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The indexing and generation pipelines together make a RAG system. The indexing pipeline is an offline 

process, while the generation pipeline facilitates real-time interaction with the knowledge base.
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preface
How machines understand human intent has always been a subject of deep interest 
for me. Although I embarked on my journey into AI and machine learning in 2007, 
it was in early 2016 that I became fascinated by natural language processing (NLP), 
while building a virtual data analyst. When Google released BERT in 2018, I became 
convinced that NLP was on the brink of a revolution.

In 2022, following the release of text-davinci-002, a model in OpenAI’s GPT-3 series, 
I decided to join Yarnit, a generative-AI-based content marketing platform, to build the 
AI backbone of the application. The mission was to create a platform where enterprise 
content marketing teams could generate marketing assets—social media posts, blogs, 
emails, and more—at high speed, large scale, and lower cost, with greater accuracy. It 
quickly became apparent that no generative model could achieve this effectively with-
out incorporating brand-specific knowledge and access to proprietary data. This reali-
zation led me to explore retrieval-augmented generation (RAG).

Large language models (LLMs) often fail to meet user expectations. While they are 
incredibly effective at storing and generating knowledge, they are also prone to halluci-
nations—confident yet incorrect outputs. This is where RAG provides a breakthrough, 
allowing LLMs to retrieve relevant, real-time, and factual information before generat-
ing responses. The beauty of RAG lies in its simplicity of concept combined with the 
nuance of implementation. The transformative potential of RAG in overcoming LLMs’ 
core limitations is what has kept both researchers and practitioners deeply engaged.

When I began researching RAG, it was still a relatively unexplored area. Formal 
learning resources were scarce, and most knowledge was scattered across blogs, social 
media posts, research papers, and discussion forums. I shared many of my own findings 
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on social platforms and in blog posts. Eventually, the idea of consolidating all these 
learnings into a comprehensive book took shape.

With the goal of creating a simple, practical resource for technology professionals 
building LLM-based applications, I started working on this book in mid-2024. Over 
time, it has evolved into a foundational guide to RAG, covering both breadth and 
depth, while ensuring practical implementation through clear explanations and simple 
Python code.

I firmly believe that RAG is an essential skill for anyone working with AI applications 
and that mastering it requires a solid conceptual foundation. This book is designed to 
provide just that. Writing it has been an incredibly enriching experience, and I have 
learned a great deal along the way. I hope you find it both enlightening and enjoyable.
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about this book
Retrieval-augmented generation (RAG) is transforming the landscape of applied 
generative AI. First introduced by Lewis and colleagues in their seminal paper 
“Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks” (https://
arxiv.org/abs/2005.11401), RAG has quickly become a cornerstone of modern AI, 
enhancing the reliability and trustworthiness of large language models (LLMs).

A Simple Guide to Retrieval Augmented Generation is a foundational guide for individuals 
looking to explore RAG. It offers a gentle, yet comprehensive introduction to the con-
cept, along with practical insights helpful in using RAG to their advantage.

Who should read this book?

This book is for technology professionals who want to be introduced to the concept 
of RAG and build LLM-based apps. It is a handy book for both beginners and experi-
enced professionals alike. If you’re a data scientist, data engineer, ML engineer, soft-
ware developer, technology leader, or student interested in generative-AI-powered 
application development, you will find this book valuable. Upon completing this book, 
you can expect to

¡	Understand the fundamentals of RAG, including its components and practical 
applications.

¡	Learn how non-parametric knowledge bases work and how they are created.

¡	Build a RAG system, with a deep dive into the indexing and generation pipelines.

¡	Gain deep insights into the evaluation of RAG systems and modularized evalua-
tion strategies.

¡	Familiarize yourself with advanced RAG strategies and the evolving landscape.

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
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¡	Acquire knowledge of available tools, technologies, and frameworks for building 
and deploying production-grade RAG systems.

¡	Learn about state-of-the-art RAG variants, such as multimodal and agentic RAG.

¡	Get an understanding of the current limitations of RAG and learn more about 
popular emerging techniques for further exploration.

While prior exposure to the world of ML, generative AI, and LLMs is always helpful, 
this book is a foundational guide and does not assume that you have a deep under-
standing of the concepts. You’ll develop a deeper understanding of LLMs as you go 
through the first chapter. 

This book is also interspersed with code snippets in Python, using the LangChain 
framework. It is important to note that the code snippets act only as supplementary 
illustrations to the concepts and are aimed at readers who want to get a hands-on expe-
rience. Only a beginner-level understanding of Python and APIs is expected from those 
who want to try the codes.

Generative AI is still an emerging technology domain. You can upskill yourself using 
this book and explore a whole new set of opportunities in your current and future 
endeavors.

How this book is organized: A road map

This book has nine chapters divided into four parts. Part 1 of the book provides a fun-
damental understanding of RAG:

¡	Chapter 1 starts by defining RAG and its need and significance in the LLM-
powered AI domain, discussing a few real-world applications of RAG-enabled 
systems.

¡	Chapter 2 discusses the main components of a RAG system. It introduces the two 
main pipelines: the indexing and the generation pipeline. In addition, it also 
introduces the concepts of RAG evaluation, among other topics.

Part 2 shows how to build a basic RAG system with the core pipelines and their 
evaluation:

¡	Chapter 3 discusses and demonstrates an end-to-end indexing pipeline to create 
a knowledge base for a RAG system. You will learn about the concepts of data 
loading, chunking, embeddings, and vector storage through examples.

¡	Chapter 4 sheds light on the generation pipeline, which enables the real-time 
access to the knowledge base and LLM to generate contextual and accurate 
responses. We talk about the retrievers, retrieval strategies, and prompt engi-
neering for RAG, with an overview of the available LLMs.

¡	Chapter 5 examines different RAG evaluation techniques in depth and consid-
ers them from the perspective of the question, response, and context. We also 
discuss the significance and the development of a ground truth dataset. This 
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chapter will also contain details about popular frameworks and benchmarks used 
in RAG evaluation.

Part 3 will guide you in improving your RAG pipeline and lay out a blueprint for the 
layers required to build a production-ready RAG system:

¡	Chapter 6 looks into the advanced concepts in RAG from the perspective of 
naïve, advanced, and modular RAG implementation. We discuss important com-
ponents and pre-/post-retrieval strategies. This chapter also provides optimiza-
tion techniques to improve RAG system performance.

¡	Chapter 7 reviews different tools and technologies that enable the RAGOps 
stack. You will learn about the critical layers without which any RAG system will 
fail, the essential layers that improve system performance, and the enhancement 
layers that focus on system usability, scalability, and efficiency. 

In Part 4, you will learn about the popular state-of-the-art variants of RAG and a RAG 
development framework:

¡	Chapter 8 discusses the state-of-the-art RAG variants, including multimodal RAG, 
knowledge graphs, and agentic RAG.

¡	Chapter 9 concludes the book with a RAG development framework that will assist 
you in planning the development of a RAG system.

The book is meant to be read sequentially, with the final chapter providing an overview 
of all the concepts introduced in the book.

About the code 

All code examples in this book are written in Python. You can get executable snippets 
of code from the liveBook (online) version of this book at https://livebook.manning 
.com/book/a-simple-guide-to-retrieval-augmented-generation. The complete code 
for the examples in the book is available for download from the Manning website at  
www.manning.com, as well as in Jupyter Notebook format on GitHub at https://mng 
.bz/a9DJ. 

This book provides many examples of source code in chapters 3–6. Source code is 
formatted in a fixed-width font like this to separate it from ordinary text. Sometimes 
code is also in bold to highlight code that has changed from previous steps in the chap-
ter, such as when a new feature adds to an existing line of code. 

In many cases, the original source code has been reformatted; we’ve added line 
breaks and reworked indentation to accommodate the available page space in the 
book. Additionally, comments in the source code have often been removed when the 
code is described in the text. Code annotations accompany many of the listings, high-
lighting important concepts.

liveBook discussion forum

Purchase of A Simple Guide to Retrieval Augmented Generation includes free access to 
liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion 

https://livebook.manning.com/book/a-simple-guide-to-retrieval-augmented-generation
https://livebook.manning.com/book/a-simple-guide-to-retrieval-augmented-generation
www.manning.com
https://mng.bz/a9DJ
https://mng.bz/a9DJ
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features, you can attach comments to the book globally or to specific sections or 
paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, 
and receive help from the author and other users. To access the forum, go to https://
livebook.manning.com/book/a-simple-guide-to-retrieval-augmented-generation/
discussion. 

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It 
is not a commitment to any specific amount of participation on the part of the author, 
whose contribution to the forum remains voluntary (and unpaid). We suggest you try 
asking the author some challenging questions lest their interest stray! The forum and 
the archives of previous discussions will be accessible from the publisher’s website for as 
long as the book is in print.

https://livebook.manning.com/book/a-simple-guide-to-retrieval-augmented-generation/discussion
https://livebook.manning.com/book/a-simple-guide-to-retrieval-augmented-generation/discussion
https://livebook.manning.com/book/a-simple-guide-to-retrieval-augmented-generation/discussion
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Part 1

Foundations

This first part of the book introduces the core idea behind retrieval-
augmented generation (RAG) and the high-level design of a RAG system. 

Chapter 1 deals with various challenges that AI systems based on large lan-
guage models (LLMs) face. Furthermore, it illustrates the ways RAG addresses 
these challenges to improve the reliability of such systems. The chapter also pro-
vides a brief overview of the workings of LLMs and some popular RAG use cases. 

Chapter 2 discusses the steps involved in building a RAG system. This chapter 
details the basics of two core RAG pipelines and other essential components of a 
RAG system. 

By the end of the first part of the book, you should have a foundational under-
standing of a RAG system and be ready to dive deep into the intricacies of RAG.
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1LLMs and the  
need for RAG 

This chapter covers

¡	The limits of LLMs and the need for RAG

¡	The RAG basics

¡	Popular use cases of RAG

In a short time, large language models (LLMs) have found widespread application 
in modern language processing tasks and autonomous AI agents. OpenAI’s GPT, 
Anthropic’s Claude, Google’s Gemini, and Meta’s Llama series are notable LLMs 
integrated into various platforms and techniques. Retrieval-augmented generation, 
or RAG, plays a pivotal role in the LLM application by enhancing the accuracy and 
relevance of responses. According to Grand View Research (https://mng.bz/BzKg), 
in 2023, the global RAG market was estimated at some $1 billion USD, and it has 
been projected to grow by 44.7% annually, which makes it one of the fastest-growing 
AI methodologies. 

This book aims to demystify the idea of RAG and its application. Chapter by chap-
ter, the book will present the RAG definition, design, implementation, evaluation, 
and evolution. To kick things off, this chapter begins by highlighting the limitations 
of LLMs and the need for an approach such as RAG. It then introduces the concept 

https://mng.bz/BzKg
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of RAG and builds toward a definition. The chapter ends by listing the popular use 
cases enabled by RAG.

By the end of this chapter, you will gain foundational knowledge to be ready for a 
deeper exploration of the RAG system components. In addition, you should

¡	Have a strong hold on the RAG definition.

¡	Understand the limitations of LLMs and the need for RAG.

¡	Be ready to dive into the components of a RAG system.

November 30, 2022, will be remembered as a watershed moment in the field of artifi-
cial intelligence. This was the day OpenAI released ChatGPT, and the world became 
mesmerized by it. ChatGPT turned out to be the fastest app ever to reach a million 
users. Interest in previously obscure terms such as generative AI and LLMs skyrocketed 
over the following 12 months (see figure 1.1). 

Large Language ModelsGenerative AI

November 2022 November 2023 November 2024

Figure 1.1 Google trends of “Generative AI” and “Large Language Models” from November 2022 to November 

2024. Source: Created by the author using data from trends.google.com. 

As the use of platforms such as ChatGPT exploded, the weaknesses of LLMs were 
exposed. 

1.1 Curse of the LLMs and the idea of RAG

LLMs such as those powering ChatGPT, Ask Gemini, and similar have been shown to 
store knowledge. You can ask them questions, and they tend to respond with answers 
that seem correct. However, despite their unprecedented ability to generate text, their 
responses are not always accurate. Upon more careful observation, you may notice 
that LLM responses are plagued with suboptimal information and inherent memory 
limitations. 

To understand the limitations, we will use a simple example. Those familiar with 
the wonderful sport of cricket will recall that the Men’s ODI Cricket World Cup tour-
nament was held in 2023. The Australian cricket team emerged as the winner. Now, 

trends.google.com
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imagine you are interacting with ChatGPT, and you ask, “Who won the 2023 Cricket 
World Cup?” You are, in truth, interacting with GPT-4o, or o1, LLMs developed and 
maintained by OpenAI that power ChatGPT. In the first few sections of this chapter, we 
will use the terms ChatGPT and LLMs interchangeably for simplicity. So, you ask the 
question and, most likely, you will get a response as the one in figure 1.2.

Figure 1.2 ChatGPT (GPT 3.5) response to the question, “Who won the 2023 Cricket World Cup?” 

Source: Screenshot of the author’s account on https://chat.openai.com.

ChatGPT does not have any memory of the 2023 Cricket World Cup, and it tells you 
to check the information from other sources. This is not ideal, but at least ChatGPT is 
honest in its response. The same question asked again might also provide a factually 
inaccurate result. Look at the response in figure 1.3. ChatGPT falsely responds that 
India was the winner of the tournament.

Figure 1.3 An example of hallucination. ChatGPT’s (GPT 3.5) inaccurate response to the question, 

“Who won the 2023 cricket World Cup?” Source: Screenshot of the author’s account on https://chat 

.openai.com.

https://chat.openai.com
https://chat.openai.com
https://chat.openai.com
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This is problematic. Despite not having any memory of the 2023 Cricket World Cup, 
ChatGPT still generates the answer in a seemingly confident tone, but it does so inac-
curately. This is what is called a “hallucination,” and it has become a major point of 
criticism for LLMs.

NOTE In September 2023, ChatGPT’s “Browse with Bing” feature was intro-
duced, which allows ChatGPT Plus users to fetch live information from the web 
for more accurate and up-to-date responses. This is a feature of the applica-
tion, which is enabled via agentic search and retrieval mechanisms. The under-
lying LLM doesn’t inherently have the latest information. 

Many users treat LLMs as a source of information as an alternative to Google Search. 
In our example, we also expected ChatGPT (GPT 3.5 model) to know the answer to 
the simple question. Why does an LLM fail to meet this expectation?

1.1.1 LLMs are not trained for facts

Generally, LLMs can be thought of as a next-token (loosely, next word) prediction 
model. They are machine learning models that have learned from massive datasets 
of human-generated text, finding statistical patterns to replicate human-like language 
abilities. 

To simplify, think of the model first being shown a sentence such as “The teacher 
teaches the student.” Then, we hide the last few words of this sentence (i.e., “teaches 
the student”) and ask the model what the next word should be. The model should learn 
to predict “teaches” as the next word, “the” as the word after that, and so on. There are 
various methods of teaching the model, including causal language modeling (CLM) 
and masked language modeling (MLM). Figure 1.4 shows the idea behind these two 
techniques.

The training data can have billions of sentences of different kinds. The next token 
(or word) is chosen from a probability distribution observed in the training data. There 
are different means and methods to choose the next token from the ones for which 
a probability has been calculated. Crudely, you can assume that a probability is calcu-
lated for all the words in the vocabulary, and one among the high-probability words is 
selected. Figure 1.5 shows the probability distribution for our example, “The teacher 
____ .” The word “teaches” is selected because it has the highest probability. Other 
words could also have been selected.

In this case, the model is just trying to predict a word in sequence. It is almost magical 
how LLMs can store knowledge from the data they have been trained on and present 
that knowledge (in most cases) in a coherent and understandable language. This abil-
ity is possible thanks to a neural network architecture based on an attention mecha-
nism known as “transformers.” The nuances of transformers’ architecture and building 
LLMs from scratch offer a wide area of study. It is out of the scope of this book, but 
you’re encouraged to find out more about LLM training and transformers.

Returning to the limitations of LLMs, their training process introduces three major 
characteristic drawbacks.
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Figure 1.5 Illustrative probability distribution of words after “The teacher” 

KNOWLEDGE CUT-OFF DATE

Training an LLM is an expensive and time-consuming process. It takes massive volumes 
of data and several weeks, or even months, to train an LLM. The data that LLMs are 
trained on is, therefore, not always up to date. For instance, OpenAI’s flagship model, 
GPT-4.1, released in April 2025, has knowledge only until June 1, 2024. Any event that 
happened after this knowledge cut-off date is not available to the model.
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HALLUCINATIONS

It is observed that LLMs sometimes provide factually incorrect responses. (We saw 
this in the 2023 Cricket World Cup example at the beginning of this chapter.) Despite 
being factually incorrect, the LLM responses sound extremely confident and legiti-
mate. This characteristic of “lying with confidence,” called hallucinations, has proved 
to be one of the biggest criticisms of LLMs. The reason for hallucinations can be traced 
back to LLMs being a next-token prediction model that selects the most probable word 
from a distribution. 

KNOWLEDGE LIMITATION

As you have already seen, LLMs have been trained on large volumes of data obtained 
from a variety of sources, including the open internet. However, they do not have any 
knowledge of information that is not public. The LLMs have not been trained on infor-
mation such as internal company documents, customer information, product docu-
ments, confidential personnel information, and so forth. Therefore, LLMs cannot be 
expected to respond to any query about them. 

This characteristic raises significant questions about the general adoption and value 
of this technology. But if these limitations are inherent to the nature of LLMs and their 
training process, does this mean the LLM is not usable as a technology? 

Not at all! Let’s now go ahead and understand how an approach such as RAG comes 
to the rescue.

1.1.2 What is RAG?

Recall the question we used to begin this discussion: “Who won the 2023 Cricket World 
Cup?” What can be done to improve the response? 

Even if ChatGPT doesn’t have this information, the world (aka the internet) knows 
about the 2023 Cricket World Cup with no uncertainty. A simple Google Search will tell 
you about the winner of the 2023 Cricket World Cup if you don’t already know it. The 
Wikipedia article (figure 1.6) on the 2023 Cricket World Cup accurately provides this 
information in the opening section itself. If only there were a way to tell the LLM about 
this Wikipedia article. 

How can we give this information to ChatGPT, you ask? The answer is quite simple. 
We just paste this piece of text with our question (see figure 1.7). 

And there it is! ChatGPT has now responded with the correct answer. It was able to 
comprehend the piece of additional information we provided, distill the information 
about the winner of the tournament, and respond with a precise and factually accurate 
answer.

It may appear juvenile, but in an oversimplified manner, this example illustrates the 
basic concept of RAG. Let’s look back at what we did here. We understood that the 
question is about the winner of the 2023 Cricket World Cup. We searched for informa-
tion about the question and identified Wikipedia as a source of information. We then 
copied that information and passed it onto ChatGPT (and the LLM powering it) along 
with the original question. In a way, we added to ChatGPT’s knowledge. As a technique, 
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Context from External Source

Figure 1.6 Wikipedia article on 2023 Cricket World Cup. Source: https://mng.bz/yN4J.

External Context
Provided

Figure 1.7 ChatGPT (GPT 3.5) response to the question, augmented with external context. Source: 

Screenshot of the author’s account on https://chat.openai.com.

https://mng.bz/yN4J
https://chat.openai.com
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RAG does the same thing programmatically. It overcomes the limitations of LLMs by 
providing them with previously unknown information and, consequently, enhances 
the overall memory of the system. 

As the name implies, “retrieval augmented generation” can be explained through 
three steps:

1 It retrieves relevant information from a data source external to the LLMs (Wikipe-
dia, in our example).

2 It augments the input to the LLM with that external information.

3 Finally, the LLM generates a more accurate result. 

A simple definition for RAG, illustrated in figure 1.8, can therefore be as follows:

Retrieval Augmented Generation is the technique of retrieving relevant information 
from an external source, augmenting the input to the LLM with that external infor-
mation, thereby enabling the LLM to generate a response that is contextual, reliable, 
and factually accurate.
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Figure 1.8 RAG (a simple definition): retrieval of information, augmentation with the query, and the 

generation using an LLM form the three RAG focal points 

The example that we have been looking at so far is oversimplified. We manually 
searched for the external information, and the search was for this one specific ques-
tion only. In practice, all these processes are automated, which allows the system to 
scale up to a diverse range of queries and data sources. We will now unravel this idea 
further.
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1.2 The novelty of RAG

The main idea is to provide additional context or knowledge to the LLMs. Essentially, 
it meant creating a ChatGPT-like system with three main objectives:

¡	Make LLMs respond with up-to-date information.

¡	Make LLMs respond with factually accurate information.

¡	Make LLMs aware of proprietary information.

These objectives can be achieved using diverse techniques. A new LLM can be trained 
from scratch that includes the new data. An existing model can also be fine-tuned with 
additional data. However, both approaches require a significant amount of data and 
computational resources. Furthermore, updating the model with new information at 
regular intervals is prohibitively costly. 

RAG is a cheaper, more effective, and more dynamic technique used to attain the 
three objectives. LLMs respond with information that is up-to-date and factually accu-
rate, and they are aware of proprietary information, so they have no knowledge gaps.

1.2.1 The RAG discovery

In a paper titled “Retrieval-Augmented Generation for Knowledge-Intensive NLP 
Tasks” (https://arxiv.org/abs/2005.11401), Patrick Lewis and his coauthors explored 
the recipe for RAG models, which combine pretrained “parametric” and “non-
parametric” memory for language generation. Let’s pay some attention to the terms 
“parametric” and “non-parametric.” 

Parameters in machine learning parlance refer to the model weights or variables 
that the model learns during the training process. In simple terms, they are settings or 
configurations that the model adjusts to perform the assigned task. For language gen-
eration, LLMs are trained with billions of parameters (the GPT 4 model is rumored to 
have over 1 trillion parameters, and the largest Llama 3 model has 405 billion parame-
ters). The ability of an LLM to retain information it has been trained on is based solely 
on its parameters. It can therefore be said that LLMs store factual information in their 
parameters. An LLM’s internal memory is referred to as “parametric memory.” The 
parametric memory is limited. It depends on the number of parameters and is a factor 
of the data on which the LLM has been trained.

Conversely, we can provide information to an LLM that it does not have in its para-
metric memory. We saw in the example of the Cricket World Cup that when we pro-
vided information from an external source to ChatGPT, it was able to get rid of the 
hallucination. This information that is external to the LLM but can be provided to the 
LLM is termed “non-parametric.” If we can gather information from external sources 
as and when desired and use it with the LLM, it forms the “non-parametric” memory 
of the system. In the aforementioned paper, Lewis and his coauthors stored Wikipedia 
data and used a retriever to access the information. They demonstrated that this RAG 
approach outperformed the parametric-only baseline in generating more specific, 

https://arxiv.org/abs/2005.11401
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diverse, and factual language. We will discuss vector databases and retrievers in chap-
ters 3 and 4.

In 2025, RAG became one of the most used techniques in the LLM domain. With 
the addition of a non-parametric memory, the LLM responses are more grounded and 
factual. Let’s discuss the advantages of RAG.

1.2.2 How does RAG help?

With the introduction of non-parametric memory, the LLM does not remain limited to 
its internal knowledge. We can conclude, at least theoretically, that this non-parametric 
memory can be extended as much as we want. It can store any volume of proprietary 
documents or data and access all sorts of sources, such as the intranet and the open 
internet. In a way, through RAG, we open up the possibility of embellishing the LLM 
with unlimited knowledge. There will always be some effort required to create this 
non-parametric memory or the knowledge base, and we will look at it in detail later. 
Chapter 3 is dedicated to the creation of the non-parametric knowledge base.

As a consequence of overcoming the challenge of limited parametric memory, RAG 
also builds user confidence in the LLM responses. The three advantages of RAG are as 
follows: 

¡	Deep contextual awareness—The added information assists the LLM in generating 
contextually appropriate responses, and the users can be relatively more confi-
dent. For example, if the non-parametric memory contains information about 
a particular company’s products, users can be assured that the LLM will gen-
erate responses about those products from the provided sources and not from 
elsewhere.

¡	Source citation—In addition to being context aware, because the information is 
being fetched from a known source, these sources can be cited in the response. 
This makes the responses more reliable since the users have the choice of validat-
ing the information from the source.

¡	Lesser hallucination—With contextual awareness, the tendency of LLM responses 
to be factually inaccurate is greatly reduced. The LLMs hallucinate less in RAG 
systems.

We have already seen a simple RAG definition. Let’s now expand that definition:

Retrieval Augmented Generation is the methodological approach of enhancing the 
parametric memory of an LLM by creating access to an explicit non-parametric mem-
ory, from which a retriever can fetch relevant information, augment that information 
to the prompt, pass the prompt to an LLM to enable the LLM to generate a response 
that is contextual, reliable, and factually accurate.

This definition is illustrated in figure 1.9.
RAG has acted as a catalyst in the propagation and acceptance of LLM-powered 

applications. Before concluding this chapter and getting into the design of RAG sys-
tems, let’s look at some popular use cases where RAG is being adopted.
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Figure 1.9 RAG enhances the parametric memory of an LLM by creating access to non-parametric 

memory.

1.3 Popular RAG use cases

RAG is not just a theoretical concept but a technique that is as popular as the LLM 
technology itself. Software developers started using language models as soon as Google 
released BERT in 2018. Today, there are thousands of applications that use LLMs to 
solve language-intensive tasks. Whenever you come across an application using LLMs, 
it will often have an internal RAG system in some shape or form. Common applications 
are described in the following sections.

1.3.1 Search Engine Experience

Conventional search results are shown as a list of page links ordered by relevance. 
Modern search engines integrate RAG to combine live information retrieval with 
generative answers. Google’s Search Generative Experience (SGE) augments queries 
with relevant results and citations. AI-based search engines such as Perplexity.ai and 
ChatGPT’s search are built on a RAG framework that fetches up-to-date web informa-
tion and then generates responses with sources attached. By grounding answers in 
real-time results, these search engines provide more accurate, source-backed answers 
than standalone LLMs.

1.3.2 Personalized marketing content generation

The widest use of LLMs has probably been in content generation. Content creation 
tools employ RAG to tailor marketing copy using current data and user-specific con-
text. Yarnit, for instance, uses RAG to generate marketing copy, blog posts, and other 
content types based on up-to-the-moment information and user inputs. Yarnit can 
pull in fresh facts or trending material while drafting the text, ensuring the output is 
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relevant and factual. By pulling in the right information (e.g., a brand’s style guide or 
latest stats) at generation time, these platforms produce personalized, on-brand mar-
keting content that resonates with audiences.

1.3.3 Real-time event commentary

Imagine an event such as a sport or a news event. A retriever can connect to real-
time updates/data via APIs and pass this information to the LLM to create a virtual 
commentator. These can further be augmented with text-to-speech models. A prime 
example is IBM’s Watson AI at the US Open—it generates audio and text tennis com-
mentary by pulling in live match data and even thousands of news articles for context. 
This RAG approach allowed Watson to mention player stats, head-to-head records, and 
match highlights as it narrated, creating fact-driven commentary on the fly. In finan-
cial markets, vendors are doing something similar—Bloomberg’s AI-driven tools use 
RAG to ground their insights in up-to-date proprietary data. Bloomberg’s platforms 
explicitly employ a RAG framework so that any generative output (market summaries, 
answers to trader queries, etc.) is based on recent, authoritative content rather than 
the model’s memory alone.

1.3.4 Conversational agents

LLMs can be customized to product/service manuals, domain knowledge, guidelines, 
and so forth using RAG and serve as support agents, resolving user complaints and 
problems. These agents can also route users to more specialized agents, depending on 
the nature of the query. Almost all LLM-based chatbots on websites or as internal tools 
use RAG. Intercom’s Fin AI agent is a notable example—it was specifically designed 
with a “bespoke and enhanced” RAG architecture to generate answers from a compa-
ny’s support content. Support platforms such as Zendesk follow a similar pattern by 
retrieving help-center articles to answer customer queries. Industry observers note that 
these companies use basic RAG to quickly fetch relevant support docs and generate 
customized responses from them.

1.3.5 Document question answering systems

As discussed, one of the LLMs’ limitations is that they don’t have access to proprietary 
nonpublic information such as product documents, customer profiles, and similar 
information specific to an organization. With access to such proprietary documents, 
a RAG system becomes an intelligent AI system that can answer all questions about 
the organization. In the legal domain, for example, researchers have highlighted that 
domain-specific RAG enables far more nuanced and trustworthy answers in tools for 
legal research. A legal Q&A system can retrieve relevant case law or statutes and feed 
those into an LLM to answer a question, ensuring the answer cites the correct prece-
dent. This technique was at the heart of products such as ROSS Intelligence, which 
aimed to answer lawyers’ queries by retrieving passages from law databases and then 
generating an answer. More generally, enterprise knowledge management is being 
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transformed by RAG—instead of relying on an LLM’s limited training data, companies 
can equip AI assistants to search internal documents, wikis, or manuals on the fly.

1.3.6 Virtual assistants

Virtual personal assistants such as Siri, Alexa, and others are beginning to use LLMs 
to enhance the user’s experience. Coupled with more context on user behavior using 
RAG, these assistants are set to become more personalized. Amazon’s next-generation 
Alexa, for instance, incorporates retrieval techniques, so it can answer with informa-
tion beyond its core training. By augmenting voice assistant answers with retrieved 
facts, RAG helps virtual assistants such as Alexa and Google Assistant give far more 
accurate and current answers to user queries.

1.3.7 AI-powered research

AI agents have been gaining traction in research-intensive fields such as law and 
finance. RAG has been extensively used to retrieve and analyze case law to assist law-
yers. A lot of portfolio management companies are introducing RAG systems to analyze 
scores of documents to research investment opportunities. ESGReveal is a framework 
developed by researchers at Alibaba Group that employs RAG to extract and evaluate 
environmental, social, and governance (ESG) data from corporate reports. 

1.3.8 Social media monitoring and sentiment analysis

Analyzing the firehose of social media data is another task suited to RAG. Social listen-
ing platforms such as Brandwatch use generative AI to summarize trends and senti-
ments from millions of posts, but they ground those summaries in the underlying data. 
Brandwatch’s system, for example, scans over 100 million sources, and then its gener-
ative AI integration transforms data into easy-to-understand summaries for the user.

1.3.9 News generation and content curation

News organizations have been using RAG to automate and assist in news writing, while 
maintaining accuracy. Reuters, for instance, offers a solution to feed its trusted news 
data into generative models so they produce fact-based outputs. By using Reuters’ real-
time news feeds as the retrieval source, an AI system can generate a news summary or 
answer questions with the latest verified facts. Reuters asserts that this approach keeps 
your answers reliable and accurate with a RAG system extracting trusted facts from the 
latest Reuters stories. The Associated Press (AP) has similarly been a pioneer in auto-
mating news: AP has used templates and data to auto-generate sports recaps and earn-
ings reports for years, and now, with generative AI, they are augmenting those systems 
with LLMs. Thanks to RAG, an AI writer can ingest box score data or financial results 
and then produce a readable article, grounding every statement in the provided data.

These are only a few select examples. RAG has been extensively used in other 
domains such as customer support automation, financial market insights, healthcare 
diagnostics, legal document drafting, learning systems, and supply chain optimization.



16 CHAPTER 1 LLMs and the need for RAG 

This introductory chapter dealt with the RAG concept. Overcoming the limitations 
of LLMs, RAG addresses these challenges by providing access to a non-parametric 
knowledge base to the system. With this foundational understanding of RAG, in the 
next chapter, we take the first step toward understanding how RAG systems are built by 
looking at the different components of their design.

Summary

¡	RAG enhances the memory of LLMs by providing access to external information.

¡	LLMs are next-word (or token) prediction models trained on massive amounts 
of text data to generate human-like text.

¡	LLMs face challenges of having a knowledge cut-off date and being trained only 
on public data. They are also prone to generating factually incorrect information 
(i.e., hallucinating).

¡	RAG overcomes the LLM limitations by incorporating non-parametric memory 
and increases context awareness and reliability of responses.

¡	Popular use cases of RAG include search engines, document question-answering 
systems, conversational agents, personalized content generation, virtual assis-
tants, and so forth.
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2RAG systems  
and their design

This chapter covers

¡	The concept and design of RAG systems

¡	An overview of the indexing pipeline

¡	An overview of the generation pipeline

¡	An initial look at RAG evaluation

¡	A high-level look at the RAG operations stack

The first chapter explored the core principles behind retrieval-augmented gener-
ation (RAG) and the large language model (LLM) challenges addressed by it. To 
construct a RAG system, several components need to be assembled. This process 
includes the creation and maintenance of the non-parametric memory, or a knowl-
edge base, for the system. Another pipeline facilitates real-time interaction by send-
ing the prompts to and accepting the response from the LLM, with retrieval and 
augmentation steps in the middle. Evaluation is yet another critical component, 
ensuring the effectiveness and accuracy of the system. All these components are 
supported by layers of the operations stack.
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Chapter 2 discusses the design of a RAG system, examining the steps involved and 
the need for two different pipelines. We will call the pipeline that creates the knowledge 
base the “indexing pipeline.” The other pipeline that allows real-time interaction with 
the LLM will be referred to as the “generation pipeline.” We will discuss their individ-
ual components, such as data loading, embeddings, vector stores, retrievers, and more. 
Additionally, we will get an understanding of how the evaluation of RAG systems is con-
ducted and introduce the RAG operations (RAGOps) stack that powers such systems.

This chapter will introduce you to various components discussed in detail in the 
coming chapters. By the end of chapter 2, you will have acquired a deep understanding 
of the components of a RAG system and will be ready to dive deep into the different 
components. By the end of the chapter, you should

¡	Be able to understand the several components of the RAG system design.

¡	Set yourself up for a deeper exploration of the indexing pipeline—the genera-
tion pipelines, RAG evaluation methods, and the RAGOps stack.

2.1 What does a RAG system look like?

By now, we have come to know that RAG is a vital component of the systems that use 
LLMs to solve their use cases. But, what is that system like? To illustrate, let’s revisit the 
example used at the beginning chapter 1 (“Who won the 2023 Cricket World Cup?”) 
and lay out the steps we undertook to enable ChatGPT to provide us with the accurate 
response.

The initial step was asking the question itself: “Who won the 2023 Cricket World 
Cup?” Following this, we manually searched for sources on the internet that might have 
information regarding the answer to the question. We found one (Wikipedia, in our 
example) and extracted a relevant paragraph from the source. Subsequently, we added 
the relevant paragraph to our original question, pasted the question and the retrieved 
paragraph together in the prompt to ChatGPT, and got a factually correct response: 
“Australia won the 2023 Cricket World Cup.”

This process can be distilled into five steps, and our system needs to facilitate all of 
them:

1 User asks a question.

2 The system searches for information relevant to the input question.

3 The information relevant to the input question is fetched, or retrieved, and 
added to the input question.

4 This question and information are passed to an LLM.

5 The LLM responds with a contextual answer.

If you recall, we have already described this process in chapter 1. Let’s visualize it in the 
context of these five steps as shown in figure 2.1. This workflow will be called the “gen-
eration pipeline” since it generates the answer.
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Figure 2.1 Generation pipeline covering the five RAG steps. The journey from query to the response 

involves search and retrieval, augmentation, and generation.

This pipeline enables real-time contextual interaction with the LLM. There are, of 
course, several intricacies in each of the five steps needed to create the generation 
pipeline. Some decisions need to be made about the design of the retriever and the 
LLM choice. The construction of prompts will also affect the quality of the response. 
We will discuss prompt construction in chapter 3. We first must address a critical 
pre-requisite step before this generation pipeline can be put in place. For that, some 
key questions regarding the external source of information need to be answered. We 
will also need to know, in advance, where to look and then establish connections to all 
these disparate sources:

¡	What is the location of the external source of information? 

– Is it the open internet? Or are there some documents in the company’s inter-
nal data storage? Is the information present in some third-party databases? 
Are there multiple sources we want to use? 

– Why is this important?

¡	What is the nature of the information at the source? 

– Are these Word documents or PDF files? Is the information accessed via an 
API, and the response is in JSON format? Will we find answers in one docu-
ment, or is the information distributed in multiple documents? 

– Why is this important? 
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We will also need to know the format and nature of data storage to be able to extract 
the information from the source files.

When data is stored across multiple sources, such as the internet and an internal 
data lake, the system must connect to each source, search for relevant information in 
various formats, and organize it according to the original query. Every time a question 
is asked, this process of connecting, extracting, and parsing will have to be repeated. 
Information from different sources may lead to factual inconsistencies that will have to 
be resolved in real time. Searching through all the information might be prohibitively 
time-consuming. This will, therefore, prove to be a highly suboptimal, unscalable pro-
cess that may not yield the desired results. A RAG system will work best if the informa-
tion from different sources is

¡	Collected in a single location.

¡	Stored in a single format.

¡	Broken down into small pieces of information.

The need for a consolidated knowledge base arises from the disparate nature of exter-
nal data sources. To address this requirement, we need to undertake a series of steps 
to create and maintain a well-structured knowledge base. This, again, is a five-step 
process:

1 Connect to previously identified external sources.

2 Extract documents and parse text from them.

3 Break down long pieces of text into smaller, manageable pieces.

4 Convert these small pieces into a suitable format.

5 Store this information.

These steps, which facilitate the creation of this knowledge base, form the indexing pipe-

line. The indexing pipeline is shown in figure 2.2.
In addition to creating the knowledge base, the indexing pipeline plays a crucial 

role in maintaining and updating it with the latest information to ensure its relevance 
and accuracy. Before the knowledge base is created by the indexing pipeline, there is 
nowhere for the generation pipeline to search for information. It is the indexing pipe-
line that lays the foundation for the subsequent operation of the generation pipeline. 
Therefore, setting up the indexing pipeline comes before the generation pipeline can 
be activated. 

Together, these pipelines form the backbone of a RAG system, enabling seamless 
interaction with users and delivering contextually relevant responses. Figure 2.3 shows 
the indexing and generation pipelines working together to form the skeleton of a RAG 
system.

We have established the flow of a RAG system that includes two pipelines. Concep-
tually, this is the complete flow. However, to build such systems to be used in the real 
world, more components are required. The next section reimagines this flow along 
with other considerations and creates a design for RAG systems.
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connecting to the source, parsing, splitting, converting, and storing information.
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Figure 2.3 The indexing and generation pipelines together make a RAG system. The indexing pipeline is 

an offline process, while the generation pipeline facilitates real-time interaction with the knowledge base.



22 CHAPTER 2 RAG systems and their design

2.2 Design of RAG systems

We saw how RAG systems are created by the indexing and generation pipelines. 
These two pipelines include several parts themselves. Like all software applications, 
production-ready RAG systems require more than just the basic components. We need 
to think about accuracy, observability, scalability, and other important factors. This 
book discusses some of these components at length. Figure 2.4 presents a rough layout 
of a RAG system. Apart from the indexing and generation component, we’ll add layers 
for infrastructure, security, evaluation, etc.

OrchestratorInput/Output
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Storage
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Data-loading
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Data-splitting
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Figure 2.4 Components of a production-ready RAG system

Let’s look at the main components of a RAG system. The first four components com-
plete the indexing pipeline:

¡	Data-loading component—Connects to external sources, and extracts and parses 
data

¡	Data-splitting component—Breaks down large pieces of text into smaller, manage-
able parts

¡	Data conversion component—Converts text data into a more suitable format

¡	Storage component—Stores the data to create a knowledge base for the system
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These next three components complete the generation pipeline:

¡	Retrievers—Responsible for searching and fetching information from the storage

¡	LLM setup—Responsible for generating the response to the input

¡	Prompt management—Enables the augmentation of the retrieved information to 
the original input

The evaluation component measures the accuracy and reliability of the system before 
and after deployment. The monitoring component tracks the performance of the 
RAG system and helps detect failures. Other components include caching, which helps 
store previously generated responses to expedite retrieval for similar queries; guard-
rails, to ensure compliance with policy, regulation, and social responsibility; and secu-
rity, to protect LLMs against breaches such as prompt injection, data poisoning, and 
similar. All the layers are supported by a service infrastructure.

All these components are managed and controlled by a central orchestration layer, 
which is responsible for their interaction and sequencing. It provides a unified inter-
face for managing and monitoring workflows and processes.

The following sections provide an overview of these components before we examine 
them in depth in subsequent chapters.

2.3 Indexing pipeline

We discussed how the indexing pipeline facilitates the creation of the knowledge base 
used in the real-time generation pipeline. For practical purposes, the indexing pipe-
line is an offline or asynchronous pipeline. What this means is that the indexing pipe-
line is not activated in real time when the user is asking a question. Rather, it creates 
the knowledge base in advance and updates it at predefined intervals. The indexing 
pipeline comprises four main components, as seen in figure 2.5.

Data-loading
component is
responsible for

connecting to external

sources, and extracting

and parsing information.

Data-splitting
component is

responsible for breaking

down long pieces of

text into smaller,

manageable

parts called “chunks.”

Data conversion
component is
responsible for

converting text chunks

into numerical vectors

called “embeddings.”

Data storage
component stores the

embeddings in

permanent memory

using specialized

databases called

“vector DBs.”

Figure 2.5 Four components of the indexing pipeline facilitate the creation of the knowledge base.

Let’s delve deeper into each:

¡	Data loading—This component is responsible for connecting to different sources 
where data is present, being able to read the files in these external sources, and 
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extracting and parsing the text from these files. These external sources can be 
filesystems, data lakes, content management systems, and so forth. The files 
received from the sources can be in various formats such as PDF, docs, JSON, 
HTML, and more. 

This component, therefore, comprises several connectors (for different exter-
nal sources), extractors, and parsers (for different file types). In chapter 3, we 
will look at several examples of such loaders. The data-loading component also 
involves efficient preprocessing of data for knowledge consistency, removal of 
irrelevant information and masking of confidential data. Metadata information 
is another aspect the data-loading component manages. Chapters 3 and 6 discuss 
how the data loading component is built and enhanced. 

¡	Data splitting (text splitting)—Breaking down text into smaller segments enhances 
the system’s ability to process and analyze information efficiently. These smaller 
pieces in natural language processing (NLP) parlance are commonly referred to 
as “chunks.” The process of splitting large text documents into smaller chunks is 
called “chunking.” We will discuss the need for chunking and various chunking 
strategies in chapter 3.

¡	Data conversion (embeddings)—Textual data must be converted to a numerical for-
mat for search and retrieval computations in RAG systems. There are different 
ways of implementing this conversion. For all practical purposes, a data format 
called “embeddings” works best for search and retrieval. You will learn more 
about embeddings and different embedding models in chapter 3.

¡	Data storage—Once the data is ready in the desired format (embeddings), it 
needs to be stored in persistent (permanent) memory so that the real-time gen-
eration pipeline can access data whenever a user asks a question. Data is stored 
in specialized databases known as “vector databases,” which are best suited for 
search and retrieval of embeddings. Chapter 3 explores various vector databases 
and factors influencing their suitability for RAG systems.

Do you always need an indexing pipeline?

Offline indexing pipelines are typically used when a knowledge base with a large 

amount of data is built for repeated usage (e.g., many enterprise documents, manu-

als, etc.). However, there are some cases in which the generation pipeline connects 

to a third-party API to receive information related to the user question. 

For example, imagine an application built for users seeking travel advice based on 

the weather forecast. An important component of this application will be fetching the 

weather details for the users’ location. Suppose the system uses a third-party API 

service that can respond with a location’s weather details when provided with the 

location in the input. This weather information is then passed to the LLM to generate 

the advice. 
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This application can also be thought of as a RAG system. But there is a difference. 

This system has outsourced the search and retrieval operation to the third-party API. 

It is the third party that maintains the data. For such systems, the indexing pipeline 

is not required to be built since the search and retrieval happens outside the system. 

Another example is applications that ask the user to input external information, like 

document summarizers. The search operation here is outsourced to the user. 

Therefore, systems that use augment external information to the prompts but do not 

necessarily search and retrieve information themselves, do not warrant the creation 

of a knowledge base, and therefore, do not have an indexing pipeline. Some will argue 

that such systems are not RAG systems in the first place.

2.4 Generation pipeline

Building on the foundation established by the indexing pipeline, the generation pipe-
line facilitates real-time interactions in RAG systems. It is the generation pipeline that 
facilitates the retrieval, augmentation, and generation in the system. When a user asks 
a question, the generation pipeline processes the query, retrieves relevant information, 
and generates a response—all without the user directly interacting with the underlying 
indexing pipeline. The generation pipeline is enabled by three components, as seen 
in figure 2.6.

Retriever is the

main component of
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for searching

through the

knowledge base

and fetching the

relevant information.

Retrieval

The prompt management
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augmenting the

retrieved information

and  constructing the

final prompt for

generation.

Augmentation Generation

The LLM component
is responsible for

generating the final

response. It can include

several foundations or

fine-tuned models that

are either open or

closed source.

Figure 2.6 Three components of the generation pipeline enable the real-time query-response process of 

a RAG system.

Let’s consider each of these in some more detail:

¡	The retriever—This is arguably the most critical component of the entire system. 
Using advanced search algorithms, the retriever scans the knowledge base to 
identify and retrieve the most relevant information based on the user’s query. 
The overall effectiveness of the entire system relies heavily on the accuracy of the 
retriever. Also, search is a computationally heavy operation and may take time. 
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Therefore, the retriever also contributes heavily to the overall latency of the sys-
tem. We will discuss different retrievers and retrieval strategies in chapters 4 and 6.

¡	Prompt management—Once the relevant information is retrieved by the retriever, 
it needs to be combined, or augmented, with the original user query. Now, this 
may seem like a simple task at first glance. However, the construction of the 
prompt makes significant difference to the quality of the generated response. 
This component also falls in the gambit of prompt engineering. We will explore 
different prompting and prompt management strategies in chapter 4.

¡	LLM setup—At the end, LLMs are responsible for generating the final response. 
A RAG system may rely on more than one LLM. The LLMs can be the foundation 
(base) models that have been pretrained and generally available either open 
source, like those by Meta or Mistral, or through a managed service, like OpenAI 
or Anthropic. LLMs can also be fine-tuned for specific tasks. Fine-tuning involves 
training pre-existing LLMs on specific datasets or tasks to improve performance 
and adaptability for specialized applications. In rare cases, the developer may 
decide to train their LLMs. We will discuss LLMs in depth in chapter 4.

2.5 Evaluation and monitoring

Indexing and generation pipelines complete the system from a usage perspective. 
With these two pipelines in place, at least in theory, a user can start interacting with 
the system and get responses. However, in this case, we have no measure of the system 
quality. Is the system performing accurately, or is it still prone to hallucinations? Is the 
information that is being fetched by the retriever the most relevant to the query? To 
answer these questions, we have to put in place an evaluation framework. This frame-
work helps in evaluating the quality of the system before it is released and then for 
continuous monitoring and improvement.

Building on the advancements of LLMs, RAG represents a recent innovation in 
NLP. Metrics such as relevance scores, recall, and precision are commonly used to 
evaluate the effectiveness of RAG systems. One framework that intuitively guides a 
comprehensive evaluation is the triad of RAG metrics proposed by TruEra (https://
mng.bz/Mw22). It looks at the RAG evaluation through three dimensions, as shown in  
figure 2.7.

The workflow involves checks in between each step—prompt, context, and answer. 
Let’s take a closer look:

¡	Between the retrieved information (context) and the user query (prompt)—Is the infor-
mation being searched and retrieved by the retriever the most relevant to the 
question the user has asked? The consequence of irrelevant information being 
retrieved is that no matter how good the LLM is, if the information being aug-
mented is not good, the response will be suboptimal.

¡	Between the final response (answer) and the retrieved information (context)—Does the 
LLM consider all the retrieved information while generating responses? Even 

https://mng.bz/Mw22
https://mng.bz/Mw22
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Figure 2.7 The triad of RAG evaluation proposed by TruEra. The three pivotal dimensions of RAG 

evaluation are the query, context, and response.

though RAG is aimed at reducing hallucinations, the system might still ignore the 
retrieved information. There are several reasons for it, which will be discussed in 
subsequent chapters.

¡	Between the final response (answer) and the user query (prompt)—Is the final response 
in line with the question the user had originally asked? To assess the overall effec-
tiveness of the system, the relevance of the final response to the original question 
is necessary.

There are several metrics that help assess each of these three dimensions. For some 
of the metrics, a ground truth dataset is warranted. Ground truth datasets provide a 
benchmark for evaluating the accuracy and effectiveness of RAG systems by compar-
ing generated responses to manually curated references. We will take a deeper look at 
these metrics and the ground truth dataset in chapter 5. 

Continuous evaluation of metrics during live operation can identify the types of que-
ries the system struggles to answer accurately. Qualitative feedback can also be collected 
from the user on the generated responses.

2.6 The RAGOps Stack

RAG, and LLM-based apps in general, are being powered by an evolving operations 
stack. Various providers offer infrastructure components such as data storage plat-
forms, model hosting services, and application orchestration frameworks. The infra-
structure can be understood in several layers:
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1 Data layer—Tools and platforms used to process and store data in the form of 
embeddings

2 Model layer—Providers of proprietary or open source LLMs

3 Prompt layer—Tools offering maintenance and evaluation of prompts

4 Evaluation layer—Tools and frameworks providing evaluation metrics for RAG

5 App orchestration—Frameworks that facilitate invocation of different components 
of the system

6 Deployment layer—Cloud providers and platforms for deploying RAG apps

7 Application layer—Hosting services for RAG apps

8 Monitoring layer—Platforms offering continuous monitoring of RAG apps

Chapter 7 explores the various layers of infrastructure that support RAG systems.

2.7 Caching, guardrails, security, and other layers

Finally, there are certain other components frequently used in RAG systems. These 
components address the problems of system latency, regulatory and ethical compli-
ances among other aspects.

¡	Caching—Caching is the process in which certain data is stored in cache memory 
for faster retrieval. LLM caching is slightly different from regular caching. The 
LLM responses to queries are stored in a semantic cache. Next time a similar 
query is asked, the response from the cache is retrieved instead of sending the 
query through the complete RAG pipeline. This approach improves the perfor-
mance of the system by reducing the time it takes to respond, the cost of LLM 
inferencing, and the load on the LLM service.

¡	Guardrails—For several use cases, in practice, there will be a set of boundaries 
within which the output needs to be generated. Guardrails are a predefined set 
of rules added in the system to comply with policies, regulations, and ethical 
guidelines. 

¡	Security—LLMs and LLM-based applications have witnessed new threats, such as 
prompt injections, data poisoning, sensitive information disclosure, and others. 
With evolving threats, the security infrastructure also needs to evolve to address 
concerns around security and data privacy of RAG systems. 

RAGOps has also been evolving fast. Logging and tracing, model versioning, and feed-
back layers are some of the RAGOps stack components. 

This chapter provided an overview of the key components of RAG systems, including 
the indexing and generation pipelines, evaluation and monitoring, and service infra-
structure. By understanding these components, you are now equipped to delve deeper 
into each of these components and the intricacies of RAG systems in subsequent chap-
ters. In the next chapter, we will start building the indexing pipeline to create a knowl-
edge base of our RAG system.
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Summary

¡	A RAG-enabled system consists of two main pipelines: the indexing and the gen-
eration pipeline.

¡	The indexing pipeline is responsible for creating and maintaining the knowl-
edge base, which involves data loading, text splitting, data conversion (embed-
dings), and data storage in a vector database.

¡	The generation pipeline manages real-time interactions by retrieving informa-
tion, augmenting queries, and generating responses using an LLM.

¡	Evaluation and monitoring are crucial components for the assessment of system 
performance, covering the relevance between the retrieved information and 
query, the final response and retrieved information, and the final response and 
the original query.

¡	The service infrastructure for RAG systems includes layers for data, models, 
prompts, evaluation, app orchestration, deployment, application hosting, and 
monitoring.

¡	Additional components such as caching, guardrails, and security measures are 
often employed to improve performance, ensure compliance, and address 
potential threats.





Part 2

Creating RAG systems

Now that you are familiar with the fundamental idea of RAG and the 
components of a RAG system, the second part of the book will guide you through 
building a basic RAG system with the core pipelines and their evaluation. This 
part of the book not only offers theoretical details, but also simple code snippets 
that will provide you with hands-on experience in building a RAG pipeline.

In chapter 3, you’ll learn the details of the indexing pipeline and its four com-
ponents: loading, chunking, embeddings, and vector storage. Each of these com-
ponents has a variety of techniques to choose from. This chapter also discusses 
the suitability of these options for different use cases. Step by step, you’ll build an 
indexing pipeline and create the knowledge base for your RAG system. 

Chapter 4 talks about retrievers, prompting techniques, and using LLMs for 
output generation. These elements form the three components of the generation 
pipeline: retrieval, augmentation, and generation. In this chapter, you will build 
the generation pipeline that interacts with the knowledge base, created using the 
indexing pipeline in chapter 3. 

Chapter 5 discusses different aspects of evaluating RAG systems, which is a cru-
cial step in AI systems. You will learn about the different metrics used in RAG 
evaluation for measuring accuracy, relevance, and faithfulness. You will also be 
introduced to the RAGAs framework to evaluate the pipelines built in chapters 
3 and 4, and learn about industry benchmarks popular in comparing different 
RAG techniques. The chapter closes with a discussion on the limitations and best 
practices of RAG evaluation.

This part of the book will equip you with all the necessary skills and tools to 
develop a basic RAG pipeline. By the end of this part, you will be in a good posi-
tion to further explore the techniques used to optimize any RAG pipeline and the 
components that are key in building a production-grade system around it.
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3Indexing pipeline: 
Creating a knowledge 

base for RAG

This chapter covers

¡	Data loading

¡	Text splitting or chunking

¡	Converting text to embeddings

¡	Storing embeddings in vector databases

¡	Examples in Python using LangChain

In chapter 2, we discussed the main components of retrieval-augmented generation 
(RAG) systems. You may recall that the indexing pipeline creates the knowledge 
base or the non-parametric memory of RAG applications. An indexing pipeline 
needs to be set up before the real-time user interaction with the large language 
model (LLM) can begin.

This chapter elaborates on the four components of the indexing pipeline. We begin 
by discussing data loading, which involves connecting to the source, extracting files, 
and parsing text. At this stage, we introduce a framework called LangChain, which 
has become increasingly popular in the LLM app developer community. Next, we 
elaborate on the need for data splitting or chunking and discuss chunking strategies. 
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Embeddings is an important design pattern in the world of AI and ML. We explore 
embeddings in detail and how they are relevant in the RAG context. Finally, we look at a 
new storage technique called vector storage and the databases that facilitate it. 

By the end of this chapter, you should have a solid understanding of how a knowl-
edge base, or the non-parametric memory of a RAG application, is created. We also 
embellish this chapter with snippets of Python code, so those of you who are so inclined 
can try a hands-on development of the indexing pipeline.

By the end of this chapter, you should

¡	Know how to extract data from sources.

¡	Get a deeper understanding of text-chunking strategies.

¡	Learn what embeddings are and how they are used.

¡	Gain knowledge of vector storage and vector databases.

¡	Have an end-to-end knowledge of setting up the indexing pipeline.

3.1 Data loading

This section focuses on the first stage of the indexing pipeline. You will read about data 
loaders, metadata information, and data transformers.

The first step toward building a knowledge base (or non-parametric memory) of a 
RAG system is to source data from its original location. This data may be in the form of 
Word documents, PDF files, CSV, HTML, and similar. Furthermore, the data may be 
stored in file, block, or object stores, in data lakes, data warehouses, or even in third-
party sources that can be accessed via the open internet. This process of sourcing data 
from its original location is called data loading. Loading documents from a list of sources 
may turn out to be a complicated process. Therefore, it is advisable to document all the 
sources and the file formats in advance.

Before going too deep, let’s begin with a simple example. If you recall, in chapter 
1, we used Wikipedia as a source of information about the 2023 Cricket World Cup. At 
that time, we copied the opening paragraph of the article and pasted it in the ChatGPT 
prompt window. Instead of doing it manually, we will now connect to Wikipedia and 
extract the data programmatically, using a very popular framework called LangChain. 
The code in this chapter and the book can be run on Python notebooks and is available 
in the GitHub repository of this book (https://mng.bz/a9DJ).

NOTE LangChain is an open source framework developed by Harrison Chase 
and launched in October 2022. It was written in Python and JavaScript and 
designed for building applications using LLMs. Apart from being suitable 
for RAG, LangChain is also suitable for building application use cases such as 
chatbots, document summarizers, synthetic data generation, and more. Over 
time, LangChain has built integrations with LLM providers such as OpenAI, 
Anthropic, and Hugging Face; a variety of vector store providers; cloud storage 
systems such as AWS, Google, Azure, and SQL and NoSQL databases; and APIs 

https://mng.bz/a9DJ
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for news, weather, and similar. Although LangChain has received some criti-
cism, it is still a good starting point for developers.

Installing LangChain 

To install LangChain (we’ll use the version 0.3.19 in this chapter) using pip, run

%pip install langchain==0.3.19

The langchain-community package contains third-party integrations. It is automati-

cally installed by LangChain, but in case it does not work, you can also install it sepa-

rately using pip:

%pip install langchain-community

Now that you have installed LangChain, we will use it to connect to Wikipedia and 
extract data from the page about the 2023 Cricket World Cup. For this task, we will use 
the AsyncHtmlLoader function from the document_loaders library in the langchain 
-community package. To run AsyncHtmlLoader, we will have to install another Python 
package called bs4:

#Installing bs4 package

%pip install bs4==0.0.2 --quiet

#Importing the AsyncHtmlLoader

from langchain_community.document_loaders import AsyncHtmlLoader

#This is the URL of the Wikipedia page on the 2023 Cricket World Cup

url="https://en.wikipedia.org/wiki/2023_Cricket_World_Cup"

#Invoking the AsyncHtmlLoader

loader = AsyncHtmlLoader (url)

#Loading the extracted information

html_data = loader.load()

The data variable in the code now stores the information from the Wikipedia page. 

print(data)

Here is the output (A large section of the text is replaced with periods to save space.)

>>[Document(page_content='<!DOCTYPE html>\n<html class="client-nojs vector-
feature-language-in-header-enabled………………………………………………………………………………………………….of 
In the knockout stage, India and Australia beat New Zealand and South Africa 
respectively to advance to the final, played on 19 November at <a href="/
wiki/Narendra_Modi_Stadium" title="Narendra Modi Stadium">Narendra Modi 
Stadium</a>. Australia won by 6 wickets, winning their sixth Cricket World 
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Cup title………………………………………………… "datePublished":"2013-06-29T19:20:08Z","dateMo
dified":"2024-05-01T05:16:34Z","image":"https:\\/\\/upload.wikimedia.org\\/
wikipedia\\/en\\/e\\/eb\\/2023_CWC_Logo.svg","headline":"13th edition of the 
premier international cricket competition"}</script>\n</body>\n</html>', 
metadata={'source': 'https://en.wikipedia.org/wiki/2023_Cricket_World_Cup', 
'title': '2023 Cricket World Cup - Wikipedia', 'language': 'en'})]

The variable data is a list of documents that includes two elements: page_content and 
metadata. page_content contains the text sourced from the URL. You will notice that 
the text along with the relevant information also has newline characters (\n) and other 
HTML tags; however, metadata contains another important data aspect.

Metadata is information about the data (e.g., type, origin, and purpose). This can 
include a data summary; the way the data was created; who created it and why; when it was 
created; and the size, quality, and condition of the data. Metadata information comes in 
extremely handy in the retrieval stage. Also, it can be used to resolve conflicting informa-
tion that can arise due to chronology or origin. In the previous example, while extracting 
the data from the URL, Wikipedia has already provided the source, title, and language in 
the metadata information. For many data sources, you will have to add metadata.

Often, a cleaning of the source data is required. The data in our example has a lot 
of new line characters and HTML tags, which requires a certain level of cleanup. We 
will attempt to clean up the webpage data that we extracted using the Html2Text-
Transformer function from the document_transformers library in the langchain 
-community package. For Html2TextTransformer, we will also have to install another 
package called html2text.

#Install html2text

%pip install html2text==2024.2.26 –quiet

#Import Html2TextTransformer

from langchain_community.document_transformers import Html2TextTransformer

#Assign the Html2TextTransformer function

html2text = Html2TextTransformer()

#Call transform_documents

html_data_transformed = html2text.transform_documents(data)

print(html_data_transformed[0].page_content)

The output of the page_content is now free of any HTML tags and contains only the 
text from the webpage:

>>Jump to content  Main menu  Main menu  move to sidebar hide Navigation    * 
Main page   * Contents   * Current events   * Random article   * About 
Wikipedia   * Contact us   * Donate  Contribute………….In the knockout stage, 
India and Australia beat New Zealand and South Africa respectively to advance 
to the final, played on 19 November at Narendra Modi Stadium. Australia won 
by 6 wickets, winning their sixth Cricket World Cup title…… * This page 
was last edited on 1 May 2024, at 05:16 (UTC).   * Text is available under 
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the Creative Commons Attribution-ShareAlike License 4.0; additional terms 

may apply. By using this site, you agree to the Terms of Use and Privacy 

Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, 

Inc., a non-profit organization.    * Privacy policy   * About Wikipedia   * 

Disclaimers   * Contact Wikipedia   * Code of Conduct * Developers   * 

Statistics   * Cookie statement   * Mobile view    *

The text is more coherent now since we have removed the HTML part of the data. There 
can be further cleanup, such as removing special characters and other unnecessary 
information. Data cleaning also removes duplication. Yet another step to include in the 
data-loading stage can be masking of sensitive information such as PII (Personally Identi-
fiable Information) or company secrets. In some cases, a fact check may also be required.

The source for our data was Wikipedia (more precisely, a web address pointing to a 
Wikipedia page), and the format was HTML. The source can also be other storage loca-
tions such as AWS S3, SQL/NoSQL databases, Google Drive, GitHub, even WhatsApp, 
YouTube, and other social media sites. Likewise, the data formats can be .doc, .pdf, 
.csv, .ppt, .eml, and the like. Most of the time, you will be able to use frameworks such 
as LangChain that have integrations for the sources and the formats already built in. 
Sometimes, you may have to build custom connectors and loaders.

Although data loading may seem simple (after all, it’s just connecting to a source and 
extracting data), the nuances of adding metadata, document transformation, masking, 
and similar add complexity to this step. Advanced planning of the sources, a review of 
the formats, and curation of metadata information are advised for best results.

We have now taken the first step toward building our RAG system. The data-loading 
process can be further broken down into four sub-steps, as shown in figure 3.1:

1 Connect to the source of data.

2 Extract text from the file.

3 Review and update metadata information.

4 Clean or transform the data.

Connect to

external

sources

Extract documents

and parse text from

documents

Add and Update

metadata

information

Clean up data for

redundancies, format,

sensitivity etc.

Data storage component

Source Connector Extractor & parser

Data-splitting componentData conversion component

Metadata review Transformer

Data-loading component

Figure 3.1 Four sub-steps of the data-loading component of the indexing pipeline
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We have now obtained data from the source and cleaned it to an extent. This Wikipe-
dia page that we have loaded has more than 8,000 words, alone. Imagine the number 
of words if we had multiple documents. For efficient management of information, we 
employ something called data splitting, which will be discussed in the next section.

3.2 Data splitting (chunking)

Breaking down long pieces of text to manageable segments is called data splitting or 
chunking. This section discusses why chunking is necessary and the different chunking 
strategies. We also use functions from LangChain to illustrate a few examples. 

3.2.1 Advantages of chunking

In the previous section, we loaded the data from a URL (a Wikipedia page) and 
extracted the text. It was a long piece of text of approximately 8,000 words. When it 
comes to overcoming the major limitations of using long pieces of text in LLM applica-
tions, chunking offers the following three advantages:

¡	Context window of LLMs—Due to the inherent nature of the technology, the 
number of tokens (loosely, words) LLMs can work with at a time is limited. This 
includes both the number of tokens in the prompt (or the input) and in the com-
pletion (or the output). The limit on the total number of tokens that an LLM can 
process in one go is called “the context window size.” If we pass an input that is 
longer than the context window size, the LLM chooses to ignore all text beyond 
the size. It is thus very important to be careful with the amount of text being 
passed to the LLM. In our example, a text of 50,000 words will not work well with 
LLMs that have a smaller context window. The way to address this problem is to 
break the text down into smaller chunks.

¡	Lost-in-the-middle problem—Even in those LLMs that have a long context window 
(e.g., Claude 3 by Anthropic has a context window of up to 200,000 tokens), a 
problem with accurately reading the information has been observed. It has been 
noticed that accuracy declines dramatically if the relevant information is some-
where in the middle of the prompt. This problem can be addressed by passing 
only the relevant information to the LLM instead of the entire document.

¡	Ease of search—This is not a problem with the LLM per se, but it has been observed 
that large chunks of text are harder to search over. When we use a retriever (recall 
the generation pipeline introduced in chapter 2), it is more efficient to search 
over smaller pieces of text.

DEFINITION Tokens are the fundamental semantic units used in natural lan-
guage processing (NLP) tasks. Tokens can be assumed to be words, but some-
times, a single word can be made up of more than one token. OpenAI suggests 
one token to be made of four characters or 0.75 words. Tokens are important 
as most proprietary LLMs are priced based on token usage.
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3.2.2 Chunking process

The chunking process can be divided into three steps, as illustrated in figure 3.2: 

1 Divide the longer text into compact, meaningful units (e.g., sentences or 
paragraphs).

2 Merge the smaller units into larger chunks until a specific size is achieved. After 
that, this chunk is treated as an independent segment of text.

3 When creating a new chunk, include a part of the previous chunk at the start of 
the new chunk. This overlap is necessary to maintain contextual continuity. 

This process is also known as “small to big” chunking. 

-----------------------------------

-----------------------------------

-----------------------------------

Dividing into

compact units

Loaded large document

Merging units into

larger chunks

Maintain overlap for

contextual continuity

Small to Big Chunking

-----------------------------------

-----------------------------------

1 2

3

Figure 3.2 Data-chunking process

3.2.3 Chunking methods

While splitting documents into chunks might sound like a simple concept, multiple 
methods can be employed to execute chunking. The following two aspects vary across 
the chunking methodologies:

¡	The manner of text splitting

¡	Measuring of the chunk size

FIXED-SIZE CHUNKING

A very common approach is to predetermine the size of the chunk and the amount of 
overlap between the chunks. The following two methods fall under the fixed-size chunk-

ing category:
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¡	Split by character—Here, we specify a certain character, such as a newline char-
acter \n or a special character *, to determine how the text should be split. The 
text is split into a unit whenever this character is encountered. The chunk size 
is measured in the number of characters. We must choose the chunk size or the 
number of characters we need in each chunk. We can also choose the number of 
characters we need to overlap between two chunks. We will look at an example 
and demonstrate this method using CharacterTextSplitter from langchain 
.text_splitters. For this, we will take the same document that we loaded and 
transformed in the previous section from Wikipedia and store it in the variable 
html_data_transformed.

#import libraries

from langchain.text_splitters import CharacterTextSplitter

#Set the CharacterTextSplitter parameters

text_splitter = CharacterTextSplitter(

    separator="\n",    #The character that should be used to split

    chunk_size=1000,   #Number of characters in each chunk

    chunk_overlap=200, #Number of overlapping characters between chunks

)

#Create Chunks

chunks=

text_splitter.create_documents(

[html_data_transformed[0].page_content]

)

#Show the number of chunks created

print(f"The number of chunks created : {len(chunks)}")

>>The number of chunks created: 67

This method created 64 chunks. But what about the overlap? Let’s check two 
chunks at random, say, chunks 4 and 5. We will compare the last 200 characters  
of chunk 4 with the first 200 characters of chunk 5:

chunks[4].page_content[-200:]

>> 'on was to be played from 9 February to 26 March\n2023.[3][4] In July 

2020 it was announced that due to the disruption of the\nqualification 

schedule by the COVID-19 pandemic, the start of the tournament'

chunks[5].page_content[:200]

>> '2023.[3][4] In July 2020 it was announced that due to the disruption 

of the\nqualification schedule by the COVID-19 pandemic, the start of 

the tournament\nwould be delayed to October.[5][6] The ICC rele'

Comparing the two outputs, we can observe that there is an overlap between the 
two consecutive chunks.
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Splitting by character is a simple and effective way to create chunks. It is the 
first chunking method that anyone should try. However, sometimes, it may not be 
feasible to create chunks within the specified length. This is because the sequen-
tial occurrence of the character on which the text needs to be split is far apart. To 
address this problem, a recursive approach is employed.

¡	Recursively split by character—This method is quite like the split by character but 
instead of specifying a single character for splitting, we specify a list of characters. 
The approach initially tries creating chunks based on the first character. In case it 
is not able to create a chunk of the specified size using the first character, it then 
uses the next character to further break down chunks to the required size. This 
method ensures that chunks are largely created within the specified size. This 
method is recommended for generic texts. You can use RecursiveCharacter-
TextSplitter from LangChain to use this method. The only difference in 
RecursiveCharacterTextSplitter is that instead of passing a single character in 
the separator parameter separator="\n", we will need to pass a list separators= 
["\n\n","\n", ".", " "].

Another perspective to consider with fixed-sized chunking is the use of tokens. As 
shown at the beginning of this section, tokens are the fundamental units of NLP. They 
can be understood loosely as a proxy for words. All LLMs process text in the form of 
tokens. So, it would also make sense to use tokens to determine the size of the chunks. 
This method is called the split by token method. Here, the splitting still happens based on 
a character, but the size of the chunk and the overlap are determined by the number of 
tokens instead of the number of characters.

NOTE Tokenizers are used to create tokens from a piece of text. Tokens are 
slightly different from words. A phrase such as “I’d like that!” has three words; 
however, in NLP, this text may be parsed as five tokens, that is, “I”, “‘d”, “like”, 
“that”, “!”. Different LLMs use different methods for creating tokens. OpenAI 
uses a tokenizer called tiktoken for GPT3.5 and GPT4 models; Llama2 by Meta 
uses LLamaTokenizer, available in the transformers library by Hugging Face. 
You can also explore other tokenizers on Hugging Face. NLTK and spaCy are 
some other popular libraries that can be used as tokenizers.

To use the split by token method, you can use specific methods within the Recursive-
CharacterTextSplitter and CharacterTextSplitter classes, such as Recursive-
CharacterTextSplitter.from_tiktoken_encoder (encoding="cl100k_base", chunk_ 
size=100, chunk_overlap=10) for creating chunks of 100 tokens with an overlap 
of 10 tokens using OpenAI’s tiktoken tokenizer or CharacterTextSplitter.from_
huggingface_tokenizer(tokenizer, chunk_size=100, chunk_overlap=10) for creating 
the same sized chunk using another tokenizer from Hugging Face.

The limitation of fixed-size chunking is that it doesn’t consider the semantic integrity 
of the text. In other words, the meaning of the text is ignored. It works best in scenarios 
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where data is inherently uniform, such as genetic sequences and service manuals, or 
uniformly structured reports such as survey responses.

SPECIALIZED CHUNKING

Chunking aims to keep meaningful data together. If we are dealing with data in the 
form of HTML, Markdown, JSON, or even computer code, it makes more sense to 
split the data based on the structure rather than a fixed size. Another approach to 
chunking is to consider the format of the extracted and loaded data. A markdown 
file, for example, is organized by headers, a code written in a programming language 
such as Python or Java is organized by classes and functions, and likewise, HTML is 
organized in headers and sections. For such formats, a specialized chunking approach 
can be employed. LangChain offers classes such as MarkdownHeaderTextSplitter, 
HTMLHeader TextSplitter, and RecursiveJsonSplitter, among others, for these 
formats. 

Here is a simple example of a code that splits an HTML document using HTML-
SectionSplitter. We are using the same Wikipedia article to source the HTML page. 
We first split the input data based on the sections. Sections in HTML are tagged as 
<h1>, <h2>, <table>, and so on. It can be assumed that a well-structured HTML docu-
ment will have similar information. This helps us in creating chunks that have similar 
information. To use the HTMLSectionSplitter library, we must install another Python 
package called lxml:

#Installing lxml

%pip install lxml==5.3.1 --quiet

# Import the HTMLHeaderTextSplitter library

from langchain_text_splitters import HTMLSectionSplitter

# Set URL as the Wikipedia page link

url="https://en.wikipedia.org/wiki/2023_Cricket_World_Cup"

loader = AsyncHtmlLoader (url)

html_data = loader.load()

# Specify the header tags on which splits should be made

sections_to_split_on=[

    ("h1", "Header 1"),

    ("h2", "Header 2"),

    ("table ", "Table"),

    ("p", "Paragraph")

]

# Create the HTMLHeaderTextSplitter function

splitter = HTMLSectionSplitter(sections_to_split_on)

# Create splits in text obtained from the URL

Split_content = splitter.split_text(html_data[0].page_content)
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The advantage of specialized chunking is that chunk sizes are no longer limited by 
a fixed width. This feature helps in preserving the inherent structure of the data. 
Because the size of the chunks changes depending on the structure, this method is 
also sometimes called adaptive chunking. Specialized chunking works well in structured 
scenarios such as customer reviews or patient records where data can be of different 
lengths but should ideally be in the same chunk.

In the previous example, let’s see how many chunks have been created:

len(split_content)

>> 231

This method has given us 231 chunks from the URL. Chunking methods do not have 
to be exclusive. We can further chunk these 231 chunks using a fixed-size chunking 
method such as RecursiveCharacterTextSplitter.

from langchain.text_splitter import RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(

separators=["\n\n","\n","."]

chunk_size=1000, chunk_overlap=100, 

)

final_chunks = text_splitter.split_documents(split_content)

Let’s look at how many chunks were created by this combination of techniques:

len(chunks)

>> 285

A total of 285 chunks were created by splitting the HTML data from the URL first, 
using a specialized chunking method followed by a fixed size method. This gave us 
more chunks than using the fixed size method alone that we saw in the previous sec-
tion (“split by character” gave us 67 chunks).

You may be wondering about the advantages of having more chunks and the optimal 
number. Unfortunately, there’s no straightforward answer to that. Having many chunks 
(consequently smaller-sized chunks) means that the information in the chunks is pre-
cise. This is advantageous when it comes to providing the LLM with accurate informa-
tion. In contrast, by chunking into small sizes, you may lose the overall themes, ideas, 
and coherence of the larger document. The task here is to strike a balance. We will 
discuss more chunking strategies after we take a cursory look at a novel method that 
considers the meaning of the text to perform chunking and aims to create chunks that 
are super-contextual.
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SEMANTIC CHUNKING

This idea, proposed by Greg Kamradt, questions two aspects of the previous chunking 
methods.

¡	Why should we have a predefined fixed size of chunks?

¡	Why don’t chunking methods take into consideration the actual meaning of 
content?

To address these problems, a method that looks at semantic similarity (or similarity in 
the meaning) between sentences is called semantic chunking. It first creates groups 
of three sentences and then merges groups that are similar in meaning. To find out 
the similarity in meaning, this method uses embeddings. (We will discuss embeddings 
in the next section.) This is still an experimental chunking technique. In LangChain, 
you can use the class SemanticChunker from the langchain_experimental.text_
splitter library. See figure 3.3 for examples of different chunking methods. 
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Te length of chunks is uniform and

predetermined with some overlap.

Chunking is carried out depending

on the structure of the input.

Chunking preserves the semantic

integrity or the meaning of the input.

----------------

--

-- - - - - - - - -- - - - ---- - - - - - - - --------------------- - - - - - - - -- - - - - - - - -- - - - - - - - -- - - - - - - - -- - - - - - - - - - - - - -
---------
- - - - -- - - - -- - - - -- - - - -- - - - --

-
-
-

- -
---

-
-

-
-
---- ----- -- -- -- ----------- ---

---------------------- ---------- -------- - - - - - - - -------------------- - - - - - - - --- - - - - - - - --- - - - - - - - ---- - - - - - - - -- - - - - - - - --- - - - ----------- - - -- - - -- - - -- - - -- - - --- -------------------------------------------------
- - - - - - - - --- - - - - - - - -

---------
---------
- - - -

- - - - -
-
-

-
-

---
---

-
-

-
-
-

- -- ------------------------ - - - - - - - -- - - - - - - - -
---------
- - - - -- - - - -

- ------
-- -- ------ ---

-- - - - - - - - -------------------- - - - - - - - --- - - - - - - - -- - - - - - - - - - - - ----------- - - -- - - -- - - --- ------------ - - - - - - - -
------------------------------------
- - - - - - - - --- - - - - - - - -- - - - - - - - - - - - - -

---------
---------
- - - -

- - - - -- - - - -- -
-
--

-
-

---
---

-
--

-
-- -
-

- -- --------------------
- - - - - - - - -- ---------

- - - - -
-
-

------
-- -

-- - - - - - - - --------------------- - - - - - - - --- - - - - - - - - - - - ----------- - - -- - - --- ----------------------------- - - - - - - - -- - - - - - - - ---- - - - - - - - -- ---------- - - -- - - -- - - -- ----------- - - - - - - - ---------------------- - - - - - - - -- - - - - - - - -- - - - - - - - -- - - - - - - - -- - - - - - - - -- ---- - - - - -
---------
- - - - -- - - - -- - - -- - - - -- - - --

-
-
-

- -
---

-
-

-
-

---------- -- --- ---------
-------------------- ---------- ----------- --- ------

- - - -- - - --------- - - - ---------------------------------------
---------

--------------------------------------------

---------------------- ------------------------------------------------------------------------------------------------------

*

@@@@@@@@@@@@@@@@

&&&&&&&&&&&&&&&&&&&&&&&&&

#
# $$

$$
$$
$$
$$

$$$********************************************
*
@
@@@

##
######

**$$$********************************************

@@@
@@@@@@@@@@@@@@@@@

#
#

#################################
#################################
#################################

#
#######################################################################
#
#
##########$$$$$$$$$$$$$$
########################
##########$$$$$$$$$$$$$$
########################
##########$$$$$$$$$$$$$$###########$$$$$$$$$$$$$$ $$

##
$$$$$$$$$$$
##########
$$$$$$$$$$
###########
$$$$$$$$$$$$$$$$$$$$$$$
#
$
#
$
#
$
#
$$ $

$
$
$
$

$$$*******************************************

#

$$$*******************************************

##########$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$*******************************************

##########$$$$$$$$$$$$$$$$$$$$$$$
$ $
$ $
$ $
$ $
$$$*******************************************

@ @@@@@@@@@@@@@@@@
*
@@@@@@@@@@@@@@@@@@

$$$
*******************************************@
@@@@@@@@@@@@@@@@@@

$$$ * * * * * * * * * * * * * * * * * * * * *
*
@@@@@@@@@@@@@@@@@@@ @@@@
@@@
@ @
@@@
@@@
@@@
@@@
@@@@@@@@@@@@@@@@@@@

@
@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&

@@@@@@@@@@@@@@@@@@

&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&
&
&

Figure 3.3 Chunking methods

As the LLM and the generative AI space are evolving fast, chunking methods are also 
becoming more sophisticated. Simple chunking methods predetermine the size of the 
chunks and a split by characters. A slightly more nuanced technique is to split the data 
by tokens. Specialized methods are more suitable for different data formats. Experi-
mental techniques such as semantic chunking and agentic chunking are spearheading 
the advancements in the chunking space. Now, let’s consider the important question 
of how to select a chunking method.

3.2.4 Choosing a chunking strategy

We have seen that there are many chunking methods available. Which chunking 
method to use (i.e., whether to use a single method or multiple methods) is a question 
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that comes up during the creation of the indexing pipeline. There are no guidelines or 
rules to answer this question. However, certain features of the application that you’re 
developing can guide you toward an effective strategy.

NATURE OF THE CONTENT 

The type of data that you’re dealing with can be a guide for the chunking strategy. If 
your application uses data in a specific format such as code or HTML, a specialized 
chunking method is recommended. Not only that, whether you’re working with long 
documents such as whitepapers and reports or short-form content such as social media 
posts, tweets, and so on, can also guide the chunk size and overlap limits. If you’re 
using a diverse set of information sources, then you might have to use different meth-
ods for different sources.

EXPECTED LENGTH AND COMPLEXITY OF USER QUERY

The nature of the query that your RAG system is likely to receive also determines 
the chunking strategy. If your system expects a short and straightforward query, 
then the size of your chunks should be different when compared to a long and com-
plex query. Matching long queries to short chunks may prove inefficient in certain 
cases. Similarly, short queries matching large chunks may yield partially irrelevant  
results.

APPLICATION AND USE CASE REQUIREMENTS

The nature of the use case you’re addressing may also determine the optimal chunk-
ing strategy. For a direct question-answering system, shorter chunks are likely used for 
precise results, while for summarization tasks, longer chunks may make more sense. If 
the results of your system need to serve as an input to another downstream application, 
that may also influence the choice of the chunking strategy.

EMBEDDINGS MODEL

We are going to discuss embeddings in the next section. For now, you can make a note 
that certain embeddings models perform better with chunks of specific sizes.

We have discussed chunking at length in this section. From understanding the need 
and advantages of chunking to different chunking methods and the choice of chunking 
strategies, you are now equipped to load data from different sources and split them into 
optimal sizes. Remember, chunking is not an overcomplicated task, and most chunking 
methods will work. You will, however, have to evaluate and improve your chunking strat-
egy depending on the results you observe.

Now that data has been split into manageable sizes, we need to store it so that it 
can be fetched later to be used in the generation pipeline. We need to ensure that 
these chunks can be effectively searched over to match the user query. Turns out 
that one data pattern is the most efficient for such tasks. This pattern is called 
“embeddings.” Let’s explore embeddings and their use in RAG systems in the next  
section.
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3.3 Data conversion (embeddings)

Computers, at their very core, do mathematical calculations. Mathematical calcula-
tions are done on numbers. Therefore, for a computer to process any kind of nonnu-
meric data such as text or image, it must be first converted into a numerical form. 

3.3.1 What are embeddings?

Embeddings is a design pattern that is extremely helpful in the fields of data science, 
machine learning, and AI. Embeddings are vector representations of data. As a gen-
eral definition, embeddings are data that has been transformed into n-dimensional 
matrixes. The word embedding is a vector representation of words. I explain embed-
dings by using three words as an example: dog, bark, and fly.

NOTE In physics and mathematics, the vector is an object that has a magni-
tude and a direction, like an arrow in space. The length of the arrow is the 
magnitude of the quantity and the direction that the arrow points to is the 
direction of the quantity. Examples of such quantities in physics are velocity, 
force, acceleration, and so forth. In computer science and machine learning, 
the idea of a vector is an abstract representation of data, and the representa-
tion is an array or list of numbers. These numbers represent the data features 
or attributes. In NLP, a vector can represent a document, a sentence, or even a 
word. The length of the array or list is the number of dimensions in the vector. 
A 2D vector will have two numbers, a 3D vector will have three numbers, and 
an n-dimensional vector will have n numbers.

Let’s understand embeddings by assigning a number to the three words: Dog = 1, Bark 
= 2 and Fly = 6, as shown in figure 3.4. We chose these numbers because the word dog is 
closer to the word bark and farther from the word fly. 

Dog [1] Bark [2] Fly [6]

1 2 6

1D vector is severely
restricted in mapping
a high number of words.

Red [?]

Love [?]

King [?]

Figure 3.4 Words in a unidimensional vector

Unidimensional vectors are not great representations because we can’t plot unrelated 
words accurately. In our example, we can plot that the words fly and bark, which are 
verbs, are far from each other, and bark is closer to a dog because dogs can bark. But 
how do we plot words such as love or red? To accurately represent all the words, we need 
to increase the number of dimensions. See figure 3.5.
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2D vector space

Dog [3,3]

Bark [4,2]
Fly [6,1]

Red [-3, 5]

Love [-2,-2]

Increasing the number of
dimensions in the vector space
provides greater flexibility to
accurately map words.

Figure 3.5 Words in a 2D vector space

The goal of an embedding model is to convert words (or sentences/paragraphs) into 
n-dimensional vectors so that the words (or sentences/paragraphs) that are like each 
other in meaning lie close to each other in the vector space. See figure 3.6.

Dog

Bark

Fly
Embeddings

algorithm

[5,7,1,....]

[6,7,2,....]

[1,1,8,....]

Vector representation for “Dog”

Vector representation for “Bark”

Vector representation for “Fly”

n-dimension

embedding space

The goal of an embedding model is to
convert words (or sentences/paragraphs)
into n-dimensional vectors.

Figure 3.6 The process of embedding transforms data (such as text) into vectors and compresses the 

input information, which results in an embedding space specific to the training data.

An embeddings model can be trained on a corpus of preprocessed text data using an 
embedding algorithm such as Word2Vec, GloVe, FastText, or BERT:

¡	Word2Vec—Word2Vec is a shallow-neural-network-based model for learning word 
embeddings, developed by researchers at Google. It is one of the earliest embed-
ding techniques.
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¡	GloVe—Global Vectors for Word Representations is an unsupervised learning 
technique developed by researchers at Stanford University.

¡	FastText—FastText is an extension of Word2Vec developed by Facebook AI 
Research. It is particularly useful for handling misspellings and rare words.

¡	ELMo—Embeddings from Language Models was developed by researchers at 
Allen Institute for AI. ELMo embeddings have been shown to improve perfor-
mance on question answering and sentiment analysis tasks.

¡	BERT—Bidirectional Encoder Representations from Transformers, developed 
by researchers at Google, is a transformers-architecture-based model. It provides 
contextualized word embeddings by considering bidirectional context, achiev-
ing state-of-the-art performance on various NLP tasks.

Training a custom embeddings model can prove to be beneficial in some use cases 
where the scope is limited. Training an embeddings model that generalizes well can be 
a laborious exercise. Collection and preprocessing text data can be cumbersome. The 
training process can turn out to be computationally expensive too. 

3.3.2 Common pre-trained embeddings models

The good news for anyone building RAG systems is that embeddings once created can 
also generalize across tasks and domains. There are a variety of proprietary and open 
source pre-trained embeddings models available to use. This is also one of the rea-
sons why the usage of embeddings has exploded in popularity across machine learning 
applications.

¡	Embeddings models by OpenAI—OpenAI, the company behind ChatGPT and the 
GPT series of LLMs, also provides three embeddings models: 

– text-embedding-ada-002 was released in December 2022. It has a dimension of 
1536, meaning that it converts text into a vector of 1536 dimensions.

– text-embedding-3-small is the latest small embedding model of 1536 dimensions 
released in January 2024. The flexibility it provides over the ada-002 model is 
that users can adjust the size of the dimensions according to their needs.

– text-embedding-3-large is a large embedding model of 3072 dimensions, released 
together with the text-embedding-3-small model. It is the best performing 
model released by OpenAI yet.

OpenAI models are closed source and can be accessed using the OpenAI API. 
They are priced based on the number of input tokens for which embeddings are 
desired. 

¡	Gemini Embeddings Model by Google—text-embedding-004 (last updated in April 
2024) is the model offered by Google Gemini. It offers elastic embeddings size 
up to 768 dimensions and can be accessed via the Gemini API.

¡	Voyage AI—These embeddings models are recommended by Anthropic, the pro-
vider of the Claude series of LLMs. Voyage offers several embedding models such as
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– voyage-large-2-instruct is a 1024-dimensional embeddings model that has 
become a leader in embeddings models.

– voyage-law-2 is a 1024-dimension model optimized for legal documents.

– voyage-code-2 is a 1536-dimension model optimized for code retrieval.

– voyage-large-2 is a 1536-dimension general-purpose model optimized for 
retrieval.

Voyage AI offers several free tokens before charging for using the embeddings 
models.

¡	Mistral AI embeddings—Mistral is the company behind LLMs such as Mistral and 
Mixtral. They offer a 1024-dimensional embeddings model known as mistral-

embed. This is an open source embeddings model.

¡	Cohere embeddings—Cohere, the developers of Command, Command R, and Com-
mand R + LLMs also offer a variety of embeddings models, which can be accessed 
via the Cohere API. Some of these are

– embed-english-v3.0 is a 1024-dimension model that works on embeddings for 
English only.

– embed-english-light-v3.0 is a lighter version of the embed-english model, which 
has 384 dimensions.

– embed-multilingual-v3.0 offers multilingual support for over 100 languages.

These five models are in no way recommendations but just a list of the popular embed-
dings models. Apart from these providers, almost all LLM developers such Meta, TII, 
and LMSYS also offer pre-trained embeddings models. One place to check out all the 
popular embeddings models is the MTEB (Massive Text Embedding Benchmark) Lea-
derboard on Hugging Face (https://huggingface.co/spaces/mteb/leaderboard). The 
MTEB benchmark compares the embeddings models on tasks such as classification, 
retrieval, clustering, and more. You now know what embeddings are, but why are they 
useful? Let’s discuss that next with some examples of use cases.

3.3.3 Embeddings use cases

The reason why embeddings are so popular is because they help in establishing seman-
tic relationships between words, phrases, and documents. In the simplest methods of 
searching or text matching, we use keywords, and if the keywords match, we can show 
the matching documents as results of the search. However, this approach fails to con-
sider the semantic relationships or the meanings of the words while searching. This 
challenge is overcome by using embeddings. 

HOW IS SIMILARITY CALCULATED

We discussed that embeddings are vector representations of words or sentences. Sim-
ilar pieces of text lie close to each other. Closeness to each other is calculated by the 
distance between the points in the vector space. One of the most common measures 
of similarity is cosine similarity. Cosine similarity is calculated as the cosine value of the 

https://huggingface.co/spaces/mteb/leaderboard
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angle between the two vectors. Recall from trigonometry that the cosine of parallel 
lines (i.e., angle = 0o) is 1, and the cosine of a right angle (i.e., 90o) is 0. The cosine of 
the opposite lines (i.e., angle = 180o) is −1. Therefore, the cosine similarity lies between 
−1 and 1, where unrelated terms have a value close to 0, and related terms have a value 
close to 1. Terms that are opposite in meaning have a value of −1. See figure 3.7. 
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Cos 10 = 0.985 Cos 80 = 0.173 Cos 175 = -0.996

Close to 1

Very similar

Close to 0

Unrelated

Close to -1

Opposite
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Figure 3.7 Cosine similarity of vectors in 2D vector space

Yet another measure of similarity is the Euclidean distance between two vectors. Close 
vectors have a small Euclidean distance. It can be calculated using the following 
formula:

Distance (A, B) = sqrt((Ai-Bi)
2), 

where i is the i-th dimension of the n-dimensional vectors

DIFFERENT USE CASES OF EMBEDDINGS

Here are some different use cases of embeddings:

¡	Text search—Searching through the knowledge base for the right document 
chunk is a key component of RAG systems. Embeddings are used to calculate 
similarity between the user query and the stored documents. 

¡	Clustering—Categorizing similar data together to find themes and groups in the 
data can result in valuable insights. Embeddings are used to group similar pieces 
of text together to find out, for example, the common themes in customer reviews.

¡	Machine learning—Advanced machine learning techniques can be used for dif-
ferent problems such as classification and regression. To convert text data into 
numerical features, embeddings prove to be a valuable technique.

¡	Recommendation engines—Shorter distances between product features mean 
greater similarity. Using embeddings for product and user features can be used 
to recommend similar products. 
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Since we are focusing on RAG systems, here we examine using embeddings for text 
search— to find the document chunks that are closest to the user’s query. Let’s con-
tinue with our example of the Wikipedia page on the 2023 Cricket World Cup. In the 
last section, we created 67 chunks using a combination of specialized and fixed-width 
chunking. Now we will see how to create embeddings for each chunk. We will see how 
to use an open source as well as a proprietary embeddings model.

Here is the code example for creating embeddings using an open source embed-
dings model all-MPnet-base-v2 via Hugging Face: 

# Import HuggingFaceEmbeddings from embeddings library

from langchain_huggingface import HuggingFaceEmbeddings

# Instantiate the embeddings model. The embeddings model_name can be changed 

as desired

embeddings = 

HuggingFaceEmbeddings(

model_name="sentence-transformers/all-mpnet-base-v2"

)

# Create embeddings for all chunks

hf_embeddings = 

embeddings.embed_documents(

[chunk.page_content for chunk in final_chunks]

)

#Check the length(dimension) of the embedding

len(hf_embeddings [0])

>> 768

This model creates embeddings of dimension 768. The list hf_embeddings is made up 
of 285 lists, each containing 768 numbers for each chunk. Figure 3.8 shows the embed-
dings space of all the chunks.

[-0.0147, 0.0179, 0.0119................................................................................................-0.0047]

[ 0.0121,  0.0104, -0.0264..............................................................................................-0.0388]

[-0.0350, -0.0027, -0.0305................................................................................................0.0072]

......................................................................................................................................................

......................................................................................................................................................

......................................................................................................................................................

......................................................................................................................................................

......................................................................................................................................................

......................................................................................................................................................

[-0.0175, 0.0373, 0.0270....................................................................................................-0.0142]
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Figure 3.8 Embeddings created for chunks of Wikipedia page using the all-MiniLM-l6-v2 model.
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Similarly, we can use a proprietary model such as the text-embedding-3-small model, 
hosted by OpenAI. The only prerequisite is obtaining an API key and setting up a bill-
ing account with OpenAI. 

# Install the langchain openai library

%pip install langchain-openai==0.3.7 --quiet

# Import OpenAIEmbeddings from the library

from langchain_openai import OpenAIEmbeddings

# Set the OPENAI_API_KEY as the environment variable

import os

os.environ["OPENAI_API_KEY"] = <YOUR_API_KEY>

# Instantiate the embeddings object

embeddings = OpenAIEmbeddings(model="text-embedding-3-small")

# Create embeddings for all chunks

openai_embeddings = 

embeddings.embed_documents(

[chunk.page_content for chunk in chunks]

)

#Check the length(dimension) of the embedding

len(openai_embedding[0])

>> 1536

This text-embedding-3-small model creates embeddings for the same chunks of dimen-
sion 1536.

There are several embeddings models available, and new ones are being added every 
day. The choice of embeddings can be dictated by certain factors. Let’s look at a few 
factors.

3.3.4 How to choose embeddings?

There are a few major factors that will affect your choice of embeddings.

USE CASE

Your application use case may determine your choice of embeddings. The MTEB lea-
derboard scores each of the embeddings models across seven use cases: classification, 
clustering, pair classification, reranking, retrieval, semantic text similarity, and summa-
rization. At the time of writing this book, the SFR-Embedding-Mistral model devel-
oped by Salesforce performs the best for retrieval tasks.

COST

Cost is another important factor to consider. To create the knowledge base, you may have 
to create embeddings for thousands of documents, thus running into millions of tokens.

Embeddings are powerful data patterns that are most effective in finding similarities 
between texts. In RAG systems, embeddings play a critical role in search and retrieval of 
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data relevant to the user query. Once the embeddings have been created, they need to 
be stored in persistent memory for real-time access. To store embeddings, a new kind of 
database called a vector database have become increasingly popular.

3.4 Storage (vector databases)

Now we are at the last step of the indexing pipeline. The data has been loaded, split, 
and converted to embeddings. To use this information repeatedly, we need to store it 
in memory so that it can be accessed on demand.

3.4.1 What are vector databases? 

The evolution of databases can be traced back to the early days of computing. Data-
bases are organized collections of data, designed to be easily accessed, managed, and 
updated. Relational databases such as MySQL organize structured data into rows and 
columns. NoSQL databases such as MongoDB specialize in handling unstructured and 
semi-structured data. Graph databases such as Neo4j are optimized for querying graph 
data. In the same manner, vector databases are built to handle high-dimensional vec-
tors. These databases specialize in indexing and storing vector embeddings for fast 
semantic search and retrieval. 

Apart from efficiently storing high-dimensional vector data, modern vector data-
bases offer traditional features such as scalability, security, multi-tenancy, versioning 
and management, and similar. However, vector databases are unique in offering simi-
larity searches based on Euclidean distance or cosine similarity. They also employ spe-
cialized indexing techniques.

3.4.2 Types of vector databases

Vector databases started as a specialized database offering, but propelled by the growth 
in demand for storing vector data, all major database providers have added the vector 
indexing capability. We can categorize the popular vector databases available today 
into six broad categories.

¡	Vector indexes—These are libraries that focus on the core features of indexing 
and search. They do not support data management, query processing, or inter-
faces. They can be considered a bare-bones vector database. Examples of vector 
indexes are Facebook AI Similarity Search (FAISS), Non-Metric Space Library 
(NMSLIB), Approximate Nearest Neighbors Oh Yeah (ANNOY), Scalable Near-
est Neighbors (ScaNN), and similar.

¡	Specialized vector DBs—These databases focus on the core feature of high-
dimensional vector support, indexing, search, and retrieval such as vector 
indexes, but also offer database features such as data management, extensibility, 
security, scalability, non-vector data support, and similar. Examples of specialized 
vector DBs are Pinecone, ChromaDB, Milvus, Qdrant, Weaviate, Vald, LanceDB, 
Vespa, and Marqo.
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¡	Search platforms—Solr, Elastic Search, Open Search, and Apache Lucene are tradi-
tional text search platforms and engines built for full text search. They have now 
added vector similarity search capabilities to their existing search capabilities.

¡	Vector capabilities for SQL databases—Azure SQL, Postgres SQL(pgvector), Single-
Store, and CloudSQL are traditional SQL databases that have now added vector 
data-handling capabilities.

¡	Vector capabilities for NoSQL databases—Like SQL DBs, NoSQL DBs such as 
MongoDB have also added vector search capabilities.

¡	Graph databases with vector capabilities—Graph DBs such as Neo4j, have also 
opened new possibilities by adding vector capabilities, .

Using a vector index such as FAISS is supported by LangChain. To use FAISS, we first 
must install the faiss-cpu library. We will use the chunks already created in section 3.2 
and the OpenAI embeddings that we used in section 3.3:

# Install FAISS-CPU

%pip install faiss-cpu==1.10.0 --quiet

# Import FAISS class from vectorstore library

from langchain_community.vectorstores import FAISS

from langchain_community.docstore.in_memory import InMemoryDocstore

# Import OpenAIEmbeddings from the library

from langchain_openai import OpenAIEmbeddings

# Set the OPENAI_API_KEY as the environment variable

import os

os.environ["OPENAI_API_KEY"] = <YOUR_API_KEY>

# Chunks from Section 3.3

Final_chunks=final_chunks

# Instantiate the embeddings object

embeddings=OpenAIEmbeddings(model="text-embedding-3-small")

# Instantiate the FAISS object

vector_store = FAISS(

    embedding_function=embeddings,

    index=index,

    docstore=InMemoryDocstore(),

    index_to_docstore_id={},

)

# Add the chunks

vector_store.add_documents(documents=final_chunks)

# Check the number of chunks that have been indexed

vector_store.index.ntotal

>> 285
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With this code, the 285 chunks of data have been converted to vector embeddings, and 
these embeddings are stored in a FAISS vector index. The FAISS vector index can also 
be saved to memory using the vector_store.save_local(folder_path,index_name) 
and FAISS.load_local(folder_path,index_name) functions. Let’s now take a cursory 
look at how a vector store can be used. We will take the original question that we have 
been asking from the beginning of this book: “Who won the 2023 Cricket World Cup?”

# Original Question

query = "Who won the 2023 Cricket World Cup?"

# Ranking the chunks in descending order of similarity

docs = vector_store.similarity_search(query)

# Printing one of the top-ranked chunk

print(docs[0].page_content)

Similarity search orders the chunks in descending order of similarity, meaning that 
the most similar chunks to the query are ranked on top. In the previous example, we 
can observe that the chunk that speaks about the world cup final has been ranked  
on top.

FAISS is a stripped-down high-performance vector index that works for many appli-
cations. ChromaDB is another user-friendly vector DB that has gained popularity. Pine-
cone offers managed services and customization. Milvus claims higher performance 
on similarity search, while Qdrant provides an advanced filtering system. We will 
now discuss some points on how to choose a vector database that works best for your 
requirements.

3.4.3 Choosing a vector database

All vector databases offer the same basic capabilities, but each one of them also claims 
a differentiated value. Your choice should be influenced by the nuance of your use 
case matching with the value proposition of the database. Here are a few things to con-
sider while evaluating and implementing a vector database: 

¡	Accuracy vs. speed—Certain algorithms are more accurate but slower. A balance 
between search accuracy and query speed must be achieved based on application 
needs. It will become important to evaluate vector DBs on these parameters.

¡	Flexibility vs. performance—Vector DBs provide customizations to the user. While it 
may help you in tailoring the DB to your specific requirements, more customiza-
tions can add overhead and slow systems down. 

¡	Local vs. cloud storage—Assess tradeoffs between local storage speed and access 
versus cloud storage benefits like security, redundancy, and scalability.

¡	Direct access vs. API—Determine if tight integration control via direct libraries is 
required or if ease-of-use abstractions like APIs better suit your use case.
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¡	Simplicity vs. advanced features—Compare advanced algorithm optimizations, 
query features, and indexing versus how much complexity your use case necessi-
tates versus needs for simplicity.

¡	Cost—While you may incur regular costs in a fully managed solution, a self-hosted 
one might prove costlier if not managed well.

We have now completed an end-to-end indexing of a document. We continued with 
the same question (“Who won the 2023 Cricket World Cup?”) and the same external 
source—the Wikipedia page of the 2023 Cricket World Cup (https://mng.bz/yN4J). In 
this chapter, we started with the programmatic loading of this Wikipedia page extract-
ing the HTML document and then parsing the HTML document to extract. There-
after, we divided the text into small-sized chunks using a specialized and fixed-width 
chunking method. We converted these chunks into embeddings using OpenAI’s text-
embedding-003-large model. Finally, we stored the embeddings into a FAISS vector 
index. We also saw how using similarity search on this vector index helped us retrieve 
relevant chunks.

When several such documents in different formats from different sources are 
indexed using a combination of methods and strategies, we can store all the informa-
tion in the form of vector embeddings creating a non-parametric knowledge base for 
our RAG system.

This concludes our discussion on the indexing pipeline. By now, you must have built 
a solid understanding of the four components of the indexing pipeline and should be 
ready to build a knowledge base for a RAG system.

In the next chapter, we will use this knowledge base to generate real-time responses 
to user queries through the generation pipeline.

Summary

Data loading

¡	The process of sourcing data from its original location is called data loading, and 
it includes the following four steps: connecting to the source, extracting and 
parsing text, reviewing and updating metadata, and cleaning and transforming 
data.

¡	Loading documents from a list of sources may turn out to be a complicated pro-
cess. Make sure to plan for all the sources and loaders in advance.

¡	A variety of data loaders from LangChain can be used. 

¡	Breaking down long pieces of text into manageable sizes is called data splitting or 
chunking.

¡	Chunking addresses context window limits of LLMs, mitigates the lost-in-the-
middle problem for long prompts, and enables easier search and retrieval.

¡	The chunking process involves dividing longer texts into small units, merging 
small units into chunks, and including an overlap between chunks to preserve 
contextual continuity.

https://mng.bz/yN4J
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¡	Chunking can be fixed size, specialized (or adaptive), or semantic. Newer chunk-
ing methods are constantly being introduced.

¡	Your choice of the chunking strategy should be based on the nature of the con-
tent, expected length and complexity of user query, application use case, and the 
embeddings model being used. 

¡	A chunking strategy can include multiple methods.

Data conversion

¡	For processing, text needs to be converted into a numerical format.

¡	Embeddings are vector representations of data (words, sentences, documents, 
etc.).

¡	The goal of an embedding algorithm is to position similar data points close to 
each other in a vector space.

¡	Several pre-trained, open source and proprietary, embedding models are avail-
able for use.

¡	Embeddings models enable similarity search. Embeddings can be used for text 
search, clustering, ML models, and recommendation engines.

¡	The choice of embeddings is largely based on the use case and the cost 
implications.

¡	Vector databases are designed to efficiently store and retrieve high-dimensional 
vector data such as embeddings.

¡	Vector databases provide similarity searches based on distance metrics such as 
cosine similarity.

¡	Apart from the similarity search, vector databases offer traditional services such 
as scalability, security, versioning, and the like.

¡	Vector capabilities can be offered by standalone vector indexes, specialized vec-
tor databases, or legacy offerings such as search platforms, SQL, and NoSQL 
databases with added vector capabilities.

¡	Accuracy, speed, flexibility, storage, performance, simplicity, access, and cost are 
some of the factors that can influence the choice of a vector database.
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4Generation pipeline: 
Generating contextual 

LLM responses

This chapter covers

¡	Retrievers and retrieval methodologies

¡	Augmentation using prompt engineering   

 techniques

¡	Generation using LLMs

¡	Basic implementation of the RAG pipeline in  

 Python

In chapter 3, we discussed the creation of the knowledge base, or the non-
parametric memory of retrieval augmented generation (RAG)-based applications, 
via the indexing pipeline. To use this knowledge base for accurate and contextual 
responses, we need to create a generation pipeline that includes the steps of 
retrieval, augmentation, and generation.

This chapter elaborates on the three components of the generation pipeline. We 
begin by discussing the retrieval process, which primarily involves searching through 
the embeddings stored in vector databases of the knowledge base and returning a 
list of documents that closely match the input query of the user. You will also learn 
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about the concept of retrievers and a few retrieval algorithms. Next, we move to the aug-
mentation step. At this point, it is also beneficial to understand different prompt engi-
neering frameworks used with RAG. Finally, as part of the generation step, we discuss 
a few stages of the LLM life cycle, such as using foundation models versus supervised 
fine-tuning, models of different sizes, and open source versus proprietary models in 
the RAG context. In each of these steps, we also highlight the benefits and drawbacks of 
different methods.

By the end of this chapter, you will be equipped with an understanding of the two 
foundational pipelines of a RAG system. You should also be ready to build a basic RAG 
system.

By the end of this chapter, you should

¡	Know several retrievers used in RAG.

¡	Get an understanding of augmentation using prompt engineering.

¡	Learn some details about how LLMs are used in the context of RAG.

¡	Have an end-to-end knowledge of setting up a basic RAG system.

Let’s get started with an overview of the generation pipeline before diving into each 
component.

4.1 Generation pipeline overview

Recall the generation pipeline introduced in chapter 2. When a user provides an 
input, the generation pipeline is responsible for providing the contextual response. 
The retriever searches for the most appropriate information from the knowledge base. 
The user question is augmented with this information and passed as input to the LLM 
for generating the final response. This process is illustrated in figure 4.1.

The generation pipeline involves three processes: retrieval, augmentation, and gen-
eration. The retrieval process is responsible for fetching the information relevant to the 
user query from the knowledge base. Augmentation is the process of combining the 
fetched information with the user query. Generation is the last step, in which the LLM 
generates a response based on the augmented prompt. This chapter discusses these 
three processes in detail.

4.2 Retrieval

Retrieval refers to the process of finding and extracting relevant pieces of information 
from a large corpus or knowledge base. As you saw in chapter 3, the information from 
various sources is parsed, chunked, and stored as embeddings in vector databases. 
These stored embeddings are also sometimes referred to as documents, and the knowl-
edge base consists of several volumes of documents. Retrieval, essentially, is a search 
problem to find the documents that best match the input query.

Searching through the knowledge base and retrieving the right documents is done 
by a component called the retriever. In simple terms, retrievers accept a query as input 
and return a list of matching documents as output. This process is illustrated in figure 
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4.2. You can imagine that retrieval is a crucial step since the quality of the retrieved 
information directly affects the quality of the output that will be generated.  
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prompts

Knowledge base

Non-parametric memory
created via the indexing

pipeline

Retrieval Augmentation Generation

Retrieval: Search and fetch relevant information
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Augmentation: Add the retrieved information to
the original user question.
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Figure 4.1 Generation pipeline overview with the three components (i.e., retrieval, augmentation, and 

generation)
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Figure 4.2 A retriever searches through the knowledge base and returns the most relevant documents.
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We have already discussed embeddings in chapter 3 while building the indexing pipe-
line. Using embeddings, we can find documents that match the user query. Embed-
dings is one method in which retrieval can happen. There are other methods, too, and 
it is worth spending some time understanding different types of retrieval methods and 
the way they calculate the results. 

This section on retrievers first discusses different retrieval algorithms and their sig-
nificance in the context of RAG. In RAG systems, one or more retrieval methods can 
be used to build the retriever component. Next, we look at a few examples of prebuilt 
retrievers that can be used directly through a framework (e.g., LangChain). These 
retrievers are integrated with services such as databases, cloud providers, or third-party 
information sources. Finally, we will close this section by building a very simple retriever 
in LangChain using Python. We will continue to demonstrate with this example the 
augmentation and generation steps, too, so that we have a full implementation of the 
generation pipeline by the end of this chapter.

NOTE Chapter 3 discussed indexing and how to convert and store data in a 
numerical form that can be used to retrieve information later. You may recall 
we discussed embeddings at length in section 3.3. It should be intuitive that 
since we stored the data in the form of embeddings, to fetch this data, we will 
also have to work on the search using embeddings. Therefore, the retrieval 
process is tightly coupled with the indexing process. Whatever we use to index, 
we will have to use to retrieve.

4.2.1 Progression of retrieval methods

Information retrieval, or IR, is the science of searching. Whether you are searching for 
information in a document or for documents themselves, it falls under the gamut of 
information retrieval. IR has a rich history in computing, starting from Joseph Marie 
Jacquard’s invention of the Jacquard Loom, the first device that could read punched 
cards, back in the early 19th century. Since then, IR has evolved leaps and bounds from 
simple to highly sophisticated search and retrieval. Boolean retrieval is a simple key-
word-based search (like the one you encounter when you press CTRL/CMD + F on 
your browser or word processor) where Boolean logic is used to match documents 
with queries based on the absence or presence of the words. Documents are retrieved 
if they contain the exact terms in the query, often combined with AND, NOT, and OR 
operators. Bag of Words (BoW) was used quite often in the early days of NLP. It creates 
a vocabulary of all the words in the documents as a vector indicating the presence or 
absence of each word. Consider two sentences: “The cat sat on the mat” and “The cat 
in the hat.” The vocabulary is ["the", "cat", "in", "hat", "on", "mat"] and the first 
sentence is represented as a vector [2, 1, 1, 1, 0, 0], while the one is [2, 1, 0, 0, 1, 
1]. While simple, it ignores the context, meaning, and the order of words.

Some of these, although popular in ML and IR space, don’t make sense in the con-
text of RAG for a variety of reasons. For our purpose, we focus on a few of the popular 
retrieval techniques that have been used in RAG.
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TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY

Term Frequency–Inverse Document Frequency (TF-IDF) is a statistical measure used 
to evaluate the importance of a word in a document relative to a collection of docu-
ments (corpus). It assigns higher weights to words that appear frequently in a docu-
ment but infrequently across the corpus. Figure 4.3 illustrates how TF-IDF is calculated 
for a unigram search term.

Components of TF-IDF

Term frequency (TF)

Measures how frequently term t appears in document d

Inverse document frequency (IDF)

Measures how important term t is within the entire corpus D

TF (t,d) = 
Number of times term t appears in document d

Total number of terms in document d

IDF (t,D) = 
Total number of documents D

Number of documents containing term t(

(

log

TF-IDF(t,d,D)=TF(t,d)×IDF(t,D)

TF-IDF
Product of TF & IDF

Documents (D)

d1 = Australia won the Cricket World Cup 2023

d2 = India and Australia played in the finals

d3 = Australia won the sixth time and won last in 2015

Search Term

“won”

TF (“won”,d1)=1/7    = 0.14
TF (“won”,d2)=0/7   = 0
TF (“won, d3)= 2/10 =  0.2

IDF (“won”, D) = log (3/2) = 0.176

TF - IDF (“won”,d1,D)= 0.14 x 0.176 = 0.025
TF - IDF (“won”,d2,D)= 0 x 0.176 = 0
TF - IDF (“won, d3,D)= 0.2 x 0.176 = 0.035

Result : d3 > d1 > d2

Figure 4.3 Calculating TF-IDF to rank documents based on search terms

LangChain also provides an abstract implementation of TF-IDF using retrievers from 
langchain_community, which, in turn, uses scikit-learn:

# Install or Upgrade Scikit-learn

%pip install –-upgrade scikit-learn

# Import TFIDFRetriever class from retrievers library

from langchain_community.retrievers import TFIDFRetriever

# Create an instance of the TFIDFRetriever with texts

retriever = TFIDFRetriever.from_texts(
["Australia won the Cricket World Cup 2023",
 "India and Australia played in the finals",
 "Australia won the sixth time having last won in 2015"]
)

# Use the retriever using the invoke method

result=retriever.invoke("won")

# Print the results

print(result)
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TF-IDF not only can be used for unigrams, but also for phrases (n-grams). However, 
even TF-IDF improves on simpler search methods by emphasizing unique words, it still 
lacks context and word-order consideration, making it less suitable for complex tasks 
like RAG.

BEST MATCH 25

Best Match 25 (BM25) is an advanced probabilistic model used to rank documents 
based on the query terms appearing in each document. It is part of the family of proba-
bilistic information retrieval models and is considered an advancement over the classic 
TF-IDF model. The improvement that BM25 brings is that it adjusts for the length of 
the documents so that longer documents do not unfairly get higher scores. Figure 4.4 
illustrates the BM25 calculation.

Calculating BM25

BM25(t,d,D) = IDF(t,D) x 

TF(t,d) + (k) x (1-b + b x         )
|d|

avgdl

TF(t,d) x (k+1)

• TF(t,d) is the term frequency of ‘t’ in document ‘d’.

• IDF(t,D) is the inverse document frequency of term in the

  corpus.

• |d| is the length of the document.

• avgdl is the average document length in the entire corpus.

• k and b are free parameters.
Result : d1 > d3 > d2

Documents (D)

BM25(“won”, d1, D) = 0.193
BM25(“won”, d2, D) = 0
BM25(“won”, d2, D) = 0.168

d1 = Australia won the Cricket World Cup 2023.

d2 = India and Australia played in the finals.

d3 = Australia won the sixth time and won last in 2015.

Figure 4.4 BM25 also considers the length of the documents.

Like TF-IDF, LangChain also has an abstract implementation of BM25 (Okapi BM25, 
specifically) using the rank_bm25 package:

# Install or Upgrade rank_bm25

%pip install –-upgrade rank_bm25

# Import BM25Retriever class from retrievers library

from langchain_community.retrievers import BM25Retriever

# Create an instance of the TFIDFRetriever with texts

retriever = BM25Retriever.from_texts(
["Australia won the Cricket World Cup 2023",
 "India and Australia played in the finals",
 "Australia won the sixth time having last won in 2015"]
)

# Use the retriever using the invoke method

result=retriever.invoke("Who won the 2023 Cricket World Cup?")

# Print the results

print(result)
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For long queries instead of single keywords, the BM25 value is calculated for each word 
in the query, and the final BM25 value for the query is a summation of the values for all 
the words. BM25 is a powerful tool in traditional IR, but it still doesn’t capture the full 
semantic meaning of queries and documents required for RAG applications. BM25 is 
generally used in RAG for quick initial retrieval, and then a more powerful retriever is 
used to re-rank the results. We will learn about re-ranking later in chapter 6, when we 
discuss advanced strategies for RAG.

STATIC WORD EMBEDDINGS

Static embeddings such as Word2Vec and GloVe represent words as dense vectors in 
a continuous vector space, capturing semantic relationships based on context. For 
instance, “king” − “man” + “woman” approximates “queen.” These embeddings can 
capture nuances such as similarity and analogy, which BoW, TF-IDF, and BM25 miss. 
However, while they provide a richer representation, they still lack full contextual 
understanding and are limited in handling polysemy (words with multiple meanings). 
The term static here highlights that the vector representation of words does not change 
with the context of the word in the input query.

CONTEXTUAL EMBEDDINGS

Generated by models such as BERT or OpenAI’s text embeddings, contextual embed-
dings produce high-dimensional, context-aware representations for queries and doc-
uments. These models, based on transformers, capture deep semantic meanings and 
relationships. For example, a query about “apple” will retrieve documents discussing 
apple the fruit, or Apple the technology company, depending on the input query. Fig-
ure 4.5 illustrates the difference between static and contextual embeddings. Contex-
tual embeddings represent a significant advancement in IR, providing the context and 
understanding necessary for RAG tasks. Despite being computationally intensive, con-
textual embeddings are the most widely used retrievers in RAG. Examples of embed-
ding models discussed in section 3.3.2 are contextual embeddings.

Methods such as TF-IDF and BM25 use frequency-based calculations to rank doc-
uments. In embeddings (both static and contextual), ranking is done based on a sim-
ilarity score. Similarity is popularly calculated using the cosine of the angle between 
document vectors. We discussed cosine similarity calculation in section 3.3.3. Figure 4.6 
illustrates the process of retrieval using embeddings.

OTHER RETRIEVAL METHODS

While the discussed methods are most popular in the discourse, other methods are 
also available. These methods represent more recent developments and specialized 
approaches and are good to refer to if you want to dive deeper into the world of infor-
mation retrieval:
¡	Learned sparse retrieval—Generates sparse, interpretable representations using 

neural networks (examples: SPLADE, DeepCT, and DocT5Quer)

¡	Dense retrieval—Encodes queries and documents as dense vectors for semantic 
matching (examples: dense passage retriever [DPR], ANCE, RepBERT)
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Figure 4.5 Static vs. contextual embeddings

¡	Hybrid retrieval—Combines sparse and dense methods for balanced efficiency 
and effectiveness (examples: ColBERT, COIL)

¡	Cross-encoder retrieval—Directly compares query-document pairs using trans-
former models (example: BERT-based re-rankers)

¡	Graph-based retrieval—Uses graph structures to model relationships between doc-
uments (examples: TextGraphs, graph neural networks for IR)

¡	Quantum-inspired retrieval—Applies quantum computing principles to informa-
tion retrieval (example: quantum language models [QLM])

¡	Neural IR models—Encompass various neural network-based approaches to infor-
mation retrieval (examples: NPRF [neural PRF], KNRM [Kernel-based Neural 
Ranking Model])
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Figure 4.6 Similarity calculation and results ranking in embeddings-based retrieval technique

Table 4.1 notes the weaknesses and strengths of different retrievers. While contextual 
embeddings are the only ones you need to know to get started with RAG, it is useful to 
get familiar with other retrievers for further exploration and for cases where you want 
to improve retriever performance. As we discussed, the implementation of TF-IDF 
using the scikit-learn retriever and BM25 using rank_bm25 retriever in LangChain, 
there are many others available that use one of the mentioned methodologies. We will 
look at some of the popular ones in the next section.

Table 4.1 Comparison of different retrieval techniques for RAG

Technique Key feature Strengths Weaknesses Suitability for RAG

Boolean 
retrieval

Exact matching 
with logical 
operators

Simple, fast, and 
precise

Limited relevance 
ranking; no partial 
matching

Low: Too rigid

BoW Unordered word 
frequency counts

Simple and 
intuitive

Ignores word order 
and context

Low: Lacks 
semantic 
understanding
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Technique Key feature Strengths Weaknesses Suitability for RAG

TF-IDF Term weighting 
based on docu-
ment and corpus 
frequency

Improved rele-
vance ranking 
over BoW

Still ignores seman-
tics and word 
relationships

Low–medium: 
Better than BoW 
but limited; used 
in hybrid retrieval

BM25 Advanced rank-
ing function 
with length 
normalization

Robust perfor-
mance; industry 
standard

Limited semantic 
understanding

Medium: Good 
baseline for sim-
ple RAG; used in 
hybrid retrieval.

Static 
embeddings

Fixed dense 
vector 
representations

Captures some 
semantic 
relationships

Context-indepen-
dent; limited in 
polysemy  
handling

Medium: Intro-
duces basic 
semantics

Contextual 
embeddings

Context-aware 
dense 
representations

Rich semantic 
understanding; 
handles polysemy

Computationally 
intensive

High: Excellent 
semantic capture

Learned sparse 
retrievers

Neural-net-
work-gener-
ated sparse 
representations

Efficient, inter-
pretable, and has 
some semantic 
understanding

May miss 
some semantic 
relationships

High: Balances 
efficiency and 
semantics

Dense 
retrievers

Dense vector 
matching for 
queries and 
documents

Strong semantic 
matching

Computationally 
intensive; less 
interpretable

High: Excellent for 
semantic search 
in RAG

Hybrid 
retrievers

Combination of 
sparse and dense 
methods

Balances effi-
ciency and 
effectiveness

Complex to imple-
ment and tune

High: Versatile 
for various RAG 
needs

Cross-encoder 
retrievers

Direct que-
ry-document 
comparison

Very accurate 
relevance 
assessment

Extremely computa-
tionally expensive

Medium–high: 
Great for rerank-
ing in RAG

Graph-based 
retrievers

Graph structure 
for document 
relationships

Captures complex 
relationships in 
data

Can be complex to 
construct and query

Medium–high: 
Good for struc-
tured data in RAG

Quantum-
inspired 
retrievers

Quantum comput-
ing concepts in IR

Potential for 
handling complex 
queries

Emerging field; 
practical benefits 
not fully proven

Low–medium: 
Potentially prom-
ising but not 
mature

Neural IR 
models

Various neu-
ral network 
approaches  
to IR

Flexible; can 
capture complex 
patterns

Often require large 
training data; can 
be black-box

High: Adaptable 
to various RAG 
scenarios

4.2.2 Popular retrievers

Developers can build their retrievers based on one or a combination of multi-
ple retrieval methodologies. Retrievers are used not just in RAG but in a variety of 
search-related tasks.

Table 4.1 Comparison of different retrieval techniques for RAG (continued)
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For RAG, LangChain provides many integrations where the algorithms such as 
TF-IDF, embeddings and similarity search, and BM25 have been abstracted as retrievers 
for developers to use. We have already seen the ones for TF-IDF and BM25. Some of the 
other popular retrievers are described in the following sections.

VECTOR STORES AND DATABASES AS RETRIEVERS

Vector stores can act as the retrievers, taking away the responsibility from the devel-
oper to convert the query vector into embeddings by calculating similarity and ranking 
the results. FAISS is typically used in tandem with a contextual embedding model for 
retrieval. Other vector DBs such as PineCone, Milvus, and Weaviate provide hybrid 
search functionality by combining dense retrieval methods such as embeddings and 
sparse methods such as BM25 and SPLADE.

CLOUD PROVIDERS

Cloud providers Azure, AWS, and Google also offer their retrievers. Integration with 
Amazon Kendra, Azure AI Search, AWS Bedrock, Google Drive, and Google Vertex 
AI Search provides developers with infrastructure, APIs, and tools for information 
retrieval of vector, keyword, and hybrid queries at scale.

WEB INFORMATION RESOURCES

Connections to information resources such as Wikipedia, Arxiv, and AskNews provide 
optimized search and retrieval from these sources. You can check these retrievers and 
more in the official LangChain documentation (https://mng.bz/gm4R)

This was a brief introduction to the world of retrievers. If you found the informa-
tion slightly complex, you can always revisit it. At this stage, the understanding of 
contextual embeddings will suffice. Contextual embeddings are the most popular tech-
nique for basic RAG pipelines, and we will now create a simple retriever using OpenAI 
embeddings.

4.2.3 A simple retriever implementation

Before we move to the next step of the generation pipeline, let’s look at a simple 
example of a retriever. In chapter 3, we were working on indexing the Wikipedia page 
for the 2023 Cricket World Cup. If you recall, we used embeddings from OpenAI to 
encode the text and used FAISS as the vector index to store the embeddings. We also 
stored the FAISS index in a local directory. Let’s reuse this index: 

# Install the langchain openai library

%pip install langchain-openai==0.3.7

# Import FAISS class from vectorstore library

from langchain_community.vectorstores import FAISS

# Import OpenAIEmbeddings from the library

from langchain_openai import OpenAIEmbeddings

# Set the OPENAI_API_KEY as the environment variable

import os

https://mng.bz/gm4R
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os.environ["OPENAI_API_KEY"] = <YOUR_API_KEY>

# Instantiate the embeddings object

embeddings=OpenAIEmbeddings(model="text-embedding-3-small")

# Load the database stored in the local directory

vector_store=FAISS.load_local(
folder_path="../../Assets/Data", 
index_name="CWC_index",
embeddings=embeddings, 
allow_dangerous_deserialization=True
)

# Original Question

query = "Who won the 2023 Cricket World Cup?"

# Ranking the chunks in descending order of similarity

retrieved_docs = vector_store.similarity_search(query, k=2)

This similarity_search () function returns a list of matching documents ordered by 
a score. This score is a quantification of the similarity between the query and the docu-
ment and is hence called the similarity score. In this example, the vector index’s inbuilt 
similarity search feature was used for retrieval. As one of the retrievers we discussed 
in section 4.2.2, the vector store itself acted as the retriever. K=2 tells the function to 
retrieve the top two documents. This is the most basic implementation of a retriever 
in the generation pipeline of a RAG system, and the retrieval method is enabled by 
embeddings. We used the text-embedding-3-small from OpenAI. FAISS calculated the 
similarity score based on these embeddings.

Retrievers are the backbone of RAG systems. The quality of the retriever has a great 
bearing on the quality of the generated output. In this section, you learned about 
vanilla retrieval methods. Multiple strategies are used when designing production-
grade systems. We will read about these advanced strategies in chapter 6. Now that we 
have gained an understanding of the retrievers, we will move on to the next important 
step—augmentation.

4.3 Augmentation

A retriever fetches the information (or documents) that are most relevant to the user 
query. But, what next? How do we use this information? The answer is quite intuitive. 
If you recall the discussion in chapter 1, the input to an LLM is a natural language 
prompt. This information fetched by the retriever should also be sent to the LLM in 
the form of a natural language prompt. This process of combining the user query and 
the retrieved information is called augmentation.

The augmentation step in RAG largely falls under the discipline of prompt engineer-
ing. Prompt engineering can be defined as the technique of giving instructions to an LLM 
to attain a desired outcome. The goal of prompt engineering is to construct the prompts 
to achieve accuracy and relevance in the LLM responses to the desired outcome(s). At 
the first glance, augmentation is quite simple—just add the retrieved information to 
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the query. However, some nuanced augmentation techniques help improve the qual-
ity of the generated results. See figure 4.7 for an example of simple augmentation.

Retriever output

User query

Augmentation

Augmented prompt for LLM

Figure 4.7 Simple augmentation combines the user query with retrieved documents to send to the LLM.

4.3.1 RAG prompt engineering techniques

Prompt engineering as a discipline has, sometimes, been dismissed as being too simple 
to be called engineering. You may have heard the phrase, “English is the new program-
ming language.” Interaction with LLMs is indeed in natural language. However, what 
is also true is that the principles of programming are not the language in which code is 
written but the logic in which the machine is instructed. With that in mind, let’s exam-
ine different logical approaches that can be taken to augment the user query with the 
retrieved information. 

CONTEXTUAL PROMPTING

To understand a simple augmentation technique, let’s revisit chapter 1. Recall our 
example of “Who won the 2023 Cricket World Cup?” We copied an excerpt from the 
Wikipedia article. This excerpt is the retrieved information. We then added this infor-
mation to the prompt and provided an extra instruction—“Answer only based on the 
context provided below.” Figure 4.8 illustrates this example.

By adding this instruction, we have set up our generation to focus only on the provided 
information and not on LLM’s internal knowledge (or parametric knowledge). This is 
a simple augmentation technique that is also referred to as contextual prompting. Please 
note that the instruction can be given in any linguistic construct. For example, we could 
have added the instruction at the beginning of the prompt as, “Given the context below, 
answer the question, Who won the 2023 Cricket World Cup. Information: <Wikipedia 
excerpt>.” We can also reiterate the instruction at the end of the prompt—“Remember 
to answer only based on the context provided and not from any other source.

CONTROLLED GENERATION PROMPTING

Sometimes, the information might not be present in the retrieved document. This 
happens when the documents in the knowledge base do not have any information
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Figure 4.8 Information is augmented to the original question with an added instruction.

relevant to the user query. The retriever might still fetch some documents that are the 
closest to the user query. In these cases, the chances of hallucination increase because 
the LLM will still try to follow the instructions for answering the question. To avoid 
this scenario, an additional instruction is added, which tells the LLM not to answer if 
the retrieved document does not have proper information to answer the user ques-
tion (something like, “If the question cannot be answered based on the provided con-
text, say I don’t know.”). In the context of RAG, this technique is particularly valuable 
because it ensures that the model’s responses are grounded in the retrieved informa-
tion. If the relevant information hasn’t been retrieved or isn’t present in the knowl-
edge base, the model is instructed to acknowledge this lack of information rather than 
attempting to generate a potentially incorrect answer.”

FEW-SHOT PROMPTING

It has been observed that while generating responses, LLMs adhere quite well to 
the examples provided in the prompt. If you want the generation to be in a certain 
format or style, it is recommended to provide a few examples. In RAG, while provid-
ing the retrieved information in the prompt, we can also specify certain examples to 
help guide the generation in the way we need the retrieved information to be used. 
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This technique is called few-shot prompting. Here “shot” refers to the examples given 
in the prompt. Figure 4.9 illustrates a prompt that includes two examples with the 
question.

Answer the given question using only the provided context. Follow the

format in these examples:

Question: Who won the first Cricket World Cup?

Context: The inaugural Cricket World Cup was held in England in 1975.

The West Indies emerged victorious, defeating Australia in the final at

Lord's Cricket Ground.

Answer: The West Indies won the first Cricket World Cup in 1975.

Question: Who has scored the most runs in Test cricket?

Context: As of 2022, Sachin Tendulkar of India holds the record for the

most runs in Test cricket, accumulating 15,921 runs over his 24-year

career from 1989 to 2013.

Answer: Sachin Tendulkar has scored the most runs in Test cricket, with

15,921 runs.

Now, answer the following question using the given context:

Question: Who won the 2023 Cricket World Cup?

Context: The tournament was contested by ten national teams,

maintaining the same format used in 2019. After six weeks of round-

robin matches and knockout matches, India and Australia, qualified for

the finals. The final was played on 19 November at the Narendra Modi

Stadium in Ahmedabad. Australia won the final by six wickets, winning

their sixth Cricket World Cup title.

Answer:

Australia won the 2023 Cricket World Cup by defeating India in the finals

by six wickets

Examples
• Focus only on the
    cricket-related
    information in the
    retrieved context.
• Present answers in a
    consistent, concise
    format.
• Include specific details
    like years or statistics
    when relevant.
• Provide clear, relevant
    answers to cricket
    questions.

Question &
provided context

Figure 4.9 Example of few-shot prompting in the context of RAG

You might come across terms such as one-shot prompting or two-shot prompting, which 
replaces the word “few” with the number of examples given. Conversely, when no 
example is given, and the LLM is expected to answer correctly, the technique is also 
called zero-shot prompting. 

CHAIN OF THOUGHT PROMPTING

It has been observed that the introduction of intermediate reasoning steps improves 
the performance of LLMs in tasks requiring complex reasoning, such as arithmetic, 
common sense, and symbolic reasoning. The same can be applied in the context of 
RAG. This is called chain-of-thought, or CoT, prompting. In figure 4.10, I asked ChatGPT 
to analyze the performance of two teams based on the retrieved information.
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Figure 4.10 Chain-of-thought (CoT) prompting for reasoning tasks
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The CoT prompting approach can also be combined with the few-shot prompting 
technique, where a few examples of reasoning are provided before the final question. 
Creating these examples is a manually intensive task. In auto-CoT, the examples are 
also created using an LLM.

OTHER ADVANCED PROMPTING TECHNIQUES

Prompt engineering is becoming an increasingly intricate discipline. Ongoing research 
constantly presents new improvements in prompting techniques. To dive deeper into 
prompt engineering, let’s check out some of the following techniques: 

¡	Self-consistency—While CoT uses a single reasoning chain in CoT prompting, 
self-consistency aims to sample multiple diverse reasoning paths and use their 
respective generations to arrive at the most consistent answer.

¡	Generated knowledge prompting—This technique explores the idea of prompt-
based knowledge generation by dynamically constructing relevant knowledge 
chains, using models’ latent knowledge to strengthen reasoning.

¡	Tree-of-thoughts prompting—This technique maintains an explorable tree structure 
of coherent intermediate thought steps aimed at solving problems.

¡	Automatic reasoning and tool use (ART)—The ART framework automatically inter-
leaves model generations with tool use for complex reasoning tasks. ART employs 
demonstrations to decompose problems and integrate tools without task-specific 
scripting.

¡	Automatic prompt engineer (APE)—The APE framework automatically generates 
and selects optimal instructions to guide models. It uses an LLM to synthesize 
candidate prompt solutions for a task based on output demonstrations.

¡	Active prompt—Active-prompt improves CoT methods by dynamically adapting 
language models to task-specific prompts through a process involving query, 
uncertainty analysis, human annotation, and enhanced inference.

¡	ReAct prompting—ReAct integrates LLMs for concurrent reasoning traces and 
task-specific actions, improving performance by interacting with external tools 
for information retrieval. When combined with CoT, it optimally utilizes internal 
knowledge and external information, enhancing the interpretability and trust-
worthiness of LLMs.

¡	Recursive prompting—Recursive prompting breaks down complex problems into 
subproblems, solving them by sequentially using prompts. This method aids 
compositional generalization in tasks such as math problems or question answer-
ing, with the model building on solutions from previous steps.

Table 4.2 summarizes different prompting techniques. Prompt engineering for aug-
mentation is an evolving discipline. It is important to note that there is a lot of scope 
for creativity in writing prompts for RAG applications. Efficient prompting has a signif-
icant effect on the generated output. The kind of prompts you use will depend a lot on 
your use case and the nature of the information in the knowledge base. 



 75Augmentation

Table 4.2
 

Comparison of prompting techniques for augmentation 

Technique Description Key advantage Best use case Complexity

Contextual 
prompting

Adds retrieved 
information to the 
prompt with instruc-
tions to focus 
on the provided 
context

Ensures focus 
on relevant 
information

General RAG 
queries

Low

Controlled gener-
ation prompting

Instructs the 
model to say “I 
don’t know” when 
information is not 
available

Reduces hallucina-
tion risk

When accuracy is 
critical

Low

Few-shot 
prompting

Provides examples 
in the prompt to 
guide response 
format and style

Improves output 
consistency and for-
mat adherence

When a specific 
output format is 
required

Medium

Chain-of-thought 
(CoT) prompting

Introduces inter-
mediate reasoning 
steps

Improves perfor-
mance on complex 
reasoning tasks

Complex queries 
requiring step-by-
step analysis

Medium

Self-consistency Samples multiple 
diverse reasoning 
paths

Improves answer 
consistency and 
accuracy

Tasks with multiple 
possible reasoning 
approaches

High

Generated knowl-
edge prompting

Dynamically con-
structs relevant 
knowledge chains

Uses the model’s 
latent knowledge

Tasks requiring 
broad knowledge 
application

High

Tree-of-thoughts 
prompting

Maintains an 
explorable tree 
structure of thought 
steps

Allows for more 
comprehensive 
problem-solving

Complex, multistep 
problem solving

High

Automatic rea-
soning and tool 
use (ART)

Interleaves model 
generations with 
tool use

Enhances problem 
decomposition and 
tool integration

Tasks requiring 
external tool use

Very High

Automatic prompt 
engineer (APE)

Automatically gen-
erates and selects 
optimal instructions

Optimizes prompts 
for specific tasks

Prompt optimiza-
tion for complex 
tasks

Very High

Active prompt Dynamically adapts 
LMs to task-specific 
prompts

Improves task-spe-
cific performance

Tasks requiring 
adaptive prompting

High

ReAct prompting Integrates rea-
soning traces 
with task-specific 
actions

Improves per-
formance and 
interpretability

Tasks requiring 
both reasoning and 
action

High

Recursive 
prompting

Breaks down com-
plex problems into 
subproblems

Aids in com-
positional 
generalization

Complex, multistep 
problems

High

We have already built a simple retriever in the previous section. We will now execute 
augmentation with a simple contextual prompt with controlled generation.
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4.3.2 A simple augmentation prompt creation

In section 4.2.3, we were able to implement a FAISS-based retriever using OpenAI 
embeddings. We will now make use of this retriever and create the augmentation 
prompt:

# Import FAISS class from vectorstore library

from langchain_community.vectorstores import FAISS

# Import OpenAIEmbeddings from the library

from langchain_openai import OpenAIEmbeddings

# Set the OPENAI_API_KEY as the environment variable

import os

os.environ["OPENAI_API_KEY"] = <YOUR_API_KEY>

# Instantiate the embeddings object

embeddings=OpenAIEmbeddings(model="text-embedding-3-small")

# Load the database stored in the local directory

vector_store=FAISS.load_local(

folder_path="../../Assets/Data", 

index_name="CWC_index",

embeddings=embeddings, 

allow_dangerous_deserialization=True

)

# Original Question

query = "Who won the 2023 Cricket World Cup?"

# Ranking the chunks in descending order of similarity

retrieved_docs = vector_store.similarity_search(query, k=2)

# Selecting the first chunk as the retrieved information

retrieved_context= retrieved_docs[0].page_content

# Creating the prompt

augmented_prompt=f"""

Given the context below, answer the question.

Question: {query} 

Context : {retrieved_context}

Remember to answer only based on the context provided and not from any other 

source. 

If the question cannot be answered based on the provided context, say I don't 

know.

"""



 77Generation

With the augmentation step complete, we are now ready to send the prompt to the 
LLM for the generation of the desired outcome. You will now learn how LLMs gener-
ate text and the nuances of generation. 

4.4 Generation

Generation is the final step of this pipeline. While LLMs may be used in any of the pre-
vious steps, the generation step relies completely on the LLM. The most popular LLMs 
are the ones being developed by OpenAI, Anthropic, Meta, Google, Microsoft, and 
Mistral, among other developers. While text generation is the core capability of LLMs, 
we are now seeing multimodal models that can handle images and audio along with 
text. Simultaneously, researchers are developing faster and smaller models. 

In this section, we will discuss the factors that can help choose a language model 
for your RAG system. We will then continue with our example of the retriever and aug-
mented prompt we have built so far and complete it by adding the generation step.

4.4.1 Categorization of LLMs and suitability for RAG

As of June 2024, there are over a hundred LLMs available to use, and new ones are 
coming out every week. How do we decide then which LLM to choose for our RAG sys-
tem? To show you the decision-making process, let’s discuss three themes under which 
we can broadly categorize LLMs: 

¡	How they have been trained

¡	How they can be accessed

¡	Their size

We will discuss the LLMs under these themes and understand the factors that may 
influence the LLM choice for RAG.

ORIGINAL VS. FINE-TUNED MODELS

Training an LLM takes massive amounts of data and computational resources. LLMs 
training is done through an unsupervised learning process. All modern LLMs are 
autoregressive models and are trained to generate the next token in a sequence. These 
massive pre-trained LLMs are also called foundation models. 

The question that you may ask is, if LLMs just predict the next tokens in a sequence, 
how are we able to ask questions and chat with these models? The answer is in what we 
call supervised fine-tuning, or SFT.

Supervised fine-tuning is a process used to adapt a pre-trained language model for 
specific tasks or behaviors such as question-answering or chat. It involves further train-
ing a pre-trained foundation model on a labeled dataset, where the model learns to 
map inputs to specific desired outputs. You start with a pre-trained model, prepare a 
labelled dataset for the target task, and train the model on this dataset, which adjusts 
the model parameters to perform better on the target task. Figure 4.11 gives an over-
view of the SFT process.
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Figure 4.11 Supervised fine-tuning is a classification mode-training process.

While foundation models generalize well for a wide array of tasks, there are several use 
cases where the need for a fine-tuned model arises. Domain adaptation for specialized 
fields such as law and healthcare, task specific optimization such as classification and 
NER (named entity recognition), and conversational AI, personalization are some use 
cases where you may observe a fine-tuned model performing better.

Specifically, in the context of RAG, some criteria should be considered, while choos-
ing between a foundation model and a fine-tuning one: 

¡	Domain specificity—Foundation models have broader knowledge and can handle 
a wider range of topics and queries for general-purpose RAG systems. If your 
RAG application is specialized (say, dealing with patient records or instruction 
manuals for heavy machinery), you may find that fine-tuning the model for spe-
cific domains may improve performance.

¡	Retrieval integration—If you observe that a foundation model you are using is not 
integrating the retrieved information well, a fine-tuned model trained to better 
utilize information can lead to better quality of generations.

¡	Deployment speed—A foundation model can be quickly deployed since there is no 
additional training required. To fine-tune a model, you will need to spend time 
in gathering training data and the actual training of the model.

¡	Customization of responses—For generating results in a specific format or custom-
style elements such as tone or vocabulary, a fine-tuned model may result in better 
adherence to the requirements compared to foundation models. 

¡	Resource efficiency—Fine-tuning a model requires more storage and computa-
tional resources. Depending on the scale of deployment, the costs may be higher 
for a fine-tuned model.
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¡	Ethical alignment—A fine-tuned model allows for better control over the responses 
in adherence to ethical guidelines and even certain privacy aspects.

A summary of the criteria is presented in table 4.3.

Table 4.3 Criteria for choosing between foundation and fine-tuned models

Criteria Better suitability Explanation

Domain 
specificity

Fine-tuned models Better performance for specialized applications (e.g., patient 
records and instruction manuals)

Retrieval 
integration

Fine-tuned models Can be trained to better utilize retrieved information

Deployment 
speed

Foundation models Quicker deployment with no additional training required

Customization 
of responses

Fine-tuned models Better adherence to specific format, style, tone, or vocabu-
lary requirements

Resource 
efficiency

Foundation models Requires less storage and computational resources

Ethical 
alignment

Fine-tuned models Allows better control over responses to ethical guidelines 
and privacy

Fine-tuned models give better control over your RAG systems, but they are costly. 
There’s also a risk of overreliance on retrieval and a potential tradeoff between RAG 
performance and inherent LLM language abilities. Therefore, whether to use a foun-
dation model or fine-tuning one depends on the improvements you are targeting, 
availability of data, cost, and other tradeoffs. The general recommendation is to start 
experimenting with a foundation model and then progress to supervised fine-tuning 
for performance improvement.

OPEN SOURCE VS. PROPRIETARY MODELS

Software development and distribution are represented by two fundamentally differ-
ent approaches: open versus proprietary software. The world of LLMs is no different. 
Some LLM developers such as Meta and Mistral have made the model weights public 
to foster collaboration and community-driven innovation. In contrast, pioneers such as 
OpenAI, Anthropic, and Google have kept the models closed, offering support, man-
aged services, and better user experience. 

For RAG systems, open source models provide the flexibility of customization, 
deployment method, and transparency, but warrant the need for the necessary infra-
structure to maintain the models. Proprietary model providers might be costlier for 
high volumes but provide regular updates, ease of use, scalability, and faster develop-
ment, among other things. Some proprietary model providers such as OpenAI have 
prebuilt RAG capabilities. Your choice of the type of model you choose may depend on 
some of the following criteria:

¡	Customization—Open source LLMs are generally considered better for custom-
izations such as deep integration with custom retrieval mechanisms. A better 
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control over fine-tuning is also something that open source LLMs allow for. Cus-
tomization of proprietary models is limited to API capabilities.

¡	Ease of use—Proprietary models, however, are much easier to use. Some of the 
models such as OpenAI, Cohere, and similar offer optimized, prebuilt RAG 
solutions.

¡	Deployment flexibility—Open source models can be deployed according to your 
preference (private cloud, on-premises), while proprietary models are man-
aged by the providers. This also has a bearing on data security and privacy. 
Most proprietary model providers are now offering multiple deployment  
options.

¡	Cost—Open source LLMs may come with upfront infrastructure costs, while pro-
prietary models are priced based on usage. Long-term costs and query volumes 
are considerations to choose between open source and proprietary models. 
Large-scale deployments may favor the use of open source models.

The choice between open source and proprietary models for RAG depends on factors 
such as the scale of deployment, specific domain requirements, integration needs, and 
the importance of customization in the retrieval and generation process. Apart from 
these, the need for knowledge updates, transparency, scalability, the structure of data, 
compliance, and the like will determine the choice of the model. A summary of the 
discussion is presented in table 4.4

Table 4.4 Criteria for choosing between open source and proprietary models

Criteria Better suitability Explanation

Customization Open source Allows deeper integration with custom retrieval mecha-
nisms and better control over fine-tuning

Ease of use Proprietary Offers optimized, prebuilt RAG solutions and are generally 
easier to use

Deployment 
flexibility

Open source Can be deployed on private cloud or on-premises, offering 
more options

Cost for large-scale 
deployment

Open source May be more cost-effective for large-scale deployments 
despite upfront infrastructure costs

Data security and 
privacy

Open source Offers more control over data, though some private mod-
els now offer various deployment options

Regular updates 
and support

Proprietary Typically provides regular updates and better support

A hybrid approach is also not ruled out. At a PoC stage, a proprietary model may make 
sense for quick experimentation. 

Here are some examples of popular proprietary models: 

¡	GPT series by OpenAI (https://platform.openai.com/docs/models)

¡	Claude series by Anthropic (https://www.anthropic.com/claude)

https://platform.openai.com/docs/models
https://www.anthropic.com/claude
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¡	Gemini series by Google (https://mng.bz/eBnJ)

¡	Command R series by Cohere (https://cohere.com/command)

Some of open source models are 

¡	Llama series by Meta (https://llama.meta.com/)

¡	Mistral (https://docs.mistral.ai/getting-started/models/)

MODEL SIZES

LLMs come in various sizes, typically measured by the number of parameters they 
contain. The size of the model greatly affects the capabilities along with the resource 
requirements. 

Larger models have several billion, even trillions, of parameters. These models 
exhibit superior performance in reasoning abilities, and language understanding, and 
have broader knowledge. They can generate more coherent text, and their responses 
are contextually more accurate. However, these larger models have significantly high 
computation, storage, and energy requirements.

Smaller models with parameter sizes in millions or a few billion offer benefits such 
as faster inference times, lower resource usage, and easier deployment on edge devices 
or resource constrained environments. Researchers and developers continue to 
explore methods to achieve large-model performance with smaller and more efficient 
architectures.

For a RAG system, the following should be assessed: 

¡	Resource constraints—Small models have a much lower resource usage. Light-
weight RAG applications with faster inference can be built with smaller  
models.

¡	Reasoning capability—On the other spectrum of resource constraints is the 
language-processing ability of the model. Large models are better suited for 
complex reasoning tasks and can deal with ambiguity in the retrieved infor-
mation. Smaller models, therefore, will rely heavily on the quality of retrieved 
information.

¡	Deployment options—The size of large models makes it difficult to deploy on-edge 
devices. This is a flexibility that smaller models provide, bringing RAG applica-
tions to a wide range of devices and environments.

¡	Context handling—Large models may be better at integrating multiple pieces of 
retrieved information in RAG systems since they have longer context windows. 
Large models are also better at handling diverse queries, while small models 
struggle with out-of-domain queries. Large models might perform better in RAG 
systems with diverse or unpredictable query types.

In practice, most RAG applications are built on large models. However, smaller models 
make more sense in the long-term adoption and application of the technology. The 
various factors are summarized in table 4.5

https://mng.bz/eBnJ
https://cohere.com/command
https://llama.meta.com/
https://docs.mistral.ai/getting-started/models/
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Table 4.5 Criteria for choosing between small and large models

Criteria Better suitability Explanation

Resource 
constraints

Small models Lower resource usage; suitable for lightweight RAG applications

Reasoning 
capability

Large models Better for complex reasoning tasks and handling ambiguity in 
retrieved information

Deployment 
options

Small models More flexible; can be deployed on edge devices and 
resource-constrained environments

Context 
handling

Large models Better at integrating multiple pieces of retrieved information; 
longer context windows

Query diversity Large models Handle diverse and unpredictable query types better

Inference 
speed

Small models Faster inference times; suitable for applications requiring quick 
responses

Examples of popular small language models are:

¡	Phi-3 by Microsoft (https://azure.microsoft.com/en-us/products/phi-3)

¡	Gemma by Google (https://ai.google.dev/gemma)

The choice of the LLM is a core consideration in your RAG system that requires close 
attention and iterations. The performance of your system may require experimenting 
and adapting your choice of the LLM. 

The list of LLMs has become almost endless. What this means for developers and 
businesses is that the technology has truly been democratized. While all LLMs have 
their unique propositions and architecture, for practical applications, there are a wide 
array of choices available. While simple RAG applications may rely on a single LLM pro-
vider, for more complex applications, a multi-LLM strategy may be beneficial.

We have implemented a simple retriever and created an augmented prompt. In the 
last section of this chapter, we round up the pipeline by creating the generation step.

4.4.2 Completing the RAG pipeline: Generation using LLMs

We have built a simple retriever using FAISS and OpenAI embeddings, and we created 
a simple augmented prompt. Now we will use OpenAI’s latest model, GPT-4o, to gen-
erate the response:

# Import FAISS class from vectorstore library

from langchain_community.vectorstores import FAISS

# Import OpenAIEmbeddings from the library

from langchain_openai import OpenAIEmbeddings

# Set the OPENAI_API_KEY as the environment variable

import os

os.environ["OPENAI_API_KEY"] = <YOUR_API_KEY>

# Instantiate the embeddings object

https://azure.microsoft.com/en-us/products/phi-3
https://ai.google.dev/gemma
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embeddings=OpenAIEmbeddings(model="text-embedding-3-small")

# Load the database stored in the local directory

vector_store=FAISS.load_local(
    folder_path="../../Assets/Data", 
    index_name="CWC_index",
    embeddings=embeddings, 
    allow_dangerous_deserialization=True
    )

# Original Question

query = "Who won the 2023 Cricket World Cup?"

# Ranking the chunks in descending order of similarity

retrieved_docs = vector_store.similarity_search(query, k=2)

# Selecting the first chunk as the retrieved information

retrieved_context= retrieved_docs[0].page_content

# Creating the prompt

augmented_prompt=f"""

Given the context below, answer the question.

Question: {query} 

Context : {retrieved_context}

Remember to answer only based on the context provided and not from any other 
source. 

If the question cannot be answered based on the provided context, say I don't 
know.

"""
# Importing the OpenAI library from langchain

from langchain_openai import ChatOpenAI

# Instantiate the OpenAI LLM

llm = ChatOpenAI(
            model="gpt-4o-mini",
            temperature=0,
            max_tokens=None,
            timeout=None,
            max_retries=2
)
# Make the API call passing the augmented prompt to the LLM

response = llm.invoke (
     [("human",augmented_prompt)]
    )

# Extract the answer from the response object

answer=response.content

print(answer)
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And there it is. We have built a generation pipeline, albeit a very simple one. It can now 
fetch information from the knowledge base and generate an answer pertinent to the 
question asked and rooted in the knowledge base. Try asking a different question to 
see how well the pipeline generalizes.

We have now covered all three steps—retrieval, augmentation, and generation—
of the generation pipeline. With the knowledge of the indexing pipeline (covered in 
chapter 3) and the generation pipeline, you are now all set to create a basic RAG system. 
What we have discussed so far can be termed a naïve RAG implementation. Naïve RAG can 
be marred by inaccuracies. It can be inefficient in retrieving and ranking information 
correctly. The LLM can ignore the retrieved information and still hallucinate. To dis-
cuss and address these challenges, in chapter 6, we examine advanced strategies that 
allow for more complex and better-performing RAG systems. 

But before that, the question of evaluating the system arises. Is it generating the 
responses on the expected lines? Is the LLM still hallucinating? Before trying to 
improve the performance of the system, we need to be able to measure and benchmark 
it. That is what we will do in chapter 5. We will look at the evaluation metrics and the 
popular RAG benchmarks.

Summary

Retrieval

¡	Retrieval is the process of finding relevant information from the knowledge base 
based on a user query. It is a search problem to match documents with input 
queries.

¡	The popular retrieval methods for RAG include

– TF-IDF (Term Frequency-Inverse Document Frequency)—Statistical measure of word 
importance in a document relative to a corpus. It can be implemented using 
LangChain’s TFIDFRetriever.

– BM25 (Best Match 25)—Advanced probabilistic model, an improvement over 
TF-IDF. It adjusts for document length and can be implemented using Lang-
Chain’s BM25Retriever.

– Static word embeddings—Represent words as dense vectors (e.g., Word2Vec, 
GloVe) and capture semantic relationships but lack full contextual 
under standing.

– Contextual embeddings—Produced by models like BERT or OpenAI’s text 
embeddings. They provide context-aware representations and are most widely 
used in RAG, despite being computationally intensive.

– Advanced retrieval methods—They include learned sparse retrieval, dense 
retrieval, hybrid retrieval, cross-encoder retrieval, graph-based retrieval, 
quantum-inspired retrieval, and neural IR models.

¡	Most advanced implementations will include a hybrid approach.
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¡	Vector stores and databases (e.g., FAISS, PineCone, Milvus, Weaviate), cloud 
provider solutions (e.g., Amazon Kendra, Azure AI Search, Google Vertex AI 
Search), and web information resources (e.g., Wikipedia, Arxiv, AskNews) are 
some of the popular retriever integrations provided by LangChain.

¡	The choice of retriever depends on factors such as accuracy, speed, and compati-
bility with the indexing method.

Augmentation

¡	Augmentation combines the user query with retrieved information to create a 
prompt for the LLM.

¡	Prompt engineering is crucial for effective augmentation, aiming for accuracy 
and relevance in LLM responses.

¡	Key prompt engineering techniques for RAG include

– Contextual prompting—Adding retrieved information with instructions to focus 
on the provided context.

– Controlled generation prompting—Instructing the LLM to admit lack of knowl-
edge when information is insufficient.

– Few-shot prompting—Providing examples to guide the LLM’s response format 
or style.

– Chain-of-thought (CoT) prompting—Introducing intermediate reasoning steps 
for complex tasks.

– Advanced techniques—These include self-consistency, generated knowledge 
prompting, and tree of thought.

¡	The choice of augmentation technique depends on the task complexity, desired 
output format, and LLM capabilities.

Generation

¡	Generation is the final step in which the LLM produces the response based on 
the augmented prompt.

¡	LLMs can be categorized based on how they’ve been trained, how they can be 
accessed, and the number of parameters they have.

¡	Supervised fine-tuning, or SFT, improves context use and domain optimization, 
enhances coherence, and enables source attribution; however, it comes with 
challenges such as cost, risk of overreliance on retrieval, and potential tradeoffs 
with inherent LLM abilities.

¡	The choice between open source and proprietary LLMs depends on customiza-
tion needs, long-term costs, and data sensitivity.

¡	Larger models come with superior reasoning, language understanding, and 
broader knowledge, and generate more coherent and contextually accurate 
responses but come with high computational and resource requirements. 
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Smaller models allow faster inference, lower resource usage, and are easier to 
deploy on edge devices or resource-constrained environments but do not have 
the same language understanding abilities as large models.

¡	Popular LLMs include offerings from OpenAI, Anthropic, Google, and similar, 
and open source models are available through platforms such as Hugging Face.

¡	The choice of LLM depends on factors such as performance requirements, 
resource constraints, deployment environment, and data sensitivity.

¡	The choice of LLM for RAG systems requires careful consideration, experimen-
tation, and potential adaptation based on performance.
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5RAG evaluation: 
Accuracy, relevance, 

and faithfulness

This chapter covers

¡	The need and requirements for evaluating RAG  

 pipelines

¡	Metrics, frameworks, and benchmarks for RAG  

 evaluation

¡	Current limitations and future course of RAG  

 evaluation

Chapters 3 and 4 discussed the development of retrieval-augmented generation 
(RAG) systems using the indexing and generation pipelines. RAG promises to 
reduce hallucinations and ground the large language model (LLM) responses in 
the provided context, which is done by creating a non-parametric memory or knowl-
edge base for the system and then retrieving information from it. 

This chapter covers the methods used to evaluate how well the RAG system is func-
tioning. We need to make sure that the components of the two RAG pipelines are 
performing per the expectations. At a high level, we need to ensure that the infor-
mation being retrieved is relevant to the input query and that the LLM is generating 
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responses grounded in the retrieved context. To this end, there have been several 
frameworks developed over time. Here we discuss some popular frameworks and the 
metrics they calculate. 

There is also a second aspect to evaluation. While the frameworks allow for the cal-
culation of metrics, how do you make sure that your RAG pipelines are working better 
than those developed by other developers? The evaluations cannot be done in isola-
tion. For this purpose, several benchmarks have been established. These benchmarks 
evaluate the RAG systems on preset data, such as question–answer sets, for accurate 
comparison of different RAG pipelines. These benchmarks help developers evaluate 
the performance of their systems vis-à-vis those developed by other developers. 

Finally, like RAG techniques, the research on RAG evaluations is still in progress. 
There are still some limitations in the current set of evaluation parameters. We discuss 
these limitations and some ideas on the way forward for RAG evaluations. 

By the end of this chapter, you should

¡	Know the fundamentals of RAG evaluations.

¡	Be aware of the popular frameworks, metrics, and benchmarks for RAG 
evaluation.

¡	Understand the limitations and best practices.

¡	Be able to evaluate the RAG pipeline in Python.

For RAG to live up to the promise of grounding the LLM responses in data, you will 
need to go beyond the simple implementation of indexing, retrieval, augmentation, 
and generation. We will discuss these advanced strategies in chapter 6. However, to 
improve something, you need to first measure the performance. RAG evaluations help 
in setting up the baseline of your RAG system performance for you to then improve it. 
First, we look at the fundamental aspects of RAG systems evaluation.

5.1 Key aspects of RAG evaluation

Building a PoC RAG pipeline is not overtly complex. It is achievable through brief 
training and verification of a limited set of examples. However, to enhance its robust-
ness, thorough testing on a dataset that accurately mirrors the production use case is 
imperative. RAG pipelines can suffer from hallucinations of their own. This can be 
because 

¡	The retriever fails to retrieve the entire context or retrieves irrelevant context.

¡	Despite being provided the context, the LLM does not consider it.

¡	The LLM picks irrelevant information from the context instead of answering the 
query.

Retrieval and generation are two processes that need special focus from an evaluation 
perspective. This is because these two steps produce outputs that can be evaluated. 
(While indexing and augmentation will have a bearing on the outputs, they do not 
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produce measurable outcomes). Here are several questions we need to ask ourselves 
about these two processes: 

¡	How good is the retrieval of the context from the knowledge base? 

¡	Is it relevant to the query?

¡	How much noise (irrelevant information) is present?

¡	How good is the generated response? 

¡	Is the response grounded in the provided context? 

¡	Is the response relevant to the query?

You can ask many more questions such as these to assess the performance of your RAG 
system. Contemporary research has discovered certain scores to assess the quality and 
abilities of a RAG system. The following sections discuss three predominant quality 
scores and four main abilities.

5.1.1 Quality scores

There are three quality score dimensions prevalent in the discourse on RAG evalua-
tion. They measure the quality of retrieval and generation:

¡	Context relevance—This dimension evaluates how relevant the retrieved informa-
tion or context is to the user query. It calculates metrics such as the precision and 
recall with which context is retrieved from the knowledge base. 

¡	Answer faithfulness (also called groundedness)—This dimension evaluates whether 
the answer generated by the system is using the retrieved information. 

¡	Answer relevance—This dimension evaluates how relevant the answer generated 
by the system is to the original user query.

We discuss how these scores are calculated in section 5.2

5.1.2 Required abilities

The quality scores are important for measuring how well the retrieval and the gener-
ation components of the RAG system are performing. At an overall level, there are 
certain critical abilities that a RAG system should possess:

¡	Noise robustness—It is impractical to assume that the information stored in the 
knowledge base for RAG systems is perfectly curated to answer the questions that 
can be potentially asked. It is very probable that a document is related to the user 
query but does not have any meaningful information to answer it. The ability 
of the RAG system to separate these noisy documents from the relevant ones is 
termed noise robustness.

¡	Negative rejection—By nature, LLMs always generate text. There may be no infor-
mation about the user query in the documents in the knowledge base. The ability 
of the RAG system not to give an answer when there is no relevant information is 
called negative rejection.
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¡	Information integration—To obtain a comprehensive answer to a user query, it is 
also very likely the information must be retrieved from multiple documents. This 
ability of the system to assimilate information from multiple documents is called 
information integration.

¡	Counterfactual robustness—Sometimes the information in the knowledge base 
might itself be inaccurate. A high-quality RAG system should be able to address 
this problem and reject known inaccuracies in the retrieved information. This 
ability is known as counterfactual robustness.

Noise robustness is an ability that the retrieval component should possess, and other 
abilities are largely related to the generation component. 

Apart from these, latency is another often-mentioned capability. Although it is a 
non-functional requirement, it is quite critical in generative AI applications. Latency 
is the delay that happens between the user query and the response. You may have 
observed that LLMs themselves have considerable latency before the final response is 
generated. Add to it the task of retrieval and augmentation, and the latency is bound to 
increase. Therefore, it is important to monitor how much time your RAG system takes 
from user input to response.

Ethical considerations are also at the forefront of generative AI adoption. For some 
RAG applications, it is important to measure the degree of bias and toxicity in the system 
responses. This is also influenced by the underlying data in the knowledge base. While 
it is not specific to RAG, it is important to evaluate the outputs for bias and toxicity.

Another aspect to check is the robustness of the system, that is, its ability to handle dif-
ferent types of queries. Some queries may be simple, while others may involve complex 
reasoning. Some queries may require comparing two pieces of information, while oth-
ers may involve complex post-processing, like mathematical calculations. We will look 
at some types of queries when we discuss CRAG, a benchmark, in section 5.4.

Finally, it is important to mention that these are scores and abilities that approach 
RAG at the core technique level. RAG, after all, is a means to solving the end use case. 
Therefore, you may have to build a use case-specific evaluation criteria for your RAG sys-
tem. For example, a question-answering system may use an exact match (EM) or F1 
score as a metric, and a summarization service may use ROUGE scores. Modern search 
engines using RAG may look at user interaction metrics, accuracy of source attribution, 
and similar.

This is the main idea behind evaluating RAG pipelines. The quality scores and the 
abilities that we discussed before need to be measured and benchmarked. There are 
two critical enablers of RAG evaluations: frameworks and benchmarks.

Frameworks are tools designed to facilitate evaluation, offering automation of the 
evaluation process and data generation. They are used to streamline the evaluation pro-
cess by providing a structured environment for testing different aspects of RAG systems. 
They are flexible and can be adapted to different datasets and metrics. We will discuss 
the popular evaluation frameworks in section 5.3.
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Benchmarks are standardized datasets and their evaluation metrics used to measure 
the performance of RAG systems. Benchmarks provide a common ground for com-
paring different RAG approaches. They ensure consistency across the evaluations by 
considering a fixed set of tasks and their evaluation criteria. For example, HotpotQA 
focuses on multi-hop reasoning and retrieval capabilities using metrics such as Exact 
Match and F1 scores.

Benchmarks are used to establish a baseline for performance and identify strengths/
weaknesses in specific tasks or domains. We will discuss a few benchmarks and their 
characteristics in section 5.4

Developers can use frameworks to integrate evaluation in their development process 
and use benchmarks to compare their development with established standards. The 
frameworks and benchmarks both calculate metrics that focus on retrieval and the RAG 
quality scores. We will begin our discussion about the metrics in the next section before 
moving on to the popular benchmarks and frameworks.

5.2 Evaluation metrics

Metrics quantify the assessment of the RAG system performance. We will classify the 
evaluation metrics into two broad groups: 

¡	Retrieval metrics that are commonly used in information retrieval tasks

¡	RAG-specific metrics that have evolved as RAG has found more application

It is noteworthy that there are natural-language-generation-specific metrics such 
as BLEU, ROUGE, and METEOR that focus on fluency and measure relevance and 
semantic similarity. They play an important role in analyzing and benchmarking the 
performance of LLMs. This book discusses metrics specific to retrieval and RAG.

5.2.1 Retrieval metrics

The retrieval component of RAG can be evaluated independently to determine how 
well the retrievers are satisfying the user query. The primary retrieval evaluation met-
rics include accuracy, precision, recall, F1-score, mean reciprocal rank (MRR), mean 
average precision (MAP), and normalized discounted cumulative gain (nDCG).

ACCURACY 

Accuracy is typically defined as the proportion of correct predictions (both true posi-
tives and true negatives) among the total number of cases examined. In the context of 
information retrieval, it could be interpreted as

Although accuracy is a simple, intuitive metric, it is not the primary metric for retrieval. 
In a large knowledge base, a majority of documents are usually irrelevant to any given 
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query, which can lead to misleadingly high accuracy scores. It does not consider the 
ranking of the retrieved results.

PRECISION

Precision focuses on the quality of the retrieved results. It measures the proportion 
of retrieved documents relevant to the user query. It answers the question, “Of all the 
documents that were retrieved, how many were relevant?”

A higher precision means that the retriever is performing well and retrieving mostly 
relevant documents.

PRECISION@K

Precision@k is a variation of precision that measures the proportion of relevant docu-
ments among the top ‘k’ retrieved results. It is particularly important because it focuses 
on the top results rather than all the retrieved documents. For RAG, it is important 
because only the top results are most likely to be used for augmentation. For example, 
if you restrict your RAG system to use only the top five retrieved documents for context 
augmentation, Precision@5 will be the metric to calculate:

where ‘k’ is a chosen cut-off point. A precision@5 of .8 means that out of the top five 
retrieved documents, four were relevant.

Precision@k is also useful to compare systems when the total number of results 
retrieved may be different in different systems. However, the limitation is that the 
choice of ‘k’ can be arbitrary, and this metric doesn’t look beyond the chosen ‘k’.

RECALL

Recall focuses on the coverage that the retriever provides. It measures the propor-
tion of the relevant documents retrieved from all the relevant documents in the 
corpus. It answers the question, “Of all the relevant documents, how many were 
retrieved?”

Note that, unlike precision, calculation of recall requires prior knowledge of the total 
number of relevant documents. This requirement can become challenging in large-
scale systems, which have many documents in the knowledge base.
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Like precision, recall also doesn’t consider the ranking of the retrieved documents. 
It can also be misleading as retrieving all documents in the knowledge base will result in 
a perfect recall value. Figure 5.1 visualizes various precision and recall scenarios.
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Figure 5.1 Precision and recall

F1-SCORE

F1-score is the harmonic mean of precision and recall. It provides a single metric that 
balances both the quality and coverage of the retriever: 
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The equation is such that the F1-score penalizes either variable having a low score; 
a high F1 score is only possible when both recall and precision values are high. This 
means that the score cannot be positively skewed by a single variable. Figure 5.2 illus-
trates how the F1-score balances precision and recall.
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Figure 5.2 F1-score balances precision and recall. A medium value of both precision and recall gets a 

higher F1-score than if one value is very high and the other is very low.

F1-score provides a single, balanced measure that can be used to easily compare differ-
ent systems. However, it does not take ranking into account and gives equal weight to 
precision and recall, which might not always be ideal.

MEAN RECIPROCAL RANK

Mean reciprocal rank, or MRR, is particularly useful in evaluating the rank of the rele-
vant document. It measures the reciprocal of the ranks of the first relevant document 
in the list of results. MRR is calculated over a set of queries:
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where N is the total number of queries, and ranki
 is the rank of the first relevant docu-

ment of the i-th query.
MRR is particularly useful when you’re interested in how quickly the system can find 

a relevant document and consider the ranking of the results. However, since it doesn’t 
look at anything beyond the first relevant result, it may not be useful when multiple rele-
vant results are important. Figure 5.3 shows how the mean reciprocal rank is calculated.

Query 1:

1 2 3 4 5

Query 2:

Rank of 1st relevant

3

1

Reciprocal

1/3

1

Query 3: 2 1/2

MRR = 13/24 = 0.54  

Query 4: 3 1/3

A relevant result on rank 1 shows perfect reciprocal rank

Considers only the first relevant result

Doesn’t account for number of relevant results

1/3 1 1/2 1/3

4

+ + +
=

Figure 5.3 MRR considers the ranking but doesn’t consider all the documents.

MEAN AVERAGE PRECISION

Mean average precision, or MAP, is a metric that combines precision and recall at dif-
ferent cut-off levels of ‘k’, that is, the cut-off number for the top results. It calculates a 
measure called average precision and then averages it across all queries:

where Ri is the number of relevant documents for query i, Precision@k is the precision 
at cut-off ‘k’, and rel@k is a binary flag indicating the relevance of the document at 
rank k.

Mean average precision is the mean of the average precision over all the N queries:
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MAP provides a single measure of quality across recall levels. It is quite suitable when 
result ranking is important but complex to calculate. Let’s look at an example MAP 
calculation in figure 5.4.
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Figure 5.4 MAP considers all the retrieved documents and gives a higher score for better ranking

NORMALIZED DISCOUNTED CUMULATIVE GAIN

Normalized discounted cumulative gain (nDCG) evaluates the ranking quality by con-
sidering the position of relevant documents in the result list and assigning higher 
scores to relevant documents appearing earlier. It is particularly effective for scenarios 
where documents have varying degrees of relevance. To calculate discounted cumu-
lative gain (DCG), each document in the retrieved list is assigned a relevance score, 
rel, and a discount factor reduces the weight of documents as their rank position 
increases: 
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where reli is the graded relevance of the document at position I, and IDCG is the ideal 
DCG, which is the DCG for perfect ranking. 

nDCG is calculated as the ratio between actual DCG and the IDCG:

Figure 5.5 shows an example of nDCG calculation.
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Figure 5.5 nDCG addresses degrees of relevance in documents and penalizes incorrect ranking.

nDCG is a complex metric to calculate. It requires documents to have a relevance 
score, which may lead to subjectivity, and the choice of the discount factor affects the 
values significantly, but it accounts for varying degrees of relevance in documents and 
gives more weight to higher-ranked items.

Retrieval systems are not just used in RAG but also in a variety of other application 
areas such as web and enterprise search engines, e-commerce product search and per-
sonalized recommendations, social media ad retrieval, archival systems, databases, vir-
tual assistants, and more. The retrieval metrics help in assessing and improving the 
performance to effectively meet user needs. Table 5.1 summarizes different retrieval 
metrics.
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Table 5.1 Retrieval metrics

Metric What it measures Strengths Use cases Considerations

Accuracy Overall correct-
ness of retrieval

Simple to under-
stand; includes 
true negatives

General perfor-
mance in bal-
anced datasets

Can be mislead-
ing in imbalanced 
datasets; doesn’t 
consider ranking

Precision Quality of 
retrieved results

Easy to under-
stand and 
calculate

General 
retrieval quality 
assessment

Doesn’t con-
sider ranking or 
completeness of 
retrieval

Precision@k Quality of top k 
retrieved results

Focuses on most 
relevant results 
for RAG

When only top k 
results are used 
for augmentation

Choose k based 
on your RAG sys-
tem’s usage

Recall Coverage of rele-
vant documents

Measures com-
pleteness of 
retrieval

Assessing if 
important infor-
mation is missed

Requires know-
ing all relevant 
documents in the 
corpus

F1-score Balance between 
precision and 
recall

Single metric 
combining quality 
and coverage

Overall retrieval 
performance

May obscure 
tradeoffs 
between preci-
sion and recall

Mean reciprocal 
rank (MRR)

How quickly a rel-
evant document 
is found

Emphasizes find-
ing at least one 
relevant result 
quickly

When finding one 
good result is 
sufficient

Less useful when 
multiple rele-
vant results are 
needed

Mean average 
precision (MAP)

Precision at 
different recall 
levels

Considers both 
precision and 
ranking

Comprehensive 
evaluation of 
ranked retrieval 
results

More complex 
to calculate and 
interpret

Normalized dis-
counted cumula-
tive gain (nDCG)

Ranking quality 
with graded 
relevance

Accounts for 
varying degrees 
of relevance and 
ranking

When documents 
have different lev-
els of relevance

Requires rele-
vance scoring for 
documents

Not all retrieval metrics are popular for evaluation. Often, the more complex met-
rics are overlooked for the sake of explainability. The usage of these metrics depends 
on the stage of improvement in the evolution of system performance you are in. For 
example, to start with, you may just be trying to improve precision, while at an evolved 
stage, you may be looking for better ranking. 

While these metrics focus on retrieval in general, some metrics have been created 
specifically for RAG applications. These metrics focus on the three quality scores dis-
cussed in section 5.1. 

5.2.2 RAG-specific metrics

The three quality scores used to evaluate RAG applications are context relevance, 
answer relevance, and answer faithfulness. These scores specifically answer the follow-
ing three questions: 
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¡	Is the information retrieval relevant to the user query?

¡	Is the generated answer rooted in the retrieved information?

¡	Is the generated answer relevant to the user query?

Let’s now take a look at each of these scores. 

CONTEXT RELEVANCE

Context relevance evaluates how well the retrieved documents relate to the original 
query. The key aspects are topical alignment, information usefulness, and redundancy. 
There are human evaluation methods, as well as semantic similarity measures to calcu-
late context relevance.

One such measure is employed by the Retrieval-Augmented Generation Assessment 
(RAGAs) framework (further discussed in section 5.3). The retrieved context should 
contain information only relevant to the query or the prompt. For context relevance, a 
metric S is estimated, where S is the number of sentences in the retrieved context rele-
vant for responding to the query or the prompt:

Figure 5.6 is an illustrative example of high and low context relevance.

Context 1: High context relevance

The 2023 Cricket World Cup,  concluded on

November 19, 2023, with Australia winning the

tournament. The tournament took place in 10

different stadiums, in 10 cities across the

country.

Total sentences = 2

Relevant sentences = 1

Context relevance = 0.5 or 50%

Context 2: Low context relevance

The 2023 Cricket World Cup was the 13th edition

of the Cricket World Cup. It was the first Cricket

World Cup which India hosted solely. The

tournament took place in 10 different stadiums. In

the first semi-final India beat New Zealand, and in

the second semi-final, Australia beat South Africa.

Total sentences = 4

Relevant sentences = 0

Context relevance = 0

Query : Who won the 2023 ODI Cricket World Cup and when?

Figure 5.6 Context relevance evaluates the degree to which the retrieved information is relevant  

to the query.

The number of relevant sentences is also sometimes customized to the sum of similar-
ity scores of each of the sentences with the query. Context relevance ensures that the 
generation component has access to appropriate information.
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ANSWER FAITHFULNESS

Answer faithfulness is the measure of the extent to which the response is factually 
grounded in the retrieved context. Faithfulness ensures that the facts in the response 
do not contradict the context and can be traced back to the source. It also ensures that 
the LLM is not hallucinating. In the RAGAs framework, faithfulness first identifies the 
number of claims made in the response and calculates the proportion of those claims 
present in the context:

Let’s look at an example in figure 5.7

Response 1 : High faithfulness

[Australia] won on [November 19, 2023]

Number of claims generated = 2

Number of claims in context = 2

Answer faithfulness = 1 or 100%

Response 2 : Low faithfulness

[Australia] won on [October 15, 2023] by

[defeating India]

Number of claims generated = 3

Number of claims in context = 1

Answer faithfulness = 0.33 or 33%

Query : Who won the 2023 ODI Cricket World Cup and when?

Context : The 2023 ODI Cricket World Cup concluded on November 19, 2023, with Australia winning the

tournament.

Figure 5.7 Answer faithfulness evaluates the closeness of the generated response to the retrieved 

context.

Faithfulness is not a complete measure of factual accuracy but only evaluates the 
groundedness to the context. An inverse metric for faithfulness is also the hallucination 

rate, which can calculate the proportion of generated claims in the response that are 
not present in the retrieved context.

Another related metric to faithfulness is coverage. Coverage measures the number of 
relevant claims in the context and calculates the proportion of relevant claims present 
in the generated response. It measures how much of the relevant information from the 
retrieved passages is included in the generated answer:
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ANSWER RELEVANCE

Like context relevance measures the relevance of the retrieved context to the query, 
answer relevance is the measure of the extent to which the response is relevant to the 
query. This metric focuses on key aspects such as the system’s ability to comprehend 
the query, the response being pertinent to the query, and the completeness of the 
response. 

In RAGAs, for this metric, a response is generated for the initial query or prompt. To 
compute the score, the LLM is then prompted to generate questions for the generated 
response several times. The mean cosine similarity between these questions and the 
original one is then calculated. The concept is that if the answer addresses the initial 
question correctly, the LLM should generate questions from it that match the original 
question:

where N is the number of queries generated by the LLM. 
Note that answer relevance is not a measure of truthfulness but only of relevance. 

The response may or may not be factually accurate, but it may be relevant. Figure 5.8 
is an illustration of the answer relevance calculation. Can you find the reason why the 
relevance is not very high? (Hint: The answer may have some irrelevant facts.) Answer 
relevance ensures that the RAG system provides useful and appropriate responses, 
enhancing user satisfaction and the system’s practical utility.

TRADEOFFS AND OTHER CONSIDERATIONS

These three metrics and their derivatives form the core of RAG quality evaluation. 
Furthermore, these metrics are interconnected and sometimes involve tradeoffs. 
High context relevance usually leads to better faithfulness, as the system has access to 
more pertinent information. However, high faithfulness doesn’t always guarantee high 
answer relevance. A system might faithfully reproduce information from the retrieved 
passages but fail to directly address the query. Optimizing for answer relevance without 
considering faithfulness might lead to responses that seem appropriate but contain 
hallucinated or incorrect information.

We have discussed quite a few metrics in this section. Effective interpretation of 
these metrics is crucial for performance improvement. As creators of RAG systems, you 
should use these metrics to compare with similar systems. You can also look at consistent 
trends to identify the strengths and weaknesses of your system. A low-precision high-
recall system may indicate that your system is retrieving a lot of documents, and you may 
need to make your retriever more selective. A low-precision low-recall system points 
out fundamental problems with retrieval, and you may need to reassess the indexing 
pipeline itself. The same problem may be indicated by a low MAP or a low context-
relevance score. Similarly, a low MRR or a low nDCG value may indicate a problem with 
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Original query : Who

won the 2023 ODI Cricket

World Cup?

Answer : Australia won the 2023

ODI Cricket World Cup, which

concluded on 1November 19, 2023

Synthetic queries
1.Which team emerged victorious in the 2023 ODI Cricket World Cup?

2.Who won the 2023 Cricket World Cup, and when did the final match take place?

3.Which country claimed the title in the 2023 ODI Cricket World Cup?

4.What was the outcome of the 2023 ODI Cricket World Cup, and on what date was the champion decided?

5.Who were the champions of the 2023 Cricket World Cup, and when did the tournament come to an end?

Synthetic query 1 embeddings

Synthetic query 2 embeddings

Synthetic query 3 embeddings

Synthetic query 4 embeddings

Synthetic query 5 embeddings

Original query

embeddings

Cosine similarity
0.83

0.63

0.76

0.53

0.57

Knowledge base

Context
The 2023 Cricket World Cup, concluded on

November 19, 2023, with Australia winning the

tournament. The tournament took place in 10 different

stadiums, in 10 cities across the country. The 2023

Cricket World Cup was the 13th edition of the Cricket

World Cup.

LLM
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Embeddings model
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Average
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Generate answer

using the RAG

pipeline.

Prompt an LLM to generate

five synthetic questions
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answer.
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between original query

and synthetic queries.

Figure 5.8 Answer relevance is calculated as the mean of cosine similarity between the original and synthetic 

questions.

the ranking algorithm of the retriever. To address low-answer faithfulness or low-an-
swer relevance, you may need to improve your prompts or fine-tune the LLM. 

There may also exist some tradeoffs that you will need to balance. Improving preci-
sion often reduces recall and vice-versa. Highly relevant but brief contexts may lead to 
incomplete answers, and high answer faithfulness may sometimes come at the cost of 
answer relevance. 



 103Frameworks

The relative importance of each metric will depend on your use case and user 
requirements. You may need to include other metrics specific to your downstream use 
case, such as summarization to measure conciseness, and chatbots to emphasize con-
versation coherence.

Developers can code these metrics from scratch and integrate them in the devel-
opment and deployment process of their RAG system. However, you’ll find evaluation 
frameworks that are readily available quite handy. We discuss three popular frameworks 
in the next section.

Human evaluations and ground truth data

Most of the metrics we discussed talk about a concept of relevant documents. For 

example, precision is calculated as the number of relevant documents retrieved, 

divided by the total number of retrieved documents. The question that arises is, how 

does one establish that a document is relevant?

The simple answer is a human evaluation approach. A subject matter expert looks at 

the documents and determines the relevance. Human evaluation brings in subjectiv-

ity, and therefore, human evaluations are done by a panel of experts rather than an 

individual. But human evaluations are restrictive from a scale and a cost perspective.

Any data that can reliably establish relevance becomes extremely useful conse-

quently. Ground truth is information known to be real or true. In RAG, and the genera-

tive AI domain in general, ground truth is a prepared set of prompt–context–response 

or question–context–response examples, akin to labeled data in supervised machine 

learning parlance. Ground truth data created for your knowledge base can be used for 

the evaluation of your RAG system. 

How does one go about creating the ground truth data? It can be viewed as a one-

time exercise where a group of experts creates this data. However, generating hun-

dreds of QCA (question–context–answer) samples from documents manually can 

be a time-consuming and labor-intensive task. Additionally, if the knowledge base is 

dynamic, the ground truth data will also need updates. Questions created by humans 

may face challenges in achieving the necessary level of complexity for a comprehen-

sive evaluation, potentially affecting the overall quality of the assessment. 

LLMs can be used to address these challenges. Synthetic data generation uses 

LLMs to generate diverse questions and answers from the documents in the knowl-

edge base. LLMs can be prompted to create questions such as simple questions, 

multi-context questions, conditional questions, reasoning questions, and similar 

using the documents from the knowledge base as context.

5.3 Frameworks

Frameworks provide a structured approach to RAG evaluations. They can be used to 
automate the evaluation process. Some go beyond and assist in the synthetic ground 
truth data generation. While new evaluation frameworks continue to be introduced, 
there are two popular ones that we discuss here:
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¡	RAGAs (Retrieval-Augmented Generation Assessment)

¡	ARES (Automated RAG Evaluation System)

5.3.1 RAGAs

Retrieval-Augmented Generation Assessment, or RAGAs, is a framework developed by 
Exploding Gradients that assesses the retrieval and generation components of RAG 
systems without relying on extensive human annotations. RAGAs

¡	Synthetically generate a test dataset that can be used to evaluate a RAG pipeline.

¡	Use metrics to measure the performance of the pipeline.

¡	Monitor the quality of the application in production.

We will continue with our example of the Wikipedia page of the 2023 Cricket World 
Cup, but we first create a synthetic test dataset using RAGAs and then use the RAGAs 
metrics to evaluate the performance of the RAG pipeline we created in chapters 3 and 4.

SYNTHETIC TEST DATASET GENERATION (GROUND TRUTHS)

Section 5.2 pointed out that ground truths data is necessary to calculate evaluation 
metrics for assessing the quality of RAG pipelines. While this data can be manually 
curated, RAGAs provides the functionality of generating this dataset from the docu-
ments in the knowledge base. 

RAGAs does this using an LLM. It analyses the documents in the knowledge base 
and uses an LLM to generate seed questions from chunks in the knowledge base. These 
questions are based on the document chunks from the knowledge base. These chunks 
act as the context for the questions. Another LLM is used to generate the answer to 
these questions. This is how it generates a question–context–answer data based on the 
documents in the knowledge base. RAGAs also has an evolver module that creates more 
difficult questions (e.g., multi-context, reasoning, and conditional) for a more compre-
hensive evaluation. Figure 5.9 illustrates the process of synthetic data generation using 
RAGAs.

Documents Seed question
generator

Question
evolver

Reasoning

question

Conditional

question

Multi-context

question

Evaluation
dataset

M

R

 

Figure 5.9 Synthetic ground truths data generation using RAGAs
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To evaluate our RAG pipeline, let’s recreate the documents from the Wikipedia page 
like we did in chapter 3. Note that we will have to install the packages used in the previ-
ous chapters to continue with the following code:

#Importing the AsyncHtmlLoader

from langchain_community.document_loaders import AsyncHtmlLoader

#This is the URL of the Wikipedia page on the 2023 Cricket World Cup

url="https://en.wikipedia.org/wiki/2023_Cricket_World_Cup"

#Instantiating the AsyncHtmlLoader

loader = AsyncHtmlLoader (url)

#Loading the extracted information

html_data = loader.load()

from langchain_community.document_transformers import Html2TextTransformer

#Instantiate the Html2TextTransformer function

html2text = Html2TextTransformer()

#Call transform_documents

html_data_transformed = html2text.transform_documents(html_data)

The html_data_transformed contains the necessary document format of the Wikipe-
dia page. We will use RAGAs library to generate the dataset from these documents. For 
that, we will first need to install the RAGAs library:

%pip install ragas== 0.2.13

# Import necessary libraries

from ragas.llms import LangchainLLMWrapper
from ragas.embeddings import LangchainEmbeddingsWrapper
from ragas.testset import TestsetGenerator
from langchain_openai import ChatOpenAI, OpenAIEmbeddings

# Instantiate the models

generator_llm = 
LangchainLLMWrapper(

ChatOpenAI(model="gpt-4o-mini")
)

generator_embeddings = 
LangchainEmbeddingsWrapper(

OpenAIEmbeddings(model="text-embedding-3-small")
)

# Create the TestsetGenerator

generator = 
TestsetGenerator(

llm=generator_llm, 
embedding_model=generator_embeddings
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)

# Call the generator

testset = 

generator.generate_with_langchain_docs

(

           html_data_transformed, 

test_size=20, 

)

The testset that we created contains 20 questions based on our document, along 
with the chunk of the document that the question was based on, and the ground truth 
answer. A screenshot of the dataset is shown in figure 5.10.

Figure 5.10 Synthetic test data generated using RAGAs

We will use this dataset to evaluate our RAG pipeline.

RECREATING THE RAG PIPELINE

From the created test dataset, we use the question and the ground_truth information. 
We pass the questions to our RAG pipeline and generate answers. We compare these 
answers with the ground_truth to calculate the evaluation metrics. First, we recreate 
our RAG pipeline. Again, it is important to note that we will have to install the pack-
ages we used in the previous chapters to continue with the code:

# Import FAISS class from vectorstore library

from langchain_community.vectorstores import FAISS

# Import OpenAIEmbeddings & ChatOpenAI from the library

from langchain_openai import OpenAIEmbeddings, ChatOpenAI

def rag_function(query, db_path, index_name):    

# Instantiate the embeddings object
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embeddings=OpenAIEmbeddings(model="text-embedding-3-small")

# Load the database stored in the local directory

db=FAISS.load_local(

folder_path=db_path, 

index_name=index_name, 

embeddings=embeddings,

allow_dangerous_deserialization=True

)

# Ranking the chunks in descending order of similarity and selecting the top 

2 queries

retrieved_docs = db.similarity_search(query, k=2)

# Keeping text of top 2 retrieved chunks

retrieved_context=[ retrieved_docs[0].page_content 

+retrieved_docs[1].page_content]

# Creating the prompt

augmented_prompt=f"""

Given the context below, answer the question.

Question: {query} 

Context : {retrieved_context}

Remember to answer only based on the context 

provided and not from any other source. 

If the question cannot be answered based 

on the provided context, say I don't know.

"""

# Instantiate the LLM

llm = ChatOpenAI(

model="gpt-4o-mini",

temperature=0,

max_tokens=None,

timeout=None,

max_retries=2

)

# Create message to send to the LLM

messages=[("human",augmented_prompt)]

# Make the API call passing the message to the LLM
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response = llm.invoke(messages)

# Extract the answer from the response object

   
answer=response.content

return retrieved_context, answer

We can try this pipeline to generate answers.

# Location of the stored vector index created by the indexing pipeline

db_path='../../Assets/Data'

# User Question

query="Who won the 2023 cricket world cup?"

# Index Name

index_name="CWC_index"

# Calling the RAG function

rag_function(query, db_path, index_name)

Now that we have the RAG pipeline function, we can evaluate this pipeline using the 
questions that have been synthetically generated.

EVALUATIONS

We first generate answers to the questions in the synthetic test data using our RAG 
pipeline. We then compare the answers to the ground truth answers. We first generate 
the answers: 

# Create Lists for Questions and Ground Truths from testset

sample_queries = 
dataset.to_pandas()['user_input'].to_list()

 
expected_responses=

dataset.to_pandas()['reference'].to_list()

# Iterate through the testset to generate responses to questions

dataset_to_eval=[]

for query, reference in zip(sample_queries,expected_responses):
    
# Call the RAG function

rag_context, rag_answer=rag_function(query,db_path,index_name)

# Create a dictionary of question, answer, context, and ground truth

dataset_to_eval.append(
            {
                    "user_input":query,
                    "retrieved_contexts":relevant_docs,
                    "response":response,
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                    "reference":reference
            }
                ) 

For RAGAs, the evaluation set needs to be in the Dataset format:

# Import the EvaluationDataset library

from ragas import EvaluationDataset

evaluation_dataset = EvaluationDataset.from_list(dataset_to_eval)

Now that we have the complete evaluation dataset, we can invoke the metrics:

#Import all the libraries

from ragas import evaluate

from ragas.metrics import (
        LLMContextRecall, 
Faithfulness, 
FactualCorrectness, 
AnswerCorrectness, 
ResponseRelevancy)

#Set the judge LLM for evaluation

evaluator_llm = 
LangchainLLMWrapper(

ChatOpenAI(model="gpt-4o-mini")
)

# Calculate the metrics for the dataset 

result = evaluate(
dataset=evaluation_dataset,
metrics=[
LLMContextRecall(), 
Faithfulness(), 
AnswerCorrectness(), 
ResponseRelevancy(),
FactualCorrectness()],
llm=evaluator_llm)

You can also check the official documentation of RAGAs for more information 
(https://docs.ragas.io/en/stable/). RAGAs calculates a bunch of metrics that are 
useful for assessing the quality of the RAG pipeline. RAGAs uses an LLM to do this, 
somewhat subjective, task. For example, to calculate faithfulness for a given question–
context–answer record, RAGAs first breaks down the answer into simple statements. 
Then, for each statement, it asks the LLM whether the statement can be inferred from 
the context. The LLM provides a 0 or 1 response along with a reason. This process 
is repeated a couple of times. Finally, faithfulness is calculated as the proportion of 

https://docs.ragas.io/en/stable/
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statements judged by the LLM as faithful (i.e., 1). Several other metrics are calculated 
using this LLM-based approach. This approach, where an LLM is used in evaluating 
a task, is also popularly called LLM as a judge approach. An important point to note 
here is that the accuracy of this evaluation is also dependent on the quality of the LLM 
being used as the judge.

5.3.2 Automated RAG evaluation system

Automated RAG evaluation system, or ARES, is a framework developed by research-
ers at Stanford University and Databricks. Like RAGAs, ARES uses an LLM as a judge 
approach for evaluations. Both request a language model to classify answer rele-
vance, context relevance, and faithfulness for a given query. However, there are some 
differences:

¡	RAGAs relies on heuristically written prompts sent to the LLM for evaluation. 
ARES, in contrast, trains a classifier using a language model.

¡	RAGAs aggregates the responses from the LLM to arrive at a score. ARES provides 
confidence intervals for the scores using a framework called Prediction-Powered 
Inference (PPI).

¡	RAGAs generates a simple synthetic question–context–answer dataset for eval-
uation from the documents. ARES generate synthetic datasets comprising both 
positive and negative examples of query–passage–answer triples. 

ARES requires more data than RAGAs. To use ARES, you need the following three 
datasets:

¡	In-domain passage set—This is a collection of passages relevant to the specific 
domain being evaluated. The passages should be suitable for generating queries 
and answers. In our case, it will be the documents that we created from the Wiki-
pedia article.

¡	Human preference validation set—A minimum of approximately 150 annotated data 
points is required. This set is used to validate the preferences of human annota-
tors regarding the relevance of the generated query-passage–answer triples.

¡	Few-shot examples—At least five examples of in-domain queries and answers are 
needed. These examples help prompt the LLMs during the synthetic data gener-
ation process.

The need for a human-preference validation set and fine-tuning of language models 
for classification makes applying ARES more complex. The application of ARES is 
out of the scope of this book. However, ARES is a robust framework. It provides a 
detailed analysis of system performance with statistical confidence intervals, mak-
ing it suitable for in-depth RAG system evaluations. RAGAs promises a faster eval-
uation cycle without reliance on human annotations. More details on the ARES 
application can be found in the official GitHub repository (https://github.com/
stanford-futuredata/ARES).

https://github.com/stanford-futuredata/ARES
https://github.com/stanford-futuredata/ARES
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While RAGAs and ARES have gained popularity, there are other frameworks, such as 
TruLens, DeepEval, and RAGChecker, that have also gotten acceptance amongst RAG 
developers. 

Frameworks provide a standardized method of automating the evaluation of your 
RAG pipelines. Your choice of the evaluation framework should depend on your use 
case requirements. For quick and easy evaluations that are widely understood, RAGAs 
may be your choice. For robustness across diverse domains and question types, ARES 
might suit better. Most of the proprietary service providers (vector DBs, LLMs, etc.) 
have their evaluation features you may use. You can also develop your metrics.

Next, we look at benchmarks. Benchmarks are used to compare competing RAG 
systems with one another. 

5.4 Benchmarks

Benchmarks provide a standard point of reference to evaluate the quality and perfor-
mance of a system. RAG benchmarks are a set of standardized tasks, and a dataset used 
to compare the efficiency of different RAG systems in retrieving relevant information 
and generating accurate responses. There has been a surge in creating benchmarks 
since 2023, when RAG started gaining popularity, but there have been benchmarks on 
question-answering tasks that were introduced before that. Benchmarks such as Stan-
ford Question Answering Dataset (SQuAD), WikiQA, Natural Question (NQ), and 
HotpotQA are open domain question-answering datasets that primarily evaluate the 
retriever component using metrics such as Exact Match (EM) and F1-score. BEIR or 
benchmarking information retrieval is a comprehensive, heterogeneous benchmark 
based on 9 IR tasks and 19 question–answer datasets. This section discusses three of the 
popular RAG-specific benchmarks and their evaluation. 

5.4.1 RGB

Retrieval-augmented generation benchmark (RGB) was introduced in a December 
2023 paper (https://arxiv.org/pdf/2309.01431). It comprises 600 base questions 
and 400 additional questions, evenly split between English and Chinese. The corpus 
was constructed using a multistep process that involved collecting recent news arti-
cles, generating questions and answers using ChatGPT, retrieving relevant web pages 
through Google’s API, and selecting the most pertinent text chunks using a dense 
retrieval model. It is a benchmark that focuses on four key abilities of a RAG system: 
noise robustness, negative rejection, information integration, and counterfactual 
robustness, as illustrated in figure 5.11.

RGB focuses on the following metrics for evaluation:

¡	Accuracy—Used for noise robustness and information integration. It is based on 
the exact matching of the generated text with the correct answer.

¡	Rejection rate—Used for negative rejection. It is measured by exact matching of 
the model’s output with a specific rejection phrase. The rejection rate is also 

https://arxiv.org/pdf/2309.01431
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Noise robustness Negative rejection

RAG RAG

Information integration Counterfactual robustness

RAG RAG

Figure 5.11 Four abilities required of RAG systems. Source: Benchmarking Large Language Models in Retrieval-

Augmented Generation by Chen et al., https://arxiv.org/pdf/2309.0143.

evaluated using ChatGPT to determine whether the responses contain rejection 
information.

¡	Error detection rate—Used for counterfactual robustness. It is measured by exact 
matching of the model’s output with a specific error-detection phrase and is also 
evaluated using ChatGPT.

https://arxiv.org/pdf/2309.0143
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¡	Error correction rate—Used for counterfactual robustness. It measures whether the 
model can provide the correct answer after identifying errors.

You can use the GitHub repository to implement RGB (https://github.com/
chen700564/RGB).

MULTI-HOP RAG

Curated by researchers at HKUST, multi-hop RAG contains 2556 queries, with evidence 
for each query distributed across two to four documents. The queries also involve doc-
ument metadata, reflecting complex scenarios commonly found in real-world RAG 
applications. It contains four types of queries:

¡	Inference—Synthesizing information across multiple sources (e.g., Which report 
discusses the supply chain risk of Apple—the 2019 annual report or the 2020 
annual report?)

¡	Comparison—Comparing facts from different sources (e.g., Did Netflix or Goo-
gle report higher revenue for the year 2023?)

¡	Temporal—Analyzing the temporal ordering of events (e.g., e.g. Did Apple intro-
duce the AirTag tracking device before or after the launch of the 5th generation 
iPad Pro?)

¡	Null—Queries not answerable from the knowledge base

Full implementation code is available at https://github.com/yixuantt/MultiHop 
-RAG.

CRAG

Comprehensive RAG benchmark (CRAG), curated by Meta and HKUST, is a factual 
question-answering benchmark of 4,409 question–answer pairs and mock APIs to 
simulate web and knowledge graph (KG) search. It contains eight types (simple, 
conditions, comparison questions, aggregation questions, multi-hop questions, set 
queries, post-processing-heavy questions, and false-premise questions, as illustrated in 
figure 5.12) of queries across five domains (finance, sports, music, movie, and open 
domain). 

For each question in the evaluation set, CRAG labels the answer with one of four 
classes:

¡	Perfect—The response correctly answers the user’s question and contains no hal-
lucinated content (scored as +1).

¡	Acceptable—The response provides a useful answer to the user’s question but may 
contain minor errors that do not harm the usefulness of the answer (scored as 
+0.5).

¡	Missing—The response is “I don’t know”, “I’m sorry I can’t find ...”, a system error 
such as an empty response, or a request from the system to clarify the original 
question (scored as 0).

¡	Incorrect—The response provides wrong or irrelevant information to answer the 
user’s question (scored as −1).

https://github.com/chen700564/RGB
https://github.com/chen700564/RGB
https://github.com/yixuantt/MultiHop-RAG
https://github.com/yixuantt/MultiHop-RAG
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Question type Definition

Simple

Simple w. condition

Set

Comparison

Aggregation

Multi-hop

Post-processing

heavy

False premise

Questions asking for simple facts that are unlikely to change overtime, such as the

birth date of a person or the authors of a book

Questions asking for simple facts with some given conditions, such as stock prices

on a certain date or a director’s recent movies in a certain genre

Questions that expect a set of entities or objects as the answer (e.g., “What are the

continents in the southern hemisphere?”)

Questions that compare two entities (e.g., “Who started performing earlier, Adele or

Ed Sheeran?”)

Questions that require aggregation of retrieval results to answer (e.g., “How many

Oscar awards did Meryl Streep win?”)

Questions that require chaining multiple pieces of information to compose the answer

(e.g., “Who acted in Ang Lee‘s latest movie?”)

Questions that need reasoning or processing of the retrieved information to obtain

the answer (e.g., “How many days did Thurgood Marshall serve as a Supreme Court

justice?”)

Questions that have a false preposition or assumption (e.g., “What’s the name of

Taylor Swift’s rap album before she transitioned to pop?” (Taylor Swift has not yet

released any rap albums.)

Figure 5.12 Eight question types in CRAG

For automatic evaluation, CRAG classifies an answer as perfect if it exactly matches the 
ground truth. If not, then it asks an LLM to do the classification. It uses two LLM evalu-
ators. You can read more about CRAG at https://arxiv.org/pdf/2406.04744.

Other noteworthy benchmark datasets are MedRAG (https://github.com/Teddy 
-XiongGZ/MedRAG), which focuses on Medical Information, CRUD-RAG (https://
arxiv.org/pdf/2401.17043), which focuses on the Chinese language, and FeB4RAG 
(https://arxiv.org/abs/2402.11891), which focuses on federated search. If you’re 
developing an LLM application that has accurate and contextual generation as its 
core proposition, you’ll be able to communicate the quality of your application by 
showing how it performs on different benchmarks. Table 5.2 compares the different 
benchmarks.

Table 5.2 RAG benchmarks

Benchmark Dataset Task Metrics Applicability

SQuAD Stanford Ques-
tion Answering 
Dataset

Open domain QA Exact match (EM), 
F1-score

General QA tasks, 
model evaluation 
on comprehension 
accuracy

Natural 
questions

Real Google 
search queries

Open domain QA F1-score Real-world QA, 
information retrieval 
from large corpora

https://arxiv.org/pdf/2406.04744
https://github.com/Teddy-XiongGZ/MedRAG
https://github.com/Teddy-XiongGZ/MedRAG
https://arxiv.org/pdf/2401.17043
https://arxiv.org/pdf/2401.17043
https://arxiv.org/abs/2402.11891
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Benchmark Dataset Task Metrics Applicability

HotpotQA Wikipedia-based 
QA

Multi-hop QA EM, F1-score QA involving mul-
tiple documents, 
complex reasoning 
tasks

BEIR Multiple datasets Information 

retrieval

nDCG@10 Comprehensive IR 
model evaluation 
across multiple 
domains

RGB News articles, 
ChatGPT-
generated QA

Robust QA Accuracy, rejec-
tion rate, error 
detection rate, 
error correction 
rate

Robustness and 
reliability of RAG 
systems

Multi-hop RAG HKUST-curated 
queries

Complex QA Various RAG applications 
requiring multi-
source synthesis

CRAG Multiple sources 
(finance, sports, 
music, etc.)

Factual QA Four-class eval-
uation (perfect, 
acceptable, miss-
ing, and incorrect)

Evaluating factual 
QA with diverse 
question types

We have looked frameworks that help in automating the calculation of evaluation met-
rics and benchmarks that enable comparisons across different implementations and 
approaches. Frameworks will assist you in improving the performance of your system, 
and benchmarks will facilitate comparing it with other systems available in the market. 

However, as with any evolving field, there are some limitations and challenges to con-
sider. The next section examines these limitations and discusses best practices that have 
emerged to address them, ensuring a more holistic and nuanced approach to RAG 
evaluation.

5.5 Limitations and best practices

There has been a lot of progress made in the frameworks and benchmarks used for 
RAG evaluation. The complexity in evaluation arises due to the interplay between the 
retrieval and generation components. In practice, there’s a significant reliance on 
human judgements, which are subjective and difficult to scale. What follows are a few 
common challenges and some guidelines to navigate them.

LACK OF STANDARDIZED METRICS

There’s no consensus on what the best metrics are to evaluate RAG systems. Precision, 
recall, and F1-score are commonly measured for retrieval but do not fully capture the 
nuances of generative response. Similarly, commonly used generation metrics such 
as BLEU, ROUGE, and similar do not fully capture the context awareness required 
for RAG. Using RAG-specific metrics such as answer relevance, context relevance, and 

Table 5.2 RAG benchmarks (continued)
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faithfulness for evaluation brings in the necessary nuances required for RAG evalua-
tion. However, even for these metrics, there’s no standard way of calculation and each 
framework brings in its methodology.

Best practice: Compare the results on RAG specific metrics from different frameworks. 
Sometimes, it may be warranted to change the calculation method with respect to the 
use case. 

OVERRELIANCE ON LLM AS A JUDGE

The evaluation of RAG-specific metrics (in RAGAs, ARES, etc.) relies on using an LLM 
as a judge. An LLM is prompted or fine-tuned to classify a response as relevant or not. 
This adds to the complexity of the LLMs’ ability to do this task. It may be possible that 
the LLM may not be very accurate in judging for your specific documents and knowl-
edge bases. Another problem that arises is that of self-reference. It is possible that if 
the judge LLM is the same as the generation LLM in your system, you will get a more 
favorable evaluation. 

Best practice: Sample a few results from the judge LLM and evaluate whether the 
results are in line with commonly understood business practice. To avoid the self-
reference problem, make sure to use a judge LLM different from the generation LLM. 
It may also help if you use multiple judge LLMs and aggregate their results.

LACK OF USE CASE SUBJECTIVITY

Most frameworks have a generalized approach to evaluation. They may not capture the 
subjective nature of the task relevant to your use case (content generation versus chat-
bot versus question-answering, etc.)

Best practice: Focus on use-case-specific metrics to assess quality, coherence, useful-
ness, and similar. Incorporate human judgements in your workflow with techniques 
such as user feedback, crowd-sourcing, or expert ratings.

BENCHMARKS ARE STATIC

Most benchmarks are static and do not account for the evolving nature of information. 
RAG systems need to adapt to real-time information changes, which are not currently 
tested effectively. There is a lack of evaluation for how well RAG models learn and 
adapt to new data over time. Most benchmarks are domain-agnostic, which may not 
reflect the performance of RAG systems in your specific domain.

Best practice: Use a benchmark that is tailored to your domain. The static nature of 
benchmarks is limiting. Do not overly rely on benchmarks, and augment the use of 
benchmarks with regularly updating data. 

SCALABILITY AND COST

Evaluating large-scale RAG systems is more complex than evaluating basic RAG pipe-
lines. It requires significant computational resources. Benchmarks and frameworks 
also generally do not account for metrics such as latency and efficiency, which are crit-
ical for real-world applications. 

Best practice: Employ careful sampling of test cases for evaluation. Incorporate work-
flows to measure latency and efficiency. 
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Apart from these, you should also carefully consider the aspects of bias and toxicity, 
focusing on information integration and negative rejection, which the frameworks do 
not evaluate well. It is also important to keep an eye on how these evaluation frame-
works and benchmarks evolve.

In this chapter, we comprehensively examined the evaluation metrics, frameworks, 
and benchmarks that will help you evaluate your RAG pipelines. We used RAGAs to 
evaluate the pipeline that we have been building. 

Until now, we have looked at building and evaluating a simple RAG system. This 
also marks the second part 2 of this book. You are now familiar with the creation of 
the RAG knowledge brain using the indexing pipeline, enabling real-time interaction 
using the generation pipeline and evaluating your RAG system using frameworks and 
benchmarks.

In the next part, we will move toward discussing the production aspects of RAG sys-
tems. In chapter 6, we will look at strategies and advanced techniques to improve our 
RAG pipeline, which should also reflect in better evaluation metrics. In chapter 7, we 
will look at the LLMOps stack that enables RAG in production.

Summary

RAG evaluation fundamentals

¡	RAG evaluation assesses how well systems reduce hallucinations and ground 
responses in the provided context.

¡	Three key quality scores for RAG evaluation are context relevance, answer faith-
fulness, and answer relevance.

¡	Four critical abilities required of RAG systems include noise robustness, negative 
rejection, information integration, and counterfactual robustness.

¡	Additional considerations include latency, robustness, bias, and toxicity of 
responses.

¡	Custom use-case-specific metrics should be developed to evaluate performance.

Evaluation metrics

¡	Retrieval metrics include precision, recall, F1-score, mean reciprocal rank 
(MRR), mean average precision (MAP), and normalized discounted cumulative 
gain (nDCG).

¡	Accuracy, precision, recall, and F1-score do not consider the ranking order of the 
results.

¡	RAG-specific metrics focus on context relevance, answer faithfulness, and answer 
relevance.

¡	Human evaluations and ground truth data play a crucial role in RAG assessment.
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Evaluation frameworks

¡	Frameworks such as RAGAs and ARES automate the evaluation process and assist 
in synthetic data generation.

¡	RAGAs is an easy-to-implement framework that can be used for quick evaluation 
of RAG pipelines.

¡	ARES uses a more complex approach, including classifier training and confi-
dence interval calculations.

Benchmarks

¡	Benchmarks provide standardized datasets and metrics for comparing different 
RAG implementations on specific tasks.

¡	Popular benchmarks such as SQuAD, natural questions, HotpotQA, and BEIR 
focus on retrieval quality.

¡	Recent benchmarks such as RGB, multi-hop RAG, and CRAG are more holistic 
from a RAG perspective.

¡	Benchmarks focus on different aspects of RAG performance, such as multi-hop 
reasoning or specific domains.

Limitations and best practices

¡	Challenges in RAG evaluation include lack of standardized metrics, overreliance 
on LLMs as judges, and static nature of benchmarks.

¡	Best practices include using multiple frameworks, incorporating use-case-specific 
metrics, and regularly updating evaluation data.

¡	Balancing automated metrics with human judgment and considering use-case-
specific requirements is crucial.

¡	The field of RAG evaluation is evolving, with new frameworks and benchmarks 
constantly emerging.

¡	Developers should stay informed about new developments and adapt their evalu-
ation strategies accordingly.



Part 3

RAG in production

You must be confident by now in building and evaluating a core RAG pipeline. 
Applications such as “chat with your PDF” or question-answering systems based 
on web pages should no longer be a mystery. This part of the book will guide 
you in improving your RAG pipeline and also lay out a blueprint for the layers 
required to build a production-ready RAG system.

In chapter 6, you’ll be able to try out different techniques for improving the 
basic RAG pipeline into a more advanced one. You’ll get to know the techniques 
that improve RAG in three different stages—before, during, and after retrieval. 
You’ll also learn about modularity and how modern RAG systems are made up of 
replaceable components. 

Chapter 7 discusses the operations stack for RAG. You will learn about the crit-
ical layers without which any RAG system will fail, the essential layers that improve 
system performance, and the enhancement layers that focus on usability, scalabil-
ity, and efficiency of the system. 

By the end of this part, you should have the knowledge and skills to start build-
ing simple RAG systems and putting them into production. This is also the stage 
at which you are ready to explore deeper nuances and variations of RAG systems.
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6Progression of RAG 
systems: Naïve, advanced, 

and modular RAG

This chapter covers

¡	Limitations of the naïve RAG approach

¡	Advanced RAG strategies and techniques

¡	Modular patterns in RAG

In the first two parts of this book, you learned about the utility of retrieval-
augmented generation (RAG), along with the development and evaluation of a 
basic RAG system. The basic, or the naïve RAG approach that we have discussed is, 
generally, inadequate when it comes to production-grade systems. 

This chapter focuses on more advanced concepts in RAG. We begin by revisiting 
the limitations and the points of failure of the naïve RAG approach. Next, we discuss 
the failures at the retrieval, augmentation, and generation stages. Advanced strate-
gies and techniques to address these points of failure will be elaborated on in distinct 
phases of the RAG pipeline.

Better indexing of the knowledge base leads to better RAG outcomes. We will look 
at a few data indexing strategies that build on the naïve indexing pipeline to improve 
the searchability of the knowledge base. 

In the generation pipeline, improvements are examined in three stages: pre-
retrieval, retrieval, and post-retrieval. Pre-retrieval techniques focus on manipulating 
and improving the input user query. Retrieval strategies focus on better matching of 
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the user query to the documents in the knowledge base. Finally, in the post-retrieval 
stage, the focus is on aligning the retrieved context with the desired result and making 
it suitable for generation. 

The last part of the chapter discusses a modular approach to RAG that has been 
emerging to find applicability in RAG systems. The modular approach is an architec-
tural enhancement to the basic RAG system.

Note that the strategies and techniques for RAG improvement are expansive, and 
this chapter highlights a few popular ones. The chapter is interspersed with code exam-
ples, but for a more exhaustive supporting code, check out the source code repository 
of this book.

By the end of this chapter, you should

¡	Understand why the naïve approach to RAG is not suitable for production.

¡	Be aware of indexing strategies that make the RAG knowledge base more efficient.

¡	Know some of the popular pre-retrieval, retrieval, and post-retrieval techniques.

¡	Be familiar with the modular approach to RAG.

RAG powers a variety of AI applications. However, there is a certain aspect of uncer-
tainty when it comes to outcomes. Inaccuracies in retrieval, disjointed context, and 
incoherence in the LLM outputs need to be addressed before taking RAG to produc-
tion. In a very short time, researchers and practitioners have experimented with inno-
vative techniques to improve the relevance and faithfulness of RAG systems. But before 
we look at these techniques, it is important to understand why a naïve RAG approach 
often doesn’t find its way into a production environment.

6.1 Limitations of naïve RAG

Naïve RAG can be thought of as the earliest form of RAG, which gained popularity 
after the release of ChatGPT and the rise of LLM technology. As we have seen so far, 
it follows a linear process of indexing, retrieving, augmenting, and generation. This 
process falls in a “retrieve then read” framework, which means that there’s a retriever 
retrieving information and that there’s an LLM reading this information to generate 
the results, as shown in figure 6.1.
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Figure 6.1 Naïve RAG is a sequential “retrieve then read” process.
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The naïve RAG approach is marred with drawbacks at each of the three stages: 

¡	Retrieval—Naïve retrieval is often observed to have low precision that leads to 
irrelevant information being retrieved. It also has a low recall, which means that 
relevant information is missed, which leads to incomplete results. 

¡	Augmentation—There is a real possibility of redundancy and repetition when 
multiple retrieved documents have similar information. Also, when information 
is sourced from different documents, the context becomes disjointed. There’s 
also the problem of context length of the LLMs that has an effect on the volume 
of retrieved context that can be passed on to the LLM for generation. 

¡	Generation—With the inadequacies of the upstream processes, the generation suf-
fers from hallucination and lack of groundedness of the generated content. The 
LLM faces challenge in reconciling information. The challenges of toxicity and 
bias also persist. It is also noticed sometimes that the LLM becomes over-reliant 
on the retrieved context and forgets to draw from its own parametric memory. 

Figure 6.2 summarizes these drawbacks.

Retrieval Augmentation Generation

• Low recall

• Low precision

• Redundancy and repetition

• Disjointed context

• Reconciliation challenges

• Over-reliance on context

Figure 6.2 Drawbacks of naïve RAG at each stage of the process

In the last few years, a lot of research and experimentation has been done to address 
these drawbacks. Early approaches involved pre-training language models. Techniques 
involving fine-tuning of the LLMs, embeddings models, and retrievers have also been 
tried. These techniques require training data and re-computation of model weights, 
generally using supervised learning techniques. Since this book is a foundational 
guide, we will not go into these complex techniques.

This chapter covers some interventions, techniques, and strategies used at different 
stages of the two RAG pipelines: the indexing and generation pipeline. Although the 
array of such interventions is endless, some of the more popular ones are highlighted in 
the subsequent sections. 

6.2 Advanced RAG techniques

Advanced techniques in RAG have continued to emerge since the earliest experiments 
with naïve RAG. There are three stages in which we can discuss these techniques: 

¡	Pre-retrieval stage—As the name suggests, certain interventions can be employed 
before the retriever comes into action. This broadly covers two aspects: 

– Index optimization—The way documents are stored in the knowledge base
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– Query optimization—Optimizing the user query so it aligns better with the 
retrieval and generation tasks

¡	Retrieval stage—Certain strategies can improve the recall and precision of the 
retrieval process. This goes beyond the capability of the underlying retrieval algo-
rithms discussed in chapter 4.

¡	Post-retrieval stage—Once the information has been retrieved, the context can be fur-
ther optimized to better align with the generation task and the downstream LLM.

With techniques employed at these three stages, the advanced RAG process follows 
a “rewrite then retrieve then re-rank then read” frameworks. Two additional compo-
nents of rewrite and re-rank are added, and the retrieve component is enhanced in 
comparison with naïve RAG. This structure is presented in figure 6.3.
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Figure 6.3 Advanced RAG is a rewrite–retrieve–re-rank–read process, as compared to a retrieve–read 

naïve RAG process.

We now explore these components one by one, beginning with the pre-retrieval stage.
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6.3 Pre-retrieval techniques

The primary objective of employing pre-retrieval techniques is to facilitate better 
retrieval. We have noted that the retrieval stage of naïve RAG suffers from low recall 
and low precision—irrelevant information is retrieved, and not all relevant informa-
tion is retrieved. This can happen mainly because of two reasons: 

¡	Knowledge base is not suited for retrieval. If the information in the knowledge base is 
not stored in a manner that is easy to search through, then the quality of retrieval 
will remain suboptimal. To address this problem, index optimization is done in the 
indexing pipeline for more efficient storage of the knowledge base.

¡	Retriever doesn’t completely understand the input query. In generative AI applications, 
the control over the user query is generally limited. The level of detail a user 
provides is subjective. The retriever sometimes may misunderstand or not com-
pletely understand the context of the user query. Query optimization addresses this 
aspect of the challenge with the naïve RAG.

Both index and query optimizations are carried out before the retriever is invoked. 
This is the only stage that recommends interventions both in the indexing and genera-
tion pipeline. We will look at a few techniques for each of these.

6.3.1 Index optimization

Index optimization is employed in the indexing pipeline. The objective of index opti-
mization is to set up the knowledge base for better retrieval. Some of the popular strat-
egies are as follows.

CHUNK OPTIMIZATION

Chapter 3 discussed the significance of chunking in the indexing pipeline. Chunking 
large documents into smaller segments plays a crucial role in retrieval and handling 
the context length limits of LLMs. Certain techniques aim for better chunking and 
efficient retrieval of the chunks, such as

¡	Chunk size optimization—The size of the chunks can have a significant effect on the 
quality of the RAG system. While large-sized chunks provide better context, they 
also carry a lot of noise. Smaller chunks, however, have precise information, but 
they might miss important information. For instance, consider a legal document 
that’s 10,000 words long. If we chunk it into 1,000-word segments, each chunk 
might contain multiple legal clauses, making it hard to retrieve specific infor-
mation. Conversely, chunking it into 200-word segments allows for more precise 
retrieval of individual clauses, but may lose the context provided by surrounding 
clauses. Experimenting with chunk sizes can help find the optimal balance for 
accurate retrieval. The processing time also depends on the chunk size. Chunk 
size, therefore, has a significant effect on retrieval accuracy, processing speed, 
and storage efficiency. The ideal chunk size varies with the use case and depends 
on balancing factors such as document types and structure, complexity of user 
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query, and the desired response time. There is no one-size-fits-all approach to 
optimizing chunk sizes. Experimentation and evaluation of different chunk sizes 
on metrics such as faithfulness, relevance, and response time (as discussed in 
chapter 5) can help in identifying the optimal chunk size for the RAG system. 
Chunk size optimization may require periodic reassessment as data or require-
ments change.

¡	Context-enriched chunking—This method adds the summary of the larger docu-
ment to each chunk to enrich the context of the smaller chunk. This makes more 
context available to the LLM without adding too much noise. It also improves the 
retrieval accuracy and maintains semantic coherence across chunks. This feature 
is particularly useful in scenarios where a more holistic view of the information 
is crucial. While this approach enhances the understanding of the broader con-
text, it adds a level of complexity and comes at the cost of higher computational 
requirements, increased storage needs, and possible latency in retrieval. Here is 
an example of how context enrichment can be done using GPT-4o-mini, OpenAI 
embeddings, and FAISS:

from langchain_community.document_loaders 

import AsyncHtmlLoader  

from langchain_community.document_transformers 

import Html2TextTransformer  

url=  

https://en.wikipedia.org/wiki/2023_Cricket_World_Cup  

loader = AsyncHtmlLoader (url)  

data = loader.load()  

html2text = Html2TextTransformer()  

document_text=data_transformed[0].page_content  

summary_prompt = f"Summarize the given   

document in a single paragraph\n  

document: {document_text}"   

from openai import OpenAI  

client = OpenAI()  

response = client.chat.completions.create(  

  model="gpt-4o-mini",  

  messages= [  

    {"role": "user", "content": summary_prompt}  

      ]  

)  

summary=response.choices[0].message.content  

from langchain_text_splitters import   

RecursiveCharacterTextSplitter  

text_splitter = RecursiveCharacterTextSplitter(  

chunk_size=1000,  

chunk_overlap=200)  

Loads text from 
Wikipedia page

Generates summary 
of the text using 
GPT-4o-mini model

Creates chunks 
using recursive 
character splitter
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chunks=text_splitter.split_text(     
data_transformed[0].page_content 
)  

context_enriched_chunks =      
[answer + "\n" + chunk for chunk in chunks]  

embedding = OpenAIEmbeddings(openai_api_key=api_key)  
vector_store = FAISS.from_texts(   

context_enriched_chunks, 
embedding 

)  

¡	Fetch surrounding chunks—In this technique, chunks are created at a granu-
lar level, say, at a sentence level, and when a relevant chunk of text is found in 
response to a query, the system retrieves not only that chunk but also the sur-
rounding chunks. This makes the search granular but also performs contextual 
expansion by retrieving adjacent chunks. It is useful in long-form content such 
as books and reports where information flows across paragraphs and sections. 
This technique also adds a layer of processing cost and latency to the system. 
Apart from that, there is a possibility of diluting the relevance as the neighboring 
chunks may contain noise. 

Chunk optimization is an effective step toward better RAG systems. Although it pres-
ents challenges such as managing the costs, system latency, and storage efficiency, opti-
mizing chunking can fundamentally improve the retrieval and generation process of 
the RAG system. 

METADATA ENHANCEMENTS

A common way of defining metadata is “data about data.” Metadata describes other 
data. It can provide information such as a description of the data, time of creation, 
author, and similar. While metadata is useful for managing and organizing data, in 
the context of RAG, metadata enhances the searchability of data. A few ways in which 
metadata is crucial in improving RAG systems are 

¡	Metadata filtering—Adding metadata such as timestamp, author, category, and 
similar can enhance the chunks. While retrieving, chunks can first be filtered by 
relevant metadata information before doing a similarity search. This improves 
retrieval efficiency and reduces noise in the system. For example, using the time-
stamp filters can help avoid outdated information in the knowledge base. If a 
user searches for “latest COVID-19 travel guidelines,” metadata filtering by time-
stamp ensures that only the most recent guidelines are retrieved, avoiding out-
dated information.

¡	Metadata enrichment—Timestamp, author, category, chapter, page number, and 
so forth are common metadata elements that can be extracted from documents. 
However, even more valuable metadata items can be constructed. This can be a 
summary of the chunk by extracting tags from the chunk. One particularly useful 

Enriches chunks 
with summary data

Creates embeddings and 
storing in FAISS index
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technique is reverse hypothetical document embeddings. It involves using a lan-
guage model to generate potential queries that could be answered by each doc-
ument or chunk. These synthetic queries are then added to metadata. During 
retrieval, the system compares the user’s query with these synthetic queries to 
find the most relevant chunks. 

Metadata is a great tool for improving the accuracy of the retrieval system. However, a 
degree of caution must be exercised when adding metadata to the chunks. Designing 
the metadata schema is important to avoid redundancies and managing processing 
and storage costs. Providing improved relevance and accuracy, metadata enhancement 
has become extremely popular in contemporary RAG systems. 

INDEX STRUCTURES

Another important aspect of the knowledge base is how well the information is struc-
tured. In the naïve RAG approach, there is no structural order to documents/chunks. 
However, for a more efficient retrieval, a few indexing structures have become popular 
and effective:

¡	Parent–child document structure—In a parent–child document structure, docu-
ments are organized hierarchically. The parent document contains overarching 
themes or summaries, while child documents delve into specific details. During 
retrieval, the system can first locate the most relevant child documents and then 
refer to the parent documents for additional context if needed. This approach 
enhances the precision of retrieval, while maintaining the broader context. 
Simultaneously, this hierarchical structure can present challenges in terms of 
memory requirements and computational load.

¡	Knowledge graph index—Knowledge graphs organize data in a structured man-
ner as entities and relationships. Using knowledge graph structures not only 
increases contextual understanding but also equips the system with enhanced 
reasoning capabilities and improved explainability. Knowledge graph creation 
and maintenance, however, is an expensive process. Knowledge-graph-powered 
RAG, also called GraphRAG, is an emerging advanced RAG pattern that has 
demonstrated significant improvements in RAG performance. We will discuss 
GraphRAG in detail in chapter 8.

Index structure, perhaps, has the biggest effect on index optimization for retrieval. It, 
however, introduces storage and memory burden on the system and affects search time 
performance. Index structure optimization is therefore advised in large scale systems 
where the true potential of concepts such as GraphRAG and hierarchical index can be 
realized.

NOTE In the previous chapters, we have discussed that embeddings are a cru-
cial component of RAG. They are used to calculate the semantic similarity 
between the user query and the documents stored in the knowledge base. 
Generally available embeddings models have been trained on commonly 
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spoken language. When dealing with domain-specific or specialized content, 
these models may not yield good results. Fine-tuning embedding models let 
you optimize vector representations for your specific domain or task, leading 
to more accurate retrieval of relevant context. Fine-tuning is a slightly com-
plex process since it requires curation of the training dataset and resources 
for recalculating the embeddings model. In case you’re dealing with highly 
specialized domains where the vocabulary is different from commonly spoken 
languages, you should consider fine-tuning the embedding model for your 
domain.

Like the indexing pipeline, index optimization is a periodic process and does not hap-
pen in real-time. The objective of index optimization is to set up the knowledge base 
for better retrieval. One must also be mindful of the added complexity that leads to an 
increase in computational, memory, and storage requirements. Figure 6.4 is an illustra-
tive workflow of an index-optimized knowledge base.
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Figure 6.4 Illustration of an index-optimized knowledge base
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6.3.2 Query optimization

The second stage of pre-retrieval techniques is a part of the generation pipeline. The 
objective of this stage is to optimize the input user query in a manner that makes it bet-
ter suited for the retrieval tasks. Some of the popular query optimization strategies are 
listed in the following sections. 

QUERY EXPANSION

In query expansion, the original user query is enriched to retrieve more relevant infor-
mation. This helps in increasing the recall of the system and overcomes the challenge 
of incomplete or very brief user queries. Some of the techniques that expand user 
queries are

¡	Multi-query expansion—In this approach, multiple variations of the original query 
are generated using an LLM, and each variant query is used to search and retrieve 
chunks from the knowledge base. For a query “How does climate change affect 
polar bears?” a multi-query expansion might generate “Impact of global warming 
on polar bears,” “What are the consequences of climate change for polar bear 
habitats?” Let’s look at a simple example of multi-query generation using GPT 
4o-mini model:

original_query="How does climate change affect polar bears?"

num=5

expansion_prompt=f"Generate {num} variations  

of the following query: {original_query}.   

Respond in JSON format."  

from openai import OpenAI  

client = OpenAI()  

response = client.chat.completions.create( 

  model="gpt-4o-mini",  

  messages= [  

    {"role": "user", "content": expansion_prompt}  

      ],  

          response_format={ "type": "json_object" }  

)  

expanded_queries=response.choices[0].message.content  

¡	Sub-query expansion: Subquery approach is quite like the multi-query approach. In 
this approach, instead of generating variations of the original query, a complex 
query is broken down into simpler sub-queries. This approach is inspired by the 
least-to-most prompting technique, where complex problems are broken down 
into simpler sub-problems and are solved one by one. A sub-query expansion on 
the same query—“How does climate change affect polar bears?”—may generate 
“How does melting sea ice influence polar bear hunting and feeding behaviors?” 
and “What are the physiological and health impacts of climate change on polar 

Crafts the prompt 
for query expansion

Uses GPT 4o-mini 
to generate 
expanded queries

Extracts the 
text from the 
response object
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bears?” The approach to sub-query is similar to that for multi-query, except for 
the changes to the prompt:

sub_query_expansion_prompt=f" \

Break down the following \

query into {num} sub-queries targeting \

different aspects of the query: {original_query}. \

Respond in JSON format. "

¡	Step-back expansion—The term comes from the step-back prompting approach 
where the original query is abstracted to a higher-level conceptual query. During 
retrieval, both the original query and the abstracted query are used to fetch 
chunks. Similar to above example, an abstracted step-back query may be “What 
are the ecological impacts of climate change on arctic ecosystems?” Here is an 
example of the prompt that can be used:

step_back_expansion_prompt = f" \

Given the query: {original_query}, \

generate a more abstract, \

higher-level conceptual query. "

While multi-query expansion generates various rephrasing or synonyms of the original 
query to cast a wider net during retrieval, sub-query expansion breaks down a complex 
query into simpler, component queries to target specific pieces of information, and 
step-back expansion abstracts the query to a higher-level concept to capture broader 
context.

Query expansion also presents its own set of challenges that need to be considered 
while implementing this strategy. While query expansion may increase recall by match-
ing more documents, it may reduce the precision. The expansion terms need to be 
carefully selected to avoid contextual drift from the original query. Overexpansion can 
dilute the focus from the original query. Despite the challenges, query expansion has 
proved to be an effective technique for improving the recall of retrieval and generating 
more context aware responses.

QUERY TRANSFORMATION

Compared to query expansion, in query transformation, instead of the original user 
query, retrieval happens on a transformed query, which is more suitable for the 
retriever.

¡	Rewrite—Queries are rewritten from the input. The input in quite a few real-
world applications may not be a direct query or a query suited for retrieval. Based 
on the input, a language model can be trained to transform the input into a 
query that can be used for retrieval. A user’s statement like, “I can’t send emails 
from my phone” can be rewritten as “Troubleshooting steps for resolving email 
sending issues on smartphones,” making it more suitable for retrieval.
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¡	HyDE—Hypothetical document embedding, or HyDE, is a technique where the 
language model first generates a hypothetical answer to the user’s query without 
accessing the knowledge base. This generated answer is then used to perform a 
similarity search against the document embeddings in the knowledge base, effec-
tively retrieving documents that are similar to the hypothetical answer rather 
than the query itself. Here is an example that generates hypothetical document 
embeddings: 

# Original Query

original_query= 

"How does climate change \ 

affect polar bears?"  

# Prompts for generating HyDE

system_prompt="You are an expert in \ 

climate change and arctic life."  

hyde_prompt=f"Generate an answer to the \ 

question: {original_query}"  

# Using OpenAI to generate a hypothetical answer

from openai import OpenAI  

client = OpenAI()  

response = client.chat.completions.create(  

  model="gpt-4o-mini",  

  messages= [  

    {"role": "system", "content": system_prompt},  

    {"role": "user", "content": hyde_prompt}  

  ]  

)  

hy_answer=response.choices[0].message.content  

# Using OpenAI Embeddings to convert hyde into embeddings

embeddings = OpenAIEmbeddings( 

model="text-embedding-3-large" 

)  

hyde = embeddings.embed_query(hy_answer)  

Challenges similar to query expansion such as drift from original query and maintain-
ing intent also persist in query transformation strategies. Effective rewriting and trans-
formation of the query result in enhancing the context awareness of the system.

QUERY ROUTING

Different queries can demand different retrieval methods. Based on criteria such as 
intent, domain, language, complexity, source of information, and so forth, queries 
need to be classified so that they can follow the appropriate retrieval method. This is 
the idea behind optimizing the user query by routing it to the appropriate workflow. 
Types of routing techniques include:

Original query

Prompts for 
generating HyDE

Uses OpenAI to generate 
a hypothetical answer

Uses OpenAI Embeddings 
to convert Hyde into 
embeddings
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¡	Intent classification—A pre-trained classification model is used to classify the 
intent of the user query to select the appropriate retrieval method. A modifi-
cation to this technique is prompt-based classification, where instead of a pre-
trained classifier, an LLM is prompted to categorize the query into an intent.

¡	Metadata routing—In this approach, keywords and tags are extracted from the 
user query and then filtering is done on the chunk metadata to narrow down the 
scope of the search.

¡	Semantic routing—In this approach, the user query is matched with a pre-defined 
set of queries for each retrieval method. Wherever the similarity between the user 
query and pre-defined queries is the highest, that retrieval method is invoked.

In customer support chatbots, query routing ensures that technical queries are 
directed to databases with troubleshooting guides, while billing questions are routed 
to account information, enhancing user satisfaction.

Implementing query routing takes effort and skill. It introduces a whole new pre-
dictive component, bringing uncertainty to the process. Therefore, it must be care-
fully crafted. Query routing is a must when dealing with source data and query type 
variability.

Although the universe of pre-retrieval strategies and techniques is expansive and 
ever-evolving, we have looked at a few of the most popular and effective techniques 
in this section. Bear in mind that the applicability of the strategies will depend on the 
nature of the content in the knowledge base and the use case. However, using each of 
these strategies will result in incremental gains in the RAG system performance. Now 
that we have set up the knowledge base and the user query for better retrieval, let’s dis-
cuss important retrieval strategies in the next section.

6.4 Retrieval strategies

Interventions in the pre-retrieval stage can bring significant improvements in the per-
formance of the RAG system if the query and the knowledge base become well aligned 
with the retrieval algorithm. We have discussed quite a few retrieval algorithms in chap-
ter 4. In this section, we focus on strategies that can be employed for better retrieval.

6.4.1 Hybrid retrieval

Hybrid retrieval strategy is an essential component of production-grade RAG systems. 
It involves combining retrieval methods for improved retrieval accuracy. This can mean 
simply using a keyword-based search along with semantic similarity. It can also mean 
combining all sparse embedding, dense embedding vector, and knowledge graph-
based search. The retrieval can be a union or an intersection of all these methods, 
depending on the requirements of precision and recall. It generally follows a weighted 
approach to retrieval. Figure 6.5 shows the hybrid retriever querying graph and vector 
storage.
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Figure 6.5 Hybrid retriever employs multiple querying techniques and combines the results.

6.4.2 Iterative retrieval

Instead of using a retrieve–generate linear process, the iterative retrieval strategy 
searches the knowledge base repeatedly based on the original query and the generated 
text, which allows the system to gather more information by refining the search based 
on initial results. It is useful when solving multi-hop or complex queries. While effec-
tive, iterative retrieval can lead to longer processing times and may introduce chal-
lenges in managing larger amounts of retrieved information. There are examples of 
iterative retrieval that have demonstrated remarkably improved performance such as 
Iter-RetGen, which is an iterative approach that alternates between retrieval and gen-
eration steps.

6.4.3 Recursive retrieval

The recursive retrieval strategy builds on the idea of iterative retrieval by transform-
ing the query iteratively depending on the results obtained. While the initial query is 
used to retrieve the chunks, new focused queries are generated based on these chunks. 
It, therefore, leads to a better ability to find scattered information across document 
chunks and a more coherent and contextual response. Iterative retrieval chain-of-
thought (IRCoT) is a recursive retrieval technique that combines iterative retrieval 
with CoT prompting. 

6.4.4 Adaptive retrieval

Adaptive retrieval also follows the approach of repeated retrieval cycles. In adaptive 
retrieval strategies, an LLM is enabled to determine the most appropriate moment and 
content for retrieval. The objective of adaptive retrieval is to make the retrieval process 
more personalized to users and context. It is applied in areas such as adapting queries 
depending on user behavior or adjusting retrieval based on user performance. FLARE 
and Self-RAG are two popular examples of adaptive retrieval. Self-RAG introduces 
“reflection tokens” that enable the model to introspect and decide when additional 
retrieval is necessary. FLARE (forward-looking active retrieval-augmented generation) 
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predicts future content needs based on the current generation and retrieves rele-
vant information proactively. Adaptive retrieval is a part of a broader trend of agen-
tic AI. Agentic AI refers to AI systems that can make autonomous decisions during 
tasks, adapting their actions based on the context. In the context of RAG, agentic RAG 
involves AI agents that dynamically decide when and how to retrieve information, 
thus enhancing the flexibility and efficiency of the retrieval process. Agentic AI is an 
important emerging RAG pattern. We will discuss Agentic RAG in detail in chapter 8.

Figure 6.6 compares the three retrieval strategies that focus on repeated retrieval 
cycles. While recursive and iterative approaches need a threshold to break out of the 
iterations, in the adaptive approach, a judge model decides on-demand retrieval and 
generation steps.
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Figure 6.6 Iterative, recursive, and adaptive retrieval incorporate repeated retrieval cycles. Source: 

Adapted from Gao et al., December 18, 2023. “Retrieval-Augmented Generation for Large Language 

Models: A Survey.”
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All the advanced retrieval strategies introduce overheads in terms of computational 
complexity, and therefore the accuracy must be balanced against the cost and latency 
of the system. 

By employing advanced pre-retrieval techniques and a suitable retrieval strategy, we 
can expect that richer, deeper, and more relevant context is being retrieved from the 
knowledge base. Even when the relevant context is retrieved, the LLM may struggle to 
assimilate all the information. To address this problem, in the next section, we discuss 
a couple of post-retrieval strategies that help curate the context before augmenting the 
prompt with the necessary information.

6.5 Post-retrieval techniques

Even if the retrieval of the chunks happens in an expected manner, a point of failure 
still remains. The LLM might not be able to process all the information. This may be 
due to redundancies or disjointed nature of the context among many other reasons. At 
the post-retrieval stage, the approaches of re-ranking and compression help in provid-
ing better context to the LLM for generation.

6.5.1 Compression

Excessively long context has the potential of introducing noise into the system. This 
diminishes the LLM’s capability to process information. Consequently, hallucinations 
and irrelevant responses to the query may persist. In prompt compression, language 
models are used to detect and remove unimportant and irrelevant tokens. Apart from 
making the context more relevant, prompt compression also has a positive influence 
on cost and efficiency. Another advantage of prompt compression is being able to 
reduce the size of the prompt so that it can fit into the context window of the LLM. 
COCOM is a context compression method that compresses contexts into a small num-
ber of context embeddings. Similarly, xRAG is a method that uses document embed-
dings as features. Compression can lead to loss of information, and therefore, there 
needs to be a balance between compression and performance. A very simple prompt 
to compress a long-retrieved context is

compress_prompt = f" \

Compress the following document  \

into a shorter version,  \

retaining only the essential information: \

\n\n{document}"

RE-RANKING

Reordering all the retrieved documents ensures that the most relevant information 
is prioritized for the generation step. It refines retrieval results by prioritizing docu-
ments that are more contextually appropriate for the query, improving the overall 
quality and accuracy of information used for generation. Re-ranking also addresses 
the question of prioritization when a hybrid approach to retrieval is employed and 
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improves the overall response quality. There are commonly available re-rankers such 
as multi-vector, Learning to Rank (LTR), BERT-based, and even hybrid re-rankers that 
can be employed. Specialized APIs such as Cohere Rerank offer pre-trained models for 
efficient reranking integration. 

In this section, we discuss some of the popular advanced RAG strategies and tech-
niques employed at different stages of the RAG pipeline. It is important to also con-
sider the tradeoffs that come with these techniques. Almost any advanced technique 
will introduce overheads to the system. These can be in the form of computational load, 
latency in the system, and increased storage and memory requirements. Therefore, 
these techniques warrant a performance versus overhead assessment catered to specific 
use cases. Table 6.1 provides a summary of the 12 strategies discussed so far.

Table 6.1 Advanced RAG strategies with their benefits and limitations

Strategy Description Benefits Challenges

Chunk optimization Adjusting document 
chunks for optimal size 
and context

Improves retrieval 
accuracy, processing 
speed, and storage

Requires experimen-
tation; optimal chunk 
varies by use case

Metadata 

enhancements

Enriching chunks with 
additional metadata 
for better filtering and 
searchability

Improves retrieval effi-
ciency; reduces noise

Requires careful 
schema design; man-
ages processing costs

Index structures Organizing data in 
structured formats for 
efficient retrieval

Enhances accuracy 
and context in retrieval

Increases memory and 
computational load

Query expansion Enriching the user 
query to retrieve more 
relevant information

Increases recall; over-
comes brief queries

May reduce precision; 
risk of contextual drift

Query transformation Modifying the user 
query for better 
retrieval suitability

Enhances context 
awareness; maintains 
intent

Potential for misinter-
pretation; drift from the 
original query

Query routing Directing queries to 
appropriate retrieval 
methods based on 
classification

Enhances retrieval by 
matching method to 
query type

Introduces uncer-
tainty; requires careful 
crafting

Hybrid retrieval Combining multiple 
retrieval methods (e.g., 
keyword and semantic)

Improves retrieval accu-
racy and robustness

Increased complex-
ity; requires method 
weighting

Iterative retrieval Repeatedly searching 
based on initial results 
and query refinement

Gathers more compre-
hensive information; 
refines search

Longer processing 
times; managing more 
data

Recursive retrieval Iteratively transforming 
the query based on 
obtained results

Finds scattered infor-
mation; provides coher-
ent responses

Similar to iterative 
retrieval; potential for 
increased load

Adaptive retrieval LLM decides when and 
what to retrieve during 
generation

Personalized and con-
text-aware retrieval; 
dynamic adaptation

Increased computa-
tional complexity; part 
of agentic AI
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Strategy Description Benefits Challenges

Compression Reducing context 
length by removing 
irrelevant information

Fits within LLM context 
window; reduces noise 
and costs

Potential loss of import-
ant information; needs 
balance

Reranking Reordering retrieved 
documents to prioritize 
relevance

Enhances response 
quality; ensures most 
relevant info is used

Requires additional 
models; may introduce 
overhead

Figure 6.7 is an illustrative example of what a generation pipeline looks like after incor-
porating advanced techniques.
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Knowledge base is
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Figure 6.7 Illustrative example of advanced generation pipeline

While these advanced strategies and techniques are extremely useful in improving per-
formance, a RAG system also needs to provide customization and flexibility. This is 
because we may need to quickly adopt different techniques as the nature of data and 

Table 6.1 Advanced RAG strategies with their benefits and limitations (continued)



 139Modular RAG

queries evolve. A modular RAG approach discussed in the next section aims to provide 
greater architectural flexibility over the traditional RAG system.

6.6 Modular RAG

AI systems are becoming increasingly complex, demanding more customizable, flexi-
ble, and scalable RAG architectures. The emergence of modular RAG is a leap forward 
in the evolution of RAG systems. Modular RAG breaks down the traditional monolithic 
RAG structure into interchangeable components. This allows for tailoring of the sys-
tem to specific use cases. The modular approach brings modularity to RAG compo-
nents, such as retrievers, indexing, and generation, while also adding more modules 
such as search, memory, and fusion. We can think of the modular RAG approach in 
two parts:

¡	Core components of RAG developed as flexible, interchangeable modules

¡	Specialized modules to enhance the core features of retrieval, augmentation, 
and generation

6.6.1 Core modules

The core components of the RAG system (i.e. indexing, retrieval, augmentation and 
generation), along with the advanced pre- and post-retrieval techniques, are composed 
as flexible, interchangeable modules in the modular RAG framework.

¡	Indexing module—The indexing module serves as the foundation for building the 
knowledge base. By modularizing this component, developers can choose from 
various embedding models for advanced semantic understanding. Vector stores 
can be interchanged based on scalability and performance needs. Additionally, 
chunking methods can be adapted to the data structure, whether it’s text, code, 
or multimedia content, ensuring optimal indexing for retrieval.

¡	Retrieval module—The retrieval module enables the use of diverse retrieval algo-
rithms. For instance, developers can switch between semantic similarity search 
using dense embeddings and traditional keyword-based search such as BM25. 
This flexibility allows for tailoring retrieval methods to the specific requirements 
of the application, such as prioritizing speed, accuracy, or resource utilization. 
For example, a customer support chatbot might use semantic search during off-
peak hours for higher accuracy and switch to keyword search during peak hours 
to handle increased load. The modular retrieval component allows this dynamic 
interchange of retrieval strategies based on real-time needs.

¡	Generation module—In the generation module, the choice of LLM is modular. 
Developers can select from models such as GPT-4 for complex language genera-
tion or smaller models for cost efficiency. This module also handles prompt engi-
neering for augmentation to guide the LLM in generating accurate and relevant 
responses.
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¡	Pre-retrieval module—Allows flexibility of pre-retrieval techniques to improve the 
quality of indexed content and user query.

¡	Post-retrieval module—Like the pre-retrieval module, this module allows for flex-
ible implementation of post-retrieval techniques to refine and optimize the 
retrieved context.

You may note that the first three modules complete the naïve RAG approach, and the 
addition of the pre-retrieval and post-retrieval modules enhances the naïve RAG into 
an advanced RAG implementation. It can also be said that naïve RAG is a special (and 
limited) case of advanced RAG.

6.6.2 New modules

The modular RAG framework has introduced several new components to enhance the 
retrieval and generation capabilities of naïve and advanced RAG approaches. Some of 
these components/modules are

¡	Search—The search module is aimed at performing searches on different data 
sources. It is customized to different data sources and aimed at increasing the 
source data for better response generation.

¡	Fusion—RAG fusion improves traditional search systems by overcoming their lim-
itations through a multi-query approach. The fusion module enhances retrieval 
by expanding the user’s query into multiple, diverse perspectives using an LLM. 
It then conducts parallel searches for these expanded queries, fuses the results by 
reranking and selecting the most relevant information, and presents a compre-
hensive answer. This approach captures both explicit and implicit information, 
uncovering deeper insights that might be missed with a single query.

¡	Memory—The memory module uses the inherent memory of the LLM, meaning 
the knowledge encoded within its parameters from pre-training. This module 
uses the LLM to recall information without explicit retrieval, guiding the system 
on when to retrieve additional data and when to rely on the LLM’s internal knowl-
edge. It can involve techniques such as using reflection tokens or prompts that 
encourage the model to introspect and decide if more information is needed. 
For example, when answering a query about historical events, the memory 
module can decide to rely on the LLM’s knowledge about World War II to pro-
vide context, only retrieving specific dates or figures as needed. This approach 
reduces unnecessary retrieval and uses the model’s pre-trained knowledge.

¡	Routing—Routing in the RAG system navigates through diverse data sources, 
selecting the optimal pathway for a query, whether it involves summarization, 
specific database searches, or merging different information streams.

¡	Task adapter—This module makes RAG adaptable to various downstream tasks 
allowing the development of task-specific end-to-end retrievers with mini-
mal examples, demonstrating flexibility in handling different tasks. The task 
adapter module allows the RAG system to be fine-tuned for specific tasks like 



 141Modular RAG

summarization, translation, or sentiment analysis. By incorporating a small num-
ber of task-specific examples or prompts, the module adjusts the retrieval and 
generation components to produce outputs tailored to the desired task, enhanc-
ing versatility without extensive retraining.

You may observe that advanced RAG is a special case within the modular RAG frame-
work. You also saw earlier that naïve RAG is a special case of advanced RAG. This means 
that the RAG approaches (i.e., naïve, advanced, and modular) are not competing but 
progressive. You may start by trying out a naïve implementation of RAG and move to a 
more modular approach. Figure 6.8 shows the progression of RAG systems.

Retrieval Generation

Pre-retrieval

Post-retrieval

Naive RAG is composed of three core modules.

Indexing

Advanced RAG adds pre-retrieval and post-retrieval
modules to the naive RAG modules.
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Memory Search

Predict

Enables direct

search across

different sources

Uses parametric

LLM memory to

guide retrieval

Selects the

optimal RAG

pathway for a

query

Expands user

queries
Enables direct

context

generation from

the LLM

Tailors the RAG

pipeline for

downstream

tasks

New modules interact with the advanced/naive RAG framework, as well as with each other.

Naive RAG Advanced RAG Modular RAG

Figure 6.8 Naïve, advanced, and modular approaches to RAG are progressive. Naïve RAG is a sub-

component of advanced RAG, which is a sub-component of modular RAG.
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While building a modular RAG system, remember that each module should be 
designed to work independently. This requires defining clear inputs and outputs. 
Along with the independent modules, the orchestration layer should be flexible to 
allow mixing and matching of modules. One should also bear in mind that a modular 
approach introduces complexity in the process. Managing interfaces, dependencies, 
configurations, and versions of modules can be complex. Ensuring compatibility and 
consistency between modules can be challenging. Testing each module independently 
and collectively requires a robust evaluation strategy. Extra modules may also add 
latency and inference costs to the system.

Despite the added complexities, the modular approach toward RAG is state-of-the-
art in large-scale RAG systems. It enables rapid experimentation, efficient optimiza-
tion, and seamless integration of new technologies as they emerge. By offering the 
ability to mix and match different modules, modular RAG empowers you to build 
more robust, accurate, and versatile AI solutions. It also facilitates easier mainte-
nance, updates, and scalability, making it an ideal choice for managing complex, 
evolving knowledge bases.

This section concludes the discussion on improving RAG performance using 
advanced techniques and a modular framework. Interventions can be employed at 
different stages of the indexing and generation pipelines. Modular approaches to 
RAG enable rapid experimentation, flexibility, and scalable architecture. You will 
need to experiment to figure out the techniques that help in improving RAG for 
specific use cases. It is also important to be mindful of the tradeoffs. Advanced tech-
niques introduce complexities that have an effect on computation, memory, and stor-
age requirements. 

This is one aspect of putting RAG in production. Advanced techniques are necessary 
for RAG systems to achieve acceptable accuracy and efficiency. The other enablers for 
RAG systems in production are the tools and technologies that form the backbone of 
the RAG stack. In the next chapter, we will look at this technology infrastructure that 
enables RAG systems. 

Summary

Limitations of naïve RAG

¡	Naïve RAG follows a simple “retrieve then read” process.

¡	This approach suffers from low precision and incomplete retrieval.

¡	Retrieval often misses relevant information and pulls in irrelevant content.

¡	At the augmentation stage, there is often redundancy from similar retrieved 
documents.

¡	Context can become disjointed when sourced from multiple documents.

¡	The generation stage faces hallucinations and biased outputs.

¡	The model can overly rely on retrieved data and ignore its internal knowledge.
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Advanced RAG techniques

¡	The advanced RAG process follows a “rewrite then retrieve then re-rank then 
read” framework, where the query is optimized through rewriting, retrieval is 
enhanced for better precision, results are re-ranked to prioritize relevance, and 
the most relevant information is used for generating the final response.

¡	Pre-retrieval techniques include

– Index optimization—Improves document storage for better searchability

– Chunk optimization—Balances chunk sizes to avoid losing context or introduc-
ing noise

– Context-enriched chunking—Adds summaries to each chunk to improve retrieval

– Metadata enhancements—Adds tags and metadata like timestamps or categories 
for better filtering

– Query optimization—Expands or rewrites user queries for improved retrieval 
accuracy

¡	Retrieval techniques include

– Hybrid retrieval—Combines keyword-based and semantic searches

– Iterative retrieval—Refines searches by repeatedly querying based on initial 
results

– Recursive retrieval—Generates new queries based on retrieved chunks to gather 
more relevant information

¡	Post-retrieval techniques include

– Compression—Reduces unnecessary context to remove noise and fit within the 
model’s context window

– Re-ranking—Reorders retrieved documents to prioritize the most relevant 
ones

Modular RAG framework

¡	Core modules include

– Indexing module—Allows flexible embedding models and vector store options

– Retrieval module—Supports switching between dense and keyword-based 
retrieval methods

– Generation module—Offers flexibility in selecting language models based on 
complexity and cost

¡	New modules include

– Search module—Tailors search to specific data sources for better results

– Fusion module—Expands user queries into multiple forms and combines 
retrieved results for deeper insights

– Memory module—Uses the model’s internal knowledge to reduce unnecessary 
retrieval, retrieving only when needed
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– Routing module—Dynamically selects the best path for handling different types 
of queries

– Task adapter module—Adapts the system for different downstream tasks like 
summarization or translation

Tradeoffs and best practices

¡	Advanced techniques improve RAG accuracy but add complexity.

¡	Techniques such as hybrid retrieval or re-ranking can increase computational 
costs and latency.

¡	Modular RAG offers flexibility but requires careful management of interfaces 
and module compatibility.

¡	Testing each module independently and as a whole is important to ensure system 
stability and performance.

¡	Tradeoffs between performance, cost, and system complexity should be carefully 
assessed.
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7Evolving RAGOps stack

This chapter covers

¡	The design of RAG systems

¡	Available tools and technologies that enable  

 a RAG system

¡	Production best practices for RAG systems

So far, we have discussed the indexing pipeline, generation pipeline, and evaluation 
of a retrieval-augmented generation (RAG) system. Chapter 6 also covered some 
advanced strategies and techniques that are useful when building production-grade 
RAG systems. These strategies help improve the accuracy of retrieval and genera-
tion and, in some cases, reduce the system latency. With all this information, you 
should be able to stitch together a RAG system for your use cases. Chapter 2 briefly 
laid out the design of a RAG system. This chapter elaborates on that design.

A RAG system is composed of standard application layers, as well as layers spe-
cific to generative AI applications. Stacked together, these layers create a robust RAG 
system.
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These layers are supported by a technology infrastructure. We delve into these layers 
and the available technologies and tools offered by popular service providers that can 
be used in crafting a RAG system. Some providers have started offering managed end-
to-end RAG solutions, which we touch upon in this chapter. 

We wrap up the chapter with some learnings and best practices for putting RAG sys-
tems in production. Chapter 7 also marks the end of part 3 of the book. 

By the end of this chapter, you should 

¡	Understand the details of the layers in a RAG (RAGOps) stack. 

¡	Be familiar with a host of service providers and the tools and technologies they 
offer for RAG systems.

¡	Know some of the pitfalls and best practices of putting RAG systems in 
production.

A RAG system includes a lot of additional components compared to traditional soft-
ware applications. Vector stores and embeddings models are essential components of 
the indexing pipeline. Knowledge graphs are becoming increasingly popular indexing 
structures. The generation component can have different kinds of language models. 
In addition, prompt management is becoming increasingly complex. The production 
ecosystem for RAG and LLM (large language models) applications is still evolving, but 
early tooling and design patterns have emerged. RAGOps refers to the operational 
practices, tools, and processes involved in deploying, maintaining, and optimizing 
RAG systems in production environments.

7.1 The evolving RAGOps stack

This section describes different components required to build a RAG system in layers. 
These layers come together to form the operations stack for RAG. We will also take this 
opportunity to revise the workflow of the RAG system discussed in this book.

It should be noted that RAG, like generative AI in general, is an evolving technology, 
and therefore, the operations stack continues to evolve. You may find varying defini-
tions and structures. This chapter provides a holistic view and discusses the compo-
nents from the perspective of their criticality to the RAG system. We look at the layers 
divided into the following three categories: 

¡	Critical layers that are fundamental to the operation of a RAG system. A RAG sys-
tem is likely to fail if any of these layers are missing or are incomplete.

¡	Essential layers that are important for performance, reliability, and safety of the 
system. These essential components bring the system to a standard that provides 
value to the user. 

¡	Enhancement layers that improve the efficiency, scalability, and usability of the 
system. These components are used to make the RAG system better and are 
selected based on the end requirements.
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7.1.1 Critical layers

The indexing pipeline and the generation pipeline (discussed in detail in chapters 
3 and 4) form the core of a RAG system. Figure 7.1 illustrates the indexing pipeline 
that facilitates the creation of the knowledge base for RAG systems and the generation 
pipeline that uses the knowledge base to generate context-aware responses.  
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Figure 7.1 Indexing and generation pipelines forming the core of a RAG system

Layers enabling these two pipelines form the critical layers of the RAGOps stack.

DATA LAYER

The data layer serves the critical role of creating and storing the knowledge base for 
RAG. It is responsible for collecting data from source systems, transforming it into a 
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usable format, and storing it for efficient retrieval. Here are some components of the 
data layer: 

¡	Data ingestion component—It collects data from source systems such as databases, 
content management systems, file systems, APIs, devices, and even the inter-
net. The data can be ingested in batches or as a stream, depending on the use 
case. For ingesting data, your choice of tool can depend on factors such as data 
volume, types of data source, ingestion frequency, cost, and ease of setup. Data 
ingestion is not specific to RAG but is a mainstream component in modern soft-
ware applications. AWS Glue, Azure Data Factory, Google Cloud Dataflow, Five-
tran, Apache NiFi, Apache Kafka, and Airbyte are among tools available for use. 
For rapid prototyping and proof of concepts (PoCs), frameworks such as Lang-
Chain and LlamaIndex have inbuilt functions that can assist in connecting to 
some sources and extracting information.

¡	Data transformation component—It converts the ingested data from a raw to 
a usable form. A core process in the indexing pipeline is the chunking of data. 
We know that embeddings is the preferred format of choice for RAG applications 
because it makes it easier to apply semantic search. Graph structures are becoming 
increasingly popular in advanced systems. Certain pre-processing steps such as 
cleaning, de-duplication, metadata enrichment, and masking of sensitive infor-
mation are also a part of this phase. While the volume of data and the nature 
of transformation play an important role in any data-transformation step, they 
are especially critical in RAG systems. All the extract–transform–load (ETL) tools 
mentioned in the data ingestion step in conjunction with tools such as Apache 
Spark and dbt also allow transformations. However, if we focus just on RAG, 
Unstructured.io specializes in processing and transforming unstructured data 
for use in LLM applications. It offers open source libraries as well as managed 
services. Constructing knowledge graphs from unstructured data has evolved 
today from early semantic networks and ontologies into robust frameworks.  
Microsoft’s GraphRAG is a framework that has pioneered the use of LLMs to 
extract entities and relationships from text.

¡	Data storage component—It stores the transformed data in a way that allows for 
fast and efficient retrieval. We have discussed that to store embeddings, vector 

databases are widely used because they are efficient in similarity search. For graph 
structures, graph databases are used. Most traditional database providers are incor-
porating vector search capabilities into their systems. Cost, scale, and speed are 
the primary drivers in the choice of data storage. We have used a vector index 
such as FAISS in this book. Pinecone is a fully managed cloud-native service. Mil-
vus, Qdrant, and Chroma are among the open source vector databases. Wevi-
ate is another database that also has a GraphQL-based interface for knowledge 
graphs. Neo4j is a leading graph database for storing and querying graph data. A 
comparison of popular vector databases is available at https://www.superlinked 
.com/vector-db-comparison.

https://www.superlinked.com/vector-db-comparison
https://www.superlinked.com/vector-db-comparison
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The flow from source systems to data storage via the ingestion and transformation 
components that lead to the creation of the knowledge base is shown in figure 7.2.
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Figure 7.2 Data layer: Creating the knowledge base by extracting, transforming, and loading (ETL) data from 

source systems

A strong data layer is the foundation of an efficient RAG system. The data layer also 
comes in handy when there is a need for fine-tuning of models. We discuss this feature 
briefly later in the chapter. Next, we look at the model layer, which includes the embed-
dings models used to transform text into vectors and the LLMs used in generation.

MODEL LAYER

Predictive models enable generative AI applications. Some models are provided by 
third parties, and some need to be custom trained or fine-tuned. Generating quick and 
cost-effective model responses is also an important aspect of using predictive models. 
The model layer includes the following three components:

¡	Model library—It contains the list of models that have been chosen for the appli-
cation. The most popular models are the LLMs that generate text and other 
generative models that can generate images, video, and audio. We saw that in 
the data layer, raw text is transformed into vector embeddings, and this is done 
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using embeddings models. Apart from this, there are other models used in RAG 
systems:

– Embeddings models are used to transform data into vector format. We have 
discussed embeddings models in detail in chapter 3. Recall that the choice 
of embeddings model depends on the domain, use case, and cost consider-
ations. Providers such as OpenAI, Gemini by Google, Voyage AI, and Cohere 
provide a variety of embeddings model choices, and a host of open source 
embeddings models can also be used via Hugging Face transformers. Mul-
timodal embeddings map data of different modalities into a shared embed-
dings space.

– Foundation models or the pre-trained LLMs are used for the generation of 
outputs, as well as for evaluation and adaptive tasks where LLMs are used to 
judge. We have discussed LLMs as part of the generation pipeline in chapter 
4. Recall that the GPT series by OpenAI, Gemini Series by Google, Claude 
Series by Anthropic, and Command R series by Cohere are popular propri-
etary LLMs. The llama series by Meta and Mistral are open source models that 
have gained popularity. Most LLMs now include multimodal capabilities and 
are continuously evolving.

– Task-specific models are machine learning models that are not core to RAG 
but come in handy for various tasks. These models are used in advanced 
RAG pipelines. Query classification models for efficient routing and intent 
detection, NER models to detect entities for metadata, query-expansion 
models, hallucination-detection models, and bias- and toxicity-moderation 
models are some examples of task-specific models useful in RAG systems. 
While task-specific models are generally custom trained, providers such as 
OpenAI, Hugging Face, and Google also offer these services.

¡	Model training and fine-tuning component—This component is responsible for 
building custom models and fine-tuning foundation models on custom data. 
In chapter 4, we discussed that fine-tuning of LLMs is sometimes required for 
domain adaptation. Fine-tuning can also be done for embeddings models. Addi-
tionally, the task-specific models can be trained on custom data. This component 
supports the algorithms used for training and fine-tuning the models. For train-
ing data, this component interacts with the data layer where the training data can 
be created and managed. A regular MLOps layer is also recommended for the 
development and maintenance of the models. This is enabled via ML platforms 
such as Hugging Face, AWS SageMaker, Azure ML, and similar.

¡	Inference optimization component—This component is responsible for generating 
responses quickly and cost-effectively, which can be done by employing a vari-
ety of methods such as quantization, batching, KV(Key Value)-caching, and sim-
ilar. ONNX and NVIDIA TensorRT-LLM are popular frameworks that optimize 
inferencing.
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Figure 7.3 illustrates different components of the model layer. It shows how the model 
layer helps in deciding which models to use in the RAG system, facilitates training and 
fine-tuning of the model, and optimizes the models for efficient serving. 
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Figure 7.3 The model layer: The model library is the store for all models selected for the application, model 

training and fine-tuning interact with the data layer to source training data and train custom models, while the 

inference optimization component is responsible for efficient serving of the model.

MODEL DEPLOYMENT

This layer is responsible for making the RAG system available to the application layer. 
It handles the infrastructure of the models. It also ensures that the models can be 
accessed reliably. There are four main methods by which the models can be deployed: 
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¡	Fully managed deployment—It can be provided by proprietary model providers 
such as OpenAI, Google, Anthropic, and Cohere, where all infrastructure for 
model deployment, serving, and scaling is managed and optimized by these 
providers. Services such as AWS SageMaker, Google Vertex AI, Azure Machine 
Learning, and Hugging Face offer platforms to deploy, serve, and monitor both 
open source and custom-developed models. Amazon Bedrock is another fully 
managed service that provides access to a variety of foundation models, both pro-
prietary and open source, simplifying model access and deployment.

¡	Self-hosted deployment—This type of deployment is enabled by cloud VM providers 
such as AWS, GCP, Azure, and hardware providers such as Nvidia. In this scenario, 
models are deployed in private clouds or on-premises, and the infrastructure is 
managed by the application developer. Tools such as Kubernetes and Docker are 
widely used for containerization and orchestration of models, while Nvidia Tri-
ton Inference Server can optimize inference on Nvidia hardware.

¡	Local/edge deployment—It involves running optimized versions of models on local 
hardware or edge devices, ensuring data privacy, reduced latency, and offline 
functionality. Local/edge deployment typically requires model compression 
techniques such as quantization and pruning, and smaller models tailored for 
resource-constrained environments. Tools such as ONNX, TensorFlow Lite, and 
PyTorch Mobile enable efficient deployment on mobile and embedded plat-
forms, while GGML and NVIDIA TensorRT support CPU and GPU optimiza-
tions. GPT4All is a popular open source solution for running quantized LLMs 
locally on devices such as laptops, IoT devices, and edge servers without relying 
on cloud infrastructure. These frameworks facilitate low-latency, power-efficient 
execution, making AI accessible in decentralized environments.

Model deployment is a relatively complex task that requires engineering skills when 
self-hosted and local/edge deployment is done. Figure 7.4 illustrates the three ways in 
which models are deployed.
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Request
to model
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Figure 7.4 The model deployment layer manages the infrastructure for hosting and deployment for 

efficient serving of all the models in the RAG system.
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With the data and the model layers, the most essential components of the RAG system 
are in place. Now we need a layer that manages the co-ordination between the data and 
the models. This is the responsibility of the application orchestration layer.

APPLICATION ORCHESTRATION LAYER

When we hear the term orchestration, a musical conductor leading a group of musicians 
in an orchestra comes to mind. An application orchestration layer is somewhat similar. 
It is responsible for managing the interactions among the other layers in the system. It 
is a central coordinator that enables communication between data, retrieval systems, 
generation models, and other services. The major components of the orchestration 
layer are 

¡	Query orchestration component—Responsible for receiving and orchestrating user 
queries. All pre-retrieval query optimization steps such as query classification, 
expansion, and rewriting are orchestrated by this component. The query orches-
tration layer may coordinate with the end application layer to receive the input, 
and the model layer to access the models required for the query optimization. 
This component will generally pass on the processed query to the retrieval coor-
dination and the generation coordination components.

¡	Retrieval coordination component—Hosts the various retrieval logics. Depending 
on the input from the query orchestration module, it selects the appropriate 
retrieval method (dense retrieval or hybrid retrieval) and interacts with the data 
layer. Depending on the retrieval strategy, it may also interact with the model 
layer if any recursive or adaptive retrieval method is invoked.

¡	Generation coordination component—Receives the query and the context from the 
previous components and coordinates all the post-retrieval steps. Its primary 
function is to interact with the model layer and prompt the LLM to generate the 
output. Apart from generation, all the post-retrieval steps such as re-ranking and 
contextual compression are coordinated by this component. Post-generation 
tasks such as reflection, fact-checking, and moderation can be coordinated by 
the generation component. This component can also be made responsible for 
passing the output to the application layer.

These are the three primary components of the orchestration layer. There are two 
additional components to consider:

¡	Multi-agent orchestration component—Used for agentic RAG where multiple agents 
handle specific tasks. We will take a deeper look at agentic RAG in chapter 8. 
The orchestration layer is responsible for managing agent interactions and 
coordination.

¡	Workflow automation component—Sometimes employed for managing the flow 
and the movement of data between different components. This component is 
not specific to RAG systems but is commonly employed in data products. Apache 
Airflow and Dagster are popular tools used for workflow automation.
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Figure 7.5 illustrates the orchestration layer components interacting with the applica-
tion layer, which is supported by the model deployment and data layer.
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Figure 7.5 The app orchestration layer accepts the user query from the application layer and sends the response 

back to the application layer.

LangChain and LlamaIndex are the most common orchestration frameworks used to 
develop RAG systems. They provide abstractions for different components. Microsoft’s 
AutoGen and CrewAI are upcoming frameworks for multi-agent orchestration. 

With these four layers (i.e., data, model, model deployment, and application orches-
tration), the critical RAG system is complete. This core system can interact with the 
end-software application layer, which acts as the interface between the RAG system and 
the user. While the application layer is generally custom built, platforms such as Stream-
lit, Vercel, and Heroku are popular for hosting the application. Figure 7.6 summarizes 
the critical layers of the RAGOps stack.

Now that you are familiar with the core layers of the stack, let’s look next at the essen-
tial layers that improve the performance and reliability of the system. 
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Figure 7.6 Core RAGOps stack where data, model, model deployment, and app orchestration layers interact with 

source systems and managed service providers, and co-ordinate with the application layer to interface with the user

7.1.2 Essential layers

While the critical layers form the core of the stack, they do not evaluate or monitor the 
system. They do not test the prompting strategies or offer any protection against the 
vulnerabilities of LLMs. These layers are essential to the system.

PROMPT LAYER

While the generation coordination component of the orchestration layer can simply 
put together the user query and the retrieved context, poor prompting can lead to 
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hallucinations and subpar results. Proper engineering and evaluation of the prompts 
are vital to guiding the model toward generating relevant, grounded, and accurate 
responses. This process often involves experimentation. Developers create prompts, 
observe the results, and then iterate on the prompts to improve the effectiveness of 
the app. This also requires tracking and collaboration. Azure Prompt Flow, Lang-
Chain Expression Language (LCEL), Weights & Biases prompts, and PromptLayer are 
among the several applications that can be used to create and manage prompts.

EVALUATION LAYER

Chapter 5 discussed RAG evaluations at length. Regular evaluation of retrieval accu-
racy, context relevance, faithfulness, and answer relevance of the system is necessary to 
ensure the quality of responses. TruLens by TruEra, Ragas, and Weights & Biases are 
commonly used platforms and frameworks for evaluation.

MONITORING LAYER

Continuous monitoring ensures the long-term health of the RAG system. Observing 
the execution of the processing chain is essential for understanding system behavior 
and identifying points of failure. Assessing the relevance and adequacy of information 
provided to the language model is also critical. Apart from this, regular system metrics 
tracking such as resource utilization, latency, and error rates form the part of the mon-
itoring layer. ARISE, RAGAS, and ARES are evaluation frameworks that are also used 
in monitoring. TraceLoop, TruLens, and Galileo are examples of providers that offer 
monitoring services.

LLM SECURITY AND PRIVACY LAYER

While security and privacy are features of any software system, in the context of RAG, 
there are additional aspects to this. RAG systems rely on large knowledge bases stored 
in vector databases, which can contain sensitive information. They need to follow all 
data privacy regulations. AI models are susceptible to manipulation and poisoning. 
Prompt injection is a malicious attack via prompts to retrieve sensitive information. 
Data protection strategies such as anonymization, encryption, and differential privacy 
should be employed. Query validation, sanitization, and output filtering assist in pro-
tection against attacks. Implementing guardrails, access controls, monitoring, and 
auditing are also components of the security and privacy layer.

CACHING LAYER

Caching has become a very important component of any LLM-based application. This 
is because of the high costs and inherent latency of generative AI models. With the 
addition of a retrieval layer, the costs and latency increase further in RAG systems. One 
way to control this increase is to cache responses to frequently asked queries. In prin-
ciple, caching LLM responses is like caching in any other software application, but for 
generative AI apps, it becomes more important.

These essential layers stacked together with the critical layers create a robust, accu-
rate, and high-performing RAG system. Figure 7.7 adds the essential layers and their 
components to the critical RAGOps stack.
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Figure 7.7 Adding essential layers to the critical RAGOps stack lays the path to a robust RAG system for user 

applications. 
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Table 7.1 is a recap of the critical and essential layers of the RAGOps stack. 

Table 7.1 Critical and essential layers of the RAGOps stack

Layer Category Description Example tools

Data layer Critical Responsible for creating and storing the 
knowledge base via ingestion from various 
sources, transformation into embeddings or 
graph structures, and storing for retrieval

AWS Glue, Apache 
Kafka, FAISS, Pine-
cone, Neo4j, Weavi-
ate, Milvus

Model layer Critical Contains the models required for generation 
and retrieval in RAG; includes embeddings 
models for vector generation, LLMs for text 
generation, and models for query classifica-
tion, hallucination detection, or re-ranking

OpenAI, Hugging 
Face Transformers, 
Google Gemini, Llama, 
Anthropic

Model 
deployment

Critical Ensures the models are accessible, perfor-
mant, and scalable; responsible for serving 
models and optimizing inference for fast 
response times

SageMaker, Vertex AI, 
NVIDIA Triton, Hugging 
Face

Application 
orchestra-
tion layer

Critical Manages the interaction between layers and 
services, ensures that queries flow through 
retrieval and generation stages, and coordi-
nates retrieval methods and generation tasks

LangChain, Haystack, 
Dagster, Apache Air-
flow, AutoGen, CrewAI

Prompt layer Essential Designs and maintains the input queries to 
ensure the LLM generates relevant, high-qual-
ity outputs; ensures continuous prompt refine-
ment to avoid hallucinations and improve 
accuracy

Weights & Biases 
Prompts, Azure 
Prompt Flow

Evaluation 
layer

Essential Evaluates the performance of the retrieval and 
generation stages, ensuring that the outputs 
are relevant, factual, and accurate.

TruLens by TruEra, 
Ragas, Weights & 
Biases

Monitoring 
layer

Essential Continuously monitors the performance, 
health, and resource usage of the RAG 
system; tracks key metrics such as latency, 
resource consumption, and error rates to 
ensure system stability.

Prometheus, Grafana, 
TruLens, Galileo

LLM security 
& privacy 
layer

Essential Ensures that the RAG system adheres to 
data privacy regulations and protects against 
prompt injection or other forms of AI manipu-
lation; implements security strategies such as 
encryption, access control, and guardrails

AWS KMS, Azure Key 
Vault, Prompt Injection 
Guards

Model train-
ing/Fine-tun-
ing layer

Essential Handles the training and fine-tuning of mod-
els for specific domains or tasks; fine-tuning 
models such as embeddings or LLMs using 
domain-specific datasets ensure better perfor-
mance for specialized use cases.

Hugging Face, AWS 
SageMaker, Google 
Vertex AI, Azure ML

Caching 
layer

Essential Caching frequently used queries and 
responses to reduce the latency and cost 
associated with repeated retrieval and gen-
eration tasks; ensures faster response times 
for common queries and minimizes resource 
usage for repeated tasks.

Redis, Varnish, 
ElasticCache
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We will now briefly look at a few enhancement layers, which are not mandatory but 
may be employed to further improve the RAG systems. Note that there can be several 
enhancement layers and that they should be tailored to the use case requirements.

7.1.3 Enhancement layers

Enhancement layers are the parts of the RAGOps stack that are optional but can lead 
to significant gains, depending on the use case environment. They focus on the effi-
ciency, usability, and scalability of the system. Some possible layers are described in the 
following. 

HUMAN-IN-THE-LOOP LAYER

This layer provides critical oversight where human judgment is necessary, especially for 
use cases requiring higher accuracy or ethical considerations. It helps reduce model 
hallucinations and bias. 

COST OPTIMIZATION LAYER

RAG systems can become very costly, especially with multiple calls to the LLMs for 
advanced techniques, evaluations, guardrails, and monitoring. This layer helps 
manage resources efficiently, which is particularly important for large-scale systems. 
Optimizing infrastructure can save significant costs but is not critical to the system 
functioning.

EXPLAINABILITY AND INTERPRETABILITY LAYER

This layer helps provide transparency for system decisions, especially important for 
domains requiring accountability (e.g., legal and healthcare). However, many applica-
tions can still function without this in nonregulated environments. 

COLLABORATION AND EXPERIMENTATION LAYER

This layer is useful for teams working on development and experimentation but non-
critical for system operation. This layer enhances productivity and iterative improve-
ments. Weights & Biases is a popular platform that helps track experiments.

These enhancement layers should be chosen depending on the application require-
ments. There may be other layers that you may deem fit for your use case.

Managed RAG solutions

Building a RAG system can be complex if you don’t have prior knowledge, budget, or 

time. To address these challenges, service providers offer managed RAG solutions. 

OpenAI offers the File Search tool that automatically parses and chunks your doc-

uments, creates and stores the embeddings, and uses both vector and keyword 

search to retrieve relevant content to answer user queries. AWS offers Amazon Bed-

rock Knowledge Bases, which is fully managed support for end-to-end RAG workflow. 

Azure AI, such as OpenAI file search, provides indexing and querying. Anthropic offers 

Claude projects where users can upload documents and provide context to have 

focused chats.
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(continued)

Several other providers offer RAG as a service and can handle video and audio tran-

scription, image content extraction, and document parsing. For quick and easy deploy-

ment of a RAG solution, managed service providers can be considered.

We have also discussed several service providers, tools, and technologies that you can 
use in the development of RAG systems. The choice of these tools and technologies 
may depend on factors such as 

¡	Scalability and performance required—RAG systems need to handle large volumes 
of data efficiently, while maintaining low latency. As data scales or traffic spikes, 
the system must remain performant to ensure fast response times. Choose cloud 
platforms that allow for auto-scaling and variable loads. For high-performance 
and scalable retrieval, choose the vector databases that can handle millions of 
embeddings with low-latency search capabilities. Use inference optimization 
tools to help reduce latency during the generation phase.

¡	Integration with existing stack—Seamless integration with your current technol-
ogy stack minimizes disruption and reduces complexity. If your system already 
operates on AWS, GCP, or Azure, using services that integrate well with these 
platforms can streamline development and maintenance. Choosing tools that 
natively integrate with your cloud provider, offer strong API support, and ensure 
that the chosen frameworks support these tools can be highly beneficial.

¡	Cost efficiency—LLMs require much more resources than traditional ML models. 
Costs, even with pay-as-you-go models, can escalate quickly with scale. Caching 
and inference optimization can help manage the costs.

¡	Domain adaptation—RAG systems often need to be adapted to specific industries 
or domains (e.g., healthcare and legal). Pre-trained models might not be fully 
effective for specific use cases unless fine-tuned with domain-specific data. For 
domain adaptation, models that can be easily fine-tuned should be chosen. Exist-
ing domain-specific models can also be considered. 

¡	Vendor lock-in constraints—Since generative AI is an evolving field, using propri-
etary tools or services from a single vendor may lead to vendor lock-in, making 
it difficult to migrate to other platforms or adjust your stack as requirements 
change. Using open source or interoperable technologies where possible helps 
in maintaining flexibility. Choosing tools that are cloud-agnostic or support 
multi-cloud deployments to reduce dependency on a single vendor. A modular 
architecture is advised to swap components without a system redesign.

¡	Community support—Strong community support means access to resources, tuto-
rials, troubleshooting, and regular updates, which can accelerate development 
and reduce debugging time. This is especially true for rapidly evolving fields 
such as LLMs and RAG. Tools with active communities such as Hugging Face, 
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LangChain, and similar are more likely to offer frequent updates, plugins, and 
third-party integrations.

With the knowledge of the critical, essential, and enhancement layers, you should be 
ready to put together a technology stack to build your RAG system. Let’s now look at 
some common pitfalls and best practices to consider when building and deploying 
production-grade RAG system.

7.2 Production best practices

Despite earnest efforts in designing and planning the RAG system, some problems will 
inevitably creep up during development and deployment. Although RAG is still in its 
nascent form, some early trends of common mishaps and best practices have emerged. 
There have been many experiments and learnings derived from them to make RAG 
systems work. This section discusses five such practices:

¡	Latency of the system—RAG systems can introduce latency due to the need for mul-
tiple steps: retrieval, reranking, and generation. High latency can significantly 
degrade user experience, especially in real-time applications like chatbots or 
interactive search engines, which happens because each component adds pro-
cessing time. Effective classification and routing of the queries can help in opti-
mizing latency. A filtering approach is useful in hybrid retrieval, which first filters 
the embeddings based on keywords or sparse retrieval techniques and then uses 
similarity search on the filtered results. This reduces the time taken to calculate 
similarity, especially in large knowledge bases. 

¡	Continued hallucination—Despite best efforts, LLMs may continue to generate 
responses that are factually incorrect or irrelevant to the retrieved content. This 
may happen if the retrieved data is ambiguous or incomplete. Post-processing 
validation steps may be required to address these. A common approach is to 
make RAG systems recommendation oriented rather than action oriented. This 
means that a human is looped into the system for verification and final action. 

¡	Insufficient scalability planning—Early prototypes of RAG systems often work 
well on small datasets but can struggle as the volume of data or the number 
of concurrent users grows. Managed vector database services with autoscaling 
features can be an easier way to plan for growth in demand and computation 
requirements. Similarly, autoscaling can also be used for the overall application 
using cloud-native solutions such as AWS Lambda.

¡	Domain-adaptation challenges—The embeddings and language models may not 
work well in niche or specialized domains. Also, the retrieval model and the lan-
guage model may not always complement each other well, leading to disjointed 
or incoherent results. Retrieval models and LLMs are often developed and fine-
tuned independently, which can cause a mismatch between the content retrieved 
and the way the LLM generates responses. It becomes important to fine-tune both 
the retrieval and generation models together for highly specialized domains.
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¡	Inadequate handling of data privacy and PII—Pre-trained models may generate 
content that includes sensitive information (e.g., personal data and confidential 
details) due to biases in training data. RAG systems may inadvertently leak sensi-
tive information or personally identifiable information (PII) in their responses, 
leading to privacy breaches. Data exfiltration, also known as data theft, extru-
sion, or exportation, is a major threat in the digital world. The solution is to use 
PII masking and data redaction during both the pre- and post-processing stages. 
Ensure compliance with privacy regulations such as GDPR or HIPAA and deploy 
models with privacy filters.

The list of best practices continues to evolve. Latency and scalability are critical for 
managing user experience and access. The promise of hallucination-free gener-
ation and data safety needs to be maintained for the reliability of the system. Table 
7.2 summarizes the challenges of and potential solutions to putting RAG systems into 
production.

Table 7.2 Production challenges and potential solutions

Challenge Description Solution

Latency of the system RAG systems add latency due to 
retrieval, re-ranking, and gener-
ation steps, affecting real-time 
performance.

Use query classification, hybrid 
retrieval filtering, and limit similar-
ity searches

Continued hallucination LLMs may generate incorrect or 
irrelevant responses due to ambig-
uous or incomplete data.

Add post-processing validation 
and make systems recom-
mendation-based with human 
verification.

Insufficient scalability 
planning

Early RAG systems struggle with 
scalability as data and user load 
grow.

Use autoscaling vector databases 
and cloud solutions such as AWS 
Lambda.

Domain-adaptation 
challenges

Embeddings and LLMs may 
perform poorly in specialized 
domains, leading to incoherent 
results.

Fine-tune both retrieval and gener-
ation models for niche use cases.

Inadequate handling of data 
privacy and PII

Models may expose sensitive data 
or PII, leading to privacy issues.

Apply PII masking, data redaction, 
and privacy filters, ensuring com-
pliance with regulations.

In this chapter, we have looked at a holistic RAGOps stack that enables the building of 
production-grade RAG systems. You also learned about some commonly available tools 
and technologies, along with a few best practices. This brings us to a close in our dis-
cussion of the RAGOps stack. We have now completed part 3 of the book, which means 
you should be ready to build RAG systems and put them into production. In the last 
part of this book, we discuss some emerging patterns in RAG-like multimodal capabil-
ities, agentic RAG, and graphRAG, along with closing comments on future directions 
and continued learning.
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Summary

¡	RAGOps stack is a layered approach to designing a RAG system.

¡	These layers are categorized into critical, essential, and enhancement layers.

¡	Critical layers are fundamental for operation; essential layers ensure perfor-
mance and reliability; and enhancement layers improve efficiency, scalability, 
and usability.

Critical layers

¡	Data layer—Responsible for collecting, transforming, and storing the knowl-
edge base. Ingestion tools such as AWS Glue, Azure Data Factory, and Apache 
Kafka enable data collection. Data transformation includes chunking, metadata 
enrichment, and converting data into vector formats. Tools such as FAISS, Pine-
cone, and Neo4j are used for storing embeddings and graph data.

¡	Model layer—Includes embeddings models and LLMs for generation. Embed-
dings models transform the text into vectors, with options from OpenAI, Google, 
Cohere, and Hugging Face. Foundation models (LLMs) such as GPT, Claude, 
and Llama generate outputs and evaluate tasks. Task-specific models handle spe-
cialized tasks such as query classification and bias detection.

¡	Model deployment—Manages hosting and serving of LLMs and embeddings mod-
els. Popular platforms include AWS SageMaker, Google Vertex, and Hugging 
Face. Inference optimization reduces response time and costs with methods such 
as quantization and batching.

¡	Application orchestration layer—Coordinates data flow between different components:

– Query orchestration handles query classification and optimization.

– Retrieval coordination manages retrieval methods like dense or hybrid search.

– Generation coordination handles prompt generation and post-retrieval tasks 
such as re-ranking.

Essential layers

¡	Prompt layer—Ensures prompts are well-engineered to guide LLMs for relevant, 
accurate responses. Tools such as LangChain and Azure Prompt Flow assist in 
prompt management.

¡	Evaluation layer—Monitors system performance by evaluating retrieval accuracy, 
faithfulness, and context relevance. Tools such as TruLens and Ragas provide 
evaluation frameworks.

¡	Monitoring layer—Tracks system health, resource usage, and latency. Platforms 
such as TraceLoop and Galileo provide monitoring services.

¡	LLM security and privacy layer—Protects against data breaches and prompt injec-
tion attacks. Tools such as encryption, anonymization, and differential privacy 
should be used to safeguard sensitive data.
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¡	Caching layer—Caches frequently generated responses to reduce costs and 
latency in RAG systems.

Enhancement layers

¡	Human-in-the-loop layer—Adds human oversight to ensure higher accuracy and 
ethical decision-making.

¡	Cost optimization layer—Reduces infrastructure costs, especially in large-scale RAG 
systems.

¡	Explainability and interpretability layer—Provides transparency into system deci-
sions, critical for domains such as healthcare and legal.

¡	Collaboration and experimentation layer—Useful for team-based development and 
continuous improvement.

Production best practices

¡	Latency—RAG systems often introduce latency due to multiple steps. Using tech-
niques such as filtering in hybrid retrieval can help reduce response times.

¡	Hallucination—LLMs may still generate incorrect responses. Post-processing vali-
dation and human-in-the-loop systems help mitigate this.

¡	Scalability—Early prototypes may struggle to scale. Managed vector database ser-
vices with autoscaling can help plan for growth.

¡	Domain adaptation—Embeddings and language models may not perform well in 
niche domains. Fine-tuning both retrieval and generation models is necessary.

¡	Data privacy—Models may leak sensitive information. PII masking, encryption, 
and compliance with data regulations are essential for protecting user data.



Part 4

Additional considerations

R AG is an evolving technique, and significant research activity has been 
ongoing in this field. In this concluding part of the book, you will learn about the 
popular state-of-the-art variants of RAG and a RAG development framework that 
will assist you in planning and building RAG systems. 

Chapter 8 will teach you about the most important variants of RAG—
multimodal RAG, knowledge graph-enhanced RAG, and agentic RAG—along 
with some other popular ones. Learning about these variants will let you customize 
your RAG systems to the use case you are building. 

Chapter 9 revisits all the concepts discussed in this book, organized within a 
RAG development framework. This framework will help you strategically plan the 
development of your RAG system. You’ll also get to know a few areas of research 
that remain open at the time of writing this book. 

This concluding part of the book wraps up your introduction to RAG. By the 
end of this book, you should not only have the foundations to build production-
grade RAG systems, but also the knowledge to follow and contribute to ongoing 
research in this domain.
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8Graph, multimodal, 
agentic, and other  

RAG variants

This chapter covers

¡	Introducing RAG variants

¡	Knowledge graph RAG

¡	Multimodal RAG

¡	Agentic RAG

¡	Other RAG variants

The first part of the book introduced retrieval-augmented generation (RAG) and 
the core idea behind it. The second part dealt with building and evaluating basic 
RAG systems. Part 3 took RAG beyond the naïve approach and discussed advanced 
techniques and the technology stack that supports a RAG system. The last part of 
the book looks at more RAG patterns, and we conclude our discussion with a few 
best practices and some areas for further exploration.

Chapter 8 looks at some popular RAG variants. These variants adapt different 
stages of RAG (i.e., indexing, retrieval, augmentation, and generation) to specific 
use case requirements. The chapter begins by discussing the emergence of these 
variants and the purpose they serve. We then continue talking about three important 
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variants that have gained prominence in applied RAG. These are knowledge-graph-
enhanced, multimodal, and agentic RAG. We also briefly examine other RAG variants 
that significantly contribute to the evolution of RAG in practical applications. We 
discuss the purpose and motivation behind each variant. This chapter also breaks down 
the workflow, features, and technical details of the variants along with their strengths 
and weaknesses. For simplicity, the code for these variants is not included in this chapter 
but can be found in the book’s code repository.

By the end of this chapter, you should 

¡	Be familiar with the idea and motivation behind RAG variants.

¡	Have an in-depth understanding of graph, multimodal, and agentic RAG.

¡	Be aware of several popular RAG variants and the use cases they solve.

There are several limitations of a naïve approach to RAG that affect the overall usability 
of a standard RAG system. These limitations range from difficulties in understanding 
relationships across different documents to challenges in handling various data types, 
as well as concerns regarding system cost and efficiency. Chapter 6 discussed several 
pre-retrieval, retrieval, and post-retrieval techniques, such as index optimization, query 
optimization, hybrid and iterative retrieval strategies, compression, and re-ranking, 
which address different limitations and improve the accuracy of a RAG system. Several 
RAG patterns that incorporate one or more of these techniques have emerged over 
time to solve specific use challenges. We refer to them as RAG variants.

8.1 What are RAG variants, and why do we need them?

The universe of applications that rely on RAG is expanding every day. Some of these 
applications process not just text, but different data modalities such as image, video, 
and audio as well. Others are being applied in domains such as healthcare and finance, 
where the effects of inaccurate results are catastrophic. The emerging domain of using 
LLMs as decision-making agents has also enabled a more adaptive and intelligent RAG 
system. Apart from factual accuracy, practical RAG applications demand low latency 
and low costs to enhance user experience and adoption. As the range of applications 
for RAG has expanded, so need specialized variations of RAG—known as RAG 
variants—designed to address unique challenges across different tasks and data types. 

These RAG variants are adaptations of the standard RAG framework that extend 
its functionality to meet demands of diverse and complex use cases. By employing 
advanced pre-retrieval, retrieval and post-retrieval techniques, these variants enhance 
RAG with capabilities such as handling multimodal data, providing higher accuracy, 
and better relational understanding. The evolution of these RAG variants makes the 
system both flexible and domain aware.

While several RAG variants have emerged, the three that we are going to discuss 
in-depth in the subsequent sections have gained prominence: 

¡	Multimodal RAG—Extends capabilities of the standard RAG beyond text data and 
incorporates other data types such as images, video, and audio. This characteristic 



 169Multimodal RAG

enables the system to fetch information from nontextual documents and provide 
additional context.

¡	Knowledge graph RAG—Integrates knowledge graphs into the retrieval process. 
This idea was introduced in chapter 6 as part of improving the indexing struc-
ture. Knowledge graphs help establish relationships between entities, providing 
better context, especially in multi-hop queries.

¡	Agentic RAG—Incorporates LLM agents into the RAG framework. These agents 
enable autonomous decision making across the RAG value chain from index-
ing to generation. Simultaneously, all components become adaptive to the user 
query.

In addition to these three, we also touch upon additional variants, such as corrective 
RAG, self-RAG, and more, but first, we begin by discussing multimodality.

8.2 Multimodal RAG

Until now, we have seen that standard RAG systems are effective in managing and 
retrieving textual data to generate context-aware and grounded responses. However, 
the scope of enterprise data extends beyond text to image, audio, and video. Standard 
RAG systems fall short when attempting to interpret nontextual data formats. This is 
the core motivation behind a multimodal variant of RAG, which extends the capabili-
ties to more data formats. 

8.2.1 Data modality

Multimodality can be a confusing term for the uninitiated, especially because “modal-
ity” varies in meaning across different fields. Grammatical modality relates to the 
expression of the speaker’s attitude, while treatment modality may refer to the medical 
approach in medicine. In RAG, and AI in general, modality refers to data format. Text 
is a modality, image is a modality, video and audio are different modalities, and we can 
also consider tables and code as distinct modalities. Figure 8.1 shows some data modal-
ities, including less common ones such as genomic and 3D data.

Text Image Audio Video 3D

Tables Time series Code Knowledge graph Genomic

Figure 8.1 Examples of different data modalities
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Multimodal RAG is, therefore, the extended variant of standard RAG with the capabil-
ity to process multiple data modalities. Before diving into the requirements and archi-
tectural details of multimodal RAG, let’s ponder over the use cases where multimodal 
RAG is necessary. 

8.2.2 Multimodal RAG use cases

There are several industries and functions where a multimodal variant of RAG is 
required, such as 

¡	Medical diagnosis—A diagnostic assistant can work with patient records that may 
include medical history (in text form), lab results (in tabular form), and diagnos-
tic images (like X-rays, MRIs, etc.), along with studies and research papers that 
include graphs, charts, or microscopic images. When the patient comes in for a 
consultation, this assistant can provide a holistic analysis to the doctor.

¡	Investment analysis—Working with financial reports and other filings that have 
charts showing trends, earnings, and projections along with balance sheets and 
income statements in tabular form, apart from the usual text commentary, an 
investment research assistant can provide analysts with crucial information 
needed to make investment decisions.

¡	Buying assistance—Through an analysis of product images, textual descriptions, 
product specifications (in tabular form), and customer reviews, a shopping 
assistant can help the shoppers on an e-commerce website with personalized 
recommendations.

¡	Coding assistance—Coding assistants retrieve relevant documentation, function 
usage examples, and code snippets from repositories based on the query con-
text. For example, when a developer asks how to implement a certain API func-
tion. The RAG system retrieves precise code snippets and explanations from the 
documentation, helping the developer avoid time-consuming searches.

¡	Equipment maintenance—Using historical text reports with visual inspection 
images or video feed, sensor data, and performance tables, a maintenance assis-
tant can provide maintenance recommendations and trends.

These are just a few examples. While standard text-only RAG finds acceptability in the 
initial stages of a use case, a large proportion of production-grade RAG systems incor-
porate at least one other modality of data.

8.2.3 Multimodal RAG pipelines

Let’s now explore how developing a multimodal RAG pipeline differs from a standard 
text-only RAG pipeline you have learned so far. An obvious change will be in loading 
and indexing the data of nontext modalities. 

MULTIMODAL INDEXING PIPELINE

Developing the knowledge base for multimodal RAG requires enhancement in each 
of the four components of the indexing pipelines. Apart from loading and chunking 
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files of different modalities, creating embeddings for multimodal data requires special 
attention. Let’s look at each of the components one by one. 

The data-loading step is quite like the standard text-only RAG but now includes 
connectors and data loaders for nontext modalities. There are several options 
available. Pillow, also known as PIL, is a popular Python library for loading images. 
Unstructured is an open source library that includes components for ingesting a 
variety of data formats. Pydub is another Python library that allows the loading of audio 
files such as WAV and MP3. LangChain provides an integration with the unstructured 
library. UnstructuredImageLoader is a class available in LangChain document 
loaders for loading images. For audio and video transcription, libraries such as 
OpenAIWhisperParser, AssemblyAIAudioTranscriptLoader, and YoutubeLoader can 
be used. Likewise, for tabular data CSVLoader and DataFrameLoader come in handy. 
For simplicity, sometimes data of different modalities is transcribed into text. 

Chunking for multimodal data largely follows a process similar to text chunking in 
cases where audio/video data is transcribed and stored as text. However, for raw audio 
and video data, specific chunking methods can be employed. Voice activity detection 
(VAD) chunks the data based on silences or background noise in the audio. Scene-
detection-based chunking identifies major changes in the scene to segment the video. 
For tabular data, sometimes row/column-level chunking can be incorporated, and for 
code, the chunking can be carried out at a function, a class, or a logical unit level. All 
strategies used for chunking text data such as context enrichment, semantic chunking, 
and similar are also held here. For images, chunking is generally not done. semantic_
chunkers is a multimodal chunking library for intelligent chunking of text, video, and 
audio. It makes AI and data processing more efficient and accurate.

Embeddings is where nuance begins in multimodal RAG. In standard text-only RAG, 
there are several embeddings models available to vectorize the chunks. But how 
does one vectorize data of different modalities, such as an image? There are three 
approaches to deal with this complexity: shared or joint embedding models, modality-
specific embeddings, and conversion of all non-text data into text. 

Shared or joint embeddings models map diverse data types into a unified embed-
dings space. By doing this, cross-modal retrieval is enabled, such as finding images 
based on textual descriptions or generating text from images. Google Vertex AI offers 
shared embeddings models that generate vectors for all data modalities in the unified 
embeddings space. Shared embeddings models are also called multimodal embeddings 
models. While efficient at understanding general image data, multimodal embeddings 
sometimes fall short when granular understanding is needed, as in charts and tables 
represented as images and infographics. In figure 8.2, image, text, audio, and video 
data are plotted in the same 3D vector space.

The modality-specific embeddings approach resemble multimodal embeddings, 
except that instead of a single embeddings space for all modalities, the embeddings 
space maps only two modalities. In such a scenario, we need an image–text embed-
dings model to process text, image, and audio data (e.g., Contrastive Language–Image 
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Pretraining, or CLIP) and an audio-text embeddings model (e.g., Contrastive 
Language–Audio Pretraining, or CLAP). The knowledge base has text, image, and 
audio embeddings in different embeddings spaces and stored separately. Figure 8.3 
is an example of CLIP image–text embeddings where image and text embeddings are 
projected onto a shared embeddings space.
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Figure 8.3 CLIP uses multimodal pre-training to convert classification into a retrieval task, which 

enables pre-trained models to tackle zero-shot recognition.
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Conversion of all non-text data into text is employed to first convert all nontext 
(image) data into text using a multimodal LLM and then follow the standard text-
only RAG approach. (A multimodal LLM is a large language model that processes 
all modalities of data. You will read more about multimodal LLMs later in this sec-
tion.) In this strategy, you may notice that we may not be entirely using multimodal 
data as information loss is bound to occur when converting nontext to text data. In 
a variation of this strategy, instead of converting all multimodal data into text and 
using it as text, a two-pronged approach is employed. Here all multimodal data is 
summarized in text using a multimodal LLM. Embeddings of this text are used to 
search for during the retrieval process. However, for generation, not only the sum-
mary but the actual multimodal file (e.g., a .jpeg) is retrieved and passed to the mul-
timodal LLM for generation. This reduces the loss of information when converting 
to text. 

Embeddings, either multimodal or text, are stored in vector databases such as stan-
dard text-only RAG. In addition to vector storage, document storage is required to store 
raw files that can be retrieved and passed to the LLM for generation. Document stores 
such as Redis can be used to store raw files. When text summaries are used, a key map-
ping of the summary embeddings to the raw documents must be created. Figure 8.4 
shows the indexing pipeline with all three options for embeddings.

Multimodal

embeddings
Text embeddings

Image embeddings

Modality specific

embeddings

LLM

Text

embeddings

Option A

Separate

collection for

each modality

Vector store

Document store

Text chunking

Source

Text loader

Image loader

Audio loader

Video loader

Loading

Audio chunking

Video chunking

Chunking

Option A

Audio embeddings

Video embeddings

Option B

Text

Single modality

conversion

Option C

Embeddings

Vector store

Option B

Option C

StorageThe loading and chunking
approach remains largely
similar for each of the
multimodal RAG options.

Figure 8.4 Multimodal indexing pipeline presenting three options

While the loading, chunking, and storage components are similar, the embedding 
component presents several options in multimodal RAG. Table 8.1 compares the 
indexing pipelines of text-only RAG and multimodal RAG.
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Table 8.1 Indexing pipelines of text-only vs. multimodal RAG

Indexing 

component
Text-only RAG Multimodal RAG

Loading Standard text data 
loaders are used to 
load documents, such 
as plain text files, 
PDFs, and other text-
based formats.

Requires connectors for additional data types. For images, 

libraries such as Pillow (PIL) and Unstructured-
ImageLoader in LangChain are used; for audio, we use 

libraries such as Pydub or OpenAIWhisperParser, 

whereas CSVLoader and DataFrameLoader are used 

for tabular data. Audio and video transcription tools such 

as AssemblyAI and YoutubeLoader are also incorporated to 

preprocess audio/video content.

Chunking Text data is divided 
into segments 
(chunks) based on 
context or structure 
(e.g., sentences, para-
graphs) and optionally 
enriched semantically.

Follows text chunking when data is transcribed to text 
(audio/video). For raw audio, voice activity detection 
(VAD) can be used to chunk by pauses. For videos, scene 
detection identifies visual transitions, and tabular data can 
be chunked row/column-wise. Image chunking is typically 
skipped.

Embeddings Text embeddings 
are created using 
a single-modality 
text embeddings 
model (e.g., OpenAI 
embeddings or BERT), 
which vectorizes each 
chunk for storage and 
retrieval.

Embeddings can be generated via multimodal embeddings 
models, which unify all data types in a shared vector space 
for cross-modal retrieval, modality-specific embeddings 
such as CLIP and CLAP or converting multimodal data to 
text first and use text embeddings, although this may cause 
information loss.

Storage Embeddings are 
stored in vector 
databases.

Embeddings are stored in vector databases, but additional 
document storage for raw multimodal files may be used.

Once the knowledge base is created, such as in text-only RAG, the generation pipeline 
is responsible for real-time interaction with the knowledge base. Depending on the 
embedding strategy used, the generation pipeline components adapt to incorporate 
multimodal data.

MULTIMODAL GENERATION PIPELINE 

Once the knowledge base is created by the indexing pipeline, the generation pipeline 
needs to search, retrieve, process, and generate multimodal data. This requires varia-
tions in retrieval approach and a multimodal LLM:

¡	Retrieval—Depending on the embeddings strategy, the retrieval technique varies: 

– In case a shared multimodal embeddings model is used, the retrieval process 
follows a similarity search approach, where the user query is converted into a 
vector form using the same multimodal embeddings, and the documents are 
retrieved based on their cosine similarity value irrespective of their modality.

– In the modality-specific embedding approach, because multiple embeddings 
are present, a multi-vector retrieval approach is employed. For a single query, 
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documents are retrieved from each modality-specific embeddings space based 
on similarity. These documents may later be re-ranked before augmentation 
and generation. 

– When nontext data is converted into text, the retrieval process is the same as 
the standard text-only RAG. In the variation where both text summaries and 
raw files are used, the retriever first retrieves the relevant summaries from the 
text embeddings space, and then the files from the document stores mapped 
to those summaries are also retrieved.

¡	Augmentation—The augmentation step remains the same as text-only RAG, 
except that the augmented prompt now includes the raw multimodal file accom-
panying the text prompt.

¡	Generation—Like multimodal embeddings, for processing and generating mul-
timodal data, multimodal LLMs are used. LLMs are limited by their ability to 
process text data only. Multimodal LLMs are transformers-based models, too, 
but have been trained on data of all modalities, in addition to text data. There 
are nuanced differences in the training process of multimodal LLMs, and the 
readers are encouraged to explore them. However, for building RAG systems, 
we can use the available foundation multimodal LLMs. OpenAI’s GPT 4o and 
GPT 4o mini and Google’s Gemini are popular proprietary multimodal LLMs, 
while Meta’s Llama 3.2 and Mistral AI’s Pixtral are open source multimodal 
LLMs. 

While the augmentation step remains similar to text-only RAG, the retrieval step adapts 
based on the embeddings strategy used, and the generation step swaps the LLMs with 
multimodal LLMs. The differences in the generation pipelines are highlighted in  
table 8.2. 

Table 8.2 Indexing pipelines of text-only vs. multimodal RAG

Generation 

component
Text-only RAG Multimodal RAG

Retrieval Retrieves similar 
text embeddings 
to the query using 
similarity search

Varies by embedding strategy—in shared embeddings model, 
a similarity search is employed regardless of modality, con-
verting the query into a multimodal vector. In modality-specific 
embeddings, multi-vector retrieval is used for modality-specific 
results, and in text-converted nontext data, a standard text 

retrieval along with raw files mapped to text summaries is used.

Augmentation Adds retrieved text 
to the prompt

Similar to text-only but includes the raw multimodal files along-

side the text in the prompt.

Generation Uses LLMs to gen-
erate responses

Uses multimodal LLMs instead of text-only LLMs.

By tweaking the indexing and generation pipelines, a standard text-only RAG system 
can be upgraded to a multimodal RAG system, as illustrated in figure 8.5.



176 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

Input modality

embeddings

Text embeddings

Multimodal LLM

Augmentation

While the search
takes place on the
text embeddings, raw
documents are also
retrieved to pass to
the LLM.

User query

Multimodal

embeddings

Multi-vector

retriever Text

retriever

To retrieve all
relevant documents,
search is conducted
in the collection
of each modality.

Multimodal

retriever

Option A: Multimodal

Option B: Specific modality

Option C: Single modality

M

Figure 8.5 For each of the three approaches, the generation pipeline also adapts.

8.2.4 Challenges and best practices

Multimodal RAG systems are gaining prominence owing to the diversity present in 
enterprise data. However, one must note that with multimodality, the complexity of 
the system increases along with higher latency and more expenditure on multimodal 
embeddings and generation. Some of the common challenges associated with multi-
modal RAG are 

¡	Ensuring coherent alignment between different data modalities (e.g., text and 
images) can be difficult. Utilizing multimodal embeddings projecting differ-
ent modalities into a common embedding space does create better integra-
tion, but these embeddings models can still lead to inaccuracies and must be 
evaluated.

¡	Handling multiple data types may increase computational requirements and 
processing time. Robust preprocessing pipelines to standardize and align data 
from various modalities are essential. Sometimes, converting multimodal data 
to text and following a text-only RAG approach may be enough to generate the 
desired results.



 177Knowledge graph RAG

¡	Not all models are capable of effectively processing and integrating multimodal 
data of all modalities. Incorporate only those that add significant value to the task 
to optimize performance and resource utilization. 

We have looked at a RAG variant that extends the capability of RAG to different data 
modalities. However, standard RAG is still deficient when the information is dispersed 
across different documents. Let’s now look at a pattern in which knowledge graphs are 
used to establish higher-order relationships.

8.3 Knowledge graph RAG

Imagine summarizing a large report or answering complex questions that draw infor-
mation from diverse sources. For example, a question such as, “What are the main 
themes in this report?” or “Which products in the catalogue are endorsed by the same 
celebrities?” are questions that are difficult for standard RAG systems to answer. 

In a summarization task such as the “main themes” in a report, there is no chunk of 
the document that can answer the question completely. Likewise, “endorsed by the same 
celebrities” is not likely to be present in the data for the retriever to search through. 

To answer these kinds of complex questions requiring multi-hop reasoning, identi-
fying contextual relationships, and addressing higher-order queries, a powerful RAG 
pattern that incorporates knowledge graphs has been widely successful. 

This pattern is called knowledge graph RAG or simply graph RAG (not to be confused 
with Microsoft’s GraphRAG, which is a specific framework of knowledge graph RAG). 
It must be noted here that graph RAG is not necessarily a replacement for standard 
vector-based RAG, but a hybrid approach in which both vectors and graphs are used to 
retrieve context. Before moving forward, The following sections explain what knowl-
edge graphs are and what benefits are inherent to them.

8.3.1 Knowledge graphs

The term knowledge graph was popularized by Google somewhere around 2012 by inte-
grating an entity-relationship structure into its search engine to deliver more accurate 
and context-aware results. The simplest way to understand knowledge graphs is through 
the node-and-edge structure. Nodes may represent entities such as people, organiza-
tions, products, and events, and edges represent relationships between the nodes, such 
as is a part of, works at, is related to, and so on. The nodes and edges can also have attributes 
such as id, timestamp, and similar. Knowledge graphs, therefore, rely on semantics or 
meaning to create a shared, human-like, understanding of data. Figure 8.6 illustrates a 
simple knowledge graph with nodes, edges, and attributes for customer data.

Knowledge graphs offer several advantages over standard structured databases such 
as SQL by prioritizing relationships and context, which results in deeper data explora-
tion. A standard row–column or a document storage does not allow for context a knowl-
edge graph does. 
The storage and data processing in knowledge graphs is unique. Specialized databases 
such as Neo4j, Amazon Neptune, and TigerGraph are used to store knowledge graph
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Figure 8.6 Knowledge graph representation of customer activity where nodes (circles) represent 

entities, edges (arrows) represent relationships, and attributes (rectangles) are the properties.

data, and query languages such as Cypher, Gremlin, and SparkQL are used for graph 
traversal. Readers are encouraged to learn more about graph databases, but some key 
concepts to keep in mind are

¡	Nodes and edges—Nodes represent entities, and edges represent relationships to 
form the graph structure and enable a visual structure to the knowledge.

¡	Attributes—Attributes are properties of entities(nodes) and relationships(edges).

¡	Triplets—Knowledge is represented in triplets such as “customer A purchased 
product X” (node–edge–node). Here the two entities, “customer A” and “prod-
uct X,” and one relationship, “purchased,” form a triplet. These triples are the 
building blocks of knowledge graphs, capturing facts and relationships in a struc-
tured way. 

¡	Ontology—An ontology defines the schema or structure of a knowledge graph, 
specifying the types of entities, relationships, and their properties.

¡	Graph embeddings—Graph embeddings are vector representations of nodes and 
edges that capture graph structure.

¡	Graph query language—SPARQL, Cypher, and similar languages allow users to 
retrieve information from the graph, formulating complex queries to find pat-
terns, connections, and insights.

¡	Graph traversal—This is the method of navigating through nodes and edges to 
discover paths, patterns, and insights, essential for algorithms such as shortest 
path or recommendation systems. 

Because of their inherent focus on relationships and context, knowledge graphs 
enhance standard RAG for a superior context-aware retrieval. 
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8.3.2 Knowledge graph RAG use cases

Knowledge graphs can be useful in a variety of use cases where the ability to handle 
multi-hop relationships, entity disambiguation, and complex networks is required. 
Standard RAG systems are limited to retrieving isolated information chunks, while 
knowledge graph RAG can dynamically connect and analyze data points within a net-
work, making it ideal for applications requiring a deep understanding of interrelated 
data. Here are some examples: 

¡	Personalized treatment plans—Knowledge graph RAG can link drugs, treatments, 
and conditions in a networked format, which allows it to identify potential inter-
actions and customize treatment recommendations based on multiple factors. 
Standard RAG can retrieve information about a specific drug or treatment but 
struggles to cross-reference interactions across a network of symptoms, condi-
tions, and treatments.

¡	Personalized product recommendations—Standard RAG can retrieve individual touch-
points or customer reviews but fails to capture the interconnected path a customer 
follows across their journey. Knowledge graph RAG allows for multi-hop reason-
ing across transactions, browsing history, and customer feedback, enabling a more 
holistic analysis of the journey and providing highly relevant recommendations 
based on relationships between customer behaviors and preferences.

¡	Contract analysis—Standard RAG can retrieve text from individual contracts or 
clauses but cannot map relationships among contracts, parties, or compliance 
requirements. Knowledge graph RAG can link contracts, clauses, and parties in 
a relational network, enabling it to identify conflicts, dependencies, and compli-
ance risks across interconnected legal documents.

While standard RAG can solve simple queries, for processes that require analysis and rea-
soning on data from multiple sources, knowledge graph can prove to be advantageous.

8.3.3 Graph RAG approaches

Knowledge graph is a powerful data pattern. The approach to using knowledge graphs 
can be determined by the complexity of the use case and the diversity of data. This sec-
tion discusses three common approaches that can be followed. 

STRUCTURE AWARENESS THROUGH GRAPHS

This is the simplest approach to incorporating knowledge graphs. Recall that in the 
standard vector-based RAG approach, documents are chunked, and embeddings are 
created then and stored for retrieval. The problem that may arise is that the informa-
tion in the adjacent chunks might not be retrieved, and a certain degree of context loss 
may happen. In section 6.2.1, we discussed a hierarchical indexing structure such as a 
parent–child structure. The parent document contains overarching themes or summa-
ries, while child documents delve into specific details. During retrieval, the system can 
first locate the most relevant child documents and then refer to the parent documents 
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for additional context if required. This approach enhances the precision of retrieval, 
while maintaining the broader context. 

An efficient way to store documents in a hierarchical structure is in graphs. Parent 
and child documents can be stored in the nodes with a relationship “is child of.” More 
levels of hierarchies can be created. In figure 8.7, there are three levels of indexing hier-
archy, and while the search happens at the lowest level, parent documents at a higher 
hierarchy level are retrieved for deeper context.
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Figure 8.7 While search in a hierarchical index structure happens at the lowest level, retrieved 

documents are more contextually complete from a higher level of hierarchy.

GRAPH-ENHANCED VECTOR SEARCH

Graphs are not mandatory when implementing hierarchical indexing. The true value 
of knowledge graphs is realized when connections can be made across chunks. Stan-
dard vector-based search on a collection of chunks can be enhanced by traversing a 
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knowledge graph to retrieve related chunks. To do this, a set of entities and relation-
ships are extracted from the chunks using an LLM. 

In the retrieval stage, the first step is a usual vector search executed based on the user 
query. An initial set of chunks is identified that has a high similarity with the user query. 
In the next step, the knowledge graph is traversed to fetch-related entities around the 
entities of the chunks identified in the first step. By doing this, the retriever fetches not 
only the chunks similar to the user query but also related chunks, which leads to deeper 
context and can be quite effective in solving multi-hop queries. This is often coupled 
with hierarchical structures and a re-ranking of retrieved documents. Figure 8.8 shows 
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Figure 8.8 Entities and relationships extracted from the chunks play a crucial role. When chunks 

similar to the user query are retrieved, the chunks that have entities related to the entities of similar 

chunks are also retrieved.
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an enhanced knowledge graph, where chuwnks also have the extracted entities and 
relationships. During retrieval, in addition to similar chunks, the parent chunks of 
related entities are also retrieved.

GRAPH COMMUNITIES AND COMMUNITY SUMMARIES

As discussed before, knowledge graphs are about entities and their relationships. 
Depending on the process, there may be patterns in which certain entities interact 
more with each other. Graph communities are a subset of entities connected more 
densely. For example, communities of customers with similar demographics and buy-
ing patterns can be identified or clusters of product features that appear together 
can be discovered. Community detection algorithms such as the Leiden and the Lou-
vain algorithm are employed to detect communities within a knowledge graph. After 
detecting these communities, an LLM is used to generate summaries of the entities 
and the relationship information in the community. The retrieval process can be simi-
lar to vector search, where initial nodes are identified using a similarity score and com-
munity summaries related to the nodes are fetched, or vector search can be employed 
directly on the community summaries since they already contain a deeper context of 
several entities. This approach is particularly useful when queries relate to the broader 
themes within the knowledge base. Figure 8.9 shows how the retrieval at a community 
level is sufficient to answer questions at a broader thematic level.

In any of these approaches, both the indexing and the retrieval pipeline need to be 
modified to incorporate the graph and create a hybrid retrieval system where both vec-
tor databases and graph databases exist.

8.3.4 Graph RAG pipelines

As we have been discussing, knowledge graph is a unique data pattern that requires 
specific processing and storage. RAG pipelines need to be customized to incorporate 
knowledge graphs. Depending on the approach used, both the indexing and the gen-
eration pipelines need tweaking.

KNOWLEDGE GRAPH RAG INDEXING PIPELINE

The knowledge base in graph RAG requires a different kind of parsing and storage. 
New components are introduced in the indexing pipeline to create knowledge graphs, 
extract summaries, and store the data for generation. While the loading and chunking 
components remain similar, the remaining components change significantly:

¡	Data loading—There is no difference in the loading of the documents from the 
standard vector-based RAG. 

¡	Data chunking—To create knowledge graphs from the documents, large docu-
ments are chunked in the same way as the vector RAG approach. These chunks 
are then passed to an LLM to extract entities and their relationships. 

¡	Entity relationship attribute extraction (for graph-enhanced RAG)—This is a crucial step 
in graph enhancement because the quality of responses will depend on how well 
the entities and relationships have been identified. This step can be customized 
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Figure 8.9 Communities club entities under a consistent theme and summarize the information at this 

group level. Since the summaries are created from a high number of thematically related chunks, these 

summaries can answer broad queries.

according to the need and complexity of the use case. The simplest approach 
can be to ask an LLM directly to do the extraction. The exact kind of entities 
and relationships can also be predetermined, say, allowed entities are “peo-
ple,” “country,” and “organization,” and allowed relationships are “nationality,” 
“located at,” and “works at.” There can be another approach in which an LLM 
is used to identify the schema of the knowledge graph. Attributes can also be 
added to the entities and relationships. There can be multiple passes of this step 
to ensure that an exhaustive list has been created. Another step can be employed 
to remove redundancies and duplication. In LangChain, LLMGraphTransformer 
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class is available in the langchain_experimental library that abstracts the entity 
relationship extraction from documents. 

¡	Storage—Once the entities, relationships, and attributes have been extracted, 
these can be stored in a graph database such as Neo4j. LangChain has integration 
with the Neo4j graph database, and the Neo4jGraph library from the langchain_
community can be used. Since the entity relationship extraction is done at a chunk 
level, the storage is also iterative, and the graph database is updated after each 
pass. In LangChain, the add_graph_documents() function of the Neo4jGraph 
library can be used to directly update the knowledge graph. 

¡	Creating community summaries—As discussed previously, once the knowledge 
graph is created, an algorithm is used to detect communities, and an LLM is used 
to create a summary of the community. Graphrag, a library developed by Micro-
soft, provides end-to-end knowledge graph and community summary creation 
from documents. Another approach is to just use the community summaries and 
store the summaries in a vector database and use the standard vector RAG on the 
community summaries.

This graph database can be used as the complete knowledge base or be treated as an 
addition to the regular vector database in the knowledge base. Figure 8.10 illustrates 
the indexing pipeline with each step.
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E-R extraction Graph storage

Community
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Prompts
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Prompts
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Source

Connector
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Figure 8.10 Indexing pipeline for graph RAG. Chunks can directly be stored for simple structure-aware indexing, 

and community summaries can be created and stored with the graph.
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GENERATION PIPELINE

Since the nature of the knowledge base in graph RAG is quite unlike standard RAG, it 
requires significant changes in the generation pipeline. The retrieval process becomes 
slightly more nuanced than vector retrieval because of an additional step of graph tra-
versal. Graph databases such as Neo4j have introduced vector indexes, via the Neo4j 
vector search plugin, which represent nodes and attributes as embeddings and enable 
similarity search. For effective retrieval, the user query (in natural language) is con-
verted into a graph query that can be used to traverse the knowledge graph. Neo4j uses 
a graph query language called Cypher. For using the Cypher query language, there are 
a couple of approaches: 

¡	Template based—Several pre-defined Cypher templates are created and based on 
the user query, an LLM selects which template to use. This is an extremely rigid 
and limiting approach.

¡	LLM-generated query—An LLM generates the Cypher query directly based on the 
natural language user query. Prompt engineering techniques such as few-shot 
prompting are employed. This approach is more flexible than a template-based 
approach, but not 100% reliable.

In LangChain, the GraphCypherQAChain class is from the langchain.chains library. 
For better querying, the schema of the knowledge graph is also provided to the LLM: 

¡	Augmentation—Depending on the graph query, the response received from the 
graph database is processed to extract the text that can be augmented to the orig-
inal user query. Apart from this, the augmentation step is the same as in vector 
RAG.

¡	Generation—The augmented prompt is sent to the LLM like in the standard vec-
tor RAG approach.

While the final generation step and initial data loading and chunking do not require 
any special adjustment, the rest of the process changes significantly. Table 8.3 summa-
rizes the differences between vector and graph RAG.

Table 8.3 Differences between vector RAG and graph RAG

Step Vector RAG Graph RAG

Data loading Loads documents without 
specialized preprocessing for 
relationships

Similar to vector RAG; documents are loaded with-
out special graph handling.

Data chunking Divides large documents into 
smaller chunks for embedding 
and vector storage

Documents are chunked similarly; each chunk is 
then processed to extract entities and relation-
ships, building a relational structure.

Entity and 
relationship 
extraction

Not applicable; focuses on  
creating embeddings from 
chunks

Entities, relationships, and attributes are extracted 
from each chunk using an LLM, potentially in mul-
tiple passes to refine and de-duplicate entities and 
relationships.
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Step Vector RAG Graph RAG

Storage Stores embeddings in a vector 
database

Entities and relationships are stored in a graph 
database (e.g., Neo4j), with the option to update 
the graph iteratively. Tools such as LangChain’s 
Neo4jGraph can automate this process.

Community 

summaries

Not applicable; primarily relies 
on similarity search on individ-
ual embeddings

Detects communities within the knowledge graph 
and uses an LLM to create summaries for each 
community. These summaries can be stored as 
vectors for a hybrid graph–vector RAG approach.

Retrieval Performs direct similarity 
searches on embeddings

Involves graph traversal using Cypher queries, 
generated either from pre-defined templates or 
dynamically by an LLM. Neo4j’s vector indexes can 
enhance similarity-based node searches.

Augmentation Uses retrieved embeddings to 
augment the user’s query

Retrieved nodes, relationships, or summaries aug-
ment the user’s query. Additional LLM processing 
might be used to refine responses based on the 
retrieved graph content.

Generation Sends the augmented prompt 
to an LLM for response 
generation

Like vector RAG but relies on augmented data with 
graph-derived insights, relationships, and context 
from the knowledge graph to enrich the response.

8.3.5 Challenges and best practices

Despite all the benefits of graph RAG, there are certain challenges that must be consid-
ered carefully: 

¡	Merging diverse data sources into a cohesive knowledge graph can be intricate 
and time-consuming. Start with a focused domain and gradually expand the 
knowledge graph to manage complexity.

¡	Due to the iterative LLM processing at different stages, large-scale knowledge 
graph generation and community summarization from documents are computa-
tionally expensive. Therefore, the data for graph RAG must be selected carefully.

¡	Current similarity measurement techniques may not fully capture the nuanced 
relationships or structural dependencies in graphs, leading to potential mis-
matches in retrieved information. Careful use of case-specific evaluation is war-
ranted for acceptable accuracy.

¡	Each deployment may need custom graph data construction, indexing, and 
retrieval adaptations, which makes generalization difficult. Keeping the knowl-
edge graph updated with accurate and current information requires continuous 
effort. Consequently, graph RAG may not be the default RAG strategy. 

So far, we have looked at two RAG variants that extend standard RAG capabilities by 
including multimodal data and graph structures. Next, we discuss one of the most sig-
nificant concepts in the field of generative AI: agents.

Table 8.3 Differences between vector RAG and graph RAG (continued)
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8.4 Agentic RAG

By now, you understand that challenges exist with standard RAG systems. They may 
struggle with reasoning, answering complex questions, and multistep processes. One 
of the key aspects of comprehensive RAG systems is the ability to search through multi-
ple sources of data. This can be internal company documents, the open internet, third-
party applications, and even structured data sources like an SQL database. So far in 
this book, we have built systems that can search through a single knowledge base, and 
for any query, the entire knowledge base is searched through. 

Two challenges arise with this approach. First, all information must be indexed and 
stored in a single vector store, which leads to storage problems at scale. Second, for any 
query, the entire knowledge base needs to be searched, which is highly inefficient for 
large knowledge bases. To overcome this challenge, a module that can understand the 
user’s query and route the query to a relevant source is needed. This is one of the limita-
tions addressed by agentic RAG that uses one or more LLM agents for decision-making. 
Let’s first understand what is meant by the term agent.

8.4.1 LLM agents

The use of agents in AI predates the popularity of LLMs. The overarching meaning 
of an AI agent is a software system that can autonomously perceive the environment 
it is in, make decisions, and perform actions to achieve a goal. Traditionally, AI agents 
have been developed to execute specific tasks and rely on predefined rules or learned 
behaviors, like in the fields of autonomous vehicles or robotics. Due to the ability to 
process and understand language (and now even multimodal data), LLMs are now 
being seen as a general-purpose technology that can help build autonomous decision-
making without explicitly defining rules or environment data. While there is no 
common definition of an LLM-based AI agent, there are four key components of the 
system that enable autonomous decision-making and task execution. 

The core LLM brain is an LLM that assigned a certain role and a task. This component 
is responsible for understanding the user request and interacting with other compo-
nents to respond to the user. For example, an AI agent built for travel assistance may 
have to deal with different types of tasks such as searching for information, creating 
itineraries, booking tickets, or managing previous bookings. 

The memory component manages the agent’s past experiences. It can be short-term 
like the chat history of the current conversation or long-term where important pieces of 
information from previous interactions are stored. For a travel assistant AI agent, short-
term memory will hold the current context of the user query, while the ticket booking 
history or previous travel searches can be fetched from long-term memory.

The planning component creates a step-by-step sequence of tasks that will be fol-
lowed to respond to the user’s request. Task decomposition or breaking down complex 
tasks into smaller, manageable subtasks. ReAct, which stands for reasoning and acting, 
or reflection, where the agent does a self-assessment of the outcomes, can be part of the 
planning component.
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Tools assist the agent in performing actions on resources external to it. This can be 
conducting a web search on the internet, querying an external database such as an SQL 
database, invoking a third-party API such as a weather API, and similar. The core LLM 
brain is responsible for sending the payload request to the tools in the accepted format. 
These four components and their interactions are shown in figure 8.11. 

Memory
module

Tools

Receives and parses inputs from the
user, identifies user intent, acts on
the plan from the planning module,
and responds to the user request

Creates a step-by-step sequence of
tasks that should be followed to
respond to the user’s request

Planning
module

User Core LLM
brain

Provides access to external
resources. These can be in form of
APIs, functions, and other
interfaces. The LLM brain invokes
these tools with the appropriate
payload.

Stores short-term
conversational history
and long-term history
from previous
interactions, which can
be retrieved depending
on the user request

Figure 8.11 An LLM agent’s four components break down the user’s query, recall the history of 

interaction with the user, and employ external tools to accomplish tasks and respond to the user.

Since the definition of AI agents continues evolving, these components are not set in 
stone but are generally agreed upon. To help understand how these components inter-
act, let’s take an example of an AI agent built for travel assistance, like the customer 
service agent of an online travel agency. 

Suppose a customer asks a question like, “Is my flight on schedule?” The core LLM 
brain receives this input and understands that the user intent is to check a specific flight 
status. At this stage, the core LLM brain can invoke the planning module to decide the 
course of action required to answer queries of this intent. The planning module may 
respond with steps such as retrieving booking information from previous interactions 
(memory), querying the latest flight information from a database, comparing it with 
previous details from memory, and conveying the result to the user. Here, retrieving 
the information from the database will require a tool such as an API, which is a prebuilt 
module that the core LLM brain has access to. The planning module can also bring 
in conditional steps—for example, if the previous booking information cannot be 
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retrieved from memory, the core LLM brain must prompt the user to provide this infor-
mation. When the core LLM brain gets the plan from the planning module, it retrieves 
previous booking information, invokes the tool to retrieve flight information, compares 
the new information with the old information in memory, and crafts a response based 
on this analysis. This simple workflow of the agent is illustrated in figure 8.12.
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Intent -> Check

flight status

1. Get flight details from memory

    or from the user.

2. Use flight API to fetch live status.

3. Generate a user-friendly
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Figure 8.12 A simple task of responding to a user query on flight schedule responded to by an LLM 

agent by using the planning, memory, and tools modules

This is an example of a simple task. Multiple agents can come together to solve tasks 
of a higher level of complexity, such as “Plan and book a holiday for me.” The field of 
LLM-based AI agents is quite promising, and readers are encouraged to read more 
about this evolving domain. For our discussion on agentic RAG in this section, we focus 
on a few aspects, specifically on tool usage and a little bit of planning. The use cases for 
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agentic RAG span across industries, so it makes more sense to look at the capabilities 
of agentic RAG.

8.4.2 Agentic RAG capabilities

In our introduction to agentic RAG, we highlighted the challenge in standard RAG 
using a single knowledge base. Agentic RAG infuses abilities in the RAG system that 
make the system more efficient and accurate.

QUERY UNDERSTANDING AND ROUTING

Based on the user query, an LLM agent can be tasked with deciding which knowledge 
base to search through. For example, assume a programming assistant that can not 
only search the codebase but also the product documentation, along with searching 
the web. Depending on the question that the developer asks, the agent can decide 
which database to query. For generic messages such as greetings, the agent can also 
decide not to invoke the retriever and send the message directly to the LLM for a 
response. 

TOOLS USAGE

In the previous example, the system was also required to search the web. The inter-
net cannot be stored in a knowledge base and is usually accessed through an API 
that returns search results. This search API is an example of a tool the agent can use. 
Similarly, other APIs, such as Notion or Google Drive, can be used to access informa-
tion sources. One of the features of tools like APIs is that they have fixed query and 
response formats. The job of the agent is to process natural language information into 
the format structure and parse the response to use it for generation.

ADAPTIVE RETRIEVAL

Recall adaptive retrieval discussed in chapter 6. An LLM is enabled to determine the 
most appropriate moment and content for retrieval. This is an extension of query 
routing, where after deciding the most appropriate source to query, an agent can also 
determine whether the retrieved information is good enough to generate responses or 
whether another iteration of retrieval is required. For the next iteration, the agent can 
also form fresh queries based on the retrieved context. This enables the RAG system to 
solve complex queries. 

These capabilities enable agentic RAG systems to be comprehensive and work on a 
scale. While the indexing and generation pipelines do not change in structure, agents 
can be invoked throughout the two pipelines.

8.4.3 Agentic RAG pipelines

The capability of LLM-based agents to understand the context and invoke tools can be 
used to elevate each stage of the RAG pipeline. 

INDEXING PIPELINE

The idea of the knowledge base in agentic RAG is no different from standard RAG. 
Agents can be used across components to enhance the indexing pipeline:
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¡	Data loading—Loading data and extracting information is the first and incredi-
bly crucial step of RAG system development. Accurate parsing of information is 
critical in building an accurate RAG system. Parsing complex documents such as 
PDF reports can be tough. While there are libraries and tools present for these 
tasks, LLM agents can be used for high-precision parsing. The importance of 
metadata in RAG cannot be overstated. It is useful for filtering, more contex-
tual mapping, and source citation. In most scenarios, it is difficult to source rich 
metadata. LLM agents can be used to build metadata architecture and extract 
contextual metadata. 

¡	Chunking—In agentic chunking, chunks from the text are created based on a 
goal or a task. Consider an e-commerce platform wanting to analyze customer 
reviews. The best way for the reviews to be chunked is if the reviews about a par-
ticular topic are put in the same chunk. Similarly, the critical and positive reviews 
may be put in different chunks. To achieve this kind of chunking, we will need 
to do sentiment analysis, entity extraction, and some kind of clustering. This can 
be achieved by a multiagent system. Agentic chunking is still an active area of 
research and improvement.

¡	Embeddings—The role of agents in embeddings can be the selection of the right 
embeddings model, depending on the context of the chunks. For example, if 
there is information from multiple domains in the loaded data, there may be a 
case for using domain-specific embeddings for different chunks. Apart from this, 
quality control agents can validate embeddings by measuring similarity or align-
ment with predefined standards or use case requirements. You may also recall 
from the discussion on graph RAG that agents can also decide to use graph struc-
tures for certain chunks.

¡	Storage—There is also a possibility to store chunk embeddings from the same 
document in different collections owing to the nature of the information. For 
example, the information related to the installation and troubleshooting of a 
product can be stored in one collection of a vector database, and product fea-
tures and advantages can be stored in another. This helps in setting the retrieval 
up for higher precision. You may notice that the use of agents in chunking, 
embeddings, and storage are closely related.

Figure 8.13 summarizes how the use of agents can embellish the indexing pipeline. 
The nature of the knowledge base itself doesn’t change, but the process of creation is 
embellished with agents.

GENERATION PIPELINE

The true advantage of an agentic system lies in how it transforms the entire generation 
pipeline across all three stages:

¡	Retrieval—Perhaps the most significant use of agents is in the retrieval stage. 
Query routing to the most appropriate source and the integration of tools to 
query external sources of information is a crucial feature of agentic RAG. 
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Agentic parsing is effective in extracting comprehensive
information from complex documents, and agentic
metadata extraction not only extracts the metadata but
can also decide the accurate metadata architecture.

Vector Graph

Embedding

Graph summaries

ChunkingData loading

Storage

Document parsing Metadata extraction

The chunking agent processes
every sentence in a passage
and allocates it to a chunk
with similar sentences.

Agents recursively extract
entities and relationships and
create sub-graphs to generate
cohesive summaries.

Figure 8.13 Agentic embellishment to the indexing pipeline enhances the quality of the knowledge base.

Adaptive retrieval strategies also bring significant improvement in the retrieval 
stage. 

¡	Augmentation—Agents can choose the correct prompting technique for augmen-
tation, depending on the nature of the query and the retrieved context. Prompts 
can also be generated dynamically by an agent. 

¡	Generation—One of the uses of agentic RAG is also in multistep generation such 
as IterRetGen or iterative-retrieval generation. In this approach, an agent is used 
to review the response generated by the LLM in the first pass, and it decides if any 
further iteration of retrieval and generation is required to completely respond 
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to the user query. This is particularly useful in multi-hop reasoning and fact 
verification.

Another way to think about agentic RAG is that wherever dynamic decision-making 
can improve the RAG system, an agent can be used to autonomously make those deci-
sions. From the previous discussion, you may conclude that agentic RAG is a superior 
version of standard RAG. Table 8.4 summarizes the advantages of agentic over stan-
dard RAG.

Table 8.4 Advantages of agentic RAG

Aspect Standard RAG Agentic RAG

Retrieval 
process

Passive retrieval based on 
initial query

Adaptive retrieval with intelligent agents routing and 
reformulating queries as needed

Handling com-
plex queries

Struggles with multistep rea-
soning and complex queries

Can be used to break down and address complex, 
multifaceted queries

Tool integration Limited integration with exter-
nal tools and APIs

Seamless integration with various external tools and 
APIs for enhanced information gathering

Scalability Challenges in scaling due to 
static processes

Scalable through modular agent-based architecture, 
allowing for easy expansion

Accuracy and 
relevance

Dependent on initial query 
quality; may retrieve less 
relevant information

Higher accuracy and relevance due to agents’ ability 
to refine queries and validate information

8.4.4 Challenges and pest practices

LLM based agents are still evolving and are not foolproof. There are also concerns 
around the planning and reasoning abilities of LLMs. For implementing agentic abili-
ties into the RAG pipelines, a few aspects should be evaluated carefully:

¡	The accuracy of tool selection diminishes when a single agent is responsible for 
invoking a high number of tools. Therefore, the number of decision choices for 
the agent needs to be controlled. 

¡	No agent can be expected to be accurate all the time. Error rates in multiagent 
systems can also increase. It is important to establish a failsafe at every stage. The 
choice of the use case should also be guided by the expected accuracy levels.

¡	Increased autonomy in decision-making can lead to unintended actions if not 
properly controlled. In other words, agents can misfire, and establishing explicit 
boundaries and guidelines for agent behavior is critical.

Multimodal, graph, and agentic RAG patterns have demonstrated significant improve-
ments over the standard RAG pipelines. Multimodal RAG opens the RAG systems to 
different modalities, graph RAG introduces relational understanding, and agentic 
RAG infuses RAG systems with intelligence and autonomous decision making. Apart 
from these three, ongoing research on RAG has resulted in several other frameworks 
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and variations to the standard RAG systems. The next section discusses variants that 
show significant promise.

8.5 Other RAG variants

We have talked about the three major RAG variants in this chapter. Research in the 
field is bustling, and every week, several papers are released by researchers about their 
experiments and key findings. Out of these papers, quite a few demonstrate RAG vari-
ants that find relevance in practical applications. We close this chapter by briefly dis-
cussing four such RAG variants.

8.5.1 Corrective RAG

The effectiveness of a RAG system depends on the quality of retrieval. Inaccuracies 
in retrieval negate all RAG benefits. To address this, the corrective RAG (CRAG) 
approach evaluates the quality of retrieved documents. It uses a lightweight evaluator 
and triggers corrective action if the retrieved information is found to be inaccurate. 
The key CRAG components are

¡	Retrieval evaluator—A model that evaluates the relevance of the retrieved docu-
ments and assigns a relevance score to each retrieved document. In the original 
CRAG paper (https://arxiv.org/abs/2401.15884), the evaluator is a fine-tuned 
T5 model that assigns a score of being correct, incorrect, or ambiguous. 

¡	Web search supplementation—If a retrieved document is classified as incorrect, the 
system conducts a web search to supplement the knowledge base, ensuring more 
accurate, up-to-date information. 

¡	Knowledge refinement—Retrieved documents classified as correct by the evaluator 
and the content retrieved from web search are broken down further into smaller 
knowledge strips, and each strip undergoes evaluation.

Figure 8.14 illustrates the CRAG workflow with the evaluator, knowledge refinement, 
and web search added to the standard RAG flow.

As for its advantages and limitations, CRAG secures accurate, context-relevant 
knowledge for generation, particularly in cases where initial retrieval may be flawed. 
The corrective actions enhance the factual accuracy of the generated content. CRAG is 
a solution that can be integrated with all RAG pipelines and other RAG variants without 
causing any disruptions. There are also a couple of factors that need to be considered: 

¡	The additional corrective actions and web search integration may increase 
response time. 

¡	The performance of the system is closely tied to the accuracy of the evaluator 
model.

CRAG is an improvement over standard RAG, which uses the retrieved documents as 
is. The corrective approach makes it effective for accuracy-sensitive applications that 
demand data verification.

https://arxiv.org/abs/2401.15884
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Search
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Retrieved
documents are
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correct, incorrect,
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Documents identified as correct are further split into
“knowledge strips,” which are generally single
statements. These strips are re-evaluated by the
evaluator. The strips classified as correct are
recomposed and passed to the LLM as the context.

Documents identified as incorrect are substituted
by results from web search. The original user
query is rewritten for web search. The search
results are filtered and combined to be sent to
the LLM as context.

Correct

Ambiguous

Incorrect

Corrective RAG

Figure 8.14 CRAG corrects the knowledge at the most granular level, hence the name corrective RAG. 

Source: https://arxiv.org/abs/2401.15884.

8.5.2 Speculative RAG

Latency and redundancy are ubiquitous concerns in RAG systems. Speculative RAG 
addresses these in a two-step approach. First, small language models parallelly gener-
ate multiple answer drafts, each based on diverse subsets of documents. Then, a larger 
LLM verifies and selects the most accurate draft. The key components of speculative 
RAG are

¡	Document clustering—Retrieved documents are clustered into topic-related 
groups, each offering a unique perspective.

https://arxiv.org/abs/2401.15884
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¡	RAG drafter—A smaller LLM produces initial answer drafts based on each cluster 
subset, generating responses and rationales in parallel for efficiency.

¡	RAG verifier—A larger LLM evaluates each draft’s accuracy and coherence, 
assigning confidence scores based on self-consistency and rationale support.

The key advantage of speculative RAG is faster response generation by reducing the 
workload on the generator LLM and performing parallel draft generation. However, 
some of the following limitations require careful consideration: 

¡	Involves managing a two-model setup and document clustering, which may 
increase initial setup complexity. 

¡	Document clustering directly affects draft diversity, and poor clustering can lead 
to redundant drafts by grouping highly similar or repetitive documents into mul-
tiple clusters. 

¡	The smaller LLM may require training for effective draft and rationale generation.

Unlike standard RAG, which incorporates all retrieved data into a single prompt, 
speculative RAG uses parallel draft generation for efficiency and a dedicated verifi-
cation step for accuracy, which leads to a reduction in latency, while improving the 
factual efficiency of the responses.

8.5.3 Self-reflective (self RAG)

Self-reflection in an LLM is the ability of the LLM to analyze its actions, identify poten-
tial errors or flaws in its reasoning process, and then use that feedback to improve 
its responses and decision-making. Self RAG incorporates reflection to dynamically 
decide whether to retrieve relevant information, evaluate retrieved content, and to cri-
tique its output. The key components of self RAG are

¡	Reflection tokens—Self RAG trains an LLM to use “reflection tokens,” which help it 
assess the relevance, support, and usefulness of retrieved passages. These tokens 
are designed to guide the model in judging the quality of both the retrieved 
content and its generated response, adding layers of control and adaptability. 
A retrieve token indicates whether retrieval is needed. Similarly, the relevance token 
determines whether a passage is relevant, the support token verifies whether the 
generated response is fully supported by retrieved content, and the utility token 
scores the usefulness of the response.

¡	Dynamic retrieval decision—The model uses reflection tokens to determine if 
retrieval is necessary based on each segment of the response and skips retrieval if 
it is unnecessary at any step.

¡	Self-critique—The model critiques its output at each generation step, applying 
reflection tokens to guide retrieval and refine the response in real time.

Adaptive retrieval in self RAG reduces unnecessary retrievals, and self-reflection results 
in better accuracy, factual consistency, and relevance. However, some limitations need 
to be considered:
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¡	Processing multiple passages in parallel and self-reflection may increase compu-
tational demands.

¡	The additional training and use of reflection tokens require fine-tuning of 
thresholds.

Self RAG is one of the most cited techniques in research on RAG. Its dynamic adjust-
ment of retrieval based on task needs evaluates output quality, achieving superior 
accuracy.

8.5.4 RAPTOR

Recursive abstractive processing for tree-organized retrieval, or RAPTOR, is a RAG 
variant designed to handle hierarchical relationships in data. It creates a multilevel, 
tree-based structure of recursive summaries, capturing both granular details and over-
arching themes in long documents. Like graph RAG, RAPTOR uses a tree structure to 
achieve similar objectives. Here are the key RAPTOR components:

¡	Chunk clustering and summarization—Chunk embeddings are clustered based on 
similarity, and an LLM is used to summarize the clusters. Soft clustering with 
Gaussian mixture models allows text segments to belong to multiple clusters.

¡	Recursive tree construction—RAPTOR builds a multilayered tree by using chunks, 
clusters, and summaries in a bottom-up process.

¡	Dual querying mechanisms—A top-down approach starts traversing down to select 
the most relevant nodes at each level based on cosine similarity to the query. 
Another single-layer search retrieves context across all tree nodes irrespective of 
the levels. 

Like graph RAG, RAPTOR enables better multi-hop reasoning and thematic question 
answering by incorporating both granular and high-level summaries. However, tree 
structures are complex to manage and RAPTOR comes with its set of challenges: 

¡	The recursive clustering and summarization steps can be computationally inten-
sive, especially for very large documents.

¡	Effective retrieval hinges on the quality of the clustering; errors in initial cluster-
ing can propagate up the tree.

Unlike standard RAG, which may struggle with multilayered content, RAPTOR’s hier-
archical model allows targeted retrieval, optimizing for both specificity and contextual 
relevance.

This chapter explored RAG variants that use advanced techniques to improve RAG 
systems for specific use cases. Multimodal pipelines give RAG systems access to previ-
ously unusable data, graph RAG provides the ability of relational analysis, and agen-
tic RAG introduces autonomous decision-making for complex tasks. Each RAG variant 
addresses a certain aspect of improvement in standard RAG systems. Corrective RAG 
focuses on factual relevance, RAPTOR builds relational intelligence for hierarchical 
data, speculative RAG is built for efficiency, and self RAG makes the system adaptive. 
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With this chapter, we are almost at the end of our discussion on RAG. The last chap-
ter discusses some of the independent considerations and best practices across differ-
ent stages of RAG system lifecycle. 

Summary

Introducing RAG variants

¡	RAG variants are adaptations of the naïve RAG framework that extend its func-
tionality to specific use cases.

¡	These variants address challenges, such as processing nontextual data, improv-
ing relational understanding, enhancing accuracy, and enabling autonomous 
decision-making.

¡	Three major RAG variants were discussed in depth: multimodal, graph, and 
agentic RAG.

¡	Other promising RAG variants are corrective RAG, speculative RAG, self RAG, 
and RAPTOR.

Multimodal rag

¡	It extends RAG capabilities to handle multiple data modalities such as text, 
images, audio, and video. It can be used for

– Medical diagnosis—Analyzing text, images (X-rays), and tabular data (lab 
results)

– Investment analysis—Processing financial documents, charts, and balance 
sheets

– Equipment maintenance—Combining text reports, visual inspections, and sen-
sor data

¡	As for the pipeline enhancements, multimodal RAG introduces multimodal 
embeddings (shared or modality specific), transcription tools, and specialized 
chunking methods to indexing pipeline. In the generation pipeline, it employs 
multimodal LLMs (e.g., GPT-4o, Google Gemini). 

¡	Multimodal RAG has high computational requirements and increased latency. 
Information loss is possible during text conversion of nontext modalities.

Knowledge graph RAG

¡	It enhances retrieval and reasoning through relationships represented in a graph 
structure. It can be used for

– Personalized treatment plans—Linking drugs, conditions, and symptoms for cus-
tomized recommendations

– Contract analysis—Identifying dependencies and compliance risks across 
interconnected legal documents
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¡	As for the pipeline enhancements, the knowledge graph RAG extracts entities, 
relationships, and attributes from chunks to create a graph in the indexing pipe-
line. As for the generation pipeline, it incorporates graph traversal using graph 
query languages such as Cypher.

¡	Building and maintaining knowledge graphs is complex and computationally 
expensive. It also requires custom adaptations for each deployment.

Agentic RAG

¡	It introduces LLM-based agents for autonomous decision-making and dynamic 
query routing. Agentic RAG can be used for

– Query understanding and routing to relevant data sources

– Adaptive retrieval and multistep generation

– Integration with tools such as web search APIs and external databases

¡	With regard to pipeline enhancements, agentic RAG enhances chunking, meta-
data extraction, and embeddings selection with agentic decision-making in the 
indexing pipeline. In the generation pipeline, it dynamically augments prompts 
and employs iterative retrieval-generation workflows.

¡	Agentic RAG requires robust controls to prevent unintended actions by agents. 
High computational overhead and multiplied error rates in multiagent systems.

Other RAG variants

¡	Corrective RAG (CRAG) Focuses on factual accuracy by evaluating retrieved con-
tent. It also adds corrective steps such as web search supplementation and knowl-
edge refinement.

– Advantages—Enhances accuracy and can integrate seamlessly with other RAG 
pipelines

– Challenges—Increased response time and dependency on the evaluator model

¡	Speculative RAG reduces latency by generating multiple drafts in parallel using 
smaller LLMs. A larger LLM verifies and selects the most accurate draft.

– Advantages—Faster response generation

– Challenges—Requires careful document clustering and draft diversity

¡	Self RAG incorporates reflection tokens for adaptive retrieval and self-assessment 
of generated content.

– Advantages—Superior accuracy and factual consistency

– Challenges—Computationally demanding and requires fine-tuned thresholds

¡	RAPTOR builds hierarchical relationships through tree-structured summaries.

– Advantages—Optimized for multi-hop reasoning and thematic queries

– Challenges—Computationally intensive and relies on effective clustering
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9RAG development 
framework and  

further exploration

This chapter covers

¡	A recap of the concepts covered in this book  

 using a six-stage RAG development framework

¡	Areas for further exploration

The previous eight chapters covered a wide breadth of retrieval-augmented gener-
ation (RAG), including a conceptual foundation, critical components, evaluation 
methods, advanced techniques, the operations stack, and essential variants of RAG. 
By now, you should be equipped with the necessary information required to develop 
RAG systems. 

This concluding chapter summarizes the discussion and recaps all the previously 
discussed concepts. To accomplish this, we put all the different aspects of developing 
RAG systems together and came up with a RAG development framework. Across the 
six stages of this RAG development framework, we recap the concepts covered in this 
book along with some best practices. This framework not only covers the technical 
aspects but also looks at the development process holistically.
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RAG is a rapidly evolving technique. At the end of this chapter, we also discuss some 
of the ideas that you can explore further. Some of these approaches to incorporating 
context may compete with the RAG technique, while others may be complementary. 

By the end of this chapter, you should 

¡	Have reviewed and consolidated your understanding of key RAG concepts.

¡	Get a solid understanding of the RAG development framework.

¡	Be ready to build and deploy RAG systems.

Often, the problem statements that the developer of a RAG system is presented with 
will be open ended. For example, an e-commerce platform wants to develop a buying 
assistant, or the marketing function wants a research agent to track and summarize 
competitive information. So, how does one navigate from an open-ended problem 
statement to a fully developed RAG system? It becomes very important that this journey 
is guided by a thought process. For this purpose, let’s define and discuss a framework 
for developing RAG systems.

9.1 RAG development framework

The process of developing RAG systems is not very different from developing an appli-
cation that uses a machine learning model. We have seen that a RAG system can be 
complex and include several components. It goes beyond the elements such as mod-
els, data, and retrievers. It requires a service infrastructure to make the system available 
to users. Evaluation, monitoring, and maintaining the systems becomes as important as 
developing and deploying them. It all begins with an understanding of requirements 
and a conceptual design. To address all these aspects, a RAG development framework 
that will assist us in building RAG systems is proposed here. This framework involves 
the following six stages: 

1 Initiation—This stage involves understanding the problem statement, aligning 
the stakeholders, gathering system requirements, and analyzing these require-
ments to draft a high-level system architecture.

2 Design—At this stage, design choices for RAG pipelines are made, and the suite of 
tools to develop the system is developed. In addition, different layers of the RAG 
operations stack are conceptualized.

3 Development—This stage involves developing a working prototype of the desired 
RAG system. All required models are trained, and the required APIs are devel-
oped. This stage leads to the creation of the knowledge base and the develop-
ment of the application orchestration layer.

4 Evaluation—During this stage, the retrieval and generation components are eval-
uated, along with testing the end-to-end system performance. At the end of this 
stage, the system is ready for deployment.

5 Deployment—During this stage, the system is made available to end users. The 
deployment strategy is also decided at this stage.
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6 Maintenance—This final stage is an ongoing one that involves system moni-
toring, incorporating user feedback, and keeping abreast of technological 
enhancements.

Bear in mind that the RAG development framework is not a linear process, but flexi-
ble, iterative, and cyclic. Figure 9.1 illustrates the cyclic nature of the six stages of the 
RAG development framework, showing the key artifacts of each stage.

DESIGN

DEVELOPMENTDEPLOYMENT

MAINTENANCE

EVALUATION

INITIATION

Designing RAG

pipelines and finalizing

the layers of the

RAGOps stack

Developing RAG
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and feedback

Deployment of system to
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the desired users
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and system
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case, and gathering and

analyzing requirements
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e
lo

pm
entfra

m
e
w

o
rk

Requirements document

High-level architecture

RAGOps stack

Working prototype

Ready-to-deploy system

Released system

Evolved system

Figure 9.1 The six stages of the RAG development framework are iterative and cyclic. At each stage, 

specific artifacts can be created.

Each of the stages involves certain activities. We look at these activities one by one and 
discuss the best practices associated with them. We begin with the initiation stage.
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9.1.1 Initiation stage: Defining and scoping the RAG system

The journey toward a successful RAG system begins with the initial interactions with 
the stakeholders. This is an opportunity to gain an in-depth understanding of the 
problem statement and the user requirements. It is an exploratory stage and sets the 
direction of the project.

USE CASE IDENTIFICATION

A lot of the choices a developer will make in the development process of a RAG sys-
tem depend heavily on the use case being addressed. Even a basic understanding of 
the industry domain/function and a simple definition of the use case is enough to 
answer crucial starting questions about the system. The requirement of a RAG system 
needs to be assessed here. Recall from chapter 1 the challenges that RAG solves: RAG 
overcomes training data limitations, knowledge cut-off date, and LLM hallucinations 
to bring factual accuracy, reliability, and trust to the system. It is important to assess 
whether these RAG benefits are pivotal to the use case. There can be LLM applications 
that may not even require RAG. Here are some questions you may need to ask at this 
stage: 

¡	Does the system require data that may not be present in the training set of an 
available LLM?

¡	Does the system require data that is current or updates frequently?

¡	Does the system need to quote or generate facts? How crucial is the accuracy of 
the generated facts?

¡	Will the users benefit if the sources are cited?

A use case evaluation card as the one shown in figure 9.2 can help in assessing whether 
a RAG system is required to solve the use case. Use cases such as creative writing, lan-
guage translation, sentiment analysis, grammar correction, and so forth do not gener-
ally require a RAG system unless some nuance of the use case warrants it. 

Apart from this, the industry domain and function can also give an early indication 
of the system requirements. For example, use cases from the healthcare and finance 
domain may require more security and compliance measures, while a use case from 
sports may require processing of quickly updating information. 

This initial assessment of the use case may provide early insights, but a detailed 
understanding and analysis of the requirements is necessary before proceeding 
further.

GATHERING OF REQUIREMENTS

Developing the right RAG system means meeting the stakeholders’ needs and wants. 
Understanding these needs and wants is a crucial step. Gaining this understanding is 
an interactive and investigative process. Most stakeholders and end users may have 
limited knowledge about technology and how a RAG system is built. It is therefore 
important to know what a successful application would mean to them. These require-
ments can range from the features needed in the system to the expected scale and the 
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Figure 9.2 A use case evaluation card with the evaluating questions can help in assessing whether a 

RAG system is required to address the use case.

desired performance of the system. A good way to gather requirements may be to look 
at them through different lenses, such as 

¡	Business objectives—These requirements relate to the main business reasons for 
building these systems, such as increasing click-through rates, saving process 
costs, improving customer satisfaction, and so forth. Technical developers may 
not directly be responsible for business metrics, but these business metrics can 
act as the leading light in the development process of the system. 

¡	User needs—These are the core requirements of the users for whom the system is 
being developed. Expressing these needs helps in determining the inputs and 
outputs of the system along with other functionalities such as multilingual sup-
port and source citation. These needs are also key in determining the types of 
user queries that the RAG system can expect. 
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¡	Functional requirements—These are the core functionalities of the system, such 
as the supported data types, number of documents to be retrieved and length/
tone/style of generation, and similar. Functional requirements are influenced 
by user needs and business objectives. They are also the main influencers of the 
development process.

¡	Non-functional requirements—These are requirements about the performance, 
scalability, reliability, security, and privacy of the system. There may be additional 
requirements such as legal and compliance, especially for regulated industries.

¡	Constraints—One should also focus on any constraints that the system should be 
cognizant of, such as access to the internet, availability of data, cost, and integra-
tion with existing systems. 

A customer service system, for example, may be envisioned to reduce customer query 
resolution time, requiring quick response time and a constraint of integrating with 
existing customer support platforms. An illustrative requirement document for 
the above can look like the one shown in figure 9.3, detailing out different types of 
requirements. 

A multi-lingual, multi-geography customer support system that provides instant and accurate

responses to customer queries, thus reducing dependency on human agents

Business objectives

Use case: Customer support system

• Reduce customer query resolution time

• Improve customer satisfaction score

• Reduce operational cost

User needs

• Ask questions in natural language

• Ask questions using voice input

• Accurate and concise responses

Functional requirements

• Integration with company knowledge bases,

  FAQs, product manuals, and troubleshooting

  guides

• Real-time updates to the knowledge base for

  seamless integration of new content

• Retrieve the most relevant documents or

  sections

• Generate friendly and polite responses in a

  customer support tone

• Escalation mechanism to transfer

  conversations to human agents when

  necessary

Non-functional requirements

• Quick response

• High concurrency during peak hours

• Compliance with data privacy laws

Constraints

• Must integrate seamlessly with existing

  customer support platforms

• Limited internet connectivity in certain

  regions

• Access to third-party data sources may be

  conditional

Figure 9.3 An illustrative requirements document for a customer support system requiring RAG 

REQUIREMENTS ANALYSIS

Eliciting requirements from the stakeholders is a major activity in the initiation stage. 
These raw requirements then need to be analyzed. The requirements should be clear, 
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precise, and quantifiable so that they can lead to specific development steps. For exam-
ple, a non-functional need for a quick response may be too vague. Instead, a better 
requirement is that 90% of queries should be responded to within 2 seconds. Similarly, 
a constraint of limited internet connectivity can lead the developer to believe that a 
completely offline system is required. Such vagueness in the requirements needs to be 
addressed in further interactions with the stakeholders. 

At this stage, it is also important to define the success criteria on which the system will 
be evaluated. A few success metrics need to be defined and agreed on. For developers, 
these success metrics should be different from the business objectives since business 
outcomes may depend on factors beyond their control. Latency, throughput, percent-
age of queries resolved, and similar, are good criteria for success metrics. Figure 9.4 
presents an illustrative requirements document after an analysis of the success metrics. 
It is an improvement on the previous requirement document shown in figure 9.3.

A multi-lingual, multi-geography customer support system that provides instant and accurate responses to

customer queries, thus reducing dependency on human agents

Business objectives

Use case: Customer support system

• Reduce customer query

  Resolution time by 50%

• Improve customer satisfaction

  score by 15 points

• Reduce operational cost by $100k per

                                          month

User needs

• Ask questions in natural language

• Ask questions using voice input

• Accurate and concise responses

• Provide multilingual support

• Ask via email, webchat and Whatsapp

Functional requirements

• Integration with company knowledge

  bases, FAQs, product manuals, and

  troubleshooting guides (pdf, webpage,

                                       Google Docs)

• Real-time updates to the knowledge base

  for seamless integration of new content

• Retrieve the three most relevant

  documents or sections

• Generate friendly and polite responses in

  a customer support tone Examples?

• Escalation mechanism to transfer

  conversations to human agents when

  necessary query not resolved in three tries

Non-functional requirements

• Quick response ART <2s for 90% of queries

• High ? concurrency during peak house

• Compliance withdata privacy laws

• Must integrate seamlessly with

  existing customer support platforms

• Limited internet connectivity in

  certain regions

• Access to third-party data sources

  may be conditional

Zendesk

May require caching

for common queries

GDPR & CCPA

Success metrics

Frequency
of update?

Primary metrics

• % Query resolved: >80%

• Concurrency: 2000 queries

• Latency: 200 ms

Secondary metrics

• Answer relevance: >90%

• Context relevance: >90%

• Precision@5: >80%

Constraints

Figure 9.4 Illustrative requirements document with success metrics defined and requirements analyzed 

for clarity and precision
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HIGH-LEVEL ARCHITECTURE

Once the requirements are understood well, the initiation stage can be deemed com-
plete. It is good practice to close the initiation stage with a high-level architecture dia-
gram that can be used as a starting point for the design stage. This architecture can be 
used to bring alignment among stakeholders and discuss the requirements further. The 
focus of this high-level architecture is to illustrate the system inputs and outputs. Since 
data plays such a crucial role in a RAG system, this high-level architecture should also 
include the data component. As illustrated in figure 9.5, for a multichannel customer 
support system, the system must allow inputs and outputs from and to different channels.

Model layer

App

orchestration

Prompt

Guardrails

Security

Cache

Data layer Deployment
Human in
the loop

email

Support portal

WhatsApp

User

query

email

Support portal

WhatsApp

Product portal Catalogue Order data

Escalation

Conversation

memory

Proposed RAG system

Response

Figure 9.5 High-level architecture of a proposed customer support bot highlighting inputs and outputs, 

along with the data, human-in-the-loop, and cache layers

A first go/no-go decision or the going forward strategic call can be taken on the com-
pletion of the initiation stage. Once the stakeholders are aligned, all the RAG opera-
tions layers for the system can be designed in the next stage.

9.2 Design stage: Layering the RAGOps stack

With a clear understanding of the use case and the requirements, developers can 
start planning for the development. In the design stage, the high-level architecture is 
refined to map out RAGOps stack, and the choices around tools and technology are 
made. At this stage, we design the indexing and generation pipelines along with other 
components such as caching, guardrails, and the like.

9.2.1 Indexing pipeline design

In the requirement-gathering step, we identify the data sources. During the design 
stage, we double-click on these data sources to identify the nature of the source 
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systems, file types, and nature of the data itself to determine the development steps 
for the knowledge base. Recall from chapter 3 that the knowledge base is created for 
a RAG system via the indexing pipeline. Components such as data loading, chunking, 
embeddings, and storage form the indexing pipeline. In chapter 7, we also discussed 
that the data layer of the RAGOps stack enables this by extracting, transforming, and 
loading the data. Figure 9.6 summarizes the indexing pipeline components and the 
data layer.

The data-loading
component is
responsible for

connecting to external

sources, and

extracting and parsing

information.

The data-splitting
component is

responsible breaking

down long pieces

of text into smaller,

manageable parts

called “chunks.”

The data conversion
component is

responsible converting

text chunks into

numerical vectors

called “embeddings.”

The data storage
component stores

the embeddings in

permanent memory

using specialised

databases called

“vector DBs.”

Indexing
pipeline
components

Vector
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Graph

storage
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ER mapping
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Data transformation Data storage
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Figure 9.6 The indexing pipeline of the RAG system is executed using the data layer in the RAGOps 

stack.

Now let’s look at some important points of consideration that will help us when mak-
ing the choices for the indexing pipeline design. 

DATA INGESTION

When you’re working with less data, like a few PDF files or a couple of websites, data 

ingestion is a relatively simple step. However, in production-grade systems, the complex-
ity increases with the scale of the data. Special attention needs to be given to the source 
systems and the file formats. Here are a few questions about connecting to source sys-
tems that will help in designing the data ingestion component:

¡	Which source systems will the data layer need to connect to?
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¡	Are the connectors readily available? If yes, which tools or services are required 
to establish these connections?

¡	Which connectors will need to be developed? Which technology will these con-
nectors be developed on?

¡	Is access to open internet required? How will the system connect to the internet?

The following group of questions is about parsing files:

¡	Which file formats will be ingested?

¡	How will the web pages be scraped, if required? 

¡	Do we have the necessary parsers for the different file types?

¡	Is some special parsing technique required to be developed?

¡	Can there be more than one modality of data in a single file? 

The answers to these questions will determine the tools you will need to use for ingest-
ing data and the parts that will need to be developed.

DATA TRANSFORMATION

Once the data is ingested, the transformation step converts the data into a suitable for-
mat for the knowledge base. In the data transformation step, the data will first be 
cleaned and pre-processed. A good practice is also to extract metadata information. 
Sometimes, other preprocessing steps such as PII data redaction or resolving conflict-
ing information are required. 

After pre-processing, the data will be chunked using a suitable chunking technique. 
Chunk size, overlap size, and the chunking strategy should be decided at this stage. 
Chunking can be fixed size, structure driven, semantic chunking, or agentic chunking. 

Once the chunks are created, they need to be transformed for retrieval. We have dis-
cussed approaches such as embeddings and knowledge graphs. For use cases that require 
relational understanding between chunks, knowledge graphs should be explored. The 
creation of vector embeddings is almost mandatory in all RAG systems. To create vector 
embeddings, pre-trained embeddings models can be used. However, sometimes, due to 
the peculiarity of the domain, embedding models may need to be fine-tuned. 

Let’s now look at some of the questions that should be considered at this stage. The 
first group of questions is about pre-processing:

¡	How noisy is the data? What algorithms and techniques can be used to clean up 
the data?

¡	Is structured data like tables or JSON present? 

¡	Is metadata readily available, or should it be extracted?

¡	What algorithms or models should be used for metadata extraction? (Note: All 
models sit in the model library of the model layer of the RAGOps stack.)

¡	Does the data contain sensitive information that needs to be masked or redacted? 
What techniques will be used to execute this?

¡	Are there any other data protocols or guidelines that need to be followed?
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When it comes to chunking, consider asking the following questions:

¡	Is the chunk size pre-determined? If not, what chunk sizes should be experi-
mented with?

¡	Is the data in a format that will warrant structured chunking? 

¡	What techniques and models will be employed for semantic chunking, if 
required?

¡	Is a chunking agent readily available, or will it need to be built? Which models, 
algorithms, and tools will be used by the chunking agent?

The following group of questions covers graphRAG:

¡	Is a hierarchical indexing structure required? 

¡	Do we need to extract entities and relationships for relational context? Do we 
have the necessary budget?

¡	What approaches are we going to take for entity-relationship extraction? 

¡	Are we using any frameworks for graph extraction?

¡	Which models are going to be used?

As for embeddings, ask the following:

¡	Which embeddings model will we use? Are there any domain-specific embed-
dings models available that will be more useful?

¡	Are multimodal embeddings required?

¡	Do we need to fine-tune embeddings for our use case? Do we have the training 
data for fine-tuning? How will the training data be sourced?

Data transformation steps require significant thought and effort. This is also where 
significant costs can be incurred, especially in using agents and employing graphRAG.

DATA STORAGE

The final component of the data layer is the storage. Depending on the choices made 
during the data transformation, the storage will comprise vector stores, graph data-
bases, and document stores (if necessary). At this stage, we should also keep in mind 
that a cache store may be required in the application that can be a part of the data 
layer. We will discuss caching separately. Some of the questions pertinent to data stor-
age are 

¡	Can all data be stored in a single collection, or are multiple collections required?

¡	Can we manage the vector database or do we require a managed service?

¡	What is the current scale of data and how is it likely to grow?

¡	Which vector database will we use?

¡	Do we need a graph database? Which graph database will we use?

¡	Do we need to store raw documents or images? Which document store will we use 
for this purpose?
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With the storage in place, the creation of the knowledge base can be executed. It is 
important to note that the choices at this stage should be flexible. You should also keep 
options available for tools, services and libraries that can be experimented with during 
development. You’ll also have to estimate the costs associated with different steps of 
this stage and ensure that the stakeholders are aligned with these costs.

With the data layer of the RAGOps stack, the design of the indexing pipeline is com-
plete. You may also note that the indexing pipeline also interacts with the model layer 
where embeddings models and LLMs along with other task specific algorithms sit.

9.2.2 Generation pipeline design

We have discussed that the real-time interaction of the user with the knowledge base 
is facilitated by the generation pipeline. In chapter 4, we developed the three main 
components of the generation pipeline—the retrievers, augmentation via prompts, 
and generation using LLMs. Apart from these three components, query optimiza-
tion in the pre-retrieval stage and context optimization in the post-retrieval stage are 
advanced components of the generation pipeline. Sometimes, even post-generation, 
response optimization is conducted to better align the responses. The generation 
pipeline is powered by the model layer of the RAGOps stage, which has the LLMs, the 
retrievers, embeddings models, and other task-specific models. The generation pipe-
line is brought alive by the app orchestration layer of the RAGOps stack. Let’s discuss 
the design of the generation pipeline in the following six steps: query optimization 
(pre-retrieval), retrieval, context optimization (post-retrieval), augmentation, genera-
tion, and response optimization (post-generation).

QUERY OPTIMIZATION

Query optimization techniques are employed to help retrieval better align with the 
query. Several techniques are employed for transforming and rewriting queries. For 
agentic RAG, query routing is an important aspect of this step. Some of the questions 
to help finalize the nature of query optimization are

¡	How many types of queries can the user ask? Do each of these query types require 
different downstream processes?

¡	Are there multiple collections in the knowledge base that need to be selected 
before the search?

¡	Are user queries expected to be short or generic?

¡	Are users looking for precise responses?

¡	How much processing time can be afforded to query optimization?

¡	Which models and techniques will be used for query optimization?

Query optimization is optional but may be unavoidable when the data in the knowl-
edge base is voluminous. It must also be noted that query optimization can add to the 
latency of the system.
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RETRIEVAL

Retrieval is a pivotal component of RAG systems. There are many retrieval techniques 
and strategies discussed in this book. The quality of the RAG system hinges on the accu-
racy of the retrieval component. You may use a dense embeddings similarity match for 
simple RAG systems. In more complex systems, you will need to use hybrid, iterative, or 
adaptive retrieval strategies. The questions to ask at this stage are

¡	Does our retrieval component need high precision, high recall, or both?  

¡	Can the queries be resolved with a simple similarity match?

¡	Do we need graph retrieval? 

¡	Will searching through the entire data be prohibitively long? Do we need 
filtering?

¡	Will a single pass retrieve all necessary documents?

¡	Will the information from the retrieved documents lead to more questions?

¡	Which models and techniques will we use for adaptive, recursive, or iterative 
retrieval?

¡	Which retrieval algorithms should we try? 

¡	Are there any providers or libraries that we will leverage?

¡	How will we estimate the cost of retrieval?

¡	How many documents should be retrieved for acceptable levels of coverage?

¡	Does ranking in retrieved results matter?

Retrieval, especially in large knowledge bases, can lead to significant latency and 
should be optimized for speed and accuracy.

CONTEXT OPTIMIZATION

Once the results are retrieved from the knowledge base, they need to be sent to the 
LLM for generation along with the original user query. However, once the results are 
retrieved to sharpen the context, certain optimization techniques such as re-ranking 
and compression can be applied. These techniques filter, compress, and optimize the 
retrieved information to reduce noise and increase the precision of the context. To 
validate the need for context optimization, a few questions can be asked: 

¡	Will the amount of information retrieved overwhelm the LLM?

¡	Will the retrieved information fit the context window of the LLM?

¡	Is there a possibility of the retrieved information being noisy?

¡	Have a lot of documents been retrieved? Do we need to discard a few?

¡	Which techniques can be used to sharpen the retrieve context to the query?

¡	Are there any services or libraries that we can use?

¡	Can we afford the time taken for this optimization?

Optimizations like this are very helpful in making the context precise and improving 
the overall quality of the RAG system, but they do add to the processing time and cost.
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AUGMENTATION

Augmentation is the process of adding the retrieved context to the original query in a 
prompt that can be sent to the LLM for generation. While it may seem a simple step, 
there can be many nuances to it. All the use case context along with the retrieved con-
text also needs to be passed. Sometimes, you may need to pass examples of desired 
responses or the thought process. In cases where you need to use the LLMs internal 
parametric knowledge, this can also be specified in the prompt. Key questions to ask at 
this stage are

¡	What is the system prompt or the overall persona that we need the LLM to take?

¡	Does the response require nuanced analysis? Can that be passed as a chain of 
thought?

¡	Do we want to restrict the responses to the context only?

¡	What kind of examples should be given?

¡	Will different query types need different prompting techniques?

Augmentation is done through prompts, and prompts can be managed by the prompt 
layer of the RAGOps stack. Prompting affects the cost and latency since the LLM-s pro-
cessing depends on the number of tokens passed in the prompt.

GENERATION

Generation is a core component of all generative AI apps and contains an LLM that 
takes a prompt as input and generates a response. The nature of the LLM determines 
the efficacy and efficiency of the RAG system to a large extent. There are several 
choices that you will need to make:

¡	Should an open source model be used? Do we have the skills and resources to use 
them?

¡	Should a proprietary managed LLM be used? 

¡	Will we need to fine-tune an LLM for our use case? 

¡	How large a model do we need? What capabilities do we need to address?

¡	How can we estimate the cost of the generation component? 

¡	Are there any deployment constraints to be considered? 

¡	Will the models need optimization for deployment?

¡	Are there any security implications to be considered?

¡	Are there any ethical or legal implications to be considered? 

The selected LLMs will sit in the model library. All training fine-tuning activities and 
optimization are carried out in the model layer of the RAGOps stack. LLMs can be 
costly to train and use. Using the right LLM is key to the success of the RAG system.

RESPONSE OPTIMIZATION

Sometimes, the response from the generation component may be further processed 
before presenting the results to the user. This can range from evaluating the response 
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for relevance to checking the format and appending the responses with the retrieved 
sources. Some questions that can help with the assessment at this stage are 

¡	Does the response from the LLM be presented to the user as is?

¡	Is there any kind of verification that the responses need to go through?

¡	What is the impact of a sub-optimal result?

¡	Are there any workflows that need to be triggered based on the responses?

Response optimizations are highly subjective and closely coupled to the use case, but it 
is a consideration that should not be overlooked. 

With these seven steps, the generation pipeline design is complete. The model library 
and the training/fine-tuning components of the RAGOps stack can be covered with the 
necessary tools, platforms, and algorithms. The orchestration of the generation pipeline 
can also be finalized depending on the choices made during this stage. The prompt layer 
can also be addressed after finalizing the augmentation techniques. Figure 9.7 shows the 
generation pipeline design with the overarching question of each step.
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Figure 9.7 Key questions need to be answered to make the choices for the generation pipeline.

This completes the design choices of the core RAG pipelines. The model, prompt, 
and the orchestration layers are largely complete by this stage. But there are more 
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design considerations regarding security, guardrails, caching, and other use case 
requirements.

9.2.3 Other design considerations

While well-designed core RAG pipelines complete the critical layers of the RAG system, 
other system considerations and business requirements also need to be addressed: 

¡	What kind of guardrails are required in the system? Should the user queries be 
restricted? Is there any kind of information that should not be output?

¡	Is it possible and useful to cache certain kinds of responses?

¡	Do we need human supervision or action at any stage in the system?

¡	How will the models be protected from adverse attacks?

¡	Is there any approval workflow required in the system?

¡	Are users looking for explainability?

These questions will help address the essential and enhancement layers of the RAGOps 
stack. You should be able to have a complete view of the necessary components, tools, 
platforms, and libraries for the development of the RAG system. The last choice to be 
made is on deployment options.

You can choose between a managed deployment on the cloud, a self-hosted deploy-
ment on a private cloud, a bare metal server, or local/edge machines. The choice 
will largely be driven by the business constraints but can have an effect on the design 
choices of the pipelines. Fully managed deployment favors managed services for stor-
age and compute to reduce development complexity and ensure scalability, self-hosted 
solutions need a special focus on a design with modularity and optimization techniques 
to handle limited infrastructure, and in edge deployment, you should emphasize light-
weight components and efficient retrieval strategies due to resource constraints.

With all these design elements finalized, experimentation can begin for the develop-
ment of the RAG system.

9.2.4 Development stage: Building modular RAG pipelines

The development stage of the RAG development framework focuses on implement-
ing the design choices into a functional RAG system. The ideal way would be to build 
the RAG pipelines in a modular fashion, which involves decomposing the system into 
distinct, interchangeable components, each responsible for a specific function. This 
approach enhances flexibility, scalability, and maintainability, allowing for tailored 
configurations to meet diverse application requirements. A few activities in the devel-
opment stage involve training and fine-tuning models; creating APIs or microservices 
for different components; and creating an orchestration layer using different tools, 
services, and libraries.

MODEL TRAINING AND FINE-TUNING LLMS

For most systems, a pre-trained foundation LLM and embeddings models will meet 
the requirement. There may be instances where you may need to fine-tune models 
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for domain adaptation. In rare cases, you may choose to train language models from 
scratch. In such cases, the development of RAG systems may take a back seat, and train-
ing the models will be the core of the development effort. You can follow a progressive 
approach when deciding whether to fine-tune embeddings models and LLMs.

When creating embeddings using a pre-trained model, you will need to assess if a 
similarity search yields relevant results. To do this, you can also create ground truth 
data. The ground truth data can be a set of manually curated search queries and their 
matching documents. If the embeddings model can retrieve the documents accurately, 
you may use the pre-trained model. If not, you can either look for another embeddings 
model more suited for the use case domain or fine-tune the pre-trained embeddings 
model for the use case domain.

Similarly, if a pre-trained LLM generates desired results by prompting alone, you can 
use the model as is. In cases where you desire a specific style, vocabulary, or tonality, you 
can choose to fine-tune a model. 

If the system warrants other models such as query classification, harmful content 
detection, usefulness, and similar, they will also need to be trained.

MODULE DEVELOPMENT

Different RAG pipeline components should be developed as independent modules in 
the form of packages, APIs, or other modular frameworks. Some of the modules can be 

¡	Data loading and parsing—Responsible for connecting to the source system and 
parsing file formations

¡	Metadata extraction—Responsible for extracting and tagging metadata

¡	Chunking—Responsible for creating chunks from documents

¡	Embeddings—Responsible for converting chunks into vector embeddings

¡	Storage—Responsible for storing embeddings into vector databases

¡	Query optimization—Responsible for aligning user query with retrievers

¡	Retrieval—Responsible for efficient retrieval of documents

¡	Augmentation—Responsible for maintaining and invoking the prompt library

¡	Generation—Responsible for using the LLMs to generate responses

¡	Memory—Responsible for storing conversations, user preferences, and similar

These are only a few examples. Modularity will be dependent on the complexity of the 
components. For example, if you are convinced that fixed-size chunking is sufficient 
for your use case, you may not develop an independent chunking module. Conversely, 
if you assume that LLMs may need to be changed as the system evolves with the tech-
nology, you can create the generation module that allows for quick and easy replace-
ment of models. Figure 9.8 recalls the modular RAG design discussed in chapter 6.

ORCHESTRATION

Finally, you will develop the orchestration layer that will manage the interaction among 
the different modules that you have developed. This enables the workflow of your RAG
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Figure 9.8 Modular structure allows for flexibility and scalability of individual components.

system. This workflow should be flexible enough to adapt with feedback for different 
query types. 

You will also have access to various managed services, frameworks, libraries, and tools 
that you can integrate with any of the modules. For example, LangChain is a framework 
that provides libraries for most components of a RAG framework. You can use these 
libraries for quick and easy development. However, for components that you desire 
more control over, you may need to build the functionality from scratch.

Development is an experimentation-driven iterative process. To finalize the differ-
ent components of the RAG system, you will need to evaluate them and benchmark 
them against the goals you had set in the initiation stage. 
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9.2.5 Evaluation stage: Validating and optimizing the RAG system

Evaluation of the RAG system is a key component of its development process. All 
the different strategies, tools, and frameworks must be evaluated against some set of 
benchmarks. The actual business effect can only be measured post-deployment, but 
some metrics can be evaluated at the development stage. We can look at these metrics 
in two broad categories.

RAG COMPONENTS

The purpose of evaluating the RAG system is to assess the performance of different 
RAG components. To this end, there can be retriever-specific, generation-specific, and 
overall RAG evaluation metrics. Here is a summary of these metrics discussed in chap-
ter 5. We begin with retriever-specific metrics:

¡	Accuracy is typically defined as the proportion of correct predictions (both true 
positives and true negatives) among the total number of cases examined.

¡	Precision focuses on the quality of the retrieved results. It measures the propor-
tion of retrieved documents relevant to the user query. It answers the question, 
“Of all the documents that were retrieved, how many were relevant?”

¡	Precision@k is a variation of precision that measures the proportion of relevant 
documents among the top ‘k’ retrieved results. It is particularly important 
because it focuses on the top results rather than all the retrieved documents. For 
RAG, it is important because only the top results are most likely to be used for 
augmentation.

¡	Recall focuses on the coverage that the retriever provides. It measures the propor-
tion of the relevant documents retrieved from all the relevant documents in the 
corpus. It answers the question, “Of all the relevant documents, how many were 
retrieved?”

¡	F1-score is the harmonic mean of precision and recall. It provides a single metric 
that balances both the quality and coverage of the retriever.

¡	Mean reciprocal rank, or MRR, is particularly useful in evaluating the rank of the 
relevant document. It measures the reciprocal of the ranks of the first relevant 
document in the list of results. MRR is calculated over a set of queries.

¡	Mean average precision, or MAP, is a metric that combines precision and recall at 
different cut-off levels of ‘k’ (i.e. the cut-off number for the top results). It calcu-
lates a measure called average precision and then averages it across all queries.

¡	nDCG evaluates the ranking quality by considering the position of relevant docu-
ments in the result list and assigning higher scores to relevant documents appear-
ing earlier.

Here is the summary of generation specific metrics:

¡	Coherence assesses the logical flow and clarity of the response, ensuring that the 
information is presented in an understandable and organized manner.
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¡	Conciseness evaluates whether the response is succinct and to the point, avoiding 
unnecessary verbosity, while still conveying complete information. 

We conclude with a summary of overall RAG metrics:

¡	Context relevance assesses the proportion of retrieved information relevant to the 
user query.

¡	Faithfulness or groundedness assesses the proportion of the claims in the response 
that are backed by the retrieved context.

¡	Hallucination rate calculates the proportion of generated claims in the response 
that are not present in the retrieved context.

¡	Coverage measures the number of relevant claims in the context and calculates 
the proportion of relevant claims present in the generated response.

¡	Answer relevance assesses the overall effectiveness of the system by calculating the 
relevance of the final response to the original question.

Recall the triad of RAG evaluation from chapter 5. Figure 9.9 shows the pairwise inter-
action between the user query, retrieved context, and the generated response, which 
calculates the RAG specific metrics.

Retrieved information
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Response or
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User query
or prompt

Context relevance
Is the retrieved

information or context

relevant to the user

query or prompt?

Groundedness
Is the response or

answer faithful to the

retrieved context?
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Is the answer

relevant to the user

query?

Figure 9.9 The triad of RAG evaluation proposed by TruEra

To calculate some of these metrics, a ground truth dataset is required. Ground 
truth is information known to be real or true. In RAG, and the generative AI 
domain in general, ground truth is a prepared set of prompt–context–response or 
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question–context–response examples, akin to labeled data in supervised machine 
learning parlance. Ground truth data created for your knowledge base can be used for 
the evaluation of your RAG system. 

You can measure these metrics for different components. For example, you can 
check if context relevance increases by replacing a hybrid retrieval strategy with an 
adaptive one. You can also check the effectiveness of query and context optimization. 
You can also compare two service providers for a particular component.

SYSTEM PERFORMANCE

System performance metrics relate to the non-functional requirements of the system, 
which affect the usability of the system more than the accuracy of the system. Some of 
these metrics are 

¡	Latency—Measures the time taken from receiving a query to delivering a response. 
Low latency is crucial for user satisfaction, especially in real-time applications.

¡	Throughput—Indicates the number of queries the system can handle within a spe-
cific time frame. Higher throughput reflects the system’s ability to manage large 
volumes of requests efficiently.

¡	Resource utilization—Assesses the efficiency of CPU and GPU usage during oper-
ations. Optimal utilization ensures cost-effectiveness and prevents resource 
bottlenecks.

¡	Cost per query calculates the average expense incurred for processing each query, 
encompassing infrastructure, energy, and maintenance costs.

Latency and cost get special attention in LLM-based systems. This is because of the 
inherent nature of the LLM architecture. RAG adds to both latency and cost. There-
fore, the impact of additional components like filtering during retrieval, optimizations, 
and retrieval strategies should be evaluated from this lens. Sometimes the stakeholders 
may also ask you to evaluate some use case-specific metrics, and that should also be a 
part of this evaluation stage.

When your system is thoroughly evaluated and improved to meet all the bench-
marks, it is ready to go. You can now deploy it to make it available to the intended users.

9.2.6 Deployment stage: Launching and scaling the RAG system

Once the system is ready to ship, it needs to be deployed into a production server 
accessible by the intended users. There are a few deployment techniques that are pop-
ular for software systems, which can also be used for RAG systems.

BLUE–GREEN DEPLOYMENT

Blue–green deployment maintains two separate environments named blue and green. 
The existing system is in the blue environment, and the new RAG system is put in 
the green. Once the green environment is tested and verified, all traffic is directed to 
the green environment, and the blue environment is deactivated. The advantage of 
this blue–green deployment is that it is possible to test the production environment 
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without affecting the live traffic. Consequently, there is zero downtime and an easy 
option for a rollback if any problem is encountered. However, it is a costly option since 
the entire production environment is duplicated. Indexing pipelines can be updated 
in the green environment without affecting the live system. Changes to retrieval strate-
gies or embeddings models can be safely validated before production use.

CANARY DEPLOYMENT

Canary deployment gradually releases the new RAG system to a small number of users. 
If it performs well with these users, it is expanded to all users. Canary deployment 
allows for real-time user feedback that enables early detection of problems. However, it 
adds feedback and monitoring complexity and multiple versions to manage. It can test 
changes in retrieval algorithms, embeddings, or generation models on limited queries 
or specific regions.

ROLLING DEPLOYMENT

Rolling deployment is used when there are multiple production servers. The new RAG 
system is deployed to one server incrementally at a time before moving to the next. 
So, there is no complete downtime and only a part of the system is offline at one time. 
It may become complex if problems arise mid-deployment. The rollback can become 
tedious when some servers are updated, while others are not.

SHADOW DEPLOYMENT

Shadow deployment mirrors live traffic to a new version of the system running along-
side the old one, without exposing the new RAG system’s responses to users. By doing 
this, the system can be tested without affecting the users. However, it requires duplica-
tion of the infrastructure much like the blue–green deployment.

A/B TESTING

A/B testing involves deploying two versions of the RAG system (A and B) to separate 
subsets of users and comparing their performance to determine the better option. 
This can also be done for new systems. It enables direct comparison and provides clear 
insights into performance. However, it requires robust mechanisms to split traffic 
and collect performance metrics. It allows for experimenting with different LLMs or 
retrieval strategies and variations in prompting and augmentation techniques.

INTERLEAVING EXPERIMENTS

Interleaving experiments compare two RAG systems by blending their outputs into a sin-
gle result set shown to users. Results from both systems are interleaved, and user inter-
actions are attributed to the originating system to determine which performs better. 
This approach provides fast feedback and reduces bias by comparing systems under 
identical conditions. However, the attribution of user engagement to the correct sys-
tem can be complex. 

The choices for the deployment strategy can depend on factors like such as toler-
ance, and using strategies such as shadow, canary, and blue–green can mitigate risks 
in mission-critical systems. It also depends on the scale, and rolling deployments make 
sense for large-scale systems. Small new RAG systems can be also deployed all at once. 



222 CHAPTER 9 RAG development framework and further exploration

Now that the system is available to the users, you will start getting real-time feedback, 
and the success and failure of the system will also depend on how you react to the feed-
back. To measure and improve the system, continuous monitoring is required.

9.2.7 Maintenance stage: Ensuring reliability and adaptability

Deploying a RAG system into production is only the first milestone in the journey 
toward an evolved contextual AI system. Explicit user feedback, evolving technology, and 
changing user behavior present previously unexplored challenges that the system may 
encounter. It is therefore essential to be continually vigilant and monitor the system per-
formance. There are several reasons why a RAG system may fail in production. There are 
operational reasons such as compute resource constraints, sudden spikes in load, and 
malicious attacks. The reason can also be a shift in the type of data in the knowledge base 
or a change in user queries. It is therefore essential to measure a few metrics: 

¡	RAG component metrics that were evaluated before deployment need to be con-
tinuously monitored for degradation.

¡	Changes in user behavior can be tracked by analyzing the nature of user queries.

¡	System performance metrics such as latency, throughput, and similar should also 
be continuously monitored.

¡	Additional metrics such as error rates, system downtime, malicious attacks, and 
similar should also be tracked.

¡	User engagement metrics such as customer satisfaction scores or repeat engage-
ment can indicate the usability of the system.

¡	Business metrics such as revenue effects and cost savings should also be tracked.

This development framework completed its cycle with maintenance. However, it 
is not a linear process. New requirements and business objectives will emerge. This 
will re-initiate the development cycle for an improved RAG system. This development 
framework will prove to be a good reference resource while building RAG systems.

We conclude this book and end the discussion on RAG in the next section with some 
additional considerations to keep in mind as the generative AI domain evolves.

9.3 Ideas for further exploration

Like any technology, even with RAG, there are some complementary and some com-
peting ideas that coexist. You may hear about these techniques and sometimes be chal-
lenged to defend the use of RAG. There are also common points of failure for RAG 
systems that need attention.

9.3.1 Fine-tuning within RAG

Supervised fine-tuning (SFT) of LLMs has become a popular method to customize 
and adapt foundation models for specific objectives. There has been a growing debate 
in the applied AI community around the application of fine-tuning or RAG to accom-
plish tasks. While RAG enhances the non-parametric memory of a foundation model 



 223Ideas for further exploration

without changing the parameters, SFT changes the parameters of a foundation model 
and therefore influences the parametric memory. RAG and SFT should be considered 
as complementary, rather than competing, techniques because both address differ-
ent parts of a generative AI system. You may prefer fine-tuning over RAG if there is a 
change required in the writing style, tonality, and vocabulary of the LLM responses. In 
their paper “Retrieval-Augmented Generation for Large Language Models: A Survey” 
(https://arxiv.org/abs/2312.10997), Gao and colleagues plot the evolution of prompt 
engineering to RAG and fine-tuning. This is illustrated in figure 9.10, demonstrating 
the need for fine-tuning with the increase in the need for model adaptation.

External knowledge
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Model adaptation
required

HighLow

L
o

w
H

ig
h

Prompt
engineering

Fine-tuning

All of the above

RAG

Standard

prompting

Few-shot

prompting

Advanced

prompting

Naive RAG

Advanced

RAG

Modular

RAG
Retriever fine-tuning

Generator fine-tuning

Figure 9.10 Prompt engineering requires low modifications to the model and external knowledge, 

focusing on harnessing the capabilities of LLMs themselves. Fine-tuning, however, involves further 

training the model. Source: https://arxiv.org/abs/2312.10997.

Fine-tuning methods for both retrievers and generators hold immense potential for sig-
nificantly improving RAG performance. Retriever fine-tuning enhances the ability of 
retrieval models to accurately capture semantic nuances relevant to specific domains, 
using methods such as contrastive learning, supervised embedding fine-tuning, LM- 
supervised retrieval, or reward-based fine-tuning. Generator fine-tuning complements 
this by adapting language models through methods such as fusion-in-decoder (FiD), 
prompt tuning, latent fusion techniques, and parameter-efficient fine-tuning (PEFT). 
Combining these approaches within a hybrid fine-tuning framework can align the 
retrieval and generation components more effectively, leading to higher accuracy, 
reduced hallucinations, and improved adaptability to domain-specific tasks.

https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
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9.3.2 Long-context windows in LLMs

Context windows in LLMs keep growing significantly with iteration. As of this writing, 
Claude 3.5 sonnet supports a window of up to 200,000 tokens, while GPT-4o, O1, and 
variants can process 128,000 tokens. Google Gemini 1.5 leads with a massive 1-million-
token context window. It is possible that when you read this book, there may be models 
with even longer context windows. So, in a lot of cases, we can just pass the entire context 
such as a long document to the model as part of the prompt. This would eliminate the 
need for chunking, indexing, and retrieval in cases where the knowledge base is not 
too large. In their paper, “Retrieval Augmented Generation or Long-Context LLMs? A 
Comprehensive Study and Hybrid Approach” (https://arxiv.org/abs/2407.16833), Li 
and colleagues systematically compare RAG and LLMs with long-context windows. They 
demonstrate that long-context LLMs outperform RAG with a few exceptions. However, 
processing long contexts directly with LLMs can be computationally expensive. RAG is 
significantly more cost-efficient owing to processing shorter inputs. A hybrid approach 
such as SELF-ROUTE proposed in the same paper uses model self-reflection to decide 
whether a query can be answered with retrieved chunks or if it needs the full context. 
Figure 9.11 illustrates the SELF-ROUTE approach, in which the model receives the 
query with the retrieved chunks and determines whether the query can be answered 
based on this information. If yes, it generates the answer. If no, the full context is 
provided to the model, and the model generates the final answer.

User query

Retrieved
chunks

No

Step 2: LC prediction
Response

LLM

Full context

Response

Retriever

Step 1: RAG & ROUTE

Hey LLM, can you answer the user query

based on the provided chunks?

Yes

Figure 9.11 A hybrid approach utilizing RAG and long context in LLMs can lead to better performance 

without adversely increasing the costs.

9.3.3 Managed solutions

With the growing popularity of RAG and its significance in generative AI applica-
tions, many service providers offer managed RAG pipelines in which several RAG 

https://arxiv.org/abs/2407.16833
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components can be configured without the need for custom development. For exam-
ple, knowledge bases are an Amazon Bedrock capability that facilitates implementation 
of the entire RAG workflow. Azure AI Search provides indexing and query capabilities, 
with the infrastructure of the Azure cloud, and Vertex AI RAG Engine is a component 
of Google’s Vertex AI platform that facilitates RAG. There are also independent service 
providers such as CustomGPT, Needle AI, Ragie, and so forth that provide managed 
RAG pipelines. As with managed solutions across technologies, the factors to consider 
are cost, applicability to the use case, flexibility, and control over components. 

9.3.4 Difficult queries

Some key reasons for failures in RAG systems are related to the types of queries. As 
RAG developers, it is important to keep focusing on these query types so that the tech-
nique can be improved. Some of these are 

¡	Multi-step reasoning—RAG struggles with queries needing multi-hop retrieval 
(e.g., “What nationality is the performer of song XXX?”).

¡	General queries—Vague or broad questions are hard to retrieve relevant chunks 
for (e.g., “What does the group think about XXX?”)

¡	Complex or long queries—Complex queries challenge the retriever’s understanding.

¡	Implicit queries—Questions requiring comprehensive context understanding 
can’t be addressed by RAG alone.

We have come a long way in our discussion on RAG. This chapter provided an exhaus-
tive summary of the contents of this book, from the benefit of RAG to the best practices 
in building RAG systems. At the risk of repetition, RAG is an important and evolving 
technique in the field of generative AI. I hope you had a good time reading this book. 
I’ll leave you with the following closing thoughts: 

¡	Remember to remain familiar with the principles of contextual AI powered by 
RAG.

¡	Have faith in your ability to build complex RAG systems.

¡	Always bear in mind the development challenges and strategies to overcome 
them.

¡	Understand the ethical and legal concerns around generative AI.

¡	Be on top of the rapidly changing trends.

Summary

RAG development framework

¡	The RAG development framework provides a structured approach to building, 
deploying, and maintaining retrieval-augmented generation systems.

¡	It addresses the complexity of RAG systems by incorporating six iterative and 
cyclic stages: initiation, design, development, evaluation, deployment, and 
maintenance.
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¡	The framework emphasizes both the technical and operational aspects of RAG 
system development.

RAG development framework stages

¡	Initiation stage

– Focuses on understanding the problem statement, aligning stakeholders, and 
gathering requirements.

– Emphasizes use case identification and assessing the need for RAG, using tools 
like use case evaluation cards.

– Involves requirements gathering across business, functional, and non-
functional needs.

– Concludes with drafting a high-level architecture diagram for alignment and 
strategic decision-making.

¡	Design stage

– Transforms high-level architecture into detailed pipeline designs for indexing 
and generation.

– Incorporates choices around chunking, embeddings, and retrieval strategies.

– Addresses additional considerations such as guardrails, caching, security, and 
deployment strategies.

¡	Development stage

– Implements modular RAG pipelines, enabling flexibility, scalability, and 
maintainability.

– Activities include training/fine-tuning models, creating independent mod-
ules (e.g., chunking, retrieval, generation), and building orchestration layers.

¡	Evaluation stage

– Validates RAG system components and overall performance using metrics 
such as context relevance, faithfulness, precision, recall, latency, and cost per 
query.

– Employs ground truth datasets for benchmarking and optimization.

¡	Deployment stage

– Includes deployment strategies like blue-green, canary, rolling, and A/B test-
ing to ensure smooth transitions and minimal disruption.

– Emphasizes real-time user feedback and system scalability.

¡	Maintenance stage

– Ensures system reliability through continuous monitoring of component met-
rics, user behavior, and performance metrics.

– Adapts to evolving use cases, technological advancements, and user feedback.
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Best practices in RAG development

¡	Modular design improves adaptability and ease of updates.

¡	Ground truth datasets are essential for accurate evaluation and fine-tuning.

¡	Deployment strategies should align with system criticality, scale, and risk 
tolerance.

¡	Regularly monitor for changes in user behavior, data, and performance to main-
tain reliability.

Ideas for further exploration

¡	RAG vs. fine-tuning

– RAG complements fine-tuning by enhancing non-parametric memory, while 
fine-tuning adapts parametric memory for style, tonality, and vocabulary.

– Use cases may benefit from hybrid approaches, depending on specific needs.

¡	 Long-context windows in LLMs

– Advances in LLMs (e.g., 200k+ token contexts) can reduce reliance on chunk-
ing and retrieval for smaller knowledge bases.

– Hybrid models such as SELF-ROUTE combine RAG with long-context pro-
cessing to optimize cost and accuracy.

¡	Managed solutions

– Services such as Amazon Bedrock, Azure AI Search, and Google Vertex AI 
RAG Engine offer prebuilt RAG pipelines, simplifying deployment and reduc-
ing development effort.

¡	Handling difficult queries

– Multi-step reasoning, general queries, and implicit questions remain chal-
lenges for RAG systems.
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