
M A N N I N G

 Abhinav Kimothi

Retrieval Augmented
Generation

A SIMPLE GUIDE TO

The indexing and generation pipelines together make a RAG system. The indexing pipeline is an offline

process, while the generation pipeline facilitates real-time interaction with the knowledge base.

User asks a

question.

The system searches

for relevant

information.

The information relevant

to the input question is

fetched, or retrieved.

The prompt with the user

question is augmented

with the retrieved

information.

The LLM responds

with a contextual

answer.

Connect to

external sources.

Extract documents and

parse text from

documents.

Break down long

pieces of text into

smaller manageable

pieces.

Convert these small

pieces into a suitable

format.

Generation pipeline :
Uses the knowledge

base to generate context

aware responses

LLM Response

S
e
a
rc

h

RetrieverUser

Question {Question + Information}

Parametric memory

Storage

Non-parametric memory

Source Connector Extracter &
parser

Splitter

Converter

Knowledge base

Indexing pipeline :
Facilitates the creation

of the knowledge base

F
e
tc

h

in
fo

rm
a
tio

n

MANN I NG

SHELTER ISLAND

Abhinav Kimothi

A Simple Guide to Retrieval
Augmented Generation

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2025 Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid- free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN 9781633435858
Printed in the United States of America

The author and publisher have made every effort to ensure that the information in this book was correct
at press time. The author and publisher do not assume and hereby disclaim any liability to any party for
any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result
from negligence, accident, or any other cause, or from any usage of the information herein.

 Development editor: Ian Hough
 Technical editor: Arturo Geigel
 Review editor: Dunja NikitoviÊ
 Production editor: Andy Marinkovich
 Copy editor: Lana Todorovic-Arndt
 Proofreader: Keri Hales
 Typesetter: Tamara ŠveliÊ SabljiÊ
 Cover designer: Marija Tudor

To Pallavi and Zara—my greatest sources of love, strength, and inspiration

iv

brief contents
Part 1 Foundations ..1

 1 ■ LLMs and the need for RAG 3
 2 ■ RAG systems and their design 17

Part 2 Creating RAG systems ...31

 3 ■ Indexing pipeline: Creating a knowledge base for RAG 33
 4 ■ Generation pipeline: Generating contextual LLM responses 58
 5 ■ RAG evaluation: Accuracy, relevance, and faithfulness 87

Part 3 RAG in production ... 119

 6 ■ Progression of RAG systems: Naïve, advanced, and
modular RAG 121

 7 ■ Evolving RAGOps stack 145

Part 4 Additional considerations 165

 8 ■ Graph, multimodal, agentic, and other RAG variants 167
 9 ■ RAG development framework and further exploration 200

v

contents
preface ix

acknowledgments xi

about this book xiii

about the author xvii

about the cover illustration xviii

Part 1 Foundations ...1

 1 LLMs and the need for RAG 3

 1.1 Curse of the LLMs and the idea of RAG 4
LLMs are not trained for facts 6 ■ What is RAG? 8

 1.2 The novelty of RAG 11
The RAG discovery 11 ■ How does RAG help? 12

 1.3 Popular RAG use cases 13
Search Engine Experience 13 ■ Personalized marketing content
generation 13 ■ Real-time event commentary 14
Conversational agents 14 ■ Document question answering
systems 14 ■ Virtual assistants 15 ■ AI-powered research 15
Social media monitoring and sentiment analysis 15
News generation and content curation 15

vi CONTENTSvi

 2 RAG systems and their design 17

 2.1 What does a RAG system look like? 18

 2.2 Design of RAG systems 22

 2.3 Indexing pipeline 23

 2.4 Generation pipeline 25

 2.5 Evaluation and monitoring 26

 2.6 The RAGOps Stack 27

 2.7 Caching, guardrails, security, and other layers 28

Part 2 Creating RAG systems31

 3 Indexing pipeline: Creating a knowledge base for RAG 33

 3.1 Data loading 34

 3.2 Data splitting (chunking) 38
Advantages of chunking 38 ■ Chunking process 39
Chunking methods 39 ■ Choosing a chunking strategy 44

 3.3 Data conversion (embeddings) 46
What are embeddings? 46 ■ Common pretrained
embeddings models 48 ■ Embeddings use cases 49
How to choose embeddings? 52

 3.4 Storage (vector databases) 53
What are vector databases? 53 ■ Types of vector databases 53
Choosing a vector database 55

 4 Generation pipeline: Generating contextual LLM responses 58

 4.1 Generation pipeline overview 59

 4.2 Retrieval 59
Progression of retrieval methods 61 ■ Popular retrievers 67
A simple retriever implementation 68

 4.3 Augmentation 69
RAG prompt engineering techniques 70 ■ A simple augmentation
prompt creation 76

 4.4 Generation 77
Categorization of LLMs and suitability for RAG 77
Completing the RAG pipeline: Generation using LLMs 82

 viiCONTENTS vii

 5 RAG evaluation: Accuracy, relevance, and faithfulness 87

 5.1 Key aspects of RAG evaluation 88
Quality scores 89 ■ Required abilities 89

 5.2 Evaluation metrics 91
Retrieval metrics 91 ■ RAG-specific metrics 98

 5.3 Frameworks 104
RAGAs 104 ■ Automated RAG evaluation system 110

 5.4 Benchmarks 111
RGB 111

 5.5 Limitations and best practices 115

Part 3 RAG in production 119

 6 Progression of RAG systems: Naïve, advanced, and
 modular RAG 121

 6.1 Limitations of naïve RAG 122

 6.2 Advanced RAG techniques 123

 6.3 Pre-retrieval techniques 125
Index optimization 125 ■ Query optimization 130

 6.4 Retrieval strategies 133
Hybrid retrieval 133 ■ Iterative retrieval 134
Recursive retrieval 134 ■ Adaptive retrieval 134

 6.5 Post-retrieval techniques 136
Compression 136

 6.6 Modular RAG 139
Core modules 139 ■ New modules 140

 7 Evolving RAGOps stack 145

 7.1 The evolving RAGOps stack 146
Critical layers 147 ■ Essential layers 155
Enhancement layers 159

 7.2 Production best practices 161

viii CONTENTSviii

Part 4 Additional considerations 165

 8 Graph, multimodal, agentic, and other RAG variants 167

 8.1 What are RAG variants, and why do we need them? 168

 8.2 Multimodal RAG 169
Data modality 169 ■ Multimodal RAG use cases 170
Multimodal RAG pipelines 170 ■ Challenges and best
practices 176

 8.3 Knowledge graph RAG 177
Knowledge graphs 177 ■ Knowledge graph RAG use cases 179
Graph RAG approaches 179 ■ Graph RAG pipelines 181
Challenges and best practices 186

 8.4 Agentic RAG 187
LLM agents 187 ■ Agentic RAG capabilities 190 ■ Agentic
RAG pipelines 190 ■ Challenges and pest practices 193

 8.5 Other RAG variants 194
Corrective RAG 194 ■ Speculative RAG 195 ■ Self-reflective
(self RAG) 196 ■ RAPTOR 197

 9 RAG development framework and further exploration 200

 9.1 RAG development framework 201
Initiation stage: Defining and scoping the RAG system 203

 9.2 Design stage: Layering the RAGOps stack 207
Indexing pipeline design 207 ■ Generation pipeline design 211
Other design considerations 215 ■ Development stage: Building
modular RAG pipelines 215 ■ Evaluation stage: Validating and
optimizing the RAG system 218 ■ Deployment stage: Launching
and scaling the RAG system 220 ■ Maintenance stage: Ensuring
reliability and adaptability 222

 9.3 Ideas for further exploration 222
Fine-tuning within RAG 222 ■ Long-context windows in
LLMs 224 ■ Managed solutions 224 ■ Difficult queries 225

 index 229

ix

preface
How machines understand human intent has always been a subject of deep interest
for me. Although I embarked on my journey into AI and machine learning in 2007,
it was in early 2016 that I became fascinated by natural language processing (NLP),
while building a virtual data analyst. When Google released BERT in 2018, I became
convinced that NLP was on the brink of a revolution.

In 2022, following the release of text-davinci-002, a model in OpenAI’s GPT-3 series,
I decided to join Yarnit, a generative-AI-based content marketing platform, to build the
AI backbone of the application. The mission was to create a platform where enterprise
content marketing teams could generate marketing assets—social media posts, blogs,
emails, and more—at high speed, large scale, and lower cost, with greater accuracy. It
quickly became apparent that no generative model could achieve this effectively with-
out incorporating brand-specific knowledge and access to proprietary data. This reali-
zation led me to explore retrieval-augmented generation (RAG).

Large language models (LLMs) often fail to meet user expectations. While they are
incredibly effective at storing and generating knowledge, they are also prone to halluci-
nations—confident yet incorrect outputs. This is where RAG provides a breakthrough,
allowing LLMs to retrieve relevant, real-time, and factual information before generat-
ing responses. The beauty of RAG lies in its simplicity of concept combined with the
nuance of implementation. The transformative potential of RAG in overcoming LLMs’
core limitations is what has kept both researchers and practitioners deeply engaged.

When I began researching RAG, it was still a relatively unexplored area. Formal
learning resources were scarce, and most knowledge was scattered across blogs, social
media posts, research papers, and discussion forums. I shared many of my own findings

x PREFACEx

on social platforms and in blog posts. Eventually, the idea of consolidating all these
learnings into a comprehensive book took shape.

With the goal of creating a simple, practical resource for technology professionals
building LLM-based applications, I started working on this book in mid-2024. Over
time, it has evolved into a foundational guide to RAG, covering both breadth and
depth, while ensuring practical implementation through clear explanations and simple
Python code.

I firmly believe that RAG is an essential skill for anyone working with AI applications
and that mastering it requires a solid conceptual foundation. This book is designed to
provide just that. Writing it has been an incredibly enriching experience, and I have
learned a great deal along the way. I hope you find it both enlightening and enjoyable.

xi

acknowledgments
Authoring a book requires countless hours of research and dedicated writing, espe-
cially on a rapidly evolving topic such as RAG, where new research emerges almost
every week. This book would not have been possible without the unwavering love and
support of my wife, Pallavi. Her encouragement and patience sustained me through-
out this journey, and for that, I am eternally grateful.

I am deeply thankful to my co-founders, Jyotirmoy and Akash, and the entire team at
Yarnit, who have significantly contributed to my understanding of RAG. The hands-on
experiences of building real-world AI applications have undoubtedly enriched this
book, making it a more valuable resource for readers.

I would also like to express my heartfelt gratitude to colleagues and mentors—Ashish
Rishi, Satyakam Mohanty, Pradeepta Mishra, Megha John, Sandeep Acharya, Akshit
Sharma, Vishal Sinha, and many others—for their insightful discussions and guidance
over the years. Their perspectives have shaped my philosophy and approach to data
science and AI.

A special thanks go to the exceptional team at Manning Publications, beginning with
Andy Waldron, for providing me with this incredible opportunity. I am deeply grateful
to Ian Hough for his invaluable feedback and guidance throughout the writing process.
I am truly indebted to my technical editor, Arturo Geigel, for his thorough review and
pertinent feedback that has made the book better. A huge thank you to Azra Dedic, for
significantly improving the graphics in the book. I also extend my deepest appreciation
to Robin Campbell and Aira Ducic for their outstanding work in promoting and mar-
keting this book. Thanks also to the production team for all their hard work in prepar-
ing this book for publication.

xii ACKNOWLEDGMENTSxii

My deep gratitude goes to the AI research community as well, whose relentless pur-
suit of knowledge and innovation continues to push the boundaries of what’s possible.
In many ways, this book is a reflection of the collective knowledge shared by research-
ers, open source contributors, and practitioners who have generously published their
insights in papers, blogs, and forums.

To all the reviewers—Abhishek Gupta, Alejandro Cuevas Rivero, Alex McLintock,
Alireza Aghamohammadi, Amit Dixit, Anindita Nath, Anindyadeep Sannigrahi, Aryan
Jadon, Ashish Sarkar, Aushim Nagarkatti, Avinash Tiwari, Babloo Kumar, Balaji Dha-
modharan, Balakrishnan Balasubramanian, Bert Gollnick, Bhargob Deka, Brian Daley,
Charan Akiri, Christopher G. Fry, Harcharan S. Kabbay, Harshwardhan S. Fartale,
Igor Svilenkov Božić, Iván Moreno, Lalit Chourey, Louis Luangkesorn, Louis-François
Bouchard, Manas Talukdar, Márcio F. Nogueira, Marine Serré, Naga Santhosh Reddy
Vootukuri, Neelesh Pateriya, Peter Cotroneo, Peter Morgan, Richa Taldar, Riddhiben
Sunitkumar Shah, Robert Vince, Sameet Sonawane, Sashank Dara, Stephen Wolff, Sub-
hash Kumar Periasamy, Vinesh Gudla, and Yanqi Luo—I am indebted to you for your
valuable insights and suggestions, which have elevated the quality of this book.

Finally, I sincerely thank everyone who has been a part of this journey. Your sup-
port, wisdom, and generosity have made this book—and my dream of becoming an
author—a reality.

xiii

about this book
Retrieval-augmented generation (RAG) is transforming the landscape of applied
generative AI. First introduced by Lewis and colleagues in their seminal paper
“Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks” (https://
arxiv.org/abs/2005.11401), RAG has quickly become a cornerstone of modern AI,
enhancing the reliability and trustworthiness of large language models (LLMs).

A Simple Guide to Retrieval Augmented Generation is a foundational guide for individuals
looking to explore RAG. It offers a gentle, yet comprehensive introduction to the con-
cept, along with practical insights helpful in using RAG to their advantage.

Who should read this book?

This book is for technology professionals who want to be introduced to the concept
of RAG and build LLM-based apps. It is a handy book for both beginners and experi-
enced professionals alike. If you’re a data scientist, data engineer, ML engineer, soft-
ware developer, technology leader, or student interested in generative-AI-powered
application development, you will find this book valuable. Upon completing this book,
you can expect to

¡	Understand the fundamentals of RAG, including its components and practical
applications.

¡	Learn how non-parametric knowledge bases work and how they are created.

¡	Build a RAG system, with a deep dive into the indexing and generation pipelines.

¡	Gain deep insights into the evaluation of RAG systems and modularized evalua-
tion strategies.

¡	Familiarize yourself with advanced RAG strategies and the evolving landscape.

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401

xiv ABOUT THIS BOOKxiv

¡	Acquire knowledge of available tools, technologies, and frameworks for building
and deploying production-grade RAG systems.

¡	Learn about state-of-the-art RAG variants, such as multimodal and agentic RAG.

¡	Get an understanding of the current limitations of RAG and learn more about
popular emerging techniques for further exploration.

While prior exposure to the world of ML, generative AI, and LLMs is always helpful,
this book is a foundational guide and does not assume that you have a deep under-
standing of the concepts. You’ll develop a deeper understanding of LLMs as you go
through the first chapter.

This book is also interspersed with code snippets in Python, using the LangChain
framework. It is important to note that the code snippets act only as supplementary
illustrations to the concepts and are aimed at readers who want to get a hands-on expe-
rience. Only a beginner-level understanding of Python and APIs is expected from those
who want to try the codes.

Generative AI is still an emerging technology domain. You can upskill yourself using
this book and explore a whole new set of opportunities in your current and future
endeavors.

How this book is organized: A road map

This book has nine chapters divided into four parts. Part 1 of the book provides a fun-
damental understanding of RAG:

¡	Chapter 1 starts by defining RAG and its need and significance in the LLM-
powered AI domain, discussing a few real-world applications of RAG-enabled
systems.

¡	Chapter 2 discusses the main components of a RAG system. It introduces the two
main pipelines: the indexing and the generation pipeline. In addition, it also
introduces the concepts of RAG evaluation, among other topics.

Part 2 shows how to build a basic RAG system with the core pipelines and their
evaluation:

¡	Chapter 3 discusses and demonstrates an end-to-end indexing pipeline to create
a knowledge base for a RAG system. You will learn about the concepts of data
loading, chunking, embeddings, and vector storage through examples.

¡	Chapter 4 sheds light on the generation pipeline, which enables the real-time
access to the knowledge base and LLM to generate contextual and accurate
responses. We talk about the retrievers, retrieval strategies, and prompt engi-
neering for RAG, with an overview of the available LLMs.

¡	Chapter 5 examines different RAG evaluation techniques in depth and consid-
ers them from the perspective of the question, response, and context. We also
discuss the significance and the development of a ground truth dataset. This

 xvABOUT THIS BOOK xv

chapter will also contain details about popular frameworks and benchmarks used
in RAG evaluation.

Part 3 will guide you in improving your RAG pipeline and lay out a blueprint for the
layers required to build a production-ready RAG system:

¡	Chapter 6 looks into the advanced concepts in RAG from the perspective of
naïve, advanced, and modular RAG implementation. We discuss important com-
ponents and pre-/post-retrieval strategies. This chapter also provides optimiza-
tion techniques to improve RAG system performance.

¡	Chapter 7 reviews different tools and technologies that enable the RAGOps
stack. You will learn about the critical layers without which any RAG system will
fail, the essential layers that improve system performance, and the enhancement
layers that focus on system usability, scalability, and efficiency.

In Part 4, you will learn about the popular state-of-the-art variants of RAG and a RAG
development framework:

¡	Chapter 8 discusses the state-of-the-art RAG variants, including multimodal RAG,
knowledge graphs, and agentic RAG.

¡	Chapter 9 concludes the book with a RAG development framework that will assist
you in planning the development of a RAG system.

The book is meant to be read sequentially, with the final chapter providing an overview
of all the concepts introduced in the book.

About the code

All code examples in this book are written in Python. You can get executable snippets
of code from the liveBook (online) version of this book at https://livebook.manning
.com/book/a-simple-guide-to-retrieval-augmented-generation. The complete code
for the examples in the book is available for download from the Manning website at
www.manning.com, as well as in Jupyter Notebook format on GitHub at https://mng
.bz/a9DJ.

This book provides many examples of source code in chapters 3–6. Source code is
formatted in a fixed-width font like this to separate it from ordinary text. Sometimes
code is also in bold to highlight code that has changed from previous steps in the chap-
ter, such as when a new feature adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. Additionally, comments in the source code have often been removed when the
code is described in the text. Code annotations accompany many of the listings, high-
lighting important concepts.

liveBook discussion forum

Purchase of A Simple Guide to Retrieval Augmented Generation includes free access to
liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion

https://livebook.manning.com/book/a-simple-guide-to-retrieval-augmented-generation
https://livebook.manning.com/book/a-simple-guide-to-retrieval-augmented-generation
www.manning.com
https://mng.bz/a9DJ
https://mng.bz/a9DJ

xvi ABOUT THIS BOOKxvi

features, you can attach comments to the book globally or to specific sections or
paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions,
and receive help from the author and other users. To access the forum, go to https://
livebook.manning.com/book/a-simple-guide-to-retrieval-augmented-generation/
discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest their interest stray! The forum and
the archives of previous discussions will be accessible from the publisher’s website for as
long as the book is in print.

https://livebook.manning.com/book/a-simple-guide-to-retrieval-augmented-generation/discussion
https://livebook.manning.com/book/a-simple-guide-to-retrieval-augmented-generation/discussion
https://livebook.manning.com/book/a-simple-guide-to-retrieval-augmented-generation/discussion

xvii

about the author
Abhinav Kimothi is a seasoned AI practitioner with
over 15 years of experience developing cutting-edge
AI and machine learning solutions. Throughout his
career, Abhinav has led AI projects across analytics, pre-
dictive ML, NLP, and generative AI—some were success-
ful, while others provided valuable lessons. Driven by
curiosity and a passion for innovation, he continues to
push the boundaries of AI to create effective solutions.
You can learn more about Abhinav at https://www
.abhinavkimothi.com/.

https://www.abhinavkimothi.com/
https://www.abhinavkimothi.com/

xviii

about the cover illustration
The figure on the cover of A Simple Guide to Retrieval Augmented Generation, titled “Le
Marchand D’Habits,” or “The Clothes Merchant,” is taken from a book by Louis Cur-
mer published in 1841. Each illustration is finely drawn and colored by hand.

In those days, it was easy to identify where people lived and what their trade or station
in life was just by their dress. Manning celebrates the inventiveness and initiative of the
computer business with book covers based on the rich diversity of regional culture cen-
turies ago, brought back to life by pictures from collections such as this one.

Part 1

Foundations

This first part of the book introduces the core idea behind retrieval-
augmented generation (RAG) and the high-level design of a RAG system.

Chapter 1 deals with various challenges that AI systems based on large lan-
guage models (LLMs) face. Furthermore, it illustrates the ways RAG addresses
these challenges to improve the reliability of such systems. The chapter also pro-
vides a brief overview of the workings of LLMs and some popular RAG use cases.

Chapter 2 discusses the steps involved in building a RAG system. This chapter
details the basics of two core RAG pipelines and other essential components of a
RAG system.

By the end of the first part of the book, you should have a foundational under-
standing of a RAG system and be ready to dive deep into the intricacies of RAG.

3

1LLMs and the
need for RAG

This chapter covers

¡	The limits of LLMs and the need for RAG

¡	The RAG basics

¡	Popular use cases of RAG

In a short time, large language models (LLMs) have found widespread application
in modern language processing tasks and autonomous AI agents. OpenAI’s GPT,
Anthropic’s Claude, Google’s Gemini, and Meta’s Llama series are notable LLMs
integrated into various platforms and techniques. Retrieval-augmented generation,
or RAG, plays a pivotal role in the LLM application by enhancing the accuracy and
relevance of responses. According to Grand View Research (https://mng.bz/BzKg),
in 2023, the global RAG market was estimated at some $1 billion USD, and it has
been projected to grow by 44.7% annually, which makes it one of the fastest-growing
AI methodologies.

This book aims to demystify the idea of RAG and its application. Chapter by chap-
ter, the book will present the RAG definition, design, implementation, evaluation,
and evolution. To kick things off, this chapter begins by highlighting the limitations
of LLMs and the need for an approach such as RAG. It then introduces the concept

https://mng.bz/BzKg

4 CHAPTER 1 LLMs and the need for RAG

of RAG and builds toward a definition. The chapter ends by listing the popular use
cases enabled by RAG.

By the end of this chapter, you will gain foundational knowledge to be ready for a
deeper exploration of the RAG system components. In addition, you should

¡	Have a strong hold on the RAG definition.

¡	Understand the limitations of LLMs and the need for RAG.

¡	Be ready to dive into the components of a RAG system.

November 30, 2022, will be remembered as a watershed moment in the field of artifi-
cial intelligence. This was the day OpenAI released ChatGPT, and the world became
mesmerized by it. ChatGPT turned out to be the fastest app ever to reach a million
users. Interest in previously obscure terms such as generative AI and LLMs skyrocketed
over the following 12 months (see figure 1.1).

Large Language ModelsGenerative AI

November 2022 November 2023 November 2024

Figure 1.1 Google trends of “Generative AI” and “Large Language Models” from November 2022 to November

2024. Source: Created by the author using data from trends.google.com.

As the use of platforms such as ChatGPT exploded, the weaknesses of LLMs were
exposed.

1.1 Curse of the LLMs and the idea of RAG

LLMs such as those powering ChatGPT, Ask Gemini, and similar have been shown to
store knowledge. You can ask them questions, and they tend to respond with answers
that seem correct. However, despite their unprecedented ability to generate text, their
responses are not always accurate. Upon more careful observation, you may notice
that LLM responses are plagued with suboptimal information and inherent memory
limitations.

To understand the limitations, we will use a simple example. Those familiar with
the wonderful sport of cricket will recall that the Men’s ODI Cricket World Cup tour-
nament was held in 2023. The Australian cricket team emerged as the winner. Now,

trends.google.com

 5Curse of the LLMs and the idea of RAG

imagine you are interacting with ChatGPT, and you ask, “Who won the 2023 Cricket
World Cup?” You are, in truth, interacting with GPT-4o, or o1, LLMs developed and
maintained by OpenAI that power ChatGPT. In the first few sections of this chapter, we
will use the terms ChatGPT and LLMs interchangeably for simplicity. So, you ask the
question and, most likely, you will get a response as the one in figure 1.2.

Figure 1.2 ChatGPT (GPT 3.5) response to the question, “Who won the 2023 Cricket World Cup?”

Source: Screenshot of the author’s account on https://chat.openai.com.

ChatGPT does not have any memory of the 2023 Cricket World Cup, and it tells you
to check the information from other sources. This is not ideal, but at least ChatGPT is
honest in its response. The same question asked again might also provide a factually
inaccurate result. Look at the response in figure 1.3. ChatGPT falsely responds that
India was the winner of the tournament.

Figure 1.3 An example of hallucination. ChatGPT’s (GPT 3.5) inaccurate response to the question,

“Who won the 2023 cricket World Cup?” Source: Screenshot of the author’s account on https://chat

.openai.com.

https://chat.openai.com
https://chat.openai.com
https://chat.openai.com

6 CHAPTER 1 LLMs and the need for RAG

This is problematic. Despite not having any memory of the 2023 Cricket World Cup,
ChatGPT still generates the answer in a seemingly confident tone, but it does so inac-
curately. This is what is called a “hallucination,” and it has become a major point of
criticism for LLMs.

NOTE In September 2023, ChatGPT’s “Browse with Bing” feature was intro-
duced, which allows ChatGPT Plus users to fetch live information from the web
for more accurate and up-to-date responses. This is a feature of the applica-
tion, which is enabled via agentic search and retrieval mechanisms. The under-
lying LLM doesn’t inherently have the latest information.

Many users treat LLMs as a source of information as an alternative to Google Search.
In our example, we also expected ChatGPT (GPT 3.5 model) to know the answer to
the simple question. Why does an LLM fail to meet this expectation?

1.1.1 LLMs are not trained for facts

Generally, LLMs can be thought of as a next-token (loosely, next word) prediction
model. They are machine learning models that have learned from massive datasets
of human-generated text, finding statistical patterns to replicate human-like language
abilities.

To simplify, think of the model first being shown a sentence such as “The teacher
teaches the student.” Then, we hide the last few words of this sentence (i.e., “teaches
the student”) and ask the model what the next word should be. The model should learn
to predict “teaches” as the next word, “the” as the word after that, and so on. There are
various methods of teaching the model, including causal language modeling (CLM)
and masked language modeling (MLM). Figure 1.4 shows the idea behind these two
techniques.

The training data can have billions of sentences of different kinds. The next token
(or word) is chosen from a probability distribution observed in the training data. There
are different means and methods to choose the next token from the ones for which
a probability has been calculated. Crudely, you can assume that a probability is calcu-
lated for all the words in the vocabulary, and one among the high-probability words is
selected. Figure 1.5 shows the probability distribution for our example, “The teacher
____ .” The word “teaches” is selected because it has the highest probability. Other
words could also have been selected.

In this case, the model is just trying to predict a word in sequence. It is almost magical
how LLMs can store knowledge from the data they have been trained on and present
that knowledge (in most cases) in a coherent and understandable language. This abil-
ity is possible thanks to a neural network architecture based on an attention mecha-
nism known as “transformers.” The nuances of transformers’ architecture and building
LLMs from scratch offer a wide area of study. It is out of the scope of this book, but
you’re encouraged to find out more about LLM training and transformers.

Returning to the limitations of LLMs, their training process introduces three major
characteristic drawbacks.

 7Curse of the LLMs and the idea of RAG

The teacher

teaches the

student.

GB/TB/PB

of text data Sample
sentence.

Teaches

Causal Language Modeling

Objective: Predict next token

Unidirectional context

Masked Language Modeling

Encoder- only
model

Objective: Reconstruct text (“denoising”)

The Teacher

<MASK>

Student

Bidirectional context

The

studenttheThe teacher teaches

studenttheThe teacher teaches

Decoder- only
model

The teacher ?

studenttheThe teacher teaches

The Teacher Teaches

Figure 1.4 Two token prediction techniques: CLM and MLM. In the CLM approach, the model predicts

the next token based on the preceding tokens. In MLM, the model predicts the masked token based on

both the preceding and the succeeding tokens.

walks

applauds

teaches

.......

0.1

0.02

0.4

0.3 greets

The teacher ?

Selected
word

Figure 1.5 Illustrative probability distribution of words after “The teacher”

KNOWLEDGE CUT-OFF DATE

Training an LLM is an expensive and time-consuming process. It takes massive volumes
of data and several weeks, or even months, to train an LLM. The data that LLMs are
trained on is, therefore, not always up to date. For instance, OpenAI’s flagship model,
GPT-4.1, released in April 2025, has knowledge only until June 1, 2024. Any event that
happened after this knowledge cut-off date is not available to the model.

8 CHAPTER 1 LLMs and the need for RAG

HALLUCINATIONS

It is observed that LLMs sometimes provide factually incorrect responses. (We saw
this in the 2023 Cricket World Cup example at the beginning of this chapter.) Despite
being factually incorrect, the LLM responses sound extremely confident and legiti-
mate. This characteristic of “lying with confidence,” called hallucinations, has proved
to be one of the biggest criticisms of LLMs. The reason for hallucinations can be traced
back to LLMs being a next-token prediction model that selects the most probable word
from a distribution.

KNOWLEDGE LIMITATION

As you have already seen, LLMs have been trained on large volumes of data obtained
from a variety of sources, including the open internet. However, they do not have any
knowledge of information that is not public. The LLMs have not been trained on infor-
mation such as internal company documents, customer information, product docu-
ments, confidential personnel information, and so forth. Therefore, LLMs cannot be
expected to respond to any query about them.

This characteristic raises significant questions about the general adoption and value
of this technology. But if these limitations are inherent to the nature of LLMs and their
training process, does this mean the LLM is not usable as a technology?

Not at all! Let’s now go ahead and understand how an approach such as RAG comes
to the rescue.

1.1.2 What is RAG?

Recall the question we used to begin this discussion: “Who won the 2023 Cricket World
Cup?” What can be done to improve the response?

Even if ChatGPT doesn’t have this information, the world (aka the internet) knows
about the 2023 Cricket World Cup with no uncertainty. A simple Google Search will tell
you about the winner of the 2023 Cricket World Cup if you don’t already know it. The
Wikipedia article (figure 1.6) on the 2023 Cricket World Cup accurately provides this
information in the opening section itself. If only there were a way to tell the LLM about
this Wikipedia article.

How can we give this information to ChatGPT, you ask? The answer is quite simple.
We just paste this piece of text with our question (see figure 1.7).

And there it is! ChatGPT has now responded with the correct answer. It was able to
comprehend the piece of additional information we provided, distill the information
about the winner of the tournament, and respond with a precise and factually accurate
answer.

It may appear juvenile, but in an oversimplified manner, this example illustrates the
basic concept of RAG. Let’s look back at what we did here. We understood that the
question is about the winner of the 2023 Cricket World Cup. We searched for informa-
tion about the question and identified Wikipedia as a source of information. We then
copied that information and passed it onto ChatGPT (and the LLM powering it) along
with the original question. In a way, we added to ChatGPT’s knowledge. As a technique,

 9Curse of the LLMs and the idea of RAG

Context from External Source

Figure 1.6 Wikipedia article on 2023 Cricket World Cup. Source: https://mng.bz/yN4J.

External Context
Provided

Figure 1.7 ChatGPT (GPT 3.5) response to the question, augmented with external context. Source:

Screenshot of the author’s account on https://chat.openai.com.

https://mng.bz/yN4J
https://chat.openai.com

10 CHAPTER 1 LLMs and the need for RAG

RAG does the same thing programmatically. It overcomes the limitations of LLMs by
providing them with previously unknown information and, consequently, enhances
the overall memory of the system.

As the name implies, “retrieval augmented generation” can be explained through
three steps:

1 It retrieves relevant information from a data source external to the LLMs (Wikipe-
dia, in our example).

2 It augments the input to the LLM with that external information.

3 Finally, the LLM generates a more accurate result.

A simple definition for RAG, illustrated in figure 1.8, can therefore be as follows:

Retrieval Augmented Generation is the technique of retrieving relevant information
from an external source, augmenting the input to the LLM with that external infor-
mation, thereby enabling the LLM to generate a response that is contextual, reliable,
and factually accurate.

Retrieve
Query

S
e
a
rc

h
 q

u
e
ry

F
e
tc

h
 in

fo
rm

a
tio

n

External source of information

User

{Query + Information}

LLM

R A G

R

A

G

Retrieve information relevant to the

query from an external source.

Augment the retrieved information

to the user query.

Enable the LLM to generate an

accurate response.

Response

Figure 1.8 RAG (a simple definition): retrieval of information, augmentation with the query, and the

generation using an LLM form the three RAG focal points

The example that we have been looking at so far is oversimplified. We manually
searched for the external information, and the search was for this one specific ques-
tion only. In practice, all these processes are automated, which allows the system to
scale up to a diverse range of queries and data sources. We will now unravel this idea
further.

 11The novelty of RAG

1.2 The novelty of RAG

The main idea is to provide additional context or knowledge to the LLMs. Essentially,
it meant creating a ChatGPT-like system with three main objectives:

¡	Make LLMs respond with up-to-date information.

¡	Make LLMs respond with factually accurate information.

¡	Make LLMs aware of proprietary information.

These objectives can be achieved using diverse techniques. A new LLM can be trained
from scratch that includes the new data. An existing model can also be fine-tuned with
additional data. However, both approaches require a significant amount of data and
computational resources. Furthermore, updating the model with new information at
regular intervals is prohibitively costly.

RAG is a cheaper, more effective, and more dynamic technique used to attain the
three objectives. LLMs respond with information that is up-to-date and factually accu-
rate, and they are aware of proprietary information, so they have no knowledge gaps.

1.2.1 The RAG discovery

In a paper titled “Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks” (https://arxiv.org/abs/2005.11401), Patrick Lewis and his coauthors explored
the recipe for RAG models, which combine pretrained “parametric” and “non-
parametric” memory for language generation. Let’s pay some attention to the terms
“parametric” and “non-parametric.”

Parameters in machine learning parlance refer to the model weights or variables
that the model learns during the training process. In simple terms, they are settings or
configurations that the model adjusts to perform the assigned task. For language gen-
eration, LLMs are trained with billions of parameters (the GPT 4 model is rumored to
have over 1 trillion parameters, and the largest Llama 3 model has 405 billion parame-
ters). The ability of an LLM to retain information it has been trained on is based solely
on its parameters. It can therefore be said that LLMs store factual information in their
parameters. An LLM’s internal memory is referred to as “parametric memory.” The
parametric memory is limited. It depends on the number of parameters and is a factor
of the data on which the LLM has been trained.

Conversely, we can provide information to an LLM that it does not have in its para-
metric memory. We saw in the example of the Cricket World Cup that when we pro-
vided information from an external source to ChatGPT, it was able to get rid of the
hallucination. This information that is external to the LLM but can be provided to the
LLM is termed “non-parametric.” If we can gather information from external sources
as and when desired and use it with the LLM, it forms the “non-parametric” memory
of the system. In the aforementioned paper, Lewis and his coauthors stored Wikipedia
data and used a retriever to access the information. They demonstrated that this RAG
approach outperformed the parametric-only baseline in generating more specific,

https://arxiv.org/abs/2005.11401

12 CHAPTER 1 LLMs and the need for RAG

diverse, and factual language. We will discuss vector databases and retrievers in chap-
ters 3 and 4.

In 2025, RAG became one of the most used techniques in the LLM domain. With
the addition of a non-parametric memory, the LLM responses are more grounded and
factual. Let’s discuss the advantages of RAG.

1.2.2 How does RAG help?

With the introduction of non-parametric memory, the LLM does not remain limited to
its internal knowledge. We can conclude, at least theoretically, that this non-parametric
memory can be extended as much as we want. It can store any volume of proprietary
documents or data and access all sorts of sources, such as the intranet and the open
internet. In a way, through RAG, we open up the possibility of embellishing the LLM
with unlimited knowledge. There will always be some effort required to create this
non-parametric memory or the knowledge base, and we will look at it in detail later.
Chapter 3 is dedicated to the creation of the non-parametric knowledge base.

As a consequence of overcoming the challenge of limited parametric memory, RAG
also builds user confidence in the LLM responses. The three advantages of RAG are as
follows:

¡	Deep contextual awareness—The added information assists the LLM in generating
contextually appropriate responses, and the users can be relatively more confi-
dent. For example, if the non-parametric memory contains information about
a particular company’s products, users can be assured that the LLM will gen-
erate responses about those products from the provided sources and not from
elsewhere.

¡	Source citation—In addition to being context aware, because the information is
being fetched from a known source, these sources can be cited in the response.
This makes the responses more reliable since the users have the choice of validat-
ing the information from the source.

¡	Lesser hallucination—With contextual awareness, the tendency of LLM responses
to be factually inaccurate is greatly reduced. The LLMs hallucinate less in RAG
systems.

We have already seen a simple RAG definition. Let’s now expand that definition:

Retrieval Augmented Generation is the methodological approach of enhancing the
parametric memory of an LLM by creating access to an explicit non-parametric mem-
ory, from which a retriever can fetch relevant information, augment that information
to the prompt, pass the prompt to an LLM to enable the LLM to generate a response
that is contextual, reliable, and factually accurate.

This definition is illustrated in figure 1.9.
RAG has acted as a catalyst in the propagation and acceptance of LLM-powered

applications. Before concluding this chapter and getting into the design of RAG sys-
tems, let’s look at some popular use cases where RAG is being adopted.

 13Popular RAG use cases

Prompt

S
e

a
rc

h
 q

u
e

ry

F
e

tc
h

 in
fo

rm
a

tio
n

Non-parametric memory

User

{Prompt + Information}

LLM Response

Parametric

memory
Contextual

Reliable

Factual

Retriever

Figure 1.9 RAG enhances the parametric memory of an LLM by creating access to non-parametric

memory.

1.3 Popular RAG use cases

RAG is not just a theoretical concept but a technique that is as popular as the LLM
technology itself. Software developers started using language models as soon as Google
released BERT in 2018. Today, there are thousands of applications that use LLMs to
solve language-intensive tasks. Whenever you come across an application using LLMs,
it will often have an internal RAG system in some shape or form. Common applications
are described in the following sections.

1.3.1 Search Engine Experience

Conventional search results are shown as a list of page links ordered by relevance.
Modern search engines integrate RAG to combine live information retrieval with
generative answers. Google’s Search Generative Experience (SGE) augments queries
with relevant results and citations. AI-based search engines such as Perplexity.ai and
ChatGPT’s search are built on a RAG framework that fetches up-to-date web informa-
tion and then generates responses with sources attached. By grounding answers in
real-time results, these search engines provide more accurate, source-backed answers
than standalone LLMs.

1.3.2 Personalized marketing content generation

The widest use of LLMs has probably been in content generation. Content creation
tools employ RAG to tailor marketing copy using current data and user-specific con-
text. Yarnit, for instance, uses RAG to generate marketing copy, blog posts, and other
content types based on up-to-the-moment information and user inputs. Yarnit can
pull in fresh facts or trending material while drafting the text, ensuring the output is

14 CHAPTER 1 LLMs and the need for RAG

relevant and factual. By pulling in the right information (e.g., a brand’s style guide or
latest stats) at generation time, these platforms produce personalized, on-brand mar-
keting content that resonates with audiences.

1.3.3 Real-time event commentary

Imagine an event such as a sport or a news event. A retriever can connect to real-
time updates/data via APIs and pass this information to the LLM to create a virtual
commentator. These can further be augmented with text-to-speech models. A prime
example is IBM’s Watson AI at the US Open—it generates audio and text tennis com-
mentary by pulling in live match data and even thousands of news articles for context.
This RAG approach allowed Watson to mention player stats, head-to-head records, and
match highlights as it narrated, creating fact-driven commentary on the fly. In finan-
cial markets, vendors are doing something similar—Bloomberg’s AI-driven tools use
RAG to ground their insights in up-to-date proprietary data. Bloomberg’s platforms
explicitly employ a RAG framework so that any generative output (market summaries,
answers to trader queries, etc.) is based on recent, authoritative content rather than
the model’s memory alone.

1.3.4 Conversational agents

LLMs can be customized to product/service manuals, domain knowledge, guidelines,
and so forth using RAG and serve as support agents, resolving user complaints and
problems. These agents can also route users to more specialized agents, depending on
the nature of the query. Almost all LLM-based chatbots on websites or as internal tools
use RAG. Intercom’s Fin AI agent is a notable example—it was specifically designed
with a “bespoke and enhanced” RAG architecture to generate answers from a compa-
ny’s support content. Support platforms such as Zendesk follow a similar pattern by
retrieving help-center articles to answer customer queries. Industry observers note that
these companies use basic RAG to quickly fetch relevant support docs and generate
customized responses from them.

1.3.5 Document question answering systems

As discussed, one of the LLMs’ limitations is that they don’t have access to proprietary
nonpublic information such as product documents, customer profiles, and similar
information specific to an organization. With access to such proprietary documents,
a RAG system becomes an intelligent AI system that can answer all questions about
the organization. In the legal domain, for example, researchers have highlighted that
domain-specific RAG enables far more nuanced and trustworthy answers in tools for
legal research. A legal Q&A system can retrieve relevant case law or statutes and feed
those into an LLM to answer a question, ensuring the answer cites the correct prece-
dent. This technique was at the heart of products such as ROSS Intelligence, which
aimed to answer lawyers’ queries by retrieving passages from law databases and then
generating an answer. More generally, enterprise knowledge management is being

 15Popular RAG use cases

transformed by RAG—instead of relying on an LLM’s limited training data, companies
can equip AI assistants to search internal documents, wikis, or manuals on the fly.

1.3.6 Virtual assistants

Virtual personal assistants such as Siri, Alexa, and others are beginning to use LLMs
to enhance the user’s experience. Coupled with more context on user behavior using
RAG, these assistants are set to become more personalized. Amazon’s next-generation
Alexa, for instance, incorporates retrieval techniques, so it can answer with informa-
tion beyond its core training. By augmenting voice assistant answers with retrieved
facts, RAG helps virtual assistants such as Alexa and Google Assistant give far more
accurate and current answers to user queries.

1.3.7 AI-powered research

AI agents have been gaining traction in research-intensive fields such as law and
finance. RAG has been extensively used to retrieve and analyze case law to assist law-
yers. A lot of portfolio management companies are introducing RAG systems to analyze
scores of documents to research investment opportunities. ESGReveal is a framework
developed by researchers at Alibaba Group that employs RAG to extract and evaluate
environmental, social, and governance (ESG) data from corporate reports.

1.3.8 Social media monitoring and sentiment analysis

Analyzing the firehose of social media data is another task suited to RAG. Social listen-
ing platforms such as Brandwatch use generative AI to summarize trends and senti-
ments from millions of posts, but they ground those summaries in the underlying data.
Brandwatch’s system, for example, scans over 100 million sources, and then its gener-
ative AI integration transforms data into easy-to-understand summaries for the user.

1.3.9 News generation and content curation

News organizations have been using RAG to automate and assist in news writing, while
maintaining accuracy. Reuters, for instance, offers a solution to feed its trusted news
data into generative models so they produce fact-based outputs. By using Reuters’ real-
time news feeds as the retrieval source, an AI system can generate a news summary or
answer questions with the latest verified facts. Reuters asserts that this approach keeps
your answers reliable and accurate with a RAG system extracting trusted facts from the
latest Reuters stories. The Associated Press (AP) has similarly been a pioneer in auto-
mating news: AP has used templates and data to auto-generate sports recaps and earn-
ings reports for years, and now, with generative AI, they are augmenting those systems
with LLMs. Thanks to RAG, an AI writer can ingest box score data or financial results
and then produce a readable article, grounding every statement in the provided data.

These are only a few select examples. RAG has been extensively used in other
domains such as customer support automation, financial market insights, healthcare
diagnostics, legal document drafting, learning systems, and supply chain optimization.

16 CHAPTER 1 LLMs and the need for RAG

This introductory chapter dealt with the RAG concept. Overcoming the limitations
of LLMs, RAG addresses these challenges by providing access to a non-parametric
knowledge base to the system. With this foundational understanding of RAG, in the
next chapter, we take the first step toward understanding how RAG systems are built by
looking at the different components of their design.

Summary

¡	RAG enhances the memory of LLMs by providing access to external information.

¡	LLMs are next-word (or token) prediction models trained on massive amounts
of text data to generate human-like text.

¡	LLMs face challenges of having a knowledge cut-off date and being trained only
on public data. They are also prone to generating factually incorrect information
(i.e., hallucinating).

¡	RAG overcomes the LLM limitations by incorporating non-parametric memory
and increases context awareness and reliability of responses.

¡	Popular use cases of RAG include search engines, document question-answering
systems, conversational agents, personalized content generation, virtual assis-
tants, and so forth.

17

2RAG systems
and their design

This chapter covers

¡	The concept and design of RAG systems

¡	An overview of the indexing pipeline

¡	An overview of the generation pipeline

¡	An initial look at RAG evaluation

¡	A high-level look at the RAG operations stack

The first chapter explored the core principles behind retrieval-augmented gener-
ation (RAG) and the large language model (LLM) challenges addressed by it. To
construct a RAG system, several components need to be assembled. This process
includes the creation and maintenance of the non-parametric memory, or a knowl-
edge base, for the system. Another pipeline facilitates real-time interaction by send-
ing the prompts to and accepting the response from the LLM, with retrieval and
augmentation steps in the middle. Evaluation is yet another critical component,
ensuring the effectiveness and accuracy of the system. All these components are
supported by layers of the operations stack.

18 CHAPTER 2 RAG systems and their design

Chapter 2 discusses the design of a RAG system, examining the steps involved and
the need for two different pipelines. We will call the pipeline that creates the knowledge
base the “indexing pipeline.” The other pipeline that allows real-time interaction with
the LLM will be referred to as the “generation pipeline.” We will discuss their individ-
ual components, such as data loading, embeddings, vector stores, retrievers, and more.
Additionally, we will get an understanding of how the evaluation of RAG systems is con-
ducted and introduce the RAG operations (RAGOps) stack that powers such systems.

This chapter will introduce you to various components discussed in detail in the
coming chapters. By the end of chapter 2, you will have acquired a deep understanding
of the components of a RAG system and will be ready to dive deep into the different
components. By the end of the chapter, you should

¡	Be able to understand the several components of the RAG system design.

¡	Set yourself up for a deeper exploration of the indexing pipeline—the genera-
tion pipelines, RAG evaluation methods, and the RAGOps stack.

2.1 What does a RAG system look like?

By now, we have come to know that RAG is a vital component of the systems that use
LLMs to solve their use cases. But, what is that system like? To illustrate, let’s revisit the
example used at the beginning chapter 1 (“Who won the 2023 Cricket World Cup?”)
and lay out the steps we undertook to enable ChatGPT to provide us with the accurate
response.

The initial step was asking the question itself: “Who won the 2023 Cricket World
Cup?” Following this, we manually searched for sources on the internet that might have
information regarding the answer to the question. We found one (Wikipedia, in our
example) and extracted a relevant paragraph from the source. Subsequently, we added
the relevant paragraph to our original question, pasted the question and the retrieved
paragraph together in the prompt to ChatGPT, and got a factually correct response:
“Australia won the 2023 Cricket World Cup.”

This process can be distilled into five steps, and our system needs to facilitate all of
them:

1 User asks a question.

2 The system searches for information relevant to the input question.

3 The information relevant to the input question is fetched, or retrieved, and
added to the input question.

4 This question and information are passed to an LLM.

5 The LLM responds with a contextual answer.

If you recall, we have already described this process in chapter 1. Let’s visualize it in the
context of these five steps as shown in figure 2.1. This workflow will be called the “gen-
eration pipeline” since it generates the answer.

 19What does a RAG system look like?

Prompt

S
e
a
rc

h
 q

u
e
ry

F
e
tc

h
 in

fo
rm

a
tio

n

Non-parametric memory

User

{Prompt + Information}

LLM Response

Parametric memory

External source of information

Retriever

User asks a

question.

Step 1

The system searches for

relevant information.

The information relevant to the

input question is fetched, or

retrieved.

The prompt with the user

question is augmented with

the retrieved information.

The LLM responds with

a contextual answer.

Step 2 Step 3

Step 4
Step 5

Figure 2.1 Generation pipeline covering the five RAG steps. The journey from query to the response

involves search and retrieval, augmentation, and generation.

This pipeline enables real-time contextual interaction with the LLM. There are, of
course, several intricacies in each of the five steps needed to create the generation
pipeline. Some decisions need to be made about the design of the retriever and the
LLM choice. The construction of prompts will also affect the quality of the response.
We will discuss prompt construction in chapter 3. We first must address a critical
pre-requisite step before this generation pipeline can be put in place. For that, some
key questions regarding the external source of information need to be answered. We
will also need to know, in advance, where to look and then establish connections to all
these disparate sources:

¡	What is the location of the external source of information?

– Is it the open internet? Or are there some documents in the company’s inter-
nal data storage? Is the information present in some third-party databases?
Are there multiple sources we want to use?

– Why is this important?

¡	What is the nature of the information at the source?

– Are these Word documents or PDF files? Is the information accessed via an
API, and the response is in JSON format? Will we find answers in one docu-
ment, or is the information distributed in multiple documents?

– Why is this important?

20 CHAPTER 2 RAG systems and their design

We will also need to know the format and nature of data storage to be able to extract
the information from the source files.

When data is stored across multiple sources, such as the internet and an internal
data lake, the system must connect to each source, search for relevant information in
various formats, and organize it according to the original query. Every time a question
is asked, this process of connecting, extracting, and parsing will have to be repeated.
Information from different sources may lead to factual inconsistencies that will have to
be resolved in real time. Searching through all the information might be prohibitively
time-consuming. This will, therefore, prove to be a highly suboptimal, unscalable pro-
cess that may not yield the desired results. A RAG system will work best if the informa-
tion from different sources is

¡	Collected in a single location.

¡	Stored in a single format.

¡	Broken down into small pieces of information.

The need for a consolidated knowledge base arises from the disparate nature of exter-
nal data sources. To address this requirement, we need to undertake a series of steps
to create and maintain a well-structured knowledge base. This, again, is a five-step
process:

1 Connect to previously identified external sources.

2 Extract documents and parse text from them.

3 Break down long pieces of text into smaller, manageable pieces.

4 Convert these small pieces into a suitable format.

5 Store this information.

These steps, which facilitate the creation of this knowledge base, form the indexing pipe-

line. The indexing pipeline is shown in figure 2.2.
In addition to creating the knowledge base, the indexing pipeline plays a crucial

role in maintaining and updating it with the latest information to ensure its relevance
and accuracy. Before the knowledge base is created by the indexing pipeline, there is
nowhere for the generation pipeline to search for information. It is the indexing pipe-
line that lays the foundation for the subsequent operation of the generation pipeline.
Therefore, setting up the indexing pipeline comes before the generation pipeline can
be activated.

Together, these pipelines form the backbone of a RAG system, enabling seamless
interaction with users and delivering contextually relevant responses. Figure 2.3 shows
the indexing and generation pipelines working together to form the skeleton of a RAG
system.

We have established the flow of a RAG system that includes two pipelines. Concep-
tually, this is the complete flow. However, to build such systems to be used in the real
world, more components are required. The next section reimagines this flow along
with other considerations and creates a design for RAG systems.

 21What does a RAG system look like?

Connect to

external sources.

Extract documents and

parse text from

documents.

Break down long pieces

of text into smaller

manageable pieces.

Convert these small

pieces into a suitable

format.
Store the information.

Storage

Source Connector Extracter &
parser

Splitter

Converter

Step 1

Step 2 Step 3

Step 4

Step 5

Knowledge
base for RAG

t

Figure 2.2 Indexing pipeline covering the steps to create the knowledge base for RAG. This involves

connecting to the source, parsing, splitting, converting, and storing information.

User asks a

question.

The system searches

for relevant

information.

The information relevant

to the input question is

fetched, or retrieved.

The prompt with the user

question is augmented

with the retrieved information.

The LLM responds

with a contextual answer.

Connects to

external sources.

Extract documents and

parse text from

documents.

Breaks down long

pieces of text into

smaller manageable pieces.

Converts these small

pieces into a suitable format.

Generation pipeline:
Uses the knowledge base

to generate context-aware

responses

LLM Response

S
e
a
rc

h

RetrieverUser

Question {Question + Information}

Parametric memory

Storage

Non-parametric

memory

Source Connector Extracter and
parser

Splitter

Converter

Knowledge base

Indexing pipeline:
Facilitates the creation

of the knowledge base

F
e
tc

h

in
fo

rm
a
tio

n

Figure 2.3 The indexing and generation pipelines together make a RAG system. The indexing pipeline is

an offline process, while the generation pipeline facilitates real-time interaction with the knowledge base.

22 CHAPTER 2 RAG systems and their design

2.2 Design of RAG systems

We saw how RAG systems are created by the indexing and generation pipelines.
These two pipelines include several parts themselves. Like all software applications,
production-ready RAG systems require more than just the basic components. We need
to think about accuracy, observability, scalability, and other important factors. This
book discusses some of these components at length. Figure 2.4 presents a rough layout
of a RAG system. Apart from the indexing and generation component, we’ll add layers
for infrastructure, security, evaluation, etc.

OrchestratorInput/Output

Retrievers

LLMs setup

Prompt

management

Storage

component:

Vector DBs

Data-loading

component

Data-splitting

component:

Chunking

Conversion

component:

Embeddings

Caching

Guardrails

LLM security

Evaluation

Monitoring

Privacy

Service Infrastructure

“Offline” data
indexing components
for knowledge base
creation

“Real-time”
interaction
components for
contextual responses

“Supporting”
components for
usability, efficiency,
experience, etc.

Application
component

Figure 2.4 Components of a production-ready RAG system

Let’s look at the main components of a RAG system. The first four components com-
plete the indexing pipeline:

¡	Data-loading component—Connects to external sources, and extracts and parses
data

¡	Data-splitting component—Breaks down large pieces of text into smaller, manage-
able parts

¡	Data conversion component—Converts text data into a more suitable format

¡	Storage component—Stores the data to create a knowledge base for the system

 23Indexing pipeline

These next three components complete the generation pipeline:

¡	Retrievers—Responsible for searching and fetching information from the storage

¡	LLM setup—Responsible for generating the response to the input

¡	Prompt management—Enables the augmentation of the retrieved information to
the original input

The evaluation component measures the accuracy and reliability of the system before
and after deployment. The monitoring component tracks the performance of the
RAG system and helps detect failures. Other components include caching, which helps
store previously generated responses to expedite retrieval for similar queries; guard-
rails, to ensure compliance with policy, regulation, and social responsibility; and secu-
rity, to protect LLMs against breaches such as prompt injection, data poisoning, and
similar. All the layers are supported by a service infrastructure.

All these components are managed and controlled by a central orchestration layer,
which is responsible for their interaction and sequencing. It provides a unified inter-
face for managing and monitoring workflows and processes.

The following sections provide an overview of these components before we examine
them in depth in subsequent chapters.

2.3 Indexing pipeline

We discussed how the indexing pipeline facilitates the creation of the knowledge base
used in the real-time generation pipeline. For practical purposes, the indexing pipe-
line is an offline or asynchronous pipeline. What this means is that the indexing pipe-
line is not activated in real time when the user is asking a question. Rather, it creates
the knowledge base in advance and updates it at predefined intervals. The indexing
pipeline comprises four main components, as seen in figure 2.5.

Data-loading
component is
responsible for

connecting to external

sources, and extracting

and parsing information.

Data-splitting
component is

responsible for breaking

down long pieces of

text into smaller,

manageable

parts called “chunks.”

Data conversion
component is
responsible for

converting text chunks

into numerical vectors

called “embeddings.”

Data storage
component stores the

embeddings in

permanent memory

using specialized

databases called

“vector DBs.”

Figure 2.5 Four components of the indexing pipeline facilitate the creation of the knowledge base.

Let’s delve deeper into each:

¡	Data loading—This component is responsible for connecting to different sources
where data is present, being able to read the files in these external sources, and

24 CHAPTER 2 RAG systems and their design

extracting and parsing the text from these files. These external sources can be
filesystems, data lakes, content management systems, and so forth. The files
received from the sources can be in various formats such as PDF, docs, JSON,
HTML, and more.

This component, therefore, comprises several connectors (for different exter-
nal sources), extractors, and parsers (for different file types). In chapter 3, we
will look at several examples of such loaders. The data-loading component also
involves efficient preprocessing of data for knowledge consistency, removal of
irrelevant information and masking of confidential data. Metadata information
is another aspect the data-loading component manages. Chapters 3 and 6 discuss
how the data loading component is built and enhanced.

¡	Data splitting (text splitting)—Breaking down text into smaller segments enhances
the system’s ability to process and analyze information efficiently. These smaller
pieces in natural language processing (NLP) parlance are commonly referred to
as “chunks.” The process of splitting large text documents into smaller chunks is
called “chunking.” We will discuss the need for chunking and various chunking
strategies in chapter 3.

¡	Data conversion (embeddings)—Textual data must be converted to a numerical for-
mat for search and retrieval computations in RAG systems. There are different
ways of implementing this conversion. For all practical purposes, a data format
called “embeddings” works best for search and retrieval. You will learn more
about embeddings and different embedding models in chapter 3.

¡	Data storage—Once the data is ready in the desired format (embeddings), it
needs to be stored in persistent (permanent) memory so that the real-time gen-
eration pipeline can access data whenever a user asks a question. Data is stored
in specialized databases known as “vector databases,” which are best suited for
search and retrieval of embeddings. Chapter 3 explores various vector databases
and factors influencing their suitability for RAG systems.

Do you always need an indexing pipeline?

Offline indexing pipelines are typically used when a knowledge base with a large

amount of data is built for repeated usage (e.g., many enterprise documents, manu-

als, etc.). However, there are some cases in which the generation pipeline connects

to a third-party API to receive information related to the user question.

For example, imagine an application built for users seeking travel advice based on

the weather forecast. An important component of this application will be fetching the

weather details for the users’ location. Suppose the system uses a third-party API

service that can respond with a location’s weather details when provided with the

location in the input. This weather information is then passed to the LLM to generate

the advice.

 25Generation pipeline

This application can also be thought of as a RAG system. But there is a difference.

This system has outsourced the search and retrieval operation to the third-party API.

It is the third party that maintains the data. For such systems, the indexing pipeline

is not required to be built since the search and retrieval happens outside the system.

Another example is applications that ask the user to input external information, like

document summarizers. The search operation here is outsourced to the user.

Therefore, systems that use augment external information to the prompts but do not

necessarily search and retrieve information themselves, do not warrant the creation

of a knowledge base, and therefore, do not have an indexing pipeline. Some will argue

that such systems are not RAG systems in the first place.

2.4 Generation pipeline

Building on the foundation established by the indexing pipeline, the generation pipe-
line facilitates real-time interactions in RAG systems. It is the generation pipeline that
facilitates the retrieval, augmentation, and generation in the system. When a user asks
a question, the generation pipeline processes the query, retrieves relevant information,
and generates a response—all without the user directly interacting with the underlying
indexing pipeline. The generation pipeline is enabled by three components, as seen
in figure 2.6.

Retriever is the

main component of

RAG, responsible

for searching

through the

knowledge base

and fetching the

relevant information.

Retrieval

The prompt management
layer is responsible for

augmenting the

retrieved information

and constructing the

final prompt for

generation.

Augmentation Generation

The LLM component
is responsible for

generating the final

response. It can include

several foundations or

fine-tuned models that

are either open or

closed source.

Figure 2.6 Three components of the generation pipeline enable the real-time query-response process of

a RAG system.

Let’s consider each of these in some more detail:

¡	The retriever—This is arguably the most critical component of the entire system.
Using advanced search algorithms, the retriever scans the knowledge base to
identify and retrieve the most relevant information based on the user’s query.
The overall effectiveness of the entire system relies heavily on the accuracy of the
retriever. Also, search is a computationally heavy operation and may take time.

26 CHAPTER 2 RAG systems and their design

Therefore, the retriever also contributes heavily to the overall latency of the sys-
tem. We will discuss different retrievers and retrieval strategies in chapters 4 and 6.

¡	Prompt management—Once the relevant information is retrieved by the retriever,
it needs to be combined, or augmented, with the original user query. Now, this
may seem like a simple task at first glance. However, the construction of the
prompt makes significant difference to the quality of the generated response.
This component also falls in the gambit of prompt engineering. We will explore
different prompting and prompt management strategies in chapter 4.

¡	LLM setup—At the end, LLMs are responsible for generating the final response.
A RAG system may rely on more than one LLM. The LLMs can be the foundation
(base) models that have been pretrained and generally available either open
source, like those by Meta or Mistral, or through a managed service, like OpenAI
or Anthropic. LLMs can also be fine-tuned for specific tasks. Fine-tuning involves
training pre-existing LLMs on specific datasets or tasks to improve performance
and adaptability for specialized applications. In rare cases, the developer may
decide to train their LLMs. We will discuss LLMs in depth in chapter 4.

2.5 Evaluation and monitoring

Indexing and generation pipelines complete the system from a usage perspective.
With these two pipelines in place, at least in theory, a user can start interacting with
the system and get responses. However, in this case, we have no measure of the system
quality. Is the system performing accurately, or is it still prone to hallucinations? Is the
information that is being fetched by the retriever the most relevant to the query? To
answer these questions, we have to put in place an evaluation framework. This frame-
work helps in evaluating the quality of the system before it is released and then for
continuous monitoring and improvement.

Building on the advancements of LLMs, RAG represents a recent innovation in
NLP. Metrics such as relevance scores, recall, and precision are commonly used to
evaluate the effectiveness of RAG systems. One framework that intuitively guides a
comprehensive evaluation is the triad of RAG metrics proposed by TruEra (https://
mng.bz/Mw22). It looks at the RAG evaluation through three dimensions, as shown in
figure 2.7.

The workflow involves checks in between each step—prompt, context, and answer.
Let’s take a closer look:

¡	Between the retrieved information (context) and the user query (prompt)—Is the infor-
mation being searched and retrieved by the retriever the most relevant to the
question the user has asked? The consequence of irrelevant information being
retrieved is that no matter how good the LLM is, if the information being aug-
mented is not good, the response will be suboptimal.

¡	Between the final response (answer) and the retrieved information (context)—Does the
LLM consider all the retrieved information while generating responses? Even

https://mng.bz/Mw22
https://mng.bz/Mw22

 27The RAGOps Stack

Retrieved information
or context

Response or
answer

User query
or prompt

Context relevance
Is the retrieved

information or context

relevant to the user

query or prompt?

Groundedness
Is the response or

answer faithful to the

retrieved context?

Answer relevance
Is the answer

relevant to the user

query?

Figure 2.7 The triad of RAG evaluation proposed by TruEra. The three pivotal dimensions of RAG

evaluation are the query, context, and response.

though RAG is aimed at reducing hallucinations, the system might still ignore the
retrieved information. There are several reasons for it, which will be discussed in
subsequent chapters.

¡	Between the final response (answer) and the user query (prompt)—Is the final response
in line with the question the user had originally asked? To assess the overall effec-
tiveness of the system, the relevance of the final response to the original question
is necessary.

There are several metrics that help assess each of these three dimensions. For some
of the metrics, a ground truth dataset is warranted. Ground truth datasets provide a
benchmark for evaluating the accuracy and effectiveness of RAG systems by compar-
ing generated responses to manually curated references. We will take a deeper look at
these metrics and the ground truth dataset in chapter 5.

Continuous evaluation of metrics during live operation can identify the types of que-
ries the system struggles to answer accurately. Qualitative feedback can also be collected
from the user on the generated responses.

2.6 The RAGOps Stack

RAG, and LLM-based apps in general, are being powered by an evolving operations
stack. Various providers offer infrastructure components such as data storage plat-
forms, model hosting services, and application orchestration frameworks. The infra-
structure can be understood in several layers:

28 CHAPTER 2 RAG systems and their design

1 Data layer—Tools and platforms used to process and store data in the form of
embeddings

2 Model layer—Providers of proprietary or open source LLMs

3 Prompt layer—Tools offering maintenance and evaluation of prompts

4 Evaluation layer—Tools and frameworks providing evaluation metrics for RAG

5 App orchestration—Frameworks that facilitate invocation of different components
of the system

6 Deployment layer—Cloud providers and platforms for deploying RAG apps

7 Application layer—Hosting services for RAG apps

8 Monitoring layer—Platforms offering continuous monitoring of RAG apps

Chapter 7 explores the various layers of infrastructure that support RAG systems.

2.7 Caching, guardrails, security, and other layers

Finally, there are certain other components frequently used in RAG systems. These
components address the problems of system latency, regulatory and ethical compli-
ances among other aspects.

¡	Caching—Caching is the process in which certain data is stored in cache memory
for faster retrieval. LLM caching is slightly different from regular caching. The
LLM responses to queries are stored in a semantic cache. Next time a similar
query is asked, the response from the cache is retrieved instead of sending the
query through the complete RAG pipeline. This approach improves the perfor-
mance of the system by reducing the time it takes to respond, the cost of LLM
inferencing, and the load on the LLM service.

¡	Guardrails—For several use cases, in practice, there will be a set of boundaries
within which the output needs to be generated. Guardrails are a predefined set
of rules added in the system to comply with policies, regulations, and ethical
guidelines.

¡	Security—LLMs and LLM-based applications have witnessed new threats, such as
prompt injections, data poisoning, sensitive information disclosure, and others.
With evolving threats, the security infrastructure also needs to evolve to address
concerns around security and data privacy of RAG systems.

RAGOps has also been evolving fast. Logging and tracing, model versioning, and feed-
back layers are some of the RAGOps stack components.

This chapter provided an overview of the key components of RAG systems, including
the indexing and generation pipelines, evaluation and monitoring, and service infra-
structure. By understanding these components, you are now equipped to delve deeper
into each of these components and the intricacies of RAG systems in subsequent chap-
ters. In the next chapter, we will start building the indexing pipeline to create a knowl-
edge base of our RAG system.

 29Summary

Summary

¡	A RAG-enabled system consists of two main pipelines: the indexing and the gen-
eration pipeline.

¡	The indexing pipeline is responsible for creating and maintaining the knowl-
edge base, which involves data loading, text splitting, data conversion (embed-
dings), and data storage in a vector database.

¡	The generation pipeline manages real-time interactions by retrieving informa-
tion, augmenting queries, and generating responses using an LLM.

¡	Evaluation and monitoring are crucial components for the assessment of system
performance, covering the relevance between the retrieved information and
query, the final response and retrieved information, and the final response and
the original query.

¡	The service infrastructure for RAG systems includes layers for data, models,
prompts, evaluation, app orchestration, deployment, application hosting, and
monitoring.

¡	Additional components such as caching, guardrails, and security measures are
often employed to improve performance, ensure compliance, and address
potential threats.

Part 2

Creating RAG systems

Now that you are familiar with the fundamental idea of RAG and the
components of a RAG system, the second part of the book will guide you through
building a basic RAG system with the core pipelines and their evaluation. This
part of the book not only offers theoretical details, but also simple code snippets
that will provide you with hands-on experience in building a RAG pipeline.

In chapter 3, you’ll learn the details of the indexing pipeline and its four com-
ponents: loading, chunking, embeddings, and vector storage. Each of these com-
ponents has a variety of techniques to choose from. This chapter also discusses
the suitability of these options for different use cases. Step by step, you’ll build an
indexing pipeline and create the knowledge base for your RAG system.

Chapter 4 talks about retrievers, prompting techniques, and using LLMs for
output generation. These elements form the three components of the generation
pipeline: retrieval, augmentation, and generation. In this chapter, you will build
the generation pipeline that interacts with the knowledge base, created using the
indexing pipeline in chapter 3.

Chapter 5 discusses different aspects of evaluating RAG systems, which is a cru-
cial step in AI systems. You will learn about the different metrics used in RAG
evaluation for measuring accuracy, relevance, and faithfulness. You will also be
introduced to the RAGAs framework to evaluate the pipelines built in chapters
3 and 4, and learn about industry benchmarks popular in comparing different
RAG techniques. The chapter closes with a discussion on the limitations and best
practices of RAG evaluation.

This part of the book will equip you with all the necessary skills and tools to
develop a basic RAG pipeline. By the end of this part, you will be in a good posi-
tion to further explore the techniques used to optimize any RAG pipeline and the
components that are key in building a production-grade system around it.

33

3Indexing pipeline:
Creating a knowledge

base for RAG

This chapter covers

¡	Data loading

¡	Text splitting or chunking

¡	Converting text to embeddings

¡	Storing embeddings in vector databases

¡	Examples in Python using LangChain

In chapter 2, we discussed the main components of retrieval-augmented generation
(RAG) systems. You may recall that the indexing pipeline creates the knowledge
base or the non-parametric memory of RAG applications. An indexing pipeline
needs to be set up before the real-time user interaction with the large language
model (LLM) can begin.

This chapter elaborates on the four components of the indexing pipeline. We begin
by discussing data loading, which involves connecting to the source, extracting files,
and parsing text. At this stage, we introduce a framework called LangChain, which
has become increasingly popular in the LLM app developer community. Next, we
elaborate on the need for data splitting or chunking and discuss chunking strategies.

34 CHAPTER 3 Indexing pipeline: Creating a knowledge base for RAG

Embeddings is an important design pattern in the world of AI and ML. We explore
embeddings in detail and how they are relevant in the RAG context. Finally, we look at a
new storage technique called vector storage and the databases that facilitate it.

By the end of this chapter, you should have a solid understanding of how a knowl-
edge base, or the non-parametric memory of a RAG application, is created. We also
embellish this chapter with snippets of Python code, so those of you who are so inclined
can try a hands-on development of the indexing pipeline.

By the end of this chapter, you should

¡	Know how to extract data from sources.

¡	Get a deeper understanding of text-chunking strategies.

¡	Learn what embeddings are and how they are used.

¡	Gain knowledge of vector storage and vector databases.

¡	Have an end-to-end knowledge of setting up the indexing pipeline.

3.1 Data loading

This section focuses on the first stage of the indexing pipeline. You will read about data
loaders, metadata information, and data transformers.

The first step toward building a knowledge base (or non-parametric memory) of a
RAG system is to source data from its original location. This data may be in the form of
Word documents, PDF files, CSV, HTML, and similar. Furthermore, the data may be
stored in file, block, or object stores, in data lakes, data warehouses, or even in third-
party sources that can be accessed via the open internet. This process of sourcing data
from its original location is called data loading. Loading documents from a list of sources
may turn out to be a complicated process. Therefore, it is advisable to document all the
sources and the file formats in advance.

Before going too deep, let’s begin with a simple example. If you recall, in chapter
1, we used Wikipedia as a source of information about the 2023 Cricket World Cup. At
that time, we copied the opening paragraph of the article and pasted it in the ChatGPT
prompt window. Instead of doing it manually, we will now connect to Wikipedia and
extract the data programmatically, using a very popular framework called LangChain.
The code in this chapter and the book can be run on Python notebooks and is available
in the GitHub repository of this book (https://mng.bz/a9DJ).

NOTE LangChain is an open source framework developed by Harrison Chase
and launched in October 2022. It was written in Python and JavaScript and
designed for building applications using LLMs. Apart from being suitable
for RAG, LangChain is also suitable for building application use cases such as
chatbots, document summarizers, synthetic data generation, and more. Over
time, LangChain has built integrations with LLM providers such as OpenAI,
Anthropic, and Hugging Face; a variety of vector store providers; cloud storage
systems such as AWS, Google, Azure, and SQL and NoSQL databases; and APIs

https://mng.bz/a9DJ

 35Data loading

for news, weather, and similar. Although LangChain has received some criti-
cism, it is still a good starting point for developers.

Installing LangChain

To install LangChain (we’ll use the version 0.3.19 in this chapter) using pip, run

%pip install langchain==0.3.19

The langchain-community package contains third-party integrations. It is automati-

cally installed by LangChain, but in case it does not work, you can also install it sepa-

rately using pip:

%pip install langchain-community

Now that you have installed LangChain, we will use it to connect to Wikipedia and
extract data from the page about the 2023 Cricket World Cup. For this task, we will use
the AsyncHtmlLoader function from the document_loaders library in the langchain
-community package. To run AsyncHtmlLoader, we will have to install another Python
package called bs4:

#Installing bs4 package

%pip install bs4==0.0.2 --quiet

#Importing the AsyncHtmlLoader

from langchain_community.document_loaders import AsyncHtmlLoader

#This is the URL of the Wikipedia page on the 2023 Cricket World Cup

url="https://en.wikipedia.org/wiki/2023_Cricket_World_Cup"

#Invoking the AsyncHtmlLoader

loader = AsyncHtmlLoader (url)

#Loading the extracted information

html_data = loader.load()

The data variable in the code now stores the information from the Wikipedia page.

print(data)

Here is the output (A large section of the text is replaced with periods to save space.)

>>[Document(page_content='<!DOCTYPE html>\n<html class="client-nojs vector-
feature-language-in-header-enabled………………………………………………………………………………………………….of
In the knockout stage, India and Australia beat New Zealand and South Africa
respectively to advance to the final, played on 19 November at <a href="/
wiki/Narendra_Modi_Stadium" title="Narendra Modi Stadium">Narendra Modi
Stadium. Australia won by 6 wickets, winning their sixth Cricket World

36 CHAPTER 3 Indexing pipeline: Creating a knowledge base for RAG

Cup title………………………………………………… "datePublished":"2013-06-29T19:20:08Z","dateMo
dified":"2024-05-01T05:16:34Z","image":"https:\\/\\/upload.wikimedia.org\\/
wikipedia\\/en\\/e\\/eb\\/2023_CWC_Logo.svg","headline":"13th edition of the
premier international cricket competition"}</script>\n</body>\n</html>',
metadata={'source': 'https://en.wikipedia.org/wiki/2023_Cricket_World_Cup',
'title': '2023 Cricket World Cup - Wikipedia', 'language': 'en'})]

The variable data is a list of documents that includes two elements: page_content and
metadata. page_content contains the text sourced from the URL. You will notice that
the text along with the relevant information also has newline characters (\n) and other
HTML tags; however, metadata contains another important data aspect.

Metadata is information about the data (e.g., type, origin, and purpose). This can
include a data summary; the way the data was created; who created it and why; when it was
created; and the size, quality, and condition of the data. Metadata information comes in
extremely handy in the retrieval stage. Also, it can be used to resolve conflicting informa-
tion that can arise due to chronology or origin. In the previous example, while extracting
the data from the URL, Wikipedia has already provided the source, title, and language in
the metadata information. For many data sources, you will have to add metadata.

Often, a cleaning of the source data is required. The data in our example has a lot
of new line characters and HTML tags, which requires a certain level of cleanup. We
will attempt to clean up the webpage data that we extracted using the Html2Text-
Transformer function from the document_transformers library in the langchain
-community package. For Html2TextTransformer, we will also have to install another
package called html2text.

#Install html2text

%pip install html2text==2024.2.26 –quiet

#Import Html2TextTransformer

from langchain_community.document_transformers import Html2TextTransformer

#Assign the Html2TextTransformer function

html2text = Html2TextTransformer()

#Call transform_documents

html_data_transformed = html2text.transform_documents(data)

print(html_data_transformed[0].page_content)

The output of the page_content is now free of any HTML tags and contains only the
text from the webpage:

>>Jump to content Main menu Main menu move to sidebar hide Navigation *
Main page * Contents * Current events * Random article * About
Wikipedia * Contact us * Donate Contribute………….In the knockout stage,
India and Australia beat New Zealand and South Africa respectively to advance
to the final, played on 19 November at Narendra Modi Stadium. Australia won
by 6 wickets, winning their sixth Cricket World Cup title…… * This page
was last edited on 1 May 2024, at 05:16 (UTC). * Text is available under

 37Data loading

the Creative Commons Attribution-ShareAlike License 4.0; additional terms

may apply. By using this site, you agree to the Terms of Use and Privacy

Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation,

Inc., a non-profit organization. * Privacy policy * About Wikipedia *

Disclaimers * Contact Wikipedia * Code of Conduct * Developers *

Statistics * Cookie statement * Mobile view *

The text is more coherent now since we have removed the HTML part of the data. There
can be further cleanup, such as removing special characters and other unnecessary
information. Data cleaning also removes duplication. Yet another step to include in the
data-loading stage can be masking of sensitive information such as PII (Personally Identi-
fiable Information) or company secrets. In some cases, a fact check may also be required.

The source for our data was Wikipedia (more precisely, a web address pointing to a
Wikipedia page), and the format was HTML. The source can also be other storage loca-
tions such as AWS S3, SQL/NoSQL databases, Google Drive, GitHub, even WhatsApp,
YouTube, and other social media sites. Likewise, the data formats can be .doc, .pdf,
.csv, .ppt, .eml, and the like. Most of the time, you will be able to use frameworks such
as LangChain that have integrations for the sources and the formats already built in.
Sometimes, you may have to build custom connectors and loaders.

Although data loading may seem simple (after all, it’s just connecting to a source and
extracting data), the nuances of adding metadata, document transformation, masking,
and similar add complexity to this step. Advanced planning of the sources, a review of
the formats, and curation of metadata information are advised for best results.

We have now taken the first step toward building our RAG system. The data-loading
process can be further broken down into four sub-steps, as shown in figure 3.1:

1 Connect to the source of data.

2 Extract text from the file.

3 Review and update metadata information.

4 Clean or transform the data.

Connect to

external

sources

Extract documents

and parse text from

documents

Add and Update

metadata

information

Clean up data for

redundancies, format,

sensitivity etc.

Data storage component

Source Connector Extractor & parser

Data-splitting componentData conversion component

Metadata review Transformer

Data-loading component

Figure 3.1 Four sub-steps of the data-loading component of the indexing pipeline

38 CHAPTER 3 Indexing pipeline: Creating a knowledge base for RAG

We have now obtained data from the source and cleaned it to an extent. This Wikipe-
dia page that we have loaded has more than 8,000 words, alone. Imagine the number
of words if we had multiple documents. For efficient management of information, we
employ something called data splitting, which will be discussed in the next section.

3.2 Data splitting (chunking)

Breaking down long pieces of text to manageable segments is called data splitting or
chunking. This section discusses why chunking is necessary and the different chunking
strategies. We also use functions from LangChain to illustrate a few examples.

3.2.1 Advantages of chunking

In the previous section, we loaded the data from a URL (a Wikipedia page) and
extracted the text. It was a long piece of text of approximately 8,000 words. When it
comes to overcoming the major limitations of using long pieces of text in LLM applica-
tions, chunking offers the following three advantages:

¡	Context window of LLMs—Due to the inherent nature of the technology, the
number of tokens (loosely, words) LLMs can work with at a time is limited. This
includes both the number of tokens in the prompt (or the input) and in the com-
pletion (or the output). The limit on the total number of tokens that an LLM can
process in one go is called “the context window size.” If we pass an input that is
longer than the context window size, the LLM chooses to ignore all text beyond
the size. It is thus very important to be careful with the amount of text being
passed to the LLM. In our example, a text of 50,000 words will not work well with
LLMs that have a smaller context window. The way to address this problem is to
break the text down into smaller chunks.

¡	Lost-in-the-middle problem—Even in those LLMs that have a long context window
(e.g., Claude 3 by Anthropic has a context window of up to 200,000 tokens), a
problem with accurately reading the information has been observed. It has been
noticed that accuracy declines dramatically if the relevant information is some-
where in the middle of the prompt. This problem can be addressed by passing
only the relevant information to the LLM instead of the entire document.

¡	Ease of search—This is not a problem with the LLM per se, but it has been observed
that large chunks of text are harder to search over. When we use a retriever (recall
the generation pipeline introduced in chapter 2), it is more efficient to search
over smaller pieces of text.

DEFINITION Tokens are the fundamental semantic units used in natural lan-
guage processing (NLP) tasks. Tokens can be assumed to be words, but some-
times, a single word can be made up of more than one token. OpenAI suggests
one token to be made of four characters or 0.75 words. Tokens are important
as most proprietary LLMs are priced based on token usage.

 39Data splitting (chunking)

3.2.2 Chunking process

The chunking process can be divided into three steps, as illustrated in figure 3.2:

1 Divide the longer text into compact, meaningful units (e.g., sentences or
paragraphs).

2 Merge the smaller units into larger chunks until a specific size is achieved. After
that, this chunk is treated as an independent segment of text.

3 When creating a new chunk, include a part of the previous chunk at the start of
the new chunk. This overlap is necessary to maintain contextual continuity.

This process is also known as “small to big” chunking.

Dividing into

compact units

Loaded large document

Merging units into

larger chunks

Maintain overlap for

contextual continuity

Small to Big Chunking

1 2

3

Figure 3.2 Data-chunking process

3.2.3 Chunking methods

While splitting documents into chunks might sound like a simple concept, multiple
methods can be employed to execute chunking. The following two aspects vary across
the chunking methodologies:

¡	The manner of text splitting

¡	Measuring of the chunk size

FIXED-SIZE CHUNKING

A very common approach is to predetermine the size of the chunk and the amount of
overlap between the chunks. The following two methods fall under the fixed-size chunk-

ing category:

40 CHAPTER 3 Indexing pipeline: Creating a knowledge base for RAG

¡	Split by character—Here, we specify a certain character, such as a newline char-
acter \n or a special character *, to determine how the text should be split. The
text is split into a unit whenever this character is encountered. The chunk size
is measured in the number of characters. We must choose the chunk size or the
number of characters we need in each chunk. We can also choose the number of
characters we need to overlap between two chunks. We will look at an example
and demonstrate this method using CharacterTextSplitter from langchain
.text_splitters. For this, we will take the same document that we loaded and
transformed in the previous section from Wikipedia and store it in the variable
html_data_transformed.

#import libraries

from langchain.text_splitters import CharacterTextSplitter

#Set the CharacterTextSplitter parameters

text_splitter = CharacterTextSplitter(

 separator="\n", #The character that should be used to split

 chunk_size=1000, #Number of characters in each chunk

 chunk_overlap=200, #Number of overlapping characters between chunks

)

#Create Chunks

chunks=

text_splitter.create_documents(

[html_data_transformed[0].page_content]

)

#Show the number of chunks created

print(f"The number of chunks created : {len(chunks)}")

>>The number of chunks created: 67

This method created 64 chunks. But what about the overlap? Let’s check two
chunks at random, say, chunks 4 and 5. We will compare the last 200 characters
of chunk 4 with the first 200 characters of chunk 5:

chunks[4].page_content[-200:]

>> 'on was to be played from 9 February to 26 March\n2023.[3][4] In July

2020 it was announced that due to the disruption of the\nqualification

schedule by the COVID-19 pandemic, the start of the tournament'

chunks[5].page_content[:200]

>> '2023.[3][4] In July 2020 it was announced that due to the disruption

of the\nqualification schedule by the COVID-19 pandemic, the start of

the tournament\nwould be delayed to October.[5][6] The ICC rele'

Comparing the two outputs, we can observe that there is an overlap between the
two consecutive chunks.

 41Data splitting (chunking)

Splitting by character is a simple and effective way to create chunks. It is the
first chunking method that anyone should try. However, sometimes, it may not be
feasible to create chunks within the specified length. This is because the sequen-
tial occurrence of the character on which the text needs to be split is far apart. To
address this problem, a recursive approach is employed.

¡	Recursively split by character—This method is quite like the split by character but
instead of specifying a single character for splitting, we specify a list of characters.
The approach initially tries creating chunks based on the first character. In case it
is not able to create a chunk of the specified size using the first character, it then
uses the next character to further break down chunks to the required size. This
method ensures that chunks are largely created within the specified size. This
method is recommended for generic texts. You can use RecursiveCharacter-
TextSplitter from LangChain to use this method. The only difference in
RecursiveCharacterTextSplitter is that instead of passing a single character in
the separator parameter separator="\n", we will need to pass a list separators=
["\n\n","\n", ".", " "].

Another perspective to consider with fixed-sized chunking is the use of tokens. As
shown at the beginning of this section, tokens are the fundamental units of NLP. They
can be understood loosely as a proxy for words. All LLMs process text in the form of
tokens. So, it would also make sense to use tokens to determine the size of the chunks.
This method is called the split by token method. Here, the splitting still happens based on
a character, but the size of the chunk and the overlap are determined by the number of
tokens instead of the number of characters.

NOTE Tokenizers are used to create tokens from a piece of text. Tokens are
slightly different from words. A phrase such as “I’d like that!” has three words;
however, in NLP, this text may be parsed as five tokens, that is, “I”, “‘d”, “like”,
“that”, “!”. Different LLMs use different methods for creating tokens. OpenAI
uses a tokenizer called tiktoken for GPT3.5 and GPT4 models; Llama2 by Meta
uses LLamaTokenizer, available in the transformers library by Hugging Face.
You can also explore other tokenizers on Hugging Face. NLTK and spaCy are
some other popular libraries that can be used as tokenizers.

To use the split by token method, you can use specific methods within the Recursive-
CharacterTextSplitter and CharacterTextSplitter classes, such as Recursive-
CharacterTextSplitter.from_tiktoken_encoder (encoding="cl100k_base", chunk_
size=100, chunk_overlap=10) for creating chunks of 100 tokens with an overlap
of 10 tokens using OpenAI’s tiktoken tokenizer or CharacterTextSplitter.from_
huggingface_tokenizer(tokenizer, chunk_size=100, chunk_overlap=10) for creating
the same sized chunk using another tokenizer from Hugging Face.

The limitation of fixed-size chunking is that it doesn’t consider the semantic integrity
of the text. In other words, the meaning of the text is ignored. It works best in scenarios

42 CHAPTER 3 Indexing pipeline: Creating a knowledge base for RAG

where data is inherently uniform, such as genetic sequences and service manuals, or
uniformly structured reports such as survey responses.

SPECIALIZED CHUNKING

Chunking aims to keep meaningful data together. If we are dealing with data in the
form of HTML, Markdown, JSON, or even computer code, it makes more sense to
split the data based on the structure rather than a fixed size. Another approach to
chunking is to consider the format of the extracted and loaded data. A markdown
file, for example, is organized by headers, a code written in a programming language
such as Python or Java is organized by classes and functions, and likewise, HTML is
organized in headers and sections. For such formats, a specialized chunking approach
can be employed. LangChain offers classes such as MarkdownHeaderTextSplitter,
HTMLHeader TextSplitter, and RecursiveJsonSplitter, among others, for these
formats.

Here is a simple example of a code that splits an HTML document using HTML-
SectionSplitter. We are using the same Wikipedia article to source the HTML page.
We first split the input data based on the sections. Sections in HTML are tagged as
<h1>, <h2>, <table>, and so on. It can be assumed that a well-structured HTML docu-
ment will have similar information. This helps us in creating chunks that have similar
information. To use the HTMLSectionSplitter library, we must install another Python
package called lxml:

#Installing lxml

%pip install lxml==5.3.1 --quiet

Import the HTMLHeaderTextSplitter library

from langchain_text_splitters import HTMLSectionSplitter

Set URL as the Wikipedia page link

url="https://en.wikipedia.org/wiki/2023_Cricket_World_Cup"

loader = AsyncHtmlLoader (url)

html_data = loader.load()

Specify the header tags on which splits should be made

sections_to_split_on=[

 ("h1", "Header 1"),

 ("h2", "Header 2"),

 ("table ", "Table"),

 ("p", "Paragraph")

]

Create the HTMLHeaderTextSplitter function

splitter = HTMLSectionSplitter(sections_to_split_on)

Create splits in text obtained from the URL

Split_content = splitter.split_text(html_data[0].page_content)

 43Data splitting (chunking)

The advantage of specialized chunking is that chunk sizes are no longer limited by
a fixed width. This feature helps in preserving the inherent structure of the data.
Because the size of the chunks changes depending on the structure, this method is
also sometimes called adaptive chunking. Specialized chunking works well in structured
scenarios such as customer reviews or patient records where data can be of different
lengths but should ideally be in the same chunk.

In the previous example, let’s see how many chunks have been created:

len(split_content)

>> 231

This method has given us 231 chunks from the URL. Chunking methods do not have
to be exclusive. We can further chunk these 231 chunks using a fixed-size chunking
method such as RecursiveCharacterTextSplitter.

from langchain.text_splitter import RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(

separators=["\n\n","\n","."]

chunk_size=1000, chunk_overlap=100,

)

final_chunks = text_splitter.split_documents(split_content)

Let’s look at how many chunks were created by this combination of techniques:

len(chunks)

>> 285

A total of 285 chunks were created by splitting the HTML data from the URL first,
using a specialized chunking method followed by a fixed size method. This gave us
more chunks than using the fixed size method alone that we saw in the previous sec-
tion (“split by character” gave us 67 chunks).

You may be wondering about the advantages of having more chunks and the optimal
number. Unfortunately, there’s no straightforward answer to that. Having many chunks
(consequently smaller-sized chunks) means that the information in the chunks is pre-
cise. This is advantageous when it comes to providing the LLM with accurate informa-
tion. In contrast, by chunking into small sizes, you may lose the overall themes, ideas,
and coherence of the larger document. The task here is to strike a balance. We will
discuss more chunking strategies after we take a cursory look at a novel method that
considers the meaning of the text to perform chunking and aims to create chunks that
are super-contextual.

44 CHAPTER 3 Indexing pipeline: Creating a knowledge base for RAG

SEMANTIC CHUNKING

This idea, proposed by Greg Kamradt, questions two aspects of the previous chunking
methods.

¡	Why should we have a predefined fixed size of chunks?

¡	Why don’t chunking methods take into consideration the actual meaning of
content?

To address these problems, a method that looks at semantic similarity (or similarity in
the meaning) between sentences is called semantic chunking. It first creates groups
of three sentences and then merges groups that are similar in meaning. To find out
the similarity in meaning, this method uses embeddings. (We will discuss embeddings
in the next section.) This is still an experimental chunking technique. In LangChain,
you can use the class SemanticChunker from the langchain_experimental.text_
splitter library. See figure 3.3 for examples of different chunking methods.

Fixed-size chunking Specialized chunking Semantic chunking

Te length of chunks is uniform and

predetermined with some overlap.

Chunking is carried out depending

on the structure of the input.

Chunking preserves the semantic

integrity or the meaning of the input.

--

-- - - - - - - - -- - - - ---- - - - - - - - --------------------- - - - - - - - -- - - - - - - - -- - - - - - - - -- - - - - - - - -- - - - - - - - - - - - - -

- - - - -- - - - -- - - - -- - - - -- - - - --

-
-
-

- -

-
-

-
-
---- ----- -- -- -- ----------- ---

---------------------- ---------- -------- - - - - - - - -------------------- - - - - - - - --- - - - - - - - --- - - - - - - - ---- - - - - - - - -- - - - - - - - --- - - - ----------- - - -- - - -- - - -- - - -- - - --- ---
- - - - - - - - --- - - - - - - - -

- - - -

- - - - -
-
-

-
-

-
-

-
-
-

- -- ------------------------ - - - - - - - -- - - - - - - - -

- - - - -- - - - -

- ------
-- -- ------ ---

-- - - - - - - - -------------------- - - - - - - - --- - - - - - - - -- - - - - - - - - - - - ----------- - - -- - - -- - - --- ------------ - - - - - - - -

- - - - - - - - --- - - - - - - - -- - - - - - - - - - - - - -

- - - -

- - - - -- - - - -- -
-
--

-
-

-
--

-
-- -
-

- -- --------------------
- - - - - - - - -- ---------

- - - - -
-
-

-- -

-- - - - - - - - --------------------- - - - - - - - --- - - - - - - - - - - - ----------- - - -- - - --- ----------------------------- - - - - - - - -- - - - - - - - ---- - - - - - - - -- ---------- - - -- - - -- - - -- ----------- - - - - - - - ---------------------- - - - - - - - -- - - - - - - - -- - - - - - - - -- - - - - - - - -- - - - - - - - -- ---- - - - - -

- - - - -- - - - -- - - -- - - - -- - - --

-
-
-

- -

-
-

-
-

---------- -- --- ---------
-------------------- ---------- ----------- --- ------

- - - -- - - --------- - - - ---------------------------------------

--

---------------------- --

*

@@@@@@@@@@@@@@@@

&&&&&&&&&&&&&&&&&&&&&&&&&

#
$$

$$
$$
$$
$$

$$$**
*
@
@@@

##
######

$$$

@@@
@@@@@@@@@@@@@@@@@

#
#

#################################
#################################
#################################

#
###
#
#
##########$$$$$$$$$$$$$$
########################
##########$$$$$$$$$$$$$$
########################
##########$$$$$$$$$$$$$$###########$$$$$$$$$$$$$$ $$

##
$$$$$$$$$$$
##########
$$$$$$$$$$
###########
$$$$$$$$$$$$$$$$$$$$$$$
#
$
#
$
#
$
#
$$ $

$
$
$
$

$$$***

#

$$$***

##########$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$***

##########$$$$$$$$$$$$$$$$$$$$$$$
$ $
$ $
$ $
$ $
$$$***

@ @@@@@@@@@@@@@@@@
*
@@@@@@@@@@@@@@@@@@

$$$
***@
@@@@@@@@@@@@@@@@@@

$$$ *
*
@@@@@@@@@@@@@@@@@@@ @@@@
@@@
@ @
@@@
@@@
@@@
@@@
@@@@@@@@@@@@@@@@@@@

@
@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@

&&

@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&

@@@@@@@@@@@@@@@@@@

&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&
&
&

Figure 3.3 Chunking methods

As the LLM and the generative AI space are evolving fast, chunking methods are also
becoming more sophisticated. Simple chunking methods predetermine the size of the
chunks and a split by characters. A slightly more nuanced technique is to split the data
by tokens. Specialized methods are more suitable for different data formats. Experi-
mental techniques such as semantic chunking and agentic chunking are spearheading
the advancements in the chunking space. Now, let’s consider the important question
of how to select a chunking method.

3.2.4 Choosing a chunking strategy

We have seen that there are many chunking methods available. Which chunking
method to use (i.e., whether to use a single method or multiple methods) is a question

 45Data splitting (chunking)

that comes up during the creation of the indexing pipeline. There are no guidelines or
rules to answer this question. However, certain features of the application that you’re
developing can guide you toward an effective strategy.

NATURE OF THE CONTENT

The type of data that you’re dealing with can be a guide for the chunking strategy. If
your application uses data in a specific format such as code or HTML, a specialized
chunking method is recommended. Not only that, whether you’re working with long
documents such as whitepapers and reports or short-form content such as social media
posts, tweets, and so on, can also guide the chunk size and overlap limits. If you’re
using a diverse set of information sources, then you might have to use different meth-
ods for different sources.

EXPECTED LENGTH AND COMPLEXITY OF USER QUERY

The nature of the query that your RAG system is likely to receive also determines
the chunking strategy. If your system expects a short and straightforward query,
then the size of your chunks should be different when compared to a long and com-
plex query. Matching long queries to short chunks may prove inefficient in certain
cases. Similarly, short queries matching large chunks may yield partially irrelevant
results.

APPLICATION AND USE CASE REQUIREMENTS

The nature of the use case you’re addressing may also determine the optimal chunk-
ing strategy. For a direct question-answering system, shorter chunks are likely used for
precise results, while for summarization tasks, longer chunks may make more sense. If
the results of your system need to serve as an input to another downstream application,
that may also influence the choice of the chunking strategy.

EMBEDDINGS MODEL

We are going to discuss embeddings in the next section. For now, you can make a note
that certain embeddings models perform better with chunks of specific sizes.

We have discussed chunking at length in this section. From understanding the need
and advantages of chunking to different chunking methods and the choice of chunking
strategies, you are now equipped to load data from different sources and split them into
optimal sizes. Remember, chunking is not an overcomplicated task, and most chunking
methods will work. You will, however, have to evaluate and improve your chunking strat-
egy depending on the results you observe.

Now that data has been split into manageable sizes, we need to store it so that it
can be fetched later to be used in the generation pipeline. We need to ensure that
these chunks can be effectively searched over to match the user query. Turns out
that one data pattern is the most efficient for such tasks. This pattern is called
“embeddings.” Let’s explore embeddings and their use in RAG systems in the next
section.

46 CHAPTER 3 Indexing pipeline: Creating a knowledge base for RAG

3.3 Data conversion (embeddings)

Computers, at their very core, do mathematical calculations. Mathematical calcula-
tions are done on numbers. Therefore, for a computer to process any kind of nonnu-
meric data such as text or image, it must be first converted into a numerical form.

3.3.1 What are embeddings?

Embeddings is a design pattern that is extremely helpful in the fields of data science,
machine learning, and AI. Embeddings are vector representations of data. As a gen-
eral definition, embeddings are data that has been transformed into n-dimensional
matrixes. The word embedding is a vector representation of words. I explain embed-
dings by using three words as an example: dog, bark, and fly.

NOTE In physics and mathematics, the vector is an object that has a magni-
tude and a direction, like an arrow in space. The length of the arrow is the
magnitude of the quantity and the direction that the arrow points to is the
direction of the quantity. Examples of such quantities in physics are velocity,
force, acceleration, and so forth. In computer science and machine learning,
the idea of a vector is an abstract representation of data, and the representa-
tion is an array or list of numbers. These numbers represent the data features
or attributes. In NLP, a vector can represent a document, a sentence, or even a
word. The length of the array or list is the number of dimensions in the vector.
A 2D vector will have two numbers, a 3D vector will have three numbers, and
an n-dimensional vector will have n numbers.

Let’s understand embeddings by assigning a number to the three words: Dog = 1, Bark
= 2 and Fly = 6, as shown in figure 3.4. We chose these numbers because the word dog is
closer to the word bark and farther from the word fly.

Dog [1] Bark [2] Fly [6]

1 2 6

1D vector is severely
restricted in mapping
a high number of words.

Red [?]

Love [?]

King [?]

Figure 3.4 Words in a unidimensional vector

Unidimensional vectors are not great representations because we can’t plot unrelated
words accurately. In our example, we can plot that the words fly and bark, which are
verbs, are far from each other, and bark is closer to a dog because dogs can bark. But
how do we plot words such as love or red? To accurately represent all the words, we need
to increase the number of dimensions. See figure 3.5.

 47Data conversion (embeddings)

2D vector space

Dog [3,3]

Bark [4,2]
Fly [6,1]

Red [-3, 5]

Love [-2,-2]

Increasing the number of
dimensions in the vector space
provides greater flexibility to
accurately map words.

Figure 3.5 Words in a 2D vector space

The goal of an embedding model is to convert words (or sentences/paragraphs) into
n-dimensional vectors so that the words (or sentences/paragraphs) that are like each
other in meaning lie close to each other in the vector space. See figure 3.6.

Dog

Bark

Fly
Embeddings

algorithm

[5,7,1,....]

[6,7,2,....]

[1,1,8,....]

Vector representation for “Dog”

Vector representation for “Bark”

Vector representation for “Fly”

n-dimension

embedding space

The goal of an embedding model is to
convert words (or sentences/paragraphs)
into n-dimensional vectors.

Figure 3.6 The process of embedding transforms data (such as text) into vectors and compresses the

input information, which results in an embedding space specific to the training data.

An embeddings model can be trained on a corpus of preprocessed text data using an
embedding algorithm such as Word2Vec, GloVe, FastText, or BERT:

¡	Word2Vec—Word2Vec is a shallow-neural-network-based model for learning word
embeddings, developed by researchers at Google. It is one of the earliest embed-
ding techniques.

48 CHAPTER 3 Indexing pipeline: Creating a knowledge base for RAG

¡	GloVe—Global Vectors for Word Representations is an unsupervised learning
technique developed by researchers at Stanford University.

¡	FastText—FastText is an extension of Word2Vec developed by Facebook AI
Research. It is particularly useful for handling misspellings and rare words.

¡	ELMo—Embeddings from Language Models was developed by researchers at
Allen Institute for AI. ELMo embeddings have been shown to improve perfor-
mance on question answering and sentiment analysis tasks.

¡	BERT—Bidirectional Encoder Representations from Transformers, developed
by researchers at Google, is a transformers-architecture-based model. It provides
contextualized word embeddings by considering bidirectional context, achiev-
ing state-of-the-art performance on various NLP tasks.

Training a custom embeddings model can prove to be beneficial in some use cases
where the scope is limited. Training an embeddings model that generalizes well can be
a laborious exercise. Collection and preprocessing text data can be cumbersome. The
training process can turn out to be computationally expensive too.

3.3.2 Common pre-trained embeddings models

The good news for anyone building RAG systems is that embeddings once created can
also generalize across tasks and domains. There are a variety of proprietary and open
source pre-trained embeddings models available to use. This is also one of the rea-
sons why the usage of embeddings has exploded in popularity across machine learning
applications.

¡	Embeddings models by OpenAI—OpenAI, the company behind ChatGPT and the
GPT series of LLMs, also provides three embeddings models:

– text-embedding-ada-002 was released in December 2022. It has a dimension of
1536, meaning that it converts text into a vector of 1536 dimensions.

– text-embedding-3-small is the latest small embedding model of 1536 dimensions
released in January 2024. The flexibility it provides over the ada-002 model is
that users can adjust the size of the dimensions according to their needs.

– text-embedding-3-large is a large embedding model of 3072 dimensions, released
together with the text-embedding-3-small model. It is the best performing
model released by OpenAI yet.

OpenAI models are closed source and can be accessed using the OpenAI API.
They are priced based on the number of input tokens for which embeddings are
desired.

¡	Gemini Embeddings Model by Google—text-embedding-004 (last updated in April
2024) is the model offered by Google Gemini. It offers elastic embeddings size
up to 768 dimensions and can be accessed via the Gemini API.

¡	Voyage AI—These embeddings models are recommended by Anthropic, the pro-
vider of the Claude series of LLMs. Voyage offers several embedding models such as

 49Data conversion (embeddings)

– voyage-large-2-instruct is a 1024-dimensional embeddings model that has
become a leader in embeddings models.

– voyage-law-2 is a 1024-dimension model optimized for legal documents.

– voyage-code-2 is a 1536-dimension model optimized for code retrieval.

– voyage-large-2 is a 1536-dimension general-purpose model optimized for
retrieval.

Voyage AI offers several free tokens before charging for using the embeddings
models.

¡	Mistral AI embeddings—Mistral is the company behind LLMs such as Mistral and
Mixtral. They offer a 1024-dimensional embeddings model known as mistral-

embed. This is an open source embeddings model.

¡	Cohere embeddings—Cohere, the developers of Command, Command R, and Com-
mand R + LLMs also offer a variety of embeddings models, which can be accessed
via the Cohere API. Some of these are

– embed-english-v3.0 is a 1024-dimension model that works on embeddings for
English only.

– embed-english-light-v3.0 is a lighter version of the embed-english model, which
has 384 dimensions.

– embed-multilingual-v3.0 offers multilingual support for over 100 languages.

These five models are in no way recommendations but just a list of the popular embed-
dings models. Apart from these providers, almost all LLM developers such Meta, TII,
and LMSYS also offer pre-trained embeddings models. One place to check out all the
popular embeddings models is the MTEB (Massive Text Embedding Benchmark) Lea-
derboard on Hugging Face (https://huggingface.co/spaces/mteb/leaderboard). The
MTEB benchmark compares the embeddings models on tasks such as classification,
retrieval, clustering, and more. You now know what embeddings are, but why are they
useful? Let’s discuss that next with some examples of use cases.

3.3.3 Embeddings use cases

The reason why embeddings are so popular is because they help in establishing seman-
tic relationships between words, phrases, and documents. In the simplest methods of
searching or text matching, we use keywords, and if the keywords match, we can show
the matching documents as results of the search. However, this approach fails to con-
sider the semantic relationships or the meanings of the words while searching. This
challenge is overcome by using embeddings.

HOW IS SIMILARITY CALCULATED

We discussed that embeddings are vector representations of words or sentences. Sim-
ilar pieces of text lie close to each other. Closeness to each other is calculated by the
distance between the points in the vector space. One of the most common measures
of similarity is cosine similarity. Cosine similarity is calculated as the cosine value of the

https://huggingface.co/spaces/mteb/leaderboard

50 CHAPTER 3 Indexing pipeline: Creating a knowledge base for RAG

angle between the two vectors. Recall from trigonometry that the cosine of parallel
lines (i.e., angle = 0o) is 1, and the cosine of a right angle (i.e., 90o) is 0. The cosine of
the opposite lines (i.e., angle = 180o) is −1. Therefore, the cosine similarity lies between
−1 and 1, where unrelated terms have a value close to 0, and related terms have a value
close to 1. Terms that are opposite in meaning have a value of −1. See figure 3.7.

10 o

80
o

175
o

Cos 10 = 0.985 Cos 80 = 0.173 Cos 175 = -0.996

Close to 1

Very similar

Close to 0

Unrelated

Close to -1

Opposite

80

Figure 3.7 Cosine similarity of vectors in 2D vector space

Yet another measure of similarity is the Euclidean distance between two vectors. Close
vectors have a small Euclidean distance. It can be calculated using the following
formula:

Distance (A, B) = sqrt((Ai-Bi)
2),

where i is the i-th dimension of the n-dimensional vectors

DIFFERENT USE CASES OF EMBEDDINGS

Here are some different use cases of embeddings:

¡	Text search—Searching through the knowledge base for the right document
chunk is a key component of RAG systems. Embeddings are used to calculate
similarity between the user query and the stored documents.

¡	Clustering—Categorizing similar data together to find themes and groups in the
data can result in valuable insights. Embeddings are used to group similar pieces
of text together to find out, for example, the common themes in customer reviews.

¡	Machine learning—Advanced machine learning techniques can be used for dif-
ferent problems such as classification and regression. To convert text data into
numerical features, embeddings prove to be a valuable technique.

¡	Recommendation engines—Shorter distances between product features mean
greater similarity. Using embeddings for product and user features can be used
to recommend similar products.

 51Data conversion (embeddings)

Since we are focusing on RAG systems, here we examine using embeddings for text
search— to find the document chunks that are closest to the user’s query. Let’s con-
tinue with our example of the Wikipedia page on the 2023 Cricket World Cup. In the
last section, we created 67 chunks using a combination of specialized and fixed-width
chunking. Now we will see how to create embeddings for each chunk. We will see how
to use an open source as well as a proprietary embeddings model.

Here is the code example for creating embeddings using an open source embed-
dings model all-MPnet-base-v2 via Hugging Face:

Import HuggingFaceEmbeddings from embeddings library

from langchain_huggingface import HuggingFaceEmbeddings

Instantiate the embeddings model. The embeddings model_name can be changed

as desired

embeddings =

HuggingFaceEmbeddings(

model_name="sentence-transformers/all-mpnet-base-v2"

)

Create embeddings for all chunks

hf_embeddings =

embeddings.embed_documents(

[chunk.page_content for chunk in final_chunks]

)

#Check the length(dimension) of the embedding

len(hf_embeddings [0])

>> 768

This model creates embeddings of dimension 768. The list hf_embeddings is made up
of 285 lists, each containing 768 numbers for each chunk. Figure 3.8 shows the embed-
dings space of all the chunks.

[-0.0147, 0.0179, 0.0119..-0.0047]

[0.0121, 0.0104, -0.0264..-0.0388]

[-0.0350, -0.0027, -0.0305..0.0072]

..

..

..

..

..

..

[-0.0175, 0.0373, 0.0270..-0.0142]

Number of dimension = 768

N
u

m
b

e
r

o
f

c
h

u
n

k
s

 =
 2

8
5

Figure 3.8 Embeddings created for chunks of Wikipedia page using the all-MiniLM-l6-v2 model.

52 CHAPTER 3 Indexing pipeline: Creating a knowledge base for RAG

Similarly, we can use a proprietary model such as the text-embedding-3-small model,
hosted by OpenAI. The only prerequisite is obtaining an API key and setting up a bill-
ing account with OpenAI.

Install the langchain openai library

%pip install langchain-openai==0.3.7 --quiet

Import OpenAIEmbeddings from the library

from langchain_openai import OpenAIEmbeddings

Set the OPENAI_API_KEY as the environment variable

import os

os.environ["OPENAI_API_KEY"] = <YOUR_API_KEY>

Instantiate the embeddings object

embeddings = OpenAIEmbeddings(model="text-embedding-3-small")

Create embeddings for all chunks

openai_embeddings =

embeddings.embed_documents(

[chunk.page_content for chunk in chunks]

)

#Check the length(dimension) of the embedding

len(openai_embedding[0])

>> 1536

This text-embedding-3-small model creates embeddings for the same chunks of dimen-
sion 1536.

There are several embeddings models available, and new ones are being added every
day. The choice of embeddings can be dictated by certain factors. Let’s look at a few
factors.

3.3.4 How to choose embeddings?

There are a few major factors that will affect your choice of embeddings.

USE CASE

Your application use case may determine your choice of embeddings. The MTEB lea-
derboard scores each of the embeddings models across seven use cases: classification,
clustering, pair classification, reranking, retrieval, semantic text similarity, and summa-
rization. At the time of writing this book, the SFR-Embedding-Mistral model devel-
oped by Salesforce performs the best for retrieval tasks.

COST

Cost is another important factor to consider. To create the knowledge base, you may have
to create embeddings for thousands of documents, thus running into millions of tokens.

Embeddings are powerful data patterns that are most effective in finding similarities
between texts. In RAG systems, embeddings play a critical role in search and retrieval of

 53Storage (vector databases)

data relevant to the user query. Once the embeddings have been created, they need to
be stored in persistent memory for real-time access. To store embeddings, a new kind of
database called a vector database have become increasingly popular.

3.4 Storage (vector databases)

Now we are at the last step of the indexing pipeline. The data has been loaded, split,
and converted to embeddings. To use this information repeatedly, we need to store it
in memory so that it can be accessed on demand.

3.4.1 What are vector databases?

The evolution of databases can be traced back to the early days of computing. Data-
bases are organized collections of data, designed to be easily accessed, managed, and
updated. Relational databases such as MySQL organize structured data into rows and
columns. NoSQL databases such as MongoDB specialize in handling unstructured and
semi-structured data. Graph databases such as Neo4j are optimized for querying graph
data. In the same manner, vector databases are built to handle high-dimensional vec-
tors. These databases specialize in indexing and storing vector embeddings for fast
semantic search and retrieval.

Apart from efficiently storing high-dimensional vector data, modern vector data-
bases offer traditional features such as scalability, security, multi-tenancy, versioning
and management, and similar. However, vector databases are unique in offering simi-
larity searches based on Euclidean distance or cosine similarity. They also employ spe-
cialized indexing techniques.

3.4.2 Types of vector databases

Vector databases started as a specialized database offering, but propelled by the growth
in demand for storing vector data, all major database providers have added the vector
indexing capability. We can categorize the popular vector databases available today
into six broad categories.

¡	Vector indexes—These are libraries that focus on the core features of indexing
and search. They do not support data management, query processing, or inter-
faces. They can be considered a bare-bones vector database. Examples of vector
indexes are Facebook AI Similarity Search (FAISS), Non-Metric Space Library
(NMSLIB), Approximate Nearest Neighbors Oh Yeah (ANNOY), Scalable Near-
est Neighbors (ScaNN), and similar.

¡	Specialized vector DBs—These databases focus on the core feature of high-
dimensional vector support, indexing, search, and retrieval such as vector
indexes, but also offer database features such as data management, extensibility,
security, scalability, non-vector data support, and similar. Examples of specialized
vector DBs are Pinecone, ChromaDB, Milvus, Qdrant, Weaviate, Vald, LanceDB,
Vespa, and Marqo.

54 CHAPTER 3 Indexing pipeline: Creating a knowledge base for RAG

¡	Search platforms—Solr, Elastic Search, Open Search, and Apache Lucene are tradi-
tional text search platforms and engines built for full text search. They have now
added vector similarity search capabilities to their existing search capabilities.

¡	Vector capabilities for SQL databases—Azure SQL, Postgres SQL(pgvector), Single-
Store, and CloudSQL are traditional SQL databases that have now added vector
data-handling capabilities.

¡	Vector capabilities for NoSQL databases—Like SQL DBs, NoSQL DBs such as
MongoDB have also added vector search capabilities.

¡	Graph databases with vector capabilities—Graph DBs such as Neo4j, have also
opened new possibilities by adding vector capabilities, .

Using a vector index such as FAISS is supported by LangChain. To use FAISS, we first
must install the faiss-cpu library. We will use the chunks already created in section 3.2
and the OpenAI embeddings that we used in section 3.3:

Install FAISS-CPU

%pip install faiss-cpu==1.10.0 --quiet

Import FAISS class from vectorstore library

from langchain_community.vectorstores import FAISS

from langchain_community.docstore.in_memory import InMemoryDocstore

Import OpenAIEmbeddings from the library

from langchain_openai import OpenAIEmbeddings

Set the OPENAI_API_KEY as the environment variable

import os

os.environ["OPENAI_API_KEY"] = <YOUR_API_KEY>

Chunks from Section 3.3

Final_chunks=final_chunks

Instantiate the embeddings object

embeddings=OpenAIEmbeddings(model="text-embedding-3-small")

Instantiate the FAISS object

vector_store = FAISS(

 embedding_function=embeddings,

 index=index,

 docstore=InMemoryDocstore(),

 index_to_docstore_id={},

)

Add the chunks

vector_store.add_documents(documents=final_chunks)

Check the number of chunks that have been indexed

vector_store.index.ntotal

>> 285

 55Storage (vector databases)

With this code, the 285 chunks of data have been converted to vector embeddings, and
these embeddings are stored in a FAISS vector index. The FAISS vector index can also
be saved to memory using the vector_store.save_local(folder_path,index_name)
and FAISS.load_local(folder_path,index_name) functions. Let’s now take a cursory
look at how a vector store can be used. We will take the original question that we have
been asking from the beginning of this book: “Who won the 2023 Cricket World Cup?”

Original Question

query = "Who won the 2023 Cricket World Cup?"

Ranking the chunks in descending order of similarity

docs = vector_store.similarity_search(query)

Printing one of the top-ranked chunk

print(docs[0].page_content)

Similarity search orders the chunks in descending order of similarity, meaning that
the most similar chunks to the query are ranked on top. In the previous example, we
can observe that the chunk that speaks about the world cup final has been ranked
on top.

FAISS is a stripped-down high-performance vector index that works for many appli-
cations. ChromaDB is another user-friendly vector DB that has gained popularity. Pine-
cone offers managed services and customization. Milvus claims higher performance
on similarity search, while Qdrant provides an advanced filtering system. We will
now discuss some points on how to choose a vector database that works best for your
requirements.

3.4.3 Choosing a vector database

All vector databases offer the same basic capabilities, but each one of them also claims
a differentiated value. Your choice should be influenced by the nuance of your use
case matching with the value proposition of the database. Here are a few things to con-
sider while evaluating and implementing a vector database:

¡	Accuracy vs. speed—Certain algorithms are more accurate but slower. A balance
between search accuracy and query speed must be achieved based on application
needs. It will become important to evaluate vector DBs on these parameters.

¡	Flexibility vs. performance—Vector DBs provide customizations to the user. While it
may help you in tailoring the DB to your specific requirements, more customiza-
tions can add overhead and slow systems down.

¡	Local vs. cloud storage—Assess tradeoffs between local storage speed and access
versus cloud storage benefits like security, redundancy, and scalability.

¡	Direct access vs. API—Determine if tight integration control via direct libraries is
required or if ease-of-use abstractions like APIs better suit your use case.

56 CHAPTER 3 Indexing pipeline: Creating a knowledge base for RAG

¡	Simplicity vs. advanced features—Compare advanced algorithm optimizations,
query features, and indexing versus how much complexity your use case necessi-
tates versus needs for simplicity.

¡	Cost—While you may incur regular costs in a fully managed solution, a self-hosted
one might prove costlier if not managed well.

We have now completed an end-to-end indexing of a document. We continued with
the same question (“Who won the 2023 Cricket World Cup?”) and the same external
source—the Wikipedia page of the 2023 Cricket World Cup (https://mng.bz/yN4J). In
this chapter, we started with the programmatic loading of this Wikipedia page extract-
ing the HTML document and then parsing the HTML document to extract. There-
after, we divided the text into small-sized chunks using a specialized and fixed-width
chunking method. We converted these chunks into embeddings using OpenAI’s text-
embedding-003-large model. Finally, we stored the embeddings into a FAISS vector
index. We also saw how using similarity search on this vector index helped us retrieve
relevant chunks.

When several such documents in different formats from different sources are
indexed using a combination of methods and strategies, we can store all the informa-
tion in the form of vector embeddings creating a non-parametric knowledge base for
our RAG system.

This concludes our discussion on the indexing pipeline. By now, you must have built
a solid understanding of the four components of the indexing pipeline and should be
ready to build a knowledge base for a RAG system.

In the next chapter, we will use this knowledge base to generate real-time responses
to user queries through the generation pipeline.

Summary

Data loading

¡	The process of sourcing data from its original location is called data loading, and
it includes the following four steps: connecting to the source, extracting and
parsing text, reviewing and updating metadata, and cleaning and transforming
data.

¡	Loading documents from a list of sources may turn out to be a complicated pro-
cess. Make sure to plan for all the sources and loaders in advance.

¡	A variety of data loaders from LangChain can be used.

¡	Breaking down long pieces of text into manageable sizes is called data splitting or
chunking.

¡	Chunking addresses context window limits of LLMs, mitigates the lost-in-the-
middle problem for long prompts, and enables easier search and retrieval.

¡	The chunking process involves dividing longer texts into small units, merging
small units into chunks, and including an overlap between chunks to preserve
contextual continuity.

https://mng.bz/yN4J

 57Summary

¡	Chunking can be fixed size, specialized (or adaptive), or semantic. Newer chunk-
ing methods are constantly being introduced.

¡	Your choice of the chunking strategy should be based on the nature of the con-
tent, expected length and complexity of user query, application use case, and the
embeddings model being used.

¡	A chunking strategy can include multiple methods.

Data conversion

¡	For processing, text needs to be converted into a numerical format.

¡	Embeddings are vector representations of data (words, sentences, documents,
etc.).

¡	The goal of an embedding algorithm is to position similar data points close to
each other in a vector space.

¡	Several pre-trained, open source and proprietary, embedding models are avail-
able for use.

¡	Embeddings models enable similarity search. Embeddings can be used for text
search, clustering, ML models, and recommendation engines.

¡	The choice of embeddings is largely based on the use case and the cost
implications.

¡	Vector databases are designed to efficiently store and retrieve high-dimensional
vector data such as embeddings.

¡	Vector databases provide similarity searches based on distance metrics such as
cosine similarity.

¡	Apart from the similarity search, vector databases offer traditional services such
as scalability, security, versioning, and the like.

¡	Vector capabilities can be offered by standalone vector indexes, specialized vec-
tor databases, or legacy offerings such as search platforms, SQL, and NoSQL
databases with added vector capabilities.

¡	Accuracy, speed, flexibility, storage, performance, simplicity, access, and cost are
some of the factors that can influence the choice of a vector database.

58

4Generation pipeline:
Generating contextual

LLM responses

This chapter covers

¡	Retrievers and retrieval methodologies

¡	Augmentation using prompt engineering

 techniques

¡	Generation using LLMs

¡	Basic implementation of the RAG pipeline in

 Python

In chapter 3, we discussed the creation of the knowledge base, or the non-
parametric memory of retrieval augmented generation (RAG)-based applications,
via the indexing pipeline. To use this knowledge base for accurate and contextual
responses, we need to create a generation pipeline that includes the steps of
retrieval, augmentation, and generation.

This chapter elaborates on the three components of the generation pipeline. We
begin by discussing the retrieval process, which primarily involves searching through
the embeddings stored in vector databases of the knowledge base and returning a
list of documents that closely match the input query of the user. You will also learn

 59Retrieval

about the concept of retrievers and a few retrieval algorithms. Next, we move to the aug-
mentation step. At this point, it is also beneficial to understand different prompt engi-
neering frameworks used with RAG. Finally, as part of the generation step, we discuss
a few stages of the LLM life cycle, such as using foundation models versus supervised
fine-tuning, models of different sizes, and open source versus proprietary models in
the RAG context. In each of these steps, we also highlight the benefits and drawbacks of
different methods.

By the end of this chapter, you will be equipped with an understanding of the two
foundational pipelines of a RAG system. You should also be ready to build a basic RAG
system.

By the end of this chapter, you should

¡	Know several retrievers used in RAG.

¡	Get an understanding of augmentation using prompt engineering.

¡	Learn some details about how LLMs are used in the context of RAG.

¡	Have an end-to-end knowledge of setting up a basic RAG system.

Let’s get started with an overview of the generation pipeline before diving into each
component.

4.1 Generation pipeline overview

Recall the generation pipeline introduced in chapter 2. When a user provides an
input, the generation pipeline is responsible for providing the contextual response.
The retriever searches for the most appropriate information from the knowledge base.
The user question is augmented with this information and passed as input to the LLM
for generating the final response. This process is illustrated in figure 4.1.

The generation pipeline involves three processes: retrieval, augmentation, and gen-
eration. The retrieval process is responsible for fetching the information relevant to the
user query from the knowledge base. Augmentation is the process of combining the
fetched information with the user query. Generation is the last step, in which the LLM
generates a response based on the augmented prompt. This chapter discusses these
three processes in detail.

4.2 Retrieval

Retrieval refers to the process of finding and extracting relevant pieces of information
from a large corpus or knowledge base. As you saw in chapter 3, the information from
various sources is parsed, chunked, and stored as embeddings in vector databases.
These stored embeddings are also sometimes referred to as documents, and the knowl-
edge base consists of several volumes of documents. Retrieval, essentially, is a search
problem to find the documents that best match the input query.

Searching through the knowledge base and retrieving the right documents is done
by a component called the retriever. In simple terms, retrievers accept a query as input
and return a list of matching documents as output. This process is illustrated in figure

60 CHAPTER 4 Generation pipeline: Generating contextual LLM responses

4.2. You can imagine that retrieval is a crucial step since the quality of the retrieved
information directly affects the quality of the output that will be generated.

LLM Response
RetrieverUser

Question

{Question +

Information}

prompts

Knowledge base

Non-parametric memory
created via the indexing

pipeline

Retrieval Augmentation Generation

Retrieval: Search and fetch relevant information
from the knowledge base.

Augmentation: Add the retrieved information to
the original user question.

Generate: Generate the response using an LLM
based on the augmented user question and
retrieved information.

S
e
a
rc

h F
e
tc

h

in
fo

rm
a
tio

n

1 2 3

Figure 4.1 Generation pipeline overview with the three components (i.e., retrieval, augmentation, and

generation)

User query

Retriever

Knowledge base

Top n documents ranked by
relevance to the user query

Retriever output

All documents

Retriever receives the input
query, searches through the
entire knowledge base, and
returns to top results ordered
by relevance to the input query.

Rank 1

Rank 2

Rank 3

Rank n

Most

relevant

Least

relevant

Figure 4.2 A retriever searches through the knowledge base and returns the most relevant documents.

 61Retrieval

We have already discussed embeddings in chapter 3 while building the indexing pipe-
line. Using embeddings, we can find documents that match the user query. Embed-
dings is one method in which retrieval can happen. There are other methods, too, and
it is worth spending some time understanding different types of retrieval methods and
the way they calculate the results.

This section on retrievers first discusses different retrieval algorithms and their sig-
nificance in the context of RAG. In RAG systems, one or more retrieval methods can
be used to build the retriever component. Next, we look at a few examples of prebuilt
retrievers that can be used directly through a framework (e.g., LangChain). These
retrievers are integrated with services such as databases, cloud providers, or third-party
information sources. Finally, we will close this section by building a very simple retriever
in LangChain using Python. We will continue to demonstrate with this example the
augmentation and generation steps, too, so that we have a full implementation of the
generation pipeline by the end of this chapter.

NOTE Chapter 3 discussed indexing and how to convert and store data in a
numerical form that can be used to retrieve information later. You may recall
we discussed embeddings at length in section 3.3. It should be intuitive that
since we stored the data in the form of embeddings, to fetch this data, we will
also have to work on the search using embeddings. Therefore, the retrieval
process is tightly coupled with the indexing process. Whatever we use to index,
we will have to use to retrieve.

4.2.1 Progression of retrieval methods

Information retrieval, or IR, is the science of searching. Whether you are searching for
information in a document or for documents themselves, it falls under the gamut of
information retrieval. IR has a rich history in computing, starting from Joseph Marie
Jacquard’s invention of the Jacquard Loom, the first device that could read punched
cards, back in the early 19th century. Since then, IR has evolved leaps and bounds from
simple to highly sophisticated search and retrieval. Boolean retrieval is a simple key-
word-based search (like the one you encounter when you press CTRL/CMD + F on
your browser or word processor) where Boolean logic is used to match documents
with queries based on the absence or presence of the words. Documents are retrieved
if they contain the exact terms in the query, often combined with AND, NOT, and OR
operators. Bag of Words (BoW) was used quite often in the early days of NLP. It creates
a vocabulary of all the words in the documents as a vector indicating the presence or
absence of each word. Consider two sentences: “The cat sat on the mat” and “The cat
in the hat.” The vocabulary is ["the", "cat", "in", "hat", "on", "mat"] and the first
sentence is represented as a vector [2, 1, 1, 1, 0, 0], while the one is [2, 1, 0, 0, 1,
1]. While simple, it ignores the context, meaning, and the order of words.

Some of these, although popular in ML and IR space, don’t make sense in the con-
text of RAG for a variety of reasons. For our purpose, we focus on a few of the popular
retrieval techniques that have been used in RAG.

62 CHAPTER 4 Generation pipeline: Generating contextual LLM responses

TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY

Term Frequency–Inverse Document Frequency (TF-IDF) is a statistical measure used
to evaluate the importance of a word in a document relative to a collection of docu-
ments (corpus). It assigns higher weights to words that appear frequently in a docu-
ment but infrequently across the corpus. Figure 4.3 illustrates how TF-IDF is calculated
for a unigram search term.

Components of TF-IDF

Term frequency (TF)

Measures how frequently term t appears in document d

Inverse document frequency (IDF)

Measures how important term t is within the entire corpus D

TF (t,d) =
Number of times term t appears in document d

Total number of terms in document d

IDF (t,D) =
Total number of documents D

Number of documents containing term t(

(

log

TF-IDF(t,d,D)=TF(t,d)×IDF(t,D)

TF-IDF
Product of TF & IDF

Documents (D)

d1 = Australia won the Cricket World Cup 2023

d2 = India and Australia played in the finals

d3 = Australia won the sixth time and won last in 2015

Search Term

“won”

TF (“won”,d1)=1/7 = 0.14
TF (“won”,d2)=0/7 = 0
TF (“won, d3)= 2/10 = 0.2

IDF (“won”, D) = log (3/2) = 0.176

TF - IDF (“won”,d1,D)= 0.14 x 0.176 = 0.025
TF - IDF (“won”,d2,D)= 0 x 0.176 = 0
TF - IDF (“won, d3,D)= 0.2 x 0.176 = 0.035

Result : d3 > d1 > d2

Figure 4.3 Calculating TF-IDF to rank documents based on search terms

LangChain also provides an abstract implementation of TF-IDF using retrievers from
langchain_community, which, in turn, uses scikit-learn:

Install or Upgrade Scikit-learn

%pip install –-upgrade scikit-learn

Import TFIDFRetriever class from retrievers library

from langchain_community.retrievers import TFIDFRetriever

Create an instance of the TFIDFRetriever with texts

retriever = TFIDFRetriever.from_texts(
["Australia won the Cricket World Cup 2023",
 "India and Australia played in the finals",
 "Australia won the sixth time having last won in 2015"]
)

Use the retriever using the invoke method

result=retriever.invoke("won")

Print the results

print(result)

 63Retrieval

TF-IDF not only can be used for unigrams, but also for phrases (n-grams). However,
even TF-IDF improves on simpler search methods by emphasizing unique words, it still
lacks context and word-order consideration, making it less suitable for complex tasks
like RAG.

BEST MATCH 25

Best Match 25 (BM25) is an advanced probabilistic model used to rank documents
based on the query terms appearing in each document. It is part of the family of proba-
bilistic information retrieval models and is considered an advancement over the classic
TF-IDF model. The improvement that BM25 brings is that it adjusts for the length of
the documents so that longer documents do not unfairly get higher scores. Figure 4.4
illustrates the BM25 calculation.

Calculating BM25

BM25(t,d,D) = IDF(t,D) x

TF(t,d) + (k) x (1-b + b x)
|d|

avgdl

TF(t,d) x (k+1)

• TF(t,d) is the term frequency of ‘t’ in document ‘d’.

• IDF(t,D) is the inverse document frequency of term in the

 corpus.

• |d| is the length of the document.

• avgdl is the average document length in the entire corpus.

• k and b are free parameters.
Result : d1 > d3 > d2

Documents (D)

BM25(“won”, d1, D) = 0.193
BM25(“won”, d2, D) = 0
BM25(“won”, d2, D) = 0.168

d1 = Australia won the Cricket World Cup 2023.

d2 = India and Australia played in the finals.

d3 = Australia won the sixth time and won last in 2015.

Figure 4.4 BM25 also considers the length of the documents.

Like TF-IDF, LangChain also has an abstract implementation of BM25 (Okapi BM25,
specifically) using the rank_bm25 package:

Install or Upgrade rank_bm25

%pip install –-upgrade rank_bm25

Import BM25Retriever class from retrievers library

from langchain_community.retrievers import BM25Retriever

Create an instance of the TFIDFRetriever with texts

retriever = BM25Retriever.from_texts(
["Australia won the Cricket World Cup 2023",
 "India and Australia played in the finals",
 "Australia won the sixth time having last won in 2015"]
)

Use the retriever using the invoke method

result=retriever.invoke("Who won the 2023 Cricket World Cup?")

Print the results

print(result)

64 CHAPTER 4 Generation pipeline: Generating contextual LLM responses

For long queries instead of single keywords, the BM25 value is calculated for each word
in the query, and the final BM25 value for the query is a summation of the values for all
the words. BM25 is a powerful tool in traditional IR, but it still doesn’t capture the full
semantic meaning of queries and documents required for RAG applications. BM25 is
generally used in RAG for quick initial retrieval, and then a more powerful retriever is
used to re-rank the results. We will learn about re-ranking later in chapter 6, when we
discuss advanced strategies for RAG.

STATIC WORD EMBEDDINGS

Static embeddings such as Word2Vec and GloVe represent words as dense vectors in
a continuous vector space, capturing semantic relationships based on context. For
instance, “king” − “man” + “woman” approximates “queen.” These embeddings can
capture nuances such as similarity and analogy, which BoW, TF-IDF, and BM25 miss.
However, while they provide a richer representation, they still lack full contextual
understanding and are limited in handling polysemy (words with multiple meanings).
The term static here highlights that the vector representation of words does not change
with the context of the word in the input query.

CONTEXTUAL EMBEDDINGS

Generated by models such as BERT or OpenAI’s text embeddings, contextual embed-
dings produce high-dimensional, context-aware representations for queries and doc-
uments. These models, based on transformers, capture deep semantic meanings and
relationships. For example, a query about “apple” will retrieve documents discussing
apple the fruit, or Apple the technology company, depending on the input query. Fig-
ure 4.5 illustrates the difference between static and contextual embeddings. Contex-
tual embeddings represent a significant advancement in IR, providing the context and
understanding necessary for RAG tasks. Despite being computationally intensive, con-
textual embeddings are the most widely used retrievers in RAG. Examples of embed-
ding models discussed in section 3.3.2 are contextual embeddings.

Methods such as TF-IDF and BM25 use frequency-based calculations to rank doc-
uments. In embeddings (both static and contextual), ranking is done based on a sim-
ilarity score. Similarity is popularly calculated using the cosine of the angle between
document vectors. We discussed cosine similarity calculation in section 3.3.3. Figure 4.6
illustrates the process of retrieval using embeddings.

OTHER RETRIEVAL METHODS

While the discussed methods are most popular in the discourse, other methods are
also available. These methods represent more recent developments and specialized
approaches and are good to refer to if you want to dive deeper into the world of infor-
mation retrieval:
¡	Learned sparse retrieval—Generates sparse, interpretable representations using

neural networks (examples: SPLADE, DeepCT, and DocT5Quer)

¡	Dense retrieval—Encodes queries and documents as dense vectors for semantic
matching (examples: dense passage retriever [DPR], ANCE, RepBERT)

 65Retrieval

Woman

Apple
Man

Queen

Technology

King

Fruit

Woman

Apple
Man

Queen

Technology

King

Fruit

Q : What are the health benefits of Apple?

Q : What is the share price of Apple?

Woman

Apple

Man

Queen

Technology

King

Fruit

Static embeddings Contextual embeddings

Woman

Apple

Man

Queen

Technology

King

Fruit

• Vectors do not change with the input
 query
• Computationally cheaper but do not work
 well for words that have multiple meanings

• Vectors calculated dynamically based
 on the input query
• Capture the context very well but are
 computationally intensive

l

a

Figure 4.5 Static vs. contextual embeddings

¡	Hybrid retrieval—Combines sparse and dense methods for balanced efficiency
and effectiveness (examples: ColBERT, COIL)

¡	Cross-encoder retrieval—Directly compares query-document pairs using trans-
former models (example: BERT-based re-rankers)

¡	Graph-based retrieval—Uses graph structures to model relationships between doc-
uments (examples: TextGraphs, graph neural networks for IR)

¡	Quantum-inspired retrieval—Applies quantum computing principles to informa-
tion retrieval (example: quantum language models [QLM])

¡	Neural IR models—Encompass various neural network-based approaches to infor-
mation retrieval (examples: NPRF [neural PRF], KNRM [Kernel-based Neural
Ranking Model])

66 CHAPTER 4 Generation pipeline: Generating contextual LLM responses

Doc 2
Doc 1D

Doc 2
Doc 1

Doc 7

ac

1

Doc 6 ------

Doc 7

Doc 5 Doc 4
Doc 4

Doc 5

Doc 6

Doc 3

Q

b

x

Similarity (Doc 6, Q) = Cos(a)
Similarity (Doc 5, Q) = Cos(b)
Similarity (Doc 7, Q) = Cos(c)

Similarity (Doc n, Q) = Cos(x)

Similarity calculation Ranking

Cos(a) > Cos(b) > Cos(c) >......>

Cos(x)

Doc n

Doc n

k = 3

Instruct the retriever to

fetch the top k results

only.

Query vector : 2D embeddings representation of the

user query

Doc 4
Doc 5

Doc 7 Doc 6

Doc 3

2D embeddings representation of the knowledge base

Source dataUser query

Q

Embeddings-based retrieval

2 3 4

c a

E
m

b
e

d
d

in
g

s

m
o

d
e

l

In
d

e
x
in

g

p
ip

e
lin

e

Figure 4.6 Similarity calculation and results ranking in embeddings-based retrieval technique

Table 4.1 notes the weaknesses and strengths of different retrievers. While contextual
embeddings are the only ones you need to know to get started with RAG, it is useful to
get familiar with other retrievers for further exploration and for cases where you want
to improve retriever performance. As we discussed, the implementation of TF-IDF
using the scikit-learn retriever and BM25 using rank_bm25 retriever in LangChain,
there are many others available that use one of the mentioned methodologies. We will
look at some of the popular ones in the next section.

Table 4.1 Comparison of different retrieval techniques for RAG

Technique Key feature Strengths Weaknesses Suitability for RAG

Boolean
retrieval

Exact matching
with logical
operators

Simple, fast, and
precise

Limited relevance
ranking; no partial
matching

Low: Too rigid

BoW Unordered word
frequency counts

Simple and
intuitive

Ignores word order
and context

Low: Lacks
semantic
understanding

 67Retrieval

Technique Key feature Strengths Weaknesses Suitability for RAG

TF-IDF Term weighting
based on docu-
ment and corpus
frequency

Improved rele-
vance ranking
over BoW

Still ignores seman-
tics and word
relationships

Low–medium:
Better than BoW
but limited; used
in hybrid retrieval

BM25 Advanced rank-
ing function
with length
normalization

Robust perfor-
mance; industry
standard

Limited semantic
understanding

Medium: Good
baseline for sim-
ple RAG; used in
hybrid retrieval.

Static
embeddings

Fixed dense
vector
representations

Captures some
semantic
relationships

Context-indepen-
dent; limited in
polysemy
handling

Medium: Intro-
duces basic
semantics

Contextual
embeddings

Context-aware
dense
representations

Rich semantic
understanding;
handles polysemy

Computationally
intensive

High: Excellent
semantic capture

Learned sparse
retrievers

Neural-net-
work-gener-
ated sparse
representations

Efficient, inter-
pretable, and has
some semantic
understanding

May miss
some semantic
relationships

High: Balances
efficiency and
semantics

Dense
retrievers

Dense vector
matching for
queries and
documents

Strong semantic
matching

Computationally
intensive; less
interpretable

High: Excellent for
semantic search
in RAG

Hybrid
retrievers

Combination of
sparse and dense
methods

Balances effi-
ciency and
effectiveness

Complex to imple-
ment and tune

High: Versatile
for various RAG
needs

Cross-encoder
retrievers

Direct que-
ry-document
comparison

Very accurate
relevance
assessment

Extremely computa-
tionally expensive

Medium–high:
Great for rerank-
ing in RAG

Graph-based
retrievers

Graph structure
for document
relationships

Captures complex
relationships in
data

Can be complex to
construct and query

Medium–high:
Good for struc-
tured data in RAG

Quantum-
inspired
retrievers

Quantum comput-
ing concepts in IR

Potential for
handling complex
queries

Emerging field;
practical benefits
not fully proven

Low–medium:
Potentially prom-
ising but not
mature

Neural IR
models

Various neu-
ral network
approaches
to IR

Flexible; can
capture complex
patterns

Often require large
training data; can
be black-box

High: Adaptable
to various RAG
scenarios

4.2.2 Popular retrievers

Developers can build their retrievers based on one or a combination of multi-
ple retrieval methodologies. Retrievers are used not just in RAG but in a variety of
search-related tasks.

Table 4.1 Comparison of different retrieval techniques for RAG (continued)

68 CHAPTER 4 Generation pipeline: Generating contextual LLM responses

For RAG, LangChain provides many integrations where the algorithms such as
TF-IDF, embeddings and similarity search, and BM25 have been abstracted as retrievers
for developers to use. We have already seen the ones for TF-IDF and BM25. Some of the
other popular retrievers are described in the following sections.

VECTOR STORES AND DATABASES AS RETRIEVERS

Vector stores can act as the retrievers, taking away the responsibility from the devel-
oper to convert the query vector into embeddings by calculating similarity and ranking
the results. FAISS is typically used in tandem with a contextual embedding model for
retrieval. Other vector DBs such as PineCone, Milvus, and Weaviate provide hybrid
search functionality by combining dense retrieval methods such as embeddings and
sparse methods such as BM25 and SPLADE.

CLOUD PROVIDERS

Cloud providers Azure, AWS, and Google also offer their retrievers. Integration with
Amazon Kendra, Azure AI Search, AWS Bedrock, Google Drive, and Google Vertex
AI Search provides developers with infrastructure, APIs, and tools for information
retrieval of vector, keyword, and hybrid queries at scale.

WEB INFORMATION RESOURCES

Connections to information resources such as Wikipedia, Arxiv, and AskNews provide
optimized search and retrieval from these sources. You can check these retrievers and
more in the official LangChain documentation (https://mng.bz/gm4R)

This was a brief introduction to the world of retrievers. If you found the informa-
tion slightly complex, you can always revisit it. At this stage, the understanding of
contextual embeddings will suffice. Contextual embeddings are the most popular tech-
nique for basic RAG pipelines, and we will now create a simple retriever using OpenAI
embeddings.

4.2.3 A simple retriever implementation

Before we move to the next step of the generation pipeline, let’s look at a simple
example of a retriever. In chapter 3, we were working on indexing the Wikipedia page
for the 2023 Cricket World Cup. If you recall, we used embeddings from OpenAI to
encode the text and used FAISS as the vector index to store the embeddings. We also
stored the FAISS index in a local directory. Let’s reuse this index:

Install the langchain openai library

%pip install langchain-openai==0.3.7

Import FAISS class from vectorstore library

from langchain_community.vectorstores import FAISS

Import OpenAIEmbeddings from the library

from langchain_openai import OpenAIEmbeddings

Set the OPENAI_API_KEY as the environment variable

import os

https://mng.bz/gm4R

 69Augmentation

os.environ["OPENAI_API_KEY"] = <YOUR_API_KEY>

Instantiate the embeddings object

embeddings=OpenAIEmbeddings(model="text-embedding-3-small")

Load the database stored in the local directory

vector_store=FAISS.load_local(
folder_path="../../Assets/Data",
index_name="CWC_index",
embeddings=embeddings,
allow_dangerous_deserialization=True
)

Original Question

query = "Who won the 2023 Cricket World Cup?"

Ranking the chunks in descending order of similarity

retrieved_docs = vector_store.similarity_search(query, k=2)

This similarity_search () function returns a list of matching documents ordered by
a score. This score is a quantification of the similarity between the query and the docu-
ment and is hence called the similarity score. In this example, the vector index’s inbuilt
similarity search feature was used for retrieval. As one of the retrievers we discussed
in section 4.2.2, the vector store itself acted as the retriever. K=2 tells the function to
retrieve the top two documents. This is the most basic implementation of a retriever
in the generation pipeline of a RAG system, and the retrieval method is enabled by
embeddings. We used the text-embedding-3-small from OpenAI. FAISS calculated the
similarity score based on these embeddings.

Retrievers are the backbone of RAG systems. The quality of the retriever has a great
bearing on the quality of the generated output. In this section, you learned about
vanilla retrieval methods. Multiple strategies are used when designing production-
grade systems. We will read about these advanced strategies in chapter 6. Now that we
have gained an understanding of the retrievers, we will move on to the next important
step—augmentation.

4.3 Augmentation

A retriever fetches the information (or documents) that are most relevant to the user
query. But, what next? How do we use this information? The answer is quite intuitive.
If you recall the discussion in chapter 1, the input to an LLM is a natural language
prompt. This information fetched by the retriever should also be sent to the LLM in
the form of a natural language prompt. This process of combining the user query and
the retrieved information is called augmentation.

The augmentation step in RAG largely falls under the discipline of prompt engineer-
ing. Prompt engineering can be defined as the technique of giving instructions to an LLM
to attain a desired outcome. The goal of prompt engineering is to construct the prompts
to achieve accuracy and relevance in the LLM responses to the desired outcome(s). At
the first glance, augmentation is quite simple—just add the retrieved information to

70 CHAPTER 4 Generation pipeline: Generating contextual LLM responses

the query. However, some nuanced augmentation techniques help improve the qual-
ity of the generated results. See figure 4.7 for an example of simple augmentation.

Retriever output

User query

Augmentation

Augmented prompt for LLM

Figure 4.7 Simple augmentation combines the user query with retrieved documents to send to the LLM.

4.3.1 RAG prompt engineering techniques

Prompt engineering as a discipline has, sometimes, been dismissed as being too simple
to be called engineering. You may have heard the phrase, “English is the new program-
ming language.” Interaction with LLMs is indeed in natural language. However, what
is also true is that the principles of programming are not the language in which code is
written but the logic in which the machine is instructed. With that in mind, let’s exam-
ine different logical approaches that can be taken to augment the user query with the
retrieved information.

CONTEXTUAL PROMPTING

To understand a simple augmentation technique, let’s revisit chapter 1. Recall our
example of “Who won the 2023 Cricket World Cup?” We copied an excerpt from the
Wikipedia article. This excerpt is the retrieved information. We then added this infor-
mation to the prompt and provided an extra instruction—“Answer only based on the
context provided below.” Figure 4.8 illustrates this example.

By adding this instruction, we have set up our generation to focus only on the provided
information and not on LLM’s internal knowledge (or parametric knowledge). This is
a simple augmentation technique that is also referred to as contextual prompting. Please
note that the instruction can be given in any linguistic construct. For example, we could
have added the instruction at the beginning of the prompt as, “Given the context below,
answer the question, Who won the 2023 Cricket World Cup. Information: <Wikipedia
excerpt>.” We can also reiterate the instruction at the end of the prompt—“Remember
to answer only based on the context provided and not from any other source.

CONTROLLED GENERATION PROMPTING

Sometimes, the information might not be present in the retrieved document. This
happens when the documents in the knowledge base do not have any information

 71Augmentation

External
context
provided

Figure 4.8 Information is augmented to the original question with an added instruction.

relevant to the user query. The retriever might still fetch some documents that are the
closest to the user query. In these cases, the chances of hallucination increase because
the LLM will still try to follow the instructions for answering the question. To avoid
this scenario, an additional instruction is added, which tells the LLM not to answer if
the retrieved document does not have proper information to answer the user ques-
tion (something like, “If the question cannot be answered based on the provided con-
text, say I don’t know.”). In the context of RAG, this technique is particularly valuable
because it ensures that the model’s responses are grounded in the retrieved informa-
tion. If the relevant information hasn’t been retrieved or isn’t present in the knowl-
edge base, the model is instructed to acknowledge this lack of information rather than
attempting to generate a potentially incorrect answer.”

FEW-SHOT PROMPTING

It has been observed that while generating responses, LLMs adhere quite well to
the examples provided in the prompt. If you want the generation to be in a certain
format or style, it is recommended to provide a few examples. In RAG, while provid-
ing the retrieved information in the prompt, we can also specify certain examples to
help guide the generation in the way we need the retrieved information to be used.

72 CHAPTER 4 Generation pipeline: Generating contextual LLM responses

This technique is called few-shot prompting. Here “shot” refers to the examples given
in the prompt. Figure 4.9 illustrates a prompt that includes two examples with the
question.

Answer the given question using only the provided context. Follow the

format in these examples:

Question: Who won the first Cricket World Cup?

Context: The inaugural Cricket World Cup was held in England in 1975.

The West Indies emerged victorious, defeating Australia in the final at

Lord's Cricket Ground.

Answer: The West Indies won the first Cricket World Cup in 1975.

Question: Who has scored the most runs in Test cricket?

Context: As of 2022, Sachin Tendulkar of India holds the record for the

most runs in Test cricket, accumulating 15,921 runs over his 24-year

career from 1989 to 2013.

Answer: Sachin Tendulkar has scored the most runs in Test cricket, with

15,921 runs.

Now, answer the following question using the given context:

Question: Who won the 2023 Cricket World Cup?

Context: The tournament was contested by ten national teams,

maintaining the same format used in 2019. After six weeks of round-

robin matches and knockout matches, India and Australia, qualified for

the finals. The final was played on 19 November at the Narendra Modi

Stadium in Ahmedabad. Australia won the final by six wickets, winning

their sixth Cricket World Cup title.

Answer:

Australia won the 2023 Cricket World Cup by defeating India in the finals

by six wickets

Examples
• Focus only on the
 cricket-related
 information in the
 retrieved context.
• Present answers in a
 consistent, concise
 format.
• Include specific details
 like years or statistics
 when relevant.
• Provide clear, relevant
 answers to cricket
 questions.

Question &
provided context

Figure 4.9 Example of few-shot prompting in the context of RAG

You might come across terms such as one-shot prompting or two-shot prompting, which
replaces the word “few” with the number of examples given. Conversely, when no
example is given, and the LLM is expected to answer correctly, the technique is also
called zero-shot prompting.

CHAIN OF THOUGHT PROMPTING

It has been observed that the introduction of intermediate reasoning steps improves
the performance of LLMs in tasks requiring complex reasoning, such as arithmetic,
common sense, and symbolic reasoning. The same can be applied in the context of
RAG. This is called chain-of-thought, or CoT, prompting. In figure 4.10, I asked ChatGPT
to analyze the performance of two teams based on the retrieved information.

 73Augmentation

Question

Retrieved
context

Reasoning
steps

Figure 4.10 Chain-of-thought (CoT) prompting for reasoning tasks

74 CHAPTER 4 Generation pipeline: Generating contextual LLM responses

The CoT prompting approach can also be combined with the few-shot prompting
technique, where a few examples of reasoning are provided before the final question.
Creating these examples is a manually intensive task. In auto-CoT, the examples are
also created using an LLM.

OTHER ADVANCED PROMPTING TECHNIQUES

Prompt engineering is becoming an increasingly intricate discipline. Ongoing research
constantly presents new improvements in prompting techniques. To dive deeper into
prompt engineering, let’s check out some of the following techniques:

¡	Self-consistency—While CoT uses a single reasoning chain in CoT prompting,
self-consistency aims to sample multiple diverse reasoning paths and use their
respective generations to arrive at the most consistent answer.

¡	Generated knowledge prompting—This technique explores the idea of prompt-
based knowledge generation by dynamically constructing relevant knowledge
chains, using models’ latent knowledge to strengthen reasoning.

¡	Tree-of-thoughts prompting—This technique maintains an explorable tree structure
of coherent intermediate thought steps aimed at solving problems.

¡	Automatic reasoning and tool use (ART)—The ART framework automatically inter-
leaves model generations with tool use for complex reasoning tasks. ART employs
demonstrations to decompose problems and integrate tools without task-specific
scripting.

¡	Automatic prompt engineer (APE)—The APE framework automatically generates
and selects optimal instructions to guide models. It uses an LLM to synthesize
candidate prompt solutions for a task based on output demonstrations.

¡	Active prompt—Active-prompt improves CoT methods by dynamically adapting
language models to task-specific prompts through a process involving query,
uncertainty analysis, human annotation, and enhanced inference.

¡	ReAct prompting—ReAct integrates LLMs for concurrent reasoning traces and
task-specific actions, improving performance by interacting with external tools
for information retrieval. When combined with CoT, it optimally utilizes internal
knowledge and external information, enhancing the interpretability and trust-
worthiness of LLMs.

¡	Recursive prompting—Recursive prompting breaks down complex problems into
subproblems, solving them by sequentially using prompts. This method aids
compositional generalization in tasks such as math problems or question answer-
ing, with the model building on solutions from previous steps.

Table 4.2 summarizes different prompting techniques. Prompt engineering for aug-
mentation is an evolving discipline. It is important to note that there is a lot of scope
for creativity in writing prompts for RAG applications. Efficient prompting has a signif-
icant effect on the generated output. The kind of prompts you use will depend a lot on
your use case and the nature of the information in the knowledge base.

 75Augmentation

Table 4.2

Comparison of prompting techniques for augmentation

Technique Description Key advantage Best use case Complexity

Contextual
prompting

Adds retrieved
information to the
prompt with instruc-
tions to focus
on the provided
context

Ensures focus
on relevant
information

General RAG
queries

Low

Controlled gener-
ation prompting

Instructs the
model to say “I
don’t know” when
information is not
available

Reduces hallucina-
tion risk

When accuracy is
critical

Low

Few-shot
prompting

Provides examples
in the prompt to
guide response
format and style

Improves output
consistency and for-
mat adherence

When a specific
output format is
required

Medium

Chain-of-thought
(CoT) prompting

Introduces inter-
mediate reasoning
steps

Improves perfor-
mance on complex
reasoning tasks

Complex queries
requiring step-by-
step analysis

Medium

Self-consistency Samples multiple
diverse reasoning
paths

Improves answer
consistency and
accuracy

Tasks with multiple
possible reasoning
approaches

High

Generated knowl-
edge prompting

Dynamically con-
structs relevant
knowledge chains

Uses the model’s
latent knowledge

Tasks requiring
broad knowledge
application

High

Tree-of-thoughts
prompting

Maintains an
explorable tree
structure of thought
steps

Allows for more
comprehensive
problem-solving

Complex, multistep
problem solving

High

Automatic rea-
soning and tool
use (ART)

Interleaves model
generations with
tool use

Enhances problem
decomposition and
tool integration

Tasks requiring
external tool use

Very High

Automatic prompt
engineer (APE)

Automatically gen-
erates and selects
optimal instructions

Optimizes prompts
for specific tasks

Prompt optimiza-
tion for complex
tasks

Very High

Active prompt Dynamically adapts
LMs to task-specific
prompts

Improves task-spe-
cific performance

Tasks requiring
adaptive prompting

High

ReAct prompting Integrates rea-
soning traces
with task-specific
actions

Improves per-
formance and
interpretability

Tasks requiring
both reasoning and
action

High

Recursive
prompting

Breaks down com-
plex problems into
subproblems

Aids in com-
positional
generalization

Complex, multistep
problems

High

We have already built a simple retriever in the previous section. We will now execute
augmentation with a simple contextual prompt with controlled generation.

76 CHAPTER 4 Generation pipeline: Generating contextual LLM responses

4.3.2 A simple augmentation prompt creation

In section 4.2.3, we were able to implement a FAISS-based retriever using OpenAI
embeddings. We will now make use of this retriever and create the augmentation
prompt:

Import FAISS class from vectorstore library

from langchain_community.vectorstores import FAISS

Import OpenAIEmbeddings from the library

from langchain_openai import OpenAIEmbeddings

Set the OPENAI_API_KEY as the environment variable

import os

os.environ["OPENAI_API_KEY"] = <YOUR_API_KEY>

Instantiate the embeddings object

embeddings=OpenAIEmbeddings(model="text-embedding-3-small")

Load the database stored in the local directory

vector_store=FAISS.load_local(

folder_path="../../Assets/Data",

index_name="CWC_index",

embeddings=embeddings,

allow_dangerous_deserialization=True

)

Original Question

query = "Who won the 2023 Cricket World Cup?"

Ranking the chunks in descending order of similarity

retrieved_docs = vector_store.similarity_search(query, k=2)

Selecting the first chunk as the retrieved information

retrieved_context= retrieved_docs[0].page_content

Creating the prompt

augmented_prompt=f"""

Given the context below, answer the question.

Question: {query}

Context : {retrieved_context}

Remember to answer only based on the context provided and not from any other

source.

If the question cannot be answered based on the provided context, say I don't

know.

"""

 77Generation

With the augmentation step complete, we are now ready to send the prompt to the
LLM for the generation of the desired outcome. You will now learn how LLMs gener-
ate text and the nuances of generation.

4.4 Generation

Generation is the final step of this pipeline. While LLMs may be used in any of the pre-
vious steps, the generation step relies completely on the LLM. The most popular LLMs
are the ones being developed by OpenAI, Anthropic, Meta, Google, Microsoft, and
Mistral, among other developers. While text generation is the core capability of LLMs,
we are now seeing multimodal models that can handle images and audio along with
text. Simultaneously, researchers are developing faster and smaller models.

In this section, we will discuss the factors that can help choose a language model
for your RAG system. We will then continue with our example of the retriever and aug-
mented prompt we have built so far and complete it by adding the generation step.

4.4.1 Categorization of LLMs and suitability for RAG

As of June 2024, there are over a hundred LLMs available to use, and new ones are
coming out every week. How do we decide then which LLM to choose for our RAG sys-
tem? To show you the decision-making process, let’s discuss three themes under which
we can broadly categorize LLMs:

¡	How they have been trained

¡	How they can be accessed

¡	Their size

We will discuss the LLMs under these themes and understand the factors that may
influence the LLM choice for RAG.

ORIGINAL VS. FINE-TUNED MODELS

Training an LLM takes massive amounts of data and computational resources. LLMs
training is done through an unsupervised learning process. All modern LLMs are
autoregressive models and are trained to generate the next token in a sequence. These
massive pre-trained LLMs are also called foundation models.

The question that you may ask is, if LLMs just predict the next tokens in a sequence,
how are we able to ask questions and chat with these models? The answer is in what we
call supervised fine-tuning, or SFT.

Supervised fine-tuning is a process used to adapt a pre-trained language model for
specific tasks or behaviors such as question-answering or chat. It involves further train-
ing a pre-trained foundation model on a labeled dataset, where the model learns to
map inputs to specific desired outputs. You start with a pre-trained model, prepare a
labelled dataset for the target task, and train the model on this dataset, which adjusts
the model parameters to perform better on the target task. Figure 4.11 gives an over-
view of the SFT process.

78 CHAPTER 4 Generation pipeline: Generating contextual LLM responses

Pre-trained
LLM

PROMPT [....], COMPLETION[....]

Fine-tuned model

Summarize the following text:

[Example text]

[Example completion]

Translate this sentence to

[Example text]

[Example completion]

PROMPT [....], COMPLETION[....]

PROMPT [....], COMPLETION[....]

PROMPT [....], COMPLETION[....]

PROMPT [....], COMPLETION[....]

PROMPT [....], COMPLETION[....]

PROMPT [....], COMPLETION[....]

PROMPT [....], COMPLETION[....]

......

PROMPT [....], COMPLETION[....]

Training dataset

PROMPT [....], COMPLETION[....]

......

PROMPT [....], COMPLETION[....]

PROMPT [....], COMPLETION[....]

......

PROMPT [....], COMPLETION[....]

Validation

Test

PROMPT [....], COMPLETION[....]

LLM completion

Actual Label

Loss : Cross entropy

Validation

accuracy

Test

accuracy

PROMPT [....], COMPLETION[....]

PROMPT [....], COMPLETION[....]

PROMPT [....], COMPLETION[....]

Base model Task-specific examples

Pre-trained
LLM

Fine-tuned
LLM

trained on results in

Supervised fine-tuning process is a classification model training.

Supervised fine-tuning adjusts the foundation model weights for specific tasks.

Figure 4.11 Supervised fine-tuning is a classification mode-training process.

While foundation models generalize well for a wide array of tasks, there are several use
cases where the need for a fine-tuned model arises. Domain adaptation for specialized
fields such as law and healthcare, task specific optimization such as classification and
NER (named entity recognition), and conversational AI, personalization are some use
cases where you may observe a fine-tuned model performing better.

Specifically, in the context of RAG, some criteria should be considered, while choos-
ing between a foundation model and a fine-tuning one:

¡	Domain specificity—Foundation models have broader knowledge and can handle
a wider range of topics and queries for general-purpose RAG systems. If your
RAG application is specialized (say, dealing with patient records or instruction
manuals for heavy machinery), you may find that fine-tuning the model for spe-
cific domains may improve performance.

¡	Retrieval integration—If you observe that a foundation model you are using is not
integrating the retrieved information well, a fine-tuned model trained to better
utilize information can lead to better quality of generations.

¡	Deployment speed—A foundation model can be quickly deployed since there is no
additional training required. To fine-tune a model, you will need to spend time
in gathering training data and the actual training of the model.

¡	Customization of responses—For generating results in a specific format or custom-
style elements such as tone or vocabulary, a fine-tuned model may result in better
adherence to the requirements compared to foundation models.

¡	Resource efficiency—Fine-tuning a model requires more storage and computa-
tional resources. Depending on the scale of deployment, the costs may be higher
for a fine-tuned model.

 79Generation

¡	Ethical alignment—A fine-tuned model allows for better control over the responses
in adherence to ethical guidelines and even certain privacy aspects.

A summary of the criteria is presented in table 4.3.

Table 4.3 Criteria for choosing between foundation and fine-tuned models

Criteria Better suitability Explanation

Domain
specificity

Fine-tuned models Better performance for specialized applications (e.g., patient
records and instruction manuals)

Retrieval
integration

Fine-tuned models Can be trained to better utilize retrieved information

Deployment
speed

Foundation models Quicker deployment with no additional training required

Customization
of responses

Fine-tuned models Better adherence to specific format, style, tone, or vocabu-
lary requirements

Resource
efficiency

Foundation models Requires less storage and computational resources

Ethical
alignment

Fine-tuned models Allows better control over responses to ethical guidelines
and privacy

Fine-tuned models give better control over your RAG systems, but they are costly.
There’s also a risk of overreliance on retrieval and a potential tradeoff between RAG
performance and inherent LLM language abilities. Therefore, whether to use a foun-
dation model or fine-tuning one depends on the improvements you are targeting,
availability of data, cost, and other tradeoffs. The general recommendation is to start
experimenting with a foundation model and then progress to supervised fine-tuning
for performance improvement.

OPEN SOURCE VS. PROPRIETARY MODELS

Software development and distribution are represented by two fundamentally differ-
ent approaches: open versus proprietary software. The world of LLMs is no different.
Some LLM developers such as Meta and Mistral have made the model weights public
to foster collaboration and community-driven innovation. In contrast, pioneers such as
OpenAI, Anthropic, and Google have kept the models closed, offering support, man-
aged services, and better user experience.

For RAG systems, open source models provide the flexibility of customization,
deployment method, and transparency, but warrant the need for the necessary infra-
structure to maintain the models. Proprietary model providers might be costlier for
high volumes but provide regular updates, ease of use, scalability, and faster develop-
ment, among other things. Some proprietary model providers such as OpenAI have
prebuilt RAG capabilities. Your choice of the type of model you choose may depend on
some of the following criteria:

¡	Customization—Open source LLMs are generally considered better for custom-
izations such as deep integration with custom retrieval mechanisms. A better

80 CHAPTER 4 Generation pipeline: Generating contextual LLM responses

control over fine-tuning is also something that open source LLMs allow for. Cus-
tomization of proprietary models is limited to API capabilities.

¡	Ease of use—Proprietary models, however, are much easier to use. Some of the
models such as OpenAI, Cohere, and similar offer optimized, prebuilt RAG
solutions.

¡	Deployment flexibility—Open source models can be deployed according to your
preference (private cloud, on-premises), while proprietary models are man-
aged by the providers. This also has a bearing on data security and privacy.
Most proprietary model providers are now offering multiple deployment
options.

¡	Cost—Open source LLMs may come with upfront infrastructure costs, while pro-
prietary models are priced based on usage. Long-term costs and query volumes
are considerations to choose between open source and proprietary models.
Large-scale deployments may favor the use of open source models.

The choice between open source and proprietary models for RAG depends on factors
such as the scale of deployment, specific domain requirements, integration needs, and
the importance of customization in the retrieval and generation process. Apart from
these, the need for knowledge updates, transparency, scalability, the structure of data,
compliance, and the like will determine the choice of the model. A summary of the
discussion is presented in table 4.4

Table 4.4 Criteria for choosing between open source and proprietary models

Criteria Better suitability Explanation

Customization Open source Allows deeper integration with custom retrieval mecha-
nisms and better control over fine-tuning

Ease of use Proprietary Offers optimized, prebuilt RAG solutions and are generally
easier to use

Deployment
flexibility

Open source Can be deployed on private cloud or on-premises, offering
more options

Cost for large-scale
deployment

Open source May be more cost-effective for large-scale deployments
despite upfront infrastructure costs

Data security and
privacy

Open source Offers more control over data, though some private mod-
els now offer various deployment options

Regular updates
and support

Proprietary Typically provides regular updates and better support

A hybrid approach is also not ruled out. At a PoC stage, a proprietary model may make
sense for quick experimentation.

Here are some examples of popular proprietary models:

¡	GPT series by OpenAI (https://platform.openai.com/docs/models)

¡	Claude series by Anthropic (https://www.anthropic.com/claude)

https://platform.openai.com/docs/models
https://www.anthropic.com/claude

 81Generation

¡	Gemini series by Google (https://mng.bz/eBnJ)

¡	Command R series by Cohere (https://cohere.com/command)

Some of open source models are

¡	Llama series by Meta (https://llama.meta.com/)

¡	Mistral (https://docs.mistral.ai/getting-started/models/)

MODEL SIZES

LLMs come in various sizes, typically measured by the number of parameters they
contain. The size of the model greatly affects the capabilities along with the resource
requirements.

Larger models have several billion, even trillions, of parameters. These models
exhibit superior performance in reasoning abilities, and language understanding, and
have broader knowledge. They can generate more coherent text, and their responses
are contextually more accurate. However, these larger models have significantly high
computation, storage, and energy requirements.

Smaller models with parameter sizes in millions or a few billion offer benefits such
as faster inference times, lower resource usage, and easier deployment on edge devices
or resource constrained environments. Researchers and developers continue to
explore methods to achieve large-model performance with smaller and more efficient
architectures.

For a RAG system, the following should be assessed:

¡	Resource constraints—Small models have a much lower resource usage. Light-
weight RAG applications with faster inference can be built with smaller
models.

¡	Reasoning capability—On the other spectrum of resource constraints is the
language-processing ability of the model. Large models are better suited for
complex reasoning tasks and can deal with ambiguity in the retrieved infor-
mation. Smaller models, therefore, will rely heavily on the quality of retrieved
information.

¡	Deployment options—The size of large models makes it difficult to deploy on-edge
devices. This is a flexibility that smaller models provide, bringing RAG applica-
tions to a wide range of devices and environments.

¡	Context handling—Large models may be better at integrating multiple pieces of
retrieved information in RAG systems since they have longer context windows.
Large models are also better at handling diverse queries, while small models
struggle with out-of-domain queries. Large models might perform better in RAG
systems with diverse or unpredictable query types.

In practice, most RAG applications are built on large models. However, smaller models
make more sense in the long-term adoption and application of the technology. The
various factors are summarized in table 4.5

https://mng.bz/eBnJ
https://cohere.com/command
https://llama.meta.com/
https://docs.mistral.ai/getting-started/models/

82 CHAPTER 4 Generation pipeline: Generating contextual LLM responses

Table 4.5 Criteria for choosing between small and large models

Criteria Better suitability Explanation

Resource
constraints

Small models Lower resource usage; suitable for lightweight RAG applications

Reasoning
capability

Large models Better for complex reasoning tasks and handling ambiguity in
retrieved information

Deployment
options

Small models More flexible; can be deployed on edge devices and
resource-constrained environments

Context
handling

Large models Better at integrating multiple pieces of retrieved information;
longer context windows

Query diversity Large models Handle diverse and unpredictable query types better

Inference
speed

Small models Faster inference times; suitable for applications requiring quick
responses

Examples of popular small language models are:

¡	Phi-3 by Microsoft (https://azure.microsoft.com/en-us/products/phi-3)

¡	Gemma by Google (https://ai.google.dev/gemma)

The choice of the LLM is a core consideration in your RAG system that requires close
attention and iterations. The performance of your system may require experimenting
and adapting your choice of the LLM.

The list of LLMs has become almost endless. What this means for developers and
businesses is that the technology has truly been democratized. While all LLMs have
their unique propositions and architecture, for practical applications, there are a wide
array of choices available. While simple RAG applications may rely on a single LLM pro-
vider, for more complex applications, a multi-LLM strategy may be beneficial.

We have implemented a simple retriever and created an augmented prompt. In the
last section of this chapter, we round up the pipeline by creating the generation step.

4.4.2 Completing the RAG pipeline: Generation using LLMs

We have built a simple retriever using FAISS and OpenAI embeddings, and we created
a simple augmented prompt. Now we will use OpenAI’s latest model, GPT-4o, to gen-
erate the response:

Import FAISS class from vectorstore library

from langchain_community.vectorstores import FAISS

Import OpenAIEmbeddings from the library

from langchain_openai import OpenAIEmbeddings

Set the OPENAI_API_KEY as the environment variable

import os

os.environ["OPENAI_API_KEY"] = <YOUR_API_KEY>

Instantiate the embeddings object

https://azure.microsoft.com/en-us/products/phi-3
https://ai.google.dev/gemma

 83Generation

embeddings=OpenAIEmbeddings(model="text-embedding-3-small")

Load the database stored in the local directory

vector_store=FAISS.load_local(
 folder_path="../../Assets/Data",
 index_name="CWC_index",
 embeddings=embeddings,
 allow_dangerous_deserialization=True
)

Original Question

query = "Who won the 2023 Cricket World Cup?"

Ranking the chunks in descending order of similarity

retrieved_docs = vector_store.similarity_search(query, k=2)

Selecting the first chunk as the retrieved information

retrieved_context= retrieved_docs[0].page_content

Creating the prompt

augmented_prompt=f"""

Given the context below, answer the question.

Question: {query}

Context : {retrieved_context}

Remember to answer only based on the context provided and not from any other
source.

If the question cannot be answered based on the provided context, say I don't
know.

"""
Importing the OpenAI library from langchain

from langchain_openai import ChatOpenAI

Instantiate the OpenAI LLM

llm = ChatOpenAI(
 model="gpt-4o-mini",
 temperature=0,
 max_tokens=None,
 timeout=None,
 max_retries=2
)
Make the API call passing the augmented prompt to the LLM

response = llm.invoke (
 [("human",augmented_prompt)]
)

Extract the answer from the response object

answer=response.content

print(answer)

84 CHAPTER 4 Generation pipeline: Generating contextual LLM responses

And there it is. We have built a generation pipeline, albeit a very simple one. It can now
fetch information from the knowledge base and generate an answer pertinent to the
question asked and rooted in the knowledge base. Try asking a different question to
see how well the pipeline generalizes.

We have now covered all three steps—retrieval, augmentation, and generation—
of the generation pipeline. With the knowledge of the indexing pipeline (covered in
chapter 3) and the generation pipeline, you are now all set to create a basic RAG system.
What we have discussed so far can be termed a naïve RAG implementation. Naïve RAG can
be marred by inaccuracies. It can be inefficient in retrieving and ranking information
correctly. The LLM can ignore the retrieved information and still hallucinate. To dis-
cuss and address these challenges, in chapter 6, we examine advanced strategies that
allow for more complex and better-performing RAG systems.

But before that, the question of evaluating the system arises. Is it generating the
responses on the expected lines? Is the LLM still hallucinating? Before trying to
improve the performance of the system, we need to be able to measure and benchmark
it. That is what we will do in chapter 5. We will look at the evaluation metrics and the
popular RAG benchmarks.

Summary

Retrieval

¡	Retrieval is the process of finding relevant information from the knowledge base
based on a user query. It is a search problem to match documents with input
queries.

¡	The popular retrieval methods for RAG include

– TF-IDF (Term Frequency-Inverse Document Frequency)—Statistical measure of word
importance in a document relative to a corpus. It can be implemented using
LangChain’s TFIDFRetriever.

– BM25 (Best Match 25)—Advanced probabilistic model, an improvement over
TF-IDF. It adjusts for document length and can be implemented using Lang-
Chain’s BM25Retriever.

– Static word embeddings—Represent words as dense vectors (e.g., Word2Vec,
GloVe) and capture semantic relationships but lack full contextual
under standing.

– Contextual embeddings—Produced by models like BERT or OpenAI’s text
embeddings. They provide context-aware representations and are most widely
used in RAG, despite being computationally intensive.

– Advanced retrieval methods—They include learned sparse retrieval, dense
retrieval, hybrid retrieval, cross-encoder retrieval, graph-based retrieval,
quantum-inspired retrieval, and neural IR models.

¡	Most advanced implementations will include a hybrid approach.

 85Summary

¡	Vector stores and databases (e.g., FAISS, PineCone, Milvus, Weaviate), cloud
provider solutions (e.g., Amazon Kendra, Azure AI Search, Google Vertex AI
Search), and web information resources (e.g., Wikipedia, Arxiv, AskNews) are
some of the popular retriever integrations provided by LangChain.

¡	The choice of retriever depends on factors such as accuracy, speed, and compati-
bility with the indexing method.

Augmentation

¡	Augmentation combines the user query with retrieved information to create a
prompt for the LLM.

¡	Prompt engineering is crucial for effective augmentation, aiming for accuracy
and relevance in LLM responses.

¡	Key prompt engineering techniques for RAG include

– Contextual prompting—Adding retrieved information with instructions to focus
on the provided context.

– Controlled generation prompting—Instructing the LLM to admit lack of knowl-
edge when information is insufficient.

– Few-shot prompting—Providing examples to guide the LLM’s response format
or style.

– Chain-of-thought (CoT) prompting—Introducing intermediate reasoning steps
for complex tasks.

– Advanced techniques—These include self-consistency, generated knowledge
prompting, and tree of thought.

¡	The choice of augmentation technique depends on the task complexity, desired
output format, and LLM capabilities.

Generation

¡	Generation is the final step in which the LLM produces the response based on
the augmented prompt.

¡	LLMs can be categorized based on how they’ve been trained, how they can be
accessed, and the number of parameters they have.

¡	Supervised fine-tuning, or SFT, improves context use and domain optimization,
enhances coherence, and enables source attribution; however, it comes with
challenges such as cost, risk of overreliance on retrieval, and potential tradeoffs
with inherent LLM abilities.

¡	The choice between open source and proprietary LLMs depends on customiza-
tion needs, long-term costs, and data sensitivity.

¡	Larger models come with superior reasoning, language understanding, and
broader knowledge, and generate more coherent and contextually accurate
responses but come with high computational and resource requirements.

86 CHAPTER 4 Generation pipeline: Generating contextual LLM responses

Smaller models allow faster inference, lower resource usage, and are easier to
deploy on edge devices or resource-constrained environments but do not have
the same language understanding abilities as large models.

¡	Popular LLMs include offerings from OpenAI, Anthropic, Google, and similar,
and open source models are available through platforms such as Hugging Face.

¡	The choice of LLM depends on factors such as performance requirements,
resource constraints, deployment environment, and data sensitivity.

¡	The choice of LLM for RAG systems requires careful consideration, experimen-
tation, and potential adaptation based on performance.

87

5RAG evaluation:
Accuracy, relevance,

and faithfulness

This chapter covers

¡	The need and requirements for evaluating RAG

 pipelines

¡	Metrics, frameworks, and benchmarks for RAG

 evaluation

¡	Current limitations and future course of RAG

 evaluation

Chapters 3 and 4 discussed the development of retrieval-augmented generation
(RAG) systems using the indexing and generation pipelines. RAG promises to
reduce hallucinations and ground the large language model (LLM) responses in
the provided context, which is done by creating a non-parametric memory or knowl-
edge base for the system and then retrieving information from it.

This chapter covers the methods used to evaluate how well the RAG system is func-
tioning. We need to make sure that the components of the two RAG pipelines are
performing per the expectations. At a high level, we need to ensure that the infor-
mation being retrieved is relevant to the input query and that the LLM is generating

88 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

responses grounded in the retrieved context. To this end, there have been several
frameworks developed over time. Here we discuss some popular frameworks and the
metrics they calculate.

There is also a second aspect to evaluation. While the frameworks allow for the cal-
culation of metrics, how do you make sure that your RAG pipelines are working better
than those developed by other developers? The evaluations cannot be done in isola-
tion. For this purpose, several benchmarks have been established. These benchmarks
evaluate the RAG systems on preset data, such as question–answer sets, for accurate
comparison of different RAG pipelines. These benchmarks help developers evaluate
the performance of their systems vis-à-vis those developed by other developers.

Finally, like RAG techniques, the research on RAG evaluations is still in progress.
There are still some limitations in the current set of evaluation parameters. We discuss
these limitations and some ideas on the way forward for RAG evaluations.

By the end of this chapter, you should

¡	Know the fundamentals of RAG evaluations.

¡	Be aware of the popular frameworks, metrics, and benchmarks for RAG
evaluation.

¡	Understand the limitations and best practices.

¡	Be able to evaluate the RAG pipeline in Python.

For RAG to live up to the promise of grounding the LLM responses in data, you will
need to go beyond the simple implementation of indexing, retrieval, augmentation,
and generation. We will discuss these advanced strategies in chapter 6. However, to
improve something, you need to first measure the performance. RAG evaluations help
in setting up the baseline of your RAG system performance for you to then improve it.
First, we look at the fundamental aspects of RAG systems evaluation.

5.1 Key aspects of RAG evaluation

Building a PoC RAG pipeline is not overtly complex. It is achievable through brief
training and verification of a limited set of examples. However, to enhance its robust-
ness, thorough testing on a dataset that accurately mirrors the production use case is
imperative. RAG pipelines can suffer from hallucinations of their own. This can be
because

¡	The retriever fails to retrieve the entire context or retrieves irrelevant context.

¡	Despite being provided the context, the LLM does not consider it.

¡	The LLM picks irrelevant information from the context instead of answering the
query.

Retrieval and generation are two processes that need special focus from an evaluation
perspective. This is because these two steps produce outputs that can be evaluated.
(While indexing and augmentation will have a bearing on the outputs, they do not

 89Key aspects of RAG evaluation

produce measurable outcomes). Here are several questions we need to ask ourselves
about these two processes:

¡	How good is the retrieval of the context from the knowledge base?

¡	Is it relevant to the query?

¡	How much noise (irrelevant information) is present?

¡	How good is the generated response?

¡	Is the response grounded in the provided context?

¡	Is the response relevant to the query?

You can ask many more questions such as these to assess the performance of your RAG
system. Contemporary research has discovered certain scores to assess the quality and
abilities of a RAG system. The following sections discuss three predominant quality
scores and four main abilities.

5.1.1 Quality scores

There are three quality score dimensions prevalent in the discourse on RAG evalua-
tion. They measure the quality of retrieval and generation:

¡	Context relevance—This dimension evaluates how relevant the retrieved informa-
tion or context is to the user query. It calculates metrics such as the precision and
recall with which context is retrieved from the knowledge base.

¡	Answer faithfulness (also called groundedness)—This dimension evaluates whether
the answer generated by the system is using the retrieved information.

¡	Answer relevance—This dimension evaluates how relevant the answer generated
by the system is to the original user query.

We discuss how these scores are calculated in section 5.2

5.1.2 Required abilities

The quality scores are important for measuring how well the retrieval and the gener-
ation components of the RAG system are performing. At an overall level, there are
certain critical abilities that a RAG system should possess:

¡	Noise robustness—It is impractical to assume that the information stored in the
knowledge base for RAG systems is perfectly curated to answer the questions that
can be potentially asked. It is very probable that a document is related to the user
query but does not have any meaningful information to answer it. The ability
of the RAG system to separate these noisy documents from the relevant ones is
termed noise robustness.

¡	Negative rejection—By nature, LLMs always generate text. There may be no infor-
mation about the user query in the documents in the knowledge base. The ability
of the RAG system not to give an answer when there is no relevant information is
called negative rejection.

90 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

¡	Information integration—To obtain a comprehensive answer to a user query, it is
also very likely the information must be retrieved from multiple documents. This
ability of the system to assimilate information from multiple documents is called
information integration.

¡	Counterfactual robustness—Sometimes the information in the knowledge base
might itself be inaccurate. A high-quality RAG system should be able to address
this problem and reject known inaccuracies in the retrieved information. This
ability is known as counterfactual robustness.

Noise robustness is an ability that the retrieval component should possess, and other
abilities are largely related to the generation component.

Apart from these, latency is another often-mentioned capability. Although it is a
non-functional requirement, it is quite critical in generative AI applications. Latency
is the delay that happens between the user query and the response. You may have
observed that LLMs themselves have considerable latency before the final response is
generated. Add to it the task of retrieval and augmentation, and the latency is bound to
increase. Therefore, it is important to monitor how much time your RAG system takes
from user input to response.

Ethical considerations are also at the forefront of generative AI adoption. For some
RAG applications, it is important to measure the degree of bias and toxicity in the system
responses. This is also influenced by the underlying data in the knowledge base. While
it is not specific to RAG, it is important to evaluate the outputs for bias and toxicity.

Another aspect to check is the robustness of the system, that is, its ability to handle dif-
ferent types of queries. Some queries may be simple, while others may involve complex
reasoning. Some queries may require comparing two pieces of information, while oth-
ers may involve complex post-processing, like mathematical calculations. We will look
at some types of queries when we discuss CRAG, a benchmark, in section 5.4.

Finally, it is important to mention that these are scores and abilities that approach
RAG at the core technique level. RAG, after all, is a means to solving the end use case.
Therefore, you may have to build a use case-specific evaluation criteria for your RAG sys-
tem. For example, a question-answering system may use an exact match (EM) or F1
score as a metric, and a summarization service may use ROUGE scores. Modern search
engines using RAG may look at user interaction metrics, accuracy of source attribution,
and similar.

This is the main idea behind evaluating RAG pipelines. The quality scores and the
abilities that we discussed before need to be measured and benchmarked. There are
two critical enablers of RAG evaluations: frameworks and benchmarks.

Frameworks are tools designed to facilitate evaluation, offering automation of the
evaluation process and data generation. They are used to streamline the evaluation pro-
cess by providing a structured environment for testing different aspects of RAG systems.
They are flexible and can be adapted to different datasets and metrics. We will discuss
the popular evaluation frameworks in section 5.3.

 91Evaluation metrics

Benchmarks are standardized datasets and their evaluation metrics used to measure
the performance of RAG systems. Benchmarks provide a common ground for com-
paring different RAG approaches. They ensure consistency across the evaluations by
considering a fixed set of tasks and their evaluation criteria. For example, HotpotQA
focuses on multi-hop reasoning and retrieval capabilities using metrics such as Exact
Match and F1 scores.

Benchmarks are used to establish a baseline for performance and identify strengths/
weaknesses in specific tasks or domains. We will discuss a few benchmarks and their
characteristics in section 5.4

Developers can use frameworks to integrate evaluation in their development process
and use benchmarks to compare their development with established standards. The
frameworks and benchmarks both calculate metrics that focus on retrieval and the RAG
quality scores. We will begin our discussion about the metrics in the next section before
moving on to the popular benchmarks and frameworks.

5.2 Evaluation metrics

Metrics quantify the assessment of the RAG system performance. We will classify the
evaluation metrics into two broad groups:

¡	Retrieval metrics that are commonly used in information retrieval tasks

¡	RAG-specific metrics that have evolved as RAG has found more application

It is noteworthy that there are natural-language-generation-specific metrics such
as BLEU, ROUGE, and METEOR that focus on fluency and measure relevance and
semantic similarity. They play an important role in analyzing and benchmarking the
performance of LLMs. This book discusses metrics specific to retrieval and RAG.

5.2.1 Retrieval metrics

The retrieval component of RAG can be evaluated independently to determine how
well the retrievers are satisfying the user query. The primary retrieval evaluation met-
rics include accuracy, precision, recall, F1-score, mean reciprocal rank (MRR), mean
average precision (MAP), and normalized discounted cumulative gain (nDCG).

ACCURACY

Accuracy is typically defined as the proportion of correct predictions (both true posi-
tives and true negatives) among the total number of cases examined. In the context of
information retrieval, it could be interpreted as

Although accuracy is a simple, intuitive metric, it is not the primary metric for retrieval.
In a large knowledge base, a majority of documents are usually irrelevant to any given

92 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

query, which can lead to misleadingly high accuracy scores. It does not consider the
ranking of the retrieved results.

PRECISION

Precision focuses on the quality of the retrieved results. It measures the proportion
of retrieved documents relevant to the user query. It answers the question, “Of all the
documents that were retrieved, how many were relevant?”

A higher precision means that the retriever is performing well and retrieving mostly
relevant documents.

PRECISION@K

Precision@k is a variation of precision that measures the proportion of relevant docu-
ments among the top ‘k’ retrieved results. It is particularly important because it focuses
on the top results rather than all the retrieved documents. For RAG, it is important
because only the top results are most likely to be used for augmentation. For example,
if you restrict your RAG system to use only the top five retrieved documents for context
augmentation, Precision@5 will be the metric to calculate:

where ‘k’ is a chosen cut-off point. A precision@5 of .8 means that out of the top five
retrieved documents, four were relevant.

Precision@k is also useful to compare systems when the total number of results
retrieved may be different in different systems. However, the limitation is that the
choice of ‘k’ can be arbitrary, and this metric doesn’t look beyond the chosen ‘k’.

RECALL

Recall focuses on the coverage that the retriever provides. It measures the propor-
tion of the relevant documents retrieved from all the relevant documents in the
corpus. It answers the question, “Of all the relevant documents, how many were
retrieved?”

Note that, unlike precision, calculation of recall requires prior knowledge of the total
number of relevant documents. This requirement can become challenging in large-
scale systems, which have many documents in the knowledge base.

 93Evaluation metrics

Like precision, recall also doesn’t consider the ranking of the retrieved documents.
It can also be misleading as retrieving all documents in the knowledge base will result in
a perfect recall value. Figure 5.1 visualizes various precision and recall scenarios.

REL

tot_ret

Total number of documents retrieved = tot_ret

REL

RELEREE

RELREL

REL High recall
Almost all the relevant

documents have been

retrieved.

High recall
Almost all the relevant

documents have been

retrieved.

High precision
Almost all the retrieved

documents are relevant.

Total number of relevant documents in the knowledge

base = REL

rel_ret

Total number of relevant documents retrieved =

rel_ret

Precision = rel_ret / tot_ret

Recall = rel_ret / REL
Knowledge base

High-precision low recall Low-precision high recall

High-precision high recallLow-precision low recall

High precision
Almost all the retrieved

documents are relevant.

Low recall
A very low proportion of all

relevant documents have

been retrieved.

Low precision
A low percentage of

retrieved documents are

relevant.

Low recall
A very low proportion of all

relevant documents have

been retrieved.

Low precision
A low percentage of

retrieved documents are

relevant.

p

REL

Figure 5.1 Precision and recall

F1-SCORE

F1-score is the harmonic mean of precision and recall. It provides a single metric that
balances both the quality and coverage of the retriever:

94 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

The equation is such that the F1-score penalizes either variable having a low score;
a high F1 score is only possible when both recall and precision values are high. This
means that the score cannot be positively skewed by a single variable. Figure 5.2 illus-
trates how the F1-score balances precision and recall.

0

High precision = 0.9

Low recall = 0.1

High recall = 0.9

Low precision = 0.1

Med recall = 0.5

Med precision = 0.5

Precision

low high

R
e

c
a

ll

lo
w

h
ig

h

med

m
e

d

Low F1 score = 0.2

Low F1 score = 0.2

Med F1 score = 0.5

High recall = 0.9

High precision = 0.9

High F1 score = 0.9

F1 score is low if either
recall or precision is low.

1

Figure 5.2 F1-score balances precision and recall. A medium value of both precision and recall gets a

higher F1-score than if one value is very high and the other is very low.

F1-score provides a single, balanced measure that can be used to easily compare differ-
ent systems. However, it does not take ranking into account and gives equal weight to
precision and recall, which might not always be ideal.

MEAN RECIPROCAL RANK

Mean reciprocal rank, or MRR, is particularly useful in evaluating the rank of the rele-
vant document. It measures the reciprocal of the ranks of the first relevant document
in the list of results. MRR is calculated over a set of queries:

 95Evaluation metrics

where N is the total number of queries, and ranki
 is the rank of the first relevant docu-

ment of the i-th query.
MRR is particularly useful when you’re interested in how quickly the system can find

a relevant document and consider the ranking of the results. However, since it doesn’t
look at anything beyond the first relevant result, it may not be useful when multiple rele-
vant results are important. Figure 5.3 shows how the mean reciprocal rank is calculated.

Query 1:

1 2 3 4 5

Query 2:

Rank of 1st relevant

3

1

Reciprocal

1/3

1

Query 3: 2 1/2

MRR = 13/24 = 0.54

Query 4: 3 1/3

A relevant result on rank 1 shows perfect reciprocal rank

Considers only the first relevant result

Doesn’t account for number of relevant results

1/3 1 1/2 1/3

4

+ + +
=

Figure 5.3 MRR considers the ranking but doesn’t consider all the documents.

MEAN AVERAGE PRECISION

Mean average precision, or MAP, is a metric that combines precision and recall at dif-
ferent cut-off levels of ‘k’, that is, the cut-off number for the top results. It calculates a
measure called average precision and then averages it across all queries:

where Ri is the number of relevant documents for query i, Precision@k is the precision
at cut-off ‘k’, and rel@k is a binary flag indicating the relevance of the document at
rank k.

Mean average precision is the mean of the average precision over all the N queries:

96 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

MAP provides a single measure of quality across recall levels. It is quite suitable when
result ranking is important but complex to calculate. Let’s look at an example MAP
calculation in figure 5.4.

1 2 3 5 6 7 8

=

Query 1

0.7042

0.6500

0.8333

0.7042

0.7125

MAP = 0.7208

Mean

1/2 2/4 3/5 3/7 4/8

1
1

1
2

2
3

2
4

3
5

3
6

3
7

4
8

1/1 2/3 3/6

1 1 1 10 0 0

4

Total number of relevant documents = 4

Precision

AP
(Average precision)

= 0.7042

AP

Relevance 0

Relevant docs

Total docs

1(0.67 0.6 0.50 0 00)+ + + + + + +

4
(Total number of relevant
documents)

Query 1

Query
 2

Q
uery

 3

Query
 4

Q
uery

 5

Figure 5.4 MAP considers all the retrieved documents and gives a higher score for better ranking

NORMALIZED DISCOUNTED CUMULATIVE GAIN

Normalized discounted cumulative gain (nDCG) evaluates the ranking quality by con-
sidering the position of relevant documents in the result list and assigning higher
scores to relevant documents appearing earlier. It is particularly effective for scenarios
where documents have varying degrees of relevance. To calculate discounted cumu-
lative gain (DCG), each document in the retrieved list is assigned a relevance score,
rel, and a discount factor reduces the weight of documents as their rank position
increases:

 97Evaluation metrics

where reli is the graded relevance of the document at position I, and IDCG is the ideal
DCG, which is the DCG for perfect ranking.

nDCG is calculated as the ratio between actual DCG and the IDCG:

Figure 5.5 shows an example of nDCG calculation.

A

B

C

D

E

1

2

3

3

1

2

0

3

DocumentRank Relevance DCG

2
3

- 1

log (1+1)
2

= 7

2
1

- 1

log (2+1)
2

= 0.63

2
2

- 1

log (3+1)
2

= 1.50

2 - 1

log (3+1)
2

= 0
0

2
3

- 1

log (5+1)
= 2.71

Ideal rank

A

E

C

B

D

3

3

2

1

0

Relevance IDCG

= 7

= 4.41

= 1.50

= 0.43

= 0

11.84 13.35

11.84

13.35
nDCG = = 0.887

Graded relevance and
not just binary

Penalizes relevant documents
appearing lower in rank

Single score between 0 and 1

4

5

Figure 5.5 nDCG addresses degrees of relevance in documents and penalizes incorrect ranking.

nDCG is a complex metric to calculate. It requires documents to have a relevance
score, which may lead to subjectivity, and the choice of the discount factor affects the
values significantly, but it accounts for varying degrees of relevance in documents and
gives more weight to higher-ranked items.

Retrieval systems are not just used in RAG but also in a variety of other application
areas such as web and enterprise search engines, e-commerce product search and per-
sonalized recommendations, social media ad retrieval, archival systems, databases, vir-
tual assistants, and more. The retrieval metrics help in assessing and improving the
performance to effectively meet user needs. Table 5.1 summarizes different retrieval
metrics.

98 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

Table 5.1 Retrieval metrics

Metric What it measures Strengths Use cases Considerations

Accuracy Overall correct-
ness of retrieval

Simple to under-
stand; includes
true negatives

General perfor-
mance in bal-
anced datasets

Can be mislead-
ing in imbalanced
datasets; doesn’t
consider ranking

Precision Quality of
retrieved results

Easy to under-
stand and
calculate

General
retrieval quality
assessment

Doesn’t con-
sider ranking or
completeness of
retrieval

Precision@k Quality of top k
retrieved results

Focuses on most
relevant results
for RAG

When only top k
results are used
for augmentation

Choose k based
on your RAG sys-
tem’s usage

Recall Coverage of rele-
vant documents

Measures com-
pleteness of
retrieval

Assessing if
important infor-
mation is missed

Requires know-
ing all relevant
documents in the
corpus

F1-score Balance between
precision and
recall

Single metric
combining quality
and coverage

Overall retrieval
performance

May obscure
tradeoffs
between preci-
sion and recall

Mean reciprocal
rank (MRR)

How quickly a rel-
evant document
is found

Emphasizes find-
ing at least one
relevant result
quickly

When finding one
good result is
sufficient

Less useful when
multiple rele-
vant results are
needed

Mean average
precision (MAP)

Precision at
different recall
levels

Considers both
precision and
ranking

Comprehensive
evaluation of
ranked retrieval
results

More complex
to calculate and
interpret

Normalized dis-
counted cumula-
tive gain (nDCG)

Ranking quality
with graded
relevance

Accounts for
varying degrees
of relevance and
ranking

When documents
have different lev-
els of relevance

Requires rele-
vance scoring for
documents

Not all retrieval metrics are popular for evaluation. Often, the more complex met-
rics are overlooked for the sake of explainability. The usage of these metrics depends
on the stage of improvement in the evolution of system performance you are in. For
example, to start with, you may just be trying to improve precision, while at an evolved
stage, you may be looking for better ranking.

While these metrics focus on retrieval in general, some metrics have been created
specifically for RAG applications. These metrics focus on the three quality scores dis-
cussed in section 5.1.

5.2.2 RAG-specific metrics

The three quality scores used to evaluate RAG applications are context relevance,
answer relevance, and answer faithfulness. These scores specifically answer the follow-
ing three questions:

 99Evaluation metrics

¡	Is the information retrieval relevant to the user query?

¡	Is the generated answer rooted in the retrieved information?

¡	Is the generated answer relevant to the user query?

Let’s now take a look at each of these scores.

CONTEXT RELEVANCE

Context relevance evaluates how well the retrieved documents relate to the original
query. The key aspects are topical alignment, information usefulness, and redundancy.
There are human evaluation methods, as well as semantic similarity measures to calcu-
late context relevance.

One such measure is employed by the Retrieval-Augmented Generation Assessment
(RAGAs) framework (further discussed in section 5.3). The retrieved context should
contain information only relevant to the query or the prompt. For context relevance, a
metric S is estimated, where S is the number of sentences in the retrieved context rele-
vant for responding to the query or the prompt:

Figure 5.6 is an illustrative example of high and low context relevance.

Context 1: High context relevance

The 2023 Cricket World Cup, concluded on

November 19, 2023, with Australia winning the

tournament. The tournament took place in 10

different stadiums, in 10 cities across the

country.

Total sentences = 2

Relevant sentences = 1

Context relevance = 0.5 or 50%

Context 2: Low context relevance

The 2023 Cricket World Cup was the 13th edition

of the Cricket World Cup. It was the first Cricket

World Cup which India hosted solely. The

tournament took place in 10 different stadiums. In

the first semi-final India beat New Zealand, and in

the second semi-final, Australia beat South Africa.

Total sentences = 4

Relevant sentences = 0

Context relevance = 0

Query : Who won the 2023 ODI Cricket World Cup and when?

Figure 5.6 Context relevance evaluates the degree to which the retrieved information is relevant

to the query.

The number of relevant sentences is also sometimes customized to the sum of similar-
ity scores of each of the sentences with the query. Context relevance ensures that the
generation component has access to appropriate information.

100 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

ANSWER FAITHFULNESS

Answer faithfulness is the measure of the extent to which the response is factually
grounded in the retrieved context. Faithfulness ensures that the facts in the response
do not contradict the context and can be traced back to the source. It also ensures that
the LLM is not hallucinating. In the RAGAs framework, faithfulness first identifies the
number of claims made in the response and calculates the proportion of those claims
present in the context:

Let’s look at an example in figure 5.7

Response 1 : High faithfulness

[Australia] won on [November 19, 2023]

Number of claims generated = 2

Number of claims in context = 2

Answer faithfulness = 1 or 100%

Response 2 : Low faithfulness

[Australia] won on [October 15, 2023] by

[defeating India]

Number of claims generated = 3

Number of claims in context = 1

Answer faithfulness = 0.33 or 33%

Query : Who won the 2023 ODI Cricket World Cup and when?

Context : The 2023 ODI Cricket World Cup concluded on November 19, 2023, with Australia winning the

tournament.

Figure 5.7 Answer faithfulness evaluates the closeness of the generated response to the retrieved

context.

Faithfulness is not a complete measure of factual accuracy but only evaluates the
groundedness to the context. An inverse metric for faithfulness is also the hallucination

rate, which can calculate the proportion of generated claims in the response that are
not present in the retrieved context.

Another related metric to faithfulness is coverage. Coverage measures the number of
relevant claims in the context and calculates the proportion of relevant claims present
in the generated response. It measures how much of the relevant information from the
retrieved passages is included in the generated answer:

 101Evaluation metrics

ANSWER RELEVANCE

Like context relevance measures the relevance of the retrieved context to the query,
answer relevance is the measure of the extent to which the response is relevant to the
query. This metric focuses on key aspects such as the system’s ability to comprehend
the query, the response being pertinent to the query, and the completeness of the
response.

In RAGAs, for this metric, a response is generated for the initial query or prompt. To
compute the score, the LLM is then prompted to generate questions for the generated
response several times. The mean cosine similarity between these questions and the
original one is then calculated. The concept is that if the answer addresses the initial
question correctly, the LLM should generate questions from it that match the original
question:

where N is the number of queries generated by the LLM.
Note that answer relevance is not a measure of truthfulness but only of relevance.

The response may or may not be factually accurate, but it may be relevant. Figure 5.8
is an illustration of the answer relevance calculation. Can you find the reason why the
relevance is not very high? (Hint: The answer may have some irrelevant facts.) Answer
relevance ensures that the RAG system provides useful and appropriate responses,
enhancing user satisfaction and the system’s practical utility.

TRADEOFFS AND OTHER CONSIDERATIONS

These three metrics and their derivatives form the core of RAG quality evaluation.
Furthermore, these metrics are interconnected and sometimes involve tradeoffs.
High context relevance usually leads to better faithfulness, as the system has access to
more pertinent information. However, high faithfulness doesn’t always guarantee high
answer relevance. A system might faithfully reproduce information from the retrieved
passages but fail to directly address the query. Optimizing for answer relevance without
considering faithfulness might lead to responses that seem appropriate but contain
hallucinated or incorrect information.

We have discussed quite a few metrics in this section. Effective interpretation of
these metrics is crucial for performance improvement. As creators of RAG systems, you
should use these metrics to compare with similar systems. You can also look at consistent
trends to identify the strengths and weaknesses of your system. A low-precision high-
recall system may indicate that your system is retrieving a lot of documents, and you may
need to make your retriever more selective. A low-precision low-recall system points
out fundamental problems with retrieval, and you may need to reassess the indexing
pipeline itself. The same problem may be indicated by a low MAP or a low context-
relevance score. Similarly, a low MRR or a low nDCG value may indicate a problem with

102 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

Original query : Who

won the 2023 ODI Cricket

World Cup?

Answer : Australia won the 2023

ODI Cricket World Cup, which

concluded on 1November 19, 2023

Synthetic queries
1.Which team emerged victorious in the 2023 ODI Cricket World Cup?

2.Who won the 2023 Cricket World Cup, and when did the final match take place?

3.Which country claimed the title in the 2023 ODI Cricket World Cup?

4.What was the outcome of the 2023 ODI Cricket World Cup, and on what date was the champion decided?

5.Who were the champions of the 2023 Cricket World Cup, and when did the tournament come to an end?

Synthetic query 1 embeddings

Synthetic query 2 embeddings

Synthetic query 3 embeddings

Synthetic query 4 embeddings

Synthetic query 5 embeddings

Original query

embeddings

Cosine similarity
0.83

0.63

0.76

0.53

0.57

Knowledge base

Context
The 2023 Cricket World Cup, concluded on

November 19, 2023, with Australia winning the

tournament. The tournament took place in 10 different

stadiums, in 10 cities across the country. The 2023

Cricket World Cup was the 13th edition of the Cricket

World Cup.

LLM

LLM

Embeddings model

0.66

Average

Answer relevance =

Generate answer

using the RAG

pipeline.

Prompt an LLM to generate

five synthetic questions

that can generate the same

answer.

Answer relevance is the

mean cosine similarity

between original query

and synthetic queries.

Figure 5.8 Answer relevance is calculated as the mean of cosine similarity between the original and synthetic

questions.

the ranking algorithm of the retriever. To address low-answer faithfulness or low-an-
swer relevance, you may need to improve your prompts or fine-tune the LLM.

There may also exist some tradeoffs that you will need to balance. Improving preci-
sion often reduces recall and vice-versa. Highly relevant but brief contexts may lead to
incomplete answers, and high answer faithfulness may sometimes come at the cost of
answer relevance.

 103Frameworks

The relative importance of each metric will depend on your use case and user
requirements. You may need to include other metrics specific to your downstream use
case, such as summarization to measure conciseness, and chatbots to emphasize con-
versation coherence.

Developers can code these metrics from scratch and integrate them in the devel-
opment and deployment process of their RAG system. However, you’ll find evaluation
frameworks that are readily available quite handy. We discuss three popular frameworks
in the next section.

Human evaluations and ground truth data

Most of the metrics we discussed talk about a concept of relevant documents. For

example, precision is calculated as the number of relevant documents retrieved,

divided by the total number of retrieved documents. The question that arises is, how

does one establish that a document is relevant?

The simple answer is a human evaluation approach. A subject matter expert looks at

the documents and determines the relevance. Human evaluation brings in subjectiv-

ity, and therefore, human evaluations are done by a panel of experts rather than an

individual. But human evaluations are restrictive from a scale and a cost perspective.

Any data that can reliably establish relevance becomes extremely useful conse-

quently. Ground truth is information known to be real or true. In RAG, and the genera-

tive AI domain in general, ground truth is a prepared set of prompt–context–response

or question–context–response examples, akin to labeled data in supervised machine

learning parlance. Ground truth data created for your knowledge base can be used for

the evaluation of your RAG system.

How does one go about creating the ground truth data? It can be viewed as a one-

time exercise where a group of experts creates this data. However, generating hun-

dreds of QCA (question–context–answer) samples from documents manually can

be a time-consuming and labor-intensive task. Additionally, if the knowledge base is

dynamic, the ground truth data will also need updates. Questions created by humans

may face challenges in achieving the necessary level of complexity for a comprehen-

sive evaluation, potentially affecting the overall quality of the assessment.

LLMs can be used to address these challenges. Synthetic data generation uses

LLMs to generate diverse questions and answers from the documents in the knowl-

edge base. LLMs can be prompted to create questions such as simple questions,

multi-context questions, conditional questions, reasoning questions, and similar

using the documents from the knowledge base as context.

5.3 Frameworks

Frameworks provide a structured approach to RAG evaluations. They can be used to
automate the evaluation process. Some go beyond and assist in the synthetic ground
truth data generation. While new evaluation frameworks continue to be introduced,
there are two popular ones that we discuss here:

104 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

¡	RAGAs (Retrieval-Augmented Generation Assessment)

¡	ARES (Automated RAG Evaluation System)

5.3.1 RAGAs

Retrieval-Augmented Generation Assessment, or RAGAs, is a framework developed by
Exploding Gradients that assesses the retrieval and generation components of RAG
systems without relying on extensive human annotations. RAGAs

¡	Synthetically generate a test dataset that can be used to evaluate a RAG pipeline.

¡	Use metrics to measure the performance of the pipeline.

¡	Monitor the quality of the application in production.

We will continue with our example of the Wikipedia page of the 2023 Cricket World
Cup, but we first create a synthetic test dataset using RAGAs and then use the RAGAs
metrics to evaluate the performance of the RAG pipeline we created in chapters 3 and 4.

SYNTHETIC TEST DATASET GENERATION (GROUND TRUTHS)

Section 5.2 pointed out that ground truths data is necessary to calculate evaluation
metrics for assessing the quality of RAG pipelines. While this data can be manually
curated, RAGAs provides the functionality of generating this dataset from the docu-
ments in the knowledge base.

RAGAs does this using an LLM. It analyses the documents in the knowledge base
and uses an LLM to generate seed questions from chunks in the knowledge base. These
questions are based on the document chunks from the knowledge base. These chunks
act as the context for the questions. Another LLM is used to generate the answer to
these questions. This is how it generates a question–context–answer data based on the
documents in the knowledge base. RAGAs also has an evolver module that creates more
difficult questions (e.g., multi-context, reasoning, and conditional) for a more compre-
hensive evaluation. Figure 5.9 illustrates the process of synthetic data generation using
RAGAs.

Documents Seed question
generator

Question
evolver

Reasoning

question

Conditional

question

Multi-context

question

Evaluation
dataset

M

R

Figure 5.9 Synthetic ground truths data generation using RAGAs

 105Frameworks

To evaluate our RAG pipeline, let’s recreate the documents from the Wikipedia page
like we did in chapter 3. Note that we will have to install the packages used in the previ-
ous chapters to continue with the following code:

#Importing the AsyncHtmlLoader

from langchain_community.document_loaders import AsyncHtmlLoader

#This is the URL of the Wikipedia page on the 2023 Cricket World Cup

url="https://en.wikipedia.org/wiki/2023_Cricket_World_Cup"

#Instantiating the AsyncHtmlLoader

loader = AsyncHtmlLoader (url)

#Loading the extracted information

html_data = loader.load()

from langchain_community.document_transformers import Html2TextTransformer

#Instantiate the Html2TextTransformer function

html2text = Html2TextTransformer()

#Call transform_documents

html_data_transformed = html2text.transform_documents(html_data)

The html_data_transformed contains the necessary document format of the Wikipe-
dia page. We will use RAGAs library to generate the dataset from these documents. For
that, we will first need to install the RAGAs library:

%pip install ragas== 0.2.13

Import necessary libraries

from ragas.llms import LangchainLLMWrapper
from ragas.embeddings import LangchainEmbeddingsWrapper
from ragas.testset import TestsetGenerator
from langchain_openai import ChatOpenAI, OpenAIEmbeddings

Instantiate the models

generator_llm =
LangchainLLMWrapper(

ChatOpenAI(model="gpt-4o-mini")
)

generator_embeddings =
LangchainEmbeddingsWrapper(

OpenAIEmbeddings(model="text-embedding-3-small")
)

Create the TestsetGenerator

generator =
TestsetGenerator(

llm=generator_llm,
embedding_model=generator_embeddings

106 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

)

Call the generator

testset =

generator.generate_with_langchain_docs

(

 html_data_transformed,

test_size=20,

)

The testset that we created contains 20 questions based on our document, along
with the chunk of the document that the question was based on, and the ground truth
answer. A screenshot of the dataset is shown in figure 5.10.

Figure 5.10 Synthetic test data generated using RAGAs

We will use this dataset to evaluate our RAG pipeline.

RECREATING THE RAG PIPELINE

From the created test dataset, we use the question and the ground_truth information.
We pass the questions to our RAG pipeline and generate answers. We compare these
answers with the ground_truth to calculate the evaluation metrics. First, we recreate
our RAG pipeline. Again, it is important to note that we will have to install the pack-
ages we used in the previous chapters to continue with the code:

Import FAISS class from vectorstore library

from langchain_community.vectorstores import FAISS

Import OpenAIEmbeddings & ChatOpenAI from the library

from langchain_openai import OpenAIEmbeddings, ChatOpenAI

def rag_function(query, db_path, index_name):

Instantiate the embeddings object

 107Frameworks

embeddings=OpenAIEmbeddings(model="text-embedding-3-small")

Load the database stored in the local directory

db=FAISS.load_local(

folder_path=db_path,

index_name=index_name,

embeddings=embeddings,

allow_dangerous_deserialization=True

)

Ranking the chunks in descending order of similarity and selecting the top

2 queries

retrieved_docs = db.similarity_search(query, k=2)

Keeping text of top 2 retrieved chunks

retrieved_context=[retrieved_docs[0].page_content

+retrieved_docs[1].page_content]

Creating the prompt

augmented_prompt=f"""

Given the context below, answer the question.

Question: {query}

Context : {retrieved_context}

Remember to answer only based on the context

provided and not from any other source.

If the question cannot be answered based

on the provided context, say I don't know.

"""

Instantiate the LLM

llm = ChatOpenAI(

model="gpt-4o-mini",

temperature=0,

max_tokens=None,

timeout=None,

max_retries=2

)

Create message to send to the LLM

messages=[("human",augmented_prompt)]

Make the API call passing the message to the LLM

108 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

response = llm.invoke(messages)

Extract the answer from the response object

answer=response.content

return retrieved_context, answer

We can try this pipeline to generate answers.

Location of the stored vector index created by the indexing pipeline

db_path='../../Assets/Data'

User Question

query="Who won the 2023 cricket world cup?"

Index Name

index_name="CWC_index"

Calling the RAG function

rag_function(query, db_path, index_name)

Now that we have the RAG pipeline function, we can evaluate this pipeline using the
questions that have been synthetically generated.

EVALUATIONS

We first generate answers to the questions in the synthetic test data using our RAG
pipeline. We then compare the answers to the ground truth answers. We first generate
the answers:

Create Lists for Questions and Ground Truths from testset

sample_queries =
dataset.to_pandas()['user_input'].to_list()

expected_responses=

dataset.to_pandas()['reference'].to_list()

Iterate through the testset to generate responses to questions

dataset_to_eval=[]

for query, reference in zip(sample_queries,expected_responses):

Call the RAG function

rag_context, rag_answer=rag_function(query,db_path,index_name)

Create a dictionary of question, answer, context, and ground truth

dataset_to_eval.append(
 {
 "user_input":query,
 "retrieved_contexts":relevant_docs,
 "response":response,

 109Frameworks

 "reference":reference
 }
)

For RAGAs, the evaluation set needs to be in the Dataset format:

Import the EvaluationDataset library

from ragas import EvaluationDataset

evaluation_dataset = EvaluationDataset.from_list(dataset_to_eval)

Now that we have the complete evaluation dataset, we can invoke the metrics:

#Import all the libraries

from ragas import evaluate

from ragas.metrics import (
 LLMContextRecall,
Faithfulness,
FactualCorrectness,
AnswerCorrectness,
ResponseRelevancy)

#Set the judge LLM for evaluation

evaluator_llm =
LangchainLLMWrapper(

ChatOpenAI(model="gpt-4o-mini")
)

Calculate the metrics for the dataset

result = evaluate(
dataset=evaluation_dataset,
metrics=[
LLMContextRecall(),
Faithfulness(),
AnswerCorrectness(),
ResponseRelevancy(),
FactualCorrectness()],
llm=evaluator_llm)

You can also check the official documentation of RAGAs for more information
(https://docs.ragas.io/en/stable/). RAGAs calculates a bunch of metrics that are
useful for assessing the quality of the RAG pipeline. RAGAs uses an LLM to do this,
somewhat subjective, task. For example, to calculate faithfulness for a given question–
context–answer record, RAGAs first breaks down the answer into simple statements.
Then, for each statement, it asks the LLM whether the statement can be inferred from
the context. The LLM provides a 0 or 1 response along with a reason. This process
is repeated a couple of times. Finally, faithfulness is calculated as the proportion of

https://docs.ragas.io/en/stable/

110 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

statements judged by the LLM as faithful (i.e., 1). Several other metrics are calculated
using this LLM-based approach. This approach, where an LLM is used in evaluating
a task, is also popularly called LLM as a judge approach. An important point to note
here is that the accuracy of this evaluation is also dependent on the quality of the LLM
being used as the judge.

5.3.2 Automated RAG evaluation system

Automated RAG evaluation system, or ARES, is a framework developed by research-
ers at Stanford University and Databricks. Like RAGAs, ARES uses an LLM as a judge
approach for evaluations. Both request a language model to classify answer rele-
vance, context relevance, and faithfulness for a given query. However, there are some
differences:

¡	RAGAs relies on heuristically written prompts sent to the LLM for evaluation.
ARES, in contrast, trains a classifier using a language model.

¡	RAGAs aggregates the responses from the LLM to arrive at a score. ARES provides
confidence intervals for the scores using a framework called Prediction-Powered
Inference (PPI).

¡	RAGAs generates a simple synthetic question–context–answer dataset for eval-
uation from the documents. ARES generate synthetic datasets comprising both
positive and negative examples of query–passage–answer triples.

ARES requires more data than RAGAs. To use ARES, you need the following three
datasets:

¡	In-domain passage set—This is a collection of passages relevant to the specific
domain being evaluated. The passages should be suitable for generating queries
and answers. In our case, it will be the documents that we created from the Wiki-
pedia article.

¡	Human preference validation set—A minimum of approximately 150 annotated data
points is required. This set is used to validate the preferences of human annota-
tors regarding the relevance of the generated query-passage–answer triples.

¡	Few-shot examples—At least five examples of in-domain queries and answers are
needed. These examples help prompt the LLMs during the synthetic data gener-
ation process.

The need for a human-preference validation set and fine-tuning of language models
for classification makes applying ARES more complex. The application of ARES is
out of the scope of this book. However, ARES is a robust framework. It provides a
detailed analysis of system performance with statistical confidence intervals, mak-
ing it suitable for in-depth RAG system evaluations. RAGAs promises a faster eval-
uation cycle without reliance on human annotations. More details on the ARES
application can be found in the official GitHub repository (https://github.com/
stanford-futuredata/ARES).

https://github.com/stanford-futuredata/ARES
https://github.com/stanford-futuredata/ARES

 111Benchmarks

While RAGAs and ARES have gained popularity, there are other frameworks, such as
TruLens, DeepEval, and RAGChecker, that have also gotten acceptance amongst RAG
developers.

Frameworks provide a standardized method of automating the evaluation of your
RAG pipelines. Your choice of the evaluation framework should depend on your use
case requirements. For quick and easy evaluations that are widely understood, RAGAs
may be your choice. For robustness across diverse domains and question types, ARES
might suit better. Most of the proprietary service providers (vector DBs, LLMs, etc.)
have their evaluation features you may use. You can also develop your metrics.

Next, we look at benchmarks. Benchmarks are used to compare competing RAG
systems with one another.

5.4 Benchmarks

Benchmarks provide a standard point of reference to evaluate the quality and perfor-
mance of a system. RAG benchmarks are a set of standardized tasks, and a dataset used
to compare the efficiency of different RAG systems in retrieving relevant information
and generating accurate responses. There has been a surge in creating benchmarks
since 2023, when RAG started gaining popularity, but there have been benchmarks on
question-answering tasks that were introduced before that. Benchmarks such as Stan-
ford Question Answering Dataset (SQuAD), WikiQA, Natural Question (NQ), and
HotpotQA are open domain question-answering datasets that primarily evaluate the
retriever component using metrics such as Exact Match (EM) and F1-score. BEIR or
benchmarking information retrieval is a comprehensive, heterogeneous benchmark
based on 9 IR tasks and 19 question–answer datasets. This section discusses three of the
popular RAG-specific benchmarks and their evaluation.

5.4.1 RGB

Retrieval-augmented generation benchmark (RGB) was introduced in a December
2023 paper (https://arxiv.org/pdf/2309.01431). It comprises 600 base questions
and 400 additional questions, evenly split between English and Chinese. The corpus
was constructed using a multistep process that involved collecting recent news arti-
cles, generating questions and answers using ChatGPT, retrieving relevant web pages
through Google’s API, and selecting the most pertinent text chunks using a dense
retrieval model. It is a benchmark that focuses on four key abilities of a RAG system:
noise robustness, negative rejection, information integration, and counterfactual
robustness, as illustrated in figure 5.11.

RGB focuses on the following metrics for evaluation:

¡	Accuracy—Used for noise robustness and information integration. It is based on
the exact matching of the generated text with the correct answer.

¡	Rejection rate—Used for negative rejection. It is measured by exact matching of
the model’s output with a specific rejection phrase. The rejection rate is also

https://arxiv.org/pdf/2309.01431

112 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

Noise robustness Negative rejection

RAG RAG

Information integration Counterfactual robustness

RAG RAG

Figure 5.11 Four abilities required of RAG systems. Source: Benchmarking Large Language Models in Retrieval-

Augmented Generation by Chen et al., https://arxiv.org/pdf/2309.0143.

evaluated using ChatGPT to determine whether the responses contain rejection
information.

¡	Error detection rate—Used for counterfactual robustness. It is measured by exact
matching of the model’s output with a specific error-detection phrase and is also
evaluated using ChatGPT.

https://arxiv.org/pdf/2309.0143

 113Benchmarks

¡	Error correction rate—Used for counterfactual robustness. It measures whether the
model can provide the correct answer after identifying errors.

You can use the GitHub repository to implement RGB (https://github.com/
chen700564/RGB).

MULTI-HOP RAG

Curated by researchers at HKUST, multi-hop RAG contains 2556 queries, with evidence
for each query distributed across two to four documents. The queries also involve doc-
ument metadata, reflecting complex scenarios commonly found in real-world RAG
applications. It contains four types of queries:

¡	Inference—Synthesizing information across multiple sources (e.g., Which report
discusses the supply chain risk of Apple—the 2019 annual report or the 2020
annual report?)

¡	Comparison—Comparing facts from different sources (e.g., Did Netflix or Goo-
gle report higher revenue for the year 2023?)

¡	Temporal—Analyzing the temporal ordering of events (e.g., e.g. Did Apple intro-
duce the AirTag tracking device before or after the launch of the 5th generation
iPad Pro?)

¡	Null—Queries not answerable from the knowledge base

Full implementation code is available at https://github.com/yixuantt/MultiHop
-RAG.

CRAG

Comprehensive RAG benchmark (CRAG), curated by Meta and HKUST, is a factual
question-answering benchmark of 4,409 question–answer pairs and mock APIs to
simulate web and knowledge graph (KG) search. It contains eight types (simple,
conditions, comparison questions, aggregation questions, multi-hop questions, set
queries, post-processing-heavy questions, and false-premise questions, as illustrated in
figure 5.12) of queries across five domains (finance, sports, music, movie, and open
domain).

For each question in the evaluation set, CRAG labels the answer with one of four
classes:

¡	Perfect—The response correctly answers the user’s question and contains no hal-
lucinated content (scored as +1).

¡	Acceptable—The response provides a useful answer to the user’s question but may
contain minor errors that do not harm the usefulness of the answer (scored as
+0.5).

¡	Missing—The response is “I don’t know”, “I’m sorry I can’t find ...”, a system error
such as an empty response, or a request from the system to clarify the original
question (scored as 0).

¡	Incorrect—The response provides wrong or irrelevant information to answer the
user’s question (scored as −1).

https://github.com/chen700564/RGB
https://github.com/chen700564/RGB
https://github.com/yixuantt/MultiHop-RAG
https://github.com/yixuantt/MultiHop-RAG

114 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

Question type Definition

Simple

Simple w. condition

Set

Comparison

Aggregation

Multi-hop

Post-processing

heavy

False premise

Questions asking for simple facts that are unlikely to change overtime, such as the

birth date of a person or the authors of a book

Questions asking for simple facts with some given conditions, such as stock prices

on a certain date or a director’s recent movies in a certain genre

Questions that expect a set of entities or objects as the answer (e.g., “What are the

continents in the southern hemisphere?”)

Questions that compare two entities (e.g., “Who started performing earlier, Adele or

Ed Sheeran?”)

Questions that require aggregation of retrieval results to answer (e.g., “How many

Oscar awards did Meryl Streep win?”)

Questions that require chaining multiple pieces of information to compose the answer

(e.g., “Who acted in Ang Lee‘s latest movie?”)

Questions that need reasoning or processing of the retrieved information to obtain

the answer (e.g., “How many days did Thurgood Marshall serve as a Supreme Court

justice?”)

Questions that have a false preposition or assumption (e.g., “What’s the name of

Taylor Swift’s rap album before she transitioned to pop?” (Taylor Swift has not yet

released any rap albums.)

Figure 5.12 Eight question types in CRAG

For automatic evaluation, CRAG classifies an answer as perfect if it exactly matches the
ground truth. If not, then it asks an LLM to do the classification. It uses two LLM evalu-
ators. You can read more about CRAG at https://arxiv.org/pdf/2406.04744.

Other noteworthy benchmark datasets are MedRAG (https://github.com/Teddy
-XiongGZ/MedRAG), which focuses on Medical Information, CRUD-RAG (https://
arxiv.org/pdf/2401.17043), which focuses on the Chinese language, and FeB4RAG
(https://arxiv.org/abs/2402.11891), which focuses on federated search. If you’re
developing an LLM application that has accurate and contextual generation as its
core proposition, you’ll be able to communicate the quality of your application by
showing how it performs on different benchmarks. Table 5.2 compares the different
benchmarks.

Table 5.2 RAG benchmarks

Benchmark Dataset Task Metrics Applicability

SQuAD Stanford Ques-
tion Answering
Dataset

Open domain QA Exact match (EM),
F1-score

General QA tasks,
model evaluation
on comprehension
accuracy

Natural
questions

Real Google
search queries

Open domain QA F1-score Real-world QA,
information retrieval
from large corpora

https://arxiv.org/pdf/2406.04744
https://github.com/Teddy-XiongGZ/MedRAG
https://github.com/Teddy-XiongGZ/MedRAG
https://arxiv.org/pdf/2401.17043
https://arxiv.org/pdf/2401.17043
https://arxiv.org/abs/2402.11891

 115Limitations and best practices

Benchmark Dataset Task Metrics Applicability

HotpotQA Wikipedia-based
QA

Multi-hop QA EM, F1-score QA involving mul-
tiple documents,
complex reasoning
tasks

BEIR Multiple datasets Information

retrieval

nDCG@10 Comprehensive IR
model evaluation
across multiple
domains

RGB News articles,
ChatGPT-
generated QA

Robust QA Accuracy, rejec-
tion rate, error
detection rate,
error correction
rate

Robustness and
reliability of RAG
systems

Multi-hop RAG HKUST-curated
queries

Complex QA Various RAG applications
requiring multi-
source synthesis

CRAG Multiple sources
(finance, sports,
music, etc.)

Factual QA Four-class eval-
uation (perfect,
acceptable, miss-
ing, and incorrect)

Evaluating factual
QA with diverse
question types

We have looked frameworks that help in automating the calculation of evaluation met-
rics and benchmarks that enable comparisons across different implementations and
approaches. Frameworks will assist you in improving the performance of your system,
and benchmarks will facilitate comparing it with other systems available in the market.

However, as with any evolving field, there are some limitations and challenges to con-
sider. The next section examines these limitations and discusses best practices that have
emerged to address them, ensuring a more holistic and nuanced approach to RAG
evaluation.

5.5 Limitations and best practices

There has been a lot of progress made in the frameworks and benchmarks used for
RAG evaluation. The complexity in evaluation arises due to the interplay between the
retrieval and generation components. In practice, there’s a significant reliance on
human judgements, which are subjective and difficult to scale. What follows are a few
common challenges and some guidelines to navigate them.

LACK OF STANDARDIZED METRICS

There’s no consensus on what the best metrics are to evaluate RAG systems. Precision,
recall, and F1-score are commonly measured for retrieval but do not fully capture the
nuances of generative response. Similarly, commonly used generation metrics such
as BLEU, ROUGE, and similar do not fully capture the context awareness required
for RAG. Using RAG-specific metrics such as answer relevance, context relevance, and

Table 5.2 RAG benchmarks (continued)

116 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

faithfulness for evaluation brings in the necessary nuances required for RAG evalua-
tion. However, even for these metrics, there’s no standard way of calculation and each
framework brings in its methodology.

Best practice: Compare the results on RAG specific metrics from different frameworks.
Sometimes, it may be warranted to change the calculation method with respect to the
use case.

OVERRELIANCE ON LLM AS A JUDGE

The evaluation of RAG-specific metrics (in RAGAs, ARES, etc.) relies on using an LLM
as a judge. An LLM is prompted or fine-tuned to classify a response as relevant or not.
This adds to the complexity of the LLMs’ ability to do this task. It may be possible that
the LLM may not be very accurate in judging for your specific documents and knowl-
edge bases. Another problem that arises is that of self-reference. It is possible that if
the judge LLM is the same as the generation LLM in your system, you will get a more
favorable evaluation.

Best practice: Sample a few results from the judge LLM and evaluate whether the
results are in line with commonly understood business practice. To avoid the self-
reference problem, make sure to use a judge LLM different from the generation LLM.
It may also help if you use multiple judge LLMs and aggregate their results.

LACK OF USE CASE SUBJECTIVITY

Most frameworks have a generalized approach to evaluation. They may not capture the
subjective nature of the task relevant to your use case (content generation versus chat-
bot versus question-answering, etc.)

Best practice: Focus on use-case-specific metrics to assess quality, coherence, useful-
ness, and similar. Incorporate human judgements in your workflow with techniques
such as user feedback, crowd-sourcing, or expert ratings.

BENCHMARKS ARE STATIC

Most benchmarks are static and do not account for the evolving nature of information.
RAG systems need to adapt to real-time information changes, which are not currently
tested effectively. There is a lack of evaluation for how well RAG models learn and
adapt to new data over time. Most benchmarks are domain-agnostic, which may not
reflect the performance of RAG systems in your specific domain.

Best practice: Use a benchmark that is tailored to your domain. The static nature of
benchmarks is limiting. Do not overly rely on benchmarks, and augment the use of
benchmarks with regularly updating data.

SCALABILITY AND COST

Evaluating large-scale RAG systems is more complex than evaluating basic RAG pipe-
lines. It requires significant computational resources. Benchmarks and frameworks
also generally do not account for metrics such as latency and efficiency, which are crit-
ical for real-world applications.

Best practice: Employ careful sampling of test cases for evaluation. Incorporate work-
flows to measure latency and efficiency.

 117Summary

Apart from these, you should also carefully consider the aspects of bias and toxicity,
focusing on information integration and negative rejection, which the frameworks do
not evaluate well. It is also important to keep an eye on how these evaluation frame-
works and benchmarks evolve.

In this chapter, we comprehensively examined the evaluation metrics, frameworks,
and benchmarks that will help you evaluate your RAG pipelines. We used RAGAs to
evaluate the pipeline that we have been building.

Until now, we have looked at building and evaluating a simple RAG system. This
also marks the second part 2 of this book. You are now familiar with the creation of
the RAG knowledge brain using the indexing pipeline, enabling real-time interaction
using the generation pipeline and evaluating your RAG system using frameworks and
benchmarks.

In the next part, we will move toward discussing the production aspects of RAG sys-
tems. In chapter 6, we will look at strategies and advanced techniques to improve our
RAG pipeline, which should also reflect in better evaluation metrics. In chapter 7, we
will look at the LLMOps stack that enables RAG in production.

Summary

RAG evaluation fundamentals

¡	RAG evaluation assesses how well systems reduce hallucinations and ground
responses in the provided context.

¡	Three key quality scores for RAG evaluation are context relevance, answer faith-
fulness, and answer relevance.

¡	Four critical abilities required of RAG systems include noise robustness, negative
rejection, information integration, and counterfactual robustness.

¡	Additional considerations include latency, robustness, bias, and toxicity of
responses.

¡	Custom use-case-specific metrics should be developed to evaluate performance.

Evaluation metrics

¡	Retrieval metrics include precision, recall, F1-score, mean reciprocal rank
(MRR), mean average precision (MAP), and normalized discounted cumulative
gain (nDCG).

¡	Accuracy, precision, recall, and F1-score do not consider the ranking order of the
results.

¡	RAG-specific metrics focus on context relevance, answer faithfulness, and answer
relevance.

¡	Human evaluations and ground truth data play a crucial role in RAG assessment.

118 CHAPTER 5 RAG evaluation: Accuracy, relevance, and faithfulness

Evaluation frameworks

¡	Frameworks such as RAGAs and ARES automate the evaluation process and assist
in synthetic data generation.

¡	RAGAs is an easy-to-implement framework that can be used for quick evaluation
of RAG pipelines.

¡	ARES uses a more complex approach, including classifier training and confi-
dence interval calculations.

Benchmarks

¡	Benchmarks provide standardized datasets and metrics for comparing different
RAG implementations on specific tasks.

¡	Popular benchmarks such as SQuAD, natural questions, HotpotQA, and BEIR
focus on retrieval quality.

¡	Recent benchmarks such as RGB, multi-hop RAG, and CRAG are more holistic
from a RAG perspective.

¡	Benchmarks focus on different aspects of RAG performance, such as multi-hop
reasoning or specific domains.

Limitations and best practices

¡	Challenges in RAG evaluation include lack of standardized metrics, overreliance
on LLMs as judges, and static nature of benchmarks.

¡	Best practices include using multiple frameworks, incorporating use-case-specific
metrics, and regularly updating evaluation data.

¡	Balancing automated metrics with human judgment and considering use-case-
specific requirements is crucial.

¡	The field of RAG evaluation is evolving, with new frameworks and benchmarks
constantly emerging.

¡	Developers should stay informed about new developments and adapt their evalu-
ation strategies accordingly.

Part 3

RAG in production

You must be confident by now in building and evaluating a core RAG pipeline.
Applications such as “chat with your PDF” or question-answering systems based
on web pages should no longer be a mystery. This part of the book will guide
you in improving your RAG pipeline and also lay out a blueprint for the layers
required to build a production-ready RAG system.

In chapter 6, you’ll be able to try out different techniques for improving the
basic RAG pipeline into a more advanced one. You’ll get to know the techniques
that improve RAG in three different stages—before, during, and after retrieval.
You’ll also learn about modularity and how modern RAG systems are made up of
replaceable components.

Chapter 7 discusses the operations stack for RAG. You will learn about the crit-
ical layers without which any RAG system will fail, the essential layers that improve
system performance, and the enhancement layers that focus on usability, scalabil-
ity, and efficiency of the system.

By the end of this part, you should have the knowledge and skills to start build-
ing simple RAG systems and putting them into production. This is also the stage
at which you are ready to explore deeper nuances and variations of RAG systems.

121

6Progression of RAG
systems: Naïve, advanced,

and modular RAG

This chapter covers

¡	Limitations of the naïve RAG approach

¡	Advanced RAG strategies and techniques

¡	Modular patterns in RAG

In the first two parts of this book, you learned about the utility of retrieval-
augmented generation (RAG), along with the development and evaluation of a
basic RAG system. The basic, or the naïve RAG approach that we have discussed is,
generally, inadequate when it comes to production-grade systems.

This chapter focuses on more advanced concepts in RAG. We begin by revisiting
the limitations and the points of failure of the naïve RAG approach. Next, we discuss
the failures at the retrieval, augmentation, and generation stages. Advanced strate-
gies and techniques to address these points of failure will be elaborated on in distinct
phases of the RAG pipeline.

Better indexing of the knowledge base leads to better RAG outcomes. We will look
at a few data indexing strategies that build on the naïve indexing pipeline to improve
the searchability of the knowledge base.

In the generation pipeline, improvements are examined in three stages: pre-
retrieval, retrieval, and post-retrieval. Pre-retrieval techniques focus on manipulating
and improving the input user query. Retrieval strategies focus on better matching of

122 CHAPTER 6 Progression of RAG systems: Naïve, advanced, and modular RAG

the user query to the documents in the knowledge base. Finally, in the post-retrieval
stage, the focus is on aligning the retrieved context with the desired result and making
it suitable for generation.

The last part of the chapter discusses a modular approach to RAG that has been
emerging to find applicability in RAG systems. The modular approach is an architec-
tural enhancement to the basic RAG system.

Note that the strategies and techniques for RAG improvement are expansive, and
this chapter highlights a few popular ones. The chapter is interspersed with code exam-
ples, but for a more exhaustive supporting code, check out the source code repository
of this book.

By the end of this chapter, you should

¡	Understand why the naïve approach to RAG is not suitable for production.

¡	Be aware of indexing strategies that make the RAG knowledge base more efficient.

¡	Know some of the popular pre-retrieval, retrieval, and post-retrieval techniques.

¡	Be familiar with the modular approach to RAG.

RAG powers a variety of AI applications. However, there is a certain aspect of uncer-
tainty when it comes to outcomes. Inaccuracies in retrieval, disjointed context, and
incoherence in the LLM outputs need to be addressed before taking RAG to produc-
tion. In a very short time, researchers and practitioners have experimented with inno-
vative techniques to improve the relevance and faithfulness of RAG systems. But before
we look at these techniques, it is important to understand why a naïve RAG approach
often doesn’t find its way into a production environment.

6.1 Limitations of naïve RAG

Naïve RAG can be thought of as the earliest form of RAG, which gained popularity
after the release of ChatGPT and the rise of LLM technology. As we have seen so far,
it follows a linear process of indexing, retrieving, augmenting, and generation. This
process falls in a “retrieve then read” framework, which means that there’s a retriever
retrieving information and that there’s an LLM reading this information to generate
the results, as shown in figure 6.1.

Documents

User query

Indexing

R
e
tr

ie
v
e
r

P
ro

m
p

t
L

L
M

R
e
s
p

o
n

s
e

Retrieve Read

Figure 6.1 Naïve RAG is a sequential “retrieve then read” process.

 123Advanced RAG techniques

The naïve RAG approach is marred with drawbacks at each of the three stages:

¡	Retrieval—Naïve retrieval is often observed to have low precision that leads to
irrelevant information being retrieved. It also has a low recall, which means that
relevant information is missed, which leads to incomplete results.

¡	Augmentation—There is a real possibility of redundancy and repetition when
multiple retrieved documents have similar information. Also, when information
is sourced from different documents, the context becomes disjointed. There’s
also the problem of context length of the LLMs that has an effect on the volume
of retrieved context that can be passed on to the LLM for generation.

¡	Generation—With the inadequacies of the upstream processes, the generation suf-
fers from hallucination and lack of groundedness of the generated content. The
LLM faces challenge in reconciling information. The challenges of toxicity and
bias also persist. It is also noticed sometimes that the LLM becomes over-reliant
on the retrieved context and forgets to draw from its own parametric memory.

Figure 6.2 summarizes these drawbacks.

Retrieval Augmentation Generation

• Low recall

• Low precision

• Redundancy and repetition

• Disjointed context

• Reconciliation challenges

• Over-reliance on context

Figure 6.2 Drawbacks of naïve RAG at each stage of the process

In the last few years, a lot of research and experimentation has been done to address
these drawbacks. Early approaches involved pre-training language models. Techniques
involving fine-tuning of the LLMs, embeddings models, and retrievers have also been
tried. These techniques require training data and re-computation of model weights,
generally using supervised learning techniques. Since this book is a foundational
guide, we will not go into these complex techniques.

This chapter covers some interventions, techniques, and strategies used at different
stages of the two RAG pipelines: the indexing and generation pipeline. Although the
array of such interventions is endless, some of the more popular ones are highlighted in
the subsequent sections.

6.2 Advanced RAG techniques

Advanced techniques in RAG have continued to emerge since the earliest experiments
with naïve RAG. There are three stages in which we can discuss these techniques:

¡	Pre-retrieval stage—As the name suggests, certain interventions can be employed
before the retriever comes into action. This broadly covers two aspects:

– Index optimization—The way documents are stored in the knowledge base

124 CHAPTER 6 Progression of RAG systems: Naïve, advanced, and modular RAG

– Query optimization—Optimizing the user query so it aligns better with the
retrieval and generation tasks

¡	Retrieval stage—Certain strategies can improve the recall and precision of the
retrieval process. This goes beyond the capability of the underlying retrieval algo-
rithms discussed in chapter 4.

¡	Post-retrieval stage—Once the information has been retrieved, the context can be fur-
ther optimized to better align with the generation task and the downstream LLM.

With techniques employed at these three stages, the advanced RAG process follows
a “rewrite then retrieve then re-rank then read” frameworks. Two additional compo-
nents of rewrite and re-rank are added, and the retrieve component is enhanced in
comparison with naïve RAG. This structure is presented in figure 6.3.

Indexing

R
e
tr

ie
v
e
r

P
ro

m
p

t
L

L
M

Documents

User query

P
re

-
re

tr
ie

v
a
l

Retrieval
strategies

R
e
s
p

o
n

s
e

Rewrite Retrieve Re-rank Read

Index
optimization

Naive RAG Advanced RAG

Optimizes the
creation and storage
of knowledge base to
improve retrieval

Optimizes the
user query for
better alignment
with the retriever

Improve the recall
and precision of
the retriever

Optimizes the
retrieved context for
better generation

P
o

s
t-

re
tr

ie
v
a
l

Figure 6.3 Advanced RAG is a rewrite–retrieve–re-rank–read process, as compared to a retrieve–read

naïve RAG process.

We now explore these components one by one, beginning with the pre-retrieval stage.

 125Pre-retrieval techniques

6.3 Pre-retrieval techniques

The primary objective of employing pre-retrieval techniques is to facilitate better
retrieval. We have noted that the retrieval stage of naïve RAG suffers from low recall
and low precision—irrelevant information is retrieved, and not all relevant informa-
tion is retrieved. This can happen mainly because of two reasons:

¡	Knowledge base is not suited for retrieval. If the information in the knowledge base is
not stored in a manner that is easy to search through, then the quality of retrieval
will remain suboptimal. To address this problem, index optimization is done in the
indexing pipeline for more efficient storage of the knowledge base.

¡	Retriever doesn’t completely understand the input query. In generative AI applications,
the control over the user query is generally limited. The level of detail a user
provides is subjective. The retriever sometimes may misunderstand or not com-
pletely understand the context of the user query. Query optimization addresses this
aspect of the challenge with the naïve RAG.

Both index and query optimizations are carried out before the retriever is invoked.
This is the only stage that recommends interventions both in the indexing and genera-
tion pipeline. We will look at a few techniques for each of these.

6.3.1 Index optimization

Index optimization is employed in the indexing pipeline. The objective of index opti-
mization is to set up the knowledge base for better retrieval. Some of the popular strat-
egies are as follows.

CHUNK OPTIMIZATION

Chapter 3 discussed the significance of chunking in the indexing pipeline. Chunking
large documents into smaller segments plays a crucial role in retrieval and handling
the context length limits of LLMs. Certain techniques aim for better chunking and
efficient retrieval of the chunks, such as

¡	Chunk size optimization—The size of the chunks can have a significant effect on the
quality of the RAG system. While large-sized chunks provide better context, they
also carry a lot of noise. Smaller chunks, however, have precise information, but
they might miss important information. For instance, consider a legal document
that’s 10,000 words long. If we chunk it into 1,000-word segments, each chunk
might contain multiple legal clauses, making it hard to retrieve specific infor-
mation. Conversely, chunking it into 200-word segments allows for more precise
retrieval of individual clauses, but may lose the context provided by surrounding
clauses. Experimenting with chunk sizes can help find the optimal balance for
accurate retrieval. The processing time also depends on the chunk size. Chunk
size, therefore, has a significant effect on retrieval accuracy, processing speed,
and storage efficiency. The ideal chunk size varies with the use case and depends
on balancing factors such as document types and structure, complexity of user

126 CHAPTER 6 Progression of RAG systems: Naïve, advanced, and modular RAG

query, and the desired response time. There is no one-size-fits-all approach to
optimizing chunk sizes. Experimentation and evaluation of different chunk sizes
on metrics such as faithfulness, relevance, and response time (as discussed in
chapter 5) can help in identifying the optimal chunk size for the RAG system.
Chunk size optimization may require periodic reassessment as data or require-
ments change.

¡	Context-enriched chunking—This method adds the summary of the larger docu-
ment to each chunk to enrich the context of the smaller chunk. This makes more
context available to the LLM without adding too much noise. It also improves the
retrieval accuracy and maintains semantic coherence across chunks. This feature
is particularly useful in scenarios where a more holistic view of the information
is crucial. While this approach enhances the understanding of the broader con-
text, it adds a level of complexity and comes at the cost of higher computational
requirements, increased storage needs, and possible latency in retrieval. Here is
an example of how context enrichment can be done using GPT-4o-mini, OpenAI
embeddings, and FAISS:

from langchain_community.document_loaders

import AsyncHtmlLoader

from langchain_community.document_transformers

import Html2TextTransformer

url=

https://en.wikipedia.org/wiki/2023_Cricket_World_Cup

loader = AsyncHtmlLoader (url)

data = loader.load()

html2text = Html2TextTransformer()

document_text=data_transformed[0].page_content

summary_prompt = f"Summarize the given

document in a single paragraph\n

document: {document_text}"

from openai import OpenAI

client = OpenAI()

response = client.chat.completions.create(

 model="gpt-4o-mini",

 messages= [

 {"role": "user", "content": summary_prompt}

]

)

summary=response.choices[0].message.content

from langchain_text_splitters import

RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(

chunk_size=1000,

chunk_overlap=200)

Loads text from
Wikipedia page

Generates summary
of the text using
GPT-4o-mini model

Creates chunks
using recursive
character splitter

 127Pre-retrieval techniques

chunks=text_splitter.split_text(
data_transformed[0].page_content
)

context_enriched_chunks =
[answer + "\n" + chunk for chunk in chunks]

embedding = OpenAIEmbeddings(openai_api_key=api_key)
vector_store = FAISS.from_texts(

context_enriched_chunks,
embedding

)

¡	Fetch surrounding chunks—In this technique, chunks are created at a granu-
lar level, say, at a sentence level, and when a relevant chunk of text is found in
response to a query, the system retrieves not only that chunk but also the sur-
rounding chunks. This makes the search granular but also performs contextual
expansion by retrieving adjacent chunks. It is useful in long-form content such
as books and reports where information flows across paragraphs and sections.
This technique also adds a layer of processing cost and latency to the system.
Apart from that, there is a possibility of diluting the relevance as the neighboring
chunks may contain noise.

Chunk optimization is an effective step toward better RAG systems. Although it pres-
ents challenges such as managing the costs, system latency, and storage efficiency, opti-
mizing chunking can fundamentally improve the retrieval and generation process of
the RAG system.

METADATA ENHANCEMENTS

A common way of defining metadata is “data about data.” Metadata describes other
data. It can provide information such as a description of the data, time of creation,
author, and similar. While metadata is useful for managing and organizing data, in
the context of RAG, metadata enhances the searchability of data. A few ways in which
metadata is crucial in improving RAG systems are

¡	Metadata filtering—Adding metadata such as timestamp, author, category, and
similar can enhance the chunks. While retrieving, chunks can first be filtered by
relevant metadata information before doing a similarity search. This improves
retrieval efficiency and reduces noise in the system. For example, using the time-
stamp filters can help avoid outdated information in the knowledge base. If a
user searches for “latest COVID-19 travel guidelines,” metadata filtering by time-
stamp ensures that only the most recent guidelines are retrieved, avoiding out-
dated information.

¡	Metadata enrichment—Timestamp, author, category, chapter, page number, and
so forth are common metadata elements that can be extracted from documents.
However, even more valuable metadata items can be constructed. This can be a
summary of the chunk by extracting tags from the chunk. One particularly useful

Enriches chunks
with summary data

Creates embeddings and
storing in FAISS index

128 CHAPTER 6 Progression of RAG systems: Naïve, advanced, and modular RAG

technique is reverse hypothetical document embeddings. It involves using a lan-
guage model to generate potential queries that could be answered by each doc-
ument or chunk. These synthetic queries are then added to metadata. During
retrieval, the system compares the user’s query with these synthetic queries to
find the most relevant chunks.

Metadata is a great tool for improving the accuracy of the retrieval system. However, a
degree of caution must be exercised when adding metadata to the chunks. Designing
the metadata schema is important to avoid redundancies and managing processing
and storage costs. Providing improved relevance and accuracy, metadata enhancement
has become extremely popular in contemporary RAG systems.

INDEX STRUCTURES

Another important aspect of the knowledge base is how well the information is struc-
tured. In the naïve RAG approach, there is no structural order to documents/chunks.
However, for a more efficient retrieval, a few indexing structures have become popular
and effective:

¡	Parent–child document structure—In a parent–child document structure, docu-
ments are organized hierarchically. The parent document contains overarching
themes or summaries, while child documents delve into specific details. During
retrieval, the system can first locate the most relevant child documents and then
refer to the parent documents for additional context if needed. This approach
enhances the precision of retrieval, while maintaining the broader context.
Simultaneously, this hierarchical structure can present challenges in terms of
memory requirements and computational load.

¡	Knowledge graph index—Knowledge graphs organize data in a structured man-
ner as entities and relationships. Using knowledge graph structures not only
increases contextual understanding but also equips the system with enhanced
reasoning capabilities and improved explainability. Knowledge graph creation
and maintenance, however, is an expensive process. Knowledge-graph-powered
RAG, also called GraphRAG, is an emerging advanced RAG pattern that has
demonstrated significant improvements in RAG performance. We will discuss
GraphRAG in detail in chapter 8.

Index structure, perhaps, has the biggest effect on index optimization for retrieval. It,
however, introduces storage and memory burden on the system and affects search time
performance. Index structure optimization is therefore advised in large scale systems
where the true potential of concepts such as GraphRAG and hierarchical index can be
realized.

NOTE In the previous chapters, we have discussed that embeddings are a cru-
cial component of RAG. They are used to calculate the semantic similarity
between the user query and the documents stored in the knowledge base.
Generally available embeddings models have been trained on commonly

 129Pre-retrieval techniques

spoken language. When dealing with domain-specific or specialized content,
these models may not yield good results. Fine-tuning embedding models let
you optimize vector representations for your specific domain or task, leading
to more accurate retrieval of relevant context. Fine-tuning is a slightly com-
plex process since it requires curation of the training dataset and resources
for recalculating the embeddings model. In case you’re dealing with highly
specialized domains where the vocabulary is different from commonly spoken
languages, you should consider fine-tuning the embedding model for your
domain.

Like the indexing pipeline, index optimization is a periodic process and does not hap-
pen in real-time. The objective of index optimization is to set up the knowledge base
for better retrieval. One must also be mindful of the added complexity that leads to an
increase in computational, memory, and storage requirements. Figure 6.4 is an illustra-
tive workflow of an index-optimized knowledge base.

Chunking

Naive RAG

Advanced RAG

Communities

Vector

GraphEntity Relation

Summaries

Source Connector Parser

Pre-processing

Embedding

Optimizer Fine-tuning

Data loading

S
p

li
tt

in
g

C
o

n
v
e
rs

io
n Storage

Knowledge graph

Pre-processing steps
include cleaning, and
metadata enhancement,
while loading data
enhances searchability.

Chunk size
optimization and
enriched context
enhance retrieval
and contextual
generation.

Embeddings
model can be
fine-tuned for
domain
adaptability.

Knowledge graph indexing results in
deeper context by establishing entity
relationships and creating higher-order
community sub-graph summaries.

Figure 6.4 Illustration of an index-optimized knowledge base

130 CHAPTER 6 Progression of RAG systems: Naïve, advanced, and modular RAG

6.3.2 Query optimization

The second stage of pre-retrieval techniques is a part of the generation pipeline. The
objective of this stage is to optimize the input user query in a manner that makes it bet-
ter suited for the retrieval tasks. Some of the popular query optimization strategies are
listed in the following sections.

QUERY EXPANSION

In query expansion, the original user query is enriched to retrieve more relevant infor-
mation. This helps in increasing the recall of the system and overcomes the challenge
of incomplete or very brief user queries. Some of the techniques that expand user
queries are

¡	Multi-query expansion—In this approach, multiple variations of the original query
are generated using an LLM, and each variant query is used to search and retrieve
chunks from the knowledge base. For a query “How does climate change affect
polar bears?” a multi-query expansion might generate “Impact of global warming
on polar bears,” “What are the consequences of climate change for polar bear
habitats?” Let’s look at a simple example of multi-query generation using GPT
4o-mini model:

original_query="How does climate change affect polar bears?"

num=5

expansion_prompt=f"Generate {num} variations

of the following query: {original_query}.

Respond in JSON format."

from openai import OpenAI

client = OpenAI()

response = client.chat.completions.create(

 model="gpt-4o-mini",

 messages= [

 {"role": "user", "content": expansion_prompt}

],

 response_format={ "type": "json_object" }

)

expanded_queries=response.choices[0].message.content

¡	Sub-query expansion: Subquery approach is quite like the multi-query approach. In
this approach, instead of generating variations of the original query, a complex
query is broken down into simpler sub-queries. This approach is inspired by the
least-to-most prompting technique, where complex problems are broken down
into simpler sub-problems and are solved one by one. A sub-query expansion on
the same query—“How does climate change affect polar bears?”—may generate
“How does melting sea ice influence polar bear hunting and feeding behaviors?”
and “What are the physiological and health impacts of climate change on polar

Crafts the prompt
for query expansion

Uses GPT 4o-mini
to generate
expanded queries

Extracts the
text from the
response object

 131Pre-retrieval techniques

bears?” The approach to sub-query is similar to that for multi-query, except for
the changes to the prompt:

sub_query_expansion_prompt=f" \

Break down the following \

query into {num} sub-queries targeting \

different aspects of the query: {original_query}. \

Respond in JSON format. "

¡	Step-back expansion—The term comes from the step-back prompting approach
where the original query is abstracted to a higher-level conceptual query. During
retrieval, both the original query and the abstracted query are used to fetch
chunks. Similar to above example, an abstracted step-back query may be “What
are the ecological impacts of climate change on arctic ecosystems?” Here is an
example of the prompt that can be used:

step_back_expansion_prompt = f" \

Given the query: {original_query}, \

generate a more abstract, \

higher-level conceptual query. "

While multi-query expansion generates various rephrasing or synonyms of the original
query to cast a wider net during retrieval, sub-query expansion breaks down a complex
query into simpler, component queries to target specific pieces of information, and
step-back expansion abstracts the query to a higher-level concept to capture broader
context.

Query expansion also presents its own set of challenges that need to be considered
while implementing this strategy. While query expansion may increase recall by match-
ing more documents, it may reduce the precision. The expansion terms need to be
carefully selected to avoid contextual drift from the original query. Overexpansion can
dilute the focus from the original query. Despite the challenges, query expansion has
proved to be an effective technique for improving the recall of retrieval and generating
more context aware responses.

QUERY TRANSFORMATION

Compared to query expansion, in query transformation, instead of the original user
query, retrieval happens on a transformed query, which is more suitable for the
retriever.

¡	Rewrite—Queries are rewritten from the input. The input in quite a few real-
world applications may not be a direct query or a query suited for retrieval. Based
on the input, a language model can be trained to transform the input into a
query that can be used for retrieval. A user’s statement like, “I can’t send emails
from my phone” can be rewritten as “Troubleshooting steps for resolving email
sending issues on smartphones,” making it more suitable for retrieval.

132 CHAPTER 6 Progression of RAG systems: Naïve, advanced, and modular RAG

¡	HyDE—Hypothetical document embedding, or HyDE, is a technique where the
language model first generates a hypothetical answer to the user’s query without
accessing the knowledge base. This generated answer is then used to perform a
similarity search against the document embeddings in the knowledge base, effec-
tively retrieving documents that are similar to the hypothetical answer rather
than the query itself. Here is an example that generates hypothetical document
embeddings:

Original Query

original_query=

"How does climate change \

affect polar bears?"

Prompts for generating HyDE

system_prompt="You are an expert in \

climate change and arctic life."

hyde_prompt=f"Generate an answer to the \

question: {original_query}"

Using OpenAI to generate a hypothetical answer

from openai import OpenAI

client = OpenAI()

response = client.chat.completions.create(

 model="gpt-4o-mini",

 messages= [

 {"role": "system", "content": system_prompt},

 {"role": "user", "content": hyde_prompt}

]

)

hy_answer=response.choices[0].message.content

Using OpenAI Embeddings to convert hyde into embeddings

embeddings = OpenAIEmbeddings(

model="text-embedding-3-large"

)

hyde = embeddings.embed_query(hy_answer)

Challenges similar to query expansion such as drift from original query and maintain-
ing intent also persist in query transformation strategies. Effective rewriting and trans-
formation of the query result in enhancing the context awareness of the system.

QUERY ROUTING

Different queries can demand different retrieval methods. Based on criteria such as
intent, domain, language, complexity, source of information, and so forth, queries
need to be classified so that they can follow the appropriate retrieval method. This is
the idea behind optimizing the user query by routing it to the appropriate workflow.
Types of routing techniques include:

Original query

Prompts for
generating HyDE

Uses OpenAI to generate
a hypothetical answer

Uses OpenAI Embeddings
to convert Hyde into
embeddings

 133Retrieval strategies

¡	Intent classification—A pre-trained classification model is used to classify the
intent of the user query to select the appropriate retrieval method. A modifi-
cation to this technique is prompt-based classification, where instead of a pre-
trained classifier, an LLM is prompted to categorize the query into an intent.

¡	Metadata routing—In this approach, keywords and tags are extracted from the
user query and then filtering is done on the chunk metadata to narrow down the
scope of the search.

¡	Semantic routing—In this approach, the user query is matched with a pre-defined
set of queries for each retrieval method. Wherever the similarity between the user
query and pre-defined queries is the highest, that retrieval method is invoked.

In customer support chatbots, query routing ensures that technical queries are
directed to databases with troubleshooting guides, while billing questions are routed
to account information, enhancing user satisfaction.

Implementing query routing takes effort and skill. It introduces a whole new pre-
dictive component, bringing uncertainty to the process. Therefore, it must be care-
fully crafted. Query routing is a must when dealing with source data and query type
variability.

Although the universe of pre-retrieval strategies and techniques is expansive and
ever-evolving, we have looked at a few of the most popular and effective techniques
in this section. Bear in mind that the applicability of the strategies will depend on the
nature of the content in the knowledge base and the use case. However, using each of
these strategies will result in incremental gains in the RAG system performance. Now
that we have set up the knowledge base and the user query for better retrieval, let’s dis-
cuss important retrieval strategies in the next section.

6.4 Retrieval strategies

Interventions in the pre-retrieval stage can bring significant improvements in the per-
formance of the RAG system if the query and the knowledge base become well aligned
with the retrieval algorithm. We have discussed quite a few retrieval algorithms in chap-
ter 4. In this section, we focus on strategies that can be employed for better retrieval.

6.4.1 Hybrid retrieval

Hybrid retrieval strategy is an essential component of production-grade RAG systems.
It involves combining retrieval methods for improved retrieval accuracy. This can mean
simply using a keyword-based search along with semantic similarity. It can also mean
combining all sparse embedding, dense embedding vector, and knowledge graph-
based search. The retrieval can be a union or an intersection of all these methods,
depending on the requirements of precision and recall. It generally follows a weighted
approach to retrieval. Figure 6.5 shows the hybrid retriever querying graph and vector
storage.

134 CHAPTER 6 Progression of RAG systems: Naïve, advanced, and modular RAG

User
Hybrid retriever

Pre-retrieval

Graph search

Sparse embedding
retrieval

Dense embedding
retrieval

Knowledge
graph

Vector storage

Combiner

Post-retrieval

Hybrid retrieval

Figure 6.5 Hybrid retriever employs multiple querying techniques and combines the results.

6.4.2 Iterative retrieval

Instead of using a retrieve–generate linear process, the iterative retrieval strategy
searches the knowledge base repeatedly based on the original query and the generated
text, which allows the system to gather more information by refining the search based
on initial results. It is useful when solving multi-hop or complex queries. While effec-
tive, iterative retrieval can lead to longer processing times and may introduce chal-
lenges in managing larger amounts of retrieved information. There are examples of
iterative retrieval that have demonstrated remarkably improved performance such as
Iter-RetGen, which is an iterative approach that alternates between retrieval and gen-
eration steps.

6.4.3 Recursive retrieval

The recursive retrieval strategy builds on the idea of iterative retrieval by transform-
ing the query iteratively depending on the results obtained. While the initial query is
used to retrieve the chunks, new focused queries are generated based on these chunks.
It, therefore, leads to a better ability to find scattered information across document
chunks and a more coherent and contextual response. Iterative retrieval chain-of-
thought (IRCoT) is a recursive retrieval technique that combines iterative retrieval
with CoT prompting.

6.4.4 Adaptive retrieval

Adaptive retrieval also follows the approach of repeated retrieval cycles. In adaptive
retrieval strategies, an LLM is enabled to determine the most appropriate moment and
content for retrieval. The objective of adaptive retrieval is to make the retrieval process
more personalized to users and context. It is applied in areas such as adapting queries
depending on user behavior or adjusting retrieval based on user performance. FLARE
and Self-RAG are two popular examples of adaptive retrieval. Self-RAG introduces
“reflection tokens” that enable the model to introspect and decide when additional
retrieval is necessary. FLARE (forward-looking active retrieval-augmented generation)

 135Retrieval strategies

predicts future content needs based on the current generation and retrieves rele-
vant information proactively. Adaptive retrieval is a part of a broader trend of agen-
tic AI. Agentic AI refers to AI systems that can make autonomous decisions during
tasks, adapting their actions based on the context. In the context of RAG, agentic RAG
involves AI agents that dynamically decide when and how to retrieve information,
thus enhancing the flexibility and efficiency of the retrieval process. Agentic AI is an
important emerging RAG pattern. We will discuss Agentic RAG in detail in chapter 8.

Figure 6.6 compares the three retrieval strategies that focus on repeated retrieval
cycles. While recursive and iterative approaches need a threshold to break out of the
iterations, in the adaptive approach, a judge model decides on-demand retrieval and
generation steps.

Query

Retriever

Generator LLM

Judge model

Response

Query

Retriever

Generator LLM

Judge model

Response

Query
transformation

Query

Retriever

Generator LLM

Judge model

Response

Query
transformation

Judge model

ite
ra

tio
n

s
=

n

Threshold Threshold

G
e

n
e

ra
te

Threshold

Retrieve on

demand

Iterative retrieval Recursive retrieval Adaptive retrieval

Repetitive retrieval

Figure 6.6 Iterative, recursive, and adaptive retrieval incorporate repeated retrieval cycles. Source:

Adapted from Gao et al., December 18, 2023. “Retrieval-Augmented Generation for Large Language

Models: A Survey.”

136 CHAPTER 6 Progression of RAG systems: Naïve, advanced, and modular RAG

All the advanced retrieval strategies introduce overheads in terms of computational
complexity, and therefore the accuracy must be balanced against the cost and latency
of the system.

By employing advanced pre-retrieval techniques and a suitable retrieval strategy, we
can expect that richer, deeper, and more relevant context is being retrieved from the
knowledge base. Even when the relevant context is retrieved, the LLM may struggle to
assimilate all the information. To address this problem, in the next section, we discuss
a couple of post-retrieval strategies that help curate the context before augmenting the
prompt with the necessary information.

6.5 Post-retrieval techniques

Even if the retrieval of the chunks happens in an expected manner, a point of failure
still remains. The LLM might not be able to process all the information. This may be
due to redundancies or disjointed nature of the context among many other reasons. At
the post-retrieval stage, the approaches of re-ranking and compression help in provid-
ing better context to the LLM for generation.

6.5.1 Compression

Excessively long context has the potential of introducing noise into the system. This
diminishes the LLM’s capability to process information. Consequently, hallucinations
and irrelevant responses to the query may persist. In prompt compression, language
models are used to detect and remove unimportant and irrelevant tokens. Apart from
making the context more relevant, prompt compression also has a positive influence
on cost and efficiency. Another advantage of prompt compression is being able to
reduce the size of the prompt so that it can fit into the context window of the LLM.
COCOM is a context compression method that compresses contexts into a small num-
ber of context embeddings. Similarly, xRAG is a method that uses document embed-
dings as features. Compression can lead to loss of information, and therefore, there
needs to be a balance between compression and performance. A very simple prompt
to compress a long-retrieved context is

compress_prompt = f" \

Compress the following document \

into a shorter version, \

retaining only the essential information: \

\n\n{document}"

RE-RANKING

Reordering all the retrieved documents ensures that the most relevant information
is prioritized for the generation step. It refines retrieval results by prioritizing docu-
ments that are more contextually appropriate for the query, improving the overall
quality and accuracy of information used for generation. Re-ranking also addresses
the question of prioritization when a hybrid approach to retrieval is employed and

 137Post-retrieval techniques

improves the overall response quality. There are commonly available re-rankers such
as multi-vector, Learning to Rank (LTR), BERT-based, and even hybrid re-rankers that
can be employed. Specialized APIs such as Cohere Rerank offer pre-trained models for
efficient reranking integration.

In this section, we discuss some of the popular advanced RAG strategies and tech-
niques employed at different stages of the RAG pipeline. It is important to also con-
sider the tradeoffs that come with these techniques. Almost any advanced technique
will introduce overheads to the system. These can be in the form of computational load,
latency in the system, and increased storage and memory requirements. Therefore,
these techniques warrant a performance versus overhead assessment catered to specific
use cases. Table 6.1 provides a summary of the 12 strategies discussed so far.

Table 6.1 Advanced RAG strategies with their benefits and limitations

Strategy Description Benefits Challenges

Chunk optimization Adjusting document
chunks for optimal size
and context

Improves retrieval
accuracy, processing
speed, and storage

Requires experimen-
tation; optimal chunk
varies by use case

Metadata

enhancements

Enriching chunks with
additional metadata
for better filtering and
searchability

Improves retrieval effi-
ciency; reduces noise

Requires careful
schema design; man-
ages processing costs

Index structures Organizing data in
structured formats for
efficient retrieval

Enhances accuracy
and context in retrieval

Increases memory and
computational load

Query expansion Enriching the user
query to retrieve more
relevant information

Increases recall; over-
comes brief queries

May reduce precision;
risk of contextual drift

Query transformation Modifying the user
query for better
retrieval suitability

Enhances context
awareness; maintains
intent

Potential for misinter-
pretation; drift from the
original query

Query routing Directing queries to
appropriate retrieval
methods based on
classification

Enhances retrieval by
matching method to
query type

Introduces uncer-
tainty; requires careful
crafting

Hybrid retrieval Combining multiple
retrieval methods (e.g.,
keyword and semantic)

Improves retrieval accu-
racy and robustness

Increased complex-
ity; requires method
weighting

Iterative retrieval Repeatedly searching
based on initial results
and query refinement

Gathers more compre-
hensive information;
refines search

Longer processing
times; managing more
data

Recursive retrieval Iteratively transforming
the query based on
obtained results

Finds scattered infor-
mation; provides coher-
ent responses

Similar to iterative
retrieval; potential for
increased load

Adaptive retrieval LLM decides when and
what to retrieve during
generation

Personalized and con-
text-aware retrieval;
dynamic adaptation

Increased computa-
tional complexity; part
of agentic AI

138 CHAPTER 6 Progression of RAG systems: Naïve, advanced, and modular RAG

Strategy Description Benefits Challenges

Compression Reducing context
length by removing
irrelevant information

Fits within LLM context
window; reduces noise
and costs

Potential loss of import-
ant information; needs
balance

Reranking Reordering retrieved
documents to prioritize
relevance

Enhances response
quality; ensures most
relevant info is used

Requires additional
models; may introduce
overhead

Figure 6.7 is an illustrative example of what a generation pipeline looks like after incor-
porating advanced techniques.

Re-write Multi-query Re-rank Compress
Query
router

User
query

Knowledge
base

Retriever
Augmentation LLM

Response

R
e
trie

v
a
l

Pre-retrieval Post-retrieval

Query routing enhances
retrieval and generation
by matching method to
query type.

At the pre-retrieval
stage, interventions
optimize the input user
query in a manner that
makes it more suitable
for retrieval tasks.

Post-retrieval techniques
optimize the retrieved
context for better alignment
with the model, which results
in more coherent and
contextual responses.

Hybrid and repetitive retrieval
strategies improve the precision
and recall of the RAG system.

Knowledge base is
index optimized in the
indexing pipeline.

Naive RAG Advanced RAG

Re

Figure 6.7 Illustrative example of advanced generation pipeline

While these advanced strategies and techniques are extremely useful in improving per-
formance, a RAG system also needs to provide customization and flexibility. This is
because we may need to quickly adopt different techniques as the nature of data and

Table 6.1 Advanced RAG strategies with their benefits and limitations (continued)

 139Modular RAG

queries evolve. A modular RAG approach discussed in the next section aims to provide
greater architectural flexibility over the traditional RAG system.

6.6 Modular RAG

AI systems are becoming increasingly complex, demanding more customizable, flexi-
ble, and scalable RAG architectures. The emergence of modular RAG is a leap forward
in the evolution of RAG systems. Modular RAG breaks down the traditional monolithic
RAG structure into interchangeable components. This allows for tailoring of the sys-
tem to specific use cases. The modular approach brings modularity to RAG compo-
nents, such as retrievers, indexing, and generation, while also adding more modules
such as search, memory, and fusion. We can think of the modular RAG approach in
two parts:

¡	Core components of RAG developed as flexible, interchangeable modules

¡	Specialized modules to enhance the core features of retrieval, augmentation,
and generation

6.6.1 Core modules

The core components of the RAG system (i.e. indexing, retrieval, augmentation and
generation), along with the advanced pre- and post-retrieval techniques, are composed
as flexible, interchangeable modules in the modular RAG framework.

¡	Indexing module—The indexing module serves as the foundation for building the
knowledge base. By modularizing this component, developers can choose from
various embedding models for advanced semantic understanding. Vector stores
can be interchanged based on scalability and performance needs. Additionally,
chunking methods can be adapted to the data structure, whether it’s text, code,
or multimedia content, ensuring optimal indexing for retrieval.

¡	Retrieval module—The retrieval module enables the use of diverse retrieval algo-
rithms. For instance, developers can switch between semantic similarity search
using dense embeddings and traditional keyword-based search such as BM25.
This flexibility allows for tailoring retrieval methods to the specific requirements
of the application, such as prioritizing speed, accuracy, or resource utilization.
For example, a customer support chatbot might use semantic search during off-
peak hours for higher accuracy and switch to keyword search during peak hours
to handle increased load. The modular retrieval component allows this dynamic
interchange of retrieval strategies based on real-time needs.

¡	Generation module—In the generation module, the choice of LLM is modular.
Developers can select from models such as GPT-4 for complex language genera-
tion or smaller models for cost efficiency. This module also handles prompt engi-
neering for augmentation to guide the LLM in generating accurate and relevant
responses.

140 CHAPTER 6 Progression of RAG systems: Naïve, advanced, and modular RAG

¡	Pre-retrieval module—Allows flexibility of pre-retrieval techniques to improve the
quality of indexed content and user query.

¡	Post-retrieval module—Like the pre-retrieval module, this module allows for flex-
ible implementation of post-retrieval techniques to refine and optimize the
retrieved context.

You may note that the first three modules complete the naïve RAG approach, and the
addition of the pre-retrieval and post-retrieval modules enhances the naïve RAG into
an advanced RAG implementation. It can also be said that naïve RAG is a special (and
limited) case of advanced RAG.

6.6.2 New modules

The modular RAG framework has introduced several new components to enhance the
retrieval and generation capabilities of naïve and advanced RAG approaches. Some of
these components/modules are

¡	Search—The search module is aimed at performing searches on different data
sources. It is customized to different data sources and aimed at increasing the
source data for better response generation.

¡	Fusion—RAG fusion improves traditional search systems by overcoming their lim-
itations through a multi-query approach. The fusion module enhances retrieval
by expanding the user’s query into multiple, diverse perspectives using an LLM.
It then conducts parallel searches for these expanded queries, fuses the results by
reranking and selecting the most relevant information, and presents a compre-
hensive answer. This approach captures both explicit and implicit information,
uncovering deeper insights that might be missed with a single query.

¡	Memory—The memory module uses the inherent memory of the LLM, meaning
the knowledge encoded within its parameters from pre-training. This module
uses the LLM to recall information without explicit retrieval, guiding the system
on when to retrieve additional data and when to rely on the LLM’s internal knowl-
edge. It can involve techniques such as using reflection tokens or prompts that
encourage the model to introspect and decide if more information is needed.
For example, when answering a query about historical events, the memory
module can decide to rely on the LLM’s knowledge about World War II to pro-
vide context, only retrieving specific dates or figures as needed. This approach
reduces unnecessary retrieval and uses the model’s pre-trained knowledge.

¡	Routing—Routing in the RAG system navigates through diverse data sources,
selecting the optimal pathway for a query, whether it involves summarization,
specific database searches, or merging different information streams.

¡	Task adapter—This module makes RAG adaptable to various downstream tasks
allowing the development of task-specific end-to-end retrievers with mini-
mal examples, demonstrating flexibility in handling different tasks. The task
adapter module allows the RAG system to be fine-tuned for specific tasks like

 141Modular RAG

summarization, translation, or sentiment analysis. By incorporating a small num-
ber of task-specific examples or prompts, the module adjusts the retrieval and
generation components to produce outputs tailored to the desired task, enhanc-
ing versatility without extensive retraining.

You may observe that advanced RAG is a special case within the modular RAG frame-
work. You also saw earlier that naïve RAG is a special case of advanced RAG. This means
that the RAG approaches (i.e., naïve, advanced, and modular) are not competing but
progressive. You may start by trying out a naïve implementation of RAG and move to a
more modular approach. Figure 6.8 shows the progression of RAG systems.

Retrieval Generation

Pre-retrieval

Post-retrieval

Naive RAG is composed of three core modules.

Indexing

Advanced RAG adds pre-retrieval and post-retrieval
modules to the naive RAG modules.

Routing

Fusion

Task adapter

Memory Search

Predict

Enables direct

search across

different sources

Uses parametric

LLM memory to

guide retrieval

Selects the

optimal RAG

pathway for a

query

Expands user

queries
Enables direct

context

generation from

the LLM

Tailors the RAG

pipeline for

downstream

tasks

New modules interact with the advanced/naive RAG framework, as well as with each other.

Naive RAG Advanced RAG Modular RAG

Figure 6.8 Naïve, advanced, and modular approaches to RAG are progressive. Naïve RAG is a sub-

component of advanced RAG, which is a sub-component of modular RAG.

142 CHAPTER 6 Progression of RAG systems: Naïve, advanced, and modular RAG

While building a modular RAG system, remember that each module should be
designed to work independently. This requires defining clear inputs and outputs.
Along with the independent modules, the orchestration layer should be flexible to
allow mixing and matching of modules. One should also bear in mind that a modular
approach introduces complexity in the process. Managing interfaces, dependencies,
configurations, and versions of modules can be complex. Ensuring compatibility and
consistency between modules can be challenging. Testing each module independently
and collectively requires a robust evaluation strategy. Extra modules may also add
latency and inference costs to the system.

Despite the added complexities, the modular approach toward RAG is state-of-the-
art in large-scale RAG systems. It enables rapid experimentation, efficient optimiza-
tion, and seamless integration of new technologies as they emerge. By offering the
ability to mix and match different modules, modular RAG empowers you to build
more robust, accurate, and versatile AI solutions. It also facilitates easier mainte-
nance, updates, and scalability, making it an ideal choice for managing complex,
evolving knowledge bases.

This section concludes the discussion on improving RAG performance using
advanced techniques and a modular framework. Interventions can be employed at
different stages of the indexing and generation pipelines. Modular approaches to
RAG enable rapid experimentation, flexibility, and scalable architecture. You will
need to experiment to figure out the techniques that help in improving RAG for
specific use cases. It is also important to be mindful of the tradeoffs. Advanced tech-
niques introduce complexities that have an effect on computation, memory, and stor-
age requirements.

This is one aspect of putting RAG in production. Advanced techniques are necessary
for RAG systems to achieve acceptable accuracy and efficiency. The other enablers for
RAG systems in production are the tools and technologies that form the backbone of
the RAG stack. In the next chapter, we will look at this technology infrastructure that
enables RAG systems.

Summary

Limitations of naïve RAG

¡	Naïve RAG follows a simple “retrieve then read” process.

¡	This approach suffers from low precision and incomplete retrieval.

¡	Retrieval often misses relevant information and pulls in irrelevant content.

¡	At the augmentation stage, there is often redundancy from similar retrieved
documents.

¡	Context can become disjointed when sourced from multiple documents.

¡	The generation stage faces hallucinations and biased outputs.

¡	The model can overly rely on retrieved data and ignore its internal knowledge.

 143Summary

Advanced RAG techniques

¡	The advanced RAG process follows a “rewrite then retrieve then re-rank then
read” framework, where the query is optimized through rewriting, retrieval is
enhanced for better precision, results are re-ranked to prioritize relevance, and
the most relevant information is used for generating the final response.

¡	Pre-retrieval techniques include

– Index optimization—Improves document storage for better searchability

– Chunk optimization—Balances chunk sizes to avoid losing context or introduc-
ing noise

– Context-enriched chunking—Adds summaries to each chunk to improve retrieval

– Metadata enhancements—Adds tags and metadata like timestamps or categories
for better filtering

– Query optimization—Expands or rewrites user queries for improved retrieval
accuracy

¡	Retrieval techniques include

– Hybrid retrieval—Combines keyword-based and semantic searches

– Iterative retrieval—Refines searches by repeatedly querying based on initial
results

– Recursive retrieval—Generates new queries based on retrieved chunks to gather
more relevant information

¡	Post-retrieval techniques include

– Compression—Reduces unnecessary context to remove noise and fit within the
model’s context window

– Re-ranking—Reorders retrieved documents to prioritize the most relevant
ones

Modular RAG framework

¡	Core modules include

– Indexing module—Allows flexible embedding models and vector store options

– Retrieval module—Supports switching between dense and keyword-based
retrieval methods

– Generation module—Offers flexibility in selecting language models based on
complexity and cost

¡	New modules include

– Search module—Tailors search to specific data sources for better results

– Fusion module—Expands user queries into multiple forms and combines
retrieved results for deeper insights

– Memory module—Uses the model’s internal knowledge to reduce unnecessary
retrieval, retrieving only when needed

144 CHAPTER 6 Progression of RAG systems: Naïve, advanced, and modular RAG

– Routing module—Dynamically selects the best path for handling different types
of queries

– Task adapter module—Adapts the system for different downstream tasks like
summarization or translation

Tradeoffs and best practices

¡	Advanced techniques improve RAG accuracy but add complexity.

¡	Techniques such as hybrid retrieval or re-ranking can increase computational
costs and latency.

¡	Modular RAG offers flexibility but requires careful management of interfaces
and module compatibility.

¡	Testing each module independently and as a whole is important to ensure system
stability and performance.

¡	Tradeoffs between performance, cost, and system complexity should be carefully
assessed.

145

7Evolving RAGOps stack

This chapter covers

¡	The design of RAG systems

¡	Available tools and technologies that enable

 a RAG system

¡	Production best practices for RAG systems

So far, we have discussed the indexing pipeline, generation pipeline, and evaluation
of a retrieval-augmented generation (RAG) system. Chapter 6 also covered some
advanced strategies and techniques that are useful when building production-grade
RAG systems. These strategies help improve the accuracy of retrieval and genera-
tion and, in some cases, reduce the system latency. With all this information, you
should be able to stitch together a RAG system for your use cases. Chapter 2 briefly
laid out the design of a RAG system. This chapter elaborates on that design.

A RAG system is composed of standard application layers, as well as layers spe-
cific to generative AI applications. Stacked together, these layers create a robust RAG
system.

146 CHAPTER 7 Evolving RAGOps stack

These layers are supported by a technology infrastructure. We delve into these layers
and the available technologies and tools offered by popular service providers that can
be used in crafting a RAG system. Some providers have started offering managed end-
to-end RAG solutions, which we touch upon in this chapter.

We wrap up the chapter with some learnings and best practices for putting RAG sys-
tems in production. Chapter 7 also marks the end of part 3 of the book.

By the end of this chapter, you should

¡	Understand the details of the layers in a RAG (RAGOps) stack.

¡	Be familiar with a host of service providers and the tools and technologies they
offer for RAG systems.

¡	Know some of the pitfalls and best practices of putting RAG systems in
production.

A RAG system includes a lot of additional components compared to traditional soft-
ware applications. Vector stores and embeddings models are essential components of
the indexing pipeline. Knowledge graphs are becoming increasingly popular indexing
structures. The generation component can have different kinds of language models.
In addition, prompt management is becoming increasingly complex. The production
ecosystem for RAG and LLM (large language models) applications is still evolving, but
early tooling and design patterns have emerged. RAGOps refers to the operational
practices, tools, and processes involved in deploying, maintaining, and optimizing
RAG systems in production environments.

7.1 The evolving RAGOps stack

This section describes different components required to build a RAG system in layers.
These layers come together to form the operations stack for RAG. We will also take this
opportunity to revise the workflow of the RAG system discussed in this book.

It should be noted that RAG, like generative AI in general, is an evolving technology,
and therefore, the operations stack continues to evolve. You may find varying defini-
tions and structures. This chapter provides a holistic view and discusses the compo-
nents from the perspective of their criticality to the RAG system. We look at the layers
divided into the following three categories:

¡	Critical layers that are fundamental to the operation of a RAG system. A RAG sys-
tem is likely to fail if any of these layers are missing or are incomplete.

¡	Essential layers that are important for performance, reliability, and safety of the
system. These essential components bring the system to a standard that provides
value to the user.

¡	Enhancement layers that improve the efficiency, scalability, and usability of the
system. These components are used to make the RAG system better and are
selected based on the end requirements.

 147The evolving RAGOps stack

7.1.1 Critical layers

The indexing pipeline and the generation pipeline (discussed in detail in chapters
3 and 4) form the core of a RAG system. Figure 7.1 illustrates the indexing pipeline
that facilitates the creation of the knowledge base for RAG systems and the generation
pipeline that uses the knowledge base to generate context-aware responses.

User asks a

question.

The system searches

for relevant

information.

The information relevant

to the input question is

fetched, or retrieved.

The prompt with the user

question is augmented

with the retrieved

information.

The LLM responds

with a contextual

answer.

Connects to

external sources.

Extracts documents

and parses text from

documents.

Breaks down long

pieces of text into

smaller manageable

pieces.

Converts these small

pieces into a suitable

format.

Generation pipeline:
Uses the knowledge base

to generate context-aware

responses

LLM Response
S

e
a

rc
h

RetrieverUser

Question {Question + Information}

Parametric memory

Storage

Non-parametric memory

Source Connector Extracter and
parser

Splitter

Converter

Knowledge base

Indexing pipeline:
Facilitates the creation

of the knowledge base

F
e

tc
h

in
fo

rm
a

tio
n

Figure 7.1 Indexing and generation pipelines forming the core of a RAG system

Layers enabling these two pipelines form the critical layers of the RAGOps stack.

DATA LAYER

The data layer serves the critical role of creating and storing the knowledge base for
RAG. It is responsible for collecting data from source systems, transforming it into a

148 CHAPTER 7 Evolving RAGOps stack

usable format, and storing it for efficient retrieval. Here are some components of the
data layer:

¡	Data ingestion component—It collects data from source systems such as databases,
content management systems, file systems, APIs, devices, and even the inter-
net. The data can be ingested in batches or as a stream, depending on the use
case. For ingesting data, your choice of tool can depend on factors such as data
volume, types of data source, ingestion frequency, cost, and ease of setup. Data
ingestion is not specific to RAG but is a mainstream component in modern soft-
ware applications. AWS Glue, Azure Data Factory, Google Cloud Dataflow, Five-
tran, Apache NiFi, Apache Kafka, and Airbyte are among tools available for use.
For rapid prototyping and proof of concepts (PoCs), frameworks such as Lang-
Chain and LlamaIndex have inbuilt functions that can assist in connecting to
some sources and extracting information.

¡	Data transformation component—It converts the ingested data from a raw to
a usable form. A core process in the indexing pipeline is the chunking of data.
We know that embeddings is the preferred format of choice for RAG applications
because it makes it easier to apply semantic search. Graph structures are becoming
increasingly popular in advanced systems. Certain pre-processing steps such as
cleaning, de-duplication, metadata enrichment, and masking of sensitive infor-
mation are also a part of this phase. While the volume of data and the nature
of transformation play an important role in any data-transformation step, they
are especially critical in RAG systems. All the extract–transform–load (ETL) tools
mentioned in the data ingestion step in conjunction with tools such as Apache
Spark and dbt also allow transformations. However, if we focus just on RAG,
Unstructured.io specializes in processing and transforming unstructured data
for use in LLM applications. It offers open source libraries as well as managed
services. Constructing knowledge graphs from unstructured data has evolved
today from early semantic networks and ontologies into robust frameworks.
Microsoft’s GraphRAG is a framework that has pioneered the use of LLMs to
extract entities and relationships from text.

¡	Data storage component—It stores the transformed data in a way that allows for
fast and efficient retrieval. We have discussed that to store embeddings, vector

databases are widely used because they are efficient in similarity search. For graph
structures, graph databases are used. Most traditional database providers are incor-
porating vector search capabilities into their systems. Cost, scale, and speed are
the primary drivers in the choice of data storage. We have used a vector index
such as FAISS in this book. Pinecone is a fully managed cloud-native service. Mil-
vus, Qdrant, and Chroma are among the open source vector databases. Wevi-
ate is another database that also has a GraphQL-based interface for knowledge
graphs. Neo4j is a leading graph database for storing and querying graph data. A
comparison of popular vector databases is available at https://www.superlinked
.com/vector-db-comparison.

https://www.superlinked.com/vector-db-comparison
https://www.superlinked.com/vector-db-comparison

 149The evolving RAGOps stack

The flow from source systems to data storage via the ingestion and transformation
components that lead to the creation of the knowledge base is shown in figure 7.2.

Vector Stores

InternetCMS

Object

Store

Data

Lake

File System

NoSQL

Devices
EFSS

Structured

Third-party

API Curated

data

Graph Storage

Extraction

and parsing

Source Systems Data Ingestion

Cleaning

Tagging

Processing

Chunking

ER Mapping

Vectorization/

Embeddings

Data TransformationData Storage

Connect to source systems to extract data.

Transform extracted data into the desired format.Load transformed data in databases.

Figure 7.2 Data layer: Creating the knowledge base by extracting, transforming, and loading (ETL) data from

source systems

A strong data layer is the foundation of an efficient RAG system. The data layer also
comes in handy when there is a need for fine-tuning of models. We discuss this feature
briefly later in the chapter. Next, we look at the model layer, which includes the embed-
dings models used to transform text into vectors and the LLMs used in generation.

MODEL LAYER

Predictive models enable generative AI applications. Some models are provided by
third parties, and some need to be custom trained or fine-tuned. Generating quick and
cost-effective model responses is also an important aspect of using predictive models.
The model layer includes the following three components:

¡	Model library—It contains the list of models that have been chosen for the appli-
cation. The most popular models are the LLMs that generate text and other
generative models that can generate images, video, and audio. We saw that in
the data layer, raw text is transformed into vector embeddings, and this is done

150 CHAPTER 7 Evolving RAGOps stack

using embeddings models. Apart from this, there are other models used in RAG
systems:

– Embeddings models are used to transform data into vector format. We have
discussed embeddings models in detail in chapter 3. Recall that the choice
of embeddings model depends on the domain, use case, and cost consider-
ations. Providers such as OpenAI, Gemini by Google, Voyage AI, and Cohere
provide a variety of embeddings model choices, and a host of open source
embeddings models can also be used via Hugging Face transformers. Mul-
timodal embeddings map data of different modalities into a shared embed-
dings space.

– Foundation models or the pre-trained LLMs are used for the generation of
outputs, as well as for evaluation and adaptive tasks where LLMs are used to
judge. We have discussed LLMs as part of the generation pipeline in chapter
4. Recall that the GPT series by OpenAI, Gemini Series by Google, Claude
Series by Anthropic, and Command R series by Cohere are popular propri-
etary LLMs. The llama series by Meta and Mistral are open source models that
have gained popularity. Most LLMs now include multimodal capabilities and
are continuously evolving.

– Task-specific models are machine learning models that are not core to RAG
but come in handy for various tasks. These models are used in advanced
RAG pipelines. Query classification models for efficient routing and intent
detection, NER models to detect entities for metadata, query-expansion
models, hallucination-detection models, and bias- and toxicity-moderation
models are some examples of task-specific models useful in RAG systems.
While task-specific models are generally custom trained, providers such as
OpenAI, Hugging Face, and Google also offer these services.

¡	Model training and fine-tuning component—This component is responsible for
building custom models and fine-tuning foundation models on custom data.
In chapter 4, we discussed that fine-tuning of LLMs is sometimes required for
domain adaptation. Fine-tuning can also be done for embeddings models. Addi-
tionally, the task-specific models can be trained on custom data. This component
supports the algorithms used for training and fine-tuning the models. For train-
ing data, this component interacts with the data layer where the training data can
be created and managed. A regular MLOps layer is also recommended for the
development and maintenance of the models. This is enabled via ML platforms
such as Hugging Face, AWS SageMaker, Azure ML, and similar.

¡	Inference optimization component—This component is responsible for generating
responses quickly and cost-effectively, which can be done by employing a vari-
ety of methods such as quantization, batching, KV(Key Value)-caching, and sim-
ilar. ONNX and NVIDIA TensorRT-LLM are popular frameworks that optimize
inferencing.

 151The evolving RAGOps stack

Figure 7.3 illustrates different components of the model layer. It shows how the model
layer helps in deciding which models to use in the RAG system, facilitates training and
fine-tuning of the model, and optimizes the models for efficient serving.

All open
source,
fine-tuned
and custom
models are
optimized for
inferencing.
Proprietary
models are
generally
optimized by
the service
provider.Query

classification

ModerationHallucination

detection

Entity

recognitions

Custom models
and fine-tuned
models are
trained and
stored in model
library.

LLMs Embeddings Task-specific models

Proprietary

LLMs

Fine-tuned

LLMs

Small language

models

Model library

Model training/ Fine-tuning

Fine-tuning pre-trained models Training new models Model lifecycle management

Training examples from the data layer

KV caching Batching Quantization Other optimizations

Inference optimization

Training data is
sourced from
the data layer.

Open source

LLMs

Proprietary

embeddings

Fine-tuned

embeddings

Other

vectorizers

Open source

embeddings

Figure 7.3 The model layer: The model library is the store for all models selected for the application, model

training and fine-tuning interact with the data layer to source training data and train custom models, while the

inference optimization component is responsible for efficient serving of the model.

MODEL DEPLOYMENT

This layer is responsible for making the RAG system available to the application layer.
It handles the infrastructure of the models. It also ensures that the models can be
accessed reliably. There are four main methods by which the models can be deployed:

152 CHAPTER 7 Evolving RAGOps stack

¡	Fully managed deployment—It can be provided by proprietary model providers
such as OpenAI, Google, Anthropic, and Cohere, where all infrastructure for
model deployment, serving, and scaling is managed and optimized by these
providers. Services such as AWS SageMaker, Google Vertex AI, Azure Machine
Learning, and Hugging Face offer platforms to deploy, serve, and monitor both
open source and custom-developed models. Amazon Bedrock is another fully
managed service that provides access to a variety of foundation models, both pro-
prietary and open source, simplifying model access and deployment.

¡	Self-hosted deployment—This type of deployment is enabled by cloud VM providers
such as AWS, GCP, Azure, and hardware providers such as Nvidia. In this scenario,
models are deployed in private clouds or on-premises, and the infrastructure is
managed by the application developer. Tools such as Kubernetes and Docker are
widely used for containerization and orchestration of models, while Nvidia Tri-
ton Inference Server can optimize inference on Nvidia hardware.

¡	Local/edge deployment—It involves running optimized versions of models on local
hardware or edge devices, ensuring data privacy, reduced latency, and offline
functionality. Local/edge deployment typically requires model compression
techniques such as quantization and pruning, and smaller models tailored for
resource-constrained environments. Tools such as ONNX, TensorFlow Lite, and
PyTorch Mobile enable efficient deployment on mobile and embedded plat-
forms, while GGML and NVIDIA TensorRT support CPU and GPU optimiza-
tions. GPT4All is a popular open source solution for running quantized LLMs
locally on devices such as laptops, IoT devices, and edge servers without relying
on cloud infrastructure. These frameworks facilitate low-latency, power-efficient
execution, making AI accessible in decentralized environments.

Model deployment is a relatively complex task that requires engineering skills when
self-hosted and local/edge deployment is done. Figure 7.4 illustrates the three ways in
which models are deployed.

Models are deployed
on your own
infrastructure using
tools allowing for
greater control over
customization and
performance tuning.

Models are hosted
on platforms where
the infrastructure is
fully managed for
you, making
deployment and
scaling easier.

Models run directly
on local machines
or edge devices
using frameworks
that enable offline
or low-latency
applications.

Managed hosting Self hosting Local/Edge deployment
Request
to model

Model
response

Figure 7.4 The model deployment layer manages the infrastructure for hosting and deployment for

efficient serving of all the models in the RAG system.

 153The evolving RAGOps stack

With the data and the model layers, the most essential components of the RAG system
are in place. Now we need a layer that manages the co-ordination between the data and
the models. This is the responsibility of the application orchestration layer.

APPLICATION ORCHESTRATION LAYER

When we hear the term orchestration, a musical conductor leading a group of musicians
in an orchestra comes to mind. An application orchestration layer is somewhat similar.
It is responsible for managing the interactions among the other layers in the system. It
is a central coordinator that enables communication between data, retrieval systems,
generation models, and other services. The major components of the orchestration
layer are

¡	Query orchestration component—Responsible for receiving and orchestrating user
queries. All pre-retrieval query optimization steps such as query classification,
expansion, and rewriting are orchestrated by this component. The query orches-
tration layer may coordinate with the end application layer to receive the input,
and the model layer to access the models required for the query optimization.
This component will generally pass on the processed query to the retrieval coor-
dination and the generation coordination components.

¡	Retrieval coordination component—Hosts the various retrieval logics. Depending
on the input from the query orchestration module, it selects the appropriate
retrieval method (dense retrieval or hybrid retrieval) and interacts with the data
layer. Depending on the retrieval strategy, it may also interact with the model
layer if any recursive or adaptive retrieval method is invoked.

¡	Generation coordination component—Receives the query and the context from the
previous components and coordinates all the post-retrieval steps. Its primary
function is to interact with the model layer and prompt the LLM to generate the
output. Apart from generation, all the post-retrieval steps such as re-ranking and
contextual compression are coordinated by this component. Post-generation
tasks such as reflection, fact-checking, and moderation can be coordinated by
the generation component. This component can also be made responsible for
passing the output to the application layer.

These are the three primary components of the orchestration layer. There are two
additional components to consider:

¡	Multi-agent orchestration component—Used for agentic RAG where multiple agents
handle specific tasks. We will take a deeper look at agentic RAG in chapter 8.
The orchestration layer is responsible for managing agent interactions and
coordination.

¡	Workflow automation component—Sometimes employed for managing the flow
and the movement of data between different components. This component is
not specific to RAG systems but is commonly employed in data products. Apache
Airflow and Dagster are popular tools used for workflow automation.

154 CHAPTER 7 Evolving RAGOps stack

Figure 7.5 illustrates the orchestration layer components interacting with the applica-
tion layer, which is supported by the model deployment and data layer.

Generation
coordination

Optimized

query is sent

for retrieval.

Query

parsing

Query

optimization

Retrieval

strategies

Post

Augmentation

Model calling

Query
orchestration

Retrieval
coordination

Agent orchestration

User query
is received

from the

application

layer.

Response
is sent back

to the

application

layer.

Application layer

M
o

d
e
l

l a
y
e
r

Applicationlayer

M
o

d
e
l

la
y
e
r

Retrieved

context and

query are sent

for generation.

Coordinates among all

assigned agents
Manages the orchestration

process

q

fo

nt

l.
t

.

q

f

Data layer

Datalayer

Figure 7.5 The app orchestration layer accepts the user query from the application layer and sends the response

back to the application layer.

LangChain and LlamaIndex are the most common orchestration frameworks used to
develop RAG systems. They provide abstractions for different components. Microsoft’s
AutoGen and CrewAI are upcoming frameworks for multi-agent orchestration.

With these four layers (i.e., data, model, model deployment, and application orches-
tration), the critical RAG system is complete. This core system can interact with the
end-software application layer, which acts as the interface between the RAG system and
the user. While the application layer is generally custom built, platforms such as Stream-
lit, Vercel, and Heroku are popular for hosting the application. Figure 7.6 summarizes
the critical layers of the RAGOps stack.

Now that you are familiar with the core layers of the stack, let’s look next at the essen-
tial layers that improve the performance and reliability of the system.

 155The evolving RAGOps stack

File

system

Query
orchestration

Retrieval
coordination

The orchestration layer
interacts with all other
layers to orchestrate the
RAG pipelines.

The orchestration layer
receives input from
application and
returns the response.

Internet

CMS
Object

store

Data

lake

NoSQL

Devices

EFSS

Structured

Third-party

API

Curated

data

Source systems

Managed service
providers

Managed language

model

Embedding services

Data services

Managed storage

Other managed services

Data
ingestion

Data
transformation

Data
storage

Data layer

Deployment layer

Managed hosting Self hosting Local/Edge deployment

Model layer

Model library

Inference optimizationModel training/ Fine-tuning

LLMs Embeddings Task-specific models

Various service providers
offer managed solutions
across the layers of
the RAGOps stack.

A
p

p
lic

a
tio

n
 la

y
e
r

Orchestration

Generation
coordination

Figure 7.6 Core RAGOps stack where data, model, model deployment, and app orchestration layers interact with

source systems and managed service providers, and co-ordinate with the application layer to interface with the user

7.1.2 Essential layers

While the critical layers form the core of the stack, they do not evaluate or monitor the
system. They do not test the prompting strategies or offer any protection against the
vulnerabilities of LLMs. These layers are essential to the system.

PROMPT LAYER

While the generation coordination component of the orchestration layer can simply
put together the user query and the retrieved context, poor prompting can lead to

156 CHAPTER 7 Evolving RAGOps stack

hallucinations and subpar results. Proper engineering and evaluation of the prompts
are vital to guiding the model toward generating relevant, grounded, and accurate
responses. This process often involves experimentation. Developers create prompts,
observe the results, and then iterate on the prompts to improve the effectiveness of
the app. This also requires tracking and collaboration. Azure Prompt Flow, Lang-
Chain Expression Language (LCEL), Weights & Biases prompts, and PromptLayer are
among the several applications that can be used to create and manage prompts.

EVALUATION LAYER

Chapter 5 discussed RAG evaluations at length. Regular evaluation of retrieval accu-
racy, context relevance, faithfulness, and answer relevance of the system is necessary to
ensure the quality of responses. TruLens by TruEra, Ragas, and Weights & Biases are
commonly used platforms and frameworks for evaluation.

MONITORING LAYER

Continuous monitoring ensures the long-term health of the RAG system. Observing
the execution of the processing chain is essential for understanding system behavior
and identifying points of failure. Assessing the relevance and adequacy of information
provided to the language model is also critical. Apart from this, regular system metrics
tracking such as resource utilization, latency, and error rates form the part of the mon-
itoring layer. ARISE, RAGAS, and ARES are evaluation frameworks that are also used
in monitoring. TraceLoop, TruLens, and Galileo are examples of providers that offer
monitoring services.

LLM SECURITY AND PRIVACY LAYER

While security and privacy are features of any software system, in the context of RAG,
there are additional aspects to this. RAG systems rely on large knowledge bases stored
in vector databases, which can contain sensitive information. They need to follow all
data privacy regulations. AI models are susceptible to manipulation and poisoning.
Prompt injection is a malicious attack via prompts to retrieve sensitive information.
Data protection strategies such as anonymization, encryption, and differential privacy
should be employed. Query validation, sanitization, and output filtering assist in pro-
tection against attacks. Implementing guardrails, access controls, monitoring, and
auditing are also components of the security and privacy layer.

CACHING LAYER

Caching has become a very important component of any LLM-based application. This
is because of the high costs and inherent latency of generative AI models. With the
addition of a retrieval layer, the costs and latency increase further in RAG systems. One
way to control this increase is to cache responses to frequently asked queries. In prin-
ciple, caching LLM responses is like caching in any other software application, but for
generative AI apps, it becomes more important.

These essential layers stacked together with the critical layers create a robust, accu-
rate, and high-performing RAG system. Figure 7.7 adds the essential layers and their
components to the critical RAGOps stack.

 157The evolving RAGOps stack

S
o

u
rc

e
 s

y
s

te
m

s

S
e

rv
ic

e
 p

ro
v

id
e

rs

Data
ingestion

Data
transformation

Data
storage

D
a
ta

 la
y
e

r

D
e
p

lo
y
m

e
n

t la
y
e
r

Managed
hosting

Self
hosting

Local/Edge
deployment

M
o

d
e
l la

y
e
r

M
o

d
e
l lib

ra
ry

In
fe

re
n

c
e

o
p

tim
iz

a
tio

n
M

o
d

e
l tra

in
in

g
/

F
in

e
-tu

n
in

g

LLMs

Embeddings

Specific
models

Various
service
providers
offer
managed
solutions
across the
layers of
the RAGOps
stack.

Application layer

O
rc

h
e
s

tra
tio

n
 la

y
e

r

Query
orchestration

Retrieval
coordination

Generation
coordination

The orchestration
layer interacts
with all other
layers to
orchestrate
the RAG
pipelines.

The orchestration
layer receives
input from
application
and returns
the response.

Caching layer

The orchestration layer manages
cache to store and retrieve responses.

The orchestration layer
manages the prompt
library to optimize
prompts to the LLMs.

P
ro

m
p

t la
y
e
r

• Manages

 prompts for

 all language

 model calls

• Interacts with

 the app

 orchestration

 layer

• Evaluates the RAG pipeline

 during the development phase

 and periodic intervals

• Uses LLMs as judge and

 employs the model layer

• Uses the data layer for synthetic

 ground truth generation

E
v
a
lu

a
tio

n
 la

y
e
r

Orchestration
layer manages
the evaluation
of the RAG
system

M
o

n
ito

rin
g

 la
y
e
r

L
L

M
 s

e
c
u

rity
 a

n
d

 p
riv

a
c
y
 la

y
e
r

File

system

Internet

CMS

Object

store

Data

lake

NoSQL

Devices

EFSS

Structured

Third-party

API

Curated

data

Managed language model

Embedding services

Data services

Managed sorage

Other managed services

D

n

Figure 7.7 Adding essential layers to the critical RAGOps stack lays the path to a robust RAG system for user

applications.

158 CHAPTER 7 Evolving RAGOps stack

Table 7.1 is a recap of the critical and essential layers of the RAGOps stack.

Table 7.1 Critical and essential layers of the RAGOps stack

Layer Category Description Example tools

Data layer Critical Responsible for creating and storing the
knowledge base via ingestion from various
sources, transformation into embeddings or
graph structures, and storing for retrieval

AWS Glue, Apache
Kafka, FAISS, Pine-
cone, Neo4j, Weavi-
ate, Milvus

Model layer Critical Contains the models required for generation
and retrieval in RAG; includes embeddings
models for vector generation, LLMs for text
generation, and models for query classifica-
tion, hallucination detection, or re-ranking

OpenAI, Hugging
Face Transformers,
Google Gemini, Llama,
Anthropic

Model
deployment

Critical Ensures the models are accessible, perfor-
mant, and scalable; responsible for serving
models and optimizing inference for fast
response times

SageMaker, Vertex AI,
NVIDIA Triton, Hugging
Face

Application
orchestra-
tion layer

Critical Manages the interaction between layers and
services, ensures that queries flow through
retrieval and generation stages, and coordi-
nates retrieval methods and generation tasks

LangChain, Haystack,
Dagster, Apache Air-
flow, AutoGen, CrewAI

Prompt layer Essential Designs and maintains the input queries to
ensure the LLM generates relevant, high-qual-
ity outputs; ensures continuous prompt refine-
ment to avoid hallucinations and improve
accuracy

Weights & Biases
Prompts, Azure
Prompt Flow

Evaluation
layer

Essential Evaluates the performance of the retrieval and
generation stages, ensuring that the outputs
are relevant, factual, and accurate.

TruLens by TruEra,
Ragas, Weights &
Biases

Monitoring
layer

Essential Continuously monitors the performance,
health, and resource usage of the RAG
system; tracks key metrics such as latency,
resource consumption, and error rates to
ensure system stability.

Prometheus, Grafana,
TruLens, Galileo

LLM security
& privacy
layer

Essential Ensures that the RAG system adheres to
data privacy regulations and protects against
prompt injection or other forms of AI manipu-
lation; implements security strategies such as
encryption, access control, and guardrails

AWS KMS, Azure Key
Vault, Prompt Injection
Guards

Model train-
ing/Fine-tun-
ing layer

Essential Handles the training and fine-tuning of mod-
els for specific domains or tasks; fine-tuning
models such as embeddings or LLMs using
domain-specific datasets ensure better perfor-
mance for specialized use cases.

Hugging Face, AWS
SageMaker, Google
Vertex AI, Azure ML

Caching
layer

Essential Caching frequently used queries and
responses to reduce the latency and cost
associated with repeated retrieval and gen-
eration tasks; ensures faster response times
for common queries and minimizes resource
usage for repeated tasks.

Redis, Varnish,
ElasticCache

 159The evolving RAGOps stack

We will now briefly look at a few enhancement layers, which are not mandatory but
may be employed to further improve the RAG systems. Note that there can be several
enhancement layers and that they should be tailored to the use case requirements.

7.1.3 Enhancement layers

Enhancement layers are the parts of the RAGOps stack that are optional but can lead
to significant gains, depending on the use case environment. They focus on the effi-
ciency, usability, and scalability of the system. Some possible layers are described in the
following.

HUMAN-IN-THE-LOOP LAYER

This layer provides critical oversight where human judgment is necessary, especially for
use cases requiring higher accuracy or ethical considerations. It helps reduce model
hallucinations and bias.

COST OPTIMIZATION LAYER

RAG systems can become very costly, especially with multiple calls to the LLMs for
advanced techniques, evaluations, guardrails, and monitoring. This layer helps
manage resources efficiently, which is particularly important for large-scale systems.
Optimizing infrastructure can save significant costs but is not critical to the system
functioning.

EXPLAINABILITY AND INTERPRETABILITY LAYER

This layer helps provide transparency for system decisions, especially important for
domains requiring accountability (e.g., legal and healthcare). However, many applica-
tions can still function without this in nonregulated environments.

COLLABORATION AND EXPERIMENTATION LAYER

This layer is useful for teams working on development and experimentation but non-
critical for system operation. This layer enhances productivity and iterative improve-
ments. Weights & Biases is a popular platform that helps track experiments.

These enhancement layers should be chosen depending on the application require-
ments. There may be other layers that you may deem fit for your use case.

Managed RAG solutions

Building a RAG system can be complex if you don’t have prior knowledge, budget, or

time. To address these challenges, service providers offer managed RAG solutions.

OpenAI offers the File Search tool that automatically parses and chunks your doc-

uments, creates and stores the embeddings, and uses both vector and keyword

search to retrieve relevant content to answer user queries. AWS offers Amazon Bed-

rock Knowledge Bases, which is fully managed support for end-to-end RAG workflow.

Azure AI, such as OpenAI file search, provides indexing and querying. Anthropic offers

Claude projects where users can upload documents and provide context to have

focused chats.

160 CHAPTER 7 Evolving RAGOps stack

(continued)

Several other providers offer RAG as a service and can handle video and audio tran-

scription, image content extraction, and document parsing. For quick and easy deploy-

ment of a RAG solution, managed service providers can be considered.

We have also discussed several service providers, tools, and technologies that you can
use in the development of RAG systems. The choice of these tools and technologies
may depend on factors such as

¡	Scalability and performance required—RAG systems need to handle large volumes
of data efficiently, while maintaining low latency. As data scales or traffic spikes,
the system must remain performant to ensure fast response times. Choose cloud
platforms that allow for auto-scaling and variable loads. For high-performance
and scalable retrieval, choose the vector databases that can handle millions of
embeddings with low-latency search capabilities. Use inference optimization
tools to help reduce latency during the generation phase.

¡	Integration with existing stack—Seamless integration with your current technol-
ogy stack minimizes disruption and reduces complexity. If your system already
operates on AWS, GCP, or Azure, using services that integrate well with these
platforms can streamline development and maintenance. Choosing tools that
natively integrate with your cloud provider, offer strong API support, and ensure
that the chosen frameworks support these tools can be highly beneficial.

¡	Cost efficiency—LLMs require much more resources than traditional ML models.
Costs, even with pay-as-you-go models, can escalate quickly with scale. Caching
and inference optimization can help manage the costs.

¡	Domain adaptation—RAG systems often need to be adapted to specific industries
or domains (e.g., healthcare and legal). Pre-trained models might not be fully
effective for specific use cases unless fine-tuned with domain-specific data. For
domain adaptation, models that can be easily fine-tuned should be chosen. Exist-
ing domain-specific models can also be considered.

¡	Vendor lock-in constraints—Since generative AI is an evolving field, using propri-
etary tools or services from a single vendor may lead to vendor lock-in, making
it difficult to migrate to other platforms or adjust your stack as requirements
change. Using open source or interoperable technologies where possible helps
in maintaining flexibility. Choosing tools that are cloud-agnostic or support
multi-cloud deployments to reduce dependency on a single vendor. A modular
architecture is advised to swap components without a system redesign.

¡	Community support—Strong community support means access to resources, tuto-
rials, troubleshooting, and regular updates, which can accelerate development
and reduce debugging time. This is especially true for rapidly evolving fields
such as LLMs and RAG. Tools with active communities such as Hugging Face,

 161Production best practices

LangChain, and similar are more likely to offer frequent updates, plugins, and
third-party integrations.

With the knowledge of the critical, essential, and enhancement layers, you should be
ready to put together a technology stack to build your RAG system. Let’s now look at
some common pitfalls and best practices to consider when building and deploying
production-grade RAG system.

7.2 Production best practices

Despite earnest efforts in designing and planning the RAG system, some problems will
inevitably creep up during development and deployment. Although RAG is still in its
nascent form, some early trends of common mishaps and best practices have emerged.
There have been many experiments and learnings derived from them to make RAG
systems work. This section discusses five such practices:

¡	Latency of the system—RAG systems can introduce latency due to the need for mul-
tiple steps: retrieval, reranking, and generation. High latency can significantly
degrade user experience, especially in real-time applications like chatbots or
interactive search engines, which happens because each component adds pro-
cessing time. Effective classification and routing of the queries can help in opti-
mizing latency. A filtering approach is useful in hybrid retrieval, which first filters
the embeddings based on keywords or sparse retrieval techniques and then uses
similarity search on the filtered results. This reduces the time taken to calculate
similarity, especially in large knowledge bases.

¡	Continued hallucination—Despite best efforts, LLMs may continue to generate
responses that are factually incorrect or irrelevant to the retrieved content. This
may happen if the retrieved data is ambiguous or incomplete. Post-processing
validation steps may be required to address these. A common approach is to
make RAG systems recommendation oriented rather than action oriented. This
means that a human is looped into the system for verification and final action.

¡	Insufficient scalability planning—Early prototypes of RAG systems often work
well on small datasets but can struggle as the volume of data or the number
of concurrent users grows. Managed vector database services with autoscaling
features can be an easier way to plan for growth in demand and computation
requirements. Similarly, autoscaling can also be used for the overall application
using cloud-native solutions such as AWS Lambda.

¡	Domain-adaptation challenges—The embeddings and language models may not
work well in niche or specialized domains. Also, the retrieval model and the lan-
guage model may not always complement each other well, leading to disjointed
or incoherent results. Retrieval models and LLMs are often developed and fine-
tuned independently, which can cause a mismatch between the content retrieved
and the way the LLM generates responses. It becomes important to fine-tune both
the retrieval and generation models together for highly specialized domains.

162 CHAPTER 7 Evolving RAGOps stack

¡	Inadequate handling of data privacy and PII—Pre-trained models may generate
content that includes sensitive information (e.g., personal data and confidential
details) due to biases in training data. RAG systems may inadvertently leak sensi-
tive information or personally identifiable information (PII) in their responses,
leading to privacy breaches. Data exfiltration, also known as data theft, extru-
sion, or exportation, is a major threat in the digital world. The solution is to use
PII masking and data redaction during both the pre- and post-processing stages.
Ensure compliance with privacy regulations such as GDPR or HIPAA and deploy
models with privacy filters.

The list of best practices continues to evolve. Latency and scalability are critical for
managing user experience and access. The promise of hallucination-free gener-
ation and data safety needs to be maintained for the reliability of the system. Table
7.2 summarizes the challenges of and potential solutions to putting RAG systems into
production.

Table 7.2 Production challenges and potential solutions

Challenge Description Solution

Latency of the system RAG systems add latency due to
retrieval, re-ranking, and gener-
ation steps, affecting real-time
performance.

Use query classification, hybrid
retrieval filtering, and limit similar-
ity searches

Continued hallucination LLMs may generate incorrect or
irrelevant responses due to ambig-
uous or incomplete data.

Add post-processing validation
and make systems recom-
mendation-based with human
verification.

Insufficient scalability
planning

Early RAG systems struggle with
scalability as data and user load
grow.

Use autoscaling vector databases
and cloud solutions such as AWS
Lambda.

Domain-adaptation
challenges

Embeddings and LLMs may
perform poorly in specialized
domains, leading to incoherent
results.

Fine-tune both retrieval and gener-
ation models for niche use cases.

Inadequate handling of data
privacy and PII

Models may expose sensitive data
or PII, leading to privacy issues.

Apply PII masking, data redaction,
and privacy filters, ensuring com-
pliance with regulations.

In this chapter, we have looked at a holistic RAGOps stack that enables the building of
production-grade RAG systems. You also learned about some commonly available tools
and technologies, along with a few best practices. This brings us to a close in our dis-
cussion of the RAGOps stack. We have now completed part 3 of the book, which means
you should be ready to build RAG systems and put them into production. In the last
part of this book, we discuss some emerging patterns in RAG-like multimodal capabil-
ities, agentic RAG, and graphRAG, along with closing comments on future directions
and continued learning.

 163Summary

Summary

¡	RAGOps stack is a layered approach to designing a RAG system.

¡	These layers are categorized into critical, essential, and enhancement layers.

¡	Critical layers are fundamental for operation; essential layers ensure perfor-
mance and reliability; and enhancement layers improve efficiency, scalability,
and usability.

Critical layers

¡	Data layer—Responsible for collecting, transforming, and storing the knowl-
edge base. Ingestion tools such as AWS Glue, Azure Data Factory, and Apache
Kafka enable data collection. Data transformation includes chunking, metadata
enrichment, and converting data into vector formats. Tools such as FAISS, Pine-
cone, and Neo4j are used for storing embeddings and graph data.

¡	Model layer—Includes embeddings models and LLMs for generation. Embed-
dings models transform the text into vectors, with options from OpenAI, Google,
Cohere, and Hugging Face. Foundation models (LLMs) such as GPT, Claude,
and Llama generate outputs and evaluate tasks. Task-specific models handle spe-
cialized tasks such as query classification and bias detection.

¡	Model deployment—Manages hosting and serving of LLMs and embeddings mod-
els. Popular platforms include AWS SageMaker, Google Vertex, and Hugging
Face. Inference optimization reduces response time and costs with methods such
as quantization and batching.

¡	Application orchestration layer—Coordinates data flow between different components:

– Query orchestration handles query classification and optimization.

– Retrieval coordination manages retrieval methods like dense or hybrid search.

– Generation coordination handles prompt generation and post-retrieval tasks
such as re-ranking.

Essential layers

¡	Prompt layer—Ensures prompts are well-engineered to guide LLMs for relevant,
accurate responses. Tools such as LangChain and Azure Prompt Flow assist in
prompt management.

¡	Evaluation layer—Monitors system performance by evaluating retrieval accuracy,
faithfulness, and context relevance. Tools such as TruLens and Ragas provide
evaluation frameworks.

¡	Monitoring layer—Tracks system health, resource usage, and latency. Platforms
such as TraceLoop and Galileo provide monitoring services.

¡	LLM security and privacy layer—Protects against data breaches and prompt injec-
tion attacks. Tools such as encryption, anonymization, and differential privacy
should be used to safeguard sensitive data.

164 CHAPTER 7 Evolving RAGOps stack

¡	Caching layer—Caches frequently generated responses to reduce costs and
latency in RAG systems.

Enhancement layers

¡	Human-in-the-loop layer—Adds human oversight to ensure higher accuracy and
ethical decision-making.

¡	Cost optimization layer—Reduces infrastructure costs, especially in large-scale RAG
systems.

¡	Explainability and interpretability layer—Provides transparency into system deci-
sions, critical for domains such as healthcare and legal.

¡	Collaboration and experimentation layer—Useful for team-based development and
continuous improvement.

Production best practices

¡	Latency—RAG systems often introduce latency due to multiple steps. Using tech-
niques such as filtering in hybrid retrieval can help reduce response times.

¡	Hallucination—LLMs may still generate incorrect responses. Post-processing vali-
dation and human-in-the-loop systems help mitigate this.

¡	Scalability—Early prototypes may struggle to scale. Managed vector database ser-
vices with autoscaling can help plan for growth.

¡	Domain adaptation—Embeddings and language models may not perform well in
niche domains. Fine-tuning both retrieval and generation models is necessary.

¡	Data privacy—Models may leak sensitive information. PII masking, encryption,
and compliance with data regulations are essential for protecting user data.

Part 4

Additional considerations

R AG is an evolving technique, and significant research activity has been
ongoing in this field. In this concluding part of the book, you will learn about the
popular state-of-the-art variants of RAG and a RAG development framework that
will assist you in planning and building RAG systems.

Chapter 8 will teach you about the most important variants of RAG—
multimodal RAG, knowledge graph-enhanced RAG, and agentic RAG—along
with some other popular ones. Learning about these variants will let you customize
your RAG systems to the use case you are building.

Chapter 9 revisits all the concepts discussed in this book, organized within a
RAG development framework. This framework will help you strategically plan the
development of your RAG system. You’ll also get to know a few areas of research
that remain open at the time of writing this book.

This concluding part of the book wraps up your introduction to RAG. By the
end of this book, you should not only have the foundations to build production-
grade RAG systems, but also the knowledge to follow and contribute to ongoing
research in this domain.

167

8Graph, multimodal,
agentic, and other

RAG variants

This chapter covers

¡	Introducing RAG variants

¡	Knowledge graph RAG

¡	Multimodal RAG

¡	Agentic RAG

¡	Other RAG variants

The first part of the book introduced retrieval-augmented generation (RAG) and
the core idea behind it. The second part dealt with building and evaluating basic
RAG systems. Part 3 took RAG beyond the naïve approach and discussed advanced
techniques and the technology stack that supports a RAG system. The last part of
the book looks at more RAG patterns, and we conclude our discussion with a few
best practices and some areas for further exploration.

Chapter 8 looks at some popular RAG variants. These variants adapt different
stages of RAG (i.e., indexing, retrieval, augmentation, and generation) to specific
use case requirements. The chapter begins by discussing the emergence of these
variants and the purpose they serve. We then continue talking about three important

168 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

variants that have gained prominence in applied RAG. These are knowledge-graph-
enhanced, multimodal, and agentic RAG. We also briefly examine other RAG variants
that significantly contribute to the evolution of RAG in practical applications. We
discuss the purpose and motivation behind each variant. This chapter also breaks down
the workflow, features, and technical details of the variants along with their strengths
and weaknesses. For simplicity, the code for these variants is not included in this chapter
but can be found in the book’s code repository.

By the end of this chapter, you should

¡	Be familiar with the idea and motivation behind RAG variants.

¡	Have an in-depth understanding of graph, multimodal, and agentic RAG.

¡	Be aware of several popular RAG variants and the use cases they solve.

There are several limitations of a naïve approach to RAG that affect the overall usability
of a standard RAG system. These limitations range from difficulties in understanding
relationships across different documents to challenges in handling various data types,
as well as concerns regarding system cost and efficiency. Chapter 6 discussed several
pre-retrieval, retrieval, and post-retrieval techniques, such as index optimization, query
optimization, hybrid and iterative retrieval strategies, compression, and re-ranking,
which address different limitations and improve the accuracy of a RAG system. Several
RAG patterns that incorporate one or more of these techniques have emerged over
time to solve specific use challenges. We refer to them as RAG variants.

8.1 What are RAG variants, and why do we need them?

The universe of applications that rely on RAG is expanding every day. Some of these
applications process not just text, but different data modalities such as image, video,
and audio as well. Others are being applied in domains such as healthcare and finance,
where the effects of inaccurate results are catastrophic. The emerging domain of using
LLMs as decision-making agents has also enabled a more adaptive and intelligent RAG
system. Apart from factual accuracy, practical RAG applications demand low latency
and low costs to enhance user experience and adoption. As the range of applications
for RAG has expanded, so need specialized variations of RAG—known as RAG
variants—designed to address unique challenges across different tasks and data types.

These RAG variants are adaptations of the standard RAG framework that extend
its functionality to meet demands of diverse and complex use cases. By employing
advanced pre-retrieval, retrieval and post-retrieval techniques, these variants enhance
RAG with capabilities such as handling multimodal data, providing higher accuracy,
and better relational understanding. The evolution of these RAG variants makes the
system both flexible and domain aware.

While several RAG variants have emerged, the three that we are going to discuss
in-depth in the subsequent sections have gained prominence:

¡	Multimodal RAG—Extends capabilities of the standard RAG beyond text data and
incorporates other data types such as images, video, and audio. This characteristic

 169Multimodal RAG

enables the system to fetch information from nontextual documents and provide
additional context.

¡	Knowledge graph RAG—Integrates knowledge graphs into the retrieval process.
This idea was introduced in chapter 6 as part of improving the indexing struc-
ture. Knowledge graphs help establish relationships between entities, providing
better context, especially in multi-hop queries.

¡	Agentic RAG—Incorporates LLM agents into the RAG framework. These agents
enable autonomous decision making across the RAG value chain from index-
ing to generation. Simultaneously, all components become adaptive to the user
query.

In addition to these three, we also touch upon additional variants, such as corrective
RAG, self-RAG, and more, but first, we begin by discussing multimodality.

8.2 Multimodal RAG

Until now, we have seen that standard RAG systems are effective in managing and
retrieving textual data to generate context-aware and grounded responses. However,
the scope of enterprise data extends beyond text to image, audio, and video. Standard
RAG systems fall short when attempting to interpret nontextual data formats. This is
the core motivation behind a multimodal variant of RAG, which extends the capabili-
ties to more data formats.

8.2.1 Data modality

Multimodality can be a confusing term for the uninitiated, especially because “modal-
ity” varies in meaning across different fields. Grammatical modality relates to the
expression of the speaker’s attitude, while treatment modality may refer to the medical
approach in medicine. In RAG, and AI in general, modality refers to data format. Text
is a modality, image is a modality, video and audio are different modalities, and we can
also consider tables and code as distinct modalities. Figure 8.1 shows some data modal-
ities, including less common ones such as genomic and 3D data.

Text Image Audio Video 3D

Tables Time series Code Knowledge graph Genomic

Figure 8.1 Examples of different data modalities

170 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

Multimodal RAG is, therefore, the extended variant of standard RAG with the capabil-
ity to process multiple data modalities. Before diving into the requirements and archi-
tectural details of multimodal RAG, let’s ponder over the use cases where multimodal
RAG is necessary.

8.2.2 Multimodal RAG use cases

There are several industries and functions where a multimodal variant of RAG is
required, such as

¡	Medical diagnosis—A diagnostic assistant can work with patient records that may
include medical history (in text form), lab results (in tabular form), and diagnos-
tic images (like X-rays, MRIs, etc.), along with studies and research papers that
include graphs, charts, or microscopic images. When the patient comes in for a
consultation, this assistant can provide a holistic analysis to the doctor.

¡	Investment analysis—Working with financial reports and other filings that have
charts showing trends, earnings, and projections along with balance sheets and
income statements in tabular form, apart from the usual text commentary, an
investment research assistant can provide analysts with crucial information
needed to make investment decisions.

¡	Buying assistance—Through an analysis of product images, textual descriptions,
product specifications (in tabular form), and customer reviews, a shopping
assistant can help the shoppers on an e-commerce website with personalized
recommendations.

¡	Coding assistance—Coding assistants retrieve relevant documentation, function
usage examples, and code snippets from repositories based on the query con-
text. For example, when a developer asks how to implement a certain API func-
tion. The RAG system retrieves precise code snippets and explanations from the
documentation, helping the developer avoid time-consuming searches.

¡	Equipment maintenance—Using historical text reports with visual inspection
images or video feed, sensor data, and performance tables, a maintenance assis-
tant can provide maintenance recommendations and trends.

These are just a few examples. While standard text-only RAG finds acceptability in the
initial stages of a use case, a large proportion of production-grade RAG systems incor-
porate at least one other modality of data.

8.2.3 Multimodal RAG pipelines

Let’s now explore how developing a multimodal RAG pipeline differs from a standard
text-only RAG pipeline you have learned so far. An obvious change will be in loading
and indexing the data of nontext modalities.

MULTIMODAL INDEXING PIPELINE

Developing the knowledge base for multimodal RAG requires enhancement in each
of the four components of the indexing pipelines. Apart from loading and chunking

 171Multimodal RAG

files of different modalities, creating embeddings for multimodal data requires special
attention. Let’s look at each of the components one by one.

The data-loading step is quite like the standard text-only RAG but now includes
connectors and data loaders for nontext modalities. There are several options
available. Pillow, also known as PIL, is a popular Python library for loading images.
Unstructured is an open source library that includes components for ingesting a
variety of data formats. Pydub is another Python library that allows the loading of audio
files such as WAV and MP3. LangChain provides an integration with the unstructured
library. UnstructuredImageLoader is a class available in LangChain document
loaders for loading images. For audio and video transcription, libraries such as
OpenAIWhisperParser, AssemblyAIAudioTranscriptLoader, and YoutubeLoader can
be used. Likewise, for tabular data CSVLoader and DataFrameLoader come in handy.
For simplicity, sometimes data of different modalities is transcribed into text.

Chunking for multimodal data largely follows a process similar to text chunking in
cases where audio/video data is transcribed and stored as text. However, for raw audio
and video data, specific chunking methods can be employed. Voice activity detection
(VAD) chunks the data based on silences or background noise in the audio. Scene-
detection-based chunking identifies major changes in the scene to segment the video.
For tabular data, sometimes row/column-level chunking can be incorporated, and for
code, the chunking can be carried out at a function, a class, or a logical unit level. All
strategies used for chunking text data such as context enrichment, semantic chunking,
and similar are also held here. For images, chunking is generally not done. semantic_
chunkers is a multimodal chunking library for intelligent chunking of text, video, and
audio. It makes AI and data processing more efficient and accurate.

Embeddings is where nuance begins in multimodal RAG. In standard text-only RAG,
there are several embeddings models available to vectorize the chunks. But how
does one vectorize data of different modalities, such as an image? There are three
approaches to deal with this complexity: shared or joint embedding models, modality-
specific embeddings, and conversion of all non-text data into text.

Shared or joint embeddings models map diverse data types into a unified embed-
dings space. By doing this, cross-modal retrieval is enabled, such as finding images
based on textual descriptions or generating text from images. Google Vertex AI offers
shared embeddings models that generate vectors for all data modalities in the unified
embeddings space. Shared embeddings models are also called multimodal embeddings
models. While efficient at understanding general image data, multimodal embeddings
sometimes fall short when granular understanding is needed, as in charts and tables
represented as images and infographics. In figure 8.2, image, text, audio, and video
data are plotted in the same 3D vector space.

The modality-specific embeddings approach resemble multimodal embeddings,
except that instead of a single embeddings space for all modalities, the embeddings
space maps only two modalities. In such a scenario, we need an image–text embed-
dings model to process text, image, and audio data (e.g., Contrastive Language–Image

172 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

Dog

Bark

Fly

Queen

King

Similar data across
modalities lies close to
each other in a shared
embeddings space.

Figure 8.2

Images, text,

video, and audio

are plotted on the

same embeddings

space. Dog, bark,

and dog’s image

are close to each

other.

Pretraining, or CLIP) and an audio-text embeddings model (e.g., Contrastive
Language–Audio Pretraining, or CLAP). The knowledge base has text, image, and
audio embeddings in different embeddings spaces and stored separately. Figure 8.3
is an example of CLIP image–text embeddings where image and text embeddings are
projected onto a shared embeddings space.

...

...

T

T

T

I
1

I
2

I
n

1

2

n

T
1
I

1
T

1
I

2
T

1
I

n

T
2
I

1
T

2
I

2
T

2
I

n

T
n
I

1
T

n
I

2
T

n
I

n

............

...

...

...
Text

encoder

Image
encoder

Image and text
embeddings are
projected in a
shared embeddings
space.

Figure 8.3 CLIP uses multimodal pre-training to convert classification into a retrieval task, which

enables pre-trained models to tackle zero-shot recognition.

 173Multimodal RAG

Conversion of all non-text data into text is employed to first convert all nontext
(image) data into text using a multimodal LLM and then follow the standard text-
only RAG approach. (A multimodal LLM is a large language model that processes
all modalities of data. You will read more about multimodal LLMs later in this sec-
tion.) In this strategy, you may notice that we may not be entirely using multimodal
data as information loss is bound to occur when converting nontext to text data. In
a variation of this strategy, instead of converting all multimodal data into text and
using it as text, a two-pronged approach is employed. Here all multimodal data is
summarized in text using a multimodal LLM. Embeddings of this text are used to
search for during the retrieval process. However, for generation, not only the sum-
mary but the actual multimodal file (e.g., a .jpeg) is retrieved and passed to the mul-
timodal LLM for generation. This reduces the loss of information when converting
to text.

Embeddings, either multimodal or text, are stored in vector databases such as stan-
dard text-only RAG. In addition to vector storage, document storage is required to store
raw files that can be retrieved and passed to the LLM for generation. Document stores
such as Redis can be used to store raw files. When text summaries are used, a key map-
ping of the summary embeddings to the raw documents must be created. Figure 8.4
shows the indexing pipeline with all three options for embeddings.

Multimodal

embeddings
Text embeddings

Image embeddings

Modality specific

embeddings

LLM

Text

embeddings

Option A

Separate

collection for

each modality

Vector store

Document store

Text chunking

Source

Text loader

Image loader

Audio loader

Video loader

Loading

Audio chunking

Video chunking

Chunking

Option A

Audio embeddings

Video embeddings

Option B

Text

Single modality

conversion

Option C

Embeddings

Vector store

Option B

Option C

StorageThe loading and chunking
approach remains largely
similar for each of the
multimodal RAG options.

Figure 8.4 Multimodal indexing pipeline presenting three options

While the loading, chunking, and storage components are similar, the embedding
component presents several options in multimodal RAG. Table 8.1 compares the
indexing pipelines of text-only RAG and multimodal RAG.

174 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

Table 8.1 Indexing pipelines of text-only vs. multimodal RAG

Indexing

component
Text-only RAG Multimodal RAG

Loading Standard text data
loaders are used to
load documents, such
as plain text files,
PDFs, and other text-
based formats.

Requires connectors for additional data types. For images,

libraries such as Pillow (PIL) and Unstructured-
ImageLoader in LangChain are used; for audio, we use

libraries such as Pydub or OpenAIWhisperParser,

whereas CSVLoader and DataFrameLoader are used

for tabular data. Audio and video transcription tools such

as AssemblyAI and YoutubeLoader are also incorporated to

preprocess audio/video content.

Chunking Text data is divided
into segments
(chunks) based on
context or structure
(e.g., sentences, para-
graphs) and optionally
enriched semantically.

Follows text chunking when data is transcribed to text
(audio/video). For raw audio, voice activity detection
(VAD) can be used to chunk by pauses. For videos, scene
detection identifies visual transitions, and tabular data can
be chunked row/column-wise. Image chunking is typically
skipped.

Embeddings Text embeddings
are created using
a single-modality
text embeddings
model (e.g., OpenAI
embeddings or BERT),
which vectorizes each
chunk for storage and
retrieval.

Embeddings can be generated via multimodal embeddings
models, which unify all data types in a shared vector space
for cross-modal retrieval, modality-specific embeddings
such as CLIP and CLAP or converting multimodal data to
text first and use text embeddings, although this may cause
information loss.

Storage Embeddings are
stored in vector
databases.

Embeddings are stored in vector databases, but additional
document storage for raw multimodal files may be used.

Once the knowledge base is created, such as in text-only RAG, the generation pipeline
is responsible for real-time interaction with the knowledge base. Depending on the
embedding strategy used, the generation pipeline components adapt to incorporate
multimodal data.

MULTIMODAL GENERATION PIPELINE

Once the knowledge base is created by the indexing pipeline, the generation pipeline
needs to search, retrieve, process, and generate multimodal data. This requires varia-
tions in retrieval approach and a multimodal LLM:

¡	Retrieval—Depending on the embeddings strategy, the retrieval technique varies:

– In case a shared multimodal embeddings model is used, the retrieval process
follows a similarity search approach, where the user query is converted into a
vector form using the same multimodal embeddings, and the documents are
retrieved based on their cosine similarity value irrespective of their modality.

– In the modality-specific embedding approach, because multiple embeddings
are present, a multi-vector retrieval approach is employed. For a single query,

 175Multimodal RAG

documents are retrieved from each modality-specific embeddings space based
on similarity. These documents may later be re-ranked before augmentation
and generation.

– When nontext data is converted into text, the retrieval process is the same as
the standard text-only RAG. In the variation where both text summaries and
raw files are used, the retriever first retrieves the relevant summaries from the
text embeddings space, and then the files from the document stores mapped
to those summaries are also retrieved.

¡	Augmentation—The augmentation step remains the same as text-only RAG,
except that the augmented prompt now includes the raw multimodal file accom-
panying the text prompt.

¡	Generation—Like multimodal embeddings, for processing and generating mul-
timodal data, multimodal LLMs are used. LLMs are limited by their ability to
process text data only. Multimodal LLMs are transformers-based models, too,
but have been trained on data of all modalities, in addition to text data. There
are nuanced differences in the training process of multimodal LLMs, and the
readers are encouraged to explore them. However, for building RAG systems,
we can use the available foundation multimodal LLMs. OpenAI’s GPT 4o and
GPT 4o mini and Google’s Gemini are popular proprietary multimodal LLMs,
while Meta’s Llama 3.2 and Mistral AI’s Pixtral are open source multimodal
LLMs.

While the augmentation step remains similar to text-only RAG, the retrieval step adapts
based on the embeddings strategy used, and the generation step swaps the LLMs with
multimodal LLMs. The differences in the generation pipelines are highlighted in
table 8.2.

Table 8.2 Indexing pipelines of text-only vs. multimodal RAG

Generation

component
Text-only RAG Multimodal RAG

Retrieval Retrieves similar
text embeddings
to the query using
similarity search

Varies by embedding strategy—in shared embeddings model,
a similarity search is employed regardless of modality, con-
verting the query into a multimodal vector. In modality-specific
embeddings, multi-vector retrieval is used for modality-specific
results, and in text-converted nontext data, a standard text

retrieval along with raw files mapped to text summaries is used.

Augmentation Adds retrieved text
to the prompt

Similar to text-only but includes the raw multimodal files along-

side the text in the prompt.

Generation Uses LLMs to gen-
erate responses

Uses multimodal LLMs instead of text-only LLMs.

By tweaking the indexing and generation pipelines, a standard text-only RAG system
can be upgraded to a multimodal RAG system, as illustrated in figure 8.5.

176 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

Input modality

embeddings

Text embeddings

Multimodal LLM

Augmentation

While the search
takes place on the
text embeddings, raw
documents are also
retrieved to pass to
the LLM.

User query

Multimodal

embeddings

Multi-vector

retriever Text

retriever

To retrieve all
relevant documents,
search is conducted
in the collection
of each modality.

Multimodal

retriever

Option A: Multimodal

Option B: Specific modality

Option C: Single modality

M

Figure 8.5 For each of the three approaches, the generation pipeline also adapts.

8.2.4 Challenges and best practices

Multimodal RAG systems are gaining prominence owing to the diversity present in
enterprise data. However, one must note that with multimodality, the complexity of
the system increases along with higher latency and more expenditure on multimodal
embeddings and generation. Some of the common challenges associated with multi-
modal RAG are

¡	Ensuring coherent alignment between different data modalities (e.g., text and
images) can be difficult. Utilizing multimodal embeddings projecting differ-
ent modalities into a common embedding space does create better integra-
tion, but these embeddings models can still lead to inaccuracies and must be
evaluated.

¡	Handling multiple data types may increase computational requirements and
processing time. Robust preprocessing pipelines to standardize and align data
from various modalities are essential. Sometimes, converting multimodal data
to text and following a text-only RAG approach may be enough to generate the
desired results.

 177Knowledge graph RAG

¡	Not all models are capable of effectively processing and integrating multimodal
data of all modalities. Incorporate only those that add significant value to the task
to optimize performance and resource utilization.

We have looked at a RAG variant that extends the capability of RAG to different data
modalities. However, standard RAG is still deficient when the information is dispersed
across different documents. Let’s now look at a pattern in which knowledge graphs are
used to establish higher-order relationships.

8.3 Knowledge graph RAG

Imagine summarizing a large report or answering complex questions that draw infor-
mation from diverse sources. For example, a question such as, “What are the main
themes in this report?” or “Which products in the catalogue are endorsed by the same
celebrities?” are questions that are difficult for standard RAG systems to answer.

In a summarization task such as the “main themes” in a report, there is no chunk of
the document that can answer the question completely. Likewise, “endorsed by the same
celebrities” is not likely to be present in the data for the retriever to search through.

To answer these kinds of complex questions requiring multi-hop reasoning, identi-
fying contextual relationships, and addressing higher-order queries, a powerful RAG
pattern that incorporates knowledge graphs has been widely successful.

This pattern is called knowledge graph RAG or simply graph RAG (not to be confused
with Microsoft’s GraphRAG, which is a specific framework of knowledge graph RAG).
It must be noted here that graph RAG is not necessarily a replacement for standard
vector-based RAG, but a hybrid approach in which both vectors and graphs are used to
retrieve context. Before moving forward, The following sections explain what knowl-
edge graphs are and what benefits are inherent to them.

8.3.1 Knowledge graphs

The term knowledge graph was popularized by Google somewhere around 2012 by inte-
grating an entity-relationship structure into its search engine to deliver more accurate
and context-aware results. The simplest way to understand knowledge graphs is through
the node-and-edge structure. Nodes may represent entities such as people, organiza-
tions, products, and events, and edges represent relationships between the nodes, such
as is a part of, works at, is related to, and so on. The nodes and edges can also have attributes
such as id, timestamp, and similar. Knowledge graphs, therefore, rely on semantics or
meaning to create a shared, human-like, understanding of data. Figure 8.6 illustrates a
simple knowledge graph with nodes, edges, and attributes for customer data.

Knowledge graphs offer several advantages over standard structured databases such
as SQL by prioritizing relationships and context, which results in deeper data explora-
tion. A standard row–column or a document storage does not allow for context a knowl-
edge graph does.
The storage and data processing in knowledge graphs is unique. Specialized databases
such as Neo4j, Amazon Neptune, and TigerGraph are used to store knowledge graph

178 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

Customer
A

Product X

Product Y

Customer
B

Review 1

purchased

wrote

feedback forpurchased

purchased

Id: C001
Name: John Doe
Customer since: 11/1/2020

Id: C002
Name: Jane Doe
Customer since: 12/2/2010

SKU: PX001
Brand: Brandex
Name: ProductX

SKU: PX002
Brand: Brandex
Name: ProductY

Timestamp: ...

NODE

EDGE

ATTRIBUTES

Figure 8.6 Knowledge graph representation of customer activity where nodes (circles) represent

entities, edges (arrows) represent relationships, and attributes (rectangles) are the properties.

data, and query languages such as Cypher, Gremlin, and SparkQL are used for graph
traversal. Readers are encouraged to learn more about graph databases, but some key
concepts to keep in mind are

¡	Nodes and edges—Nodes represent entities, and edges represent relationships to
form the graph structure and enable a visual structure to the knowledge.

¡	Attributes—Attributes are properties of entities(nodes) and relationships(edges).

¡	Triplets—Knowledge is represented in triplets such as “customer A purchased
product X” (node–edge–node). Here the two entities, “customer A” and “prod-
uct X,” and one relationship, “purchased,” form a triplet. These triples are the
building blocks of knowledge graphs, capturing facts and relationships in a struc-
tured way.

¡	Ontology—An ontology defines the schema or structure of a knowledge graph,
specifying the types of entities, relationships, and their properties.

¡	Graph embeddings—Graph embeddings are vector representations of nodes and
edges that capture graph structure.

¡	Graph query language—SPARQL, Cypher, and similar languages allow users to
retrieve information from the graph, formulating complex queries to find pat-
terns, connections, and insights.

¡	Graph traversal—This is the method of navigating through nodes and edges to
discover paths, patterns, and insights, essential for algorithms such as shortest
path or recommendation systems.

Because of their inherent focus on relationships and context, knowledge graphs
enhance standard RAG for a superior context-aware retrieval.

 179Knowledge graph RAG

8.3.2 Knowledge graph RAG use cases

Knowledge graphs can be useful in a variety of use cases where the ability to handle
multi-hop relationships, entity disambiguation, and complex networks is required.
Standard RAG systems are limited to retrieving isolated information chunks, while
knowledge graph RAG can dynamically connect and analyze data points within a net-
work, making it ideal for applications requiring a deep understanding of interrelated
data. Here are some examples:

¡	Personalized treatment plans—Knowledge graph RAG can link drugs, treatments,
and conditions in a networked format, which allows it to identify potential inter-
actions and customize treatment recommendations based on multiple factors.
Standard RAG can retrieve information about a specific drug or treatment but
struggles to cross-reference interactions across a network of symptoms, condi-
tions, and treatments.

¡	Personalized product recommendations—Standard RAG can retrieve individual touch-
points or customer reviews but fails to capture the interconnected path a customer
follows across their journey. Knowledge graph RAG allows for multi-hop reason-
ing across transactions, browsing history, and customer feedback, enabling a more
holistic analysis of the journey and providing highly relevant recommendations
based on relationships between customer behaviors and preferences.

¡	Contract analysis—Standard RAG can retrieve text from individual contracts or
clauses but cannot map relationships among contracts, parties, or compliance
requirements. Knowledge graph RAG can link contracts, clauses, and parties in
a relational network, enabling it to identify conflicts, dependencies, and compli-
ance risks across interconnected legal documents.

While standard RAG can solve simple queries, for processes that require analysis and rea-
soning on data from multiple sources, knowledge graph can prove to be advantageous.

8.3.3 Graph RAG approaches

Knowledge graph is a powerful data pattern. The approach to using knowledge graphs
can be determined by the complexity of the use case and the diversity of data. This sec-
tion discusses three common approaches that can be followed.

STRUCTURE AWARENESS THROUGH GRAPHS

This is the simplest approach to incorporating knowledge graphs. Recall that in the
standard vector-based RAG approach, documents are chunked, and embeddings are
created then and stored for retrieval. The problem that may arise is that the informa-
tion in the adjacent chunks might not be retrieved, and a certain degree of context loss
may happen. In section 6.2.1, we discussed a hierarchical indexing structure such as a
parent–child structure. The parent document contains overarching themes or summa-
ries, while child documents delve into specific details. During retrieval, the system can
first locate the most relevant child documents and then refer to the parent documents

180 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

for additional context if required. This approach enhances the precision of retrieval,
while maintaining the broader context.

An efficient way to store documents in a hierarchical structure is in graphs. Parent
and child documents can be stored in the nodes with a relationship “is child of.” More
levels of hierarchies can be created. In figure 8.7, there are three levels of indexing hier-
archy, and while the search happens at the lowest level, parent documents at a higher
hierarchy level are retrieved for deeper context.

Graph knowledge base

Document
A

Section
I

Section
II

Section
III

Chunk
1

Chunk
2

Hierarchy

level 3

Hierarchy

level 2

Hierarchy

level 1

[0.32,0.64......., 0.91][0.21,0.4......., 0.19]

is
se

cti
on o

f

is
 c

h
u
n
k
 o

f

User query Retriever Augment Response

Retriever searches chunks
at the lowest graph
hierarchy and finds the
most similar ones.

While the search is at
the lowest level, the
retrieved text is from a
higher level of hierarchy.

Higher-hierarchy level
documents provide
deeper context for the
response.

LLM

Figure 8.7 While search in a hierarchical index structure happens at the lowest level, retrieved

documents are more contextually complete from a higher level of hierarchy.

GRAPH-ENHANCED VECTOR SEARCH

Graphs are not mandatory when implementing hierarchical indexing. The true value
of knowledge graphs is realized when connections can be made across chunks. Stan-
dard vector-based search on a collection of chunks can be enhanced by traversing a

 181Knowledge graph RAG

knowledge graph to retrieve related chunks. To do this, a set of entities and relation-
ships are extracted from the chunks using an LLM.

In the retrieval stage, the first step is a usual vector search executed based on the user
query. An initial set of chunks is identified that has a high similarity with the user query.
In the next step, the knowledge graph is traversed to fetch-related entities around the
entities of the chunks identified in the first step. By doing this, the retriever fetches not
only the chunks similar to the user query but also related chunks, which leads to deeper
context and can be quite effective in solving multi-hop queries. This is often coupled
with hierarchical structures and a re-ranking of retrieved documents. Figure 8.8 shows

Higher-order hierarchies

User query Retriever

Graph knowledge base

Augment LLM Response

Retriever searches
chunks at the lowest
graph hierarchy and
finds the most similar
ones.

While the search
identifies a
particular chunk,
all chunks that are
related to the
entities of this
chunk are retrieved.

Since not only the
similar chunks but
chunks related to them
are also retrieved, the
chances of answering
complex multi-hop
queries increases.

Most similar
chunk

Entitiy A Entitiy B

Entitiy X

Entitiy Y

is related to

is
related to

Entities are
extracted
from
documents
using an
LLM.

In this example,
entity A from the
most similar chunk is
related to an entity
Y extracted from
another chunk. This
chunk of the related
entity is also
retrieved.

Related chunk

Figure 8.8 Entities and relationships extracted from the chunks play a crucial role. When chunks

similar to the user query are retrieved, the chunks that have entities related to the entities of similar

chunks are also retrieved.

182 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

an enhanced knowledge graph, where chuwnks also have the extracted entities and
relationships. During retrieval, in addition to similar chunks, the parent chunks of
related entities are also retrieved.

GRAPH COMMUNITIES AND COMMUNITY SUMMARIES

As discussed before, knowledge graphs are about entities and their relationships.
Depending on the process, there may be patterns in which certain entities interact
more with each other. Graph communities are a subset of entities connected more
densely. For example, communities of customers with similar demographics and buy-
ing patterns can be identified or clusters of product features that appear together
can be discovered. Community detection algorithms such as the Leiden and the Lou-
vain algorithm are employed to detect communities within a knowledge graph. After
detecting these communities, an LLM is used to generate summaries of the entities
and the relationship information in the community. The retrieval process can be simi-
lar to vector search, where initial nodes are identified using a similarity score and com-
munity summaries related to the nodes are fetched, or vector search can be employed
directly on the community summaries since they already contain a deeper context of
several entities. This approach is particularly useful when queries relate to the broader
themes within the knowledge base. Figure 8.9 shows how the retrieval at a community
level is sufficient to answer questions at a broader thematic level.

In any of these approaches, both the indexing and the retrieval pipeline need to be
modified to incorporate the graph and create a hybrid retrieval system where both vec-
tor databases and graph databases exist.

8.3.4 Graph RAG pipelines

As we have been discussing, knowledge graph is a unique data pattern that requires
specific processing and storage. RAG pipelines need to be customized to incorporate
knowledge graphs. Depending on the approach used, both the indexing and the gen-
eration pipelines need tweaking.

KNOWLEDGE GRAPH RAG INDEXING PIPELINE

The knowledge base in graph RAG requires a different kind of parsing and storage.
New components are introduced in the indexing pipeline to create knowledge graphs,
extract summaries, and store the data for generation. While the loading and chunking
components remain similar, the remaining components change significantly:

¡	Data loading—There is no difference in the loading of the documents from the
standard vector-based RAG.

¡	Data chunking—To create knowledge graphs from the documents, large docu-
ments are chunked in the same way as the vector RAG approach. These chunks
are then passed to an LLM to extract entities and their relationships.

¡	Entity relationship attribute extraction (for graph-enhanced RAG)—This is a crucial step
in graph enhancement because the quality of responses will depend on how well
the entities and relationships have been identified. This step can be customized

 183Knowledge graph RAG

A B

X Y

Higher-order hierarchies

User query Retriever

Graph knowledge base

Augment LLM Response

Similarity
search happens
at the
community
summary level.

The most similar
summary is
retrieved.
Optionally, all the
chunks belonging
to that community
can also be
retrieved.

Since the community
summary contains
information not of a few
chunks but of all the chunks
of similar themes, these
community summaries can
answer questions at a higher
thematic level.

Community IICommunity I

is
 c

h
u
n
k

o
f

is
 e

nt
ity

 o
f

b
e
lo

n
g
s

to

b
e
lo

n
g
s
 t
o

b
e
lo

n
g
s

to

[0.32,0.64......., 0.91] [0.32,0.64......., 0.91]

Communities
are created
using a
community
identification
algorithm.

Communities
summaries are
created using
an LLM and
stored in the
vector form.

f

Figure 8.9 Communities club entities under a consistent theme and summarize the information at this

group level. Since the summaries are created from a high number of thematically related chunks, these

summaries can answer broad queries.

according to the need and complexity of the use case. The simplest approach
can be to ask an LLM directly to do the extraction. The exact kind of entities
and relationships can also be predetermined, say, allowed entities are “peo-
ple,” “country,” and “organization,” and allowed relationships are “nationality,”
“located at,” and “works at.” There can be another approach in which an LLM
is used to identify the schema of the knowledge graph. Attributes can also be
added to the entities and relationships. There can be multiple passes of this step
to ensure that an exhaustive list has been created. Another step can be employed
to remove redundancies and duplication. In LangChain, LLMGraphTransformer

184 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

class is available in the langchain_experimental library that abstracts the entity
relationship extraction from documents.

¡	Storage—Once the entities, relationships, and attributes have been extracted,
these can be stored in a graph database such as Neo4j. LangChain has integration
with the Neo4j graph database, and the Neo4jGraph library from the langchain_
community can be used. Since the entity relationship extraction is done at a chunk
level, the storage is also iterative, and the graph database is updated after each
pass. In LangChain, the add_graph_documents() function of the Neo4jGraph
library can be used to directly update the knowledge graph.

¡	Creating community summaries—As discussed previously, once the knowledge
graph is created, an algorithm is used to detect communities, and an LLM is used
to create a summary of the community. Graphrag, a library developed by Micro-
soft, provides end-to-end knowledge graph and community summary creation
from documents. Another approach is to just use the community summaries and
store the summaries in a vector database and use the standard vector RAG on the
community summaries.

This graph database can be used as the complete knowledge base or be treated as an
addition to the regular vector database in the knowledge base. Figure 8.10 illustrates
the indexing pipeline with each step.

LLM Schema

E-R extraction Graph storage

Community

identification

Prompts

Chunking

Prompts

LLM E-R

Prompts

Loading

Source

Connector

Extraction

Schema
extraction

LLM

Community summary

Summary

Loading and
chunking remain
largely similar to
vector-based search.

Optionally, the graph
schema can be
iteratively extracted
from chunks.

Entities and
relationships
are iteratively
extracted from
the chunks in
the desired
schema.

Graph
database is
updated with
extracted
entities and
relationships.

Using a community
identification algorithm,
an LLM is used to
generate summaries
that are stored in the
graph.

Chunks and parent documents can be
stored directly in a graph database.

Figure 8.10 Indexing pipeline for graph RAG. Chunks can directly be stored for simple structure-aware indexing,

and community summaries can be created and stored with the graph.

 185Knowledge graph RAG

GENERATION PIPELINE

Since the nature of the knowledge base in graph RAG is quite unlike standard RAG, it
requires significant changes in the generation pipeline. The retrieval process becomes
slightly more nuanced than vector retrieval because of an additional step of graph tra-
versal. Graph databases such as Neo4j have introduced vector indexes, via the Neo4j
vector search plugin, which represent nodes and attributes as embeddings and enable
similarity search. For effective retrieval, the user query (in natural language) is con-
verted into a graph query that can be used to traverse the knowledge graph. Neo4j uses
a graph query language called Cypher. For using the Cypher query language, there are
a couple of approaches:

¡	Template based—Several pre-defined Cypher templates are created and based on
the user query, an LLM selects which template to use. This is an extremely rigid
and limiting approach.

¡	LLM-generated query—An LLM generates the Cypher query directly based on the
natural language user query. Prompt engineering techniques such as few-shot
prompting are employed. This approach is more flexible than a template-based
approach, but not 100% reliable.

In LangChain, the GraphCypherQAChain class is from the langchain.chains library.
For better querying, the schema of the knowledge graph is also provided to the LLM:

¡	Augmentation—Depending on the graph query, the response received from the
graph database is processed to extract the text that can be augmented to the orig-
inal user query. Apart from this, the augmentation step is the same as in vector
RAG.

¡	Generation—The augmented prompt is sent to the LLM like in the standard vec-
tor RAG approach.

While the final generation step and initial data loading and chunking do not require
any special adjustment, the rest of the process changes significantly. Table 8.3 summa-
rizes the differences between vector and graph RAG.

Table 8.3 Differences between vector RAG and graph RAG

Step Vector RAG Graph RAG

Data loading Loads documents without
specialized preprocessing for
relationships

Similar to vector RAG; documents are loaded with-
out special graph handling.

Data chunking Divides large documents into
smaller chunks for embedding
and vector storage

Documents are chunked similarly; each chunk is
then processed to extract entities and relation-
ships, building a relational structure.

Entity and
relationship
extraction

Not applicable; focuses on
creating embeddings from
chunks

Entities, relationships, and attributes are extracted
from each chunk using an LLM, potentially in mul-
tiple passes to refine and de-duplicate entities and
relationships.

186 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

Step Vector RAG Graph RAG

Storage Stores embeddings in a vector
database

Entities and relationships are stored in a graph
database (e.g., Neo4j), with the option to update
the graph iteratively. Tools such as LangChain’s
Neo4jGraph can automate this process.

Community

summaries

Not applicable; primarily relies
on similarity search on individ-
ual embeddings

Detects communities within the knowledge graph
and uses an LLM to create summaries for each
community. These summaries can be stored as
vectors for a hybrid graph–vector RAG approach.

Retrieval Performs direct similarity
searches on embeddings

Involves graph traversal using Cypher queries,
generated either from pre-defined templates or
dynamically by an LLM. Neo4j’s vector indexes can
enhance similarity-based node searches.

Augmentation Uses retrieved embeddings to
augment the user’s query

Retrieved nodes, relationships, or summaries aug-
ment the user’s query. Additional LLM processing
might be used to refine responses based on the
retrieved graph content.

Generation Sends the augmented prompt
to an LLM for response
generation

Like vector RAG but relies on augmented data with
graph-derived insights, relationships, and context
from the knowledge graph to enrich the response.

8.3.5 Challenges and best practices

Despite all the benefits of graph RAG, there are certain challenges that must be consid-
ered carefully:

¡	Merging diverse data sources into a cohesive knowledge graph can be intricate
and time-consuming. Start with a focused domain and gradually expand the
knowledge graph to manage complexity.

¡	Due to the iterative LLM processing at different stages, large-scale knowledge
graph generation and community summarization from documents are computa-
tionally expensive. Therefore, the data for graph RAG must be selected carefully.

¡	Current similarity measurement techniques may not fully capture the nuanced
relationships or structural dependencies in graphs, leading to potential mis-
matches in retrieved information. Careful use of case-specific evaluation is war-
ranted for acceptable accuracy.

¡	Each deployment may need custom graph data construction, indexing, and
retrieval adaptations, which makes generalization difficult. Keeping the knowl-
edge graph updated with accurate and current information requires continuous
effort. Consequently, graph RAG may not be the default RAG strategy.

So far, we have looked at two RAG variants that extend standard RAG capabilities by
including multimodal data and graph structures. Next, we discuss one of the most sig-
nificant concepts in the field of generative AI: agents.

Table 8.3 Differences between vector RAG and graph RAG (continued)

 187Agentic RAG

8.4 Agentic RAG

By now, you understand that challenges exist with standard RAG systems. They may
struggle with reasoning, answering complex questions, and multistep processes. One
of the key aspects of comprehensive RAG systems is the ability to search through multi-
ple sources of data. This can be internal company documents, the open internet, third-
party applications, and even structured data sources like an SQL database. So far in
this book, we have built systems that can search through a single knowledge base, and
for any query, the entire knowledge base is searched through.

Two challenges arise with this approach. First, all information must be indexed and
stored in a single vector store, which leads to storage problems at scale. Second, for any
query, the entire knowledge base needs to be searched, which is highly inefficient for
large knowledge bases. To overcome this challenge, a module that can understand the
user’s query and route the query to a relevant source is needed. This is one of the limita-
tions addressed by agentic RAG that uses one or more LLM agents for decision-making.
Let’s first understand what is meant by the term agent.

8.4.1 LLM agents

The use of agents in AI predates the popularity of LLMs. The overarching meaning
of an AI agent is a software system that can autonomously perceive the environment
it is in, make decisions, and perform actions to achieve a goal. Traditionally, AI agents
have been developed to execute specific tasks and rely on predefined rules or learned
behaviors, like in the fields of autonomous vehicles or robotics. Due to the ability to
process and understand language (and now even multimodal data), LLMs are now
being seen as a general-purpose technology that can help build autonomous decision-
making without explicitly defining rules or environment data. While there is no
common definition of an LLM-based AI agent, there are four key components of the
system that enable autonomous decision-making and task execution.

The core LLM brain is an LLM that assigned a certain role and a task. This component
is responsible for understanding the user request and interacting with other compo-
nents to respond to the user. For example, an AI agent built for travel assistance may
have to deal with different types of tasks such as searching for information, creating
itineraries, booking tickets, or managing previous bookings.

The memory component manages the agent’s past experiences. It can be short-term
like the chat history of the current conversation or long-term where important pieces of
information from previous interactions are stored. For a travel assistant AI agent, short-
term memory will hold the current context of the user query, while the ticket booking
history or previous travel searches can be fetched from long-term memory.

The planning component creates a step-by-step sequence of tasks that will be fol-
lowed to respond to the user’s request. Task decomposition or breaking down complex
tasks into smaller, manageable subtasks. ReAct, which stands for reasoning and acting,
or reflection, where the agent does a self-assessment of the outcomes, can be part of the
planning component.

188 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

Tools assist the agent in performing actions on resources external to it. This can be
conducting a web search on the internet, querying an external database such as an SQL
database, invoking a third-party API such as a weather API, and similar. The core LLM
brain is responsible for sending the payload request to the tools in the accepted format.
These four components and their interactions are shown in figure 8.11.

Memory
module

Tools

Receives and parses inputs from the
user, identifies user intent, acts on
the plan from the planning module,
and responds to the user request

Creates a step-by-step sequence of
tasks that should be followed to
respond to the user’s request

Planning
module

User Core LLM
brain

Provides access to external
resources. These can be in form of
APIs, functions, and other
interfaces. The LLM brain invokes
these tools with the appropriate
payload.

Stores short-term
conversational history
and long-term history
from previous
interactions, which can
be retrieved depending
on the user request

Figure 8.11 An LLM agent’s four components break down the user’s query, recall the history of

interaction with the user, and employ external tools to accomplish tasks and respond to the user.

Since the definition of AI agents continues evolving, these components are not set in
stone but are generally agreed upon. To help understand how these components inter-
act, let’s take an example of an AI agent built for travel assistance, like the customer
service agent of an online travel agency.

Suppose a customer asks a question like, “Is my flight on schedule?” The core LLM
brain receives this input and understands that the user intent is to check a specific flight
status. At this stage, the core LLM brain can invoke the planning module to decide the
course of action required to answer queries of this intent. The planning module may
respond with steps such as retrieving booking information from previous interactions
(memory), querying the latest flight information from a database, comparing it with
previous details from memory, and conveying the result to the user. Here, retrieving
the information from the database will require a tool such as an API, which is a prebuilt
module that the core LLM brain has access to. The planning module can also bring
in conditional steps—for example, if the previous booking information cannot be

 189Agentic RAG

retrieved from memory, the core LLM brain must prompt the user to provide this infor-
mation. When the core LLM brain gets the plan from the planning module, it retrieves
previous booking information, invokes the tool to retrieve flight information, compares
the new information with the old information in memory, and crafts a response based
on this analysis. This simple workflow of the agent is illustrated in figure 8.12.

The LLM brain
calls flight API
with the necessary
inputs.

“Is my flight on

schedule?”

Intent -> Check

flight status

1. Get flight details from memory

 or from the user.

2. Use flight API to fetch live status.

3. Generate a user-friendly

 response.

Flight number XX000 is scheduled

on 01JAN2025 at 4 PM.

{

"flight number”:“XX000",

"scheduled_time":"010120251600",

"estimated_time":"010120251645"

}

Core LLM brain

Tools

Memory

Planning

“Your flight XX000 is

delayed by 45 minutes

and will now depart on

01 Jan 2025 at 4:45 PM.”

User query Response

Core LLM brain
receives user query

The LLM brain
idenitifies the
user intent.

The LLM invokes
the planning
module for plan. The planning module

returns the plan to
the LLM brain.

The LLM brain asks
memory for flight
details as per plan.

Memory
returns the
flight details.

Flight API
returns the
status of the
flight.

The LLM brain processes the
data to respond with the
flight status.

Figure 8.12 A simple task of responding to a user query on flight schedule responded to by an LLM

agent by using the planning, memory, and tools modules

This is an example of a simple task. Multiple agents can come together to solve tasks
of a higher level of complexity, such as “Plan and book a holiday for me.” The field of
LLM-based AI agents is quite promising, and readers are encouraged to read more
about this evolving domain. For our discussion on agentic RAG in this section, we focus
on a few aspects, specifically on tool usage and a little bit of planning. The use cases for

190 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

agentic RAG span across industries, so it makes more sense to look at the capabilities
of agentic RAG.

8.4.2 Agentic RAG capabilities

In our introduction to agentic RAG, we highlighted the challenge in standard RAG
using a single knowledge base. Agentic RAG infuses abilities in the RAG system that
make the system more efficient and accurate.

QUERY UNDERSTANDING AND ROUTING

Based on the user query, an LLM agent can be tasked with deciding which knowledge
base to search through. For example, assume a programming assistant that can not
only search the codebase but also the product documentation, along with searching
the web. Depending on the question that the developer asks, the agent can decide
which database to query. For generic messages such as greetings, the agent can also
decide not to invoke the retriever and send the message directly to the LLM for a
response.

TOOLS USAGE

In the previous example, the system was also required to search the web. The inter-
net cannot be stored in a knowledge base and is usually accessed through an API
that returns search results. This search API is an example of a tool the agent can use.
Similarly, other APIs, such as Notion or Google Drive, can be used to access informa-
tion sources. One of the features of tools like APIs is that they have fixed query and
response formats. The job of the agent is to process natural language information into
the format structure and parse the response to use it for generation.

ADAPTIVE RETRIEVAL

Recall adaptive retrieval discussed in chapter 6. An LLM is enabled to determine the
most appropriate moment and content for retrieval. This is an extension of query
routing, where after deciding the most appropriate source to query, an agent can also
determine whether the retrieved information is good enough to generate responses or
whether another iteration of retrieval is required. For the next iteration, the agent can
also form fresh queries based on the retrieved context. This enables the RAG system to
solve complex queries.

These capabilities enable agentic RAG systems to be comprehensive and work on a
scale. While the indexing and generation pipelines do not change in structure, agents
can be invoked throughout the two pipelines.

8.4.3 Agentic RAG pipelines

The capability of LLM-based agents to understand the context and invoke tools can be
used to elevate each stage of the RAG pipeline.

INDEXING PIPELINE

The idea of the knowledge base in agentic RAG is no different from standard RAG.
Agents can be used across components to enhance the indexing pipeline:

 191Agentic RAG

¡	Data loading—Loading data and extracting information is the first and incredi-
bly crucial step of RAG system development. Accurate parsing of information is
critical in building an accurate RAG system. Parsing complex documents such as
PDF reports can be tough. While there are libraries and tools present for these
tasks, LLM agents can be used for high-precision parsing. The importance of
metadata in RAG cannot be overstated. It is useful for filtering, more contex-
tual mapping, and source citation. In most scenarios, it is difficult to source rich
metadata. LLM agents can be used to build metadata architecture and extract
contextual metadata.

¡	Chunking—In agentic chunking, chunks from the text are created based on a
goal or a task. Consider an e-commerce platform wanting to analyze customer
reviews. The best way for the reviews to be chunked is if the reviews about a par-
ticular topic are put in the same chunk. Similarly, the critical and positive reviews
may be put in different chunks. To achieve this kind of chunking, we will need
to do sentiment analysis, entity extraction, and some kind of clustering. This can
be achieved by a multiagent system. Agentic chunking is still an active area of
research and improvement.

¡	Embeddings—The role of agents in embeddings can be the selection of the right
embeddings model, depending on the context of the chunks. For example, if
there is information from multiple domains in the loaded data, there may be a
case for using domain-specific embeddings for different chunks. Apart from this,
quality control agents can validate embeddings by measuring similarity or align-
ment with predefined standards or use case requirements. You may also recall
from the discussion on graph RAG that agents can also decide to use graph struc-
tures for certain chunks.

¡	Storage—There is also a possibility to store chunk embeddings from the same
document in different collections owing to the nature of the information. For
example, the information related to the installation and troubleshooting of a
product can be stored in one collection of a vector database, and product fea-
tures and advantages can be stored in another. This helps in setting the retrieval
up for higher precision. You may notice that the use of agents in chunking,
embeddings, and storage are closely related.

Figure 8.13 summarizes how the use of agents can embellish the indexing pipeline.
The nature of the knowledge base itself doesn’t change, but the process of creation is
embellished with agents.

GENERATION PIPELINE

The true advantage of an agentic system lies in how it transforms the entire generation
pipeline across all three stages:

¡	Retrieval—Perhaps the most significant use of agents is in the retrieval stage.
Query routing to the most appropriate source and the integration of tools to
query external sources of information is a crucial feature of agentic RAG.

192 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

Agentic parsing is effective in extracting comprehensive
information from complex documents, and agentic
metadata extraction not only extracts the metadata but
can also decide the accurate metadata architecture.

Vector Graph

Embedding

Graph summaries

ChunkingData loading

Storage

Document parsing Metadata extraction

The chunking agent processes
every sentence in a passage
and allocates it to a chunk
with similar sentences.

Agents recursively extract
entities and relationships and
create sub-graphs to generate
cohesive summaries.

Figure 8.13 Agentic embellishment to the indexing pipeline enhances the quality of the knowledge base.

Adaptive retrieval strategies also bring significant improvement in the retrieval
stage.

¡	Augmentation—Agents can choose the correct prompting technique for augmen-
tation, depending on the nature of the query and the retrieved context. Prompts
can also be generated dynamically by an agent.

¡	Generation—One of the uses of agentic RAG is also in multistep generation such
as IterRetGen or iterative-retrieval generation. In this approach, an agent is used
to review the response generated by the LLM in the first pass, and it decides if any
further iteration of retrieval and generation is required to completely respond

 193Agentic RAG

to the user query. This is particularly useful in multi-hop reasoning and fact
verification.

Another way to think about agentic RAG is that wherever dynamic decision-making
can improve the RAG system, an agent can be used to autonomously make those deci-
sions. From the previous discussion, you may conclude that agentic RAG is a superior
version of standard RAG. Table 8.4 summarizes the advantages of agentic over stan-
dard RAG.

Table 8.4 Advantages of agentic RAG

Aspect Standard RAG Agentic RAG

Retrieval
process

Passive retrieval based on
initial query

Adaptive retrieval with intelligent agents routing and
reformulating queries as needed

Handling com-
plex queries

Struggles with multistep rea-
soning and complex queries

Can be used to break down and address complex,
multifaceted queries

Tool integration Limited integration with exter-
nal tools and APIs

Seamless integration with various external tools and
APIs for enhanced information gathering

Scalability Challenges in scaling due to
static processes

Scalable through modular agent-based architecture,
allowing for easy expansion

Accuracy and
relevance

Dependent on initial query
quality; may retrieve less
relevant information

Higher accuracy and relevance due to agents’ ability
to refine queries and validate information

8.4.4 Challenges and pest practices

LLM based agents are still evolving and are not foolproof. There are also concerns
around the planning and reasoning abilities of LLMs. For implementing agentic abili-
ties into the RAG pipelines, a few aspects should be evaluated carefully:

¡	The accuracy of tool selection diminishes when a single agent is responsible for
invoking a high number of tools. Therefore, the number of decision choices for
the agent needs to be controlled.

¡	No agent can be expected to be accurate all the time. Error rates in multiagent
systems can also increase. It is important to establish a failsafe at every stage. The
choice of the use case should also be guided by the expected accuracy levels.

¡	Increased autonomy in decision-making can lead to unintended actions if not
properly controlled. In other words, agents can misfire, and establishing explicit
boundaries and guidelines for agent behavior is critical.

Multimodal, graph, and agentic RAG patterns have demonstrated significant improve-
ments over the standard RAG pipelines. Multimodal RAG opens the RAG systems to
different modalities, graph RAG introduces relational understanding, and agentic
RAG infuses RAG systems with intelligence and autonomous decision making. Apart
from these three, ongoing research on RAG has resulted in several other frameworks

194 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

and variations to the standard RAG systems. The next section discusses variants that
show significant promise.

8.5 Other RAG variants

We have talked about the three major RAG variants in this chapter. Research in the
field is bustling, and every week, several papers are released by researchers about their
experiments and key findings. Out of these papers, quite a few demonstrate RAG vari-
ants that find relevance in practical applications. We close this chapter by briefly dis-
cussing four such RAG variants.

8.5.1 Corrective RAG

The effectiveness of a RAG system depends on the quality of retrieval. Inaccuracies
in retrieval negate all RAG benefits. To address this, the corrective RAG (CRAG)
approach evaluates the quality of retrieved documents. It uses a lightweight evaluator
and triggers corrective action if the retrieved information is found to be inaccurate.
The key CRAG components are

¡	Retrieval evaluator—A model that evaluates the relevance of the retrieved docu-
ments and assigns a relevance score to each retrieved document. In the original
CRAG paper (https://arxiv.org/abs/2401.15884), the evaluator is a fine-tuned
T5 model that assigns a score of being correct, incorrect, or ambiguous.

¡	Web search supplementation—If a retrieved document is classified as incorrect, the
system conducts a web search to supplement the knowledge base, ensuring more
accurate, up-to-date information.

¡	Knowledge refinement—Retrieved documents classified as correct by the evaluator
and the content retrieved from web search are broken down further into smaller
knowledge strips, and each strip undergoes evaluation.

Figure 8.14 illustrates the CRAG workflow with the evaluator, knowledge refinement,
and web search added to the standard RAG flow.

As for its advantages and limitations, CRAG secures accurate, context-relevant
knowledge for generation, particularly in cases where initial retrieval may be flawed.
The corrective actions enhance the factual accuracy of the generated content. CRAG is
a solution that can be integrated with all RAG pipelines and other RAG variants without
causing any disruptions. There are also a couple of factors that need to be considered:

¡	The additional corrective actions and web search integration may increase
response time.

¡	The performance of the system is closely tied to the accuracy of the evaluator
model.

CRAG is an improvement over standard RAG, which uses the retrieved documents as
is. The corrective approach makes it effective for accuracy-sensitive applications that
demand data verification.

https://arxiv.org/abs/2401.15884

 195Other RAG variants

Decomposed

knowledge strips

User query

Knowledge
base

Retriever

Retrieval
evaluator

LLM

Response

Knowledge refinement

Web search

Correct

Ambiguous

Incorrect

Evaluator

Evaluated

knowledge strips

Recomposed

knowledge

Query

refinement

Search

API

Search

results

Selected

results

Retrieved
documents are
evaluated by a
retrieval evaluator
that classifies
them into
correct, incorrect,
and ambiguous.

Documents identified as correct are further split into
“knowledge strips,” which are generally single
statements. These strips are re-evaluated by the
evaluator. The strips classified as correct are
recomposed and passed to the LLM as the context.

Documents identified as incorrect are substituted
by results from web search. The original user
query is rewritten for web search. The search
results are filtered and combined to be sent to
the LLM as context.

Correct

Ambiguous

Incorrect

Corrective RAG

Figure 8.14 CRAG corrects the knowledge at the most granular level, hence the name corrective RAG.

Source: https://arxiv.org/abs/2401.15884.

8.5.2 Speculative RAG

Latency and redundancy are ubiquitous concerns in RAG systems. Speculative RAG
addresses these in a two-step approach. First, small language models parallelly gener-
ate multiple answer drafts, each based on diverse subsets of documents. Then, a larger
LLM verifies and selects the most accurate draft. The key components of speculative
RAG are

¡	Document clustering—Retrieved documents are clustered into topic-related
groups, each offering a unique perspective.

https://arxiv.org/abs/2401.15884

196 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

¡	RAG drafter—A smaller LLM produces initial answer drafts based on each cluster
subset, generating responses and rationales in parallel for efficiency.

¡	RAG verifier—A larger LLM evaluates each draft’s accuracy and coherence,
assigning confidence scores based on self-consistency and rationale support.

The key advantage of speculative RAG is faster response generation by reducing the
workload on the generator LLM and performing parallel draft generation. However,
some of the following limitations require careful consideration:

¡	Involves managing a two-model setup and document clustering, which may
increase initial setup complexity.

¡	Document clustering directly affects draft diversity, and poor clustering can lead
to redundant drafts by grouping highly similar or repetitive documents into mul-
tiple clusters.

¡	The smaller LLM may require training for effective draft and rationale generation.

Unlike standard RAG, which incorporates all retrieved data into a single prompt,
speculative RAG uses parallel draft generation for efficiency and a dedicated verifi-
cation step for accuracy, which leads to a reduction in latency, while improving the
factual efficiency of the responses.

8.5.3 Self-reflective (self RAG)

Self-reflection in an LLM is the ability of the LLM to analyze its actions, identify poten-
tial errors or flaws in its reasoning process, and then use that feedback to improve
its responses and decision-making. Self RAG incorporates reflection to dynamically
decide whether to retrieve relevant information, evaluate retrieved content, and to cri-
tique its output. The key components of self RAG are

¡	Reflection tokens—Self RAG trains an LLM to use “reflection tokens,” which help it
assess the relevance, support, and usefulness of retrieved passages. These tokens
are designed to guide the model in judging the quality of both the retrieved
content and its generated response, adding layers of control and adaptability.
A retrieve token indicates whether retrieval is needed. Similarly, the relevance token
determines whether a passage is relevant, the support token verifies whether the
generated response is fully supported by retrieved content, and the utility token
scores the usefulness of the response.

¡	Dynamic retrieval decision—The model uses reflection tokens to determine if
retrieval is necessary based on each segment of the response and skips retrieval if
it is unnecessary at any step.

¡	Self-critique—The model critiques its output at each generation step, applying
reflection tokens to guide retrieval and refine the response in real time.

Adaptive retrieval in self RAG reduces unnecessary retrievals, and self-reflection results
in better accuracy, factual consistency, and relevance. However, some limitations need
to be considered:

 197Other RAG variants

¡	Processing multiple passages in parallel and self-reflection may increase compu-
tational demands.

¡	The additional training and use of reflection tokens require fine-tuning of
thresholds.

Self RAG is one of the most cited techniques in research on RAG. Its dynamic adjust-
ment of retrieval based on task needs evaluates output quality, achieving superior
accuracy.

8.5.4 RAPTOR

Recursive abstractive processing for tree-organized retrieval, or RAPTOR, is a RAG
variant designed to handle hierarchical relationships in data. It creates a multilevel,
tree-based structure of recursive summaries, capturing both granular details and over-
arching themes in long documents. Like graph RAG, RAPTOR uses a tree structure to
achieve similar objectives. Here are the key RAPTOR components:

¡	Chunk clustering and summarization—Chunk embeddings are clustered based on
similarity, and an LLM is used to summarize the clusters. Soft clustering with
Gaussian mixture models allows text segments to belong to multiple clusters.

¡	Recursive tree construction—RAPTOR builds a multilayered tree by using chunks,
clusters, and summaries in a bottom-up process.

¡	Dual querying mechanisms—A top-down approach starts traversing down to select
the most relevant nodes at each level based on cosine similarity to the query.
Another single-layer search retrieves context across all tree nodes irrespective of
the levels.

Like graph RAG, RAPTOR enables better multi-hop reasoning and thematic question
answering by incorporating both granular and high-level summaries. However, tree
structures are complex to manage and RAPTOR comes with its set of challenges:

¡	The recursive clustering and summarization steps can be computationally inten-
sive, especially for very large documents.

¡	Effective retrieval hinges on the quality of the clustering; errors in initial cluster-
ing can propagate up the tree.

Unlike standard RAG, which may struggle with multilayered content, RAPTOR’s hier-
archical model allows targeted retrieval, optimizing for both specificity and contextual
relevance.

This chapter explored RAG variants that use advanced techniques to improve RAG
systems for specific use cases. Multimodal pipelines give RAG systems access to previ-
ously unusable data, graph RAG provides the ability of relational analysis, and agen-
tic RAG introduces autonomous decision-making for complex tasks. Each RAG variant
addresses a certain aspect of improvement in standard RAG systems. Corrective RAG
focuses on factual relevance, RAPTOR builds relational intelligence for hierarchical
data, speculative RAG is built for efficiency, and self RAG makes the system adaptive.

198 CHAPTER 8 Graph, multimodal, agentic, and other RAG variants

With this chapter, we are almost at the end of our discussion on RAG. The last chap-
ter discusses some of the independent considerations and best practices across differ-
ent stages of RAG system lifecycle.

Summary

Introducing RAG variants

¡	RAG variants are adaptations of the naïve RAG framework that extend its func-
tionality to specific use cases.

¡	These variants address challenges, such as processing nontextual data, improv-
ing relational understanding, enhancing accuracy, and enabling autonomous
decision-making.

¡	Three major RAG variants were discussed in depth: multimodal, graph, and
agentic RAG.

¡	Other promising RAG variants are corrective RAG, speculative RAG, self RAG,
and RAPTOR.

Multimodal rag

¡	It extends RAG capabilities to handle multiple data modalities such as text,
images, audio, and video. It can be used for

– Medical diagnosis—Analyzing text, images (X-rays), and tabular data (lab
results)

– Investment analysis—Processing financial documents, charts, and balance
sheets

– Equipment maintenance—Combining text reports, visual inspections, and sen-
sor data

¡	As for the pipeline enhancements, multimodal RAG introduces multimodal
embeddings (shared or modality specific), transcription tools, and specialized
chunking methods to indexing pipeline. In the generation pipeline, it employs
multimodal LLMs (e.g., GPT-4o, Google Gemini).

¡	Multimodal RAG has high computational requirements and increased latency.
Information loss is possible during text conversion of nontext modalities.

Knowledge graph RAG

¡	It enhances retrieval and reasoning through relationships represented in a graph
structure. It can be used for

– Personalized treatment plans—Linking drugs, conditions, and symptoms for cus-
tomized recommendations

– Contract analysis—Identifying dependencies and compliance risks across
interconnected legal documents

 199Summary

¡	As for the pipeline enhancements, the knowledge graph RAG extracts entities,
relationships, and attributes from chunks to create a graph in the indexing pipe-
line. As for the generation pipeline, it incorporates graph traversal using graph
query languages such as Cypher.

¡	Building and maintaining knowledge graphs is complex and computationally
expensive. It also requires custom adaptations for each deployment.

Agentic RAG

¡	It introduces LLM-based agents for autonomous decision-making and dynamic
query routing. Agentic RAG can be used for

– Query understanding and routing to relevant data sources

– Adaptive retrieval and multistep generation

– Integration with tools such as web search APIs and external databases

¡	With regard to pipeline enhancements, agentic RAG enhances chunking, meta-
data extraction, and embeddings selection with agentic decision-making in the
indexing pipeline. In the generation pipeline, it dynamically augments prompts
and employs iterative retrieval-generation workflows.

¡	Agentic RAG requires robust controls to prevent unintended actions by agents.
High computational overhead and multiplied error rates in multiagent systems.

Other RAG variants

¡	Corrective RAG (CRAG) Focuses on factual accuracy by evaluating retrieved con-
tent. It also adds corrective steps such as web search supplementation and knowl-
edge refinement.

– Advantages—Enhances accuracy and can integrate seamlessly with other RAG
pipelines

– Challenges—Increased response time and dependency on the evaluator model

¡	Speculative RAG reduces latency by generating multiple drafts in parallel using
smaller LLMs. A larger LLM verifies and selects the most accurate draft.

– Advantages—Faster response generation

– Challenges—Requires careful document clustering and draft diversity

¡	Self RAG incorporates reflection tokens for adaptive retrieval and self-assessment
of generated content.

– Advantages—Superior accuracy and factual consistency

– Challenges—Computationally demanding and requires fine-tuned thresholds

¡	RAPTOR builds hierarchical relationships through tree-structured summaries.

– Advantages—Optimized for multi-hop reasoning and thematic queries

– Challenges—Computationally intensive and relies on effective clustering

200

9RAG development
framework and

further exploration

This chapter covers

¡	A recap of the concepts covered in this book

 using a six-stage RAG development framework

¡	Areas for further exploration

The previous eight chapters covered a wide breadth of retrieval-augmented gener-
ation (RAG), including a conceptual foundation, critical components, evaluation
methods, advanced techniques, the operations stack, and essential variants of RAG.
By now, you should be equipped with the necessary information required to develop
RAG systems.

This concluding chapter summarizes the discussion and recaps all the previously
discussed concepts. To accomplish this, we put all the different aspects of developing
RAG systems together and came up with a RAG development framework. Across the
six stages of this RAG development framework, we recap the concepts covered in this
book along with some best practices. This framework not only covers the technical
aspects but also looks at the development process holistically.

 201RAG development framework

RAG is a rapidly evolving technique. At the end of this chapter, we also discuss some
of the ideas that you can explore further. Some of these approaches to incorporating
context may compete with the RAG technique, while others may be complementary.

By the end of this chapter, you should

¡	Have reviewed and consolidated your understanding of key RAG concepts.

¡	Get a solid understanding of the RAG development framework.

¡	Be ready to build and deploy RAG systems.

Often, the problem statements that the developer of a RAG system is presented with
will be open ended. For example, an e-commerce platform wants to develop a buying
assistant, or the marketing function wants a research agent to track and summarize
competitive information. So, how does one navigate from an open-ended problem
statement to a fully developed RAG system? It becomes very important that this journey
is guided by a thought process. For this purpose, let’s define and discuss a framework
for developing RAG systems.

9.1 RAG development framework

The process of developing RAG systems is not very different from developing an appli-
cation that uses a machine learning model. We have seen that a RAG system can be
complex and include several components. It goes beyond the elements such as mod-
els, data, and retrievers. It requires a service infrastructure to make the system available
to users. Evaluation, monitoring, and maintaining the systems becomes as important as
developing and deploying them. It all begins with an understanding of requirements
and a conceptual design. To address all these aspects, a RAG development framework
that will assist us in building RAG systems is proposed here. This framework involves
the following six stages:

1 Initiation—This stage involves understanding the problem statement, aligning
the stakeholders, gathering system requirements, and analyzing these require-
ments to draft a high-level system architecture.

2 Design—At this stage, design choices for RAG pipelines are made, and the suite of
tools to develop the system is developed. In addition, different layers of the RAG
operations stack are conceptualized.

3 Development—This stage involves developing a working prototype of the desired
RAG system. All required models are trained, and the required APIs are devel-
oped. This stage leads to the creation of the knowledge base and the develop-
ment of the application orchestration layer.

4 Evaluation—During this stage, the retrieval and generation components are eval-
uated, along with testing the end-to-end system performance. At the end of this
stage, the system is ready for deployment.

5 Deployment—During this stage, the system is made available to end users. The
deployment strategy is also decided at this stage.

202 CHAPTER 9 RAG development framework and further exploration

6 Maintenance—This final stage is an ongoing one that involves system moni-
toring, incorporating user feedback, and keeping abreast of technological
enhancements.

Bear in mind that the RAG development framework is not a linear process, but flexi-
ble, iterative, and cyclic. Figure 9.1 illustrates the cyclic nature of the six stages of the
RAG development framework, showing the key artifacts of each stage.

DESIGN

DEVELOPMENTDEPLOYMENT

MAINTENANCE

EVALUATION

INITIATION

Designing RAG

pipelines and finalizing

the layers of the

RAGOps stack

Developing RAG

pipelines, and creating a

prototype for evaluation

and feedback

Deployment of system to

production and serving

the desired users

Tracking and measuring

system performance and

improving the system

based on feedback

Assessing RAG metrics

and system

performance

Understanding the use

case, and gathering and

analyzing requirements

RAG

dev
e
lo

pm
entfra

m
e
w

o
rk

Requirements document

High-level architecture

RAGOps stack

Working prototype

Ready-to-deploy system

Released system

Evolved system

Figure 9.1 The six stages of the RAG development framework are iterative and cyclic. At each stage,

specific artifacts can be created.

Each of the stages involves certain activities. We look at these activities one by one and
discuss the best practices associated with them. We begin with the initiation stage.

 203RAG development framework

9.1.1 Initiation stage: Defining and scoping the RAG system

The journey toward a successful RAG system begins with the initial interactions with
the stakeholders. This is an opportunity to gain an in-depth understanding of the
problem statement and the user requirements. It is an exploratory stage and sets the
direction of the project.

USE CASE IDENTIFICATION

A lot of the choices a developer will make in the development process of a RAG sys-
tem depend heavily on the use case being addressed. Even a basic understanding of
the industry domain/function and a simple definition of the use case is enough to
answer crucial starting questions about the system. The requirement of a RAG system
needs to be assessed here. Recall from chapter 1 the challenges that RAG solves: RAG
overcomes training data limitations, knowledge cut-off date, and LLM hallucinations
to bring factual accuracy, reliability, and trust to the system. It is important to assess
whether these RAG benefits are pivotal to the use case. There can be LLM applications
that may not even require RAG. Here are some questions you may need to ask at this
stage:

¡	Does the system require data that may not be present in the training set of an
available LLM?

¡	Does the system require data that is current or updates frequently?

¡	Does the system need to quote or generate facts? How crucial is the accuracy of
the generated facts?

¡	Will the users benefit if the sources are cited?

A use case evaluation card as the one shown in figure 9.2 can help in assessing whether
a RAG system is required to solve the use case. Use cases such as creative writing, lan-
guage translation, sentiment analysis, grammar correction, and so forth do not gener-
ally require a RAG system unless some nuance of the use case warrants it.

Apart from this, the industry domain and function can also give an early indication
of the system requirements. For example, use cases from the healthcare and finance
domain may require more security and compliance measures, while a use case from
sports may require processing of quickly updating information.

This initial assessment of the use case may provide early insights, but a detailed
understanding and analysis of the requirements is necessary before proceeding
further.

GATHERING OF REQUIREMENTS

Developing the right RAG system means meeting the stakeholders’ needs and wants.
Understanding these needs and wants is a crucial step. Gaining this understanding is
an interactive and investigative process. Most stakeholders and end users may have
limited knowledge about technology and how a RAG system is built. It is therefore
important to know what a successful application would mean to them. These require-
ments can range from the features needed in the system to the expected scale and the

204 CHAPTER 9 RAG development framework and further exploration

Use case

System
requires data
that may not
be present in
training set?

System
requires data
that is current

or updates
frequently?

System
generates

facts?

Are users
looking for
sources?

Is a RAG
system

required?

Creative writing

assistance

No: LLMs do not

need any

additional data for

creative writing.

No: LLMs do not

need any current

information for

creative writing.

Maybe:

Creative writing

may not

necessarily

need generated

facts.

No: User

expectations

from creative

writing do

not need any

source

citation.

No

Customer support

bot

Yes:

Product/Company

specific

information may

not be present in

LLM training data.

Yes: Product

information,

inventory levels,

and order

information changes

frequently.

Yes: All

generated

information is

factual.

Maybe:

Sources may

enhance

customer

experience.

Yes

Language

translation

No: LLMs do not

need any

additional data for

language

translation.

No: LLMs do not

need any current

information for

language

translation.

No: Facts, if

any, will be the

same as

provided in the

prompt.

No: The

source of

information

will always be

the prompt.

No

Spelling and

grammar

correction

No: LLMs do not

need any

additional data for

checks.

No: LLMs do not

need any current

information for

checks.

No: No

additional facts

need to be

generated.

No: The

source of

information

will always be

the prompt.

No

Use case evaluation questions

Figure 9.2 A use case evaluation card with the evaluating questions can help in assessing whether a

RAG system is required to address the use case.

desired performance of the system. A good way to gather requirements may be to look
at them through different lenses, such as

¡	Business objectives—These requirements relate to the main business reasons for
building these systems, such as increasing click-through rates, saving process
costs, improving customer satisfaction, and so forth. Technical developers may
not directly be responsible for business metrics, but these business metrics can
act as the leading light in the development process of the system.

¡	User needs—These are the core requirements of the users for whom the system is
being developed. Expressing these needs helps in determining the inputs and
outputs of the system along with other functionalities such as multilingual sup-
port and source citation. These needs are also key in determining the types of
user queries that the RAG system can expect.

 205RAG development framework

¡	Functional requirements—These are the core functionalities of the system, such
as the supported data types, number of documents to be retrieved and length/
tone/style of generation, and similar. Functional requirements are influenced
by user needs and business objectives. They are also the main influencers of the
development process.

¡	Non-functional requirements—These are requirements about the performance,
scalability, reliability, security, and privacy of the system. There may be additional
requirements such as legal and compliance, especially for regulated industries.

¡	Constraints—One should also focus on any constraints that the system should be
cognizant of, such as access to the internet, availability of data, cost, and integra-
tion with existing systems.

A customer service system, for example, may be envisioned to reduce customer query
resolution time, requiring quick response time and a constraint of integrating with
existing customer support platforms. An illustrative requirement document for
the above can look like the one shown in figure 9.3, detailing out different types of
requirements.

A multi-lingual, multi-geography customer support system that provides instant and accurate

responses to customer queries, thus reducing dependency on human agents

Business objectives

Use case: Customer support system

• Reduce customer query resolution time

• Improve customer satisfaction score

• Reduce operational cost

User needs

• Ask questions in natural language

• Ask questions using voice input

• Accurate and concise responses

Functional requirements

• Integration with company knowledge bases,

 FAQs, product manuals, and troubleshooting

 guides

• Real-time updates to the knowledge base for

 seamless integration of new content

• Retrieve the most relevant documents or

 sections

• Generate friendly and polite responses in a

 customer support tone

• Escalation mechanism to transfer

 conversations to human agents when

 necessary

Non-functional requirements

• Quick response

• High concurrency during peak hours

• Compliance with data privacy laws

Constraints

• Must integrate seamlessly with existing

 customer support platforms

• Limited internet connectivity in certain

 regions

• Access to third-party data sources may be

 conditional

Figure 9.3 An illustrative requirements document for a customer support system requiring RAG

REQUIREMENTS ANALYSIS

Eliciting requirements from the stakeholders is a major activity in the initiation stage.
These raw requirements then need to be analyzed. The requirements should be clear,

206 CHAPTER 9 RAG development framework and further exploration

precise, and quantifiable so that they can lead to specific development steps. For exam-
ple, a non-functional need for a quick response may be too vague. Instead, a better
requirement is that 90% of queries should be responded to within 2 seconds. Similarly,
a constraint of limited internet connectivity can lead the developer to believe that a
completely offline system is required. Such vagueness in the requirements needs to be
addressed in further interactions with the stakeholders.

At this stage, it is also important to define the success criteria on which the system will
be evaluated. A few success metrics need to be defined and agreed on. For developers,
these success metrics should be different from the business objectives since business
outcomes may depend on factors beyond their control. Latency, throughput, percent-
age of queries resolved, and similar, are good criteria for success metrics. Figure 9.4
presents an illustrative requirements document after an analysis of the success metrics.
It is an improvement on the previous requirement document shown in figure 9.3.

A multi-lingual, multi-geography customer support system that provides instant and accurate responses to

customer queries, thus reducing dependency on human agents

Business objectives

Use case: Customer support system

• Reduce customer query

 Resolution time by 50%

• Improve customer satisfaction

 score by 15 points

• Reduce operational cost by $100k per

 month

User needs

• Ask questions in natural language

• Ask questions using voice input

• Accurate and concise responses

• Provide multilingual support

• Ask via email, webchat and Whatsapp

Functional requirements

• Integration with company knowledge

 bases, FAQs, product manuals, and

 troubleshooting guides (pdf, webpage,

 Google Docs)

• Real-time updates to the knowledge base

 for seamless integration of new content

• Retrieve the three most relevant

 documents or sections

• Generate friendly and polite responses in

 a customer support tone Examples?

• Escalation mechanism to transfer

 conversations to human agents when

 necessary query not resolved in three tries

Non-functional requirements

• Quick response ART <2s for 90% of queries

• High ? concurrency during peak house

• Compliance withdata privacy laws

• Must integrate seamlessly with

 existing customer support platforms

• Limited internet connectivity in

 certain regions

• Access to third-party data sources

 may be conditional

Zendesk

May require caching

for common queries

GDPR & CCPA

Success metrics

Frequency
of update?

Primary metrics

• % Query resolved: >80%

• Concurrency: 2000 queries

• Latency: 200 ms

Secondary metrics

• Answer relevance: >90%

• Context relevance: >90%

• Precision@5: >80%

Constraints

Figure 9.4 Illustrative requirements document with success metrics defined and requirements analyzed

for clarity and precision

 207Design stage: Layering the RAGOps stack

HIGH-LEVEL ARCHITECTURE

Once the requirements are understood well, the initiation stage can be deemed com-
plete. It is good practice to close the initiation stage with a high-level architecture dia-
gram that can be used as a starting point for the design stage. This architecture can be
used to bring alignment among stakeholders and discuss the requirements further. The
focus of this high-level architecture is to illustrate the system inputs and outputs. Since
data plays such a crucial role in a RAG system, this high-level architecture should also
include the data component. As illustrated in figure 9.5, for a multichannel customer
support system, the system must allow inputs and outputs from and to different channels.

Model layer

App

orchestration

Prompt

Guardrails

Security

Cache

Data layer Deployment
Human in
the loop

email

Support portal

WhatsApp

User

query

email

Support portal

WhatsApp

Product portal Catalogue Order data

Escalation

Conversation

memory

Proposed RAG system

Response

Figure 9.5 High-level architecture of a proposed customer support bot highlighting inputs and outputs,

along with the data, human-in-the-loop, and cache layers

A first go/no-go decision or the going forward strategic call can be taken on the com-
pletion of the initiation stage. Once the stakeholders are aligned, all the RAG opera-
tions layers for the system can be designed in the next stage.

9.2 Design stage: Layering the RAGOps stack

With a clear understanding of the use case and the requirements, developers can
start planning for the development. In the design stage, the high-level architecture is
refined to map out RAGOps stack, and the choices around tools and technology are
made. At this stage, we design the indexing and generation pipelines along with other
components such as caching, guardrails, and the like.

9.2.1 Indexing pipeline design

In the requirement-gathering step, we identify the data sources. During the design
stage, we double-click on these data sources to identify the nature of the source

208 CHAPTER 9 RAG development framework and further exploration

systems, file types, and nature of the data itself to determine the development steps
for the knowledge base. Recall from chapter 3 that the knowledge base is created for
a RAG system via the indexing pipeline. Components such as data loading, chunking,
embeddings, and storage form the indexing pipeline. In chapter 7, we also discussed
that the data layer of the RAGOps stack enables this by extracting, transforming, and
loading the data. Figure 9.6 summarizes the indexing pipeline components and the
data layer.

The data-loading
component is
responsible for

connecting to external

sources, and

extracting and parsing

information.

The data-splitting
component is

responsible breaking

down long pieces

of text into smaller,

manageable parts

called “chunks.”

The data conversion
component is

responsible converting

text chunks into

numerical vectors

called “embeddings.”

The data storage
component stores

the embeddings in

permanent memory

using specialised

databases called

“vector DBs.”

Indexing
pipeline
components

Vector

stores

Graph

storage

Extraction and parsing

Source systems Data ingestion

Cleaning
Tagging

Processing

Chunking

ER mapping
Vectorization/

embeddings

Data transformation Data storage

Data layer of
the RAGOps
stack

Connect to source
systems to extract data

Transform data into
the desired format

Load transformed
data in databases

d i

s.

Trans

ormation.

Con

Figure 9.6 The indexing pipeline of the RAG system is executed using the data layer in the RAGOps

stack.

Now let’s look at some important points of consideration that will help us when mak-
ing the choices for the indexing pipeline design.

DATA INGESTION

When you’re working with less data, like a few PDF files or a couple of websites, data

ingestion is a relatively simple step. However, in production-grade systems, the complex-
ity increases with the scale of the data. Special attention needs to be given to the source
systems and the file formats. Here are a few questions about connecting to source sys-
tems that will help in designing the data ingestion component:

¡	Which source systems will the data layer need to connect to?

 209Design stage: Layering the RAGOps stack

¡	Are the connectors readily available? If yes, which tools or services are required
to establish these connections?

¡	Which connectors will need to be developed? Which technology will these con-
nectors be developed on?

¡	Is access to open internet required? How will the system connect to the internet?

The following group of questions is about parsing files:

¡	Which file formats will be ingested?

¡	How will the web pages be scraped, if required?

¡	Do we have the necessary parsers for the different file types?

¡	Is some special parsing technique required to be developed?

¡	Can there be more than one modality of data in a single file?

The answers to these questions will determine the tools you will need to use for ingest-
ing data and the parts that will need to be developed.

DATA TRANSFORMATION

Once the data is ingested, the transformation step converts the data into a suitable for-
mat for the knowledge base. In the data transformation step, the data will first be
cleaned and pre-processed. A good practice is also to extract metadata information.
Sometimes, other preprocessing steps such as PII data redaction or resolving conflict-
ing information are required.

After pre-processing, the data will be chunked using a suitable chunking technique.
Chunk size, overlap size, and the chunking strategy should be decided at this stage.
Chunking can be fixed size, structure driven, semantic chunking, or agentic chunking.

Once the chunks are created, they need to be transformed for retrieval. We have dis-
cussed approaches such as embeddings and knowledge graphs. For use cases that require
relational understanding between chunks, knowledge graphs should be explored. The
creation of vector embeddings is almost mandatory in all RAG systems. To create vector
embeddings, pre-trained embeddings models can be used. However, sometimes, due to
the peculiarity of the domain, embedding models may need to be fine-tuned.

Let’s now look at some of the questions that should be considered at this stage. The
first group of questions is about pre-processing:

¡	How noisy is the data? What algorithms and techniques can be used to clean up
the data?

¡	Is structured data like tables or JSON present?

¡	Is metadata readily available, or should it be extracted?

¡	What algorithms or models should be used for metadata extraction? (Note: All
models sit in the model library of the model layer of the RAGOps stack.)

¡	Does the data contain sensitive information that needs to be masked or redacted?
What techniques will be used to execute this?

¡	Are there any other data protocols or guidelines that need to be followed?

210 CHAPTER 9 RAG development framework and further exploration

When it comes to chunking, consider asking the following questions:

¡	Is the chunk size pre-determined? If not, what chunk sizes should be experi-
mented with?

¡	Is the data in a format that will warrant structured chunking?

¡	What techniques and models will be employed for semantic chunking, if
required?

¡	Is a chunking agent readily available, or will it need to be built? Which models,
algorithms, and tools will be used by the chunking agent?

The following group of questions covers graphRAG:

¡	Is a hierarchical indexing structure required?

¡	Do we need to extract entities and relationships for relational context? Do we
have the necessary budget?

¡	What approaches are we going to take for entity-relationship extraction?

¡	Are we using any frameworks for graph extraction?

¡	Which models are going to be used?

As for embeddings, ask the following:

¡	Which embeddings model will we use? Are there any domain-specific embed-
dings models available that will be more useful?

¡	Are multimodal embeddings required?

¡	Do we need to fine-tune embeddings for our use case? Do we have the training
data for fine-tuning? How will the training data be sourced?

Data transformation steps require significant thought and effort. This is also where
significant costs can be incurred, especially in using agents and employing graphRAG.

DATA STORAGE

The final component of the data layer is the storage. Depending on the choices made
during the data transformation, the storage will comprise vector stores, graph data-
bases, and document stores (if necessary). At this stage, we should also keep in mind
that a cache store may be required in the application that can be a part of the data
layer. We will discuss caching separately. Some of the questions pertinent to data stor-
age are

¡	Can all data be stored in a single collection, or are multiple collections required?

¡	Can we manage the vector database or do we require a managed service?

¡	What is the current scale of data and how is it likely to grow?

¡	Which vector database will we use?

¡	Do we need a graph database? Which graph database will we use?

¡	Do we need to store raw documents or images? Which document store will we use
for this purpose?

 211Design stage: Layering the RAGOps stack

With the storage in place, the creation of the knowledge base can be executed. It is
important to note that the choices at this stage should be flexible. You should also keep
options available for tools, services and libraries that can be experimented with during
development. You’ll also have to estimate the costs associated with different steps of
this stage and ensure that the stakeholders are aligned with these costs.

With the data layer of the RAGOps stack, the design of the indexing pipeline is com-
plete. You may also note that the indexing pipeline also interacts with the model layer
where embeddings models and LLMs along with other task specific algorithms sit.

9.2.2 Generation pipeline design

We have discussed that the real-time interaction of the user with the knowledge base
is facilitated by the generation pipeline. In chapter 4, we developed the three main
components of the generation pipeline—the retrievers, augmentation via prompts,
and generation using LLMs. Apart from these three components, query optimiza-
tion in the pre-retrieval stage and context optimization in the post-retrieval stage are
advanced components of the generation pipeline. Sometimes, even post-generation,
response optimization is conducted to better align the responses. The generation
pipeline is powered by the model layer of the RAGOps stage, which has the LLMs, the
retrievers, embeddings models, and other task-specific models. The generation pipe-
line is brought alive by the app orchestration layer of the RAGOps stack. Let’s discuss
the design of the generation pipeline in the following six steps: query optimization
(pre-retrieval), retrieval, context optimization (post-retrieval), augmentation, genera-
tion, and response optimization (post-generation).

QUERY OPTIMIZATION

Query optimization techniques are employed to help retrieval better align with the
query. Several techniques are employed for transforming and rewriting queries. For
agentic RAG, query routing is an important aspect of this step. Some of the questions
to help finalize the nature of query optimization are

¡	How many types of queries can the user ask? Do each of these query types require
different downstream processes?

¡	Are there multiple collections in the knowledge base that need to be selected
before the search?

¡	Are user queries expected to be short or generic?

¡	Are users looking for precise responses?

¡	How much processing time can be afforded to query optimization?

¡	Which models and techniques will be used for query optimization?

Query optimization is optional but may be unavoidable when the data in the knowl-
edge base is voluminous. It must also be noted that query optimization can add to the
latency of the system.

212 CHAPTER 9 RAG development framework and further exploration

RETRIEVAL

Retrieval is a pivotal component of RAG systems. There are many retrieval techniques
and strategies discussed in this book. The quality of the RAG system hinges on the accu-
racy of the retrieval component. You may use a dense embeddings similarity match for
simple RAG systems. In more complex systems, you will need to use hybrid, iterative, or
adaptive retrieval strategies. The questions to ask at this stage are

¡	Does our retrieval component need high precision, high recall, or both?

¡	Can the queries be resolved with a simple similarity match?

¡	Do we need graph retrieval?

¡	Will searching through the entire data be prohibitively long? Do we need
filtering?

¡	Will a single pass retrieve all necessary documents?

¡	Will the information from the retrieved documents lead to more questions?

¡	Which models and techniques will we use for adaptive, recursive, or iterative
retrieval?

¡	Which retrieval algorithms should we try?

¡	Are there any providers or libraries that we will leverage?

¡	How will we estimate the cost of retrieval?

¡	How many documents should be retrieved for acceptable levels of coverage?

¡	Does ranking in retrieved results matter?

Retrieval, especially in large knowledge bases, can lead to significant latency and
should be optimized for speed and accuracy.

CONTEXT OPTIMIZATION

Once the results are retrieved from the knowledge base, they need to be sent to the
LLM for generation along with the original user query. However, once the results are
retrieved to sharpen the context, certain optimization techniques such as re-ranking
and compression can be applied. These techniques filter, compress, and optimize the
retrieved information to reduce noise and increase the precision of the context. To
validate the need for context optimization, a few questions can be asked:

¡	Will the amount of information retrieved overwhelm the LLM?

¡	Will the retrieved information fit the context window of the LLM?

¡	Is there a possibility of the retrieved information being noisy?

¡	Have a lot of documents been retrieved? Do we need to discard a few?

¡	Which techniques can be used to sharpen the retrieve context to the query?

¡	Are there any services or libraries that we can use?

¡	Can we afford the time taken for this optimization?

Optimizations like this are very helpful in making the context precise and improving
the overall quality of the RAG system, but they do add to the processing time and cost.

 213Design stage: Layering the RAGOps stack

AUGMENTATION

Augmentation is the process of adding the retrieved context to the original query in a
prompt that can be sent to the LLM for generation. While it may seem a simple step,
there can be many nuances to it. All the use case context along with the retrieved con-
text also needs to be passed. Sometimes, you may need to pass examples of desired
responses or the thought process. In cases where you need to use the LLMs internal
parametric knowledge, this can also be specified in the prompt. Key questions to ask at
this stage are

¡	What is the system prompt or the overall persona that we need the LLM to take?

¡	Does the response require nuanced analysis? Can that be passed as a chain of
thought?

¡	Do we want to restrict the responses to the context only?

¡	What kind of examples should be given?

¡	Will different query types need different prompting techniques?

Augmentation is done through prompts, and prompts can be managed by the prompt
layer of the RAGOps stack. Prompting affects the cost and latency since the LLM-s pro-
cessing depends on the number of tokens passed in the prompt.

GENERATION

Generation is a core component of all generative AI apps and contains an LLM that
takes a prompt as input and generates a response. The nature of the LLM determines
the efficacy and efficiency of the RAG system to a large extent. There are several
choices that you will need to make:

¡	Should an open source model be used? Do we have the skills and resources to use
them?

¡	Should a proprietary managed LLM be used?

¡	Will we need to fine-tune an LLM for our use case?

¡	How large a model do we need? What capabilities do we need to address?

¡	How can we estimate the cost of the generation component?

¡	Are there any deployment constraints to be considered?

¡	Will the models need optimization for deployment?

¡	Are there any security implications to be considered?

¡	Are there any ethical or legal implications to be considered?

The selected LLMs will sit in the model library. All training fine-tuning activities and
optimization are carried out in the model layer of the RAGOps stack. LLMs can be
costly to train and use. Using the right LLM is key to the success of the RAG system.

RESPONSE OPTIMIZATION

Sometimes, the response from the generation component may be further processed
before presenting the results to the user. This can range from evaluating the response

214 CHAPTER 9 RAG development framework and further exploration

for relevance to checking the format and appending the responses with the retrieved
sources. Some questions that can help with the assessment at this stage are

¡	Does the response from the LLM be presented to the user as is?

¡	Is there any kind of verification that the responses need to go through?

¡	What is the impact of a sub-optimal result?

¡	Are there any workflows that need to be triggered based on the responses?

Response optimizations are highly subjective and closely coupled to the use case, but it
is a consideration that should not be overlooked.

With these seven steps, the generation pipeline design is complete. The model library
and the training/fine-tuning components of the RAGOps stack can be covered with the
necessary tools, platforms, and algorithms. The orchestration of the generation pipeline
can also be finalized depending on the choices made during this stage. The prompt layer
can also be addressed after finalizing the augmentation techniques. Figure 9.7 shows the
generation pipeline design with the overarching question of each step.

Transform Expand Re-rank CompressRoute

User
query

Knowledge
base

Retriever

Augmentation

Model layer

Query optimization

Context optimization

Prompt library

Generation

Reflection

Formatting

Processing

System
response

How well can the user query be

aligned to the retrieval?

R
e

tr
ie

v
a

l

Which retrieval techniques can

be tried for maximum accuracy

and least latency?

How can the

retrieve context

be made noise

free?

What prompting

strategies need

to be tried out?

Which models can

the system try out?

Response
optimization

How to best align the

LLM response to

user expectations?

Figure 9.7 Key questions need to be answered to make the choices for the generation pipeline.

This completes the design choices of the core RAG pipelines. The model, prompt,
and the orchestration layers are largely complete by this stage. But there are more

 215Design stage: Layering the RAGOps stack

design considerations regarding security, guardrails, caching, and other use case
requirements.

9.2.3 Other design considerations

While well-designed core RAG pipelines complete the critical layers of the RAG system,
other system considerations and business requirements also need to be addressed:

¡	What kind of guardrails are required in the system? Should the user queries be
restricted? Is there any kind of information that should not be output?

¡	Is it possible and useful to cache certain kinds of responses?

¡	Do we need human supervision or action at any stage in the system?

¡	How will the models be protected from adverse attacks?

¡	Is there any approval workflow required in the system?

¡	Are users looking for explainability?

These questions will help address the essential and enhancement layers of the RAGOps
stack. You should be able to have a complete view of the necessary components, tools,
platforms, and libraries for the development of the RAG system. The last choice to be
made is on deployment options.

You can choose between a managed deployment on the cloud, a self-hosted deploy-
ment on a private cloud, a bare metal server, or local/edge machines. The choice
will largely be driven by the business constraints but can have an effect on the design
choices of the pipelines. Fully managed deployment favors managed services for stor-
age and compute to reduce development complexity and ensure scalability, self-hosted
solutions need a special focus on a design with modularity and optimization techniques
to handle limited infrastructure, and in edge deployment, you should emphasize light-
weight components and efficient retrieval strategies due to resource constraints.

With all these design elements finalized, experimentation can begin for the develop-
ment of the RAG system.

9.2.4 Development stage: Building modular RAG pipelines

The development stage of the RAG development framework focuses on implement-
ing the design choices into a functional RAG system. The ideal way would be to build
the RAG pipelines in a modular fashion, which involves decomposing the system into
distinct, interchangeable components, each responsible for a specific function. This
approach enhances flexibility, scalability, and maintainability, allowing for tailored
configurations to meet diverse application requirements. A few activities in the devel-
opment stage involve training and fine-tuning models; creating APIs or microservices
for different components; and creating an orchestration layer using different tools,
services, and libraries.

MODEL TRAINING AND FINE-TUNING LLMS

For most systems, a pre-trained foundation LLM and embeddings models will meet
the requirement. There may be instances where you may need to fine-tune models

216 CHAPTER 9 RAG development framework and further exploration

for domain adaptation. In rare cases, you may choose to train language models from
scratch. In such cases, the development of RAG systems may take a back seat, and train-
ing the models will be the core of the development effort. You can follow a progressive
approach when deciding whether to fine-tune embeddings models and LLMs.

When creating embeddings using a pre-trained model, you will need to assess if a
similarity search yields relevant results. To do this, you can also create ground truth
data. The ground truth data can be a set of manually curated search queries and their
matching documents. If the embeddings model can retrieve the documents accurately,
you may use the pre-trained model. If not, you can either look for another embeddings
model more suited for the use case domain or fine-tune the pre-trained embeddings
model for the use case domain.

Similarly, if a pre-trained LLM generates desired results by prompting alone, you can
use the model as is. In cases where you desire a specific style, vocabulary, or tonality, you
can choose to fine-tune a model.

If the system warrants other models such as query classification, harmful content
detection, usefulness, and similar, they will also need to be trained.

MODULE DEVELOPMENT

Different RAG pipeline components should be developed as independent modules in
the form of packages, APIs, or other modular frameworks. Some of the modules can be

¡	Data loading and parsing—Responsible for connecting to the source system and
parsing file formations

¡	Metadata extraction—Responsible for extracting and tagging metadata

¡	Chunking—Responsible for creating chunks from documents

¡	Embeddings—Responsible for converting chunks into vector embeddings

¡	Storage—Responsible for storing embeddings into vector databases

¡	Query optimization—Responsible for aligning user query with retrievers

¡	Retrieval—Responsible for efficient retrieval of documents

¡	Augmentation—Responsible for maintaining and invoking the prompt library

¡	Generation—Responsible for using the LLMs to generate responses

¡	Memory—Responsible for storing conversations, user preferences, and similar

These are only a few examples. Modularity will be dependent on the complexity of the
components. For example, if you are convinced that fixed-size chunking is sufficient
for your use case, you may not develop an independent chunking module. Conversely,
if you assume that LLMs may need to be changed as the system evolves with the tech-
nology, you can create the generation module that allows for quick and easy replace-
ment of models. Figure 9.8 recalls the modular RAG design discussed in chapter 6.

ORCHESTRATION

Finally, you will develop the orchestration layer that will manage the interaction among
the different modules that you have developed. This enables the workflow of your RAG

 217Design stage: Layering the RAGOps stack

Retrieval Generation

Pre-retrieval

Post-retrieval

Naïve RAG is composed of three core modules.

Indexing

Advanced RAG adds pre-retrieval and post-retrieval
modules to the naïve RAG modules.

Routing

Fusion

Task adapter

Memory Search

Predict

Enables direct

search across

different sources

Uses parametric

LLM memory to

guide retrieval

Selects the

optimal RAG

pathway for a

query

Expands user

queries
Enables direct

context

generation from

the LLM

Tailors the RAG

pipeline for

downstream

tasks

New modules interact with the advanced/naïve RAG framework, as well as with each other.

Naive RAG Advanced RAG Modular RAG

Figure 9.8 Modular structure allows for flexibility and scalability of individual components.

system. This workflow should be flexible enough to adapt with feedback for different
query types.

You will also have access to various managed services, frameworks, libraries, and tools
that you can integrate with any of the modules. For example, LangChain is a framework
that provides libraries for most components of a RAG framework. You can use these
libraries for quick and easy development. However, for components that you desire
more control over, you may need to build the functionality from scratch.

Development is an experimentation-driven iterative process. To finalize the differ-
ent components of the RAG system, you will need to evaluate them and benchmark
them against the goals you had set in the initiation stage.

218 CHAPTER 9 RAG development framework and further exploration

9.2.5 Evaluation stage: Validating and optimizing the RAG system

Evaluation of the RAG system is a key component of its development process. All
the different strategies, tools, and frameworks must be evaluated against some set of
benchmarks. The actual business effect can only be measured post-deployment, but
some metrics can be evaluated at the development stage. We can look at these metrics
in two broad categories.

RAG COMPONENTS

The purpose of evaluating the RAG system is to assess the performance of different
RAG components. To this end, there can be retriever-specific, generation-specific, and
overall RAG evaluation metrics. Here is a summary of these metrics discussed in chap-
ter 5. We begin with retriever-specific metrics:

¡	Accuracy is typically defined as the proportion of correct predictions (both true
positives and true negatives) among the total number of cases examined.

¡	Precision focuses on the quality of the retrieved results. It measures the propor-
tion of retrieved documents relevant to the user query. It answers the question,
“Of all the documents that were retrieved, how many were relevant?”

¡	Precision@k is a variation of precision that measures the proportion of relevant
documents among the top ‘k’ retrieved results. It is particularly important
because it focuses on the top results rather than all the retrieved documents. For
RAG, it is important because only the top results are most likely to be used for
augmentation.

¡	Recall focuses on the coverage that the retriever provides. It measures the propor-
tion of the relevant documents retrieved from all the relevant documents in the
corpus. It answers the question, “Of all the relevant documents, how many were
retrieved?”

¡	F1-score is the harmonic mean of precision and recall. It provides a single metric
that balances both the quality and coverage of the retriever.

¡	Mean reciprocal rank, or MRR, is particularly useful in evaluating the rank of the
relevant document. It measures the reciprocal of the ranks of the first relevant
document in the list of results. MRR is calculated over a set of queries.

¡	Mean average precision, or MAP, is a metric that combines precision and recall at
different cut-off levels of ‘k’ (i.e. the cut-off number for the top results). It calcu-
lates a measure called average precision and then averages it across all queries.

¡	nDCG evaluates the ranking quality by considering the position of relevant docu-
ments in the result list and assigning higher scores to relevant documents appear-
ing earlier.

Here is the summary of generation specific metrics:

¡	Coherence assesses the logical flow and clarity of the response, ensuring that the
information is presented in an understandable and organized manner.

 219Design stage: Layering the RAGOps stack

¡	Conciseness evaluates whether the response is succinct and to the point, avoiding
unnecessary verbosity, while still conveying complete information.

We conclude with a summary of overall RAG metrics:

¡	Context relevance assesses the proportion of retrieved information relevant to the
user query.

¡	Faithfulness or groundedness assesses the proportion of the claims in the response
that are backed by the retrieved context.

¡	Hallucination rate calculates the proportion of generated claims in the response
that are not present in the retrieved context.

¡	Coverage measures the number of relevant claims in the context and calculates
the proportion of relevant claims present in the generated response.

¡	Answer relevance assesses the overall effectiveness of the system by calculating the
relevance of the final response to the original question.

Recall the triad of RAG evaluation from chapter 5. Figure 9.9 shows the pairwise inter-
action between the user query, retrieved context, and the generated response, which
calculates the RAG specific metrics.

Retrieved information
or context

Response or
answer

User query
or prompt

Context relevance
Is the retrieved

information or context

relevant to the user

query or prompt?

Groundedness
Is the response or

answer faithful to the

retrieved context?

Answer relevance
Is the answer

relevant to the user

query?

Figure 9.9 The triad of RAG evaluation proposed by TruEra

To calculate some of these metrics, a ground truth dataset is required. Ground
truth is information known to be real or true. In RAG, and the generative AI
domain in general, ground truth is a prepared set of prompt–context–response or

220 CHAPTER 9 RAG development framework and further exploration

question–context–response examples, akin to labeled data in supervised machine
learning parlance. Ground truth data created for your knowledge base can be used for
the evaluation of your RAG system.

You can measure these metrics for different components. For example, you can
check if context relevance increases by replacing a hybrid retrieval strategy with an
adaptive one. You can also check the effectiveness of query and context optimization.
You can also compare two service providers for a particular component.

SYSTEM PERFORMANCE

System performance metrics relate to the non-functional requirements of the system,
which affect the usability of the system more than the accuracy of the system. Some of
these metrics are

¡	Latency—Measures the time taken from receiving a query to delivering a response.
Low latency is crucial for user satisfaction, especially in real-time applications.

¡	Throughput—Indicates the number of queries the system can handle within a spe-
cific time frame. Higher throughput reflects the system’s ability to manage large
volumes of requests efficiently.

¡	Resource utilization—Assesses the efficiency of CPU and GPU usage during oper-
ations. Optimal utilization ensures cost-effectiveness and prevents resource
bottlenecks.

¡	Cost per query calculates the average expense incurred for processing each query,
encompassing infrastructure, energy, and maintenance costs.

Latency and cost get special attention in LLM-based systems. This is because of the
inherent nature of the LLM architecture. RAG adds to both latency and cost. There-
fore, the impact of additional components like filtering during retrieval, optimizations,
and retrieval strategies should be evaluated from this lens. Sometimes the stakeholders
may also ask you to evaluate some use case-specific metrics, and that should also be a
part of this evaluation stage.

When your system is thoroughly evaluated and improved to meet all the bench-
marks, it is ready to go. You can now deploy it to make it available to the intended users.

9.2.6 Deployment stage: Launching and scaling the RAG system

Once the system is ready to ship, it needs to be deployed into a production server
accessible by the intended users. There are a few deployment techniques that are pop-
ular for software systems, which can also be used for RAG systems.

BLUE–GREEN DEPLOYMENT

Blue–green deployment maintains two separate environments named blue and green.
The existing system is in the blue environment, and the new RAG system is put in
the green. Once the green environment is tested and verified, all traffic is directed to
the green environment, and the blue environment is deactivated. The advantage of
this blue–green deployment is that it is possible to test the production environment

 221Design stage: Layering the RAGOps stack

without affecting the live traffic. Consequently, there is zero downtime and an easy
option for a rollback if any problem is encountered. However, it is a costly option since
the entire production environment is duplicated. Indexing pipelines can be updated
in the green environment without affecting the live system. Changes to retrieval strate-
gies or embeddings models can be safely validated before production use.

CANARY DEPLOYMENT

Canary deployment gradually releases the new RAG system to a small number of users.
If it performs well with these users, it is expanded to all users. Canary deployment
allows for real-time user feedback that enables early detection of problems. However, it
adds feedback and monitoring complexity and multiple versions to manage. It can test
changes in retrieval algorithms, embeddings, or generation models on limited queries
or specific regions.

ROLLING DEPLOYMENT

Rolling deployment is used when there are multiple production servers. The new RAG
system is deployed to one server incrementally at a time before moving to the next.
So, there is no complete downtime and only a part of the system is offline at one time.
It may become complex if problems arise mid-deployment. The rollback can become
tedious when some servers are updated, while others are not.

SHADOW DEPLOYMENT

Shadow deployment mirrors live traffic to a new version of the system running along-
side the old one, without exposing the new RAG system’s responses to users. By doing
this, the system can be tested without affecting the users. However, it requires duplica-
tion of the infrastructure much like the blue–green deployment.

A/B TESTING

A/B testing involves deploying two versions of the RAG system (A and B) to separate
subsets of users and comparing their performance to determine the better option.
This can also be done for new systems. It enables direct comparison and provides clear
insights into performance. However, it requires robust mechanisms to split traffic
and collect performance metrics. It allows for experimenting with different LLMs or
retrieval strategies and variations in prompting and augmentation techniques.

INTERLEAVING EXPERIMENTS

Interleaving experiments compare two RAG systems by blending their outputs into a sin-
gle result set shown to users. Results from both systems are interleaved, and user inter-
actions are attributed to the originating system to determine which performs better.
This approach provides fast feedback and reduces bias by comparing systems under
identical conditions. However, the attribution of user engagement to the correct sys-
tem can be complex.

The choices for the deployment strategy can depend on factors like such as toler-
ance, and using strategies such as shadow, canary, and blue–green can mitigate risks
in mission-critical systems. It also depends on the scale, and rolling deployments make
sense for large-scale systems. Small new RAG systems can be also deployed all at once.

222 CHAPTER 9 RAG development framework and further exploration

Now that the system is available to the users, you will start getting real-time feedback,
and the success and failure of the system will also depend on how you react to the feed-
back. To measure and improve the system, continuous monitoring is required.

9.2.7 Maintenance stage: Ensuring reliability and adaptability

Deploying a RAG system into production is only the first milestone in the journey
toward an evolved contextual AI system. Explicit user feedback, evolving technology, and
changing user behavior present previously unexplored challenges that the system may
encounter. It is therefore essential to be continually vigilant and monitor the system per-
formance. There are several reasons why a RAG system may fail in production. There are
operational reasons such as compute resource constraints, sudden spikes in load, and
malicious attacks. The reason can also be a shift in the type of data in the knowledge base
or a change in user queries. It is therefore essential to measure a few metrics:

¡	RAG component metrics that were evaluated before deployment need to be con-
tinuously monitored for degradation.

¡	Changes in user behavior can be tracked by analyzing the nature of user queries.

¡	System performance metrics such as latency, throughput, and similar should also
be continuously monitored.

¡	Additional metrics such as error rates, system downtime, malicious attacks, and
similar should also be tracked.

¡	User engagement metrics such as customer satisfaction scores or repeat engage-
ment can indicate the usability of the system.

¡	Business metrics such as revenue effects and cost savings should also be tracked.

This development framework completed its cycle with maintenance. However, it
is not a linear process. New requirements and business objectives will emerge. This
will re-initiate the development cycle for an improved RAG system. This development
framework will prove to be a good reference resource while building RAG systems.

We conclude this book and end the discussion on RAG in the next section with some
additional considerations to keep in mind as the generative AI domain evolves.

9.3 Ideas for further exploration

Like any technology, even with RAG, there are some complementary and some com-
peting ideas that coexist. You may hear about these techniques and sometimes be chal-
lenged to defend the use of RAG. There are also common points of failure for RAG
systems that need attention.

9.3.1 Fine-tuning within RAG

Supervised fine-tuning (SFT) of LLMs has become a popular method to customize
and adapt foundation models for specific objectives. There has been a growing debate
in the applied AI community around the application of fine-tuning or RAG to accom-
plish tasks. While RAG enhances the non-parametric memory of a foundation model

 223Ideas for further exploration

without changing the parameters, SFT changes the parameters of a foundation model
and therefore influences the parametric memory. RAG and SFT should be considered
as complementary, rather than competing, techniques because both address differ-
ent parts of a generative AI system. You may prefer fine-tuning over RAG if there is a
change required in the writing style, tonality, and vocabulary of the LLM responses. In
their paper “Retrieval-Augmented Generation for Large Language Models: A Survey”
(https://arxiv.org/abs/2312.10997), Gao and colleagues plot the evolution of prompt
engineering to RAG and fine-tuning. This is illustrated in figure 9.10, demonstrating
the need for fine-tuning with the increase in the need for model adaptation.

External knowledge
required

Model adaptation
required

HighLow

L
o

w
H

ig
h

Prompt
engineering

Fine-tuning

All of the above

RAG

Standard

prompting

Few-shot

prompting

Advanced

prompting

Naive RAG

Advanced

RAG

Modular

RAG
Retriever fine-tuning

Generator fine-tuning

Figure 9.10 Prompt engineering requires low modifications to the model and external knowledge,

focusing on harnessing the capabilities of LLMs themselves. Fine-tuning, however, involves further

training the model. Source: https://arxiv.org/abs/2312.10997.

Fine-tuning methods for both retrievers and generators hold immense potential for sig-
nificantly improving RAG performance. Retriever fine-tuning enhances the ability of
retrieval models to accurately capture semantic nuances relevant to specific domains,
using methods such as contrastive learning, supervised embedding fine-tuning, LM-
supervised retrieval, or reward-based fine-tuning. Generator fine-tuning complements
this by adapting language models through methods such as fusion-in-decoder (FiD),
prompt tuning, latent fusion techniques, and parameter-efficient fine-tuning (PEFT).
Combining these approaches within a hybrid fine-tuning framework can align the
retrieval and generation components more effectively, leading to higher accuracy,
reduced hallucinations, and improved adaptability to domain-specific tasks.

https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997

224 CHAPTER 9 RAG development framework and further exploration

9.3.2 Long-context windows in LLMs

Context windows in LLMs keep growing significantly with iteration. As of this writing,
Claude 3.5 sonnet supports a window of up to 200,000 tokens, while GPT-4o, O1, and
variants can process 128,000 tokens. Google Gemini 1.5 leads with a massive 1-million-
token context window. It is possible that when you read this book, there may be models
with even longer context windows. So, in a lot of cases, we can just pass the entire context
such as a long document to the model as part of the prompt. This would eliminate the
need for chunking, indexing, and retrieval in cases where the knowledge base is not
too large. In their paper, “Retrieval Augmented Generation or Long-Context LLMs? A
Comprehensive Study and Hybrid Approach” (https://arxiv.org/abs/2407.16833), Li
and colleagues systematically compare RAG and LLMs with long-context windows. They
demonstrate that long-context LLMs outperform RAG with a few exceptions. However,
processing long contexts directly with LLMs can be computationally expensive. RAG is
significantly more cost-efficient owing to processing shorter inputs. A hybrid approach
such as SELF-ROUTE proposed in the same paper uses model self-reflection to decide
whether a query can be answered with retrieved chunks or if it needs the full context.
Figure 9.11 illustrates the SELF-ROUTE approach, in which the model receives the
query with the retrieved chunks and determines whether the query can be answered
based on this information. If yes, it generates the answer. If no, the full context is
provided to the model, and the model generates the final answer.

User query

Retrieved
chunks

No

Step 2: LC prediction
Response

LLM

Full context

Response

Retriever

Step 1: RAG & ROUTE

Hey LLM, can you answer the user query

based on the provided chunks?

Yes

Figure 9.11 A hybrid approach utilizing RAG and long context in LLMs can lead to better performance

without adversely increasing the costs.

9.3.3 Managed solutions

With the growing popularity of RAG and its significance in generative AI applica-
tions, many service providers offer managed RAG pipelines in which several RAG

https://arxiv.org/abs/2407.16833

 225Summary

components can be configured without the need for custom development. For exam-
ple, knowledge bases are an Amazon Bedrock capability that facilitates implementation
of the entire RAG workflow. Azure AI Search provides indexing and query capabilities,
with the infrastructure of the Azure cloud, and Vertex AI RAG Engine is a component
of Google’s Vertex AI platform that facilitates RAG. There are also independent service
providers such as CustomGPT, Needle AI, Ragie, and so forth that provide managed
RAG pipelines. As with managed solutions across technologies, the factors to consider
are cost, applicability to the use case, flexibility, and control over components.

9.3.4 Difficult queries

Some key reasons for failures in RAG systems are related to the types of queries. As
RAG developers, it is important to keep focusing on these query types so that the tech-
nique can be improved. Some of these are

¡	Multi-step reasoning—RAG struggles with queries needing multi-hop retrieval
(e.g., “What nationality is the performer of song XXX?”).

¡	General queries—Vague or broad questions are hard to retrieve relevant chunks
for (e.g., “What does the group think about XXX?”)

¡	Complex or long queries—Complex queries challenge the retriever’s understanding.

¡	Implicit queries—Questions requiring comprehensive context understanding
can’t be addressed by RAG alone.

We have come a long way in our discussion on RAG. This chapter provided an exhaus-
tive summary of the contents of this book, from the benefit of RAG to the best practices
in building RAG systems. At the risk of repetition, RAG is an important and evolving
technique in the field of generative AI. I hope you had a good time reading this book.
I’ll leave you with the following closing thoughts:

¡	Remember to remain familiar with the principles of contextual AI powered by
RAG.

¡	Have faith in your ability to build complex RAG systems.

¡	Always bear in mind the development challenges and strategies to overcome
them.

¡	Understand the ethical and legal concerns around generative AI.

¡	Be on top of the rapidly changing trends.

Summary

RAG development framework

¡	The RAG development framework provides a structured approach to building,
deploying, and maintaining retrieval-augmented generation systems.

¡	It addresses the complexity of RAG systems by incorporating six iterative and
cyclic stages: initiation, design, development, evaluation, deployment, and
maintenance.

226 CHAPTER 9 RAG development framework and further exploration

¡	The framework emphasizes both the technical and operational aspects of RAG
system development.

RAG development framework stages

¡	Initiation stage

– Focuses on understanding the problem statement, aligning stakeholders, and
gathering requirements.

– Emphasizes use case identification and assessing the need for RAG, using tools
like use case evaluation cards.

– Involves requirements gathering across business, functional, and non-
functional needs.

– Concludes with drafting a high-level architecture diagram for alignment and
strategic decision-making.

¡	Design stage

– Transforms high-level architecture into detailed pipeline designs for indexing
and generation.

– Incorporates choices around chunking, embeddings, and retrieval strategies.

– Addresses additional considerations such as guardrails, caching, security, and
deployment strategies.

¡	Development stage

– Implements modular RAG pipelines, enabling flexibility, scalability, and
maintainability.

– Activities include training/fine-tuning models, creating independent mod-
ules (e.g., chunking, retrieval, generation), and building orchestration layers.

¡	Evaluation stage

– Validates RAG system components and overall performance using metrics
such as context relevance, faithfulness, precision, recall, latency, and cost per
query.

– Employs ground truth datasets for benchmarking and optimization.

¡	Deployment stage

– Includes deployment strategies like blue-green, canary, rolling, and A/B test-
ing to ensure smooth transitions and minimal disruption.

– Emphasizes real-time user feedback and system scalability.

¡	Maintenance stage

– Ensures system reliability through continuous monitoring of component met-
rics, user behavior, and performance metrics.

– Adapts to evolving use cases, technological advancements, and user feedback.

 227Summary

Best practices in RAG development

¡	Modular design improves adaptability and ease of updates.

¡	Ground truth datasets are essential for accurate evaluation and fine-tuning.

¡	Deployment strategies should align with system criticality, scale, and risk
tolerance.

¡	Regularly monitor for changes in user behavior, data, and performance to main-
tain reliability.

Ideas for further exploration

¡	RAG vs. fine-tuning

– RAG complements fine-tuning by enhancing non-parametric memory, while
fine-tuning adapts parametric memory for style, tonality, and vocabulary.

– Use cases may benefit from hybrid approaches, depending on specific needs.

¡	 Long-context windows in LLMs

– Advances in LLMs (e.g., 200k+ token contexts) can reduce reliance on chunk-
ing and retrieval for smaller knowledge bases.

– Hybrid models such as SELF-ROUTE combine RAG with long-context pro-
cessing to optimize cost and accuracy.

¡	Managed solutions

– Services such as Amazon Bedrock, Azure AI Search, and Google Vertex AI
RAG Engine offer prebuilt RAG pipelines, simplifying deployment and reduc-
ing development effort.

¡	Handling difficult queries

– Multi-step reasoning, general queries, and implicit questions remain chal-
lenges for RAG systems.

229

index
A

A/B testing 221
accuracy 91, 218

vs. speed 55
active prompt 74
adaptive chunking 43
adaptive retrieval 135, 190
advanced techniques 84, 85
agentic RAG (Retrieval-Augmented

Generation) 187–194. See also RAG
(Retrieval Augmented Generation)

capabilities 190
challenges and best practices 193
LLM agents 187–190
pipelines 190–193

AI-powered research 15
ANNOY (Approximate Nearest Neighbors Oh

Yeah) 53
answer faithfulness 100
answer relevance 101, 219
Apache Lucene 54
APE (automatic prompt engineer) 74
application orchestration layer 153, 163
ARES (Automated RAG Evaluation System) 110,

156
ARISE 156
ART (automatic reasoning and tool use) 74

AssemblyAIAudioTranscriptLoader library 171
AsyncHtmlLoader function 35
augmentation 69–77

prompt engineering techniques 70–75
simple prompt creation 76

AutoGen 154
Azure SQL 54

B

BEIR (benchmarking information retrieval) 111
benchmarks 91
BERT (Bidirectional Encoder Representations from

Transformers) 48
bias 90
blue-green deployment 221
BM25 (Best Match 25) 63, 84
Boolean retrieval 61
BoW (Bag of Words) 61
business objectives 204

C

caching 28
caching layer 156, 164
canary deployment 221
central orchestration layer 23
CharacterTextSplitter 40, 41

230 INDEX

ChromaDB 53, 55
chunk clustering and summarization 197
chunking 56, 148, 191
chunk optimization 125, 126
CLAP (Contrastive Language–Audio

Pretraining) 172
Claude series, Anthropic 80
CLIP (Contrastive Language–Image

Pretraining) 172
CLM (causal language modeling) 6
CloudSQL 54
Cohere embeddings 49
coherence 218
collaboration and experimentation layer 159–161,

164
Command R series, Cohere 81
community support 161
complex queries 225
compression 136–139
conciseness 219
constraints 205
context-enriched chunking 126
context handling 81
context relevance 99, 219
contextual embeddings 64, 84
contextual prompting 70, 85
context window of LLMs 38
continued hallucination 161
controlled generation prompting 71, 85
conversational agents 14
core LLM brain 187
cosine similarity 50
cost 56, 80

efficiency 160
optimization layer 159, 164
per query 220

CoT (chain of thought) prompting 72, 85
counterfactual robustness 90
coverage 100, 219
CRAG (comprehensive RAG benchmark) 113
CRAG (corrective RAG) 194
CrewAI 154
cross-encoder retrieval 65
CSVLoader library 171
customization 80

D

data conversion component 22
DataFrameLoader library 171
data ingestion 208
data layer 148, 163
data loading 34, 56, 191
data privacy 164
data splitting (chunking) 38–45, 56

advantages of 38
choosing strategy for 45
chunking methods 39–44
chunking process 39
component 22

data storage 210
component 148

data transformation 209
component 148

data variable 36
deep contextual awareness 12
dense retrieval 64
deployment

flexibility 80
options 81

deployment stage 220–221
design stage 207–222

generation pipeline design 211–215
indexing pipeline design 208–211
other design considerations 215

development stage 215–217
model training and fine-tuning LLMs 216
module development 216
orchestration 217

direct access vs. API 55
document clustering 195
document_loaders library 35
document question answering systems 15
document_transformers library 36
domain adaptation 160, 164

challenges 161
dual querying mechanisms 197
dynamic retrieval decision 196

E

ease of use 80
Elastic Search 54
ELMo (Embeddings from language models) 48

 231INDEX

embeddings 46, 148, 171, 173, 191
choosing 52
models 150
pretrained models 48
use cases 49–52

EM (Exact Match) 90, 111
ESG (environmental, social, and governance) 15
ETL (extract–transform–load) 148
Euclidean distance 50
evaluation component 23
evaluation layer 156, 163
evaluation stage 218–220

RAG components 218–220
system performance 220

explainability and interpretability layer 159, 164

F

F1-score 90, 93, 111, 218
faiss-cpu library 54
FAISS (Facebook AI Similarity Search) 53, 55, 56
faithfulness 219
FastText 48
fetch surrounding chunks 127
few-shot prompting 72, 85

examples 110
FiD (fusion-in-decoder) 223
File Search tool 159
fine-tuned models 77–79
fixed-size chunking 39–42
FLARE (forward-looking active retrieval-augmented

generation) 135
flexibility vs. performance 55
foundation models 77, 150
frameworks 90, 103–111

ARES 110
RAGAs 104–110

fully managed deployment 152
functional requirements 205
fusion module 140

G

Galileo 156
Gemini Embeddings Model 48
Gemini series, Google 81
Gemma, Google 82
general queries 225

generated knowledge prompting 74
generation coordination component 153
generation module 139
generation pipeline 18, 191

generating contextual LLM responses 77–84
overview 59
retrieval 60–69

generation pipeline design 211–215
query optimization 211
retrieval 212–215

GloVe (Global Vectors for Word
Representations) 48

GPT series, OpenAI 80
graph-based retrieval 65
GraphCypherQAChain class 185
graph databases 148

with vector capabilities 54
GraphRAG 148
Graphrag library 184
graph structures 148
groundedness 219
ground truths 104
guardrails 28

H

hallucination 164
hallucination rate 100, 219
high-level architecture 207
html2text package 36
HTMLSectionSplitter library 42
human-in-the-loop layer 159, 164
human preference validation set 110
hybrid retrieval 65, 133
HyDE (hypothetical document embedding) 132

I

implicit queries 225
inadequate handling of data privacy and PII 162
indexing module 139
indexing pipeline 20, 23–25, 190

data conversion 46–53, 57
data loading 34–38, 56
data splitting 38–45
storage 53–56

indexing pipeline design 208–211
index optimization 123, 125–129

232 INDEX

index structures 128
in-domain passage set 110
inference optimization component 150
information integration 90
insufficient scalability planning 161
integration with existing stack 160
intent classification 133
interleaving experiments 221
iterative retrieval 134

K

KG (knowledge graph) 113
knowledge base 125
knowledge graph index 128
knowledge graph RAG 177–186, 198

approaches 179–182
challenges and best practices 186
knowledge graphs 177
pipelines 182–185
use cases 179

knowledge refinement 194

L

LanceDB 53
LangChain 34, 35, 154
langchain.chains library 185
langchain-community package 35, 36
langchain_experimental library 184
langchain_experimental.text_splitter library 44
latency 90, 164, 220
LCEL (LangChain Expression Language) 156
learned sparse retrieval 64
lesser hallucination 12
LlamaIndex 154
Llama series, Meta 81
LLamaTokenizer 41
LLMGraphTransformer class 184
LLMs (large language models) 26, 33, 87, 146

agents 187–190
categorization of and suitability for RAG 77–82

model sizes 81–82
open-source vs. proprietary models 79–82
original vs. fine-tuned models 77–79

completing RAG pipeline, generation using
LLMs 82

fine-tuning 216

generating contextual responses 77–79
long-context windows in 224
RAG and 3, 4–10
security and privacy layer 156, 163
setup 23

local/edge deployment 152
local vs. cloud storage 55
lost-in-the-middle problem 38
LTR (Learning to Rank) 137
lxml package 42

M

maintenance stage 222
managed RAG solutions 159
MAP (mean average precision) 91, 95, 218
MarkdownHeaderTextSplitter class 42
Marqo 53
memory component 187
memory module 140
metadata element 36
metadata

enhancements 127
enrichment 128
filtering 127
routing 133

metrics 91
Milvus 53, 55
Mistral 81

AI embeddings 49
MLM (masked language modeling) 6
modality-specific embeddings 175
model

deployment 151, 163
layer 149, 163
library 150
training 216
training and fine-tuning component 150

module development 216
MongoDB 54
monitoring

component 23
layer 156, 163

MRR (mean reciprocal rank) 91, 94, 218
multi-agent orchestration component 153
multi-hop RAG 113
multimodal LLMs (large language models) 175

 233INDEX

multimodal RAG (retrieval-augmented
generation) 169–177, 198

challenges and best practices 176
data modality 169
pipelines 170–175
use cases 170

multi-query expansion 130
multi-step reasoning 225

N

naïve RAG (retrieval-augmented generation),
limitations of 122

nDCG (normalized discounted cumulative
gain) 91, 96, 218

negative rejection 89
Neo4j 54
Neo4jGraph library 184
NER (named entity recognition) 78
neural IR models 65
news generation and content curation 15
NLP (natural language processing) 24, 38
NMSLIB (Non-Metric Space Library) 53
noise robustness 89
nonfunctional requirements 205
NQ (Natural Question) 111

O

OpenAI 48
OpenAIWhisperParser library 171
Open Search 54
open-source models 79–82
orchestration 217
original models 77–79

P

parameter-efficient fine-tuning (PEFT) 223
parent-child document structure 128
PEFT (parameter-efficient fine-tuning) 223
personalized marketing content generation 14
Phi-3, Microsoft 82
PII (Personally Identifiable Information) 37
Pillow library 171
Pinecone 53, 55
planning component 187
PoCs (proof of concepts) 148
Postgres SQL (pgvector) 54

post-retrieval
module 140
stage 124

PPI (Prediction-Powered Inference) 110
precision 92, 218
pre-retrieval

module 140
stage 123

prompt engineering techniques 70–75
advanced prompting techniques 74–75
chain of thought prompting 72
contextual prompting 70
controlled generation prompting 71
few-shot prompting 72

prompt
layer 156, 163
management 23, 26

Pydub library 171

Q

QCA (question–context–answer) 103
Qdrant 53, 55
quantum-inspired retrieval 65
query optimization 124, 125, 130–133, 211

query expansion 130
query transformation 131

query orchestration component 153
query understanding and routing 132, 190

R

RAGAs (Retrieval-Augmented Generation
Assessment) 104–110

evaluations 108
recreating RAG pipeline 106
synthetic test dataset generation (ground

truths) 104
RAGOps stack 27

critical layers 163
enhancement layers 164
essential layers 163
evolving 145, 146–161
production best practices 161–162, 164

RAGOps Stack 27
RAG (Retrieval Augmented Generation)

advanced techniques 123
advantages of 12

234 INDEX

augmentation 69–77, 85
benchmarks 111–115
categorization of LLMs and suitability for

RAG 77–82
completing pipeline, generation using LLMs 82
components of 28
corrective RAG 194
defined 8
design of systems 22
development framework 200, 201–207, 225

best practices in 227
deployment stage 220
design stage 207–222
development stage 215–217
evaluation stage 218–220
gathering requirements 204
generation pipeline design 211–215
high-level architecture 207
indexing pipeline design 208–211
initiating stage 203–207
maintenance stage 222
other design considerations 215
RAG components 218–220
requirements analysis 206
stages of 226
system performance 220
use case identification 203

difficult queries 225
discovery of 11
drafter 196
evaluation 88–91

ARES 110
benchmarks are static 116
frameworks 103–111
lack of standardized metrics 116
lack of use case subjectivity 116
limitations and best practices 115–117
overreliance on LLM as a judge 116
quality scores 89
RAGAs 104–110
required abilities 89–91
scalability and cost 116

evaluation and monitoring 26
evaluation metrics 91–101
fine-tuning within 223
generation 85

generation pipeline 25, 58
indexing pipeline 23–25, 33, 38–45

choosing vector databases 55
data conversion 46–53, 57
data loading 34–38, 56
embeddings 46–53
storage 53–56
types of vector databases 53–55
vector databases 53

knowledge graph RAG 177–186
LLMs and 3, 4–10
long-context windows in LLMs 224
managed solutions 225
modular RAG 139–142
multimodal RAG 169–177
naïve RAG, limitations of 122
novelty of 11–12
operations (RAGOps) stack 18
overview of 17
post-retrieval techniques 136–139
pre-retrieval techniques 125–133
progression of systems 121
retrieval strategies 84, 133–136

adaptive retrieval 135
hybrid retrieval 133
iterative retrieval 134
recursive retrieval 134

self RAG 196
speculative RAG 195
system 18–20
use cases 13–15
variants 167–168, 198–199
verifier 196

rank_bm25 package 63
RAPTOR (recursive abstractive processing for

tree-organized retrieval) 197
ReAct prompting 74
real-time event commentary 14
reasoning capability 81
recall 92, 218
recreating RAG pipeline 106
RecursiveCharacterTextSplitter 41, 43
RecursiveJsonSplitter class 42
recursive

prompting 74
retrieval 134

 235INDEX

tree construction 197
reflection tokens 196
relevance token 196
requirements

analysis 206
gathering 204

re-ranking 137–139
resource

constraints 81
utilization 220

retrieval 60, 212–215
augmentation 213
context optimization 212
coordination component 153
evaluator 194
generation 213
metrics 91–98
module 139
popular retrievers 67–69
progression of methods 61–66
response optimization 214
stage 124

retrievers 23, 26, 67–69
retrieve token 196
rewrite 131
RGB (Retrieval-augmented Generation

Benchmark) 112
robustness 90
rolling deployment 221
ROUGE scores 90
routing module 140

S

scalability 164
and performance required 160

ScaNN (Scalable Nearest Neighbors) 53
scikit-learn 62
search

engines 13
module 140
platforms 54

security 28
self-consistency 74
self-critique 196
self-hosted deployment 152
self RAG 196

SemanticChunker class 44
semantic chunking 44
semantic routing 133
SFR-Embedding-Mistral model 52
SFT (supervised fine-tuning) 77
SGE (Search Generative Experience) 13
shadow deployment 221
simplicity vs. advanced features 56
SingleStore 54
social media monitoring and sentiment analysis 15
Solr 54
source citation 12
specialized chunking 42
specialized vector DBs 53
speculative RAG 195
SQuAD (Stanford Question Answering

Dataset) 111
static word embeddings 64, 84
step-back expansion 131
storage 53–56, 191

vector databases 53–55
storage component 22
sub-query expansion 131
support token 196
synthetic test dataset generation (ground

truths) 104

T

task adapter module 141
task-specific models 150
TF-IDF (Term Frequency-Inverse Document

Frequency) 62, 84
throughput 220
tiktoken 41
tokenizers 41
tokens 38. See also specific tokens
tools 188

usage 190
toxicity 90
TraceLoop 156
tradeoffs 101
tree-of-thoughts prompting 74
TruEra 26
TruLens 156

236 INDEX

U

Unstructured library 171
use case identification 203
use case-specific evaluation criteria 90
user needs 204
utility token 196

V

VAD (voice activity detection) 171
Vald 53
vector capabilities for SQL and NoSQL

databases 54
vector databases 53, 148

choosing 55
types of 53–55

vector indexes 53
vector storage 34
vendor lock-in constraints 160
Vespa 53
virtual assistants 15
Voyage AI 48

W

Weaviate 53
web search supplementation 194
Word2Vec 47
workflow automation component 153

Y

YoutubeLoader library 171

DESIGN

DEVELOPMENTDEPLOYMENT

MAINTENANCE

EVALUATION

INITIATION

Designing RAG

pipelines and finalizing

the layers of the

RAGOps stack

Developing RAG

pipelines, and creating a

prototype for evaluation

and feedback

Deployment of system to

production and serving

the desired users

Tracking and measuring

system performance and

improving the system

based on feedback

Assessing RAG metrics

and system performance

Understanding the use

case, and gathering and

analyzing requirements

RAG

dev
e
lo

pm
entfra

m
e
w

o
rk

Requirements document

High-level architecture

RAGOps stack

Working prototype

Ready-to-deploy system

Released system

Evolved system

The six stages of the RAG development framework are iterative and cyclic.

At each stage, specific artifacts can be created.

ISBN-13: 978-1-63343-585-8

I
f you want to use a large language model to answer ques-
tions about your specifi c business, you’re out of luck. Th e
LLM probably knows nothing about it and may even

make up a response. Retrieval Augmented Generation is an
approach that solves this class of problems. Th e model fi rst
retrieves the most relevant pieces of information from your
knowledge stores (search index, vector database, or a set of
documents) and then generates its answer using the user’s
prompt and the retrieved material as context. Th is avoids
hallucination and lets you decide what it says.

A Simple Guide to Retrieval Augmented Generation is a plain-
English guide to RAG. Th e book is easy to follow and packed
with realistic Python code examples. It takes you concept-
by-concept from your fi rst steps with RAG to advanced
approaches, exploring how tools like LangChain and Python
libraries make RAG easy. And to make sure you really
understand how RAG works, you’ll build a complete system
yourself—even if you’re new to AI!

What’s Inside
● RAG components and applications
● Evaluating RAG systems
● Tools and frameworks for implementing RAG

For data scientists, engineers, and technology managers—no
prior LLM experience required. Examples use simple, well-
annotated Python code.

Abhinav Kimothi is a seasoned data and AI professional. He has
spent over 15 years in consulting and leadership roles in data
science, machine learning and AI, and currently works as a
Director of Data Science at Sigmoid.

PYTHON/DATA

M A N N I N G

“Essential read if you’re
serious about deploying

factual, scalable, and
 future-ready AI systems.”—Bhavishya Pandit, IBM

“A blend of expert advice,
real-world examples, and use
cases helping you navigate

the complexities of
 Generative AI.”—Naga Santhosh Reddy Vootukuri

Microsoft

“Off ers clear explanations,
solid foundations, and

practical examples that truly
 make a diff erence.”—Márcio F. Nogueira

RankMyApp

“Insightful, practical, and
timely! You’ll walk away
informed, inspired, and

 ready to build!”—Tojin T. Eapen
Center for Creative Foresight

Abhinav Kimothi

For print book owners, all digital formats are free:
https://www.manning.com/freebook

Retrieval Augmented Generation
A SIMPLE GUIDE TO

	A Simple Guide to Retrieval Augmented Generation
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1 Foundations
	1 LLMs and the need for RAG
	1.1	Curse of the LLMs and the idea of RAG
	1.1.1	LLMs are not trained for facts
	1.1.2	What is RAG?

	1.2	The novelty of RAG
	1.2.1	The RAG discovery
	1.2.2	How does RAG help?

	1.3	Popular RAG use cases
	1.3.1	Search Engine Experience
	1.3.2	Personalized marketing content generation
	1.3.3	Real-time event commentary
	1.3.4	Conversational agents
	1.3.5	Document question answering systems
	1.3.6	Virtual assistants
	1.3.7	AI-powered research
	1.3.8	Social media monitoring and sentiment analysis
	1.3.9	News generation and content curation

	2 RAG systems and their design
	2.1	What does a RAG system look like?
	2.2	Design of RAG systems
	2.3	Indexing pipeline
	2.4	Generation pipeline
	2.5	Evaluation and monitoring
	2.6	The RAGOps Stack
	2.7	Caching, guardrails, security, and other layers

	Part 2 Creating RAG systems
	3 Indexing pipeline: Creating a knowledge base for RAG
	3.1	Data loading
	3.2	Data splitting (chunking)
	3.2.1	Advantages of chunking
	3.2.2	Chunking process
	3.2.3	Chunking methods
	3.2.4	Choosing a chunking strategy

	3.3	Data conversion (embeddings)
	3.3.1	What are embeddings?
	3.3.2	Common pretrained embeddings models
	3.3.3	Embeddings use cases
	3.3.4	How to choose embeddings?

	3.4	Storage (vector databases)
	3.4.1	What are vector databases?
	3.4.2	Types of vector databases
	3.4.3	Choosing a vector database

	4 Generation pipeline: Generating contextual LLM responses
	4.1	Generation pipeline overview
	4.2	Retrieval
	4.2.1	Progression of retrieval methods
	4.2.2	Popular retrievers
	4.2.3	A simple retriever implementation

	4.3	Augmentation
	4.3.1	RAG prompt engineering techniques
	4.3.2	A simple augmentation prompt creation

	4.4	Generation
	4.4.1	Categorization of LLMs and suitability for RAG
	4.4.2	Completing the RAG pipeline: Generation using LLMs

	5 RAG evaluation: Accuracy, relevance, and faithfulness
	5.1	Key aspects of RAG evaluation
	5.1.1	Quality scores
	5.1.2	Required abilities

	5.2	Evaluation metrics
	5.2.1	Retrieval metrics
	5.2.2	RAG-specific metrics

	5.3	Frameworks
	5.3.1	RAGAs
	5.3.2	Automated RAG evaluation system

	5.4	Benchmarks
	5.4.1	RGB

	5.5	Limitations and best practices

	Part 3 RAG in production
	6 Progression of RAG systems: Naïve, advanced, and modular RAG
	6.1	Limitations of naïve RAG
	6.2	Advanced RAG techniques
	6.3	Pre-retrieval techniques
	6.3.1	Index optimization
	6.3.2	Query optimization

	6.4	Retrieval strategies
	6.4.1	Hybrid retrieval
	6.4.2	Iterative retrieval
	6.4.3	Recursive retrieval
	6.4.4	Adaptive retrieval

	6.5	Post-retrieval techniques
	6.5.1	Compression

	6.6	Modular RAG
	6.6.1	Core modules
	6.6.2	New modules

	7 Evolving RAGOps stack
	7.1	The evolving RAGOps stack
	7.1.1	Critical layers
	7.1.2	Essential layers
	7.1.3	Enhancement layers

	7.2	Production best practices

	Part 4 Additional considerations
	8 Graph, multimodal, agentic, and other RAG variants
	8.1	What are RAG variants, and why do we need them?
	8.2	Multimodal RAG
	8.2.1	Data modality
	8.2.2	Multimodal RAG use cases
	8.2.3	Multimodal RAG pipelines
	8.2.4	Challenges and best practices

	8.3	Knowledge graph RAG
	8.3.1	Knowledge graphs
	8.3.2	Knowledge graph RAG use cases
	8.3.3	Graph RAG approaches
	8.3.4	Graph RAG pipelines
	8.3.5	Challenges and best practices

	8.4	Agentic RAG
	8.4.1	LLM agents
	8.4.2	Agentic RAG capabilities
	8.4.3	Agentic RAG pipelines
	8.4.4	Challenges and pest practices

	8.5	Other RAG variants
	8.5.1	Corrective RAG
	8.5.2	Speculative RAG
	8.5.3	Self-reflective (self RAG)
	8.5.4	RAPTOR

	9 RAG development framework and further exploration
	9.1	RAG development framework
	9.1.1	Initiation stage: Defining and scoping the RAG system

	9.2	Design stage: Layering the RAGOps stack
	9.2.1	Indexing pipeline design
	9.2.2	Generation pipeline design
	9.2.3	Other design considerations
	9.2.4	Development stage: Building modular RAG pipelines
	9.2.5	Evaluation stage: Validating and optimizing the RAG system
	9.2.6	Deployment stage: Launching and scaling the RAG system
	9.2.7	Maintenance stage: Ensuring reliability and adaptability

	9.3	Ideas for further exploration
	9.3.1	Fine-tuning within RAG
	9.3.2	Long-context windows in LLMs
	9.3.3	Managed solutions
	9.3.4	Difficult queries

	index

