 
et al. 2015). In addition, we use SpecAugment (Ko et al. 2017) to apply frequency 
and time masking on the MFB features. The weights of the embedding network are 
initialized with values from the normal distribution and the network is trained for a 
maximum of 100 epochs, and early stopping is used. The network is optimized using 
the Adam optimizer (Kingma and Ba 2015) with the initial learning rate of 0.001 and 
the batch size fixed to 400. In order to prevent the network from overfitting, dropout 
is used with p = 0.5 after the last linear layer. Finally, a weight decay of 5e − 4 is 
used for all experiments. 

For the visual modality, the face embedding network is trained using the Resnet-
18 architecture. For regularizing the network, dropout is used with p = 0.8 on the 
linear layers. The initial learning rate of the network which was set to 1e − 2 is 
used for the Adam optimizer. Weight decay of 5e − 4 is used. The batch size of 
the network is set to 400. Data augmentation is performed on the training data by 
random cropping, which produces a scale-invariant model. The number of epochs is 
set to 50 and early stopping is used to obtain the best weights of the network. 

As for the fusion network, we used hyperbolic tangent functions for the activation 
of cross-attention modules. The dimension of the extracted features of the audio 
modality is set to 192, and 512 for the visual modality. In the joint cross-attention 
module, the initial weights of the joint cross-attention matrix are initialized with 
the Xavier method (Glorot and Bengio 2010) and the weights are updated using the 
Adam optimizer. The initial learning rate is set to 0.001 and batch size is fixed to 
100. A dropout of 0.5 is applied on the attended A-V features, and a weight decay 
of 5e − 4 is used for all experiments.
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Table 9.1 SV performance 
of the RJCA fusion approach 
on the validation set with 
varied number of recursions t. 
Results are reported in terms 
of EER 

Fusion method Validation set 

RJCA Fusion (t = 2) 2.029 

RJCA Fusion (t = 3) 1.946 

RJCA Fusion (t = 4) 1.995 

RJCA Fusion (t = 5) 2.159 

9.4.3 Results 

In order to evaluate the performances of different variants of CA-based A-V SV 
systems, a series of experiments was conducted on the VoxCeleb1 dataset. Results 
are reported on the validation and VoxCeleb1 Original (Vox1-O) test sets in terms of 
EER based on the average of three runs for statistical stability. To obtain the audio 
and visual feature vectors, we used Resnet-18 (He et al. 2016) for the visual modality 
and ECAPA-TDNN (Desplanques et al. 2020) for audio, similar to Rajasekhar and 
Alam (2023) and Tao et al. (2023) in order to have a fair comparison. 

9.4.3.1 Ablation Study with Varying Number of Recursions for RJCA 

To analyze the contribution of the individual components of the Recursive Joint 
Cross-Attention (RJCA)-based fusion approach, we carried out a set of experiments 
by varying the number of iterations of the recursive mechanism. The results of this 
ablation study is presented in Table 9.1. We can observe from these results that the 
best performance is achieved at 3 iterations. Beyond that, we observe a decline in 
the fusion performance, which can be attributed to the fact that the recursion acts as 
a regularizer and improves the generalization ability of the RJCA model. Note that 
the results are reported based on the average of three runs for statistical stability. 

9.4.3.2 Comparative Evaluation of CA-Based mechanisms 

In order to understand the potential of CA-based mechanisms, we compared multiple 
variants of CA-based mechanisms and provide insight on the impact of effectively 
capturing the intra- and inter-modal relationships across audio and visual modali-
ties, respectively. We also provided a comparison of some of the widely used fusion 
strategies for a comprehensive analysis of audio-visual fusion for speaker verifi-
cation. Table 9.2 presents the results of CA-based fusion mechanisms along with 
some of the widely-used fusion strategies on the validation set in terms of EER. 
We first implemented a simple score-level fusion, where scores obtained from indi-
vidual modalities are fused. Next, we explored feature concatenation, where the deep 
features of audio and visual modalities are concatenated and the joint A-V represen-
tation is then used to obtain the final verification score. From the reported results
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Table 9.2 A comparison of 
A-V speaker verification 
performance of the introduced 
fusion approaches with some 
existing fusion strategies. The 
results are reported in terms 
of EER on the validation set 

Fusion method Validation set 

Score-level Fusion 2.521 

Feature Concatenation 2.489 

Self-Attention (SA) 2.412 

Cross-Attention (CA) 2.387 

Joint Cross-Attention (JCA) 2.125 

RJCA 1.946 

CMT 1.593 

in Table 9.2, we can observe that the fusion performance improves over simple 
score-level fusion. By employing a self-attention mechanism on the concatenated 
features of audio and visual modalities, the fusion performance improves further, 
due to the fact the self-attention mechanism helped to leverage the intra-modal rela-
tionships. We also explored inter-modal relationships across the modalities using CA 
and achieved further improvement in fusion performance as provided in Table 9.2. 

Then we explored a Joint Cross-Attention (JCA) mechanism, where a joint A-V 
feature representation is deployed in the CA framework to simultaneously capture 
both intra- and inter-modal relationships between audio and visual modalities. Again, 
we explored an extended version of JCA called “Recursive JCA” (RJCA), where we 
introduced the recursive fusion of the attended features of individual modalities and 
observed that recursive fusion with 3 iterations to obtain more refined feature repre-
sentations and thus better performance than with JCA, CA, SA, feature concatena-
tion and score-level multimodal fusion strategies. Finally, we performed experiments 
with the proposed Cross-Modal Transformer fusion technique. As we can observe in 
Table 9.2, using a joint feature representation significantly improves the performance 
over unimodal approaches as they can simultaneously capture intra- and inter-modal 
relationships across the audio and visual modalities. Multimodal Transformers based 
on cross-attention further improved performance. 

Table 9.3 Performance of 
the newly introduced fusion 
approaches in comparison to 
existing state-of-the-art 
fusion strategies. EER is used 
for reporting the results on the 
validation and test sets of the 
VoxCeleb1 corpus 

Fusion method Validation set Vox1-O set 

Visual 3.720 3.779 

Audio 2.553 2.529 

Tao et al. (2023) 2.476 2.409 

JCA 2.125 2.214 

RJCA 1.946 2.015 

CMT 1.851 1.716
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9.4.3.3 Comparison to the State-of-the-Art 

Most of the existing methods used the Voxceleb2 development dataset for training 
SV models. However, in this work, we used the Voxceleb1 dataset to validate the 
proposed approach and compared it against recent state-of-the-art SVmethods using 
A-V fusion. Table 9.3 shows the comparison of performance of our introduced fusion 
approaches (namely RJCA and CMT) to recent state-of-the-art methods as well as 
individual modalities on both validation split of Voxceleb1 and Vox1-O test sets. 
First, we conducted experiments with the individual modalities and observed that the 
audio-only SV system performed relatively better than the one based on the visual 
modality. In order to ensure a fair comparison, we re-implemented the approach of 
Rajasekhar and Alam (2023) and Tao et al. (2023) using the same experimental setup 
on the Voxceleb1 dataset. Tao et al. (2023) explored the complementary relationships 
as supervisory information to deal with noisy samples. The JCA approach initially 
proposed in Rajasekhar and Alam (2023) deployed a joint A-V representation in the 
CA framework and improved fusion performance. Since the RJCA approach employs 
recursive fusion with the joint cross-attentional framework to obtain robust feature 
representations, we can observe from Table 9.3 that fusion performance improves 
further. It is evident from Table 9.3 that the JCA, RJCA and Cross-Modal Transformer 
(CMT)-based fusion models outperform all the considered baseline systems both on 
the validation and test sets. The proposed CMT fusion approach achieved the best 
performance, providing a relative improvement of approximately 54%, 32%, 28%, 
22% and 14% over the Visual-only, Audio-only, Tao et al. (2023), JCA, and RJCA 
fusion approaches, respectively, on the Vox1-O test set of the VoxCeleb1 dataset. 

9.5 Conclusion 

In this research, we investigated three variants of cross-attention-based multimodal 
fusion models, namely Joint Cross-Attention (JCA), Recursive JCA (RJCA) and 
Cross-Modal Transformer (CMT), for A-V SV. In particular, we obtained the deep 
features of audio and visual modalities from pre-trained networks, which were then 
fed to the fusion model. After that, the semantic relationships between audio and 
visual modalities were obtained based on the cross-correlation between the individual 
feature representations. Unlike JCA, the RJCA approach effectively exploited both 
inter- and intra-modal relationships across audio and visual modalities in an iterative 
manner in order to obtain more refined A-V feature representations. The CMT fusion 
model was able to effectively leverage the complementary inter-modal relationships 
between the audio and visual modalities. Experimental A-V speaker verification 
results on the VoxCeleb1 dataset demonstrated the effectiveness of the JCA, RJCA 
and CMT multimodal fusion strategies. The performance of these approaches can be 
further enhanced by training with the large-scale Voxceleb2 dataset as it can improve 
the generalization capability still further.
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Chapter 10 
An Efficient Clustering Algorithm for 
Self-Supervised Speaker Recognition 

Abderrahim Fathan and Jahangir Alam 

Abstract Clustering-based pseudo-labels (PLs) are widely used to optimize speaker 
embedding (SE) networks and train self-supervised speaker verification (SV) 
systems. However, PL-based self-supervised training depends on high-quality PLs, 
and clustering performance relies heavily on time- and resource-consuming data 
augmentation regularization. In this chapter, we propose an efficient and general-
purpose multi-objective clustering algorithm that outperforms all other baselines 
for clustering SEs. Our approach, called Contrastive Information Maximization 
Clustering (CIMC), avoids explicit data augmentation, enabling fast training with 
low memory and compute resource usage. It is based on three principles: (1) 
self-augmented training to enforce representation invariance and maximize the 
information-theoretic dependency between samples and their predicted PLs; (2) 
virtual mixup training to impose local-Lipschitzness and enforce the cluster assump-
tion; and (3) supervised contrastive learning to learn more discriminative features, 
pulling samples of the same class together and pushing samples of different classes 
apart, while improving robustness to natural corruptions. We provide a thorough 
comparative analysis of the performance of our clustering method against baselines 
using a variety of clustering metrics, demonstrating that we outperform all other clus-
tering benchmarks. Moreover, we perform an ablation study to analyze the contri-
bution of each component, including two other augmentation-based objectives, and 
show that our multi-objective approach provides beneficial complementary informa-
tion. Finally, using the generated PLs to train our SE system enables us to achieve 
SOTA SV performance. 

10.1 Introduction 

Speaker Verification (SV) is the task of confirming the identity of a speaker based 
on the speaker’s known utterances (for details refer to Sect. 9.1). In recent years, it 
has become a key technology for personnel authentication in numerous applications
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(Hansen and Hasan 2015). Typically, utterance-level fixed-dimensional embedding 
vectors are extracted from the enrollment and test speech samples and then fed 
into a scoring algorithm (e.g., cosine distance) to measure their likelihood of being 
from the same speaker. Classically, the i-vector framework has been one of the most 
dominant approaches for speech embedding (Dehak et al. 2011; Kenny 2012) thanks 
to its ability to summarize the distributive patterns of speech in an unsupervised 
manner and with relatively small training datasets. It generates fixed-sized compact 
vectors that represent the speaker’s identity in a speech utterance regardless of its 
length. In addition, various deep learning-based architectures and techniques have 
been proposed to extract embeddings (Bai and Zhang 2021; Fathan et al. 2022; Kang 
et al. 2022). They have shown great performance when large training datasets are 
available, particularly with a sufficient number of speakers (Snyder et al. 2018). One 
widely employed architecture for this purpose is ECAPA-TDNN (Desplanques et al. 
2020), which has achieved state-of-the-art (SOTA) performance in text-independent 
speaker recognition. The latter uses Squeeze-and-Excitation (SE), employs channel-
and context-dependent statistics pooling and multi-layer aggregation and applies 
self-attention pooling to obtain an utterance-level embedding vector. 

Indeed, most of the deep embedding models are trained in a fully supervised 
manner and require large speaker-labeled datasets for training. However, well-
annotated datasets can be expensive and time-consuming to prepare, which has 
led the research community to explore more affordable Self-Supervised Learning 
(SSL) techniques using larger unlabeled datasets. One common way to solve this 
issue for SV systems is to use a one-stage “clustering-classification” scheme (Fathan 
et al. 2022; Kang et al. 2022) by employing clustering algorithms (e.g., K-means, 
agglomerative hierarchical clustering, spectral clustering) or other SSL-based objec-
tives (e.g., SimCLR or MoCo (Xia et al. 2021)) to generate pseudo-labels (PLs) and 
train the speaker embedding network using these labels in a discriminative fashion. 
More recently, better-performing ways have emerged which are now widely adopted 
in the SV domain. These frameworks 

Despite the impressive performance of these PL-based self-supervised SV 
schemes, clustering performance remains a bottleneck in all above approaches (Han 
et al. 2022; Tao et al. 2022). Indeed, downstream performance relies greatly on 
accurate PLs since these are generally noisy and inaccurate due to the discrepancy 
between the clustering objectives and the final SV task. Besides, even with itera-
tive clustering-classification paradigms, erroneous information from the wrong PLs 
keeps propagating iteratively, which degrades the final performance (Li et al. 2021; 
Tao et al. 2022). Thus, there is a need for better-performing clustering algorithms to 
generate less noisy and more accurate PLs. Rather than using SOTA deep clustering 
models which rely on heavy domain-specific data augmentations, these approaches 
usually employ classical clustering algorithms such as K-means or spectral clus-
tering because these are easier to use, faster, and less resource-consuming in terms 
of memory and GPU/CPU resources to train. 

We propose Contrastive Information Maximization Clustering (CIMC), an effi-
cient and general-purpose multi-objective clustering algorithm that outperforms 
all other baselines used for clustering speaker embeddings. Our approach avoids
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using explicit data augmentation for fast training and low memory and compute 
resource usage. Our solution is based on the combination of three principles: (1) 
self-augmented training to enforce representation invariance and maximize the 
information-theoretic dependency between samples and their predicted PLs through 
the Information Maximizing Self-Augmented Training (IMSAT) clustering frame-
work (Hu et al. 2017); (2) virtual mixup training (VMT) (Mao et al. 2019) to  
impose local-Lipschitzness which enforces the cluster assumption; and (3) super-
vised contrastive learning (Khosla et al. 2020) by leveraging on-the-fly generated 
PLs, to pull samples of the same class together and push samples of different clusters 
apart. 

Instead of mixing up inputs or using contrastive loss solely to enforce smoother 
model responses and compactness of the embeddings, our CIMC method leverages 
these predictions as additional supervisory signals to better guide cluster assignment 
for more robust, stable, and better-performing data clustering. 

The contributions of this chapter are as follows: 

• We propose a novel general-purpose multi-objective clustering algorithm, called 
CIMC, for large-scale datasets or/and a high number of clusters. 

• We explore various recent SOTA SSL objectives for clustering where we show that 
multi-objective clustering often provides beneficial complementary information. 

• Our proposed method outperforms a large set of clustering baselines. Additionally, 
by using the generated labels to train our SV systems, we achieve high SV perfor-
mance. Furthermore, employing augmentation-based SSL objectives allowed us 
to achieve both SOTA speaker embedding clustering and SV performance. 

10.2 Background and Related Work 

Diverse methods for clustering have been proposed such as K-means (Hartigan and 
Wong 1979), Gaussian mixture model (GMM), BIRCH (Zhang et al. 1997), CURE 
(Guha et al. 1998), and Agglomerative Hierarchical Clustering (AHC) (Day et al. 
1984). However, these methods can only fit linear boundaries between data repre-
sentations. Recently, the powerful representative ability of deep neural networks 
(DNNs) has been leveraged to model the non-linearity of complex data and to scale 
to large datasets. For instance, Deep Embedded Clustering (DEC) (Xie et al. 2016) 
proposed to use deep models to simultaneously learn feature representations and 
cluster assignments, while the DeepCWRN (Dahal 2018) approach employs an 
autoencoder to simultaneously learn feature representations and embeddings suit-
able for clustering by encouraging the separation of natural clusters in the embed-
ding space. Beside these, other deep models have been proposed based on generative 
models (Dilokthanakul et al. 2016; Jiang et al. 2016) or dynamic architectures (Ronen 
et al. 2022). 

While data augmentation remains a crucial component to regularize DNNs for 
clustering and unsupervised representation learning in order to model the invariance 
of learned representations (Dosovitskiy et al. 2014), augmentation has the downside
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of increasing the training set which can lead to significantly more training time. 
Especially for large-scale datasets and neural networks. Additionally, using blind 
augmentations can negatively affect speaker verification/recognition tasks because 
transformations like pitch perturbation or spectral augmentation can alter the identity 
of a speaker, potentially creating misleading data samples. Moreover, for real-world 
tabular data applications (Bahri et al. 2021) such as genomics and clinical data, 
generating additional augmented views is not an obvious task and can be prohibited. 

Finally, while our work focuses on generating highly accurate annotations for 
audio-based self-supervised SV, we believe our clustering approach and insights from 
studying several SSL-based objectives can be useful for multi-modal approaches 
that combine information from different available views/sources in a self-supervised 
manner, such as audio and visual modalities. In fact, our proposed clustering objective 
can be adapted to other types of input data and used to leverage/fuse complementary 
annotations to train SSL-based models. Furthermore, we find our explored methods 
and concepts could potentially be applied to the development of multi-modal LLMs. 

10.3 Proposed Clustering Approach 

A schematic diagram of the proposed CIMC is presented in Fig. 10.1, which is 
trained via minimizing the total loss Ltotal , that integrates three different SSL-based 
loss functions. The aim is to harness these objectives as additional supervisory signals 
to regularize the clustering model to produce consistent assignments.

Given a DNN-based clustering model f and a predefined number of clusters C, the  
CIMC approach constrains the predictions of the model to remain unchanged under 
local perturbations and implicit Virtual Mixup Training (VMT) data augmentations 
(LMixup) (Mao et al.  2019). The model is trained end-to-end by imposing local-
Lipschitzness on the learned weights to favor the cluster assumption (if samples are 
in the same cluster, they come from the same class), which is a critical condition for 
successful clustering (Grandvalet and Bengio 2004). More explicitly, it optimizes 
the following Ltotal objective, as shown in Eq. (10.1): 

Ltotal = LIMSAT + LSupCon + LMixup (10.1) 

where LIMSAT is the loss function for the original IMSAT clustering objective and 
LSupCon and LMixup represent the supervised contrastive loss and the mixup loss terms, 
respectively. Our main focus is to harness these objectives as additional supervisory 
signals to regularize the clustering model to produce consistent assignments. 

The original IMSAT loss LIMSAT (Hu et al. 2017) is expressed mathematically as 
in Eq. (10.2): 

LIMSAT = RSAT (θ, TVAT ) + λ(H (Y |X ) − μH (Y )), (10.2)
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Fig. 10.1 The pipeline of our proposed CIMC method, depicting the data flow and the different 
losses employed for clustering

where H(.) and H(.|.) are the marginal and conditional entropy, respectively, and 
the loss term RSAT (θ; T ) = 1 

N

∑N 
n=1 RSAT (θ; xn, T (xn)) allows the representations 

of the augmented samples to be further pushed close to those of the original 
samples while also regularizing the complexity of the network against local pertur-
bations using Virtual Adversarial Training (VAT) (Miyato et al. 2018). λ, μ ∈ R 
are hyperparameters that control the trade-offs between the complexity regular-
ization of the model (through RSAT ) and the Mutual Information (MI) maxi-
mization, and between the two entropy terms, respectively. RSAT (θ; x, T (x)) = 
−∑C 

c=1

∑1 
yc=0 pθ̂ (yc|x)logpθ (yc|T (x)), where pθ̂ (yc|x) is the prediction of original 

data point x, and θ̂ are the current parameters of the network. TVAT (x) = x + r 
is the augmentation function using local perturbations to enforce invariance where 
r = arg max 

r′
{RSAT ( ̂θ; x, x + r′); ‖r′‖2 ≤ ε} is an adversarial direction. 

The difference between the marginal and conditional entropy represents the MI 
between sample X and label Y, which we maximize. The two entropy terms can be 
calculated as in Eqs. (10.3) and (10.4):
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H (Y ) = h(pθ (y)) = h( 
1 

N 

N∑

i=1 

pθ (y|x)), (10.3) 

H (Y |X ) = 
1 

N 

N∑

i=1 

h(pθ (y|xi)), (10.4) 

where pθ (y|x) is our probabilistic classifier modeled by parameters θ of a DNN, and 
h(p(y)) = −∑

y′ p(y′) log p(y′) is the entropy function. 
Basically, increasing the entropy H(Y) amounts to encouraging the cluster sizes to 

be uniform and prevents collapsing into only a small number of clusters; in contrast, 
minimizing the conditional entropy H(Y |X) enables less ambiguous cluster assign-
ments and forces the classifier to be confident on the training samples (Bridle et al. 
1991). For more details refer to Hu et al. (2017) and Miyato et al. (2018). 

On the other hand, the supervised contrastive loss term LSupCon helps to learn 
more discriminative features and improves robustness to natural corruptions and out-
of-distribution data (Khosla et al. 2020). Note that the LSupCon loss requires labels. 
However, Khosla et al. (2020) leveraged theLSupCon loss in an unsupervised (or self-
supervised) manner by employing online generated PLs as labels and l2-normalized 
logits as feature embeddings. 

The novelty of our approach lies in using the online predictions of our clus-
tering model as input labels, allowing us to use it in a completely unsupervised/self-
supervised fashion without the need for ground-truth labels. As the performance of 
our clustering model gradually improves, the online PLs become progressively more 
reliable, helping to generate better and more compact clusters. LSupCon also allows 
us to leverage online clustering assignments by using nearest-neighbors as positives 
rather than augmentations, pulling clusters of points belonging to the same class 
together in embedding (logit) space while simultaneously pushing apart clusters of 
samples from different classes. Further mathematical details and discussion about 
the LSupCon objective are included in Sect. 10.7. 

The mixup loss term LMixup can be formulated as in Eq. (10.5): 

LMixup = 
1 

N 

N∑

i=1 

KL(αipi + (1 − αi)pri ||f (αixi + (1 − αi)xri )). (10.5) 

where N is the size of data (or mini-batches), ri ∈ {1, .., N } is a random index, and 
αi ∈ [0, 1] is the mixup interpolation coefficient. KL(.||.) refers to the Kullback-
Leibler divergence. pi = f (xi) ∈ R1xC , pri = f (xri ) correspond to the predictions 
of data samples xi and xri . Finally, inspired by the VMT regularization method 
(Mao et al. (2019)), which encourages the model to behave linearly between training 
points, we enforce representation smoothness during clustering and enforce consis-
tent predictions between the surrounding and training points. Indeed, mixup (Zhang 
et al. 2017) which is a strategy to augment data by interpolating different data samples 
alongside their labels, often leads to better generalization to out-of-set samples.
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Mixup was also found by Fathan et al. (2022) to lead to better generalization of self-
supervised SV systems when the clusters are not compact or well-distanced, as it 
can dilute label noise and induce better class separation. Following the work of Mao 
et al. (2019), instead of directly mixing probabilities in the LMixup loss, we perform 
mixup over logits, followed by Softmax for better training and to prevent early infor-
mation loss during the mix of probabilities. During experiments, we found this to 
considerably improve results and convergence compared to mixup on probabilities.1 

10.4 Discussion of the Multi-Objective Clustering 
Approach 

Our approach in this chapter aims to extend and improve the IMSAT method by 
incorporating and studying additional SSL objectives in a multi-objective fashion 
within the current framework. Our study investigates useful self-supervised objec-
tive losses for the purpose of speaker clustering and recognition. To this aim, we 
harness these objectives as additional supervisory signals during clustering to regu-
larize the clustering model to produce consistent feature representations. Addition-
ally, this combination of objectives can increase the model’s expressiveness through 
various inductive biases, maximize the amount of information learned per sample, 
and help it learn weights that can better disambiguate difficult or complex data 
examples. This can also enable our clustering model to self-correct its early misla-
belling, and reduce the likelihood of learning spurious features since in that case 
the weights are constrained to simultaneously satisfy all the training objectives (i.e., 
assume the simplest hypothesis). Our work also analyzes the complementary infor-
mation between these objectives using our large MLP-based architecture, without 
interference from other architectural biases. 

The IMSAT framework, which is the backbone of our clustering approach helps to 
avoid degenerate solutions that other clustering methods are susceptible to by being 
rigorously grounded in information theory. Indeed, due to the entropy maximisa-
tion component H(Y ) within MI, the loss objective is not minimised if all inputs 
are assigned to the same class. At the same time, to minimize the MI loss term, it 
is optimal for the model to predict for each input a single class with certainty (i.e., 
one-hot) due to the additional conditional entropy component H(Y |X) that we mini-
mize. Hence, we avoid clusters disappearing during training or a single cluster starts 
dominating the predictions. During our experiments, we find the LIMSAT loss to be 
critical for good clustering performance. 

Inspired by the VMT regularization method (Mao et al. 2019), which encour-
ages the model to behave linearly between training points, we enforce representa-
tion smoothness during clustering and enforce consistent predictions between the 
surrounding and training points (Verma et al. 2022). The mixup method (Zhang et al. 
2017), as an efficient strategy to augment data by interpolating different data samples

1 Code of our clustering framework is available at: https://github.com/fathana/CAMSAT_clustering 

https://github.com/fathana/CAMSAT_clustering
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alongside their labels, often leads to better generalization to out-of-set samples. It has 
proven its strength in various tasks (e.g., image classification (Zhang et al. 2017), anti-
spoofing (Tomilov et al. 2021) and speech recognition (Meng et al. 2021)). (Zhang 
et al. 2017) has shown that mixup not only reduces the memorization to adversarial 
samples, but also performs better than Empirical Risk Minimization (Vapnik et al. 
2015). Mixup has also been found by Fathan et al. (2022) to be effective against label 
noise memorization (Arpit et al. 2017) and to lead to better generalization of self-
supervised SV systems when the clusters are not compact or well-distanced. We find 
this property to be especially important during the clustering of speaker embeddings 
to mitigate strong label noise in the early training epochs and avoid early convergence 
to suboptimal cluster assignments. As mixup can dilute label noise in online gener-
ated PLs and create synthetic samples around the borders—leading to smoothing the 
data manifold and better class separation—we believe this can help slow down the 
memorization of noisy PLs and allow the model to learn from the simple patterns 
available for a longer period. Consequently, this leads to better clusters and induces 
robustness, improved generalization capability, and better online clustering stability 
for large-scale datasets. 

The resulting CIMC algorithm is highly scalable, fast, more robust than IMSAT to 
corruptions and shifts in the data during online clustering, is simple to implement, yet 
adds only limited computational overhead to IMSAT. Additionally, we believe CIMC 
can be significantly beneficial in further optimizing current self-supervised SV frame-
works by replacing simple clustering methods (e.g., k-means, spectral clustering). It 
can also be used in speaker diarization frameworks to improve the clustering aspects 
of speaker diarization methods where clustering is one of the important modules. 
Finally, our proposed clustering approach is a general-purpose method and can be 
applied to problems and domains other than speech. 

10.5 System Description 

10.5.1 Clustering-Based Self-Supervised Speaker Embedding 
Framework 

Figure 10.2 shows a schematic diagram of our general clustering-based self-
supervised SV process that we follow throughout the chapter. In this work, we explore 
various clustering algorithms and analyze the impact of pretraining, particularly clus-
tering, on SV performance. We employ ECAPA-TDNN as our speaker embedding 
network and use AAMSoftmax (Deng et al. 2018) objective loss to train our systems 
using PLs generated by various clustering algorithms.
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Fig. 10.2 General process for training our clustering generated pseudo-label-based self-supervised 
speaker embedding networks 

10.5.2 Clustering-Based Pseudo-Label Generation 

For clustering, we extracted i-vectors (Dehak et al. 2011; Kenny 2012) using  
the Kaldi toolkit (Povey et al. 2011), which provides a statistical, unsupervised, 
fixed-dimensional representation from each training utterance. Clustering was then 
performed on these i-vectors. After training the clustering algorithms, we selected the 
aligned cluster for each utterance and used the cluster ID as a PL. With the clustering-
based PLs, we can train the speaker embedding network via softmax-based objec-
tives, analogous to supervised learning. For all our clustering benchmarks, we set 
the number of clusters to 5,000, which Kang et al. (2022) found to lead to the best 
results. For self-organizing maps, the number of clusters was set to the size of the 
map (7171 = 5041). 

10.5.3 Input Features and Datasets 

As input to all of our clustering algorithms, we employ 400-dimensional i-vectors. 
These compact i-vectors, which are unsupervised speaker representations, allow us to 
perform clustering more efficiently and avoid the high dimensionality of the MFCC 
acoustic features. 

To evaluate the performance of our proposed clustering approach and the gener-
ated PLs for self-supervised SV, we conducted a set of experiments based on the 
VoxCeleb2 dataset (Chung et al. 2018). We used the development subset of the 
VoxCeleb2 dataset, consisting of 1,092,009 utterances collected from 5,994 speakers, 
to train the embedding networks. The evaluation was performed according to the orig-
inal VoxCeleb1 trials list (Nagrani et al. 2017), which consists of 37,720 trials from 
4,874 utterances spoken by 40 speakers.
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For our ECAPA-TDNN-based SV system, we used 40-dimensional Mel-
frequency cepstral coefficients (MFCCs) extracted every 10 ms with a 25 ms 
Hamming window via the Kaldi toolkit (Povey et al. 2011). Additionally, to align 
with other SV works, we used waveform-level data augmentations, including additive 
noise and room impulse response (RIR) simulation (Snyder et al. 2018), in training 
the ECAPA-TDNN-based systems. In addition to the waveform-level augmenta-
tions, we applied augmentation over the extracted MFCC features, analogous to the 
specaugment scheme (Park et al. 2019). 

10.5.4 Clustering Models and Training Details 

To improve generalization, we use the AAMSoftmax objective (Deng et al. 2018) to  
train our self-supervised speaker embedding network, with a scale factor s = 30 and 
an angular margin m = 0.1. Cosine similarity is used as a backend for verification 
scoring between enrollment and test embeddings. 

Following the IMSAT setup, we use the same MLP-based d-S-S-C architecture, 
where d = 400 and C are the input and output dimensionalities, respectively. S = 
20, 800 neurons represent the width of the network. We use ReLU for all the hidden 
activations, apply batch normalization to the hidden layers, and use Softmax in 
the output layer. For optimization, we use the momentum algorithm with an initial 
learning rate of 0.01, a momentum of 0.9, and an exponential rate decay of 0.996. 
We set λ = 0.5 and μ = 3.5. 

We use a batch size of 10,240 i-vectors, and inputs are normalized independently 
along the samples axis to unit l2-norm to avoid losing speaker information. We 
use α = 1 as the coefficient of the Beta distribution for mixup interpolation. We 
ran experiments for 150 epochs using 64 CPU cores for each clustering algorithm. 
Additionally, all SV experiments were run for 7 days using a single RTX2080Ti 
GPU, with a batch size of 200 MFCC samples. All code and methods used in our 
experiments are based on TensorFlow. 

10.5.5 Self-Supervised Additive Angular Margin Softmax 
Objective 

The AAMSoftmax objective is one of the most popular methods for training a speaker 
embedding network (Deng et al. 2018), and is formulated as in Eq. (10.6): 

LAAMSoftmax = −  
1 

N 

N∑

i=1 

log( 
es(cos(θyi+m)) 

K1 
), (10.6)
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where K1 = es(cos(θyi+m)) + ∑C 
j=1,j �=i e

scosθj , N is the batch size, C is the number of 
classes, yi corresponds to label index, θyi represents the angle between the column 
vector of weight matrix Wyi ∈ R512×1 of the ground truth center and the ith feature 
embedding xi ∈ R512×1, where both Wyi and xi are l2 normalized. θj = arccos(Wj 

T xi) 
is the angle between xi and the jth class center Wj ∈ R512×1. The scale factor s 
ensures that the gradient is not too small during training, and m is a hyperparameter 
that encourages the similarity of correct classes to be greater than that of incorrect 
classes by a margin m. 

The training of AAMSoftmax for self-supervised speaker embedding learning is 
made possible by using our generated PLs, as the above objective requires speaker 
labels for training. 

10.5.6 ECAPA-TDNN Architecture Details 

Table 10.1 describes the architecture of our ECAPA-TDNN model used for SV. 

10.6 Clustering Evaluation Metrics 

Using commonly accepted evaluation metrics for clustering, we thoroughly assess 
the quality of the generated PLs from different perspectives. 

We employ seven supervised metrics based on both the PLs and true labels: unsu-
pervised clustering accuracy, normalized mutual information (Estévez et al. 2009), 
adjusted mutual information (Vinh et al. 2010), completeness score (Rosenberg 
and Hirschberg 2007), homogeneity score (Rosenberg and Hirschberg 2007), purity 
score, and Fowlkes-Mallows index (Fowlkes and Mallows 1983). These metrics

Table 10.1 Standard ECAPA-TDNN architecture. T indicates the duration of features in number 
of frames and d the feature vector dimensionality and C and Nc represent the number of channels 
and classes, respectively. FC and BN stand for fully connected layer and batch normalization, 
respectively. In this work, we use C = 512 
Layer Input dimension Output dimension 

Conv1d+ReLU+BN d × T C × T 
SE-Res2Block C × T C × T 
SE-Res2Block C × T C × T 
SE-Res2Block C × T C × T 
Conv1d+ReLU 3C × T 1536 × T 
Attentive Statistics Pooling + BN 1536 × T 3072×1 

FC + BN 3072×1 192×1 

AAMSoftmax 192×1 Nc ×1 
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assess the following criteria: clustering accuracy and mutual information as measures 
of consistency between the true labels and the generated PLs; homogeneity, complete-
ness, and purity of clusters; and precision and recall. Additionally, we compute three 
unsupervised metrics—Silhouette score (Rousseeuw 1987), Calinski-Harabasz score 
(Caliński et al.  1974), and Davies-Bouldin score (Davies and Bouldin 1979)—that 
are solely based on the generated PLs and the data samples. These metrics measure 
how compact or scattered the clusters are (e.g., intra-class dispersion, between-cluster 
distances, nearest-cluster distance). 

More details and discussion about the clustering metrics are available in Fathan 
et al. (2022), which found a very high correlation between these metrics and SV 
performance. Additionally, using the three unsupervised clustering metrics allows 
us to objectively assess our clustering performance and avoid arbitrary techniques 
such as t-SNE visualizations (Van der Maaten and Hinton 2008). To compute these 
metrics, we use available implementations from the scikit-learn toolkit. Details of 
the clustering metrics are as follows: 

Unsupervised Clustering Accuracy (ACC). Measures the consistency between 

the true labels and the generated PLs. ACC = max 
m

∑N 
i=1 1{yi=m(ci)} 

N where yi is the 

true label, ci is the generated PL assignment, and m is a mapping function which 
ranges over all possible one-to-one mappings between true labels and assignments. 
The optimal mapping can be efficiently computed using the Hungarian algorithm 
(Kuhn 2005). 

Normalized Mutual Information (NMI). NMI (Y , C) = I(Y ,C) 
1 
2 [H (Y )+H (C)] where 

Y and C denote the ground-truth labels and the generated clustering assignments, 
respectively(Estévez et al. 2009). H is the entropy function and I denotes the MI 
metric. NMI is the harmonic mean between below homogeneity and completeness 
scores. 

Adjusted MI (AMI). Adjusted MI (Vinh et al. 2010) is NMI adjusted for chance 
by discounting a chance normalization term. Since the NMI measure is not adjusted 
for chance, including the adjusted MI score might be preferred for comparison in 
some of our cases. 

Completeness Score. A clustering assignment satisfies completeness if all the 
data points that are members of a given class are elements of the same cluster 
(Rosenberg and Hirschberg 2007). The scores are between 0 and 1, where 1 stands 
for perfectly complete assignment. 

Homogeneity Score. A clustering assignment satisfies homogeneity if all of its 
clusters contain only data points that are members of a single class (Rosenberg 
and Hirschberg 2007). The score is between 0 and 1, where 1 stands for perfectly 
homogeneous assignment. 

Purity Score. Each cluster is assigned to the class that is most frequent in the 
cluster, and then the accuracy of this assignment is measured by counting the number 
of correctly assigned samples and dividing by number of samples N. Cluster purity 
measures how pure clusters are. If a cluster is composed of members of the same 
class, then it is completely pure.
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Fowlkes-Mallows Index (FMI). Measures the similarity of two clustering 
methods by computing the geometric mean between the precision and recall (Fowlkes 
and Mallows 1983). A higher score indicates a good similarity between two clusters. 

Silhouette Score. The Silhouette score is calculated using (a) the mean 
intra-cluster distance and (b) the mean nearest-cluster distance for each sample 
(Rousseeuw 1987). The Silhouette Coefficient for a sample is (b−a) 

max(a,b) . 
Davies-Bouldin Score (DBS). The average similarity measure of each cluster with 

its most similar cluster, where similarity is the ratio of within-cluster distances to 
between-cluster distances (Davies and Bouldin 1979). Thus, clusters that are farther 
apart and less dispersed will result in a better score. Lower values indicate better 
clustering. 

10.7 Details of Proposed Augmentation-Based SSL 
Objectives 

The following list provides detailed descriptions of the augmentation-based SSL 
objectives used in our experiments: 

Data Augmentation Loss Laug . Laug forces the predicted representations of 
augmented samples to be close to those of the original data points by minimizing the 
KL-divergence between both predictions, as in Eq. (10.7): 

Laug = 
1 

N 

N∑

i=1 

KL(p 
augri 
i ||pi) (10.7) 

with J = {aug1, ..., aug|J |} the ensemble of available data augmentations and ri ∈ 
{1, .., |J |} that refers to a random augmentation from J. KL(.||.) refers to the Kullback-
Leibler divergence, and N is the size of data (or mini-batches). pi = f (xi) ∈ R1xC , 
and p 

augj 
i = f (x augj i ) correspond to the predictions of data sample xi and its augmented 

version x 
augj 
i , respectively. 

Contrastive Self-Supervised Learning (InfoNCE). InfoNCE (Oord et al. 2018), 
where NCE stands for Noise-Contrastive Estimation, is a type of contrastive loss 
function used for self-supervised learning in SimCLR (Chen et al. 2020). It is also 
known as the NT-Xent loss (Normalized Temperature-scaled Cross-Entropy). The 
goal is to maximize the similarity between the representations of two augmented 
versions of the same input, Zi and Zj, while minimizing their similarity to all other 
examples in the batch. In short, the InfoNCE loss compares the similarity of Zi and 
Zj to the similarity of Zi to any other representation in the batch by performing a 
Softmax over the similarity values. The InfoNCE loss Li,j for pair (i,j) can be written 
as in (10.8): 

Li,j = −log 
exp sim(Zi, Zj)/τ

∑2N 
k=1 1k �=i exp sim(Zi, Zk )/τ 

(10.8)
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1k �=i ∈ {0, 1} is an indicator function evaluating to 1, if and only if, k �= i, and 
τ = 1 denotes the temperature parameter. The final LInfoNCE loss is computed across 
all positive pairs, both (i, j) and (j, i), in a mini-batch (a sample and its augmented 
version). The default similarity metric that is used is cosine similarity, defined as: 

sim(Zi, Zj) = Zi T .Zj
‖Zi‖‖Zj‖ . We also studied KL-divergence as a distance metric but the 

results were worse than cosine distance. 
Supervised Contrastive Loss (SupCon). LSupCon from Khosla et al. (2020) 

extends the self-supervised batch contrastive approach of the NT-Xent loss (Normal-
ized Temperature-scaled Cross Entropy) (Chen et al. 2020) to the fully-supervised 
setting, allowing us to effectively leverage label information. For that, clusters of 
points belonging to the same class are pulled together in normalized embedding 
space, while simultaneously pushing apart clusters of samples from different classes. 
The SupCon extension allows for multiple positives per anchor instead of a single 
sample in addition to many negatives, and draws from samples of the same class as 
the anchor, rather than being data augmentations of the anchor, as done in previous 
works. It showed benefits for robustness to natural corruptions and is more stable to 
hyperparameter settings such as optimizers and data augmentations. 

Since the SupCon loss2 requires labels, the novelty of our usage is to use online 
generated labels as input labels to the SupCon loss function, which allows us to use 
it in a completely unsupervised fashion without the need for ground-truth labels. 
Additionally, our framework does not rely on any additional modules such as a 
projection network or a separate encoder. 

Variance-Invariance-Covariance Regularization (VICReg). VICReg (Bardes 
et al. 2021) aims to maximize the agreement between representations of augmented 
views of the same instance while preventing the collapse problem. It uses two 
regularization terms: (1) a term LVICReg′variance that maintains the variance of each 
embedding dimension above a threshold; and (2) a term LVICReg′covariance that decor-
relates each pair of variables. VICReg loss is composed of a variance, invariance 
and covariance loss terms that are added to each other as follows: LVICReg = 
λs(Z, Z ′) + μ[v(Z) + v(Z ′)] +  ν[c(Z) + c(Z ′)] 

The variance regularization term is: v(Z) = 1 C
∑C 

j=1 max(0, γ  − S(Zj, ε))  where 
S(x, ε)  = √

Var(x) + ε and γ = 1 is a constant target value for the standard 
deviation. Zj denotes the vector composed of all values at dimension j in all logit 
vectors in batch matrix Z and ε = 0.0001 is a small scaler for stability. The covari-
ance regularization term is computed as follows: c(Z) = 1 

C

∑
i �=j[C(Z)]2 i,j, with 

C(Z) = 1 
N −1

∑N 
i=1(Zi − Z)(Zi − Z)T and Z = 1 

N

∑N 
i=1 Zi. Zi denotes the logits of 

sample i. The invariance criterion is simply: s(Z, Z ′) = 1 N
∑

i ‖Zi − Z ′
i‖2 2. 

In our implementation, we use λ = 1, μ = 1, and ν = 0.5. Additionally, since the 
covariance matrix requires large memory usage, we set the batch size to 640 samples 
and use C = 5000 clusters.

2 We use the implementation from https://github.com/wangz10/contrastive_loss/blob/master/losses. 
py with temperature=1 and base_temperature=1. 

https://github.com/wangz10/contrastive_loss/blob/master/losses.py
https://github.com/wangz10/contrastive_loss/blob/master/losses.py
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10.8 Results and Discussion 

10.8.1 Ablation Study 

In Table 10.2, we performed a large-scale ablation study to analyze the contribu-
tion of all components of our system and the influence of the predefined number of 
clusters. We also study the VICReg method (Bardes et al. 2021) which comprises a 
term LVICReg′variance that maintains the variance of each embedding dimension above 
a threshold and a term LVICReg′covariance that decorrelates each pair of variables (see 
Sect. 10.7 for mathematical details). Results show that there is complementary infor-
mation between all loss terms in our proposed CIMC objective and that each helps 
boost the performance of the overall clustering framework. We also observe that 
choosing a much higher number of clusters than the ground-truth leads to improved 
clustering performance across all studied systems. 

10.8.2 Comparison of CIMC to Other Clustering 
Benchmarks 

In Table 10.3, we provide the results for a large variety of clustering benchmarks from 
Table 1 of Fathan et al. (2022), compared to our proposed method with and without 
explicit data augmentation. According to the results, our approach outperforms all 
other baselines in terms of clustering metrics achieving 63.9% unsupervised accuracy, 
while having a compute time comparable to classical clustering models (3-4 days). 
This is compared to 60.2% for AHC which was the best-performing method (6.2% 
relative improvement).

Using our proposed system’s generated PLs to train our speaker embedding system 
allows us to achieve a very competitive downstream SV EER performance outper-
forming all other benchmarks, except the AHC PLs which lead to a slightly better 
performance. Moreover, using audio data augmentation by additionally incorpo-
rating Laug to push two augmented versions of the same sample closer (system 
denoted as CIMC+ in Eq. (10.9)) and an additional LInfoNCE loss term for contrastive 
learning (system denoted as CIMC++ in Eq. (10.10)) helps further enhance both 
clustering and downstream SV performance higher than all our studied baselines. 
Our CIMC++ clustering system achieved 72.5% unsupervised accuracy and 20.4% 
relative clustering improvement, and our combinations show that there is comple-
mentarity between our studied objectives. CIMC+ and CIMC++ clustering objectives 
are defined as in (10.9) and (10.10): 

CIMC+ =  LIMSAT + LMixup + LSupCon + Laug (10.9) 

CIMC++ = LIMSAT + LMixup + LSupCon + Laug + LInfoNCE (10.10)
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Definitions and details of all these loss objectives are included in Sect. 10.7. 

10.8.3 The Evolution of Clustering Metrics Over Time 

In Fig. 10.3, we show the evolution of clustering metrics and the number of clusters 
discovered during the training process. Results show that regularization through data 
augmentation helps improve performance considerably, and that using augmentations 
through objectives Laug or LInfoNCE takes more epochs to achieve the best clustering 
performance. As incorporating these objectives also consumes more computing 
resources, this results in the whole training process taking around 10 times longer 
for training compared to our proposed augmentation-free clustering approach which 
only requires around 3 days to converge to its best performance. 

Fig. 10.3 The evolution of clustering metrics over epochs and the number of clusters discovered 
during training of our clustering systems based on various loss combinations
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10.8.4 Study of Various Maximum Margin-Based Objectives 

To provide a clear geometric interpretation of data samples and enhance the discrimi-
native power of deep models, AAMSoftmax objective (Deng et al. 2018) (also known 
as ArcFace) introduces an additive angular margin to the target angle (between the 
given features and the target center). Due to the exact correspondence between the 
angle and arc in the normalized hypersphere, AAMSoftmax can directly optimize 
the geodesic distance margin, which is why it is also called ArcFace. 

Additionally, CosFace (Wang et al. 2018b), a large-margin cosine loss, reformu-
lates the Softmax loss as a cosine loss by L2 normalizing both features and weight 
vectors to remove radial variations, based on which a cosine margin term is intro-
duced to further maximize the decision margin in the angular space. In contrast, 
OCSoftmax (Zhang et al. 2021) uses one-class learning instead of multi-class classi-
fication and does not assume the same distribution for all classes/speakers. More 
recently, AdaFace loss (Kim et al. 2022) has been proposed which emphasizes 
misclassified samples according to the quality of speaker embeddings (via feature 
norms).

Table 10.4 summarizes our results using different predefined numbers of clusters 
and different clustering-based PLs. Our experimental results show clearly that our 
adopted Softmax variants are very effective in improving the generalization of our SV 
systems. In particular, unlike the widely used AAMSoftmax loss in SV, to our knowl-
edge, our results indicate for the first time that variants such as OCSoftmax or the 
recent AdaFace loss perform consistently better across all PLs and the ground truth 
labels. It is worth mentioning that OCSoftmax does not assume the same distribution 
for all speakers, which is more realistic in our case. Indeed, AAMSoftmax is suscep-
tible to massive label noise (Deng et al. 2018), because if a training sample is a noisy 
sample, it does not belong to the corresponding positive class. In AAMSoftmax, this 
noisy sample generates a large wrong loss value, which impairs the model training. 
This partially explains the underperformance of AAMSoftmax compared to other 
variants when using PLs for training. 

We also observed that, in the case of IMSAT and our proposed system, even 
if clustering performance is better when the predefined number of clusters is high 
(e.g., 10,000), SV performance tends to be better when the number of final discovered 
clusters is close to the ground truth 5,994 (e.g., 5,000). 

10.8.5 Comparison to Other Self-Supervised Speaker 
Verification Benchmarks 

Finally, Table reftab:sslspsbaselinesspstable shows a comparison of our approach 
with and without Data Augmentation (DA) for Self-Supervised SV (SSSV) training 
using our system-based PLs compared to recent SOTA SSSV approaches employing 
diverse SSL objectives with the same ECAPA-TDNN model encoder. The results
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Table 10.5 Some recent 
SOTA self-supervised SV 
approaches in EER (%) 
compared to our simple SV 
system trained with our PLs. 
All models are based on 
ECAPA-TDNN. Results are 
reported on the original 
VoxCeleb1 test set 
(Voxceleb1_O) 

SSL objective EER (%) 

MoBY (Xia et al. 2021) 8.2 

InfoNCE (Tao et al. 2022) 7.36 

MoCo (Cho et al.  2021) 7.3 

ProtoNCE (Xia et al. 2021) 7.21 

PCL (Xia et al. 2021) 7.11 

CA-DINO (Han et al. 2023) 3.585 

i-mix (Fathan and Alam 2023) 3.478 

l-mix (Fathan and Alam 2023) 3.377 

Iterative clustering (Tao et al. 2022) 3.09 

Ours w/o DA (CIMC & OCSoftmax) 3.924 

Ours w/ DA (CIMC++ & AMSoftmax) 3.001 

show clearly that our CIMC approach provides very competitive performance while 
being simple and fast. Besides, when employing augmentations in CIMC++, our 
approach outperforms all the baselines, which suggests that regularization through 
DA is still crucial and that further gains can be made by simply improving 
the clustering modules of current self-supervised speaker recognition systems 
(Table 10.5). 

10.9 Conclusion 

In this chapter, we proposed a general-purpose and multi-objective clustering method. 
Our approach avoids using explicit data augmentation for fast and efficient training. 
It is based on three principles: (1) self-augmented training to enforce representation 
invariance and maximize the information-theoretic dependency between samples 
and their predicted pseudo-labels; (2) virtual mixup training to impose local-
Lipschitzness which enforces the cluster assumption; and (3) supervised contrastive 
learning by leveraging on-the-fly generated pseudo-labels to pull samples of same 
class together and push samples of different clusters apart. Moreover, we explored 
various recent SOTA SSL objectives for clustering, including two data augmentation-
based objectives, where we showed that our multi-objective approach provides bene-
ficial complementary information. Our approach outperformed all other baselines 
used to cluster speaker embeddings and provided very competitive SV performance 
outperforming all the benchmarks. 
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Chapter 11 
Remaining Issues for AI 

Andy Way, Peyman Passban, and Mehdi Rezagholizadeh 

Abstract In this book, we have featured a number of techniques which can be hugely 
beneficial for AI practitioners. Given that almost everyone in the field—whether in 
academia or in industry—is using LLMs, we expect the impact of this collection 
to be significant. Up to this point, we have focused on providing an almost entirely 
positive view of AI. AI is on everyone’s lips; it is on the front pages of our newspapers 
and magazines, it is on our TV channels, it is concerning governments right across 
the planet, and it is the topic of conversations at the dinner table. However, it is right 
to acknowledge a range of issues that require some pause for thought. Accordingly, 
in this chapter, we discuss some of the major concerns surrounding the widespread 
adoption of AI, as a counterpoint to the preceding chapters. It is not that we believe 
that AI cannot be used for good, far from it; but unless the following concerns are 
satisfactorily addressed, it is likely that an AI winter will set in. 

11.1 Pushback Against AI 

Here are several reasons why we believe a balanced approach to AI development is 
necessary. For more in-depth material, review (Way 2024). 

Exclusivity: The importance of open-sourcing and making AI accessible to 
everyone cannot be overstated. Currently, large companies and a few universities 
dominate the development of LLMs. However, democratizing AI to be available for 
everyone is crucial. This book focuses on the efficiency of LLMs, which is a critical 
tool for making LLMs more accessible to researchers and the public. 

Environmental Impacts: Massive models are responsible for significant elec-
tricity consumption and CO2 emissions (Strubell et al. 2019; Jooste et al. 2022a, b). 
Although big technology companies have made strides in powering their data centers
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and operations with renewable, green energy, it is not enough to tackle the problem, 
especially given the increasing use of large and deep neural models.1 

Social Impacts, Biases and Fairness: LLMs often suffer from biases inherited 
from their training data, leading to considerable discrimination across genders, reli-
gions, nationalities, cultures, and languages (Chu et al. 2024). In multilingual LLMs, 
there is a new bias: the dominance of English training data, which can lead to improper 
target-language output and cultural insensitivity (Moorkens et al. 2024; Naous et al. 
2023). More of these biases are being discovered with the growth of LLMs so this 
is hardly likely to be the last/only one. 

We need to be aware of these biases and learn how to mitigate them. Societies 
should manage the concerns and potential harms of AI by setting rules and regulations 
for developing and using AI systems. One example, is the EU AI Act. We also see 
other AI regulations in the US that aim to prevent or resolve issues. The ongoing 
court case of NY Times vs. OpenAI and Microsoft, is one of them, where the NY 
Times claims that OpenAI used their copyrighted content without permission to train 
their AI models.2 More recently, academic authors have discovered to their alarm 
that the contents of their books have been sold by Taylor & Francis to Microsoft for 
the training of their AI models, without consultation or compensation.3 

Ethical Issues and Privacy Concerns: LLMs should provide a safe tool for users 
by securing their privacy and using appropriate language in interactions. There are 
ongoing debates and concerns regarding the safety of these models (open-source or 
closed-source) that need to be addressed. Companies must reassure their customers 
that they do not reveal data to third-party AI companies or use private data for 
training AI models. For example, Adobe recently changed their terms of use, leading 
to significant pushback and a subsequent clarification that they have never trained 
generative AI on customer content or allowed access to customer content beyond legal 
requirements.4 New privacy and copyright issues continue to emerge, especially in 
creative industries (such as music labels).5 

Hallucination: LLMs are prone to hallucination while generating text, with some 
claiming that the output of LLMs is often just “bullshit” (Hicks et al. 2024. Hallu-
cination can mislead users and, in serious cases, lead to legal, ethical, or safety 
problems (Bommasani et al., 2021)). It is vital to understand the underlying factors 
of hallucination in LLMs and be able to detect and mitigate them (Tonmoy et al. 
2024). While some see hallucination as a feature that can be beneficial, others adopt 
these models uncritically, failing to verify the accuracy of the generated outputs and 
propagating misinformation. Some refer to this phenomenon as “confabulation”,

1 https://www.theguardian.com/sustainable-business/greenpeace-report-google-facebook-apple-
green-data-centers. 
2 https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-law 
suit.html. 
3 https://www.thebookseller.com/news/academic-authors-shocked-after-taylor--francis-sells-acc 
ess-to-their-research-to-microsoft-ai. 
4 https://blog.adobe.com/en/publish/2024/06/10/updating-adobes-terms-of-use. 
5 https://www.bbc.com/news/articles/ckrrr8yelzvo. 
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suggesting that deeper investigation could discern the truth from the hallucinatory 
results (see Chapter 1, Sect. 1.3.3 for more details). Regardless, we should not have 
to question the validity of an LLM-generated claim multiple times to determine its 
truthfulness. This issue, whether seen as a bug or a feature, requires serious attention. 

Reliability and Accountability: Companies like Microsoft have invested heavily 
in AI and will have to try to monetize their offerings. However, people might be 
reluctant to pay for AI services, and the reliability and consistency of some of these 
services are also under question.6 For example, OpenAI stopped supporting Codex 
in March 20237 and discontinued support for some models under Azure OpenAI.8 

Even for available services, our reliance on AI systems for various tasks is directly 
correlated with the size and quality of their training data. For most NLP applications, 
massive amounts of training data are simply not available, making any claims of 
‘solved problems’ exceedingly premature. 

AI Misuse: AI is not always used for good. Examples include using AI to “res-
urrect” deceased musicians for duets,9 creating deepfake content, such as fake inter-
views with celebrities,10 and generating AI-created images to win photography 
prizes.11 Notable figures like Geoffrey Hinton have left companies like Google, 
warning about the dangers of AI, highlighting the severity of these issues.12 Addi-
tionally, the use of ChatGPT has been declining (see Way 2024, with further details 
available in Fishkin 2023), due to similar concerns. 

We could continue discussing these issues and dissecting each of them over several 
pages. However, this book focuses primarily on the technical aspects of AI. Nonethe-
less, it is crucial to at least review some of these challenges. The technical techniques 
mentioned in the previous chapters can be applied to address some of these issues to 
some extent. For example, not all models need to be large. We advocate for ‘fit-for-
purpose’ models, which might be small, distilled LMs, for instance. All the efficiency 
and effectiveness techniques suggested in the previous chapters can also help reduce 
the carbon footprint of LLMs and/or make them faster. 

LLMs are still relatively new, and the community seems to be more focused on 
their capabilities rather than these other issues. However, we can already see a strong 
desire from the community to also address and consider non-technical aspects of 
these models, such as those included in this chapter. However, we strongly believe 
that despite this growing awareness, it is nowhere near enough, and considerably 
more effort is needed to tackle these challenges in a comprehensive manner.

6 While working on this chapter, we found that ChatGPT was down or unresponsive to our queries 
(July 24, 2024, 11:42 AM, Toronto, Canada). 
7 https://news.ycombinator.com/item?id=35242069. 
8 https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/legacy-models. 
9 https://www.bbc.com/news/articles/cn00e695lpvo. 
10 https://www.theguardian.com/sport/2023/apr/22/michael-schumacher-formula-one-interview-
die-aktuelle-editor-sacked. 
11 https://www.theguardian.com/technology/2023/apr/17/photographer-admits-prize-winning-
image-was-ai-generated. 
12 https://www.theguardian.com/technology/2023/may/02/geoffrey-hinton-godfather-of-ai-quits-
google-warns-dangers-of-machine-learning. 
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11.2 Conclusion 

The introduction of neural techniques has led to a dramatic improvement in quality 
for all tasks, so AI and LLMs are here to stay for the considerable future. They have 
some issues, such as size, compute time, and storage, but many of the techniques 
included in this book can help make them more efficient. We firmly believe that AI 
has the potential to be transformative, but for the public to be brought along, and 
see AI as a power for good, the other issues raised in this chapter will need to be 
dealt with, as well as those yet to emerge. Whether that is forced upon the field via 
legislation, or by a general consensus about the way the field should move forward 
together, we are confident that these topics can be dealt with to the satisfaction of 
the wider society, so that people can see AI helping them individually in a range of 
areas of real importance: their health; securing their finances; creating digital twins 
which can deal with a lot of the problems associated with living in the 21st century, 
and freeing them up more generally to spend time on more worthwhile activities. 
This is an exciting time to be working in AI, yet despite the huge impacts delivered 
so far, there remain a host of issues still to work on, so that in the years to come, we 
can see that we were directly engaged in the most exciting developments in all of 
human history. 
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