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This book is dedicated to the relentless 
seekers of knowledge in AI and ML, whose 
contributions continue to revolutionize image 
processing and object detection.



Preface 

In the present digital world, the rapid advancement of modern techniques has signif-
icantly impacted the wide range of industries from medical imaging and agricul-
ture to astronomy and video monitoring. These technological developments have 
reshaped how we perceive, analyze, and interpret visual data, enhancing automa-
tion, accuracy, and efficiency. This book brings together research contributions from 
experts across various fields to provide a comprehensive exploration of image anal-
ysis and object recognition methods. It guides readers through a diverse set of applica-
tions, highlighting their transformative role in healthcare, agriculture, security, space 
exploration, and urban planning. Each chapter addresses a specific topic, offering 
foundational concepts, technological progress, and real-world applications of image 
processing techniques. 

The book covers the medical imaging applications, where deep learning models 
have demonstrated exceptional capabilities in automatic organ classification and 
cardiovascular disease prediction. These advancements in AI-driven diagnostics 
offer immense potential in assisting medical professionals with precise and effi-
cient decision-making. The agriculture domain also benefits significantly from AI 
and ML integration. With intelligent data-driven approaches, farmers can optimize 
resources, predict crop yields, and improve sustainability. The fusion of AI with 
satellite imagery further enhances remote sensing applications, offering unprece-
dented insights into ecological monitoring crisis management and land-use anal-
ysis. Moving towards object detection, the book examines evolutionary techniques 
in computer vision, tracing the transition from classical algorithms to state-of-the-
art deep learning frameworks. These methodologies are critical in areas such as 
autonomous vehicles, surveillance systems, and facial recognition. 

Moreover, the book extends this exploration to astronomical image processing, 
where AI techniques have facilitated the identification of celestial bodies and cosmic 
phenomena, expanding our understanding of the universe. Furthermore, emerging 
topics such as generative models for image synthesis, disparity estimation in aerial 
datasets, and human action recognition in video surveillance demonstrate how AI 
continues to push boundaries in computational vision. The concluding chapters
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discuss speech processing for stuttering diagnosis and deep learning architectures 
for biomedical image analysis, showcasing the multidisciplinary applications. 

This book aims to serve as a valuable resource for researchers, practitioners, 
and students keen on exploring the intersection of AI, ML, and image processing. 
The curated studies provide both theoretical insights and practical implementations, 
making it a useful guide for academicians and industry professionals alike. As we 
continue to witness rapid developments in artificial intelligence, we hope this compi-
lation inspires future research and innovation, fostering advancements that will shape 
the next generation of intelligent systems. 

Dehradun, India 
Dehradun, India 
Hamirpur, India 
Visakhapatnam, India 

Sandeep Chand Kumain 
Maheep Singh 

Lalit Kumar Awasthi 
Raj Singh
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Attention-Based Deep Neural Networks 
for Automatic Organ Classification 
from 2D CT Scan Images 

Rajat Rajoria, Balmukund Kanodia, Debam Saha , Ekaterina Kopets, 
Alexander Voznesensky, Dmitrii Kaplun, and Pawan Kumar Singh 

Abstract The area of medical imaging has seen a revolution in recent years due to 
the rapid advancement of deep learning (DL) techniques. Medical image analysis 
plays a key role in modern healthcare, helping in the accurate diagnosis and treatment 
of various conditions. Using deep learning, it is possible to solve complex medical 
image analysis problems with unparalleled accuracy and efficiency. In this research, 
we explore the potential of deep learning models for multi-class image classification 
of abdominal organ structures within 2D Computed Tomography (CT) images. We 
focus on the 2D views, namely axial, coronal, and sagittal, to facilitate lightweight 
model evaluation and deployment. Our paper presents a comprehensive analysis of 
the classification performance, with a particular emphasis on model generalizability, 
algorithm selection, and interpretability. In this paper, we investigate the classification

R. Rajoria · B. Kanodia · P. K. Singh (B) 
Department of Information Technology, Jadavpur University, Jadavpur University Second 
Campus, Kolkata, West Bengal, India 
e-mail: pawansingh.ju@gmail.com 

R. Rajoria 
e-mail: rajatrajoria.ju@gmail.com 

B. Kanodia 
e-mail: kanodiabm@gmail.com 

D. Saha 
Department of Computer Science and Engineering, Calcutta Institute of Engineering and 
Management, Kolkata, West Bengal, India 
e-mail: debamsaha.cse@gmail.com 

E. Kopets 
Youth Research Institute, Saint-Petersburg Electrotechnical University “LETI”, Saint Petersburg, 
Russian Federation 
e-mail: eekopets@etu.ru 

A. Voznesensky · D. Kaplun 
Department of Automation and Control Processes, Saint Petersburg Electrotechnical University 
“LETI”, Saint-Petersburg, Russian Federation 
e-mail: asvoznesenskiy@etu.ru 

D. Kaplun 
e-mail: dikaplun@etu.ru 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
S. Chand Kumain et al. (eds.), AI and ML Techniques in Image Processing and Object 
Detection, https://doi.org/10.1007/978-981-96-7445-9_1 

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-7445-9_1&domain=pdf
http://orcid.org/0009-0004-1241-1373
http://orcid.org/0000-0002-9598-7981
mailto:pawansingh.ju@gmail.com
mailto:rajatrajoria.ju@gmail.com
mailto:kanodiabm@gmail.com
mailto:debamsaha.cse@gmail.com
mailto:eekopets@etu.ru
mailto:asvoznesenskiy@etu.ru
mailto:dikaplun@etu.ru
https://doi.org/10.1007/978-981-96-7445-9_1


2 R. Rajoria et al.

of 11 distinct abdominal organs like the bladder, heart, kidneys, liver, etc., using state-
of-the-art deep neural networks with an attention feature integrated. The results of 
this research contribute to the growing body of knowledge in medical image analysis, 
showcasing the potential of deep learning models in the context of multi-class organ 
classification. By offering improved accuracy, our findings may have implications 
for clinical practice, computer-aided diagnosis, and healthcare automation. 

Keywords Biomedical image classification · Computed tomography ·
Attention-based deep neural network 

1 Introduction 

Biomedical imaging [1–3] has become an indispensable cornerstone of modern 
healthcare, revolutionizing the way we diagnose, monitor, and treat a wide range 
of medical conditions. From X-rays [4–6] and ultrasounds to magnetic resonance 
imaging (MRI) [7–9] and computed tomography (CT) [10–12] scans, the realm of 
biomedical imaging has witnessed remarkable advancements, offering an intricate 
view of the human body’s inner workings. 

In recent years, the integration of deep learning has driven the field of medical 
image analysis to a new level, where precision and efficiency have become the main 
priorities. The ability of deep learning models to decipher the complex visual infor-
mation contained in medical images is unmatched by traditional methods. This has 
provided an opportunity to tackle a diverse range of medical challenges, ranging 
from early disease detection to treatment planning and monitoring. 

Organ classification stands as a fundamental task in biomedical image analysis, 
with its practical applications extending far beyond academic exploration. It serves as 
a bedrock for a multitude of vital healthcare applications, including automated diag-
nosis, the formulation of patient-specific treatment strategies, and the optimization 
of clinical workflows. However, the seemingly straightforward task of classifying 
organs within medical images presents a nexus of challenges. The inherent vari-
ability in organ appearance, stemming from patient anatomy, disease state, and the 
type of imaging modality used, creates a complex scenario. The potential presence 
of pathology further complicates the task and makes accurate classification even 
trickier. Conventional organ identification techniques frequently depend on radiolo-
gists or other medical experts manually interpreting medical pictures. Despite their 
high level of expertise, these experts’ evaluations may vary depending on subjective 
interpretation, experience level, and weariness. Additionally, humans are susceptible 
to cognitive biases that can subconsciously influence their interpretation. These biases 
can eventually lead to missed diagnoses or misidentification. Studies have shown that 
human accuracy in organ identification can vary, with rates typically ranging from 
85 to 95% depending on the complexity of the images and the experience of the radi-
ologist. For instance, in a study by Kim et al. [13], the pooled kappa coefficient (k) 
for interreader reliability of the LI-RADS Treatment Response algorithm was 0.70,
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indicating substantial agreement among readers but also underscoring the inherent 
limitations of human interpretation in medical imaging, as the perfect agreement 
was not achieved. This suggests that even with standardized systems, human errors 
in interpreting liver cancer treatment responses are still a significant concern. 

Deep learning offers a compelling solution to overcome these limitations and 
improve the accuracy of abdominal organ identification. Massive medical image 
datasets that cover a variety of anatomical variances, imaging modalities, and even 
pathological presentations are used to train artificial neural networks. The models can 
acquire unique patterns that differentiate various organs through this training, which 
has multiple benefits like lowering human error, increasing accuracy, and enhancing 
generalizability. 

Studies have shown that deep learning models can achieve impressive accuracy 
in abdominal organ identification tasks. For instance, in a recent study by Yang 
et al. [14], the DL model outperformed contemporary methods with an average Dice 
Similarity Coefficient (DSC) of 87.72 on pancreas image segmentation of CT images. 
In another study by Liu et al. [15], deep learning-based multi-organ segmentation 
methods have significantly outperformed traditional approaches, with a focus on full 
and imperfect annotation techniques. The study highlights advancements in network 
architecture, dimensions, dedicated modules, and loss functions, as well as new 
challenges and trends in the field. 

The classification of abdominal organs from 2D CT images, as exemplified in the 
Organ [16] datasets, exemplifies the confluence of these challenges. These datasets 
offer a diverse scenario for the evaluation of such deep learning models. 

In this paper, we introduce a novel attention-based deep neural network approach 
that exceeds the existing benchmark accuracy for the corresponding dataset. We 
have integrated specialized squeeze attention mechanisms into an established deep-
learning architecture, Xception. The addition of the Squeeze and Excitation Block 
(SE block) enhances the models’ ability to extract relevant features from complex 
2D CT images. This research shows the potential of deep learning in medical 
image analysis, highlighting the importance of organ classification in healthcare. 
This research aims to enhance clinical decision support, facilitate better healthcare 
automation, and address current challenges in medical image classification. The 
significant contributions of this research paper are as follows: 

• Introduction of an attention-based deep neural network approach that integrates 
the specialized squeeze-excitation attention mechanism to the Xception deep 
learning model for Organ{A, C, S}MNIST datasets. Figure 1 depicts our proposed 
workflow.

• Demonstration of the proposed model’s capability to surpass benchmark accu-
racies on the Organ{A, C, S}MNIST datasets within the recently developed 
MedMNISTv2 benchmark database. 

• Illustration of the potential of deep learning with specialized attention mechanisms 
for medical image analysis.
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Fig. 1 Workflow for our proposed attention-based deep neural network

2 Related Study 

In this section, we review some of the works performed on the previously proposed 
MedMNIST dataset. 

In order to create appropriate CNNs for medical picture classification, LeCun 
et al. [17] suggested a novel context-free grammar linked to a multi-objective gram-
matical evolution method. The grammar allows for the inclusion of regularization 
layers and has layers that are highly relevant to classification problems. In order to 
prevent non-convergence, it also creates a search space with 6426 distinct individ-
uals. More granularity options, ranging from 1 to 3, are offered by the gram-mar in 
the convolutional block creation sequence. The MedMNIST dataset is used to test 
the suggested method, which has never been done before. 

In comparison to state-of-the-art networks and other CNNs produced by gram-
matical evolution, He et al. [18] demonstrate that the suggested approach produces 
simpler networks with comparable or better performance. The accuracy and F1-
score of the networks produced by the suggested method are statistically equivalent 
to those of the top-ranked network across all datasets. The suggested grammar is seen 
as an intriguing substitute for building low-complexity, competitive CNN models for 
image classification tasks. 

According to Li et al. [19], cost-sensitive self-paced learning (CSSPL) performs 
better in terms of classification accuracy and computational complexity than other 
automated architecture search techniques and well-designed artificial networks. 
Although CSSPL takes longer than well-designed neural networks, it is more useful 
and performs well in generalization. When compared to alternative neural architec-
ture search algorithms and classical convolutional neural networks, CSSPL achieves 
the greatest results, proving its efficacy. 

Self-contrastively super-vised learning (SelfCSL), a technique developed in this 
study by Hinton et al. [20], builds a pre-trained model via contrastive learning, which 
improves efficiency and stability, using data from the same domain of the current 
problem. The MedMNIST dataset, a collection of ten pre-processed medical open 
datasets, was used to test the suggested approach. 

With studies examining the efficacy of representations learnt via contrastive 
learning on ImageNet and other vision problems, contrastive learning—as introduced 
by Fukushima [21]—has recently drawn more interest from a variety of academic 
fields.
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Niu et al. [22] provides an overview of attention mechanisms in deep learning 
and their applications in various domains. It defines a unified model for attention 
structures and describes each step of the attention mechanism in detail. The authors 
classify existing attention models based on criteria such as the softness of attention, 
forms of input feature, input representation, and output representation. The authors 
also discuss network architectures used in conjunction with the attention mechanism 
and present typical applications of attention in deep learning. Furthermore, it explores 
the interpretability that attention brings to deep learning and presents potential future 
trends. 

A technique called FedSLD (Federated Learning with Shared Label Distribution) 
was presented by Luo et al. [23] for medical research, where data privacy laws make it 
difficult to train machine learning models using data from different medical facilities. 
FedSLD addresses the issue of decentralized data across these centers in federated 
learning by assuming knowledge of label distributions from all participating centers. 
By adjusting each data sample’s contribution to local optimization based on this 
distribution knowledge, FedSLD minimizes the impact of data heterogeneity among 
centers. The method is evaluated on four public image datasets with varying non-IID 
(non-identically distributed) data distributions, showing superior convergence perfor-
mance compared to other state-of-the-art federated learning algorithms. It achieves 
up to a 5.50 percentage point increase in test accuracy. 

Zhu et al. [24] focused on understanding the impact of various factors influ-
encing attention mechanisms in deep neural networks. This study explores different 
methods of computing attention within a generalized attention framework, including 
Transformer attention, deformable convolution, and dynamic convolution modules. 
By conducting experiments across various applications, the study reveals significant 
insights about spatial attention in deep networks. Surprisingly, some findings chal-
lenge conventional wisdom, such as the varying importance of query and key content 
comparison in different attention types. For instance, it has been discovered that the 
comparison is less crucial for self-attention, while it’s vital for encoder-decoder 
attention. Additionally, a strategic combination of deformable convolution with key 
content-only saliency proves to achieve the best balance between accuracy and effi-
ciency in self-attention mechanisms. Overall, the results highlight the potential for 
enhancing attention mechanism designs in neural networks. 

Zhang et al. [25] discuss the development of a novel approach called the Squeeze 
and Excitation Reasoning Attention Networks (SERAN) for enhancing Magnetic 
Resonance image super-resolution. Their SERAN approach incorporates squeeze 
and excitation reasoning to gather global spatial information, generating descriptors 
that highlight more informative regions and structures within MR images. Primi-
tive relationship reasoning attention is introduced to establish relationships between 
these descriptors, refining them with learned attention. Additionally, adaptive atten-
tion vectors recalibrate feature responses, selectively utilizing global descriptors 
to enhance details and texture reconstruction at each spatial location. Extensive 
experiments demonstrate the effectiveness of SERAN, showcasing superior perfor-
mance compared to existing methods quantitatively and visually on benchmark 
datasets. This advancement significantly improves the accuracy and quality of MR
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image super-resolution, offering promising potential for more reliable diagnosis and 
analysis in medical imaging. 

Feng et al. [26] developed a new method called semi-supervised meta-learning 
networks (SSMN) with squeeze-and-excitation attention introduced in this paper. 
By using attention, the encoder can find important features and make better fault 
predictions. SSMN also uses unlabeled data to improve its fault recognition, even 
when there is not much labeled data available. A special optimizer helps make SSMN 
work efficiently. The method’s effectiveness is proven using data from vibrations in 
three different bearing datasets, showing that it works well in different situations. 
Comparing it with other methods using the same setup, the results show that this new 
method is better at diagnosing faults with only a few examples to learn from. 

Park et al. [27] discuss the ongoing challenges in accurately recognizing insect 
species, despite recent improvements using convolutional neural networks (CNNs) 
for fine-grained image classification. To address these challenges specific to insect 
recognition, the paper introduces a new network architecture. An insect dataset from 
the Atlas of Living Australia is used to train the model. The results show that when 
applied to this insect dataset, this integrated model achieves higher accuracy than 
numerous alternative techniques. 

Lu et al. [28] developed a highly effective multilabel classification model for 
diagnosing various fundus diseases from color fundus images automatically. Using 
a convolutional neural network (CNN) enhanced with an attention mechanism, the 
model can accurately classify normal fundus images and seven categories of common 
fundus diseases. The model was trained, validated, and tested using fundus images 
with eight different disease labels. Performance evaluation metrics including vali-
dation accuracy, area under the receiver operating characteristic curve (AUC), and 
F1-score were used. Results indicate that the proposed model achieved superior 
performance compared to two state-of-the-art models, with a validation accuracy of 
94.27%, an AUC of 85.80%, and an F1-score of 86.08%. Notably, the model showed 
a substantial reduction in the number of training parameters, making it computation-
ally more efficient compared to existing models. This model presents an automated 
and accurate method for diagnosing multiple fundus diseases with high precision 
and a significantly lower computational burden. It holds promise for widespread use 
in large-scale screening for fundus diseases, potentially revolutionizing diagnostic 
processes in primary care settings. 

Xu and Zhou [29] discuss the challenges posed by complex music genres and 
extensive music collections in retrieving music information. Manual tagging of music 
genres is time-consuming and resource-intensive. To address this, a new model 
is proposed: utilizing a convolutional neural network with a Squeeze and Exci-
tation Block (SE-Block) for music genre classification. Bayesian optimization is 
employed to find the best parameters for the SE-Block. The model was tested on the 
GTZAN dataset, achieving an impressive classification accuracy of 92%, surpassing 
the performance of many previous research efforts. This approach aims to uncover 
hidden information within input spectrum graphs, improving the accuracy of music 
genre classification, and potentially enhancing music information retrieval systems.
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Wu et al. [30] show the importance of image classification in addressing complex 
tasks like planetary exploration and unmanned driving. A subset of image classifica-
tion that has drawn interest is scene image classification. Despite being well-known 
for its exceptional picture classification capabilities, the Xception model has not been 
widely applied to scene image classification. The study suggests a method utilizing 
transfer learning with Xception to close this gap and evaluates its effectiveness against 
the Inception-V3 model. The research shows that Xception-based transfer learning 
works better than other approaches, particularly Inception-V3, through trials on the 
Intel Image Classification Challenge dataset. The results show that Xception exhibits 
better performance, robustness, and generalization abilities, with fewer issues related 
to overfitting. This suggests the potential effectiveness of employing Xception for 
scene image classification tasks, highlighting its advantages over other models like 
Inception-V3. 

2.1 Motivation 

Our venture into the realm of medical image diagnostics is sparked by the inherent 
challenges present in existing diagnostic processes. Inconsistencies across manual 
predictions and the susceptibility to human error underscore the need for a more 
robust and standardized approach. Witnessing the transformative potential of deep 
learning in various domains, particularly in image analysis, fuelled our interest in 
applying this technology to healthcare. The promise of leveraging neural networks 
to automatically and precisely classify organs in medical images resonated strongly 
intending to address these critical challenges. The capacity of deep learning models to 
discern intricate patterns from extensive datasets offered an appealing solution to the 
intricacies inherent in medical images. The impetus to contribute to the development 
of superior diagnostic models, capable of delivering consistent and precise predic-
tions, emerged as a guiding force. Additionally, the understanding that advancements 
in this area can significantly influence clinical processes, streamline diagnostics, and 
ultimately enhance patient care has added another dimension of encouragement. This 
effort is rooted in the belief that harnessing the power of deep learning is crucial for 
developing a more efficient and dependable diagnostic procedure, bridging existing 
gaps, and elevating the benchmarks of healthcare moving forward. 

3 Datasets Used in Our Research Work 

Our research leverages the MedMNISTv2 dataset, a versatile benchmark for 2D [31] 
and 3D [32] biomedical image classification. Within this comprehensive resource, 
our focus narrows down to three key datasets: OrganAMNIST, OrganCMNIST, and 
OrganSMNIST.
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Fig. 2 Axial view images of distinct body organs in OrganAMNIST 

• OrganAMNIST: OrganAMNIST, a pivotal element in our research, is constructed 
from a diverse collection of 3D CT images obtained from the Liver Tumor 
Segmentation Benchmark (LiTS) [33]. OrganAMNIST enables the multi-class 
classification of 11 distinct body organs. The data preparation begins with the 
conversion of Hounsfield Unit (HU) values from the 3D CT scans into grayscale 
images. Subsequently, 2D slices are extracted from the central regions of the 3D 
bounding boxes, focusing on the axial view. These 2D images are then uniformly 
re-sized to 1× 28 × 28 pixels dimension. Figure 2 shows the axial view images of 
the various organs in the dataset. The dataset includes a significant collection of 
58,850 samples, divided into training, validation, and test sets, containing 34,581, 
6,491, and 17,778 samples, respectively. 

• OrganCMNIST: In our research, we also utilized the OrganCMNIST dataset, 
which complements OrganAMNIST and is derived from the same LiTS source. 
This dataset emphasizes the coronal perspective of 2D images from abdominal CT 
scans. OrganCMNIST is also used for multi-class classification tasks, involving 
the identification of the same 11 body organs. Figure 3 illustrates the coronal 
view images of the organs in the dataset. It comprises 23,660 samples, which are 
processed similarly to OrganAMNIST, including the conversion of HU [34] values 
into grayscale and resizing to 1 × 28 × 28 pixels. The dataset is thoughtfully 
divided into training, validation, and test sets, with 13,000, 2,392, and 8,268 
samples, respectively. 

• OrganSMNIST: The OrganSMNIST dataset aligns with OrganAMNIST and 
OrganCMNIST, originating from LiTS. It is designed for the sagittal view of 2D 
images from abdominal CT scans. These grayscale images, each measuring 1× 28 
× 28 pixels, are a valuable resource for multi-class classification tasks concerning 
11 different body organs. The pre-processing includes converting HU values into 
grayscale and resizing uniformly. Figure 4 shows the sagittal view images of the 
organs in the dataset. The dataset contains a total of 25,221 samples, partitioned 
into training, validation, and test sets, with 13,940, 2,452, and 8,829 samples, 
respectively.

Fig. 3 Axial view images of distinct body organs in OrganCMNIST 
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Fig. 4 Axial view images of distinct body organs in OrganSMNIST 

4 Methodology and Implementation 

4.1 Data Split 

The dataset that has been worked upon in this study was pre-divided into training, 
validation, and test sets by the dataset owners. This study used the same divided train/ 
test/validation sets to maintain standardization and enable accurate comparison with 
existing benchmarks. For the OrganAMNIST dataset, out of a total of 58,830 images, 
34,561 are used for training, 6,491 for validation, and 17,778 for testing. Similarly, the 
OrganCMNIST dataset, containing 23, images, has been split into 12,975 for training, 
2,392 for validation, and 8,216 for testing. The OrganSMNIST dataset, with a total 
of 25,211 images, is divided into 13,932 for training, 2,452 for validation, and 8,827 
for testing. Figures 5, 6 and 7 shows the class distribution in train, validation and test 
sets for OrganAMNIST, OrganCMNIST, and OrganSMNIST datasets respectively. 

Fig. 5 Class distribution in train, validation, and test sets for OrganAMNIST
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Fig. 6 Class distribution in train, validation, and test sets for OrganCMNIST 

Fig. 7 Class distribution in train, validation, and test sets for OrganSMNIST
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Fig. 8 a Original 28 × 28 image, b pre-processed 92 × 92 image 

4.2 Data Pre-processing 

Data pre-processing [35] is the initial step in training deep learning models. It plays a 
crucial role in configuring the data into a suitable format for comprehensive analysis. 
This process is essential as it involves custom modifications to raw data to uncover 
valuable insights and identify underlying patterns. It is important to note that all 
methods were carried out in accordance with relevant guidelines and regulations. 

In the pre-processing of the Organ{A, C, S}MNIST datasets, the initial 28 × 28 
grayscale images, as shown in Fig. 8a underwent a transformation to a detailed 92 × 
92 pixel format, strategically enhancing resolution for improved model performance. 
Figure 8b displays the pre-processed 92 × 92 × 3 image. The process included the 
integration of a Squeeze-and-Excitation (SE) block, pivotal for capturing nuanced 
patterns. Notably, the transition from grayscale to 3-channel 92 × 92 pixel images 
enriched the dataset with spatial and color information, strategically expanding the 
feature space. This augmentation is vital for medical imaging, enhancing the dataset’s 
potential for robust model training, especially in classifying 11 body organs from 3D 
CT scans, where color nuances convey diagnostic significance. 

4.3 Proposed Network Architecture 

The core of the proposed network is rooted in the well-established Xception [36] 
model that was selected for the Organ{A, C, S}MNIST dataset. The Xception 
model is trained on the datasets from scratch and has been configured to handle 
3-channel images with an input shape of (92, 92, 3). This configuration facilitates 
the adept capture of intricate features crucial for organ classification across 11 distinct 
categories. A noteworthy augmentation to this architecture is the integration of the



12 R. Rajoria et al.

Fig. 9 Squeeze—Excitation block used in the proposed work

Squeeze-and-Excitation [37] (SE) block, strategically designed to enhance feature 
extraction. The SE block is a vital addition, introducing a global average pooling layer 
followed by reshaping and multiple dense layers featuring ReLU and Sigmoid activa-
tions. This meticulous process recalibrates features precisely, introducing a nuanced 
level of adaptability in feature representation. The classifier head refines these recali-
brated features with a global average pooling layer, a dense layer with 1024 units and 
Sigmoid activation, and a final dense layer with 11 units utilizing Softmax activation 
for multi-class classification. Figure 9 visually depicts the intricate mechanism of 
the squeeze-excitation block, showcasing its global average pooling layer, reshaping, 
and the sequence of dense layers. Notably, this strategic combination of the Xcep-
tion model and the SE block emphasizes the potential significance of the SE block in 
achieving precise and efficient organ classification in the domain of medical imaging. 
Furthermore, it’s crucial to highlight that all layers of the Xception model, including 
the SE block, undergo fine-tuning to cater specifically to the intricacies of organ 
classification. Figure 10 provides a visual representation of the overall architecture, 
depicting both the Xception base model and the integrated Squeeze-Excitation block, 
showcasing their collaborative role in the network for optimal performance in organ 
image classification. 

5 Experimental Setup and Evaluation 

5.1 Experimental Setup 

In the pursuit of optimal model performance and enhanced diagnostic accuracy, the 
experimental setup is meticulously designed to address the unique demands of the 
Organ {A, C, S}MNIST datasets. The key parameters and strategies include: 

Epochs [38] and Batch Size: In the experimental design, training was capped 
at 100 epochs for a balance between convergence and efficiency. On top of this, 
an early stopping mechanism was employed to prevent overfitting. This mechanism
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Fig. 10 Schematic diagram representing the Xception + Squeeze and Excitation block network 
architecture

monitors the validation performance and stops training if no improvement is observed 
for a predefined number of epochs, ensuring that the model does not overfit the 
training data. A batch size [39] of 32 optimized GPU memory usage, promoting 
efficient parallel processing in organ classification tasks for enhanced precision and 
computational efficiency. 

Learning Rate Scheduler [40]: The setup utilizes a learning rate scheduler call 
back that dynamically adjusts the learning rate during training based on observed vali-
dation loss. The ‘val_loss’ parameter monitors the model’s performance on the vali-
dation set, while factors like reduction extent and patience help optimize adaptability, 
mitigate overfitting, and contribute to improved convergence and performance. 

Training from Scratch: The experimental setup entails training the model from 
scratch, initializing a pre-trained base model. This involves retraining all layers, 
including pre-trained ones, to adapt to dataset-specific features. The trainable status 
of the base model’s layers allows the learning of dataset-specific patterns. Custom 
layers are then added for the organ classification task, ensuring the model captures 
relevant features for enhanced diagnostic accuracy on medical imaging datasets. 

Early Stopping [41]: The early Stopping is a pivotal element in the experimental 
setup, acting as a safeguard against overfitting and bolstering model generalization. 
Monitoring validation loss during training interrupts the process if no improvement 
occurs for a set of 5 epochs. By restoring weights from the epoch with the lowest 
validation loss, it avoids unnecessary training iterations, conserving computational 
resources and ensuring the model’s ability to generalize well on unseen data. The
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implementation has been carried out on the Tensorflow Keras framework, chosen for 
its simplicity and flexibility to work with. 

5.2 Evaluation 

Accuracy: Accuracy stands as a fundamental metric crucial for assessing the holistic 
performance of a model. It serves as a key indicator of the model’s proficiency in 
making precise predictions, particularly vital in classification domains. This metric 
is computed as the ratio of correctly predicted instances (true positives and true nega-
tives) to the total instances and provides a comprehensive overview of the model’s 
overall correctness. 

Accuracy Score = (TP + TN)/(TP + TN + FP + FN) (1) 

Precision and Recall [42]: Precision and recall metrics assume a pivotal role in 
evaluating the diagnostic prowess of models. Precision measures the accuracy with 
which models classify specific conditions, emphasizing the importance of correctly 
identified instances. In contrast, recall assesses models’ ability to comprehensively 
capture instances of specific conditions. These metrics collectively provide nuanced 
insights into the models’ diagnostic precision. It’s imperative to consider precision 
and recall alongside accuracy, offering a comprehensive understanding of a model’s 
performance, especially when addressing potential class imbalances or the varying 
costs of misclassifications. 

Precision = TP/(TP + FP) (2) 

Recall = TP/(TP + FN) (3) 

F1 Score: The F1 score is a pivotal metric that provides a nuanced assessment 
of model performance by harmonizing precision and recall. This balance ensures a 
more robust understanding of a model’s diagnostic accuracy. F1 scores are particu-
larly informative when dealing with imbalanced datasets or scenarios where misclas-
sifications carry varying consequences. These are incorporated into evaluations for 
a more comprehensive and nuanced analysis of model effectiveness. 

F1 = 2PR/(P + R) (4)
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Table 1 Overall performance report produced by the proposed attention-based deep neural network 
on OrganAMNIST, OrganCMNIST, and OrganSMNIST datasets taken from MedMNISTv2 

Dataset name Model name Image size, channels Accuracy (%) 

OrganAMNIST SE block + Xception 92 × 92 × 3 96.20 

OrganCMNIST SE block + Xception 92 × 92 × 3 93.43 

OrganSMNIST SE block + Xception 92 × 92 × 3 82.95 

6 Results Analysis 

In this section, we present a comprehensive examination of the results obtained 
through the proposed deep learning model for Organ{A, C, S}MNIST datasets. Our 
investigation encompasses an intricate analysis of model performance and accuracy. 
The model exhibited a commendable balance between accuracy and computational 
efficiency, forming the cornerstone of our research in organ classification. Table 1 
shows the overall accuracy report produced by the proposed attention-based deep 
neural network on Organ{A, C, S}MNIST datasets. 

OrganAMNIST Evaluation: In the evaluation of OrganAMNIST, the proposed 
model demonstrated remarkable improvements in accuracy. The proposed model 
was evaluated on 92 × 92 color images which resulted in an impressive accuracy 
of 96.20%. Figure 11 shows the Precision, Recall and f1-scores obtained during 
the model’s evaluation on the dataset while Fig. 12 displays the confusion matrix 
obtained. The accuracy curve and the loss curves of the trained model are given in 
Figs. 13 and 14 respectively. The model trained for 8 epochs out of the set limit 
of 100 and is stopped by the Early stopping. From the metrics, it can further be 
seen that the proposed attention-based deep neural network model demonstrated 
strong comparable accuracies across multiple organ classes. However, the kidney-
left class came out with the lowest scores. Table 2 shows the results of 5-fold cross-
validation produced by the proposed attention-based deep neural network on the 
OrganAMNIST dataset. The mean test accuracy came to be around 92.7% with a 
standard deviation of about 2.72%. This suggests that the model’s performance is 
stable and consistent across different folds of the data.

OrganCMNIST Evaluation: The evaluation of OrganCMNIST demonstrated 
notable advancements in model accuracy. Our proposed approach, enhanced by SE 
attention blocks achieved an impressive accuracy of 93.43%, when evaluated on the 
dataset. Figure 15 depicts the values of Precision, Recall, and f1-scores obtained 
whereas Fig. 16 displays the confusion matrix obtained by the proposed attention-
based deep neural network. The accuracy curve and the loss curves of the model are 
given in Figs. 17 and 18 respectively. The model trained for 8 epochs out of the set 
limit of 100 and is stopping by the Early Stopping mechanism. The results shows 
notable progress in accuracy improvement with lower-resolution images, crucial 
in resource-constrained environments. Classes such as femur-left, kidney-left, and 
kidney-right exhibited relatively lower scores, while liver and lungs—left and right 
classes, respectively, achieved the highest metrics. The reduced performance might
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Fig. 11 Bar chart displaying the results based on precision, recall and f1-score for different classes 
in the OrganAMNIST dataset 

Fig. 12 Confusion matrix obtained by the proposed attention-based deep neural network for 
OrganAMNIST dataset

be attributed to the inherent similarity in the imaging characteristics between left and 
right kidney classes. The model also underwent 5-fold cross-validation, resulting in 
the following test accuracies for each fold as seen in Table 3. The mean cross-
validation accuracy came out to be approximately 0.9702, indicating that the model 
performs consistently well across different subsets of the data. The standard deviation 
of 0.0055 signifies low variability in the performance, which suggests that the model 
is robust and reliable.
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Fig. 13 Accuracy curve for 
trained model on 
OrganAMNIST 

Fig. 14 Loss curve for 
trained model on 
OrganAMNIST 

Table 2 Classification 
accuracies produced by the 
proposed attention-based 
deep neural network for each 
fold using 5-fold cross 
validation on OrganAMNIST 

Fold Test accuracy (%) 

Fold 1 91.39 

Fold 2 89.76 

Fold 3 95.67 

Fold 4 96.39 

Fold 5 90.68

OrganSMNIST Evaluation: The evaluation of OrganSMNIST exhibited notable 
enhancement in model accuracy. The proposed approach was evaluated on 92 × 
92 images and resulted in an accuracy of 82.95%. Figure 19 shows the Precision, 
Recall, and f1-scores obtained during the model’s evaluation on the dataset. Figure 20 
displays the confusion matrix obtained upon evaluation. The accuracy curve and the 
loss curves of the model are given in Figs. 21 and 22 respectively. The model trained 
for 13 epochs out of the set limit of 100 and is stopped by the Early Stopping 
mechanism. It is also evident that the weakest performance has been observed for 
femur-left and femur-right, along with kidney-left and kidney-right. The model’s 
confusion between these pairs is apparent, highlighting the challenge posed by the 
extensive similarities in their images. The 5-fold cross-validation was also employed,
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Fig. 15 Bar chart displaying the results based on precision, recall and f1-score for different classes 
in the OrganCMNIST dataset 

Fig. 16 Confusion matrix obtained by the proposed attention-based deep neural network for 
OrganCMNIST dataset

the result of which is depicted in Table 4.The mean test accuracy across the 5 folds 
is 75.88% ± 4.14%. This indicates that, on average, the model performs with an 
accuracy of approximately 75.88%, with a variability of 4.14% across different folds.
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Fig. 17 Accuracy curve for 
trained model on 
OrganCMNIST 

Fig. 18 Loss curve for 
trained model on 
OrganCMNIST 

Table 3 Classification 
accuracies produced by the 
proposed attention-based 
deep neural network for each 
fold using 5-fold cross 
validation on OrganCMNIST 

Fold Test accuracy (%) 

Fold 1 93.43 

Fold 2 94.01 

Fold 3 92.13 

Fold 4 95.20 

Fold 5 93.24

6.1 Comparison with Benchmark Results 

The proposed approach which uses Xception model architecture further enhanced 
with the Squeeze and Excitation Network attention mechanism significantly outper-
formed the benchmark accuracies on Organ{A, C, S}MNIST datasets, showcasing 
notable progress in accuracy improvement with lower-resolution images and crucial 
in resource-constrained environments. Table 5 compares the performance of the 
proposed attention-based deep neural network approach with the existing bench-
mark accuracies. Notably, in the OrganAMNIST, the model surpassed the existing 
benchmark classification accuracy of 95.1% achieved by the ResNet [43] model. In 
OrganCMNIST, the existing ResNet-18 model achieved an accuracy of 92% when
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Fig. 19 Bar chart displaying the results based on precision, recall and f1-score for different classes 
in the OrganSMNIST dataset 

Fig. 20 Confusion matrix obtained by the proposed attention-based deep neural network for 
OrganSMNIST dataset

evaluated on 224 × 224 images, which has been exceeded by the proposed model’s 
performance of 93.43%. For OrganSMNIST, the proposed model achieved 82.95%, 
beating the AutoKeras model’s accuracy of 81.3%.
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Fig. 21 Accuracy curve for 
trained model on 
OrganSMNIST 

Fig. 22 Loss curve for 
trained model on 
OrganSMNIST 

Table 4 Classification accuracies produced by the proposed attention-based deep neural network 
for each fold using 5-fold cross validation on OrganSMNIST 

Fold Test accuracy (%) 

Fold 1 73.21 

Fold 2 79.66 

Fold 3 77.20 

Fold 4 69.23 

Fold 5 80.12

Table 5 Comparison of proposed attention-based deep neural network for Organ{A, C, S}MNIST 
dataset from MedMNISTv2 

Dataset name Authors Approach used Accuracy (%) 

OrganAMNIST Yang et al. [1] 
Proposed method 

RestNet-18 
SE block + Xception 

95.10 
96.20 

OrganCMNIST Yang et al. [1] 
Proposed method 

RestNet-18 
SE block + Xception 

92.00 
93.43 

OrganSMNIST Yang et al. [1] 
Proposed method 

RestNet-18 
SE block + Xception 

81.30 
82.95



22 R. Rajoria et al.

6.2 Ablation Study 

In this comprehensive ablation study, we delved into the nuanced effects of varying 
learning rates on the performance of our neural network model. The experiment 
focused on training a neural network architecture while manipulating the learning 
rates and using callbacks revealed a substantial impact on both the training dynamics 
and ultimate model performance. 

• OrganAMNIST: The proposed attention-based deep neural network model 
underwent distinct training phases, employing fixed learning rates of 0.001, 
0.0001, and 0.00001 individually. Notably, these sessions yielded accuracies of 
92.16%, 94.32%, and 93.86% on the foundational Xception Model. Upon inte-
grating an attention layer atop the base model and retraining with the same learning 
rates, a notable improvement ensued. The augmented architecture showcased 
enhanced performance, delivering accuracies of 92.56%, 95.02%, and 93.78%, 
respectively. Recognizing the potential for further refinement, a dynamic approach 
was introduced through a learning rate scheduler employed as a callback during 
training. This strategic addition proved effective, culminating in a noteworthy 
accuracy of 96.20% on the dataset when the initial learning rate was set at 0.0001. 

• OrganCMNIST: A similar training phase was employed for this dataset. The 
base Xception model achieved classification accuracies of 91.48%, 92.66% and 
91.40% when the learning rate was fixed at 0.001, 0.0001, and 0.00001 respec-
tively. The Attention layer was then integrated to the existing architectures which 
recorded classification accuracies of 91.93%, 92.89% and 92.05% on the same set 
of learning rates. The addition of a learning rate scheduler proved further effec-
tive, achieving an accuracy of 93.43% on the dataset with an initial learning rate 
set at 0.0001. The combined impact of meticulous learning rate tuning and the 
adaptive scheduler significantly contributed to the heightened proficiency of the 
model. 

• OrganSMNIST: The model achieved classification accuracies of 78.89%, 
77.34% and 77.84% on the foundational Xception model with the learning rates 
fixed at 0.001, 0.0001 and 0.00001 respectively. The addition of an attention layer 
improved the performance of the model and it achieved classification accura-
cies of 81.93%, 80.56% and 80.90% on the same set of learning rates. When 
the model was then trained with a learning rate scheduler callback in action, the 
model showed even improved results, yielding an accuracy of 82.95% with the 
initial rate set at 0.001. 

6.3 Statistical Study of Our Proposed Methodology 

In this section, we used different statistical parameters to evaluate the proposed 
model’s performance. Over the course of this study, we have employed several statis-
tical measures to evaluate the performance of the corresponding models. Table 6
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displays the result of the statistical study done on the three 2D biomedical image 
datasets. 

• Jaccard Index: The Jaccard Index measures the similarity between two sets A 
and B by calculating the ratio of the intersection of the sets to their union. It is 
widely used in image segmentation tasks where it quantifies the similarity between 
the predicted and ground truth regions. Mathematically, 

J(A, B) = 
|A ∩ B| 
|A ∪ B| (5) 

Here, |A| and |B| represent the cardinality (size) of sets A and B respectively, and 
∩ and ∪ denote the intersection and union operations, respectively. The interpre-
tation of the Jaccard Index necessitates an acknowledgment of its score range 
spanning from 0 to 1. A score of 0 denotes an absence of overlap, indicating 
suboptimal segmentation performance, as the model fails to capture any true 
positive pixels. Conversely, a score of 1 signifies perfect overlap, illustrating the 
optimal scenario where the predicted and ground truth regions are indistinguish-
able, exemplifying superior segmentation performance. A significant merit of 
the Jaccard Index lies in its inherent scale-invariant property, facilitating adapt-
ability to diverse image sizes and resolutions. Its simplicity contributes to facile 
interpretation, with higher scores consistently correlating with enhanced segmen-
tation accuracy. Furthermore, the applicability of the Jaccard Index extends to 
multi-class segmentation, allowing for independent assessment of each class with 
subsequent averaging of results. However, the Jaccard Index is not without limi-
tations. It may exhibit sensitivity to imbalanced datasets, particularly when one 
class dominates the other. To make the scores unbiased, we have employed the 
mean-weighted Jaccard Index that assigns weight to classification labels based 
on the data samples in the training set. 

• Dice Similarity Coefficient: The Dice Similarity Coefficient (DSC) measures the 
similarity between two sets A and B, emphasizing the balance between precision 
and recall. It is particularly suitable for imbalanced datasets. Mathematically, 

Dice(A, B) = 
2 × |A ∩ B| 
|A| + |B| (6)

Table 6 Statistical study of our proposed attention-based deep neural network for 
Organ{A,C,S}MNIST dataset from MedMNIST v2 

Dataset name Jaccardi index Weighted mean 
precision score 

Weighted mean 
recall score 

Weighted mean 
DSC score 

OrganAMNIST 0.9281 0.9624 0.9620 0.9619 

OrganCMNIST 0.8867 0.9378 0.9378 0.9375 

OrganSMNIST 0.7348 0.83001 0.8298 0.8255 
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where, A and B are the sets being compared, | · | represents the cardinality of a 
set, and ∩ represents the intersection of sets. It is a critical metric for assessing 
image segmentation performance, with a scale from 0 to 1. A DSC of 0 signifies 
no overlap between predicted and ground truth regions, indicating suboptimal 
segmentation, while a DSC of 1 represents perfect alignment. High DSC scores 
indicate accurate segmentation, reflecting a strong overlap with ground truth. 
Conversely, lower scores suggest challenges in segmentation accuracy, potentially 
due to misidentification, false positives/negatives, or difficulties with nuanced 
boundaries. DSC’s sensitivity to precision and recall balance makes it valuable in 
addressing imbalances within datasets. 

To ensure that the proposed model utilizes adequate image features instead of 
noise, we conducted extensive statistical tests. The high values of the Jaccard Index, 
Precision, Recall, and Dice Similarity Coefficient (DSC) across all datasets, as 
evident above indicate that the model is accurately capturing and utilizing meaningful 
image features, rather than being influenced by noise. 

7 Conclusions and Future Research 

Our exploration into enhancing the classification of organ medical images delved into 
the realm of deep learning models, leading us to select Xception for its exceptional 
feature extraction capabilities and the balanced trade-off between computational 
efficiency and diagnostic accuracy. Focused on three pivotal datasets—Organ{A, 
C, S}MNIST, each presenting unique challenges, our study systematically evalu-
ated these models across varied image resolutions, shedding light on the advan-
tages of higher resolutions within our computational constraints. In our assessment 
of OrganAMNIST, our attention-based deep neural network, enhanced with the 
Squeeze and Excitation (SE) Block on 92 × 92 color images, achieved an impres-
sive accuracy of 96.20%, surpassing the benchmark accuracy of 95.1%. Similar 
advancements were observed in OrganCMNIST, where an accuracy of 93.43% was 
achieved, outperforming the benchmark accuracy of 92%. Examining OrganSM-
NIST, we noted an accuracy of 82.95%, overshadowing the benchmark of 81.3%. 
Our research underscores the critical impact of model selection, image resolution 
choices, and the incorporation of SE Block in advancing biomedical image classifica-
tion. Beyond enhancing diagnostic accuracy, our findings provide resource-efficient 
and effective solutions applicable to diverse healthcare contexts. The insights derived 
from Organ{A, C, S}MNIST datasets position these advancements as significant 
contributions to the broader realm of medical image analysis. 

The trajectory of future research in organ classification using deep learning holds 
significant promise and potential for substantial improvement. As we move forward, a 
critical requirement is the acquisition of more extensive and diverse medical datasets 
to rigorously test and validate the robustness of the proposed models. Moreover, 
there is a compelling need for the development of additional datasets with a focus
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on specific medical imaging modalities to ensure comprehensive model evaluation. 
There is also potential in integrating multi-modal data, combining CT scans with 
complementary imaging modalities to broaden the scope of organ classification 
models. Additionally, refining transfer learning strategies could optimize the adapta-
tion of pre-trained models to the nuanced characteristics of medical imaging datasets. 
Addressing the attention model architecture, more refinements and innovations in the 
attention blocks can be explored. This involves investigating novel attention mech-
anisms, experimenting with attention fusion strategies, and optimizing the block’s 
integration within diverse deep-learning architectures. Achieving a deeper under-
standing of the interplay between attention mechanisms and organ-specific features 
can pave the way for more effective and nuanced organ classification models. 

Experiment: All experiments and methods were carried out in accordance with 
relevant guidelines and regulations. 

Informed consent was obtained from all subjects and/or their legal guardian(s). 
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Artificial Intelligence and Machine 
Learning Use in Agriculture Domain: 
A Review 

Vinay Kumar and Sushil Sharma 

Abstract The integration of artificial intelligence (AI) and machine learning (ML) 
methods in agriculture has garnered considerable interest in recent years. It has 
emerged as an authoritative tool that can transform the agricultural industry by 
improving productivity, boosting resource consumption, and improving decision-
making processes. Integrating AI and ML technologies in the agricultural supply 
chain is revolutionizing, the domain by bringing in robust monitoring and predic-
tion and quick decision-making abilities. A comprehensive literature scrutiny of the 
applications of artificial intelligence devices and machine learning an authoritative 
revolutionize farming practices and improve crop yield, resource management, and 
sustainability in agriculture. This present study explores the various applications of 
AI and ML in agriculture, focusing on their benefits, challenges, and prospects. 

1 Introduction 

Artificial intelligence is the branch of science that deals with the development of 
machines to mimic human intelligence. Machine learning is a subset of artificial intel-
ligence that empowers systems to acquire data autonomously, without the necessity 
for explicit programming. It is essential to differentiate between these two tech-
nologies, as they are often mistaken for one another. Deep learning technique is a 
specialized area within the broader field of machine learning progression, which 
itself falls under the umbrella of artificial intelligence. Both these latest technolo-
gies are considered subcategories within the larger realm of artificial intelligence 
[1]. In Fig. 1, the diagram showcases the connections between Artificial Intelli-
gence (AI), Machine Learning (ML), and Deep Learning (DL). The visual depiction 
illustrates the interconnections and interfaces among these three concepts within 
the realms of technology and data science. There are three primary categories of 
machine learning: supervised learning, unsupervised learning, and reinforcement 
learning (Fig. 2). Supervised learning consist of training a model on labelled data,
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unsupervised learning includes finding patterns in unlabelled data, and reinforce-
ment learning encompasses training a model to make sequences of decisions in an 
environment to maximize a reward [2]. Each type has its applications and use cases 
in various industries such as healthcare, food industries, finance, and technology. 

Agriculture is constantly pressed upon to yield more with less resources. AI and 
ML techniques can enhance resource exploitation by analysing agricultural data. 
These technologies assist farmers to make decisions based on data analysis, optimize 
crop yields, and minimize resource wastage. AI and ML algorithms can investigate

Fig. 1 The link between AI, ML, and DL 

Fig. 2 Types of machine learning 
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enormous amounts of data to provide insights into soil health, weather patterns, and 
pest infestations, allowing farmers to take pre-emptive measures to ensure the health 
and productivity of their crops. Additionally, these technologies can also mechanise 
various tasks such as irrigation, harvesting, and sorting, leading to better efficiency 
and minimised labour costs [3]. Overall, AI and ML are transforming the agricultural 
landscape by empowering farmers with the tools to sort informed and sustainable 
choices. They are also used to develop precision agriculture techniques, such as the 
usage of drones and sensors to observe and accomplish crops at a granular level. This 
allows for targeted application of resources such as water, chemical fertilizers, and 
pesticides, leading to further sustainable and environmentally friendly farming prac-
tices. Additionally, these machineries can also support in predicting market demand 
and optimizing supply chain management, leading to better profitability for farmers 
[4]. 

In the future, AI and ML are expected to continue to play a noteworthy role in 
agriculture, with the potential to further improve productivity, sustainability, and 
resilience in the face of climate change and other challenges. In an optimal smart 
ecosystem, a farmer would be assisted by an artificially intelligent aide to regu-
late the best date and method for land preparation, based on the GIS and remote 
sensing data of the region. The farmer would then utilize a blockchain and recom-
mender system-enabled supply chain to procure high-quality seeds for sowing after 
the land preparation. Furthermore, low-cost smart weeding and fertigation systems 
would manage the scheduled weeding tasks effectively. AI-powered mobile appli-
cations can effectively identify pests and diseases in crops, providing farmers with 
suitable management practices to combat them [5]. As these technologies continue 
to advance; they are expected turn out to be even more accessible and affordable 
for farmers of all scales, further democratizing the benefits of data-driven decision-
making in agriculture [6]. Overall, the integration these technologies in agriculture 
embraces inordinate assurance for the future of food production and the sustainability 
of our planet (Fig. 3).

2 Application of Artificial Intelligence and Machine 
Learning in Agriculture 

In the present scenario, AI and ML techniques are being exponentially applied in the 
various areas of the agricultural domain. The practice of AI and ML in agriculture has 
advanced significantly in recent years, enhancing crop monitoring in real time, yield 
forecast, pest detection, and soil analysis. These technologies enable data-driven 
decision-making, resource optimization, and improved productivity for farmers. AI 
and ML algorithms can scrutinise large amount of agricultural data to ascertain 
patterns and trends, while robotics and automation technologies reduce reliance on 
manual labour. Additionally, AI-powered automated robotics have been advanced to 
perform tasks such as planting seed, harvesting, and irrigation, reducing the reliance
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Fig. 3 AI and ML in agriculture and allied sector

on manual labour and increasing operational efficiency. The integration of AI and ML 
in agriculture has the capacity to transform the industry, addressing worldwide food 
sanctuary challenges and mitigating the impact of climate variations on agricultural 
production. The major applications of AI and ML based techniques on these areas 
are discussed in the subsequent sections. 

2.1 Crop Health Management 

Plant diseases can result in reduced growth and have a destructive impact on crop 
yields, leading to an estimated global economic loss of up to $20 billion per year. In 
India, the agricultural sector experiences an annual loss of 17.5 to 20%, amounting 
to US$ 42.66 million due to crop diseases. In many cases, the whole crop production 
is destroyed due to crop diseases. Conventional techniques for recognising plant’ 
diseases are often ineffective if not applied early in the pathogenesis process when 
symptoms are minimal. These approaches are not capable to provide spatialized 
diagnostic results for plant diseases [7]. Traditional methods typically depend on 
experts, experience, and guides, which can be costly, time-consuming, and laborious 
with limited accuracy. Additionally, farmers are increasingly resorting to agrochem-
icals to safeguard crops against diseases, posing risks to the environment, soil, and
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water quality. India encounters notable issues regarding water quality, especially 
concerning surface and groundwater pollution (up to 70%) according to the National 
Water-Quality Assessment (NAWQA). 

Therefore, a technologically driven agricultural revolution is crucial for solving 
problems and increasing efficiency at a realistic cost with minimal environmental 
impact. The adoption of advanced technologies like Internet of Things devices, 
intelligent algorithms, sensors, and modern machines has transformed agriculture. 
Artificial intelligence, machine learning, and deep learning machineries are being 
used to improve computer vision-based systems for autonomous crop disease moni-
toring. These technologies can autonomously extract features and provide farmers 
with data accuracy ranging from 85 to 95%, along with a 90% chemical use efficiency 
compared to traditional methods [8]. 

Crop management has been revolutionized by the integration of these modern 
sensor equipped technologies. These advanced tools have empowered farmers to take 
more cognisant decisions regarding planting, irrigation, pest control, and harvesting. 
By scrutinising massive amounts of data, AI driven algorithms can deliver valuable 
understandings into crop health and optimal resource allocation by identifying the 
trends that may not be apparent to the human eye, allowing for more efficient and 
sustainable agricultural practices. The most recent example of cutting-edge tech-
nology in agriculture involves the development of a Normalized Difference Vege-
tation Index (NDVI) sensor that utilizes AI-ML technology to monitor crop health 
in real-time [9]. By analysing MODIS/AwiFS satellite images, this sensor provides 
accurate and timely assessments of vegetation health, empowering farmers to sort 
cognisant decisions on crop management and optimization strategies. By training 
algorithms on diverse datasets, farmers can develop tailored strategies to maximize 
productivity and minimize waste. Many AI and ML-powered sensors can monitor 
crop health with real-time management strategies to protect the crop from various 
types of diseases (Table 1). This level of precision not only improves crop revenues 
but also decreases the environmental effect of farming operations.

2.2 Soil and Irrigation Management 

Soil and irrigation are the most viable components of agriculture. The soil and irri-
gation are the determinant factors for the optimum crop yield. Soil’s nutrients are 
necessary for crop growth and productivity, and meeting global food demand. Previ-
ously, soil scientists relied on labour-intensive techniques for data gathering, which 
were time-consuming and limited. However, AI and ML now provide powerful tools 
to examine enormous amounts of data and extract insights to improve soil health. 
These technologies can process diverse soil data to identify patterns, correlations, 
and anomalies that may be difficult for humans to discern, and improve our under-
standing of soil variation. The use of AI-driven sensors and robotics allows for the 
real-time supervision of soil conditions, as well as the optimization of irrigation and



34 V. Kumar and S. Sharma

Table 1 AI and ML-driven technologies for monitoring crop health 

S. No. AI-ML enabled 
technologies 

Disease detection Advantages 

1 Digital camera (RGB) Cotton bacterial angular, leafspots, 
early blight, fusarium wilt, rusts, 
etc 

• Vegetation features 
can be captured in 
grayscale or colour 
images 

• Visible spectrum aids 
in better disease 
detection at the leaf 
level 

• Lightweight, 
affordable, 
user-friendly, simple 
data processing, and 
suitable for minimal 
work settings 

2 Multispectral camera Frogeye leaf spot, grapevine leaf 
stripe, white leaf spot, disease 
(GLSD), bacterial soft rot, blights, 
powdery mildew, viruses, 
anthracnose, blasts, etc 

• Cost-effective pricing, 
fast frame capture, 
and enhanced 
durability compared 
to RGB cameras boost 
productivity 

• Spans 
electromagnetic 
spectrum from visible 
to Near-Infrared 
(NIR) for computing 
different vegetation 
indices 

• Detects and records 
radiations from both 
visible and invisible 
sections of the 
electromagnetic 
spectrum

(continued)
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Table 1 (continued)

S. No. AI-ML enabled
technologies

Disease detection Advantages

3 Hyperspectral sensing Leaf hoppers, blasts, leaf rollers, 
nematodes, oriental fruit moths, 
rusts, peach twig borer, scabs, etc. 

• Able to detect and 
document numerous 
narrow bands and 
continuous spectra 

• Offers researchers and 
farmers a more 
inclusiveperception 
into disease and crop 
spectral 
characteristics 

• Capable of 
recognizing and 
capturing a wide 
range of spectral 
features 

4 Thermal infrared 
cameras, including near 
InfraRed, short-wave 
infra-red, mid-wave 
InfraRed, long-wave 
InfraRed, and far 
InfraRed 

Recently used to monitor diseases 
such as smut, leaf spot sheath 
blight, cercospora, tungro disease, 
scab, stem rot of rice, mildews, 
grassy stunt disease, rice ragged 
stunt virus, etc. 

• Capable of detecting 
infrared light, making 
it appropriate for use 
throughout both day 
and night 

• Provides a greater 
amount of 
information on plant 
health compared to 
alternative sensors 

• Sensitive to the 
infrared spectrum, 
enhancing its ability 
to gather data on plant 
health

fertilization methods, resulting in more efficient agricultural practices, sustainable 
land management, and enhanced soil health [10]. 

AI-integrated soil sensors require the development and implementation of algo-
rithms, models, and systems that empower them to perceive and comprehend their 
surroundings, reason and make judgements based on available data, and take appro-
priate actions to achieve specific objectives. In contrast, ML is a sub-domain of AI 
that concentrates on creating algorithms or models that assist computers to study from 
data and forecasts results without explicit programming. ML algorithms are designed 
to automatically analyse large datasets, identify patterns, and extract meaningful 
insights to enhance their performance over time. Table 2 summarizes research on 
soil parameters using AI, ML, sensors, and IoT systems, providing valuable insights 
into advancements made by various authors in this field.

The United Nations reports that 40% of the global population resides in regions 
facing moderate to high water stress, with uneven distribution worldwide. Countries
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Table 2 Soil and water management using AI and ML new innovative techniques 

S. No. Categories specified in 
the assignment 

Model/Techniques/Methods 
used 

Accuracy/Results References 

1 Soil fertility indices 
for pH, organic 
carbon, boron, 
phosphorus, and 
potassium are 
categorized by village 

ELM uses different 
activation functions such as, 
Gaussian radial basis, hard 
limit triangular basis, 
sine-squared and hyperbolic 
tangent 

Achieved 80% 
accuracy 

[14] 

2 Soil organic matter 
content, soil pH, soil 
temperature 

Four machine learning 
models: cubist, ELM, 
LS-SVM, ANN and PLSR 

The value of R2 
was 0.81 

[15] 

3 The parameters 
include organic carbon 
(OC), total nitrogen 
(TN) and moisture 
content (MC) 

Cubism, PLSR, LS-SVM, 
and PCA 

RMSEP (MC) = 
0.457%, and RPD 
(2.25), RMSEP 
(TN) = 0.071 and 
RPD (1.96) 

[16] 

4 An IoT-based solution 
for efficient watering 
in farming areas 

CNN models integrated with 
an IoT-based system 

Achieved 90% 
accuracy 

[17] 

5 Plant’s water content Reflectance across a wide 
spectrum of wavelengths 

The most optimal 
models water 
band index (WBI), 
MSI, NDWI1640, 
and NMDI 

[18]

such as India, Mexico, USA, and China are identified as top consumers of ground-
water sources. Agricultural activities contribute to nearly 70% of water withdrawal, 
while industrial and domestic sectors account for 22 and 8% respectively. In India, 
agriculture alone utilizes 90% of groundwater due to excessive extraction and ineffi-
cient irrigation methods, highlighting agriculture as a major contributor to freshwater 
scarcity [11]. Urbanization, agricultural intensification, and climate change have led 
to a rise in water demand and degradation of freshwater, posing significant challenges 
in regions already facing water stress. Unsustainable groundwater extraction supports 
over 25% of the world’s population and 40% of global agricultural production. By 
2030, the country’s water demand is projected to double the available supply. There-
fore, the soil and irrigation-related issues should be managed properly and cautiously 
to ensure a potential yield in crops. In this regard, AI and ML-based techniques have 
shown the potential ability to resolve soil and irrigation-related issues in crops [12]. 

Advanced AI-ML technology can analyse data from satellite, plane, or drone 
imagery to identify irrigation issues by interpreting patterns in images using machine 
learning algorithms. By combining imagery with soil and plant-based sensors, real-
time data can accurately determine irrigation needs and alert farmers to potential 
problems, enabling efficient irrigation management and sinking the risk of under 
or over-watering. Additionally, forecasting weather patterns helps farmers prepare
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for any challenges posed by nature. AI-powered technology also provides a cutting-
edge approach to monitoring water quality in real-time. Utilizing state-of-the-art 
sensors, these systems analyse quality metrics non-stop, delivering instant updates 
on pH, temperature, dissolved oxygen, and pollutant levels. By integrating machine 
learning and data analytics, AI-enhanced systems can swiftly identify irregularities 
and deviations from standard conditions. They can also promptly notify decision-
makers of potential water concerns, allowing organizations to take immediate action 
to address sources of contamination [13]. 

This cutting-edge technology enables farmers to make well-informed verdicts 
based on data, by monitoring causes such as temperature, soil moisture levels, and 
nutrient content. By doing so, it guarantees that resources are consumed efficiently, 
potentially resulting in a substantial increase in yield, possibly up to 30%. Through 
effective monitoring and optimal control of irrigation, this technology also facilitates 
significant water conservation, with possible savings reaching from 30 to 60%. It can 
lead to a reduction in indirect costs related to energy use, such as electricity or fossil 
fuel for pumping, ultimately enhancing cost-effectiveness. 

2.3 Pest Management 

Pesticides are extensively applied on a global scale, resulting in detrimental effects on 
both human well-being and the environment. India holds the position as the fourth-
largest manufacturer of pesticides worldwide. Insecticides, fungicides, and herbi-
cides are frequently utilized for pest management in agricultural practices. Neverthe-
less, insecticides constitute the largest portion of the overall pesticide usage in India. 
Over the last ten years, there has been a notable rise in the per-hectare consumption 
of pesticides in India, marking an increase of approximately 50 percent compared 
to the previous decade. A recent study published in Nature Geoscience revealed that 
approximately 385 million individuals working in the agricultural sector experience 
acute pesticide poisoning on an annual basis [19]. The symptoms linked with this 
form of poisoning vary from weakness and headaches to vomiting, skin rashes, and 
even failure of vital organs such as the heart, lungs, or kidneys, as well as disorders of 
the nervous system. Shockingly, the study also establish that around 11,000 people 
succumb to acute pesticide poisoning each year, excluding cases of suicide related 
to pesticide exposure. 

A recent study has also exposed that a significant 64 percent of agricultural soil 
worldwide is contaminated with pesticide residues, leading to the widespread issue of 
global pesticide pollution. Conventional techniques for uniformly applying pesticides 
across fields lead to excessive chemical usage, significant wastage (70–90%), higher 
cultivation expenses, soil contamination, water pollution, environmental degradation, 
and adverse effects on farm health. Consequently, it is imperative to implement novel 
techniques for pesticide application to mitigate the detrimental effects it poses to both 
human well-being and the environment [20]. Therefore, there is a requirement for 
an automatic pest identification system.
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Fig. 4 Crop health monitoring using AI and MI technology 

Artificial intelligence and machine learning play a fundamental role in the detec-
tion of pests in agriculture. These technologies leverage sophisticated algorithms and 
data analysis to effectively detect and diagnose a range of crop-related issues, facil-
itating the precise application of harmful chemicals based on specific needs. [21]. 
Cutting-edge pest detection systems, powered by real-time artificial intelligence and 
machine learning technologies, can precisely detect pests and diseases in crops by 
analysing images. Through the utilization of these sophisticated systems, automated 
pesticide sprayers can be triggered to target only the affected areas, leading to a 
more accurate pesticide application and a decrease in wastage. Figure 4, illustrates a 
detailed step-by-step explanation of the procedure for identifying diseases in plants. 

Intelligent automation algorithms can recognise the requirement for pesticides 
promptly and provide accurate applications by focusing on particular regions. In 
case of an intrusion, instant notifications are dispatched to farmers’ mobile devices, 
enabling them to act accordingly. Numerous authors have utilized artificial intelli-
gence, machine learning, and cutting-edge techniques to detect pests and diseases, 
as illustrated in Table 3. The latest AI-powered drone technology, integrated with 
spraying mechanisms, can effectively cover extensive areas with a precision level of 
90%, enhancing resource efficiency, cutting down expenses, and decreasing waste by 
as much as 80% through targeted applications, leading to substantial advancements 
in agricultural pest control [22]. As AI and ML continue to advance, their part in 
agriculture is projected to expand, offering even greater potential for enhancing food 
safety and agricultural sustainability.
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Table 3 Pest and disease identification using AI and ML 

S. No. Intended work 
pre-specified 

Methodology Accuracy 
(%) 

References 

1 Identification of plant 
diseases and pests in 
eight types of 
horticultural crops 

The ResNet-50 model with additional 
support of Vector Machine (SVM) 
classifier was used to identify pests 
and diseases in horticultural crops 

98 [23] 

2 Detecting pests and 
diseases on apple 
leaves 

AlexNet precursor set was used for 
detecting pests and diseases in 
agriculture 

97.62 [24] 

3 Pests and diseases 
affecting apple fruits 

The disease detection system based 
on fuzzy rules (DDSF) uses fuzzy 
logic to accurately identify diseases, 
improving accuracy and efficiency 

91.66 [25] 

4 Detection of insects 
and pests for 
pre-defined different 
types of crop 

Utilized advanced deep learning 
methods such as faster R-CNNs, 
SSDs, and Yolo-v4 for image-based 
scale pest detection and localisation 

89 [26] 

2.4 Weed Management 

Effective weed management is essential for successful crop production, but it can be 
challenging and time-consuming. Weeds compete with crops for resources and some 
are toxic, posing a threat to public health. While herbicide spray is commonly used, 
it can harm public health and cause environmental pollution if overused. In agricul-
ture, invasive weeds present a major obstacle to productivity. Farmers face difficul-
ties in manually identifying and removing each weed, resulting in heavy reliance 
on herbicides. However, herbicides contain harmful chemicals that can negatively 
impact crop and soil health, posing risks to human health as well. Unfortunately, over 
90% of herbicides are misapplied, leading to environmental loss, failure to reach the 
intended target, and ineffective weed control in crops [27]. A study by Ronal Gerhards 
in University of Sheffield (UK) on using AI-driven herbicide spraying techniques can 
save more than 50% of herbicide in various crops without causing. The overuse of 
herbicides has caused herbicide-resistant weeds to become more prevalent. Manual 
weeding is labour-intensive and time-consuming, posing challenges for farmers who 
struggle to find enough workers in the agriculture sector, prompting the search for 
alternative methods. 

AI and ML technologies can revolutionize weed management by providing 
more effective and precise techniques for identifying and regulating weeds. They 
are currently used for tasks such as weed identification, precise control, predic-
tive modelling, and mapping. Different types of weed detection methods using AI 
technologies are shown in Fig. 5. Algorithmic intelligence can be trained to differ-
entiate between crops and weeds using techniques such as CNN, DCNN, SVM, 
ANNs, RF classifier, KNN, ShuffleNet-v2, and VGGNet. Laser weeding technology 
provides chemical-free, no-till weed control for crops by identifying and eliminating
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Fig. 5 Flowchart representation of weed identification methods 

weeds early in their lifecycle, before they are visible to the human eye, preventing 
damage to crops. It offers precise targeting of weeds, including those between crops, 
with millimeter accuracy [28]. The integration of AI-ML in weed management 
systems ensures precision, cost-effectiveness, environmental sustainability, labour 
efficiency, increased crop yields, time efficiency, scalability, data-driven insights, 
climate resilience, and technological progress. 

2.5 Crop Quality 

Artificial intelligence sensors integrated with algorithmic learning play a funda-
mental role in enhancing crop quality as they deliver real-time data and analysis to 
farmers. These sensors are designed to monitor various aspects of crop growth, such 
as soil moisture levels, temperature, nutrient content soil quality, weather patterns, 
and crop diseases. By identifying patterns and correlations within the data, automated 
learning models can help agriculturalists make well-versed verdicts about irrigation, 
chemical fertilization application, and pest control, ultimately resulting in higher 
crop yields and better-quality produce [19]. These big data models can be used to 
foresee various crop issues in real-time, allowing farmers to take active measures to 
avoid or mitigate potential damage to their crops as shown in Table 4. By analysing 
old data and real-time environmental factors, these models can provide early warn-
ings about potential threats to crop quality, enabling farmers to implement targeted 
interventions and minimize the impact on their harvest to ensure a higher yield of 
high-quality produce.

Furthermore, algorithmic models can improve the use of resources such as water 
for irrigation and agrochemicals, ensuing to more sustainable and environmentally 
friendly agricultural practices. By accurately predicting the water and nutrient needs
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Table 4 Crop health monitoring using AI and ML-developed models and algorithms 

S. 
No. 

Categories 
specified in the  
assignment 

Model/Techniques/Methods used Accuracy/Results References 

1 Diseased and 
health status 
detection in 12 
different 
species and 42 
different 
classes 

AlexNet, VGG 19, inception, 
DenseNet, ResNet, plant 
DiseaseNet object detection: 
two-stage methods—Faster 
R-CNN, faster R-CNN with TDM, 
faster R-CNN with FPN, one-stage 
methods—YOLOv3, SSD513, 
retina net 

94% [30] 

2 Wheat 
(diseased and 
healthy) 

Deep CNN model Accuracy more than 
96% 

[31] 

3 Maize 
(diseased and 
healthy) 

Custom CNN model 92.85% accuracy [32] 

4 Rice (diseased 
and healthy) 

Pre-trained VGGNet Accuracy:91.83% [33]

of crops, these models can support reduce waste and abate the environmental impact 
of farming operations, while still maintaining high crop quality. Overall, machine 
learning models are irreplaceable tools for modern agriculture, offering insights 
and forecasts that can considerably improve crop quality and yield. In addition to 
monitoring crop health, artificial intelligence sensors can also optimize harvesting 
processes to further improve crop quality. By analysing data on factors like ripeness 
and sugar content, farmers can determine the optimal time to harvest each crop, 
ensuring that it is picked at peak freshness and flavour [29]. This precision harvesting 
not only improves the quality of the crop but also reduces waste and maximizes prof-
itability for farmers. Ultimately, these technologies recommend favourable solutions 
to these issues by identify patterns and trends that help farmers to take well-versed 
decisions to increase the eminence of their crops. 

2.6 Plant Phenotyping 

Studying plant phenotyping is essential for understanding plant-environment inter-
actions, especially in crop management and breeding. Conventional phenotyping 
methods, involving manual measurements and observations, are slow, laborious, and 
liable to errors. The use of artificial intelligence and machine learning has trans-
formed phenotyping by empowering the scrutiny of vast datasets and uncovering 
hidden patterns beyond human perception. High throughput imaging techniques for 
non-destructive phenotypic measurement are becoming increasingly popular. This
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system produces a large volume of images for quick and accurate phenotypic analysis, 
facilitating diverse phenomics studies. The assimilation of high-throughput imaging 
systems with advanced AI technologies, enhances both the effectiveness and accu-
racy of this field [34]. Phenomics has been applied to investigate various phenotypic 
traits, including spike detection and counting, yield prediction, assessment of plant 
senescence, leaf weight and count, plant volume, convex hull analysis, water stress 
evaluation, and numerous other aspects, as detailed in Table 5. 

This is especially beneficial in the area of plant phenotyping, where artificial 
intelligence can recognize leaf shapes, assess plant growth parameters, and identify 
disease symptoms [1]. The field of high-phenotyping often involves several types 
of data, including imaging, genomic, and environmental data. This all-inclusive 
approach permits for a more thorough understanding of plant characteristics and 
behaviour, leading to advancements in agricultural research and crop improve-
ment. Advanced fusion techniques, such as deep multimodal learning and graph-
based models, enable researchers to uncover hidden patterns and connections among 
different data sources. Furthermore, real-time phenotyping allows the continuous 
monitoring of plant traits throughout the growth cycle, providing valued under-
standings into dynamic responses to environmental conditions. It will enable rapid 
decision-making and adaptive management strategies in agriculture by optimizing 
resource allocation and improving yield and quality [35].

Table 5 Phenotyping using AI and ML-developed models and algorithms 

S. No. Categories 
specified in 
the 
assignment 

Model/ Techniques/ 
Methods used 

Accuracy/Results References 

1 Spike 
recognition 

Neural networks and 
texture energy laws 
were used in this study 

80% [36] 

2 Spike 
recognition 
in the field 

Faster R-CNN 88–94% [37] 

3 Spike 
recognition 
and count 

U-Nets 99.93%, [38] 

4 NDVI RGB image 
manipulation 

More cost-effective and 
user-friendly than traditional dual 
image NDVI or hyper-spectral 
imaging methods 

[39] 
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Fig. 6 The framework of yield prediction models 

2.7 Yield Prediction 

Artificial intelligence sensors play a major role in predicting crop yields. These 
sensors are deliberate to collect and analyse data related to various environ-
mental aspects such as temperature, humidity, soil moisture, and light intensity. By 
constantly monitoring these parameters, AI sensors can deliver valued perceptions 
into the growth and important real information [40]. This statistics is then used to 
sort accurate predictions about the potential yield of a particular crop by developing 
predictive models by training the algorithmic learning models with massive datasets, 
allows for more accurate and dependable predictions (Fig. 6) and Table 6. This AI-
ML driven predictive capability allows farmers to make cognisant verdicts regarding 
planting and irrigation schedules, fertilization, and pest control measures to adjust 
crop production.

2.8 Livestock Management 

The livestock industry in India made up around 4.11% of the GDP and 25.6% of 
the agricultural GDP in 2023, as reported by the Ministry of Fisheries, Animal 
Husbandry & Dairying. Despite its consistent growth, the sector continues to rely on 
manual control and monitoring, with alternative technologies being uncomfortable, 
stressful, or costly. As a result, there is a noteworthy need for modern technological 
interventions in this sector. AI and ML are increasingly being utilized in the arena of 
livestock management. These technologies offer a wide range of benefits, including 
improved efficiency, accuracy, and productivity [44].
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Table 6 Remote sensing and machine learning approaches for yield estimation in diverse crops 

S. 
No. 

Categories specified in the 
assignment 

Model/ Techniques/Methods used References 

1 Research is using vegetation indices 
and machine learning with remote 
sensing technology to predict crop 
yields in the Canadian Prairies 

Various techniques such as multiple 
linear regression and neural networks 
were utilized for data analysis 

[41] 

2 Predicting wheat yields in the south 
eastern region of Turkey through 
the application of artificial neural 
networks 

Neural networks and multivariate 
polynomial regression computational 
techniques were used for modelling 
multifarious relationships in data 

[42] 

3 A method utilizing artificial 
intelligence has been developed to 
forecast the Robusta coffee yield 
based on soil fertility characteristics 

ELM, random forest, and multiple 
linear regression were used in the 
study 

[43]

AI and ML algorithms are employed to oversee the well-being and health of live-
stock. These sensors can identify variations in body temperature, activity level, and 
other physiological parameters. Precision livestock farming utilizes non-invasive 
sensors like cameras, accelerometers, gyroscopes, radio-frequency identification 
systems (RFID systems), pedometers, and optical and temperature sensors. IoT 
sensors detect variable physical quantities (VPQs) to monitor temperature, sound, 
humidity, etc. These sensors can alert farmers in real time if a VPQ deviates from 
normal levels, providing crucial insights into each animal. Checking each animal 
repeatedly and laboriously can be made more cost-effective [45]. 

3 Cost Implications of Integrating AI and ML 
into Agriculture 

The financial considerations associated with incorporating AI and ML into the agri-
cultural sector is significant and multifaceted. One of the primary cost implications is 
the initial investment required to implement AI-ML technologies, such as purchasing 
the necessary hardware and software, along with training personnel to use and main-
tain these systems. Additionally, ongoing costs related to data storage, software 
updates, and technical support need be taken into consideration when budgeting 
for AI integration in agriculture. Another cost apprehension is the potential impact 
on labour expenses. While AI has the power to streamline operations and increase 
efficiency, it may also lead to a reduction in the need for human labour in certain 
tasks. This could result in cost savings for some agricultural operations, but it may 
also require retraining or reallocating workers to other roles within the organization, 
which can incur additional expenses [46]. 

Furthermore, it is indispensable to consider the long-term financial benefits of 
integrating AI and ML into agriculture, such as increased productivity, improved crop
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yields, and enhanced decision-making capabilities. While the upfront costs of AI and 
ML implementation may be significant, the potential return on investment in terms of 
increased efficiency and profitability can outweigh these initial expenses in the long 
run. Ultimately, careful financial planning and strategic decision-making are essential 
when considering the cost implications of integrating AI-ML into agriculture. 

4 Challenges Associated with AI and ML Technologies 
to Small-Scale Farmers 

AI and ML have the potential to significantly impact the agricultural segment, particu-
larly in addressing the problems faced by small-scale farmers. By utilizing AI and ML 
technologies, farmers can access appreciated understandings and data-driven solu-
tions to increase crop yields, optimize resource management, and enhance overall 
productivity. These technologies are able to analyse massive amounts of data, such 
as weather patterns, soil health, and market inclinations, to provide personalized 
recommendations and strategies for farmers to make conversant verdicts [47]. 

One of the key benefits of AI and ML in agriculture is their capability to help 
small-scale farmers overcome various challenges they encounter daily. For instance, 
AI-powered tools can backing farmers in predicting crop diseases and other potential 
risks, allowing them to take pre-emptive measures to protect their crops and maxi-
mize their harvest. Additionally, ML algorithms can help farmers improve irrigation 
schedules, fertilizer usage, and pest control methods, leading to more sustainable 
farming practices and increased profitability. 

5 Training or Skills are Required for Farmers to Adopt AI 
Technology 

To effectively implement AI and ML technology in farming, farmers need to acquire 
a certain set of training and skills. Firstly, they should have a strong understanding 
of the principles and concepts behind artificial intelligence and machine learning. 
This comprises knowledge of algorithms, data analysis, and programming languages 
commonly used in AI and ML applications. Additionally, farmers should be proficient 
in utilizing AI and ML tools and platforms specific to the agricultural industry, such 
as precision agriculture software and autonomous farming equipment. Furthermore, 
farmers need to improve expertise in data collection and management, as AI and 
ML technology heavily rely on large datasets for analysis and decision-making [48]. 
This involves knowing how to gather and process various types of agricultural data, 
such as crop yields, soil quality, weather patterns, and pest infestations. 

Moreover, farmers should be adept at interpreting the insights generated by AI 
and ML models to sort well-versed conclusions about crop management, resource
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allocation, and overall farm operations. In addition to technical knowledge and data 
skills, farmers should also possess a mindset open to innovation and continuous 
learning. Embracing AI and ML technology requires a willingness to adapt to new 
methods and tools, as well as a proactive approach to staying updated on the most 
recent advancements in agricultural technology. Moreover, effective communication 
and collaboration with agritech experts, data scientists, and AI specialists can further 
enhance a farmer’s ability to successfully adopt and integrate AI and ML technology 
into their farming practices. 

6 Limitations and Challenges of AI and ML in Agriculture 

The constraints and obstacles faced by AI and ML in the field of agriculture are 
multifaceted. One limitation is the lack of high-quality data required for training 
AI and ML algorithms. Agriculture involves a wide range of variables such as soil 
quality, weather conditions, and crop health that makes it challenging to collect and 
analyse comprehensive datasets. Insufficient data can hinder AI-ML models from 
providing accurate predictions or recommendations for farmers. 

The complexity of agricultural systems presents another challenge, as these 
systems can vary significantly based on factors such as geographical location, type of 
crops, and farming methods. Developing AI-ML solutions that are flexible to different 
agricultural contexts can be challenging due to this variability [49]. Additionally, the 
implementation of AI-ML technologies in agriculture requires significant investment 
in infrastructure, training, and maintenance, which may be a barrier for small-scale 
farmers or developing countries with limited resources. 

Furthermore, ethical considerations such as data privacy, algorithm bias, and 
job displacement also pose challenges for the adoption of AI-ML in agriculture. 
Farmers might be reluctant to disclose confidential information regarding their oper-
ations to AI systems and there is a risk of unintended consequences if algorithms 
are not designed and monitored carefully [50]. Addressing these limitations and 
challenges will have need of collaboration between researchers, policymakers, and 
industry stakeholders to safeguard that these technologies are effectively integrated 
into agricultural practices while minimizing potential risks. 

7 Conclusion 

The integration of AI-ML technologies has the power to offer effective solutions to 
significant challenges in agriculture, including soil health monitoring, irrigation plan-
ning, crop disease management, pest identification, crop phonemics, and more. By 
leveraging AI and ML, farmers can sort data-driven decisions that regulate crop yields 
and enhance overall agricultural productivity. The implementation of AI-related
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solutions in the agriculture domain is expected to drive innovation, increase effi-
ciency, and ultimately contribute to the sustainable growth of the agricultural sector. 
Future studies on incorporating ML in agriculture should prioritize utilizing various 
data sources, including satellite/drone imagery, IoT-based sensor data, and weather 
station information, to gain a deeper insight into agricultural systems. Furthermore, 
combining ML with robotics and automation offers the prospective for intelligent, 
self-learning systems that can convey intricate tasks for farmers and agricultural 
activities, such as the creation of autonomous fruit-picking machines. 

The primary objective moving forward should be the development of cost-
effective and adaptable machine-learning solutions tailored for regions with 
constrained resources, with a particular emphasis on extending the advantages of 
this technology to small-scale farmers and communities in emerging economies. By 
pursuing these research avenues, advancements can be made in establishing more 
enduring, productive, and robust agricultural frameworks. Collaborations of subject 
experts and professionals in agricultural engineering, agronomy, or soil science 
can result in customized solutions for agricultural issues. Additionally, conducting 
comprehensive research to evaluate the socio-economic consequences of the exten-
sive usage of machine learning in agriculture, including its impact on employment, 
economic sustainability, and fair access to technological resources, would be a 
valuable endeavour. 
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Evolution of Object Detection: From 
Classical to Modern AI Approaches 
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Abstract Agile and correct detection of objects is becoming more and more crucial 
with the increased interest in the area of smart video surveillance, autonomous vehi-
cles, facial recognition, and various distinct applications. These systems not only 
identify and categorize objects within images and videos but also precisely locate 
them by describing bounding boxes. This paper administers a detailed analysis of 
traditional and modern deep learning-based approaches for detection of objects, 
examining aspects such as multi-scale feature recognition, data augmentation tech-
niques, training methodologies, and viewpoint variability. Key standard datasets 
utilized in object detection research are also reviewed. Additionally, the paper 
discusses current challenges and outlines future research directions, particularly 
focusing on evolving datasets and frameworks that underpin object detection tasks. 
The analysis reveals that while existing object detection methods perform reason-
ably well, there remains significant room for improvement, especially in scenarios 
involving large variations in object scales, occluded views, and challenging envi-
ronmental conditions. Consequently, the paper suggests avenues for advancement in 
object detection techniques. 
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1 Introduction 

Computer vision is an intriguing field of study which enables computers to extract, 
analyze and intercept the information from images or video data, in a manner 
similar to human beings. Object detection is a subfield of computer vision which 
aims to recognize and isolate different articles in images and videos, and has wide 
variety of applications like autonomous vehicles [1–3], face recognition [4–6], video 
surveillance [7, 8], face detection [9, 10], traditional object detection [11–14] etc.  

The problem of object detection can be stated as localizing and identify different 
types of objects in images. The evolution of object detection is primarily classified 
into two categories: the methods uses prior to 2014 known as classical approaches 
and the methods which are based on deep learning known as Modern AI approaches. 
In this paper, we will start with the review of traditional approaches and then move on 
to the state of the art processes which are established on modern artificial intelligence 
techniques. The primary outputs of the manuscript can be listed as: 

a. Basic discussion of the traditional approaches of object detection 
b. Critical review of the modern deep learning approaches for objection detec-

tion and their characteristics. Main datasets and performance metrics are also 
discussed. 

c. Future directions for improving the objection detection 

The remaining manuscript is arranged as follows: Sect. 2 covers the traditional 
approaches of detection of objects, Sect. 3 describes the artificial intelligence based 
approaches for object detection, which covers the different types of single stage 
and two stage detectors. Data sets and various performance metrics used in object 
detection approaches has been discussed in Sect. 4. The work which can be carried 
out in future is described in Sect. 5 and finally the paper is concluded in Sect. 6. 

2 Traditional Approaches 

In the era of traditional object detection, maximum number of the methods were 
established on handcrafted characteristics because of the inadequacy of efficacious 
image depiction. Some of the techniques are explained as follows. 

2.1 Viola Jones Detectors 

Proposed in 2001 by Michael Jones and Paul Viola [15], this framework for object 
detection enables real-time detection of human faces. It employs a method of sliding 
windows across an image at various scales and positions to identify regions containing 
human faces. These sliding windows search for ‘haar-like’ features, named after 
Alfred Haar, who pioneered haar wavelets.
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The framework utilizes haar wavelets to represent image characteristics. To 
enhance detection speed, it integrates an integral image, ensuring that the imple-
mentation complexity of each sliding window remains independent of its size. Addi-
tionally, the authors employed the Adaboost algorithm for characteristics selection, 
which identifies a subset of features crucial for detection of face among a large pool of 
random features. The framework also incorporates Detection Cascades, a multi-stage 
detection approach that reduces computational load by prioritizing face targets over 
background windows during processing, under the condition that the first paragraph 
of a section or subsection is not indented. 

2.2 HOG Detector 

Initially introduced in 2005 by Triggs and Dalal [16], Histogram of Oriented Gradi-
ents (HOG) represents an advancement over contemporary methods like Scale 
Invariant Feature Transform and Shape Contexts. This detector operates by dividing 
the image into blocks (similar to a sliding window) and employs a dense pixel grid 
where gradients are calculated based on changes in pixel intensities’ magnitude and 
direction within each block. 

HOG is notably recognized for its application in detection of pedestrians. For 
accommodating objects of varying sizes, this method resizes the input image 
repeatedly while maintaining the size of the detection window as constant. 

2.3 Deformable Part-Based Model (DPM) 

In 2008, this detector was initially proposed by Felzenszwalb et al. [17] as a develop-
ment over the HOG detector, the Deformable Parts Model (DPM) has seen various 
enhancements by R. Girshick. The approach tackles the challenge of detecting 
complex objects like cars through a ‘divide and conquer’ strategy, distinguishing 
between the window, body, and wheels. 

The training phase of DPM involves learning to decompose objects effectively, 
while inference combines detections from distinct portions of the object ensemble. 
The DPM detector consists of a root-filter and multiple part-filters. The weakly 
supervised learning strategy within DPM naturally learns configurations (such as 
size and location) of part filters as latent variables. 

To enhance detection precision, R. Girshick introduced techniques like a special-
ized form of Multi-Instance learning, “hard negative mining,” “bounding box regres-
sion,” and “context priming.” Additionally, authors implemented a cascade architec-
ture that significantly accelerates processing speed by more than tenfold without 
compromising accuracy.
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3 Modern Deep Learning Based Approaches 

Object detection faced a stagnation after 2010 due to the limitations of hand-crafted 
features reaching their performance ceiling. However, a significant breakthrough 
occurred in 2012 amidst of the resurgence of convolutional neural networks (CNNs), 
which proved highly effective at learning complex and relevant feature representa-
tions from images. This led to a revitalization of object detection techniques. The 
deadlock in object detection was decisively broken in 2014 by the addition of Regions 
with CNN features (RCNN) [18]. In the current era dominated by deep learning, 
object detection methodologies are primarily categorized into two main approaches: 
“two-stage detection” and “one-stage detection”. Table 1 summarizes the evolution 
of various one stage and stage detectors over the years. 

3.1 One Stage Detectors 

One-stage detectors like SSD (Single Shot MultiBox Detector) and YOLO (You 
Only Look Once) have become popular because of their straightforwardness and 
potential to operate in real-time. They estimates object bounding boxes and the class 
probabilities straight in lone sweep over the image, thus eliminating the requirement 
for a separate stage for region proposals. One stage detectors are simpler, faster 
and are robust to scale changes. However, their accuracy is lower and low robust to 
occlusions. 

3.1.1 Over Feat 

This method first introduced a comprehensive framework using Convolutional 
Networks that integrates classification, localization, and detection through a multi-
scale sliding window method [19]. This integrated framework was a conquerer in 
the ImageNet Large Scale Visual Recognition Challenge 2013 (ILSVRC) in the 
localization tasks and attained competing results in classification and detection. It is 
a single-stage detector which performs object detection in a sole progressing pass

Table 1 Evolution of one stage and two stage detectors over the years 

Sr. No. One stage detector Year Two stage detectors Year 

1 Over feat 2013 RCNN 2014 

2 Retina net 2013 SPP Net 2014 

3 Single shot detector 2016 Fast RCNN 2015 

4 Yolo 2016 Faster RCNN 2015 

5 Yolo  V2, V3 V4 and  V5 2017 onwards Mask RCNN 2017 
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using fully connected convolutional layers. This model has served as the foundation 
for subsequent techniques such as YOLO and SSD. A key distinction of OverFeat is 
its sequential training approach for classifiers and regressors. 

3.1.2 Retina Net 

RetinaNet, introduced in [20, 21], represents a one-stage detector that incorporates 
focal loss and FPN (Feature Pyramid Network) as key components. One-stage detec-
tors often face challenges like lesser accuracy as a result of class imbalance. The FPN 
method addresses this issue by generating feature maps at multiple scales through 
lateral and top-down links across multiple levels. The focal loss function further 
enhances Retina Net’s performance by adjusting the weights assigned to easily and 
hard-to-classify samples. This approach allows the network to effectively prioritize 
challenging samples, thereby balancing the treatment of imbalanced data. As a result, 
Retina Net achieves improved detection performance without compromising on the 
agility of one-stage detectors. 

The architecture of Retina Net includes both a bottom-up pathway for feature 
extraction and a top-down pathway for integrating features across various layers 
using lateral connections. This design makes Retina Net a typical example of an 
FPN-based multi-scale detector, able of effectively handling objects at distinct scales 
within images. 

3.1.3 SSD 

The Single Shot Detector (SSD) was first introduced in 2016 [22]. This represents 
a single-stage model designed for multi-category prediction, co-existing with the 
YOLO series. The SSD method employs already defined set of anchor boxes that 
encompass various scales and aspect ratios to distinguish the bounding box outputs. 
This model integrates predictions from a number of feature maps at dissimilar reso-
lutions, effectively addressing the problem of detecting objects with diverse ratios 
and scales. 

SSD builds upon the VGG16 architecture by appending additional convolutional 
feature layers at the network’s end to enable detection across multiple scales. During 
training, the network optimizes using a combined loss function comprising confi-
dence and localization losses, weighted appropriately. Post-processing of detec-
tion outputs involves Non-Maximum Suppression (NMS) to consolidate the final 
outcomes. The SSD model incorporates the VGG16 convolutional network as its 
backbone, serving as a feature extractor through fully interconnected convolutional 
layers that streamlines the feature mapping phenomenon. Appended feature layers 
were introduced specifically to notice the broader features from input layers, thereby 
improving the model’s capability for the detection of objects across various scales.
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3.1.4 YOLO 

The YOLO (You Only Look Once) model was initially developed by Redmon 
et al. [23]. This is a one-stage detector which treats detection of object as a regres-
sion problem. This method estimates the coordinates of bounding box for objects 
and assigns probabilities to determine their associated categories. By utilizing a 
single neural network, YOLO achieves end-to-end optimization. Unlike region-
based methods that focus on specific regions for feature extraction, YOLO leverages 
features out of the entire image [24]. 

In this technique, an image is partitioned into a grid of size S × S. Every grid 
cell forecast five parameters: w, h (width and height of the bounding box), x, y 
(coordinates of the bounding box center), and a confidence score suggesting the 
existence of an object. The confidence score is based on the probability that an object 
is existing in the bounding box. This model assigns this confidence score to each class, 
and the class having the maximum probability is considered as the assigned class. 
The height (h) and width (w) parameters of the bounding box in YOLO are calculated 
as per the size of the object. During post-processing, overlapping bounding boxes 
are evaluated using Intersection over Union (IOU). The box having maximum IOU 
score is considered as the most accurate prediction for that object, while redundant 
or less accurate boxes are discarded. 

3.1.5 YOLOv2 

YOLOv2 [25], an improved iteration of YOLOv1 [23], was developed by Redmon, 
J. et al., designed to detect objects in images and videos with agility and accuracy. 
The accuracy is improved by using a more sophisticated network architecture and 
introducing techniques like batch normalization, which helps stabilize and accelerate 
training. It also incorporates Anchor boxes (predefined bounding boxes) to enhance 
the model’s capability to detect objects of distinct sizes. It employs Darknet-19 as 
the backbone, consisting of more convolutional layers as compared to the Darknet 
architecture used in YOLO, that helps in reducing the processing required to study 
an image and at the same time obtaining higher accuracy. 

3.1.6 YOLOv3 

YOLOv3 [26] introduced “incremental improvements” over its predecessors. The 
authors replaced the Darknet-19 with a bulkier network architecture Darknet-53 and 
integrated features such as batch normalization, data augmentation and multi-scale 
training. Additionally, they replaced the softmax classifier layer with a logistical 
classifier. The speed of YOLOv3 was higher than YOLOv2 but it did not bring any 
groundbreaking changes and had lower accuracy in comparison to the cutting edge 
detectors from the previous year.
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3.1.7 YOLOv4 

YOLOv4 [27] incorporated some ingenious intelligence to create a fast object 
detector that can be trained with ease for existing systems. This version employs 
a “bag of freebies,” that includes ways to increase training time without any change 
in the inference time, such as regularization methods, data augmentation techniques, 
class label smoothing, CIoU-loss, Cross mini-Batch Normalization (CmBN), self-
adversarial training, and a cosine annealing scheduler. Additionally, this version has 
a “bag of specials” which includes features like DropBlock that can be turned on or 
off based on the specific use case. It also uses a genetic algorithm for hyper-parameter 
searching. YOLOv4 maintains the real-time speed characteristic of YOLO models 
while improving detection accuracy, making it suitable for applications where both 
high speed and high accuracy are critical. 

3.1.8 YOLOv5 

Just after the realization of YOLOv4, the Ultralytics company introduced the 
YOLOv5 repository [28, 29], which included significant improvements when 
compared to earlier versions of YOLO. It has been broadly adopted in numerous 
applications and has proven effective, enhancing the model’s reliability. The infer-
ence speed of YOLOv5 was 140 fps and it uses PyTorch, making the implementation 
of the model easier, agile, and more accurate. 

Despite the similarities between YOLOv4 and YOLOv5 architecture, YOLOv5 
has demonstrated better performance than YOLOv4 in many scenarios. YOLOv5 
comes in different sizes (s, m, l, x) to cater to different performance and computational 
needs. 

In conclusion, the YOLOv5 model is an excellent choice for detecting small 
objects and is the quickest technique in comparison to other models. For real time 
applications, single stage detectors works fine, whereas for better accuracy, two stage 
detectors would be required. In the next section, we will go through the different types 
of two stage detectors. 

3.2 Two Stage Detection 

These type of detectors, exemplified by Faster R-CNN (Region-based Convolu-
tional Neural Networks), have emerged in the form of leading methodologies for 
object detection. These detectors are structured around two pivotal stages: first is 
the proposal of the region and second is the classification of the object. In the initial 
stage, potential areas containing the objects are spotted through methods like Selec-
tive Search or Region Proposal Networks (RPNs). Following this, in the object clas-
sification stage, these proposed regions are utilized to class the objects and calibrate 
the bounding box predictions. These are more accurate, better localization possible
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and more robust to noise. However slower and more tedious as compared to one 
stage detectors. 

3.2.1 RCNN 

The Region Convolutional Neural Network (R-CNN) [30] was the beginning of this 
type of detectors which has proven how CNNs can significantly improve perfor-
mance. It employs a class-agnostic module for proposal of region having CNNs to 
transform detection into a localization and classification problem. Initially, a mean-
subtracted input image is processed with the help of the unit of region proposal. 
Thereafter, it identifies portion of the image with greater probability of containing 
an object by applying Selective Search [31]. The authors in [32] used AlexNet 
as the detector’s backbone architecture. The feature vectors are subsequently fed 
into trained, class-specific Support Vector Machines (SVMs) to calculate confidence 
scores. Non-maximum suppression (NMS) is then used to the scored regions based 
on their class and IoU. After identifying the class, it predicts the bounding box with 
the help of a trained bounding-box regressor, that estimates the width, the height and 
the center coordinates of the box. 

The training procedure of R-CNN is a bit complex. The initial step involves pre-
training the CNN on a larger dataset. Next, the network is fine-tuned for detecting 
the objects by making use of domain-specific images (warped proposals, mean-
subtracted) and substituting the classification layer by an arbitrarily initialized N + 
1-way classifier, where N is the number of classes, employing stochastic gradient 
descent (SGD). It’s training process was intricate, taking days for training on smaller 
datasets, even with shared computations. 

3.2.2 SPP Net 

In standard CNN architectures, pooling layers are often utilized to down sample 
feature maps, decreasing their dimensional parameters. This process typically 
involves operations like max pooling or average pooling. Further, conventional 
methods can lead to issues when dealing with images of different sizes or when 
the input image dimensions are not compatible with the fixed size expected by fully 
connected layers or the next stage of the network [33]. To solve this problem, the 
authors in [34] introduced a new method known as Spatial Pyramid Pooling Network 
layer (SPP-Net). This layer is designed to overcome the limitations of fixed-size 
pooling by dividing the feature map into multiple levels of spatial bins with different 
sizes. 

By incorporating the SPP Net layer, R-CNN saw a significant enhancement in 
speed without compromising the quality of detection. The increase in the speed is 
because of the reason that the convolutional layer is required to scan only once on 
the entire image, creating fixed-length characteristics for region proposals of varying 
sizes.
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3.2.3 Fast RCNN 

Ross Girshick proposed Fast R-CNN in 2015 for the first time [35]. This is an 
advanced version of the R-CNN (Region-based Convolutional Neural Network) 
framework for detection of the objects. It significantly improves both the speed 
and accuracy of object detection tasks by addressing several limitations of its prede-
cessor. The key challenges with R-CNN and SPP-Net was the necessity to train 
multiple systems independently. This idea addressed this issue with the development 
of a single comprehensive trainable model. Instead of using a pyramidal structure of 
pooling layers (as in Spatial Pyramid Pooling Networks), this model proposed the 
Region of Interest (RoI) pooling layer. It pools features from the feature maps for 
each object proposal into fixed-size regions, making it possible to feed these regions 
into fully connected layers. This layer further extracts features from a specific region 
of the feature map and normalizes them to a fixed size, allowing the network to 
manage object proposals of varying sizes. After this RoI pooling layer, the network 
includes two fully connected layers that process the pooled features, i.e. N + 1-class 
SoftMax layer and a bounding box regressor layer. In addition, this model replaces 
the L2 loss function used in R-CNN with Smooth L1 loss for the regression of the 
bounding box, which reduces the influence of outliers and improves performance. 

3.2.4 Faster RCNN 

Despite the momentous rise in accuracy and speed achieved by Fast R-CNN, it still 
relied on the selective search process to generate 2000 region proposals, which was a 
sluggish process. The authors in [36, 37] addressed this issue by developing a novel 
detector named Faster R-CNN. This improved the speed of detection by substituting 
the conventional region proposal algorithms such as selective search [38], or edge 
boxes [39], multiscale combinatorial grouping [40], with a network called the Region 
Proposal Network (RPN) [41]. This detector has the four main components explained 
as below: 

(a) The CNN: The output is a feature map which presents the input image in a more 
abstract form. 

(b) The RPN: This is a tiny network that slides over the feature map generated by the 
backbone and proposes regions (also known as anchors) where objects might 
be located. These regions are then used for further processing. This generates 
two outputs i.e. objectness score and bounding box regression. 

(c) Region of Interest (RoI) Pooling: The RoIs are pooled to a fixed size so that 
they can be processed by the next layers regardless of their original size. 

(d) Classification and Bounding Box Regression: The pooled RoIs are thereafter 
allowed to pass across fully connected layers for classification and bounding 
box refinement.
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3.2.5 Mask RCNN 

This is an enhancement over Faster R-CNN by incorporating an additional section 
for pixel-level object instance distribution [42]. This section is a fully connected 
layer enforced to the RoIs to classify each pixel into segments having minimal 
computational price. It uses same kind architecture as used in its predecessor for 
object proposals. The main change is the replacement of the RoIPool layer with the 
RoIAlign layer to escape the problem of pixel-level misalignment because of spatial 
quantization. This model uses ResNeXt-101 [43] as the backbone network, along 
with the Feature Pyramid Network (FPN), to achieve better speed and accuracy. The 
loss function in this model is also upgraded to mask loss, which employs 5 anchor 
boxes with 3 aspect ratios, same as in FPN. The training process of both Mask R-CNN 
and Faster R-CNN is almost same. 

This model outperformed the top-tier single-model architectures and is having an 
additional functionality of instance segmentation with minimal additional computa-
tional cost. Further, this model is flexible and simple to train and can be beneficial 
for purposes like keypoint detection and human pose estimation. Still, it falls short 
of real-time speed requirement (>30 fps). 

4 Data Sets and Performance Metrics 

Datasets performs a very significant role when comparing the performance of 
different type of algorithms. Further, the evaluation of any algorithm can be carried 
out in terms of certain parameters. Therefore, in this section we will focus on some 
of the well known datasets and thereafter on the evaluation parameters. 

4.1 Data Sets 

4.1.1 Pascal VOC 

The Pascal Visual Object Classes (VOC) dataset is a prominent and influential dataset 
in the area of computer vision, particularly for generalized object detection [44]. 
Developed between 2005 and 2012, the dataset has been extensively employed for 
evaluating the effectiveness of object detection methods. Pascal VOC 2007 contains 
twenty Object Classes and 9 k images, whereas Pascal VOC 2012 have approximately 
11,000 images divided into twenty classes. VOC 2012 is an enhanced release of VOC 
2007 having more images and annotations. This dataset has played a crucial role as a 
benchmark in the development and evaluation of object detection algorithms. It has 
been particularly important in the early times of based object detection algorithms 
based on CNN. The primary metric used for evaluating the performance of any
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algorithm on the Pascal VOC dataset is Mean Average Precision (mAP) which is 
explained in next section. Higher mAP values indicate better performance. 

The Pascal VOC datasets (2007 and 2012) remain a fundamental resource in the 
history of computer vision, providing a solid foundation for the research of various 
object detection techniques. 

4.1.2 MS COCO 

The Microsoft Common Objects in Context (MS COCO) dataset is a pivotal and 
arduous massive dataset in the area of computer vision [45]. Developed by Microsoft 
in 2014, the MS COCO dataset was funded to provide a larger and more diverse set 
of data for detection and segmentation. This comprises 80 object categories and 
330,000 images. Every single image in this dataset is annotated with labels, key 
information about the object and bounding boxes. The dataset covers a broad range 
of situations, making it more challenging than many earlier datasets. Many images 
contain objects that are partially or fully occluded, posing a significant challenge for 
detection algorithms. A substantial number of small objects are present, requiring 
algorithms to have high precision and sensitivity. Images often feature dense groups 
of objects, necessitating advanced algorithms for accurate detection and segmenta-
tion. Rich contextual information in the images, reflecting real-world complexity and 
interactions between objects. 

This dataset provides a larger scale and more disparate set of images compared to 
the Pascal VOC dataset. This dataset is widely used for advancing and testing object 
detection and segmentation tasks. 

4.1.3 ImageNet 

It is a significant large-scale standard dataset which has significantly promoted the 
evolution of the algorithms for object detection [46]. This was initially used for the 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [47] that targets to 
assess the accomplishments of the study of computer vision on the localizing task 
and the classification of the objects. This dataset consists of 21,000 classes and each 
category includes hundreds of thousands of images. 

There are other datasets also like OpenImages [48], KITTI, PartNet, CityScapes 
etc. as mentioned in the survey paper [49], which can be used for the evaluation of 
the different types of algorithms (Table 2).
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Table 2 Datasets summary 

Sr. No. Name of  the data set  Year of development Features 

1 Pascal VOC 2005–2012 20,000 images in 20 classes 

2 MC COCO 2014 3,30,000 images in 80 object categories 

3 ImageNet 2006 1000s images in 21,000 Classes 

4 OpenImages 2016–2022 V7 contains 1.9 M images in 600 classes 

4.2 Performance Metrics 

There are a number of parameters available in the literature that can be applied to 
evaluate the achievements of any object detection algorithms. Some of the important 
parameters are explained below. 

4.2.1 Accuracy 

This is defined as the ratio of the count of the right estimates to the total count of 
estimates made by the object detection model. 

Accuracy = TP + TN 
TP + FP + TN + FN 

where the terms 

TP (True Positive) = Right estimates of the positive class. 

TN (True Negative) = Right estimates of the negative class. 

FP (False Positive) = Wrong estimates of the positive class. 

FN (False Negative) = Wrong estimates of the negative class. 

4.2.2 Precision 

This is a parameter utilized to measure the effectiveness of classification algorithms, 
specifically in situations when the classes are uneven or when the cost of false posi-
tives is high. This can be explained as the ratio of true positives to the sum of true 
positive and false positives. 

Precision = TP 

TP + FP
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4.2.3 Mean Average Precision (mAP) 

It assesses the correctness of a model in recognizing and localizing objects in images. 
This metric is evaluated by taking the mean of the average precsion values for all 
classes. In object detection tasks, where models are trained to recognize multiple 
object classes, mAP provides a single metric to summarize the performance across 
all classes. 

mAP = 1 
C 

C∑

i=1 

Pi 

where Pi = Average precision across each class. 

4.2.4 Recall 

Recall (also known as sensitivity or true positive rate) is a parameter which measures 
the model’s capability to find all related instances of the positive class. This metric 
particularly important when missing positive instances can be more costly. It can be 
explained as the ratio of true positive to the sum of true positive and false negative. 

Recall = TP 

TP + FN 

4.2.5 F1 Score 

This metric is important specifically when dealing with imbalanced datasets. It 
provides a balance between two metrics i.e. precision and recall, is helpful when 
both false positive and false negative are significant to consider. It is defined as the 
harmonic mean of precision and recall. 

F1 Score = 2 × Precision × Recall 
Precision + Recall 

5 Future Research Challenges 

Object detection has made significant strides over the past decade. In certain special-
ized areas, algorithms have nearly achieved human-level accuracy. Despite this 
progress, there are still many interesting problems to address. In this segment, we 
will explore some of the interesting research problems in the discipline of object 
detection.
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5.1 Auto ML 

The application of automatic neural architecture search (NAS) to determine the 
features of object detectors is a flourishing field by now. The use of these algo-
rithms have advantages in the detection of small objects and hyper parameter tuning 
Although some work has been reported but still challenging to find an appropriate 
algorithm [24, 50, 51]. 

5.2 Transformers 

Although transformers were only recently introduced to computer vision. These have 
already attained top of the line performance on several benchmarks. The application 
of transformers especially when combined with CNNs, have demonstrated promising 
outcomes but demands further exploration [52–54]. 

5.3 Weakly Supervised Detection 

Most of the currently available methods are trained on multitude of bounding box 
annotated data that is not possible to scale due to the time and resources required for 
annotation. The capability to train on weakly supervised data, such as image-level 
labeled data, can possibly reduce these costs in future. 

5.4 Scale Adaption 

Scale adaptation in object detection relates to techniques that enhance the detection 
of objects at several scales within an image. This is crucial because objects can 
appear at different sizes due to variations in distance, perspective, and resolution. 
The approaches like multi-scale feature fusion, adversial training and Scale-Auxiliary 
Feature Enhancement could be explored in future for scale adaptation. 

5.5 Optimization 

The structure of deep convolutional neural networks (DCNNs) can be revamped 
using various meta-heuristic approaches for betterment. This set of approaches are 
capable of extending convolutional neural networks in different types of research 
problems and applications, such as fine-tuning DCNN hyper parameters and DCNN
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training. Therefore, the appropriateness of meta-heuristic techniques requires further 
exploration. 

5.6 Generative Adversarial Network (GAN) Based Detection 

This refers to using Generative Adversarial Networks (GANs) in the discipline of 
object detection. GANs are a class of machine learning frameworks where two neural 
networks, a generator and a discriminator, are trained simultaneously through adver-
sarial processes. The generator generates new data samples and discriminator eval-
uates the authenticity of the samples produced by the generator. These methods are 
particularly helpful when in real time implementations, images are not very clarified. 

In [55], authors have employed several weather augmentation techniques to deal 
with the images and presented various denoising techniques to improve the perfor-
mance of state of the art methodologies. Integrating GANs with object detectors 
has the definite potential of enhancing the reliability of these algorithms in acute 
circumstances such as partial occlusion, blurring, or other disturbances. 

5.7 3D Object Detection 

3D object detection becomes a very challenging task specially when applied 
to autonomous driving. Despite models achieving higher accuracies, deploying 
anything less than human comparative performance will raise safety issues. This 
should be the topic of interest for future research specifically for autonomous 
vehicles. 

6 Conclusion 

However object detection has made significant advancement in the last 10–15 years, 
the optimal detectors are yet away from achieving peak results. The demand for 
low weight models which could be easily implemented for mobile and embedded 
systems is expected to rise intensively because of its applications in real world. In this 
paper, we have started the review with the traditional approaches and moved on to 
the modern approaches. Various types of one stage and two stage detectors have been 
discussed in terms of their advantages, disadvantages and complexity. The datasets 
available in the literature and important parameters used for performance monitoring 
have also been discussed. The future research directions along with the applications 
has also been discussed, to provide an in-depth coverage of the field. With so much 
development and positive trend in the area of object detection, still there is scope of 
improvement specifically for real world applications like autonomous vehicles.
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Unlocking the Secrets of Deep Space: AI 
Techniques for Object Detection 
in Astronomical Imagery 

Manjuleshwar Panda and Yogesh Chandra 

Abstract The exploration of deep space has always been a source of fascination for 
humans, with astronomical photography providing crucial insights into the enormous 
expanse of the cosmos. The study explores artificial intelligence’s transformational 
role in furthering astronomical science. It begins by emphasizing the importance 
and problems of recognising celestial objects in complicated and massive astro-
nomical data. The basic ideas of machine learning and artificial intelligence (AI) 
are then briefly discussed, emphasizing how they are used in object detection and 
picture processing. The key preprocessing approaches for improving the quality and 
usability of astronomical photographs are thoroughly explored. The work exam-
ines different AI approaches, including Convolutional Neural Networks (CNNs), 
Transfer Learning, and advanced models like YOLO and Mask R-CNN, to demon-
strate their usefulness in finding and categorizing celestial events. Real-world case 
studies demonstrate how these techniques can be used to detect exoplanets, galaxies, 
and supernovae and contribute to gravitational wave research and radio astronomy. 
Looking ahead, the chapter discusses potential directions, including advances in AI 
algorithms, integration with robotic telescopes, ethical implications, and obstacles 
like data constraints and bias. This chapter hopes to inspire further advances in 
the quest to understand the universe by bridging the gap between cutting-edge AI 
technology and astronomical exploration. 

Keywords Astronomical imagery · Object detection · Artificial intelligence ·
Deep learning · Convolutional Neural Networks (CNNs) 

Humanity has always been captivated by the cosmos, which calls us to solve its 
enigmas and appreciate its immense complexity. Our window into the cosmos is 
provided by astronomical photography, which allows us to see far-off galaxies,
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decipher celestial occurrences, and investigate the complex fabric of deep space. 
However, processing and analyzing these enormous datasets has become more diffi-
cult than ever due to the exponential expansion in astronomical data brought on 
by advancements in telescopes and space missions. Artificial intelligence (AI) is a 
disruptive force that is revolutionizing the way we discover, classify, and interpret 
astronomical objects in this data-rich era. The nexus between artificial intelligence 
and astronomy illuminates the state-of-the-art methods and tools that are revolution-
izing how we approach the investigation of the universe’s most remote regions. With 
the combination of astronomy and artificial intelligence, the impossible is becoming 
inevitable in a cosmos full of undiscovered marvels. 

1 Introduction to Astronomical Object Detection 

Astronomical object detection is the process of recognising and cataloging celestial 
phenomena such as stars, galaxies, and asteroids using astronomical imagery. This 
process is required for comprehension of the universe’s structure and dynamics. 
Modern telescopes produce massive volumes of data, creating both opportunities 
and challenges. The intricacy and scale of this data necessitate the use of advanced 
analysis techniques. Artificial intelligence (AI) and machine learning (ML) have 
become indispensable tools in this domain, revolutionizing our analysis of cosmic 
pictures and opening up new avenues for research. 

1.1 Importance of Object Detection in Astronomy 

Astronomical object identification is critical to expanding our understanding of the 
universe. Astronomers can learn about the genesis, evolution, and interaction of 
celestial bodies including stars, galaxies, nebulae, and exoplanets by detecting and 
cataloging them. This procedure is required for producing detailed sky maps and 
surveys, which aid in the study of cosmic phenomena and comprehending the struc-
ture of the cosmos. Furthermore, object detection makes it possible to identify brief 
and unusual occurrences like gravitational waves, supernovae, and near-Earth aster-
oids—all of which have important scientific and practical ramifications [1]. Detecting 
asteroids, for example, can help assess possible Earth-impact hazards, whereas spot-
ting supernovae helps us comprehend stellar life cycles and the expansion of the 
universe.
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1.2 Challenges of Analyzing Astronomical Imagery 

Analyzing astronomical images is difficult due to the large data volumes and the 
necessity for high precision. Gigabytes of data are produced by modern telescopes 
like the Hubble Space Telescope (HST) and the James Webb Space Telescope 
(JWST), making manual analysis impractical. Furthermore, images are frequently 
corrupted with noise and artifacts from a variety of causes, including atmospheric 
distortion, instrumentation mistakes, and cosmic ray impacts. These conditions can 
hide or imitate celestial objects, making them difficult to detect and classify. To 
ensure accuracy and dependability, differentiate actual astronomical objects from 
false positives using complex algorithms and robust validation procedures [2]. 

1.3 An Overview of AI and Machine Learning in Astronomy 

Astronomical object recognition has changed as a result of artificial intelligence 
(AI) and machine learning (ML), which have produced strong tools for handling 
big datasets and complex patterns. The identification and classification of celestial 
objects can be automated with the use of artificial intelligence and machine learning 
methods, greatly accelerating research. An example of a deep learning model that 
is particularly well-suited for astronomical image analysis is convolutional neural 
networks (CNNs), which are excellent at image recognition tasks. These models 
have been successfully used to classify galaxies, find exoplanets, and identify grav-
itational lenses [3]. In addition to improving object recognition’s effectiveness and 
accuracy, AI and machine learning can open up new avenues for research by spotting 
connections and patterns that traditional techniques would have missed. 

In conjunction with these advancements, the issue of categorization accuracy has 
become central to AI-powered astronomical analysis. The ratio of successfully cate-
gorized objects to the total number of objects analyzed determines the classification 
accuracy and can be stated in Eq. (1), as follows: 

Classification Accuracy = (Quantity of Accurate Pr edictions)/ 
(Total Number of Forecasts) (1) 

This simple formula gives a clear indication of how well AI and ML systems 
perform in tasks like recognising and classifying celestial objects. For example, if 
an AI model examines 1,000 images of galaxies and properly identifies 950 of them, 
the classification accuracy is 95%. This simple metric assists astronomers in deter-
mining the dependability of AI models in a variety of applications, including finding 
exoplanets and discriminating between different types of galaxies. By boosting clas-
sification accuracy using techniques such as CNNs and combining massive datasets, 
AI not only improves the efficiency of astronomical research, but also enables new 
discoveries by identifying patterns and connections that traditional methods may 
miss.
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Fig. 1 DL < ML < AI (Credit Edureka) 

2 Fundamentals of AI and Machine Learning 

2.1 Basic Concepts of AI and Machine Learning 

AI and ML are cutting-edge techniques that let computers mimic human intellect 
and learn from information. Artificial Intelligence (AI) comprises a wide range of 
methods, such as robotics, rule-based systems, and natural language processing. 
Within the field of artificial intelligence, machine learning focuses on creating algo-
rithms that allow computers to recognise patterns in data and make choices or 
predictions without needing to be explicitly programmed for each task. 

These algorithms (See Fig. 1) can handle and analyze massive volumes of data 
quickly and efficiently, making them useful in fields that produce enormous datasets, 
such as astronomy [4]. AI and machine learning have proven especially useful in 
astronomy, where the capacity to handle large volumes of data quickly can lead to 
ground-breaking discoveries like detecting previously undiscovered celestial objects. 
These technologies are not only improving our understanding of the universe, but they 
are also opening up new research opportunities by revealing patterns and correlations 
that were previously unknown to us. 

2.2 Supervised Versus Unsupervised Learning 

The two primary categories of machine learning are supervised and unsupervised 
learning. Supervised learning involves training algorithms on labeled datasets in 
which the input data matches the proper output. For problems like regression and 
classification, this method is employed. For example, in the field of astronomical 
object detection, a set of labeled images, each with an annotation identifying the kind 
of celestial object it includes, could be used to train a supervised learning model.
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The model learns to recognise the traits associated with each object category and 
can then categorize new, unlabelled photos [5]. Some key points about supervised 
learning are as follows: 

• Labeled Data Requirement: Supervised learning is based on huge datasets, with 
each input coupled with a known outcome, providing a clear reference for the 
system to learn from. 

• Prediction Accuracy: When the model is trained on large datasets, it produces 
predictions that are incredibly accurate because its efficacy is directly correlated 
with the caliber and volume of labeled data. 

• Error Adjustment: The model’s parameters are adjusted during training by 
comparing the model’s predictions with the actual labels; this allows the model 
to perform better over time. 

• Broad Applicability: Supervised learning is widely applied in many fields, such 
as astronomy, where it is used to classify objects in the sky, forecast the rates at 
which stars originate, and identify different types of galaxies using data that has 
already been labeled. 

The training of algorithms on data without labeled outputs is known as unsu-
pervised learning, in contrast. Finding hidden structures or patterns in the data is 
the aim. In unsupervised learning, dimensionality reduction and grouping are two 
popular strategies. To combine galaxies with similar forms or spectral signatures, for 
example, or to classify similar objects based on their properties, astronomers may 
use unsupervised learning. This method can reveal previously unknown insights and 
linkages in the data. Key Points include as follows: 

• Lack of Labeled Data: Unsupervised learning operates without the need for 
labeled outputs, enabling the algorithm to investigate and identify patterns just in 
the input data. 

• Pattern Recognition: This method is especially good at finding natural groups 
or hidden structures in the data, such as grouping stars according to their inherent 
characteristics. 

• Flexibility: Unsupervised learning is very helpful for analyzing complex or 
unknown astronomical datasets because of its great versatility and ability to be 
applied to a wide range of data sources. 

• Insight Generation: Unsupervised learning can provide new astronomical find-
ings and theories by revealing links and patterns that were previously unknown, 
deepening our grasp of the cosmos. 

2.3 Deep Learning and Neural Network 

Deep learning, as a branch of machine learning, gets its name from the fact that it 
models complicated patterns in data by using neural networks with numerous layers 
(hence the name “deep”). Neural networks are modeled after the human brain’s 
structure, which consists of interconnected nodes (neurons) that process information.
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Table 1 Comparison sheet for deep learning versus neural networks 

Parameters of comparison Deep learning Neural networks 

Layers Multiple Single or Few 

Complexity High Moderate 

Learning compatibilities Advanced feature extraction and 
abstraction 

Learning of fundamental 
features 

Training data Needs substantial datasets Able to operate with smaller 
datasets 

Use cases NLP, astronomical detection, and 
image recognition 

Simple challenges involving 
regression and categorization 

The model can comprehend intricate relationships and carry out tasks like image 
recognition and natural language processing with a high degree of accuracy because 
each layer of the network pulls increasingly more abstract elements from the input 
data [6]. 

Deep learning models that function particularly well for image processing are 
called convolutional neural networks (CNNs). Convolutional layers are used by 
CNNs to automatically deduce the hierarchies of spatial features from images. This 
makes them excellent for astronomical object detection, as they can be trained to 
recognize specific celestial objects based on attributes like shape, brightness, and 
texture. Deep learning models have improved our understanding of the universe and 
made it easier to uncover new celestial events by boosting the correctness and ability 
of object detection in astronomical imagery. Here is the comparison in Table 1, as  
follows: 

Astronomy has undergone a revolution because of the incorporation of deep 
learning, especially with models like CNNs, which enable more precise and effective 
interpretation of celestial imagery. A deeper understanding of the universe and fresh 
discoveries are being made possible by this technological breakthrough. 

3 Preprocessing Astronomical Images 

3.1 Data Acquisition and Sources for Astronomical Images 

The core of any successful astronomical object detection project is high-quality data 
collection. Very Large Telescopes (VLT) in Chile and space-based observatories 
like the Hubble Space Telescope (HST) and the James Webb Space Telescope are 
two popular tools used to take astronomical images. These telescopes collect massive 
volumes of data at multiple wavelengths, ranging from visible light to infrared and X-
rays. Enormous datasets for research and the growth of sophisticated AI and machine 
learning algorithms are provided via publicly available databases, incl. the NASA 
Exoplanet Archive and the Sloan Digital Sky Survey (SDSS) [7].
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3.2 Noise Reduction Techniques 

Noise in astronomical photographs can come from a variety of sources, including the 
Earth’s atmosphere, thermal fluctuations in detectors, and cosmic radiation. Effec-
tive noise reduction is required to improve image quality and enable proper object 
detection. Noise reduction techniques include median filtering, Gaussian smoothing, 
and wavelet transforms. Median filtering effectively eliminates impulsive noise, 
but Gaussian smoothing minimizes Gaussian noise by averaging pixel values with 
a Gaussian kernel [8]. The wavelet transform is very useful in denoising astro-
nomical photographs because it divides the image into different frequency compo-
nents, allowing for the elimination of noise while keeping significant characteristics. 
There are several types of image noise filters. They are normally classified into two 
categories: time domain and frequency domain. Their brief description is following: 

Time Domain Filters: 

1. Median filter: 

• A non-linear filter that uses the median of the pixels next to each one to replace 
the value of each pixel. 

• Highly helpful at eliminating impulsive or salt-and-pepper’ noises. 
• Edges are better preserved than when using linear filters. 

2. Mean filter: 

• A linear filter that replaces each pixel’s value with the average of the adjacent 
pixel values. 

• Effective in decreasing random noise, but may blur edges and fine details. 

3. Adaptive filters: 

• These filters modify their behavior in response to local image properties. 
• Can efficiently minimize noise while maintaining edges and fine details. 

Frequency Domain Filters: 

1. Gaussian Filters: 

• Applied in the frequency domain with a Gaussian kernel. 
• Reduces high-frequency noise while keeping the overall image smooth. 
• Frequently used for Gaussian noise reduction. 

2. Wiener Filter: 

• The goal of a linear filter is to lower the mean squared deviation between the 
initial image and the predicted image. 

• Effectively reduces additive noise while keeping crucial image elements. 

3. Wavelet Transform: 

• Divides the image into many frequency components.
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• Allows for customized noise reduction by adjusting certain frequency bands. 
• Effective in denoising while retaining important image features, particularly 

with astronomical images. 

These various filtering approaches, both in time and frequency domains, contribute 
to the improvement of the quality of astronomical images by effectively decreasing 
noise while maintaining vital information, allowing for more precise object detection 
and analysis. 

3.3 Image Calibration and Alignment 

Accurate picture calibration and alignment are crucial preparation processes for 
astronomical photos. Calibration entails adjusting images for instrumental effects 
such as bias, dark current, and flat fielding. Bias correction eliminates electronic 
noise introduced by the detector, dark current correction tackles thermal noise, and 
flat-fielding corrects fluctuations in pixel sensitivity. Once calibrated, pictures must 
be aligned to ensure that celestial objects are correctly superimposed across different 
exposures or measurements. Images are aligned with sub-pixel accuracy using tech-
niques like cross-correlation and feature matching. Proper calibration and alignment 
are required for high-fidelity composite images and subsequent analysis, such as 
object detection and photometry [9]. This process can be mathematically formalized 
to enhance the grasp of the procedures engaged in converting raw astronomical data 
into high-quality images for study. Here’s a single, simple formalism in Eq. (2), that 
summarizes the entire process: 

Ifinal(x
′, y′) = [

(Iraw(x, y) − B(x, y) − D(x, y))/F(x, y)] × (
T

(
x′, y′)) (2) 

Here: 

• Iraw(x,y) is the raw image data. 
• B(x, y) is the bias frame, which accounts for electrical noise. 
• D(x, y) represents the dark current frame, which removes thermal noise. 
• F(x,y) is the flat-field frame, which corrects for pixel sensitivity differences. 
• T(x′, y′) is the transformation matrix used to align the image with sub-pixel 

accuracy. 

This simple formalism combines all of the major phases of image calibration and 
alignment into a single equation, streamlining the process and making it easier to 
understand. It emphasizes the sequential application of each correction, resulting 
in a final, high-quality image suitable for accurate scientific analysis. This method 
provides a clear mathematical depiction of the calibration and alignment process, 
highlighting its importance in astronomical imaging.
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4 AI Techniques for Object Detection in Astronomy 

4.1 Convolutional Neural Networks (CNNs) for Object 
Detection 

Image processing has been transformed by Convolutional Neural Networks (CNNs) 
and they have demonstrated remarkable success in astronomical object detection. 
CNNs learn hierarchical features from raw images using many layers of convolutions, 
pooling, and nonlinear activations. This enables them to detect and classify celestial 
objects like stars, galaxies, and supernovae with great precision. The Hubble Space 
Telescope (HST) and the Sloan Digital Sky Survey (SDSS) can effectively gather 
data with the use of CNNs, improving our ability to analyze large datasets [7]. CNNs, 
for example, have been used to locate gravitational lenses, which are important in 
the research of dark matter and universe expansion. 

As portrayed in the diagram (refer to Fig. 2), a CNN design is composed of both 
feature extraction and classification. Multiple convolutional and pooling layers are 
used to extract features from the input image. The convolutional layers are responsible 
for identifying local patterns like edges or textures, by applying filters throughout 
the input image. The spatial dimensions of the data are then reduced by pooling 
layers, which successfully summarizes the existence of features found by the convo-
lutional layers. This aids in the management of computational resources and lowers 
the likelihood of overfitting. The fully linked layers are used to send the features to 
the classification phase after extraction. In this instance, the network integrates the 
extracted features to create a high-level comprehension of the picture, finally gener-
ating an output that symbolizes the categorization of the input image—for example, 
determining whether a star or a galaxy is there. CNNs are especially effective for 
astronomical object recognition because of their ability to combine feature extrac-
tion with classification, which allows for the highly accurate identification of intricate 
celestial patterns and structures. The procedure is essential for evaluating enormous 
volumes of data from observatories and has proven helpful in the advancement of 
astronomy research.

4.2 Transfer Learning in Astronomy 

Transfer learning is the process of fine-tuning a pre-trained model, which is typically 
learned on huge datasets such as ImageNet, for specific astronomical objectives. 
This method is very beneficial in astronomy, where labeled data may be limited. 
Transfer learning, which draws on information from other fields, can greatly increase 
model performance on astronomical datasets. For example, Fine-tuning is possible 
for pre-trained CNNs to recognise certain features in Hubble Space Telescope or 
other observatory photos, preventing the necessity for a significant amount of training 
data and processing resources. The transfer learning approach can be represented in
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Fig. 2 CNN framework for image classification (Credit The Click Reader Team. “Introduction to 
Convolutional Neural Networks.” https://www.theclickreader.com/introduction-to-convolutional-
neural-networks/)

Eq. (3), as follows in order to quantify this process: 

Modelfine−tuned = Train
(
Modelpre−trained , Dataspecific, Objectivetask

)
(3) 

where: 

• Modelpre-trained represents the original model that has learnt to extract general 
features from images after being trained on a sizable, all-purpose dataset (such as 
ImageNet). 

• Dataspecific is the particular astronomical dataset that is utilized to refine the pre-
trained model, such as photos from the Hubble Space Telescope. It includes 
instances with labels that are pertinent to the astronomical objectives. 

• Objectivetask indicates the specific objective (such as feature detection or 
classification) for which the model is being modified in the field of astronomy. 

• Train (·) function is the procedure that updates the pre-trained model’s weights 
based on the particular data to maximize performance for the assigned task. 

Applying this algorithm improves the pre-trained model’s conduct on specialized 
astronomical functions with restricted labeled data by adapting it through training 
on domain-specific data.

https://www.theclickreader.com/introduction-to-convolutional-neural-networks/
https://www.theclickreader.com/introduction-to-convolutional-neural-networks/
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4.3 Region-Based Convolutional Neural Networks (R-CNN) 

Region-Based Convolutional Neural Networks (R-CNN) enhance the capabilities of 
traditional CNNs by including region recommendations for object detection. This 
method enables the identification of items at different scales and places within an 
image. R-CNNs have been used to detect and categorize many objects in complex 
astronomical sceneries, such as densely packed star fields or galaxy clusters. R-CNNs 
may accurately localize and classify items despite considerable background noise 
and overlapping objects by producing area suggestions and applying CNNs to them. 

4.4 YOLO (You Only Look Once) and Its Variants 

YOLO (You Only Look Once) is an object recognition system that identifies images 
by dividing them into grid cells and predicting bounding boxes and class probabilities 
with a single forward pass. Real-time object detection applications can benefit greatly 
from this technique due to its speed. YOLO and its variations, such as YOLOv3 and 
YOLOv4, have been applied to numerous astronomical datasets, allowing for the 
quick detection of transitory phenomena like supernovae and gamma-ray bursts. 
YOLO’s speed and precision make it ideal for analyzing massive amounts of astro-
nomical data in real time [10]. In terms of astronomical object detection, YOLO’s 
salient features include: 

• Processing in real-time: Because YOLO can process photos in real-time, it is 
very useful for real-time detection of transitory astronomical events, such as rapid 
radio bursts, gamma-ray bursts, and supernovae. 

• One Forward Pass Only: Large-scale sky surveys can benefit from YOLO’s 
architecture, which reduces processing time by allowing object detection in a 
single forward run over the network. 

• Elevated Accuracy: Even with its rapid speed, YOLO is able to identify and 
localize objects with great accuracy, guaranteeing the reliable detection of small 
or faint astronomical occurrences. 

• Flexibility Throughout Datasets: YOLO and its variations have shown effective 
when applied to various astronomical datasets, this includes observation of radio 
and X-rays, along with optical and infrared images. 

• Scalability: YOLO is scalable for use in large-scale astronomical surveys, where 
millions of photos may need to be analyzed because of its efficiency in handling 
enormous volumes of data. 

• Flexibility: Because of its architecture, YOLO may be optimized for certain 
astronomical tasks, resulting in optimal performance for a range of observational 
campaigns and data types. 

Since it can quickly and accurately detect celestial occurrences across a variety 
of datasets, YOLO is a highly valuable tool in modern astronomy.



80 M. Panda and Y. Chandra

4.5 MMask R-CNN for Detection and Segmentation 

The R-CNN framework is enhanced by Mask R-CNN, which includes a branch 
that forecasts segmentation masks for every identified object. This is capable of 
detecting objects and segmenting instances, which are required for full analysis 
of complicated astronomical images. Mask R-CNN has been used to segment and 
categorize objects in dense star clusters, as well as to extract individual galaxies from 
crowded fields. Mask R-CNN provides pixel-level segmentation, allowing for more 
precise measurements of object attributes including as form, size, and brightness, 
which improves our understanding of underlying astrophysical processes [11]. Mask 
R-CNN covers two primary categories of image segmentation: 

1. Semantic Segmentation: 

• Description: The process of classifying each pixel in an image into a preset 
category while maintaining consistency across different instances of the same 
category is known as semantic segmentation. The middle image of the given 
image in Fig. 3 displays the semantic segmentation result, which indicates 
that the table and all of the chairs have different colors allocated to them 
according to their categories (e.g., all of the chairs are blue and the table is 
white). Nevertheless, the model treats every chair as a single entity and does 
not distinguish between distinct chairs. 

• Astronomical Application: Astronomers can examine the overall compo-
sition of the image by using semantic segmentation to distinguish between 
distinct celestial features like stars, galaxies, and nebulae in astronomical 
images.

2. Instance Segmentation: 

• Description: By identifying every pixel and differentiating between various 
instances of the same object class, instance segmentation goes one step further. 
As can be seen in the instance segmentation output (right image), every chair

Fig. 3 Disparities between instance and semantic segmentation (Credit Medium/TDS. “Review: 
DeepMask Instance Segmentation.” https://towardsdatascience.com/review-deepmask-instance-
segmentation-30327a072339) 

https://towardsdatascience.com/review-deepmask-instance-segmentation-30327a072339
https://towardsdatascience.com/review-deepmask-instance-segmentation-30327a072339
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has a distinct color given to it, making it possible to identify and examine 
individual objects within the same category.

• Astronomical Application: In astronomy, instance segmentation is essential 
for tasks like separating many stars in a cluttered field or recognizing indi-
vidual galaxies inside a dense cluster, enabling a more thorough examination 
of each object. 

Mask R-CNN is a very useful tool in astronomy since it can conduct both semantic 
and instance segmentation. Mask R-CNN helps in the identification and classifica-
tion of astronomical phenomena and allows for accurate measurement and anal-
ysis of celestial objects by offering pixel-level segmentation. This enhances our 
understanding of intricate astrophysical processes. 

5 Case Studies and Applications 

5.1 Exoplanet Detection Using Artificial Intelligence 

Artificial intelligence has substantially improved the discovery of exoplanets, or 
planets outside our solar system. Traditional approaches, like the transit method, 
rely on detecting a star’s minute dimming when a planet passes in front of it. 

AI algorithms, particularly deep learning models, can analyze light curves from 
observatories such as Kepler and TESS (See Fig. 4) with surprising accuracy. These 
models are trained to recognise the tiny signs of exoplanets in the middle of stellar 
noise, resulting in the finding of countless new planets that would have gone unde-
tected by traditional approaches [12]. For example, the utilization of neural networks 
has resulted in the identification of exoplanet candidates in data sets including 
millions of stars, speeding the rate of discovery and expanding our understanding 
of planetary systems. Building on these developments, artificial intelligence (AI) 
has revolutionized the search for exoplanets, especially when applied to data from 
important space missions.

• Kepler Mission: By continually observing the brightness of more than 150,000 
stars and looking for the telltale dimming that happens when a planet comes 
between itself and its host star, the Kepler Space Telescope transformed the 
search for exoplanets. Kepler’s enormous data sets have proven to be a valu-
able resource for sorting through using AI techniques, especially deep learning 
models. These algorithms are taught to identify, even in the presence of strong 
stellar noise, the tiny patterns linked to planetary transits. AI has automated the 
detection process and improved the accuracy of results, leading to the discovery 
of numerous extrasolar planets, some of which are Earth-sized in the habitable 
zone. 

• TESS Mission: Kepler’s legacy is furthered by the Transiting Exoplanet Survey 
Satellite (TESS), which concentrates on the brightest stars while surveying almost



82 M. Panda and Y. Chandra

Fig. 4 Kepler space telescope—Kepler (left) and transiting exoplanet survey satellite—TESS 
(right) (Credit NASA) 

the whole sky. TESS generates a significant amount of data, which AI models 
effectively process to find new exoplanets. Smaller and farther-off exoplanets that 
could have gone unnoticed by traditional approaches can now be found thanks to 
AI-driven algorithms that are able to detect the minute dips in sunlight created 
by transiting planets. A key factor in quickening the rate of exoplanet discoveries 
and expanding our understanding of planetary diversity is the use of AI in TESS 
data processing.

Our knowledge of the variety and distribution of planetary systems in the galaxy 
has grown as a result of the incorporation of AI into the analysis of data from 
Kepler and TESS, both of which have improved the speed and efficiency of exoplanet 
discovery. With artificial intelligence playing a major part in the quest for the hidden 
planets that form our universe, these developments usher in a new age in exoplanet 
research. 

5.2 Identifying Galaxies and Star Clusters 

AI approaches have transformed the identification and classification of galaxies and 
star clusters. Convolutional Neural Networks (CNNs) are particularly excellent at 
processing large volumes of celestial imagery, distinguishing between different types 
of galaxies, such as spiral, elliptical, and irregular, as well as identifying star clusters. 
Researchers can automate the classification process by training these models on 
labeled information from the Sloan Digital Sky Survey (SDSS) is just among many 
surveys, which reduces manual labor while enhancing accuracy. Furthermore, AI 
models have helped uncover new star clusters in crowded regions when traditional 
methods fail to discern individual objects due to overlapping light sources [13].
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5.3 Supernova Detection and Classification 

Supernovae, or stellar explosions, are crucial for comprehending the universe’s 
dynamics. AI has significantly improved supernova detection and categorisation by 
analyzing data from automated sky surveys. By analyzing vast volumes of data, 
machine learning algorithms can uncover and classify transitory events using light 
curves and spectra. Random Forests and Support Vector Machines (SVMs) have 
been used to discriminate between distinct types of supernovae, such as Type Ia and 
Type II, thereby advancing the study of stellar evolution and cosmology. AI-powered 
technologies enable the rapid identification of supernova candidates, making follow-
up observations necessary for further investigation. Although they have different 
advantages, Random Forests and Support Vector Machines (SVMs) are both efficient 
machine learning algorithms for classifying different kinds of supernovae. 

• Random Forests: Given its durability and capacity to manage intricate feature 
interactions with minimal parameter modification, Random Forests may perform 
better in large datasets with a variety of features (such as brightness, color, and 
light curve properties). 

• SVMs: In high-dimensional areas, support vector machines (SVMs) may perform 
better if the data is better organized and clearly distinguishes between different 
types of supernovae based on specific criteria. When there is a clear but complex 
class boundary, they are especially potent. 

Because of its stability and capacity to manage intricate feature interactions, 
Random Forests may be more useful for large, noisy datasets with plenty of features. 
However, SVMs may be a better option for datasets when the data is in high 
dimensions and the classes are well-separated by a hyperplane, as they are excel-
lent at identifying distinct decision boundaries even in intricate, high-dimensional 
environments. 

5.4 Enhancing Radio Astronomy Using Machine Learning 

The incorporation of machine learning techniques in radio astronomy has resulted in 
a significant improvement. These approaches are used to analyze complex data from 
radio telescopes, which frequently include signals from a variety of astrophysical 
sources. Machine learning algorithms may successfully separate these signals, find 
trends, and improve the identification of phenomena like pulsars, fast radio bursts 
(FRBs), and even possible extraterrestrial communications. Unsupervised learning 
techniques, such as clustering, have been used to group comparable signals, making 
it easier to locate and investigate novel sources of radio emission. Furthermore, AI 
approaches are utilized to calibrate and clean radio data, which increases the overall 
quality and dependability of observations [14].
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From radio astronomy’s inception to the present day of next-generation surveys, 
the graph in Fig. 5 shows the exponential growth in the number of radio sources 
found by major surveys over the decades. Interestingly, every notable increase in 
detections is correlated with developments in the technology of radio telescopes and 
the use of increasingly complex data analysis methods, such as machine learning. 
As seen, early surveys found only a few sources, including those by Grote Reber and 
the Mills Cross in Australia. However, the number of detected sources has risen into 
the millions with the introduction of surveys such as NVSS, FIRST, and more recent 
ones like EMU and VLASS. The enhanced sensitivity and resolution of contemporary 
telescopes as well as the incorporation of machine learning algorithms, which enable 
the more effective processing and interpretation of the complex data these equipment 
gather, are both responsible for this growth. 

A key element in this evolution has been machine learning, which allows 
astronomers to manage massive data sets, remove noise, and detect weak signals 
that would have gone undetected with more conventional techniques. Finding new 
astronomical phenomena like Fast Radio Bursts (FRBs) and possibly even indica-
tions of extraterrestrial intelligence has been made possible through the application 
of unsupervised learning to categorize and group these signals. As the graph visually 
illustrates, in conclusion, the development of machine learning is a critical compo-
nent of radio astronomy and will likely speed future discoveries and expand our 
knowledge of the cosmos.

Fig. 5 Advances in surveys and machine learning techniques are driving an exponential increase 
in the detection of radio sources in radio astronomy (Credit Cosmosmagazine) 
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6 Future Directions and Challenges 

6.1 Advances in AI Algorithms for Astrophysics 

The future of astrophysics is set to be changed by ongoing advances in AI algorithms. 
Current artificial intelligence strategies, incl. deep learning and convolutional neural 
networks (CNNs), have already had a substantial influence; however, upcoming algo-
rithms promise much larger advances. For example, generative adversarial networks 
(GANs) and reinforcement learning are being investigated for their ability to imitate 
celestial phenomena and optimize observational tactics. GANs can produce high-
fidelity synthetic astronomical images to help train AI models on unusual events or 
to supplement existing datasets [15]. Reinforcement learning algorithms can schedule 
telescope observations to acquire the most scientifically valuable data [16]. These 
developments will not only improve our ability to detect and analyze astronomical 
objects, but will also aid in the solution of complicated cosmological and astrophys-
ical problems. Transfer learning, which enables AI models trained on one piece of 
astronomical data to be transferred to different but related tasks, is another exciting 
development in the field. This is especially helpful in astronomy, where there may not 
be as many labeled datasets available. It allows models to use information from other 
fields to perform better on new tasks. In astrophysics, Explainable AI (XAI) is also 
gaining popularity as a means of improving the transparency and interpretability 
of AI models. Understanding how complicated models make decisions is crucial, 
particularly in high-stakes domains like the categorisation of cosmic occurrences 
or the forecasting of astronomical catastrophes. In order to find novel astrophysical 
phenomena that have not yet been classified, Unsupervised learning techniques like 
autoencoders are being improved to find patterns in huge datasets without the neces-
sity for labeled data. When taken as a whole, these developments in AI algorithms 
are improving our ability to observe things and opening doors to new findings and 
understandings of the universe’s most puzzling mysteries. 

6.2 Integration of AI and Robotic Telescopes 

The combination of AI with robotic telescopes offers a substantial advancement in 
astronomy study. Artificial intelligence (AI)-driven systems are able to make judg-
ments in real time using data from observations and operate telescopes autonomously. 
This makes it possible to respond quickly to ephemeral events like rapid radio bursts, 
gamma-ray bursts, and supernovae. For example, the Zwicky Transient Facility (ZTF) 
employs machine learning algorithms to analyze data in real time, triggering addi-
tional observations when potential transients are recognised [17]. The combination 
of AI and robotic telescopes also makes large-scale sky surveys possible, as AI can 
pre-process and analyze data to find objects of interest, considerably decreasing 
astronomers’ workloads and enhancing data gathering efficiency.



86 M. Panda and Y. Chandra

The graph in Fig. 6, shows the increasing trend in astronomy and astrophysics 
publications containing keywords such as “neural network” and “machine learn-
ing”. There is a discernible and persistent growth in both categories starting about 
2010, which is indicative of the increasing incorporation of these AI methods into 
astronomy study. The increase in publications is in line with developments in AI-
driven robotic telescopes, which depend on these technologies to process large 
datasets, operate telescopes autonomously, and make judgements in real time while 
conducting observations. The graph illustrates how the scientific community has 
come to appreciate AI’s benefits, especially when it comes to accurately and effi-
ciently analyzing celestial occurrences. This trend is expected to pick up speed as 
additional robotic telescopes go online and as AI algorithms get better, which will 
result in even bigger contributions to theoretical advancements and observational 
capabilities. 

In summary, the integration of artificial intelligence (AI) with robotic telescopes 
represents a significant breakthrough in astronomy, as evidenced by the expanding 
corpus of research that highlights the critical role of machine learning and neural 
networks in expanding our knowledge of the cosmos. This collaboration between 
observational astronomy and AI is expected to propel future discoveries at a never-
before-seen rate.

Fig. 6 Growing impact—the exponential rise in astronomy publications emphasizes the growing 
integration of machine learning and neural networks, which propels the development of robotic 
telescopes and AI-powered astronomical research. (Image Credit ‘Machine Learning Applications 
in Astrophysics’ by Soo, Al Shuaili, and Pathi.) 
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6.3 Future Prospects for AI in Space Exploration 

AI’s significance in space exploration is projected to grow significantly in the future 
years. AI systems are being developed to help with autonomous navigation, scien-
tific data analysis, and decision-making in space missions. AI, for example, can be 
used to analyze data collected by rovers and landers on distant planets, identifying 
geological features and potential indicators of life with minimal human involve-
ment. Furthermore, AI will play an important part in interstellar mission planning 
and execution, as well as trajectory optimisation and resource management on board. 
The employment of AI in conjunction with sophisticated robotics will allow for more 
intricate and long-duration missions, expanding humanity’s reach farther into space 
and enabling for more thorough exploration of distant planetary bodies. 

Unprecedented discoveries and advancements are anticipated as artificial intelli-
gence (AI) technology advances and is integrated into space exploration. As mankind 
expands further into space, artificial intelligence (AI) will become increasingly 
important. It must be able to manage massive data quantities, adjust to unforeseen 
issues, and function independently in challenging environments. In the future, artifi-
cial intelligence (AI) might be used to power spacecraft that undertake extraterrestrial 
exploration missions, study the atmospheres of exoplanets, and perhaps help in the 
hunt for hidden intelligence. Combining artificial intelligence (AI) with other cutting-
edge technologies will allow us to push the limits of space exploration, paving the 
way for future explorers to tackle the most challenging interstellar travel issues and 
opening up new research opportunities. 
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AI-Driven Insights: Revolutionizing 
Satellite Imagery Applications 

Raj Kishor Verma , Indrajeet Kumar , and Sumit Kumar 

Abstract Artificial intelligence has revolutionized applications of satellites in 
imagery by producing information previously impossible to acquire and opera-
tional efficiency on a wide spectrum of businesses. With a focus on crisis manage-
ment, agriculture, urban development, and the monitoring of ecology, the technology 
addresses new applications in intelligent technology with satellite images. Tremen-
dous volumes of data can be processed and analyzed speedily and accurately through 
a combination of AI technology and satellite snapping pictures. Image recognition 
was done using human judgment, which was cumbersome and limited. However, all 
of these have changed with the rise of deep learning and different machine learning 
approaches that will allow automatic object recognition and classification in satel-
lite images. The usage of AI algorithms based on data set patterns may enable 
researchers to trace problem areas and predict future trends. Such information is 
vital to effective conservation plans and resource management. Emergency response 
teams look at enhanced images from satellites during severe weather events like 
wildfires, storms, or landslides for very critical information. The quick analysis of 
data allows responding agencies to get a grip on the extent of destruction faster and 
disburse supplies better. As another example, AI algorithms may compare before-
and-after pictures to help compute damages and figures out which areas need the most 
urgent attention. In other words, it saves time while also pushing forward efforts at 
response overall.
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Keywords Artificial Intelligence (AI) · Satellite imagery ·Machine learning ·
Data analysis · Real-time monitoring 

1 Introduction 

The potential of satellite imagery has been rapidly being pushed forward by AI-
driven insights enabling previously unthinkable capabilities across numerous sectors. 
The proliferation of satellite data is only going to increase—driven by technolog-
ical advancements in the satellite sector and a rise in open-source satellites—the 
use of Artificial Intelligence (AI) and Machine Learning (ML) has become critical 
for allowing us to retrieve insights from this ocean of information. AI in Satellite 
Imagery Satellite images can cover large areas therefore AI technologies increase the 
ability to analyze them and their objects, such as land use monitoring, and spectral 
analysis of environmental changes. Algorithms within AI can analyze complicated 
datasets that would be far too much for human analysts. The effectiveness of this 
information is incredibly important in fields such as agriculture, disaster manage-
ment urban planning or climate monitoring where decisions need to be taken quickly 
but with correct information. With companies like Planet and Black Sky developing 
processing methods that enable AI to analyze satellite images straight off the press, 
the utilization of satellite data for predictive analytics has advanced significantly. By 
studying species through satellite pictures, artificial intelligence (AI) aids in keeping 
track of wildlife for environmental protection. Furthermore, by looking at trends in 
land use and environmental changes, AI will predict any possible crises in geopo-
litical situations. This change is AI-driven. It uses both advanced machine learning 
algorithms as well as new ways of processing data to interpret the complex datasets 
that are beamed to us daily from thousands of satellites. The efficiency of handling 
large volumes of satellite data is greatly improved by AI. Traditional manual anal-
ysis techniques are often laborious and subject to human error. With AI algorithms 
automating the procedure of extracting valuable information from pictures, one can 
quickly assess how the environment has evolved, and what the impact of land use and 
crisis response would be. For example, previous data can be used to train machine 
learning models with similarities so that they will categorize items, discover patterns, 
and even predict future changes [1]. AI is especially good at deciphering multispectral 
images, which gather data at multiple wavelengths. This capability helps to explain 
many things. For example, water quality, soil moisture content, and vegetation health. 
Looking at the spectra with AI brings essentials for management of resources and 
agriculture, and monitoring of the environment. By using in-depth spectral analysis 
to identify stress factors, crop health and harvest forecasts can be evaluated with 
AI-driven tools. AI’s integration with the study of satellite data allows for insights 
that are nearly instant. Satellite companies like Black Sky are using AI to process 
pictures right as they take place, providing fast intel which can contribute to decisions 
for the average citizen and major corporate holdings alike [2].
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Fig. 1 Application of artificial intelligence 

1.1 Artificial Intelligence (AI) 

Machine-like and artificial as a transformative technology, intelligence typically 
performs tasks that are the normal province of human brains. In the field of AR, 
this idea takes shape on a variety of levels–from automation and individual services 
to predictive analysis below we introduce several forms or “channels” used by The 
sine qua non of a successful future for humanity is thus to make AI work for us. 
Meanwhile, AI is an immensely powerful vehicle for improving productivity quali-
tatively better choices about the future, and entry into all manner of inventions often 
across a widespread in industry. The crux of AI’s future potential lies now in leading 
it responsibly. As AI continues to mature and conquer one problem after another, 
As AI becomes more closely integrated into our lives, many new uses will again be 
occasioned for it (Fig. 1). 

1.2 Satellite Imagery 

The technology has been successfully developed for use in a wide variety of indus-
tries. We shall see that this is especially the case in agriculture, environmental moni-
toring, urban planning and disaster management. Following this overview of satellite 
imagery and its public significance today, the next sections illustrate how various 
sorts of satellite data can tell us about society. Urban High-resolution cities for urban 
planning Cities use satellite imagery for the planning of urban land and infrastruc-
ture. These images help urban planners see land-use patterns, and determine the
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scope of urban sprawl and the method of construction necessary so citizens can live 
and work more efficiently [3]. Real-time With satellite imagery, data concerning 
earthquake areas and hurricane times at disaster locations during natural disasters 
can be provided. It assists in appraising the extent of injury suffered as well as 
conducting emergency relief work along with subsequent recovery efforts. Scientists 
are particularly interested in Snow flying machines equipped with instruments and 
radar-sounding equipment that cruise the globe through June to September recording 
snowfall levels, whether it is dry or wet (moisture content), its depth of accumulation 
as well number of days left until summer melts it away altogether [4]. Scientists Over 
90% of the world’s planets Satellite images are indispensable for climate research 
in many ways. They enable scientists to track temperatures, rainfall patterns, and 
sea levels worldwide in real-time; detect how wind blows around the globe can be 
visualized from space on a minute-by-minute basis. Monitoring Biodiversity Conser-
vationists use satellite imagery to monitor wildlife habitats and changes in biodiver-
sity. This information is of great use in carrying out their work to protect endangered 
species and improve the management of nature reserves [5] of National Infrastructure 
Satellite imagery is used for watching after infrastructure systems and facilities that 
are vital to economic development, such as roads, bridges, and railway lines. This 
comes from examining what needs to be fixed on the ground and maintaining the 
structural integrity of these facilities. 2.12 In telecommunications, satellite imagery 
is employed as a tool for network planning expansion. It provides information about 
all the geological features that may affect coverage including what conditions so 
engineers can input this data into computer programs like ArcViewGIS in order to 
generate computer-based maps [6]. 

The Technology Behind Satellite Imagery Sensors and Cameras Onboard satel-
lites are equipped with advanced sensors that can gather different sorts of data. For 
example, an optical-sensitive sensor is used to capture visible light pictures; simi-
larly, radar sensors in black and white capture the land seen from the sky. These 
sensors can map the earth no matter what kind of weather it is (rainy, snowy, foggy, 
dusty, etc.). 

Data Processing the raw data taken from satellites is greatly processed so that it can 
be corrected: these are four things that are wrong with optical or microwave survey 
maps one must transform them. These processing steps include orthorectification 
(correcting geometric distortions) and radiometric correction (adjusting brightness 
levels). 

Geographic Information Systems (GIS) GIS technology, integrated with satellite 
imagery, allows users to analyze spatial data effectively. It matches people together 
with various pieces of information obtained from satellites, distributing this with 
squaring on the map or constructing maps after measuring activity all over India’s 
External Lands by adding satellite data where needed to fill in blanks. Artificial 
Intelligence (AI) Integration Integration with AI offers a higher-order power for the 
analysis of satellite imagery. Machine learning algorithms can help automate feature 
extraction and classify types of land use, extracting trends in consideration from 
historical data.
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Fig. 2 Application of AI and satellite imagery 

AI-driven applications will analyze large data quicker and more efficiently than 
those methods present based on traditional methods. Satellite imagery has become 
vital in a variety of fields: thanks to the information it offers decision-makers above 
ground. It extends from agriculture to disaster preparedness, making it a key resource 
all over the world. As the new technology of combining advanced AI 611—and 
specifically in integration with satellites under [7] makes its presence felt more 
broadly, satellite imagery will continue to find additional potential uses: and this 
also brings pleasant music for decision-makers to hear since it provides fresh oppor-
tunities in thinking about how we might best supervise and optimize our planet’s 
requirements [7] (Fig. 2). 

Satellites have been used for a long time to get a variety of information about the 
surface of the Earth, such as tracking surface vegetation, global weather patterns, 
ocean currents and temperatures and several others. The high resolution of images, 
coupled with the decrease in costs and greater availability made it increasingly 
possible for the public to use satellite images more fully. Satellite Imaging Tech-
nology has led to the development of hyper-spectral and multispectral sensors that 
can aid in finding objects, identifying materials and detecting processes. Satellite 
images are “digital images of the Earth’s surface (or any other planet) compiled from 
spectral data collected by sensors carried in special-purpose satellites, readily avail-
able for all parts of the world from various commercial and government sources”. In 
simple words, satellite imagery is images of the Earth (or any other planet) that is 
collected by imaging satellites operated by governments and businesses around the 
world [4].

• Use satellite imagery and artificial intelligence to monitor railway infrastructure. 
Railway tracks are one of the most fundamental and central components of railway 
systems. Even little structural deterioration might have devastating repercussions. 
Furthermore, the presence of any object or substance in the train’s gauge may 
endanger the passengers’ lives. Vegetation is one of the most significant invaders
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along the railway rails. It becomes considerably more perilous when vegetation 
develops and penetrates the train’s gauge. Similarly, trees can touch or batter 
catenaries, slowing vehicles for safety concerns. Thus, satellite photos may be 
quite useful in monitoring and maintaining vegetation.

• Satellite technology Imagery and AI applied Urban Planning Rapid metro expan-
sion and development have increased strain on ecosystems, particularly urban 
parks and green areas. Green areas are vital for improving urban environments 
and providing a quality of life for the urban population. Green places include 
lawns, public parks, gardens, streetscapes, woods, and so on. In this regard, tech-
nologies such as satellite imagery and AI/ML can assist urban developers and land 
[7] managers in observing and promoting decision-making for sustainable growth 
in dense urban environments, as well as preventing flooding in urban areas, by 
gathering high-resolution details concerning the urban area [8].

• Satellite imagery may give extensive analysis to locate significant changes in 
urban land cover and land use, allowing for frequent coverage and overlaying of 
different time frames to define ecologically safe and sustainable zones in every 
planned development area(s). Thus, satellite imaging, together with AI/ML [6, 9], 
can play an important role in assuring ongoing urban planning and growth [10].

• Natural disaster prediction and detection using satellite imagery and artificial intel-
ligence (AI) Satellite pictures, combined with GIS maps, may provide a wealth of 
information for the evaluation, analysis, and monitoring of natural catastrophes 
such as hurricanes, tornadoes, volcanoes, earthquakes, and cyclone damage in 
local and big regions throughout the world. It may serve as a key tool and tech-
nology for monitoring and managing catastrophes, developing strategic planning 
models, and predicting and controlling natural disasters as they occur.

• Satellite Imagery and AI for [9, 10] the railroad Obstacle Detection. Obstacles 
on railways nearly invariably cause damage and accidents to trains since they are 
hard to avoid, posing a threat to passenger safety. It is critical to recognise them as 
early as feasible. Natural catastrophes and environmental factors can both provide 
challenges.

• Railway crossing monitoring can also be added here. Every year in France, there 
are an average of one hundred train-car crashes, with thirty persons killed and 
fifteen badly injured. Even though the majority of accidents are caused by human 
error, early discovery of a blocked crossing has a significant benefit. Obstacle 
detection would combine ongoing vehicle detection efforts with railway demands.

• Use satellite imagery and AI for infrastructure condition and mapping. Satellite 
imagery allows for the evaluation of various infrastructural situations. The high 
resolution of satellite photos has the ability to reveal fine features in the observed 
area. Satellite imagery, for example, enables the observation of broken railway 
tracks, broken/damaged roads, broken/damaged bridges, damaged catenary poles, 
damaged air bases, runways, and other such structures, allowing accidents to be 
avoided before they occur [11].

• Satellite Imagery and AI for Airport Mapping High-resolution satellite imagery, 
paired with AI, machine learning, and computer vision algorithms, may play
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a critical role in the planning and construction of airport layout plans, naviga-
tional mapping, airport security, and aviation safety operations. 3D digital surface 
models and digital terrain models may be generated to offer data and details for 
the development of airport runways, terminals, layout design, airspace studies, 
obstacle surveys, facility mapping, taxiways, and other projects. Furthermore, 
using remote sensing satellite image data and GIS, airport planners and developers 
may gather all of the information required to improve traffic planning inside the 
airport structure. Furthermore, remote sensing satellite image data can be useful 
for recognising environmental changes, urban growth around the airport, changes 
in land use patterns, and vegetation behaviours in the airport region [12]. 

1.3 Machine Learning (ML) 

Machine learning (ML) [9] refers to a branch of artificial intelligence which develops 
algorithms that allows computers to learn and make prediction from the data. Over 
the past few years, this technology has become extremely popular because it can 
find patterns from a very large amount of data that can be very difficult for human 
beings to distill manually. Here is all you want to know about machine learning—its 
types, techniques, applications, challenges and future evolution (Fig. 3). 

Overview of Machine Learning 

Automated learning refers to how computers, without being explicitly programmed 
for different given tasks, use algorithms to analyze data, learn from it, and make 
decisions or predictions Machines should generally get better with exposure to data, 
that is the goal [9, 11].

Fig. 3 Application of machine learning 
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1.3.1 Machine Learning Techniques 

Machine Learning has become such a powerful and immensely popular sub-field 
under the umbrella term Artificial Intelligence that is works silently behind the 
scene and changes the way we people solve a problem or analyze the data. As 
an application of artificial intelligence, machine learning gives the system the ability 
to automatically learn and improve performance based on past experiences without 
being explicitly programmed, which is key to enabling computers to adapt to their 
foes and upgrade over time [1, 2]. An introduction to different types of learning. 

1.3.2 Supervised Learning 

Supervised learning You can think of supervised learning as an input and an output. 
Supervised Learning is to learn a function from input to output that can generalize 
and predict new and unseen data [13, p. 102]. An example of supervised learning: you 
show the algorithm a database of images of cats and dogs, along with the appropriate 
label (cat or dog) for each image, and it figures out which image is which. 

1.3.3 On-Line Unsupervised Learning 

These algorithms aim to reveal the hidden clusters, groups or associations in data 
when no target variable is being designated. Customer segmentation is one of the 
most common applications of unsupervised learning the task for the algorithm here is 
to discover groups of customers who are similar to each other in terms of purchasing 
behavior and/or other features without being given any labels in advance. 

1.3.4 Data Analysis 

Data analysis is the set of techniques used for observing, perforating out, trans-
forming and building models of data in order to extract intelligent information and 
inform decision-making. It includes a variety of methods and techniques to help orga-
nizations make evidence-based decisions. Here are a ton of definitions, certainly in 
types, equipment and features conditions data oriented analysis. Data analysis is 
the science of collecting, inspecting, cleaning and transforming data with the goal 
of discovering useful information, drawing conclusions, and supporting decision-
making. It is relevant to both numerical/quantitative data and categorical/qualitative 
data, and is important in many fields (e.g., business, healthcare, social sciences). 
Data-Driven Decision Making: Companies can draw insights of current trends and 
come up with strategically sound decisions using data analytics. Trend Identification: 
Combination of historical data analysis helps you identify trends will let businesses 
plan future strategies. Performance Improvement: Organizations can utilize data to
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Fig. 4 Data analysis 

evaluate their processes and identify improvement opportunities. Run of Data Anal-
ysis Different businesses make use of data analysis: Business Intelligence Health 
Processing the data of patients in hospitals or clinics improves treatment results and 
makes health institutions function better. 

Data analysis: Businesses utilize data analysis to monitor key performance 
indicators and strategic choices. 

Marketing: Improve marketing techniques and, communication with customers. 
Social Sciences: In social science (research) the researchers analyze survey data 

or experimental data using statistical methods 1. 
Data analysis is a vital process that makes sense of raw data by delivering mean-

ingful insight in a wide variety of areas. From descriptive statistics to predictive 
modeling, organizations and methodologies for data analysis will also continue to 
develop, providing even more means for generating insights from data in this increas-
ingly challenging space. The following are the most common techniques applied in 
data analysis; with definitions (Fig. 4). 

1.4 Real-Time Monitoring

• This practice has been around for many years with real-time monitoring using 
real time performance and security, allowing organizations to quickly identify 
anomalies and problems in systems or events as they happen during the execution 
of various processes such as those found in manufacturing but also in healthcare
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where access to data needs being as fast possible, significantly affecting deci-
sion making and operational effectiveness. Real-time monitoring is the imme-
diate collection and testing of data, followed by a prompt reporting of results 
for action-taking to solve problems quickly with minimal time lag between data 
collection and processing activities Sensors and sources of data basically are 
devices (network gadgets and application servers) Monitoring software consists 
of data collection and analysis apps, along with dashboards. User interfaces that 
interpret data insights into an understandable form. The advantages of live moni-
toring are that a merchandiser property owner can promptly catch difficulties and 
responsive steps can be taken to ease fallout. Better Control: Live surveillance is 
such that if it looks like someone has broken open at some time, or attempts to 
enter a secures area unauthorized alert will be instantly raised.

• Enhanced Performance: Because bottlenecks are instantly identified and can 
be solved before problems escalate, systems continuously function at high 
performance levels.

• Improved Decision Making: Real-time data is giving you the information 
as it is means strategic decisions developed based on current organizational 
circumstances and not based on historical points.

• Trend insights: This can reveal trends and patterns over a period of time which is 
beneficial for you to plan your next move.

• IT infrastructure monitoring—Real time has been used for IT Infrastructure Moni-
toring where organization monitor their IT environments, servers, networks that 
is it uses for monitoring the applications as well. So that it can be of better use to 
you and come in handy when required [6, 9, 10].

• Protection Tools: An Activity Based on Potential Security Under Network Safety 
This is a more, proactive and term that positions them for better cyber security 
posture.

• Application Performance Monitoring—Real-time monitoring of applications 
enables businesses to monitor their application performance metrics (response 
times, etc.) and troubleshoot issues that impact user experiences.

• Data Process Mining – In manufacturing environments, the processes are running 
in real-time stream to monitor performances of machines and production process 
for minimizing downtime and improving efficiency of operation.

• Health Care monitoring– In hospitals, real-time monitoring is used to track the 
patient vital signs and status of equipment that need prompt solutions.

• Financial Transactions Financial institutions have now properly embedded real-
time monitoring systems that are able to detect fraud transactions.

• The Trouble with Real-Time Monitoring (Fig. 5).
• Huge quantities of data are produced daily. There might be duration in the analysis 

if you do not use its progression.
• Integration Issues: Integrated in real time monitoring tools [7, 14].
• False Positives—If too sensitive, alerts will get generated far more regular than it 

should be (potentially inflicting alarm fatigue amongst staff).
• Cost Sensitive: Full end to end real time monitoring solutions can be costly to 

use, both in software licensing and ongoing subscription maintenance.
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Fig. 5 Real-time monitoring

2 Literature Review 

Get the Table 1 take a fast glance at AI based Insights and links to publications on 
the latest research, development of using satellite imagery: Revolutionizing Satellite 
Imagery Applications.

3 Proposed Methodology 

Explanation of Each Component Reported Satellite Data Naked Image Input Unit 
Raw satellite imagery piled up into a file just like in when you first evaluated this 
item. Data Processing Phase Clean up the Raw Data With it goes unwanted things 
such as noise and shadows. This crucial step employs a wide range of AI techniques, 
including clustering, classification and outlier detection, to extract actionable patterns 
from the Data Layers. Real-Time [9, 11] Analysis With the data it’s possible to make 
a real-time anatomization, enabling agencies to gain insight into and adapt rapidly 
changing conditions on land surfaces. Generating Insight This step converts the 
interpreted data into sharp insight actionable at every turn: in the fields of agriculture, 
community planning, and environmental monitoring. Results are viewed through 
dashboards and reports that help to advance market trade and trace probe detections 
closed open ended. Communication Stoned non-stop improvement in algorithms 
and processes goes beyond crystal methamphetamine by giving feedback on the 
perception created is part of this feedback loop, allowing users to be a part of its 
continuing enhancement (Fig. 6).
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Table 1 Review of literature survey 

S. N Title Authors Publication 
date 

Methodology 

1 New satellite aims to 
show how AI advances 
earth observation 

ESA July 2, 2024 Discusses the sat-2 mission 
that utilizes AI for real-time 
processing of satellite 
imagery 

2 AI-based system for 
satellite image analysis 

Computer 
science 
journals 

2023 Introduces an AI-based 
system for automating 
thematic information 
extraction from satellite 
images 

3 How AI is turning 
satellite imagery into a 
window on the future 

Defense one June 2024 Explores how AI tools 
enhance satellite data 
analysis for predicting 
geopolitical events 

4 Using AI and open 
source satellite imagery 
to address global 
problems 

Omdena May 17, 
2022 

Highlights projects 
combining AI with 
open-source satellite 
imagery for actionable 
insights 

5 The role of AI in  
enhancing disaster 
response through satellite 
imagery 

Various 
sources 

2023 Reviews how AI-driven 
insights improve disaster 
response efforts using 
satellite imagery 

6 Machine learning 
algorithms for satellite 
image classification 

Various 
sources 

2023 Overview of machine 
learning algorithms used for 
classifying features in 
satellite images 

7 Deep learning and 
satellite remote sensing 
for biodiversity 
monitoring and 
conservation 

Nathalie 
Pettorelli 

2024 The nature crisis necessitates 
reliable and cost-effective 
tracking of biosphere 
changes 

8 AI-driven approaches for 
real-time satellite data 
processing and analysis 

Hafez Ahmad 2024 Focuses on AI methods 
applied to monitor 
environmental changes via 
satellite data 

9 Integrating AI with 
satellite data for urban 
development planning 

Jiadi Yin 2021 Analyzes how integrating AI 
with satellite data can 
facilitate urban planning 

10 Real-time processing of 
satellite imagery using 
AI technologies 

Hafez Ahmad 2024 Highlights advancements in 
real-time processing of 
satellite imagery through AI 
technologies

(continued)
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Table 1 (continued)

S. N Title Authors Publication
date

Methodology

11 Generative models in 
satellite imagery 
analysis: future 
directions 

Hadi 
Mansourifar 

2022 Discusses the potential of 
generative models in 
enhancing satellite imagery 
analysis 

12 AI and ethical 
accounting: navigating 
challenges and 
opportunities 

Beatrice 
Oyinkansola 
Adelakun 

2024 Identifies current challenges 
and explores future 
opportunities for AI 
applications in satellite 
imagery 

13 AI-powered satellite 
imagery analysis: a 
review 

Various 
sources 

2023 Reviews various AI 
techniques applied to 
satellite imagery analysis, 
highlighting advancements 
and challenges 

14 New satellite to show 
how AI advances earth 
observation 

ASD news July 2, 2024 Discusses the capabilities of 
ESA’s Φsat-2 satellite in 
utilizing onboard AI for 
Earth observation 

15 How AI is enhancing 
marine ecosystem 
monitoring via satellite 
imagery 

Various 
sources 

2023 Examines how AI 
applications can be utilized 
to monitor marine 
ecosystems using satellite 
imagery

Fig. 6 Proposed diagram
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4 Conclusion 

An AI-based data-driven approach to satellite imaging services is revolutionizing 
several sectors such as agriculture, urban planning, and environmental monitoring. 
These algorithms have the potential to revolutionize the approach organizations take 
towards geospatial data, offering unprecedented analysis at scale and an ability to 
react to changing input in real time, promoting sustainability in production itself. 
This revolution enables specific crop management with resource destruction, while 
also enhancing disaster response and monitoring of urban infrastructure. Yet data 
quality, bespoke model design, and trust-building with stakeholders should still 
be prioritized. With AI technologies continually developing and more mainstream 
competitors entering the space, the possibilities for further disrupting industries with 
advanced imagery applications are only going to expand. 

5 Future Scope 

A cutting-edge AI approach using terabyte-dense high-resolution satellite data, which 
is growing exponentially, presents a myriad of challenging problems that are poised 
to change how Earth is perceived and understood. As this research direction crosses 
several fields, including computer vision, machine learning, geoscience, physics, big 
data exploration, and human–AI interactions in health, environment, and society, it 
will benefit both the AI community and those in other fields who will be the users 
of these future AI [7] models. In a fast-paced, data-driven world, current research 
and prospective thoughts as laid out herein can be utilized in setting and realizing 
future satellite data strategies not just to enhance human understanding of the Earth 
and its surrounding environment but also for the betterment of our future existence. 
The interaction between AI and remote sensing is not new, which dates back to more 
than 30 years ago. The digital exploitation of Earth observation big data is based on 
AI algorithms, including clustering, classification, feature-specific recognition, and 
change detection. The focus of these AI applications has been predominantly driven 
by ‘what we can do’ according to sensors and communication link hardware [6, 
14] performance evolution. Especially over the past decade, AI has demonstrated its 
ability as an enabling technology to process petabyte-sized photonic global databases. 
However, this revived collaboration has been in a somewhat passive vein, propelled 
mostly by the requirements of business interests, such as mining, insurance, defense, 
and precision agriculture. More radical AI adoption within EO data analysis pipelines 
would now present an opportunity to turn the question around and lead with ‘what 
we should do’ for our future stake in the use of satellite assets and for the general 
benefit of our planet. It is now high time that the current momentum in the fields of 
AI and remote sensing continues to grow for the betterment of our existence. 

However, progress in AI for satellite image analysis has been limited due to a 
lack of labeled data and the varying visual and geometric aspects of satellite images.
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Nevertheless, satellite imagery is widely used in environmental, urban, and agri-
cultural planning, military operations, and navigation assistance. We highlight the 
insights [9, 11] that AI-driven satellite imagery can provide in fields such as agri-
culture, environmental science, urban planning, and defense. We also recognize the 
unique challenges of satellite imagery and advocate for advanced visual learning 
methods to address them. We recognize that combining satellite imagery with AI 
is a potent tool for discovering valuable insights into historical and contemporary 
cultures, heritage sites, archaeological discoveries, and important national or interna-
tional events. Despite the progress made by current AI-based satellite image analysis 
solutions, this area of research is still in its early stages and presents significant oppor-
tunities for future projects, from data collection to analysis to implementation. We 
believe that this partnership is likely to lead to a range of innovative future solutions 
[9–11], and we encourage the next generation of researchers, institutions, and busi-
nesses to join in and help shape the future world through both visual and descriptive 
perspectives. Emerging Technologies in Satellite Imagery Analysis. 

6 Challenges 

It helps manage those resources efficiently, discover local opportunities, and assist 
with everyday tasks. This is related to AI-enabled insights in Satellite Imagery 
Analytics and is observed, stressing the fact that combining AI and analytics is key to 
achieving better learning and ultimately more accurate insights from the data. Planet, 
whose constellation of tiny satellites capture daily photos of the planet, creates an 
astonishing data set. But the path from image pixels to information is interrupted by 
the very data being received from space—an overwhelming number of pixels that in 
many cases are impossible for humans, and even for machine learning algorithms, 
to process [9]. This paper examines how AI-derived insights can assist in deepening 
our understanding of our planet’s emerging insights. 

The state of the art in satellite image analytics. 
These methods are often slow, and may not be adequate for the huge workloads that 

modern satellites produce every day. Challenges include: Cloud Cover: Atmospheric 
conditions can obstruct images and make analysis difficult [7]. 

Data Volume: With some satellites producing as much as 80 terabytes of imagery 
in a single day (a volume that is human-way-too-much to process), Complexity: 
There is a high level of dependency on data experts to understand the complicated 
data sets, reducing accessibility [14] for a lot of organization. 

Satellite images have helped several businesses to deploy AI-driven solutions 
with success [6] Omdena Project: In AI+ Satellite Imagery Open Source Projects, 
Combining AI with open source satellite imagery, Omdena developed tools for 
enhancing image resolution and classification accuracy for a variety of use cases 
(achieving up to 99% accuracy in identifying land use patterns). Planet Labs, a 
leading satellite imagery company that leverages advanced AI models to quickly
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analyze satellite data in order to inform geopolitical strategies and disaster response 
efforts. 
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Fundamentals of Deep Learning 
in Image Analysis and Object Detection 

Mudit Mittal, Vivek Kumar, and Partha Sarkar 

Abstract Over the past few years, deep learning has been a drastic change in how 
images are being analyzed with ever increasing accuracy particularly when it comes 
to tasks like image classification, image segmentation etc. This part elucidates the 
major principles and basic architectures of deep learning and focuses on its purpose to 
understand images. The first part of this chapter defines and explains neural networks 
and is particularly concerned with the specifics of deep learning as a trend of machine 
learning while fully or partially eliminating the need on any prior feature engi-
neering. This chapter lays out the intricacies of training of Convolutional Neural 
Networks (CNNs), the most popular architecture for tasks associated with images. 
CNNs learn the spatial hierarchies and patterns of images making such networks 
critical for performing tasks like object detection, image recognition and segmen-
tation. Important also is understanding what comprises CNNs described one of the 
chapter’s sections including convolutional layers, pooling, fully connected layers 
and how purposes of those components assist in image processing effectively. Next 
along the lines of following developments in medical imaging technologies, what 
is covered in the chapter is also dedicated to other modern methods for biomedical 
images processing, such as U-Net and Fully Convolutional Networks (FCN), which 
are used for pixel-wise images segmentation. Certain special focus is directed on 
the use of these models for classification and segmentation of white blood cells, 
which is an important and difficult area of clinical diagnostics. The chapter provides 
key challenges that come with the application of a deep learning approach towards 
the image analysis, including but not limited to overfitting, data imbalance, and 
an absence of interpretability. Possible solutions for these challenges, especially in 
contexts with little labelled data will also be reviewed, including the use of dropout, 
data augmentation and transfer learning. In conclusion, the chapter delineates the
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probable future developments in the field, which include attention mechanisms and 
self-supervised learning technologies which will take deep learning models for image 
analysis a step further than their current state. As a result of the defining of the key 
features of the deep learning application as well new approaches, this chapter seeks 
to create an understanding of the impact that deep learning is having on image anal-
ysis and imaging in general especially in areas such as biosciences and other medical 
applications. 

1 Introduction to Deep Learning and Image Analysis 

Definition: Deep learning is considered as a subset of artificial intelligence (AI) 
which trains and guide systems to read data exactly same as the human brain 
reads. The identification of sophisticated structures in images, words, audio, and 
additional data results from deep learning algorithms, producing accurate insights 
and predictions [1]. 

1.1 Overview of Deep Learning 

Deep learning is an approach that revolutionized how images are analyzed to unprece-
dented accuracy and how machines can understand and interpret data in visual format. 
Embarking from this context, chapter introduces the basic principles of deep learning, 
which are related to the applications of image analysis. We shall discuss how DL 
models, especially CNNs, are designed, trained, and used to extract meaningful 
information from images [2]. 

Deep Learning relates to the universe of Machine Learning. It refers to the tech-
nical aspect of feature extraction by multi-layered neural networks from unpro-
cessed input through classification of learning architectures. Also, Deep learning 
has achieved phenomenal results in activities such as natural language processing & 
image and voice recognition. Deep learning has advanced fields like computer vision 
and artificial intelligence by automatically learning features. 

1.2 Importance and Applications 

Deep learning has exhibited some remarkable advantages in superseding the old-
fashioned image processing techniques that confine the extraction of feature extrac-
tion completely to automation, and mainly become relevant in obtaining very high 
performance with huge quantity of data.
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Through deep learning’s power of enabling automatic feature extraction image 
analysis progressed dramatically, hence minimizing the need for manual involve-
ment. It excels in object identification, segmentation, and classification. Deep 
learning enhances diagnostic accuracy in domains like medical imaging by detecting 
minute patterns in pictures, increasing speed, precision, and decision-making. 

Applications of image analysis include Object detection, Segmentation, Classifi-
cation, and Anomaly detection-all are very pertinent to a broad range of areas, such 
as autonomous cars, satellite imaging, medical imaging, and surveillance systems. 

1.3 Historical Context 

The history of deep learning originate from the 1950s and 1960s, with the develop-
ment of artificial neural networks. Over the decades, researchers have continued 
to refine and improve deep learning models, leading to major breakthroughs in 
the 2000s and 2010s. Traditional image processing techniques relied heavily on 
manual feature engineering, where domain experts handcrafted features to be used 
by machine learning models. Rather, autonomous deep learning architectures are 
capable of detecting discriminative features in raw image data, thereby needing 
minimal manual feature extraction [3]. 

1.4 Fundamentals of Deep Learning, Machine Learning 
and Neural Networks 

Understanding basic machine learning and artificial neural networks will be impor-
tant first in making clear understanding about the domain of deep learning. It is a 
subdivision of AI including specific models are given based on criteria or objec-
tives and such models are allowed to deduce their own conclusions with no explicit 
programming. Simplistically, ML feeds on data-driven learning from examples to 
dig out underlying patterns and generalize from unseen data. 

In the broadest meaning, machine learning is the overall term under which many 
techniques and algorithms fall that allow systems the ability to learn from data 
with minimal explicit programming. Supervised, unsupervised and reinforcement 
learning are the major ideas in machine learning. 

Designed largely based on the human brain structure; artificial neural networks 
are composed of neurons, which are interrelated nodes, which can send signals to 
one another. The more data the network is exposed to, the better it learns patterns 
and generates predictions.
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Neural networks are driven by physiological neural networks in the individual’s 
human brain, are a fundamental framework for machine learning. These intercon-
nected nodes act like neurons and pass signals between each other, adjusting the 
strength of the interconnections in response to the data. 

2 Core Concept of Deep Learning 

Machine learning has a division called deep learning that concentrates on advanced 
neural networks with extensive layers. Each layer extracts progressively extensive 
features from raw data which is given as input. It replicates the capacity of human 
minds to acquire knowledge through experience and evolve, making it practical 
for applications like image authentication, natural language processing-(NLP) and 
speech identification. 

Some prime deep learning models are as follows. 

2.1 Artificial Neural Networks (ANNs) 

Artificial Neural networks normally considered as key requisite of deep learning 
approach, which draws inspiration from the naturally aging neurons seen in the 
individual’s human brain [4]. Neurons comprises neural networks, which are linked 
nodes that exchange impulses with one another. This network adapts to execute 
specific tasks, including classification of images, by modifying the connections to 
the underlying neurons through a training process. 

Information is processed and passed through these networks of linked nodes, 
or neurons. Each neuron performs a stimulus function on the weighted total of all 
its inputs before sending the output to the layer below. The non-linear relationship 
among the input data and target outcomes may be learned through neural network 
by the effective use of the activation functions. The specific network architecture, 
including the number and size of the hidden layers, determines the types of functions 
that the neural network can represent. 

2.2 Deep Neural Networks (DNNs) 

Deep Neural Networks are the foundation of deep learning. Many hidden layers 
are involved in the designing of such deep neural networks. DNNs have changed 
the working environment of AI in the present modern era. The quality of artificial 
intelligence projects has significantly improved due to recent research developments 
in deep learning and neural networks [5].
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Fig. 1 Structure of ANN and DNN [6] 

DNNs use deep architectures to learn complicated and reliable data represen-
tations. Empirical evidence of its expressivity and robustness in training algo-
rithms over thousands of classes on the difficult ImageNet classification challenge 
demonstrates the ability to acquire sophisticated object representations without the 
requirement for hand-designed features. 

These deep neural networks assist programmers in producing better and more 
long-lasting outputs. Because of this, they are even taking the place of numerous 
traditional machine learning methods. 

DNNs are being incorporated as an important component in many cyber-physical 
systems, such as the vision system of a self-driving car to better recognize pedestrians, 
vehicles, and road signs (Fig. 1). 

2.3 Supervised and Unsupervised Learning 

These are two fundamental prototypes in the field of machine learning. Both have 
their own extraordinary characteristics and dedicated applications. Moreover, Super-
vised learning is considered as a category of machine learning in which training for 
a system is involved on a particular data-set with labelled inputs and corresponding 
outputs, with the goal of learning a function that can accurately map the inputs to the 
outputs. This approach is commonly used in classification and regression problems, 
where the algorithm aims to forecast a category-based output variable which depends 
on the input features. 

In unsupervised learning, the system’s training is done on data-set without any 
labelled outputs, with the goal of discovering the underlying structures and patterns
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Table 1 Difference among supervised and unsupervised learning 

Supervised learning Unsupervised learning 

Receives labelled data as input Receives unlabelled data as input 

Possesses a feedback system Avoids a feedback system 

Training datasets are used to classify data Offers the provided data attributes in order to 
classify it 

Separated into classification and regression Separated into association and clustering 

It is used for forecasting Analysis is done by using this 

It contains algorithms like decision trees, 
logistic regressions, support vector machine 

It contains algorithms like k-means clustering, a 
priori algorithm and hierarchical clustering 

Its classes are known in numbers Classes are unknown in terms of numbers 

present in the data. Some Unsupervised learning algorithms, like clustering and 
dimensionality reduction, are often used for tasks like data exploration, anomaly 
detection, and feature extraction. 

One key distinction between the two approaches is the level of human supervision 
involved. Supervised learning requires a significant amount of human effort to label 
the training data, whereas unsupervised learning can uncover insights from the data 
without the need for prior labelling. Table 1 shows the significant difference between 
both learnings. 

3 Convolutional Neural Networks (CNNs) for Image 
Analysis 

There are so many effective ones among neural networks. Among these, the most 
effective and stable topologies of a neural network for the application of image 
analysis is the convolutional neural network. 

For effectively capturing the spatial and local properties of pictures, convolutional 
neural networks are trained. This makes them appropriate for using wide variety of 
areas and applications, including object identification, analysis of medical pictures, 
image segmentation and many more.
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Images can be thought of as high-dimensional data, and with millions of pixels, 
fully connected layers within the standard neural network would have an impracti-
cally large number of parameters to model such high-dimensional input. This problem 
is addressed in Convolutional Neural Networks through the exploitation of local 
spatial structure in image [7]. 

Therefore, CNNs apply the convolutional filter to the local regions of the image, 
which allows efficient weight sharing as well as spatial invariance; this makes them 
ideal to use in tasks like medial image analysis. 

The three prime components of CNN are (i) Set of Convolutional Layers, (ii) 
Pooling Layers, and (iii) Fully Connected Layers. 

3.1 Set of Convolutional Layers 

Convolutional layers serve as the foundation for CNNs. To determine the dot product 
among the filter and local input areas, the convolution technique slid a filter or kernel 
across the input picture. 

The final feature map size is specified when filters are applied with padding and 
stride during convolution. By building up a large number of convolutional layers, a 
network may be trained to recognize hierarchical visual representations. Filters are 
used to capture certain patterns like edges, textures, or forms. 

3.2 Pooling Layers 

CNNs frequently employ pooling layers to minimize computational complexity and 
decrease the spatial dimensionality of the feature maps. The most popular pooling 
procedures are the average pooling and maximum pooling. Average pooling is used 
to compute the average value within the pool area and maximum pooling maintains 
the largest value within the pool area.

• Max Pooling: This Pooling chooses a local region’s maximum value. This helps 
capture the most prominent features in the local receptive field.

• Average Pooling: computes the average of values within a local region. This helps 
in smoother feature maps and preserving overall information. 

Pooling helps the network generalize better by reducing sensitivity to small 
translations in the input image.
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Fig. 2 Design of CNN [8] 

3.3 Fully Connected Layers 

The combination of fully connected layers is contemplated as the ready and final 
output module of any CNN architecture. The feature maps are usually routed via 
fully connected layers after being flattened by many convolutional and pooling layers. 
These layers combine the extracted features into a high-level representation, which 
is used to make final predictions (e.g., class labels). The output layer usually employs 
a softmax activation function for classification tasks. 

These techniques can help deep learning models to adapt the unmatched and 
classified properties of medical imaging data, such as differences in image modalities, 
anatomical structures, and disease patterns. 

Convolutional layers, as shown in the Fig. 2, apply many sets of learnable filters 
on the input medical picture. It makes the network detect low-level features, which 
include edges, textures, and shapes. Then the network applies pooling layers for 
feature maps downsample, thereby decrementing the spatial dimensions as well as 
the computational complexity related to the network. Finally, in the end, the set 
of fully connected layers of such network aggregate all learned features to make a 
prediction such as classifying the input image under some particular class. 

Convolutional Neural Networks (CNNs) have significantly relevant for the anal-
ysis area for medical imaging, where the superior performances are achieved in the 
tumor detection, organ segmentation, and disease diagnosis tasks. 

3.4 Receptive Fields and Strides 

In Convolution Neural Networks, the concept of the receptive field represents the 
region in the input image that a feature in a certain layer is looking at. As we dive much
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deeper into such complex network, the receptive fields of features in higher layers 
become larger, allowing them to capture more global and contextual information. 

The stride parameter determines how the convolution filter is applied to an input 
image. The meaning of 1 stride of is that filter is moves with one pixel at a time, 
whereas a larger stride for example 2, skips every alternate pixel, decreasing the 
spatial dimensions of the output feature map. 

These architectural decisions in CNNs allow them to effectively extract and hier-
archically compose visual features from image data, making them powerful tools for 
a variety of medical imaging tasks. 

3.5 Spatial Invariance and Weight Sharing 

The prime advantage of using CNNs is its adaptability to learn spatially invariant 
features. This means that any specific feature such as like a texture or an edge, will 
be detected anyway of its exact location present in an input image. 

This is enabled by the weight sharing mechanism in convolutional layers, where 
the same set of learnable weights (the filter) are applied across the entire input. As 
a result, CNNs require fewer parameters compared to fully connected networks, 
making them easier to train and more effective, especially for high-dimensional 
inputs like medical images. 

4 Related Technologies for Image Analysis 

Although primarily used networks for image analysis are convolutional neural 
networks, there are many more deep architectures from which to choose to address 
specific challenges or requirements. Deep Learning Techniques give comprehensive 
coverage for image analysis. 

Some of the notable deep architectures include: 

4.1 Residual Networks (ResNet) 

These were derived to counter the vanishing gradient problem when making very 
deep networks. They introduce skip connections that allow the network to skip layers, 
enabling very deep architectures. A residual connection is used in a ResNet, where 
the network will learn a residual function, improving performance and the reliability 
of training [9].
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4.2 Generative Adversarial Networks (GANs) 

Artificial, novel information may be generated using GANs in order to duplicate 
the training set. This allows for the creation of tasks like picture synthesis and style 
transfer. GANs are composed of two main networks, first is a generator network 
which creates a new output and second is a discriminator network which evaluates 
if an output is real or synthetic [10]. 

4.3 Autoencoders 

Autoencoders usually considered as unsupervised neural networks, aiming to learn 
a compressed data representation after training the network for reconstruction its 
own inputs. Autoencoders have gained prominence for their ability to learn useful 
features and compressed representations without any labelled data. 

4.4 Transformer Models 

Transformer models represent a unique architecture in neural networks that depend 
solely on attention mechanisms to identify long-distance connections in data, 
especially on natural language processing and medical image analysis. 

Selecting a deep learning architecture is completely based on some specific appli-
cation, the availability of training data-set and availability of the computational 
resources at hand. In the following sections, we will focus mainly on convolutional 
neural networks, which are considered as the leading deep learning architecture for 
image analysis. 

5 Training Deep Learning Models for Image Analysis 

A prime challenge in utilizing deep learning to medical image analysis is the less 
availability of large datasets which are labelled enough. 

To resolve this limitation, transfer learning is extensively used by the researchers, 
which included adjusting deep learning models that had previously been trained on 
big datasets like ImageNet for the medical imaging job at hand. 

It does turn out to be the case that transfer learning allows it to extend the execution 
of highly competitive deep learning models on a medical imaging task by merely 
using relatively small datasets to leverage the general feature representations learnt 
on natural images.
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Other domain adaptation techniques are also developed to bridge the source and 
target domains more closely, such as natural images and medical images. 

5.1 Data Preparation 

As the quality of input data significantly influenced the execution and performance 
of the model, it is crucial to preprocess the medical imaging data rigorously before 
feeding it into the deep learning pipeline. This includes Image Resizing all images to 
a consistent spatial resolution and normalizing pixel intensities. And also addressing 
any missing data or artifacts that may exist in the medical images. 

Data Augmentation approaches are widely adapted for further expansion of the 
limited training data. Such approaches helps in synthetically transformation of orig-
inal training samples, through various operations such as rotation, flipping, scaling, 
adding noise, and more. 

5.2 Data Augmentation 

In image analysis, training models requires large amounts of labelled data, which 
is often scarce or expensive to obtain. By transforming existent photos with flips, 
translations, noise, rotations, and other operations, data augmentation methods are 
frequently used to fictitiously enhance the training datasets. Hence by this, overfitting 
can be reduced and improvement in the ability of the model for generalization of 
new sets of data. 

5.3 Regularization Methods 

Regularization methods are used to prevent over-adjusting if models performs good in 
training data but have low performance in visible data. Some common regularization 
methods in deep learning include:

• Dropout: Randomly eliminates neurons during training, causing the network to 
become less dependent on any one neuron and hence more resilient.

• L2 Regularization (Weight Decay): The dimensions of model weights inform 
the incorporation of a penalty within the loss function.

• Batch Normalization: Normalizes the inputs to every layer, improving training 
stability and performance.
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5.4 Transfer Learning 

By using Transfer Learning technique, already trained model, normally trained in a 
large dataset (such as ImageNet), is perfect for specific tasks on a small data-sets. This 
method is particularly useful for medical image analysis, where the data marked is 
limited. By using the knowledge acquired from a general task, the model can achieve 
high accuracy for a specific domain task with fewer training examples [11]. 

6 Key Challenges in Deep Learning for Image Analysis 

Medical Imaging is a very vast field. To make potential analysis of medical imaging, 
deep learning has proven quite promising. Nevertheless, there are unique challenges 
and opportunities that must be addressed. Many challenges have still existed in the 
field of image analysis, despite its tremendous advances [12]. 

6.1 Data Scarcity 

Many image analysis tasks, especially in specialized domains like medical imaging, 
suffer from limited labelled data. Techniques like transfer learning and unsupervised 
learning are actively researched to address this issue. 

6.2 Limited Availability of Large Datasets 

The limited availability of large and annotated data-sets in the medical domain, is one 
of the prime challenges. To resolve this, researchers have explored techniques like as 
data augmentation, weakly supervised learning, and generative models to generate 
synthetic data and leverage unlabelled data. 

6.3 The Interpretability 

The Deep learning techniques sometimes reflected as “black boxes,” which makes 
these model gruelling to grasp the process of electing the decisions. Efforts to improve 
model understanding and comprehensibility are critical, particularly in giant sector 
applications like as healthcare.
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6.4 Computational Complexity 

Large datasets for deep learning model training demand a substantial amount of 
processing power. Researchers are seeking for ways to enhance the model’s perfor-
mance through various substantial strategies like distillation, model pruning and 
quantization. 

6.5 Variability in Medical Data 

Another key challenge is the inherent variability and uncertainty in medical data, 
which can be caused by factors such as image acquisition, patient physiology, and 
disease progression. Deep Learning models must be capable enough of managing 
this uncertainty and providing reliable and robust predictions. Despite these chal-
lenges, the opportunities for deep learning around medical image analysis are vast. 
Deep learning is poised to transform medical image analysis by delivering unprece-
dented gains in accuracy, efficiency, and consistency, which are essential for improved 
patient outcomes. 

Furthermore, the incorporation of deep learning approaches with other emerging 
technologies, like medical sensors, genomics, and electronic healthcare records, 
could enable more comprehensive and personalized healthcare solutions. 

The explainability and interpretability of deep learning approaches furnish a major 
challenge in the medical field, as clinicians need to have a clear understanding of 
the procedure for making decisions. To overcome this, researchers have developed 
techniques like attention-based models, saliency maps, and explainable AI to provide 
more interpretable and transparent deep learning models. 

7 Applications in Image Analysis and Object Detection 

Segmentation of images is a computer vision technique that split a digital picture into 
distinct groups of pixels, known as segments of the image, to aid object recognition 
and other tasks. Image segmentation allows for quicker and more advanced image 
processing by breaking down an image’s complex visual data into properly formed 
segments. 

7.1 Image Classification 

It is one of the subtasks of the computer vision domain where an algorithm or a 
model predicts the label of an image. In very simple terms, it constitutes a large part
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of the solution to a huge issue in Machine Learning and Deep Learning especially 
in fields like medical imaging, autonomous driving and facial recognition. Here’s an 
overview of how it works and its key components: 

Key Steps in Image Classification: 

1. Input Image: The process begins with an image (e.g., a photo of a dog or a cat). 
2. Feature Extraction: The model identifies distinguishing features in the image 

(e.g., edges, textures, shapes). 
3. Prediction: The model uses these features to predict the class of the image (e.g., 

“dog” or “cat”). 
4. Evaluation: Accuracy is evaluated using metrics like precision, recall, F1-score, 

etc. 

7.2 Semantic Segmentation 

Semantic segmentation allocates a class label to all pixels of the image. This task 
is essential in applications like medical imaging, where it is crucial to accurately 
segment regions of interest, like tumors or organs. CNNs have shown quite effective-
ness in semantic segmentation since they are well suited to extract spatial information 
and hierarchical features. 

Well-known structures for semantic segmentation are:

• U-Net: It is a fully connected convolutional network intended to the segmentation 
of biological images, consisting of an encoder-decoder structure by skipping the 
connections to preserve spatial information.

• SegNet: It is a CNN-based architecture which uses an decoder and encoder based 
framework for image segmentation at the pixel level. 

7.3 Object Detection 

Multiple object localization and identification are part of object detection in a picture. 
When it comes to object detection, the model must provide bounding boxes and class 
labels for everything that is present, in contrast to classification of the image, by 
predicting a single label for the whole picture [13]. 

Common object detection architectures include:

• YOLO (You Only Look Once): It is an actual object identification method which 
creates a grid out of the picture and forecasts the class probabilities and bounding 
boxes for all the cells.

• Faster R-CNN: Using a second CNN for classification and refinement, a region 
proposal network produces potential object regions in the first step of the two-stage 
process.
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7.4 Anomaly Detection 

Anomaly detection refers to finding cases in visual data that show a pronounced 
difference from usual patterns. These anomalies could be anything from unusual 
objects, structures, or patterns in images that don’t conform to the expected or “nor-
mal” distribution. Its use is significantly important and useful specially in the appli-
cations where abnormality detection is much complex and condemning like medical 
imaging, industrial inspection, and security. 

Types of Anomalies:

• Point Anomalies: Particular cases that are deviated from other cases.
• Contextual Anomalies: Points of data that can be thought of as strange in some 

respect, be it time or space.
• Collective Anomalies: A group of instances that together form an abnormal 

pattern but individually may not seem anomalous. 

8 Future Directions 

Even though deep learning has advanced medical picture analysis significantly, much 
more work and creativity remains. Some key future directions include [14]:

• Developing more robust and generalizable models that can handle variations in 
data and maintain reliable performance.

• Incorporating domain knowledge and prior information to improve model 
interpretability and make predictions more clinically meaningful. 

8.1 Self-Supervised and Unsupervised Learning 

To tackle the problem of lack of data, researchers are exploring the concept of self-
supervised and unsupervised learning. These concepts could be adapted so that the 
valuable representations could be learned based on the unlabeled data, which then 
could be fine-tuned using smaller datasets with labels. 

Some promising directions include:

• Contrastive learning: Obtaining representational knowledge through the 
comparison of positive and negative data sample pairs.

• Generative models: To create artificial medical pictures for data augmentation, 
generative adversarial networks or variational autoencoders are used.
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8.2 Integration with Some Other Existing Technologies 

The deep learning’s fusion with other cutting-edge and modern technologies, 
like medical sensors, genomics, and electronic health records, could enable more 
comprehensive and personalized healthcare solutions. For example, combining deep 
learning-based image analysis with patient-specific genomic information could lead 
to more accurate disease diagnosis and personalized treatment plans. 

8.3 Federated and Distributed Learning 

To address the challenge of limited data availability, researchers are exploring feder-
ated and distributed learning approaches. These techniques allow models to be trained 
on data distributed across multiple sites or institutions, without the need to centralize 
the data, which is often not feasible in the medical domain due to privacy and 
regulatory concerns. 

9 Conclusion 

The chapter presents a brief summary of the main concepts and methods that forms 
the basis of deep learning for image analysis, from its revolutionary design to its math-
ematical foundations, like U-Net and CNNs. Algorithm, architectural, and compu-
tational resource improvements are continually refining deep learning and making 
even greater boundaries for what is attainable in image analysis. 

Convolutional Neural Networks along with another deep learning architectures 
provide indeed impressive performance in medical imaging like image segmen-
tation, lesion detection and disease diagnosis. Medical imaging introduces some 
unique challenges related to data availability, requires explainability and has inherent 
variability in the data-a set that requires special techniques and deep learning 
advances. 

Deep learning methods has undoubtedly achieved a massive success in application 
area of medical imaging, ranging from radiological image analysis to pathology slide 
analysis, and many more. 

Deep learning has made tremendous innovations whereby machines can, to-date, 
classify, segment, and even better detect objects in images better than at any other 
time in the past. Because neural networks are at the heart of deep learning, they prevail 
as an encouraging tool for spatial information capture from images, the closest one 
being convolutional neural networks.
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Future of deep learning promises further integration with other fields such as 
genomics and electronic health records, potentially transforming personalized health-
care for the betterment of medical imaging. However, addressing the inherent vari-
ability in medical data and improving the transparency of deep learning system will 
be critical to gaining trust and broader adoption in clinical practice. Despite these 
challenges, deep learning holds immense capabilities to boost diagnostic reliability 
and patient outcomes. 
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Comparative Analysis of Different 
Disparity Estimation Architectures 
on Aerial Datasets 

Ishan Narayan and Shashi Poddar 

Abstract With the advent of aerial image datasets, dense stereo matching has gained 
tremendous progress. This work analyses dense stereo correspondence analysis on 
aerial images using different techniques. Traditional methods, optimization-based 
methods, and learning-based methods have been implemented and compared here 
for aerial images. For traditional methods, the architecture of Stereo SGBM is chosen 
while using different cost functions to get an understanding of their performance on 
aerial datasets. Analysis of most of the methods in standard datasets has shown good 
performance; however, in the case of the aerial datasets, not much benchmarking 
is available. Quantitative and qualitative analysis of different disparity estimation 
techniques has been carried out over the stereo aerial datasets. Using existing pre-
trained models, recent learning-based architectures have also been tested on stereo 
pairs along with different cost functions in SGBM. The evaluation of obtained depth 
maps has been carried out using different quantitative metrics such as MSE, BMP, and 
SSIM. Through the analysis, the author summarizes the performances of different 
methods and provides a way forward for disparity estimation techniques in the future. 

Keywords Stereo images · Depth estimation · Semi-global block matching ·
Unmanned aerial vehicle · Learning based methods 

1 Introduction 

Unmanned aerial vehicles (UAVs) for mapping, surveillance, and remote sensing 
make use of sensor along with vision-based methods to generate accurate represen-
tation of the aerial view. One of the major challenges in ensuring their autonomous 
navigation and safe operation is their ability to select a landing site autonomously 
in any unknown area [1]. Key issues include ensuring safety by avoiding obstacles,
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maintaining efficiency through minimal human intervention, and providing flexi-
bility to adapt to various terrains. Recent advancements in multi-sensor fusion and 
deep learning algorithms enhance UAV landing capabilities, enabling safer oper-
ations across complex environments. With simultaneous localization and mapping 
frameworks, navigation in a GPS-denied environment and selecting a suitable landing 
site have become very effective these days. Recent research highlights the develop-
ment of a multi-sensor framework that enables real-time target localization, ensuring 
precise landing even in challenging terrains like grasslands and slopes [2]. 

However, most of the proposed works on autonomous landing of UAVs still rely on 
predetermined knowledge of the landing zone. Typically, a map of the selected area 
is utilized to train or identify potential landing sites. In the case of isolated locations 
or unknown scenarios, UAVs may need to land autonomously on different kinds 
of surfaces, which may be rocky, flat, or slanted. By integrating data from multiple 
sources, such as topographic maps and satellite imagery, machine learning algorithms 
can enhance the accuracy of identifying potential landing zones. Various parameters, 
such as depth, inclination, steepness, and flatness, are evaluated to determine the 
safety of a potential landing site. A flat surface is essential to minimize the risk of 
tipping or rolling during landing manoeuvres. Additionally, steepness and inclination 
are critical for assessing the overall safety of a landing site, as they directly impact the 
stability and control of the UAV during descent and touchdown. A dataset featuring a 
variety of surface inclinations was proposed by [3]. It consists of different surfaces at 
different inclination angles. This dataset can be used to test and refine new methods 
for assessing surface characteristics. Aerial images often include trees, buildings, 
rooftops, and diverse terrain types, all of which can complicate depth estimation. As 
a result, depth maps derived from aerial imagery can vary significantly in quality and 
accuracy. 

Determining flatness, inclination, and steepness from stereo images requires a 
depth map of stereo pair, there exist several techniques as discussed in literature 
section. However, when applying some of the dense disparity estimation schemes to 
the UAV stereo images, the depth estimation architecture does not work with the same 
accuracy as that for a traditional set-up where the camera views the objects in front of 
it. Since most of the existing algorithms are optimized for indoor environments and 
do not generalize well enough to aerial images. Despite their effectiveness, stereo 
disparity estimation faces several challenges in the case of aerial platforms that can 
be attributed to several factors, such as occlusions, texture-less regions, environment 
variability, and the presence of different regions in the same image frame [4]. 

Although several benchmarks have been developed in the past to compare the 
performance of disparity schemes, the images from a UAV or aerial platform are not 
included in these challenges. Therefore, it is necessary to benchmark the performance 
of different disparity estimation schemes specifically for aerial images. These aerial 
images have specific challenges, such as low image resolution, low textured area for 
feature matching, and varied depth distribution. The low texture areas in an aerial 
image can be attributed to the fact that aerial images usually capture the top view of 
any region or area, which could be a building, vegetation, or areas that are either flat 
or inappropriate for feature matching.
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Among several available architectures, SGBM-based architectures, optimization-
based architecture, and learning-based architecture are benchmarked together. 
The SGBM-based algorithms are popularly used for different applications and is 
known for balancing computational efficiency and depth estimation accuracy. The 
optimization-based schemes provide relatively better depth estimates at the cost of 
higher computational time and are not fit for real-time application. Optimization-
based methods were used as they provided visually appealing results comparable 
to learning-based methods. The learning-based techniques that use deep learning 
architecture have been compared for their performance on aerial datasets. As per 
the author’s best knowledge, this kind of comparison has not been done specifically 
for aerial images, and with the rising popularity of autonomous UAVs for various 
applications, this study will help devise the future path of depth estimation archi-
tectures for images taken by UAV cameras. The overall article is divided into four 
sections of which Sect. 2 provides a brief overview of different disparity estimation 
schemes in the literature, Sect. 3 details the SGBM, optimization, and deep learning-
based algorithms selected here for experimentation, Sect. 4 analyses and benchmarks 
these algorithms on two publicly available datasets the WHU stereo dataset [5] and 
Mid-Air dataset; and finally Sect. 5 concludes the paper. 

2 Literature Review 

Dense depth map estimation is a computer vision approach that aims at obtaining the 
depth of an image point given images from two rectified cameras with a known base-
line distance. Although several disparity estimation algorithms have been proposed 
in the literature, it is still a challenging task to handle occlusions, texture-less regions, 
and discontinuities in the images. The images captured from aerial platforms face 
challenges like large disparity search space, bigger occlusions, and varied distribu-
tion. It is thus necessary to study the aerial stereo images holistically and benchmark 
the performance of different classes of disparity estimation algorithms on them. 
Dense depth map estimation algorithms using traditional methods is classified into 
three approaches global, local, and semi-global and these methods differ in terms of 
the cost aggregation methodology used [6]. With the rise in the usage of deep learning 
approaches for depth map estimation, these can also be classified as traditional or 
learning-based methods. 

2.1 Traditional Depth Estimation Techniques 

Traditionally, the four key processes involved in the depth estimation process are: 
matching cost calculation which calculates the pixel wise difference on the epipolar
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plane, then cost aggregation for obtaining the correct disparity pixel followed refine-
ment. Various cost functions such as absolute differences (AD), the squared differ-
ence (SD), normalized cross-correlation, mutual information (MI), and several non-
parametric methods and methods that use window-based approaches like rank and 
census transform. Other cost functions include AD-Census [7] in which SAD and 
Census transform are used together, or a combination of SAD and gradient function 
[8] have been explored in the literature. In some of the techniques, the image is 
divided into textured and texture-less regions for different cost functions, and some 
of the techniques incorporate larger kernel size and smaller kernels near occlusions. 
Several of these techniques use local adaptive windows and other cost functions, 
which are not discussed here further for brevity purposes. 

Global methods like belief propagation [9] use Markov random fields to approx-
imate minimum cost labels in the energy function. In [10], the authors proposed an 
efficient belief propagation algorithm that uses a hierarchical approach to reduce the 
computation time and memory usage. Another approach involving local alpha expan-
sions based on an MRF model with continuous label space which applies different 
alpha labels according to the index. Dynamic programming-based algorithms inde-
pendently perform scan line-based optimization for all scan lines in the image. In it, 
the authors used the RANSAC-based method to detect occlusions and assign labels 
accordingly. Among the global approaches, the patch match [11] based approach 
that uses iterative propagation and refinement from neighbouring pixels to obtain 
disparity value is also very popular. 

Some other works use Minimum spanning tree (MST) [12], Super-pixel based 
clustering (SLIC) [12], and iterative clustering algorithms to obtain disparity maps 
and have better performance than local methods. 

2.2 Learning Based Depth Estimation Techniques 

Most of the global stereo disparity methods discussed above have an inherent disad-
vantage of being computationally intensive. There is a significant amount of research 
for the use of deep learning architectures (Poggi et al. 2021) to solve the bottlenecks in 
stereo disparity estimation problem. Training CNN for matching cost between image 
patches was initially introduced by Zbontar and LeCun [13] and currently, a signifi-
cant number of end-to-end stereo matching networks have been developed, offering 
substantial advancements in disparity estimation by jointly learning all stages of 
disparity computation. This holistic approach has demonstrated improved perfor-
mance and accuracy. DispNet [14] was among the first end-to end network. Several 
methods leveraging 2D convolution have also shown promising results like GwcNet 
[15], Stereo Transformer (STTR) [8], HITNet [16], AANet [17]. GwcNet introduced 
an enhanced cost volume representation through a group wise correlation volume. 
New methods also make use of concatenation-based feature volume though 4D cost 
volume along with 3D CNN to aggregate features like GC-Net [18] and PSMNet 
[19]. GC-net uses a 2D convolution neural network to obtain dense features.
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CRE Stereo uses a neural network with an adaptive correlation module to register 
locations in multi-scale feature space. It uses a stacked cascade architecture and works 
by down sampling the image pair before constructing the image pyramid. Recent 
methods like RAFT-Stereo [20] first uses a encoder decoder based architecture to 
obtain an initial disparity map at different scale then different scaled versions of the 
depth map are used in refinement module. It uses R-CNN for cost aggregation and 
works by down sampling to lower resolution, thus saving memory and computation 
resources [21]. CNN based techniques display a significant accuracy boost over the 
previous approaches. 

However, using 3D CNNs presents significant challenges due to their computa-
tional complexity and high memory requirements. While most of these approaches 
work well with datasets like KITTI [22], Middlebury, KITTI, NYU Depth etc. The 
model trained on any synthetic dataset usually does not generalize well in new 
scenarios. It is necessary to note that a model pre trained on a synthetic dataset cannot 
easily be applied to a real scene dataset due to the heterogeneous data sources. There 
are several methods that have used fine tuning for transfer learning. By training on 
diverse datasets, learning-based methods can generalize well and infer disparities 
even in challenging texture less regions. 

3 Disparity Estimation Architecture 

The disparity estimation architecture traditionally works by computing costs, 
performing aggregation along multiple directions and is followed by refinement. 
These schemes can be either local, or global, or semi-global in its approach. Local 
algorithms select stereo disparity for every pixel while global approaches use an 
energy function that is minimized over the complete data it has. In this section, the 
traditional semi-global block matching with its three cost variants, optimization-
based Patch Match and learning based techniques considered in this article for 
experimentation is discussed theoretically. 

3.1 Semi Global Block Matching 

Semi-Global Block Matching (SGBM) is a stereo vision algorithm that offers low 
computational time and good accuracy in both static and dynamic situations. The 
primary attribute for a SGBM approach is the cost function which is a measure of 
disparity estimation. The cost is calculated for each pixel at all potential disparity 
levels and yields an initial disparity map with some errors. This cost value is stored 
in a row major sequence and the neighboring pixel cost being the adjacent row is 
represented as a cost volume. As observed, aggregation can be run in loop to aggregate 
for each path separately [23]. OpenCV provides the functionality to choose between 
4, 8, and 16 paths, and the 4 or 8—path is generally used to maintain computation
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Fig. 1 Essential steps for the traditional SGBM pipeline 
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In Eq. 1, P1 is the constant penalty applied when disparity value changes by 1, 
and P2 is used when disparity value change is greater than 1. The aggregated cost 
for a pixel p is calculated by aggregating costs from all directions equally. The cost 
Lr(p, d ) along the path traversed in direction of r can be defined as 

Lr(p, d ) = C(p, d ) + min(Lr(p − r, d ), Lr(p − r, d − 1) + P1, Lr(p − r, d + 1) 
+ P1, min 

i 
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The costs Lr is then summed over all the 8 paths as S(p, d ) = ∑
r Lr(p, d ). In 

Eq. (2), Lr(p − r, d ) is aggregated cost when disparity of the last pixel in the path 
is d. Lr(p − r, d − 1) is the aggregated value when disparity of the last pixel in the 
path is d − 1, min (Lr(p − r, i)) is the minimum value of all costs from the previous 
pixels. P1 and P2 2 are input parameters that can be tuned as per the dataset. The 
working flow of Stereo matching for disparity can be seen in (Fig. 1). The three 
different cost functions used here for comparing SGBM approach is described here 
briefly. 

3.1.1 Birchfield–Tomasi Dissimilarity 

Birchfield–Tomasi (BT) dissimilarity measure is a technique for gauging pixel simi-
larity and is focused on determining the absolute variations in pixel intensities within 
a small area. A window is placed with its center at the left pixel, and a horizontal scan 
line is made through the corresponding right pixel to calculate the BT dissimilarity 
measure between that pixel and the pixels along the epipolar line in right image. The 
BT dissimilarity measure is used for stereo matching in OpenCV SGBM function 
and is defined as:
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Here, xl and xr are the corresponding left and right pixel intensity values for left 
and right images Il and Ir, respectively and Îl and Îr are the linear interpolation of 
the left and right images Il and Ir, respectively. Instead of matching pixel to pixel, 
BT interpolates the pixel intensities and searches for half more pixels to get a more 
accurate match. 

3.1.2 Sum of Absolute Difference 

The sum of absolute difference (SAD) is a pixel-based matching cost function that 
works by computing the difference between the pixel intensity in a local window. 
SAD is simple and computationally efficient but is sensitive to brightness and contrast 
changes, making it less effective in certain scenarios. 

3.1.3 AD-Census 

This cost function is a combination of absolute difference and census transform, 
wherein the census transform is a binary descriptor that encodes the spatial rela-
tionships between pixels in a local window. From left and right image kernels along 
epipolar line is calculated using the Hamming distance between their census trans-
forms. The hamming distance is a measure of difference of bit positions in two binary 
strings and is represented as Ccensus. For every pixel, both the costs are calculated 
and added after normalizing them using their respective constants, resulting in one 
cumulative cost defined as: 
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C(p, d ) = ρ(Ccensus(p, d ), λcensus) + ρ(CAD(p, d), λAD) (5) 

where ρ(c, λ) is a cost function dependent on c and λ, described as: 

ρ(c, λ) = 1 − exp(− 
c 

λ 
) (6) 

Here, CAD(p, d ) is the cost function describing the absolute difference, Ccensus is the 
cost value obtained through census transform, and C is the cumulative cost value.
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3.2 Optimization-Based Patch Match 

Among the several optimization-based techniques for dense depth map estimation, 
a patch match-based scheme is selected here for analysis and comparison. The patch 
match algorithm finds the nearest matching patches between two images and uses 
random initialization [11], iterative propagation, and search for nearest neighbor-
based estimation. This process computes correlations on neighboring pixels and 
sends its cost to the next matching point in an iterative way. The random initialization 
aspect estimates random disparity on an image to get a normalized plane and merge 
it to a plane equation later. This is followed by an iterative propagation which tries 
to reach a global minimum. In this paper, single-iteration results are obtained, and 
the number of iterations can be increased to obtain slightly better results. 

3.3 Deep Learning Based Methods 

Learning-based methods have shown promising results in stereo disparity estima-
tion and are an evolving approach that needs further improvement as well. Super-
vised methods for stereo disparity need labelled data in which ground truth disparity 
maps are provided for training the network. These methods use convolutional neural 
networks (CNNs). During training, the networks are optimized using a loss func-
tion that is used to improve predictions by measuring the difference between the 
predicted result and the ground truth disparity maps. In this work, Cascaded Recur-
rent Network with Adaptive Correlation, HITNet and RAFT Stereo has been tested 
and their pre-trained models have been used for experimentation. 

3.3.1 CRE Stereo 

In this technique, a two shared-weight feature extraction network is applied on both 
the images that outputs a feature pyramid. This feature pyramid is used for estimating 
an initial depth at different scales in the 3-stage cascaded recurrent network. This 
method starts with 1/16 of the input image resolution. The first level in cascade used 
the original version of the input stereo while the other levels are fed up-sampled 
version for initialization. The output from each stage is fed to correlation layer for 
matching ambiguities in case of non-rectified stereo pairs. Group-wise correlation 
for cost volume is used simultaneously and preserves the details in high-resolution 
input.
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3.3.2 HITNet 

HITNet framework has been designed for depth estimation and addresses the chal-
lenge of achieving real-time performance while maintaining accuracy. The key idea 
is performing stereo-matching by dividing the rectified stereo pair into smaller 
overlapping tiles, which are processed hierarchically with iterative refinements. 

HITNet follows the principles of traditional matching methods as three step 
process: compact feature representation, high resolution disparity initialization from 
features and efficient propagation to refine the estimates using support windows. The 
feature extraction module is a U-Net like architecture. During initialization, matches 
for all disparities are computed exhaustively. The index location of the best match 
is stored. During the propagation step, the input consists of tile hypotheses, and the 
output is refined tile hypotheses. This refinement is achieved by spatially propa-
gating and fusing information by warping features from the feature extraction stage 
to predict highly accurate offsets to the input tiles. This approach allows for flexible, 
learned representations and provides good results. 

3.3.3 RAFT 

RAFT stereo is similar to RAFT for optical flow problems, in depth estimation it 
constructs a 4D cost volume from the correlation between pixels. It consists of three 
main components: (1) a feature and context encoder to extract feature vectors; (2) a 
correlation layer for a 4D correlation volume for all pairs of pixels; and (3) a recurrent 
GRU that updates a flow field. The network consists of blocks to down sample and 
produces feature maps at 1/4 or 1/8 of the input image resolution. A 4-level pyramid 
using correlation volumes is constructed through repeated average pooling of the last 
dimension. The cost volume is filtered through a series of 3D convolutions before 
being mapped to a point-wise depth estimate. The correlation, disparity, and context 
features are concatenated and injected into a hidden state, which is further used 
to predict the disparity update, and retrieved values are concatenated into a single 
feature map. Up sampling the obtained disparity to match the ground truth disparities 
is recommended, but it works by converting the input to low resolution. This is a 
very fast approach and yields convincing results. 

4 Experimental Results and Analysis 

4.1 Evaluation Parameters 

Various error metrics have been used to compare the disparity maps obtained from 
different SGBM variants, the learning-based approach, and the optimization-based 
PatchMatch technique. These metrics help in making an informed decision about
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different approaches and their performance in different kinds of regions, such as flat/ 
textured/texture-less regions. 

• Mean Squared Error (MSE). Mean squared error (MSE) is a simple and intuitive 
measure to quantify the difference between the ground truth disparity map and 
the obtained disparity map and is represented as: 

MSE = 
1 

N

∑N 

i=1 
(xi − yi)2 (7) 

In this equation, xi and yi are the images being compared with N number of pixels. 
The errors are squared to amplify error values. 

• Bad Matching Pixels (BMP). It refers to the total count of pixels in an image that 
has a corresponding pixel that is significantly different in terms of color or texture. 
Bad matching pixels can occur for several reasons, including occlusions, specular 
reflections, texture-less regions, and errors in the stereo-matching algorithm. This 
metric is used to compare different traditional and learning approaches. Bad-
matched pixel is defined as: 

B(i, j) = {−1, if |D(i, j) − G(i, j)| > t; 0, otherwise (8) 

Here, D(i, j) is the obtained disparity map, and G(i, j) refers to the ground truth. 
• Structural Similarity Index (SSIM). The Structural Similarity Index (SSIM) is a 

widely used metric in computer vision for measuring the similarity between two 
images. structural similarity is defined as: 

SSIM (x, y) = [
I (x, y)α[C(x, y)β[S(x, y)γ ]] (9) 

where x and y are the two images being compared and are the constants that 
control the relative importance of these three terms. The terms I(x, y), C(x, y), and 
S(x, y) are the local luminance, contrast, and structural similarities, respectively, 
which are computed over a small window of pixels. SSIM values range between 
0 and 1, where a value of 1 indicates perfect similarity and a value of 0 indicates 
non-similarity. 

5 Result and Analysis 

In this section, the dense disparity estimation techniques for aerial images are 
compared quantitatively and qualitatively. The standard error metrics such as mean 
square error (MSE), structure similarity index measure (SSIM), and bad matched 
pixels (BMP) have been used to benchmark the performance of different algo-
rithms used in this work. The overall pipeline for code development and testing was 
carried out on a system with 4 GB RAM and an i3 processor. The SGBM algorithm 
was implemented using the source code of OpenCV, and the same was modified to



Comparative Analysis of Different Disparity Estimation Architectures … 133

compare the performance with different cost functions while keeping the remaining 
pipeline exactly the same. The source codes for the CNN-based architectures HITNet, 
CRE, and RAFT have been taken from their respective repositories. 

The two datasets that are considered here for experimentation are the WHU dataset 
and the Mid-Air dataset. The WHU stereo disparity dataset consists of 1700 images 
divided into two subsets: the training and the testing set. These images were acquired 
using the GF-7 satellite covering various landscapes, including urban areas, rural 
areas, forests, and mountains. The Mid-Air dataset is an aerial stereo dataset that 
provides a large number of stereo images captured in a synthetic environment wherein 
the images are captured from a drone in different settings. It contains high-resolution 
stereo pairs with a large baseline and wide field of view. It also provides accurate 
ground truth disparity maps, which can be used for evaluating the accuracy of the 
algorithms. Both the datasets provide left image, right image and the corresponding 
disparity map. Including such datasets in evaluation not only helps in compara-
tive analysis but also provides a benchmark to improve and enhance the quality of 
the algorithm. The dataset contains images with different trajectories and weather 
conditions, as seen visually. The images in the WHU dataset are divided into three 
categories, buildings, trees, and mixed regions, whereas for the Mid-Air dataset, they 
are divided into trees, flat regions, and rocky regions. A small proportion of images 
from each category is selected in a random manner to cater to all the terrains. 

5.1 Quantitative Analysis 

The objective behind this analysis is to find a technique that yields promising 
results for different kinds of aerial images with a balanced trade-off between time, 
complexity, accuracy, and overall quality of the depth map. The disparity range 
of aerial images is relatively large as compared to the non-aerial images due to 
the greater variation in the kinds of objects seen by the top-down camera, such as 
buildings, trees, flat surfaces, etc. It has been found during experimentation that the 
disparity values obtained using different techniques had different disparity ranges. 
They have, therefore, been compared in non-normalized and normalized modes so 
that their accuracy can be compared. It can also be argued that a comparison of the 
raw results would provide a better analysis of various techniques and are therefore 
included in some of the metrics, as will be discussed in the following subsections. 

MSE. Tables 1 and 2 compare the MSE value for disparity obtained from different 
techniques in two different datasets, that is, the WHU and Mid-Air datasets consid-
ered here. In the case of the WHU and Mid-Air datasets, the MSE value between 
the ground truth and non-normalized disparity value is found to be very high as 
compared to the normalized cases. Normalization of the disparity value is carried 
out in the range of 0–75, which is chosen as the median of minimum and maximum 
disparity values in the ground truth images for the WHU dataset. In the case of the 
Mid-Air data set, the upper range value was 81 but has been chosen as 75 here for
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the sake of simplicity. There are some interesting inferences from this table which 
are listed as follows: 

1. MSE values for different variants of SGBM are similar for WHU and Mid-
Air datasets and are lower among all for the normalized cases as compared to 
nonnormalized cases. 

2. MSE values for all three learning-based techniques are relatively better than 
SGBM variants in texture-less and synthetic images. 

3. PatchMatch as a technique performs better across all the different kinds of images 
and has better MSE than all the other methods. This can be attributed to the 
solution of disparity value obtained by solving an optimization function. 

4. In the case of mixed regions and region with buildings, SGBM-ADC provides 
better results than SGBM-BT, SGBM-SAD, and other learning-based approaches 
in the case of non-normalization. 

Overall, it can be summarized that for flat regions, the results of SGBM are not 
very good since these regions consist of similar texture, color information, and no 
distinct edges or occlusions. SGBM variants perform equally well for images with 
good texture, such as building and mixed regions. The SGBM-based approach works

Table 1 Comparison of MSE for WHU dataset using different DE techniques 

Disparity 
technique 

WHU dataset non-normalized WHU dataset normalized 

Building Flat Mixed Overall Building Flat Mixed Overall 

SGBM-ADC 104.7 110.6 99.63 103.37 71.55 83.7 66.59 81.7 

SGBM-SAD 109.2 106.5 104.79 103.95 66.54 80.8 67.16 70.5 

SGBM-BT 105.9 117.8 105.98 106.21 72.78 83.3 65.87 71.34 

CRE 113.6 107.0 116.8 108.86 102.25 99.0 103.2 95.56 

HITNet 105.3 100.6 108.21 113.19 87.85 91.9 101.2 108.5 

RAFT 109.3 106.2 102.62 104.14 104.94 99.8 100.9 101.9 

PM 105.1 57.54 99.66 97.23 59.24 69.1 53.91 59.86 

Table 2 Comparison of MSE for mid-air dataset using different DE techniques 

Disparity 
technique 

Mid-air dataset non-normalized Mid-air dataset normalized 

Trees Flat Rocky Overall Trees Flat Rocky Overall 

SGBM-ADC 126.2 130.3 138.9 121.6 108.1 108.8 95.45 107.9 

SGBM-SAD 122.1 130.2 136.4 122.8 103 118.6 85.65 105.9 

SGBM-BT 121.0 131.7 139.7 123.6 106.9 93.45 89.15 106.9 

CRE 90.86 79.6 81.12 89.17 85.05 86.98 74.12 79.7 

HITNet 86.33 88.6 84.27 90.77 88.81 85.12 80.46 86.68 

RAFT 110.7 115.9 119.7 112.3 112.3 110.0 85.73 107.2 

PM 89.34 87.3 84.19 87.27 86.68 84.46 79.79 84.09 
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Fig. 2 BMP values for WHU and mid-air dataset 

well for real-world images in the WHU dataset, while the learning-based approach 
works better for synthetic images in the Mid-Air dataset. However, MSE has certain 
limitations; it is sensitive to small variations and does not consider the perceptual 
quality of the constructed disparity map. 

Bad Matched Pixels (BMP). It can be seen in Fig. 2 that the BMP values for both the 
WHU dataset and the Mid-Air dataset are found to decrease as the threshold value 
increases. In the case of the WHU dataset, the traditional SGBM-based approach 
is found to have a relatively higher error percentage as compared to the learning-
based approaches. The performance of RAFT is comparable to other approaches, and 
the performance of SGBM—ADC is better than that of other SGBM variants. The 
performance of the patch match is better than that of all other techniques using an 
optimization approach. In the case of the Mid-Air dataset the performance of SGBM 
is similar. 

Structural similarity index. Figure 3 compares the performance of different 
disparity estimation techniques in both the WHU and Mid-Air datasets. The SSIM 
value for all the schemes is higher in the case of the WHU dataset as compared 
to Mid—Air dataset. The traditional SGBM-based approach performs convincingly 
as compared to the learning-based approach in the case of the WHU dataset, while 
the same is not the case in the Mid-Air dataset. In learning-based techniques, these 
images are processed in different scales and have an output that is smoothed out such 
that there are no sudden changes in disparity levels. The SGBM-based techniques 
can preserve the minute details to match left and right images while reducing the 
overall structural information.

5.2 Qualitative Results 

Analysis on WHU dataset. The images from three different categories have been 
tested using different disparity estimation schemes and shown in Fig. 4. Figure 4a–c 
represents the original left image as provided in the WHU dataset, Row 2 (second 
row) corresponds to the ground truth disparity map provided by the publishers.
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Fig. 3 SSIM comparison for WHU and mid-air datasets

Row 3–Row 5 presents disparity estimation results using different SGBM variants, 
Row 6–Row 8 benchmarks the performance of learning-based disparity estimation 
approaches while Row 9 depicts the performance of optimization-based Patch-Match 
approach. The disparity images shown here are in gray scale and normalized on a 
common scale to maintain uniformity. In Fig. 4d–f, the original left images from the 
Mid-Air dataset have been represented. In subsequent rows, the disparity output of 
different techniques can be observed.

The number of disparity levels has been configured to 96 for SGBM, which implies 
that for every pixel (x, y) in the left image, the algorithm calculates the cost for pixels 
ranging from (x − 96, y) to (x, y) in the right image. The number of disparities is a 
crucial parameter whose value, if set too low, can lead to a lot of noise and incorrect 
matches, especially in regions where the actual disparity is larger than the number 
of disparities set. 

It can be seen from Fig. 4 that the SGBM does not yield as good a result as 
much as the deep learning frameworks, especially for images that are texture-less 
or contain too many discontinuities. The primary reason for this can be attributed 
to limited window size and local information available in window-based matching, 
unlike the learning-based approach that uses global information. In the case of images 
with well-defined structures, that is, buildings, represented as the leftmost image 
column, the performance of SGBM is relatively better as compared to other images, 
which have low texture areas. The zoomed-in portion of the building region is shown 
separately in Fig. 5 to compare the performance of different schemes. As seen in 
the zoomed-in region, for ADC, SGBM-BT, and SGBM-SAD, the edge information 
is not preserved to the same extent as that in SGBM—ADC as the latter is more 
robust over a window than the pixel-based intensity difference. The black portions 
beside the edges can be attributed to the mismatches. As compared to the SGBM-
based approach, the learning-based methods show good performance, with RAFT 
preserving edge information of buildings better than HITNet, even for occluded 
cases. CRE provides distinct information about the structure and perception of depth 
is even better while the edges are smoothed out as compared to RAFT. Patch Match
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Fig. 4 Qualitative comparison of disparity estimated through different techniques on different 
images from WHU and mid-air dataset

produces visually good results except for corners where it is not able to handle edges 
and occlusion very well, as can be seen through a black blob in the Figure for the 
building case.

In Fig. 5a, the disparity maps for flat regions show that learning-based methods 
can detect edges and handle occlusions efficiently for wide texture-less regions as 
they are trained on several representations rather than pixel intensity differences. 
In this image, since most of the pixels have similar color information, it is difficult 
for the SGBM algorithm to find a reliable match, leading to blurring near occlusion
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Fig. 5 Detailed analysis of border regions and flat areas for a WHU image b mid-air image

and discontinuities. This can be improved for SGBM schemes by a combination of 
pre-processing, post-processing, parameter tuning, and possibly using another type 
of algorithm. The performance of Patch Match is better than all the other techniques 
owing to its globally optimized result and consistency for all kinds of images. 

In the case of images containing a lot of information, such as buildings, trees, 
etc., SGBM–ADC performs relatively better as the image contains different textures, 
distinct features, and edges. The performance of SGBM—BT and SGBM—SAD is 
not as good as SGBM—ADC. Also, during discontinuity or edges, SGBM uses 
a smoothness constraint that penalizes high-depth variations, producing visually 
coherent disparity maps. In learning-based techniques, the performance is not as 
good as expected, and the edges of the building cannot be appropriately deciphered 
from the results. In the case of CRE, it uses iterative refinement that allows it to process 
fine details and depth in dense regions, but in terms of using contextual information 
and global constraints, it is not visually as good as others. RAFT uses Recurrent 
Neural networks to refine disparity while using information from neighboring pixels 
as well and has relatively better performance than other learning approaches. 

Analysis on Mid Air Dataset. This helps in understanding the performance of 
different techniques in different kinds of terrains and has been accordingly repre-
sented in Fig. 4d–f. The first row represents the original left image as captured by the 
UAV, and the remaining images are arranged similarly to the WHU dataset example. 
The disparity estimation result for images with trees can be found to be better for 
SGBM variants as compared to the learning-based approach. In the case of SGBM 
variants, the leaves in the tree and its leaves are visually distinguishable, which is not 
the case for the learning-based approach. In this case, even the ground truth does not 
provide detailed structure information compared to the original image. SGBM-BT 
yields a smooth output such that the background information is merged with the
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foreground information, which is not the case with SGBM-ADC as it is effective in 
handling texture-less regions in this case and can be found to provide better infor-
mation about the ground as compared to the SGBM-BT and SGBM-SAD results. In 
the case of learning-based methods, CRE-stereo performs better than other learning-
based schemes but not as good as the SGBM variants and can be inferred from the 
cropped leaf region. RAFT produces a disparity map which is smoothed out such that 
the leaves are not distinctly visible and not as sharp as compared to CRE. HITNet 
provides similar results as RAFT and gives a rough indication about trees/ vegeta-
tion with edges smoothed out. Patch-Match can provide clean and visually acceptable 
information about the scene due to its iterative plane refinement nature. It can distin-
guish between the flat regions and trees but the edges and texture information about 
the tree is lost in the process. 

For the rocky areas in Fig. 4e, SGBM variants can detect edges with distinct 
boundaries and handles depth complexities well except in some equi-depth regions. 
For these kinds of images, the distinct edges encompassing the boundary region are 
seen properly, while the inner silhouette is not as distinct as the original image. In the 
case of SGBM—ADC, there are certain black spot regions, indicating no-matching 
availability on the corresponding image, which is otherwise smoothened out in the 
case of SGBM-BT and SGBM—SAD using a median and speckle filter. In the case of 
a learning-based method such as HitNet, it does not give accurate information about 
edges and is unable to separate the foreground and background regions accurately 
due to image complexity. CRE and RAFT produce relatively better depth maps as 
compared to HITNet, as they can distinguish between depth variations in different 
areas and maintain the edge information. In the case of PatchMatch, the variations 
in the depth map are better than those of SGBM variants and other deep learning 
methods. 

The flat region in the Mid-Air dataset shown in Fig. 4f is a set of images that 
consists of large patches of areas having similar textures and constant depth varia-
tion. The performance of SGBM—ADC is found to be better than SGBM—BT and 
SGBM—SAD, depicting clear boundaries, especially for nearby objects, and fading 
away as the object gets farther away from the image viewpoint. In learning-based 
techniques, degraded performance is seen for nearby and far-away objects such that 
the ground merges with the sky when they are far away and cannot be distinguished in 
many cases. In the case of CRE and HITNet, the output is blurred near the edges and 
values. In some cases, the sky and flat ground have been assigned similar disparity, 
resulting in blurring and smoothing near surface boundaries, which is not the case 
with RAFT. PatchMatch can show distinct features in texture-less regions and yields 
better results as compared to others. 

Overall, it can be inferred from the visual analysis that SGBM variants produce less 
accurate results near depth discontinuities and occluded regions compared to the other 
areas in the image. On the other hand, SGBM—ADC generates relatively accurate 
disparity values near the depth edges compared to the other regions in the image and 
tends to preserve the occluded regions. On analyzing the results of different learning-
based approaches, it can be seen that these algorithms are able to yield a good estimate 
of image semantics but still need more tuning and enhancements to yield results that
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are comparable to optimization-based techniques. CRE and RAFT are more suitable 
with low-textured areas or repetitive texture surfaces like wood, grass, etc., and can 
handle the occlusions well. The disparity maps generated by HITNet, at times, lack 
some necessary details, which can be crucial for some applications. CRE gradually 
increases resolution during iterative updates, leading to a loss of context during 
information propagation, leading to image blurring at different instances. It can be 
inferred from visual analysis that the performance of optimization techniques, that is, 
PatchMatch used here is better in most of the cases but at a very high computational 
cost. It is, therefore, necessary that faster computational algorithms be developed 
that take cues from computer vision geometry and do not rely on learning-based 
architectures alone. 

5.3 Computation Time Analysis 

The computation time of any algorithm is one of the major factors governing usage 
in real-time applications to compare the different methods experimented here. The 
time required to run different techniques on the two datasets for a single image 
pair is observed and plotted in Fig. 6. In the case of SGBM variants, it was found 
that changing cost functions led to minor changes in computational time. The 
optimization-based approach PatchMatch takes a relatively much longer time than 
the traditional SGBM-based or learning-based approaches. It is for this very reason 
that despite yielding good results, they are not practically realizable for real-time 
systems. The time taken for the Mid-Air dataset is higher as the image resolution is 
higher than the WHU dataset. These implementations are not optimized for parallel 
processing or run-on optimized hardware resources, which could have led to less 
computation time in each of the cases. 

Fig. 6 Computation time analysis of different disparity estimation techniques
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6 Conclusion 

In this work various metrics to compare disparity maps obtained from different 
traditional and learning based approaches have been used. It was found that the 
image texture and features play a very important role in the estimated disparity. The 
block matching method primarily utilizes low-level image features to identify corre-
sponding pixels in the left and right images. As a result, the disparity maps generated 
by this method are often noisy and lead to decreased performance. However, despite 
this limitation, the method still produces disparity maps that preserve geometric 
accuracy and the performance is identical with different cost functions. 

In case of learning-based approaches, they are able to carry out the semantic 
segmentation appropriately. However, their MSE values differ widely from the 
ground truth image as they do not have any common reference. The dense depth 
map in case of SGBM based techniques are obtained by calculating the shift in 
disparity between left and right image, while in case of learning-based approach, 
these values are based on a pre-trained model. Therefore, when the same approach 
is applied on a new kind of dataset, normalization of the result within a specified 
disparity level is very necessary. The learning-based approach gives a very good 
approximation of the relative disparity, and if a hybrid approach is created to fuse 
the computational geometry like SGBM, it might yield better results than either of 
the two approaches. 

Among the learning-based methods, CRE Stereo was found to be a robust algo-
rithm that performed well in almost all the cases. It is memory efficient as it uses a 
local search window instead of a full-cost volume. HITNet avoids full-cost volume 
computation and adapts a coarse-to-fine propagation approach. Raft Stereo is fast, 
accurate, and provides good results but blurs textures and occlusions. In the context 
of aerial images, the choice of technique for disparity depends on various factors 
like quality of images, scene complexity, and color or gradient information. It should 
be noted that different methods can be tuned to specific applications or a partic-
ular dataset and for different regions. However, more efforts are required to develop 
algorithms that are both geometrically consistent and fast. 
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Machine Learning Models-Based 
Prediction in Cardiovascular Diseases: 
A Cavernous Analysis 

Anu Singha, Mehul Bhatia, Prajayshee Chauhan, and Sakshi Jaiswal 

Abstract Cardiovascular (CVD) disease continues to pose a key global health chal-
lenge, emphasizing the need for accurate risk prediction and preventive measures. In 
recent decades, machine learning (ML) approaches have arisen as influential tools for 
analyzing complex medical datasets and enhancing CVD risk assessment. This book 
chapter presents a comprehensive review of recent advancements in ML-based CVD 
prediction, covering various ML algorithms, datasets, feature selection techniques, 
performance evaluation metrics, and associated challenges. The healthcare industry 
generates vast amounts of medical data, necessitating ML-driven decision-making 
for effective heart disease prediction. Recent research has explored the integration of 
multiple ML techniques to develop hybrid predictive models for improved accuracy. 
The proposed study employs data pre-processing techniques such as noise removal, 
handling missing values, and attribute classification to enhance classification and 
decision-making at different stages. The performance of the predictive model is 
assessed using classification metrics such as sensitivity, accuracy, and specificity. 
This chapter introduces a CVD prediction classification model designed to deter-
mine the likelihood of heart disease and raise awareness regarding early diagnosis. 
The proposed approach compares the predictive accuracy of decision tree, random 
forest, gradient boosting, and logistic regression by applying rule-based methodolo-
gies to regional datasets, ultimately identifying the most accurate model for CVD 
prediction. 
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1 Introduction 

CVD refers to a broad spectrum of circumstances affecting the blood vessels and 
heart, including stroke, coronary artery disease, and heart attack. Despite substantial 
advancements in medical treatment and public health initiatives, CVD remains the 
leading global cause of mortality. Early detection of patients at peak risk is essential 
for implementing effective protective measures and improving patient outcomes. 
Conventional risk assessment models, which rely on demographic and clinical 
factors, often lack the precision needed for personalized risk prediction. In contrast, 
machine learning (ML) techniques have demonstrated the ability to analyze large-
scale datasets and incorporate diverse risk factors, enhancing predictive accuracy in 
CVD assessment. 

According to reports by the World Health Organization (WHO), over 12 million 
demises arise annually due to cardiovascular diseases, making it one of the most 
devastating global health concerns. In India, the impact of CVD is particularly severe, 
posing significant health risks. Diagnosing these conditions is a complex process 
requiring high precision, yet the shortage of medical experts in certain regions places 
patients at an increased risk of misdiagnosis. Typically, cardiologists diagnose and 
treat heart diseases, but integrating ML techniques with medical information systems 
can enhance diagnostic accuracy and bridge the gap in healthcare accessibility. 

This paper explores various ML techniques used for predicting cardiovascular 
disease risk, comparing their effectiveness in analyzing uncertainty levels based on 
patient attributes. The study utilizes medical datasets collected from global research 
efforts to evaluate the performance of different ML models. Machine learning, 
which enables systems to learn patterns from data without explicit programming, 
has become a powerful tool for identifying complex patterns in high-dimensional, 
diverse datasets, such as those related to heart diseases. By leveraging these advanced 
techniques, CVD prediction models can achieve greater precision, contributing to 
early diagnosis and improved patient care. 

2 Related Work 

This section presents a comprehensive literature review of recent studies utilizing 
ML methods for cardiovascular disease (CVD) prediction. It examines commonly 
used ML techniques, including decision trees, logistic regression, random forests, 
support vector machines, and neural networks, highlighting their advantages and 
limitations. Additionally, it explores feature selection techniques such as filter, 
wrapper, and embedded approaches, which enhance model performance and inter-
pretability. The role of integrating diverse data sources, including genetic data, elec-
tronic health records, imaging, and wearable sensor data, is also discussed to illustrate 
improvements in predictive accuracy.
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Weng et al. [1] evaluated four ML models on clinical data from over 300,000 
UK households, revealing that neural networks were the most effective for CVD 
prediction in large datasets. Saboor et al. [2] applied nine ML classifiers (e.g., 
SVM, Random Forest, Decision Tree, XGBoost) on a cardiovascular disease dataset, 
achieving 96.72% accuracy with SVM after data normalization and hyperparameter 
tuning. Similarly, Zaman et al. [3] proposed an IoT-ML model that analyzes heart 
rate, ECG signals, and cholesterol levels to assess cardiovascular health conditions. 
A meta-analysis by Krittanawong et al. [4] reviewed ML models for predicting coro-
nary artery disease, heart failure, stroke, and arrhythmias using MEDLINE, Embase, 
and Scopus databases. Their findings emphasized that SVM and boosting algo-
rithms demonstrated strong predictive performance, but significant variations were 
observed across different studies due to parameter inconsistencies. Bharti et al. [5] 
employed deep learning (DL) models on the Supervised Learning Archive Coronary 
Heart Disease dataset, achieving an average accuracy of 94.2% using 14 essential 
clinical features. Ahmed et al. [6] compared Logistic Regression, Decision Tree, 
Random Forest, and SVM for stroke prediction, with Random Forest achieving the 
highest accuracy (90%) after hyperparameter tuning and cross-validation. Similarly, 
Biswas et al. [7] tackled class imbalance in stroke diagnosis by applying Random 
Over Sampling (ROS) and analyzing eleven ML classifiers. After balancing the 
dataset, four classifiers exceeded 96% accuracy, demonstrating the effectiveness of 
oversampling techniques. Recent advancements have also explored cloud-based and 
computationally efficient models. Maini et al. [8] proposed a cloud-based decision 
support system for affordable CVD diagnosis using ML, while Enriko et al. [9] eval-
uated a K-Nearest Neighbors (KNN) model, achieving 81.85% accuracy but noting a 
decline in performance with an increased number of parameters. Anitha and Sridevi 
[10] utilized learning vector quantization algorithms on UCI’s heart disease dataset, 
selecting 14 out of 76 features for improved prediction, achieving 85.55% accuracy. 

This review highlights the increasing adoption of ML techniques for CVD predic-
tion, demonstrating high accuracy and reliability in clinical settings. However, model 
interpretability, parameter optimization, and dataset variability remain key chal-
lenges, requiring further research to develop scalable and explainable AI-based 
healthcare solutions. 

3 Dataset and Description 

Data Source and Analysis: Healthcare databases have accumulated vast amounts of 
patient records, providing critical insights into various medical conditions, including 
heart disease. The term heart disease encompasses multiple conditions that adversely 
affect the human heart, with cardiovascular disease (CVD) being among the most 
severe. CVD refers to disorders impacting the heart and blood vessels, which disrupt 
blood circulation and pumping functions. For this study, records were sourced from 
the Cleveland, Switzerland, Hungarian, and Long Beach VA heart disease databases, 
available in the UCI Machine Learning Repository. These datasets are used to identify
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patterns associated with heart disease. The data is separated into two subsets: training 
and testing datasets. A total of 920 records with 76 medical attributes were collected, 
with 14 key attributes selected for analysis, as listed in Table 1. 

Data Preprocessing: The data preprocessing stage plays a vital role in preparing 
the dataset for investigation. This involves:

• Data cleaning to eliminate inconsistencies.
• Data integration to merge relevant information.
• Handling missing values by either filling them with estimated values or removing 

incomplete records.
• Eliminating redundant data to prevent incorrect predictions. 

Since missing or redundant data can lead to faulty predictions, preprocessing 
ensures that the dataset remains accurate and reliable for analysis. 

Operating Environment and Data Analysis: The analysis was performed using 
Python, which provides a robust statistical computation and graphical representation 
platform for data-driven decision-making. Figures 1 and 2 illustrate insights derived 
from the dataset:

• Figure 1 highlights the relationship between age and cardiovascular disease 
occurrence, showing that individuals aged 55–65 are at the highest risk.

• Figure 2 depicts the impact of blood pressure levels, indicating that CVD risk is 
more prevalent in individuals with blood pressure readings between 110 and 150.

Table 1 Various attributes used are listed [11]. CN—Continuous 

S. No. Observation Description Values 

i Age Age (years) CN 

ii Sex Patient sex M/F 

iii CP Chest pain 4 types 

iv Restbps Resting blood pressure CN 

v Chol Cholesterol (serum) CN 

vi FBS Fasting blood sugar <, or >120 mg/dl 

vii RestECG Resting electro cardio gram 5 values  

viii Thalach Maximum heart rate achieved CN 

ix Exang Exercise induced angina Y/N 

x Oldpeak ST depression during exercise in relation to 
the duration of rest taken 

CN 

xi Slope Slope of peak exercise ST segment Up/Down/Flat 

xii Ca Indicates the number of major vessels 
highlighted by fluoroscopy 

0–3 

xiii Thal Defect type Reversible/Normal/Fixed 

xiv Num 
(disorder) 

Heart disease Not present/Present in the 
4 major types 
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Fig. 1 Demonstrations the 
risk of heart attack based on 
age 

Fig. 2 Demonstrations the 
risk of heart attack based on 
resting blood pressure

Python’s extensive libraries facilitate rapid data visualization and statistical anal-
ysis, enabling efficient development of predictive models for heart disease. While 
heart disease manifests in various forms, there are key risk factors that determine 
an individual’s susceptibility. Monitoring these essential characteristics is crucial in 
assessing and predicting CVD risk [11]. 

4 Various Machine Learning Algorithms 

4.1 Logistic Regression 

Logistic regression [12] is a statistical procedure commonly used for binary classifi-
cation tasks, such as determining the presence or absence of cardiovascular disease 
(CVD). It estimates the probability of a binary outcome based on one or more 
predictor variables, making it a widely used model in medical diagnostics.
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One of the key advantages of logistic regression is its computational efficiency, 
interpretability, and suitability for datasets where a linear relationship exists between 
input features and the ground truth variable. Due to its simplicity, it often serves as a 
baseline model in CVD prediction studies before employing more complex machine 
learning techniques. 

Unlike regression models that predict continuous values, logistic regression 
provides probabilistic outputs ranging between 1 and 0, rather than discrete clas-
sifications. For instance, in CVD prediction, the model estimates the likelihood of a 
patient having the disease (1: Presence) or not (0: Absence), instead of making abso-
lute determinations. It achieves this by fitting an S-shaped logistic function rather 
than a linear regression line, which makes it well-suited for classification problems. 

The sigmoid function, also recognized as the logistic function, is fundamental to 
logistic regression as it maps predicted values to probabilities. A threshold value is 
applied to classify outcomes: if the predicted probability exceeds the threshold, it 
is classified as 1 (CVD present); otherwise, it is classified as 0 (CVD absent). This 
approach enables logistic regression to be effectively used in various classification 
scenarios, such as identifying disease presence, assessing obesity based on weight, 
and other medical applications. 

4.2 Decision Trees 

Decision trees [13] are supervised learning non-parametric models that systemat-
ically divide the feature space into smaller subsets based on the values of input 
features. Each node in the tree signifies a decision criterion based on a particular 
feature, leading to an ultimate classification or prediction at the leaf nodes. 

One of the key advantages of decision trees is their interpretability, as they provide 
a clear, step-by-step decision-making process. They can handle both categorical 
and numerical data, are resistant to outliers, and can manage missing values effec-
tively. Additionally, decision trees can capture non-linear relationships between input 
features and the ground truth variable, making them well-suited for CVD prediction 
tasks. 

Decision Tree Algorithm Workflow: 

1. Initialize the Root Node: Start with the root node (S) containing the entire dataset. 
2. Select the Best Attribute: Identify the most significant feature using an Attribute 

Selection Measure (ASM) such as Gini impurity or information gain. 
3. Partition the Dataset: Divide S into subsets based on the possible values of the 

selected attribute. 
4. Create Decision Nodes: Generate a decision node for the best attribute. 
5. Recursive Tree Construction: Repeat the partitioning process for each subset 

until further classification is not possible. The final nodes are termed leaf nodes, 
representing the classification outcome.
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By following this process, decision trees provide an intuitive and effective frame-
work for diagnosing cardiovascular diseases, enabling automated decision-making 
based on patient attributes. 

4.3 Random Forest 

Random forests [14] are ensemble learning algorithms that association of several 
decision trees to enhance predictive accuracy and reduce the risk of overfitting. Each 
tree in the forest is trained on a random subset of the training data and features, and 
final predictions are obtained by aggregating the outputs of all individual trees. 

One of the key strengths of random forests is their capability to grip high-
dimensional datasets while maintaining robustness. Unlike individual decision trees, 
which are prone to overfitting, random forests provide better generalization perfor-
mance by averaging multiple tree predictions. This makes them particularly effec-
tive for CVD prediction, where identifying feature importance and ensuring reliable 
model performance are crucial. 

Random Forest Algorithm Workflow: 

1. Random Data Selection: Choose K random data points from the training set. 
2. Build Decision Trees: Construct decision trees based on the selected subsets of 

data. 
3. Determine the Number of Trees: Set the number N of decision trees to be 

generated. 
4. Repeat Steps 1 and 2: Continue building trees using different random subsets. 
5. Prediction and Voting: For new input data, each decision tree makes a prediction. 

The final classification is determined by majority voting, where the category 
receiving the most votes is assigned to the new data point. 

By leveraging multiple decision trees, random forests improve predictive accu-
racy, making them a robust and reliable method for diagnosing cardiovascular 
diseases. 

4.4 Gradient Boosting Machines (GBM) 

Gradient Boosting Machines (GBMs) [15] are ensemble learning methods that build a 
sequence of weak learners—typically decision trees—where each subsequent model 
aims to correct the errors of its predecessor. This iterative learning approach improves 
model performance by minimizing residual errors over multiple iterations.



152 A. Singha et al.

Popular GBM frameworks such as XGBoost and LightGBM are highly effective 
in CVD risk prediction, as they efficiently process heterogeneous data, identify non-
linear patterns, and achieve high predictive accuracy when fine-tuned with hyperpa-
rameter optimization. Their ability to adapt to misclassified instances makes them 
particularly well-suited for complex medical datasets. 

Gradient Boosting Algorithm Workflow: 

1. Initialize the Dataset—Start with a dataset containing multiple data points. 
2. Assign Equal Weights—Each data point is initially given an equal weight. 
3. Train the First Weak Learner—The model is trained using these weights as input. 
4. Identify Misclassified Instances—Determine which data points were incorrectly 

predicted. 
5. Adjust Weights—Increase the weights of misclassified data points so that 

subsequent models focus more on these cases. 

By iteratively refining predictions, gradient boosting enhances model accuracy, 
making it a powerful approach for cardiovascular disease risk assessment. 

5 Experiment Analysis and Result Discussion 

In this section, we discussed experiment setup, assessment metrics, and comparative 
assessment. To train the machine learning methodologies, we have used a work-
station server with 48 GB RAM, Intel Xeon CPU, CUDA 8.0, NVIDIA XP GPU 
implementation. In this chapter, 920 patients record samples are treated as train set 
and test along with 14 attributes. 

5.1 Evaluation Parameter Discussion 

Several essential metrics are available for evaluating machine learning models, and 
we have utilized five key measures. 

ROC_AUC: The Receiver Operating Characteristic (ROC) curve is a probability-
based evaluation metric, and the Area Under the Curve (AUC-ROC) quantifies the 
model’s ability to distinguish between CVD and non-CVD cases. A higher AUC 
indicates better classification performance, as it represents the degree of separability 
between the two classes. The AUC is computed using the following formula: 

AUC =
∑

ranki − M (M +1) 
2 

MN 
(1)

∑
ranki denotes the total sum of the serial numbers assigned to cancer-positive 

samples. M and N correspond to the count of cancer-positive and cancer-negative 
samples, respectively.
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The remining metrics formulas as follows: 

Recall = TP 

TP + FN (2) 

Precision = TP 

TP + FP (3) 

F1-Score = 2 × Precision × Recall 
Precision + Recall (4) 

Accuracy = TP + TN 
TP + TN + FP + FN (5) 

where FP represents the count of false positive CVD cases, TN denotes the number 
of true negative CVD cases, TP refers to the number of true positive CVD cases, and 
FN indicates the count of false negative CVD cases, respectively. 

5.2 Comparative Assessment 

The comparative results section provides a performance assessment of various 
machine learning models in predicting cardiovascular disease (CVD) risk. This 
subsection evaluates and compares widely used models, including Decision Tree, 
Logistic Regression, Random Forest, and GBM. These models were tested using 
a heart disease dataset obtained from the UCI Machine Learning Repository. The 
classification performance of these models for CVD prediction is illustrated in Fig. 3.

In case of precision metric, the resultant metric reached up to 85% precision value 
which has achieved by Gradient Boosting Method. The performance of Random 
Forest also reached near to Gradient Boost. The poorest precision value is achieved 
by Decision Tree. In case of recall metric, the performance of Random Forest and 
Gradient Boosting approximately equal with approx. 83% recall values. And the 
lowliest recall value is attained by Logistic Regression. In case of F1-score, the 
outcomes of Random Forest and Gradient Boosting also approximately same with 
approx. 84% F1-scores. Here also, the poorest F1-score is achieved by Decision 
Tree. MCC provides a more informative and honest result when evaluating binary 
classifications compared to accuracy and F1-Score. The Gradient Boosting methods 
outperform all other methods. 

An additional experimental evaluation was conducted to compare the performance 
of the listed methods. As shown in Fig. 4, the ROC curve plots the True Positive 
Rate against the False Positive Rate at different threshold values. When evaluating 
machine learning models using the ROC-AUC metric, the focus is on how effectively 
each algorithm distinguishes between the positive (CVD) and negative (non-CVD) 
classes. The AUC score quantifies the model’s overall discriminative capability, with 
a higher value indicating better classification performance.
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Fig. 3 Displays the risk of a heart attack based on resting blood pressure levels

Fig. 4 Displays the risk of heart attack on the basis of their resting BP
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Logistic Regression typically produces a smooth, sigmoid-shaped ROC curve, as it 
is a linear model that assumes a linear relationship between the input features and the 
log-odds of the outcome. This analysis helps in identifying the most effective model 
for CVD prediction based on classification performance and robustness. Logistic 
Regression has a high AUC (0.91), it suggests that the model is good at distinguishing 
between the two classes. However, since it’s a linear model, its performance might 
be lower compared to more complex models if the true relationship between the 
features and the target is non-linear. 

Decision Trees create a piecewise constant ROC curve because they partition the 
feature space into discrete regions. The ROC curve is more jagged due to the binary 
splits. The AUC for the Decision Tree is significantly lower (0.85) than that of other 
models, it may indicate that the model is overfitting. Decision Trees are prone to 
overfitting, especially on small datasets. 

Random Forest, being an ensemble of decision trees, generally produces a 
smoother and more reliable ROC curve compared to a single decision tree. This 
model averages the predictions of multiple trees, reducing variance and improving 
generalization. The Random Forest has a high AUC (0.93), it indicates that the model 
is effectively capturing the complexities of the data. Typically, Random Forests 
outperform single Decision Trees because they mitigate overfitting and provide a 
more robust prediction. 

GBM builds an ensemble of trees sequentially, where each tree attempts to correct 
the errors of the previous one. This often leads to a highly optimized and smooth ROC 
curve. GBM often achieves the highest AUC (0.93) among these models because it 
can capture complex patterns in the data. Since the Gradient Boosting has the highest 
AUC, it suggests that it is the best model for distinguishing between the classes in 
your dataset. 

As a summary, the model with the highest AUC is typically considered the best 
at classifying the data, meaning it has the highest ability to distinguish between the 
positive and negative classes. Gradient Boosting often achieves the highest AUC due 
to its sequential, error-correcting approach. Random Forest is also a strong performer 
due to its ensemble nature, reducing overfitting. Models with lower AUC scores may 
be underfitting the data (failing to capture complex relationships) or overfitting (fitting 
noise rather than the true signal). Logistic Regression might have a lower AUC if the 
relationship between the features and the target is non-linear. Decision Tree could 
have a lowest AUC if it overfits or fails to generalize well to unseen data. 

6 Conclusion 

This chapter presents a comprehensive review of the application of machine learning 
techniques in predicting cardiovascular disease (CVD). Various methodologies, 
datasets, feature selection strategies, and performance evaluation metrics have been 
examined to understand the effectiveness of ML-based CVD prediction models. 
The findings emphasize the potential of machine learning, particularly ensemble
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methods, in enhancing accuracy and efficiency in CVD risk assessment. Despite the 
promising results, several challenges must be addressed to facilitate the widespread 
adoption of ML in clinical settings. These include data quality concerns, model inter-
pretability, and ethical considerations. The chapter also analyzes prediction models 
to determine whether an individual is at risk of heart disease while providing insights 
for early diagnosis. By comparing performance metrics, we have observed that 
Gradient Boosting and Random Forest demonstrated the highest predictive accu-
racy compared to Decision Tree and Logistic Regression. Future research should 
focus on integrating multimodal data sources, developing interpretable machine 
learning models, improving model generalization, and conducting prospective vali-
dation studies across diverse patient populations to enhance the clinical applicability 
of ML-based CVD prediction. 
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Generative Models for Image Synthesis 

Deepak Dhillon , Satya Prakash Yadav , and Aishwary Varshney 

Abstract Generative models have become a cornerstone in the field of artificial intel-
ligence, particularly for image synthesis, enabling the creation of high-quality, real-
istic images across various domains. This chapter provides a comprehensive overview 
of key generative models, including Generative Adversarial Networks (GANs), Vari-
ational Autoencoders (VAEs), Denoising Diffusion Probabilistic Models (DDPMs), 
and more. We delve into the architectures, sub-models, and unique capabilities of 
each, highlighting their applications in image generation, translation, and enhance-
ment. Additionally, we discuss the challenges these models face, such as training 
instability and computational complexity, and explore future directions in genera-
tive image synthesis. This exploration provides a deep understanding of how these 
models are shaping the future of AI-driven creativity and design. 

Keywords Generative models · Image synthesis · GANs · VAEs · Diffusion 
models 

1 Introduction 

1.1 Overview of Generative Models and Their Significance 
in Image Synthesis 

Generative models are a class of machine learning models designed to generate 
new data instances that mimic the distribution of a given dataset. Unlike discrim-
inative models, which focus on predicting labels or classes from data, generative 
models learn the underlying patterns, relationships, and structures within the data, 
allowing them to create entirely new instances. In the context of image synthesis,
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these models have revolutionized the way we generate, transform, and enhance 
images, providing new capabilities in fields ranging from art and entertainment to 
healthcare and defence. 

The significance of generative models lies in their ability to perform complex 
image-related tasks with minimal human intervention. They can create photoreal-
istic images, translate images between domains (such as turning sketches into fully 
coloured artworks), enhance low-resolution images, and even generate novel content 
based on textual descriptions. These capabilities have opened up new avenues for 
creativity and practical applications, making generative models a critical component 
of modern artificial intelligence. 

1.2 Historical Background and Evolution of Generative 
Models 

The journey of generative models began with basic probabilistic approaches 
like Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs), 
which laid the groundwork for understanding data distribution. As computational 
power increased and neural networks evolved, the field experienced significant 
advancements, leading to the development of more sophisticated models. 

Early neural network-based approaches, such as Restricted Boltzmann Machines 
(RBMs) and Deep Belief Networks (DBNs), provided the first glimpses of generative 
capabilities within neural architectures. However, the true breakthrough came with 
the introduction of Generative Adversarial Networks (GANs) by Ian Goodfellow and 
his colleagues in 2014. GANs introduced a novel adversarial training mechanism, 
where two neural networks—the generator and the discriminator—compete against 
each other, leading to highly realistic image generation. 

Following GANs, Variational Autoencoders (VAEs) emerged as a powerful frame-
work, utilizing probabilistic graphical models and deep learning to generate data with 
meaningful latent representations. VAEs offered more stable training compared to 
GANs and brought about new insights into how generative models could structure 
and interpret data. 

More recently, models such as Denoising Diffusion Probabilistic Models 
(DDPMs), autoregressive models like PixelCNN and PixelRNN, and transformer-
based architectures have pushed the boundaries of what is possible in image synthesis 
see Fig. 1. These models have achieved remarkable success in generating high-
resolution images, integrating textual inputs, and synthesizing complex scenes with 
exceptional detail.

This chapter provides an in-depth exploration of key generative models used in 
image synthesis, such as GANs, VAEs, and DDPMs, along with their architectures, 
mechanisms, strengths, and limitations. It delves into various sub-models and their 
specific applications, from artistic image generation to practical uses in healthcare and 
industry. Additionally, the chapter addresses challenges like training instability, mode
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Fig. 1 Generative models in image synthesis
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collapse, and ethical considerations, offering a balanced view of the current landscape 
and future potential of generative models in AI. Readers will gain a comprehensive 
understanding of these powerful tools and their broader implications. 

2 Generative Adversarial Networks (GANs) 

Generative Adversarial Networks (GANs) have become one of the most influential 
frameworks in the realm of image synthesis since their introduction in 2014. By 
leveraging a unique adversarial training process, GANs can generate images that 
are highly realistic, often indistinguishable from real images. This section explores 
the architecture, variants, applications, and challenges of GANs, highlighting their 
transformative impact on the field [1]. 

2.1 Architecture of GANs 

At the core of GANs is the interplay between two neural networks: the Generator and 
the Discriminator. These networks are trained simultaneously in a zero-sum game 
where the Generator aims to produce realistic data, and the Discriminator strives to 
distinguish between real and generated data. 

Generator and Discriminator Roles: 

Generator (G): The Generator is responsible for creating synthetic data (images, 
in this case) from random noise. It takes a random vector (usually sampled from a 
Gaussian distribution) as input and transforms it through a series of neural network 
layers to produce a high-dimensional output that resembles the real data. 

Discriminator (D): The Discriminator acts as a binary classifier that evaluates 
the authenticity of the images. It receives both real images from the training set and 
synthetic images generated by the Generator. Its goal is to correctly classify these 
images as either real or fake. 

Adversarial Training Dynamics: 

The adversarial process involves the Generator and Discriminator engaging in a 
continuous battle: 

• The Generator attempts to fool the Discriminator by generating increasingly 
realistic images. 

• The Discriminator tries to improve its classification abilities to detect synthetic 
images accurately.
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This adversarial relationship is formalized through a minimax optimization 
problem, where the Generator aims to minimize the Discriminator’s ability to distin-
guish real from fake, and the Discriminator tries to maximize its classification 
accuracy. Mathematically, the objective function is: 

min 
G 

max 
D 

V (D, G) = Ez∼Pdata(x)
[
logD(x)

] + Ez∼pz (z)
[
log(1 − D(G(z)))

]

where Pdata (x) is the distribution of real data, and pz(z) is the  distribution of the  
noise vector z. 

This adversarial training dynamic is the key innovation that drives GANs, enabling 
them to learn complex data distributions effectively. 

2.2 Sub-models and Variants 

Since their inception, GANs have evolved into numerous sub-models and variants, 
each designed to address specific challenges or expand the capabilities of the original 
framework. 

DCGAN (Deep Convolutional GAN): 

• Utilizes deep convolutional layers, making GANs more stable and suitable for 
image-related tasks [2]. 

• Key advancements include the removal of fully connected layers and the use of 
strided convolutions, resulting in higher quality images. 

StyleGAN and StyleGAN2: 

• Introduced a style-based architecture that disentangles high-level attributes (like 
pose) from fine details (like colour), allowing fine-grained control over the 
generated images [3]. 

• Widely used for generating highly realistic human faces and other complex 
textures. 

CycleGAN: 

• Designed for unpaired image-to-image translation tasks, such as converting 
photographs to paintings without paired training data. 

• Uses cycle-consistency loss to ensure that image translations can be reversed 
accurately. 

Pix2Pix: 

• Focuses on paired image-to-image translation tasks, such as converting sketches 
to realistic images. 

• Directly learns the mapping from input to output images with a conditional GAN 
approach.
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BigGAN: 

• Scales up GANs to handle high-resolution images by increasing model capacity 
and dataset size, producing images with unprecedented quality and diversity. 

Progressive GAN: 

• Introduces progressive training, starting with low-resolution images and gradu-
ally adding layers to increase resolution, improving training stability and output 
quality. 

3 Variational Autoencoders (VAEs) 

Variational Autoencoders (VAEs) represent a powerful and flexible framework for 
generative modelling, blending probabilistic graphical models with deep learning. 
Unlike traditional autoencoders that focus on dimensionality reduction and recon-
struction, VAEs learn to encode data into a latent space that captures meaningful vari-
ations, enabling the generation of new, diverse data samples [4]. This section explores 
the architecture, sub-models, applications, and challenges of VAEs, highlighting their 
unique contributions to image synthesis. 

3.1 VAE Architecture and Mechanisms 

VAEs are a type of probabilistic generative model that combine deep learning with 
Bayesian inference. The architecture consists of two main components: the encoder, 
which maps input data to a latent space, and the decoder, which reconstructs the data 
from this latent representation. 

Latent Space Representation and Probabilistic Approach: 

Encoder: The encoder network maps the input image xxx to a distribution over the 
latent space, typically modelled as a multivariate Gaussian distribution. Instead of 
encoding the image into a single point, the encoder outputs the mean (μ) and standard 
deviation (σ) of the latent distribution, allowing for a probabilistic representation. 

Latent Space: The latent space is a compressed, abstract representation of the data that 
captures underlying features and variations. By sampling from the latent distribution, 
the model can generate new, similar images, providing a versatile way to explore the 
data manifold. 

Decoder: The decoder reconstructs the input by mapping the sampled latent vectors 
back to the image space. The process of decoding leverages the learned patterns in 
the latent space to produce high-quality reconstructions.
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Probabilistic Approach: The key innovation of VAEs is their use of a probabilistic 
framework to learn the latent representation. The loss function consists of two parts: 
the reconstruction loss, which measures how well the decoder reconstructs the input, 
and the Kullback–Leibler (KL) divergence, which regularizes the latent space to 
follow a standard normal distribution. The objective is to minimize: 

This combination of reconstruction and regularization allows the model to 
generate diverse and coherent samples from the latent space. 

3.2 Sub-models and Variants 

Since their introduction, VAEs have been adapted into various sub-models, each 
enhancing different aspects of the original architecture: 

Beta-VAE: 

• A modification of the standard VAE that introduces a scaling factor (β) to the  
KL divergence term. This adjustment allows for more explicit control over the 
trade-off between reconstruction quality and the disentanglement of latent factors, 
making it useful for learning interpretable representations. 

Conditional VAE (CVAE): 

• Extends the VAE by conditioning the generation process on additional informa-
tion, such as labels or attributes. This makes CVAEs particularly suitable for tasks 
where image generation needs to be guided by specific characteristics, such as 
generating images of a certain class. 

Vector Quantized VAE (VQ-VAE): 

• Combines the strengths of VAEs and discrete latent variable models by incorpo-
rating vector quantization into the latent space. This approach discretizes the latent 
space, enhancing the model’s ability to capture complex patterns and making it 
more suitable for tasks like image compression and high-fidelity generation. 

4 Denoising Diffusion Probabilistic Models (DDPMs) 

Denoising Diffusion Probabilistic Models (DDPMs) have emerged as a powerful 
class of generative models, offering an alternative approach to traditional frameworks 
like GANs and VAEs. DDPMs use a step-by-step denoising process to generate high-
quality images, achieving impressive results in areas like inpainting and text-to-image
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synthesis [5]. This section delves into the mechanisms of diffusion models, their key 
variants, applications, and the challenges associated with their use. 

4.1 Mechanism of Diffusion Models 

Diffusion models are based on the idea of gradually transforming data into noise and 
then learning to reverse this process to reconstruct the data. This forward and reverse 
diffusion approach underpins their ability to generate images that closely resemble 
real data [6]. 

Forward and Reverse Diffusion Processes: 

Forward Diffusion Process: 

• In the forward diffusion process, the model gradually adds noise to an image over 
a sequence of time steps, resulting in a noisy, unstructured output. The objective 
is to corrupt the data distribution into a standard Gaussian distribution through a 
series of small perturbations. 

• Mathematically, the forward process is defined as a Markov chain where each step 
adds a small amount of Gaussian noise, making the image progressively noisier 
until it resembles pure noise. 

Reverse Diffusion Process: 

• The reverse process aims to learn the step-by-step denoising of the noisy image 
back into its original form. This is achieved by training a neural network to predict 
the noise added at each step, effectively reversing the forward diffusion. 

• The reverse process can be interpreted as sampling from a learned distribution, 
moving from random noise back to a high-quality, coherent image. The model 
is trained to minimize the difference between the predicted noise and the actual 
noise added during the forward process. 

Probabilistic Modelling: 

• The key innovation in diffusion models is the use of probability distributions 
to model each step of the forward and reverse processes. This probabilistic 
approach allows the model to generate diverse samples and effectively capture 
the underlying structure of the data. 

4.2 Sub-models and Variants 

Diffusion models have been adapted into various sub-models and variants, each 
introducing enhancements to improve efficiency, flexibility, or output quality.
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Denoising Diffusion Implicit Models (DDIM): 

• DDIM modifies the original DDPM framework by introducing a non-Markovian 
sampling process, allowing for faster and more efficient sampling. By adjusting 
the number of sampling steps, DDIM can balance between generation speed and 
quality, making it suitable for real-time applications. 

Latent Diffusion Models (LDMs): 

• LDMs incorporate latent representations, similar to VAEs, to perform diffusion in 
a compressed space rather than pixel space. This approach significantly reduces 
computational complexity and allows for handling higher resolutions and more 
complex data types, such as videos or 3D structures. 

Score-Based Generative Models: 

• These models, closely related to DDPMs, use a score-matching approach to learn 
the gradient of the data distribution. They can generate samples by following gradi-
ents of learned score functions, offering a continuous generalization of diffusion 
models. 

5 Autoregressive Models 

Autoregressive models are a class of generative models that generate images by 
sequentially predicting pixels or groups of pixels based on previous predictions. 
They are particularly known for their ability to capture intricate pixel-level details, 
making them effective for tasks requiring high-quality, coherent outputs. This section 
covers the architecture and mechanisms of autoregressive models, their applications, 
and the challenges involved in their use. 

5.1 Architecture and Mechanisms 

Autoregressive models generate images by modelling the probability distribution of 
pixel values in a sequential manner. Each pixel is conditioned on the previous pixels, 
creating a chain-like process where each step depends on the previous context. 

PixelRNN: 

• PixelRNN is one of the earliest autoregressive models designed for image genera-
tion. It uses recurrent neural networks (RNNs) to sequentially predict each pixel’s 
value row-by-row or in a zigzag manner across the image. The model captures 
complex dependencies between pixels but is computationally expensive due to its 
sequential nature.
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PixelCNN: 

• PixelCNN builds on the idea of PixelRNN but replaces the RNN structure with 
convolutional layers. This modification allows the model to generate pixels in 
parallel within a single layer, significantly speeding up the generation process 
while maintaining the autoregressive property. Variants like Gated PixelCNN 
introduce gating mechanisms to enhance pixel dependencies [7]. 

Image GPT: 

• Inspired by the success of GPT models in natural language processing, Image 
GPT applies a similar transformer-based autoregressive architecture to image 
generation. It treats images as sequences of pixels, using attention mechanisms to 
model the relationship between pixels over long distances. Image GPT is capable 
of generating coherent, high-quality images by learning complex dependencies 
across large datasets [8]. 

Mechanism of Autoregression: 

• Autoregressive models predict each pixel’s value conditioned on previously gener-
ated pixels, often using a likelihood-based approach. For an image xxx, the joint 
probability distribution is factorized as: 

p(x) = p(x1)p(x2|x1)p(x3|x1, x2) . . .  p(xn|x1, x2, . . . ,  xn−1) 

• This sequential prediction allows the model to generate detailed images that 
preserve local and global coherence. 

5.2 Sub-models and Variants 

PixelRNN (Recurrent Neural Networks) 

• Uses recurrent neural networks to model the dependencies between pixels, 
generating images pixel by pixel. 

• Captures long-range dependencies in images, useful for sequential generation. 

PixelCNN and PixelCNN++ 

• A convolutional variant of PixelRNN, which uses convolutions to capture pixel 
dependencies instead of recurrent connections, making it more efficient. 

• PixelCNN++ introduced improvements like down sampling layers and more 
sophisticated conditioning mechanisms to enhance image quality. 

Image Transformer 

• Adapts transformer architectures for autoregressive image generation, focusing 
on self-attention mechanisms instead of convolutions or recurrences.
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• Scales well with large data, capturing long-range dependencies better than 
traditional CNNs. 

Image GPT (Generative Pre-trained Transformer) 

• A variant of GPT adapted for images, which treats image synthesis as a language 
modelling problem by predicting pixels or tokens sequentially. 

• Leverages large-scale pre-training, self-attention, and autoregressive prediction 
to generate high-quality images. 

Conditional Autoregressive Models 

• Extends autoregressive models by conditioning the generation process on addi-
tional information, such as text descriptions or class labels. 

• Enables targeted image generation based on specific conditions, enhancing control 
over the output. 

Parallel Autoregressive Models 

• Attempts to parallelize the generation process of traditional autoregressive models 
by predicting multiple pixels simultaneously while maintaining dependencies. 

• Faster generation times compared to sequential models without sacrificing output 
quality. 

6 Neural Radiance Fields (NeRF) 

Neural Radiance Fields (NeRF) have revolutionized the field of 3D image synthesis 
by providing a novel approach to representing and rendering 3D scenes. By using 
neural networks to model scenes as continuous volumetric data, NeRF enables high-
fidelity 3D reconstructions and realistic novel view synthesis from 2D images. This 
section explores the underlying mechanisms of NeRF, key variants, applications, and 
the challenges faced in optimizing these models [9]. 

6.1 NeRFs and Their Mechanisms 

NeRF is a neural network-based approach that models 3D scenes by learning a 
continuous volumetric representation. Unlike traditional 3D modelling techniques 
that use explicit meshes or voxels, NeRF leverages neural networks to encode the 
colour and density of points in 3D space, allowing for high-quality rendering of 
complex scenes. 

3D Scene Representation as Continuous Volumetric Data: 

• NeRF models a 3D scene by mapping spatial coordinates (x, y, z) and viewing 
direction (θ, ϕ) to RGB color values and volumetric density. This mapping is
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achieved through a fully connected neural network that learns to encode the scene 
based on input images taken from different angles. 

• During rendering, NeRF integrates the colour and density values along a ray cast 
through the scene to compute the final pixel value. This approach allows the 
model to synthesize novel views of the scene that were not part of the training 
data, creating highly realistic visual effects. 

• The training process involves minimizing the difference between the rendered 
views and the actual input images, allowing the model to accurately capture the 
fine details and lighting conditions of the scene. 

6.2 Sub-models and Variants 

NeRF has inspired several variants that enhance its capabilities, address specific 
limitations, or optimize its performance for different applications. 

Mip-NeRF: 

• Mip-NeRF improves the efficiency and quality of NeRF by incorporating a multi-
scale representation of the scene. By using mipmaps (precomputed, optimized 
sequences of images), Mip-NeRF effectively handles anti-aliasing and improves 
the rendering of fine details at varying distances. 

• This variant allows for faster training and rendering, making it more suitable for 
real-time applications where performance is critical. 

NeRF-W: 

• NeRF-W extends NeRF to handle unstructured and variable lighting conditions, 
making it ideal for real-world scenarios where lighting can change dynamically. 
By introducing additional latent variables, NeRF-W learns to separate scene 
geometry from transient lighting effects, enabling robust rendering under diverse 
conditions. 

• This model is particularly useful for environments where consistent lighting is 
not guaranteed, such as outdoor scenes or dynamic lighting in indoor spaces. 

Dynamic NeRF and Temporal NeRF: 

• These models extend the original NeRF framework to capture dynamic scenes, 
including moving objects and temporal changes. By incorporating time as an 
additional input, these variants can generate animations and realistic transitions, 
broadening the scope of NeRF’s applications.
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7 Transformers in Image Synthesis 

Transformers have revolutionized various domains of machine learning, including 
image synthesis. Their ability to handle long-range dependencies and process 
sequences has extended to the generation and transformation of images. This section 
explores transformer architectures used in image synthesis, their applications, and 
the challenges they face [10]. 

7.1 Transformer Architectures 

Transformers, initially designed for natural language processing, have been adapted 
for image synthesis with remarkable success. Key transformer-based models in this 
field include Vision Transformers, Image GPT, and DALL-E. 

Vision Transformers (ViTs): 

• Vision Transformers adapt the transformer architecture, which was originally 
designed for sequences of words, to handle images by treating them as sequences 
of patches. Instead of processing individual pixels, ViTs divide an image into 
fixed-size patches, which are then linearly embedded into a sequence. 

– The image patches are flattened and linearly projected into embeddings. These 
embeddings are then fed into a transformer encoder, which processes the 
sequence using self-attention mechanisms. 

– The transformer architecture learns global relationships and contextual infor-
mation across the entire image, allowing it to capture complex patterns and 
details. 

Image GPT: 

• Image GPT is an adaptation of the GPT architecture for image generation. It 
treats images as sequences of pixels or patches and uses a transformer decoder to 
generate images autoregressively [8]. 

– Image GPT uses a masked language modelling approach, where parts of the 
image are masked during training, and the model learns to predict the missing 
pixels based on the context provided by the visible parts. 

– The model generates images pixel by pixel or patch by patch, capturing high-
level patterns and details through the transformer’s attention mechanisms. 

DALL-E: 

• DALL-E extends the transformer approach to generate images from textual 
descriptions. It combines a transformer-based text encoder with an image decoder 
to create visual content from textual input [10].
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– DALL-E uses a VQ-VAE-2 (Vector Quantized Variational Autoencoder) to 
represent images in a discrete latent space, where a transformer model learns 
to map textual descriptions to image tokens. 

– The model generates images by autoregressively predicting sequences of image 
tokens based on the input text. 

8 Text-To-Image Models 

Text-to-image models have transformed the way we generate visual content from 
textual descriptions, enabling creative and practical applications across various fields. 
These models leverage advances in machine learning to create detailed images based 
on textual input, bridging the gap between language and vision [11]. This section 
explores the key models in text-to-image generation, their applications, and the 
challenges they face. 

8.1 Models and Mechanisms 

Text-to-image models use advanced neural networks to generate images from textual 
descriptions. Several notable models in this area include DALL-E, CLIP-Guided 
Diffusion, and Stable Diffusion. 

DALL-E: 

• Developed by OpenAI, DALL-E is a groundbreaking model that generates images 
from textual prompts using a combination of a transformer-based text encoder and 
a VQ-VAE-2 image decoder. 

– DALL-E uses a discrete latent space to represent images and learns to map 
textual descriptions to sequences of image tokens. The model generates images 
by autoregressively predicting these tokens based on the input text. 

– It excels at creating novel and imaginative visual content, combining elements 
in ways that may not exist in the real world. 

Capabilities: 

• DALL-E can generate diverse and complex images, including abstract concepts 
and creative visual combinations, making it suitable for art, design, and entertain-
ment. 

CLIP-Guided Diffusion: 

• CLIP-Guided Diffusion combines the capabilities of OpenAI’s CLIP (Contrastive 
Language–Image Pre-training) model with diffusion-based image generation 
techniques.
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– CLIP is used to evaluate and guide the diffusion process, which iteratively 
refines a noisy image into a coherent one based on the textual prompt. CLIP’s 
role is to ensure that the generated image aligns with the text description. 

– This approach leverages CLIP’s ability to understand and match text-image 
relationships to produce high-quality, contextually relevant images. 

Capabilities: 

• CLIP-Guided Diffusion is particularly effective at generating images that closely 
match the textual description, even in complex or nuanced scenarios. 

Stable Diffusion: 

• Stable Diffusion is a model that generates high-quality images by learning a stable 
latent space for image synthesis. It integrates diffusion techniques with advanced 
generative models. 

– The model uses a diffusion process to iteratively refine an image from noise 
based on textual input, guided by a latent space that captures diverse image 
features and contexts. 

– This approach balances image quality and stability, resulting in high-resolution 
images with consistent detail and coherence. 

Capabilities: 

• Stable Diffusion is known for producing stable, high-quality images while 
maintaining interpretability and control over the generation process. 

9 Flow-Based and Energy-Based Models 

Flow-based and energy-based models are powerful approaches in generative 
modelling, each offering unique advantages for image synthesis and complex distri-
bution modelling. This section delves into these models, their mechanisms, and their 
applications. 

9.1 Flow-Based Models 

Flow-based models learn to transform a simple distribution into a complex one using a 
series of invertible transformations. They are characterized by their ability to provide 
exact likelihood estimates and perform exact sampling.
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Real NVP (Real-Valued Non-Volume Preserving): 

• Real NVP is a flow-based model that uses a series of coupling layers to transform 
a simple distribution into a complex one. The model applies a series of bijec-
tive (invertible) transformations, allowing for exact likelihood computation and 
sampling. 

• The transformation is split into two parts: a coupling layer that updates a subset 
of the variables while keeping the rest fixed, and an affine transformation that 
ensures invertibility. 

Glow: 

• Glow extends Real NVP by incorporating additional features, such as 1 × 1 
convolutions and invertible residual networks, to improve modelling capacity and 
flexibility. 

• Glow uses a series of invertible layers to transform data, with the key feature 
being the use of reversible 1 × 1 convolutions to model the dependencies between 
variables more effectively. 

9.2 Energy-Based Models 

Energy-based models (EBMs) are characterized by their use of an energy function to 
model data distributions. These models aim to learn an energy function that assigns 
low energy to data samples and high energy to non-samples. 

EBM with Langevin Dynamics: 

• EBMs use Langevin Dynamics to sample from the learned distribution by itera-
tively updating samples based on the gradient of the energy function. This process 
helps in generating samples that approximate the target distribution. 

• Langevin Dynamics involves adding noise to the samples and moving them in the 
direction of decreasing energy, thereby converging to regions of low energy. 

Joint Energy-Based Models: 

• Joint EBMs model the joint distribution of multiple variables by learning an energy 
function over the combined space. This approach allows for modelling complex 
dependencies between variables. 

• These models use energy functions to capture relationships between vari-
ables, providing a unified framework for understanding and generating multi-
dimensional data.
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10 Applications and Use Cases 

Table 1 outlines the primary applications and use cases for each generative model 
and its variants. 

Table 1 Applications and use cases of generative models of image synthesis 

Model type Sub-models Applications and use cases 

Generative Adversarial 
Networks (GANs) 

– DCGAN 
– StyleGAN 
– CycleGAN 
– Pix2Pix 
– BigGAN 
– Progressive GAN 

– DCGAN: realistic image 
generation, unsupervised 
feature learning 

– StyleGAN: high-resolution 
image synthesis, portrait 
generation 

– CycleGAN: image-to-image 
translation, domain adaptation 

– Pix2Pix: image-to-image 
translation, data augmentation 

– BigGAN: large-scale image 
synthesis, generating 
high-quality images 

– Progressive GAN: 
high-resolution image 
generation, detailed texture 
synthesis 

Variational 
Autoencoders (VAEs) 

– Beta-VAE 
– Conditional VAE 
– VQ-VAE 

– Beta-VAE: image 
reconstruction, disentangled 
representation learning 

– Conditional VAE: 
semi-supervised learning, 
conditional image generation 

– VQ-VAE: high-quality image 
reconstruction, speech 
synthesis 

Denoising Diffusion 
Probabilistic Models 
(DDPMs) 

– DDIM 
– Latent diffusion models 

– DDIM: high-quality image 
synthesis, denoising tasks 

– Latent diffusion models: 
text-to-image generation, 
image inpainting 

Autoregressive models – PixelRNN 
– PixelCNN 
– Image GPT 

– PixelRNN: sequential image 
generation, high-resolution 
image synthesis 

– PixelCNN: image generation, 
inpainting, and super-resolution 

– Image GPT: high-resolution 
image generation, 
text-to-image synthesis

(continued)
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Table 1 (continued)

Model type Sub-models Applications and use cases

Neural Radiance Fields 
(NeRF) 

– Mip-NeRF  
– NeRF-W  

– Mip-NeRF: 3D scene 
reconstruction, detailed scene 
rendering 

– NeRF-W: view synthesis for 
complex scenes, virtual reality 
(VR) content creation 

Transformers in image 
synthesis 

– Vision Transformers 
– Image GPT 
– DALL-E 

– Vision transformers: 
high-resolution image 
generation, image classification 

– Image GPT: high-resolution 
image generation, 
text-to-image synthesis 

– DALL-E: creative content 
generation, text-to-image 
synthesis 

Text-to-image models – DALL-E 
– CLIP-guided diffusion 
– Stable diffusion 

– DALL-E: creative content 
generation, concept 
visualization 

– CLIP-guided diffusion: 
text-to-image synthesis, 
creative content generation 

– Stable diffusion: high-quality 
text-to-image generation, 
artistic image synthesis 

Flow-based models – Real NVP 
– Glow  

– Real NVP: exact likelihood 
estimation, image generation, 
density estimation 

– Glow: high-quality image 
generation, complex 
distribution modelling 

Energy-based models – EBM with Langevin dynamics 
– Joint energy-based models 

– EBM with Langevin dynamics: 
sampling from complex 
distributions, image synthesis 

– Joint energy-based models: 
multi-modal data generation, 
complex distribution modelling 

11 Challenges and Future Directions 

Generative models for image synthesis have made remarkable advancements, yet 
several challenges persist that need addressing to unlock their full potential. Training 
stability remains a significant issue across various model types, with instability and 
mode collapse affecting the quality of generated outputs. Additionally, balancing 
quality and diversity in generated images presents a trade-off, as models often 
struggle to maintain high fidelity while producing a wide range of outputs. Ethical 
considerations are also critical, as the potential for misuse—such as generating
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misleading or harmful content—necessitates careful management and regulation. 
Furthermore, the computational demands of advanced models can be prohibitive, 
limiting accessibility and practical use. Addressing these challenges involves devel-
oping more robust training methods, implementing ethical guidelines, and optimizing 
models to reduce computational requirements, ultimately making these technologies 
more accessible and effective. Table 2 provides a consolidated view of the challenges 
and solutions for each type of generative model discussed in the chapter. 

Table 2 Challenges and solutions of generative models of image synthesis 

Model type Challenges Solutions 

Generative Adversarial 
Networks (GANs) 

– Training instability and mode 
collapse 

– High computational cost 
– Difficulty in evaluating model 
performance 

– Use of Wasserstein GANs 
(WGAN) for stability 

– Spectral normalization to 
stabilize training 

– Advanced architectures like 
Progressive GANs to improve 
training 

– Metrics like Inception Score 
(IS) and Fréchet Inception 
Distance (FID) for evaluation 

Variational 
Autoencoders (VAEs) 

– Blurrier outputs compared to 
GANs 

– Balancing reconstruction and 
regularization 

– Difficulty in capturing complex 
data distributions 

– Use of improved VAE variants 
(e.g., Beta-VAE) to enhance 
image quality 

– Incorporate better 
regularization techniques to 
balance reconstruction and 
latent space 

– Use of normalizing flows or 
other enhancements to improve 
distribution modelling 

Denoising Diffusion 
Probabilistic Models 
(DDPMs) 

– High computational cost for 
diffusion steps 

– Long generation times 
– Challenges with 
high-dimensional data 

– Use of more efficient diffusion 
processes (e.g., DDIM) to 
speed up sampling 

– Optimizations in diffusion 
algorithms to reduce 
computational overhead 

– Implementation of multi-scale 
or hierarchical approaches to 
handle high-dimensional data 

Autoregressive models – High computational intensity 
for pixel-level generation 

– Slow inference times 
– Difficulty in modelling 
long-range dependencies 

– Use of efficient architectures 
(e.g., PixelSNAIL) to improve 
speed 

– Techniques like distillation to 
accelerate inference 

– Implement sparse attention 
mechanisms to better handle 
long-range dependencies

(continued)
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Table 2 (continued)

Model type Challenges Solutions

Neural Radiance Fields 
(NeRF) 

– High computational cost for 
training and rendering 

– Handling complex scenes and 
long rendering times 

– Difficulty in rendering fine 
details in large scenes 

– Use of optimized NeRF 
variants (e.g., Mip-NeRF) to 
improve efficiency 

– Hierarchical approaches to 
manage scene complexity 

– Incorporate techniques for 
detail enhancement and faster 
rendering 

Transformers in image 
synthesis 

– Scalability issues with large 
images 

– Handling long-range 
dependencies 

– High computational and 
memory requirements 

– Implement efficient transformer 
architectures (e.g., Swin 
Transformer) 

– Use of sparse attention 
mechanisms to manage large 
images 

– Optimize training and inference 
processes to reduce resource 
usage 

Text-to-image models – Biases in generated content 
– Ensuring alignment with 
complex textual descriptions 

– Handling diverse and abstract 
text prompts 

– Implement bias mitigation 
techniques and regular audits 

– Use iterative refinement and 
enhanced training data for 
better alignment with text 

– Incorporate multi-modal 
learning to better handle 
diverse text prompts 

Flow-based models – Limited scalability to very 
high-dimensional data 

– High computational cost for 
training and inference 

– Complexity in managing the 
invertibility of transformations 

– Utilize more scalable flow 
architectures (e.g., Glow with 1 
× 1 convolutions) 

– Optimize training processes 
and hardware utilization 

– Develop advanced techniques 
to manage and verify the 
invertibility of transformations 

Energy-based models – Slow sampling with Langevin 
dynamics 

– Complexity in modelling 
high-dimensional joint 
distributions 

– Difficulty in training the energy 
function effectively 

– Use faster sampling techniques 
or approximate methods 

– Leverage advanced training and 
optimization strategies for 
high-dimensional models 

– Implement regularization and 
training enhancements to 
improve the energy function 

12 Conclusion 

In this chapter, we explored the diverse landscape of generative models used in image 
synthesis, delving into key architectures such as GANs, VAEs, DDPMs, autore-
gressive models, and others. Each model offers unique mechanisms for generating
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high-quality, realistic images, with applications ranging from creative content gener-
ation to scientific simulations. We also highlighted their sub-models, variants, and 
real-world use cases across various industries. 

Generative models have revolutionized image synthesis, pushing the boundaries 
of AI in creating lifelike images, improving design processes, and enhancing creative 
tasks. As these models continue to evolve, they hold transformative potential in areas 
such as virtual reality, healthcare, and even personalized digital experiences. 

Looking ahead, ongoing advancements in model optimization, scalability, and 
accessibility will play a critical role in shaping the future of image synthesis. As 
we address the current challenges, including computational efficiency and ethical 
considerations, the potential of generative models in defining future technological 
landscapes remains vast and promising. 
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Multi-class Classification 
of the SFM-Mass Images Using 
DL-Models with Machine Learning 
Classifiers 
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Abstract Breast cancer has emerged as a big reason of deaths in-between women. 
The multi-class classification of breast-masses using the SFM mass images is 
conducted by various computerized methods since last many years. Present work 
proposes a CAD design for multi-class classification of SFM mass images using 
deep feature-set and machine learning classifiers. The exhaustive experimentation is 
conducted by employing nine DL-based models and three ML based classifiers. These 
DL-based models used for extraction of deep feature-set are simple convolution series 
models / simple convolution DAG model/dilated convolution DAG models. The three 
ML-based classifiers i.e. ANFC-LH/ PCA-SVM/GA-SVM have been used exten-
sively for classification task. Experimental work is carried on 518 SFM mass images 
chosen from DDSM dataset with 208 ϵ BIRAD-3, 150 ϵ BIRAD-4 and 160 ϵ BIRAD-
5 classes, respectively. For segmenting masses from SFM mass images, ResNet50 
semantic segmentation-model has been used. Segmented mass images are then used 
for extraction of deep feature-sets. The performance comparison of these DL-models, 
reports VGG19 model as the optimal model for deep feature-extractor. Deep feature-
set is obtained using optimal feature extractor VGG19 model which may contain 
redundant values; therefore correlation based feature selection is employed to extract 
reduced deep feature-set. The performance of reduced deep feature-set is analyzed for 
multi-class classification using ML-based classifiers ANFC-LH, PCA-SVM and GA-
SVM. The objective analysis of these CADs yields, VGG19 with ANFC-LH having 
highest estimated classification accuracy of 86% with individual class accuracy of 
98, 80, 76% for BIRAD-3, BIRAD-4 and BIRAD-5 classes, respectively. 
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1 Introduction 

Mammography is the best technique often used for the breast cancer identification 
in the women with age having 38 years or may be above [1, 28, 46, 47, 56]. This 
imaging tool is capable of detecting breast cancer at the very early stage [8, 44, 54]. 
For the multi-class classification of cancerous or non cancerous masses using SFM 
mass images, a large number of computerized methods are being developed since last 
many years [4, 18, 20, 36, 39]. The mammographic mass classification methods have 
used traditional machine learning (ML) approaches by employing feature extraction 
[14], feature selection [43, 78] and classification [63–65, 67, 69, 76–78]. Later on with 
increasing performance as well as huge data processing capabilities, deep learning 
based CADs have been experimented on [25, 26, 30, 32, 37, 42, 48, 66]. Due to 
significant performance and improved accuracy, the DL-based CADs designs play 
an important role for classification of mammograms [2, 9, 15, 16, 20, 23, 24, 27]. 

Inspired from the deep network architectures, enhanced efficiency with fewer 
computations [37, 38, 45, 70, 74, 75], the present research work has extensively used 
nine deep learning based models belonging to different categories for multi-class clas-
sification of mammographic mass images into BIRAD-3, BIRAD-4 and BIRAD-5 
classes, respectively [48]. The characterization performance of these nine DL based 
models for binary classification i.e. B3 (probably benign) and suspicious abnor-
mality (B4 and B5 together considered as a single class) has been thoroughly inves-
tigated in the study [48]. However it is worth mentioning that differential diagnosis 
between suspicious abnormality as suspicious malignant (B4) and highly malignant 
(B5) is significantly important for prognosis. The present research work incorporates 
exhaustive experimentation for multi-class classification of the SFM mass images 
into B3, B4 and B5 (Probably benign, Suspicious malignancy and Highly Malig-
nant classes). Characterization of the CADs for multi-class classification with SFM 
images is depicted in the Fig. 1.

The sample SFM mass images having BIRAD-3 (benign), BIRAD-4 (suspicious-
malignant) and BIRAD-5 (highly-malignant) classes taken from DDSM data are 
presented in the Fig. 2.

2 Related Literature Work 

The literature review reflects that large no. of work was conducted using DL 
models for the multi-class classification of the SFM mass images having both the 
original-images and the preprocessed-images [39, 52, 53, 57, 59–61, 72, 76]. The 
review of different work conducted for multi-class classification of original and the 
preprocessed SFM mass images with DDSM dataset has been presented here.
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Fig. 1 Characterization of CADs for multi-class classification. CAD systems used in the 
present work

Fig. 2 Sample SFM mass images a–c BIRAD-3 (probably-benign) d–f BIRAD-4 (suspicious-
malignant) g–h BIRAD-5 (highly-malignant)
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Fig. 3 CAD systems for multi-class classification of the SFM mass images using DL models. Note 
DAG: directed acyclic graph, B3: BIRAD-3, B4: suspicious malignant, B5: highly malignant 

2.1 CAD Systems for Multi-Class Classification Using DL 
Models with SFM Mass Images 

In Fig. 3, the characterization of CAD system using DL-based models used for 
multi-class classification of SFM mass images i.e. BIRAD-3 (benign), BIRAD-4 
(suspicious-malignant) and BIRAD-5 (highly-malignant) classes, respectively have 
been presented. 

Table 1 presents the review of work undertaken for multi-class classification of 
original SFM mass images on DDSM dataset.

Table 2 presents the work undertaken for multi-class classification using prepro-
cessed SFM mass images on DDSM dataset.

2.2 CADs for Multi-class Classification of SFM Mass Images 
with Optimal Feature-Extractor and Machine Learning 
Based Classifiers 

In Fig. 4, CAD for multi-class classification of the SFM mass images i.e. BIRAD-
3 (benign), BIRAD-4 (suspicious-malignant) and BIRAD-5 (highly-malignant) 
classes respectively using optimal feature-extractor VGG19 and the ML-based 
classifiers are presented.

Table 3 presents studies employed with DL-models as feature-set-extractor/ML-
classifier for classification using multi-class with original/preprocessed SFM mass 
images with DDSM data.
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Table 1 The review of the work undertaken for the multi-class classification of the original SFM 
mass images on DDSM dataset 

Author 
[Year] 

No. of 
images 

CNN model Image classes Image type Evaluation 
parameters 

Ballin et al. 
[8] 

850 Fast RCNN B1, B2, B3, 
B4, B5 

Segmented Accuracy-0.78, 
0.77% 

Samala 
et al. [55] 

322 DCNN B, M Segmented AUC-0.82 ± 0.02 

Guan et al. 
[18] 

2620 VGG16 N, Ab, B, M Segmented AUC-0.971 

Yang et al. 
[73] 

10,480 CNN B, C Segmented Accuracy-92.31% 

Ribli et al. 
[47] 

2620 VGG 16 N, B, M Full AUC-0.85 

Tariq et al. 
[64] 

1586 VGG16, 
GoogleNet, 
InceptionV3 

N, B, M Segmented Accuracy-81% 

Sun et al. 
[58] 

1445 MVDCNN B, M Segmented Accuracy-81% 

Tang et al. 
[66] 

10,498 FCN N, B, M Segmented AUC-81.37 

Ubeyli [68] 2620 ResNet-150 N, B, M Full AUC-0.86 

Li et al. [35] 2620 ResNet B, M Segmented Accuracy-94.7% 

Rani et al. 
[48] 

518 VGG16/19, 
ResNet18/50, 
ShuffleNet, 
XceptionNet, 
MobileNetV2, 
GoogleNet 

B, M Segmented Accuracy-96% 

Note AUC: Area Under curve, RCNN: Region based convolutional Neural Network, B1: BIRAD-1, 
B2: BIRAD-2, B3: BIRAD-3, B4: BIRAD-4, B5: BIRAD-5, N: Normal,  B: Benign, Ab: Abnormal, 
M: Malignant, DCNN: Deep Convolutional Neural Network

From the Tables 1, 2 to 3, it is evident that CAD systems for differential diag-
nosis between B3, B4 and B5 have not been experimented yet, however it is worth 
mentioning that with the progression of the malignant changes in the breast masses, 
the accurate differential diagnosis between B3, B4 and B5 classes by visual inspection 
becomes a daunting task for radiologists, motivated from this fact the present study 
has been carried out for optimal CAD system design for SFM mass classification 
into B3, B4 and B5 classes.
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Table 2 The review of the work undertaken for the multi-class classification of the preprocessed 
SFM mass images on DDSM dataset 

Author [Year] Images Preprocessed 
method 

CNN Image 
classes 

Image type Evaluation 
parameters 

Jiao et al. [29] 800 Whitened CNN B, M Segmented Accuracy-96.8% 

Carneiro et al. 
[11] 

680 Gaussian 
filter 

AlexNet B, M Segmented VUS-0.9, 
AUC-0.9 

Jadoon et al. 
[28] 

2576 CLAHE CNN N, B, 
M 

Full Accuracy-79.92% 

Debelee et al. 
[14] 

2620 Histogram 
eqn 

CNN N, Ab Segmented Accuracy-98.9% 

Aboutalib et al. 
[5] 

9648 Histogram 
eqn 

CNN M, N, 
RB 

Full AUC-0.77–0.96 

Abdelhafiz 
et al. [6] 

2734 CLAHE RU-Net, 
vanilla 
U-Net 

B, M Segmented Accuracy-0.94%, 
Accuracy-0.93% 

Nagaraj et al.  
[43] 

2620 Histogram 
eqn 

VGG16 B1, 
B2, 
B3, 
B4, B5 

Full Accuracy-83% 

Gananasekaran 
et al. [21] 

1416 CLAHE VGG16 N, B, 
M 

Segmented Accuracy-96.47%, 
AUC-0.96 

Yang et al. [74] 5706 Gaussian DenseNet B, M Full AUC-95.03, 
Accuracy-85% 

Note RU-Net: Residual attention U-Net, CLAHE: Contrast Limited Adaptive Histogram Equal-
ization, Eqn-Equalization, Ng: Negative, RB: Recalled benign, B1: BIRAD-1, B2: BIRAD-2, B3: 
BIRAD-3, B4: BIRAD-4, B5: BIRAD-5, CNN: Convolutional Neural Network

3 Experimental Methodology 

The experimental work flow methodology adopted for present study is mentioned in 
the Fig. 5.

3.1 Dataset Description 

The present experimental work is carried out on the public benchmark dataset known 
as Digital Database for Screening Mammography [25]. In present work, 518 mammo-
graphic mass images have been used. The dataset consists of 208 mammograms ϵ 
BIRAD-3, 150 mammograms ϵ BIRAD-4 and 160 mammograms ϵ BIRAD-5 classes 
respectively The dataset selection protocols have been formulated in consultation 
with participating radiologist, and accordingly SFM mass images with variable back-
ground density such as mild, moderate and severe densities and masses with round/
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Fig. 4 CAD system based on optimal VGG19 model and machine learning based classifiers for 
SFM mass images. Note B3: BIRAD-3, B4: Suspicious malignant, B5: Highly malignant

oval and lobulated regular margins for BIRAD-3 class, with spiculated and irreg-
ular margins for BIRAD-4 class, with highly ill-defined and spiculated margins for 
BIRAD-5 class, with presence of micro/macro calcifications were selected for the 
present work. 

The dataset preparation steps include (a) ROI cropping and (b) image resizing 
while preserving the aspect ratio [18, 25, 41, 48]. After the image resizing, the binary 
mask images are generated [48]. The binary mask images have been generated from 
cropped and resized images. The 518 SFM mass images are divided into training/ 
testing dataset. 

The SFM mass image dataset of 518 images belonging to BIRAD-3 class, BIRAD-
4 class and BIRAD-5 class is not balanced as shown in Fig. 5. To make the balanced 
dataset for DL-based model training, the data augmentation has been incorporated 
using translations, rotations, horizontal/vertical flip operations [19, 48, 71]. For the 
details of these geometric transformations used for data augmentation the readers 
are directed to [48]. After data augmentation 10,864 segmented images and corre-
sponding 10,864 mask images are fed to DL models. Dataset description is shown 
in Fig. 6.
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Fig. 5 Experimental methodology for multi-class classification. Note B3: BIRAD-3, B4: Suspicious 
malignant, B5: Highly malignant

3.2 ROI Segmentation 

In present study, the ROI segmentation from SFM mass images has been carried out 
using DL-based ResNet50 DAG model [6, 48, 66] the ROI segmentation is shown 
in Fig. 7.
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Fig. 6 The dataset description for BIRAD-3, BIRAD-4, BIRAD-5 class

Fig. 7 ROI segmentation 

Implementation Details: The present work inculpates, the DL-based models 
which have been trained for multi-class classification of the SFM mass images using 
a dataset of total 10,864 augmented training images. Present study has used 10-fold 
cross validation to train the DL models, i.e. the training /validation split is 90% / 
10%. The fine tuning of the DL models was carried out using adam optimizer by 
varying learning rate values-0.01, 0.001 as well as 0.0001 with batch size-32 and 
epochs-30. The system used in the present work have GPU NVIDIA GeForce GTX 
1070Ti, Intel i7 processor with 3.8 GHz having 32 GB RAM and MATLAB version
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R2019b with DL tool-box has been used for implementing the DL based models. 
The ML based classifiers have been implemented using MATLAB 2015b software. 

Performance Evaluation Metrics: The DL-based models are evaluated with 
overall class accuracy and individual class accuracy (B3), individual class accuracy 
(B4) and individual class accuracy (B5) metric [7, 17, 34, 50, 51]. The evaluation 
metrics evaluated in the present work are given in Eq. (1), (2), (3) and (4) and is as 
follows: 

OCA = CCI 
TTI 

× 100 (1) 

ICA (B3) = CCI(B3) 
TTI(B3) 

× 100 (2) 

ICA (B4) = CCI(B4) 
TTI(B4) 

× 100 (3) 

ICA (B5) = CCI(B5) 
TTI(B5) 

× 100 (4) 

Note ICA = Individual class accuracy, CCI (B 3) = Correctly Classified Instances 
of B3 class, CCI (B 4) = Correctly Classified Instances of B4 class, CCI (B 5) = 
Correctly Classified Instances of B5 class, TTI (B3) = total testing instances of B3 
class, TTI (B4) = total testing instances of B4 class, TTI (B5) = total testing instances 
of B5 class, CCI = Correctly Classified Instances, TTI = total testing instances, B3: 
BIRAD-3, B4: BIRAD-4, B5: BIRAD-5. 

4 Experiments Details 

The segmented mass images obtained from the segmentation model ResNet50 have 
been used for the various CAD systems [48] as motioned in the Table 4.

4.1 Experiment Results and Discussion 

Experimentation results are discussed as follows: 

(i) Experiment 1a–1c: CADs for multi-class classification of SFM mass images 
with DL-models 

The overall classification accuracy and individual class accuracy for BIRAD-
3, BIRAD-4 and BIRAD-5 classes, respectively for multi-class classification of 
DL-based CAD system is mentioned in Table 5.
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Table 4 Exhaustive experiments conducted in the present study 

CAD systems for multi-class classification of SFM mass images with 
DL-models 

Experiment 
1a 

Simple convolution series models 

Experiment 
1a1 

VGG16 model 

Experiment 
1a2 

VGG19 model 

Experiment 
1b 

CAD system based on simple convolution DAG model using GoogleNet model 

Experiment 
1c 

CAD systems based on dilated convolution DAG models 

Experiment 
1c1 

ResNet18 model 

Experiment 
1c2 

ResNet50 model 

Experiment 
1c3 

MobileNet-V2 model 

Experiment 
1c4 

Inceptionv3model 

Experiment 
1c5 

XceptionNet model 

Experiment 
1c6 

ShuffleNet model 

Experiment 
2a 

CAD systems based on optimal VGG19 model and machine learning classifiers 
for the SFM mass images using ANFC-LH 

Experiment 
2b 

PCA-SVM 

Experiment 
2c 

GA-SVM 

Experiment 3 Comparative analysis of best performing CAD system based on the VGG19 
model and best performing CAD system based on features extracted from the 
VGG19 model and the ANFC-LH classifier

Concluding Remarks: Table 5 concludes that the DL-based CAD system with 
VGG19 Model yields highest classification accuracy of 84.6%, individual BIRAD-3 
class accuracy of 98%, individual BIRAD-4 class accuracy of 80% and individual 
BIRAD-5 class accuracy of 76%. 

(ii) Experiment 2a–2c: CAD systems based on optimal VGG19 model and 
machine learning classifiers for SFM mass images 

The objective assessment of different DL-based models verified that VGG19 model 
is an optimal feature extractor with highest accuracy of 85% and is the deep feature-
set extractor. For the detailed description of VGG19 model the readers are directed
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Table 5 Objective assessment of DL models for multi-class classification of the SFM mass images 

CNN model Confusion matrix Overall 
classification 
Accuracy (%) 

Individual 
class 
accuracy for 
B3 (%) 

Individual 
class 
accuracy for 
B4 (%) 

Individual 
class 
accuracy for 
B5 (%) 

VGG16 
(experiment 
1a1) 

B3 B4 B5 81 96 76 72 

B3 48 2 0 

B4 6 38 6 

B5 9 5 36 

VGG19 
(experiment 
1a2) 

B3 B4 B5 84.6 98 80 76 

B3 49 0 1 

B4 8 40 2 

B5 7 5 38 

GoogLeNet 
(experiment 
1b) 

B3 B4 B5 

B3 46 1 3 80.6 92 70 80 

B4 7 35 8 

B5 6 4 40 

ResNet18 
(experiment 
1c1) 

B3 B4 B5 80.6 96 70 76 

B3 48 1 1 

B4 7 35 8 

B5 7 7 38 

ResNet50 
(experiment 
1c2) 

B3 B4 B5 82 94 76 76 

B3 47 1 2 

B4 6 38 6 

B5 6 6 38 

MobileNet-v2 
(experiment 
1c3) 

B3 B4 B5 78.6 92 68 74 

B3 46 7 8 

B4 3 34 5 

B5 1 9 37 

Inceptionv3 
(experiment 
1c4) 

B3 B4 B5 72.6 86 76 56 

B3 43 4 3 

B4 6 38 8 

B5 10 12 28 

XceptionNet 
(experiment 
1c5) 

B3 B4 B5 70.6 84 68 60 

B3 42 6 2 

B4 8 34 8 

B5 11 9 30 

ShuffleNet 
(experiment 
1c6) 

B3 B4 B5 75.3 84 66 76 

B3 42 4 4

(continued)
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Table 5 (continued)

CNN model Confusion matrix Overall
classification
Accuracy (%)

Individual
class
accuracy for
B3 (%)

Individual
class
accuracy for
B4 (%)

Individual
class
accuracy for
B5 (%)

B4 12 33 5 

B5 7 5 38 

Note B3: B3: BIRAD-3, B4: BIRAD-4, B5: BIRAD-5

to [48]. The extracted deep feature-set may have the redundant values [22, 33, 48]. 
These redundant values may affect the multi-class classification using the SFM mass 
images [10, 40]. The deep feature-set comprising of 4096 features is inputted to 
correlation based feature selection method to yield (reduced) deep feature-set having 
125 selected features, which is further inputted to various ML-classifiers [48]. For 
the details of DL-based models and ML-based classifiers used in the present work, 
the readers are directed to [48]. 

ANFC-LH: Fuzzy logic was implemented by Zadeh in 1965[77, 78]. Every pixel 
is assigned a membership that shows to which class it belongs to. The concept of fuzzy 
classification allows defining every pixel in terms of its membership to all the other 
classes. Membership function can be used to define the percentage of the pixels 
that belongs to other classes. Fuzzy set theory is used in fuzzy networks. Expert 
knowledge is used to creating and modifying the membership values. Linguistic 
variables are very much useful in reasoning and the linguistic hedge incorporates the 
fuzzy rules [12, 13]. 

It basically combines the learning capability of the neural-network with the capa-
bility of knowledge representation of fuzzy logics to yield fuzzy neural networks [67]. 
Adaptive neural fuzzy inference system is prominent part of fuzzy neural networks, 
which is sugeno fuzzy model based. They address the issue of class overlapping 
resulting in reduced optimal feature vector. 

PCA-SVM: PCA is a feature reduction technique. As all the features present may 
not be equally important and may have redundant feature values and classification 
model need not to be overloaded with redundant information. There is need to reduce 
the features without extracting out the useful information from the data. PCA is a 
popular technique for dimensionality reduction. 

PCA does the conversion of correlated-feature variables into linear uncorrelated-
features known as principal components [72]. The number of PCs will be equal to 
number of dimensionality of input data. 

SVM is the popular machine learning algorithm, used to create a best line or 
the decision boundary that segregates the n-dimensional space in various classes to 
which various data points can be correctly put on. PCA-SVM combination provides 
the benefit of decreasing computational time with increased efficiency. PCA-SVM 
also reduces the over-fitting problem [38, 72]. 

GA-SVM: GA-SVM is an optimization method that uses iteration for finding 
the optimal solution [65]. Initially, for the genetic problem a random solution is
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given which is examined for its convergence toward optimal solution and it meets 
the termination condition, otherwise next generation is generated by evaluating the 
fitness for initial population. The reproduction phase will use crossover to generate 
the off-springs. The mutation will be used to generate new off-springs. The generated 
muted off-springs will be checked for termination condition and finally convergence 
for optimal solution is met with after several iterations [65]. The optimization towards 
the optimal solution is incorporated with SVM algorithm. 

The objective evaluation metrics yielded by CADs with an optimal VGG19 model 
and ML-based classifiers have been reported in Table 6. 

From Table 6, it is clear that CADs having VGG19 model with ANFC-LH classi-
fier, reports the overall classification accuracy of 86%, individual class accuracy of 
98% for BIRAD-3 class, individual class accuracy of 84% for BIRAD-4 class and 
individual class accuracy of 76% for BIRAD-5 class, respectively. 

(iii) Experiment 3: Comparative analysis of best performing CAD system based 
on the VGG19 model and best performing CADs on features extracted 
from the VGG19 model and the ANFC-LH classifier. 

Comparative analysis of best performing VGG19 feature-extractor and VGG19 
model with ANFC-LH classifier is mentioned in Table 7.

It can be concluded, the CADs with VGG19 model and ANFC-LH classifier gives 
highest overall classification accuracy of 86% for multi-class classification of SFM 
mass images with the individual class accuracy values 98, 84 and 76% for B3, B4 
and B5 class, respectively.

Table 6 Objective evaluation of the CAD system using an optimal VGG19 model and Machine 
Learning based classifiers 

CNN model Confusion matrix Overall 
classification 
accuracy (%) 

Individual 
class 
accuracy for 
B3 (%) 

Individual 
class 
accuracy for 
B4 (%) 

Individual 
class 
accuracy for 
B5 (%) 

VGG19 with 
ANFC-LH 
classifier 
(experiment 
2a) 

B3 B4 B5 86 98 84 76 

B3 49 1 0 

B4 5 42 3 

B5 7 5 38 

VGG19 with 
PCA-SVM 
classifier 
(experiment 
2b) 

B3 B4 B5 83.3 98 82 70 

B3 49 1 0 

B4 7 41 2 

B5 7 8 35 

VGG19 with 
GA-SVM 
classifier 
(experiment 
2c) 

B3 B4 B5 82 98 80 68 

B3 49 1 0 

B4 7 40 3 

B5 9 7 34 

Note B3: BIRAD-3, B4: BIRAD-4, B5: BIRAD-5 
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Table 7 Misclassified image analysis of CADs using VGG19 and CAD system on optimal VGG19 
model with ANFC-LH classifier 

CAD system OCA (%) Misclassified cases as per 
class 

No. of misclassified cases 

B3 B4 B5 

VGG19 84.6 01/50 10/50 12/50 Total = 23/150 
VGG19 with ANFC-LH 
classifier 

86 01/50 08/50 12/50 Total = 21/150 

Note B3: BIRAD 3, B4:  BIRAD 4, B5:  BIRAD 5, OCA: Overall classification accuracy

The misclassification image analysis of CADs using the best performing deep 
feature-extractor VGG19 and ANFC-LH is done by the experienced participating 
radiologist by observing the (i) background breast tissue density (ii) shape and (iii) 
margins properties exhibited by misclassified SFM mass images. It has been validated 
by participating expert radiologist that the images with irregular shape, spiculated 
margins lead to most of the misclassified image cases. Amongst the misclassified 
cases of the CADs using optimal feature-extractor VGG19 with ANFC-LH, it is 
validated by the participating radiologist that, out of all the misclassified images, 04 
images were commonly misclassified which includes 02 images of B4 and 02 images 
of B5 class. It is pertinent to mention that these cases of suspicious abnormalities 
(i.e. B4 and B5 classes) have been misclassified as probably benign i.e. B3 class. 
These commonly misclassified cases are shown in Fig. 8. 

It was observed that the desmoplastic reaction has caused few suspiciously malig-
nant (B4) and highly malignant cases (B5) to be misclassified as probably benign 
cases. Probably because of the undergoing desmoplastic reaction due to which there 
is a growth of fibrous tissue along the tumor cells which adversely affects the back-
ground density of the tissue leading to masking of margin and shape characteristics 
exhibited by malignant tumors.

Fig. 8 Commonly misclassified cases a A_1820_1. LEFT_CC is a case of B4 misclassified as B3, 
b A_1121_1. LEFT_CC is a case of B5 misclassified as B3; c C_1171_1.LEFT_CC is a case of B5 
misclassified as B3 d C_1640_1.RIGHT_CC is a case of B5 misclassified as B3 
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5 Conclusion 

From the experimentation conducted in present work, it is concluded that deep 
features extracted by VGG19 Model and the ANFC-LH classifier gives the highest 
accuracy of 86% for multi-class classification of SFM mass images with ICA values 
of 98, 84 and 76% for B3, B4 and B5 classes, respectively. From the subjective 
analysis, it was observed that the desmoplastic reaction has caused few suspiciously 
malignant (B4) and highly malignant cases (B5) to be misclassified as probably 
benign (B3) cases. Probably, because of the undergoing desmoplastic reaction due 
to which there is a growth of fibrous tissue along the tumor cells which adversely 
affects the background density of the tissue leading to masking of margin and shape 
characteristics exhibited by malignant tumors. 
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Abstract This paper presents a novel approach for human action recognition in 
videos by focusing on the extraction of spatio-temporal features. Recognizing actions 
in videos is of paramount importance for various applications, including video 
surveillance, sports analysis, and human-computer interaction. To address this chal-
lenge, we proposed an hybrid network that integrates a time-distributed wrapper 
and attention-based mechanisms. The incorporation of a time-distributed wrapper 
enables the model to effectively extract the temporal dynamics of actions by extend-
ing the capabilities of Convolutional Neural Networks (CNNs) to process sequences 
of frames. Moreover, the integration of attention-based mechanisms allows the net-
work to selectively weigh and emphasize relevant spatio-temporal features, further 
enhancing its discriminative power. The proposed network outperforms the state-
of-the-art methods in human action recognition, achieving an impressive average 
accuracy of 99.3% and 99.49% on the UCF101 and UCF11 datasets respectively. 
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1 Introduction 

Video-based Human Action Recognition (HAR) [ 1] has gained significant attention 
due to its wide range of potential applications. For example in video surveillance 
and security applications by accurately recognizing and classifying human actions. 
It is crucial to these applications to identify suspicious or abnormal activities, aiding 
in the detection of potential threats or criminal behavior in public spaces, airports, 
or critical infrastructure. Also, (HAR) finds relevance in fields like sports analy-
sis [ 2], where it assists in tracking and analyzing athletes’ movements and actions 
by automatically recognizing and quantifying actions such as running, jumping, or 
throwing. This option provides valuable insights into athletes’ performance, enabling 
performance evaluation, training optimization, and even referee assistance in certain 
sports. Furthermore, human action recognition has implications in healthcare [ 3] and 
assisted living. (HAR) introduces numerous challenges such as camera movements, 
occlusions, complex backgrounds, and variations in illumination. Spatial and tem-
poral information are critical in accurately recognizing different human actions in 
videos. In the past decade, many methods relied on handcrafted feature engineering 
to represent the spatial attributes of dynamic motion in video actions. However, these 
handcrafted approaches are often limited to specific databases and struggle to handle 
diverse motion styles and complex backgrounds. To address this, there has been a 
shift towards upgrading representative motion features and conventional methods 
from 2D to 3D. This enables the extraction of accurate information by moving from 
spatial features into 3D spatiotemporal features, allowing for the simultaneous anal-
ysis of dynamic information across a sequence of frames. In this paper, we proposed 
a novel Hybrid network with a time-distributor wrapper and Attention-Based Mech-
anism. This approach aims to extract spatiotemporal features and focus on long-term 
sequences for accurate action recognition in video frames. In our study, we employed 
the Long-term Recurrent Convolutional Networks (LRCN) model [ 4] with attention 
mechanism, which specifically accentuate efficient features within the video’s frames 
sequence to recognize actions in the video effectively. The time-distributor wrapper 
helps extract the temporal evolution of actions by distributing information across dif-
ferent time steps, while the attention-based mechanisms focus on relevant features 
within the video frames sequence. The attention mechanisms enable the model to 
selectively attend to informative regions or frames, improving its understanding of 
the spatiotemporal dynamics in sequential data, and it helps the model focus on rele-
vant information for accurate action recognition. The paper’s structure is systemized 
as follows: the related works are elucidated in Sect. 2; The proposed methodology is 
depicted in Sect. 3; The results and the discussion are demonstrated in Sect. 4; finally, 
the conclusion is represented in Sect. 5.
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2 Related Work 

Deep learning is commonly used in video-based action and behavior detection to 
extract high-level discriminative characteristics. Dai et al. [ 5] introduced a two-
stream LSTM architecture for action recognition: a spatial stream and a temporal 
stream. The spatial stream processes the visual appearance of individual frames, 
while the temporal stream extract the motion information across frames. Meng et 
al. [ 6] proposed an approach for action recognition that addresses the limitations 
of existing convolutional neural network (CNN) models. The authors combine a 
quaternion spatial-temporal CNN (QST-CNN) with a Long Short-Term Memory 
(LSTM) network. The authors in [ 7] proposed a framework that combines convo-
lutional neural networks (CNNs) to learn spatial features and maps their temporal 
relationships using Long-Short-Term-Memory (LSTM) networks. Similarly, In their 
study [ 8], the authors also focus on the fusion of different features for human action 
recognition. They proposed six fusion models inspired by early fusion, late fusion, 
and intermediate fusion schemes. The first two models in their approach employ 
the early fusion technique, where they combine multiple modalities or features at 
an early stage. The third and fourth models employ intermediate fusion techniques, 
involving the combination of features or decision scores at an intermediate level. 
Specifically, the fourth model incorporates a kernel-based fusion scheme, utilizing 
the kernel basis of classifiers such as Support Vector Machine (SVM). Gharaee et 
al. [ 9] proposed an approach that combines the benefits of Self-Organizing Maps 
(SOMs), supervised neural networks, and attention mechanisms to create an action 
recognition system. Their approach specifically focuses on leveraging joint move-
ment dynamics in action recognition. They also introduce a custom supervised neu-
ral network that learns to classify actions effectively. Pan et al. [ 10] proposed an 
approach for recognizing human actions in basketball scenarios. They employed 
a motion region selection method based on constructing a large affinity graph to 
identify relevant regions of motion. In order to extract features from these motion 
blocks, they employed Gaussian Mixture Models (GMM). Additionally, the authors 
employed a variation modeling technique to select key frames that determine the 
variations between adjacent frames. They represented the posture descriptor of bas-
ketball actions using the gradient histogram, which allowed them to calculate a shape 
descriptor for basketball action recognition, they linearly combined the motion and 
posture descriptors and the K-Nearest Neighbors (KNN) algorithm. Muhammed et 
al. [ 11] proposed a novel approach that combines a bi-directional long short-term 
memory (BiLSTM) based attention mechanism with a dilated convolutional neu-
ral network (DCNN). This integrated model selectively focuses on relevant features 
within input frames to accurately classify various human actions in videos. The 
DCNN layers are employed to extract discriminative features using residual blocks, 
which help retain more information compared to shallow layers. Also authors in 
[ 12] involves Dense Semantics-Assisted CNN architecture utilizing dense seman-
tic segmentation masks for improved human action recognition. Kamel et al. [ 14] 
proposed two types of data sequences used as input, namely joint posture sequence
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and depth map sequence. After transforming them into descriptors, the descriptor 
used for body posture is a proposed moving joints descriptor (MJD)and that used for 
depth map is DMI. Then, the input preprocessing is done, and three CNN models are 
trained with three different channels (Ch1, Ch2, and Ch3) and they are tested with 
different inputs. In the three CNN channels, one is trained for depth map images, 
another is trained with joint postures, and another is trained with both joint postures 
and depth map images. Using the score fusion operation, all the outputs are fused, 
and the final action is classified. Jaouedi et al. [ 15] have mainly focused on analyzing 
human behavior from recorded data from a camera or any other electronic source, 
and they have also paid attention to background actions such as fast walking and 
sudden movements. This model has been mainly designed to predict human behav-
ior through the analysis of their movements. In this study, they have explained the 
recognition of human actions using the k-nearest neighbors (KNN) approach. In this 
study, they have used the GMM, or Gaussian mixture model, which is generally 
used for data analysis. GMM mainly focuses on the areas where the current state 
of the pixel changes from the previous state in a sequence of image collections. 
The proposed algorithm runs on each frame image converted into binary images for 
better performance. For this, they have declared 0 for black corresponding to their 
background and 1 for white corresponding to the background. The Kalman filter 
method is used for tracking human movements. And these filters are used frequently 
in two phases, namely prediction and correction. In the prediction phase, the current 
state is calculated using the information of the previous state. The main objective 
of this study is to obtain an efficient output. Finally, the classification is performed 
using the KNN method and has achieved a rate of 71.1%. Xio et al. [ 16] used a  
deep neural network model that uses an autoencoder, PRNN, or pattern recognition 
neural network to predict actions performed by humans. They used two approaches: 
a learning system and an action recognition stage. In the learning system, they cre-
ated a binary frame for each image by drawing the contours of the human body and 
then joining all the frames. They used these frames to train their model. In another 
approach, they used an autoencoder to train the model to predict action features. 
After these two approaches, they trained the PRNN model using an unsupervised 
learning technique. Finally, they merged the autoencoder followed by the PRNN 
model, called APRNN. To evaluate the performance of APRNN, they used Weiz-
mann motion data comprising 93 action clips recorded with 10 motion semantics. To 
improve the performance, they used fine tuning. Ji et al. [ 17] have mainly focused 
on human action analysis in robotic platforms. They have considered the different 
stages of human action recognition and prediction. In this paper, they have divided 
the field of human action recognition into three main categories: hand gesture-based 
human-robot interactions, body action-based human-robot interactions, and multi-
modal fusion. They have discussed the different platforms and datasets commonly 
used in the field of human-robot interaction. They have also addressed the different 
challenges and opportunities in the field of action analysis for human recognition. 
They have concluded that, in the future, data should be constructed to solve the stor-
age problems related to data. Wang et al. [ 18] proposed a total of ten Kinect-based 
algorithms used on six datasets. These algorithms are aimed at multi-angle and
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multi-subject detection. The algorithms used are HON4D, HDG, LARP-SO, HOPC, 
SCK+DCK, P-LSTM, HPM+TM, clips+CNN+MTLN, indRNN, and ST-GCN. A 
3D action analysis was also performed to compare the results of action recogni-
tion across objects and across view angles. It was concluded that depth-based action 
recognition techniques are better for recognizing objects with more details. They 
performed an extensive evaluation of HDG representation with different variants of 
descriptor types. They also introduced four variants of the P-LSTM framework. 

3 Proposed Methodology 

This section outlines the methodological framework adopted to conduct the study, 
with the primary aim of ensuring comprehensive coverage and rigorous evaluation 
of relevant research within its scope. 

3.1 Preprocessing Data 

In order to prepare the tested dataset for the training and the testing of the model, 
we performed various preprocessing steps: including resizing frames, specifying the 
sequence length, and normalizing the pixel values. Firstly, each video file from the 
dataset was resized to a fixed height and width. In our case, we have defined the 
dimensions as 64 pixels for both the height and width. Additionally, we considered 
twenty frames that will be fed to the model per sequence. Moreover, as part of the 
preprocessing, we will normalize the pixel values within the range of 0 to 1. This 
normalization technique involves dividing each pixel value by 255 and by performing 
these steps, we aimed to speed up the network’s convergence during the subsequent 
training phase. 

3.2 Proposed Hybrid Model Architecture 

The Long-term Recurrent Convolutional Network (LRCN) model with attention is 
the proposed architecture for video action recognition task. It combines the power 
of Convolutional Neural Networks (CNNs) for spatial feature extraction and Recur-
rent Neural Networks (RNNs) for the extraction of temporal dependencies. The 
attention mechanism boosts the model’s ability to focus on relevant video frames 
during processing. The model takes as input a sequence of video frames, where the 
input sequence is represented as a 4D tensor corresponding to the desired height and 
width to which the video frames are resized. The third dimension corresponds the 
RGB channels of the frame and the final dimension represents the chosen number 
of frames. The model architecture as displayed in Fig. 1a and b can be divided into
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Fig. 1 Visual representations of UCF101 dataset samples 

three main parts: the convolutional backbone, the (LSTM) layer, and the attention 
mechanism. 

3.3 The Convolutional Backbone 

The input layer of the model takes the input tensor with dimensions detailed in the 
Preprocessing data section then a series of 2D convolutional layers were applied 
to each frame in the input sequence using the Time Distributed Wrapper. Each 2D 
convolution layer is followed by an activation function (ReLU). The mathematical 
equation of the 2D convolution layer is described as follows: 

.R[i, j] =
M−1∑

m=0

N−1∑

n=0

k[m, n] × I[i + m, j + n] (1) 

where R[i, j] represents the value of the output feature map at position (i, j), K is the 
convolutional kernel (also named the filter or the mask), and I represents the value at 
position (i+m, j+n) in the input feature map, with M and N representing the height 
and width of the kernel, respectively. The TimeDistributed wrapper is especially 
useful when working with recurrent neural networks (RNNs) or convolutional neural 
networks (CNNs) that process sequential data. In our case the input data consists of 
sequences, where each element in the sequence represents a different time step since 
the trained sequences are frames.
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The TimeDistributed wrapper allows us to apply a layer or a set of layers to each 
frame in the sequence of frames independently. By doing so, the layers can learn 
patterns and representations specific to each time step. 

The TimeDistributed layer handles iteration over the elements of the sequence 
and applies the wrapped layers to each element individually. This way, the layers 
receive inputs of shape at each time step and produce outputs of the same shape. For 
instance, it can be used to apply the convolutional layers to each frame separately, 
producing a sequence of feature maps. It is particularly important for the relationship 
or dependency between the elements of the sequence as it allows the model to extract 
spatial information across different time steps and maintain the temporal structure of 
the data. The mathematical equation for the TimeDistributed wrapper is represented 
as follows: 

.TimeDistributed( f )(X)t = f (Xt ) (2) 

.TimeDistributed( f )(X)t represents the output of the TimeDistributed wrapper 
applied to the input sequence .X at time step . t . . f (Xt ) represents the application of 
the function . f to the input .Xt at time step . t . 

In order to reduce computing time, a common practice is to include a max-pooling 
layer immediately after each 2D Convolutional layer. This assures down-sampling 
the feature maps and extraction of the most relevant information. After the wrapped 
max-pooling layer, the output is then passed through a dropout layer defined as 
(0.5). The purpose of the dropout layer is to randomly drop a certain portion of the 
activations during training, which helps prevent overfitting. This wrapped sequence 
of a 2D Convolutional layer followed by a max-pooling layer and dropout is repeated 
three more times to extract hierarchical features from the input data. In our four 2D 
Convolutional layers, we used.3 × 3 filters. The first, second, third, and fourth groups 
of layers were adopted with 16, 32, 64, and 64 filters, respectively. Additionally, max 
pooling with .4 × 4 filters was applied. 

3.4 The Long Short Term Memory (LSTM) Layer 

An RNN, or Recurrent Neural Network, has gained significant popularity in recent 
times due to its ability to effectively incorporate past frame information from a video 
sequence into the current frame, resulting in improved action recognition. Unlike 
traditional CNN models like AlexNet and VGG, which are primarily designed for 
image classification tasks, RNNs are specifically tailored for processing series or 
continuous data. By considering the temporal information inherent in a sequence, 
RNNs overcome the limitations of CNNs in capturing sequential patterns. However, 
RNNs are prone to encountering the “vanishing gradient” issue, where gradients 
decrease exponentially during training phase, making it difficult for the network to 
learn long-term dependencies. To address this challenge, a specialized type of RNN 
called Long Short-Term Memory (LSTM) is often employed. LSTMs are equipped
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with memory cells and gates that regulate the flow of information, allowing them to 
determine and retain relevant long-term dependencies in the data. 

Before feeding the output tensor resulted of the previous convolutional backbone 
into the LSTM layer, a wrapped Flatten layer is applied to reshape the tensor. It 
flattens each frame of the feature maps into a 1D vector. The representation of the 
wrapped flatten layer is defined as follows: 

.TimeDistributed(Flatten)(X) = [Fflat(1), Fflat(2), . . . , Fflat(t)] (3) 

where .Fflat(t) represents the flattened vector of the t-th frame F. 
The next step is to pass the flattened tensor through an LSTM layer with 32 

units, setting the return sequences parameter to True. This configuration allows the 
LSTM layer to retain and output the sequence of hidden states for each time step. 
The LSTM layer performs computations on the flattened tensor, utilizing its memory 
cells and gates to extract long-term dependencies and temporal patterns in the data. 
Each hidden state at a time step encodes relevant information from previous time 
steps, allowing the model to extract sequential dependencies and context within the 
input sequence. The equations for the mechanism of an LSTM layer: the forget gate, 
the input gate, the cell state, the updated cell state, the output gate, the hidden state 
are displayed in Eqs. (4) to (9) respectively: 

. ft = σ(W f · [ht−1, xt ] + b f ) (4) 

.it = σ(Wi · [ht−1, xt ] + bi ) (5) 

.C̃t = tanh(Wc · [ht−1, xt ] + bc) (6) 

.Ct = ft � Ct−1 + it � C̃t (7) 

.ot = σ(Wo · [ht−1, xt ] + bo) (8) 

.ht = ot � tanh(Ct ) (9) 

3.5 Attention Mechanism 

The attention mechanism or more precisely the scaled product attention mechanism 
is introduced to enhance the model’s ability to focus on attentive spatio-temporal fea-
tures of the input sequence from the LSTM outputs. The process starts by applying 
a Time-Distributed Dense layer that outputs a single value using the tanh activation 
function to the LSTM outputs. This transformation formulates a non-linear map-
ping to the outputs and helps capture complex relationships within the sequence. 
The resulting tensor from the attention mechanism is then flattened to simplify the 
subsequent computations. This flattening operation reshapes the tensor into a 2D
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representation while preserving the sequence information. Then, the softmax acti-
vation function is applied to the flattened tensor. This ensures the normalization ot 
the values across the time steps, producing attention weights that shows the relative 
importance of each element in the sequence. In order to address the compatibility 
issue with the LSTM outputs, the attention weights are repeated and reshaped using 
RepeatVector and Permute steps. These operations guarantees that each element of 
the LSTM outputs has its corresponding attention weight. The attention weights are 
then applied element-wise to the LSTM outputs using the Multiply() operation. This 
operation amplifies the LSTM outputs that have higher attention weights, effectively 
emphasizing the most relevant parts of the sequence. Finally, the sent representa-
tion tensor is obtained by an aggregation with the attention-weighted LSTM outputs 
along the time step axis. 

In order to obtain the attention weights A= .

[
a1 a2

... an

]
using the scaled product 

attention mechanism, the following steps are performed: 
1. Computing the similarity scores between the query vector .Q and each key 

vector .ki using dot product: Q = .

[
q1 q2

... qn

]
, K =.

[
k1 k2

... kn

]
, V =. 

[
v1 v2

... vn

]

.s = [Q · k1,Q · k2, . . . ,Q · kn]. 
2. Scaling the similarity scores by dividing by the square root of the dimension 

of the query vectors: .s′ = s√
dq
. 

3. Applying the softmax function to obtain the attention weights: The corresponding 
attention weights matrix can be represented as: 

. QKT =

⎡

⎢⎢⎢⎣

qT
1k1 q

T
1k2 . . . qT

1kn
qT
2k1 q

T
2k2 . . . qT

2kn
...

...
. . .

...

qT
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where Query Vectors: .Q ∈ R
dq×n , Key Vectors: .K ∈ R

dk×n , Value Vectors: . V ∈
R

dv×n , and the Attention Weights: .A ∈ R
n×m . 

4 Experiments 

4.1 Dataset 

We evaluate our model on two dataset: UCF101 and UCF11 [ 13]. The UCF-101 
dataset is a popular benchmark dataset in the field of action recognition and com-
puter vision. It was introduced by the University of Central Florida (UCF) and con-
tains 101 action categories, making it a valuable resource for training and evaluating 
action recognition algorithms. The UCF11 dataset poses significant challenges for
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Fig. 2 The proposed hybrid 
network for human action 
recognition
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Fig. 3 The proposed results: human action recognition from UCf-101 dataset 

video-based action recognition due to various factors such as illumination varia-
tions, cluttered backgrounds, and camera movements. With a total of 1600 videos, 
the dataset comprises eleven action categories including shooting, jumping, riding, 
swimming, and more. The videos in the dataset are captured at a frame rate of 30 
frames per second (fps). The presence of these challenges and the diversity of action 
categories make UCF11 a demanding benchmark for evaluating the performance of 
action recognition methods (Fig. 3). 

4.2 Implementation Details 

4.3 Quantitative Analysis 

To assess the performance of the proposed framework, we conducted a comparative 
analysis, evaluating its performance comparing to other state-of-the-art methods. The 
Table 2 displays the performance evaluation of different human action recognition 
methods, including the proposed approach. The average accuracy values achieved 
by each method are listed, and the comparison is based on the UCF11 benchmark 
dataset. Looking at the previous works, Dai et al. introduced a two-stream LSTM 
architecture that leverages both spatial and temporal cues for action recognition. 
Their approach achieved an accuracy of 96.90%. Meng et al. addressed the limita-
tions of CNN models by combining a quaternion spatial-temporal CNN (QST-CNN) 
with an LSTM network, resulting in a QST-CNN-LSTM architecture with an accu-
racy of 89.70%. Gammulle et al. proposed a fusion framework combining CNNs
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Table 1 Parameters used in the proposed hybrid (HAR) network 

Layer’s name Feature map dimensions Kernel size 

TimeDistributed (Conv2D) 1 (20, 64, 64, 16) (3, 3) 

TimeDistributed 
(MaxPooling2D) 1 

(20, 16, 16, 16) (4, 4) 

TimeDistributed (Conv2D) 2 (20, 16, 16, 32) (3, 3) 

TimeDistributed 
(MaxPooling2D) 2 

(20, 4, 4, 32) (4, 4) 

TimeDistributed (Conv2D) 3 (20, 4, 4, 64) (3, 3) 

TimeDistributed 
(MaxPooling2D) 3 

(20, 2, 2, 64) (2, 2) 

TimeDistributed (Conv2D) 4 (20, 2, 2, 64) (3, 3) 

TimeDistributed 
(MaxPooling2D) 4 

(20, 1, 1, 64) (2, 2) 

TimeDistributed (Flatten) (20, 64) – 

LSTM (20, 64) 

TimeDistributed (Dense) (20, 1) – 

Flatten (20) – 

Dense (Softmax) 101,11 – 

and LSTM networks to capture both spatial and temporal features. Their CNN-
LSTM model achieved an accuracy of 89.20%. Patel et al. focused on fusion models 
for action recognition, incorporating early, intermediate, and late fusion techniques. 
They achieved an accuracy of 89.43% using their fusion approach. Gharaee et al. 
utilized Self-Organizing Maps (SOMs), supervised neural networks, and attention 
mechanisms to effectively categorize actions. Their approach achieved an accuracy of 
89.50%. Pan et al. developed a method for basketball action recognition, employing 
motion region selection, GMM-based feature calculation, and variation modeling. 
Their approach achieved an accuracy of 89.24%. In comparison, Muhammed et al. 
proposed the BiLSTM DCNN approach with an attention mechanism, achieving an 
accuracy of 98.30%. The proposed approach significantly outperforms the previous 
methods, indicating its superiority in accurately recognizing human actions in videos. 
Furthermore, the proposed approach achieved an average accuracy of 99.49%. This 
result indicates that the proposed approach, which combines the LRCN model with 
an attention mechanism, outperforms all the other methods in terms of accuracy on 
the UCF11 dataset. We selected certain hyperparameters for our model as shown in 
Table 1 and maintained their consistency across all experiments. While these hyper-
parameters were set as constants, we found through multiple repeated experiments 
that they had minimal impact on the overall performance of the models. Specifically, 
we observed only slight changes in performance when different hyperparameter con-
figurations were tested. The chosen optimizer for our models was rmsprop, and we 
utilized a batch size of 4 during training. Additionally, we trained the models for
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Table 2 Performance evaluation of human action recognition methods 

Authors Network architecture/methods Accuracy (%) 

Dai et al. Two-stream LSTM 96.90 

Meng et al. QST-CNN-LSTM 89.70 

Gammulle et al. CNN-LSTM 89.20 

Patel et al. Features’fusion 89.43 

Gharaee et al. (SOMs), supervised neural 
networks, attention mechanism 

89.50 

Pan et al. Gaussian mixture models, 
KNN 

89.24 

Muhammed et al. BiLSTM DCNN 98.30 

Proposed approach LRCN model attention 
mechanism 

99.49 

Note Comparison of the proposed approach with deep learning methods using the benchmark UCF11 

100 epochs and employed early stopping techniques to determine the optimal stop-
ping point. These hyperparameters, along with others, were carefully considered to 
ensure stable and reliable training processes for our models. In addition Based on the 
accuracy and validation accuracy curves as well loss and validation loss curves of 
our proposed method displayed in Fig. 4a and b, it is clear that we have constructed a 
model that achieves high accuracy possible for Human action recognition (as shown 
in Fig. 2). 

The visualization of the feature maps displayed in Fig. 5 obtained from the pro-
posed Human Action Recognition (HAR) network provides valuable insights into 
the effectiveness of the model in extracting discriminative features. The Long-term 
Recurrent Convolutional Network (LRCN) architecture employed in the proposed 
hybrid network demonstrates its capability in extracting both spatial and temporal 
information from input video sequences. The feature maps exhibit clear patterns 
and activations that correspond to various action-related attributes, highlighting the 
network’s ability to learn and represent complex visual cues. These visualizations 
serve as evidence of the proposed LRCN’s proficiency in extracting meaningful 
and informative features, which are crucial for accurate Human action recognition. 
Figure 6 displayed a heat map during archery actions, revealing how the network 
allocates attention to various parts of the input frames of the video. In this visu-
alization, different colors signify different levels of attention or activity intensity. 
The color scheme typically ranges from cool colors (like blue or green) representing 
regions of lower attention or activity. In the context of archery, they might corre-
spond to less critical stages or elements of the action, where the network’s focus is 
less pronounced, to warm colors (like yellow or red) signifies the highest attention 
and activity levels. These regions on the heat map correspond to the most crucial 
aspects of the archery action that the network is prioritizing for accurate recogni-
tion and classification. For archery, this could include moments like drawing the 
bowstring, aiming, and releasing the arrow.
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Fig. 4 Accuracy and loss 
curves 

5 Conclusion 

The proposed approach highlights the paramount importance of extracting spatio-
temporal features for accurate action recognition in video, as these features are cru-
cial for numerous applications across various domains. The ability to recognize 
and understand human activities from video sequences has widespread implications, 
including video surveillance, sports analysis, human-computer interaction, and more. 
In our research, we have successfully addressed this challenge by employing a com-
prehensive approach that combines a time-distributed wrapper and attention-based 
mechanisms. By incorporating a time-distributed wrapper, our model effectively
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Fig. 5 Visualisation of the feature maps generated by convolution layers for walking with dog 
activity of the proposed HAR network 

extract temporal dynamics by extending the capabilities of convolutional neural net-
works (CNNs) to process sequences of frames. This enables the network to learn and 
represent the evolution of actions over time, resulting in enhanced recognition perfor-
mance. Additionally, the integration of attention-based mechanisms further enhances 
the model’s discriminative power by focusing on the most informative regions and 
frames within the video. This attention mechanism enables the network to selectively 
weigh and emphasize relevant spatio-temporal features, leading to improved action 
recognition accuracy. 

Data Availability Statement The datasets generated during and/or analyzed during the current 
study are available from the corresponding author on reasonable request.
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Fig. 6 Visualizing attention heat maps of the proposed HAR network during archery action 
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Stuttering Diagnosis and Classification 

Vaibhav Verma, Richa Baranwal, Arjun Singh Rawat, and Jyoti 

Abstract Stuttering is a speech disorder characterized by disruptions in the fluency 
of speech, such as repetitions, prolongations, and blocks. Advances in technology, 
including machine learning and neuro-imaging, are enhancing diagnostic precision 
and understanding of the disorder’s underlying mechanisms, paving the way for 
more effective and personalized treatments. This paper provides a thorough review of 
recent advancements in the field of intelligent processing of stuttered speech. Through 
an extensive survey of the literature, we explore various approaches ranging from 
automatic correction and detection to leveraging clinician annotations for improving 
automatic speech recognition systems. Stuttering diagnosis and classification can be 
enhanced using machine learning techniques like k-Nearest Neighbors (KNN) and 
Decision Trees. k-NN classifies speech samples by comparing features such as disflu-
ency frequency and speech rate to labeled instances, identifying patterns indicative 
of stuttering. Decision Trees, on the other hand, use features like syllable repetitions 
and silent pauses to create decision rules, providing clear, interpretable classifica-
tion criteria. These methods improve diagnostic accuracy and enable personalized 
treatment strategies for stuttering. Confusion metric is used to capture the model’s 
performance and to showcase achieved results with 89.53% of accuracy with decision 
tree for word repetition and 86.11% for sound repetition. Stuttering diagnosis and 
classification face several limitations, including variability in speech patterns, which 
complicates consistent assessment. Diagnostic tools can be subjective and reliant on 
clinician expertise, potentially leading to inconsistencies.
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Keywords Stuttering · Speech disorder · Speech fluency · Repetitions ·
Prolongations · Machine learning K-NN · Decision tree · Speech rate · Diagnostic 
accuracy 

1 Introduction 

A speech fluency condition known as stuttering is typified by difficulty using the 
typical sounds required for speech and communication. Stuttering is a speech fluency 
issue characterized by difficulties producing the regular sounds required for speaking 
and communication. Stuttering does not currently have a treatment. The only progress 
made has been in speech therapy symptom management [1]. Communication special-
ists with training in speech pathology can identify stuttering and provide treatment to 
lessen or avoid fluency issues. While almost 75% of children who stammer between 
the ages of two and six recover from their stutter, stuttering can last a lifetime for some 
people. With a lifetime prevalence of stuttering estimated at 0.72%, there are over 
55 million stutterers worldwide, with nearly 80% of them residing in less developed 
nations in Asia, Latin America, and Africa [2]. Managing stuttering in developing 
nations presents a significant challenge because these regions lack speech-language 
pathologists, with India having a shortage of these professionals when it comes 
to treating stuttering. In developing nations, there is a dearth of clinical resources 
for medical needs, so it is necessary to make the most of what is already avail-
able for a speech pathologist to assist more stutterers [3]. Recent developments in 
computer speed, machine learning, and natural language processing may make it 
easier for speech-language pathologists to identify and monitor the development 
of stutterers through auto-mated stuttering identification systems (ASIS). Blocks, 
prolongations, word and sound repetitions, and interjections are some of the ways 
that stuttering disorders manifest. By impairing vital communication abilities and 
negatively impacting social interactions in academic and professional contexts, this 
illness can significantly lower a person’s quality of life. Stuttering may exacerbate 
social anxiety as people age, which would further impair their general wellbeing [4]. 
Further-more, stuttering has been linked to lower scores on the Medical Outcomes 
Study Short Form-36 (SF-36) quality of life questionnaire in the areas of vitality, 
social functioning, emotional functioning, and mental health. 

Decision trees and k-Nearest Neighbors (k-NN) are two machine learning algo-
rithms that can improve the diagnosis and classification of stuttering. By comparing 
characteristics like speech rate and disfluency frequency to instances that have been 
categorized, k-NN classifies speech samples and finds patterns that suggest stut-
tering. Conversely, decision trees provide unambiguous, comprehensible classifica-
tion criteria by employing characteristics such as syllable repetitions and silent pauses 
to generate decision rules. These techniques enhance the precision of the diagnosis 
and allow for individualized stuttering treatment plans. The model’s performance is 
measured using the confusion metric, which also displays the outcomes attained.
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2 Literature Review 

The literature survey of this “Stutter detection and classification” is based on the 
below papers. 

The paper ‘SEP-28 K: A Dataset for Stuttering Event Detection from Podcasts 
with People WHO Stutter’ presents the SEP-28 k dataset [5], outlined for recog-
nizing faltering occasions in discourse, especially from podcasts including people 
who stammer. It addresses the shortage of commented-on information in this space 
by giving over 28 k labeled clips, besides explanations for 4 k clips from the Fluency-
Bank dataset. The ponder investigates different acoustic models and highlights, 
counting mel-filterbank vitality, pitch, articulatory highlights, and phoneme prob-
abilities, combined with LSTM and ConvLSTM structures. The comes about appear 
that consolidating different highlights and utilizing the ConvLSTM show with a CCC 
misfortune essentially makes strides F1 scores and decreases EER, especially for 
identifying pieces and word redundancies. Preparing on bigger datasets like SEP-
28 k too improves execution, showing the dataset’s utility in creating more exact 
dysfluency location models. 

The paper ‘A CNN-Based Automated Stuttering Identification System’ pro-poses 
a novel approach employing a Convolutional Neural Arrange (CNN) to naturally 
recognize and classify stammering disfluencies in discourse [6]. The creators empha-
size the effect of stammering on quality of life and the shortage of discourse dialect 
pathologists, especially in creating nations. They prepared and tried their CNN 
demonstration utilizing the Sep-28 k dataset, which contains clarified stammering 
information, and assessed its execution measurements such as precision, exactness, 
review, and F1 score. The comes about appears that their show outflanked past clas-
sifiers, illustrating the adequacy of CNNs [6] in stammering distinguishing proof 
[7]. The creators moreover highlight the significance of datasets like Sep-28 k in 
progressing classifier strength and propose regions for assist advancement, such as 
information increase and investigating distinctive machine learning models. By and 
large, their investigation exhibits promising headway in robotized faltering location 
frameworks, with potential suggestions for moving forward to discourse treatment 
universally [8]. 

The paper ‘Robust Stuttering Detection [9] via Multi-task and Adversarial 
Learning’ investigates novel strategies in distinguishing stammering in discourse. 
Utilizing multi-task learning (MTL) and antagonistic learning (ADV), the consider 
points to form strong models for stammering discovery. The MTL system includes 
mutually learning faltering and metadata data, whereas ADV centers on learning 
strong and metadata-invariant acoustic representations for faltering. The proposed 
system is based on time delay neural systems and is assessed utilizing the SEP-28 k 
stammering dataset, appearing enhancements in different disfluency classes over the 
pattern. The comes about demonstrates that MTL upgrades location execution for 
disfluent classes but increments perplexity for familiar tests. In the interim, ADV 
learns vigorous falter highlights and appears promising results in distinguishing 
stammering sorts. By and large, the ponder contributes important bits of knowledge
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into leveraging progressed learning strategies for more successful faltering discovery 
frameworks. 

The paper ‘Advancing Stuttering Detection via Data Augmentation, Class-
Balanced Loss, and Multi-Contextual Deep Learning’ addresses challenges in 
faltering discovery by proposing novel techniques [10]. It presents MC StutterNet, 
a time delay-based neural organize, and utilizes information enlargement methods 
from the MUSAN dataset. The inquiry accomplishes outstanding headways in stam-
mering discovery, with a large-scale F1 score of roughly 91% on the reenacted 
LibriStutter dataset. Be that as it may, cross-corpora assessments uncover chal-
lenges in demonstrating generalization, highlighting the requirement for domain-
specific information expansion, and assisting in robotized faltering location [11]. 
The think about recognizes the complexities of the stammering discovery space, 
emphasizing continuous endeavors to move forward with clinical ease of use and 
show explainability. 

Existing work in stutter detection and classification faces several limitations. There 
is a scarcity of large, diverse, and annotated datasets, which affects model robustness 
and generalization. Models often struggle to generalize to new data, and the optimal 
combination of acoustic features remains unclear, impacting performance consis-
tency. The complexity of stuttering phenomena, with various types such as repetitions 
and blocks, poses challenges, as models may perform well for some types but not 
others. Adversarial learning techniques, while promising, add complexity to training 
and require careful balancing. Many models lack clinical usability and explain-
ability, crucial for therapeutic adoption. Additionally, the computational demands 
of sophisticated models hinder real-time or on-device deployment, particularly in 
resource-limited settings. Existing data augmentation methods may not fully capture 
the variability of natural speech disfluencies, high-lighting the need for more effective 
strategies. 

3 Proposed Model 

In our proposed work, we have used a decision tree for word repetition and sound 
repetition and KNN for prolongation. Figure 1 shows the block diagram of stutter 
speech detection. It represents a systematic approach to processing and analyzing 
stuttered speech, from raw audio input to the identification and classification of 
stuttering events.

Figure 2 shows the block diagram of the Mel-Frequency Cepstral Coefficients 
(MFCC). In speech and audio processing, MFCC has often utilized features, 
especially for tasks like speaker identification and speech recognition [12].

1. Frame Segmentation: The audio signal is split into brief segments, typically 
lasting between 20 and 30 ms, with overlaps to better capture time-related details.
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Fig. 1 Block diagram for 
stutter speech detection

Fig. 2 MFCC block 
diagram 

2. Windowing: A window function (such as a Hamming window) is applied to 
each segment to minimize spectral leakage that can occur during the analysis of 
short-duration signals. 

3. Discrete Fourier Transform (DFT): Each windowed segment is trans-formed 
from the time domain into the frequency domain using the DFT, thereby revealing 
the signal’s spectral content.
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4. Mel-frequency Scaling: The frequency spectrum obtained from the DFT is then 
mapped onto the mel scale, which aligns more closely with the human ear’s 
non-linear perception of sound frequencies. 

5. Mel-filterbank: A collection of triangular filters, arranged according to the mel 
scale, is applied to the transformed spectrum to capture the energy distribution 
across various frequency bands. 

6. Logarithm: The logarithm of the filterbank outputs is taken to compress the 
dynamic range of the filterbank energies. This step helps in dealing with variations 
in signal magnitude and enhances the sensitivity to lower energy regions. 

7. Discrete Cosine Transform (DCT): Finally, the DCT is applied to the log filter-
bank energies. The DCT coefficients obtained represent the cepstral features of 
the audio signal. Typically, only the lower-order DCT coefficients, known as 
MFCCs, are retained as they capture the essential spectral charac-teristics of the 
audio signal while reducing dimensionality. 

In our proposed work, we have used a decision tree shown in Fig. 3 for word 
repetition and sound repetition and KNN shown in Fig. 4 for prolongation. 

A decision tree may be a flowchart with hubs and bolts. Each record of the dataset 
streams through the flowchart [13]. Each record of the information begins at the 
root hub, which is on best, and voyages through inside hubs to the conclusion in a 
last leaf hub. In each hub other than the leaf hubs, a choice is made around where 
the information record ought to go to another [14]. All information records start off 
within the root hub and after that travel to either the cleared-out or right inner hub 
specifically underneath, based on whether the foremost critical include is less than or 
more prominent than a conditional expression, such as chroma cq ≤ 0.6. Chroma cq 
is one of the show highlights. By partitioning the information lower or higher than 
0.6, the entropy of the dataset is maximized. That is, after this division, the following 
two inside hubs are as diverse as is conceivable with the set of show highlights being 
utilized. The cleared-out hub will contain the next concentration of the target variable 
than the proper hub, or bad habit versa. At that point usually assist subdivided at the

Fig. 3 Decision tree
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Fig. 4 K-nearest neighbour 
(k-NN) algorithm

another push [15]. This handle stops when the number of tests in a leaf gets as well. 
The Python code sets modeling parameters just like the least number of tests in any 
leaf, or the number of lines the tree ought to have. It too takes within the title of the 
target variable and the names of all the modeling highlights. 

K-nearest neighbours (KNN) may be a clear however compelling calculation 
utilized in machine learning for classification and relapse errands. The concept behind 
KNN is straightforward: when foreseeing the course of a modern information point, 
the calculation looks at the K closest information focuses within the preparing set 
based on a remove metric (frequently Euclidean remove). For classification, the 
larger part course among the K neighbors is allotted to the modern information point, 
whereas for relapse, the calculation calculates the normal (or weighted normal) of 
the target values of the K neighbors. 

KNN is non-parametric and instance-based, meaning it doesn’t make suspicions 
around the basic information dispersion and stores the complete preparing dataset 
for the forecast. Be that as it may, choosing a suitable esteem for K is pivotal because 
it impacts the bias-variance trade-off of the show. 

4 Dataset 

The information utilized in this study is from the Sep-28 k and FluencyBank datasets. 
The Sep-28 k dataset [16] contains 28,000 three-second sound clips from podcasts 
made by stammering people, both in male and female voice. The clips were chosen 
at irregular from these podcasts [5]. An extra 4,000 clips from other podcasts were 
created comparably for the FluencyBank dataset [17]. This collectively brings the 
overall number of three-second sound clips to 32,000. Three discourse master judges 
tuned in to all 32,000 sound clips and voted whether they thought diverse sorts of 
faltering were show, or no stammering at all. Types of stammering are shown in 
Table 1.
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Table 1 Dataset description 
Disfluency Definition 

Word repetition Repetition of word 

Sound repetition Phoneme is repeated 

Prolongation Extended sounds 

Fig. 5 Sep-28 k dataset 

Each of these types of faltering for each of the 32,000 podcasts encompasses a 
name which may be a number from zero to three, speaking to the number of judges 
who voted for that sort of faltering for that sound clip. For illustration, the 10th clip 
of the to begin with a scene from the “HeStutters” podcast and encompasses a two 
beneath square stammer. This suggests that two of the three judges accepted that piece 
stammering happened amid this three-second sound clip. A few clips had more than 
one stammering sort, and a few clips had no faltering at all. The Sep-28 k (Stuttered 
Events Podcasts-28,000) dataset is published by Apple in 2021. Figure 5 shows the 
dataset where 52.7% is the fluent dataset and the remaining 47.3% dataset is about 
interjection, block, prolongation, and repetition. These all are types of stuttering. 

The Sep-28 k dataset’s composition is displayed in Fig. 5. The dataset’s various 
categories are distributed as follows: 

– Fluent (52.7%): The largest category, representing over half of the dataset. 
– Interjection (16.9%): The second largest category. 
– Repetition (13.9%): The third largest category. 
– Block (8.9%): A smaller category. 
– Prolongation (7.5%): The smallest category in the dataset. 

Varieties of speech disfluencies, including prolongations, sound repeats, and word 
repetitions. The Sep28k dataset for stutter identification, which hasn’t been utilized 
or examined frequently in relevant work. Our model uses a decision tree and KNN to 
classify three-second speech fragments with the appropriate analysis of disfluency 
or not, in contrast to other models that have been created on the Sep28k dataset. 

Figure 6 shows the number of audio clips from various shows. “WomenWhoStut-
ter” and “StutterTalk” contribute the most clips, with over 8000 and 6000 respectively.
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Fig. 6 Sep28k dataset 

Other significant contributors include “HeStutters” and “StutteringIsCool,” while 
“HVSA” and “IStutterSoWhat” provide the fewest clips. This indicates a diverse 
range of sources in the dataset. 

The task is to categorize disfluency into one of five categories (word repetition, 
sound repetition, prolongation, block, and interjection). The dataset consists of 32 k 
examples which is covered in podcasts. This dataset is publicly available on Kaggle 
and Fluencybank [18] official site. 

5 Experimental Results 

SEP-28 k dataset is used for detecting stuttering events in speech. Experimenta-
tion showed a significant performance boost with SEP-28 k compared to previous 
datasets. As shown in Table 2, the Decision Tree model is more effective for detecting 
words with an accuracy of 89.53% and sound repetitions with an accuracy of 86.11%, 
while the K-Nearest Neighbour model is used for detecting prolongations with lower 
accuracy. 

Table 2 Accuracy of each 
dis-fluency Dis-fluency Model Accuracy 

Word repetition Decision tree 89.53 

Sound repetition Decision tree 86.11 

Prolongation K-nearest neighbour 66.83
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1. Dataset Description: The SEP-28 k dataset has more than 28,000 clips labeled 
with five distinct event categories associated with stuttering, namely prolon-
gations, blocks, word repetitions, sound repetitions, and interjections. The 
audio clips are sourced from public podcasts featuring individuals who stutter 
interviewing others who stutter. 

2. Performance Improvement: Comparing acoustic models using SEP-28 k and 
the publicly available FluencyBank dataset showed that simply increasing the 
amount of training data improves relative detection performance. Com-paring 
the results to earlier datasets, there was a 28% improvement in the F1 score on 
SEP-28 k and a 24% improvement on FluencyBank. 

3. Annotation Release: It emphasizes the release of annotations from over 32,000 
clips across both datasets, SEP-28 k and FluencyBank, which will be made 
publicly available. This makes it easier to conduct additional study and 
advancement in the field of speech dysfluency identification. 

4. Evaluation Metrics: When evaluating a predictive model’s performance for 
machine learning and classification tasks, a confusion matrix is a useful tool. 
When handling binary or multi-class classification problems, it is especially 
helpful. The model’s predictions are tabulated and compared to the dataset’s 
actual labels in the confusion matrix. Let’s examine the terms that are frequently 
seen in a confusion matrix. 

(a) Accuracy: This metric quantifies the ratio of correctly classified instances 
to the total number of cases. 

Formula : Accuracy = (TP + TN)/(TP + TN + FP + FN) 

(b) Precision: Also known as positive predictive value, precision measures the 
proportion of true positive predictions among all cases predicted as positive. 
Formula: Precision = TP/(TP + FP) 

(c) Recall (Sensitivity): This indicator, also called the true positive rate, calcu-
lates the fraction of actual positive cases that are correctly identified. 
Formula: Recall = TP/(TP + FN) 

(d) Specificity: Often referred to as the true negative rate, specificity deter-mines 
the proportion of actual negatives that are accurately predicted. Formula: 
Specificity = TN/(TN + FP) 

(e) F1 Score: The F1 Score is the harmonic mean of precision and recall, offering 
a balanced measure of their combined performance. 

Formula : F1 Score = 2 · Precision × Recall 
Precision + Recall 

In Fig. 7 the color intensity in the matrix represents the count of predictions, with 
darker colors indicating higher counts. The performance metrics derived from this 
confusion matrix help evaluate the effectiveness of the classification model.

Figure 8 shows the performance of a classification model.
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Fig. 7 Confusion matrix

Fig. 8 ROC (receiver 
operating characteristic) 
curve 

– True Positive Rate vs. False Positive Rate: The curve plots these rates at different 
thresholds. 

– AUC (Area Under the Curve) = 0.53: Indicates the model is only slightly better 
than random guessing (0.5). 

This ROC curve helps assess the model’s ability to distinguish between classes.
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6 Conclusion 

In the realm of stuttering detection and classification, both decision trees and K-
nearest neighbors (KNN) offer distinct advantages and considerations. Decision 
trees stand out for their interpretability, providing valuable insights into the decision-
making process by highlighting which features contribute most significantly to stut-
tering classification. This transparency can aid researchers and clinicians in under-
standing the underlying speech characteristics associated with stuttering. Moreover, 
decision trees are adept at capturing nonlinear relationships between features and stut-
tering, which can be particularly relevant given the complex nature of speech patterns. 
Additionally, decision trees exhibit robustness to irrelevant features, automatically 
selecting the most discriminative ones for split-ting nodes, thereby simplifying 
feature selection. 

On the other hand, K-nearest neighbours (KNN) offer flexibility in handling stut-
tering detection tasks, especially when dealing with intricate, nonlinear relationships 
between features and stuttering. Since KNN doesn’t make assumptions about the 
distribution of the underlying data, it can be used in situations where it’s unclear how 
speech features and stuttering are related. Additionally, KNN’s capacity to take into 
account local patterns in the feature space may be useful for spotting minute changes 
or specific patterns in speech signals that might be connected to stuttering episodes. 
Additionally, the simplicity of KNN’s implementation makes it accessible and effi-
cient, particularly for smaller datasets or situations where computational resources 
are limited. 

The decision between decision trees and KNN for stuttering detection and classi-
fication in real-world applications depends on a number of variables, including as the 
dataset’s size and complexity, available computing power, and the required degree of 
interpretability. Researchers and practitioners may benefit from experimenting with 
both algorithms on their specific dataset, possibly exploring ensemble methods like 
Random Forests for decision trees or considering more advanced algorithms like 
Support Vector Machines (SVMs) or Neural Networks for further enhancement in 
classification performance. In order to choose the best method or algorithms, these 
criteria must be carefully considered in relation to the particular needs and objectives 
of the stuttering detection task. 

7 Future Scope 

Future developments in the field of stuttering detection and classification are 
anticipated to be significantly accelerated by emerging technology and research 
projects. Advanced machine learning methods, such as convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs), can more reliably and ac-
accurately detect stuttering speech patterns in fluent speech. By combining various 
modalities—such as audio, video, and physiological signals—we can improve our
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comprehension of stuttering behaviours and the precision of our detection systems. 
With the help of real-time detection systems that can be installed on portable elec-
tronics like smartphones, stutterers can now manage their speech in a variety of social 
and professional settings by receiving prompt feedback. These systems’ longitudinal 
monitoring can offer insightful information about the development of stuttering, 
guiding the development of tailored intervention plans. While ethical considerations 
and user entered design principles ensure the responsible and inclusive development 
of these technologies, large-scale data analytics initiatives may reveal new insights 
into the complexities of stuttering. Eventually, adding stuttering detection tools to 
teletherapy platforms can increase the number of options for remote assessment and 
treatment, leading to better clinical outcomes and an improvement in the quality of 
life for stutterers. 
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